
Engineering Support· Processor
(ESP)

604 User's Reference Manual

Document Dated June 7, 1996

(For the entire 604 family)

Kent D. Thompson
T/L 678-6708

(512)838-6708
AUSVM6(KENTTHOM)

John Bordovsky
T/L 678-5682

(512)8~8-5682
AUSVM6(BORDOVSJ)

Dept. F87 /045-3
Austin, Texas

Hard copies of this document are valid on date printed. For the latest version
of this document contact one of the authors. This document is also located in
/afs/awd/public/esp/userdoc/esp604manual.ps. ,.

User's Reference Manual

~r

¥!
~;

2 of247

Engineering Support Processor 604

Engineering Support Processor 604

FORWARD

PART 1 -- ESP DESCRIPTION

1.0: OVERVIEW OF THE ESP PROJECT
1.1: INTENT AND PURPOSE OF THE ESP PROJECT

1.2: BRIEF COP OVERVIEW

1.3: HARDWARE REQUIRED

1.4: SOFTWARE OVERVIEW

1.4.1: FUNCTIONLIST
1.4.1.1: Basic Functions
1.4.1.2: Additional Supported Functions

User's Reference Manual

11

13

:14
14
14

15

16

16
16
17

1.4.1.3: Machine Under Test (MUT) Hardware Respictions 18
1.4.2: STOPPING THE PROCESSOR

1.4.2.1: Hard and Soft Stops

1.5: SOFTWARE INSTALLATION

1.5.1: COMMAND FILES
1.5 .1.1: Definition Sequence
1.5 .1.2: Editor producing 'flat file'
1.5 .1.3: profile.x
1.5.1.4: menu.x
1.5 .1.5: screen.x (Screen Definition)
1.5.1.6: chipst.x (Scan Table)

1.6: RUNNING THE ESP PROGRAM

1.6.1: HOW SCREENS SHOW UP IN THE PROGRAM

2.0: USER INTERFACE
-2J: The ESP CONSOLE

2.1.1: Options

2.1.2: Custom Menus

2.1.3: Quickscript

2.1.4: Refresh

2.1.5: Help

2.1.6: Log

2.1.7: Utilities

2.1.8: Command History List

18
18
;f9

1'9
i{'9

19
20
20
20
20

20

21

22
22
23

24

24

24
25

25

25 ..
26

\J.$. }(.I:;

3 of247

EngineerjngSupport Processor 604 User's Reference Manual

,. .. ,

:~, ;

4 of247

2.1.9: Command Line

2.1. l 0: TTY Window

2.1.11: Machine Under Test Status

2.2: SCREENS

2.2.1: WHAT A SCREEN IS AND HOW TO MAKE ONE

~.2.1.1: An example Screen Definition

2.2.1.2: Start rows and columns

2.2.1.3: Data TYPES defined

2.2.1.4: Size of screen DATA cells

2.2.1.5: References to CHIPs and FIELDs

2.2.2: HOW TO CALL UP A SCREEN

2.2.2.1: Nicknames

2.2.2.2: Full Titles

2.2.2.3: The 'screen' command

2.2.2.4: By name on the command line

2.2.2.5: Menu invocations

2.3: KEYBOARD I EDITOR

2.3.1: CURSOR MOTION

2.3.2: EDITING A CELL

2.3 .2. 1: Originating the edit

2.3.2.2: Ending the edit

2.3.2.3: SPECIAL meaning

2.4: MENUS

2.4.1: WHAT A MENU IS AND HOW TO MAKE ONE

2.4.2: AN EXAMPLE MENU DEFINITION

2.4.2.1: HOW TO CALL UP A MENU -

2.4.2.2: Nicknames

2.4.2.3: Full Titles

2.4.2.4: The 'menu' command

2.5: COMMAND LINE SYNTAX

2.5.1: COMMANDS

2.5.2: LEXICAL STRUCTURE

2.5.3: COMMENTS

2.5.4: VARIABLE SUBSTITUTION

2.5.5: PREDEFINED VARIABLES

2.5.6: PROMPTING

26

26

26

26

27

28
28
28
29

29

29
29
29

29
30
30

30

30
31
31
31
31

31

31

32

32
32

33

33

33

33

33

34

34

35

35

Engineering Support Processor 604

6 of247

bt

caa

cac - chip add chip

cacopcmd

cad

.campg

ca pg

capo rt

cass

cat

cbuf

cd

cecho

clear break

els

configure

cop

copcmd

cop log

copstub

cs

dirty

display

drt.rymode

dump

dynload

echo

enable

equip

err

esp

exit

expect

faclist

User's Refere11CeManiial'.J;_1c:c:'<.1

,.
., .-"\

'

62

63

67

69

70

76

77

79

80

83

84

87

88

89

90
'T . ('.s: 91

92

97

98

99

100

101

102

104

105

107

108

-~~ :.: ... 109
,

• ! (., \, 110

111

112

114

115

117

Engineerfo:g Support Processor 604

2.5.7: COMMAND ERRORS

2.5.8: COMMAND SEARCH ORDER

2.6: COMMAND FILES

2.6.1: COMMANDFILENAMES

2.6.2: NESTING COMMAND FILES

2.6.3: BREAK SIGNAL

2.6.4: SPECIAL FEATURES

2.6.5: SPECIAL COMM..AJ'-ID FILE: PROFILE.X

2.7: INVOCATION

2.8: MISCELLANEOUS

2.8.1: RUN

2.8.2: STOP

2.8.3: SETTING THE IAR

2.8.4: PROFILES AND FILE SYSTEM

User's Reference Manual

35

35

35

36

36

36

36

36

37

37

37

37

38

38

2.8.5: LOADING MEMORY 39

2.8.6: UPDATING A SCAN TABLE 40

2.8.7: DOES THE SCREEN DISPLAY CHIP DATA OR IMAGE DATA 40

2.8. 7 .1: When does a scan string get written 41

2.8.7.2: When do the chips get read 41

2.8.8: REXXINTERFACEANDSYNTAX 41

2.8.8.1: REXX Examples 41

PART 2 -- COMMAND REFERENCE 45

1.0: COMMAND REFERENCE 46
1.1: INTERRUPTING THE ESP PROGRAM 46

1.2: RETRIEVE FUNCTION 46

1.3: PRIMARY ESP COMMANDS 46

47

aet 50

alter 52

autoupdate 5 7

beacon 59

~~ ~

bp 61

5 of247

Engineering Support Processor 604

file finder

flush

get

gexpect

gread

gwrite

help

hr es et

Ill

inl6

in32

ioflag

ipl

iplrun

IS

isd

jtag

layout

list

listall

load

load_cntr

log

ls

mal

mat

meminit

memread

memwrite

menu

mmior

mmiow

move

number

User's Reference Manual;-''..!::'· :, -

7 of247

119

120

122

123

124

126

128

129

130

132

134

135

136

137

140

142

143

144

145

146

147

149

150

151

152

153

154

155

156

157

158

159

160

161

Engineering Support Processor 604

8 of247

ocs

out

out16

out32

pages

pause

pg

pinread

pinwrite

pioe

pi or

pi ow

por

prs

pwd

quit

readcon

reducedpinmode

refresh

reset

resetint

run

saa

sabreak

saco

sacs

sad

saespco

saespvar

sais

sal

sam

sanai

sao

User's Reference Manual

163

164

166

168

169

170

171

173

175

177
178

179

180

181

182

183

185

186

187

188

189

190

192

193
194

195

196

199

201

202

203

204

205

206

Engineering Support Processor 604

sapb

sapn

sat

sav

save

saveLayout

scanread

screen

set

setclock

setvar

sjipl

sjreset

sleep

sreset

stat

stop

time

treset

tty

unset

update

userbreak

ver

verbose

wait

which

xtist

User's Reference Manual

9 of247

207

209

210

211

212

213

215

216

218

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

239

240

·-".\

Engineering Support Processor 604 User's Reference Manual

10 of247

Engineering Support Processor 604 User's Reference Manual

FORWARD
This document is the authoritative description of the Engineering Support Processor (ESP)
program for the 604 family of processor chips. The functions specified in this document
will be supported as indicated, and functions not specified in this document will not be sup­
ported.

We look forward to your comments on both the tool and the documentation. Since it is our
experience that documentation can sometimes be more frustrating than actually using the
tool, please give us your comments even if you think they are trivial, such as information
~rder or items not found in the index. This will help us produce a tool that is better for all
our customers. Please direct your questions or comments to:

Kent D. Thompson John Bordovsky

Tieline 678-6708, External (512) 838-6708 Tieline 678-5682, External (512)838-5682

AUSVM6(KENTTHOM) AUSVM6(BORDOVSJ)
"

kentthom@austin.ibm.com j ohnb@austin.ibm.com

C2M/045-3

Austin, Texas

NOTE: Various groups have indicated a desire to take the "base" ESP program
and implement various changes and extensions for their particular
needs. We do not recommend doing this. We will not give out the
source code unless directed to do so by our managment.

llof247

User's Reference Manual Engineering Support Processor 604

12 of247

Engineering Support Processor 604 User's Reference Manual

PART 1 -- ESP DESCRIPTION

NOTE: ESP is supported on AIX version 3.2.5.

13 of247

User's Reference Manual Engineering Support Processor 604

1.0 OVERVIEW OF THE ESP PROJECT

1.1 INTENT AND PURPOSE OF THE ESP PROJECT

The Engineering Support Processor (ESP) is a debug tool which connects to test boards for the 604
processor. The ESP will be used to debug and verify both hardware and software. The ESP con­
sists of a hardware interface adapter and a program. The interface adapter, which plugs into an
RS6000, .is used to connect to the JTAG bus and through the JTAG bus to all the latches, registers,
and arrays in the processor unit. The software is written in the C programming language and runs
under the AIX operating system.

The ESP allows the user to:

1. Read, display, alter, and write all registers, arrays, latches, and memory in the target
processor.

2. Set break points, single step, start, and stop the process-or.

3. Run diagnostic software.

NOTE:The 604 ESP uses new ESP hardware that supports both COP and
JTAG protocol. The 604 ESP software also supports both COP and
JTAG chips, but currently only the 604 chip has been connected and
used with 604 ESP.

1.2 BRIEF COP OVERVIEW

The 604 processor has built into it a Common On-chip Processor, or COP, and JTAG TAP,
or Joint Test Action Group Test Access Port. The JTAG TAP has five physical connections
that form a synchronous serial port. It is through this JTAG port that 604 ESP connects to
the 604 processor for all activities. (The JTAG circuit is IEEE 1149.1 compliant.)

The JTAG TAP has a synchronous serial port. It can receive commands and data through
its serial input pin and can shift out status and data through its serial output pin. Commands
and data are used by the JTAG circuits as well as the COP circuits. These commands direct
it to do such things as control the chip's clocks (for scanning and testing,) or release control
of the clocks (for normal running,) configure the chip's LSSD scan strings for scanning or
normal run mode, enable/disable the check stop, and a series of control functions of this
nature. The scan strings can be configured as one long scan string and the scan string data
clocked out through the serial output port. The long scan string can also be filled with data
by clocking data in through the serial input port. By way of the scan string data and certain
control lines, all arrays can be written or read from the COP. The COP can initialize the
logic and arrays on the chip in order to put the chip into a known, good starting condition.

14of247 PART l - ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

1.3 HARDWARE REQUIRED

The following summarizes the hardware required to run the ESP.

• RS6000

Any RS6000 machine including the model 220.

• Hard disk

ESP can be run at IBM Austin off of AFS, therefore, a large amount of disk space is
not a necessity. If a user desires to have ESP locally on his machine then he should
allow 100 Meg for all the ESP versions. A user who desires only one version of ESP
needs only 10 Meg of free disk space.

The user should consider how much space AIX, TCP/IP, SNA, Multi-User Services,
X-Windows, Motif, other software packages, and testcases will use before determin­
ing how much disk space is necessary for the machine.

• Graphic Terminal

A large graphics display (IBM 6091 or similar) is necessary to display the ESP
screens for 604.

• Printer

Any printer that is compatible with the RS6000. ("PRINT WINDOW" option in the
menu requires a 3812 printer.)

• ESP Hardware

The hardware required to debug the 604 chip is:

1. An adapter card that goes into the RS6000 (micro channel bus).

2. A 40 wire (RS6000) ribbon cable about 10 feet long. One end of this goes
into the card in the RS6000 and the other end goes into the buffer card.

3. A buffer card that is intended to sit as close to the test vehicle as possible.

4. A 16 wire ribbon cable about 10 inches long. One end of this cable plugs into
the buffer card and the other end plugs into the test vehicle.

• Token Ring connection

A Token Ring connection is not required. However, most applications have found

OVERVIEW OF THE ESP PROJECT 15 of247

User's Reference Manual Engineering Support Processor 604

the token ring to be an extreme advantage.

• Connection to a VM host

Test cases can be down loaded from VM if required.

• Manufacturing

Manufacturing requirements are determined on a case by case basis.

1.4 SOFTWARE OVERVIEW
The ESP hardware and "core" software provide access to the JTAG bus, and through the JTAG bus
to all latches, registers, and arrays in the CPU, as well as external memory. Which facilities are
displayed on the screen, how the screen is laid out, what labels are on the screen, what menus are
available, etc, can all be set by the user, and indeed, must be set. Some initial screens will be set
up by the ESP designers, but there are NO default screens in the ESP program.

When the ESP program is run, it looks for and executes any commands in a file called "pro­
file.x". This file contains ESP commands that directly personalize the program, and points
to other files which contain more commands to be read and executed. All screens to be used
and all chip scan strings to be accessed must be defined in these files. A more detailed dis­
cussion of these files is in the following sections.

NOTE:These files contain a series of ESP commands. There is no branching
(conditional or unconditional), no do-while, and so forth. These com­
mands are in exactly the same format as commands typed onto the
command line of the ESP program display and are explained in the
"Command Reference" section of this document.

1.4.1 FUNCTION LIST

1.4.1.1 Basic Functions

1. Set processor to known state and start.

2. · Load memory with data from support processor's hard file.

3. Set breakpoints (hard, soft, and interrupt).

4. Dump and display complete processor state (all scan string and array information)

5. Display and alter registers

6. Display and alter arrays

7. Display and alter memory (real).

8. Instruction single step.

9. Display and alter GIO addresses

l6of247 PART l -- ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

10.

11.

1.4.1.2

1.

2.

3.

4.

5.

6.

7.
8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Display and alter memory mapped IO.

Display, alter, and expect PIO.

Additional Supported Functions

Electronic means of updating scan string information from BDLCS.

All devices in the scan tables are accessible.

Configure for different EC levels without re-compiling

Support testing single chips (alone).

Chip to chip wiring test).

Self Test.

User programmable push buttons perform any ESP command

Display registers, arrays, and memory in ASCII. ..
Instruction decode (display opcode for next instruction)

Print screen (data and control registers to printer).

Scroll through memory or arrays

Run for N instructions.

Write/Read Scan String Without running.

Log all commands to a file and run again.

Command file "till_status" (wait) function

User programmable screens and menus.

Alter Memory in ASCII.

Display memory from a programmable origin and/or offset.

Issue COP commands directly.

Log all COP commands.

Command syntax help available (many commands).

Error messages can be logged.

Incredibly easy to add a lot of functions.

Adapter card's address is selectable.

Specify which chips are present.

Memory access by 4 byte word.

Automatically access arrays.

Automatically set parity .

Multiple processor support

OVERVIEW OF THE ESP PROJECT 17 of247

User's Reference Manual Engineering Support Processor 604

30. Rexx front end for looping ESP command testcases.

31. Alter devices in ASCII.

32. Retrieve previous commands.

33. Display registers, arrays, and memory in EBCDIC.

34. Display registers, arrays, and memory in scientific notation.

35. Loads programs into memory that are in XCOFF or TOC formats.

36. Run from remote location.

3 7. Save processor state to hard file and load at a latter time.

38. Motif Interface allows the display of more than one ESP screen at a time.

1.4.1.3 Machine Under Test (MUT) Hardware Restrictions

Functions the hardware does not allow.

• Run for N instructions in real time.

• Run in real time and break when a register contains a certain value (except IAR).

• Count the number of cache misses.

• Set multiple breakpoints.

• Interface directly with any I/O device.

• Stop the I/O chip and restart.

1.4.2 STOPPING THE PROCESSOR

1.4.2.1 Hard and Soft Stops

The 604 processor supports two types of stops. The hard stop will freeze the clocks on all
chips simultaneously. This will allow the exact state of the machine to be examined. How­
ever, because this can happen during some time critical sequences, normally the MUT can­
not recover from this type of stop.

The second type of stop is a soft stop. For this type of stop, the 604 will stop dispatching
instructions and will wait for all CPU activity to stop. Then it will stop the CPU chips. The
ESP will then insure that all DMA and memory activity has ceased prior to completing the
stop sequence. This type of stop does not allow for the exact processor state to be examined
during the middle of a step, but it does allow the system to be restarted.

There are a number of combinations of these stops. The user should be aware that some
stops MUST be followed by a system reset. '

The processor will stop PRIOR to executing the breakpoint instruction.

18of247 PART I --ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

1.5 SOFTWARE JNSTALLATIOlV

Since all the ESP files are stored on AFS, the ESP code can be run without installing it
locally. Once a machine has access to AFS and the "awd" cell then some minor changes to
the .profile will allow ESP to run.

l. klog into afs on the AWD cell (usr/afs/bin/klog usemame -cell awd)

2. Edit your $HOME/ .profile by adding to the PATH variable "/afs/awd/public/esp/
rios/bni.".

3. Execute the .profile with 11 •• profile". The .profile will be run automatically after a
logoff and a logon.

4. Change directory (cd) to your working directory.

5. Type "esp".

1.5.1 COMMAND FILES

All ESP definition is accomplished by the program reading files which contain a series of
ESP commands. The sequence of these ESP commands is critical in some cases, and in
other cases is not. Menu definitions may be done at any time. However, the chip definitions
and the screen definitions must be done in sequence.

1.5.1.1 Definition Sequence

Menu definitions can be done any time. Before a chip or chip facility can be referenced on
a screen, the chip and facility must be defined. The chip must be defined in the following
order:

1. cat

2. cass

3. cad

4. cac

NOTE: '.fhe "User Interface" and "Command Reference" sections below dis­
cuss these commands in detail. A screen must be defined before labels
and data fields can be defined on the screen. Therefore, the sat com­
mand for a screen must be completed before either sal or sad com­
mands for that screen can be used.

1.5.1.2 Editor producing 'flat.file'

The command files are all plain text, meaning that there are no imbedded non-printable or
non-ASCII characters in them. A text editor (such as VI, e3 or INed) is required only if
creation or modification of the command files is to be performed:

OVERVIEW OF THE ESP PROJECT 19 of247

User's Reference Manual Engineering Support Processor 604

1.5.1.3 [Jrofile.x

When the ESP program starts, it looks for a command file called profile.x. If this file exists,
the ESP program executes all the commands in it. The profile command file is typically
used to initialize the menu system for the application at hand. It is, however, not required.

1.5.1.4 menu.x

Profile typicaily runs commands that will configure the ESP program. Among them might
be a command file to configure the menu system, like menu.x. This file name is only used
tp illustrate the concept of configuring menus. The ESP program does NOT look for
'menu.x', and does not care if menus are configured or not.

The point is: there are NO default menus in ESP. ALL menus must bebuilt with commands
that are TYPICALLY performed from command files. The command file is TYPICALLY
executed by the profile.x command file. Menu contents are totally programmable . ..

1. 5.1. 5 screen.x (Screen Definition)

All screens used to manipulate data in the MUT come from Screen Definition files, which
are just another command file. There are NO default ESP program screens. Screen names
are totally user definable, however, the extension '.x' IS required for a screen command file.

1.5.1.6 chi[Jst.x (Scan Table)

Screens in the ESP program are defined with Screen Definition command files that MUST
refer to the data they will display by chip name and field, or device name. These two names,
chip and field, MUST exist in a data base that is known as a Scan Table. The scan table file,
one for each chip to be referred to, is presented to the ESP program in yet another command
file that uses ESP commands like chip add type (cat) and chip add device (cad)
(e.g.604st.x).

In addition to the scan table files, there is an additional file for most chips which contains a
list of devices that have been concatenated together.for convenience. This allows latches
that have different names, but are functionally related to be addressed as one device on a
screen. (e.g. 604CAD.x) ·

There are also a series of files which contain the information required to access arrays.
These files contain information such as what devices must contain the control bits and data
to write an array. (e.g. ITLB.DEF)

1.6 RUNNING THE ESP PROGRAM

The ESP program is run by entering 'esp' <enter> on the keyboard (without the single
quotes). The command follows the typical AIX convention of using lower case letters.
This executes a shell script called "esp".

20of247 PART l - ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

1.6.1 HOW SCREENS SHOW UP IN THE PROGRAM

There are NO default screens in the ESP program. If you want a screen to show up, you
must build a Screen Definition command file, which specifies the look of the terminal
screen, and refers to the Scan Table(s) for the chip(s) data being displayed.

Menus, command files, and Command Lines can be used to make the screen appear on the
terminal screen.

OVERVIEW OF THE ESP PROJECT 21 of247

User's Reference Manual

2.0 USER INTERFACE

2.1 The ESP CONSOLE

Figure l:ESP Screen Example

Engineering Support Processor 604

ESP has a Motif Window Interface. The first thing the user sees when ESP is executed is
the console window. (See Figure 1.) This X-Window is comprised of five sections: The
Menu Bar at the top, the Command History Listjustbelow, followed by the Command
Line, the TTY Section, and finally the MUT Status.

22 of247 PART 1 --ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

The console window can be resized using the standard X method of grabbing the window
by an edge or comer and dragging it to a new size. This is performed with the left-most
mouse button. Normally, clicking the left-most mouse button once will position the cursor.
Two clicks will select a word, where words are delineated by white space. Three clicks
selects a line. The middle mouse button will paste what has been selected at the current cur­
sor position.

The Menu Bar on top of the ESP console allows the user to select frequently used ESP com­
mands and Custom Menus.

2.1.1 Options

The 'Options' button will pull down a menu of selections that allow you to choose:

Exit ESP

Save Layout

Set

Cop log

Pushing 'Exit ESP' will cause the ESP program to immediately terminate.

Pushing 'Save Layout' will cause the present location of any screens you have up, including
the ESP Console, to be remembered. The next time you run ESP, these same screens will
come up at the same locations. The remembered layout information is stored in file
$HOME/.esplayout.x.

Pushing 'Set' will cascade another menu with the following selections:

Echo on

Echo off

Verbose on

Verbose off

TTY on

TIYoff

File Finder on

File Finder off

Pushing 'Echo on' will turn on echo so that, after any user input is macro expanded, it will
be echoed to the TTY window. (Echo is turned on using the ESP command 'set echo'.)

Pushing 'Echo off' cancels the echo command. (Echo is turned off using the ESP command
'unset echo'.)

Pushing 'Verbose on' will establish a mode where any input to ESP is immediately sent to
the TTY window. This happens before macro expansion of ESP variables occurs.

USER INTERFACE 23 of247

User's Reference Manual Engineering Support Processor 604

Pushing 'Verbose off' cancels the verbose mode.

Pushing 'TTY on' means that output from a ESP command that is shown in the TTY win­
dow will be seen in the window.

Pushing 'TTY off' means that even though output is sent to the TTY window, it will not be
presented there. (This does not affect logging.)

Pushing 'File.Finder on' means that each time ESP executes a command file, its full path
and file name are written to the TTY window.

Pushing 'File Finder off' means that if ESP executes a command file, it will do it without
mentioning the fact.

Pushing 'Coplog' will cascade another menu with the following selections:

Coplog off

Coplog 1

Coplog2

Coplog3

Coplog4

Coplog 5

The coplog command allows visibility ofthe COP commands being sent to the MUT.

2.1.2 Custom Menus

Contains the ESP debug screens. The selections in the menu can be changed. See Menus.

2.1.3 Quickscript

This will open a window that allows the user to write, modify and run ESP command "pro­
grams" without exiting the ESP program. Editing is performed with a few simple com­
mands: ,

add a line - <enter>

delete a line - select a line with mouse and <delete>

add a character - type a character

delete a character - <delete>

2.1.4 Refresh

This button updates all ESP debug windows (screens).

24of247 PART l -- ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

2.1.5 Help

This button lists all ESP commands in the TTY window.

2.1.6 Log

The 'Log' button will pop up a window with selections dependent on the current logging
state. If logging is currently turned off then the window will look something like this:

Loqqinq is currently turned OFF
New Log - - Append SAME New Log - - Truncate

If logging is currently turned on then the window will look something like this:
Loqqing is ON to file:/usr/fred/junk.log

Clear Log Close Log Print Log Edit Log

New Log - - Append SAME New Loq - - Truncate

In either case 'New Log -- Append' will allow you to pick a log file that already exists so
that logging will append to the file. ..

'New Log -- Truncate' will allow you to pick a log file that will be truncated if it already
exists.

The 'SAME' button allows you to leave the pop up window without changing anything.

The 'Clear Log' button will close the log file and stop logging.

The 'Print Log' button will make a temporary copy of whatever is currently in the log file,
print the temporary copy to the default system printer~ and then delete the temporary copy.
Logging continues during and after this button is pressed.

The 'Edit Log' button will make a temporary copy of whatever is currently in the log file,
and then cause a window to come up running the editor described in the AIX environment
variable EDITOR. When you leave your editor, the temporary file is deleted. Logging con­
tinues during and after this button is pressed.

2.1.7 Utilities

The 'Utilities' button will pull down a menu of selections that allow you to choose:

Clear TTY window

Print TTY window

Editor

Print a Window

Open a Shell Window

Pushing the 'Clear TTY window' button will cause the TTY window to be cleared of all
stored text.

Pushing the 'Print TTY window' button will cause the entire TTY window (not just the vis-

USER INTERFACE 25 of247

User's Reference Manual Engineering Support Processor 604

ible part) to be sent to the default system printer as ASCII text.

Pushing the 'Editor' button causes you editor to be run in a window. That is, the editor to
be run is the editor described in the AIX environment variable EDITOR.

Pushing the 'Print a Window, button will change the cursor to a white cross. Move the
white cross cursor to any window up on your display and press the left mouse button once.
You should immediately hear a beep, and after a pause, a double beep. The cursor should
then change oack to its original shape. The window you clicked on will be turned into a
3812 format bitmap, and then sent to the system default printer via qprt. (This requires a
~812 printer.)

Pushing the 'Open a Shell Window' causes an aixterm window to be opened. The window
inherits the ESP environment and will exist in the same directory that ESP was run from.

2.1.8 Command History List

The Command History List allows you to re-execute previously typed ESP commands. You
can 'single click' an old command and then press <enter> to execute it, or 'double click' on
the old command to execute it right away. If you prefer, you can use the up and down arrow
buttons to retrieve old ESP commands.

2.1.9 Command Line

The Command Line is the place to enter your ESP commands. The comma..11ds are
explained in the Command Reference section of the manual.

2.1.10 TTY Window

The TTY window is the ESP output. Whenever you execute a ESP command that has an
output expected, the output will be placed into the TTY window.

2.1.11 Machine Under Test Status

The Machine Under Test (MUT) Status portion of the ESP console informs the user of hard­
ware status. In the case of ESP, hardware status refers to the status of two physical lines
connected to the MUT. The POWER on/off indicator monitors the +POWERGOOD signal,
and the Checkstopped indicator monitors the -CHECKSTOP hardware line.

2.2 SCREENS

Although the ESP has no built in screens, the ESP product has packaged with it many useful
screen definitions. You are encouraged to build your own screens 'to help look at your chip
set in a way most useful to you!

26of247 PART 1 -- ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

Every screen is created from a collection of normal ESP commands such as 'sat', 'sal', 'sad',
'sam', and others. Each of these commands may be found in the Command Reference sec­
tion of this manual.

The grouping of these ESP screen commands into a single file is not required, but is usually
the most useful way of creating a screen. In fact, every screen supplied with the ESP pack­
age is one-screen-to-a-file, where the screen name and the file name match (but where the
file name has a '.x' tacked on to it).

This is a summary of all the ESP screen commands. Look these up in the Command Refer-
ence section of this manual for a complete explanation of their abilities. ·

Table 1: Summary of ESP Screen Commands

saa Screen Add Array display

sabreak Screen Add Breakpoint field

sacs Screen Add Cycle Step field

sad Screen Add Data field

sais Screen Add Instruction Step field

sal Screen Add Label field

sam Screen Add Memory display

sanai Screen Add Next Assembler Instruction field

sao Screen Add Origin field

sapb Screen Add Push Button

sat Screen Add Title

sav Screen Add Variable field
'

2.2.1 WHAT A SCREEN IS AND HOW TO MAKE ONE

A screen always starts with the 'sat' command: sat regs "This is a register screen"

The 'sat' command does two things: creates a named screen, in this example "regs", and
establishes a title for the screen that will be shown at the top of the screen when it becomes
visible. The (literal) title of the screen can later be used to bring the screen up, or the nick­
name ("regs") can be used to bring up the screen.

Any furthur screen commands will use the same nickname, "regs", to relate their action
onto the same screen. For example, to add a label to the screen: sal regs 0 1 "These registers

USER INTERFACE 27 of247

User's Reference Manual Engineering Support Processor 604

are found in the CACHE"

Label fields cannot be moved to using the cursor keys or mouse. Data fields not only display
data but can be moved to and edited. An example data field: sad regs I 0 x ?MSR

In the 'sad' example we said "create a data field on the 'regs' screen at row 1 column 0.
Present the data from the architected register MSR there, and do it in hexadecimal.

.
2.2.1.l An example Screen Definition

Here is an example of how a screen is created using sat, sal, and sad:

s.at f pu 0 604 Floatinq Point Execution Unit"
screen row col label
sal f pu 0 2 "Decode Op II

sal fpu 0 30 "XER II

sal f pu 1 2 "Exec Op II

screen row col type chip field
sad f pu 0 12 x 604 reqO
sad fpu 0 34 x 604 reql
sad f pu 1 12 x 604 req2
screen f pu
-------------------------·-------------·----------------
The entries above would create a screen like this

Figure 2: Screen Definition Example

Decode Op ~QQQQQQQ! XER 00000000
Exec Op 00000000

.:iutoupd.:ite <)on O off - c.:i.ncel

2.2.1.2 Start rows and columns

Start row and column values in the sal and sad commands will begin at 0. The top left comer
of a screen is at coordinates 0,0.

2.2.1.3 Data TYPES de.fined

Data may be displayed as 'A' for ASCII string, 'E' for EBCDIC, 'X' for Hexadecimal, 'D' for
Decimal, 'B' for Binary, 'O' for Octal and 'F' for floating-point. Note that decimal does not
work for devices with more than 32 bits.

28 of247 PART 1 -- ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

2.2.1.4 Size of screen DATA cells

Another fine point about the screen that was created is the size of the data cells created (des­
ignated by 00000000 in this example). The size of the data cell is determined by the 'type'
field in the sad command, and the number of bits as specified in the Scan Table entry for
the 'chip' and 'field' as specified in the sad, and existing in the Scan Table.

Since a Hexadecimal digit represents four bits, then if the device is 32 bits, it can be repre­
sented in 32/4' = 8 hex characters. If a field is 'type' 'B', then the same device, holding 32
bits, must be represented on the screen in Binary, and therefore would require 32 characters
of space. Similarly, Octal for 32 bits would require 32/3 = 11 (rounded up) characters to
represent the device contents. (The un-used bits would be set to zero automatically).

2.2.1.5 References to CH!Ps and FIELDs

The sad command refers to a 'chip' and 'device' as the source of the data that will be dis­
played/modified in the screen cell. These references must already exist in the Scan Table
prior to creating the screen. If they do not exist, the sad command will reject the request
for creating the data cell, and print an error message. The screen being created will simply
NOT have the referenced device on the screen.

enu

2.2.2 HOW TO CALL UP A uit from menus

In general, screens can be 'calle
using the 'screen' command, or
the screen in on the command lin
WHICH SCREEN you are talk"
either its 'nickname' or its 'title'.
created with the sat command.

2.2.2.1 Niclazames

creenMenu

elp Menu

rint screen

edraw screen

xit Program

ickname', by 'title of screen',
u can simply type the name of
ly on the ability to communicate
am you can refer to a screen by
given to the screen when it is

Nicknames allow screens to be referred to by a short, perhaps meaningful, word instead of
the screens 'title'. In the example given above, notice that the sat command specified a nick­
name 'fpu' for the screen. Also, as shown, the sal and sad commands took advantage of the
shorter nicknames by using them to specify which screen they wanted to add a label or data
cell to.

2.2.2.2 Full Titles

Screens may be displayed by asking for the title. In our example the title is ' 604 Floating
Point Execution Unit'.

2.2.2.3 The 'screen' command

When a screen is asked for, by either its 'nickname' or its 'title', it is asked for in one of two

USER INTERFACE 29 of247

User's Reference Manual Engineering Support Processor 604

ways: using the 'screen' command, or by inference. You can use the 'screen' command as
in: 'screen fpu'. This would make the 'fpu' screen appear.

2.2.2.4 By name on the command line

If you are on the command line you can simply type the name of the screen. The program
will first look for the 'name' as a command, and failing to find the command, it will then
look for the 'name' as a REXX program, and if not found, it will then look in the ESPPATH
directories for "'name'.x". If the command file exists, then it is executed to display the
screen.

2.2.2.5 Menu invocations

Menus are user programmable, and any menu can include a command 'screen fpu' (as an
example), or simply have the name of the screen as the command; 'fpu' . ..

2.3 KEYBOARD I EDITOR
The ESP keyboard is a standard RS6000 keyboard.

Here, we focus on the keyboard as it is used during modification of data on a screen cell,
which of course is done to implement a change to some MUT hardware register or device.

While on a SCREEN, the cursor will ALWAYS be in some current cell. While in that cell,
you are either editing or you are not. Cursor motion over the cells is possible without ever
changing anything.

2.3.1 CURSOR MOTION

Cursor motion is the act of moving the cursor from cell to cell with any of the following
keys:

TAB Move to the next editable cell.

BACK TAB
'

HOME

END

UPARROW

DOWN ARROW

LEFT ARROW

RIGHT ARROW

ENTER

30of247

Move to the previous editable cell.

Move to the most upper-left cell editable.

Move to the most bottom-right cell editable.

Move up a cell.

Move down a cell.

Move left a character.

Move right a character.

Move to the next editable cell.

PART I -ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

2.3.2 EDITING A CELL

The edit of a cell begins when you overtype the value of some cell. The following list of
keys are useful in the EDIT mode:

2.3.2.1 Originating the edit

Depressing any of the following keys starts the edit:

OVER WRITE Over-typing a character at the cursor.

2.3.2.2 Ending the edit

The edit is over if you press a cursor motion key (other than left or right arrow keys) or you
change focus from the edit cell to some other location. This includes the Enter key and the
Tab key, but they have other special significance also. Once the edit is over, an 'alter' com­
mand is automatically generated and performed by the ESP program for the device just
changed. By the time you get to the next cell, the previous celi will have been modified in
the ESP programs version of the Scan String.

2.3.2.3 SPECIAL meaning

ENTER

PAGE DOWN

PAGE UP

2.4 MENUS

Can terminate an edit, and causes cursor motion like tab.

When a screen is displayed that has cache or memory
displayed, and the cursor-is in the data portion of the
screen, the page down key will cause the displayed data
to page down by the amount set by the 'sam' command
for that screen.

When a screen is displayed that has cache or memory
displayed, and the cursor is in the data portion of the
screen, the page up key will cause the displayed data to
page up by the amount set by the 'sam' command for
that screen.

2.4.1 WHAT A MENU IS AND HOW TO MAKE ONE

Menus are created by the execution of multiple menu add line (mal) commands. Menus are
created using the menu add title (mat) command, specifying the (optional) nickname and
(not optional) title of the menu. Once the menu exists, then mal will add lines to the menu.

USER INTERFACE 31 of247

User's Reference Manual Engineering Support Processor 604

2.4.2 AN EXAMPLE MENU DEFINITION

Here is an example of how a menu is created using mat, and mal:

Figure 3: Menu Definition Example

#Cind menu nickname menu title
mat main "Main Menu"

#Cind menu nickname line text command text
mal main 11 Quit from menus 11 II II

mal main "Screen Menu" "menu screen"
mal main "Help Menu" "menu help"
mal main "Print screen" "prs"
mal main "Redraw screen" "redraw"
mal main "Exit Program" "exit"

The entries above would create a menu like this:

2.4.2.1 , HOW TO CALL UP A MENU

In general, menus can be 'called up' in several ways; by 'nickname', by 'title of menu', by
using the 'menu' command or by clicking on the "Custom Menus" button. All of these
methods rely on the ability to communicate WHICH MENU you are talking about. In the
ESP program you can refer to a menu by either its 'nickname' or its 'title'. Both these mon­
ickers are given to the menu when it is created with the mat command.

2.4.2.2 Nicknames

Nicknames allow menus to be referred to by a short, perhaps meaningful, word instead of
the menus 'title'. In the example given above, notice that the mat command specified a nick­
name 'main' for the menu. Also, as shown, the mal command took advantage of the shorter

32 of247 PART 1--ESPDESCRIPTION

Engineering Support Processor 604 User's Reference Manual

nickname by using it to specify to which menu it wanted to add a line.

2.4.2.3 Full Titles

Menus may be displayed by asking for the title. In our example the title is 'Main Menu'.
The spelling, including spaces, would have to be an exact match.

2.4.2.4 The '•menu' command

When a menu is asked for, by either its 'nickname' or its 'title', it is asked for by using the
'menu' command. The 'menu' command allows you to call up a menu command (.x) file.

2.5 COMMAND LINE SYNTAX
The command processor is a command programming language. It reads and executes com-
mands from either the terminal device or a file. •

2.5.1 C()l\11\'lJ\l'l))S

A command is a sequence of words, separated by blanks. The first word is the name of the
command. The remaining words are arguments for the command.

2.5.2 LEXICAL STRUCTURE

The command processor uses the following delimiters to split lines into words:

space tab new-line < > I ;

Space and tab are used only as delimiters. New-line marks the end of a command.

The following form separate words which are resenied for future use. These special cases
could be used to separate several commands on one line or to redirect input and/or output
for a command.

< > << >> I ;

Quoting any of these delimiters removes their special meaning. Any character may be
quoted by preceding it with a\. A new-line preceded by \ is ignored, and the command may
be continued on the next line. A \ is represented by \\.

All characters, except new-line, enclosed between a pair of grave accents are quoted. The
following three rules apply to new-lines within grave accents. ·'

1. A new-line preceded by a \ is a true new-line character.

USER INTERFACE 33 of247

User's Reference Manual Engineering Support Processor 604

2. A new-line not preceded by a\ is an error (unmatched quote).

3. When it precedes any character other than new-line,\ represents itself.

All characters, except new-line, enclosed between a pair of double quotes are quoted. The
following three rules apply to new-lines within double quotes.

1. A new-line preceded by a\ is a true new-line character.

2. A new .. line not preceded by a\ is an error (unmatched quote).

3. When it precedes any character other than new-line,\ represents itself.

Note that quoting does not delimit a word. Quoted strings may be only part of a word.

2.5.3 COMMENTS

The# symbol (number sign or pound sign) can be used to mark a line as a comment. The
comment lines are discarded and take up no space in memory~ A comment begins with a
non-quoted# and causes all characters up to, but not including, a new-line to be ignored.

2.5.4 VARIABLE SUBSTITUTION

User defined command variables may be created and removed with the set and unset com­
mands. These are general purpose macros.

As the command processor parses a command line, it scans for variables and substitutes
their values in place of the variable names. These variables are introduced by the question
mark character. They may be represented in one of the following ways.

?NAME

?{NAME}
'

Name is the name of a user defined variable. The char­
acters allowed in name are 'a' through 'z', both upper and
lower case, underscore and decimal digits. Name must
not begin with a digit . To expand variables whose
names include characters other than the ones allowed
here, use the following notation.

Braces may be used to separate the name of a variable
from other characters. For example, ?{chipa} expands
the variable, chi pa. And, ? {chip} a expands the variable,
chip. Braces also allow name to contain any characters
other than braces.

Except within quotes, the substitution of variables may be disabled by preceding the? with
a \. Within double quotes substitution always occurs. Within grave accents substitution
never occurs.

If a variable is expanded within double quotes or grave accents, then embedded blanks will
not delimit words. If a variable is not within quotes then embedded blanks will divide the
substituted variable into separate words.

34of247 PART 1 -- ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

2.5.5 PREDEFINED VARIABLES

See the "set" command in the command reference section of this document.

2.5.6 PROMPTING

If commands are being read from the terminal device then the command processor prompts
for each line that is read. The value of the variable, promptl, is used to prompt for a new
command line. If a line is continued then the value of the variable, prompt2, is used to
prompt for the remainder of a line.

if the variable, noexecute, is set then its value is used instead of the value of promptl.

2.5.7 COMMAND ERRORS

All commands return an exit status to the command processor. The status of each command
tells the command processor whether the command completed normally or exited because
of an error. Normally the returned status is ignored.

When running a command file, it is often desirable to stop the file if one of the commands
exits because of an error. If the variable, exitonerr, is set then the command processor will
exit after any command which returns a non-zero error status. Control will be returned to
the user's command line.

2.5.8 COMMAND SEARCH ORDER

After the command processor has parsed a command line, it must decide how to execute
the command. First, the command processor checks the command name to see if it is one
of the internal commands. If it is not found the command processor checks to see if the
command name is the title or nick name of a screen that has already been referenced in the
current ESP session. If it is, then that screen is displayed on the terminal screen. If it is not
a command or screen the command processor looks for a file with the same name as the
command name (with a ".x" extension). If the file is found the command processor will
read commands from the file. If an executable file without a ".x" extension is found, ESP
passes the command to REXX. REXX will properly execute the command if it is a REXX
program.. When a command is not found, the command processor prints a message (com­
mand not found).

2.6 COMMANDFILES

Command files are sometimes called 'batch' files. Command files are command lines that
could be typed in while running the ESP program, but that are instead irnbedded in a disk
file to be read in and executed, one at a time, automatically, by the program.

NOTE: REXX will run AIX files also.

USER INTERFACE 35 of247

User's Reference Manual Engineering Support Processor 604

2.6.1 COMMAND FILE NAMES

Command files must have a file name extension of" .x" or ".X". To run a command file, its
file name may be entered either with or without the ".x" extension. If you try to ask for a
screen by name, and the screen is not in memory, the ESP program will create a filename,
"name.x" and search for the screen command file .

.
2.6.2 NESTING COMMAND FILES

Command files can call other command files. The number of nesting levels is limited only
by the amount of memory available.

2.6.3 BREAK SIGNAL

Pressing the break key sends a program interrupt to the command processor. This signal can
be used to stop the execution of a command file. If commandS are being read from a com­
mand file, break causes the command processor to return to the interactive mode.

NOTE:If a command file has called another command file (nested command
files), the break key will exit one level of command nesting. Pressing the
break key from the 0 level of nesting (the main ESP program) will cause
the program to halt and return the user to the AIX shell.

Because this sequence is programmable, it can vary (rom machine to machine. Most
machines have a default profile (.profile) that is programmed to interpret control-C as the
break signal or as the program interrupt.

2.6.4 SPECIAL FEATURES

Command files have the same capabilities as the user has when typing commands in on the
command line of the ESP program. However, a thing or two might be mentioned here
which might make it easier to use while creating an~ using command files.

Use the last line of a command file to call up a screen. This is THE WAY to do it for a screen
definition command file, and could be used to advantage in other applications.

Use a command file, as a Screen Definition, but where all the commands in the file are sat
and sal's. This would create a SCREEN that is nothing but label cells, and nothing on it to
edit (no data). This might be useful as a NOTE of explanation, or as a HELP screen.

2.6.5 SPECIAL COMMAND FILE: PROFILE.X

Profile is the only 'special' file the ESP program uses. It is looked for when the ESP pro­
gram initializes, and if it exists then it is read in and executed. Profile.x does not have to
exist. However, menus will be useless until they are programmed, and profile typically
takes care of this task. Profile could also put up the first screen.

36of247 PART 1--ESPDESCRIPTION

Engineering Support Processor 604 User's Reference Manual

Here is an example of a typical profile.x to start up an ESP program:

get ?ESP/scantables/bin/604ddl.bin #read scantables

menusl

arch

equip 604

meminit

configure "?ESP/bin"

2. 7 INVOCATION
_SYNTAX esp

open esp

2.8 MISCELLANEOUS

#read menu definitions

#set· architected names

#establish 604 as physically present

#initialize ESP memory handler

#Cause the hardware to be initialized

..

Many functions performed by the ESP can be done by an operator entering a few key
strokes. Often, these few key strokes cause the program to issue hundreds or thousands of
commands to the MUT. Memory and array access typically performs the most operations.

2.8.1 RUN

The following is some of the things that the ESP must do to start the system running. The
system under test must NOT have hardware lines -checkstop or +powergood in an error
state.

• Any cached memory is flushed to the system.

• Any cached scan strings are flushed to the system.

• (All ESP flags about the data from the system are marked invalid.)

• The following COP commands are issued to start the processor:

to all chips: RESUME

2.8.2 STOP

The following is some of the things the ESP must do to stop the system.

NOTE:The system under test must NOT have hardware lines -checkstop or
+powergood in an error state. "·

USER INTERFACE 37 of247

User's Reference Manual Engineering Support Processor 604

The command 'stop', shown with no arguments, defaults to 'soft' stop.

A soft stop is done as follows:

• COP command HALT sent

• The ESP waits for run/stop status to indicate a stopped condition

• COP command FREEZE is sent.

• The ESP internal flags are set to indicate data is available from the processor

If 'STOP -H' was issued, indicating a request for a HARD STOP, then:

• A COP FREEZE command is BROADCAST to all chips in system

• The ESP waits for run/stop status to indicate a stopped condition

• The ESP internal flags are set to indicate data is available from the processor

2.8.3 SETTINGTHE IAR

The following is the sequence the ESP performs to set the instruction address register at
address x' 100'.

reset

bp x'OOOOOlOO'

alter ?MSR x'OOOOOOOO'

/*resets the scan latches to zeros* I

/*stop before instruction at address*/

/*x'lOO' is performed*/

/*sets up MSR to begin at address* I

I* x'lOO'*/

alter x'lOO' x'[branch instruction to code start]'

alter 604 ZAA_604.SAA.SDY.SCE.HRESETREG.THELATCH.L2 b'l' /*needs*/

/*to be here* I

alter 604 ZAA_604.SAA.SDY.SCE.REXCEPTREG .THELATCH.L2 b' l' /*needs* I

/*to be here* I

iplrun 1 /*initial run *I

2.8.4 PROFILES AND FILE SYSTEM

ESP will search for files in these ways:

1. While trying to find a .x file

2. While trying to find a rexx file

3. While trying to find a file to be loaded

38of247 PART 1--ESPDESCRIPTION

Engineering Support Processor 604 User's Reference Manual

As a brief overview of how ESP tries to figure out what the user is asking of it, lets start by
having a user type something in on the command line. ESP will first try to find the typed
line as an ESP command. If the command is not found, then ESP will try to match the line
as if it were a screen name, and ESP will search its existing screen list for a match. If the
line typed is not a screen name, then ESP will assume it is a '.x' file on disk, and add the '.x'
extension to the command, and look for the file first in the current directory, then via the
path as specified in the AIX environment variable ESPlPATH. The dot-x file will be
searched for ill all directories specified, first with a lower case '.x' and then with an upper
case '.X'. If the file is never found, then ESP passes the command line to REXX and lets
REXX look for the command. RE:XX will use the AIX environment variable PATH to
search for the RE:XX file. If RE:XX cannot find the file, it will return to ESP and ESP will
print 'command not fowid: xxxx' and terminate the search.

Summary of search order:

1. is it a command

2. is it a screen in ESP memory
..

3. is it a .x file in current directory

4. is it a .x file in ESPPATH

5. is it a .X file in current directory

6. is it a .X file in ESPPATH

7. is it a REXX file in current directory

8. is it a REXX file in PATH

So we have just identified two paths searched from ESP; the ESPPATH used by ESP to look
for dot-x files, and the PATH which is used by REXX to look for RE.XX files. A third path
is used when ESP is loading or preloading MUT binary files.

When the load command is used, ESP will try to find the MUT binary file using the AIX
environment variable ESPIAVPBIN. Inside ESP, ESPIAVPBIN is read and sets ESP vari­
able ESPAVPBIN. The ESPAVPBIN path is used to·point to where the MUT binaries are
located.

Summary

1. is source file in current directory

2. is source file in ESPAVPBIN

3. is .pre file in current directory

4. is .pre file in ESPAVPBIN

2.8.5 LOADING MEMORY

The ESP loads memory by loading 8 bytes of data into the 604 scan string and commanding
the MUT to run. It actually takes longer to load the data into the 604 scan string than it

USER INTERFACE 39 of247

User's Reference Manual Engineering Support Processor 604

takes to flush the data to the MUT and for it to run.

NOTE:All data is loaded into memory, not into the dcache or the icache. When
loading a program into memory, there is always a chance that the
icache and the dcache could have a current shadow of some of the mem­
ory. Normally the caches should be cleared prior to loading and exe­
cuting a program.

2.8.6 UPDATING A SCAN TABLE

The ESP has a file $ESP/scantables/bin/604ST.x. ($ESP corresponds to a value in the envi­
ronment which gets set by the esp shell script.) These files contain examples of how to con­
struct a binary scan table for whatever combination of chip EC level scan strings are
desired. To construct a scan string for a MUT, do the following:

1. Change your current directory to $ESP/scantables/bin . ..
2. Copy the 604.x file to a file with a different name.

3. Edit this file to show the chip scan string files that you want to include and the output
file name you want used.

4. Start the ESP program and follow the prompts.

5. Update your profile.x file to get the new binary scan string file name.

2.8.7 DOES THE SCREEN DISPLAY CHIP DATA OR IMAGE DATA

The ESP program has two flags which are used to control the reading and writing of the
scan strings.

DIRTY_FROM FLAG

DIRTY_TO FLAG

40of247

The "dirty_from" flag indicates that the MUT has run
since the scan string for a particular chip was read.

SET This bit is set when the MUT is told to run
or when the dirty command is issued.

CLEARED This bit is cleared when the scan string for
that chip is read.

CHECKED This bit is checked when there is a request
for the data from that chip. If an operator wants to have
some data from that chip displayed, the ESP program­
will check this flag to see if the scan string must be read.
If the ESP has a current image of the scan string data in
memory, it will not read the scan string again.

The "dirty_to" flag indicates that the image of the scan
string in the ES P's memory has been ·changed and the
data in the chip is no longer current.

PART 1--ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

SET
altered.

This bit is set when the scan string data is

CLEARED This bit is cleared when the scan string
data is read or written.

CHECKED This bit is checked prior to starting the
MUT processor. If the "dirty_to" flag is set, the ESP
program will write the data to the chip prior to starting
the MUT running. This bit is also checked when the
flush command is issued.

See the 'flush' command, the 'dirty' command, the 'display' command, and the 'expect' com­
mand.

2. 8. 7.1 When does a scan string get written

A scan string is written to a chip when the MUT is told to run a cycle step, run an instruction
step, run or iplrun is issued, or when the flush command is issued.

2.8. 7.2 When do the chips get read

The chips are read when data is requested which is contained in a scan string that has the
dirty_from bit active.

2.8.8 REXX INTERFACE AND SYNTAX

Although there are some limitations, REXX is a very powerful addition to ESP. The current
version of REXX will satisfy most of our needs.

The guide for REXX on the RS6000 is the manual "Common Programming Interface Pro­
cedures Language Level 2 Reference". It can be obtained through IBM "genreq" with the
number SC24-5549-0.

NOTE:REXX will not allow file names to be longer than 10 characters.

NOTE:J;le very careful about upper and lower case. REXX likes upper case
and AIX likes lower case. REXX programs called as functions must
have lower case names.

Our version of REXX uses the 'address esp' command to cause REXX to redirect the com­
mands to ESP. Address command causes REXX to direct commands to AIX or REXX.

NOTE: You can call a REXX file from a .x file, but not a .x from a REXX file.

2.8.8.1 REXX Examples

The following example is a program that was written by Robert Qolla to test the arrays on
the fixed point chip.

USER INTERFACE 41 of247

User's Reference Manual Engineering Support Processor 604

Figure 4: REXX Example - Testing arrays on fixed point chip.

/* sinqle testcase to check all arrays on fxpt chip */
parse arq chip

if chip=1111 then do
say "YO'U; must enter an output file name •.. goodbye"
exit 99
end

data32.0= 1 00000000 1 ; data32.1='55555555';
data32.2='AAAAAAAA'; data32.3='FFFFFFFF';
data20.0=•ooooo•; data20.1='55555'; data20.2='AAAAA'; data20.3='FFFFF';
p4.0='0'; p4.1='5'; p4.2='A'; p4.3='F';

/* the followinq two statements are relevant only for the xds array of
the fxpt chip since what you write to it is not what you read back from
it */

rdata20.0= 1 0000F 1 ; rdata20.1= 1 1555A'; rdata20.2='2AAA5';
rdata20.3='3FFF0';
rp4.0='0'; rp4.1='5'; rp4.2='2'; rp4.3='7';

tty on
address xed "loq " chip'log'

do j=O to 3 /* test out four different patterns */
do i=O to 127 /* 127 is size of largest array on fxpt chip */

echo 'Currently verifying row ' i 'of all fxpt arrays with pattern '
data32.j
if i<16 then do

42 of247

verify(fxpt,xt0_xtx_$ad,i,data32.j);
verify(fxpt,xt0_xtx_$ap,i,p4.j);

end
if i<32 then do

verify(fxpt,xjO_xjr_$ad,i,data32.j);
verify(fxpt,xj0_xjr_$ap,i,p4.j);

end
if i<64 then do

verify(fxpt,xt0_xtp_$ad,i,data32.j);
verify(fxpt,xtO_xtp_$ap,i,p4.j);
verify(fxpt,xtO_xtq_$ad,i,data32.j);
verify{fxpt,xtO_xtq_$ap,i,p4.j);
verify(fxpt,xt0_xtr_$ad,i,data32.j);
verify(fxpt,xt0_xtr_$ap,i,p4.j);

PART 1 -- ESP DESCRIPTION

Engineering Support Processor 604 User's Reference Manual

end
exit

end

verify(fxpt,xt0_xts_$ad,i,data20.j};
verify(fxpt,xtO_xts_$ap,i,p4.j);
verify(fxpt,xtO_xtt_$ad,i,data32.j);
verify{fxpt,xtO_xtt_$ap,i,p4.j);
verify(fxpt,xt0_xtu_$ad,i,data32.j);
verify(fxpt,xt0_xtu_$ap,i,p4.j);
verify(fxpt,xtO_xtv_$ad,i,data32.j);
verify{fxpt,xtO_xtv_$ap,i,p4.j);
verify(fxpt,xtO_xtw_$ad,i,data20.j);
verify(fxpt,xtO_xtw_$ap,i,p4.j);

end
verify(fxpt,xdO_xdy_$ad,i,data20.j);
verify(fxpt,xdO_xdy_$ap,i,p4.j);
verify(fxpt,xdO_xdz_$ad,i,data20.j);
verify(fxpt,xdO_xdz_$ap,i,p4.j);
verify(fxpt,xdO_xea_$ad,i,data20.j); ,.
verify(fxpt,xdO_xea_$ap,i,p4.j);
verify(fxpt,xdO_xeb_$ad,i,data20.j);
verify(fxpt,xdO_xeb_$ap,i,p4.j);
checkit(fxpt,xd0_xds_$ad,i,data20.j,rdata20.j);
checkit(fxpt,xdO_xds_$ap,i,p4.j,rp4.j);

verify: procedure
parse arq chip,facility,row,patt
address xed 11 alter 11 chip facility 11 [11 row"]" "x 111patt"'"
address xed 11 e.xpect 11 chip facility 11 [11 row 11] 11 11 x 111patt 11111

return 1111

checkit: procedure
parse arg chip,facility,row,patt,result
address xed 11 alter 11 chip facility 11 [11 row 11] 11 11 x 111patt 11 • 11

address xed "expect" chip facility 11 [11 row 11] 11 11x• 11 result 11 ' 11

return 1111

Figure S:REXX Example

The following example was written by Duane Cawthron to demonstrate some of the differ­
ent REXX functions and syntax. This program calls the following file for input data.

/*
@(#) rexexample -- example REXX exec which can be run by ESP
**
** Remember: REXX execs must begin with a comment

USER INTERFACE 43 of247

User's Reference Manual Engineering Support Processor 604

44of247 PART 1--ESPDESCRIPTION

Engineering Support Processor 604 User's Reference Manual

PART 2 -- COMMAND REFERENCE

..

45 of247

User's Reference Manual Engineering Support Processor 604

1.0 COMMAND REFERENCE
The following section describes the various commands supported by the ESP program. The
ESP program can execute these "primary" commands, or it can execute ESP command files,
or it can execute REXX files. The user should understand the ESP profile and file system
structures to understand how to execute extended command file sequences.

1.1 INTERRUPTING THE ESP PROGRAM

c;:ommands can be interrupted by entering the AIX interrupt sequence. Because this
sequence is programmable, it can vary from machine to machine. Most machines have a
default profile that is programmed to interpret control-C or control-BS as the program inter­
rupt or the break signal. To interrupt the ESP program you must type Control-C on the win­
dow from which you invoked ESP.

1.2 RETRIEVE FUNCTION
The ESP command line is part of a MOTIF 'command' widget. The last 8 of up to 100 ESP
commands you have entered appear above the command line and may be retreived in sev­
eral ways. The up arrow and down arrow keys may be used to move to a previously exe­
cuted command. Just using the arrow keys places the command into the command line
where you may press Enter to execute it or may edit the command as desired. You do not
have to use the arrow keys at all, but instead, may use the mouse to select a command. One
click of the left mouse button selects a command and places it into the command line. (You
could then edit the command or just press Enter to execute it.) A double click of the left
mouse button not only selects the command but also executes it as if you had pressed enter.
(Recommended)

1.3 PRIMARY ESP COMMANDS

46of247 PART 2 - COMMAND REFERENCE

Engineering Support Processor 604 User's Reference Manual

' •
PURPOSE:

SYNTAX:

Allows AIX shell access from the ESP.

! AIXcommand [&]

DESCRIPTION: This ESP command allows execution of an AIX command or com­
mands from ESP. This command is not intended to be a method of
gaining a new window to perform AIX actions, but is intended to, for
example, allow an ESP script program to run an AIX program.

When called, this function first places the AIXcommand into a 512
byte buffer. If the AIXcommand is too long a message is printed and
the AIXcommand is not run, otherwise, ESP executes the AIXcom­
mand in one of two ways, depending on an optional ampersand,"&",
flag.

If the ampersand is specified, then ESP 'forks' and performs an 'exe­
clp' of the Korn shell. The -c option is passed to the Korn shell to tell
it that the next argument is a command to be performed. The users
AIXcommand to be performed is passed last.

What this means is that the AIXcommand will be performed by the
Korn shell in a separate process from ESP (in the background so to
speak). ESP will not wait for the command to complete, but continues
as soon as the fork is done.

NOTE: When the ampersand flag is used ESP does not
know if the AIXcommand was found, completed, or what
the return status of it was.

If the ampersand flag is not specified, then ESP uses the systemO com­
mand to execute the AIXcommand specified. ESP then waits for the
system() command to complete and sets the AIXcommand exit status
as the ESP status. This is very useful if an AIX process must complete
before ESP should continue. ·

NOTE: If you must use the question mark,"?", in your
AIX program invocation, then AIXcommand must be sur­
rounded by grave accents,"'" to prevent ESP from inter­
preting the question mark.

NOTE: If you wish to use the semi-colon in your AIX­
command (list) then you must use double quotes surround­
ing AIXcommand to keep ESP from interpreting the semi­
colon(s).

Part 2 - Command Reference 47 of247

User's Reference Manual

EXAMPLES:

Engineering Support Processor 604

To have ESP run a program 'gpib' to cause a GPIB device to be set:

! gpib 5 43 92 (Note: no grave accents or double quotes needed here)

ESP would run gpib and wait for its termination. The exit status of
gpib would be available in ESPSTATUS.

To run the same gpib program in the background:

! gpib 5 43 92 &

To grab the TC6xx test card three AIX programs must be run, but
sequentially. (That is, subsequent programs must not run until previ­
ous programs are finished running.) This can be done two ways from
ESP. First, we might create one ESP command with the three ADC
commands as the argument, each sepera~d from the other by semi­
colons.

! "tcinit; ntstrst; nrst" (Note: double quotes required!)

ESP would wait for all three AIX commands to complete and make
the return code from the last AIX command available as status.

The second method is to create three ESP commands:

! tcinit

! ntstrst

! nrst

ESP would run each program and each time wait for the program to
complete. Exit status from each program would be available.

RELATED INFORMATION:

none

48of247 Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

Part 2 - Command Reference 49 of247

User's Reference Manual Engineering Support Processor 604

aet
PURPOSE: Have ESP generate an All Events Trace file

SYNTAX: aet (offloutFile) [iolist]

DESCRIPTION:

ESP can produce an ABT file, outFile, that has the same format as that
produced by TEXSIM. The AET file produced by ESP can therefore
be read by any of the standard ABT viewers available (e.g. XVS).

On the other hand, ESP is incapable of producing SIGNAL values.
Only L2 latch devices and array data can be logged to the aet file.

The aet syntax allows three things to happen. Typing aet by itself will
produce the current status: OFF or ON to file outFile. Typing aet off
will turn aet logging off if it is on, and typing aet outFile will turn aet
logging on to file outFile. •

When aet logging is turned on, if no iolist is specified, then ESP will
register the names of every device for every equipped chip into the aet
file. If the iolist1 is specified, then only the names in the iolist file will
be registered into the aet file.

Once aet logging has been turned on, ESP will generate aet data after
completion of either the cs command or the is command. At these
times ESP will try to log the current value of all registered devices into
the aet file. (But only changes are actually logged in the file.)

IOLIST FILE FORMAT:

The iolist file format understands blank lines and lines beginning with
a pound sign,#, as comment lines. Any other lines must be valid.

A valid iolist line consists of three fields that may be seperated by
spaces or tabs:

• The Processor Group name

• The Chip name

• The device name and optional bit range in parenthesis

Example iolist file:

DEFAULTMUT 620 Pl.WAA.IAA.IAC.ICS.ICIQ.L2D

DEFAULTMUT 620P1.WAA.IAA.IAC.ICS.ICIR.L2D(0:7)

DEFAULTMUT 620 gpr[5]

DEFAULTMUT 620 Pl.WAA.IAA.IAC.IC~.ICIT.L2D(3)

1. The file format for the iolist file is specified in paragraph labeled "IOLIST FILE FORMAT"

50 of247 aet Part 2 - Conunand Reference

Engineering Support Processor 604 User's Reference Manual

EXAMPLES:

DEFAULTMUT 620 gpr[6](2:4)

DEFAULTMUT 620P1.WAA.IAA.IAC.ICS.ICIV.L2D

DEFAULTMUT 620P1.WAA.IAA.IAC.ICS.ICJG.XXXO.L2D_O

To capture output into aet file JONG 1 using the iolist illustrated
above:

aet JONG l iolist

To see if aet logging is on:

tut

To turn aet logging off:

tut off

RELATED INFORMATION:

Part 2 - Command Reference aet 51 of247

User•s Reference Manual

alter
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Allow memory, arrays, or scan string facilities to be modified.

alter [(mpglpg)] radix'address' radix'value'

alter [(mpglpg)] 12(radix'address'] radix'value'

alter [(mpglpg)] chip array_name[radix'array_address'](bit:range)
radix'value'

alter [(mpglpg)] chip device_name(bit:range) radix'value'

[(mpgjpg)] means an optional parameter which may specify a Multi­
Processor Group or a Processor Group. If a MPG or a PG is not spec­
ified by the user, then the current PG is accessed, as set by the "pg"
command. In single processor environments, this parameter may be
safely ignored.

IfMPG is specified, then the same chip and device in all PG's of the
MPG will be modified.

NOTE: Specifying the optional [(mpglpg)] for a memory
alter is ineffectual.

radix may be any of: x= hex, d= decimal, b= binary, o= octal, a=
ASCII, f= float, e= EBCDIC

NOTE: The float is the IEEE single or double precision
number format. It is a double word (8 byte) format.

Bit range expressions, as in (bit:range), must be expressed in decimal.

DESCRIPTION: The alter command allows modification of a chip's internal data via
the scan strings accessible to ESP. The scan strings are directly acces­
sible from the COP, and arrays and memory can be accessed if ESP
does a sequence of COP commands and scan string manipulations

52 of247

ESP can tell from the alter syntax if the change is to be made on a
facility, an array element, on L2 memory or on memory. If there are
four arguments then the following device name might be either a facil­
ity on the scan string or an array element. If the device name has
square brackets surrounding an address, then ESP knows the device is
an array element, else the device is just an ordinary facility on the scan
string. If the request is made with only three arguments, then the sec­
ond argument is considered to be the MUT memory address or an L2
memory address. If an L2 memory access, then "12" and the square
brackets inform ESP of this.

ESP accesses chip module scan strings only on demand. That is, ESP
will not read (and certainly not write) to or from the MUT until a
demand from the user is made via commands, such as alter.

alter Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

ESP keeps MEMORY IMAGES of the scan strings. When ESP tries
to commit the alter data supplied by the user to the memory image of
the scan string, ESP checks to assure it has the latest data available. If
it does not, then ESP scans in the string, and until something happens
to change the state, ESP will work into and out of the memory image
of the scan string from then on. If a request to alter is made on array
data, then ESP does such work immediately. There is NO cache of any
type implemented for array data. An alter for anything less than the
full size of an array element will force ESP to do a read-modify-write
sequence as well.

If a request to alter memory is made, then ESP could possibly work
into a 64 byte buffer cache. This would be possible only if the address
of the data to be altered is in the range of a block of 64 characters pres­
ently cached in ESP memory.

L2 memory is also cached by ESP into 64 byte buffers.

SPECIAL CONSIDERATIONS:

• Memory access is limited to REAL addresses only.

• Memory access is always performed on 32 bit words, and the
address specified should be given on a word boundary (0, 4, 8,
12, etc.). Any address specified that is NOT on a word boundary
will be modified to the lower word boundary for that address.
(ANDed with Oxfffffffi))

• Memory access does not support bit ranges. All 32 bits of the
memory address are always operated on.

• Memory is cached in 64 byte blocks by ESP. All alters (and dis­
plays) performed by ESP will be done out of the ESP cache if pos­
sible. The jlusfi run, ipliun, cs, and is commands will flush the cached
memory before they execute if the memory cache is holding valid
data.

• Memory access within a 64 byte block is treated as read/modify/
write.

• Bit range alterations performed on arrays or normal facilities are
handled with read/modify /write code.

• A device that is specified without a bit range will be entirely mod­
ified. Thus, 'alter chip device O' will force the entire device to be
set to zero. The size of the modification is obtained from the data

Part 2 - Command Reference alter 53 of247

User's Reference Manual Engineering Support Processor 604

specifed by the user. (E.G. x'45' would modify 8 bits). The bits un­

specified by the user are simply padded with zeros. (This means
that, for example, you could not alter a device to all ones.)

EXAMPLES:

Figure 1: ;Examples of Alter Commands

alter x'l00' x•Of0123' Alter memory
alter 601 XDO_XRAA_$AD[15] x'12345678' Alter array
alter 601 XDO_XRAA_$AD[15] (0:3) x'l' Alter array bit ranqe only
alter 601 lonq O Force all bits in the lonq portion of the

scan strinq to all zeros.

alter b'100' x'11111111' - alter memory address ~inary 100 to
hex 11111111

alter 0•10•
alter 12
alter x'10'

x 1 22222222 1 - alter address octal 10 to hex 22222222
x 1 33333333 1 - alter address decimal 12 to hex 33333333
x'44444444' - alter address hex 10 to hex 44444444

alter 12[x'456'] x'feedheef' - alter L2 memory at hex address 456
alter 12[119] 77964 - alter L2 memory at decimal address 119

alter x 1 14 1

alter x 1 l8 1

alter x'lc'
alter x•20•
alter x 1 24'

b'01010101010101010101010101010101' - alter memory
address hex 14 to binary value

0 1 14631463146' - alter address hex 18 to octal 14631463146
2004318071 - alter address hex le to decimal 2004318071

x'8abcdef8' - alter address hex 20 to hex 8abcde£8
a 1 3333' - alter address hex 24 to ASCII 3333

alter 601 XP1_XPCC$LD x'12345678' alter 601 device XP1_x.PCC_$LD to
heX 12345678

Multiple Processor Environment (You must specify which PG to modify)

alter pqa 601 XDO_XRAA_$AD[15] x'12345678' alter array on processor PGA
alter pqb x 1 l00 1 x•0£0123' alter memory usinq PGB
pq pqc chanqe "current PG" to PGC
alter x'100' x'Of0123' alter memory usinq "current PG"

RELATED INFORMATION:

See display, and expect commands.

For single chip considerations, see 'flush'.

54 of247 alter Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

For multiple chip considerations, see 'run', 'cs', and 'is'.

For memory mapped io, see 'mmior' and 'mmiow'

..

Part 2 - Command Reference alter 55 of247

User's Reference Manual Engineering Support Processor 604

56 of247 alter Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

auto update
PURPOSE: Turn screen update on or off

SYNTAX: autoupdate [(onloff)]

DESCRIPTION:

This command allows the user to test or control screen updates. If the
optional keywords "on" or "off" are omitted, then ESP responds by
printing the current autoupdate status: "Autoupdate is ON" or
"Autoupdate is OFF".

RELATED INFORMATION:

none

Part 2 - Command Reference autoupdate 57 of247

User•s Reference Manual Engineering Support Processor 604

58 of247 autoupdate Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

beacon
PURPOSE:

SYNTAX:

DESCRIPTION:

Blink the LED on an ESP buffer card
beacon buffer seconds

Sometimes it's hard to tell which RS/6000 host computer is control­
ling which ESP buffer card. The 6eacon command assists in finding the
physical location of an ESP buffer card by blinking the green LED on
the buffer card of buffer.

ESP can have up to 16 buffer cards connected to one RS/6000 host
adapter. The 6eaum. command can be used to tell which buffer card is
one, which is two, etc.

When the 6eaccn command is executing, no other ESP work is being
performed, such as scripts, shared memocy or socket interfaces, rexx,
or whatever. Basically ESP is tied up blinking the LED for however
many seconds specified.

RELATED INFORMATION:

cbuf

Part 2 - Command Reference beacon 59 of247

User's Reference Manual

bells
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Turn ESP Error message sound onioff

bells [(onloff)]

DESCRIPTION: Certain conditions in ESP are reported as an error message, which
means the console bell is sounded. The sound may be turned off with
'bells off', or back on again with 'bells on'. To find out if bells are on
or off type 'bells' without any arguments.

RELATED INFORMATION:

none

60 of247 bells Part 2 - Conunand Reference

Engineering Support Processor 604 User's Reference Manual

bp
PURPOSE:

SYNTAX:

Enable or disable breakpoints (execution stop just prior to execution
of the instruction at the breakpoint address)

bp [(mpglpg)] clear - clears all break-point functions

bp [(mpglpg)] address - sets breakpoint to 'address' and defaults to
soft stop.

bp [(mpglpg)] -q - queries if a breakpoint is set, and if it is, what that
breakpoint address is

bp [(mpglpg)] address [(hardjsoftlint)][virtuallreal]

DESCRIPTION: This command enables or disables the break point function. The user
can set hard stop,. soft stop, or trap to interrupt vector.

A hard stop means that the processor cannot be restarted via ESP 'run'
or 'is' commands.

A soft stop means that the processor is 'asked' to stop, and when it
has stopped, ESP will take control. The processor is supposed to have
quiesced the system it is in and then halted in such a way that it can be
re-started.

The 'int' parm sets the 604 such that it will branch to interrupt vector
Oxl300 if the breakpoint address is reached. The 604 will not stop.

NOTE: The 604ddl.O does not have instruction step
implemented.

NOTE: After a soft stop (at a breakpoint) instruction
steps must be preceded by a call to the ESP command
'bp2is'.

NOTE: Breakpoint, branch trace, and instruction step all
share (and set) the 604 stop mode.

NOTE: If using the interrupt vector, the code at the inter­
rupt vector must clear the IABR before it returns or a loop
will be set up between the breakpoint address and the inter­
rupt vector address.

RELATED INFORMATION:

is - instruction step

bt - branch trace

Part 2 - Command Reference bp 61 of247

User's Reference Manual

bt
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Enable Branch Trace Mode

bt [(mpglpg)] [(clearlsoftlhardlint)]

DESCRIPTION: This command enables or disables the branch trace function. The user
can set hard stop, soft stop, or trap to interrupt vector.

This mode establishes what happens when the 604 executes a branch
instruction. The 604 will trap after the branch instruction completion.
The trap is set by the user to one of three options: soft stop, hard stop,
or trap to interrupt vector.

A hard stop means that the processor cannot be restarted via ESP 'run'
or 'is' commands.

A soft stop means that the processor is 'asked' to stop, and when it
has stopped, ESP will take control. The processor is supposed to have
quiesced the system it is in and then halted in such a way that it can be
re-started.

The 'int' parm sets the 604 such that it will branch to interrupt vector
OxOdOO when a branch is taken. The 604 will not stop.

The 'clear' parm allows the user to disengage the branch trace mode.

NOTE: Breakpoint, branch trace, and instruction step all
share (and set) the 604 stop mode.

RELATED INFORMATION:

62 of247

is - instruction step

bp - break po int

bt Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

caa
PURPOSE: Add an array definition to a chip type

SYNTAX: caa chip_type infile

DESCRIPTION: This 'chip add' command is used to add an array definition to a chip
type. The 'Array Definition' must be in a file, denoted by 'infile'. This
file name can be any valid AIX file name.

These are the rules or guidelines for Array Definitions used by ESP:

• There should be one array definition per file

• The array definition file name should be named after the array so

that it is easily found among other array definitions, but the file

name should end in the letters '.DEF'.

• Although Array Specification Format allows multiple ports to an

array, ESP can only understand one read and one write port per

array definition. (If you wish to access the same array using

another port, you must create a new array definition with a differ­

ent array name using the other port.)

• An Array Definition can be for an array that is read only or write

only, but if it is read/write, then ESP expects the read and write

ports to have the same bit width. Only bits in the long scan string,

boundary scan string, or cop self test register can be specified in

the array definition.

• Any scan string bits used for array access that are zero need not be

specified (ESP creates chip wide scan strings for array access

where each bit is zeroed). .

• Any scan string bits in the COP scan string, which is inaccessible

to ESP, must not be specified in the array definition. ESP can only

set COP scan string bits using special COP commands (example:

COP scan string bit XAZ_CP$TSTNF$L is set by ESP sending the

cop command TSTNF).

• ESP treats READ(CONTROL) and OUTPUT_(CONTROL)

devices the same way. Also WRITE(CONTROL) and

INPUT_(CONTROL) devices are treated equally. For example,

ESP would create a zeroed out long scan string for read access,

rlss, and another for write access, wlss. As the array definition is

Part 2 - Command Reference caa 63 of 247

User's Reference Manual Engineering Support Processor 604

read, devices mentioned under READ(CONTROL) and

OUTPUT_(CONTROL) would cause bits to be set in the read scan

string rlss. Devices mentioned under WRITE(CONTROL) and

INPUT_(CONTROL) would cause bits in wlss to be set.

• ESP expects devices defining INPUT_O(SOURCE) and

OUTPUT_O(SINK) to be previously defined devices. Concatena­

tion are not allowed here. (Some times it is necessary to create a

new device, or PSEUDO device, in the Scan Tables, (see ESP

command 'cad'), so that it might be referred to in the array defini­

tion as an INPUT or OUTPUT.)

• ESP expects array ADDRESS_ devices to be 'whole' as well. If the

address is a concatenation of bits froro. more than one device, then

a PSEUDO device should be created and the new PSEUDO device

name should be used in the array definition.

• Pseudo devices created for use in array definitions are, by tradition

only, placed in a file named in the same manner as to the scan string

file. This time, instead of"604ST.x" we would name the file

"604CAD.x". '604' because the file defines chip type 604 devices,

'CAD' for chip add device, and '.x' because it is a ESP command

file. (Who ever did this the first time used the 'CAD' and we've

stuck with it.)

• Observation ports are not used or understood by ESP.

Figure 2: Example of an Array Definition

/* comments may be used in the array definition file like this */
'

+BEGIN(ARRAY)

+AR.RAY(NAME)
XDO_XDFB_$AD(128,0:127); /*width must match INPUT_O(SOURCE) and*/

/* OUTPUT_O(SINK) specifications */

+ARRAY(SPEC)
INPUTS = 1,
OUTPUTS = 1,
ADDRESS_R = 1,
ADDRESS_W = 1,

64 of247 caa Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

WIDTH = 128,
HEIGHT = 128,
WRITE_THR.OUGH = 1;

+IN?UT_O(SOURCE) /*must be a sinqle device, bit ranqe ok, no concate­
nations */

TLBIO; /* Bit width must match ARRAY(NAME) specification */

+INPUT_O(CONTROL)
;

+INPOT_O(OBSERVE) .
I

+ADDRESS_R'-O(SOURCE)/*must be a sinqle device, bit ranqe ok, no concat­
enations*/

XN1_XNAM$LD(13:19);

+ADDRESS_R_O (CONTROL)
XWF_XWFG$L(O) = B'O',
XSD_XWFE$L = B1 0 1 ,

XSD_J:SDV14$L = B1 0 1 ;

+ADDRESS_R_O(OBSERVE) .
I

/* unnecessary but ok */
/* unnecessary but ok */
/* unnecessary but ok */

+ADDRESS_W_O(SOURCE)/*must be a sinqle device, bit ranqe ok, no concat­
enations*/

XDD_XDDJ$L(0:6);

+ADDRE.SS_W_O {CONTROL)
;

+ADDRESS_W_O(OBSERVE)

+READ_O(CONTROL)
XFO_XFAE$LH = B'l',
XFO_XFAE$LD(2) = B'l',
XFO_XFAE$LD(13) = B'l',
XFO_XFAC$LD = X1 20041000 1 ;

+READ_O{OBSERVE)

+WRITE_O{CONTROL)

Part 2 - Command Reference caa 65 of247

User's Reference Manual

XTO_XTAC$LH = B'l',
XTO_XTAD$LH = B'l',
XDD_XDDL$L(O) = B'l',
XFO_XFAE$LD(2) = B'l',
XFO_xFAE$LD(13) = B'l';

+WRITE_O(OBSERVE) .
I

Engineering Support Processor 604

+OUTPOT_O(SINK) /*must be a single device, bit range ok, no concate­
nations */

TLBIO; /* Bit width must match ARRAY(NAME) specification */

+OUTPUT_O(CONTROL)
XFO_XFAC$LD = X 1 20041000 1 1

XFO_XFAE$LD(2) = B'l',
XFO_XFAE$LD(13) = B'l',
XFO_XFAE$LH = B'l';

+END(ARRAY)

RELATED INFORMATION

66 of247

cac

cad

cass
cat

caa Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

cac - chip add chip
PURPOSE: Add an instance of a chip to a system

SYNTAX: cac chip_type chip_name (CBAorJPOS I "port list" ["PG list"])

DESCRJPTION:

This command is used to declare an instance of a type of chip.

chip_type must be the TYPE of chip that is being created. This is a ref­
erence to a chip type created previously with the c.at command.

chip_name is the name of the chip being created. This name must not
collide with Processor Group names or Multi-Processor Group names.

CBAorJPOS is used differently depending on the type of chip. If the
chip type uses the COP protocol then CBAorJPOS must express the
chip COP Bus Address.

If the chip type uses the JTAG protocol then CBAorJPOS must
express the chip position in the JTAG serial bus where the first chip in
the serial line is in position one.

TDI

TDO

Numbers specified indicate JTAG position on the serial bus

CBAorJPOS is an integer that MUST BE EXPRESSED AS A DEC­
IMAL NUMBER (radix 10).

''port list" declares the new chip's membership in however many ports
it might be in. ''portlist" is a single string (in double quotes) consisting
of entries that are seperated by_ commas. One entry consists of two
fields: the port name and the JTAG position of the chip (or CBA of the
chip if it is COP), seperated by a colon. (Ports are created with the
caport command.)

''PG list" declares the new chip's membership in however many Pro­
cessor Groups it might be in. This field is a single string (in double
quotes) consisting of entries that are seperated by commas.

Part 2 - Command Reference cac - chip add chip 67 of247

User's Reference Manual Engineering Support Processor 604

EXAMPLES:

These examples use simple syntax where no PORT or PG is referenced. All
these chips will default to membership in the DEFAULTMCJT Processor Group
and the DEFAULTPORT Port.
cac 603 alpha 1 # The first 603
cac 603 beta 1 # The second 603
cac 603 qaimna 1 # The third 603

These examples use the 0 port list" syntax. Both chips will default to
the DEFAULTMCJT Processor Group since no PG is specified.
cac dcu dcul 11p1:10,p2:1•
cac dcu dcu2 up1:2,p2:2 11

These examples use the 11port list" and •PG list" syntax.
cac scu scu 11pl:l" 11pqa 11

cac icu icu 11p1:2 11 •pqa 11

..

In this system no Port has been specified by the user, as there is only
one port, but there are four Processor Groups.
cac coral coral 11DEFAULTPORT:l 11 11pqa,pqb,pqc,pqd11

cac rattler rat 11 DEFAULTPORT:2 11 11pqa,pqb,pqc,pqd11

cac cobra cobra "DEFAULTPORT:3 11 11pqa,pqb,pqc,pqd11

cac viper viper 11DEFAULTPORT:4 11 11pqa,pqb,pqc,pqd 11

cac 620 620 11DEFAULTPORT:6 11 11pqa 11

cac 620 620 "DEFAULTPORT:5 11 11pqb 11

cac 620 620 11DEFAULTPORT:8 11 11pqc 11

cac 620 620 11DEFAULTPORT:7 11 11pqd11

RELATED INFORMATION:

Other "chip add" commands such as cat, cass, cad.

68of247 cac - chip add chip Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

cacopcmd
PURPOSE: Add a COP command (or JTAG instruction) to ESP

SYNTAX: cacopcmd mnemonic value

DESCRIPTION: 'This ESP command supports adding COP commands or JTAG
instructions to the list of COP and JTAG commands known to ESP.
Once the command has been created, the command can be sent to the
MUT using the ESP command cop. A list of commands known to ESP
is available using the cop .(command.

The 'value• specified can be in binary, decimal, octal, or hex using the
usual ESP syntax. (E.G. x,45')

If cacopcmtfis used to specify a COP command, then the command
must be no more than 8 bits wide. If a JTAG instruction is specified,
then the value must be valid within the limit set by the bit width spec-
ified in the cat command. ,..

EXAMPLES: c

RELATED INFORMATION:

cop, cat

Part 2 - Command Reference cacopcmd 69of247

I

I

I

User's Reference Manual Engineering Support Processor 604

cad
PURPOSE: chip add device

SYNTAX: cad chip_type device_name [expression] definition

DESCRIPTION: This ESP command defines a new device that is a collection of bits

70 of247

from a scan string, another device, or a constant, or, creates a device
that is really an expression.

The 'chip_type' must be a chip type that has already been defined
using the 'cat' command.

The 'device_name' can be any length but must be composed of the
following characters:

Table 1: Valid 'device_name' characters ..
Characters Description

a-z The alphabet in lower case

A-Z The alphabet in upper case

0-9 The decimal numerals

-
$

The period character .

The underscore character

The dollar sign character

The new device can only be created from previously defined objects.
(Sorry, no forward referencing.) Array members and memory cannot
be part of the new device definition. Devices concatenated together to
form the new device must all reside on the same scan string.

If the optional 'expression' keyword is used, then the 'definition' field
is expected to contain an expression as a single string. See the section
below entitled "Entering Expressions Into ESP".

The 'definition' of a new device can be in three parts where each part
is separated from the other by one or more spaces; data parity excep­
tion.

cad Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

The data part of a 'definition' must be present and must be one or more
existing scan string based device names or constant values. These
devices or constant values may be concatenated together using the
double bar symbol 'II', however, no blank spaces are allowed between
devices being concatenated due to the syntax of the cad command.

The creation of the data part of a 'definition' may specify bit ranges,
inverted bit(s) using the tilde symbol, and may concatenate many
devices together using the double bar symbol. Constant values may
express up to 32 bits and no more! If more than 32 bits of constant
value is desired, simply use the double bar to concatenate another con­
stant value. Constants may only be expressed as hex or binary values.

The second part of a 'definition' is the parity device and is optional. If
present, it must be separated from the data part of the definition by at
least one space. If the parity device is a compound device, that is, com­
posed of more than one device concatenated, then the parity device
should be created first using the cad command into a single pseudo
device. The pseudo device name should then be used as the parity
device for a new cad command.

The third part of a 'definition' is an exception code for the parity
device. This field is optional, but if used must fall after the naming of
the parity device and must be separated from the parity device by at
least one space. ESP supports many kinds of parity, each having a
unique id or number.

Since the cad command can be very long indeed, the use of general
ESP syntax allowing line continuation is recommended. At any time
the cad command may be split to the next line with the back slash sym­
bol,'\'. Be very careful, however, that you do not add any unintentional
blank spaces as you use this feature. Blank spaces to the cad command
mean change of line parts. (data to parity for example, or parity to
exception.)

Entering Expressions Into ESP
The method of describing an expression to ESP will be an extension
of the existing CAD command as follows:

cad ctype dname [expression] "alb&c(your_expression)"

[expression] is a new optional argument to the CAD command telling
ESP that what follows is not really a true device, but an expression
instead.

.>

Part 2 - Command Reference cad 71 of247

User's Reference Manual Engineering Support Processor 604

Features And Limitations

72 of247

Once the device is created with the CAD command, it can be used
with the DISPLAY command or on a screen with the SAD command.

The ALTER command will not allow an expression device to be mod­
ified. Furthur, a screen displaying an expression device will not allow
the screen field to be modified by the user.

An expression device may not be concatenated with any other device.

The CAD command will support the following operators in an expres­
sion : AND, OR, and NOT. Basic evaluation of an expression will be
left to right, with grouping perfonned by parenthesis.

The symbols to be used for operators are:

Table 2: Valid symbols as expression operators

Symbol

&

I\

(

)

Description

(ampersand) for the AND operation

(vertical bar) for the OR operation

(carot) for the NOT op'eration

(left parenthesis) for beginning a grouping
of expressions

(right parenthesis) for ending a grouping
of expressions

Spaces and tabs in an expression are currently not accepted.

The CAD command will accept any scan string device names, with bit
ranges allowed, as well as array names, with bit ranges allowed. Ref­
erences to memory in the expression is NOT allowed. Constants are
not supported.

All device operands mentioned in an expression are expected to reside
in the same chip.

Only 1 bit operands are supported.

Expression devices are only supported outside of the binary scant­
able. This means that ESP will come up, read the binary scantable, and
finally must read a file(s) with CAD commands that are expressions.
CAD devices with expressions may not be saved into a binary scant­
able file.

cad Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

Example:

If we have this circuit:

:=ID r=D dout

c

The expression for the circuit should be:

dout = A(alb&A(a&b)) IAc

To describe the output, dout, as a device in ESP enter the following:

cad 604 dout expression ""(alb&A(a&b)))Ac"

To display the value of the expression (in binary), type:

display 604 dout b

To put the expression on a screen (in binary}, type:

sad screen row col b 604 dout

Hierarchy Of Expressions

It is possible to create expression devices that are composed of one or
more previously created expression devices.

Other CAD Examples
cad fpu FBC_ FBA_ll-FBB_

I can refer back to something previously defined and call it
anything I want. Concatenate FBA_ and FBB_ inverted.

cad fpu statusreg FBA_
I can ref er back to something previously defined and call it
anything I want.

cad fpu FBO_FBA_$LD long(480:511)
Device FBO_FBA_$LD is in the long scan string of the fpu chip and
is in bit positions 480 through 511. Bit 480 is to be treated as

Part 2 - Command Reference cad 73 of247

User's Reference Manual Engineering Support Processor 604

the high order bit or the most significant bit.

cad fpu FBO_FBL_$LF lonq(1183:1152)
Device FBO_FBL_$LF is in the long scan string of the fpu chip and
is in bit positions 1183 through 1152. Bit 1183 is to be considered
to be the high order bit or the most significant bit.

cad fxpt XT-O_XVG_$LP long(1245:1248)
cad fxpt XTO_XVG_$LD long(1213:1244) XTO_XVG_$LP 0

Device XTO_XVG_$LD is in the lonq scan strinq of the fxpt chip and
is in bit positions 1213 throuqh 1244. This device has parity. The
parity is in device XTO_XVG_$LP and has a parity exception code of O.
(Normal, even parity)

cad scu OMB_R13$ML_0_23 lonq(920:943) # 8 2 8 2 data, 4 parity
cad scu OMB_R13$ML_0_23P long(940:943)
cad scu OMB_R13$ML_0_23D lonq(920:939) OMB_R13$ML_0_23P 12

Device OMB_Rl3$ML_0_23 is in the lonq scan string of the scu chip
and is 24 bits long. This device has 20 bits of data (bits
920 throuqh 939) and has parity. The parity is in bits 940 through
943. The parity is generated by exception rule 12. That is, the
first parity bit is even parity over device bits 0 through 7. The
second parity bit is even parity over device bits 8 and 9. The
third parity bit is even parity over device bits 10 through 17. The
fourth parity bit is even parity over device bits 18 and 19.

cad scu OGR_RC$ML_0_23 lonq(1112:1135) # 1p, 6d, lp, 6d, of 24
cad scu OGR_RC$ML_0_23P OGR_RC$ML_0_23(0:0) llOGR_RC$ML_0_23(7:7)
cad scu OGR_RC$ML_0_23D OGR_JlC$ML_0_23(1:6) llOGR_RC$ML_0_23(8:13) \
OGR_RC$ML_0_23P 14

Device OGR_RC$ML_0_23 is in the lonq scan string of the scu chip
and is 24 bits lonq. This device has 12 bits of data (device bits
1 through 6 and 8 through 13) and has 2 bits of parity (device
bits O and 7). The parity is generated by exception rule 14. That
is, bit O is parity. It is calculated as even parity over bits
l throuqh 6. Bit 7 is parity. It is calculated as even parity over
bits 8 through 13. Bits 14 through 23 are physically in the scan
strinq but are not functional. This allows us to refer to all
the actual bits in the scan string as OGR_RC$ML_0_23. We can also
refer to just the parity bits as OGR_RC$ML_0_23P, and to all the
data bits as OGR_RC$ML_0_23D.

pseudo devices for screens
cad icache IBOl IBO_IBH_$LD(0:31) llIBO_IBI_$LD(0:15)
cad icache IB02 IBO_IBJ_$LD(0:31) llIBO_IBK_$LD(0:15)

pseudo devices for architected names

74 of247 cad Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

cad icache MSR IJ2_IJT_$LD (O: 2} I I -IJ2_IJT_$ LD (3) I I\
IJ2_IJT_$LD(4:8} I l-IJ2_IJT_$LD(9) I IIJ2_IJT_$LD(10:15}

This creates a pseudo device called MSR which displays two bits
inverted.

Use of a constant value in a device definition expression
cad 601 RESRV XDO_XDFT$LD(0:26) I lb'0000'1 IXGA_RSVD$L

Figure 3: cad example
RELATED INFORMATION:

Other 'chip add' commands such as cat, cass, cac.

Part 2 - Command Reference cad 75 of247

User's Reference Manual

cam pg
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Add a Multi-Processor Group to ESP

campg MPGname "PGlist" port

DESCRIPTION:This command is used to associate the name MPGname with activa­
tion of multiple processor groups in PGlist.

MPGname is a name to associate with a Multi-Processor Group. The
name must not be the same as any CHIP name or PG name, must not
be ''broadcast" or "be", and must not begin with a dash or a number.
There is no size limit to the name.

PGlist is a single argument that can contain one or more processor
group names that should be acted upon whenever MPGname is used
in an ESP command. The list is a comma delimited list of existing
processor groups. ..

port specifies which PORT should be used to access all the PG at the
same time.

NOTE: ESP assumes that activation of port will cause
every chip of all Processor Groups to be connected to ESP
as one JTAG loop or COP bus. Only in this way can ESP
send a syncronizing command to all chips of all PG at the
same time.

There is no ESP limit to the number ofMPG's that you can create.
However, a maximum of 256 PG's can be grouped together under one
MPG name.

In a single processor environment this command does not need to be
used.

EXAMPLES: If there were two processor groups, 'pga' and 'pgb', that could be
selected to respond on the COP bus if port 'alphaport~ were enabled,
then this example would associate selection of these two processors
with the name "setAB".

campg setAB "pga,pgb" alphaport

RELATED INFORMATION:

capg,pg,enable,caport

76of247 cam pg

·'

Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

ca pg
PURPOSE: Add a Processor Group name to ESP

SYNTAX: capg PGname "action"

DESCRIPTION:'PGname' is a name to associate with a Processor Group. The name
must not be the same as any CHIP name or PG name, must not be
"broadcast" or "be" or "mut", and must not begin with a dash or a nwn­
ber. There is no size limit to the name.

'action' is a single ESP command to be used to switch ESP to the cop
bus of the intended processor.

Processor groups are used to name a group of chips associated with
one processing unit. Once a processor group, or PG, is created, chips
can be added to ESP mentioning the 'PGnam.e'.This associates the
'action' required to switch ESP to that prqcessor with each chip in the
processor complex.

The first 'capg' command issued to ESP will not only create the Pro­
cessor Group, but will also set the default or current PG (typing 'pg'
will show the current PG is the PG just created).

There is no ESP limit to the number of PG's that you can create. How­
ever, a maximum of 256 PG's can be grouped together with the
'cam.pg' command (but you can have as many MPG's as you want).

In a single processor environment this command does not need to be
used.

EXAMPLES: capg pga "copcmd x'8000"'

RELATED INFORMATION:

campg, pg, enable

Part 2 - Command Reference ca pg

.>

77 of247

User's Reference Manual Engineering Support Processor 604

78 of247 capg Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

capo rt
PURPOSE: Add a Port to ESP

SYNTAX: caport pname "enable"

DESCRIPTION:'

EXAMPLES:

enable is one or more ESP commands to be used to switch ESP to the
COP or JTAG bus of the intended chip. (Multiple commands must be
seperated by semicolons.)

There is no ESP limit to the number of PORT's that you can create.
However, a maximum of 256 CHIP's is supported by ESP on any one
PORT.

NOTE: Chips are associated with PORT's using the ESP
command cac..

In a single processor environment this command does not need to be
used. Any chips created where no PORT's are mentioned will auto­
matically belong to a DEFAULTPORT created by ESP.

caport pl "! aixpgm"

caport p2 "enable 3"

Select a port by running an AIX program.

Select a port by enabling an ESP buff er

RELATED INFORMATION:

cac

Part 2 - Command Reference ca port 79 of247

User's Reference Manual

cass
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Add a scan string to a chip type

cass chip_type ssname #bits persistence "preput=" "postput="
"preget=" "post get=" [scananytime=ok]

DESCRIPTION:. This ESP command not only defines a scan string but also associates
it with a particular chip_type.

80 of247

The chip_type must be a chip type that has already been defined using
the cat command.

The scan string name, ssname, is used to identify this scan string.

#bits defines how many bits are in the scan string and also defines a
possible relationship between this scan string and another. If this scan
string is a subset of another scan string then #bits must be specified as
a bit range in the other scan string. (Example, the boundary scan string
is typically a subset of the long scan string. #bits for the boundary scan
string definition would then be specified as 'long(xxx:yyy)' instead of
just a bit count.)

persistence tells ESP if the scan string being defined is to be automat­
ically preserved by ESP during times when the chip is stopped. The
value 'P' establishes persistance, while 'NP' means that the scan
string is not to be treated in a persistent manner.

preput=, postput=, preget=, and postget= is each a list of zero or
more COP commands that will be executed by ESP when the scan
string is either written into the chip, i.e. 'put', or read from the chip,
i.e. 'get'. The list syntax has the following rules:

1) Upper or lower case is supported

2) COP commands may be delimited with commas, spaces, or semi­
colons

3) Up to 16 'pre' commands may be specified, and up to 8 'post' com­
mands may be specified. The COP commands specified will be exe­
cuted in the order given, starting with the COP command closest to the
equal sign.

4)Ifthere are no COP commands to execute then the list keyword
should be specified but no COP commands included. (Example:
"preput=")

5) Lists must be enclosed in double quotes.

The list of COP commands in preput= is ex~cuted just prior to send­
ing bits into the chip. The list of COP commands in postput= is exe­
cuted just after sending bits into the chip.

cass Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

The list of COP commands in preget= is executed just prior to receiv­
ing bits from the chip, and the list of COP commands in postget= is
executed just after receiving bits from the chip.

Optional flag scananytime=ok tells ESP that it is ok to scan the indi­
cated scan string at any time, even if the chip is running. (However,
the scan anytime scan string will still not be scanned if OCS is defined
and currently on.)

NOTE: ESP cannot access the entire COP scan string.

EXAMPLES:

cass 603 long 6534 P \
11preput=FFRZ,A_RNW,HIZ,LSRL 11 \

11postput=RS_A_RNW,RS_HIZ 11 \

11preget=FFRZ,A_RNW,HIZ,LSRL 11 \

11 postqet=RS_A_RNW,RS_HIZ 11

cass 603 exmem long(0:321) P \
11 preput=FFRZ,A_RNW,HIZ,EXMEM11 \

11postput=RS_A_RNW,RS_HIZ,RS_EXMEM 11 \

11 preqet=FFRZ,A_RNW,HIZ,EXMEM11 \

11postget=RS_A_RNW,RS_HIZ,RS_EXMEM 11

In this example FFRZ, A_RNW, HIZ, EXMEM, RS_EXMEM, and LSRL are all COP
commands known to ESP.

The exmem. scan string is a subset of the long scan string and is 322 bits
long.

Figure 4: cass example
RELATED INFORMATION:

caa

cac

cad

Part 2 - Command Reference cass 81 of247

User's Reference Manual Engineering Support Processor 604

cat

82 of247 cass Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

cat
PURPOSE:

SYNTAX:

DESCRIPTION:

EXAMPLES:

cat 601 cop

cat 603 jtag 8

Adds a chip type to ESP.

cat chip_type [(COPIJTAG)] [regsize] [IO]

This command defines a type of chip to ESP, of which there may be
many chips created using the cac command.

The CAT command informs ESP that there will be future references
to the chip_type name mentioned. Scan strings and arrays will be
added to the chip type, using the chip_type name. Eventually a chip
will be created modeled after this chip type.

When the chip type is created it is also designated as a chip type that
will support either the COP or the JTAG protocol. If the chip type sup­
ports JTAG protocol, then the regsize may specify the JTAG Instruc­
tion Register width in bits. (default=l6)

If the chip should be handled as an IO chip, then the IO paramater
should be specified. To date, this means that ESP will not send a clock­
stopping FFRZ command to IO chips after instruction steps or stops
occuring after RUN or IPLRUN. It also means that IO chips will not
be scanned unless the iojlag command is used to set the chip status to
STOPPED.

#Creates a chip type called '601' that is COP pro­
tocol.

#Creates a chip type called '603' that is JTAG,
and has an 8 bit JTAG instruction register.

cat rattler jtaq 8 IO
Creates a chip type called 'rattler' that is
JTAG, has an 8 bit JTAG instruction register, and
is also an IO type of chip.

RELATED INFORMATION:

caa, cac, cad, cass or other "chip add" commands, and iojlag used to
specify IO type chip run/stopped status.

Part 2 - Command Reference cat 83 of247

User's Reference Manual Engineering Support Processor 604

cbuf
PURPOSE: Associate a buffer card with a PG and assign buffer card pins

SYNTAX: cbuf BufferNumber PG pinconfig

DESCRIPTION: This ESP command configures a hardware buff er card's physical pin
arrangement.

84of247

The buffer card to be operated on is 'BufferNurnber', an integer from
1 to 16, where buffer card one is the buffer card closest to the ESP fea­
ture card plugged into the host computer.

Any one buffer card can support more than one Processor Group, or
PG. Any one 'cbuf' command can specify only one PG, but there can
be multiple 'cbuf' commands executed, each specifying a different
PG, if desired.

The 'pinconfig' argument is used to spec1fy the physical pin configu­
ration to be used between the buffer card and the MUT. Two default
pin configurations are supported: COP and JTAG.

If you specify 'pinConfig' with the word "COP" then the pins will be
configured as follows:

1 =cs 2=hr 3=sr 4=ctl 5=clk 6=rs 7=si 8=so l 4=pg l 5=ocs ' ' ' ' ' ' '' '

If you specify 'pinConfig' with the word 11JTAG" then the pins will be
configured as follows:

l=cs, 2=hr, 3=sr, 4=tms, 5=tck, 6=rs, 7=tdi, 8=tdo, 14=pg, 15=trst

If you wish to assign physical pins to their functions then you may do
so with the following rules:

1) This command understands sixteen pins, 1 through 16.

2) Command syntax requires the pin number followed by an equal
sign followed by a reserved word describillg the pin follwoed by a
comma if there are more pins to be defined. Example: "5=trst, ... ,
l 4=si". Spaces and new lines may be employed to make the pin
assignment list more readable, but new lines must be preceeded by the
back-slash character (the normal ESP command line syntax require­
ment for line continuation.)

3) Table 1 presents reserved words which may be used to assign a pin
to a function:

cbuf Part 2 - Command Reference

Engineering Support Processor 604

Table 3: Pin Mnemonics

Mnemonic Meaning

trst JTAG reset

tms JTAG mode select

tck JTAGclock

'tdi JTAG serial data in

tdo JTAG serial data out

ctl COP control

elk COP clock

si COP serial in

so COP serial out

cs checkstop

rs run/stop

pg power good

hr hard reset

sr soft reset

ocs ocs override

EXAMPLES:

Use of default COP pin assignments

cbufl DEFAULTMUTCOP

Assignment of pins on a buffer card

cbuf2 DEFAULTMUT \

12=ctl, \

14 = ctl, \

2 = si, \

3= so,\

7= cs,\

Part 2 - Command Reference

User's Reference Manual

cbuf 85 of247

User's Reference Manual

8= rs,\

10= hr '\
16=sr

RELATED INFORMATION:

none

86of247

Engineering Support Processor 604

cbuf Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

cd
PURPOSE: Change ESP current working directory

SYNTAX: cd directory

DESCRIPTION: This command allows the user to change ESP's notion of the current
working directory.

RELATED INFORMATION:

none

..

Part 2 - Connnand Reference cd 87 of247

User's Reference Manual Engineering Support Processor 604

cecho
PURPOSE: echo command and command line arguments

SYNTAX: set cecho - turns cecho on

unset cecho - turns cecho off

DESCRIPTION: This command echos command and command line arguments.

RELATED INFORMATION:

none

..

88of247 cecho Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

clear break
PURPOSE: Clear any break signals from the user

SYNTAX: clearbreak

DESCRIPTION: ESP counts the number of times that the user presses the break key.
Clearbreak resets the count to zero. Before using the userbreak com­
mand, clearbreak should be called.

RELATED INFORMATION:

userbreak

Part 2 - Command Reference clearbreak 89 of247

User's Reference Manual Engineering Support Processor 604

els
PURPOSE: To clear the TTY window.

SYNTAX: els

DESCRIPTION: This command clears everything from the TTY window.

RELATED INFORMATION:

none

..

90 of247 els Part 2 - Command Reference

Engineering Support Processor 604

configure
PURPOSE: Configure ESP hardware

SYNTAX: configure path

User's Reference Manual

DESCRIPTION: This command causes the ESP hardware to become configured. The
'path' specified must point to the directory where ESP 'bit' files are
located. These files are used by the ESP hardware.

RELATED INFORMATION:

none

Part 2 - Conunand Reference configure 91 of247

User's Reference Manual

cop
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Send low level instructions or data to MUT modules.

cop -1 (lists command mnemonics available)

cop (port] (DATA I DATA_EOF) (x I b I a) 'value'

cop (CMD I CMD_EOF) (x lb I a)'value'

cop [(mpglpg)] (chip_name I BROADCAST I be) command

DESCRIPTION:

92 of247

Optional parameter [(mpg!pg)] specifies the name of a Multi-Proces­
sor Group or processor group to which the COP command will be
sent. If this parameter is omitted, the "current PG" will be used, as
specified by the user with the "pg" command. Notice that this is a case
where more that one processor can be addressed with the same com-
mand using a MPG name. ..

It is possible for ESP to be connected to a system where there are mul­
tiple JTAG or COP circuits. In ESP each circuit is called a port. A port
must be enabled to become connected to the ESP connector.

When cop data, cop data_eof, cop cmd, or cop cmd_eof are used, no
chip is specified since the object of the command is to directly exercise
the COP or JTAG bus. By default, such a command will be sent out
the DEFAULTPORT. This means that the enable for DEFAULTPORT
will be executed to configure the DEFAULTPORT onto the ESP con­
nector.

For more information about ports, see the 'caport' and 'cac' com­
mands.

If the port argument is specified then that port is enabled instead of
DEFAULTPORT before the COP or JTAG command or data is placed
onto the ESP connector. ·

The lowest level communication from the ESP program to the
Machine Under Test (MUT) is performed over the COP bus or JTAG
bus of the MUT. This communications consists of either commands or
data.

For the COP bus, a protocol is established where ALL COP com-
. mands will start with the COP bus address of the chip module to be

communicated with, and the opcode of the COP command to be done.
If data is to be passed, it follows at this time.

cop Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

For the JTAG bus, a protocol is established where the JTAG instruc­
tion is sent to the chip module to be communicated with, and if data is
to be passed it follows at this time. (When a particular chip module is
being communicated with, all other JTAG chips are placed into the
BYPASS mode.)

NOTE: Persons using this command should be very
familiar with COP functions. Entering COP commands in
the wrong order can cause hardware damage (OCDs can be
burned out).

Most ESP functions hide the COP commands used to get the job done.
However, low level debug REQUIRES such functionality.

Since there are a great many COP commands, it is convenient to refer
to them by name. Therefore, the ESP supports mnemonic naming of
all COP commands. To get a list of such pames, use the -1 option of
the cop command. The mnemonics that were used for the COP com­
mands were the same ones used by the MAC simulation test cases.

When a COP command is sent to the MUT, it must start with the COP
bus address of the chip involved. Each MUT chip has its own unique
COP bus address, but the COP protocol allows the use of address zero
as a BROADCAST address to all chips. ESP allows you to specify the
chip's name, or the word BROAQCAST to address each chip individ­
ually, or as a group.

Some COP commands require that data be passed along. Such com­
mands are LSRL and LD_CP. The form of the 'cop' command that
allows you to deal with data is 'cop DATA value'. The DATA keyword,
or DATA_EOF keyword, not only tells ESP about sending the END
sequence after the data, but also tells ESP you are using this form of
the command. The value must be either hex, binary, or an ascii repre­
sentation of the data you will send, or a hex, binary, or ascii dummy
argument to specify the number of bits to collect from a receive only
type of command.

JTAG data passed with the 'cop DATA value' syntax leaves the JTAG
chip module in the SHIFT-DR state. Further 'cop DATA value' com­
mands will be interpreted by the chip module as more JTAG data. The
'cop DATA_EOF value' command returns the JTAG controller back
to the RUN-TEST/IDLE condition.

The 'cop CMD value' and 'cop CMD_EOF value' forms of the syntax
allows sending/receiving bits on the JTAG bus while in the SHIFT-IR
state. The first 'cop CMD value' command pJaces the chip(s) into the
SHIFT-IR state. Subsequent 'cop CMD value' commands start from

Part 2 - Command Reference cop 93 of247

User's Reference Manual Engineering Support Processor 604

the SHIFT-IR state and leave the JTAG state there when finished. The
'cop CMD_EOF value' syntax causes the chip(s) to return to the
RUN-TEST/IDLE condition.

EXAMPLES:

Get a list of all COP/JTAG mnemonics understood by ESP

cop -L

Send the Force Freeze command to all chips

cop broadcast f frz

Send the Halt command to the 604 chip

cop 604 hlt

Send 33 bits through the boundary scan string of 604

cop 604 smpl_pld
cop data b'l'
cop data_eof x•ffffffff'

Multiple Processor Environment

In the following examples 'blue', 'red' and green' are processor groups and 'all' is a multi­
processor group consisting of PG's blue, red, and green.

cop blue 604 run_abist -
cop red 604 ffrz -
cop green be ffrz -
pg blue -
cop be ff rz -
cop all be ffrz -

Figure 5: Examples of cop commands
RELATED INFORMATION:

none

94 of247 cop

604 chip in blue PG run_abist
604 chip in red PG ff rz
all chips in green PG f frz

set "current PG" to blue
all chips in "current PG" f frz
all chips in all PG's ffrz

Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

..

This page intentionally left blank.

Part 2 - Command Reference cop 95 of247

User's Reference Manual Engineering Support Processor 604

This page intentionally left blank .

..

96 of247 cop Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

copcmd
PURPOSE: Allow any 16 bits to be sent on the COP bus as a COP command
SYNTAX: copcmd data

DESCRIPTION: A COP bus command is always 16 bits long, and is sent with specific
protocol over the COP bus. This ESP command allows the user to
send any 16 bits on the COP bus as a COP command sequence.

'data' is any 16 bits and may be expressed with any of the normally
supported ESP radix.

A current need for this command is to send a particular bit sequence
to a device known as a cop switch. These bits would force the cop
switch to select one or more processors onto the COP bus.

NOTE: This ESP command is not implemented for JTAG
chips.

EXAMPLE: copcmd b'1010000101010001' or copcmd x'l234'

RELATED INFORMATION:

none

Part 2 - Command Reference copcmd 97 of247

User's Reference Manual

coplog
PURPOSE:

SYNTAX:

Engineering Support Processor 604

logs commands that go to the cop

coplog on - turns cop logging on, level 3 log

coplog 1 - turns cop logging on, level 1 log

coplog 2 - turns cop logging on, level 2 log

coplog 3 - turns cop logging on, level 3 log

coplog 4 - turns cop logging on, level 4 log

coplog 5 - turns cop logging on, level 5 log

coplog off - turns cop logging off

DESCRIPTION:This command will cause every command that goes to the interface
card to also go to a file. This allows a designer to see the exact
sequence of command that were sent to a chip, or that are planned to
be sent to a chip.

LEVEL 1 logs all cop commands

LEVEL 2 Same as LEVEL 1 plus hex values of scan strings in the
COP _DATA format

LEVEL 3 Same as LEVEL 1 plus the equivalent alter commands that
would generate the scan strings .

LEVEL 4 logs all oft.h~ above. i\.11 cop commands, hex values of
scan strings, and the equivalent alter commands that would generate
the scan strings

LEVEL 5 logs all of the above with addition comments to provide
clarification.

RELATED INFORMATION:

none

98 of247 cop log Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

cops tub
PURPOSE:

SYNTAX:

Assign fake status to ESP when chip or driver is not present

cops tub [on I off I fakestatus]

DESCRIPTION :This command can be used to "fake-out" ESP concerning MUT sta­
tus. Normally, ESP would fetch real status from the MUT and use it to
determine if the MUT is powered up, running or stopped, check­
stopped, etc. This command allows the user to specify any status that
could be returned by the real thing.

EXAMPLE

Please refer to the wait command for definition of bit values.

copstub x'550' - sets STOPPED no CHECKSTOP, and POWER­
GOOD.

copstub on -turns the copstub ftmction on with a value of Ox550

RELATED INFORMATION: ..

The wait command defines the status bits that can be set by copstub.

Part 2 - Command Reference copstub 99 of247

User's Reference Manual

cs
PURPOSE:

SYNTAX:

DESCRIPTION:

EXAMPLES:

Engineering Support Processor 604

Force MUT to run N cycles and stop

cs [(mpgjpg)] [(-nln)]

NOTE: This is a "high level" command which means that
any cached scan strings or memory will be flushed to the
MUT before the MUT is set running. When the MUT stops
ESP screens will be updated.

Causes up to 2"24 processor cycles to be executed. Once 'n' cycles
has been run by the processor, the proces~or simply stops. This is con­
sidered a 'hard' stop, which means the processor may not be able to
continue running once 'cs' has been issued.

'cs -n' can be used to set how many cycles will be run the next time
'cs' is executed. (No cycles are run at the time the dash-n option is
used.)

NOTE: Don't forget to clear a breakpoint before trying
to cycle-step off of an address where a breakpoint is set.

G5 does not enforce what phase the cycles are started from. If
L2PHASE has been set then performing G5 2.5will cause C2/Cl/C2
cycles to be run. If RS_L2PHASE has been executed, the cs 2.5 will
cause C 1/C2/C 1 to be run. Mixing the use of L2PHASE with the cycle
count allows starting the cycle-step on either clock, and odd or even
number of clocks to be executed.

G5 25 Processor runs 25 cycles and stops.

G5 -14 The next time 'cs' is executed it will perform 14 cycles

G5 Perform previously set number of cycles and stop

G5 2.5 Execute 2 and a half cycles.

RELATED INFORMATION:

load_cntr

100 of247 cs Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

dirty
PURPOSE:

SYNTAX:

1(t'r'T b (:ft) ~"' \) rcJc.. / ..u ic iYl t5l'VI " f .£'5 \)

Forces ESP to invalidate any buffered MUT data

dirty [(mpg I pg)] (chip_name I broadcast I be I mem 112) [SSname]

DESCRIPTION: If the argument broadcast, or be, is passed, then ESP will mark
invalid any buffered scan string images or external memory that it has
for all chips (optionally restricted by the mpglpg argument).

EXAMPLES:

If a chip name is passed then only that chips' data is marked as invalid.

If optional argument SSname is specified, then only that scan string is
marked invalid.

NOTE: The SSname argument only works when a
chip_name is specified

After the dirty command scan strings or memory will be read into
ESP only on the NEXT DEMAND for such data. Such a demand
might come from a command file, a user request, a screen that is up,
or whatever else that might be a demand source to ESP.

NOTE: Buffered data is merely marked invalid. No scan-
ning takes place due to this command.

In full system mode, meaning that all chips are working on the CBC
(Central Engineering Complex), ESP will normally take care of such
data manipulation.

dirty 604

dirty mem

dirty 12

- invalidates ESP's copy of all 604 scan string data

- invalidates ESP's cached memory

- invalidates ESP's cached L2 memory

dirty 604 long - invalidates ~nly the 604 long scan string

RELATED INFORMATION:

See ESP command flush, used in single chip testing also.

Part 2 - Conunand Reference dirty 101 of247

User's Reference Manual

display
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Allow scan string facilities, arrays, or memory to be displayed.

display [pg] address radix

display [pg] which_chip array_name [array_address] (bit:range)
radix

display [pg] which_chip device_name(bit:range) radix

radix may be any of:

x= hex, d= decimal, b= binary, o= octal, a= ASCII,

f= float, e= EBCDIC, i= instruction decode

DESCRIPTION: The display command allows display of machine under test (MUT)
internal data via the scan strings accessible to ESP. MUT scan strings
are directly accessible from the COP, and arrays and memory can be
accessed if ESP does a sequence of COP commands and scan string
manipulations.

102 of247

ESP can tell from the display syntax if it is to display a facility, an
array element, or MUT memory. Ifthere are four arguments then the
following device name might be either a facility on the scan string or
an array element. If the device name has square brackets surrounding
an address, then ESP knows the·device is an array element, else the
device is just an ordinary facility on the scan string.

If the request is made with only three arguments, then the second argu­
ment is considered the MUT memory address.

ESP accesses chip module scan strings only on demand. That is, ESP
will not read (and certainly not write) from or to the MUT until a
demand from the user is made via commands, such as display.

ESP keeps MEMORY IMAGES of MUT scan strings. When ESP
tries to read the data from the device specified by the user from the
memory image of the scan string, ESP checks to assure it has the latest
data available. If it does not, then ESP scans in the string, and until
something happens to change the state, ESP will work into and out of
the memory image of the scan string from then on.

If a request to display is made on array data, then ESP does such work
immediately. There is NO cache of any type imple-mented for array
data. If a request to display less than the full size of an array element
is made, the full array element is fetched, and then the display is per­
formed on only the bits specified.

display Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

If a request to display MUT memory is made, then ESP could possi­
bly work out of a 64 byte buffer cache. This would be possible only
if the address of the data to be compared is in the range of a block of
64 characters presently cached in ESP memory.

EXAMPLES: If display is called directly, an English statement will be displayed on
the status line. For example, "display 604 counter b" will show the
following:

604 counter = b'OOOOOOOOOOOOOOOOO'

Figure 6: Examples of Display Command

display b 1 l00 1 x - display memory address binary 100 in hex
display 0 1 10 1 x - display memory address octal 10 in hex
display 12 x - display memory address decimal 12 in hex
display x 1 l0 1 x - display memory address hex lO~in hex

display x 1 14 1 b - display memory address hex 14 in binary
display x • 18 • 0 - display memory address hex 18 in octal
display x 1 lc 1 d - display memory address hex le in decimal
display x 1 20 1 x - display memory address hex 20 in hex
display x • 24' a - display memory address hex 24 in ASCII
display x 1 80' i - Decode and display the instruction at hex

display 604 XRA_XRAA_$AD0[16] (0:31)
display 604 XP1~PCC$LD(0:31) a

RELATED INFORMATION:

See expect, and alter commands.

For single chip considerations, see 'dirty'.

setvar

Part 2 - Command Reference display

80

103 of247

User's Reference Manual

drtrymode
PURPOSE:

SYNTAX:

DESCRIPTION:

Engineering Support Processor 604

Match the ESP to the hardware configuration

drtrymode [(onloft)]

This command is used to force ESP to match the 604 hardware con­
figuration. When the 604 was hard-reset, pin drtry_ was sampled by
the 604 and the pin state forced the 604 to be in the drtry- mode or
not. If the drtry_ line was high, then the drtry-mode was turned on in
the 604. ESP must then have its drtry-mode turned on using this com­
mand.

'fyping tfrtrgnwiewithout arguments will cause ESP to report the mode
it is currently in. Typing artrgtTWae on will tum on the ESP drtry-mode
(but not affect the 604 chip) and typing tfrtrgnwie off will tum off the
ESP drtry-mode (but not affect the 604 chip).

NOTE: If it were possible ESP would match the 604
drtry-mode automatically.

The effect of the drtry-mode on ESP is to force ESP to swap data dur­
ing I CACHE or Data Queue array write accesses if the drtry-mode,
the 32bit-mode, and the reduced-pin-mode are all off.

RELATED INFORMATION:

ESP commands 326itmotle and rducdpinmoae.

..

104 of247 drtrymode Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

dump
PURPOSE: Upload from machine under test (MUT) memory to RS6000 disk.

SYNTAX: dump from_address #_bytes filename

DESCRIPTION: This command allows the user to get an image ofMUT memory col­
lected and stored onto the RS6000 disk as a file. The file will have a
TOC96 header so that the file can later be loaded back into MUT
memory with the ESP load command,

EXAMPLES:

The from_address argument can be in any of octal, hex, decimal, or
binary. The address specified is the REAL address and is the starting
location from where the dump will commence.

The #_bytes argument can be in any of octal, hex, decimal, or binary.
The number of bytes to dump includes the start address.

The filename can be any valid AIX filename and it will have the
following characteristics: The first 96 bytes of the file will be zeros
except bytes 4, 5, 6, and 7, which will contain the starting address as
specified with the from_address argument. The remaining bytes of the
file will be the words fetched from MUT memory. The 96 byte header
is used by the ESP load command to allow the file to be loaded into
MUT memory.

Figure 7: Examples of Dump Command

dump x 1 f0b4 1 5 avpl

Put the 5 bytes starting at address x'OOOOfOb4' to the RS6000 disk file named 'avp l '. The
dump will be from x'OOOOfOb4' to x'OOOOfObb', or 8 bytes, to force the dump to word
boundaries._

load avpl

The load command to put 'avp l' into MUT memory at the address it came from.

dump x'f001' 1 patchl

Part 2 - Conunand Reference dump 105 of247

User's Reference Manual Engineering Support Processor 604

Put the byte at address x'OOOOfOO l' to the RS6000 disk file named 'patch l '. The dump
will be the four bytes of the word at address x'OOOOfOOO' which includes ti1ie byie spec­
ified.

load patchl

The load command to put 'patch!' into MUT memory at the address it came from.

dump x 1 £000 1 x'100' patch2

Put the 256 bytes starting at address x'OOOOfOOO' to the RS6000 disk file named 'patch2'.
The dump will be from x'OOOOfOOO' to x'OOOOfOfc', or 256 bytes, as specified since the
address and number of bytes are on word boundaries.

load patch2

The load command to put 'patch2' into MUT memory at the address it came from.

load -vx 1 0000bbbb 1 patch2

Load 'patch2' at an address other than from where it was dumped from. In this case,
patch2 was dumped from x'OOOOfOOO' and the load command will cause patch2 to be
loaded at x'OOOObbbb'. If patch2 contains executable code, it must be relocatable to
work at the new address, as ESP does nothing more than copy the patch2 file into MUT
memory at whatever address is specified.

RELATED INFORMATION:

load

106 of247 dump Part 2 - C-Ommand Reference

Engineering Support Processor 604 User's Reference Manual

dynload
PURPOSE: Dynamically load a user provided function

SYNTAX: dynload command path/file

DESCRIPTION:

Use this command to load specially compiled code into ESP while
ESP is running.

'command' is the name of the entry function into your code. Once the
code is loaded into ESP, it may be executed just as any other built-in

-· ESP command.

EXAMPLES:

'path/file' is the complete path and file name of the executable module
to be dynamically loaded into ESP.

If you created a load module in your home directory with a file name
of func 1 and an entry function called timeOfDay, then you could load
your code into ESP with the following syntax:

dynload timeOfDay $HOME/funcl

RELATED INFORMATION:

The ESP Training Manual has a write up and examples. The manual
is located in /afs/awd/public/esp/userdoc. A demo of how to write a
user function is located in /afs/awd/public/esp/rios/toolSource/
dynamic Loading.

Part 2 - Conunand Reference dynload 107 of247

User's Reference Manual

echo
PURPOSE:

SYNTAX:
Print text on the TTY window

echo argl arg2 arg3 arg4

Engineering Support Processor 604

DESCRIPTION: Echo prints its command line arguments on the screen. If logging is
turned on, echo will also print to the log file. Echo is similar to the AIX
echo command.

RELATED INFORMATION:

none

108 of247 echo Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

enable
PURPOSE: Enable an ESP buffer card to talk to its MUT

SYNTAX: enable bufnum [bufnum ... bufnum]

DESCRIPTION: This ESP command supports the use of multiple ESP buffer cards
connected to the same ESP program. It is assumed that each buffer
card is connected to a different processor, therefore, this command
would be used in a multi-processor environment.

In a MP environment we might wish to talk to any one individual pro­
cessor, or PG, or to several PG at the same time. To communicate with
a PG requires activation of the ESP buffer card connected to it with
this command.

When establishing a MP environment, ESP commands capg and
campg are used to describe the processor groups involved in the setup.
An argument in each of these commands .. is "action". This argument
must provide the ESP command to perform to select and activate the
PG or MPG involved. The 'enable' command might be an appropriate
"action" to perform.

RELATED INFORMATION:

capg, campg

Part 2 - Command Reference enable 109 of247

User's Reference Manual Engineering Support Processor 620

110

equip
PURPOSE:

SYNTAX:

Tells ESP what chips are present on the machine under test

equip [pg] [chip_name [(truelfalse)]]

DESCRIPTION: If the optional parameter chip_name is omitted, then ESP lists those
chips currently equipped.

If the optional parameter chip_name is present, then ESP knows that
the chip is present or not as specified with the true or false statement.

If the optional parameter pg is present, tlien the chip is considered part
of a Processor Group. In a multi-processor environment, each CPU
will be given a Processor Group name and each chip will be associated
with a Processor Group. If the optional parameter pg is omitted, then
the CURRENTPG is assumed by ESP. The CURRENTPG is set by
the user with the pg command.

When a chip is created, using the cac command, the chip is automati­
cally considered (by ESP) to be equipped. It is useful to un-equip a
chip if the chip is not physically present in a system.

NOTE: When a JTAG chip is un-equipped, its JTAG
data path is believed (by ESP) to be shunted around as if
wired-through. The chip will no long be considered part of
the JTAG port and will not take even a bypass bit position.

The equip command is used to tell ESP which chips are present on the
planar. Although a Processor Complex might have N chips, only some
of them might be plugged in on a particular machine under test.

EXAMPLES: equip

equippgc

equip603

equip 620 true

equip 620 false

-lists all equipped chips in all Processor Groups

-list all equipped chips in PG pgc

- equiv to "~quip 603 true"

- equiv to "equip 620"

- un-equip the 620 chip

equip pga 603 -equip 603 chip in Processor Group pga

equip pgb 603 -equip 603 chip in Processor Group pgb

equip pgc 604 false - un-equip the 604 in PG pgc

pgpbc - set "current PG" to pgc

equip 603 - equip 603 chip in CURRENTPG, pbc

RELATED INFORMATION:

none

equip Part 2 - Command Reference

Engineering Support Processor 604

err
PURPOSE:

SYNTAX:

Simulate an error condition

err

User's Reference Manual

DESCRIPTION: Used for ESP program debug. This command is for ESP tool devel­
opers only. It returns an error return code for analysis as well as print­
ing the message "err: simulated error" with error number 0179.

RELATED INFORMATION:

none

Part 2 - Command Reference err 111 of247

User's Reference Manual Engineering Support Processor 604

esp
PURPOSE: Start the ESP program
LIBRARY: none.

SYNTAX: esp [-a] [-d] [-n] [-t] (-c] [-hJ

DESCRIPTION: Starting the ESP program can be done in one of two supported ways.

112 of247

· Starting the program by running the esp shell script, or starting the
program directly.

The actual esp program executable will be named something like
"esp604ddl.Overl.O", and my be run directly from the AIX command
line. If started in this way it is the users responsibility to first set some
AIX environment variables that the esp program needs to run success­
fully.

The esp shell script sets all AIX environment variables that need to be
set before running the esp program executable.

ESP PROGRAM OPTIONAL ARGUMENTS

Starting ESP from the AIX command line or from the ESP shell script
supports using the following ESP optional arguments:

-a Set the socket address ESP will server on. The default socket
address served by ESP is OxbtUO (or 48896 decimal). A client pro­
gram connecting to this socket can execute ESP commands
through the socket. (For more information see documentation
about the ESP Socket Programming Interface.) This socket
address must be different for each ESP program running on the
same host machine.

-d# Set which device driver ESP is to use. The default device
driver that ESP will open is "/dev/epespO". This·option allows
specification of alternate device drivers. E.g. '-d 2' means ESP
should use "/dev/epesp2". Each ESP running on the same host
machine must use a different device driver.

This option also establishes the base address for shared memory
support. For more information see documentation about the ESP
Shared Memory Programming Interface.

-n This flag tells ESP that no device driver is to be used at all. ESP
will come up but it will not even try to open a "/dev/dash#" device
driver. This allows users to run ESP on a host machine that is not
even hooked up to a Machine Under Test (MUT), or that even has
a device driver installed. This configuration is frequently usefull
for debug purposes such as screen development and external pro-

esp Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

gram development.

-t This flag tells ESP to run in the TTY mode. That is, ESP will
behave with a command line interface. Screens will not be sup­
ported in this mode, and all input and output are from/to the stan­
dard input and standard output.

-c "command" These arguments allow the use of ESP for the pur­
pose of executing one ESP command. Once this command is fin­
ished execution, ESP stops running.

-h This flag tells ESP to print its short help message to the standard
output and then exit. A brief list of ESP optional arguments is pre­
sented.

ESP PROGRAM AIX ENVIRONMENT VARIABLES AND THEIR
USE

LIBPATH Set path to location of libre:Xx.a and other libraries.

NLSPATH Path to National Language Support files, particularily the
REXX support file, rexxaix.cat.

XAPPLRESDIR Path to the ESP program's X application resource
file, "Esp Resources".

ESPAVPBIN Path to load files (using the {oai command.)

ESPPATH Path to ESP command files. This would be the location(s)
of various ESP screen and other .x files.

RELATED INFORMATION:

none

Part 2 - Corrunand Reference esp 113 of247

User's Reference Manual Engineering Support Processor 604

exit
PURPOSE: exit program

SYNTAX: exit

DESCRIPTION: This comm.and is used to exit to the next higher level of program or
command file. If already at level 0 then this command will cause ESP
to terminate. Usually this command is embedded in an ESP command
file, or 'batch' file, to early-terminate what the command file is doing.
If this command is typed from the ESP comm.and line by the user, then
obviously there is no next higher level of file to, and ESP terminates.

RELATED INFORMATION:

quit

114 of247 exit Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

expect
PURPOSE:

SYNTAX:

Allow scan string facilities, arrays, or memory to be compared.

expect [pg] address radix'value'

expect [pg] which_chip array_name array_address(bit:range)
radix'value'

expect [pg] which_chip device_name(bit:range) radix'value'

radix may be any of: x= hex, d= decimal, b= binary, o= octal, a=
ASCII, f= float, e= EBCDIC

DESCRIPTION: The expect command allows comparison of the machine under test
(MUT) internal data via the scan strings accessible to ESP, to test data.
MUT scan strings are directly accessible from the COP, and arrays and
memory can be accessed if ESP does a sequence of COP commands
and scan string manipulations. The optio]J.al 'pg' argument allows you
to specify which processor group the expect is to be performed on.

ESP can tell from the expect syntax if the compare is to be made on a
facility, an array element, or on memory. If there are four arguments
then the following device name might be either a facility on the scan
string or an array element. If the device name has square brackets sur­
rounding an address, then ESP knows the device is an array element,
else the device is just an ordinary facility on the scan string.

If the request is made with only three arguments, then the second argu­
ment is considered the MUT memory address.

ESP accesses chip module scan strings only on demand. That is, ESP
will not read (and certainly not write) from or to the MUT until a
demand from the user is made via commands, such as expect.

ESP keeps MEMORY IMAGES of MUT scan strings. When ESP
tries to read the data from the device specified by the use from the
memory image of the MUT scan string, ESP checks to assure it has
the latest data available. If it does not, then ESP scans in the MUT
string, and until something happens to change the state, ESP will work
into and out of the memory image of the scan string from then on.

If a request to expect is made on array data, then ESP does such work
immediately. There is NO cache of any type implemented for array
data. If a request to expect less than the full size of an array element is
made, the full array element is fetched, and then the expect is per­
formed on only the bits specified.

Part 2 - Command Reference expect 115 of247

User's Reference Manual Engineering Support Processor 604

EXAMPLE

If a request to expect MUT memory is made, then ESP could possibly
work out of a buffer cache. This would be possible only if the address
of the data to be compared is in the range ofa block presently cached
in ESP memory.

Figure 8: Examples of Expect Command

expect b 1 l00 1 x 1 11111111' - expect memory address binary 100 to be
hex 11111111

expect 0 1 10 1

expect 12
expect x 1 10'

expect x 1 14 1

expect x• 18'

expect x 1 lc 1

expect x•20•
expect x • 24 •

x 1 22222222 1 - expect address octal 10 to be hex 22222222
x 1 33333333 1 - expect address decimal 12 to be hex 33333333
x 1 44444444 1 - expect address hex 10 to be hex 44444444

b 1 01010101010101010101010101010101' - expect address
hex 14 to be binary value

0 1 14631463146 1 - expect address hex 18 to be
octal 14631463146

2004318071 · expect address hex le to be
decimal 2004318071

x 1 88888888 1 - expect address hex 20 to be hex 88888888
a 1 3333 1 - expect address hex 24 to be ASCII 3333

expect 604 SPO_SPN~$LD x 1 1234' - expect 604 device SPO_SPN_$T.n to be
hex 1234

RELATED INFORMATION:

116 of247

See display, and alter commands.

For single chip considerations, see 'dirty'.

See pioe for PIO expects.

expect Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

faclist
PURPOSE: List scantable facilities known to ESP

SYNTAX: faclist [filter]

DESCRIPTION:

Use this command to get a list of facilities (created with the cai com­
mand) known to ESP. Use the list to search for partial fac names. Once
a fac name has been located it can be selected and then used by double
clicking on the selected name or by clicking the USE push button.

When a facility is used it is copied into the ESP command line at the
point of the cursor.

The optional 'filter' parm is used to call up the list and specify a filter
string at the same time. This is merely a convenience as the list has a
filter text input area for you to use at any~ time.

USING THE FACLIST WINDOW

Once the faclist has been generated it is presented in a window. The
window has a "Filter:" text entry area, a "Search For:" text entry area,
a "USE" push button and a "CANCEL" push button.

The "Filter:" text entry area can be used to do a primary search to nar­
row down the selections presented, such as all facilities with XRAB
in their name, or all facilities with .SPARE in their name. If ever you
wish to see the entire list, type in a single asterisk and hit enter.

The "Search For:" text entry area is used to search through what ever
is currently available (after the filter has worked). Search also finds
facilities that have the specified string in them at any position.

Once a single facility has been found you can force it to be placed into
the ESP command line (at the cursor) by double clicking the entry or
by clicking on the "USE" push button.

You can leave the faclist window up during the entire ESP session and
use it as desired. If, however, you wish to get rid of it, click on the
"CANCEL" push button.

Part 2 - Command Reference faclist 117 of 24 7

User's Reference Manual Engineering Support Processor 604

Example of window presented with faclist command.

EXAMPLES:

faclist

faclist SPARE

RELATED INFORMATION:

none

118 of247

- get a list of ALL facilities known to ESP

- list of facilities with "SPARE" in their name

faclist Part 2 - Conunand Reference

Engineering Support Processor 604 User's Reference Manual

filefinder
PURPOSE:

SYNTAX:

Show where a .x file or REXX file was found when executed

filefinder [(onloff)]

DESCRIPTION: By default, filefinder is turned off in ESP. If you turn filefinder on,
then subsequent execution of .x files or REXX files will cause the
location of that file to be posted to the TTY window.

EXAMPLES: filefinder on - tum filefinder on

filefinder off - tum filefinder off

filefinder - get status, on or off

RELATED INFORMATION:

which

Part 2 - Command Reference filcfinder

..

119 of247

User's Reference Manual

flush
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Forces buffered data from ESP to the MUT

flush [(mpglpg)] (chip_name I broadcast I be I mem 112) [SSname]

DESCRIPTION: If the argument broadcast, or be, is passed then ESP does the follow-

EXAMPLES

120 of247

ing:

Any cached memory is flushed out to the machine under test
(MUT)

Any cached scan strings for all chips are flushed to the MUT

If the argument passed is a CHIP NAME then only the chip's scan
strings are flushed, and ONLY IF the chip's strings have been altered!
If the optional 'mpglpg' argument is used then the specified multipro­
cessor group or processor group will be flushed. By default, the cur-
rent processor group is flushed. •

NOTE: Flush always flushes 'real' scan strings (that need
it) first. If there are any sub-strings left then they are
flushed to the MUT using their individual scan commands.

If optional SS name is passed describing a scan string name, then only
that scan string is flushed to the MUT (if it needs it).

NOTE: The SSname argument only works when a
chip_name is specified.

If a chip has long, boundary, ex.mem, and counter scan strings, and if
long contains both boundary and exmem (that is, boundary and
ex.mem are sub-strings of the long scan string), then the following will
happen:

If the long and boundary scan strings have been modified then only the
long scan string will be flushed to the chip.

If only the boundary scan string has been modified, then only the
boundary scan string will be flushed to the chip.

if the boundary and exmem scan strings, both sub-strings of the iong
scan string, have been modified then the boundary and exmem scan
strings will be flushed to the chip in two seperate operations.

flush 604 - flush 604 scan strings out to the chip

flush mem - flushes any cached memory from ESP

flush 12 - flushes any cached L2 memory from ESP
'

flush 604 boundary - flushes only boundary data to 604 chip

flush Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

RELATED INFORMATION:

See ESP command dirty, used in single chip testing also.

Part 2 - Conunand Reference flush 121 of 247

User's Reference Manual

get
PURPOSE:

Engineering Support Processor 604

Get a binary scan table file

SYNTAX: get filename

DESCRIPTION: ESP gets the scan table information in one of two ways. The first way
is to read the chip scan string tables which are contained in the .x files
(e.g. comboST.x, dcacheST.x, fpuST.x fxptST.x, icacheST.x,
scuST.x). This must be done at least once after a new scan string table
is received, but it is relatively slow. The second method is to read in a
binary image of the information that was saved on a previous run.

Normally, when a new level of scan string information is received, or
when a new level of the ESP program is created, the chip scan string
definitions will be read in once, and then will be saved. Subsequent
runs of ESP will get the binary scan table file.

You can't "get" more than one file without trouble. Also, you can't read
".x'' files that define scan strings or arrays, and after that use the "get"
command. "get" overwrites whatever was in ESP's data area. (i.e.,
"get" expects the ESP scan string definition area to be empty.)

RELATED INFORMATION:

save

122 of247 get Part 2 - Omunand Reference

Engineering Support Processor 604 User's Reference Manual

gexpect
PURPOSE: Support testing for values from a Graphics Read operation

SYNTAX: gexpect address radix'value'

DESCRIPTION:

This command performs just as gread, but then compares the value
read from the MUT with the 'value' specified. If the values fail to
match then a message is printed specifying the address, the expected
value, and the value actually returned.

RELATED INFORMATION:

gread and gwrite

Part 2 - Command Reference gexpect

..

123 of247

User's Reference Manual Engineering Support Processor 604

gread
PURPOSE: Support Graphics Read operations

SYNTAX: gread address (radix]

DESCRIPTION:

This command implements a version of the architected instruction
eciwx. The EAR register should be set appropriately before using this
command, and the ~address' specified in this command is set on the
604 bus without translation.

A (4 byte) word is returned formatted in whatever radix is specified,
or hexadecimal if no radix is specified.

Addresses may be specified in any ESP supported radix and, unlike
the architected instruction, may specify addresses on byte boundaries,
e.g. Oxl 01 orOx.20000305. No matter whit address is specified at least
one double word bus access will occur.

The following table shows which four bytes are returned from a gread
command based on the address specified.

The characters ABCD represent the four bytes displayed by the gread command.

User 1st data 2nd data

specified bus xfer bus xfer

address (8 byte (8 byte

low 3 bits lanes) lanes)

---------- ------- --------
000 ABCDxxxx (no 2nd xfer)

'
001 xABCDxxx (no 2nd xfer)

O'" lV xxABCDxx (no 2nd xfer)

011 xxxABCDx (no 2nd xfer)

100 xxxxABCD (no 2nd xfer)

101 xxxxxABC Dxxxxxxx

110 xxxxxxAB CDxxxxxx

111 xxxxxxxA BCDxxxxx

124 of247 gread Part 2 - Connnand Reference

Engineering Support Processor 604

RELATED INFORMATION:

gwrite and gexpect

Part 2 - Command Reference

..

gread

User•s Reference Manual

125 of247

User's Reference Manual Engineering Support Processor 604

gwrite
PURPOSE: Support Graphics Write operations

SYNTAX: gwrite address radix'value'

DESCRIPTION:

This command implements a version of the architected instruction
ecowx. The EAR register should be set appropriately before using this
command, and the 'address' specified in this command is set on the
604 bus without translation.

Addresses may be specified in any ESP supported radix and, unlike
the architected instruction, may specify addresses on byte boundaries,
e.g. OxlOl orOx.20000305. No matter what address is specified at least
one double word bus access will occur.

The following table shows which four bytes are written on a gwrite
command based on the address specified.

The characters ABCD represent the four bytes modified by the gwrite command.

User 1st data 2nd data

specified bus xfer bus xfer

address (8 byte (8 byte

low 3 bits lanes) lanes)

---------- -------- --------
000 ABCDxxxx (no 2nd xfer)

001 xABCDxxx (no 2nd xfer)

010 xxABCDxx (no 2nd xfer)

011 xxxABCDx (no 2nd xfer)

100 xxxxABCD (no 2nd xfer)

101 xxxxxABC Dxxxxxxx

110 xxxxxxAB CDxxxxxx

111 xxxxxxxA BCDxxxxx

..•

RELATED INFORMATION:

126 of247 gwrite Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

gread and gexpect

Part 2 - C.Ommand Reference gwrite 127 of247

User's Reference Manual Engineering Support Processor 620

128

help
PURPOSE: Display help for ESP commands

SYNTAX: help [cmdl cmd2 ... cmdN]

DESCRIPTION:

EXAMPLES:

This command, without arguments, will list the names of all built-in
ESP commands to the TTY window.

With arguments, each command listed will have its manual page pre­
sented on the screen, by default using GHOSTVIEW, a public domain
PostScript viewing program.

The AIX environment variable VIEWER may be set (and exported) to
specify the Postscript viewer of choice if GHOSTVIEW is unavail­
able or not desired. ..

To use xpreview instead ofGHOSTVIEW:

export VIEWER =/bin/xpreview

To put up seperate windows with manual pages for the alter, display
and expect commands:

li:e(p after tllspfag e;rpect

To list all ESP commands to the TTY window:

fidp

RELATED INFORMATION:

The 'Help' button on the Menu Bar

help Part 2 - Command Reference

Engineering Support Processor 604

hreset
PURPOSE:

SYNTAX:

Toggle Or Set The HRESET Line

hreset [(Oil)]

User's Reference Manual

DESCRIPTION: iThis low level ESP command allows the hardware HRESET line to
be toggled, set to zero, or set to one. This command is useful for test­
ing the integrity of the ESP to MUT connection but is not usually used
to reset the processor.

Using this command in any form will force ESP to consider all its
buffered chip and memory information to be invalidated.

RELATED INFORMATION:

treset

ipl

Part 2 - Command Reference hreset 129 of247

User•s Reference Manual Engineering Support Processor 604

in
PURPOSE: Perform a 1 byte memory mapped io read

SYNTAX: in address [radix]

DESCRIPTION:

This command is a convenience function that allows one byte to be
read from memory mapped IO at address Ox80000000 and above.

The address specified is bitwise ored with Ox80000000 to produce
the bus address. Eight bit data is then read in as a MMIO cycle and
displayed in hexadecimal by default, or in whatever radix was speci­
fied.

Under the covers, ESP is producing an m.mWr command to implement
the in command. ..

RELATED INFORMATION:

The ESP commands in, m16, in.32, out, out16, and out32 are all related.

130 of247 in Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

Part 2 - Cmrunand Reference in 131 of247

User's Reference Manual Engineering Support Processor 604

in16
PURPOSE: Perform a 2 byte memory mapped io read

SYNTAX: in address [radix]

DESCRIPTION:

This command is a convenience function that allows two bytes to be
read from memory mapped IO at address Ox80000000 and above.

The address specified is bitwise ored with Ox80000000 to produce
the bus address. Sixteen bit data is then read in as a :MMIO cycle and
displayed in hexadecimal by default, or in whatever radix was speci­
fied.

Under the covers, ESP is producing an mmior command to implement
the m1G command.

RELATED INFORMATION:

The ESP commands in, in16, in32, out, out16, and out32 are all related.

132 of247 in16 Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

..

Part 2 - Command Reference in16 133 of247

User's Reference Manual Engineering Support Processor 604

in32
PURPOSE: Perform a 4 byte memory mapped io read
SYNTAX: in address [radix]

DESCRIPTION:

This command is a convenience function that allows four bytes to be
read from memory mapped IO at address Ox80000000 and above.

The address specified is bitwise ored with Ox80000000 to produce
the bus address. Thirty-two bit data is then read in as a MMIO cycle
and displayed in hexadecimal by default, or in whatever radix was
specified.

Under the covers, ESP is producing an mmior command to implement
the in.32 command. ..

RELATED INFORMATION:

The ESP commands m, in.16, in.32, out, out1G, and out32 are all related.

134 of247 in32 Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

ioflag
PURPOSE: Tell ESP about run/stop state of an IO type of chip

SYNTAX: ioflag [(mpg I pg)] (chip_name I broadcast I be) [(running I stopped)]

DESCRIPTION:

EXAMPLES:

This command is used to inform ESP that an IO type of chip is either
running or stopped. ESP uses this knowledge when accessing an IO
chip's scan strings. If the IO chip is running, ESP will not scan the IO
chip, even if a demand for data is made, like using the alter or display
command or having a screen up with IO chip data present.

If optional argument (runninglstopped) is omitted then iojl.ag will
report the ioflag status of the chip or chips selected. The status will be
either RUNNING or STOPPED.

Specifying (runninglstopped) means that you are setting the IO chip
ioflag status.

·-If you wish to set or view ioflag status of a particular chip then specify
the PG and chip_name of the chip. To manipulate multiple chips at
the same time specify an MPG and/or use the broadcast or be chip
pseudo names. The use of broadcast or be means "all IO chips".

iojlag be Lists all equipped IO type chips flag status in current
PG

iojlag pgc cobra Lists pgc cobra chip ioflag status only

ioflag pgc cobra stoppedSets cobra iofiag status to STOPPED in PG
pgc only.

iojlag mpgl be runningSets ioftag status to RUNNING in all IO type
.chips in all PG that are in MPG mpg 1.

RELATED INFORMATION:

IO type chips are created with the cat command.

Part 2 - Command Reference ioflag 135 of247

User's Reference Manual

ipl
PURPOSE:

SYNTAX:
Toggle Or Set The SRESET Line

ipl [(Oil)]

Engineering Support Processor 604

DESCRIPTION: This low level ESP command allows the hardware SRESET line to be
toggled, set to zero, or set to one.

ESP performs no other action as a result of using this command. That
is, buffered data and screen updates will NOT be performed because
'sreset' has been issued.

RELATED INFORMATION:

iplrun

tr es et

hr es et

136 of247 ipl Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

iplrun
PURPOSE:

SYNTAX:

To force the machine under test (MUT) to run and take a soft reset
interrupt.

iplrun [(mpglpg)] [time] [-v] [-be]

DESCRIPTION:

NOTE: This is a "high level" command which means that
any cached scan strings or memory will be ftushed to the
MUT before the MUT is set running. If the MUT stops then
ESP screens will be updated.

· If the iplrun command is issued without any arguments, then the
default action is to toggle the reset interrupt hardware line, send a
RESUME command (sequentially) to all the equipped chips in the
current PG, print a message indicating the iplrnn has been issued, and
wait (forever) for the 604 status to indicate that it has stopped. Iplrun
would then do a 'soft stop' procedure, print a message indicating a
NORMAL stop, and return.

The -v option will keep iplrun from issuing the two messages just
mentioned.

The -be flag will force a single broadcast RESUME to be sent to all
chips on the current port instead 9f sequentially sending RESUME to
all chips in the specified PG or MPG.

If a time argument of zero is issued, then iplrun is issued to the MUT,
as it would otherwise, but the iplrun command will not wait around for
the MUT to stop. Instead, iplrun will quietly return to the caller. It is
then up to the caller to look for the MUT to stop, and take appropriate
action (i.e. issue stop command.)

If a time argument greater than zero is issued, then that number is the
longest time (in seconds) that iplrun will wait for the MUT to stop. If
the MUT stops before the time indicated then iplrun will return nor­
mally. If the MUT has not stopped by the number of seconds indi­
cated, then iplrun will print an error message about timing out, and
return to the caller. It is up to the caller to then take appropriate action
(i.e. issue stop command.)

When iplrun is waiting for the MUT to stop, it looks at three status bits
to determine the condition of the MUT: the hardware lines -CHECK­
STOP and +POWERGOOD as well as the 604 chip status indicating
run/stop status. If any of these status change then a stop condition is

Part 2 - Command Reference iplrun 137 of247

User's Reference Manual Engineering Support Processor 604

understood. If checkstop or powergood indicate an error condition,
then such conditions are reported, and iplrun returns to the caller with­
out having performed a 'soft stop'.

If, while iplrun is waiting for the MUT to stop, the user types a pro­
gram interrupt, 1 then iplrun will print a message indicating that it is
aborting and returns to the caller. It is up to the caller to take appro­
priate action to control the MUT after such an abort (i.e. issue stop
command.)

If the user wants the MUT to stop, a breakpoint must be set prior to
issuing this command. If desired, the MUT can be run without a break­
point, and after some amount of time a stop may be issued. (For exam­
ple, if the program terminates in an infinite loop.) If the user just wants
to let the MUT run without any breakpoints set, and if the MUT is cur­
rently stopped due to encountering a breakpoint, ESP will clear the
current breakpoint, cause the MUT to execute one instruction, replace
the breakpoint, and then tell the MUT to run. If the MUT returns to the
same address, it will again stop.

Except for a very few early machines that do not have an IPLROS
installed, this instruction will have the following affect. ESP will
cause the MUT to vector to its cold or warm IPL entry point (depend­
ing on the previous code that w~s run.) The program at the cold IPL
entry point will set up some required configuration registers and then
will search for a boot program. This may be on a diskette or a hard file.
The program will cause this boot program to be loaded and will branch
to the boot program entry point.

Because the hardware breakpoint is not in memory, the breakpoint can
be set prior to loading the program (and must be set prior to loading
the program if the user desires to have a breakpoint set.) When the
MUT detects the breakpoint address, the system will stop.

IMPLEMENTATION NOTE:
All ESP cached memory is flushed to the MUT via the assigned PG.

For each PG in the MPG specified, or the PG specified, or the CURRENT PG other­
wise, all chips in each PG are flushed from ESP, ESP chip buffers are invalidated, and
the RSJIJZ command is issued to the 604 chip.

If an MPG was specified, then the enable for the MPG is executed

The reset interrupt hardware line is toggled to all PG

The RESUME command is sent sequentially to all equipped chips in the specified PG
or MPG or a broadcast RESUME command is sent if -be was specified

If a time argument > 0 was specified then ESP waits up to that number of seconds for
all PG 604 chips to become stopped. ·"

l. See the section "Break Signal" for more information on the program interrupt.

138 of247 iplrun Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

EXAMPLES:

IPLRUN Start the MUT, then wait for it to stop.

IPLRUN pgb 0 Start the PG "pgb" MUT and return.

IPLRUN 12 Start the MUT, then wait up to 12 seconds for it to
stop.

IPLRUN -V Start the MUT, then wait for it to stop. Do this with-
out saying anything.

IPLRUN mpg3 5Start all PG in MPG "mpg3" and wait up to 5 sec­
onds for all the PG to stop.

RETURN CODES:

0 All's well.
~

1 While waiting for MUT to stop, iplrun timed-out.

2 While waiting for MUT to stop, the MUT power failed.

3 The user typed a program interrupt.

4 While waiting for MUT to stop, the MUT checkstopped.

RELATED INFORMATION:

por, ipl, stop, run, bp

Part 2 - Command Reference iplrun 139 of247

User's Reference Manual

is
PURPOSE:

SYNTAX:

DESCRIPTION:

140 of247

Engineering Support Processor 604

Instruction step(s)

is [(mpglpg)] n [(softlint)]

NOTE: The 604DD1.0 and 604DD1.1 do not have instruc­
tion step capability.

NOTE: This is a "high level" command which means that
any cached scan strings or memory will be ftushed to the
MUT before the MUT is single stepped. When the MUT
stops ESP screens will be updated.

This command sets a bit in the machine under test (MUT) which
causes one instructions to be executed. ESP will repeat the required
sequences to step as many times as requested. The first time this com­
mand is entered, the 'n1 parameter is required. Subsequent commands
can enter 'is' without the 'n' parameter and the previous value for 'n'
will be used. If 'is' is entered the first time without the 'n' parameter,
results are not specified.

A soft stop means that the processor is 'asked' to stop, and when it
has stopped, ESP will take control. The processor is supposed to have
quiesced the system it is in and then halted in such a way that it can be
re-started.

The 'int' parm sets the 604 such that it will branch to interrupt vector
OxOdOO after the current instruction has been completed.

Because program execution stops prior to executing the instruction at
the breakpoint address, a run command or an instruction step com­
mand issued after the processor has stopped at a breakpoint would
cause the MUT to stop execution prior to executing the instruction at
the breakpoint address. In other words, n instructions would be exe­
cuted. When a run command or an instruction step command is exe­
cuted, ESP will check to see if the breakpoint address is the same as
the IAR value. If they are the same, ESP will clear the breakpoint for
one instruction, and then will reset it to what it was. This allows run
through a loop without continually setting and clearing a breakpoint,
and instruction stepping from a breakpoint address without first clear­
ing the breakpoint address.

NOTE: Breakpoint, branch trace, and instruction step all
share (and set) the 604 stop mode.

NOTE: You cannot single step through~ rfi or mtmsr
instruction, or any other instruction that will modify the

is Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

MSR, since the instruction step mode is enabled by a bit in
the MSR.

RELATED INFORMATION:

bp - break point

sais - screen add instruction step command

bt - branch trace

is - instruction step

Part 2 - Command Reference is 141 of247

User's Reference Manual Engineering Support Processor 604

isd
PURPOSE: Start the ESP Interactive Screen Designer

SYNTAX: isd

DESCRIPTION:

The Interactive Screen Designer is a windows based tool developed to
allow users to create custom ESP screens visually.

Although ISD is a stand-alone program, it is invoked from ESP as if
it were a built-in ESP command. ESP responds by creating a tempo­
rary file containing names and sizes of all devices created with the
ESP commands cad and caa1• ESP then invokes ISD passing the name
of the file as a command line argument to ISD. With this, ESP is fin­
ished with the istf command and is ready to process other ESP com­
mands.

ISD, once running, is its own process and is in no way tied to the run­
ning ESP. ESP can, in fact, be terminated without effect on ISD.

Multiple ISD programs may be started from ESP and be running at the
same time, if desired. Each ISD program started from ESP is given its
own copy of a temporary file with names and sizes of known devices.

ISD creates/modifies ESP screens. ESP screens are simply ESP com­
mand files filled with ESP comniands that, taken together, create an
ESP screen. ESP command files are ASCII-text files, named with a .x
filename extension, and filled with ESP commands. The ISD program
can read and write the ESP command files used to create ESP screens.

For information on how to use the ISD tool see the ISD User~ Ref er­
e nee Manual in /afs/awd/public/esp/userdoc/ISDmanual.ps. For
information about ESP screens, see the ESP Training Manual in /afs/
awd/public/esp/userdoc/espTrainingManual.ps.

RELATED INFORMATION:

1. Only device and array names of equipped chips are generated.

142 of247 isd Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

jtag
PURPOSE: Send JTAG data and protocol

SYNTAX: jtag TDivalue TMSvalue

DESCRIPTION: This command supports the ability to send any JTAG data and TMS
pattern on the current JTAG port.

EXAMPLE:

TD I value and TMSvalue can be expressed as binary or hex. ESP
determines the nwnber of TCK clocks to send from the number of bits
expressed in the data.

For each bit position in the data (TDlvalue and TMSvalue), ESP sets
TDI to the TDivalue bit, TMS to the TMSvalue bit, and then issues
a TCK. This process is repeated for the number of bits in the data.

The first bit sent to the JTAG port is the right-hand side of the TDI­
value or TMSvalue. ..
NOTE: Data expressed should not exceed roughly 17,500
bits.

This command is not available for COP protocol chips.

To send 32 bits into the current JTAG port where the data is x 'feed­
beef' and the TMS line is to be J:ield high:

jtaox'feedbeef' x'ffffffff'

RELATED INFORMATION:

The cop and copcmtf commands.

Part 2 - Command Reference jtag 143 of247

User's Reference Manual

layout
PURPOSE:

SYNTAX:

Engineering Support Processor 604

locate or load a screen, move it to xy and set its origin and base
addresses

layout screen x y org_adr base_adr [PG::;pg] [CHIP=chip]

DESCRIPTION: This loads the named 'screen' from file and then moves the screen to
the 'x','y' values specified. Layout also sets the screens ORIGIN
address to 'org_adr' and the screens BASE address to 'base_adr'.

RETURNS:

Optional argument 'PG::;pg' allows you to set the Processor Group
variable, PG, before an attempt is made to load the screen from disk.
After the attempt is made, PG is reset to its old value.

Optional argument 'CHIP=chip' allows you to set the Chip variable,
CHIP, before an attempt is made to load the screen from disk. After
the attempt is made, CHIP is reset to its old value.

This command might be used in a ESP Script file with other layout
commands in order to force a particular configuration of screens.

ESP uses this capability by storing layout commands in the users
HOME directory in a file called .esplayout.x whenever the Option
menu button "Save Layout" is pressed.

Normally the 'screen' parameter would be the nickname of a screen.
However, a special screen name,'_ESP _CONSOLE, is understood by
layout to mean the ESP main window.

EXAMPLES: The following commands would place the ESP Console and cause two
screens to come up:

layout _ESP_CONSOLE 24 511 0 0
layout mpmrs 638 426 O O PG=pqc
layout mpmrs 638 232 O O PG=pqb

RELATED INFORMATION:

See ESP commands "saveLayout" and "move".

144 of247 layout Part 2 - Command Reference

Engineering Support Processor 604

list
PURPOSE:

SYNTAX:

List details about internal ESP objects

list [n [options]]

list - displays a list of the command options

List will allow visibility of the following:

0 CHIP _REC [chip_name]

1 CHIPTYP _REC [chip_type]

2 ARRAY _REC [chip_type]

3 Array DEVICE_REC's [chip_type]

User's Reference Manual

4

5

6

7

Device DEVICE_REC's [chip_type [device_name]] ..
MPGROUP's

PGROUP's

Array Names and Sizes

DESCRIPTION:Not recommended for everyday use. This command is more of a
debug tool than a user resource.

EXAMPLE:

list 0 icu --will cause the ESP program to display a list of the struc-
ture definition for the ICU chip.

RELATED INFORMATION:

listall

Part 2 - Conunand Reference list 145 of247

User's Reference Manual

listall
PURPOSE:

SYNTAX:

List all defined devices.

Ii stall

listall chip_type

Engineering Support Processor 604

DESCRIPTION: This command lists all devices and arrays to a list window. The list
may be scrolled to view the contents. This command is more of a
debug tool than a user resource.

RELATED INFORMATION:

list

146 of247 listall Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

load
PURPOSE:

SYNTAX:

Download a file from ESP Host into MUT memory.

load [[-d] [-r] [-vN] [-z] filename]

FLAGS

-r Do not report on down load progress. Default for load is to display
down load progress.

-vN Verbatim load the entire file into memory at address N. The
address, N, can be specified in hex, binary, octal, or decimal. (eg. -
vx'l0025' or-v64 or -vo'377')

-d Don't Zero the common area after file load. (The common area is
also known as the uninitialized data area.)

-z Zero out the common area of a previously loaded file (to re-run it)

DESCRIPTION: The purpose of this command is to load a file residing on the ESP Host
machine into MUT memory, with or without including the header,
starting at the load address specified in the header, or optionally, at
some other address.

If no load options are used then the file mentioned will be loaded into
MUT memory at whatever address that is found in the files header.
TOC64, TOC96 and XCOFF files are understood by ESP. Separate
text, data, and uninitialized data areas specified by the XCOFF file for­
mat are supported by ESP. TOC files are expected to have contiguous
data areas.

Ifthe-vN option is specified then the load command will ignore the
files header and just get the entire files size using the AIX stat com­
mand. The file will then be read by ESP and loaded into MUT mem­
ory at address 'N' as specified by the user. Using this option means that
it does not matter what the file type is: ascii text, TOCxx, XCOFF,
binary data or whatever. The file is simply loaded, verbatim, into
MUT memory at address 'N'.

We have tried to make changes to the load command options back­
wards compatible with old versions of ESP. Older versions of load
supported the -t, -6, and -a options which are now not used. These old
option flags will be ignored by the newer ESP so that users will not
have to change previously written programs that include them.

The source file name can be any valid AIX file name. It can be located
in any directory as specified in ESP AVPBIN environment variable.

Here are some rules about the source file presented to load:

Part 2 - Command Reference load 147 of247

User's Reference Manual Engineering Support Processor 604

• The load address (from HEADER or from -v option) must be on a

word boWldary. (no remainder when address anded with Ox3)

• No file name convention is enforced on the source file.

EXAMPLES: load avpl

load-r avpl

load -vx'200f' avp 1

load-z avpl

RELATED INFORMATION:

dump

148 of247 load Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

load_ en tr

PURPOSE: Make loading the run-for-N counter easier

SYNTAX: load_cntr chip_name count

DESCRIPTION:

This is a low level command used to load the run-for-N counter. No
other operation is performed.

NOTE: The scan string loaded by ESP is assumed to be
known as the "counter" scan string, and is also assumed to
be 32 bits wide.

NOTE: The least significant counter bit will always be set
to one by this routine.

Load_cntr will take a count, 0 to 2A32, and perform the necessary con­
version for a incrementing counter (counts= Ox7ffiffif -
requested_count). Load_cntr will then send the necessary COP com­
mands to send out the "counter" scan string.

If chip_name is "604" then the "counter" device is expected to exist
and be 32 bits wide (to accept the count).

If chip_name is "mamba" or "x5" then the "tap" device is expected to
exist and be 10 bits wide.

Any other chip_name will not have its counter loaded.

EXAMPLES: Load the serial counter to do 50 cycles.

load_cntr 604 50

RELATED INFORMATION:

See the 'cop' command to issue the RUNN command.

Refer to the 'CS' command for system wide run-for-n.

Part 2 - Comm.and Reference load_cntr 149 of247

User's Reference Manual

log
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Start logging messages to a file

log closes current log file (if any)

log filename open log file (truncate, close current as needed)

log-append filename open log file (append, close current as needed)

log -clear empty current log file (if any)

log -print print current log file (if any)

log -edit edit current log file (if any)

DESCRIPTION: A log file captures any text sent to the TTY window (even ifthe TTY
window is turned oft). Once a log file is opened it can be closed with
the simple 'log' command.

The log file can be opened so that it first erases any existing file of the
same name, or the -append option can be used to append text to an
existing log file.

The -clear option clears the currently open log file. Logging continues.

The -print option prints the currently open log file to the AIX systems
default printer. Logging continues unchanged.

The -edit option edits the currently open log file. A 'snapshot' copy of
the current log is made and your editor is used (using the AIX envi­
ronment variable EDITOR) to edit that copy. Once editing is over the
copy of the log file is deleted. Normal logging remains unchanged
during and after the edit session.

RELATED INFORMATION:

none

150 of247 log Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

ls
PURPOSE: Display the contents of a directory.

SYNTAX: ls

DESCRIPTION: See AIX Commands Reference for details. This ESP command is
passed through to the AIX shell to be executed. It is included in ESP
for user convenience.

The files found are listed on the TTY window.

RELATED INFORMATION:

xlist

which

Part 2 - Command Reference ls 151 of247

User's Reference Manual Engineering Support Processor 604

mal
PURPOSE: Adds a line to a menu.

SYNTAX: mal name label command

DESCRIPTION: See "Menus" in Part 1 for details.

EXAMPLES:

Custom menus can be created by the user and accessed from the ESP
command line or from the ESP console menu bar "Custom Menus"
button.

The mal command supports creation of a single line on a menu. The
menu label is created with the 'label' argument, and the single ESP
command that is to be executed when the menu line is selected is cre­
ated with the 'command' argument.

Since there can be many named menus, the 'name' argument must
specify which menu a line is being added to.

Chaining from one menu to another is supported by allowing the ESP
command executed by selection of a menu item to call another menu.

To create a menu and add lines to it:

mat screens "Screens Available''

mal screens "604 Registers" "screen 604reg"

mal screens "Memory Display" "screen mema"

mal screens "Other Screens" "menu other"

04 Registers

emory Display

ther Screens

e .

RELATED INFORMATION:

mat

menu

152 of247 ma! Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

mat
PURPOSE:

SYNTAX:

Creates a new menu.

mat nickname title

DESCRIPTION: See "Menus" in Part 1 for details.

Custom menus can be created by the user and accessed from the ESP
command line or from the ESP console menu bar "Custom Menus"
button.

The mat command is the first step in creating a custom menu since it
both names the menu with 'nickname' and gives it a title, 'title', when
displayed.

Either the 'nickname' or 'title' can be used to reference the menu with
either the 'menu' command or the 'mat' command.

RELATED INFORMATION:

mal

menu

Part 2 - Command Reference mat 153 of247

User's Reference Manual Engineering Support Processor 604

meminit
PURPOSE: read in information required for accessing MUT external memory

SYNTAX: meminit [pg] (tc60x]

DESCRIPTION:

'meminit' is an ESP command that forces ESP to initialize its memory
handling sub-routines. Usually, 'meminit' is called only once when
ESP is first started.

This command must be executed after the scan string definitions and
array definitions have been read in.

Because ESP may be used in situations where partial scantables or no
scantables are in place, it is sometimes useful to not perform ESP
memory access initialization. ..
Typically, meminit is placed in the profile.x file right after the binary
scantables have been read.

Optional argument 'pg' is used to support ESP memory access
through different Processor Groups in a Multiple Processor environ­
ment. Memory access is always made from the PG specified in 'mem­
init', even if the Current PG is another PG.

Optional argument 'tc60x' supports the Motorola Test Card used to
bring up the 604 chip. If 'meminit tc60x' is specified, then ESP will
access memory via the Motorola Test Card device driver instead of
through the scan strings.

RELATED INFORMATION:

none

154 of247 meminit Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

memread
PURPOSE: Generate a list of memory data.

SYNTAX: memread startAddress numWords [radix]

DESCRIPTION: This command is used to read a list of (4 byte) words from memory,
'numWords' long, beginning at startAddress. The data can be dis­
played in any of the usually supported radices.

memread is intended to support the ESP sockets programming inter­
face and the programming interface. Normal user interactive memory
display is better performed using the display command.

RELATED INFORMATION:

memwrite

display

alter

Part 2 - Command Reference memread 155 of247

User's Reference Manual

memwrite
PURPOSE:

SYNTAX:

Engineering Support Processor 604

To write a list of words to memory.

memwrite startAddress numWords\n data\n data\n ... data\n

DESCRIPTION:This command is used to write a list of (4 byte) words to memory,
'num Words' long, beginning at 'startAddress'. The data can be written
in any of the usually supported radices, and unlike the alter command,
memwrite flushes memory automatically instead of waiting for it to be
done manually by the user, or until the ESP's cache buffer is filled.

memwrite is intended to support the ESP sockets programming inter­
face and programming interface. Normal user interactive memory
modification is better performed using the alter command.

RELATED INFORMATION:

memread

alter

display

156 of247 memwrite Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

menu
PURPOSE: Displays a particular Custom Menu if one is specified, or the first Cus­

tom Menu if no menu name is specified.

SYNTAX: menu [name]

DESCRIPTION: Custom Menus may be built by the user using the mat and mal com­
mands. The menu command "pops" one up for use. See "Menus" in
Part 1 for details.

Custom menus can be created by the user, using the mat and mal com­
mands, and may then be accessed from the ESP command line.

RELATED INFORMATION:

mat

mal

Part 2 - Command Reference

..

menu 157 of247

User's Reference Manual

mmior
PURPOSE:

Engineering Support Processor 604

Support reading from memory mapped devices.

SYNTAX: mmior startAddress numBytes radix

DESCRIPTION: Devices other than memory may be connected to the memory bus of
the processor. This command supports reading values from these
devices in multiples of byte wide accesses.

From 1 to 8 bytes at a time may be read from a memory mapped
device starting from any address. The output will be formatted in
whatever 'radix' is specified. Ifno radix is specified then the output
will be presented in hexadecimal. Radix specification is expected to be
a single character, upper or lower case, in the set a=ascii, b=binary,
d=decimal, e=ebcdic, f=fioat, i=instruction, o=octal, x=hex. 'startAd­
dress' and 'numBytes' may be expressed jn binary, decimal, octal, or
hex.

RELATED INFORMATION:

mmiow

158 of247 mmior Part 2 - Command Reference

Engineering Support Processor 604

mmiow
PURPOSE: Support writing to memory mapped devices.
SYNTAX: mmiow startAddress numBytes data

User's Reference Manual

DESCRIPTION: Devices other than memory may be connected to the memory bus of
the processor. This command supports writing values to these devices
in byte multiples.

From 1 to 8 bytes at a time may be written to a memory mapped device
starting at any address.

'startAddress' and 'numBytes' may be expressed in binary, decimal,
octal, or hex. The 'data' may be expressed in any ESP supported radix.

RELATED INFORMATION:

mmior ..

Part 2 - Command Reference mmiow 159 of247

User's Reference Manual Engineering Support Processor 604

move
PURPOSE: To reposition screens on the display

SYNTAX: move screen'-name y x

DESCRIPTION: By issuing this command with the name of a specific screen you want
to move and a set of x and y coordinates, you can rearrange the layout
of the screens on your display.

EXAMPLE:

Coordinates x and y are expected to be decimal integers greater than
or equal to zero. X is the horizontal coordinate and Y is the vertical
coordinate.

Normally the 'screen_name' parameter would be the nickname of a
screen. However, a special screen name, _ESP _CONSOLE, is under­
stood by move to mean the ESP main window.

movemema 0 0

This would move the mema screen to the top left comer of the display
area

move _ESP _CONSOLE 500 100

This would move the ESP main window.

RELATED INFORMATION:

layout

160 of247 move Part 2 - Command Reference

Engineering Support Processor 604

number
PURPOSE:

SYNTAX:

Control displaying of message numbers.

number (onloft) [all rexx socket pi tty log]

User's Reference Manual

DESCRIPTION: Each message that ESP produces has a message I.D. number that goes
with it. This command allows you to select whether the message I.D.
number will be displayed with a message or not. Selection is based on
where the message is being sent. If the rexx option is chosen to be
turned on, only those messages that the ESP sends to rexx will contain
their associated I.D. number. Similarly, the socket option selects mes­
sages being sent to a socket, the pi option selects messages being sent
to the programming interface, the tty option selects messages being
displayed in the tty window, and the log option selects messages being
sent to a log file.

RELATED INFORMATION: ..

none

Part 2 - Command Reference number 161 of247

User's Reference Manual Engineering Support Processor 604

162 of247 number Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

ocs
PURPOSE:

SYNTAX:

Manipulate the OCSOVERIDE_ line

ocs (onloff)

DESCRIPTION: The 604 processor is a JTAG processor and has no ESP enable line or
an On-Chip-Sequencer to manipulate. This means that the ocs com­
mand is not useful for the 604 processor.

However, some systems incorporating the 604 processor might find
the OCS line useful.

NOTE: Currently ESP for 604 DD2 and DD3 has the
OCS command activated. The OCS pin has been assigned
as pin 13 of the ESP connector.

The ocs command might be used to activate the MUT line that tells the
MUT that ESP is connected. ..

ocs on forces ESP line OCSOVERIDE_ inactive, or high, while ocs
off forces the line active, or low.

The default value for the OCSOVERIDE_ line is inactive, high, set by
ESP when it is first started.

RELATED INFORMATION:

none

Part 2 - Command Reference ocs 163 of247

User's Reference Manual

out
PURPOSE:

SYNTAX:

DESCRIPTION:

Engineering Support Processor 604

Perform a 1 byte memory mapped io write

out address data

This command is a convenience function that allows a single byte to
be written to memory mapped IO at address Ox80000000 and above.

The address specified is bitwise ored with Ox80000000 to produce
the bus address. Single byte data is then written as a MMIO cycle.

Under the covers, ESP is producing an mmi.ow command to implement
the out command.

RELATED INFORMATION:

The ESP commands in, in16, in.32, out, out16, and out32 are all related.

164 of247 out Part 2 - Conunand Reference

Engineering Support Processor 604 User's Reference Manual

Part 2 - Command Reference out 165 of247

User's Reference Manual Engineering Support Processor 604

out16
PURPOSE: Perform a 2 byte memory mapped io write

SYNTAX: out address data

DESCRIPTION:

This command is a convenience function that allows two bytes to be
written to memory mapped IO at address Ox80000000 and above.

The address specified is bitwise ored with Ox80000000 to produce
the bus address. Sixteen bit data is then written as a MMIO cycle.
Under the covers, ESP is producing an mmU1wcommand to implement
the out16 command.

RELATED INFORMATION:

The ESP commands in, in16, in.32, out, ou..t16, and out32 are all related.

166 of247 outl6 Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

Part 2 - Command Reference outl6 167 of247

User's Reference Manual Engineering Support Processor 604

out32
PURPOSE: Perform a 4 byte memory mapped io write

SYNTAX: out address data

DESCRIPTION:

This command is a convenience function that allows four bytes to be
written to memory mapped IO at address Ox80000000 and above.

The address specified is bitwise ored with Ox80000000 to produce
the bus address. Thirty-two bit data is then written as a MMIO cycle.

Under the covers, ESP is producing an mmiowcommand to implement
the out32 command.

RELATED INFORMATION:

The ESP commands in, in16, i.n.32, out, out16, and out32 are all related.

168 of247 out32 Part 2 - Command Reference

Engineering Support Processor 604

pages
PURPOSE:

SYNTAX:

Lists the screens that are up or in memory.
pages

User's Reference Manual

DESCRIPTION: This command generates a list of pages that are in memory. A page is
put in memory every time a screen is called up.

This command is most useful from a program that needs to know what
screens are currently up on the console.

RELATED INFORMATION:

none

Part 2 - Command Reference pages 169 of247

User's Reference Manual Engineering Support Processor 604

pause
PURPOSE: Halt execution momentarily and display a message

SYNTAX: pause "message"

DESCRIPTION:

The pause command may be used to temporarily halt ESP execution
while at the same time displaying a message for the user. The pause
command is meant to support interactive use of ESP between a com­
mand file or REXX program and the user.

If ESP is running in the interactive mode with X windows, then a win­
dow will be presented with the "message" indicated. ESP will stop
executing instructions until the user has pressed the OK button.

If ESP is running in the interactive mode with out X windows, then
the message will be printed on the standard output, and the user must
press some key to restart ESP.

RELATED INFORMATION:

none

170 of247 pause Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

pg
PURPOSE:

SYNTAX:

Select a Processor Group as the default or current Processor Group
pg [PGname]

DESCRIPTION: Specifying pg without other arguements will cause ESP to list what
the current Processor Group is set to.

If 'PGname' is specified then ESP will remember that Processor
Group name, and any ESP commands not specifically stating the PG
to use will default to this PGname.

In a single processor environment this command does not need to be
used. ESP defaults to a "DEFAULTMUT" Processor Group in which
all chips are members. (MUT means Machine Under Test, and is
reported by pg only if no Processor Groups have been created by the
user.)

RELATED INFORMATION:

none

Part 2 - Command Reference pg 171of247

User's Reference Manual Engineering Support Processor 604

172 of247 pg Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

pin read
PURPOSE: Read the value of a pin on an ESP buffer card

SYNTAX: pinread bufnum pinName

DESCRIPTION:.

With this command the value of a (named) pin on a particular ESP
buffer card can be obtained. If the pin is an ESP output, then the value
that ESP is currently driving will be read.

ESP can support up to sixteen ESP buffer cards, each with a 16 pin
connector that plugs into a MUT. bufnum allows specification of any
one of the sixteen buffers.

There are sixteen pins on the ESP connector, numbered 1 through 16.
Some or all of the pins might be named from the c6uf command. To
read the value of a pin, you must specify .pinN ame with a mnemonic
known to ESP. The mnemonics known to ESP are listed in Table 4

Table 4: Pin Names Known To ESP

Mnemonic Meaning

trst ITAGreset

tms ITAG mode select .

tck JTAG clock (ESP output)

tdi ITAG serial data in (ESP output)

tdo ITAG serial data out (ESP input)

ctl COP control

elk COP clock

si COP serial in

so COP serial out

cs checkstop

rs run/stop

pg power good

hr hard reset

Sf soft reset

ocs ocs override ·'

Part 2 - Command Reference pinread 173 of247

User's Reference Manual Engineering Support Processor 604

Table 4: Pin Names Known To ESP

Mnemonic Meaning

auxoutl Auxiliary output #I

auxout2 Auxiliary output #2

auxout3 Auxiliary output #3

auxout4 Auxiliary output #4

auxin I Auxiliary input # 1

auxin2 Auxiliary input #2

auxin3 Auxiliary input #3

auxin4 Auxiliary input #4

RELATED INFORMATION:

pmwri.te, chuf, readcon

174 of247 pinread

..

Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

pin write
PURPOSE: Set the value of a pin on an ESP buffer card

SYNTAX: pinwrite bufnum pinName pin Value

DESCRIPTION:.

With this command the value of a (named) pin on a particular ESP
buffer card can be set1.

ESP can support up to sixteen ESP buffer cards, each with a 16 pin
connector that plugs into a MUT. bufnum allows specification of any
one of the sixteen buffers.

There are sixteen pins on the ESP connector, numbered 1 through 16.
Some or all of the pins might be named from the c6uf command. To set
the value of a pin, you must specify pinName with a mnemonic
known to ESP. The mnemonics known to- ESP are listed in Table. 4.

l. Read on. Some pins may NOT be set.

Part 2 - Command Reference pinwrite 175 of247

User's Reference Manual Engineering Support Processor 604

Table 5: Pin Names Known To ESP

Mnemonic Meaning

tr st JTAG reset

tms JTAG mode select

tck JTAG clock (ESP output)

tdi JTAG serial data in (ESP output)

tdo JTAG serial data out (ESP input)

ctl COP control

elk COP clock

si COP serial in .
so COP serial out

cs checkstop

rs run/stop

pg power good

hr hard reset

sr soft reset

ocs ocs override

auxoutl Auxiliary output # 1

auxout2 Auxiliary output #2

auxout3 Auxiliary output #3

auxout4 Auxiliary output #4

auxin I Auxiliary input # 1

auxin2 Auxiliary input #2

auxin3 Auxiliary input #3

auxin4 Auxiliary input #4

RELATED INFORMATION:

pinread, c6uf, readcon

176 of247 pinwrite Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

pioe
PURPOSE: Extended Transfer Protocol or Programmable I/O -- EXPECT

SYNTAX: pioe address value

DESCRIPTION: Devices other than memory may be connected to the memory bus of
the processor. This command supports reading values from direct
store (I/O) storage space and testing that the value read matches a
value expected.

This ESP command only supports a 4 byte single beat transfer.

'address' and 'value' may be expressed in binary, decimal, octal, or
hex.

RELATED INFORMATION:

piow and pior

Part 2 - Command Reference pioe 177 of247

User's Reference Manual Engineering Support Processor 604

pi or
PURPOSE: Extended Transfer Protocol or Programmable I/O -- READ

SYNTAX: pior address [radix]

DESCRIPTION: Devices other than memory may be connected to the memory bus of
· the processor. This command supports reading values from direct

store (1/0) storage space.

This ESP command only supports a 4 byte single beat transfer.

The output word will be formatted in whatever 'radix' is specified. If
no radix is specified then the output will be presented in hexadecimal.
Radix specification is expected to be a single character, upper or lower
case, in the set a=ascii, b=binary, d=decimal, e=ebcdic, f=fioat,
i=instruction, o=octal, x=hex.

'address' may be expressed in binary, decimal, octal, or hex.

RELATED INFORMATION:

piow and pioe

178 of247 pi or Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

pi ow
PURPOSE: Extended Transfer Protocol or Programmable 1/0 -- WRITE

SYNTAX: piow address data

DESCRIPTION: Devices other than memory may be connected to the memory bus of
the processor. This command supports writing values to direct store
(1/0) storage space.

This ESP command only supports a 4 byte single beat transfer.

'address' and 'data' may be expressed in binary, decimal, octal, or hex.

RELATED INFORMATION:

pior and pioe

Part 2 - Command Reference pi ow

..

..

179 of247

User's Reference Manual

por
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Perform the simplest MUT reset possible.

por [(mpglpg)]

DESCRIPTION: The por command is intended to initialize the processor. The JTAG
TRST line is toggled to reset the TAP, then the hardware reset line is
asserted (low) and held while a FFRZ command is issued to the chip.
Finally the hardware reset line is released (high). After these actions
are performed, if a screen is up, it will be updated.

On ESP for 604 the 'por' command performs exactly the same func­
tion as the 'reset' command. Both command names have been
retained for backwards compatibility.

RELATED INFORMATION:

reset ..

180 of247 por Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

prs
PURPOSE: Prints a screen as it appears on the display.

SYNTAX: prs screen [filename]

DESCRIPTION: The prs screen command with no file argument uses the AIX program
'qprt' to print the ESP screen on the default printer for the system.
(The actual AIX command generated is: ' (cd /tmp;qprt -r -T "title"
file)'.)

If a filename is specified, the prs command copies the ESP screen to
the named file. If the file already exists it will be overwritten.

In either case, the ESP screen is rendered into ASCII text.

The 'screen' argument can merely specify the screen name, like
"mema" or "604reg". However, if more than one of the same screen is
up at the same time, then the screen sequence number must also be
specified, like "mema(O)" or "604reg(l)". The full screen name,
including sequence number, is in the title of the screen.

RELATED INFORMATION:

none

Part 2 - Conunand Reference prs 181 of247

User's Reference Manual Engineering Support Processor 604

pwd
PURPOSE: Display ESP current working directory

SYNTAX: pwd

DESCRIPTION:

This command allows the user to determine ESP's notion of the cur­
rent working directory. The current working directory will be printed
in the ESP TTY window.

RELATED INFORMATION:

ls, cd

182 of247 pwd Part 2 - Command Reference

Engineering Support Processor 604

quit
PURPOSE: Terminate the ESP program.

SYNTAX: quit

User's Reference Manual

DESCRIPTION: The quit command, executed from a ESP script file, from REXX, or
from the ESP command line will cause ESP to stop execution.

Use the 'exit' command to terminate a ESP script file early.

RELATED INFORMATION:

exit

Part 2 - Command Reference

..

quit 183 of247

User's Reference Manual Engineering Support Processor 604

184of247 quit Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

read con
PURPOSE: Read an ESP buffer card connector
SYNTAX: readcon [bufnurn]

DESCRIPTION:.

The ruufcon command provides a means to see what values are on the
pins of an ESP connector that is plugged into a MUT. ESP can support
up to sixteen ESP buffer cards, each with a 16 pin connector that plugs
into a MUT. bufnum allows specification of any one of the sixteen
buffers. Ifbufnum is not specified, the first buffer card will be
accessed.

There are sixteen pins on the ESP connector, numbered 1 through 16.
Some or all of the pins might be named from the c6uf command.

The output of this command is 17 lines lpng with a width of 12 char­
acters (in case you wish to put the output on a screen using the saespco
command.) The first line reports the buffer being accessed, and the
next sixteen lines report the names and values of the connector pins.

RELATED INFORMATION:

pinrecul c6uf

Part 2 - Command Reference read con 185 of247

User's Reference Manual Engineering Support Processor 604

reducedpinmode
PURPOSE: Match the ESP to the hardware configuration

SYNTAX: reducedpinmode [(onloff)]

DESCRIPTION:

This command is used to force ESP to match the 604 hardware con­
figuration. When the 604 was hard-reset, pin qack_ was sampled by
the 604 and the pin state forced the 604 to be in the reduced-pin-mode
or not. If the qack_ line was high, then the reduced-pin-mode was
turned on in the 604. ESP must then have its reduced-pin-mode turned
on using this command.

Typing reiucdpimnoie without arguments will cause ESP to report the
mode it is currently in. Typing reiuceipimnoie on will turn on the ESP
reduced-pin-mode (but not affect the 604 chip) and typing reiuceipin­
moae off will tum off the ESP reduced-pin-mode (but not affect the 604
chip).

NOTE: Ifit were possible ESP would match the 604
reduced-pin-mode automatically.

The effect of the reduced-pin-mode on ESP is to have ESP expect only
32 bit operations on the 604 bus during memory access or memory
mapped IO. ·

RELATED INFORMATION:

ESP commands irtrymoie and 326itmoie.

186 of247 reducedpinrnode Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

refresh
PURPOSE: Update one, many, or all currently active screens

SYNTAX: refresh [screenList]

DESCRIPTION:

EXAMPLES:

This command can be used to force updates of visible screens even if
the screen autoupdate is turned off.

A screenList is a list of one or more screen names seperated by spaces
or tabs.

To update all screens:

refresh

To update only screens 604reg and mema:

refresh 604reg mema

If two 604 reg screens are up, 604reg(O) and 604reg(l), and you want
to refresh only the 604reg(1) screen:

refresh 604reg(1)

RELATED INFORMATION:

none

Part 2 - Command Reference refresh 187 of247

User's Reference Manual

reset
PURPOSE:

SYNTAX:

Goes through POR sequence

reset

Engineering Support Processor 604

DESCRIPTION: .The reset command is intended to initialize the processor. The ITAG
TRST line is toggled to reset the TAP, then the hardware reset line is
asserted (low) and held while a FFRZ command is issued to the chip.
Finally the hardware reset line is released (high). After these actions
are performed, if a screen is up, it will be updated.

On ESP for 604 the 'por' command performs exactly the same func­
tion as the 'reset' command. Both command names have been
retained for backwards compatibility.

RELATED INFORMATION:

por

..

188 of247 reset Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

resetint
PURPOSE:

SYNTAX:

Will set the reset interrupt line to state indicated if the icache is not
"equip"ed.

resetint [(mpg I pg)] l - set reset interrupt line to a l

resetint [(mpg I pg)] 0 - set reset interrupt line to a 0

DESCRIPTION: Normally, the icache controls the +RUN/-BREAKPOINT line. This
line must be low for ESP to attempt to scan any chips, and must be
high for any of the chips to run any fimctions, including self test and
run for N cycles. When a chip or group of chips is being tested and
there is no icache present, connecting the reset interrupt line (an input
to the icache only) to the +RUN/-BREAKPOINT line (an output from
the icache only) allows ESP to control the +RUN/-BREAKPOINT
line directly. This is required for single chip testing and testing any
chips without an icache present.

RELATED INFORMATION:

none

Part 2 - Command Reference resetint 189 of247

User's Reference Manual

run
PURPOSE:

SYNTAX:

DESCRIPTION:

190 of247

Engineering Support Processor 604

To run the machine under test (MUT) until it stops, and then do a 'soft
stop' procedure.

run [(mpg I pg)] [time] [-v] [-be]

NOTE: This is a "high level" command whicbmeanstbat
any cached scan strings or memory will be flushed to the
MUT before the MUT is set running. If the MUT stops then
ESP screens will be updated.

If the run command is issued without any arguments, then the default
reaction is to run the MUT, print a message indicating the run has been
issued, and wait (forever) for the MUT status to indicate it is stopped.
Run would then do a 'soft stop' procedure, print a message indicating
a NORMAL stop, and return

The 'dash v' option (-v) would keep run from issuing the two messages
just mentioned.

The -be flag will force a single broadcast RESUME to be sent to all
chips on the current port instead of sequentially sending RESUME to
all chips in the specified PG or MPG.

If a time argument of zero is issued, then the run is issued to the MUT,
as it would otherwise, but the run command Will not wait around for
the MUT to stop. Instead, run will quietly return to the caller. It is
then up to the caller to look for the MUT to stop, and take appropriate
action (ie. issue 'stop' command.)

If a time argument greater than zero is issued, then that number is the
longest time (in seconds) that run will wait for the MUT to stop. If the
MUT stops before the time indicated then run will return normally. If
the MUT has not stopped by the number of seconds indicated, then run
will print an error message about timing out, and return to the caller.
It is up to the caller to then take appropriate action (ie. issue 'stop' com­
mand.)

When run is waiting for the MUT to stop, it looks at three status bits
to determine the condition of the MUT. -CHECKSTOP, RUN/
BREAKPOINT, and +POWERGOOD status are monitored. If any
of these status change then a stop condition is understood. If check­
stop or powergood indicate an error condition, then such conditions
are reported, and run returns to the caller without having performed a
'soft stop'. '

run Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

EXAMPLES:

If, while run is waiting for the MUT to stop, the user types a program
interrupt, 1 then run will print a message indicating that it is aborting
and then return to the caller. It is up to the caller to take appropriate
action to control the MUT after such an abort (i.e. issue 'stop' com­
mand.)

If the user wants the MUT to stop, a breakpoint must be set prior to
issuing this command. The user can run without a breakpoint, and
after some amount of time issue a 'stop' command. If the user just
wants to let the MUT run without any breakpoints set, and if the MUT
is currently stopped due to encountering a breakpoint, that breakpoint
must be cleared prior to issuing the run command. If the breakpoint is
not cleared, the MUT will test for a breakpoint prior to executing the
first instruction and stop without ever having started.

RUN Start the MUT, then wait for it to stop.

RUN 0 Start the MUT and return.

RUN 12 Start the MUT, then wait up to 12 seconds for it to stop.

RUN -v Start the MUT, then wait for it to stop. Do this without saying
anything.

RETURN CODES:

0 All's well.

1 While waiting for MUT to stop, run timed-out.

2 While waiting for MUT to stop, the MUT power failed.

3 The user typed a program interrupt.(4)

4 While waiting for MUT to stop, the MUT checkstopped.

RELATED INFORMATION:

por

stop

iplrun

1. See the section "Break Signal" for more information on the program interrupt.

Part 2 - Command Reference run 191 of247

User's Reference Manual Engineering Support Processor 604

saa
PURPOSE: Prepare a screen to display array data with page up/down

SYNTAX: saa (titlelnickname) chip array increment

DESCRIPTION:.

This command prepares a screen to display one or more arrays (of the
same height) in a paged format. The base and origin address of the
screen is set to zero, and the height of the array(s) to be displayed is
recorded (so that PageUp and PageDown will know where the end of
the array(s) is.) The number of hex digits required to hold the maxi­
mum address of the array(s) is calculated and recorded.

The 'increment' value is recorded for use with PageUp and Page­
Down. When the Page Up button is pressed, the screen page origin will
be decremented by 'increment' value, and ifthe PageDown button is
pressed, the screen page origin will be incremented by 'increment'.

This command should only be performed once per screen as it is a
kind of "initialization" for the screen to prepare it for array display.

RELATED INFORMATION:

sao, sav, sad

.192 of247 saa Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

sabreak
PURPOSE: Screen Add Breakpoint Handling Field

SYNTAX: sabreak screen_name row col format [pg]

DESCRIPTION: This will cause a data field to be added to a screen which contains the
current breakpoint. The breakpoint can be altered by altering this field.
This is used as an example in the mrs.x screen.

The screen field will have the following characteristics:

aaaaaaaa bbbbbbbbbbb

where: a = 8 hex digits that are the breakpoint address

b = either "sofr or "hard" or "int"

If optional argument 'pg' is specified thep this field will reflect the
breakpoint settings for only that Processor Group.

RELATED INFORMATION:

Part 2 - Command Reference sabreak 193 of247

User's Reference Manual

saco
PURPOSE:

Engineering Support Processor 604

Screen Add Captured Output

SYNTAX: saco screen_name row col width "AIX command" [bg=] [fg=]

DESCRIPTION: This ESP command will cause a label to be added to a screen which
will contain a single line output from whatever 'AIX command' that
was executed. Each time the screen is refreshed, the 'AIX command'
will be executed with its output captured and presented on the screen
in the label area.

The screen label cannot be edited by the user.

RELATED INFORMATION:

none

194 of247 saco Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

sacs
PURPOSE: Screen add cycle step

SYNTAX: sacs screen_name row col format [pg]

DESCRIPTION: This will cause a data field to be added to a screen which contains the
current number of cycle steps (machine cycles) to be executed. This
value can be altered by altering this field. This is used in the mrs.x
screen.

RELATED INFORMATION:

none

Part 2 - Command Reference sacs 195 of247

User's Reference Manual

sad
PURPOSE:

SYNTAX:

DESCRIPTION:

Engineering Support Processor 604

Adds an editable data field to a screen.

sad name row col radix [pg] chip device(dx:dy) or

sad name row col radix [pg] chip array[offset](dx:dy)or

sad name row col radix mem_offset

sad name row col radix l2[offset]

or

This ESP command adds a field to a screen that not only displays the
value of the device, array, or memory, but also allows the user to mod­
ify the data on the screen.

The satl command has several forms of syntax to allow specification
of scan string devices, array names, external memory, or other mem­
ory such as L2 cache memory.

name informs ESP which screen this sad command is associated with.

row and col specify where the screen field leftmost character should
be positioned on a screen with origin 0,0.

radix specifies the format of the. data in the screen field and may be
any of: x= hex, d= decimal, b= binary, o= octal, a= ASCII, f= float, e=
EBCDIC, or i= instruction decode.

In MP systems, the optional pg parameter may be specified to pinpoint
the Processor Group the command is to work in. If the pg is not spec­
ified, then the CURRENTPG1 is implied. In MP systems it is fre­
quently convenient to refer to "?PG" to specify the Processor Group.
This is a reference to an ESP variable "PG", which is usually set (by
ESP) to the CURRENTPG name, but that may be temporarily over­
ridded during screen creation from the screen command (PG=pg).

If a scan string device or an array is to be placed on the screen, then
the next field must specify which chip the scan string or array is in.

If a scan string device is being placed on the screen then the device
name is mentioned next, and may optionally specify bit ranges using
parenthesis. If a single bit is being specified, then only the bit number
need be mentioned. If a range is being specified, then dx2 must specify
the first bit of the device, followed by a colon, followed by dy, the last
bit of the range.

l. See the pg command.
2. Bit range values, dx and dy, must be specified as positive decimal integer whole numbers.

196 of247 sad Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

EXAMPLES:

If an array element is being placed on the screen then array specifies
the name of the array, and must be followed by square brackets in
which the offset into the array must be specified. This may optionally
be followed by a bit range expression

An offset, wether for an array or memory, may be an absolute index
into the array or memory, or may be a relative offset into the array or
memory based on the screen base address. If the offset is absolute then
the offset expression must be some unsigned whole number. (e.g. 14)
If the offset is relative, then the offset must be expressed as a posi­
tively signed whole number. (e.g.+ 14)

The character width of the data field is determined by ESP. The width,
in bits, of the device, array, or memory is looked up and considered
with the radix specified.

For more information about screens and the sad command see the ESP ..
User's Training Manual about "ESP Screens" and the ESP User's Ref-
erence Manual about "Screens". Both documents may be found in I
afs/awd/public/esp/userdoc.

Present an element of the TLB array, offset 0 from the screen base
address.

sad tlb 0 10 x 603 tlb[+0](23:35)

Present system memory, screen base address+ 12.

sad vrm 1 11 10 x + 12

When the 604reg screen is created, the HIDO register in the 604 chip
of the Processor Group specified in ?PG will be accessed.

sad 604reg 5 3 x ?PG 604 HIDO

RELATED INFORMATION:

screen, sat, sal

Part 2 - Command Reference sad 197 of247

User's Reference Manual Engineering Support Processor 604

..

198 of247 sad Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

saespco
PURPOSE: Screen Add ESP Captured Output

SYNTAX: saespco screen_name row col width height "ESP command"

DESCRIPTION:

EXAMPLES:

This ESP command will cause a label to be added to a screen,
screen_name, which will contain the output from whatever 'ESP
command' that was executed. Each time the screen is refreshed, the
'ESP command' will be executed with its output captured and pre­
sented on the screen in the label area.

The screen label cannot be edited by the user.

Both the width and height of the label may be specified meaning that
a multi-line label may be generated, width columns wide.

To display the current Processor Group on a screen by executing the
pg command:

saespco screen 5 3 15 1 pg

To display the current Processor Group on a screen by echoing the
value of the PG variable:

saespw screen 5 3 15 1 'echo ?PG'

NOTE: If you wish for ESP to evaluate a variable each
time the screen is refreshed be sure to place the ESP com­
mand in grave accents (a.k.a. backwards single quotes)
instead of double quotes.

To catch the output of a user function that was dynamically loaded in
a box 40 characters by 5 lines:

(Where the function was named ufunc 1)

saespw screen 6 3 40 5 "ufunc 1 alpha"

RELATED INFORMATION:

saco and other Screen-Add commands

Part 2 - Command Reference saespco 199 of247

User's Reference Manual Engineering Support Processor 604

200 of247 saespco Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual ,,

saespvar
PURPOSE: Screen Add ESP Variable

SYNTAX: saespvar screen_name row col width height variable

DESCRIPTION:

EXAMPLES:

This ESP command allows an ESP variable to be displayed and mod­
ified on an ESP screen. Each time the screen is updated, the latest
value of the ESP variable will be presented.

The width as well as the height of the text field must be specified,
allowing multiple lines for the display and modification of ESP vari­
ables with long lines.

ESP variables are usually created with the set command and deleted
with the unset command. Reference to an ESP variable is usually per­
formed with the ecfio command, as eclw ?variable. The saespvarcom­
mand augments these commands by allowing variables to be seen and
modified from a screen as well as from the command line.

To see and/or set the current ESPPATH:

sae.spvar screen 5 3 20 4 ESPPATH

RELATED INFORMATION:

saco and other Screen-Add commands, set, and unset.

Part 2 - Command Reference saespvar 201 of247

User's Reference Manual

sais
PURPOSE:

Engineering Support Processor 604

Screen add instruction step

SYNTAX: sais screen_name row col format [pg]

DESCRIPTION: This will cause a data field to be added to a screen which contains the
current number of instructions steps to be executed. This value can be
changed by altering this field. This is used in the mrs.x screen.

RELATED INFORMATION:

is

202 of247 sais Part 2 - Command Reference

Engineering Support Processor 604

sal
PURPOSE:

SYNTAX:

DESCRIPTION:

Adds a label to a screen.

sal name row col label

User's Reference Manual

This ESP command adds a label field to a screen. The 'label' will be
placed at the 'row' and 'col'umn specified, (0,0 origin), on the screen
named 'name'.

See "Screens" in Part 1 for details.

EXAMPLES:

sal demo 5 67 "Extra Latches"

RELATED INFORMATION:

sat, sad

Part 2 - Command Reference sal

..

203 of247

User's Reference Manual

sam
PURPOSE: Screen add memory

SYNTAX: sam titlelnickname increment

Engineering Support Processor 604

DESCRIPTION: On a screen that displays memory, this value will determine how many
addresses the screen will scroll up or down each time the PageUp or
PageDown key is pressed.

RELATED INFORMATION:

sao

sav

204 of247 sam Part 2 - Command Reference

Engineering Support Processor 604

sanai
PURPOSE:

SYNTAX:

Screen add next assembler instruction

sanai screen_name row col

User's Reference Manual

DESCRIPTION: This command will cause the disassembled value of the next instruc­
tion (the one pointed to by the IAR) to be displayed.

RELATED INFORMATION:

none

..

Part 2 - Command Reference sanai 205 of247

User's Reference Manual Engineering Support Processor 604

sao
PURPOSE: Sets screen origin for memory or array display screen

SYNTAX: sao title I nickname row col offset

DESCRIPTION: For screens displaying memory or arrays, this command contains a
variable origin which is the base address from which all addresses are
offset. This value is updated by the amount specified by the sam or saa
command every time the page up or page down key is pressed.

RELATED INFORMATION:

206of247

sam

sav

sao Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

sapb
PURPOSE:

SYNTAX:

Add a push button to a screen

sapb screen row column "push button label" "ESP command to
execute"

DESCRIPTION:Adds a push button to a screen. The label on the push button will be
"push button label".

This push button can be "clicked" by the mouse and will perform the
"ESP command to execute". Execution can be a REXX file, a .x file,
or any ESP command.

EXAMPLES: This is a sample screen definition full of push buttons .

sat control
..

sapb control 2 5 STOP stop

sapb control 4 5 RUN "run O"

sapb control 6 5 STEP "is 1"

sapb control 2 15 RESET reset

sapb control 4 15 AI ai

.sapb control ACLST "selftest 601 aclst 12345678 O"

sapb control 2 25 "IPLRUN O" "iplrun O"

sapb control 4 25 "IPLRUN l" "iplrun l"

screen control

RELATED INFORMATION:

none

Part 2 - Command Reference sapb

.,;.

207 of247

User•s Reference Manual Engineering Support Processor 604

., ~

208 of247 sapb Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

sapn
PURPOSE: Screen Add Page Number

SYNTAX: sapn screen_name row col [radix]

DESCRIPTION:

EXAMPLES:

This ESP command is useful on ESP screens presenting blocks of
memory or array data that is relatively addressed (+offset specified).

Optional radix may be specified as o, x, or d, meaning octal, hex, or
decimal, respectively. If omitted, sapn will default to decimal num­
bers.

More specifically, this command was created to support cache array
access and display on ESP screens where groups of array address are
considered logical units (cache lines) and the user wishes to get to a
logical (screen full) unit by entering a cache line number . ..
This command causes a 4 digit editable field to be placed on the
screen_name screen at row, col. The current base address of the
screen divided by the screen increment1 will be displayed in this field.
If the user enters a number in this field, then that page number mulit­
plied by the current screen increment will set the screens base address.

RELATED INFORMATION:

saco and other Screen-Add commands

1. Screen increment is provided by ESP command samor saa.

Part 2 - Command Reference sapn 209 of247

User's Reference Manual Engineering Support Processor 604

sat
PURPOSE: Creates a new screen.

SYNTAX: sat nickname title [bg=color] [fg=color] [geo=RxC]

DESCRIPTION: This ESP command creates a screen, with title 'title', that can then be
refered to by other commands.

If optional argument geo= is specified then the screen will be created
with approximately R rows and C cols inside a scrollable window.

av t2 2 0 1

bav t2 3 0 2

bav t2 4 0 3

ad t2 1 5 x 603 fpr[+OJ

ad t2 2 5 x 603 fpr[+ l]

ad t2 3 5 x 603 fpr(+2]

ad t2 4 5 x 603. fpr[+3]

8 0000024034D9EOBFDF

9 0000024034D9EOBFDF

A 0000024034D9EOBFDF

B 0000024034D9EOBFDF

RELATED INFORMATION:

none

210 of247 sat Part 2 - Corrunand Reference

Engineering Support Processor 604 User's Reference Manual

sav
PURPOSE: add a screen variable to a screen

SYNTAX: sav (title I nickname) row col offset

DESCRIPTION: This offset is added to the origin to determine the memory or array
address that will be displayed at the location indicated.

~aflZ''"titie'r····················· !
! !
ta r4 I
~avt2 1 0 O I
bav t2 2 0 1 !
l •
i i
'av t2 3 0 2 I"

~ad 12 I 5 x 604 fjJr[+O] I
~ad t2 2 5 x 604fpr[+1] !
~ad t2 3 5 x 604 fpr[+2] I
rad t2 4 5 ~ 604 fpr[+ ~} .J

t2(1) - title

000024034D9EOBFDF

000024034D9EOBFDF

000024034D9EOBFDF

RELATED INFORMATION:

sam

sao

Part 2 - Command Reference sav 211 of247

User's Reference Manual

save
PURPOSE:

SYNTAX:

Save scan table in binary file

save filename

Engineering Support Processor 604

DESCRIPTION: All data currently in ESP memory is saved in "binary" format to file
'filename'. This binary file can be read in by ESP using the 'get' com­
mand.

RELATED INFORMATION:

get

212 of247 save Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

saveLayout
PURPOSE: Save current screen layout

SYN'TAX: saveLayout

DESCRIPTION: Save the current ESP screen layout so that it will be restored the next
time ESP is run.

ESP stores layout commands in the users HOME directory in a file
called .esplayout.x.

RELATED INFORMATION:

See the ESP command "layout".

..

Part 2 - Command Reference saveLayout 213 of247

User's Reference Manual Engineering Support Processor 604

..

214 of247 saveLayout Part 2 - Command Reference

Engineering Support Processor 604

scan read
PURPOSE:

SYNTAX: scanread [(onloff)]

DESCRIPTION:

RELATED INFORMATION:

Part 2 - C.onunand Reference

User's Reference Manual

scanread 215 of247

User's Reference Manual

screen
PURPOSE:

SYNTAX:

DESCRIPTION:

216 of247

Put up an ESP screen

for 604+ or 604e

Engineering Support Processor 604

screen name [PG=pg] [CHIP=chip] [(ERASE= I DUP=)]

for 604

screen name

This ESP command is used to cause an ESP screen, name, to be vis­
ible on the display.

If DUP= is not specified then the following paragraph explains how
the screen.command will behave. If the screen is already in memory,
but not visible, then screen makes it visib~. If the screen is already in
memory and is also already visible, it is brought to the foreground,
even if the screen window was iconified. If the screen is not found in
memory, then screen tries to find and execute a command file with the
screens name but with a ".x" extension.

If optional argument DUP= is specified then a new screen will be cre­
ated even if one is already in memory and invisible or if such a screen
is already up.

NOTE: Please note that only one of ERASE= and DUP=
can be specified at the same time.

If optional argument PG=pg is applied, then while the screen is being
constructed the ESP variable "PG", optionally used by the screen con­
struction commands, will be the specified value pg. Once construction
is finished, ESP variable "PG" is returned to its previous value.

If optional argument CHIP=cb.ip is applied, then while the screen is
being constructed the ESP variable "CHIP", optionally used by the
screen construction commands, will be the specified value chip. Once
construction is fui.ished, ESP variable "CHIP" is returned to its previ­
ous value.

If optional argument ERASE= is specified then if ESP finds the named
screen in memory (visible or not) the screen is deleted.

Many ESP "screen-add" commands contain an argument allowing
specification of a Processor Group that the command is to apply to. If
such a command refers to "?PG" as the Processor Group, then when
the screen is created the value of the ESP variable "PG" will actually
be specifying the Processor Group. ESP tries to keep "PG" set to the
name of the CURRENTPG. If the screen command PG=pg argument

screen Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

is specified, then, during the screens creation, "PG" will be set to pg
instead of the CURRENTPG name. This trick allows the same screen
definition to be used for many chips where each chip is of the same
type and has the same name, but is located in a different Processor
Group.

Many ESP "screen-add" commands contain an argument allowing
specification of a chip that the command is to apply to. If such a com­
mand refers to "?CHIP" as the chip, then when the screen is created
the value of the ESP variable "CHIP" will actually be specifying the
chip. If the screen command CHIP=chip argument is specified, then,
during the screens creation, "CHIP" will be set to chip. This trick
allows the same screen definition to be used for many chips where
each chip is of the same type, but has a different chip name.

When the screen command is invoked, optional parms PG=pg and
CHIP=chip are parsed if present. If PG:::;pg was specified, then ESP
remembers the old value of "PG" and sets 11PG" to pg. IfCHIP=chip
was specified, then ESP remembers the old value of "CHIP" and sets
"CHIP" to chip.

The screen name, name, is then used to create a command file name
by having a ".x" appended to it. ESP searches for the command file
name.x in the current directory, and then using the ESPPATH vari­
able. If found, the command file is executed a line at a time. Normally,
such a file would contain nothing but "sa", or "screen-add" type of
commands, thus constructing a screen in ESP memory.

The last line of a screen file is an invocation of the screen command on
the screen just created. This second invocation of screen finds the
screen already in memory, and it is thus made visible.

Just before exiting, the screen command restores the "PG" and "CHIP"
variables to their old values, if they were previously re-defined.

NOTE: A screen name is a valid command if the screen
definition is in a ESP command file that has the same name
as the screen.

For more information about screen creation and the screen command
seethe ESP User's Training Manual about "ESP Screens" and the ESP
User's Reference Manual about "Screens". Both documents may be
found in /afs/awd/public/esp/userdoc.

RELATED INFORMATION:

isd, sat, sal, sad, and other "sa" commands. '

Part 2 - Command Reference screen 217 of247

User's Reference Manual Engineering Support Processor 604

set
PURPOSE: Set a ESP variable to a value

SYNTAX: set verbose

set echo

set variable value

?variable - causes value to be executed

set - Set with no argwnents will cause the program to display the cur­
rent set status of all variables.

set variables

DESCRIPTION: unset turns echo and/or verbose off. It will also 'undefine' variables
that have previously been set.

EXAMPLES:

SET BPI BP X'3FOO'

Sets variable 'bpl' to string bp x'3f00'.

NOTE: Note: This command, as all commands, may be
included in a user's profile.

?BPI

If this was preceeded by the bp r definition shown above, the com­
mand bp x'3fUO', would be executed. The question mark preceeding
the strL.'1.g bpl causes ESP to look for a previously set value to substi­
tute in its place. For this example, bp2 could be set to mean breakpoint
2, bp3 to mean breakpoint 3 and so on. However, because of the hard­
ware implementation, ESP can never have more than one breakpoint
set at a time.

SET

All set variables will be displayed

RELATED INFORMATION:

218 of247

The following command variables are predefined and have special
meaning. They are used to hold information for the command proces­
sor or control the operation of the command processor. Several of
these variables control the processor by being set or unset. Their val­
ues are not important.

ECHO

If echo is set, then each command line will be printed on the screen
after it has been tokenized and all variables nave been substituted.

EXITONERR

set Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

If exitonerr is set and a command returns an exit status other than zero,
then the command processor will stop reading commands from an
command file and control will return to the user's command line.

NO EXECUTE

While noexecute is set, commands will be parsed but not executed.
This may be useful for debugging command files. The verbose and/or
echo variables could be set to trace execution without actually running
commands. Note that there is no way to turn execution back on. The
only way to exit the program is to press the break key. (The default
AIX break key is Ctrl Backspace.)

STATUS

On exit, each command returns an exit status which tells whether or
not an error occurred. The status of the last command will always be
saved in the command variable, status. Tt1e set command with no
arguments may be used to examine the status of the last command. If
status is zero the last command completed successfully; otherwise, an
error occurred.

VERBOSE

If verbose is set, then each command line will be printed exactly as it
is typed.

CECHO

Part 2 - Command Reference set 219 of247

User's Reference Manual

setclock
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Set COP/JTAG bus clock speed on ESP interface card

setclock (0-13)

DESCRIPTION: This command will cause the interface card to choose a multiple of the
scan clock period.

The clock speed being set is the CLK speed for COP bus protocol, or
TCK for JTAG protocol.

The fastest speed the ESP hardware can run at is 6.25 Million Bits Per
Second. This speed is set with 'setclock O'. Table 3, below, presents
the speeds at which ESP hardware can run.

Table 6: ESP Hardware Transfer Speeds
•

Bits/Sec

0 6,250,000

1 3,125,000

2 1,562,500

3 781,250

4 390,625

5 195,312

6 97,656

7 48,828

8 24,414

9 12,207

10 6,103

11 3,051

12 1,525

13 762

RELATED INFORMATION:

none

220 of247 setclock Part 2 - Command Reference

Engineering Support Processor 604

setvar
PURPOSE:

SYNTAX:

Allows ESP to set a variable to an attained value.

setvar var command

User's Reference Manual

DESCRIPTION: The setvar command may be used with other ESP commands to set
variables to the output of the ESP command.

Once a variable is set it may be used using the ESP macro expansion
token: the question mark.

EXAMPLES:

setvar var cop data

setvar var cop data_eof

setvar var display

setvar var ver

setvar var wait

setvar alpha display 0 x

echo The value in memory at address 0 is ?alpha

RELATED INFORMATION:

set, echo

Part 2 - Command Reference setvar 221 of247

User's Reference Manual Engineering Support Processor 604

sjipl
PURPOSE: This command has been superseeded by "ipl"

SYNTAX:

DESCRIPTION:

RELATED INFORMATION:

ipl

..

222 of247 sjipl Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

sjreset
PURPOSE: This command has been superseeded by "reset".

SYNTAX:

DESCRIPTION:

RELATED INFORMATION:

reset

Part 2 - Conunand Reference sjreset 223 of247

User's Reference Manual Engineering Support Processor 604

sleep
PURPOSE: Suspend execution for a specified time interval.

SYNTAX: sleep time

DESCRIPTION: This command is the same as the AIX sleep command. Time is in sec­
onds.

RELATEF> INFORMATION:

none

224of247 sleep Part 2 - Command Reference

Engineering Support Processor 604

sreset
PURPOSE:

SYNTAX:

Toggle Or Set The SRESET Line

sreset [(011)]

User's Reference Manual

DESCRIPTION: This low level ESP command allows the hardware SRESET line to be
toggled, set to zero, or set to one.

ESP performs no other action as a result of using this command. That
is, buffered data and screen updates will NOT be performed because
'sreset' has been issued.

NOTE: This is the exact same command as ip[.

RELATED INFORMATION:

iplrun

treset

hreset

ipl

Part 2 - Command Reference sreset 225 of247

User's Reference Manual Engineering Support Processor 604

stat
PURPOSE: Display the status of all chips which are 'equipped'.

SYNTAX: stat

DESCRIPTION: For each chip which is 'equipped' 'stat' calls the 'wait' command with
the -v option. Wait prints the status of each chip.

Figure 9: Examples of stat Command results

An example of a fully equipped RS6000 Release 1, 'stat' shows the fol­
lowinq.
icu ffrzOFF system{CHKSTP STOP PWROFF} chip {CHKSTP RUN TSTCMP MAXCNT}
scu ffrzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP MAXCNT}
dcuO ffrzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP MAX-
CNT}
dcul f frzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP MAX-
CNT}
dcu2 f frzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP MAX-
CNT}
dcu3 ffrzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP MAX-
CNT}
fxpt f frzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP
MAXCN}T
combol f frzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP
MAXCN}T
combo2 f frzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP MAX-
CNT}
fpu f frzOFF system {CHKSTP STOP PWROFF} chip {CHKSTP RUN TSTCMP MAXCNT}

An example of a 601 machine 11 stat 0 shows the following:
601 ffrzOFF system{CHKSTP STOP PWROFF} chip{CHKSTP RUN TSTCMP MAXCNT}

An example of a 604 machine •stat" shows the following:
DEFAUL~ 604 system{CKSTP PWRON} chip{RUN }

RELATED INFORMATION:

wait

226of247 stat

-'

Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

stop
PURPOSE:

SYNTAX:

DESCRIPTION:

Stop the processor

stop [-h]

This ESP command will stop the processor. The default is soft stop.
Optional argument , -h' will have ESP perform a hard stop.

A soft stop means that the processor will stop fetching and allow all
pending operations to complete before halting. When this is done it
should be possible to re-start the processor where it left off.

A hard stop means that the processor clocks are shut off no matter
what the processor is doing. This type of stop can not usually be recov­
ered from.

RELATED INFORMATION:

run

iplrun

Part 2 - Command Reference stop 227 of247

User's Reference Manual Engineering Support Processor 604

time
PURPOSE: time another command

SYNTAX: time command arg l arg2 ...

DESCRIPTION: The time command remembers the current time, runs the specified
command and computes the elapsed time. The command may be any
legal ESP command, including ESP command files and REXX pro­
grams. The time is displayed in hours, minutes and seconds.

RELATED INFORMATION:

none

228of247 time Part 2 - Corrunand Reference

Engineering Support Processor 604

treset
PURPOSE:

SYNTAX:

Toggle Or Set The TRST Line

treset [(011)]

User's Reference Manual

DESCRIPTION: iThis low level ESP command allows the hardware TRST line to be
toggled, set to zero, or set to one.

ESP performs no other action as a result of using this command. That
is, buffered data and screen updates will NOT be performed because
'treset' has been issued.

RELATED INFORMATION:

hreset

ipl

Part 2 - Command Reference treset 229 of247

User's Reference Manual

tty
PURPOSE:

SYNTAX:

turns tty displaying on or off.

tty [on I off]

Engineering Support Processor 604

DESCRIPTION: Normally, ESP will send messages to the TTY window. The tty com­
mand can be used to turn this displaying on or off. Without any argu­
ments, the command will toggle between on and off depending on the
previous setting. Otherwise, it can be set directly by giving the appro­
priate argument along with the command.

To keep output from being displayed on the TTY window type 'tty
off'. To be able to see output in the TTY window type 'tty on'.

This command does not interfere with logging. Even though the TTY
window might be off, any output that might have been visible is still
transmitted to the log file if logging is turned on.

RELATED INFORMATION:

none

230 of247 tty Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

unset
PURPOSE:

SYNTAX:

Un-set an ESP variable that was 'set'

unset variablename

DESCRIPTION:This command unsets a variable that was previously set

unset echo - turns echo off

Commands that can be unset are: echo, esitonerr, noexecute, status,
cecho and verbose.

RELATED INFORMATION:

set

Part 2 - Command Reference unset 231 of247

User's Reference Manual

update
PURPOSE:

Engineering Support Processor 604

This command controls when the screen will be updated

SYNTAX: update - causes the screen to be updated

update auto - causes the screen to be completely updated whenever
there is any change

update manual - the machine under test (MUT) hardware will not be
updated to match what is on the screen until the "update" command is
entered

DESCRIPTION: Normally, whenever any part ofa screen is changed, the entire screen
is updated. If all the data on the screen is data from a scan string, the
time to update the entire screen is insignificant. However, if most of
the screen is data from arrays, the time to update the entire screen is
significant, and usually is not required. Tbis command allows the user
to control when the screen is updated.

Update with no arguments causes the screen to be updated immedi­
ately. If the argument, "auto", is passed to the update command then
the screens will be updated any time a change is made. This is the
default mode of operation. If the argument, "manual" is passed to the
update command then the screens will be updated only when an
explicit update command is issuyd. This is similar to automatic vs.
manual recalculation options support by many spread sheet programs.

RELATED INFORMATION:

none

232 of247 update Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

userbreak
PURPOSE: returns non-zero if user has pressed the break key

SYNTAX: userbreak

DESCRIPTION: ESP counts the number of times that the user presses the break key.
Clearbreak resets the count to zero. Userbreak returns non-zero if the
user has pressed the break key since the last time Clearbreak was
called.

REXX programs which have long loops can use this function to poll
for break from the user. An appropriate response to a break signal
would be to return from REXX.

RELATED INFORMATION:

clearbreak

Part 2 - Command Reference userbreak 233 of247

User's Reference Manual Engineering Support Processor 604

ver
PURPOSE: Get the version of this ESP program

SYNTAX: ver

DESCRIPTION:

RELATED INFORMATION:

none

234of247 ver Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

verbose
PURPOSE:

SYNTAX:

Echoes commands and messages to message line (or log if logging is
turned on.)

set verbose

unset verbose

DESCRIPTION: Echoes commands and messages to message line (or log if logging is
turned on.)

If verbose is set on and log is on, any series of commands entered to
the screen will also go to a log file. Later, that file can be run. This will
have the same affect as re-entering exactly the same command
sequence a second time. This allows for very complex initialization
sequences to be saved and re-run simply by entering the name of the
log file that the original commands were saved in . ..

RELATED INFORMATION:

none

Part 2 - Command Reference verbose 235 of247

User's Reference Manual

wait
PURPOSE:

SYNTAX:

Engineering Support Processor 604

The purpose of this command is to allow commands in a batch file to
delay executing until a particular state is reached in the system under
test. This allows a batch file to start the machine under test (MUT),
and to not execute the subsequent commands until a breakpoint has
been reached and DMAs and memory scrub operations have com­
pleted.

wait [pg] chip seconds mask [value]

wait [pg] chip -v

DESCRIPTION: Wait up to the specified number of 'seconds' for the bits selected by
the 'mask' to equal the 'value' specified. If no value is specified, the
default value is 0.

If 'pg' is specified then the processor group specified will be operated
on by the wait command. If 'pg' is omitted, then the current PG will
be operated on.

The -v (visual) option allows a user to display the status of a chip
instead of waiting for the status to be a value. 'wait' will also sense the
check stop line and the power good line.

If wait with the -v option is ca1led directly, an English statement will
be displayed on the status line. For example, "wait 604 -v" would
show the following:

Figure 10: Example of wait Command results

DEFAULTMOT 604 system{CHKSTP PWROFF} chip{STOP }

If wait with the -v option is called from the setvar command, a hex
number will be returned. For example: 3F

Time is time in seconds, from l to signed long int (from I second to
68 years).

Figure 11: Bit values for the wait command

604 processor bit values are:

x'OOOl' (dee 1) Always zero (not used)

x'0002' (dee

x'0004' (dee

x'0008' (dee

236 of247

2) Always zero (not used)

4) Always zero (not used)

8) Always zero (not used)

wait Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

x'OOlO' (dee 16) Hardware status, +Power Good

x'0020' (dee 32) (not used)

x'0040' (dee 64) Hardware status, -Check Stop (O=checkstop condition)

x'0080' (dee 128) (not used)

x'OlOO' (dee 256) Always one (not used)

x'0200' (dee 512) Always zero (not used)

x'0400' (dee 1024) stop/run status, +stop/-run

x'0800' (dee 2048) bist status, +complete/-notcomplete

x' 1000' (dee 4096) dtag bist status, +failed/-passed

x'2000' (dee 8192) dcache bist status, +failed.I-passed

x'4000' (dee 32768) itag bist status, +failed.I-passed

x'8000' (dee 16384) icache bist status, +failed.I-passed

Sirocco bit values are:

x'OOO l' (dee

x'0002' (dee

x'0004' (dee

x'0008' (dee

1) Always zero (not used)

2) Always zero (not used)

4) Always zero (not used)

8) Always zero (not used)

x'OOlO' (dee 16) Hardware status, +Power Good

x'0020' (dee 32) (not used)

x'0040' (dee 64) Hardware status, -Check Stop (O=checkstop condition)

x'0080' (dee 128) (not used)

x'OlOO' (dee 256) Always one (not used)

x'0200' (dee 512) Always zero (not used)

x'0400' (dee 1024) stop/run status, +stop/-run

x '0800' (dee 2048) bist status, +complete/-notcomplete

x' 1000' (dee 4096) other bist fails, +failed/-passed

x '2000' (dee 8192) dcache bist status, +failed/-passed

x'4000' (dee 32768) non-repairable cache, +failed.I-passed

x'8000' (dee 16384)_ icache bist status, +failed.I-passed

Part 2 - Command Reference wait 237 of247

User's Reference Manual Engineering Support Processor 604

EXAMPLE: After starting BIST, to wait for BIST complete, use the 'wait' com­
mand. The mask is set for x'800' since the bist status bit is located
there. The value is also set to x'800' since we wish to see the bist com­
plete status at value one. We allow for up to I 0 seconds for the BIST
to complete. (Before timing out and giving up.)

wait 604 10 x'800' x'800'

RELATED INFORMATION:

stat

238 of247 wait Part 2 - Command Reference

Engineering Support Processor 604 User's Reference Manual

which
PURPOSE:

SYNTAX:

Locates a ESP command file or REXX program.

which "filename"

DESCRIPTION: This command is used to locate a ESP command file or REXX pro­
gram.

An attempt to find the file using the ESPPATH is made, and if that fails
then an attempt to find the file using the PATH variable is made (as if
it were a REXX program.)

If the file is found then the full path and file name are printed in the tty
window. If the file is not found then nothing is printed in the tty win­
dow.

RELATED INFORMATION:

xlist

filefinder

ls

Part 2 - Command Reference which 239 of247

User's Reference Manual

xlist
PURPOSE:

SYNTAX:

Engineering Support Processor 604

Get a listing of all ESP command files. (Those with the '.x' extension.)

xlist

DESCRIPTION: This command brings up a window that lists all the available dot x
files and their directories. This list may be paged up or down using the
Page Up and Page Down keys, or using the built in scroll bar. A single
file may be selected using a single mouse click, and the file may be
executed with a double click.

The files found with 'xlist' are those located in the current directory as
well as all those located in the ESPPATH directories. ESPPATH is an
ESP variable set when ESP is invoked.

RELATED INFORMATION:

ls

240 of247

which

filefinder

xlist Part 2 - Command Reference

Engineering Support Processor 604

Symbols
!47

A
Add

chip to chip data base 83
COP command 69
Port name 79
Processor Group name 77
scan string 80
scan string to chip data base 83

Add ESP Captured Output 199

Add ESP Variable To Screen 201

Add Page Number To Screen 209

aet50

AIX
Running AIX commands/programs

from ESP47

alter52

Array
add 192
add array definition 63

Array Definition
Example 64

Arrays
modity52

Assembler instruction 205

auto update 5 7

B
beacon59

bells60

Binary scan table file 122

bp 61, 215

branch trace 62

Break key 233

Break signals

User's Reference Manual

clear S9

Breakpoint
address 193

breakpoints 6 l , 215
bt62

c
caa63
cac - chip add chip 6 7
cacopcmd 69
cad70

example 75
campg 76 ~

capg 77
caport 79

COSS 80
example 81

cat83

cbuf 84
cd87
cecho 88
Chip

odd chip data base 83
Clear

break signals 89
clearbreak 89

Clock~eed
set 220

cls90

Command
drtr1mode 1 04
reducedpinmode 186
time 228

Command file
locates 239

COMMAND FILES '35

Command files

241 of247

User's Reference Manual

list 240
Commands

!47
aetSO
alter52
autoupdate 5 7
beacon59
bells 60
bp 61, 215
bt62
caa63
cac67
cac~cmd69
cad70
campg 76
capg 77
caport 79
COSS 80
cat83
cbuf 84
cd87
cecho88
clearbreak 89
cls90
configure 91
cop92
copcmd97
coplog98
copstub 99
cs 100
dirty 101
display 102
dump 105
dynload 107
echo 108
enable 109
equip 110
err 11 l
esp 112
exit 114
expect 115
faclist 117
filefinder 119
flush 120
get 122
gexpect 123

242 of247

Engineering Support Processor 604

gread 124
gwrite 126
help 128
hreset 129
in 130
in16 132
in32134
ioflag 135
ipl 136
iplrun 137
is 140
isd 142
jtag 143
layout 144
list 145
listall 146
load 147
load cntr 149
log f50
Is 151
mal 152
mat 153
meminit 154
memread 155
memwrite 156
menu 157
mmior 158
mmiow 159
move 160
number 161
ocs 163
out 164
out16 166
out32 l68
pages 169, 187
pause 170
pg 171
pinread 173
pinwrite 17 5
pioe 177
pior 178
piow 179
porl80
prs 181
pwd182
quit 183

Engineering Support Processor 604

readcon 185
reset 188
resetint 189
run 190
saa 192
sabreak 193
sacs 194, 195
sad 196
saespco 199
saespvar 201
sais202
sal203
sam204
sanai 205
sao206
sapb207
sapn 209
sat210
sav 211
save 212
savelayout 213
screen 216
set218
setclock 220
setvar221
sleep224
sreset225
stat226
stop227
time228
treset229
tty 230
unset231
update 232
userbreak 233
ver234
verbose 235
wait236
which239
xlist240

Compare scan string facilities, arrays.
memory 115

configure 91
cop92

COP Commands

User's Reference Manual "

examples94
copcmd97
coplog98
copstub99
cs 100
CURSOR MOTION 30
Cycle step 194, 195
Cycle step handler l 00

D
Device

create 70
Devices ..

list defined 146
Directory

display 151
dirty 101
Display

st9tus of chips 226
display 102
Display list of ESP commands 128
Download file from host to MUT mem-

ory 147
drtrymode 104
dump 105
dynload 107

E
echo 108
Echo command and command line

arguments 88

Echo commands and messag~s,2~5
Edit

end31
keys 31
start 31

243 of247

.:

enable 109

equip 110
Equiped chips 226

err 111

Error condition 111
esp 112

exit 114

.•
'

..
~... ' '

expect 115 , .
Extended Transfer Protocol 17?, 179

F ' ..

faclist 117
flleflnder 119
flush 120

"'J
< • ·: • ' ! • ~ •• ,

G · .. .'.t,!

get 122
gexpect 123 .. · ...

Graphics 1/0 read operation 124
Graphics 1/0 test operation 123
Graphics 1/0 write operation 126

gread 124 ..
gwrite 126

H
Halt ESP execution 170
Hard stop 6 l, 62

help 128

hreset 129

In 130

inl6 132

in32 l34

244of247

·:~ ·i 1 ~~I / ·.
·,

',,_ I

Engineering Support Processor 604

Instruction step 140
add202

Interrupt line 189

ioflag 135
ipl 136
iplrun 137

is 140

isd 142

j

jtag 143

L
layout 144

list 145
List details about internal ESP objects

145
listall 146
load 147

load_cntr 149

LOADING MEMORY 39 .
Location of executed file 119 .
log 150
Log messages to file 150
Is 151

M
mal 152

mat 153

meminit 154

Memory
modity52

Memory access 53

Memory accessITTg 154
Memory data list 155

Engineering Support Processor 604

Memory display screen
set origin 206

Memory Images
of scan strings 53

Memory mapped devices 158, 159
memread 155
memwrite 156
Menu

add line to 152
create 153
display custom 15 7

menu 157
Menus

an example 32
ca!Hng up a 32
definition 31
Full Titles 33
making a 31
nicknames 32
title 32

Message numbers 16 l
mmior 158
mmiow 159
move 160
Multiprocessor

N

Add Multiprocessor group 7 6
Add processor group name 77

number 161

0
ocs 163
out 164
outl6 166
out32168

~ ,, ._,"." :)'~".;·:_ ·\.'1. f':. L
User's Reference Manual

p
pagesl69, 187
pause 170
pg 171
pinread 173
pinwrite 17 5
pioe 177
pior 178
piow 179
POR 188
porl80
Processor ..

stop 227
Processor group 171
Program debug 99

prs 181
Push button

add 207
pwd 182

Q

quit 183
Quit ESP 183

R
Read

'.~ '

memory mapped devices 158
pio 178

readcon 185
reducedpinmode 186
Reset

interrupt line 189
soft 137

reset 188
Reset MUT 180

245 of247

User's Reference Manual Engineering Support Processor 604 ·

resetint 189
RExx ," ·· r \:YA· o ii -.~· <-.··· .. ~re ·

i&bteiprogrcfri-239' ·: iU. 1
·

location of executed file 119
Run

MUT 190
run 190

s
saa 192

sabreak 193
sacs 194, 195
sad 196

saespco 199
saespvar 201
sais202
sa1203

sam204
sanai205

sao206
sapb207
sapn209

sat210

sav 211
save 212

savelayout 213

Scan string .
add to chip data base 83
distinguish between different 1ypes

of scan string 80

Scan Strings
modify52

Scan Table
Updating 40

Scan table
save in binary file 212

246 of247

Screen
add a push button 207
add a screen vari<llble 2] -1 . ,
add an array 192 · · -~·· f /\ .~ r, .

add cycle step 19 4, 195 .~.. ·
add editable data field 196
add ESP captured ol:ltput }99• ,
add ESP variable 20 l; ~i·0•
add insfruction step 202
add label 203
add memory 204
add next assembler instruction 205
add Page Number 209 ... , ; \ ,
create 210 · · .. ,,
list screen pages in memory• ~l69,

187 ·~
loacate or load 144
prints 181
reposition 160
save current layout 213
~~~e21'6oini' address 193 . e;, 

update 232 

screen 216 

Screen Commands 27 
set 218 
Set origin 206 

setclock 220 

setvar 221 
Simulate error condition 11 l 
sjipl 222 

sjreset 223 
sleep224 

Soft stop 6 l , 62 ,. ' 
' ! 

i. 

/ 

,,.~ t - -, 

•J 11 

Specifying chip 1ypes as. ~QP· or, J,. :fAG.: 
83 . ' -

Specifying JTAG Instruction Register1 
Width 83 

sreset 225 . I 

' .·;'"I ·. 

Start the Interactive Screen Designer · 
142 ,.d .. ' 



.. , 
Engineering Support Processor 604 · .- '' 

stat226 
Stop r . • 1 

processor 227 .::· 
soft 190 ~ · -· ) . 

stop 2~7~ r 

· .. :;....,,.' 

Suspend execution · .. 
for specified time lntervdl 224 

T 
tirne22H 
trap 61, 62 

treset229 

ITV 
display230 

tty 230 
tty window 

clear90 

.,-• 

. , -

, p;:[ ' 

•••• h. ·"" ~I .·· ~, 

u . l 
·-' 

unset231 
update232 
userbreak 89, 233 

v 
Variable 

screen 211 
set to a value 218 
set to an attained value 221 
unset231 

ver234 

verbose 235 
'~ ,..... f"-;/'''\.""" ~ ~;·~ 

Version of tSP 234 

w 
wait236 

whi~h4~9 
Write 

., j·- ~' > 

.. , 
·' 

x 

User's Reference Manual 

list of words to memory 156 ·~·.,nn 
memory mappep .de\lice$).S,9 ·- · ' 

. I'·'·~~',''•''-···~~~ 

x!ist240 

.. 

.. :~·~ -) , , : ~. dr;. .,~ 

C';JS,. nqoz 
0 ... 1 r·'·o:· 
' .'.'.>. I '" 

l r :;:,~ \I :::;.z: 
, .. r r _..,, ,., 
.. ~- ! .\. ::-;•• .. • ...... . 

' . 

"; . 

. \ l: ' 

~alt"iOf f 10~)2 

.. ;.; ':':'.,·. \( 1on rf •;i !'.:':\';'.){'. 

247 of247 




