
IBM

RISCWatch Debugger
User’s Guide

13H6964 000011

Twelfth edition (August 2000)

This edition of IBM RISCWatch Debugger User’s Guide applies to IBM RISCWatch Debugger Version 4.6 and
to all subsequent versions of the debugger until otherwise indicated in new versions or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in cer-
tain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples, whether
individually or as one or more groups, will meet your requirements or that the publication or the accompanying
source code examples are error-free.

This publication could contain technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or program(s) described in this publication at any time.

It is possible that this publication may contain references to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country. Any reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only IBM’s licensed program. You can use any functionally equivalent program instead.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the written permission of IBM.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

Forms for user’s and reader’s comments are provided on page xvii and page xix, respectively. You may also
address written comments about this publication to:

IBM Corporation
Department YM5A
P.O. Box 12195
Research Triangle Park, NC 27709

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

Copyright International Business Machines Corporation 1997, 2000. All rights reserved.

Printed in the United States of America.

4 3 2 1

Notice to U.S. Government Users–Documentation Related to Restricted Rights –Use, duplication, or disclo-
sure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.
ii RISCWatch Debugger User’s Guide

Patents and Trademarks

IBM may have patents or pending patent applications covering the subject matter in this publication. The fur-
nishing of this publication does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904, United
States of America.

The following terms are trademarks of IBM Corporation:

AIX
AIX/Windows
IBM
OS Open
PowerPC
PowerPC Architecture
RISC System/6000
RISCTrace
RISCWatch

The following term is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Limited:

UNIX

Windows is a trademark of Microsoft Corporation.

Other terms which are trademarks are the property of their respective owners.
iii

iv RISCWatch Debugger User’s Guide

Contents
Contents... ... v

Figures .. . xiii

Tables xv

User’s Comments Form... xvii

Reader’s Comments Form.. xix

About This Book.. xxi
Who Should Use This Book .. xxi

How To Use This Book ... xxi
Conventions Used In This Book .. xxii
Numeric Notation and Input Conventions.. xxii
Highlighting Conventions... xxii
Syntax Diagram Conventions... xxiii

Where to Find More Information ... xxiv
Related IBM Publications ... xxiv

Introducing the RISCWatch Debugger .. 1-1
Embedded System Software Development ... 1-1

Programming Languages .. 1-1

Features... 1-1

Quick Start ... 2-1
Starting the Debugger.. 2-1

Entering Commands .. 2-2

Loading the Demo Program... 2-2

Scrolling Through Source Code... 2-3

Setting Breakpoints.. 2-5

Stepping Through the Code... 2-7

Altering and Displaying Variables .. 2-10

Debugging at the Assembly Level ... 2-14

Using the RISCWatch Debugger.. 3-1
Debugger Facilities .. 3-1

Environment Resources... 3-5

Core + ASIC Resources .. 3-9
Processors, Cores and Chip Resources ... 3-9
Processor Configuration File (PCF) .. 3-10
Contents v

File Management .. 3-10
File Syntax.. 3-11
REFER Definitions.. 3-11
MACRO Definitions .. 3-12
CHIP Definitions ... 3-12

INCLUDE Definitions.. 3-14

EXEC Definitions.. 3-15

FIELD Definitions ... 3-16

NAME Definitions ... 3-16

PVR Definitions .. 3-16

REG Definitions.. 3-17

REGALIAS Definitions ... 3-19

REGFLD Definitions... 3-19

REV Definitions .. 3-20
PCF Compiling .. 3-20
PCF Example .. 3-21
MEMACC Command... 3-23

Use of MEMACC ADD ... 3-24

Practical Application Example.. 3-26
Window Descriptor File ... 3-28

Multi-Processor Resources.. 3-28
MPS File Syntax.. 3-28

Board Definitions .. 3-29
MPS Debugging .. 3-31
MPS Context ... 3-31
MPS Windows... 3-32

Invoking the Debugger... 3-33
JTAG Ethernet Targets and the RISCWatch Processor Probe... 3-35

Main Window Resources ... 3-38
Menus ... 3-39

File Menu.. 3-41
Source Menu .. 3-41
Hardware Menu .. 3-41
Window Menu... 3-42
Utilities Menu .. 3-42
Help Menu .. 3-42

Command Line Usage .. 3-42
vi RISCWatch Debugger User’s Guide

Command History Usage .. 3-42
Message Window .. 3-43

Running Your Programs .. 3-43
Preparing the Program for Debug ... 3-43
Loading Files ... 3-44
Loading Boot and Boot Image Files .. 3-46
Executing the Program.. 3-47
Following Program Execution Flow ... 3-47
Input Line Usage ... 3-48

Source Level Debugging.. 3-51
Source Window ... 3-51

Scrolling Source Window Contents Using the Keyboard.. 3-54
Assembly Debug Window ... 3-54
Programs Window ... 3-58
Callers Window ... 3-60
Files Window ... 3-61
Functions Window ... 3-62
Load Memory Window... 3-63

OS Open Debugging.. 3-66

Managing Breakpoints ... 3-70
Using Software Breakpoints .. 3-71
Using Hardware Breakpoints... 3-72
Breakpoints Window.. 3-73
Breakpoint Select Window .. 3-75

Reading and Writing Program Variables.. 3-77
Local Variables Window .. 3-77
Global Variables Window .. 3-79
Inspect Variable Windows ... 3-81
Variable Configuration Window ... 3-83
Change Variable Window.. 3-85
Formatting Examples .. 3-88

Expansion/Contraction from Locals or Globals Window... 3-88
Displaying ASCII Strings... 3-90
Handling Multiple Data Elements Referenced by a Single Pointer 3-91
Changing Multiple Instances of a Variable Within an Array.. 3-94
Type Casting a Variable ... 3-102

Source Variable Command Support.. 3-103

Reading and Writing Memory .. 3-104
Contents vii

Memory Coherency Window (JTAG Targets Only) ... 3-105
ASCII Memory Window ... 3-108
Custom Memory Window .. 3-110
Cache Windows (JTAG Targets Only) .. 3-113

Save Memory Window... 3-114

Reading and Writing Registers .. 3-116
Register Windows ... 3-117
Register Field Windows .. 3-118

User-Defined Windows .. 3-119
File Syntax.. 3-120
Keyword Definition/Syntax.. 3-120
Creating the Window .. 3-123
Example.. 3-123

Command Files.. 3-125
Using Shell Scripts to Execute Command Files.. 3-126
Startup Command File .. 3-126
Special Command File Commands... 3-126
Blank Lines and Comments in Command Files .. 3-127
Command File Programming .. 3-127
Command File Special Expressions ... 3-129
Command File Parameters ... 3-130
Command File Pseudo-Variables ... 3-131
Command File Programming Example ... 3-133
Running a Command File ... 3-133
Command File Window ... 3-135

Processor Resources .. 3-137
Processor Reset Window (JTAG Targets Only).. 3-138

General Resources.. 3-138
Window Layout.. 3-138
Output Window.. 3-139
Window List... 3-141
Log Files.. 3-141
Logging Control... 3-142
Logging User Comments .. 3-142
Screen Capture ... 3-143
Calculator Window .. 3-143

Online Help .. 3-145

Using Processor-Specific Debug Features... 4-1
viii RISCWatch Debugger User’s Guide

PowerPC 400Series MMU Implementation Notes ... 4-1

Managing Hardware Breakpoints and Trace Events ... 4-2
Using RISCTrace (400Series JTAG Processor Probe Only) .. 4-2

RISCTrace Operational Notes .. 4-3
RISCTrace Output .. 4-4

Trigger/Trace Window (400Series Only) ... 4-7

RISCTrace Controls ... 4-10
Compound Trigger/Trace Window (401, 403 Series Only) ... 4-12

Memory Resources.. 4-15
Translation Lookaside Buffer Window (Applicable Processors Only) 4-15

Processor Resources... 4-16

Debugger Command Reference... 5-1
Processors Currently Supported.. 5-1

Reading the Syntax Diagrams ... 5-1

Using RISCWatch Debugger Commands.. 5-1
Window Quick Reference ... 5-3
Command Quick Reference ... 5-4

asmstep ... 5-12
assign .. 5-13
assm... 5-15
attach.. 5-17
beep ... 5-18
bot .. 5-19
bp ... 5-20
bpmode .. 5-24
callstep ... 5-26
capture ... 5-27
cfss ... 5-30
color.. 5-32
config.. 5-34
create ... 5-35
delay... 5-37
detach... 5-38
dis... 5-39
down... 5-41
end ... 5-43
exec.. 5-44
expr .. 5-45
Contents ix

fctrl ... 5-47
file... 5-49
find ... 5-50
findb ... 5-52
finde ... 5-54
focus... 5-56
fold ... 5-57
fprdisp .. 5-58
fprint ... 5-59
freeze ... 5-62
funcdisp.. 5-63
goto .. 5-65
halt ... 5-66
hidewins ... 5-67
ip .. 5-68
jtag ... 5-69
kill_thread... 5-70
line.. 5-71
linestep... 5-72
load .. 5-73
log .. 5-77
logging.. 5-78
logoff .. 5-80
memacc.. 5-81
memchk.. 5-84
memcoh ... 5-85
memcopy.. 5-87
memfill.. 5-88
memfind ... 5-89
memrwait.. 5-91
memwwait .. 5-92
mpsset.. 5-93
pagedn ... 5-94
pageup ... 5-95
parms ... 5-96
poll.. 5-98
post .. 5-100
prefer.. 5-101
x RISCWatch Debugger User’s Guide

print .. 5-105
quit.. 5-106
read .. 5-107
reg .. 5-109
reset ... 5-110
restart ... 5-111
retstep .. 5-112
run .. 5-113
save.. 5-115
set... 5-117
t .. 5-122
showip .. 5-123
socket ... 5-124
srcdisp .. 5-125
srchpath.. 5-126
srcline ... 5-128
start_thread .. 5-129
stop... 5-130
stuff... 5-131
timer ... 5-133
top .. 5-134
trace ... 5-135
unassign .. 5-137
uncreate ... 5-139
unload... 5-140
up ... 5-141
varinfo... 5-143
varvis .. 5-145
view .. 5-147
window ... 5-148
write.. 5-150

Interfacing RISCWatch to a Target Board.. A-1
IEEE 1149.1 (JTAG) Port... A-1

Trace Status Port (400Series JTAG Processor Probe Only) ... A-4

JTAG and Trace Connector Requirements.. A-6

Target Monitor Debugging ... A-7

Register Definition File (Outdated) ... B-1
Register Definition File .. B-1
Contents xi

File Syntax.. B-1

DCR Register Definitions ... B-2

SPR Register Definitions.. B-3

MMIO Register Definitions ... B-4

ALIAS Definitions ... B-5

Register Field Definitions ... B-5

Index X-1
xii RISCWatch Debugger User’s Guide

Figures
Figure 2-1. Sample Main Window.. 2-1
Figure 2-2. Sample Files Window.. 2-3
Figure 2-3. Sample Source Window .. 2-4
Figure 2-4. Sample Breakpoints Window... 2-5
Figure 2-5. Sample Functions Window.. 2-6
Figure 2-6. Sample Callers Window .. 2-8
Figure 2-7. Sample Locals Window ... 2-10
Figure 2-8. Sample Variable Configuration Window.. 2-11
Figure 2-9. Change Display Information .. 2-12
Figure 2-10. Change Base Variable... 2-13
Figure 2-11. Sample Assembly Debug Window .. 2-15
Figure 3-1. Sample Main Window.. 3-38
Figure 3-2. Main Window Menu Options.. 3-40
Figure 3-3. Sample Input Line Displayed... 3-49
Figure 3-4. Sample Source Window .. 3-51
Figure 3-5. Sample Assembly Debug Window .. 3-55
Figure 3-6. Sample Programs Window.. 3-58
Figure 3-7. Sample Callers Window .. 3-60
Figure 3-8. Sample Files Window.. 3-61
Figure 3-9. Sample Functions Window.. 3-62
Figure 3-10. Load Memory... 3-64
Figure 3-11. Sample OS Open Window... 3-66
Figure 3-12. Sample Breakpoints Window... 3-73
Figure 3-13. Sample Breakpoint Select Window ... 3-76
Figure 3-14. Sample Locals Window ... 3-77
Figure 3-15. Sample Globals Window ... 3-80
Figure 3-16. Sample Inspect Window.. 3-82
Figure 3-17. Sample Variable Configuration Window.. 3-83
Figure 3-18. Change Variable Window.. 3-85
Figure 3-19. Sample Unexpanded Structure Variable ... 3-88
Figure 3-20. Sample Expanded Structure Variable ... 3-88
Figure 3-21. Further Structure Variable Expansion ... 3-89
Figure 3-22. Single-Element Structure Variable Expansion... 3-89
Figure 3-23. Structure Variable Contraction .. 3-90
Figure 3-24. Sample Pointer Variable.. 3-90
Figure 3-25. Sample ASCII String Display... 3-90
Figure 3-26. Sample Character Array .. 3-91
Figure 3-27. Sample Array Element Display.. 3-91
Figure 3-28. Sample struct record Pointer Display .. 3-92
Figure 3-29. Sample Initial struct record Pointer Expansion.. 3-92
Figure 3-30. Changing Pointer Variables... 3-93
Figures xiii

Figure 3-31. Sample Pointer Variable Shown as an Array .. 3-93
Figure 3-32. Sample Expanded Pointer Variable Shown as an Array 3-94
Figure 3-33. Sample char Array Display ... 3-95
Figure 3-34. Changing Multiple Elements of a Variable Array... 3-96
Figure 3-35. Updated Display of Variable Array .. 3-97
Figure 3-36. Sample Multi-Element, Multilevel Variable Display ... 3-98
Figure 3-37. Updated Multi-Element, Multilevel Variable Display.. 3-99
Figure 3-38. Sample Change Value Display.. 3-100
Figure 3-39. Sample Result of Change Value Update... 3-101
Figure 3-40. Sample Variable Type Cast... 3-102
Figure 3-41. Sample Memory Access Window.. 3-105
Figure 3-42. Sample ASCII Memory Window .. 3-108
Figure 3-43. Custom Memory Window .. 3-110
Figure 3-44. Sample Data Cache Window .. 3-113
Figure 3-45. Save Memory .. 3-115
Figure 3-46. Sample Register Window.. 3-117
Figure 3-47. Sample Register Field Window ... 3-118
Figure 3-48. Sample User-Defined Window .. 3-125
Figure 3-49. Sample Command File Window .. 3-135
Figure 3-50. Sample Processor Reset Window... 3-138
Figure 3-51. Sample Output Window... 3-139
Figure 3-52. Sample Log Comment Window... 3-142
Figure 3-53. Sample Calculator Window ... 3-143
Figure 4-1. Sample Trace Output File ... 4-5
Figure 4-2. Sample Trigger/Trace Window with Trace Supported... 4-8
Figure 4-3. Sample Compound Trigger/Trace Window with Trace Supported 4-13
Figure 4-4. Sample TLB Window... 4-15
Figure A-1. JTAG Header Connector (top view).. A-1
Figure A-2. RISCTrace Header (top view)... A-4
Figure A-1. RISCTrace 2 x10 and RISCWatch 2 x 8 Headers .. A-6
xiv RISCWatch Debugger User’s Guide

Tables
Table 3-1. Quick Reference for the RISCWatch Debugger ... 3-2

Table 3-2. Input Line Functions ... 3-48

Table 3-3. Keyboard Options for Scrolling ... 3-54

Table 4-1. Quick Reference for Processor-Specific Debug Features .. 4-1

Table 5-1. Syntax Summary for Debugger Commands ... 5-5

Table 5-2. Windows that support capture and total ... 5-29

Table A-1. PowerPC 400Series JTAG Interface Connections and Resistors.............................. A-2

Table A-2. PowerPC 6xx/7xx JTAG Interface Connections and Resistors.................................. A-3

Table A-3. RISCTrace Header Pin Description.. A-5

Table A-1. Mictor Connector Signal Assignments ... A-6
Tables xv

xvi RISCWatch Debugger User’s Guide

User’s Comments Form
We hope you are delighted with this product, but only you can tell us! Your comments and
suggestions will help us improve our products. Please take a few minutes to let us know what you
think by completing this form.

If you wish to fax this form, please send to the following number care of 'PowerPC Embedded Tools
Software Feedback':

 FAX: (919) 543-7575

If you wish to send your comments softcopy, please send to the following Internet address:

 INTERNET: ppcsupp@us.ibm.com

You can also contact us at our web page:

 INTERNET: http://www.chips.ibm.com/products/powerpc/riscwtch

Please indicate which product you are commenting on by marking the appropriate box:

In order for us to properly process your information, please also include the version number for the
product you indicated above. Version: ___

Please check the appropriate boxes below, to describe your host, target and application:

OS Open Real-Time Operating System

IBM PowerPC Evaluation Board Kit

High C/C++ Compiler

RISCWatch Debugger

Host
Platform

RS/6000 Sun (Solaris)

PC (Win95/98/NT)

Target
Processor

401__ 403__ 405__

603e/ev 604e 740/750

750cx Other:___________________________________

Target
Platform

IBM Evaluation Board Other Evaluation Board (please specify):

Other Platform:_______________________

Target
Application

IBM ROM Monitor OS Open Own ROM Monitor

Other:___________________________________
User’s Comments Form xvii

1. Please rate the characteristics of the product on a scale of 1 to 5 (1 being the best):

2. What is your overall impression of the product?

Please include additional comments below. PLEASE BE AS SPECIFIC AS POSSIBLE.

__

__

__

Please tell us how we can improve this product:

__

__

__

Please tell us what you especially liked about the product:

__

__

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to
use the information in any way you choose.

Please provide the following information should it be necessary for us to contact you for any reason
in order to properly address your input:

Name: ___

Company: ___

Phone: ________________________ Internet Address: _______________________________

Interface
Used

JTAG (via Parallel Port) JTAG (via Ethernet)

Ethernet

ease of installation 1 2 3 4 5
ease of use 1 2 3 4 5
amount of function provided 1 2 3 4 5
level to which it helped you do your job 1 2 3 4 5
reliability (frequency of failure) 1 2 3 4 5
performance 1 2 3 4 5
error messages 1 2 3 4 5
IBM problem support and service 1 2 3 4 5
price, considering value received 1 2 3 4 5

overall 1 2 3 4 5
xviii RISCWatch Debugger User’s Guide

Reader’s Comments Form
We hope you find this publication useful, readable and technically accurate, but only you can tell us!
Your comments and suggestions will help us improve our technical publications. Please take a few
minutes to let us know what you think by completing this form.

If you wish to fax this form, please send to the following number care of 'PowerPC Embedded Tools
Software Feedback':

 FAX: (919) 543-7575

If you wish to send your comments softcopy, please send to the following Internet address:

 INTERNET: ppcsupp@us.ibm.com

You can also contact us at our web page:

 INTERNET: http://www.chips.ibm.com/products/powerpc/riscwtch

Please indicate which publication you are commenting on by marking the appropriate box:

In order for us to properly process your information, please also include the edition number and
date for the book you indicated above (on the back of the title page, at the top).

Edition and Date: _______________________________________

1. Please rate the characteristics of the book on a scale of 1 to 5 (1 being the best).

High C/C++ Language Reference

High C/C++ Compiler, ELF Linker and Assembler

OS Open User's Guide

OS Open Programmer's Reference Volume 1

OS Open Programmer's Reference Volume 2

PowerPC Evaluation Board Kit User's Guide

RISCWatch Debugger User's Guide

accurate 1 2 3 4 5

complete 1 2 3 4 5

well laid out 1 2 3 4 5

well organized 1 2 3 4 5

easy to understand 1 2 3 4 5
Reader’s Comments Form xix

2. What is your overall impression of the book?

For additional comments, either attach a marked-up hardcopy (if applicable) or include your
comments below. PLEASE BE AS SPECIFIC AS POSSIBLE AND INCLUDE THE PAGE NUMBER
AND SECTION OF THE PUBLICATION WHERE YOU HAVE A COMMENT.

Specific Comments or Problems:

__

__

__

__

__

Please tell us how we can improve this book:

__

__

__

__

__

Please tell us what you especially liked about the book:

__

__

__

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to
use the information in any way you choose.

Please provide the following information should it be necessary for us to contact you for any reason
in order to properly address your input:

Name: ___

Company: ___

Phone: ________________________ Internet Address: ________________________________

applies to your tasks 1 2 3 4 5

has enough examples 1 2 3 4 5

overall 1 2 3 4 5
xx RISCWatch Debugger User’s Guide

About This Book
This book describes the IBM® RISCWatch™ Debugger, its windowing
environment, and its debugging facilities and commands. This publication
contains the information needed to use RISCWatch, a hardware and software
development tool for PowerPC™ processors.

The RISCWatch Debugger supports numerous PowerPC processors and
versions. For more information on current processors supported and other up to
date information, please refer to the README file included with the product, or
visit our web site at http://www.chips.ibm.com/products/embedded/riscwtch

Support for additional PowerPC processors and targets is planned for future
RISCWatch releases.

Who Should Use This Book

This book is for:

• Programmers and engineers who will use the RISCWatch Debugger to develop
embedded applications using PowerPC processors

Users should understand:

• Functions, architecture, and features of their host systems
• PowerPC instruction set architecture and assembler programming
• C programming

For information concerning features and operations of a specific PowerPC
processor, please refer to the document set for each individual device.

How To Use This Book

This manual describes the RISCWatch debugger facilities, windows, and functions
provided specifically to support PowerPC processors in embedded applications.
This book is divided into the following chapters:

• Chapter 1, "Introducing the RISCWatch Debugger," describes RISCWatch
debugger functions and features.

• Chapter 2, "Quick Start," introduces the RISCWatch Debugger by means of a
brief demo with descriptions of the main windows and debugger functions.
About This Book xxi

• Chapter 3, "Using the RISCWatch Debugger," shows debugging tasks in
relation to sample debugger windows and some specific features of the
debugger.

• Chapter 4, "Using Processor-Specific Debug Features," describes RISCWatch
features and windows applicable to specific PowerPC processors.

• Chapter 5, "Debugger Command Reference," provides detailed descriptions of
the debugger commands.

• Appendix A, "Interfacing RISCWatch to a Target Board," describes the required
connections for interfacing RISCWatch to a PowerPC processor on a target
development board.

• Appendix B, “Register Definition File (Outdate),” describes the file format for
the Register Definition File (RDF) which is used to add custom register
definitions to the RISCWatch debugger.

For detailed information about installing and configuring the RISCWatch
Debugger, consult the accompanying RISCWatch Debugger Installation Guide.

Conventions Used In This Book

This book follows numeric and highlighting notation conventions based on those
used in the RISC System/6000™ and Advanced Interactive Executive (AIX™)
publications.

Numeric Notation and Input Conventions

In general, numbers are used exactly as shown. Unless noted otherwise, all
numbers are in decimal, and, if entered as part of a command, are entered
without format information.

The hexadecimal digits A through F typically appear in uppercase. Hexadecimal
numbers are preceded by “0x” as shown below:

0x1A7

Highlighting Conventions

In code examples, this book uses no highlighting.

This book uses the following highlighting conventions:

• The names of invariant objects known to RISCWatch appear in bold type. In
some text, however, such as in lists, no special typographic treatment is used.
Examples of such objects include:

• File and command names
• Data types and structures
xxii RISCWatch Debugger User’s Guide

• Constants and flags

• Variable names that are supplied by user programs appear in italic type. In
some text, however, such as in lists, no special typographic treatment is used.
Examples of these objects include arguments and other parameters.

Names of objects and keywords known to the RISCWatch Debugger must be
entered exactly as written.

Syntax Diagram Conventions

Throughout this book, diagrams illustrate the syntax for string formats and
commands. The following list shows how to read these diagrams:

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

• A symbol begins a diagram.

• A symbol indicates continuation of a diagram on the next line.

• A symbol indicates continuation of a diagram from the previous line.

• A symbol terminates a diagram.

• Keywords are in regular type, and variables are in italics. Keywords must be
typed exactly as shown.

• Keywords or variables on the main path of a diagram are required.

• Keywords or variables shown on branches below the main path are optional.

• Keywords or variables can appear in a stack, indicating that only one item in a
stack can be chosen. If an item in a stack is on the main path, you must choose
an item from the stack. If all items in a stack are below the main path, you may
choose an item from the stack.

For example, in the following syntax diagram, you must choose either variable1
or variable2. However, because variable3 and variable4 are below the main
path, neither is required.

keyword variable1 variable2

keyword

variable1 variable2

keyword variable1

variable2 variable3

variable4
About This Book xxiii

• A repeat separator is a returning arrow that surrounds a syntax element or
group and shows that the element or group can be repeated.

Where to Find More Information

The following sections list sources of information about or related to RISCWatch.

Related IBM Publications

This book refers to the following publications, which are available from your IBM
Microelectronics representative:

• RISC System/6000 Publications

IBM RISC System/6000: POWERstation and POWERserver Hardware Technical
Information General Architectures, SA23-2643

• AIX Publications

This book refers to the following AIX publications. The words “IBM AIX Version 4
for RISC System/6000” are actually part of the title of each book; however, in all
references to these books, those words are omitted.

Assembler Language Reference, SC23-2642

Commands Reference, Volume 1, SC23-2537

Commands Reference, Volume 2, SC23-2538

Commands Reference, Volume 3, SC23-2539

Commands Reference, Volume 4, SC23-2540

Commands Reference, Volume 5, SC23-2639

Commands Reference, Volume 6, SC23-2640

Editing Concepts and Procedures, GC23-2212

Files Reference, GC23-2200

• XL C Compiler/6000 Publications

XL C Language Reference, SC09-1260

XL C User’s Guide, SC09-1259

• IBM High C/C++ Publications

keyword variable1
xxiv RISCWatch Debugger User’s Guide

The following list includes the books in the IBM High C/C++ library:

IBM High C/C++ Programmer’s Guide for PowerPC, 92G6920

IBM High C/C++ Language Reference for PowerPC, 92G6923

IBM ELF Assembler User’s Guide for PowerPC, 92G6921

IBM ELF Linker User’s Guide for PowerPC, 92G6922

PowerPC Embedded Application Binary Interface

A copy of the EABI specification can be found at the RISCWatch web page at:

http://www.chips.ibm.com/products/embedded/riscwtch

• PowerPC Embedded Solutions CD

PowerPC Embedded Processor Solutions, SC09-3032-00

• OS Open Publications

The following list includes the books in the OS Open library:

IBM OS Open Programmer’s Reference, Volume 1, 92G6911

IBM OS Open Programmer’s Reference, Volume 2, 92G6912

IBM OS Open User’s Guide, 92G6897

• PowerPC 400Series User’s Manuals

PPC403GA Embedded Controller User’s Manual, 13H6960

PowerPC 403 Evaluation Board Kit User’s Manual, 13H6987

PPC403GB Embedded Controller User’s Manual, 13H6985

PPC403GC Embedded Controller User’s Manual, 13H6986

• PowerPC 6xx User’s Manuals

PowerPC 602 RISC Microprocessor User’s Manual, SC22-9899-00

PowerPC 602 Evaluation Board Kit User’s Manual, 92G8620

PowerPC 603 RISC Microprocessor User’s Manual, MPR603UMU-01

PowerPC 603e RISC Microprocessor User’s Manual, MPR603EUM-01

PowerPC 604 RISC Microprocessor User’s Manual, MPR604UMU-01

PowerPC 60X Evaluation Board Kit User’s Manual, 92G8622

• PowerPC

PowerPC Microprocessor Family: The Programming Environments,
MPRPPCFPE-01
About This Book xxv

xxvi RISCWatch Debugger User’s Guide

Chapter 1. Introducing the RISCWatch Debugger
The IBM RISCWatch Debugger provides a powerful, flexible debugging
environment to support hardware and software development using PowerPC
processors in embedded applications.

Embedded System Software Development

Embedded systems are typically developed in a cross-development environment
consisting of host computers and target systems. The host computers provide
software and project management tools for embedded system application
developers. The developers are not restricted to the limited computing resources
typically available on the target embedded system.

Developers write, compile, and debug embedded application programs on the
host computers. When appropriate, the application programs are loaded on the
target embedded system, where they run and are tested in the target operating
environment.

Embedded system development is an iterative process; the application programs
are refined on the host computers and tested on the target system until the
programs meet the functional and performance requirements of the application.
Eventually, the application programs are shipped as part of an embedded system.

Programming Languages

Application programs for PowerPC processors are typically written in C/C++ and
assembler. Formats currently supported include ELF/DWARF (SVR4 ABI and
PowerPC Embedded ABI) and XCOFF/STABS.

Features

RISCWatch is a development and debug tool for PowerPC processors.
RISCWatch employs a graphical user interface allowing complete access to all of
the PowerPC processor functions. Following is a list of RISCWatch features:

• Robust source program debug capability

• Low-level hardware program debug (assembly level)

• Read, modify and write of all processor registers

• Read, modify and write of processor register fields
Introducing the RISCWatch Debugger 1-1

• User defined registers (DCR, SPR, Memory mapped)

• Read, modify and write of all processor memory (single, multi-byte access)
with memory fill and write verification testing

• Memory loading of many types of file formats (ELF, XCOFF, Motorola 32-bit,
and straight binary)

• Save/load processor memory image to/from file

• Save/load processor register values to/from file

• Command file execution, including nesting capabilities

• Command file execution with user-created variables, programming
constructs, expressions and printf -like function

• Command file single-step execution

• Batch mode command file execution

• Program assembler and disassembler allowing memory read and write
capability

• Single-step execution (assembly or source level) of loaded programs

• Set/clear of multiple-event breakpoints

• Saving and loading of customized window layout

• User-defined windows consisting of register, register field, memory,
disassembly, command execution and status interfaces

• Processor reset functions

• Logging of all commands and messages

• File browsing

• Operating System command execution capability

• On-line help for all screens including extensive processor register definitions

• Multiprocessor support with User-defined board configurations

• Resizable windows with configurable user interface control colors

• User-defined Core+ASIC interface for customized chip support

• RISCTrace interface for PowerPC 400Series real-time trace debug
1-2 RISCWatch Debugger User’s Guide

Chapter 2. Quick Start
Included with the RISCWatch debugger are some example files that can be used
to quickly demonstrate some of the capabilities of the tool. They include all of the
source, object, and executable files necessary to proceed with the following
tutorial. The sections are designed to be performed sequentially, but the actions
described in each can be applied at various stages of the debug session.

In general, the windows and descriptions will appear exactly as stated in the text.
However, there may be slight differences in what is pictured versus what the user
will actually see when running through the demonstration. For example, if the
program is loaded in a location other than that specified in the load command,
any addresses shown in the window might not match what appears in the
document. However, the functions performed are equivalent.

Starting the Debugger

The Main Window, as illustrated in figure 2.1, is the first window seen when
RISCWatch is started. Perform the following steps to display this window:

Figure 2-1. Sample Main Window
Quick Start 2-1

• Edit the “rwppc.env” file to designate the “target processor”, “target type”,
“target name”, and RISCWatch directory, as described in “Environment
Resources” on page 3-5 and “Invoking the Debugger” on page 3-33. Edit any
additional environment resources required for your specific setup.

• From a RISC System/6000 or Sun workstation running Motif, change to the
installation directory, and type “rwppc”.

• From a PC running Windows, double-click on the RISCWatch icon created
during program installation.

Entering Commands

To enter debugger commands from the command line of the Main window,
single-click on the Command area to give it ‘focus’, type in the desired command,
and then press “Enter”. See “Command Quick Reference” on page 5-4 for the
complete list of valid commands.

For the demonstration program, enter the command “srchpath set xxxx”, where
xxxx is the fully qualified directory path where the examples reside.

Note that when the command is entered, it is displayed in the command history
window. It is also displayed, along with any associated messages, below the
command line in the message window.

Loading the Demo Program

Enter from the command line:

load file demo t=0x35000 d=0x37000

Note: An address of 0x35000 will work for most ROM Monitor targets. Refer to
the Eval Kit User’s Guide (section 7.5) for instructions on how a valid address can
be determined for ROM Monitor targets.
2-2 RISCWatch Debugger User’s Guide

Scrolling Through Source Code

Now that the program has been loaded, the next step is to bring up the source
files. Move the cursor to the to the “Source” menu bar entry on the Main screen
and single click the left mouse button. Then, single click on the “Files” choice.
Figure 2-2 shows the sample Files display.

Move the cursor to the to the “Source” menu bar entry on the Main screen and
single click the left mouse button. Then, single click on the “Source” choice. The
Source window should be displayed.

Single-click the left mouse button on the “demo1.c” entry in the Files window. It
will become highlighted, and the following will appear in the Source Window:

Figure 2-2. Sample Files Window
Quick Start 2-3

Move the cursor to the Main window, and single-click the left mouse button in the
Command area to enable the command line.

Enter “pagedn source” on the command line. The source window will scroll down
one page.

Enter “pageup” on the command line. The source window will scroll up one page.
Notice that “source” wasn’t specified this time because the last command stored it
for subsequent commands to use.

Move the cursor back to the Source window, and place the cursor on the down
arrow found on the scroll bar area on the right side of the window. Hold down the
left mouse button. The source code will scroll down a line at a time while the
button is being held down. The scroll bar will also move down along the right side
of the screen.

Move the cursor to the area above the scroll bar, placing it between the bar and
the up arrow. Press the left mouse button once. This will move the source code up
one page.

Figure 2-3. Sample Source Window
2-4 RISCWatch Debugger User’s Guide

Move the cursor to the scroll bar itself. Hold down the left mouse button and move
the mouse up and down. The source code will scroll up and down with the
movement of the mouse.

Move the cursor back to the Main window, and single-click the left mouse button in
the Command area to enable the command line.

Enter “top” on the command line. The Source window will scroll to the top of the
source file.

Setting Breakpoints

Move the cursor back to the Source window, and scroll down through the code
until line 39 is in view.

Single-click the left mouse button, in the Source window left side which shows the
line numbers, at the line 39 entry. A “BP” indicator will appear next to the line
number 39. This means a breakpoint has been set.

Move the cursor to the to the “Source” menu bar entry on the Main screen and
single-click the left mouse button. Then, single-click on the “Breakpoints” option.
Figure 2-4 shows the display.

Figure 2-4. Sample Breakpoints Window
Quick Start 2-5

Various information about the breakpoint is displayed in the Breakpoints window,
including type (hardware or software), address, function name, source file, and
line number corresponding to the breakpoint.

Move the cursor button over the entry in the Breakpoints window and single-click
the left mouse button. The entry is highlighted, and its corresponding location in
the Source window is highlighted. The Delete button is also enabled.

Single-click the left mouse button again on the entry. The highlight is removed,
and the Delete button is disabled.

Move the cursor to the to the “Source” menu bar entry on the Main screen and
single click the left mouse button. Then, single click the left mouse button on the
“Functions” option. Figure 2-5 shows the display.

Locate the entry “routine2; demo2.c”. Move the cursor to this entry, and
single-click the left mouse button. The source file containing routine2 (demo2.c)
will now be shown in the Source window, and the entry will be highlighted in the
Functions window.

Double-click the left mouse button in the Functions widow at the line
corresponding to the “routine2; demo2.c” function entry. This will set a breakpoint

Figure 2-5. Sample Functions Window
2-6 RISCWatch Debugger User’s Guide

at the beginning of the routine2 function. The “BP” indicator will appear in the
Source window at the first executable line in the function. Information about the
breakpoint will also appear in the Breakpoints window.

Move the cursor to the newly added routine2 entry in the Breakpoints window.
Double-click the left mouse button on the entry. The breakpoint is removed from
the Breakpoints, Functions, and Source windows.

Stepping Through the Code

Move the cursor to the “Run” button in the Source window, and single-click the left
mouse button. The program is “run” until it hits the breakpoint set earlier in this
example. The source file corresponding to the breakpoint location that stopped
the program execution is displayed in the Source window. The source line
corresponding to the current Instruction Pointer address is indicated by the “>>”
next to the line number where the program has stopped.

Press the “Show IP” button in the Source window. Information relating to the
current Instruction Pointer is listed in the Main window status and message area.

Press the “Line step” button in the Source window. The “>>” appears on the next
source line, which is now highlighted.

Move the cursor to source line 48, over the source line “routine4();” and
single-click the left mouse button. The BP indicator appears next to the line, and
the breakpoint entry is entered in the Breakpoints window.

Press the “Run” button once more, and the program runs to the break just set. The
“>>” appears next to line number 48, which is now highlighted.
Quick Start 2-7

Move the cursor to the to the “Source” menu bar entry on the Main screen and
single click the left mouse button. Then, single click the left mouse button on the
“Callers” option. Figure 2-6 shows the display.

The information contained in the Callers window is essentially a “push down”
stack that contains information about the current call stack.

Press the “Line step” button in the Source window. The “>>” appears on the next
source line, which is now highlighted. Notice the program did not step into the
routine4() function. The Line step command essentially steps over function calls.

Now press the “Call step” button in the Source window. This command causes the
debugger to enter the context of the called function. The file containing the
routine2() function is displayed in the Source window. The first executable source
line is highlighted, and the “>>” indicator shows the source line corresponding to
the current instruction pointer. The Callers window is also updated to reflect the
current debugger context. Press the “Line step” button in the Source window 3
times. The “>>” will be next to the source line “routine3():”, line number 11.

Now press the “Call step” button in the Source window. The file containing the
routine3() function is displayed in the Source window. The first executable source
line is highlighted, and the “>>” indicator shows the source line corresponding to
the current instruction pointer. The Callers window is again updated to reflect the
current debugger context, routine3.

Single-click on the “routine2” entry in the Callers window. The context is switched
back to the function that made the call, namely routine2(), with the Source window
being updated to show the file and line where the function call was made. The
Callers window is used in this manner to traverse the call stack.

Figure 2-6. Sample Callers Window
2-8 RISCWatch Debugger User’s Guide

Press the “Show IP” button on the Source window. The current IP information is
again displayed in the message area of the Main window. The Source window is
also returned to the current context, which is the function listed at the top of the
Callers window.

Press the “Ret step” button on the Source window. This returns the debugger
context to the calling function. Notice that the Callers window is also updated as
the stack entry is “popped” from the current call stack.

Press the “Ret step” button again, and the debugger traverses the stack again,
returning to the original caller in main().

Now press the “Restart” button on the Source window. The program is essentially
reloaded, and the instruction pointer is reset to the entry point of the program.
Notice the breakpoints that have been saved and the messages that appear in the
Main window.

The entry point in this example is in startup code that has no source files
associated with it. Thus the debugger displays messages that indicate why it is
unable to display code in the Source window.

Press the “Run” button. Since the breaks are still set, the program stops again at
the breakpoint on line 39 in demo1.c.
Quick Start 2-9

Altering and Displaying Variables

Move the cursor to the to the “Source” menu bar entry on the Main screen and
single click the left mouse button. Then, single click the left mouse button on the
“Locals” option. Figure 2-7 shows the display.

This window lists all of the defined local variables in the current debugger context,
and their current values. The window contents can be custom tailored in a variety
of ways. Refer to “Variable Configuration Window” on page 3-83 for a complete
description of the available options. Only a few will be shown in this example.

Press the “Var. Config” (Variable Configuration)” button on the Locals window.
Figure 2-8 shows the window that will be displayed.

Press the “Address” button in the Display info. area.

Single-click on the variable “i” shown in the Visible area. This moves the variable
to the Not Visible area, meaning the variable will no longer be shown. This is used
to reduce clutter of uninteresting variables and also to reduce the number of
variable values requiring refresh when the debugger context changes.

Figure 2-7. Sample Locals Window
2-10 RISCWatch Debugger User’s Guide

Press the “OK” button in the Variable Configuration window. This applies the
changes and removes the window. Notice variable “i” is no longer shown, and that
the addresses of all the variables are now displayed.

Individual variables may also be custom tailored. Single-click on the “show_out”
variable in the Locals window. Figure 2-9 shows the display.

Figure 2-8. Sample Variable Configuration Window
Quick Start 2-11

The “Address” button in the Display info. field is selected because of the previous
Variable Configuration window update. Press the button again to deselect the
“Address” button. Press the “OK” button to apply the change and remove the
window. Notice the Locals window display no longer shows the address of the
show_out variable.

Move the cursor again to the show_out variable and double-click the left mouse
button. Notice that the variable is “expanded” to show another level of detail of the
structure. Double-click on the show_out variable again to show even more detail.
Move the cursor down three lines to the “.name:” variable name, and double-click
on it. Notice that just that variable gets expanded even further.

Single-click on the “.name:” variable. Notice in the Change Array Variable window
that the subrange shown can be tailored. Change the “0,2” to “2,6” and then press
“OK”. Now only array elements 2-6 are shown in the Locals window for the
“.name:” array.

Figure 2-9. Change Display Information
2-12 RISCWatch Debugger User’s Guide

Single-click on the +2 next to the “.count:” variable. Figure 2-10 shows the display.

Press the “Hexadecimal” button in the Value format field. Enter 10 in the Change
value field, and press “OK”. Notice that the display for the “.count:” variable is now
in hex, and reflects the decimal value 10 just entered. Single-click on the “r1var:”
variable, and change the Value format to “Hexadecimal” as well. Press the “OK”
button to change the variable.

Figure 2-10. Change Base Variable
Quick Start 2-13

Press the “Line step” button in the Source window. Notice no variables are
updated since “i” was moved to invisible earlier. Press the “Line step” button
again. Notice that the variable “show_out.show_in.count” got updated in the
Locals window as the source line was executed.

The Globals window operates in the same manner as the Locals, but contains
variables defined as global in the program.

Debugging at the Assembly Level

Assembly level debug can be accomplished in several ways. One way is via a
source disassembly in the Source window. Another is to use an actual memory
disassembly found in the Assembly Debug window.

Press the “Delete All” button on the Breakpoints window. Notice that all the
breakpoints are cleared in both the Source and Breakpoints windows. Single-click
on the source code of line 47 in the Source window to set a breakpoint. Run to
that breakpoint by pressing the “Run” button in the Source window.

Press the “Call step” button in the Source window. Notice that the source file
associated with the called function, routine5, is shown as “?” in the Source
window. In addition, some of the buttons have been disabled, and some warning
messages have been posted in the Main window. Also, no local variable
information is available.

This is a result of stepping into a function that was compiled with no debug
information—a prime example of why it might be desirable to do assembly level
debug with a source level debugger. Notice also that the warning message
presents the opportunity to return immediately to the calling function in case the
Call step issued was inadvertent, or the user decides not to step through the
assembly code.

But since you are still reading this, we’ll have to assume you are a hard core user
and want to move on! Move the cursor back to the Main window to the “Hardware”
menu bar entry and single-click the left mouse button. Then, single-click on the
“Asm Debug” option. Figure 2-11 shows the display.
2-14 RISCWatch Debugger User’s Guide

This contains a memory disassembly of a number of instructions, beginning with
the one corresponding to the current instruction pointer. Press the “Asmstep”
button in the Assembly Debug window. Notice the current instruction indicator has
moved to the next assembly instruction. Also notice that the “Return step” button
on the Source window has been disabled.

This is the debugger’s way of politely saying that you had your chance to return
easily per the previous warning message, and you chose not to, so you’re on your
own getting back!

This can be done either by pressing the “Asmstep” button until the return is made,
or by going back to the source line calling the function and setting a break after
the line and running to it. We’ll do the former since this function has only a few
instructions.

Press the “Asmstep” button until the return is made to the calling function. The
Source window is updated to show the source file containing the original call.
Notice that the current instruction pointer is still pointing to the line number
containing the call.

Figure 2-11. Sample Assembly Debug Window
Quick Start 2-15

The source disassembly feature can be used to show why this is the case. Press
the “Source/Asm” button in the Source Mode area of the Source window. This
produces a mixed source and disassembly listing in the window. Notice that there
is more than one assembly instruction associated with each source line. In our
example, we returned from the function call, but we’re still on the same source line
as the call itself.

Breakpoints can also be set while in mixed mode. Move the cursor to the “cror
31,31,31” instruction below the routine2() source line and single-click on it. Notice
that the breakpoint is indicated in the Source, Assembly Debug, and Breakpoints
windows.

Press the “Run” button in the Source window. Notice that the current instruction
pointer is updated at the breakpoint address in both the Source and Assembly
Debug windows.

Press the “Source only” button in the Display mode area in the Source window.
Notice that the break is still shown on the source line corresponding to the
assembly line on which the breakpoint was set.

Numerous other screens are also useful when doing assembly level debug.
Please refer to Table 3-1, “Quick Reference for the RISCWatch Debugger” on
page 3-2, for a list of the available windows.
2-16 RISCWatch Debugger User’s Guide

Chapter 3. Using the RISCWatch Debugger
RISCWatch is designed to be run in one of several configurations:

• Normal mode

The user interacts with the graphical user interface. This is the mode in
which RISCWatch is usually run.

• Command file batch mode

RISCWatch runs via commands contained in an ASCII file. A shell script
can, for example, invoke RISCWatch several times with several command
files. The graphical user interface is not available in this mode. See “Run-
ning a Command File” on page 3-133 for more details on how to run RISC-
Watch in this mode.

• TTY mode (non-PC host only)

This mode allows RISCWatch to be run on a UNIX (RISC System/6000)
workstation which does not have a graphical user interface windowing sys-
tem available. This mode provides a command line interface where com-
mands are typed in after a TTY prompt and resulting execution messages
are printed to the terminal. This mode is invoked by starting RISCWatch with
the -tty command line option.

Target types currently supported by RISCWatch are described in “Environment
Resources” on page 3-5.

Debugger Facilities

The RISCWatch Debugger has many facilities that can be used to develop, test,
and debug your evaluation board code and programs. As you find it necessary to
perform certain tasks, this section can be used as a quick lookup of the facilities
that might be used to accomplish those tasks. Table 3-1 below provides a quick
reference to RISCWatch resources, both in this chapter on general debug
features and in the next chapter on processor-specific debug features.
Using the RISCWatch Debugger 3-1

Table 3-1. Quick Reference for the RISCWatch Debugger

Task or Resource Applicable Sections

Setting the Environment
How to initialize the environment resources,
register definition files, and multi-processor files

“Environment Resources” on page 3-5
“Core + ASIC Resources” on page 3-9
“Multi-Processor Resources” on page 3-28

Invoking the Debugger
How to bring up the RISCWatch Main Window

“Invoking the Debugger” on page 3-33
“JTAG Ethernet Targets and the RISCWatch
Processor Probe” on page 3-35

Main Window Resources
Overview of menus and windows

“Main Window Resources” on page 3-38
“Menus” on page 3-39
“Command Line Usage” on page 3-42
“Command History Usage” on page 3-42
“Message Window” on page 3-43

Running Your Programs
How to compile, load, and execute programs

“Preparing the Program for Debug” on
page 3-43
“Loading Files” on page 3-44
“Loading Boot and Boot Image Files” on
page 3-46
“Executing the Program” on page 3-47
“Following Program Execution Flow” on
page 3-47
“Input Line Usage” on page 3-48
“Scrolling Source Window Contents Using the
Keyboard” on page 3-54

Source Level Debugging
How to use the interface to debug your C
source code

“Source Window” on page 3-51
“Assembly Debug Window” on page 3-54
“Programs Window” on page 3-58
“Callers Window” on page 3-60
“Files Window” on page 3-61
“Functions Window” on page 3-62
“Load Memory Window” on page 3-63

OS Open Debugging
How to use the interface to display operating
system information and to control debug
attachment

“OS Open Debugging” on page 3-66
3-2 RISCWatch Debugger User’s Guide

Managing Breakpoints
How to use the interface and command set to
set hardware and software breakpoints

“Managing Breakpoints” on page 3-70
“Using Software Breakpoints” on page 3-71
“Using Hardware Breakpoints” on page 3-72
“Breakpoints Window” on page 3-73
“Breakpoint Select Window” on page 3-75
“Trigger/Trace Window (400Series Only)” on
page 4-7
“Compound Trigger/Trace Window (401, 403
Series Only)” on page 4-12

Reading and Writing Program Variables
How to use the interface to read, modify, and
write program variables

“Reading and Writing Program Variables” on
page 3-77
“Local Variables Window” on page 3-77
“Global Variables Window” on page 3-79
“Inspect Variable Windows” on page 3-81
“Variable Configuration Window” on page 3-83
“Change Variable Window” on page 3-85
“Formatting Examples” on page 3-88
“Source Variable Command Support” on
page 3-103

Reading and Writing Memory
How to use the interface and command set to
read, modify, and write processor memory in
many different formats

“Reading and Writing Memory” on page 3-104
“Assembly Debug Window” on page 3-54
“Memory Coherency Window (JTAG Targets
Only)” on page 3-105
“ASCII Memory Window” on page 3-108
“Custom Memory Window” on page 3-110
“Cache Windows (JTAG Targets Only)” on
page 3-113
“Translation Lookaside Buffer Window (Applica-
ble Processors Only)” on page 4-15
“Load Memory Window” on page 3-63
“Save Memory Window” on page 3-114

Reading and Writing Registers
How to use the interface and command set to
read, modify, and write processor registers and
register fields

“Reading and Writing Registers” on page 3-116
“Register Windows” on page 3-117
“Register Field Windows” on page 3-118

Table 3-1. Quick Reference for the RISCWatch Debugger

Task or Resource Applicable Sections
Using the RISCWatch Debugger 3-3

It may prove helpful to glance through each of the sections listed in Table 3-1 to
gain an overall picture of the available facilities that RISCWatch offers. Such an
understanding can help you avoid doing something “the hard way.”

User-Defined Windows
How to create and run customized windows

“User-Defined windows allow a RISCWatch user
to create windows containing customizable reg-
ister, register field, memory, disassembly, and
button entries. Using a simple syntax, ASCII
files are created to define the contents of a
user-defined window.” on page 3-119

Command Files
How to create and run command files which are
used to perform repetitious tasks and help to
automate testing

“Command Files” on page 3-125
“Command File Programming” on page 3-127
“Command File Special Expressions” on
page 3-129
“Command File Parameters” on page 3-130
“Command File Pseudo-Variables” on
page 3-131
“Running a Command File” on page 3-133
“Command File Programming Example” on
page 3-133
“Running a Command File” on page 3-133
“Command File Window” on page 3-135

Processor Resources
How to use the interface to perform processor
resets and to read processor status

“Processor Resources” on page 3-137
“Processor Reset Window (JTAG Targets Only)”
on page 3-138

General Resources
How to use various program resources

“Window Layout” on page 3-138
“Output Window” on page 3-139
“Window List” on page 3-141
“Log Files” on page 3-141
“Logging Control” on page 3-142
“Logging User Comments” on page 3-142
“Screen Capture” on page 3-143
“Calculator Window” on page 3-143
“Online Help” on page 3-145

RISCTrace
Describes using RISCTrace and the trace
capabilities of 400Series processors

“Using RISCTrace (400Series JTAG Processor
Probe Only)” on page 4-2

Table 3-1. Quick Reference for the RISCWatch Debugger

Task or Resource Applicable Sections
3-4 RISCWatch Debugger User’s Guide

Environment Resources

RISCWatch employs an environment resources file to specify or configure various
resources. This file, rwppc.env , is designed to allow the RISCWatch user to tailor
program operation to meet specific operating preferences. This file should be
examined and changed where necessary, before RISCWatch is run to ensure that
the environment will conform to your debugging needs.

What follows is a list of the environment resources that can be used in the
rwppc.env file and their functionality:

Environment variable Description

PROC Specifies the target processor name for non-MPS
RISCWatch debug sessions (required). See the
README file provided with RISCWatch for a list of valid
processor names.

REV Specifies the revision number of the target processor.
This field is required when debugging a 6xx/7xx
processor in which RISCWatch supports more than one
revision number. For example, if debugging a 603e REV
3 processor, ”REV = 3” must be designated.

TARGET_TYPE jtag_par, jtag_par1, jtag_par2, jtag_par3, jtag_eth,
rom_mon, osopen (one required)
Refer to the README file which came with RISCWatch
for information concerning host and target requirements
for proper RISCWatch operation.
Each target type is described below.

jtag_par<1,2,3> JTAG parallel port target. RISCWatch is connected to the
JTAG port, on the PowerPC 400Series target system,
through a RISCWatch parallel port adapter. The suffix
(1,2, or 3) is used to specify a specific parallel port
address on PC hosts (1 uses 0x3BC, 2 uses 0x378, 3
uses 0x0278). The optional suffix should only be used if
the default address (designated by jtag_par) does not
determine the correct address to use

jtag_eth JTAG Ethernet target. RISCWatch is connected via
Ethernet to a RISCWatch processor probe. The JTAG
connector of the processor probe is then connected to
the JTAG port on the PowerPC 400Series or PowerPC
6xx/7xx target system.
Using the RISCWatch Debugger 3-5

rom_mon ROM monitor target. RISCWatch is connected via
Ethernet or SLIP to a PowerPC target system running
the IBM ROM Monitor for PowerPC in debug mode.

os_open OS Open target. RISCWatch is connected via Ethernet
or SLIP to a PowerPC target system running IBM’s OS
Open real-time operating system.

TARGET_NAME Name of target found in TCP/IP services file (required
for JTAG Ethernet, OS Open and ROM Monitor targets)
TCP/IP dotted address may also be used.

RWPPC_DIR A fully qualified path name to the directory in which the
RISCWatch executable and support files reside. This is
required for all targets.

SEARCH_PATH Path names used for source/object/command file
search, delimited by colons (:); for a PC host, the
delimiter is a semicolon instead of a colon. (if not
specified, default = current directory)

LOG_FILE_DIR A fully qualified path name to the directory of where
RISCWatch is to maintain all log files.

STACK_FRAMES Indicates the number of stack frames to show on the
Callers Window. If not designated, the default setting is
twelve.

LAYOUT Save/load window layout when ending/beginning
session. “SAVE” will save the layout on exit. “LOAD” will
load the layout when starting. “LOADSAVE” (or omitting
the variable altogether) will do both. “NONE” will do
neither.

APPLPROG_NAME Allows renaming of applprog executable (OS Open
target only)

FONT_SIZE Specifies the font size to use in the main window for the
text in the command history and message windows.
This size should be one of 8, 10, 12 or 14.

COLOR_CTRL_BG Specifies color for background control areas
(non-MPS)

COLOR_CTRL_FG Specifies color for foreground control areas (non-MPS)

COLOR_TEXT_BG Specifies color for background text areas (non-MPS)

COLOR_TEXT_FG Specifies color for foreground text areas (non-MPS)

COLOR_WIN_BG Specifies color for background window areas
(non-MPS)

COLOR_WIN_FG Specifies color for foreground window areas (non-MPS)
3-6 RISCWatch Debugger User’s Guide

MPS_FILE Specifies file containing multiprocessor support
configuration and options. See “Multi-Processor
Resources” on page 3-28

PRD_FILE Specifies a single file containing user defined registers,
register fields and chips. See “Core + ASIC Resources”
on page 3-9 for additional information

REG_FILE Specifies a file containing user defined register and
register fields and has been replaced by the PRD_FILE
environment variable. See “Core + ASIC Resources” on
page 3-9

STARTUP_FILE Specifies a command file which will be run each time
RISCWatch is started. See“Command Files” on
page 3-125.

PROBE_FLASH Specifies the firmware loading sequence for JTAG
ethernet targets.

AUTO When RISCWatch is first invoked, a time stamp
comparison is made between the preloaded Processor
Probe firmware and the firmware files (drivers) provided
with RISCWatch. If the time stamps do not match, the
RISCWatch firmware files are loaded. This is the default
operation of RISCWatch if PROBE_FLASH is not
designated in the environment file.

NO The Processor Probe will not be loaded with the
RISCWatch firmware files. Any firmware file time stamp
checks are ignored. Warning : The user assumes
responsibility for guaranteeing that the firmware loaded
on the Processor Probe is compatible with the target
processor and the version of RISCWatch being used.

YES The Processor Probe will be loaded with the firmware
files provided with RISCWatch. Any firmware file time
stamp checks are ignored. RISCWatch initialization time
will be extended to load both the generic and processor
specific driver files.

TRACE_ENABLE Specifies one or more RISCWatch commands to be
executed prior to starting trace. If more than one
command is needed, each additional command must be
preceded by a semicolon (i.e. TRACE_ENABLE = write
0x0 22;set gpio = 15). This optional variable is only
applicable to PowerPC 400Series Core+ASIC JTAG
targets, where unique register or memory initialization
may be required to enable the trace feature. The
designated commands will be executed during the
Using the RISCWatch Debugger 3-7

processing of the trace run command, which can be
called from the RISCWatch Trigger or Compound Trigger
windows. Please note that the exec command is not a
valid TRACE _ENABLE designation.

TRACE_DISABLE Specifies one or more RISCWatch commands to be
executed immediately following the first stop request after
a trace run. If more than one command is needed, each
additional command must be preceded by a semicolon
(i.e. TRACE_DISABLE = write 0x0 22;set gpio =
15;memacc clear). This optional variable is only
applicable to PowerPC 400Series Core+ASIC JTAG
targets, where unique register or memory initialization
may be required to disable the trace feature. The
designated commands will be executed during the
processing of the trace run command, which can be
called from the RISCWatch Trigger or Compound Trigger
windows. Please note that the exec command is not a
valid TRACE _DISABLE designation.

IR_SEG0 Specifies a binary sequence to be added to each JTAG
SCAN_IR command. This variable is only applicable to
PowerPC 400Series Core+ASIC JTAG targets. The
binary sequence indicates the number of bits added to
the SCAN_IR chain as well as the value needed to
communicate with the core processor. For example,
‘IR_SEG0 = 100’ indicates the value of three additional
bits that are connected to the end (TDO) of the SCAN_IR
chain. The user assumes responsibility for identifying the
correct binary sequence.

File syntax consists of placing the resource name on a new line, and then
following it with one or more spaces, an equal sign, one or more spaces and then
specifying the resource value.

For example:

RWPPC_DIR = /usr/rwppc

To enhance readability of this file, comment and blank lines are allowed. A
comment can only start in the first column and does so by beginning with the #
character.

Every time RISCWatch is started, it attempts to locate the environment resources
file using the following rules:

1. Check to see if it is in the current directory; if so, use it

2. If a relative or absolute path is given for the executable, see if the environ-
ment file is in the same directory as the executable. If it is, use it.
3-8 RISCWatch Debugger User’s Guide

3. Check to see if it is in a directory specified by the environment variable
PATH; if so, use it, else

4. Print an error message and terminate RISCWatch.

Core + ASIC Resources

With the introduction of the IBM PowerPC 401 Core and a growing library of on
chip peripherals, IBM offers high-performance custom processors. Using a single
PowerPC core, hundreds of unique chips can be developed to satisfy specific
customer needs.

Many of the basic functions performed by a debugger (line stepping, memory
display, etc.) depend on both PowerPC core and peripheral resources.
RISCWatch allows users to define both the register organization and the memory
configuration of their Core+ASIC environment. The following user interfaces are
provided to accomplish this task:

1. Processor Definition File: used to define the processor and ASIC
resources that RISCWatch will need to access

2. memacc Command: used to define the correct access size and
read/write restrictions of any memory access initiated by RISCWatch

3. Window Descriptor File: used to create User-Defined RISCWatch
windows which can be used to display specified registers, register fields,
or memory regions.

The following sections provide additional details about these Core+ASIC
interfaces. Please read all sections to get a complete understanding of the
flexibility RISCWatch provides for custom chip designs.

Processors, Cores and Chip Resources

When RISCWatch is first started, the Processor Resource Definition (PRD) file is
read to determine the debug environment. The PROC environment variable,
designated in the environment file (rwppc.env), is used as an index into the PRD
file to completely define the unique resources (processor, cores, registers, TLBs,
caches, etc.) of the specified target. The default PRD file is updated with each
new version of RISCWatch to contain the latest definitions for all standard
PowerPC chips.

With the increasing popularity of Core + ASIC designs, a flexible debug solution is
needed to allow debugging on non-standard, customer specific PowerPC parts.
RISCWatch makes use of Processor Configuration Files (PCF) to provide this
solution. These ASCII text formatted files allow users to define the processor,
Using the RISCWatch Debugger 3-9

core, and chip resources (registers, cache, memory, etc.) needed to uniquely
define a custom design.

Users working on standard PowerPC parts (403GCX, 603e, etc.) can use the
resources defined in the default RISCWatch PRD file (rwppc.prd) for their
debugging sessions. This file is loaded by default and is totally transparent to the
end user. If a custom Core + ASIC solution is being used, or additional register
definitions are needed, a new PRD file will need to be created by compiling one or
more customer supplied Processor Configuration Files.

Processor Configuration File (PCF)

Processor Configuration Files (PCF), introduced with RISCWatch version 4.3, are
created by the user prior to starting RISCWatch. These files contain the resource
definitions required to uniquely define the target debug environment. This new file
format, with its enhanced support for Indirectly Mapped Registers, replaces the
Register Definition File format of previous releases (see Appendix B, "Register
Definition File (Outdated)").

Once created, the PCF file must be compiled into a loadable form. The user must
invoke the RISCWatch PCF compiler program (rwpcfc) with the PCF file name
designated as an input argument. If no errors are detected, a new Processor
Resource Definition (PRD) file is created. This new file will have the same PCF
base file name, with a file extension of ".prd".

The RISCWatch PRD_FILE environment variable is used to identify the name of
the customized PRD file. Upon initial program startup, RISCWatch will read the
designated PRD file to determine the unique target debug environment. Only one
PRD file can be designated and it is located using the following rules:

• If the file name is qualified (directory path indicated), the file search is
performed using the specified directory only.

• If the name is not qualified, the file search is performed using the directory
paths designated with the RISCWatch SEARCH_PATH environment
variable. If not found, the current directory is searched.

File Management

The Processor Configuration File (PCF) is an ASCII file that can be created with
any text editor. Once defined, it must be compiled by the rwpcfc compiler
program. Typically, a PCF file contains definitions for a unique ASIC macro.

The easiest approach is to simply put all definitions into a single PCF file so all the
necessary information can be easily located and edited as needed. Other times it
might make more sense to create multiple files, each containing the necessary
details for a separate macro. It will be up to each user to determine which method
works best for them.
3-10 RISCWatch Debugger User’s Guide

If just one PCF file is created, it can be simply compiled on its own. If the multiple
PCF file approach is used, there needs to be one “master” PCF which is used to
gather the other low-level PCF files into one, coherent entity. When the low-level
PCF files are compiled, they need to use the -refer flag which tells the compiler
that they will later be included, or referred to (using REFER), by another file.

Regardless of how deeply these low-level files are nested, if they will be included
by another PCF file, they need to be compiled with the -refer flag. Once it is time
to compile the highest level “master” PCF file, the -refer flag is NOT used since it
represents the highest level of user compilation.

Successful compilation of the highest level “master” PCF file will result in a valid
PRD file whose name can then be specified in the RISCWatch environment file
with the PRD_FILE variable.

RISCWatch comes with a default PRD file (rwppc.prd) which is automatically
loaded if no PRD_FILE environment variable is specified.

File Syntax

The general syntax rules for the PCF file are as follows:

1. The "#" character denotes the start of a comment. All text following the
"#" character on a given line will be ignored.

2. Blank lines are allowed and will be ignored.

3. Any error detected while compiling the PCF will generate error messages
and terminate execution of the compiler.

4. Hex values are preceded by ‘0x’, such as 0x12AB0423.

5. Implied Hex values are not preceded by ‘0x’, such as ABCD1245.

The following sections define the complete list of PCF definitions and their valid
line entries.

REFER Definitions

The REFER definition indicates that the current PCF file will use resources
defined in another PCF file. This functionality allows a PCF file to refer to
resources defined in another. The rwpcfc compiler does not allow a reference
before a definition. For this reason, REFER definitions should appear at the very
top of the PCF file so that when resources are referenced later in the current PCF
file, the compiler will already be aware of them.

Each REFER definition must adhere to the following syntax:

REFER filename.prd
Using the RISCWatch Debugger 3-11

Where:

• filename.prd is the name of the PRD file which is the result of successfully
compiling its associated PCF file.

Note: If a resource is referenced before it has been defined, an error message will
be generated and the compile will be aborted. Place the REFER definitions near
the top of the file to define all resources before they are referenced further down in
the file.

MACRO Definitions

The MACRO definition is the basic building block of the PCF file and allows for a
high degree of modularity and reusability. By carefully defining PCF file MACROs
along logical or functional divisions, references can be made to them by countless
other definitions. Such abilities may not seem important if only one chip is being
defined but it becomes crucial if the same or similar resources are used in multiple
ASIC designs.

Each MACRO definition must adhere to the following syntax:

DEFINE MACRO macro_name

macro_def

END

Where:

• macro_name is the unique name being assigned to this MACRO and is the
name by which other definitions will reference it. This name can only contain
alpha-numeric and underscore (_) characters.

Note: the prefix “PPC_” has been reserved for debugger use. Therefore
no macro_name may begin with “PPC_”

• macro_def represents one or more MACRO definitions, each of which defines
one resource. The resources which can be defined in a MACRO are fields
(FIELD definition), registers (REG definition) and register fields (REGFLD
definition). See below for information about these definitions.

Note: If a resource is referenced before it has been defined, an error message will
be generated and the compile will be aborted.

CHIP Definitions

There are two forms of CHIP definitions. One is used to define a chip based on an
existing RISCWatch defined core (DEFINE CHIP) while the other is used to add
resources to an existing RISCWatch defined chip (APPEND CHIP).

A DEFINE CHIP definition must adhere to the following syntax:

DEFINE CHIP chip_name

dc_def
3-12 RISCWatch Debugger User’s Guide

END

Where:

• chip_name is the unique name being assigned to this CHIP and is the
name used to set the PROC environment variable.

• dc_def represents one or more DEFINE CHIP entries, each of which
defines or includes one resource. The resources which can be defined are
names (NAME definition), PVRs (PVR definition) and firmware revisions
(REV definition). The resources which can be included are macros and a
single core (INCLUDE definition). See below for information about these
definitions.

The following restrictions apply to a DEFINE CHIP definition

1. There must be one and only one INCLUDE CORE definition

2. There may be zero or more INCLUDE MACRO definitions

3. There may be zero or more DEFINE NAME definitions

4. There must be at least one DEFINE PVR definition

An APPEND CHIP definition must adhere to the following syntax:

APPEND CHIP chip_name

ac_def

END

Where:

• chip_name is the unique name being assigned to this CHIP and is the
name used to set the PROC environment variable.

• ac_def represents one or more APPEND CHIP entries, each of which
defines or includes one resource. The resources which can be defined are
field (FIELD definition), name (NAME definition), register (REG definition),
register field (REGFLD definition), register alias (REGALIAS definition),
PVRs (PVR definition) and firmware revisions (REV definition). The
resources which can be included are macros and a single chip (INCLUDE
CHIP definition). See below for information about these definitions.

The following restrictions apply to an APPEND CHIP definition

1. Any included MACROs may only contain REG, REGFLD and REGALIAS
entries

2. There may be zero or more REG definitions.

3. There may be zero or more REGFLD definitions.

4. There may be zero or more REGALIAS definitions.
Using the RISCWatch Debugger 3-13

5. There must be one INCLUDE CHIP definition.

Note: If a resource is referenced before it has been defined, an error message will
be generated and the compile will be aborted.

For the list of RISCWatch defined CHIPs and COREs which are available for use,
see the on-line FAQ available via the program Help pulldown, or visit the
RISCWatch Support Center web page.

The following sections define the complete list of valid line entries for the DEFINE
MACRO, DEFINE CHIP and APPEND CHIP definitions.

INCLUDE Definitions

There are three forms of INCLUDE definitions which allow the inclusion of a
previously defined CHIP, CORE, or MACRO definition.

An INCLUDE CHIP definition must adhere to the following syntax:

INCLUDE CHIP chip_name

Where:

• chip_name is the unique name of the chip being included. These chip
names are defined by IBM and are representative of the parts contained in
the PowerPC processor library. Examples of valid chip names include
PPC_403GCX, PPC_603EV, PPC_740, PPC_750, and PPC_401C2.

An INCLUDE CORE definition must adhere to the following syntax:

INCLUDE CORE core_name

Where:

• core_name is the unique name of the core being included. These core
names are defined by IBM and are representative of the parts contained in
the PowerPC ASIC library. Examples of valid cores names include
PPC_401M1_CORE, PPC_401B2_CORE, and PPC_401C2_CORE.

An INCLUDE MACRO definition must adhere to the following syntax:

INCLUDE MACRO macro_name [offset]

Where:

• macro_name is the unique name of a previously defined MACRO
definition.

• offset is an optional address offset which is used for relocatable register
MACROs. The offset is added or subtracted (depending on the specified
sign) to each register definition contained in the referenced MACRO. This
3-14 RISCWatch Debugger User’s Guide

allows a "base" definition to be defined once and then relocated anywhere
in the memory address space.

Note: If a resource is referenced before it has been defined, an error message will
be generated and the compile will be aborted.

For the list of RISCWatch defined CHIP, CORE and MACRO names available for
use on the INCLUDE directive, see the online FAQ available via the program Help
pulldown, or visit the RISCWatch Support Center web page.

EXEC Definitions

An EXEC definition is used to associate a name with an ordered sequence of
RISCWatch commands which will be executed whenever the register it is
referenced from is read or written (See REXEC and WEXEC keywords listed
under REG Definitions). Each EXEC definition must adhere to the following
syntax:

DEFINE EXEC exec_name

command

ENDEXEC

Where:

• exec_name is the unique name being assigned to this EXEC and is the
name used by REG definitions that reference it. This name can only
contain alpha-numeric and underscore (_) characters.

• command is a list of one or more RISCWatch commands which will be
executed in the order in which they are listed. There can only be one
command specified per line. Parameters may be passed into the EXEC by
using the PARMS command (see “Command File Parameters” listed under
“Command Files”).

The EXEC definition is basically a mini-command file (see “Command Files”)
which can be executed whenever customized registers are read from or written to.
Such functionality provides for a great deal of power but it must be used
responsibly. Care must be taken to avoid “dangerous” operations. If any other
processor resources are manipulated while the EXEC runs, it is usually wise to
back up data values before the EXEC starts executing and then restore these
values just before leaving the EXEC.

To facilitate the transfer of data values into and out of these customized register
EXEC definitions, RISCWatch provides the $INPUT and $RETURN
pseudo-variables. Whenever the REG command is used to write a value to a
register which uses an EXEC definition, the commands inside the EXEC can
reference $INPUT to obtain the data value to be written. Likewise, while using the
REG command to read an EXEC definition register, $RETURN can be set to the
value read so that it may be referenced once the EXEC returns.
Using the RISCWatch Debugger 3-15

See the “PCF Example” section which follows for more details.

FIELD Definitions

A FIELD definition is used to associate a name with defined logical bit groupings
so that it may be referenced later by another resource. Each FIELD definition
must adhere to the following syntax:

DEFINE FIELD field_name {field_def}

Where:

• field_name is the unique name being assigned to this FIELD and is the
name used by other definitions to reference it. This name can only contain
alpha-numeric and underscore (_) characters.

• field_def defines one or more bit fields. Each bit field must adhere to the
following syntax:

name start length

Where:

• name is the unique name being assigned to this bit field and is the
name used to reference it. This name can only contain
alpha-numeric and underscore (_) characters.

• start is the decimal physical starting bit (MSB=0) of this bit field
• length is the decimal length of this bit field in bits

NAME Definitions

The NAME definition is used to define a name to a given chip. Many chips are
known by both a marketing name (i.e. 740), and a "pet" name (i.e. Arthur).

This definition allows any number of "pet" names to be defined and is intended to
give a unique code name for a given chip definition. Once defined, the "pet" name
can be used when specifying the value of the PROC variable in the RISCWatch
environment file.

A NAME definition must adhere to the following syntax:

DEFINE NAME user_name

Where:

• user_name is the unique name being assigned. This name can only
contain alpha-numeric and underscore (_) characters.

PVR Definitions

The PVR definition is used to define the value of the PVR for the given chip. When
RISCWatch is started, the PROC environment variable, along with the PRD file,
are used to define the resources of the target system. Once communication with
the chip has been established, the PVR register will be read and compared to the
3-16 RISCWatch Debugger User’s Guide

PVR definition value. A miscompare of these values will result in a warning or
error message to the user. Multiple PVR definitions are allowed to help account for
changes in the PVR due to multiple revisions of the same ASIC.

A PVR definition must adhere to the following syntax:

DEFINE PVR pvr_value

Where:

• pvr_value is the processor’s unique PVR value and is an implied
hexadecimal number (ex. DEFINE PVR 40ABCD04).

REG Definitions

A REG definition is used to define an instance of a physical register. Each REG
definition must adhere to the following syntax:

DEFINE REG reg_class reg_name
#|address|addr_reg addr_val data_reg
bit_width R|W|RW [access] [VOLATILE] [display]
[REXEC exec_name[{parm_list}]]
[WEXEC exec_name[{parm_list}]]

Where:

• reg_class is the class of register being defined; DCR, IMR, SPR or MMIO
• reg_name is the unique name being assigned to this REG and is the name

by which other definitions will reference it. This name can only contain
alpha-numeric and underscore (_) characters.

Note: registers being defined because they are part of an ASIC
macro should use a common naming prefix so that they can be
grouped together by RISCWatch.

The naming convention RISCWatch supports for ASIC register
prefixes is to use a few letters as an acronym for the macro, followed
by a number (usually starting with 0) and ending with an underscore
(_). This prefix is then added to the beginning of each register
contained in that macro.

By following this convention, RISCWatch is able to detect the prefix
and group the registers accordingly. This allows RISCWatch to
create an ASICs entry in the Hardware | Register pulldown listing all
the prefixes it detected during initialization. Selecting one of these
prefixes then creates a Register window containing all registers with
this prefix thereby grouping them together to represent the
associated macro.

For example, if a PLB bus macro were being added, all registers
defined for use with the PLB could be prefixed with ‘PLB0_’.
RISCWatch could then detect this common prefix and the Hardware |
Using the RISCWatch Debugger 3-17

Register | ASICs pulldown would list ‘PLB0’. Selecting this entry
would bring up a Register window with all the PLB0 prefixed registers
in it.

• # is the hex number for a DCR or SPR register.
• address is the hex address for an MMIO register.
• addr_reg is the name of the address register for an Indirectly Mapped

Register (IMR).
• addr_val is the value to be written to addr_reg to access an IMR register’s

contents.
• data_reg is the name of the data register for an IMR register.
• bit_width is the decimal width of this register in bits.
• R|W|RW defines the register’s access; read-only (R), write-only (W) or

read-write (RW).
• access is an optional parameter for MMIO registers which is used on JTAG

ethernet and JTAG parallel port RISCWatch targets. It is a decimal number
which indicates the access size, in bits, RISCWatch must use when
reading or writing this memory location. The access size should be 8, 16 or
32, with each multiple identifying a unique PowerPC load/store instruction
to use. For example, an access size of "16" instructs RISCWatch to read
the register by executing the "load halfword" PowerPC instruction.
Specifying an access size will override any access size settings made with
the memacc command. If no access size is specified, RISCWatch will use
the access size defined for the memory region. See memacc on page
5-81 for information about how to set up a unique memory region access
size.

• VOLATILE is an optional keyword which indicates this register will change
its value after a read operation is performed. It must be entered in
uppercase. RISCWatch users must issue an explicit read to display the
contents of a volatile register. This keeps RISCWatch from asynchronously
reading the register thus avoiding changes to it. Having the auto-update
3-18 RISCWatch Debugger User’s Guide

mode enabled on a window containing these registers will not cause them
to be read during the update.

• display is an optional keyword which indicates the default display format for
floating point registers; HEX or SCI

• REXEC is an optional keyword which indicates that a previously defined
EXEC entry is to be run to read the value of this register.

• WEXEC is an optional keyword which indicates that a previously defined
EXEC entry is to be run to write a value to this register.

• exec_name is the name of a previously defined EXEC entry which is to be
run.

• parm_list is an optional list of one or more parameters whose values are to
be passed to the specified EXEC entry.

Note: If a resource is referenced before it has been defined, an error message will
be generated and the compile will be aborted.

REGALIAS Definitions

A REGALIAS definition is used to refer to a previously defined register by another
name.

A REGALIAS definition must adhere to the following syntax:

DEFINE REGALIAS new_reg = exist_reg

Where:

• new_reg is the new register alias name.
• exist_reg is the name of the previously defined register.

Note: If a resource is referenced before it has been defined, an error message will
be generated and the compile will be aborted.

REGFLD Definitions

A REGFLD definition is used to define a register field. Each REGFLD definition
must adhere to the following syntax:

DEFINE REGFLD register field_name|{field_def}

Where:

• register is the name of a previously defined register.
• field_name is the name of a previously defined FIELD entry.
• field_def defines one or more bit fields. Each bit field must adhere to the

following syntax:

name start length

Where:
Using the RISCWatch Debugger 3-19

• name is the unique name being assigned to this bit field and is the
name by which it will be referenced. This name can only contain
alpha-numeric and underscore (_) characters.

• start is the decimal physical starting bit (MSB=0) of this bit field.
• length is the decimal length of this bit field in bits.

Note: If a resource is referenced before it has been defined, an error message will
be generated and the compile will be aborted.

REV Definitions

The REV definition is used to indicate to RISCWatch which Processor Probe
firmware files are to be used with a specific definition of a chip/core. For
chips/cores with multiple revisions, multiple REV definitions may be used to define
a unique set of files for each, if necessary.

A REV definition must adhere to the following syntax:

DEFINE REV n driver generics

Where:

• n is the processor revision number. 0 should be used for all PowerPC 400
family cores/chips.

• driver is the name of the Processor Probe driver filename to be used for
this revision. Such names usually start with "E34" and have a ".X"
extension.

• generics is the name of the Processor Probe generics filename to be used
for this revision. Such names usually start with "E34" and have a ".X"
extension.

PCF Compiling

Once a PCF file has been created, it must be compiled by rwpcfc to verify that the
file syntax is correct and that all definitions are complete. If so, the file is turned
into a format which can be loaded by RISCWatch at run time.

The compiler program, rwpcfc , was installed in the same directory as the main
RISCWatch executable. This is also where the default RISCWatch PRD file is
located. This PRD file contains a number of predefined processors, cores and
other resources that may need to be referenced.

To run the compiler, use the following syntax:

rwpcfc [-log] [-refer] filename.pcf

Where:
3-20 RISCWatch Debugger User’s Guide

• -log is an optional flag. If present, all messages which are usually printed
to the screen are directed to the rwpcfc log file (rwpcfc.log).

• -refer is an optional flag. It must be specified when compiling a file which
will be REFERred by another file (see the REFER definition above). In
other words, if file A.pcf has a "REFER B.prd" line in it, file B.pcf must have
been compiled with the -refer flag, since it is being REFERred to. If only
one PCF file is being defined and compiled, this option will not be used.

• filename.pcf is the name of the PCF file that is to be compiled. At this time,
the compiler is a DOS-based tool so Windows 95/98 long filenames are
not supported.

If any errors are detected, an appropriate error message will be printed to the
screen or log file. These should be used to correct the source of the error
message(s) prior to attempting a recompile.

Successful compilation will result in a valid PRD file whose name can then be
specified in the RISCWatch environment file with the PRD_FILE variable. When
RISCWatch is started, this variable will be used to load the appropriate resource
information uniquely defined by the processor/core designated by the PROC
environment variable value.

PCF Example

The following examples are provided to acquaint users with some of the more
common coding of the PCF file.

In this example, a few simple memory mapped registers are added to an existing
chip (a function previously accomplished with the Register Definition File). In
addition, register fields have been defined for MMIO_2 and MMIO_3:

APPEND CHIP MY_403GB
INCLUDE CHIP PPC_403GB

DEFINE REG MMIO MMIO_1 0xA000 32 RW
DEFINE REG MMIO MMIO_2 0xA004 32 RW 8
DEFINE REG MMIO MMIO_3 0xA008 32 RW VOLATILE
DEFINE REG MMIO MMIO_4 0xA00C 32 RW 8 VOLATILE

DEFINE REGFLD MMIO_2 { RES 0 16
AVRL 16 8
AVRR 24 8 }

DEFINE REGFLD MMIO_3 { RES 0 16
AVRL 16 8
AVRR 24 8 }

END
Using the RISCWatch Debugger 3-21

Once compiled, this would result in a custom PRD file which would be set using
the PRD_FILE environment variable while the defined chip, MY_403GB, would be
set using the PROC environment variable.

In the next example, a MACRO will be used to accomplish the same results as the
previous example. In addition, macro IMR_REGS is defined to demonstrate how
to define IMR registers. Note the use of DEFINE FIELD for registers that share the
same register field designations:

DEFINE MACRO MMIO_REGS
DEFINE REG MMIO MMIO_1 0xA000 32 RW
DEFINE REG MMIO MMIO_2 0xA004 32 RW 8
DEFINE REG MMIO MMIO_3 0xA008 32 RW VOLATILE
DEFINE REG MMIO MMIO_4 0xA00C 32 RW 8 VOLATILE

DEFINE FIELD MMIO_FIELD1 { RES 0 16
 AVRL 16 8
 AVRR 24 8 }

DEFINE REGFLD MMIO_2 MMIO_FIELD1
DEFINE REGFLD MMIO_3 MMIO_FIELD1

END

DEFINE MACRO IMR_REGS
DEFINE REG DCR T0_ADDR 0x0180 32 RW
DEFINE REG DCR T0_DATA 0x0181 32 RW
DEFINE REG IMR T0_REG1 T0_ADDR 0x00000001 T0_DATA 32 RW
DEFINE REG IMR T0_REG2 T0_ADDR 0x00000002 T0_DATA 32 RW
DEFINE REG IMR T0_REG3 T0_ADDR 0x00000003 T0_DATA 32 RW

END

APPEND CHIP MY_403GB
INCLUDE CHIP PPC_403GB
INCLUDE MACRO MMIO_REGS
INCLUDE MACRO IMR_REGS

END

In the next example, a MACRO will be used to define a base set of registers which
can be located anywhere within the chip’s address space. Using the offset feature
of the INCLUDE MACRO statement, this set of registers can be used in two
different processors in two different memory locations:

DEFINE MACRO BASE_REGS
DEFINE REG MMIO BASE_1 0x0 32 RW
DEFINE REG MMIO BASE_2 0x4 32 RW
DEFINE REG MMIO BASE_3 0x8 32 RW
DEFINE REG MMIO BASE_4 0xC 32 RW
3-22 RISCWatch Debugger User’s Guide

END

APPEND CHIP MY_A1
INCLUDE CHIP PPC_401A1
INCLUDE MACRO BASE_REGS 0xA0000000

END

APPEND CHIP MY_B2
INCLUDE CHIP PPC_401B2
INCLUDE MACRO BASE_REGS 0xFFF00000

END

In the next example, a MACRO will be used to define a customized register which
uses two DEFINE EXEC definitions to create read and write “routines” which can
then be used to manipulate the contents of this specialized register:

DEFINE MACRO CUST_REG
DEFINE EXEC cust_read

PARMS {stuff_instr}
STUFF stuff_instr
SET $RETURN = 0x00E80024

ENDEXEC

DEFINE EXEC cust_write
PARMS {stuff_instr}
WRITE 0x00E80024 $INPUT
STUFF stuff_instr

ENDEXEC

DEFINE REG DCR APU1 0xFFFF 64 RW
REXEC cust_read{0x90A10024}
WEXEC cust_write{0x80A10024}

END

MEMACC Command
When a memory read or write operation is requested, RISCWatch must first
determine if the request is valid and then determine the proper way to proceed
with the request. Performing a read to an invalid memory address, or issuing a
store word instruction to a memory region configured for half word access, could
result in unwanted machine checks, data corruption, or system hangs.

When RISCWatch is first started, the target processor name (designated with the
PROC environment variable) is used to define the type of memory address
validation to perform. RISCWatch internal address validation can be summarized
as follows:
Using the RISCWatch Debugger 3-23

• On 403GA and GB processor targets, RISCWatch will read the bank
registers to determine valid address regions and read/write access
restrictions. Four byte word access is assumed valid for any read or write
operation. Access type defaults to instruction and data.

• On 403GC and GCX processor targets, RISCWatch will default to the
operations defined for the 403GA if translation is off. If translation is on, the
TLB is read to determine valid address regions and access restrictions.
Four byte word access is assumed valid for all read/write operations.
Access type is determined by the instruction and data translation bits
defined in the machine state register (MSR). Since OS Open performs its
own address validation when translation is on, RISCWatch assumes all
addresses are valid for OS Open targets.

• On 405GP processor targets, RISCWatch will read EBC and SDRAM
registers to determine address regions and read/write access restrictions
when address translation is off. If translation is on, the TLB is read to
determine valid address regions and access restrictions. Four byte word
access is assumed valid for all read/write operations. Access type is
determined by the instruction and data translation bits defined in the
machine state register (MSR). Since OS Open performs its own address
validation when translation is on, RISCWatch assumes all addresses are
valid for OS Open targets.

• On 6xx and 7xx targets, all addresses are assumed valid for both read and
write access. Access size defaults to 8 bytes. Access type defaults to
instruction and data.

• On Core+ASIC processors, all addresses are assumed valid for both read
and write accesses when address translation is off. Access size defaults to
4 bytes. Access type defaults to instruction and data. If the MMU is
enabled, addresses are checked against the current TLB entries.

Note: For ROM Monitor and OS Open targets, access size is governed by the
monitor code running on the target processor.

Obviously, the internal address validation may not be adequate for all users. In an
effort to provide additional memory access protection, RISCWatch provides the
memacc command which allows a user to define the unique memory
configuration associated with a processor target.

Use of MEMACC ADD

Users can override any RISCWatch internal address validation checks by
executing the memacc add command. The command syntax is defined as follows:

memacc add beg_addr end_addr [access [size [type]]]

Where:
3-24 RISCWatch Debugger User’s Guide

• add is a keyword on the memacc command indicating that a new entry is
to be added to the list of user defined address regions.

• beg_addr indicates the beginning address of target memory being defined
with this command. The address can be designated in hex (leading “0x” or
“0X”), octal (leading 0), or decimal.

• end_addr indicates the last address of target memory being defined with
the command. The address can be designated in hex (leading “0x” or
“0X”), octal (leading 0), or decimal

• access is an optional parameter which indicates the access restrictions of
the specified region. Access can be “RO” (read only), “WO” (write only),
”NA” (no access), or “RW” (read/write). If not specified, access defaults to
“RW”.

• size is an optional parameter which is used on JTAG ethernet and JTAG
parallel port RISCWatch targets. It is a decimal number which indicates the
maximum access byte size RISCWatch can use when reading or writing
the specified memory region. Size can be 0,1, 2, 4, or 8, with each multiple
identifying a unique PowerPC load/store instruction to use. For example,
an access size of “4” instructs RISCWatch to read memory by executing
the “load word” PowerPC instruction. If no access size is specified, the
default size defined for the target processor will be used. A size of “0” also
indicates that the default size, used for RISCWatch internal address
checking, should be used.

• type is an optional parameter indicating the valid type of access for the
specified memory region. Valid types are IMEM (instruction memory),
DMEM (data memory), or MEM (instruction and data memory). If not
specified on the command, the type defaults to MEM. Since users are not
aware of the internal access types used for the various RISCWatch
screens, the default setting of MEM should normally be used.

Note: Additional variations of the memacc command are possible but not
pertinent to this discussion. See memacc on page 5-81 for additional
information.

Examples:

memacc add 0x40000000 0x40000009 RW 1

memacc add 0xFFFF0000 0xFFFFFFFF RO 4

memacc add 0x4000000a 0x4FFFFFFF NA

Each “memacc add ” command adds an entry to a list of user defined address
definitions. When RISCWatch performs a memory operation, address validation
proceeds as follows:

1. Check the user defined address regions first to determine if the address
can be read/written. Entries are searched LIFO, meaning the last
“memacc add ” command entered is checked before any previous entries.
Using the RISCWatch Debugger 3-25

2. Perform the internal address checking defined for the target processor for
any portion of the address range not included in the user defined entries.

Practical Application Example

The following example is provided to demonstrate how the memacc command can
be used to customize RISCWatch memory access.

Example:

1. RISCWatch is running on a customized chip that is built around the Pow-
erPC 401 Core.

2. There is a two byte region of memory, starting at address 0x50004444,
which can be accessed with the load/store halfword PowerPC instruc-
tions.

3. All other addresses, starting at 0x50000000 and ending at 0x5FFFFFFF,
are considered invalid. A store or load to any one of these addresses will
result in a machine check.

4. Memory mapped IO addresses 0x40000000 to 0x40000009 are one byte
read/write access locations used for serial port operations. Addresses
0x4000000A to 0x4FFFFFFF are invalid

5. All other addresses are valid read/write regions which can be accessed
via the PowerPC load/store word instructions.

Based on the target processor, RISCWatch is set up to perform internal address
checking:

• Every address, from 0x00000000 to 0xFFFFFFFF, is valid for both read
and write operations.

• Access size defaults to 4. This means PowerPC load/store word
instructions can be used to access memory.

Note: The user always has the option of not using any of the RISCWatch
internal address checking. This is accomplished by completely defining the
entire address space with “memacc add ” commands. For example, “memacc
add 0 0xFFFFFFFF” defines the entire address space as a read/write region
of 4 byte access size. With all possible addresses defined, there is no need
for RISCWatch to perform any internal address checking.

Using the default internal checking as a base, “memacc add ” commands must be
issued to indicate all address regions that do not allow 4 byte read/write access.
These would be all the addresses from 0x40000000 to 0x5FFFFFFF.

The following commands should be added to the RISCWatch start-up command
file (designated with the STARTUP_FILE environment variable):

1. memacc add 0x50000000 0x5FFFFFFF NA

2. memacc add 0x50004444 0x50004445 RW 2
3-26 RISCWatch Debugger User’s Guide

3. memacc add 0x40000000 0x40000009 RW 1

4. memacc add 0x4000000a 0x4FFFFFFF NA

Note: Notice the addresses overlap between the first and second commands.
Since the second command is issued after the first, RISCWatch will use the
restrictions of the second command, since LIFO search order is used.

RISCWatch is now customized to the unique memory constraints presented in this
example. Any attempt to read/write memory addresses 0x0400000a to
0x50004444, or 0x50004446 to 0x5FFFFFFF, will be flagged as an error and the
memory access will not be attempted. Any attempt to read/write memory
addresses 0x40000000 to 0x40000009 will be performed using PowerPC
load/store byte instructions. PowerPC load/store halfword instructions will be used
to access the halfword that exists at address 0x50004444. All other address
regions will be considered valid read/write requests that can be performed using
PowerPC load/store word instructions.
Using the RISCWatch Debugger 3-27

Window Descriptor File

Once the unique memory access restrictions and register definitions are complete
(by using the memacc command and creating a Processor Configuration File),
RISCWatch commands can be issued to read or alter resources which are
accessible from the core processor. In addition, users can create their own
customized windows which display Core+ASIC resources. Please see
“User-Defined Windows” on page 3-119 for details about customized RISCWatch
windows.

Multi-Processor Resources

In an effort to support multi-processor PowerPC systems, RISCWatch allows a
user to create a Multi-Processor Support (MPS) file. This file, created prior to
starting RISCWatch, contains information which allows a single RISCWatch
session to communicate to each processor.

Currently, certain restrictions apply when running RISCWatch in a multi-processor
environment:

• All PowerPC processors must be identical. For example, RISCWatch can
not currently debug both a 403GA and 603e processor from a single
session.

• For JTAG targets, each processor must be the only device on the JTAG
scan chain.

• Only one parallel port target is allowed.
• The target processor scan chain can not contain multiple devices.

The following sections provide additional details needed to run RISCWatch in a
multi-processor environment.

MPS File Syntax

The MPS file is an ASCII file that can be created with any text editor. The file is
identified to RISCWatch via the MPS_FILE environment variable, and must have a
file extension of “.mps”.

The general syntax rules are as follows:

1. The “#” character denotes the start of a comment. All text following the “#”
character on a given line will be ignored.

2. Blank lines are allowed and will be ignored.

3. Any error detected during the processing of the MPS file will surface an
error message in the RISCWatch log file and execution will terminate.
3-28 RISCWatch Debugger User’s Guide

Board Definitions

Board definitions span multiple lines of the file and are used to identify the type of
PowerPC chip on a board and the communication protocol RISCWatch should
use. Each board definition must adhere to the following syntax:

BOARD brd_name target_name [target_type [wbg [wfg [cbg [cfg [tbg [tfg]]]]]]]

CHIP proc_id chip_name ir bypass length
.....

ENDBOARD

Where:

• BOARD indicates the start of a new board definition and must appear in
uppercase.

• brd_name indicates a user defined name for the board. The name must be
enclosed in double quotes. Names exceeding 24 characters will be
truncated.

• target_name indicates a valid target name found in the TCP/IP services file
or a TCP/IP dotted address (e.g. 7.1.1.100). This overrides any
TARGET_NAME designation made in the rwppc.env file.

• target_type indicates the type of RISCWatch target to use. Valid target
types are those defined for the TARGET_TYPE environment variable. See
“Environment Resources” on page 3-5 for valid target types to use. If the
target type is not designated, the default JTAG_ETH is used.

• wbg indicates the window background color to use for all RISCWatch
windows associated with this board definition. See color on page 5-32 for
valid color designations. A value of “DEFAULT” indicates to use the host
system default.

• wfg indicates the window foreground color to use for all RISCWatch
windows associated with this board definition. See the command color on
page 5-32 for valid color designations. A value of “DEFAULT” indicates to
use the host system default.

• cbg indicates the control button background color to use for all RISCWatch
windows associated with this board definition. See color on page 5-32 for
valid color designations. A value of “DEFAULT” indicates to use the host
system default.

• cfg indicates the control button foreground color to use for all RISCWatch
windows associated with this board definition. See color on page 5-32 for
valid color designations. A value of “DEFAULT” indicates to use the host
system default.

• tbg indicates the text background color to use for all RISCWatch windows
associated with this board definition. See color on page 5-32 for valid
color designations. A value of “DEFAULT” indicates to use the host system
default.
Using the RISCWatch Debugger 3-29

• tfg indicates the text foreground color to use for all RISCWatch windows
associated with this board definition. See color on page 5-32 for valid
color designations. A value of “DEFAULT” indicates to use the host system
default.

• CHIP is a keyword indicating chip information will follow. It must be
designated in uppercase. At least one chip entry must be designated for
each board defined or a syntax error will occur.

• proc_id indicates a valid processor target name. Valid processor names
are those defined for the PROC environment variable. See “Environment
Resources” on page 3-5 for valid processor names to use.

• chip_name indicates a user defined name for the chip. The name must be
enclosed in double quotes. Names exceeding 24 characters will be
truncated.

• ir is a decimal number indicating the bit size of the JTAG instruction
register.

• bypass is a value used to put this chip in JTAG bypass mode. The value
can be specified in hex (leading “0x” or “0X”) or decimal.

• length indicates the number of bits on the scan chain when this chip is put
in JTAG bypass mode.

Note: The bypass and length fields are required when the JTAG scan chain
has more than one chip hooked up to it. In this case, multiple CHIP records
would be defined for a single board. As noted earlier, this type of configuration
is currently not supported.

Example:

BOARD “BRD1” 7.1.1.100 jtag_eth BLUE WHITE
CHIP 403GCX “chip_a” 4 0xF 1

ENDBOARD
BOARD “BRD2” 7.1.1.21 jtag_eth RED WHITE RED WHITE BLACK WHITE

CHIP 403GCX “chip_b” 4 0xF 1
ENDBOARD

In the above example, RISCWatch will be initialized to communicate with two
boards. The 403GCX chip on the first board will be identified as “chip_a”, and the
second board’s chip will be called “chip_b”. All windows containing a blue
background will be for “chip_a”, while those having a red background will be for
“chip_b”.

When an MPS file is designated, the TARGET_NAME and TARGET_TYPE
environment variable designations (specified in the rwppc.env file) will be ignored.
3-30 RISCWatch Debugger User’s Guide

MPS Debugging

When RISCWatch is started, the MPS_FILE environment variable setting is
detected in the rwppc.env environment file. If the specified file is found, it is read
in and used to put RISCWatch in MPS mode. The file is located using the
following rules:

• If the file name is qualified (directory path indicated), the file search is
performed using the specified directory only.

• If the name is not qualified, the file search is performed using the directory
paths designated with the RISCWatch SEARCH_PATH environment
variable. If not found, the current directory is searched.

Once in MPS mode, RISCWatch has the ability to switch its communications to a
target amongst the chips that were specified in the MPS file. This switching ability
allows for the resources of a particular chip to be specified and debugged as
though it were a single chip system. The following sections contain more
information on how individual chips are identified and debugged using the
RISCWatch interface.

MPS Context

At any given moment, RISCWatch can only communicate with a single chip. In an
MPS environment, it is necessary to debug the resources of several chips which
may reside on physically separate boards. To communicate with each individual
chip, there must be a way for RISCWatch to switch its communications path to
“talk” to a particular chip.

The resources specified in the MPS file define the communications paths
RISCWatch will use to communicate with all the chips in the MPS system. The
target names and types that were specified are used to select the proper physical
communications path. These resources are managed internally by RISCWatch
and are transparent to the end user.

The chip names specified in the MPS file are used to uniquely identify a particular
chip on a particular board. These names serve as a way for the user to
communicate to RISCWatch which chip’s resources are to be debugged. To
switch the communications path to talk to a particular chip, the mpsset command
is used.

The argument supplied to the mpsset command is simply the chip name specified
in the MPS file. RISCWatch is then able to use this name to look up the
communications path to the specified chip. RISCWatch configures its
communications so that it is able to debug the resources of the specified chip.
Using the mpsset command is referred to as setting the MPS context. It is within
this context that a particular chip’s resources will be accessed.
Using the RISCWatch Debugger 3-31

The RISCWatch Main window will be the primary means of identifying what MPS
context is currently set. The status bar, located at the bottom of the Main window,
will display the name of the chip which is currently being debugged.

The MPS context is said to have been set to this chip that is displayed in the status
bar. Any command issued from the command line on the Main window will
execute in this context. If a read register command is executed, the specified
register will be read from the current MPS context (the chip displayed in the status
bar). If a register from a different chip is to be read, the mpsset command must be
issued to switch the MPS context to that chip and then the ”read register”
command can be used.

When running a command file, the commands are executed under the current
MPS context. To switch the context during execution of the command file, simply
issue mpsset as necessary.

MPS Windows

In MPS mode, windows are classified as being one of three types:

MPS dynamic
MPS specific
MPS neutral

The RISCWatch Main window is the only instance of an MPS dynamic window.
This window can have its MPS context switched by using the mpsset command.
Its current MPS context is displayed in the status bar.

MPS specific windows are assigned the current MPS context upon creation and
its MPS context can not be changed thereafter. Any processor accesses or
commands issued from such a window will only pertain to its MPS context and no
other. The MPS context for each of these windows will be displayed in the
window’s title bar. What will be displayed is the chip name assigned to that MPS
context in the MPS file. Most windows in RISCWatch are MPS specific.

MPS neutral windows are assigned no MPS context because they do not access
processor resources or they simply use the current context (as displayed in the
Main window status bar). Examples of MPS neutral windows include Calculator,
Command File, Log, Memory Load, Memory Save, MPS, Output and Window List.

The MPS window is only available in MPS mode and is used as a shortcut to set
the MPS context as well as providing status for each chip. Displayed in this
window are all the boards and chips defined in the MPS file. The mouse is used to
select a chip which in turn issues the appropriate mpsset command to switch the
MPS context to this chip.
3-32 RISCWatch Debugger User’s Guide

Invoking the Debugger

Before RISCWatch is started for the first time, a few items need to be taken care
of. First, make sure that the RISCWatch executable is in a directory that can be
located by the PATH environment variable. Prior to starting RISCWatch, change
the environment resource file rwppc.env to match the specific target
configuration you plan to use. Below is the complete list of the different target
types available and a brief description of some of the key steps that need to be
taken. See “Environment Resources” on page 3-5 for additional resource setup
information.

• JTAG Parallel Port Target:

Verify that the JTAG hardware was installed as defined in the RISCWatch
Debugger Installation Guide.

Verify that the rwppc.env file designates ‘TARGET_TYPE = jtag_par’, as dis-
cussed in “Environment Resources” on page 3-5.

• JTAG Ethernet Target (RISCWatch Processor Probe Connection):

Verify that the Processor Probe hardware was installed as defined in the
RISCWatch Debugger Installation Guide.

Verify that the rwppc.env file designates ‘TARGET_TYPE = jtag_eth’, as dis-
cussed in “Environment Resources” on page 3-5.

Verify that the rwppc.env file designates ‘TARGET_NAME = x...x’, where
‘x...x’ is replaced by the TCP/IP name or address chosen for the processor
probe during installation.

Verify proper installation and network recognition of the RISCWatch Proces-
sor Probe. This can be accomplished by ‘pinging’ the TARGET_NAME from
the host system (ex. ‘ping 7.1.1.100’).

• ROM Monitor Target:

Verify that the host is configured correctly for Ethernet setup, as discussed in
the configuration section of the evaluation board kit user’s documentation.
These instructions describe specific host configuration steps and other setup
(editing /etc/services files) required by RISCWatch for successful host/target
communication.

Verify that the target ROM monitor is set up in debug mode, as discussed in
the IBM PowerPC evaluation board kit user’s documentation. This typically
involves starting a terminal emulation screen, resetting the board, enabling an
ethernet or serial port boot source, and selecting an option to enable ROM
monitor debug.
Using the RISCWatch Debugger 3-33

Verify that the rwppc.env file designates ‘TARGET_TYPE = rom_mon’ as dis-
cussed in “Environment Resources” on page 3-5.

Verify that the rwppc.env file designates ‘TARGET_NAME = x...x’, where
‘x...x’ is replaced by the TCP/IP name or address chosen for the ROM moni-
tor. See the IBM PowerPC evaluation board kit user’s documentation for more
information about setting up a local address for the ROM monitor.

From the host system, ping the TARGET_NAME to verify proper network and
ROM monitor initialization (ex ‘ping 7.1.1.4’). Note that the ROM monitor must
be in debug mode when the ping command is issued.

• OS Open Target

Verify that OS Open is running on the target system. RISCWatch cannot com-
municate with OS Open programs that have not called rsld_start() . Loading
an OS Open image can be performed using one of the other RISCWatch tar-
gets (see “Loading Boot and Boot Image Files” on page 3-46) or by using
ROM monitor bootp support. See the IBM PowerPC evaluation board kit
user’s documentation and the OS Open User’s Guide, listed in “Related IBM
Publications” on page xxiv of this user’s guide.

Verify that the rwppc.env file designates ‘TARGET_TYPE = osopen’ as dis-
cussed in “Environment Resources” on page 3-5.

Verify that the rwppc.env file designates ‘TARGET_NAME = x...x’, where
‘x...x’ is replaced by the TCP/IP address chosen for the OS Open image.

From the host system, ping the TARGET_NAME to verify proper network and
OS Open initialization (ex ‘ping 7.1.1.4’).

Under normal circumstances, RISCWatch will be started as described in “Starting
the Debugger” on page 2-1. RISCWatch does have a few command line
parameters which may or may not have to be specified depending on how you run
RISCWatch. Here is a list of the command line parameters that RISCWatch
understands:

-echo used to echo each command file line as it is executed; use
this to debug command file execution. This option is only
available on a non-PC platform.

-help or ? used to display the help information for RISCWatch which
lists all of the available command line options

-procNAME overrides PROC setting specified in the environment
resources file (rwppc.env). This allows multiple icons on
PC hosts to be defined for different processors while using
only one environment file.
See the README file for a list of currently supported
processor names.
3-34 RISCWatch Debugger User’s Guide

-rev Overrides REV setting specified in the environment
resources file. This distinguishes between different 6xx/7xx
processor revision levels when connected via the
RISCWatch Processor Probe. The -rev flag must be used
when debugging a 6xx/7xx processor in which RISCWatch
supports more than one revision level. For example, if
debugging a 603e Rev3 processor, one would use -rev3 to
distinguish Revision 3 from other supported revision levels.
Once the proper JTAG driver is loaded into the Processor
Probe memory, the -rev flag is not required.

If RISCWatch only supports one revision level of a given
processor, the -rev flag is not required.

-tty specifies that RISCWatch is to be run in TTY mode. TTY
mode is a command line driven mode of RISCWatch that
does not rely on the user interface for input and output.
This option is only available on a non-PC host.

JTAG Ethernet Targets and the RISCWatch Processor Probe

The RISCWatch processor probe is an Ethernet-to-JTAG convertor, converting
commands sent from RISCWatch to the appropriate series of processor accesses
through the JTAG port of the probe. The probe has a dedicated JTAG controller
chip to drive the JTAG signals in hardware as opposed to a slower, emulated
approach in software.

To talk to RISCWatch, the processor probe contains two programs in its flash
memory: the interface that RISCWatch communicates with (called the
“Generics”), and the underlying specific JTAG device driver. When a RISCWatch
JTAG Ethernet target is initially invoked, RISCWatch will check the version of the
Generics and the specific JTAG driver loaded in the processor probe (or
requested with the -proc flag or PROC environment variable) against the versions
of the files located in the directory specified by the RWPPC_DIR environment
variable. If the Generics or JTAG drivers do not match, the file(s) from the
RWPPC_DIR will be loaded into the processor probe. Because loading the
processor probe may corrupt the processor’s JTAG controller, it is recommended
that the processor be reset after the loading is complete.

Note: If you wish to maintain the current processor state, the processor probe
must be disconnected from the target until the correct Generics and JTAG driver
are loaded.

Generics and JTAG driver filenames supported for currently available processors
are included in the README file provided for this version of RISCWatch.

The following are some considerations to note when using the Processor Probe:
Using the RISCWatch Debugger 3-35

• For JTAG connections, the target processor clock speed must be at least
twice the JTAG clock speed. For Processor Probe targets the JTAG clock
speed defaults to 10Mhz. The RISCWatch command ‘jtag ’ (see p. 5-69) can
be used to lower the JTAG clock speed. Because of the high speed of the
JTAG interface with the Processor Probe, it is possible that noise on the
interface to the target may adversely affect data passed between RISCWatch
and the target. If memory or register reads appear to be unstable when using
a processor probe connection, see if using the ‘jtag ’ command to lower the
JTAG clock speed fixes the problem.

• RISCWatch will attempt to update the Processor Probe flash memory if it
detects that the processor type desired for the RISCWatch session does not
match the processor type which the Processor Probe is currently initialized for
(this behavior may be overridden by using the PROBE_FLASH environment
variable).Updating the Processor Probe flash memory with the JTAG
connector connected to the target typically puts the processor into an
unrecoverable state. Therefore, RISCWatch will always attempt to reset the
processor after the Processor Probe flash memory is updated.

• The PROBE_FLASH environment variable can be used to disable updates to
the Processor Probe flash memory. See “Environment Resources‚" p. 3-5 for
details on how to force, or completely bypass, a reflash of the Processor
Probe.

• The suggested procedure when updating the Processor Probe flash memory
is as follows:

1. Start with the Processor Probe connected to the target.

2. Following the update of the flash, if you got a warning message saying
RISCWatch was unable to soft stop the processor while RISCWatch was
coming up, attempt to reset the target from RISCWatch via the ‘reset’
command or Reset window.

3. If the reset from RISCWatch fails, reset the target via its reset switch. If
that doesn’t satisfactorily reset the entire board, a power on reset will be
required on the target.

4. Following the reset, enter the ‘stop’ command from RISCWatch to start
debugging.

Operational Notes:

• Disconnecting/connecting the Processor Probe from/to the target while power
is applied may affect the state of the target and a reset of the target may be
required.

• Cycling power on the Processor Probe typically puts the target in an
unrecoverable state and a reset of the target will be required. Always wait for
3-36 RISCWatch Debugger User’s Guide

the LEDs on the front of the Processor Probe to stop blinking before resetting
the target.

• RISCWatch will not allow more than one copy of RISCWatch to communicate
with the Processor Probe at one time. If the Processor Probe is in use, the
error message “communications port already in use” will appear. In some
conditions the communications link may not close correctly, thereby locking
out RISCWatch from coming up again. A couple of the more common
situations where this may occur are:

• Rebooting a PC while RISCWatch is running
• Disconnecting the Processor Probe from the host while

RISCWatch is running, and subsequently terminating that
RISCWatch session with the Processor Probe still disconnected.

If this condition occurs, cycling power on the Processor probe will clear the
communications link.
Using the RISCWatch Debugger 3-37

Main Window Resources

RISCWatch employs a graphical user interface (GUI) that needs to have the host
platform window system running.

When RISCWatch is started, it will bring up the windows specified in the
rwppc.lay file. The first time RISCWatch is run, or at any other time when no
rwppc.lay file is available, or if LOAD_LAYOUT = NO is specified in the
environment file, the debugger brings up only the main command window. It is this
window, shown in Figure 3-1, that will be used to access all of the debugger
features.

At the top of the window resides the menu bar which contains the names of the
major program access points. Directly below the menu bar is a scrolling window
which maintains a history of all the commands entered through the command line
interface. Commands in this window can be re-executed or edited and then
executed as described in “Command History Usage” on page 3-42.

Figure 3-1. Sample Main Window

Note: The list of items found at the bottom of the screen may be different
depending on the level of RISCWatch, target type, etc.
3-38 RISCWatch Debugger User’s Guide

Directly below the command history window is the command line interface that is
used to send commands to RISCWatch to be processed. The commands entered
here are the same as the ones which may be used in a command file to help
automate development and testing of products using supported PowerPC
processors. For a list of the commands and their syntax, select the Help option
from the menu bar.

Directly beneath the command line interface, is the scrolling message window
which maintains a history of all entered commands and their resultant status, help
and error messages. As each command is entered, it is echoed to this window
and will be followed by status or error messages. This format allows all commands
and their resultant actions to be viewed at any time.

At the bottom of the Main Window resides a status bar, which displays updated
information about current debug activity. A message area shows progress
messages. An MPS area indicates whether or not multiprocessor support is
enabled. A chip area identifies the chip name corresponding to the current debug
context. A target type area indicates the method of communication being used for
the current debug session. A processor status field also indicates whether the
target processor is either running, stopped, halted, powered off, or if the status is
unknown.

Menus

The RISCWatch menus are used to access those parts of the program which
require interaction with the user. Menu items can be commands or sub-menus.
Selecting an item runs its corresponding command or displays its corresponding
sub-menu.

Menu items can be selected by clicking on a menu option to pull down the
corresponding menu. Moving the mouse to a menu item highlights the item.
Clicking on a highlighted item selects the item. Unavailable selections are
grayed-out. Clicking outside the menu closes the menu without making a
selection.

Clicking on a menu displays a pull-down containing the selections for that
particular menu, as shown in “Main Window Menu Options” on page 3-40.
Using the RISCWatch Debugger 3-39

Beep (See p. 3-42.)
Logging (See p. 3-141.)

Command File (See p. 3-133.)
Load
Save
View
Quit

Help Menu

File Menu

Source Menu

Hardware Menu

Utilities Menu

Breakpoints (See p. 3-73.)
Callers (See p. 3-60.)
Files (See p. 3-61.)
Functions (See p. 3-62.)
Globals (See p. 3-79.)
Locals (See p. 3-77.)
OS Open (See p. 3-66.)
Programs (See p. 3-58.)
Source (See p. 3-51.)

Asm Debug (See p. 3-54.)
Memory (See p. 3-104.)
Register (See p. 3-117.)
Reg Fields (See p. 3-118.)
Reset (See p. 3-138.)
Trigger/Trace (See p. 4-8.)

About
FAQ
Install Guide
PowerPC Manuals
User’s Guide

Main
Window
Menu
Options

Figure 3-2. Main Window Menu Options

Window Menu Calculator (See p. 3-143.)
Win List (See p. 3-141.)
Output (See p. 3-135.)
Win List (See p. 3-141.)
User-Defined (See p. 3-119.)
3-40 RISCWatch Debugger User’s Guide

The menu bar contains the following menus:

• File

• Source

• Hardware

• Window

• Utilities

• Help

What follows is a list of the menus and their selections. Next to each selection is a
brief description of its function.

File Menu
Command File Run a command file

Load Load a memory/register/layout file

Save Save a memory/register/layout file

View View a selected file

Quit Terminate the program

Source Menu
Breakpoints window Displays breakpoints

Callers window Displays called functions

Files window Displays files in current context

Functions window Displays functions in current context

Globals window Displays global variables

Locals window Displays local variables

OS Open window Display OS Open threads and status
(OS Open target only)

Programs window Displays programs in current context

Source window Displays source file in current context

Hardware Menu
Asm. Debug Displays the Assembly Debug window

Memory Displays memory window pull-down

Register Displays a register access window

Reg Fields Displays a register field access window

Reset Reset the processor, or display a reset window
(JTAG target only)

Trigger/Trace Displays the Hardware Trigger/Trace window
Using the RISCWatch Debugger 3-41

Window Menu
Calculator Displays the desktop Calculator window

Win List Display window list

Output Command Message Output information window

User-Defined Loads a user-defined window

Utilities Menu
Beep Turns the program error beep on or off

Logging Enable/disable logging and give current logging status

Help Menu
About Display RISCWatch version information

FAQ Frequently asked questions

Install Guide Display RISCWatch User’s Guide

PowerPC Manuals Display links to various PowerPC documentation

User’s Guide Display RISCWatch User’s Guide

Command Line Usage

RISCWatch supports a rich set of commands which are used to access processor
resources, thereby facilitating debug of software and hardware. A list of
RISCWatch commands and their syntax is given in the section “Command Quick
Reference” on page 5-4.

These commands may be typed into a command file to be executed by
RISCWatch or used in the user interface via the command line. The command
line is the interface between RISCWatch and the user. It is simply a single-line text
editor that is used to compose commands and their arguments.

Commands that are valid from the command line may also be entered on the input
line, as described in “Input Line Usage” on page 3-48.

The command line understands all alphanumeric keys as well as the Enter,
Backspace, Delete, Insert, Home, End and arrow keys.

Command History Usage

The RISCWatch Main window maintains a list of all commands the program has
executed since it was started. This list consists of a scrollable window located
between the menu bar and command line interface.

After more than a few commands have been entered, the scroll bar attached to
the window will need to be used to view the commands which have scrolled off.
3-42 RISCWatch Debugger User’s Guide

By using the scroll bar attached to the window, it is possible to view all the
commands entered since RISCWatch was started. This proves helpful at times to
see the precise order in which the commands were issued.

The command history list is also useful for editing or executing previously entered
commands. To edit a previous command, simply place the mouse over the
command and click the left mouse button. RISCWatch will place the command on
the command line where it may be edited and executed if desired. The up arrow
and down arrow keys can also be used to retrieve previously issued commands
from the command history list. The up arrow key navigates sequentially back
through the list while the down arrow moves forward through the list.

To execute a previously entered command, simply place the mouse over the
command and double-click the left mouse button. RISCWatch will execute the
command as though it had been typed in by the user.

The up and down arrow keys may also be used to sequentially scroll through the
history of entered commands. As each command is recalled in turn, it will appear
on the command line. From there it may be edited as desired and executed.

Message Window

The message window is located at the bottom of the RISCWatch Main window.
Every time a command is entered into the command line interface, it is echoed in
this window. It will then be followed by status or error messages indicating the
result of the execution of the command. After a few commands have been
entered, it will be necessary to use the scroll bar attached to the window to view
earlier commands because they have been scrolled off to show the latest ones.

The message window is not editable and is used as feedback to the user as well
as maintaining a history of command usage and status. The contents of the
message window will be very similar to that of a RISCWatch log file, which is
described in “Log Files” on page 3-141.

Running Your Programs

Preparing the Program for Debug

Generally, for source level debug, a program must be compiled with a debug
option selected. Additionally, no optimization option can be used. Also, the target
processor architecture must be specified as PowerPC. All libraries used must also
be statically linked into the program unless they already reside on the target.

For specifics about compiling and linking programs for debugging, refer to the
documentation included with the compiler and linker being used.
Using the RISCWatch Debugger 3-43

For compiling and linking programs intended for use with the PowerPC 400Series
Evaluation Board Kits, refer to the documentation for the kit being used.

Loading Files

Files can be loaded either from the command line in the Main window, or by using
the File|Load pulldown. Refer to the command reference for the complete list of
options available for the load command. Enter the command and desired options
on the command line and hit enter.

To load a file using the load pulldown, select the file to be loaded. Additional
prompts will be presented to allow the user to specify the file format and any other
applicable options. See “Load Memory Window” on page 3-63 for more
information.

For source level debug, loading a file includes both target and host initialization.
The target embedded system is typically initialized with the text and data sections
of the file. The host system is initialized with the symbolic debug sections of the
file (symbol table, line table, etc.). If the debugger has not been initialized to debug
a program via load , start_thread , attach , or restart , all source level debug
capabilities are disabled.

To facilitate source level debug on applications which are resident on the target
prior to RISCWatch invocation, the load command provides the ‘host’ keyword
which will load the symbolic debug information on the host without changing the
state of the target system. This method of loading is quite useful when debugging
ROM resident code.

The actions performed during the load are summarized below.

For ROM Monitor and JTAG targets:

1. A load file command will unload ALL previously loaded files.

2. A load host filename command will unload only the filename being
loaded, if it is already loaded.

3. A load host filename must either be statically linked at the desired
text/data locations or the text/data parameters must be supplied with the
load command (that is, load information is not retrieved from the target).
3-44 RISCWatch Debugger User’s Guide

For an OS Open target:

1. A load file filename will be assumed to be a dynamic load. A load info will
be issued after the target load. All programs included in the return block
will be loaded on the host. If the target program, that is, the program
specified in the load command, is already on the host, it will be unloaded
and then reloaded. If other programs are already on the host, they will
remain loaded, that is, they will not be reloaded.

Any other programs loaded on the host but not included in the load info
return block will be left alone.

2. A load host filename must either be statically linked at the desired
text/data locations or the text/data parameters must be supplied with the
load command (that is, load information is not retrieved from the target).

3. A start_thread or attach will behave as the load file except the target will
not be loaded.
Using the RISCWatch Debugger 3-45

Loading Boot and Boot Image Files

A boot file is defined to be an XCOFF or ELF file which was created with entry
code consistent with an OS Open executable or a PowerPC 400Series evaluation
board support package executable. This type of executable was never designed to
run successfully on the target system.

The PowerPC 400Series evaluation board support package provides a boot
image program which takes a boot file and creates a boot image file. The boot
image file contains a 32 byte header, followed by a binary image of the loadable
portions of the ELF or XCOFF file. This file may also contain additional binary
data (controlled by options on the ‘boot image’ program) which is required for OS
Open use (symbol table, string table, etc.).

To facilitate the user in debugging boot files, the load file command attempts to
recognize a boot executable. This is done by looking for the hex number
‘004d5054’ four bytes beyond the designated entry point. If this special sequence
is found, RISCWatch will edit the text section of the executable in an attempt to
make the code execute without the need of loading the boot image file. In addition,
the symbol and string table is loaded on the target system if the ‘nosym’ flag is not
designated. This method of loading has proven to be effective on non-OS Open
boot files.

It is important to note that the entry code in a boot file load executes differently
from the entry code provided in a boot image file. For this reason, the load image
command has been added to allow the user to load a boot image file. RISCWatch
will strip off the 32-byte header of the boot image file and load the remaining bytes
of the file on the target. The start address of the load is designated in bytes 3-7 of
the header. Once loaded, the IAR register is set to the value designated in bytes
16-19 of the header.

The following actions and descriptions define three typical debug scenarios using
boot and boot image files

• Load and Debug of a Boot File

1. Issue the load file command to load the host and target.

2. This provides full-function support with restart capability.

3. Entry code is modified by RISCWatch to allow execution.

• Load and Debug of a Boot Image File

1. Issue the load image command to load the target.

2. Issue the load host command to load the debug information on the host
system.

3. Entry code runs exactly as intended without modification.
3-46 RISCWatch Debugger User’s Guide

4. Program restart is accomplished by reissuing the load image command.

• Load and Debug of OS Open Threads

1. Bring up RISCWatch using the ROM Monitor target.

2. Hide all windows except the Main window.

3. Issue the load image command with the filename of the OS Open boot
image file.

4. Issue the command logoff . The ROM Monitor will exit debug mode and
start the execution of OS Open. If a terminal emulation screen is up, you
should see the OS Open shell prompt.

5. Select ‘file’ on the Main window and then select ‘quit’ to exit RISCWatch.

6. Edit the environment file (rwppc.env). Change the TARGET_TYPE to
‘osopen’. Make sure the TARGET_NAME matches the name or address
used by your OS Open image.

7. Bring up RISCWatch using the OS Open target.

8. Issue a start_thread or attach command to the thread you want to
debug.

9. Note that steps 1-6 are required to load OS Open. These steps are not
required if some other method is used to load OS Open.

Executing the Program

Once a file has been loaded successfully, it can be started by issuing the run
command from the Main window, or by pressing the Run button on the Source or
Assembly Debug window. Note that the debugger may not automatically stop
when it gets to the end of the program. Breakpoints or other mechanisms should
be used to prevent the program from running into non-program memory locations
upon execution completion.

When a program is initially loaded, the Instruction Pointer will often be pointing to
start-up code which has no corresponding source files for the debugger to use. A
message will be displayed when this situation occurs. In these cases, a breakpoint
can first be set in the application code and, when it is hit, the debugger context will
be updated for the current Instruction Pointer. The source code will then appear in
the Source window.

Following Program Execution Flow

Program flow is usually followed with a series of actions that cause the program to
start and stop at various locations of interest throughout the code. Some of the
actions that control program execution include:
Using the RISCWatch Debugger 3-47

1. Setting breakpoints and running to them (run)

2. Stepping one source line (linestep)

3. Stepping into a function (callstep)

4. Returning from a function (retstep)

5. Stepping one assembler instruction (asmstep)

6. Restarting a program (restart)

These commands can be executed from the command line, as specified in the
command reference section, or via buttons on the Source and/or Assembly Debug
windows.

Tracing back through execution contexts can be performed using the Callers
window. Refer to the Callers window description and the Quick Start sections for
more details on how these windows and commands can be used to follow
program execution flow.

Input Line Usage

The RISCWatch input line can be used to provide a shortcut method of performing
window search and scroll actions. The input line will appear at the top of a
RISCWatch window if the window has focus and a keyboard character is typed
which corresponds to a supported function for that window. Table 3-2 describes
each of the available functions:

Table 3-2. Input Line Functions

Key Function Parameter
Supported
Windows

F12 command line Any command line
command

all

/ find forward (find
command)

search string specified in find
command descrip-
tion

\ find backward
(findb command)

search string specified in findb
command descrip-
tion

? find exact (finde
command)

search string specified in finde
command descrip-
tion
3-48 RISCWatch Debugger User’s Guide

The first field of the input line will indicate the function being performed. That will
be followed by an entry field which can to be used to specify any parameters for
the function, if necessary. For example, entering a command valid from a
command line (not all commands can be used from a command line) or searching
for a string in a window can be done in the input line.

For example, typing a ‘/’ character in a window which supports the find command
will display the input line at the top of the window with the first field specifying ‘/’
[FIND]’. In this case the parameter to be entered in the entry field would be the
string to search for.

 : scroll to line (line
command)

line number specified in line
command descrip-
tion

 ; scroll to source line
(srcline command)

source line number Source window

Table 3-2. Input Line Functions

Key Function Parameter
Supported
Windows

Figure 3-3. Sample Input Line Displayed
Using the RISCWatch Debugger 3-49

Typing the enter key will perform the requested function. Typing the ESC key, or
performing any mouse action on another window, will hide the input line with no
action taken.

Refer to Chapter 5, "Debugger Command Reference," for detailed information
concerning any of the commands mentioned above.

The input line automatically uses the associated window (the window which had
focus when the input line was brought up) as the window parameter for those
functions which require it. In the case of the Variable Configuration window and
the Breakpoint Select window, which have more than one subwindow, the
subwindow to use for an input line function can be selected by clicking the mouse
in the subwindow (either on an entry or on a blank line) or by selecting a scrollbar.
with the mouse if it will result in a scrolling event.

Also for these two windows, selecting one of the ‘Move all to...’ push-button will
select the subwindow to which the move was done as the subwindow to be used
for subsequent input line functions.

If the entry field is left blank for any of the find functions, the last string which was
specified for a find function will be used as the search string to perform a ‘next’
type search for the associated window.

Note: On some host platforms, if a control in a window has focus, it may be
necessary to give the window itself focus by clicking the mouse on the window
background or titlebar before it will recognize keyboard characters.
3-50 RISCWatch Debugger User’s Guide

Source Level Debugging

Source Window

The Source window consists of a Source File subwindow with a Status
subwindow, a Source Mode selection groupbox, and pushbuttons. For example,
Figure 3-4 shows the Source window in Source/Assembly mode.

The title bar indicates the source file currently being displayed. The file which is
displayed in the Source window can be changed by performing one of the
following actions:

Figure 3-4. Sample Source Window
Using the RISCWatch Debugger 3-51

• Initiate debugging via a command like load , start_thread , attach , or
restart .

• If the debugger has not been initialized to debug a program via one of the
above commands, all source level debug capabilities are disabled.

• Change the current context as in the case of a breakpoint being hit in
another file, performing an execution command, or selecting an entry from
the Callers window.

• Select an entry from the Files, Functions, or Breakpoints windows using
the file command

The title bar will also include the name of the function containing the current
Instruction Pointer if the following is true:

• The Source window was updated as a result of an execution action
completing (stepping, hitting a breakpoint, etc.), and the file in the Source
window contains the function associated with the current Instruction
Pointer.

• The file in the Source window has no debug information.

In regular Source Mode, a source file which is part of the current program is
displayed in the Source File subwindow, with the corresponding source line
numbers displayed in the Status subwindow. In Source/Asm Mode, a source file
which is part of the current program is displayed in the Source File subwindow,
with both source lines and assembly instructions displayed. Assembly instructions
appear for each source line which has instructions associated with it, directly
below the corresponding source line. In this mode, the Status subwindow shows
the line number for corresponding source lines, and an asterisk for assembler
lines. The displayed assembly instructions come from the file image of the loaded
program. This differs from the instructions displayed on the Assembly Debug
window, which are determined by reading the target system memory.

The Source Mode groupbox consists of two buttons, one for Source only and one
for Source/Asm. The display mode is changed by selecting the appropriate button.
The button which is on indicates the current mode. If a file is currently displayed
when the display mode is changed, the window will be updated to show the
source file in the new mode. Regardless of whether a file is currently displayed,
any subsequent files which are displayed in the window will be displayed in the
mode reflected by the button which is on in the Source Mode checkbox.

The Status subwindow shows source line numbers, denotes assembly
instructions with an asterisk, indicates the current Instruction Pointer, and
indicates any instruction breakpoints which are set. A double arrow (>>) is
displayed on the line corresponding to the current Instruction Pointer address. In
Source/Asm mode, this indicator will appear next to the assembly instruction
associated with the Instruction Pointer address.

The letters 'BP' will appear on the line corresponding to an instruction breakpoint if
the Source window is in Source Only mode. In Source/Asm mode, the letters
3-52 RISCWatch Debugger User’s Guide

‘SBP’ or ‘HBP’ will appear next to each assembly instruction for which a software
or hardware breakpoint has been set. Breakpoints can be set or deleted by
clicking the mouse in the Source subwindow on a valid line. If in Source/Asm
mode, breakpoints can only be set by clicking on lines corresponding to
assembler instructions. If a breakpoint cannot be set on a selected line, an error
message will be generated.

If the Breakpoint Mode (selectable via the bpmode command or from the
Breakpoints window) is set to Hardware or Hardware Step, breakpoints can only
be set on assembler instructions (requiring Source/Asm mode). This is because
setting a break on some source lines may require setting breakpoints on multiple
assembly lines associated with the source line (the 'for' statement is an example),
and only a finite number of hardware breakpoint registers are available at any one
time.

Directly below the Status subwindow is the processor/process running indicator.
This field indicates whether the processor (in the case of a JTAG target) or
process (in the case of a ROM Monitor or OS Open target) is currently running or
stopped. If the processor/process is running, the Run/Stop button will be titled
“Stop”, and the status indicator will be “Running”. Pressing the button in this state
will cause the processor/process to be stopped. If the processor/process is
stopped, the Run/Stop button will be titled “Run”, and the status indicator will be
“Stopped”. Pressing the button in this state will cause the processor/process to
run. This is the same functionality which exists on the Assembly Debug window
(see p. 3-57). The status and button state will be updated automatically during the
course of the debug session to reflect any changes in the processor/process
state. If the debugger is currently not attached to and debugging a target, the
status indicator on this window will be a string of periods (“............”). If a
processor/process is running, all controls or actions are disabled for all source
level debug windows except for the processor/process status indicator and the
Run/Stop button on the Source window.

Breakpoints are toggled by single clicking the mouse on a line in the Status
subwindow corresponding to a valid source line. If no break is currently set at the
line, a breakpoint is set by single clicking the mouse on the line, and the bp
indicator appears in the Status subwindow on that line. Conversely, if a break is
currently set at the line, a breakpoint is deleted by single clicking the mouse on the
line, and the bp indicator is removed in the Status subwindow on that line. If a
breakpoint is set or deleted from the source window, the Breakpoints window is
updated accordingly.

For details on how to perform character string search operations, or how to quickly
scroll to a specific source line number, see “Input Line Usage” on page 3-48.

• Additional Functions available in Popup Menu

Holding down the right mouse button in the Source File subwindow will produce a
popup menu containing a list of additional functions relating to the source window.
Using the RISCWatch Debugger 3-53

It allows the user to Go To or Run To a particular source line, to toggle the display
mode of the source window, and to inspect variables within the file being
displayed. The Go To option will set the IAR to the location of the address
corresponding to the first assembly instruction of the source line selected. The
Run To option will actually set a break at that address and run the processor to the
target location. The toggle mode option will change the display format of the
Source File subwindow between Source only and Mixed Source/Assembly
modes. Choosing the Inspect option will bring up an Inspect Window containing
the variable selected by the initial right mouse button click.

Scrolling Source Window Contents Using the Keyboard

The data contained in a source level debug window with focus can be scrolled
different ways using the keyboard. Following are the keys which can be used to
scroll data:

Assembly Debug Window

Assembly level debug can be carried out in several ways. One way is via a source
disassembly in the Source window. This can be used only when the source file
has been compiled with debug information.

Another way to perform assembly level debug is via the Assembly Debug window.
The Assembly Debug window allows memory to be read, altered and written as
assembly opcodes and disassembled text. This window uses an actual memory
disassembly, so it can be used independent of whether the source exists or was
compiled with debug information. Multiple instances of the Assembly Debug
window are permitted to show a variety of address ranges simultaneously. The
screens are distinguishable by an instance number appearing in the window title.

Table 3-3. Keyboard Options for Scrolling

Key Function

Up Arrow Scroll up one line

Down Arrow Scroll down one line

Left Arrow Scroll left one section

Right Arrow Scroll right one section

Page Up Scroll up one page

Page Down Scroll down one page

Home Scroll to top of contents of window

End Scroll to bottom of contents of window
3-54 RISCWatch Debugger User’s Guide

Refer to “Debugging at the Assembly Level” on page 2-14 for an example of how
assembly level debug can be performed.

This window is displayed by selecting the Asm Debug option of the menubar’s
Hardware pull-down choice. What follows is a description of this window’s
functionality.

• Data area

The data area for the Assembly Debug window is a large text editing area which
consists of three parts: memory addresses, data words and disassembled text.
The memory addresses are listed sequentially in a column along the left hand
side of the data area. The data words are located in a column adjacent to their
respective memory addresses. The disassembled text consists of each data word
being disassembled and then displayed in the adjacent column.

Each of these areas can be edited thereby allowing addresses or data to be
altered and then written back to memory. Editing one of the memory address
values allows for the disassembled display of any piece of memory. Simply use
the mouse to place the cursor next to one of the addresses. Then type in the new
address and press the Enter key. The appropriate memory addresses will be read
from memory, disassembled, and then displayed in the data area.

Figure 3-5. Sample Assembly Debug Window
Using the RISCWatch Debugger 3-55

It is also possible to change the memory words or disassembled text. To change a
particular memory word, simply use the mouse to place the edit cursor next to the
desired word. Type in the new word and press the Enter key. The newly entered
value will be written and then the display will be updated with the disassembly text
for the new word.

Similarly, the disassembled text may be edited by using the mouse to place the
edit cursor next to the desired text. Type in the new assembly text and press Enter.
The assembler will then be called to create a new memory word which will be
written to the appropriate address. The display will then be updated with the newly
created memory word.

Data values entered for new addresses and memory words are expected to be
input in hexadecimal format.

• Scroll Bars

Clicking on a vertical scroll arrow alters the display address by one line or opcode.
Clicking on the area between a vertical arrow and the current scroll position alters
the display address by one screen’s worth of data. To display a given address, use
the address entry schemes described in the Data area section.

The page up and page down feature may also be accessed via the keyboard Page
Up and Page Down buttons.

• Breakpoint subwindow

The breakpoint subwindow is located to the left of the data area and is used to set,
clear, and display hardware or software breakpoints. An asterisk appears next to
each disassembly line shown in the data area when no breakpoints are set on the
corresponding address. It also is used to perform Run To or Go To actions
corresponding to the selected memory location.

To set a hardware or software breakpoint for a particular memory address, simply
use the mouse to click on the corresponding asterisk. This will set a hardware or
software breakpoint, depending on the current Breakpoint Mode (selectable via
the bpmode command or from the Breakpoints window). For that address an
‘HBP’ or ‘SBP’ marker replaces the asterisk, indicating that a hardware or
software breakpoint has been set for that address.

To clear a breakpoint, simply click on the ‘HBP’ or ‘SBP’ marker. This will clear the
breakpoint and restore the asterisk marker for that memory location.

To execute the Run To and Go To actions, place the cursor on the asterisk next to
the desired target address of the action. Then hold down the right mouse button.
A selection list will appear, allowing the user to choose the desired function. The
GoTo selection will cause the IAR to be changed to the target address, while the
RunTo selection will set a break at the target address and run the processor to
that location.
3-56 RISCWatch Debugger User’s Guide

• IAR cursor

The IAR cursor is used to indicate which memory word is being pointed to by the
IAR register. The IAR cursor appears as the >> characters in the breakpoint
subwindow and will point to the IAR memory address if it appears in the data area
display text.

• Run/Stop button

The Run/Stop button is used to start the processor/process if it is currently
stopped, or to stop it if it is currently running. In the case of a JTAG target, a
processor is running or stopped. In the case of a ROM Monitor or OS Open target,
a process is running or stopped.

Run is used to start or stop a processor/process; Stop is used to stop it. When a
processor/process is stopped, debugger context is updated based on the current
Instruction Pointer value for the target. If a processor/process is running, all
controls or actions are disabled for all source level debug windows except for the
processor/process status indicator and the Run/Stop button on the Source
window.

The current run/stop state of the processor/process is seen directly below this
button in the processor/process running indicator.This is the same functionality
which exists on the Source window (see p. 3-53). Once memory has been loaded
with code and any applicable hardware and/or software breakpoints set, the Run
button would be pressed to start the processor/process running.

If the processor/process successfully starts running, the Run button will change to
a Stop button and the processor/process running indicator will be updated to
indicate running. The processor/process may be stopped asynchronously by
pressing the Stop button. Doing so will change the Stop button to the Run button
and change the processor/process running indicator.

If, while the processor/process is running, a breakpoint is activated, or the
processor/process stops for any reason, the Stop button will change to the Run
button and the processor/process running indicator will be updated to indicate that
the processor/process is stopped. The IAR field will reflect the current IAR value.

Depending on the setting of the Track IAR check box, the data area will either
remain unchanged (check box not selected) or will display the code at the IAR
address (check box selected). The IAR cursor will point to the appropriate
memory location if the check box is set or if the check box is not selected and the
IAR is still within the address range of the displayed data. Otherwise, it will be
removed.

• Asm Step button

The Asm Step button is used to single-step the processor/process to execute one
or more 4-byte instruction values. Instruction stepping single-steps the
processor/process starting with the instruction at the memory address referenced
Using the RISCWatch Debugger 3-57

by the IAR. Every press of the Asm Step button will execute the number of
instructions indicated by the value in the Step count field located directly beneath
the Asm Step button.

• Step count

The Step count field is used to register a new step count value. This value is used
to determine how many instructions will be single-stepped for every press of the
Asm Step button. To change this step count value, use the mouse to place the edit
cursor in the step count, type in the new count value and then press Enter. The
step count value must be entered in hexadecimal format.

• Modifying the IAR

The current IAR value may be modified to change the execution sequence of code
that is being debugged using the Assembly Debug window. Use the mouse to
place the cursor in the Set IAR field. Then type in the new IAR value and press
ENTER. This will write the new value to the IAR and update the contents of the
data area to reflect this new code execution point. The IAR value must be entered
in hexadecimal format. When the IAR value is changed, the entire source level
debugger context will be updated for the new IAR value.

• Track IAR Check Box

This check box is used to select the update policy used when the processor is
stepped or is stopped after a run. When the check box is selected, the window
contents will track the IAR setting; the data area will display the code at the IAR
address and the IAR cursor will point to the IAR address location. If the check box
is not selected, the data area contents will remain unchanged regardless of the
IAR setting. The IAR cursor will move to the new address location if it is within the
currently displayed address range; otherwise it will be removed.

Programs Window

The Programs window consists of a Programs subwindow with horizontal and
vertical scrollbars, and push-buttons.

Figure 3-6. Sample Programs Window
3-58 RISCWatch Debugger User’s Guide

The Programs subwindow shows a list of all the programs which the debugger
session knows about. The load command is the mechanism by which the
debugger generates program information on the host for a particular program, and
thus becomes ‘aware’ of the program.

The first field for a program entry is used to indicate which program is currently
active. A ‘->’ symbol will appear in this field if the program entry matches the
program which is currently active, otherwise it will be blank. The next field for a
program entry is used to indicate which program contains the current Instruction
Pointer. A ‘<IP> ‘ symbol appears in this field if the program entry matches the
program in which the current Instruction Pointer is located, otherwise it is blank.
The last field shows the fully qualified name of the program which was loaded.

If the mouse is single-clicked on a program entry for a program which is not
currently active, the debugger context will be switched to the new program,
making it the active program. If the new program contains the Instruction Pointer,
and the debugger is attached to the target, all appropriate source debug screens
will be updated to reflect the context at the current Instruction Pointer. If the new
program does not contain the Instruction Pointer, and the debugger is attached to
the target, the Source, Locals, and Caller windows will be blanked out, and the
Files, Functions, and Globals windows will be updated for the new program. In
these cases, the Programs window itself will be updated to indicate the new active
program and execution commands will still be valid.

If the debugger is not currently attached to the target (for example, after detaching
from a thread for an OS Open target), the Programs window is still updated to
show the programs loaded on the host. In this case the source level debug
screens is not functional, so single-clicking the mouse on an entry will not affect
any source debug screens. The window can still be used to unload programs.

If the mouse is single-clicked on a program entry for the program which is
currently active (i.e., has the ‘->’ symbol next to it), the selection is highlighted and
the Unload push-button will become enabled. The Unload push-button will unload
the program from the host debugger, effectively making the debugger unaware of
the programs existence, and preventing the use of any normal source level debug
capabilities for that program. The target will not be affected by the unload. Any
program on the Programs window can also be unloaded by double-clicking on the
program entry. If a program has been unloaded and you wish to debug it once
again, the load command can be used to make the debugger aware of any
program which is still resident on the target. Refer to the load and unload
commands in Chapter 5, "Debugger Command Reference."

One example of the usefulness of this function is for dynamically loaded programs
on an OS Open target. If the OS Open image and the loaded programs have any
function calls to the other, it is possible to use the Programs window to switch
active programs so that code and variables may be viewed at any time for each
program.
Using the RISCWatch Debugger 3-59

It is also possible to set breakpoints in either program, if you wanted to stop in
another program at a certain instruction, or if you inadvertently stepped into
another program (say, at a place with no debug information) and you wanted to
view the code in the program from which you came (and possibly set a break and
do a run to get back to where you were previously).

For details on how to locate specific character strings in this window, see “Input
Line Usage” on page 3-48.

Callers Window

The Callers window lists the names of calling programs and functions in the
current context. This window consists of a scrolling text window and a menu bar,
as shown in Figure 3-7.

The information is presented essentially as a pushdown stack, with the current
(called) function appearing as the top entry. As subsequent function calls are
made, they then appear at the top, and the other functions are listed below.
Similarly, as function returns are carried out, the top entry is removed, and the
others moved up on the screen.

Single-clicking the left mouse button over any given entry causes the debugger to
change context to the selected (caller) function entry. The Source window shows
the source file associated with the given function, and the source line where the
function call was made is highlighted. Similarly, the Locals window variables are
switched back to the variables and values valid at the time of the function call. See
“Local Variables Window‚" p. 3-77 for additional information on assuring correct

Figure 3-7. Sample Callers Window
3-60 RISCWatch Debugger User’s Guide

Local variable display. This method can be repeated on all of the entries to
traverse the entire call chain at any point in the program execution.

Each Callers entry lists, in order, fields that indicate the function name, the source
file containing the function, the line number of the calling instruction, the return
address of the calling function, the program name, and the stack pointer address.

For details on how to locate specific character strings in this window, see “Input
Line Usage” on page 3-48.

Files Window

The Files window displays source filenames in the current context. This window
consists of a menu bar and a scrolling text window, as illustrated in Figure 3-8.

The Files window lists all the source files contained in the executable currently
loaded in the debugger. Single-clicking on any given entry causes that source file
to appear in the Source window. The path the debugger uses to search for the file
is dictated by the settings made using the srchpath command.

The debugger first looks for the source file according to the path specified in the
window. If it is not found there, the search proceeds according to any paths that
were specified via the srchpath command. Source files can also be viewed as
ASCII files using the File|View pulldown found on the Main window or by using the
view command.

For details on how to quickly locate a specific file name in this window, see “Input
Line Usage” on page 3-48.

Figure 3-8. Sample Files Window
Using the RISCWatch Debugger 3-61

Functions Window

The Functions window consists of a Functions subwindow with horizontal and
vertical scrollbars, a Functions display mode selection groupbox and
pushbuttons.The Functions subwindow displays functions for the current program.
The format of the function entries, and which functions are displayed, depends on
the Functions display mode setting.

The Functions display mode groupbox consists of four radio buttons. Each radio
button can be used to change which functions are displayed in the window (only
those functions with symbolic debug information, or all functions in the program)
and how they are sorted (alphabetically by name, or by ascending address). The
Functions display mode is changed by selecting the appropriate button. The
button which is selected indicates the current mode.

When a mode is selected which sorts the function entries by name, each entry will
consist of the function name, followed by an address value, followed by the name
of the source file which contains the function. The entries will be displayed in
alphabetical order by name. When a mode is selected which sorts the function
entries by address, each entry will consist of an address value, followed by the

Figure 3-9. Sample Functions Window
3-62 RISCWatch Debugger User’s Guide

function name, followed by the name of the source file which contains the function.
The entries will be displayed in order by ascending address.

In all cases, the address value in a function entry will be the address of the start of
the function.

When a mode is selected which displays functions with symbolic debug
information, only those functions for which there is symbolic debug information in
the program will appear. Otherwise, all functions in the program will be displayed.

A function’s entry can be selected by single-clicking the mouse on a line
containing a functions entry within the window. If the debugger has sufficient
information from the functions entry, the Source window will be updated to show
the file which the function is in, with the source line corresponding to the start of
the function appearing highlighted in the middle of the view.

A breakpoint can be toggled by double-clicking the left mouse button on a function
entry. A breakpoint will be toggled at the address of the start of the function (which
is the address value in the entry). Regardless of the function mode setting, the
Breakpoint Mode setting (selectable via the bpmode command or from the
Breakpoints window) determines whether hardware or software breakpoint
processing will be used.

For details on how to quickly locate a specific function name in this window, see
“Input Line Usage” on page 3-48.

Load Memory Window

The Load Memory window provides target memory write capabilities using most
of the file formats defined for the Load command. The window is displayed by
choosing the ’File’ pulldown on the RISCWatch Main window, then selecting
Load|Memory.

Prior to display of the Load Memory window, a standard dialog window is
presented to enable the user to supply the name of a file to be opened for reading.
The dialog supplies a list of files and directories to choose from. A single left
mouse click on a specific file, followed by the selection of the ’OK’ button, will
result in the display of the Load Memory window.
Using the RISCWatch Debugger 3-63

The Load Memory window consists of the following fields:

• File

This field indicates the file name to be loaded. The file name can be altered by
choosing the ’Select File’ button at the bottom of the window or by directly typing
in the field provided.

• File Formats

This group box provides a list of supported file formats to choose from. See “load‚"
p. 5-73 for a description of the supported file formats. Choosing a particular file
format will result in the enabling, or disabling, of the remaining input areas of the
window.

• Start Address

This field is enabled for ’Data Memory’, ’Instr Memory’, or ‘Binary’ format
selections and indicates the initial target address to use when loading the file. This
field must be coded if the ’Binary’ format is selected.

Figure 3-10. Load Memory
3-64 RISCWatch Debugger User’s Guide

• Text Address

This field is enabled for ’File’ and ’Host’ format selections and indicates the initial
target address of the instruction section of the file. This field is required when
loading an XCOFF file and is optional when loading an ELF executable. If the ELF
file was not compiled with relocation enabled, this field is ignored.

• XCOFF Data Addr

This field is enabled for ’File’ and ’Host’ format selections and indicates the initial
target address of the data section of the file. This field is required when loading an
XCOFF file and is ignored when loading an ELF executable.

• Stack Address

This field is enabled for ’File’ and ’Host’ format selections and indicates the initial
target address of the local stack area. This is an optional field which is equivalent
to the ’s=’ option provided on the Load command. Use of this field is not
recommended since RISCWatch creates a default 16K stack area during a file
load. In addition, most embedded applications establish their own stack area
during initial start up code execution.

• Stack Size

This field is enabled for ’File’ and ’Host’ format selections and indicates the
maximum size, in decimal, of the local stack area. This is an optional field which is
equivalent to the ’ss=’ option provided on the Load command. Use of this field is
not recommended since RISCWatch creates a default 16K stack area during a file
load. In addition, most embedded applications establish their own stack area
during initial start up code execution.

• No Symbols/Strings

This Check box is enabled for ’File’ and ’Host’ format selections and directs
RISCWatch not to load the additional symbol table information associated with
boot files. See “Loading Boot and Boot Image Files” on page 3-46 for a detailed
discussion of boot files.

• No BSS Initialization

This check box is enabled for ’File’ and ’Host’ format selections and directs
RISCWatch not to zero out the un-initialized data section (BSS) of the file. This
option can significantly improve the file load performance but requires the loaded
application to zero out the un-initialized area during program start up. Selection of
this option is equivalent to the ’NOZERO’ option of the Load command.

• Load

This pushbutton is used to execute the appropriate Load command, based on the
selections made on the window. The RISCWatch main window will indicate the
success or failure of the operation.
Using the RISCWatch Debugger 3-65

• Select File

This pushbutton presents a standard dialog window that allows the user to supply
an alternate file name for loading.

• Hide

This pushbutton removes the Load Memory window from view. A subsequent
display of the Load Memory window will present the field settings that were in
existence when the ’Hide’ button was pressed.

• Help

This pushbutton will present any available help topic for this window.

OS Open Debugging

The OS Open window is used to display operating system construct information
and control debug attachment for an IBM OS Open Real-time Operating system
program image. The OS Open window is available only if OS Open is specified as
the target in the RISCWatch environment file.

The OS Open window consists of a subwindow with horizontal and vertical
scrollbars and a number of push-buttons used to dynamically load a file,
start/kill/detach an OS Open thread, and display OS Open construct information.

Figure 3-11. Sample OS Open Window
3-66 RISCWatch Debugger User’s Guide

The subwindow displays information relevant to the construct display push-button
which was last selected. For some constructs, single-clicking the mouse on a list
entry will display more specific information immediately under the entry, or will
contract this information if it is already displayed. There will be a message at the
top of the display window if the expansion/ contraction function is available for the
current display.

Note: In general, the contents of the subwindow will not be automatically updated
as the application runs on the target. In each case, when a display pushbutton is
selected, or a single-click is performed for a construct which supports it, the latest
information for the entire window will be retrieved from the target and displayed.

For details on how to locate specific character strings in this window, see “Input
Line Usage” on page 3-48.

Following are descriptions of the pushbuttons in the OS Open window:

• Load Module button

This pushbutton brings up the Load Module window. Entering the name of a file
which is located on a file system mounted on the target OS Open system causes
that file to be dynamically loaded by OS Open into the target. Also, the file to be
loaded must be located in the current RISCWatch search path. A thread
corresponding to the entry point for the program loaded will be queued. A
breakpoint will be put at this entry point and the debugger will be initialized to
debug this thread.

Note: for OS Open systems with Virtual Memory support: Unless otherwise
specified, newly loaded modules will be loaded into a new thread group. To
specify an existing thread group, use the load file command’s tg parameter.
For example, to load module /fat/cat.ld into thread group 0x5435770, type:

/fat/cat.ld tg=0x5435770

• Start Thread button

This pushbutton brings up the Start Thread window. Entering a function name
which is part of the target program image will initialize a source mode debug
session with OS Open.

A thread corresponding to the specified function will be queued, with a breakpoint
set at the entry of the function.
Using the RISCWatch Debugger 3-67

Notes:
RISCWatch cannot be used to debug the OS Open shell.

For OS Open systems with Virtual Memory support: Unless otherwise
specified, newly started threads will be started in a new thread group. To
specify an existing thread group, specify the thread group id after the function
name. For example, to start the thread my_hello_world in thread group
0x5435701, type:

 my_hello_world 0x5435701

• Detach Thread button

This pushbutton ends the source mode debug session with OS Open by
disconnecting from the thread which is currently being debugged. The thread will
continue to run normally on the target.

• Kill Thread button

This pushbutton ends the source mode debug session with OS Open by
destroying the thread which is currently being debugged.

• Threads button

This pushbutton lists each thread in the OS Open system in the display
subwindow. If a thread is currently being debugged, a ‘D’ will appear in the first
column of the list entry. If the mouse is double-clicked on a thread list entry, the
thread will be attached if it is not already being debugged, or detached if it is
currently being debugged.

Note: RISCWatch cannot be used to debug the OS Open shell.

If the mouse is single-clicked on a list entry which is not already expanded, the
window display will be expanded to show detailed information about that specific
thread directly below the thread list entry. If the mouse is single-clicked on a list
entry which is already expanded, the detail for that list entry will be contracted.

• Mutexes button

This push-button lists each mutex in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific mutex directly below the mutex list entry. If the mouse is
single-clicked on a list entry which is already expanded, the detail for that list entry
will be contracted.

• Condition Variables button

This pushbutton lists each condition variable in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific condition variable directly below the condition variable list entry.
3-68 RISCWatch Debugger User’s Guide

If the mouse is single-clicked on a list entry which is already expanded, the detail
for that list entry will be contracted.

• Semaphores button

This pushbutton lists each semaphore in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific semaphore directly below the semaphore list entry. If the
mouse is single-clicked on a list entry which is already expanded, the detail for
that list entry will be contracted.

• Timers button

This pushbutton lists each timer in the OS Open system in the display subwindow.
If the mouse is single-clicked on a list entry which is not already expanded, the
window display will be expanded to show detailed information about that specific
timer directly below the timer list entry. If the mouse is single-clicked on a list entry
which is already expanded, the detail for that list entry will be contracted.

• Message Queues button

This pushbutton lists each message queue in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific message queue directly below the message queue list entry. If
the mouse is single-clicked on a list entry which is already expanded, the detail for
that list entry will be contracted.

• Memory Pools button

This pushbutton lists each memory pool in the OS Open system in the display
subwindow.

• Heaps button

This pushbutton lists each heap in the OS Open system in the display subwindow.

• FLIHs button

This pushbutton lists each first level interrupt handler in the OS Open system in
the display subwindow.

• Signals button

This pushbutton lists each signal in the OS Open system in the display
subwindow.

• Libraries button

This pushbutton lists each registered library in OS Open system in the display
subwindow.
Using the RISCWatch Debugger 3-69

• Thread Group List button

This pushbutton is only available if the target is an OS Open system with Virtual
Memory support. It will list each thread group in the OS Open system in the
display subwindow.

If the mouse is single-clicked on a list entry which is not already expanded, the
window display will be expanded to show detailed information about that specific
thread group directly below the thread group list entry. If the mouse is single-
clicked on a list entry which is already expanded, the detail for that list entry will be
contracted.

• Hide button

This pushbutton hides the window.

• Help button

This push-button accesses the on-line RISCWatch User’s Guide.

For more information on the OS Open Real-Time Operating System, refer to
“Related IBM Publications” on page xxiv.

Managing Breakpoints

Breakpoints within RISCWatch fall into two categories:

• Software breakpoints

• Hardware breakpoints

Software breakpoints are implemented by replacing the instruction at the
breakpoint address with a trap instruction. Hardware breakpoints make use of the
debugging features designed into specific PowerPC processors. When the
processor/process stops, all the trap instructions are replaced with the original
instructions residing at the breakpoint addresses.

Notes:
For PowerPC 6xx/7xx processors connected via a JTAG target, hardware
breakpoints cannot be used if software breakpoints are set and, conversely,
software breakpoints cannot be used if hardware breakpoints are set.

Hardware breakpoints are not available on OS Open targets.
3-70 RISCWatch Debugger User’s Guide

Using Software Breakpoints

• Setting Software Breakpoints from the RISCWatch Debugger Windows

Software breakpoints can be set or cleared in a number of ways using the
RISCWatch Debugger windows. Note that the Breakpoint Mode must be set to
Software mode (see bpmode on page 5-24).

1. Source window

Software breakpoints can be set and cleared in the Source window (Figure
3-4) by moving the cursor to the targeted source line and then single-clicking
the left mouse button on the line corresponding to the targeted source line in
the Status window, left of the source lines. An indicator will appear next to the
line number of the target source line. Similarly, an existing breakpoint can be
cleared by single-clicking on the line. The single-clicking toggles the break-
point setting for a target source line.

If in mixed/source and assembly mode, the breakpoints can be set and
cleared the same way, with the target line in this case being an assembly
instruction instead.

2. Breakpoints window

Software breakpoints can be viewed and cleared from the Breakpoints win-
dow (Figure 3-12). Double-clicking on an entry will clear the breakpoint. Sin-
gle-clicking on an entry will highlight the entry and enable clearing by then
pressing the Delete button. The Delete All button can be used to delete all
current breakpoints.

3. Assembly Debug window

Software breakpoints can be set and cleared from the Assembly Debug win-
dow (Figure 3-47) by single-clicking on the buttons along the left side of the
disassembly entries. This action also toggles the breakpoint each time it is
performed.

4. Functions window

Software breakpoints can be set and cleared from the Functions window (Fig-
ure 3-9) by double-clicking the left mouse button on a function entry. A break-
point will be toggled at the address of the start of the function.
Using the RISCWatch Debugger 3-71

• Setting Software Breakpoints with the bp Command

To set a software breakpoint, you can use a bp command along with the address
of the instruction to stop at and RISCWatch takes care of the rest. For example, to
stop just prior to the execution of the instruction at address 0xFFFC0004, issue
the following command:

bp set 0xFFFC0004

The processor/process could then be started using the run command. If the
processor/process were to try and execute the instruction at this address, the
processor/process would stop and an event would be generated which
RISCWatch would detect. It would then be possible to examine the state of the
processor.

To clear this software breakpoint, simply issue the command

bp clear 0xFFFC0004

See bp on page 5-20 in the Command Reference for a detailed description of
available functionality.

Using Hardware Breakpoints

• Setting Hardware Breakpoints from the RISCWatch Debugger Windows

Hardware breakpoints can be set or cleared in a number of ways using the
RISCWatch Debugger windows. Note that the Breakpoint Mode must be set to
Hardware mode (see bpmode on page 5-24).

1. Source window

Hardware breakpoints can be set and cleared in the Source window only
when the source screen is in mixed source/assembly mode. Single-clicking
the left mouse button on the line corresponding to the targeted assembly
instruction in the Status window, left of the assembly instructions, will alter-
nately set and clear the breakpoint. An indicator will appear next to the target
line in the line number field when the breakpoint is set.

2. Breakpoints window

Hardware breakpoints can be viewed and cleared from the Breakpoints win-
dow. Double-clicking on an entry will clear the breakpoint. Single-clicking on
an entry will highlight the entry and enable clearing by then pressing the
Delete button. The Delete All button can be used to delete all current break-
points.

3. Assembly Debug window

Hardware breakpoints can be set and cleared from the Assembly Debug win-
dow by single-clicking on the buttons along the left side of the disassembly
entries. This action also toggles the breakpoint each time it is performed.
3-72 RISCWatch Debugger User’s Guide

4. Functions window

Hardware breakpoints can be set and cleared from the Functions window by
double-clicking the left mouse button on a function entry. A breakpoint will be
toggled at the address of the start of the function.

• Setting Hardware Breakpoints with the bp Command

RISCWatch allows access to the available hardware registers used to control
breakpoints through the use of the bp command. This type of access allows for
the usage of native processor debugging facilities to control when a running
processor will be stopped. This access is dependent on the processor being used
and the available functionality may vary.

“Trigger/Trace Window (400Series Only)” on page 4-7 and “Compound
Trigger/Trace Window (401, 403 Series Only)” on page 4-12 provide descriptions
of other (processor-specific) windows for handling hardware breakpoints.

Breakpoints Window

The Breakpoints window consists of a Breakpoint subwindow with horizontal and
vertical scrollbars, a Breakpoint Mode selection groupbox, and push-buttons. The
Breakpoint subwindow displays any breakpoints that are currently set.

Figure 3-12. Sample Breakpoints Window
Using the RISCWatch Debugger 3-73

The Breakpoint entry contains information about the breakpoint, with each field
separated by a semicolon. If the entry is for an Instruction breakpoint, the first field
contains the letter ‘H’ or ‘S’ to indicate a Hardware or Software breakpoint,
respectively. The next fields in order show the address of the breakpoint, the
function containing the breakpoint, the file containing the breakpoint, the line
number in the file which the breakpoint is set at, and the program which the
breakpoint is set in. If the values of any of the fields cannot be determined by the
debugger they will be designated by values of zero in the case of numbers and ‘?’
in the case of strings.

If the entry is for a Data breakpoint, the first field contains the letter ‘D’. The next
fields in order show the Data Address Compare value, the Data Address Compare
register used, the Data Address Compare Write/Read enable, and the Data
Address Compare size.

Breakpoints may be set or deleted in several ways during a debug session. In
each case, the Breakpoints window will be automatically updated to reflect the
currently set breakpoints.

A breakpoint can be selected by single-clicking the mouse on a line containing a
breakpoint entry within the window. This will cause the breakpoint entry to
become highlighted. For an Instruction breakpoint, if the debugger has sufficient
information from the breakpoint entry, the Source window will be updated to show
the source file in which the breakpoint is set, with the source line which the
breakpoint is set at appearing highlighted in the middle of the view. No attempt will
be made to update the Source window for a breakpoint with an unknown program
(program field is ‘?’). The Assembly Debug window will also be updated when an
Instruction breakpoint entry is selected to display memory starting at the address
of the breakpoint. Single-clicking on an already selected breakpoint entry will
deselect it.

The Delete pushbutton is disabled unless a breakpoint entry is selected, at which
time it is enabled. Pressing the Delete pushbutton will cause the selected
breakpoint to be deleted. A breakpoint can also be deleted by double-clicking on
the breakpoint entry. When an Instruction breakpoint is deleted, the Breakpoints
window and the Status subwindow in the Source window will reflect the current
status.

The Delete All pushbutton will delete all current breakpoints.

The Breakpoint Mode groupbox consists of three buttons: Software BPs,
Hardware BPs, and HardStep BPs. The Breakpoint mode is changed by selecting
the appropriate button. The button which is on indicates the current mode.

When in Software mode, breakpoints are set by writing trap instructions in place
of program instructions.
3-74 RISCWatch Debugger User’s Guide

When in Hardware mode, user designated breakpoints are set via the hardware
debug registers of the target processor. RISCWatch breakpoints used for line
stepping and call stepping are applied as software breakpoints.

In HardStep mode, all breakpoints are applied using the hardware debug registers
of the target processor. When performing line steps or call steps, a single
hardware debug register (highest number IAC/IABR register) is used to run to the
next source line or function. In addition, if a breakpoint is applied when all
processor resources are in use, a previously applied breakpoint (contained in the
highest numbered IAC/IABR) is automatically removed and the new breakpoint
applied.HardStep mode is useful when debugging code resident in read only
memory, where software traps can not be written.

There are a finite number of hardware breakpoints available. The number is
based on the target processor and is dependent on how many hardware debug
registers it has. Error messages will be generated if attempts are made to set
Hardware breakpoints in Hardware mode and none are available.

If the mouse is single-clicked on an Instruction breakpoint entry which
corresponds to a program which is currently not active, the debugger context will
be switched for the new program, making it the active program. If the new program
contains the Instruction Pointer, all appropriate source debug screens will be
updated to reflect the context at the current Instruction Pointer. If the new program
does not contain the Instruction Pointer, the Source, Locals, and Caller windows
will be blanked out, and the Files, Functions, and Globals windows will be updated
for the new program. Refer to the Programs window description for more
information on debugging with multiple programs simultaneously.

The RISCWatch Debugger also uses the bp command to manage both types of
breakpoints. See bp on page 5-20 for further details.

See “Compound Trigger/Trace Window (401, 403 Series Only)” on page 4-12 and
“Compound Trigger/Trace Window (401, 403 Series Only)” on page 4-12 for
additional RISCWatch debugging windows that manage PowerPC 400Series
hardware breakpoints.

Breakpoint Select Window

The Breakpoint Select window appears when an attempt is made to set or delete
a breakpoint with the mouse on a source line in the Source window, and that
source line corresponds to multiple functions in the program. An example of when
this situation could exist is when debugging source code containing C++
templates. The Breakpoint Select window can then be used to set or remove
breakpoints for particular functions associated with the selected source line.
Using the RISCWatch Debugger 3-75

The window consists of a BP Set subwindow with horizontal and vertical
scrollbars, a BP Not Set subwindow with horizontal and vertical scrollbars, and
push-buttons.

The BP Set and BP Not Set subwindows are used to select the functions for which
breakpoints related to the chosen source line will be set. If breakpoints are
currently set for an associated function, its name will initially appear in the BP Set
window. If breakpoints are not currently set for an associated function, its name
will initially appear in the BP Not Set window.

Single clicking the mouse on a function in one of the subwindows will move it to
the other subwindow. The Move All to BP Set push-button will move all the
functions to the BP Set subwindow. The Move All to BP Not Set push-button will
move all the variables to the BP Not Set subwindow.

If the information on the Breakpoint Select is applied via the OK pushbutton, the
appropriate breakpoints for the selected source line will be set for each function
currently listed on the BP Set subwindow. Also, associated breakpoints will be
removed if a function is in the BP Not Set subwindow at the time the changes are
applied and it initially had breakpoints set. The Cancel pushbutton is used to
close the window without applying any changes.

Figure 3-13. Sample Breakpoint Select Window
3-76 RISCWatch Debugger User’s Guide

Reading and Writing Program Variables

Many methods of updating and viewing program data are provided by the
RISCWatch Debugger. They can be used by themselves or in concert with others
to provide a wide range of options on how data is presented.

The Locals and Globals windows display selected local and global variables,
respectively, for the program currently being debugged.The Variable Configuration
window can be selected from the Locals or Globals window to configure variable
information for all Local or Global variables. In addition, the Change Variable
window can be used to alter an individual variable’s value, type, or display
information. The following sections describe the capabilities of each of these
windows.

Local Variables Window

The Locals window displays local variables in the current source file. Figure 3-14
shows an example of a Locals window.

The Locals window consists of a Locals subwindow with horizontal and vertical
scrollbars and push-buttons. The Locals subwindow displays the visible local
variables for a function. The variables which can be displayed are dependent on
the current local variable context for the debugger. Variables can be shown which

Figure 3-14. Sample Locals Window
Using the RISCWatch Debugger 3-77

correspond to the current instruction context, that is, variables for the function
associated with the current Instruction Pointer address. These are automatically
shown after performing an execution command like run or linestep .
Variables can also be shown which correspond to a previous function in the call
chain. The Callers window is used to select the context of a function on the callers
stack, and the Locals window will be updated appropriately. Variables displayed in
the Locals Screen may have an address indicating a processor register. Proper
display of a calling function’s register variable (selecting a back level entry on the
Callers Screen) requires the existence of a tag word section in the executable. In
the absence of a “.tags” section, the Caller’s register variable value is assumed to
be in the register save area of the called function, which will not always be correct.
By using the -Hoff=debugger_handles_reg_vars High C/C++ compile option, you
can disable local register assignments. All locals will be assigned to memory
locations and proper display of all the caller’s variables will be guaranteed.

A local variable entry consists of the variable name followed by configurable
variable information. Configurable variable information includes the value of the
variable (if it is a fundamental type) expressed in a format selectable by the user,
the variable type enclosed in a left/right arrow pair (<>), the address of the
variable preceded by an ‘at’ sign (@), and the size of the variable enclosed in
parentheses. The Variable Configuration and Change Variable windows are used
to configure the variable information for the local variables.

If the address for a variable is not a valid memory address for the target being
debugged, the words ‘INVALID VALUE’ will appear in place of a numeric value as
long as the address is invalid. The address field will show the current address
associated with the variable. Variable detail and format changes can still be
applied while the variable is in this state, and will be applied if during the course of
debugging the program the variable address becomes valid.

For example, if an un-initialized pointer is defined, the contents of this pointer may
initially be outside the range of valid memory for the target, in which case any data
element pointed to by the pointer would have an invalid value. As soon as the
pointer is assigned a valid value for the program, say, by a call to malloc(), the
data elements pointed to should then contain valid data.

Single-clicking the left mouse button on a variable entry selects the variable and
opens the Change Variable window appropriate for the type of the selected
variable (integer, structure, and so on). The Change Variable window is used to
configure variable information for an individual variable. See “Change Variable
Window‚" p. 3-85.

Double-clicking the left mouse button on a structure, pointer, or union variable
entry expands the variable detail one level if it is expandable and it has not already
been fully expanded. You can continue to expand the variable detail another level
by continuing to double-click on the variable entry.
3-78 RISCWatch Debugger User’s Guide

Double-clicking the right mouse button on a structure, pointer, or union variable
entry contracts the variable detail to the point which was clicked on. Subsequent
expansion of the variable at this point will result in the variable being expanded to
the level of detail which it was at when it was contracted.

The Variable Config push-button is used to open the Variable Configuration
window. The Variable Configuration window, when opened from the Locals
window, is used to configure variable information for all the local variables in the
current locals context. See “Variable Configuration Window‚" p. 3-83. The Read
push-button is used to manually force a read of the values of the variables which
are displayed on the Locals window from the target.

Note: “Input Line Usage” on page 3-48 describes shortcut key operations for
performing character string searches on this window.

Global Variables Window

The Globals window consists of a Globals subwindow with horizontal and vertical
scrollbars and push-buttons.

The Globals subwindow displays the visible global variables for the program
currently being debugged. For performance reasons, when a program is initially
loaded, all global variables are set up to be invisible. The Var. Config button must
be used to make them visible. A global variable entry consists of the file which the
variable is in, followed by the variable name and configurable variable information.
Configurable variable information includes the value of the variable (if it is a
fundamental type) expressed in a format selectable by the user, the variable type
enclosed in a left/right arrow pair (<>), the address of the variable preceded by an
‘at’ sign (@), and the size of the variable enclosed in parentheses. The Variable
Using the RISCWatch Debugger 3-79

Configuration and Change Variable windows are used to configure the variable
information for the global variables.

If the address for a variable is not a valid memory address for the target being
debugged, the words ‘INVALID VALUE’ will appear in place of a numeric value as
long as the address is invalid. The address field will show the current address
associated with the variable. Variable detail and format changes can still be
applied while the variable is in this state, and will be applied if during the course of
debugging the program the variable address becomes valid.

For example, if an un-initialized pointer is defined, the contents of this pointer may
initially be outside the range of valid memory for the target, in which case any data
element pointed to by the pointer would have an invalid value. As soon as the
pointer is assigned a valid value for the program, say, by a call to malloc(), the
data elements pointed to should then contain valid data.

Single-clicking the left mouse button on a variable entry will select the variable
and open the Change Variable window appropriate for the type of the selected
variable (integer, structure etc.). The Change Variable window is used to configure
variable information for an individual variable. Refer to the Change Variable
window description.

Double-clicking the left mouse button on a structure, pointer, or union variable
entry will expand the variable detail one level if it is expandable and it has not
already been fully expanded. You can continue to expand the variable detail
another level by continuing to double-click on the variable entry.

Figure 3-15. Sample Globals Window
3-80 RISCWatch Debugger User’s Guide

Double-clicking the right mouse button on a structure, pointer, or union variable
entry contracts the variable detail to the point which was clicked on. Subsequent
expansion of the variable at this point will result in the variable being expanded to
the level of detail which it was at when it was contracted.

The Variable Config push-button is used to open the Variable Configuration
window. The Variable Configuration window, when opened from the Globals
window, is used to configure variable information for all the global variables in the
program. See “Variable Configuration Window‚" p. 3-83. The Variable Config
push-button will be disabled if there is no source debug information for the current
program.

The Read push-button is used to manually read the values of the variables which
are displayed on the Globals window from the target.

Note: “Input Line Usage” on page 3-48 describes shortcut key operations for
performing character string searches on this window.

Inspect Variable Windows

An Inspect window consists of a variable subwindow with horizontal and vertical
scrollbars and push-buttons.

Inspect variable windows are used to display and change variable contents and
display information in much the same manner as the Local and Global Variable
windows. However, the Inspect window contains only one variable per window,
and it can be either a local or a global variable. Multiple windows are allowed, and
are identified by a colon and instance number, along with the variable name.
Using the RISCWatch Debugger 3-81

Inspect windows can be created via the GUI interface using the Source window or
by command line using the window command. To invoke an Inspect window via
the Source screen, the user simply clicks and holds the right mouse button over
the variable to be inspected. A menu list will appear that includes an Inspect
selection. When selected, a new window is created for that particular variable
only. The ability to have multiple copies of the same variable is also supported.

Single-clicking the left mouse button on the variable entry will open the Change
Variable window appropriate for the type of the selected variable (integer,
structure etc.). The Change Variable window is used to configure variable
information for an individual variable. Refer to the Change Variable window
description.

Double-clicking the left mouse button on a structure, pointer, or union variable
entry will expand the variable detail one level if it is expandable and it has not
already been fully expanded. You can continue to expand the variable detail
another level by continuing to double-click on the variable entry.

Double-clicking the right mouse button on a structure, pointer, or union variable
entry contracts the variable detail to the point which was clicked on. Subsequent
expansion of the variable at this point will result in the variable being expanded to
the level of detail which it was at when it was contracted.

Figure 3-16. Sample Inspect Window
3-82 RISCWatch Debugger User’s Guide

Variable Configuration Window

The Variable Configuration window is used to change variable information for all
local or global variables. It consists of a Display Information selection groupbox, a
Compiler-created Variable selection groupbox, a Visible subwindow with
horizontal and vertical scrollbars, a Not Visible subwindow with horizontal and
vertical scrollbars, and push-buttons.

The Variable Configuration window is opened via the Variable Configuration
push-button on the Locals or Globals window. The OK push-button is used to
apply the selected information to the associated variable window (the variable
window from which the Variable Configuration window was opened). The Cancel
push-button is used to close the window without applying any changes.

The Variable Configuration window is intended to be used for applying
configuration changes to a variable window once it is opened. The Variable
Configuration window will be brought down without any changes being applied if it
is open and the associated variable window is brought down or updated. An
existing Variable Configuration window will also be brought down with no changes
applied if another Variable Configuration window or a Change Variable window is
opened while the Variable Configuration window is up.

The Display Information groupbox consists of four check boxes. The first 3 check
boxes enable display of the Address, Size and Type information. The ‘Use Block
Read’ check box is available to improve variable read performance by performing
block reads of structures and array elements. The initial state of the check boxes
shows the currently enabled default display information for the associated local or
global variable window. If the information on the Variable Configuration window is
applied, each variable entry on the variable window will be updated to reflect the
selected display information. The display changes will be applied to any variable

Figure 3-17. Sample Variable Configuration Window
Using the RISCWatch Debugger 3-83

actively using the ‘Use Defaults’ read information setting. This setting can be
displayed or altered on the Change Variable window.

The Compiler-created variable groupbox consists of three buttons, one to hide
variables which are created by the compiler, one to show variables which are
created by the compiler, and one to leave the current setting. The debugger keys
off variables beginning with two underscores ('__') to determine variables created
by the compiler. They are typically present in C++ programs. The initial state is to
have the compiler-created variables hidden. Selecting the Hide button will move
all variables beginning with two underscores to the Not Visible subwindow.
Conversely, selecting the Show button will move all variables beginning with two
underscores to the Visible subwindow.

The Visible and Not Visible subwindows are used to select which variables will be
visible on the associated variable window. No processing is done for a variable
while it is not visible. All local variables are initially visible. All global variables are
initially not visible.

Single-clicking the mouse on a variable in one of the subwindows will move it to
the other subwindow. The Move All to Vis push-button will move all the variables
to the Visible subwindow. The Move All to Invis push-button will move all the
variables to the Not Visible subwindow. If the information on the Variable
Configuration window is applied, a variable entry will appear on the associated
variable window for each variable in the Visible subwindow.

Note: For local variables, all variables defined for the function will be shown,
regardless of whether they are currently in scope. If multiple instances of variables
with the same name are defined with different scope within a function, the variable
name will appear repeated times in the window. Each variable instance on the
window will correspond to a variable definition within the function.

Note: “Input Line Usage” on page 3-48 describes shortcut key operations for
performing character string searches on this window.
3-84 RISCWatch Debugger User’s Guide

Change Variable Window

The Change Variable window is used to change variable information for an
individual local or global variable. This window is opened by single-clicking the
mouse on an individual line entry in the Locals or Globals window. The type of
variable selected determines which format options are enabled when the window
is displayed. Variable types are classified as Base (int, char, enum, etc), Array,
Pointer, Structure or Union. The following information describes the fields
displayed in the Change Variable window.

• Variable Name

The Variable Name field contains the name of the variable chosen. In addition, the
field title area indicates the associated variable window (local or global) and the
current type (Array, Pointer, Base, or Struct/Union) assigned to the variable.

Figure 3-18. Change Variable Window
Using the RISCWatch Debugger 3-85

• Display Information

The Display Information groupbox consists of three check boxes to enable display
of Address, Size and Type information for the selected variable on the associated
variable window. The ‘Use Block Read’ check box is used to improve performance
by executing memory block reads on structures and array elements. The ‘Use
Defaults’ check box informs RISCWatch to use the default settings made on the
Variable Configuration window.

The initial state of the check boxes shows the currently active display information
for the associated variable. If the information on the Change Variable window is
applied, the variable entry on the associated variable window will be updated to
reflect the selected display information. The display changes will be applied to any
portions of the variable which were ‘revealed’ or expanded, whether they are
currently visible or not.

• Variable Detail

The Variable Detail groupbox consists of three check boxes: ‘More detail’, ‘Less
detail’, and ‘Leave detail’. ‘Leave detail’ will always be the default when the
window comes up. Selecting ‘More detail’ will expand the variable to the next level
of expansion, if it can be expanded further. If the variable was previously
expanded multiple levels from that point, those levels of expansion will be shown
as well. Selecting ‘Less detail’ will contract the variable detail to the level of the
selected variable. The detail changes will only take effect if the changes for the
window are applied. Refer to “Expansion/Contraction from Locals or Globals
Window” on page 3-88 for more discussion on changing the level of detail for a
variable. Note that base variables, such as ‘longs’ or ‘ints’, have no additional
detail to display, so the ‘More detail’ and ‘Less detail’ selections are disabled.

• Value Format

The Value Format groupbox consists of a number of buttons used to change the
format of the selected variable. For example, if the value of the selected variable is
displayed as decimal 12 on the Locals window, it will be displayed as
'0x0000000C' if the Hexadecimal format is applied. The following formats are
supported: “Show as Array” and ‘Show as Ptr’ (valid for Pointer types only), ASCII,
‘ASCII string’ (for base char types), Binary, Cast, Hexadecimal, Octal, Signed,
Unsigned, and Default. Default is the format which RISCWatch has defined for
each fundamental type. See “Formatting Examples‚" p. 3-88, for specific details on
Type Casting, ASCII string display, and other formatting options.

• Change Value

The Change Value field is used to change the value of the variable. Values can be
entered in decimal or hexadecimal notation. If an invalid value is entered, an error
message will be displayed in the Main window and the Change Variable window
will remain visible to accept another entry. When applied, the variable value will be
written to the target and the variable entry on the associated variable will be
3-86 RISCWatch Debugger User’s Guide

updated to reflect the new value. The Change Value Field does not exist if the
Cast or ‘Show as Array’ Value Format selections are chosen. In addition, ‘Array’
and ‘Struct/Union’ variable types do not contain the Change Value field (a value is
only meaningful when referring to a specific member or element of these types).

• Change Array Subrange

The Change Subrange field is used to change the number of elements displayed
for either an array variable or a pointer variable (when ‘Show as Array’ Value
Format is used). It is initialized with the current subrange value. The limits of the
array will be shown in the title above the change field. The low and high subrange
values should be separated by a comma with no spaces. If an invalid subrange is
entered, an error message will be displayed in the Main window and the Change
Variable window will remain up to accept another entry. If a subrange value is
entered which is outside the limits for the array, a warning message is displayed
and the entered value is used. When applied, the array variable will be expanded
on the associated variable window to show the array elements for the entered
subrange.

• Enter Type

The Enter Type field is used to change the type (Type Cast) of the selected
variable. This field is activated when the Cast Value Format is selected. A valid
‘type name’, followed by any number of ’*’s to indicate pointer indirection, must be
entered. Valid ‘type names’ include fundamental ’C’ types such as ’int’, ’long’,
’signed char’, etc... In addition, any user defined ’type name’ (i.e. structures
defined in your ’C’ code) can be used. Using the name ‘#default’ will restore the
variable’s type to the original compiler setting.

The ‘type name’ may also be preceded by an optional file name (with or without
single quotes), followed by a colon (i.e. file.c:structa* or ‘file.c’:structa*), to direct
RISCWatch to search the debug information of a specific source file. In the
absence of a file identifier, RISCWatch will only search for a name match in the
source file where the variable was originally defined.

Refer to “Type Casting a Variable” on page 3-102 for additional information.

• Apply To Each Var. Instance

A check box titled ‘Apply to each var. instance at this level’ will appear above the
buttons at the bottom of the window if the selected variable is part of an array
element (and more than one element exists for the array from the perspective of
the debugger). If it is selected when changes are applied for the window, they will
be applied to each instance of the variable within multiple elements of the array.
Refer to “Changing Multiple Instances of a Variable Within an Array” on page 3-94
for a detailed description of this support.
Using the RISCWatch Debugger 3-87

• OK

The OK push-button is used to apply the selected information to the associated
window (Locals or Globals) for the variable selected. If an invalid value is
detected, the Change Variable window will remain visible and an error message
will be displayed in the RISCWatch Main status window.

• Cancel

The Cancel push-button is used to close the window without applying any
changes.

• Help

The Help push-button is used to display any available help topic for this window.

Formatting Examples

This section contains examples on how to manipulate the variable information
which is displayed on the Locals or Globals variable window:

Expansion/Contraction from Locals or Globals Window

Consider the following (unexpanded) structure variable entry on a Locals or
Globals variable window:

Double-clicking the left mouse button on this variable line will result in expanding
the structure to show the individual elements:

Figure 3-19. Sample Unexpanded Structure Variable

Figure 3-20. Sample Expanded Structure Variable
3-88 RISCWatch Debugger User’s Guide

Double-clicking the left mouse button again on the same line will continue to
expand by one level each data element of the structure:

Note that we could have chosen above to only expand one of the data elements of
the structure by moving the mouse to that specific element (.show_in, say) and
double-clicking the left mouse button on it. We can demonstrate this ability to
expand an individual element by now double-clicking the left mouse button on the
(now visible) name array element of the nested .show_in structure:

Note that in this case the expansion took place from the line which was
double-clicked on. Also, because this was an array and not a structure, the
elements are listed by array index. In this case, only the first three elements of the
array were shown when it was expanded, which is the default setting for arrays
with three or more elements. The subrange to view for an array can be changed
via the Change Variable window which is opened by single-clicking the left mouse
button on the array variable entry. (See p. 3-85.)

Figure 3-21. Further Structure Variable Expansion

Figure 3-22. Single-Element Structure Variable Expansion
Using the RISCWatch Debugger 3-89

Now, we can demonstrate the ability to contract variable elements by
double-clicking the right mouse button on the .show_in element. This will contract
the variable information displayed up to this element.

The next time the .show_in element is expanded, it will be expanded to the level of
detail to which it was previously expanded above.

Using these techniques, variables consisting of complex data elements can be
customized to show various levels of detail for each data element comprising the
variable.

Displaying ASCII Strings

Consider the following variable which is a pointer to type char on a Locals or
Globals variable window:

Single-clicking the left mouse button on this variable line will open the Change
Variable window (See p. 3-85.). One of the options under Value Format is ‘ASCII
String’. Selecting this format and applying the change will result in the variable
entry being updated to show the ASCII string being pointed to:

Figure 3-23. Structure Variable Contraction

Figure 3-24. Sample Pointer Variable

Figure 3-25. Sample ASCII String Display
3-90 RISCWatch Debugger User’s Guide

Variables of type char can also be used as the initial point for an ASCII string
display. Consider the same string being displayed as an array of characters
(expanded to show the first few elements):

Single-clicking the left mouse button on any of the character variable entries will
open the Change Variable window (See p. 3-85.). Selecting the ‘ASCII String’
Value Format and applying the change will result in the character variable entry
being updated. An ASCII string is displayed, starting from the address of the
variable. In this case, it would probably make most sense to choose the first
element of the array, resulting in the following format change:

Note that in either case of using a pointer or a char as the basis for displaying the
string, the debugger will display characters starting from the address of the
variable until a NULL character is reached in memory or an internally defined
maximum length is reached.

Handling Multiple Data Elements Referenced by a Single Pointer

Suppose we initialize a data pointer to point to a memory buffer allocated to hold
several identical data structures.Typically, individual buffer elements can be
manipulated by the program by using pointer arithmetic with the pointer value. It
would be cumbersome to view and change the full range of data being pointed to
if the pointer variable is restricted to displaying a single element. Fortunately,
RISCWatch provides a format to aid in this task.

Figure 3-26. Sample Character Array

Figure 3-27. Sample Array Element Display
Using the RISCWatch Debugger 3-91

Consider the following variable, a pointer to type struct record on a Locals or
Globals variable window. It references individual elements of a buffer containing
multiple struct record instances, and points to the beginning of the buffer:

Normally, if we were to expand this pointer, it would only expand one instance of
the structure at the address which it is currently pointing to:

What we want to do is to be able to manipulate individual records. RISCWatch
supports this ability by allowing a pointer variable entry to be expanded as an
array (with a specified number of elements), with each element of the array
subsequently being of the type which the original pointer is pointing to.

Single-clicking the left mouse button on this variable line for the original pointer
will open the Change Variable window. One of the options under Value Format is
‘Show As Array’. Selecting this format option changes the entry field at the bottom
of the window so that an array subrange (with the first element having the address
of the pointer value) may be specified.

Figure 3-28. Sample struct record Pointer Display

Figure 3-29. Sample Initial struct record Pointer Expansion
3-92 RISCWatch Debugger User’s Guide

In this case we’ll specify the first three elements [0,2]:

Applying the changes will result in the variable entry being updated to show an
array of three data structures, each representing one of the individual data
elements in the buffer.

Figure 3-30. Changing Pointer Variables

Figure 3-31. Sample Pointer Variable Shown as an Array
Using the RISCWatch Debugger 3-93

Now each individual array element can be manipulated according to the treatment
for that type.

At any time, the original pointer can be returned to its normal pointer designation
by single-clicking the left mouse button on the pointer variable. This action will
open the Change Variable window. Selecting the ‘Show as Ptr’ Value Format will
restore the pointer back to its original display.

Changing Multiple Instances of a Variable Within an Array

If a local or global variable is part of an array element, RISCWatch provides the
ability to simultaneously change the format, display, or value of each instance of
the variable within multiple elements of the array. This is accomplished by
selecting a check box on the Change Variable window titled ‘Apply to each var.
instance at this level’ when changes are applied. This check box is used to apply
changes to multiple elements and will only appear on the Change Variable
window if the selected variable is somewhere part of an array element (and more
than one element exists for the array from the perspective of the debugger).

If the check box is selected on a window which contains a Variable Detail
groupbox, it will be disabled as long as the check box is selected (and any detail
selections will be ignored if the check box is selected when changes are applied).

If display information changes are applied, they will only apply to portions of the
variable which have previously been ‘revealed’ or expanded, whether they are
currently visible or not. If a value change is applied, it will only apply to the
associated variables which are currently visible on the variable window. Also,
when applying a change to multiple instances, a pop-up dialog will appear to
verify the action. This underscores the fact that care should be taken when this
option is used.

Figure 3-32. Sample Expanded Pointer Variable Shown as an Array
3-94 RISCWatch Debugger User’s Guide

Consider the following variable which is an array of chars , with each element
value currently displayed as hexadecimal:

As a simple example of applying a change to multiple elements at once, we’ll first
select an element of the array (it doesn’t have to be the first). This will bring up the
Change Variable window shown in Figure 3-34. Notice the check box above the
buttons at the bottom of the window. It appears because the variable we selected
was part of an array element. We’ll update the display so that the address of each
element will be shown, and the value be formatted as ASCII instead of hex. We do
this by selecting the appropriate Display Info. and Value Format options just as we
would for any variable, along with selecting the checkbox to indicate we wish to
apply these changes to each element.

Figure 3-33. Sample char Array Display
Using the RISCWatch Debugger 3-95

Figure 3-34. Changing Multiple Elements of a Variable Array
3-96 RISCWatch Debugger User’s Guide

Applying these changes results in each element being updated accordingly on the
variable screen:

Note that in the example above, we could also have initialized each element of the
array by entering a value in the Change Value field. With a value change being
applied to multiple instances, a pop-up dialog would first appear to verify the
change request. Applying the value change would result in the value of each
element of the array being changed.

The robustness of this capability can be fully realized by understanding that it
applies to all data types at any level of detail expansion within an array element.

Figure 3-35. Updated Display of Variable Array
Using the RISCWatch Debugger 3-97

Consider the following pointer formatted to show as array, with the first two
elements expanded to multiple levels of detail:

Selecting the Str_Comp array variable of the first element brings up the Change
Variable window. The check box to apply to multiple instances appears since
ultimately this variable is contained within an array element. This time we’ll
change the array subrange to ‘0,2’, select to show address information, and select
the check box to apply the change to each element.Notice that the variable
window is updated for each instance of the variable at that level in both Rec_Ptr
array elements.

Figure 3-36. Sample Multi-Element, Multilevel Variable Display
3-98 RISCWatch Debugger User’s Guide

This last example will further explain the processing used to determine where
changes will be applied if the option is used to change multiple instances of a
variable within a complex structure.Selecting the first element of the Str_Comp
variable in the first Rec_Ptr element brings up the Change Variable Window. We’ll
initialize each (visible) element of the Str_Comp array in this and every other
(visible) Rec_Ptr element by putting the value in the Change Value field and
selecting the check box to apply to multiple instances.

Figure 3-37. Updated Multi-Element, Multilevel Variable Display
Using the RISCWatch Debugger 3-99

Now, notice the variable’s name in the window above:
Rec_Ptr[0].variant.var_1.Str_Comp[0]. First, all elements of this instance of
Str_Comp will be changed. Next, going back through the name, the changes will
also be applied to all the elements of any other instance of the Str_Comp variable.
We can see in this example that there is another instance of the Str_Comp
variable, in the second Rec_Ptr element having the name
Rec_Ptr[1].variant.var_1.Str_Comp.

Figure 3-38. Sample Change Value Display
3-100 RISCWatch Debugger User’s Guide

Applying the change results in the following update:

All elements of the each Str_Comp array are now initialized to the character ‘A’.
Notice that the elements of the Str_2_Comp array are not affected, even though
the Str_2_Comp array is an array of characters nested the same number of
‘levels’ from Rec_Ptr[0]. This is because it is a different variable and the changes
were only applied to Str_Comp variable instances.

It should be apparent that care should be taken when applying value changes to
multiple variable instances within complex data structures. Format and Display
changes are not destructive, but once the values are changed they cannot be
recovered.

Figure 3-39. Sample Result of Change Value Update
Using the RISCWatch Debugger 3-101

Type Casting a Variable

The Cast format option is available on the Change Variable window to enable
dynamic Type Casting of a variable. This feature is particularly useful when
debugging code that contains void pointers.

Consider a local variable called ’voidptr’ which has been defined in ’C’ code as
’void *voidptr’. A single left mouse click on this variable will bring up the Change
Variable window.

Figure 3-40 illustrates the actions needed to cast ’voidptr’ to a new type:

• Select the Cast Value Format. Notice the ’Change Value:’ field near the
bottom of the window is now prompting for a new ‘type name’.

• Enter a valid type name followed by any number of ’*’s to indicate pointer
indirection. Valid type names include fundamental ’C’ types such as ’int’,
’long’, ’signed char’, ‘short, etc. In addition, any user defined type name (i.e.

Figure 3-40. Sample Variable Type Cast
3-102 RISCWatch Debugger User’s Guide

structures defined in your ’C’ code) can be used. Figure 3-40 indicates
’voidptr’ will be changed to be a pointer to structure ’_user_defined’.

• Press the ‘enter’ key or select ’OK’. RISCWatch will search for a type name
match using the debug information defined for the source file where the
variable was originally defined. If no match is found, an error message is
reported in the RISCWatch main window.

• Preceding the type name with a source file name, followed by ‘:’, will direct
RISCWatch to search for a name match in the designated file. For example,
’file1.c:_user_defined’ will force RISCWatch to search the debug information
defined for source file ’file1.c’. Valid file names are those names found in the
Files window. Note that the directory path of the source file does not need to
be specified. The file name may also be enclosed in double quotes.

• The original type definition can be restored by entering ’#default’ as the new
type name.

The Cast format option is available for all variables except arrays. Since an array
variable has no value, type casting should be performed on the individual
elements of the array. Note that multiple elements of an array can be type caste
simultaneously by making use of the ’Apply to each var’ check box of the Change
Variable window.

Source Variable Command Support

In addition to the graphical user interface support described above, local and
global source variables can be used with memory access commands such as
read , write , set and expr . Source variables are distinguished from other
RISCWatch variables by a leading colon “:”, and adhere to the following syntax
rules:

:["filename":][&]var_name

Where:

• ’:’ indicates a source variable, as opposed to other RISCWatch variables, such
as register names or address locations.

• filename is a valid file name, as displayed in the Files Window. This optional
field is used to address a specific global variable whose name may conflict with
an active local, or another static global variable. If the filename option is not
specified, RISCWatch will search for var_name in the list of locals defined for
the current instruction address (IAR). If not found in the current function, the list
of global debug names will be searched.
Note: the file’s directory path does not need to be specified when designating a
filename.

• var_name is a valid variable name, as seen in the Locals or Globals Window.
Normal ’C’ language naming conventions are used to identify a specific data
Using the RISCWatch Debugger 3-103

member. For example ":ptr->member1", ":ptr[0].member1",
":structa.structb.member2" are all valid name constructs. The variable name
must be defined within the active function (defined by the IAR) or within the
active list of globals.

• ’&’ is a request for the address of a variable, similar to the ’C’ language
definition. If ’&’ precedes a var_name that is assigned to a register, the
address can not be determined and an error is reported.

• ’*’ is a request for the value of a var_name that resolves to a ’C’ pointer. If ’*’
precedes a non pointer variable, or the variable is a pointer to a structure, an
error is reported.

Typical examples:

 read :i # reads src variable ’i’

 write :ptr[100] 14 # write decimal 14 at the 101st element of ’ptr’

 set :"file.c":glob1.a = 0x13 # write hex 13 to variable ’glob1.a’

 read :&test[2].a R1 # write R1 with address of ’test[2].a’

 expr :**ptr1 # display value of ’**ptr’

Reading and Writing Memory

The Hardware | Memory pulldown on the Main window provides a number of
different ways to view memory. They allow the user to view specified memory
contents in hex, ASCII, or disassembled instruction formats. The following page
references are good sources of information:

• “ASCII Memory Window” on page 3-108
• “Custom Memory Window” on page 3-110
• “Memory Coherency Window (JTAG Targets Only)” on page 3-105
• “Cache Windows (JTAG Targets Only)” on page 3-113
• “Translation Lookaside Buffer Window (Applicable Processors Only)” on

page 4-15
• “Load Memory Window” on page 3-63
• “Save Memory Window” on page 3-114

Some windows also provide the ability to alter memory contents.

Memory can also be viewed and altered using the read and write commands
from the command line on the Main window.

Note: Be aware that there are situations where changing the content of an
individual memory location may result in sections of adjacent memory being read.
If data is written to an address, and that address corresponds to an address which
is contained in a Memory or Asm Debug window which is currently up, a memory
3-104 RISCWatch Debugger User’s Guide

region the size of the memory displayed in these windows will be read from the
target. Similarly, if the address of changed memory corresponds to a portion of an
individual memory element existing on any user-defined window, an amount of
memory equal to the size of the memory element will be read (for example, if a
byte-sized memory element at address 0x00000001 is written, and another
user-defined memory region is defined with four word size elements starting at
address 0x00000000, one word of data will be read from address 0x00000000 in
this case).

Memory Coherency Window (JTAG Targets Only)

The Memory Coherency window is used to control data and instruction cache
updating during memory reads and writes. This window is displayed by selecting
the Memory | Coherency option of the menubar’s Hardware pulldown choice.

If caching is disabled via the appropriate hardware registers (DCCR/ICCR for
PowerPC 400Series, HID0 for PowerPC 6xx/7xx), reads and writes from/to
memory will directly reflect the contents of physical memory.

If the processor is configured to control data and instruction caching, a memory
model is said to have been established for how the data and instructions will be
accessed. Once a memory model has been established, reads and writes to/from

Figure 3-41. Sample Memory Access Window
Using the RISCWatch Debugger 3-105

memory will provide data and/or instructions that are a combination of information
from the caches and memory.

Using the read memory options, it is possible to force reads to use your memory
model (a combination of cache and memory information) or to read directly from
physical memory (by bypassing the data cache).

When a memory model is used to control data caching, the Memory Coherency
window allows control over how the data is written to the data cache and memory.
To allow the processor to manage data coherency between the data cache and
memory, select the memory model option. To force memory writes to immediately
update the data cache and memory contents, select the write-thru option. To force
memory writes to update physical memory only, and not the data cache, select the
bypass option.

Similarly, an instruction cache (IC) memory model can be controlled with the
options in the Memory Coherency window. The update options should be selected
to force instruction memory writes to update both physical memory and the
instruction cache. The invalidate options are used to force instruction memory
writes to update physical memory while marking the associated addresses as
invalid in the instruction cache.

For instruction memory writes, the data cache (DC) options are used to indicate
whether instruction memory writes are to update the data cache or not. Select the
bypass option to indicate that instruction memory writes are NOT to be written to
the data cache. Selecting the update option forces instruction memory writes to
update the data cache as well.

WARNING: The DC bypass option should be used with caution when data
caching is enabled. This option is used to force the data memory writes to update
physical memory without updating the data in the data cache. This mechanism
essentially overrides the memory model that would be set up using the registers
which control caching. Data written to physical memory using this option could be
overwritten by “dirty” data in the cache that had not yet been written out to
memory.
3-106 RISCWatch Debugger User’s Guide

Following is a description of the Memory Coherency window options and exactly
how they function:

Notes:

1. D-Cache updated if enabled (via DCCR for PowerPC 400Series, HID0 for
PowerPC 6xx/7xx)

2. Physical memory written if D-Cache disabled (via DCCR for PowerPC
400Series, HID0 for PowerPC 6xx/7xx)

3. Coherent if D-Cache disabled (via DCCR for PowerPC 400Series, HID0 for
PowerPC 6xx/7xx)

4. I-Cache updated if enabled (via ICCR for PowerPC 400Series, HID0 for Pow-
erPC 6xx/7xx)

5. I-Cache line invalidated

Note: RISCWatch will ignore the settings in the Memory Coherency Window
during a memory download (load command) and default to an I_Cache invalidate,
D_Cache flush model. This model achieves the best download rate while
maintaining coherency of the system under test.

1. Write DMEM Coherency D-Cache I-Cache
Physical
Memory

Use memory model Yes Note 1 No Note 2

DC write-thru Yes Note 1 No Yes

DC bypass No No No Yes

2. Write IMEM Coherency D-Cache I-Cache
Physical
Memory

IC update DC bypass Note 3 No Note 4 Yes

IC update DC update Yes Note 1 Note 4 Yes

IC inval DC bypass Note 3 No No (Note 5) Yes

IC inval DC update Yes Note 1 No (Note 5) Yes
Using the RISCWatch Debugger 3-107

ASCII Memory Window

The ASCII Memory window allows memory to be read, altered and written as
four-byte data words or as ASCII text. This window is displayed by selecting the
Memory | ASCII option of the menubar’s Hardware pull-down choice. What follows
is a description of this window’s functionality.

• Scroll Bar

Clicking on a vertical scroll arrow alters the display address by one line or opcode.
Clicking on the area between a vertical arrow and the current scroll position alters
the display address by one screen’s worth of data. To display a given address, use
the address entry schemes described in the Data area and Address entry
sections.

The page up and page down feature may also be accessed via the keyboard Page
Up and Page Down buttons.

• Address area

The address area of the ASCII Memory window is used to display data anywhere
within the configured range of the processor. The address area is located at the
far left under the Address: heading. To display any part of memory, simply use the
mouse to place the cursor anywhere within one of the address values, type in the
desired address and press the Enter key.

• Data Area

The data area of the ASCII Memory window is used to display data read from the
processor as well as alter this data so that it may be written back. There are four
data values per display line with each value displaying four bytes of data.

Figure 3-42. Sample ASCII Memory Window
3-108 RISCWatch Debugger User’s Guide

To alter any of these data values, simply use the mouse to place the cursor
anywhere within one of the data values, type in the desired data, and press the
Enter key to write the data value to the processor memory. Changed data will not
be written to the processor unless the cursor is in the data value that was changed
when the Enter key is pressed. If data is mistakenly entered into a data field that is
not to be written to memory, simply click on the Read button to refresh the
displayed data.

• ASCII area

The ASCII area of the ASCII Memory window is used to display data read from
the processor as well as alter this data so that it may be written back. The ASCII
area is located in a column along the right hand side of the window. Each ASCII
line contains sixteen (16) ASCII characters that represent the data bytes in the
data area.

To alter any of these data values, simply use the mouse to place the cursor in any
one of the ASCII character areas, type in the desired data and press the Enter key
to write the ASCII data to the processor memory. Changed data will not be written
to the processor unless the edit cursor is in the data line that was changed when
the Enter key is pressed.

• Read button

The Read button is used to read the processor memory to refresh the contents of
all currently displayed data and address fields. Use this button to force a refresh of
displayed data or to remove the contents of a partially edited data or address field
which has not been written back to the processor.

RISCWatch allows multiple instances of the ASCII Memory screen to be used
simultaneously. The instance number is included after the ‘:’ in the title bar. Each
time the ASCII Memory screen is selected via the Memory pulldown or the
“window ascii ” command is issued, a new instance of the window will be created.
Using the RISCWatch Debugger 3-109

Custom Memory Window

The Custom Memory window allows memory to be written or read in several
different formats and word sizes. This window is displayed by selecting the
Memory | Custom option of the menubar’s Hardware pull-down choice. What
follows is a description of this window’s functionality.

• Address Area

The address area of the Custom Memory window is used to display data
anywhere within the configured range of the processor. The address area starts at
the leftmost column under the Address heading. To display any part of memory,
simply use the mouse to place the cursor anywhere within one of the address
values, type in the desired address and press the Enter key.

• Data Area

The data area of the Custom Memory window is used to display data read from
the processor as well as alter this data so that it may be written back. The data
area consists of all the values displayed to the right of the address area and
underneath the numeric headings which are used to help in determining
on-screen addresses.

To alter any of these data values, simply use the mouse to place the cursor
anywhere within one of the data values. The Input Area will appear at the bottom
of the window to allow new values to be entered. When the input area is
displayed, the Custom Memory window will be locked until the enter key is
pressed.

• Scroll Bar

Figure 3-43. Custom Memory Window
3-110 RISCWatch Debugger User’s Guide

Clicking on a vertical scroll arrow alters the display address by one line’s worth of
data. Clicking on the area between a vertical arrow and the current scroll position
alters the display address by one screen’s worth of data. To display a given
address, use the address entry scheme described above in the Address Area
section.

The page up and page down feature may also be accessed via the keyboard Page
Up and Page Down buttons.

• Base Selection

The base selection button is used to select the radix that the data values will be
displayed with in the data area. To change the currently selected base, click on the
arrow button with the mouse and select the desired base. Once done, the data will
be refreshed and displayed in the newly selected base.

• Size Selection

The size selection button is used to select the word size of the data values to be
displayed in the data area. To change the currently selected size, click on the
arrow button with the mouse and select the desired size. Once done, the data will
be refreshed and displayed in the newly selected size.

• Sign Selection

The Sign selection button is used to select the sign used to display data values in
the data area. To change, the currently selected size, click on the arrow button
and select the desired sign. Once done, the data will be refreshed and displayed
in the newly selected sign.

The sign selection button is only enabled when the currently selected base is
decimal.

• Read button

The Read button is used to read the processor memory to refresh the contents of
all currently displayed data and address fields. Use this button to force a refresh of
displayed data or to remove the contents of a partially edited address value.

• Input Area

The input area of the Custom Memory window is used to input data values that
are to be written to processor memory. This area appears when a value has been
selected from the data area by clicking on it with the mouse. Once done, the input
area will appear between the Help and Auto-update buttons. The value to be
written to memory is typed in and followed by the Enter key. To cancel this input
operation, press the Esc key.

Note: Once the input area is displayed, the window controls will be locked to
prevent activation until the input operation is completed or cancelled.
Using the RISCWatch Debugger 3-111

Values typed into the input area can be specified in ASCII, binary, decimal,
hexadecimal and octal radixes. The following rules are used in the specified order
to determine the radix being specified:

• If the currently selected base is ASCII, an ASCII value is assumed.
• If the value starts with ’0x’, ’0X’, ’x’ or ’X’, a hexadecimal value is

assumed.
• If the value starts with ’d’, ’+’ or ’-’, a decimal value is assumed.
• If the value starts with ’0’, an octal value is assumed.
• If the value starts with ’b’, a binary value is assumed.
• If the value starts with ’"’, an ASCII value is assumed.
• If the value starts with a decimal number, a decimal value is assumed.
• All other values are assumed to be ASCII.

When the selected base is not ASCII, an ASCII string can be specified by
enclosing it in quotation(") marks so that it will not be confused with data in
another radix. When the selected base is ASCII, an ASCII string is assumed so no
quotation marks are necessary.

When the selected base is not ASCII, input values are written to the processor as
a single value in the currently selected word size. In other words, if an input value
is specified which is numerically larger than that which fits in the currently selected
word size, the "extra" data is disregarded. The exception to this rules occurs when
an ASCII string is specified. In this case, the entire string is written to the
processor as a series of one byte values.

RISCWatch allows multiple instances of the Custom Memory window to be used
simultaneously. The instance number is included after the ’:’ in the title bar. The
Custom Memory window can be resized vertically but will ignore horizontal size
changes.
3-112 RISCWatch Debugger User’s Guide

Cache Windows (JTAG Targets Only)

The Data, Instruction and L2 Cache windows are used to read and display the
contents of the processor caches.

The processor caches are displayed one way (or side) at a time, or all together.
The pulldown in the lower left corner is used to change the currently displayed
way(s). The vertical scroll bar on the right is used to page up and down the
available cache lines for the displayed way(s).

For the Data Cache window, the following fields are shown:

Set Set number (congruence class) down the left hand side
Way A, B, C, etc. next to the Set number
Address Address tag
V Valid bit
L LRU (Least Recently Used) line in set
K Lock bit (401 Core+ASIC processors only)
D Dirty bit
Word N 32-bit data cache word N

Figure 3-44. Sample Data Cache Window
Using the RISCWatch Debugger 3-113

For the Instruction Cache window, the following fields are shown:

Set Set number (congruence class) down the left hand side

Way A, B, C, etc. next to the Set number

Address Address tag

V Valid bit

L LRU (Least Recently Used) line in set

K Lock bit (401 Core+ASIC processors only)

Word N 32-bit instruction cache word N

Notes: For these cache displays, the address tag is always displayed normalized
to bit 0 (MSB).

The Way Control at the bottom left corner of the screen allows the visible way(s) to
be changed.

The Read button is used to force a read of the processor cache and display the
latest contents.

The Close button is used to remove this window from the screen.

The Filter check box is used to filter the cache lines so that only lines which are
presently marked as Valid are displayed. If this option is selected, a pop-up
window will appear informing the user that enabling this feature may result in a
performance degradation due to the large amount of data which must be
processed. On some processors it may be desirable to disable the Auto-update
feature when Filter is enabled to reduce update overhead. In this case, the Read
button may be used to force the window contents to be updated.

Save Memory Window

The Save Memory window provides target memory read capabilities using the file
format options defined for the Save command. The window is displayed by
choosing the ‘File’ pulldown on the RISCWatch Main window, then selecting Save
| Memory.
3-114 RISCWatch Debugger User’s Guide

The Save Memory window consists of the following fields:

• File

This field indicates the file name to be created. The file name can be altered by
choosing the “Select File” button at the bottom of the window or by directly
typing in the field provided. When the Save pushbutton is pressed, RISCWatch
will prompt the user for permission to erase the file if the file currently exists.

• File Formats

This group box provides a list of supported file formats. See “save‚" p. 5-115 for
a description of the supported file formats. Choosing a particular file format will
result in the enabling, or disabling, of the remaining input areas of the window.

• Start Address

This field is enabled for Memory and Binary format selections and indicates the
initial target address to use when reading target memory.

• Number of Bytes

This field is enabled for Memory and Binary formats and indicates the number
of memory bytes to read.

Figure 3-45. Save Memory
Using the RISCWatch Debugger 3-115

• Save

This pushbutton is used to execute the selected Save command. The
RISCWatch main window will indicate the success or failure of the operation.

• Select File

This pushbutton presents a standard dialog window that allows the user to
supply a file name. The file chosen will be used to save the requested
information.

• Hide

This pushbutton removes the Save Memory window from view. A subsequent
display of the Save Memory window will present the field settings that were in
existence when the ‘Hide’ button was pressed.

• Help

This pushbutton will present any available help topic for this window.

Reading and Writing Registers

The Hardware | Register pulldown on the Main window provides the ability to view
and update the architected registers of the target chip. They are divided into
classes:

• General Purpose Registers (GPRs)

• Special Purpose Registers (SPRs)

• Device Control Registers (DCRs): 400Series only

• Segment Registers (SRs): PowerPC 6xx/7xx only

• Floating Point Registers (FPRs): processors with FPUs

• ASIC Registers (ASICs): defined in user-created PRD files

See “Register Windows” on page 3-117 and “Register Field Windows” on
page 3-118 for detailed descriptions of the register windows. Register Field
windows are used to manipulate individual fields of selected registers. These
provide a bit breakdown of the selected register divided into logical field groupings
applicable to the register.

Registers can also be viewed and altered using the expr , read , set , and write
commands from the command line on the Main window.
3-116 RISCWatch Debugger User’s Guide

Register Windows

Register windows are used to read, display, modify and write-back processor
registers. Register windows are broken up into classes based on the types of
registers they contain. Current register windows include General Purpose
Registers (GPR), Special Purpose Registers (SPR), Device Control Registers
(DCR: PowerPC 400Series only), Segment Registers (SR: PowerPC 6xx/7xx
only) Floating Point Registers (FPR: processors with FPUs) and ASIC Registers
(ASIC: defined in user-created PRD files). To bring up a particular register
window, use the Hardware| | Register pulldown of the Main window menubar.

Note: RISCWatch will only display an ASIC selection for the Register
pulldown if a custom PRD file is being used and the ASIC registers
defined in the PRD file followed the prescribed naming convention for
such registers. Refer to the REG Definitions section of “Processor
Configuration File (PCF)“ for register naming details.

Note: If an ARIC Register window is selected, more than one physical
window may appear if RISCWatch determines that there are too many
registers for a single window to hold (as dictated by the physical

Figure 3-46. Sample Register Window
Using the RISCWatch Debugger 3-117

constraints imposed by the user interface). If this is the case, the
multiple windows created can be thought of as one logical entity.
Therefore, pressing the Read or Close buttons on one window applies
to all of them (with the same ASIC register prefix). If a specific subset
of ASIC registers is desired for read or write operations, simply create
a User-Defined window to access them.

A register window is split into two or more columns with each column containing a
push button and register edit field. The push button contains a register name while
the edit field contains its value. The push button is used to bring up a register field
window for that particular register (if it has a field definition). Use the mouse to
press the push button and bring up its register field window. If it has no field
definition, an error message will be displayed.

To edit a register value, use the mouse to place the edit cursor in the appropriate
field and enter a new hexadecimal value for the register. This new value will not be
written to the processor unless the edit cursor is in the field and the Enter key is
pressed.

To refresh the contents of all register fields at any time, use the mouse button to
click on the Read button located at the bottom of the window.

Register Field Windows

Register field windows are used to read, display, modify and write-back processor
registers. To bring up a particular register field window, use the Hardware|Reg
Fields pulldown of the Main window menubar.

A register field window is composed of one or more registers. Each register
definition in the window takes up one display line. This line is composed of the
register name, a register value field and register field value fields.

Figure 3-47. Sample Register Field Window
3-118 RISCWatch Debugger User’s Guide

The register value field contains the full data value for the register and should
track to the value of the register in its Register window. This field may be edited
and written to the processor just like its counterpart in the Register window.

The register field value fields are a series of fields that represent the individual
logical bit groupings for that register. Each field value contains a heading which
matches the register bit definitions in the PowerPC User’s Manual for that specific
processor. The heading is a two or three character mnemonic derived from the
field’s name.

For each register field, the appropriate bits are extracted from the register value,
shift to bit zero to normalize them, and then displayed in their appropriate field.
Such a display allows these field values to be compared directly with the values in
the User’s Manual for that register, edited and written back to the processor.

Register or register field values may be modified by using the mouse to place the
edit cursor in the appropriate input field and then typing new hexadecimal values.
This new data will not be written to the processor unless the Enter key is pressed.

For register fields which are only one bit in size, the mouse may be used toggle
the current bit value and write it back to the processor. To do so, simply use the
mouse to double-click over the single-bit field.

Whenever data is changed and written back to the processor, the appropriate data
fields in the window will be updated to reflect this latest value. If the register value
is changed and written, the field values will be updated accordingly. Likewise, if
one or more register field values are changed and written, the register value will
be updated.

To refresh the entire window’s contents with the latest processor data, simply use
the mouse to click on the Read button. This will read the latest data value for all
the registers in the window and update the display accordingly.

WARNING: Any data that has been changed in the window and not written back
to the processor will be lost!

User-Defined Windows

User-Defined windows allow a RISCWatch user to create windows containing
customizable register, register field, memory, disassembly, and button entries.
Using a simple syntax, ASCII files are created to define the contents of a
user-defined window.

Note: Look for the file RWPPC.WDF in the install directory for an example of a
User-Defined window file. We recommend that you make a copy of this file and
then work off of this copy as you experiment with defining your own windows.
Using the RISCWatch Debugger 3-119

File Syntax

The file used to describe a user-defined window is a simple ASCII file that is
created with a text editor. The filenames for such files usually, but do not have to,
end in .wdf (window descriptor file).

The file is composed of simple keywords and may contain comments. The
keywords used to define the contents of user-defined entries are BUTTON,
BUTTONDEF, CMDLINE, DIS, FORMAT, HEADING, LABEL, MEM, REG,
REGFLD, SEPARATOR, STATUSBAR, and TITLE. These keywords and their
usage are explained in the sections that follow.

The general syntax rules are as follows:

1. The following keyword definitions must appear on a line by themselves
BUTTONDEF, CMDLINE, FORMAT, HEADING, SEPARATOR, STATUS-
BAR, TITLE

2. The following keyword definitions may only appear once in the file
CMDLINE, STATUSBAR, TITLE

3. Except for those listed above, multiple keywords may be listed on a single
line.

4. Comments in this file are defined by starting a line with a ‘#’. Comments may
also appear at the end of a line.

5. Blank lines are ignored except where they are used to mark the end of a
BUTTONDEF definition.

Keyword Definition/Syntax

• BUTTON - User Defined Button Placement Entries

Buttons corresponding to user defined functions can be placed in the user defined
window. The BUTTON keyword is followed by a button identifier that was
previously defined using the BUTTONDEF keyword

• BUTTONDEF - User Defined Button Function Definition

Users can define their own buttons and corresponding function for inclusion on
the window. The BUTTONDEF keyword is followed by a button id (to be used to
place the button using the BUTTON keyword), followed by the button name (to
appear on the screen) enclosed in quotation marks. On subsequent consecutive
lines (no blank lines), valid RISCWatch commands can be entered, one per line. A
blank line ends the button definition. Whenever the button is pressed on the user
defined window, those actions listed in the definition will be executed.

• CMDLINE - Command Line Entry

A user defined window may also contain a command line. This command line
allows RISCWatch commands to be entered from the user defined window in the
3-120 RISCWatch Debugger User’s Guide

same manner they are normally entered from the main window. Only one entry is
allowed per window definition, and it can be the only command on that line.
Regardless of where the definition keyword is located, the command line will
appear at the bottom (or next to the bottom if a status bar is defined) of the user
defined window. If the window locks its controls, the only commands which are
valid to be entered are STOP and QUIT.

• DIS - Disassembly Entries

Disassembly entries are used to place disassembly text in the user-defined
window. The DIS keyword is followed by the address of memory to be
disassembled, which is followed by the number of words to be displayed.

• FORMAT- Format Entries

Format entries are used to define the width of user interface controls so that
effected controls conform to a common size which ensures that these controls are
laid out in “pretty” columns.

By default RISCWatch will select a default FORMAT size which doesn’t always
result in nice, orderly columns. Using FORMAT allows the user to override these
default rules and select values which results in user interface components which
are laid out in an orderly fashion and therefore are easier to interact with.

The FORMAT keyword is followed by either MEM, REG or REGFLD, the equal (=)
sign, and a number which represents the request size of the effected control. For
REG and REGFLD entries, this number sets the width of the push button (in
characters) containing the register name. For MEM entries, it sets the number of
columns in the displayed memory pane. Once set, a FORMAT selection will
remain in effect until overridden by another. Setting the number to 0 will cancel the
user selection and return to default sizing of controls.

• HEADING - Window/Section Headings

The user-defined window is given a title by using the HEADING keyword followed
by the desired window title. The HEADING keyword can also be used to add titles
to different sections within the window as well.

• LABEL - Label Item Entries

Labels can be placed throughout the window. The LABEL keyword is followed by
the desired label text enclosed in quotation marks.
Using the RISCWatch Debugger 3-121

• MEM - Memory Entries

Memory entries are used to place memory data in the user-defined window.

A memory entry consists of the memory keyword MEM, followed by the address
of memory to be displayed, followed by the number of bytes in each word, followed
by the number of words to display.

The leftmost field of each memory line is the address field. Placing the cursor in
an address field and pressing Enter will result in the amount of memory displayed
in the line being read starting at the specified address. The address can also be
changed by typing over the current address and pressing Enter. This will also
result in a memory read of an entire line’s worth of data.

The contents of an individual memory element can be written by typing in the new
value and pressing Enter. This will only write an amount of memory equal to the
size of the individual memory element (i.e., word, half-word, or byte).

• REG - Register Entries

Register entries are used to place registers in the user defined window. Each
REG keyword is followed by any valid processor register name. Multiple REG
name pairs are allowed on a single line.

• REGFLD - Register Field Entries

Register field entries are used to place register field values in the user defined
window. The REGFLD keyword is followed by the name of a valid processor
register that has a valid field defined.

• SEPARATOR - Section Separator Entries

The user defined window can be separated into various sections to improve
readability and clarity. The SEPARATOR keyword provides a graphical horizontal
separator between window sections. This keyword must be the only keyword on
the line.

• STATUSBAR - Status Bar Entry

The user defined window may also include a status bar if desired. Specifying the
STATUSBAR keyword will include a status bar with similar content to that of the
main window status bar. This keyword must be the only keyword on the line.
Regardless of where the keyword appears within the file, the status bar will be
located on the bottom of the user defined screen.

• STOP - Processor Stop Button

In order to stop the processor, a special button can be placed in the user defined
window. Even though the window may lock its controls while the processor is
running, this button will remain available for use ensuring that the processor can
be stopped.
3-122 RISCWatch Debugger User’s Guide

• TITLE - Window Title

A title definition allows you to provide a custom name for a user-defined window.
By default, RISCWatch assigns the name “User-Defined” to each user-defined
window which is loaded. While this may be fine for a single user-defined window, if
you decide to load several at one time, it is easier to manage them if they are each
given unique titles.

To define a customer name for a window, simply follow the TITLE keyword by the
name of the window between quotation marks (“).

Creating the Window

A user-defined window is created by using the User-Def Win entry of the
User-Defined menu of the Window pull-down. This will display a file selection
dialog allowing the window descriptor file to be chosen. Once a file has been
selected, it will be read by RISCWatch. If no errors were detected, the
user-defined window will be created for use. Alternatively, the window command
can be used to bring up the window. The syntax is “WINDOW UDW filename”,
where filename indicates the fully qualified name of the user defined window
definition file.

Example

The following example illustrates the use of the user-defined window file syntax:

Provide a custom window title

TITLE “Custom #1“

Miscellaneous heading

LABEL “The window they forgot to design for me!"

SEPARATOR

Button Definition Section

BUTTONDEF Button1 “Read R1-R3”

read R1

read R2

read R3

BUTTONDEF Button2 “Load & Run”

load file demo.elf

bp set in main

run

#

Using the RISCWatch Debugger 3-123

Window Layout section

HEADING “The Window they forgot to design for me!"

SEPARATOR

HEADING “ASIC Registers”

REG ASIC01 REG ASIC02

SEPARATOR

LABEL “Stack Regs : “ REG R0 REG R1

REG R14 LABEL “<- Key Reg for my application”

SEPARATOR

REGFLD MSR

SEPARATOR

MEM 0xC000 4 4

SEPARATOR

DIS 0x0000A000 8

SEPARATOR

BUTTON Button1 BUTTON Button2

SEPARATOR

CMDLINE

STATUSBAR
3-124 RISCWatch Debugger User’s Guide

When coded as above, the window file will produce the window, Figure 3-48.

A sample window descriptor file is included with the software installation of
RISCWatch and is titled rwppc.wdf .

Command Files

RISCWatch command files are ASCII text files which contain commands that are
understood by RISCWatch. Various commands allow for access to almost all of
RISCWatch's processor functionality. These command files are designed to be
human-readable and therefore can contain comment and blank lines.

The commands contained in a command file are the same as those commands
that can be typed into the command line of RISCWatch's Main window. See the
following sections for a list of available commands and their usage.

Figure 3-48. Sample User-Defined Window
Using the RISCWatch Debugger 3-125

Using Shell Scripts to Execute Command Files

By using a shell script, several command files could be generated, one for each
piece of logic or function to be tested, and then the entire suite could be called
from within a single script file and allowed to run overnight. At some later time
when the test suite was completed, the output files from the test suite would be
checked to verify the status of each test file run.

Startup Command File

RISCWatch allows a pre-defined command file to be executed every time the
program is brought up in graphical user interface mode.

This command file, identified with the STARTUP_FILE environment variable in
rwppc.env , may be used to perform a series of commands which would normally
be entered on the command line whenever RISCWatch is started. This enables a
user to set up the debugging environment and/or specific processor facilities.

The startup command file is searched for using the following rules:

• If the file name is qualified (directory path indicated), the file search is
performed using the specified directory only.

• If the name is not qualified, the file search is performed using the directory
paths designated with the RISCWatch SEARCH_PATH environment
variable. If not found, the current directory is searched.

This search scheme allows individuals to create their own startup command file
by placing it in their own directories. This also allows one startup command file to
be placed in a common directory so that everyone will execute it whenever
RISCWatch is started.

Note: Commands in the startup command file are executed after the environment
file is read. Therefore, search paths set with the SEARCH_PATH environment
variable will be overridden by srchpath commands in the startup command file.

Special Command File Commands

The following commands can only be used from within a command file:

delay Delays command file execution for the specified number of
seconds.

end Forces the immediate termination of the command file.

parms Specifies a parameter variable list for the command file. See
“Command File Parameters” on page 3-130 for details.

print /fprint Takes the contents of the command after the print/fprint keyword
and prints them in the host window/print file. See the fprint
command for details and available formatting options.
3-126 RISCWatch Debugger User’s Guide

Blank Lines and Comments in Command Files

To make the command files more readable, blank lines can be placed anywhere in
a command file. Comments can also be added to help document the command
file.

The # character indicates the beginning of a comment on a line. The # character
can be placed anywhere on a line. Everything after the # character on a line is
taken as a comment. Comments do not carry over onto the lines that follow them.
An example command file that uses comments is shown below:

This is a sample command file
In this command file are examples of comments that start
in column 1 and comments that start after a command on a line.
stop # This command stops the processor
run # This command starts the processor running

Command File Programming

The following programming logic and flow commands are available for use in
RISCWatch command files. These logic and flow commands are not understood
by RISCWatch's command line interface and are therefore only valid in command
files.

• if-then

if (expression)

block

endif

• if-then-else

if (expression)

block

else

block

endif

if (expression)

block

elseif (expression)
Using the RISCWatch Debugger 3-127

block

endif

if (expression)

block

elseif (expression)

block

else

block

endif

• while

while (expression)

block

endwhile
3-128 RISCWatch Debugger User’s Guide

• do-while

do

block

dowhile (expression)

• goto

LABEL label_name

block

GOTO label_name

Where:

block Represents one or more RISCWatch commands.

expression Composed of either a mathematical or logical expression. See
the set command for a detailed description of RISCWatch
expression syntax. Most expressions take the form

(argument operator argument)

Arguments can be references to registers, register fields,
memory values, immediate values or created/assigned
variables. The operator(s) used in an expression are dependent
upon the arguments used. Examples of operators in a
mathematical expression are + and - while examples of
operators in a logical expression are == and >. Arguments can
also be predefined special expressions as described below.

Regardless of whether a mathematical or logical expression is
specified, RISCWatch will evaluate the expression accordingly. A
logical expression will always evaluate to either a 1 (TRUE) or 0
(FALSE). A mathematical expression will evaluate to a resultant
mathematical value and this value will indicate FALSE if equal to
zero and TRUE all other times.

label_name The label can consist of any characters but MUST begin with a
letter.

Command File Special Expressions

Several special expressions can be used by themselves in an if, while, or do
expression. For each expression, RISCWatch determines its state and returns a
Boolean value used to evaluate the expression. These special expressions
include:

proc_running Returns 1 if the processor (JTAG) or process (non-JTAG) is in
the run state, else returns 0. This expression is useful in
Using the RISCWatch Debugger 3-129

detecting a processor stop request failure which may occur on a
run timeout command. For all other situations, this expression
will return a value of 0 (since command file expressions are
evaluated only when the processor is stopped).

proc_stopped Returns 1 if the processor (JTAG) or process (non-JTAG) is in
the stopped state, else returns 0. This expression is useful in
detecting a processor stop request failure which may occur on a
run timeout command. For all other situations, this expression
will return a value of 1 (since command file expressions are
evaluated only when the processor is stopped)

run_timeout Returns 1 if the processor/process was stopped due to a run
timeout since the run command was given. This value is cleared
on program start and is reset every time a RUN command is
issued. After a RUN is completed, this value will remain valid
until the next RUN is issued.

stop_timeout Returns 1 if the processor/process was stopped due to a stop
timeout since the stop command was given. This value is
cleared on program start and is reset every time a STOP
command is issued. After a STOP is completed, this value will
remain valid until the next STOP is issued.

To use these special expressions, simply put the desired expression between the
() characters of an if, while or do construct.

Command File Parameters

When starting a command file to be run by RISCWatch, it is possible to pass
values into the command file using RISCWatch command file parameters.

To do so, two things must be done:

1. A parameter list must be supplied with the command filename

2. A parameter definition must be specified in the command file

A parameter list is a set of one or more values enclosed by the '{' and '}'
characters. If more than one value is specified, they must be separated by
commas (,).

A parameter definition takes the form of the keyword parms followed by a list of
the parameters that will take on the values specified in the parameter list. This list
is composed of one or more variable names enclosed by the '{' and '}' characters.

To enhance readability and maintainability of a command file, it is suggested that
the parms command be the first command of a command file, although
RISCWatch does not explicitly require this.
3-130 RISCWatch Debugger User’s Guide

When the parms command is read by RISCWatch, it immediately creates the
variables and assigns each int or float variable a value of 0 or string variable a
null, just as though a create command was executed with no initial value. This
allows these variables to be used as normally created variables even if no
parameter list is specified.

The following command could be used in a command file to create three
command file variables to be used as parameters:

parms {var1, var2, var3}

Notice the space between the parms command and the '{' character. This space
must be there for RISCWatch to identify the command.

To pass outside values into the command file and have them assigned to these
variables simply call the command file like this:

rwppc file.cmd{10, 20, 30}

Notice that there is no space between the command filename and the '{'
character.

For this example, var1 would be assigned a value of 10, var2 a value of 20, and
var3 a value of 30. The values passed in the parameter list are assigned in
sequence to the variable names in the parameter definition.

It is possible for the caller to specify fewer parameters in the list than are in the
parameter definition. Using the previous example, if the command file was
executed with the following call:

rwppc file.cmd{10, 20}

the variable var1 would have a value of 10, var2 a 20 and var3 a 0. Since all
parameter variables are assigned a value of zero (0) when they are created, if no
value for them is specified in the parameter list, they remain zero (0).

Similarly, if no parameter list was specified, all the variables would have a value of
zero (0). A parameter list can also be specified when executing a command file
from within RISCWatch using the exec command.

Command File Pseudo-Variables

There are a few special variables that are available for use but they can not be
used like normal variables. Hence they are called pseudo-variables.
Pseudo-variables are used to determine the values of certain system resources.
They can not be read or written in the normal sense. However, they can be used in
set expressions and/or referenced inside a print or fprint command.
Using the RISCWatch Debugger 3-131

The RISCWatch pseudo-variables include:

$DATE Contains the current calendar date. The format of this
pseudo-variable is weekday month day year. This may be
used in a print /fprint command only.

$ERRORS Contains the number of program errors generated since
RISCWatch was started. This may be used in a set
expression or a print /fprint command. The program error
count can be reset at any time by issuing “set $ERRORS
= 0”.

$FILESIZE Contains the number of bytes loaded from the last
successful load command. This may be used in a set
expression or a print /fprint command.

$IP_FILE Indicates the source file name associated with the current
IAR setting. The file name is qualified and will match the
names listed in the Files window. If the IAR is not
associated with a specific file name, this variable will be
set to ‘?’.

$IP_FUNC Indicates the function name associated with the current
IAR setting. The function name will match the names
listed in the Functions window. If the IAR is not
associated with a specific function, this variable will be
set to ‘?’.

$IP_FUNC_END Indicates the first address beyond the end of the function
associated with the current IAR. If the IAR is not
associated with a specific function, this variable will be
set to zero.

$IP_FUNC_START Indicates the first address of the function associated with
the current IAR. If the IAR is not associated with a
specific function, this variable will be set to zero.

$IP_LINE Indicates the file source line number associated with the
current IAR. If the IAR is not associated with a specific
source line, this variable will be set to zero.

$IP_PROG Indicates the program name associated with the current
IAR setting. The program name is qualified and will
match the names listed in the Programs window. If the
IAR is not associated with a specific program name, this
variable will be set to ‘?’.

$STOP_ON_ERROR This variable is always set to zero when command file
processing is started. Setting this variable to one will halt
command file execution if an error message is generated.
3-132 RISCWatch Debugger User’s Guide

$TIME Contains the current clock time. The format of this
pseudo-variable is hour:minute:second. This may be
used in a print /fprint command only.

$TIMER Contains the current timer value. See the timer command
for details. This may be used in a set expression or a
print /fprint command.

Command File Programming Example
The following is an example that uses command file programming logic to set a
register variable based on the value of the IAR. In the example, a while loop is
executed a maximum of 20 (count) times. The value at memory address location
0xFFFF8000 is added to the contents of GPR0 and compared to the IAR. If the
IAR is greater than this value, register variable S1 (and hence R2) is set to the
loop count value; otherwise the value of GPR0 is increased by 0x1000 for the next
loop iteration.

assign S1 = R2
create count = 20

while (count != 0)
if (IAR > R0 + (0xFFFF8000))

set S1 = count

set count = 0

elseif

set R0 = R0 + 0x1000

set count = count - 1

endif

endwhile

Running a Command File
Command files can be run from within RISCWatch using the exec command or
they can be run by passing their filename to RISCWatch on the command line
when RISCWatch is started.

If a command file parameter is passed to RISCWatch at program startup,
RISCWatch is put in command file batch mode. In this mode, each of the
commands in the file are executed without enabling the graphical user interface.
Once the last command in a command file executes, RISCWatch terminates itself
and returns control to its parent process. This allows RISCWatch to be run from
either a host command prompt or called from within a host shell script.

To run a command file from within RISCWatch, type in the following on the
command line of the user interface:
Using the RISCWatch Debugger 3-133

exec command_file step or window cfss command_file

To run a command file at program startup in command file batch mode (no
graphical user interface provided), type in the following at the shell prompt:

rwppc command_file

To run a command file at program startup in normal mode (with the graphical user
interface enabled), add the following line to the rwppc.env file:

STARTUP_FILE = command_file

Where:

command_fileThe name of the command file to be executed. For example:

test.cmd

step Runs the command file in step mode. This option is only valid
when executing a command file from the user interface. See
“Command File Window” on page 3-135 for more information on
running a command file using step mode.
3-134 RISCWatch Debugger User’s Guide

Command File Window

The Command File window allows a command file to be run in an interactive
session for development and debugging. It also allows the command file to be
edited and saved. The following section describes the functionality of this window.

• Filename

At the top of the window, the current command file being run is displayed. If the
save option is used to save an edited command file and a different name is
chosen, this filename will be changed to reflect the new command filename.

Figure 3-49. Sample Command File Window
Using the RISCWatch Debugger 3-135

• Line subwindow

The Line subwindow is used to display the line numbers of the command file,
active stop points, and the next line of the command file that will be executed
(designated by the command cursor symbol ‘>>’). As commands are executed,
the cursor will move to the next executable line, skipping blank and comment
lines.

A single left mouse click in this subwindow will toggle a stop point (designated by
the characters ‘SP’). A stop point is used to halt command file execution when the
selected line is about to be executed. Stop points are used in conjunction with the
Continue button to quickly run to a specific location in a command file.

To execute the Run To and Go To actions, place the cursor on a specific line
number and hold down the right mouse button. A selection list will appear,
allowing the user to choose the desired function. The GoTo selection will cause
the command cursor symbol to be changed to the target line, while the RunTo
selection will set a stop point at the target line and run the command file to that
location.

• Text subwindow

The Text subwindow is used to display the contents of the command file. When
the Command File window is initially invoked, the contents of the command file
will be read and placed in this window.

To change the contents of the window, simply use the mouse to place the edit
cursor in the desired location, and then enter new text or delete existing text. To
save your changes, use the Save button (see description below).

• Step button

The Step button is used to execute the command which appears next to the
command cursor.

• Continue button

The Continue button is used to run the command file until a stop point is reached,
the Halt button is selected, or the command file terminates.

• Halt button

The Halt button is used to halt command file execution.

• Reset button

The Reset button is used to reset the execution pointer to the first command in the
initial command file. The Text subwindow will be scrolled to the top and the
command cursor will be placed next to the first executable command of the file.
The $STOP_ON_ERROR pseudo variable is reset to zero. For details of pseudo
variable usage, see “Command File Pseudo-Variables” on page 3-131.
3-136 RISCWatch Debugger User’s Guide

• Clear SPs button

The Clear SPs button is used to remove all stop points.

• Skip button

The Skip button is used to skip execution of the command appearing next to the
command cursor. The command cursor will be placed beside the next executable
command in the file.

• Save button

The Save button is used to save the contents of the Text subwindow. A file
selection dialog box will allow any changes made to be saved in either the existing
file or a new command file.

• Return Step button

The Return Step button is used to run through nested command file executions.
When pressed, the current command file is run to completion and execution will
stop at the line containing the nested exec command.

• Close button

The Close button is used to remove the Command File. Be advised that any
changes made to the Text window that have not been saved will be lost!

• Help button

The Help button will display help text for this window.

• Additional Features

The Page Up/Down keys enable page scrolling of the command file. The up/down
arrow keys are used to move the displayed text by a single line.

For details on how to perform character string search operations, or how to quickly
scroll to a specific source line number, see “Input Line Usage” on page 3-48.

Processor Resources

For PowerPC processors, RISCWatch can reset a target processor through its
JTAG test port. Exact debug functions are specific to individual PowerPC
processors.
Using the RISCWatch Debugger 3-137

Processor Reset Window (JTAG Targets Only)

This window is used to access the reset functions of the processor. The three
different kinds of resets available are Core, Chip (Core + ASIC) and System.
Each reset performs a slightly different function.

For PowerPC 400Series processors, please refer to the appropriate processor
User’s Manual for a description of each reset.

For PowerPC 6xx/7xx processors the Core and Chip resets are equivalent. They
will reset the processor and soft stop at address 0xFFF00100. Also, the System
reset will reset the processor and run from address 0xFFF00100.

This window consists of three buttons which are used to select the type of reset
that is desired. Use the mouse to select the appropriate reset then click on the
Reset button located near the bottom of the window. To monitor the status of the
reset, watch the contents of the message window. This status will indicate, among
other things, whether the processor is running or stopped after the reset was
performed.

General Resources

Window Layout

The window layout feature of RISCWatch is used to save the position and size of
each visible window so that the exact screen layout can be loaded thereafter. If
the LAYOUT variable in the environment resources file, rwppc.env , is set to
LOADSAVE, RISCWatch automatically saves a window layout when the program

Figure 3-50. Sample Processor Reset Window
3-138 RISCWatch Debugger User’s Guide

is exited. This allows RISCWatch to load the same window layout the next time it
is started.

To save the current window layout, access the Window|Layout|Save option of the
Main window menubar. This will display a file selection dialog that can be used to
specify an existing layout file or to create a new layout file of your choosing.
Select an existing filename or type in a new filename and click on OK. This will
save the window layout to the specified file. By allowing users to select their own
files, RISCWatch allows multiple screen layouts to be saved to facilitate the needs
of multiple users or resource dependent debugging needs.

To load a window layout, access the Window|Layout|Load option of the Main
window menubar. Select the layout filename using the file selection dialog. The
specified layout file will be accessed to configure the window layout just as it was
saved.

Output Window

The Output window is used to display user-selectable messages generated when
RISCWatch commands are executed. It is particularly useful when used to
monitor the progression of long running command files, but can also be used
whenever desired. The following section describes the functionality of this window.

Figure 3-51. Sample Output Window
Using the RISCWatch Debugger 3-139

• Message Window

The message window is used to display the type of messages that have been
selected. Attached to this window are vertical and horizontal scroll bars used to
view text that lies beyond the boundaries of the visible window.

• Message Check Boxes

The message check boxes are used to select the types of messages that will be
displayed. Use the check boxes to configure the types of messages you would like
to display.

• MPS Tag Check Box

The MPS tag check box is used, when in MPS mode, to tag each message with
the MPS id from which it was generated. To turn off this tagging, simply unselect
this check box.

This check box is only available for use when in MPS mode.

• Clear Button

The Clear button is used to clear the contents of the message window.

• Hide Button

The Hide button is used to remove the Output Window from the interface.

• Help Button

The Help button will display help text for this window.
3-140 RISCWatch Debugger User’s Guide

Window List

The window list is used to display any active window. An active window is a
window that has been created by RISCWatch or by a user and may or may not be
visible on the screen. This feature is particularly useful when a large number of
windows are on the screen which may hide one or more windows from view.

By accessing the Window|List option of the Main window menubar, a window will
be displayed that lists all of the active windows. Use the mouse to select the
desired window and this window will be made visible and placed on top of all other
RISCWatch windows.

Log Files

Every time that RISCWatch is started, a log file is opened. Log files are used by
RISCWatch to log all commands entered by the user, actions accessed via the
graphical user interface, the results of actions, and all status and error messages.
Each entry put in a log file is time stamped so that the exact times of actions can
be recalled if they will be needed at some later date.

Log files also allow for the sequence of actions to be recorded so they may either
be repeated, performed again in the exact same sequence, or for a system
operator to figure who's been doing what with RISCWatch and the processor it is
connected to.

RISCWatch creates a new log file for each day that it is started. When
RISCWatch is started, it notes the month and day and looks to see if a log file
already exists for this date. If a file does not exist, RISCWatch opens a new file for
logging. If a file does exist for this date, RISCWatch simply opens the existing file
and appends all new log entries to the end of the file.

RISCWatch log files are given names to reflect the month and day they contain
log entries for. For example, if you were to run RISCWatch on August 19, after
leaving RISCWatch, there would be a file in the current directory called
RW0819.LOG. This naming convention allows for several months, or even years,
of development time, effort and methodology to be tracked and/or used to
generate status and activity logs.

When RISCWatch is started, logging of all entries is automatically enabled. By
using the Logging option of the Utilities pull-down menu in the main program
window, or the logging command, it is possible to disable logging if need be. It is
also possible for any user to place their own comments in the log file by using the
Utilities|Logging|Comment pull-down or the log command.

By using a resource defined in the RISCWatch environment file (rwppc.env), it is
possible to specify the directory where all log files are kept by RISCWatch. The
name of the resource is LOG_FILE_DIR. The following is an example of how to
use this resource in the rwppc.env file:
Using the RISCWatch Debugger 3-141

LOG_FILE_DIR = /u/rwppc/log_files

RISCWatch will detect this resource and maintain all log files in the specified
directory.

Logging Control

By default, RISCWatch saves all commands and messages to the current log file.
At certain times, it may be deemed necessary to disable this functionality. To
control the state of logging, the logging command or the Logging State window is
used.

To determine the current logging state, enter the logging command on the
command line in the Main window and note the message displayed in the
message window. To turn off logging, type ‘logging off’ on the command line. To
turn logging back on, type ‘logging on’.

The same actions can be accomplished using the user interface. Select the
Utilities|Logging|State option of the Main window menubar. This will display a
small popup window indicating the current logging state. To switch logging states,
select the Yes button. To leave the logging state as is, select the No button.

See logging on page 5-78 in the Command Reference for a detailed description
of this command.

Logging User Comments

It is possible for RISCWatch users to enter their own comments into the current
log file. To do so, either the log command or Log Comment window is used. The
log command keyword is entered on the command line of the Main window
followed by the text to be entered in the log file. See log on page 5-77 in the
Command Reference for a detailed description.

The Log Comment window, shown in Figure 3-47 below, is displayed by using the
Utilities|Logging|Comment pulldown of the Main window menubar.

Figure 3-52. Sample Log Comment Window
3-142 RISCWatch Debugger User’s Guide

Type the text to be entered in the log file in the edit field and then press the Enter
key. Select the Hide button to remove this window from the screen. Select the
Help button to bring up help information for this window.

Screen Capture

The contents of certain data intensive windows may be saved to an ASCII file
using the capture command. This command allows significant amounts of
information to be saved so that it may be viewed later or for several samples to be
taken to be used for comparison purposes.

When the capture command is used, the desired window is specified and the
contents are captured to a file. If no file is specified, the contents will be saved to a
file named rwppc.cap . To override this name, a filename is specified with the
capture options.

The contents of the capture file will contain a time and date stamp for each
capture that is requested along with a description of the window captured followed
by the appropriate window data.

See capture on page 5-27 in the Command Reference for a detailed description
and a list of available options.

Calculator Window

The Calculator window is used to mimic the operations of a basic arithmetic
calculator.

The calculator will run in either decimal or hexadecimal modes. Use the DEC and
HEX buttons to switch the current mode.

Figure 3-53. Sample Calculator Window
Using the RISCWatch Debugger 3-143

When in DEC mode, the AND, OR, NOT, A, B, C, D, E, and F buttons will not
function. When in HEX mode, the CHS button will not function.

To convert a number between the two modes, simply enter the mode that the
number is to be entered in, enter the number and then click on the alternate mode
button which will convert the number and then display its value.

• The mathematical operations available are:

+ =addition

- = subtraction

* = multiplication

/ = division

CHS = change sign

• The bitwise operations available are:

AND = bitwise AND

OR = bitwise OR

NOT = one’s complement

ASL = arithmetic shift left

ASR = arithmetic shift right

• Memory buttons:

M+ = add value in display to memory value

M- = subtract value in display from memory value

MR = recall the memory value to the display

MC = clear the memory value to 0

• Other buttons:

AC = all-clear - clears the value in the display and current calculation

C = clear - clears the value in the display

= = computes the value of the previously entered number with the value in
the display using the previously specified operator
3-144 RISCWatch Debugger User’s Guide

Online Help

RISCWatch provides extensive online help. Most windows contain a Help button
which provides a detailed description of the window’s features.

Using the Help pulldown of the Main window, it is possible to display help
information for the following topics:

• The RISCWatch program version number
• Frequently Asked Questions (FAQ)

The Help pull down from the Main window also provides selections for direct links
into online documents:

• RISCWatch Install Guide
• RISCWatch User’s Guide
• RISCWatch PowerPC Manuals

The online documents are contained on the CD-ROM provided with RISCWatch
and are in PDF format. For successful display of these documents, the following
setup must be performed:

• The host machine must have Adobe Acrobat Reader installed. A version of
Acrobat Reader is provided on the CD-ROM with installation instructions.

• The RISCWatch search path must contain the path for the “acroread”
program provided with AcrobatReader.

• The RISCWatch search path must contain the path for the “rw_ig.pdf” file.
This is the name of the install guide PDF file and is provided on the
CD-ROM.

• The RISCWatch search path must contain the path for the “rw_um.pdf file.
This is the name of the user’s guide PDF file and is provided on the
CD-ROM.

• The RISCWatch search path must contain the path for the “contents.pdf”.
This is the name of the PowerPC Manual PDF file and is provided on the
CD-ROM.

Note: RISCWatch will display an error message if any of these files cannot be
found.

Since the help viewer invoked varies depending on the host platform and option
selected, the instructions for using that particular viewer must be viewed online.
Once a help window is displayed, access the Help selection of the window’s
menubar to obtain additional information about the viewer being used.
Using the RISCWatch Debugger 3-145

3-146 RISCWatch Debugger User’s Guide

Chapter 4. Using Processor-Specific Debug Features
This chapter provides detailed information about RISCWatch features applicable
to specific PowerPC processors or families of processors. Individual processor
implementations within the PowerPC architecture may vary in terms of internal
register types, cache size and organization, availability of a memory management
unit, and other hardware functions. The RISCWatch windows in this chapter
support these implementation-specific functions.

Table 4-1 summarizes the features of the RISCWatch Debugger presented in this
chapter, along with the applicability of each feature or window to specific PowerPC
processors or processor families:

PowerPC 400Series MMU Implementation Notes

RISCWatch support for the Memory Management Unit (MMU) of the 400Series
processors is subject to adherence to the following conditions:

1. The translation mode for Data and Instruction access must be the same.
They can both be enabled or disabled; having only one enabled is not sup-
ported.

2. If program execution is stopped at a point where the translation mode has
changed from the state existing upon the initial file load, then the mapping
must be real = virtual. If this is not the case, the source level debug informa-
tion for the stopped context will not be displayed correctly.

3. The real addresses in the TLB entries are assumed to be correct and valid
addresses.

Actions performed via the TLB window, described in “Translation Lookaside Buffer
Window (Applicable Processors Only)” command on page 5-15, or within the

Table 4-1. Quick Reference for Processor-Specific Debug Features

Task or Resource Applicable Sections

Managing Hardware Breakpoints “Using RISCTrace (400Series JTAG Processor Probe Only)”
command on page 5-2
“Trigger/Trace Window (400Series Only)” command on page
5-7
“Compound Trigger/Trace Window (401, 403 Series Only)”
command on page 5-12

Memory Resources “Translation Lookaside Buffer Window (Applicable Proces-
sors Only)” command on page 5-15
Using Processor-Specific Debug Features 4-1

program itself that cause nonconformance to these conditions will produce
unpredictable results.

Refer to the PPC403GC/GCX Embedded Controller User’s Guide in “Related IBM
Publications” on page xxiv for more information regarding the operating
characteristics of the MMU.

Managing Hardware Breakpoints and Trace Events

See “Using Hardware Breakpoints” command on page 5-72 for a general
discussion of hardware breakpoints in RISCWatch.

Using RISCTrace (400Series JTAG Processor Probe Only)

Certain PowerPC 400Series processors provide a real-time trace debug mode
which supports tracing the instruction stream being executed out of the instruction
cache in real time. This mode does not affect the performance of the processor.

RISCWatch provides a mechanism to utilize the hardware trace capabilities of the
chip and gather a nonintrusive reconstruction of the flow of executing processor
instructions. This feature of RISCWatch is known as RISCTrace. RISCTrace
collects trace information from the trace status port in real-time and then
reconstructs the flow of the code using the collected information and the contents
of processor memory or program files.

Note: The memory state will not be reconstructed, since this
information is not included in the trace data recorded by the processor.

Note: This is an instruction trace only; RISCTrace does not capture
the contents of registers or memory.

RISCTrace requires a JTAG Ethernet processor probe target which has trace
capabilities. The RISCWatch controls for RISCTrace appear only if RISCWatch
detects that it is connected to a processor probe which supports trace and a
PowerPC 400Series chip which supports trace.

When trace is supported, the Trigger/Trace and Compound Trigger/Trace windows
provide the RISCTrace controls necessary to define and manage trace collection.
From these windows the user can define the events which initiate the trace
collection, and other trace parameters such as the number of cycles to trace.
Refer to the Trigger/Trace window descriptions which follow in this section for a
detailed description of the controls on these windows.

After the trace parameters are specified, the Run Trace button can be used to
start the processor running and initiate trace collection. When a specified trace is
complete, RISCTrace automatically stops the processor, collects the trace
information and reconstructs and formats it. This is true if the Autostop checkbox
4-2 RISCWatch Debugger User’s Guide

is enabled. If the Autostop checkbox is disabled, RISCTrace will only indicate that
the trace is complete. When the user stops the processor, RISCTrace then
collects the trace information and reconstructs and formats it. The formatted trace
is saved in the file rwppc.trc and displayed in a view window (see the “view”
command on page 5-147 for details on using this window). The Save Trace button
can be used to save the formatted trace in a file of your choice, as well as allowing
you to enter optional comment lines which are appended to the beginning of the
formatted trace information in the saved file.

Selecting the Stop Trace button while a trace is running causes the trace which is
currently running to be aborted. The abort results in the processor being stopped
with no trace reconstruction occurring for the trace which was running. However, if
the trace is complete, the trace is collected, reconstructed and formatted. The
Stop Trace button is useful when Autostop mode is disabled.

If it is not desired to have any program symbol information included in the trace
output, the unload all command can be used to unload all the program
information from RISCWatch prior to initiating the trace. This also speeds up the
trace reconstruction. A detailed description of the trace output follows in the
‘RISCTrace Output’ section below.

For additional information on processor-supported trace, consult the appropriate
chip user’s manual.

RISCTrace Operational Notes

1. RISCTrace uses the IOCR[RDM] bits (bits 26-27 of the IOCR register) to col-
lect a trace. RISCTrace cannot properly trace code that modifies these bits.
Also, if bits other than the RDM bits are to be changed by the application
code, a read/modify/write operation is recommended. Note that the
IOCR[RDM] field is 403 specific and does not necessarily apply to other
400Series processors.

2. If the IOCR[RDM] bits are set to bus status mode and a logic analyzer disas-
sembler (aka inverse assembler) is hooked up to the processor, using RISC-
Trace to collect a trace will change the IOCR[RDM] bits from bus status mode
to trace mode, collect the trace, then restore the bits to bus status mode. This
operation may affect the operation of the logic analyzer disassembler. Note
that the IOCR[RDM] field is 403 specific and does not necessarily apply to
other 400Series processors.

3. RISCTrace uses debug events to collect a trace. Thus, RISCTrace cannot
trace code that clears the DBSR because clearing this register also clears all
debug events.
Using Processor-Specific Debug Features 4-3

4. On the 403GCX, the RISCTrace pins are multiplexed with the new parity pins.
If the IOCR[RDM] bits are set to parity mode, RISCTrace will not collect a
trace. Pressing the run trace button will result in an error message. Also,
RISCTrace cannot collect a trace from a clock doubled 403GCX unless the
enhanced JTAG adapter assembly with RISCTrace is used (see the install
guide for descriptions of the different adapters).

5. Known causes for a run trace failure are:
• Wrong transfer adapter connected to the front of the RISCWatch

processor probe. The special adapter that is shipped with the
RISCWatch processor probe with RISCTrace must be used.

• Invalid cycle count specified on the trace window (see “RISCTrace
Controls” command on page 5-10).

• Trace port used for parity generation (403GCX only).

• CPU is clock doubled (403GCX only) and an older version RISCTrace
Processor Probe (maximum 64K cycle trace buffer) is being used. The
new RISCTrace Processor Probe unit, with 500K cycle instruction trace
capability, should be used.

6. RISCTrace writes the reconstructed code to a file in the directory from which
RISCWatch was started. These files may be in excess of 100Mbytes.

RISCTrace Output

The output file resulting from a successful trace contains various elements of
information which are presented in a consistent manner for each trace.
Guaranteeing that key information is presented in a consistent manner allows
users the flexibility to write their own post-processing routines which can operate
on the trace output file.

The trace output file format is currently at version 2.0 and hence is different from
the example shown on the following pages. Please run a trace with the latest
version of RISCWatch and view the output stored in the file rwppc.trc.
4-4 RISCWatch Debugger User’s Guide

o

emo
RISCTrace : Trace Output File Version 2.0
DATE : Sun Aug 20 06:03:04 2000

TRACE TRIGGER SETTINGS : IAC1 occurring 1 time

Instr Total Cycle/ (function
Count Cycle Instr Address offsets) Opcode Disassembly
------- ------- ------- ----------------- -------- -----------

$ FUNCTION: main START_ADDR: 0x0000A078 FILE: demo1.c PROGRAM: ./demo
0000001 0000000 0000A0A0(+000028) 90610040 stw R3,0x00000040(R1)

0000000 ** STATUS: Trigger event **
0000002 0000002 0000002 0000A0A4(+00002C) 38600003 addi R3,0,0x0003
0000003 0000004 0000002 0000A0A8(+000030) 90610050 stw R3,0x00000050(R1)

*** Entries removed for figure display purposes ***

$ FUNCTION: routine4 START_ADDR: 0x0000A180 FILE: demo1.c PROGRAM: ./demo
0000062 0000214 0000011 0000A180(+000000) 9421FFC0 stwu R1,0xFFFFFFC0(R1)
0000063 0000216 0000002 0000A184(+000004) 90610058 stw R3,0x00000058(R1)

*** Entries removed for figure display purposes ***

0000073 0000253 0000002 0000A1AC(+00002C) 30210040 addic R1,R1,0x0040
0000074 0000267 0000014 0000A1B0(+000030) 4E800020 blr

$ FUNCTION: main START_ADDR: 0x0000A078 FILE: demo1.c PROGRAM: /sld/rwppc/regress/src/dem
0000075 0000269 0000002 0000A0F8(+000080) 48000121 bl $+0x00000120

$ FUNCTION: routine2 START_ADDR: 0x0000A218 FILE: demo2.c PROGRAM:/sld/rwppc/regress/src/d
0000076 0000280 0000011 0000A218(+000000) 7C0802A6 mflr R0

*** Entries removed for figure display purposes ***

0000121 0000505 0000011 0000A290(+000008) 800C0000 lwz R0,0x00000000(R12)
0000122 0000507 0000002 0000A294(+00000C) 804C0004 lwz R2,0x00000004(R12)

00000000 ** Interrupt detected **

$ FUNCTION: ? START_ADDR: ? FILE: ? PROGRAM: ./demo
0000125 0000543 0000032 FFFE0700 7C0004ACsync
0000126 0000559 0000016 FFFE0704 90200034 stw R1,0x00000034(0)
000127 0000575 0000016 FFFE0708 90400038 stw R2,0x00000038(0)

Figure 4-1. Sample Trace Output File
Using Processor-Specific Debug Features 4-5

The following general rules hold true for any trace output file, such as the sample
in Figure 4-1:

1. All comments are preceded by the comment character ‘#’

These may be separate comment lines, or comments at the end of trace
entries.

2. If comment lines are added to the trace via the Save Trace window, they are
the first lines in the file and preceded by the comment character ‘#’

3. A comment line containing the words ‘RISCTrace : Trace Output File’ either
follows the optional comment lines (if they exist) or is the first line in the file.

4. A comment line containing the information ‘DATE : time_info’ follows next,
where time_info is the time/date information in the format defined by the ANSI
ctime() function.

5. A comment line containing the information ‘TRACE TRIGGER SETTINGS
trigger_settings’ follows, where trigger_settings describes the trigger settings
at the time the trace was collected and in the format shown at the top of the
Compound Trigger/Trace window.

6. The trace header (preceded by the comment character ‘#’) follows:

#Instr Total Cycle/ (function
#Count Cycle Instr Address offsets) Opcode Disassembly

7. The trace entries follow next. Each field of the entry is aligned below the field
name in the header, as described below:

Instr Count The sequential entry number within the trace output.

Total Cycle The running count of cycles for the trace.

Cycle/Instr The number of cycles for this executed instruction. This field
provides a quick way to determine which instructions in the
trace are taking the most cycles to execute.

Address The address of this executed instruction. This may include
an offset in () from the beginning of the function if program
symbol information is available

Opcode The hex opcode for this instruction executed.

Disassembly The disassembled Opcode value.

The first three columns of data are displayed in decimal format while the last
three are always hexadecimal (whether preceded by ‘0x’ or not).
4-6 RISCWatch Debugger User’s Guide

8. If program information is loaded corresponding to a trace instruction address,
a program information entry preceded by the special character ‘$’ appears
before the first instruction of each new function entry point as it is encoun-
tered in the trace.

 The format of the program information entry is as follows:

FUNCTION: func START_ADDR: start_addr FILE: file PROGRAM: prog

Where:

 func function name, ‘?’ if unknown

 start_addr start address for the function, ‘?’ if unknown

 file file containing the function, ‘?’ if unknown

 prog fully qualified program name, ‘?’ if unknown

If the trace execution flow goes from an instruction which has program
information associated with it, to one with no program information, all the
fields above are ‘?’.

9. A blank line appears between trace entries where a break in sequentially exe-
cuted instruction addresses (for example, a branch to another area of the pro-
gram) occurs.

Trigger/Trace Window (400Series Only)

The Trigger/Trace window is used to manage hardware breakpoints and trace
events. Breakpoints managed by this window are accessible by using the built-in
debug functions of the processor. Hardware breakpoints are not available for OS
Open targets. An explanation of trace capabilities is explained in “Using
RISCTrace (400Series JTAG Processor Probe Only)” command on page 5-2.
Using Processor-Specific Debug Features 4-7

.

• Branch Taken event

The Branch Taken event trigger is enabled and disabled according to the state of
its check box. If the check box is enabled, the trigger is enabled too.

• Exception event

The Exception event trigger is enabled and disabled according to the state of its
check box. If the check box is enabled, the trigger is enabled too.

• Instruction Address Compare events

An Instruction Address Compare event trigger is enabled and disabled according
to the state of its check box. If the check box is enabled, the trigger is enabled too.

Figure 4-2. Sample Trigger/Trace Window with Trace Supported
4-8 RISCWatch Debugger User’s Guide

If an Instruction Address Compare is enabled, the appropriate address to trigger
on should be entered in the address field. Use the mouse to place the edit cursor
in the appropriate address field, enter a new hexadecimal value and then press
the Enter key.

• Instruction Address Range events

Instruction address range events are enabled and disabled according to the state
of the Instruction Range Enable check boxes. These selections are enabled only
when the corresponding Instruction Address check boxes have been selected. For
example, the I12 Range Enable checkbox would be enabled only if the Inst
Address(1) and Inst Address(2) check boxes were already selected. The range
specified can either be inclusive (Inc), inclusive toggle (Inct), exclusive (Exc) or
exclusive toggle (Exct) to the values specified in the Inst Address data fields.

The toggle ranges are used to automaticaly toggle between ranges each time the
processor stops for the specified range. For example, if inclusive toggle is enabled
and the processor stops in the specified range, the toggle will switch to exclusive
mode. If the processor is run and then stops in the exclusive range, the toggle will
again occur and return to inclusive mode.

The toggle ranges are only available on some 400Series processors.

• Data Address Compare events

A Data Address Compare event trigger is enabled and disabled according to the
state of its Data Address check box. If a check box is enabled, the trigger is
enabled for that event.

If a Data Address Compare is enabled, the appropriate address to trigger on
should be entered in the address field. Use the mouse to place the edit cursor in
the appropriate address field, enter a new hexadecimal value and then press the
Enter key.

For the Data Address Compare events, a trigger may be generated for a read
and/or write to the specified address. Enable the desired event(s) by selecting the
desired mode in the corresponding list box. The list box entries are displayed by
using the mouse to place the edit cursor on the triangle next to the selection and
pressing the left mouse button. The option is then selected by clicking on the
desired selection. The Data Address Compare events also allow for masking of
the data address on compares through the use of the corresponding list button to
the right of the mode selection. The masking size is once again selected by using
the triangle to display the possible options and clicking on the desired entry.

• Data Address Range events

Data address range breakpoints are enabled and disabled according to the state
of the Data Range Enable check box. These selections are enabled only when
both of the Data Address check boxes have been selected. The range specified
Using Processor-Specific Debug Features 4-9

can either be inclusive (Inc) or exclusive (Exc) to the values specified in the Data
Address Compare data fields.

• Data Value Compare events

A Data Value Compare event trigger is enabled and disabled according to the
state of its Data Val Cmp check box. If a check box is enabled, the trigger is
enabled for that event.

If a Data Value Compare is enabled, the appropriate data to be used for the
compare should be entered in the data field to the right of the check box. Use the
mouse to place the edit cursor in the appropriate data field, enter a new
hexadecimal value and then press the Enter key.

Next, the compare conditions must be specified by indicating which bytes are to
be compared, and how they are to be compared. This is accomplished by
selecting the desired options in the list boxes shown directly under the
corresponding Data Val Cmp check box.

Note that a Data Value Compare can only be enabled when the corresponding
Data Address compare event has previously been enabled.

• Debug mode

The Debug mode check boxes are used to select the debug mode under which
the processor will be running which in turn dictates the action to be taken when an
event is triggered. Select the External check box to run in External Debug mode.
Select the Internal check box to run in Internal Debug mode. In External Debug
mode, when a debug event is detected the processor will be stopped. In Internal
Debug mode, when a debug event is detected, the processor will vector to the
appropriate exception handler for processing.

Note: For normal exception-driven processing of Data or Instruction
Address breakpoints by a ROM Monitor or OS Open target, Internal
debug mode should be selected.

For additional information on these and other processor debug features, consult
the Debugging chapter of the User’s Manual for the specific PowerPC 400Series
processor being used. Not all features shown above are supported across all 400
Series processors.

RISCTrace Controls

RISCTrace controls appear on the window only if RISCWatch determines that
trace is supported. Refer to “Using RISCTrace (400Series JTAG Processor Probe
Only)” command on page 5-2 for an explanation of RISCTrace. When a trace is
running, the trigger events described above define when the trace is triggered.
The following controls are specific to RISCTrace:

• Cycle count specification
4-10 RISCWatch Debugger User’s Guide

The 400Series processor which RISCWatch is attached to may support either a
‘forward only’ trace (where tracing begins only after the specified trigger event
occurs) or a ‘backtrace’ capability (where a ‘window’ of cycles around the trigger
event may be specified).

If the processor supports a ‘forward only’ trace, the ‘Cycles Before Trigger’ count
(the count of cycles before the trigger event occurs) is always zero and cannot be
altered. The ‘Cycles After Trigger’ count (the count of cycles following the trigger
event) can be adjusted with a value not exceeding the maximum size of the trace.

If the processor supports a ‘backtrace’ capability, the ‘Cycles Before Trigger’ count
and the ‘Cycles After Trigger’ count can both be adjusted to define a ‘window’ of
cycles around the trigger event, with the total of the two not exceeding the
maximum size of the trace.

Use the ‘Total Cycles Allowed’ field value to help you select suitable values for the
before and/or after trigger counts.

In both cases, if the total of the two is below a certain minimum, the ‘Cycles After
Trigger’ will be rounded up to this minimum.

• Run Trace button

After the trigger event(s) and cycle count(s) are specified, the Run Trace button
starts the processor running and initiates trace collection. When a specified
trigger event occurs, RISCTrace automatically collects the trace information and
reconstructs and formats it. The formatted trace is saved in the file rwppc.trc and
displayed in a view window (see the “view” command on page 5-147 for details on
using this window).

• Stop Trace button

Selecting the Stop Trace button while a trace is running causes the trace which is
currently running to be aborted. The abort results in the processor being stopped
with no trace reconstruction occurring for the trace which was running. However, if
the trace is complete, the trace is collected, reconstructed and formatted. The
Stop Trace button is useful when Autostop mode is disabled.

• Save Trace button

The Save Trace button can be used to save the formatted trace in a file of your
choice, as well as allowing you to enter optional comment lines appended to the
beginning of the formatted trace information in the saved file.

• Autostop checkbox

Enabling the autostop checkbox makes RISCTrace automatically stop the
processor, collect the trace and then reconstruct and format it when the specified
trace is complete.
Using Processor-Specific Debug Features 4-11

Disabling the autostop checkbox makes RISCTrace only indicate that the specified
trace is complete. Using the Stop Trace button will then stop the processor, collect
the trace and then reconstruct and format it.

• From Mem checkbox

Enabling the From Mem checkbox informs the RISCTrace reconstruction software
to use the contents of memory on the user’s target during the reconstruction
process.

Disabling the From Mem checkbox informs the RISCTrace reconstruction software
to use the program files that were previously loaded with the RISCWatch load
command during the reconstruction process. Any address required by the
reconstruction process and not found in the program files is read from memory on
the user’s target.

Compound Trigger/Trace Window (401, 403 Series Only)

The Compound Trigger/Trace window is available on those processors which
support compound debug events.This window is very similar to the Trigger window
with some additional features to make use of compound debug event functionality.
Refer to “Trigger/Trace Window (400Series Only)” command on page 5-7 for an
understanding of the basic features this window provides and to “Using
RISCTrace (400Series JTAG Processor Probe Only)” command on page 5-2 for
the control information provided with RISCTrace.
4-12 RISCWatch Debugger User’s Guide

Figure 4-3. Sample Compound Trigger/Trace Window with Trace Supported
Using Processor-Specific Debug Features 4-13

Using the Compound Trigger/Trace window, three classes of triggers may be set
up:

1. Trigger on one or more events

2. Trigger after one or more events occurs a specified number of times

3. Trigger after one or more events occurs a specified number of times which is
followed by a single occurrence of one or more events.

Available debug events include:

1. Branch taken

2. Exception

3. Instruction address compare

4. Data address compare

The initial trigger events are selected using the check boxes under the “Trigger on
events” heading. These check boxes are the same as those found in the Trigger
window. One or more of these events may be specified. As events are selected,
notice the text appearing in the “Trigger on” field at the top of the window.

If it is desired, an event occurrence counter may be set using the text field at the
top of the window. Enter the desired count into the box and press Enter.

Once a Trigger on event is specified, several ”followed by” events are available for
use as check boxes under the “Followed by events” heading. If an event is
selected as a Trigger-on event, it is not available for use as a Followed by event
and vice versa. As Followed by events are selected, notice the text appearing in
the “followed by” field at the top of the window.

The Instruction and Data address controls at the bottom of the window can only
be accessed if the appropriate event has been selected as a “Trigger on” or
“followed by” event.

The Debug mode check boxes are used to select the debug mode under which
the processor is running which in turn dictates the action to be taken when an
event is triggered. Select the External check box to run in External Debug mode.
Select the Internal check box to run in Internal Debug mode. In External Debug
mode, when a debug event is detected the processor is stopped. In Internal
Debug mode, when a debug event is detected, the processor vectors to the
appropriate exception handler for processing.

Note: For normal exception-driven processing of Data or Instruction
Address breakpoints by a ROM Monitor or OS Open target, Internal
debug mode should be selected. Hardware breakpoints are not
available for OS Open targets.
4-14 RISCWatch Debugger User’s Guide

RISCTrace controls appear on the window only if RISCWatch determines that
trace is supported. See“RISCTrace Controls” command on page 5-10 for further
information.

Memory Resources

See “Reading and Writing Memory” command on page 5-104 for a general
description of RISCWatch features and windows for memory access.

Translation Lookaside Buffer Window (Applicable Processors Only)

The TLB window is used to read and write entries in the Translation Lookaside
Buffer (TLB) of a processor which contains a Memory Management Unit (MMU).

“PowerPC 400Series MMU Implementation Notes” command on page 5-1
provides details affecting RISCWatch support for PPC403GC/GCX TLB
operations. Additionally, for OS Open targets, the TLB window is only functional
with OS Open version 1.6 or later and is not available for OS Open with Virtual
Memory targets.

This window is displayed by selecting the Memory | TLB option of the menubar’s
Hardware pulldown choice. Along the left hand side of the window are the TLB

Figure 4-4. Sample TLB Window
Using Processor-Specific Debug Features 4-15

entry numbers. To the right is the data area, where the contents of the TLB are
shown .

The scroll bar located on the right side of the data area can be used to show
entries that do not fit in the window display. Alternatively, the window can be
resized to show the desired number of entries.

The labels across the top of the data window are used to help identify the
quantities being displayed for the TLB entries. The labels are:

EPN effective page number

S page size

V valid bit

T TID

RPN real page number

Z ZSEL field value

W WIMG bits (Write-through, Inhibit, Memory coherence, Guarded)

E EXecute bit

WR WRite bit

Note: Page numbers (EPN & RPN) are always displayed normalized
to bit 0 (MSB). WIMG bits are displayed as a hexadecimal value with
bit positions, from left to right, being W, I, M, and G.

The Read button is used to force a read of the processor TLB data to display the
latest contents.

The Close button is used to remove this window from the screen.

Processor Resources

See “Processor Reset Window (JTAG Targets Only)” command on page 5-138 for
a description of RISCWatch options for resetting a PowerPC processor.
4-16 RISCWatch Debugger User’s Guide

Chapter 5. Debugger Command Reference
This chapter describes the RISCWatch Debugger commands. These commands
can be entered on the command line of the Main window of the graphical user
Interface.

The commands are listed in alphabetical order. Each command description
contains the following sections:

• Name
• Syntax
• Description

Some command descriptions contain one or more of the following sections:

• Flags
• Examples
• Related Information

Processors Currently Supported
The RISCWatch Debugger supports numerous PowerPC processors and
versions. For more information on current processors supported and other up to
date information, please refer to the README file included with the product, or
visit our web site at http://www.chips.ibm.com/products/embedded/riscwtch

Support for additional PowerPC processors and targets is planned for future
RISCWatch releases.

Reading the Syntax Diagrams
See ‘‘Syntax Diagram Conventions’’ on page xxiii for detailed information about
the conventions used in the RISCWatch Debugger command syntax diagrams.

Using RISCWatch Debugger Commands
Commands and keywords are not case sensitive. You may enter commands using
either uppercase or lowercase characters. File names and variable names are
typically case sensitive and should be entered in lower case or as shown in the
individual command descriptions.
Debugger Command Reference 5-1

Each command description provides a table to summarize the processors,
modes, hosts, and targets with which that command can be used. The
combination of processors, targets (JTAG, OS Open, or ROM Monitor), and usage
modes applicable to each command are indicated by bullets (•) in the appropriate
table cells. Notes below the tables provide additional details of command
applicability.

A sample environment table is shown below:

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.
5-2 RISCWatch Debugger User’s Guide

Window Quick Reference
window window name, specified by one of the following keywords:

ascii ASCII Memory window
asic ASIC register window
*breakpoint Breakpoints window
*cache Cache (unified) window
calculator Calculator window
*callers Callers window
cfss Command File Single Step window
coherency Memory Coherency window
ctrigger Compound Trigger Trace window
*dcache Data Cache window
dcr Device Control Registers window
debug Assembly Debug window
dtlb Data Translation Lookaside Buffer window
*files Files window
fpr Floating Point Registers window
*functions Functions window
*globals Globals window
gpr General Purpose Registers window
*icache Instruction Cache window
*inspect Variable Inspect window
itlb Instruction Translation Lookaside Buffer window
*l2 L2 Cache window
*locals Locals window
log Log Comment window
*osopen OS Open window
output Output window
*programs Programs window
reset Processor Reset window
regfld Single register field
rfcache Fields for Cache Registers
rfconfig Fields for Configuration Registers
rfdbat Fields for 6xx DBAT Reg Fields
rfdbg Fields for Debug Registers
rfdma0 Fields for DMA0 Registers
rfdma1 Fields for DMA1 Registers
rfdma2 Fields for DMA 2 Registers
rfdma3 Fields for DMA 3 Registers
rfdram Fields for DRAM Registers
rffpr0 Fields for FPRs 0-7
Debugger Command Reference 5-3

rffpr1 Fields for FPRs 8-15
rffpr2 Fields for FPRs 16-23
rffpr3 Fields for FPRs 24-31
rfibat Fields for 6xx IBAT Reg Fields
rfmem Fields for Memory Protection Registers
rfmmu Fields for 6xx MMU Regs
rfpm Fields for Performance Monitor Regs
rfsr Fields for 6xx Segment Reg Fields
rfsram Fields for SRAM Registers
rftimr Fields for Timer Registers
*source Source window
spr Special Purpose Registers window
tlb Translation Lookaside Buffer window
trigger Trigger Trace window
udw User Defined window
*varcfg Variable Configuration window
winlist Window list

* Applies to commands using both the window and pane keyword (except for
window command).

Note: Not all windows are applicable to all target processors and hosts.

Command Quick Reference

The following is a list of commands and the syntax of each command. For further
details, see the syntax and description sections in the individual command
reference pages which follow this quick reference.

The following identifiers are used to improve readability :

[] an optional item

| a selection between two or more items

address any valid memory address value (usually specified as a 32 bit
hex number)

int_var any integer variable created with the create command

field_name an appropriate register field name as it appears in a Register
Field window, or bit number

fld_var any register field variable created with the assign command

float any valid floating point number

flt_var any float variable created with the assign or create command

imm_var any immediate variable created with the assign command

instance a register or window instance number
5-4 RISCWatch Debugger User’s Guide

mem_var any memory variable created with the assign command

mps_id valid MPS chip or device name from MPS file

pane window pane name, specified by one of the following keywords:

bpset Breakpoint Select window, window showing functions with
bp set

bpunset Breakpoint Select window, window showing functions with
bp not set

cachedata Cache window, window showing data/tag entries
cacheword Cache window, window showing word entries
varinvis Variable Config window, window showing invisible vars
varvis Variable Config window, window showing visible vars

reg_class any valid processor register class (DCR, GPR, etc.) The list of
valid classes may be found by accessing the program menu bar
under Hardware | Register. The keyword ALL is always a valid
class.

reg_name any valid processor register name

reg_pre any valid ASIC register prefix. If the chip you are debugging has
any ASIC registers defined, the list of valid prefixes may be
found by accessing the program menu bar under Hardware |
Register | ASICs.

reg_var any register variable created with the assign command

src_var any valid local or global source variable name that is currently in
scope. The name must be preceded by a colon “:”. See “Source
Variable Command Support” on page 3-103 for further
information.

str_var any string variable created with the assign or create command

value any decimal, octal or hexadecimal value

Table 5-1 summarizes the syntax of the RISCWatch Debugger commands:

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters

asmstep [value]
Debugger Command Reference 5-5

assign

fld_var = reg_name.field_name

imm_var = value

mem_var = (address)

flt_var = float

reg_var = reg_name

str_var = “string”

assm "assembly" [address|int_var|reg_name|reg_var]

attach threadid

beep [off|on]

bot [window [pane]]

bp

set [dacr|dacw|dacrw] address [dac_reg] [cmp_size]

set dvc dvc_reg [comp_bytes] [comp_mode]

set ihw address [iac_reg]

set [ihw] at src_file:line_num

set [ihw] in [“]function[“]

set range [inc|inct|exc|exct] range_reg1 range_reg2

clear address|all iac_reg

clear [dacr|dacw] address

clear at file_name:line_num

clear in [“]function[“]

clear range [inc|exc] range_reg1 range_reg2

bpmode [hw [step]|hardware [step]]|[sw|software]

callstep

capture window[reg_pre]|pane|all [total] [filename]

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters
5-6 RISCWatch Debugger User’s Guide

cfss sp set|clear at file_name:line_num

sp set|clear at line_num

sp clear all

color [reset | [cbak|cfore|tback|tfore|wback|wfore color]]

config drtry|parity|32bitmode [on|off]

create flt_var = float

int_var [= value]

str_var = “string”

delay value|imm_var|int_var

detach

dis value|(address)|int_var|mem_var|reg_name|reg_var

down [lines [window [pane]]]

end [all]

exec command_file[{variable_list}] [step]

expr expression

fctrl

append|new filename

close

errors|log|status on|off

file [filename]

find [[string [window [pane]]] | [$last$ window [pane]]]

findb [[string [window [pane]]] | [$last$ window [pane]]]

finde [[string [window [pane]]] | [$last$ window [pane]]]

focus [window [pane]]

fold on|off

fprdisp [hex|sci]

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters
Debugger Command Reference 5-7

fprint print_string

freeze never|stop|always

funcdisp [all_addr|all_name|dbg_addr|dbg_name]

goto value|label|[addr address]|[line file_name:line_num]

halt [on|off]

hidewins

ip

jtag clock [value]

kill_thread

line [value [window [pane]]]

linestep [value]

load

binary|bin filename address|int_var|imm_var

dmem|imem filename [address|int_var|imm_var]

file filename [d=address] [s=address|ss=size] [t=address] [nosym]

host filename [d=address] [s=address|ss=size] [t=address] [nosym]

hp filename

image filename

layout filename

motorola|mot filename

reg filename

tektronix|tek filename

log message

logging [on|off]

logoff

memacc

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters
5-8 RISCWatch Debugger User’s Guide

memchk address [length]

memc oh read mm|phys|reset

write dmem bypass|cache|mm|reset|thru

write imem cahce|iidb|iidu|iudb|iudu|iidf|reset

memcopy source dest mm_var|int_var|length

memfill address imm_var|int_var|value imm_var|int_var|value

memfind address length string|value [int_var}

memrwait [value]

memwwait [value]

mpsset mps_id

pagedn [window [pane]]

pageup [window [pane]]

parms {var1 [, var2, ..., varN]}

poll [[id target on|off] | [run|status] value|imm_var|int_var]]

post string

prefer src_vars type = format

print print_string

quit [-f]

read address|mem_var|src_var|int_var|imm_var [int_var|reg_name|reg_var]

readb address|mem_var|int_var|imm_var [int_var|reg_name|reg_var]

readh address|mem_var|int_var|imm_var [int_var|reg_name|reg_var]

read reg_name|reg_var [int_var|reg_name|reg_var]

reg reg_class|reg_pre|

reset core|chip|sys

restart

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters
Debugger Command Reference 5-9

retstep

run [timeout|[to [address | file_name:line_num]]]

save

reg|reginfo|regfldinfo|layout filename [reg_class|reg_pre]

mem filename address|int_var|imm_var bytes|int_var|imm_var

bin|binary filename address|int_var|imm_var [append]

set
(address)|mem_var|src_var|int_var|reg_name[.field_name|.#]|reg_var|fld_var|flt_var|str_v
al = expression

shell expression|str_var

showip

socket timeout [value]

srcdisp source|mixed

srchpath

 [q[uery]]

 set dir1 (dir2 . . . dirN)

 add dir

 c[lear]

srcline [imm_var|int_var|line]

start_thread funcname [group_id]

stop [timeout]

stuff opcode|"assembly"|reg_name|variable

timer start|stop

top [window [pane]]

trace

unassign all|fld_var|imm_var|mem_var|flt_var|reg_var|str_var

uncreate all|flt_var|int_var|str_var

unload all|filename

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters
5-10 RISCWatch Debugger User’s Guide

up [int_vat|imm_var|lines[window [pane]]]

varinfo locals|globals all|none|[addr][size][type]

varvis locals|globals vis|invis

view [filename]

window [window [reg_pre] [mps_id]] | [cfss [filename]] | [udw [mps_id] filename] | [regfld [mps_id] regname
[instance]]

write dmem|imem address|mem_var|int_var|imm_var value|int_var|imm_var|reg_name

write src_var value|int_var|imm_var

writeb dmem address|mem_var|int_var|imm_var value|int_var|imm_var|reg_name

writeh dmem address|mem_var|int_var|imm_var value|int_var|imm_var|reg_name

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters
Debugger Command Reference 5-11

asmstep
asmstep

Syntax

Description

asmstep runs the processor for the execution of one or more 4-byte machine
instructions.

If the value parameter is omitted, it defaults to 1.

Flags

value Specifies the number of machine instructions the processor is to step.

Note for 400Series JTAG targets: If the IAR is pointing to an RFI or RFCI
instruction, processor requirements dictated that two instruction steps be taken to
execute these instructions. This special case is handled automatically by the
program.

If the debugger is in source mode and the IAR is pointing to a branch instruction
that will be taken, the debugger context will be switched to the target of the
branch. This has the same effect as issuing a callstep instruction.

See Also

• callstep on page 3-26

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 asmstep

 value
5-12 RISCWatch Debugger User’s Guide

assign
assign

Syntax

Description

assign is used to assign a value to a variable name. The value can be an
immediate value, a memory address value, a value in a register, or the value of a
register field or expression. The name given to the variable must not start with a
number or match any processor register name. Variable names are also case
sensitive.

An immediate value can be any number given in floating point, octal, decimal or
hexadecimal form. To assign the value of a register or field, the register or register
field name or number is specified. A memory address is specified as an
immediate value enclosed by the '(' and ')' characters to differentiate it from an
immediate value.

Having assigned a value to a variable name, the variable name can be used in
commands that accept fld_var, flt_var, imm_var, mem_var, or str_val as valid input
parameters. See Table 5-1 for a command syntax summary that shows which
commands accept assign variables as parameters.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 assign variable reg_name

 reg_name.field

 (address)

value

 =

“expression”
Debugger Command Reference 5-13

assign
Flags

value An initial data value

“expression” An expression, enclosed in double quotes, that is
placed into the variable

(address) The memory address assigned to the variable. Note
that the () characters are used to distinguish a memory
address from an immediate value.

reg_name The name of the register assigned to the variable.

reg_name.field The register name concatenated with the field name or
bit number assigned to the variable.

variable The name given to the assigned variable so that it may
be referenced in future commands

Example

• Assign a register to a variable and then uses the variable to initialize and read
the register's value.

assign count_reg = SPRG1 # make count_reg = SPRG1
set count_reg = 0 # init count register
read count_reg # i.e. read SPRG1

• Assign an immediate value to a variable which is then used to initialize the
value of a register.

assign reg_val = 0x11223344
set SPRG0 = reg_val

See Also

• create on page 3-35

• set on page 3-117
5-14 RISCWatch Debugger User’s Guide

assm
assm

Syntax

Description

assm converts a valid assembly instruction into a 4-byte instruction value and
then optionally writes this value to the specified register, user-created variable, or
processor instruction memory at the specified address.

Flags

"assembly" A string containing a valid assembly instruction

str_var A string variable containing a valid assembly instruction

address The memory address to write the assembled instruction value to

int_var Any variable created with the create command

reg_name The name of a register to write the assembled instruction value
to

reg_var Any register variable created with the assign command

Any operands that accompany an assembly instruction must consist of one
contiguous string of characters. There can be no spaces between the operands if
there are more than one.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 assm "assembly"

address

int_var

reg_name

reg_var

str_var
Debugger Command Reference 5-15

assm
If no memory address, register name or user-created variable is specified, the
string will simply be assembled and the subsequent machine instruction that is
generated will be printed out in a status message.

Examples

• Generate the instruction necessary to move the contents of a special purpose
register to a general purpose register and then write the generated instruction at
memory address 0xE0B15.

assm "mfspr r13,LR" 0xE0B15

• Generate the instruction necessary to move the contents of a special purpose
register to a general purpose register and then store the generated instruction
in a user-created variable.

create assm_value
assm "mfspr r13,LR" assm_value

• Generate the instruction necessary to move the contents of a special purpose
register to a general purpose register and then write the generated instruction to
register GPR8.

assm "mfspr r13,LR" R8

See Also

• dis on page 3-39
5-16 RISCWatch Debugger User’s Guide

attach
attach

Syntax

Description

attach initializes a source mode debug session with threadid under OS Open.
threadid must be the number of an existing thread. A list of current threads can be
found by clicking on the "List Threads" buttons of the OS Open window.

Note: RISCWatch cannot be used to debug the OS Open shell.

Flags

threadid The number of an existing thread

Examples

• Attach to an existing OS Open thread.

attach 0x31568

See Also

• detach on page 3-38
• kill_thread on page 3-70
• start_thread on page 3-129

401/5x 403x 602 603x 604x 7xx

JTAG

OS Open • • • • • •

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

attach threadid
Debugger Command Reference 5-17

beep
beep

Syntax

Description

beep controls the program beeper. It may be used to turn the program beeps on
or off or to sound the program beeper. If the on and off parameters are omitted, it
sounds the program beeper.

Flags

off Turn the program beeper off

on Turn the program beeper on

Examples

• Turn the program beeper off

beep off

• Turn the program beeper on

beep on

• Sound the program beeper

beep

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 beep

 off

 on
5-18 RISCWatch Debugger User’s Guide

bot
bot

Syntax

Description

bot scrolls to the last line of a window, highlighting the line if it contains any text.

If the window keyword is not specified, the last window specified for this command
is used. It initially defaults to the Source window.

Flags

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) refer to commands using both window and pane
keywords.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

Examples

• Scroll to the last line of the window previously specified by this command.

bot

• Scroll to the last line of the Breakpoint window.

bot break

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

bot

 pane

window
Debugger Command Reference 5-19

bp
bp

Syntax

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

bp set

 clear

 all

address

address

 ihw iac_reg

bp set dacr

 dacw

address

 dacrw

 dvc dvc_reg

dac_reg

enable mode

data

size

bp clear

bp set

 ihw

at file:line

at line

 in “function”clear

 dacr

 dacw

 dacrw

 dvc dvc_reg

address

bp set range

clear

 inc

inct

 reg2reg1

 exc

 exct
5-20 RISCWatch Debugger User’s Guide

bp
Description

The bp command is used to set or clear hardware and software breakpoints.

Software instruction breakpoints are set using the ‘bp set address’ syntax.
Hardware breakpoints are set by using the ‘bp set’ syntax with the desired
pre-defined keyword (which uses the first available instruction/data breakpoint
register to set an instruction/data breakpoint). The ‘bp clear address’ syntax
applies to both hardware and software instruction breakpoints.

Flags

clear Clear one or all breakpoints

set Set a breakpoint

address Address of the data or instruction where the breakpoint should
be set or cleared

iac_reg 400Series: Instruction Address Compare Register Name (IAC1,
IAC2, ...)

all Remove all breakpoints(hardware and software)

dacr 400Series: Break on Data Address Compare Read

dacw 400Series: Break on Data Address Compare Write

dacrw 400Series: Break on Data Address Compare Read or Write

dac_reg 400Series: Data Address Compare Register Name (DAC1,
DAC2)

size 400Series: Data Address Compare Size bit settings (0,1,2, or 3)

dvc 405Only: Break on Data Value Compare

dvc_reg 405Only: Data Value Compare Register Name (DVC1, DVC2)

enable 405Only: Data Value Compare byte enable. Indicates which data
bytes are to be compared. (Any combination of 0, 1, 2, and 3, or
“ALL”)

mode 405Only: Data Value Compare mode. Indicates how data bytes
are to be compared. (AND, OR, AND-OR, or UNDEF to reset)

ihw An optional parameter that is used to set a hardware instruction
breakpoint using the first available instruction breakpoint register
for the target processor.

range 405Only: Break on Address Range

exc 405Only: Address Range is exclusive
Debugger Command Reference 5-21

bp
exct 405Only: Address Range is exclusive with toggle (toggle
between exclusive and inclusive each time bp is hit). This option
is only supported when reg1 and reg2 specify IAC registers.

inc 405Only: Address Range is inclusive

inct 405Only: Address Range is inclusive (toggle between inclusive
and exclusive each time bp is hit). This option is only supported
when reg1 and reg2 specify IAC registers.

reg1 405Only: Address Range lower bound register name. (IAC1,
IAC3 for instruction range, DAC1 for data range)

reg2 405Only: Address Range upper bound register name. (IAC2 if
reg1 is IAC1, IAC4 if reg1 is IAC3. DAC2 for data range)

at Indicates a source file line number is to follow. Used when the
environment is set to ‘Source Mode On’.

file:line A source file name followed by a decimal number indicating a
specific source line.

line A decimal number indicating a specific source line in the
currently active file (the file displayed in the Source window, or
last file specified with the file command).

in Indicates a function name is to follow. Used when the
environment is set to ‘Source Mode On’.

“function” A case sensitive function name, as it would appear in the
Functions window. If the surrounding quotes are omitted, the
function name must be a non-blank character string. If the
specified function is not found in the currently active file, the
search continues in all remaining files defined by the currently
active program (program containing the current instruction
address).
When searching outside the currently active file, global functions
take precedence over functions defined as static and the first
static function is used if no global definition is found.
The break point will be set/cleared at the first line of the function
(if line table information exists) or at the function start address if
no line table information exists.

Notes

Data Value Compare breakpoints can only be set if the corresponding Data
Address Compare breakpoint has already been set. Similarly, Range breakpoints
can only be set if the corresponding Address Compare breakpoints have both
been set for the specified range registers

For additional information on these and other processor debug features, consult
the Debugging chapter of the User’s Manual for the specific PowerPC 400Series
5-22 RISCWatch Debugger User’s Guide

bp
processor being used. Not all features shown above are supported across all 400
Series processors.

Examples

• Set a software breakpoint at address 0xFFFFFF0.

bp set 0xFFFFFFF0

• Clear a breakpoint at address 0xFFFF00C0.

bp clear 0xFFFF00C0

• Clear all breakpoints.

bp clear all

• Set a hardware instruction breakpoint at address 0xFFFF00D0 using the first
available instruction breakpoint register for the target processor.

bp set ihw 0xFFFF00D0

• Set a hardware instruction breakpoint at address 0xFFFF0C00 using the IAC2
hardware register.

bp set ihw 0xFFFF00D0 IAC2

• Set a hardware instruction breakpoint at any address greater than or equal to
0xFFFF8000 but less than 0xFFFFFF00.

bp set ihw 0xFFFF8000 IAC1
bp set ihw 0xFFFFFF00 IAC2
bp set range inc IAC1 IAC2

• Set a Data Address Compare breakpoint at address 0x0000FFF0, using the
DAC1 hardware register, and ignoring the LSB of the word address.

bp set DACRW 0xFFF0 DAC1 1

• Set a Data Value Compare breakpoint at 0x00000000, if the first halfword of
the data location equals 0x12 when read.

bp set DACR 0x00000000 DAC2
bp set DVC DVC2 0x1234 01 AND

• Set a Data Value Compare breakpoint at 0xFFFF1000, if the second or fourth
byte of the word is written with 0xA5.

bp set DACW 0xFFFF1000 DAC1
bp set DVC DVC1 0x00A500A5 13 OR
Debugger Command Reference 5-23

bpmode
bpmode

Syntax

Description

bpmode is used to set or query the Breakpoint Mode used during debug. When
the Breakpoint Mode is set to software (the default), operations to set breakpoints
on the Source window, Assembly Debug window, and Functions window will result
in a software breakpoint being set. When the Breakpoint Mode is set to hardware,
operations to set breakpoints in these windows will result in a hardware
breakpoint being set (if hardware facilities are available).

Entering the bpmode command with no parameters will echo the current
Breakpoint Mode setting.

Note that the Breakpoint Mode can also be set via the Breakpoint Mode groupbox
on the Breakpoints window.

Flags

hw | hardware Set the Breakpoint Mode to hardware. All user generated
breakpoints will be applied using hardware breakpoint
registers. Breakpoints used during line step and call step
operations are applied using software trap instructions if the
step option is not used.

step Set the Breakpoint Mode to hardstep mode. All user specified
breakpoints and internally generated breakpoints (those
applied during line step and call step) will be applied using
hardware breakpoint registers.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

bpmode

 hardware

 hw

 step

 software

 sw
5-24 RISCWatch Debugger User’s Guide

bpmode
sw | software Set the Breakpoint Mode to software.

See Also

• “Assembly Debug Window” on page 3-54
• “Breakpoints Window” on page 3-73
• “Functions Window” on page 3-62
• “Managing Breakpoints” on page 3-70
• “Source Window” on page 3-51
Debugger Command Reference 5-25

callstep
callstep

Syntax

Description

callstep steps into the called routine.

callstep causes program control and debugger context to switch to the function
call specified by the current source line. If the current line does not contain a
function call, the command simply performs a line step.

If the current line contains a function call with functions in the parameter list
(func1(func2(),func3());), then a callstep will first enter the function(s) found in the
parameter list. A subsequent return step would return to the original function call
source line. When all of the parameter list functions have been entered and
returned from using callstep /retstep commands, the next callstep will transfer
the debugger context to the function contained in the original call. In the above
example, to enter func1, the first callstep would enter func2(). A retstep would
return to the source line containing the func1 call. The next callstep /retstep
would enter and then return from func3(). Finally, the next callstep would enter
func1.

Note: If a callstep is issued into a function that has no associated debug
information, a retstep command should be issued to return immediately to the
calling function. Alternatively, a breakpoint should be set on the source line
immediately following the function call to assure that the return can be made.

See Also

• bp on page 3-20

• retstep on page 3-112

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

callstep
5-26 RISCWatch Debugger User’s Guide

capture
capture

Syntax

Description

capture copies the contents of a user interface window and writes it to a file. The
command options select which window's contents will be captured or all of the
preceding choices (depending on the set of flags associated with a particular
PowerPC processor).

To capture the contents to a specific file, simply put the filename as the last option
on the command line. If no filename is supplied, a default name of rwppc.cap will
be used. To best understand how this command works simply type capture all on
the command line and then view the file rwppc.cap .

Source level debug windows (those included under the window parameter) will
only be captured if the window is visible. The default for source level debug
windows is to capture only the visible lines for a window. The total keyword can be
used to capture the entire contents of any source level debug window except for
the Source window. Only the visible lines will ever be captured for the Source
window.

Be advised that the information saved into captured files cannot be loaded back
into the window from which it was captured or to the processor. To store and
restore a particular processor state of memory and/or registers, use the save and
load commands.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 capture

total filename

 all

 window

 pane

 reg_pre
Debugger Command Reference 5-27

capture
Flags

Some flags listed below are only applicable to particular target processors, as
indicated in the description of those flags. The set of windows selected by the all
flag is also processor-dependent.

all Specifies that the contents of all visible capturable windows are
to be captured.

filename Specifies the name of the file to which the window capture is
written.

total If this flag is specified, the entire contents of the window will be
captured for those windows which support this flag (see table
below). If this flag is NOT specified, only the visible contents will
be captured.

For some windows which display processor data, using this flag
may require a read of target resources since the window may not
contain all necessary data due to performance restrictions.

Note: If the all option is specified, only the visible lines will ever
be captured for the Source window. If the total option is used
when specifying the Source window individually, the entire
window will be captured without the status subwindow
information. This option may be useful for capturing the contents
of a file in mixed mode. When using the total option, care should
be taken to ensure there is sufficient disk space to hold the
desired screen information.

pane Some windows contain multiple panes of data. If a specific pane
is specified, only its data will be captured. If a pane is NOT
specified for a window with multiple panes, all panes for that
window will be captured.

The supported pane keywords are listed under “Command
Quick Reference” on page 5-4.

reg_pre When ASIC is specified for window, this specificies a unique
ASIC window which contains the registers with the specified
prefix. See the description for this flag in “Command Quick
Reference” located at the beginning of this chapter.

window Any of the list of window keywords in “Window Quick Reference”
on page 5-3.

If a window has multiple instances and/or an associated MPS id,
the appropriate instance number and/or MPS id must be
specified as it appears in the window title bar.
5-28 RISCWatch Debugger User’s Guide

capture
Table 5-2. Windows that support capture and total

capture
supported

total
supported

capture
supported

total
supported

capture
supported

total
supported

Cache Yes Register Field No Locals Yes

Memory Access Yes Breakpoints Yes OS Open Yes

Memory ASCII No Callers Yes Programs Yes

Memory Custom No Files Yes Source Yes

Debug No Functions Yes TLB Yes

Output Yes Globals Yes User-Defined No

Register No Inspect Yes
Debugger Command Reference 5-29

cfss
cfss

Syntax

Description

cfss is used to set and clear stop points in the Command File Window. A stop
point is used to halt command file execution at a specific line number. Stop points
remain active for the entire RISCWatch debug session and can only be removed
using the ‘cfss clear’ command.

Flags

sp Specifies that a stop point command is being issued.

set Specifies that a stop point is to be set.

clear Specifies that a stop point is to be removed.

all Specifies that all stop points are to be removed.

at file:line Specifies the file name and line number for the stop point. If the
file name cannot be located using the RISCWatch search path,
an error message is generated.

at line Specifies the line number for the stop point. The command file
name is assumed to be the currently active file shown in the
Command File Window.

Examples

• Set a stop point at line 5 of command file ‘startup.cmd’.

cfss sp set startup.cmd:5

• Remove the stop point located at line 5 of the file shown in the Command
window.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

cfss at file:line

at line

sp set

clear all

clear
5-30 RISCWatch Debugger User’s Guide

cfss
cfss sp clear 5

See Also

• See "Command File Window" on page 3-135
Debugger Command Reference 5-31

color
color

Syntax

Description

color is used to change window color settings. The settings specified by this
command are applied to any subsequent window creations.

The color command can be used to override the default settings, as well as any
settings previously defined in the environment file. If no keyword is specified, the
current settings will be displayed.

Flags

reset Specifies that the color settings are to be reset to the original
session values.

cback Specifies the color setting for the background control areas.

cfore Specifies the color setting for the foreground control areas.

tback Specifies the color setting for the background text areas.

tfore Specifies the color setting for the foreground text areas.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

Note: Command not valid when in MPS mode.

 color

reset

cback

cfore

tback

tfore

wback

wback

color
5-32 RISCWatch Debugger User’s Guide

color
wback Specifies the color setting for the background window areas.

wfore Specifies the color setting for the foreground window areas.

color Name or hex representation of the desired color. Named colors
available are black, blue, cyan, dkgray, gray, green, ltgreen,
magenta, read, white, and yellow. The hex representation of
“0xrrggbb” defines the red, green, and blue component of the
color, respectively.

Examples

• Change the window background color to blue.

color wback blue

• Change the control foreground color to blue using the hex representation.

color cfore 0xFF

See Also

• See "Environment Resources" on page 3-5

• See "Multi-Processor Resources" on page 3-28
Debugger Command Reference 5-33

config
config

Syntax

Description

config configures RISCWatch to match different hardware options for a particular
processor. Selecting an option without a value setting will display the current
setting.

Note: RISCWatch cannot automatically detect the processor’s settings, nor can it
change the mode of the processor itself.

Flags

drtry Used to display or change RISCWatch’s drtry setting. For 603
processors which are run in Data Retry (DRTRY) mode, drtry
must be set to yes for RISCWatch to operate properly.

parity Used to display or change RISCWatch’s data parity generation
setting. For performance reasons, RISCWatch does not typically
generate data parity bits on memory accesses. However, some
systems may require parity generation.

32bitmode Used to display or set RISCWatch’s 32bitmode setting. This
setting must match the 32bitmode setting of the processor’s
hardware for correct RISCWatch operation.

401/5x 403x 602 603x 604x 7xx

JTAG • • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Notes: Only JTAG Ethernet targets are supported.
32bitmode options are for 602, 603, 603e, 603ev and 740/750 processors
only.
Drtry option is for 603 processor only.
Parity flags are for 603, 603e, 603ev and 740/750 processors only.
TTY mode is available only on RS/6000 and Sun workstations.

config drtry

32bitmode

parity

off

on
5-34 RISCWatch Debugger User’s Guide

create
create

Syntax

Description

create is used to create a variable. The variable value is stored as a signed
quantity allocated in multiples of 4 bytes), a float, or an expression. The name
given to the variable may not start with a number and must not match any
processor register name. Variable names are also case sensitive.

The variable can be used in any command that allows int_var, flt_var, or str_val as
valid input parameters. See Table 5-1 for a command syntax summary that shows
which commands accept create variables as parameters.

It is possible to assign an initial value to the variable. If no initial value is specified
when creating a variable, a value of 0 will be assigned.

Flags

“expression” An expression, enclosed in double quotes, that is placed into the
created variable. This creates a string variable.

variable Name of the immediate variable to be created.

initial_value The value assigned to the variable after it is created. If an initial
value is not specified, a value of 0 will be assigned.

Examples

• Create a variable named cr_var1 and assign it an initial value of 0x1234.

create cr_var1 = 0x1234

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 create variable

= initial_value

= “expression”
Debugger Command Reference 5-35

create
• Create a variable named cr_var2 and assign it an initial value of 0.

create cr_var2

• Create a variable named my_string and assign it the string “My string contents”.

create my_string = “My string contents”

• Create two variables, i and j, and use them to calculate a value to write to
GPR0.

create i # create variable i
create j # create variable j
set i = (0x12345678) # read memory into i
set j = i - IAR # subtract IAR from i
write R0 j # write value of j to GPR 0

See Also

• assign on page 3-13

• set on page 3-117
5-36 RISCWatch Debugger User’s Guide

delay
delay

Syntax

Description

delay is used to delay the execution of a command file for the specified number of
seconds. During this delay period, no program or command file processing is
performed.

Flags

value Specifies the number of seconds to delay execution

int_var Any int variable created with the create command

imm_var Any immediate variable created with the assign command

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

•

delay value

int_var

imm_var
Debugger Command Reference 5-37

detach
detach

Syntax

Description

detach ends a source mode debug session by disconnecting from the thread or
process being debugged. The thread or process then continues to run normally.

Examples

• Detach from the thread or process being debugged.

detach

See Also

• attach on page 3-17

• kill_thread on page 3-70

• start_thread on page 3-129

401/5x 403x 602 603x 604x 7xx

JTAG

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

detach
5-38 RISCWatch Debugger User’s Guide

dis
dis

Syntax

Description

dis is used to disassemble a 4-byte instruction value. The result, by default, is
printed as a mnemonic and its operands in assembly code but can also be stored
into a string variable. The options for this command allow disassembly of an
immediate value or the contents of a specified processor memory location,
register or user-variable.

Flags

value Specifies an immediate numeric value.

(address) Specifies a memory location which will be read and its contents
then disassembled. Note that the () characters are used to
distinguish a memory address from an immediate value.

int_var Any int variable created with the create command.

reg_name Specifies any valid register name whose value will be
disassembled.

reg_var Any register variable created with the assign command.

str_var Any string variable created with the assign or create
commands.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 dis value

 (address)

int_var

reg_name

reg_var

str_var
Debugger Command Reference 5-39

dis
Examples

• Disassemble an immediate value.

dis 0x38000000

• Disassemble the instruction that resides at a given memory address.

dis (0x1D3F0004)

• Disassemble the value contained in a user-created variable.

create dis_val = 0x38000000
dis dis_val

• Disassemble the value contained in a register and store the result in a
user-created string variable.

write R14 0x38000000
create my_str = ““
dis R14 my_str

See Also

• assm on page 3-15
5-40 RISCWatch Debugger User’s Guide

down
down

Syntax

Description

down scrolls the contents of a window down one or more lines from the top line
visible in the window.

The lines variable initially defaults to 1. If the value specified for lines is larger than
the number of lines left in the window, the last line is shown at the bottom of the
window.

If the window keyword is not specified, the last window specified for this command
is used. It initially defaults to the Source window.

If neither the lines variable nor the window keyword is specified, the last lines
value and window keyword specified for the command are used.

Flags

lines Specifies the number of lines to be scrolled down.

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

lines

window

pane

down
Debugger Command Reference 5-41

down
Examples

• Scroll down one line in a window previously specified, or the Source window if
none has been specified previously.

down

• Scroll down 10 lines in a window previously specified, or the Source window if
none has been specified previously.

down 10

• Scroll down 12 lines in the global variables window.

down 12 globals

See Also

• up on page 3-141
5-42 RISCWatch Debugger User’s Guide

end
end

Syntax

Description

end is used to end the execution of the current command file. end all is used to
end the execution of all command files, regardless of nesting.

Examples

• End execution of the current command file.

if (R0 != 0xFC001234)

end

endif

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

•

end

all
Debugger Command Reference 5-43

exec
exec

Syntax

Description

exec is used to execute the instructions contained in a command file. See the
Command Files section for more details on command file creation and usage.

Flags

command_file The name of the command file to be executed. For example,
test.cmd. For further information, see “Command File
Programming” on page 3-127.

variable_list A list of variable values to be passed into the command file and
assigned to the variables in the parms parameter definition. See
“Command File Parameters” on page 3-130 for more details.

step Runs the command file in single-step mode. This option is only
valid when a command file is executed from the user interface. It
causes a Command File window to be created, which is
equivalent to issuing the “window cfss command_file” command.
See “Command File Window” on page 3-135 for more details.

See Also

• window on page 3-148

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 exec command_file

{variable_list } step
5-44 RISCWatch Debugger User’s Guide

expr
expr

Syntax

Description

expr is used to evaluate an expression and print the results in a status message.
For a complete description of the expression syntax see the set command.

The expr command outputs the result of the expression in hexadecimal, signed
decimal and unsigned decimal forms. Having such a capability allows users to test
out expressions before they are used on the command line or in a command file. It
also allows numbers to be displayed in multiple radices (hexadecimal, decimal,
and unsigned decimal). To display a number in its alternate base, simply type it in
after the expr command keyword.

Flags

expression = [(] logical|mathematical [)]

logical = expression|expression log_op expression

mathematical = [math_op1] expression [math_op2 mathematical]

expression = reg_name[.fld_name|.#]|(address)|immed|variable|mem_var|func

func = supported functions : random()

log_op = == != > >= < <=

math_op1 = + - ~

math_op2 = + - * / mod % & | ^ << >>

= ordinal bit number

Examples

• Display the result of adding 10 to GPR0.

expr R0 + 10

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 expr expression
Debugger Command Reference 5-45

expr
• Display the value 10 in hexadecimal, decimal, and unsigned decimal.

expr 10

See Also

• set on page 3-117
5-46 RISCWatch Debugger User’s Guide

fctrl
fctrl

Syntax

Description

fctrl controls access of the print files used by the fprint command.

Flags

append Open a print file. If the file exists, it will be opened and all
messages will be appended to the end of the file.

new Open a print file. If the file exists, it will be erased.

close Close the print file.

errors This flag controls whether or not program error messages are
copied to the print file.

log This flag controls whether or not log messages are copied to the
print file.

status This flag controls whether or not program status messages are
copied to the print file.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

fctrl append

 new

 close

filename

filename

 log

 status

 errors

 on

 off
Debugger Command Reference 5-47

fctrl
off Disables message copying.

on Enables message copying.

filename The name of the print file to open.

Examples

• Open a new file for printing.

fctrl new print.dat

• Enable copying of error messages to the print file.

fctrl errors on

• Close an open print file.

fctrl close

See Also

• fprint on page 3-59

• print on page 3-105
5-48 RISCWatch Debugger User’s Guide

file
file

Syntax

Description

file sets the current source file to filename (if specified) and displays it in the
Source window if the Source window is active. Entering file without specifying a
filename displays the name of the current file, if available.

file can be used in conjunction with the ‘at’ and ‘in’ options of the bp command to
set the current file used by those options.

Only files which belong to the program currently being debugged, and which were
compiled to contain debug information, can be displayed using this command.
The valid file names are those which are shown in the Files window.

Flags

filename Specifies the name of the source file to make current and display
in the Source window.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

Note: TTY mode is available only on RS/6000 and Sun workstations.

file

filename
Debugger Command Reference 5-49

find
find

Syntax

Description

find searches for a string in a window, scrolling to the line containing the string,
and highlighting the string if found.

The search is case-insensitive ('non-exact'). If no text is currently highlighted, the
search will begin from the beginning of the top line visible in the window. If there is
text highlighted, the search will begin from either the first character of the selected
text (an 'initial' search), or from the character immediately following the first
character of the highlighted text (a 'next' search). The focus command can be
used to locate highlighted text.

If no parameters are specified, the string last specified for a find command (find ,
findb , finde) is used, and a ‘next’ search is done. This allows the user to initially
specify a string, and find subsequent occurrences of the string in the same
window by simply entering a find command repeatedly. A ‘next’ search will also
be done if the string and window values match those of the last attempted find
command. This allows the user to initially specify a string, and find subsequent
occurrences of the string in the window by double-clicking on the command in the
command history list of the Main window.

If the string variable is specified, and the string and window values do not match
those of the last attempted find , an ‘initial’ search is done. If the window keyword
is not specified, the last window specified for this command is used. It initially
defaults to the Source window.

If the keyword $last$ is specified in place of string and a window is specified, the
string specified for the last find command is used, and a ‘next’ search is done for
the specified window. This allows a window different from the window specified in

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

find

string window

$last$

pane

string
5-50 RISCWatch Debugger User’s Guide

find
the previous search to be searched for the same string specified in the previous
search.

This function is also available via the input line, as described in “Input Line Usage”
on page 3-48.

Flags

string Sequence of characters to be found.

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

See Also

• findb on page 3-52

• finde on page 3-54

• focus on page 3-56
Debugger Command Reference 5-51

findb
findb

Syntax

Description

findb searches backwards for a string in a window, scrolling to the line containing
the string, and highlighting the string if found.

The search is case-insensitive (‘non-exact’) or case-sensitive (‘exact’), depending
on the type of forward search (find or finde) which was done previously. If no
forward search was done previously the command defaults to a ‘non-exact’
search.

If no text is currently highlighted, the search will begin from the end of the bottom
line visible in the window. If there is text highlighted, the search will begin from
either the last character of the selected text (an ‘initial’ search), or from the
character immediately preceding the last character of the highlighted text (a ‘next’
search). The focus command can be used to locate highlighted text.

If no parameters are specified, the string last specified for a ‘find’ command (find ,
findb , finde) is used, and a ‘next’ search is done. This allows the user to initially
specify a string, and find subsequent occurrences of the string in the file by simply
entering a ‘find’ command repeatedly. A ‘next’ search will also be done if the string
and window values match those of the last attempted ‘find’ command. This allows
the user to initially specify a string, and find subsequent occurrences of the string
in the window by double-clicking on the command in the command history list of
the Main window.

If the string variable is specified, and the string and window values do not match
those of the last attempted ‘find’ command, an ‘initial’ search is done. If the
window keyword is not specified, the window specified for the last ‘find’ command
is used. It initially defaults to the Source window.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

string window

$last$

pane

stringfindb
5-52 RISCWatch Debugger User’s Guide

findb
If the keyword $last$ is specified in place of string and a window is specified, the
string specified for the last find command is used, and a ‘next’ search is done for
the specified window. This allows a window different from the window specified in
the previous search to be searched for the same string specified in the previous
search.

This function is also available via the input line, as described in “Input Line Usage”
on page 3-48.

Flags

string Sequence of characters to be found.

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

See Also

• find on page 3-50

• finde on page 3-54

• focus on page 3-56
Debugger Command Reference 5-53

finde
finde

Syntax

Description

finde searches for a string in a window, scrolling to the line containing the string,
and highlighting the string if found.

Unlike the find command, finde does an case-sensitive ('exact') search. If no text
is currently highlighted, the search will begin from the beginning of the top line
visible in the window. If there is text highlighted, the search will begin from either
the first character of the selected text (an 'initial' search), or from the character
immediately following the first character of the highlighted text (a 'next' search).
The focus command can be used to locate highlighted text.

If no parameters are specified, the string last specified for a finde command (find ,
findb , finde) is used, and a ‘next’ search is done. This allows the user to initially
specify a string, and find subsequent occurrences of the string in the same
window by simply entering a finde command repeatedly. A ‘next’ search will also
be done if the string and window values match those of the last attempted finde
command. This allows the user to initially specify a string, and find subsequent
occurrences of the string in the window by double-clicking on the command in the
command history list of the Main window.

If the string variable is specified, and the string and window values do not match
those of the last attempted finde , an ‘initial’ search is done. If the window keyword
is not specified, the last window specified for this command is used. It initially
defaults to the Source window.

If the keyword $last$ is specified in place of string and a window is specified, the
string specified for the last finde command is used, and a ‘next’ search is done for
the specified window. This allows a window different from the window specified in

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

string window

$last$

pane

stringfinde
5-54 RISCWatch Debugger User’s Guide

finde
the previous search to be searched for the same string specified in the previous
search.

This function is also available via the input line, as described in “Input Line Usage”
on page 3-48.

Flags

string Sequence of characters to be found.

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

See Also

• find on page 3-50

• findb on page 3-52

• focus on page 3-56
Debugger Command Reference 5-55

focus
focus

Syntax

Description

focus scrolls to the line of a window which has text highlighted, if any.

If no text is currently highlighted in the window, a message is generated stating
this fact. If the window keyword is not specified, the last window specified for this
command is used. It initially defaults to the Source window.

Flags

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

focus

pane

window
5-56 RISCWatch Debugger User’s Guide

fold
fold

Syntax

Description

fold controls instruction folding. Refer to the applicable PowerPC processor
documentation for detailed information on instruction folding.

A fold setting is effective only until the next processor system reset. After a reset,
the fold setting defaults to ‘on’.

If no parameter is entered, the current fold setting is displayed.

Flags

off Turns instruction folding off.

on Turns instruction folding on.

401/5x 403x 602 603x 604x 7xx

JTAG •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 fold

 on

 off
Debugger Command Reference 5-57

fprdisp

5-
fprdisp

Syntax

Description

fprdisp controls the display mode of the Floating Point Register window. The
default is to display the values on the screen in hexadecimal notation.

If no parameter is entered, the display setting is toggled.

Flags

hex Display FPR window values in hexadecimal notation.

sci Display FPR window values in scientific notation.

401/5x 403x 602 603x 604x 7xx

JTAG • • • •

OS Open • • • •

ROM Mon • • • •

Modes
Cmd Line Cmd File TTY

• •

 fprdisp

 hex

 sci
58 RISCWatch Debugger User’s Guide

fprint
fprint

Syntax

Description

fprint prints user definable strings to a print file that was opened with the fctrl
command.

String literals are ASCII text enclosed by quotation (") marks. The text between
the quotation marks is echoed to the print file. A string literal is also used to
enclose character constants to help format the printed text :

Constant Meaning

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

User-created variable values may also be printed to the print file if they appear in
the print string. Expressions containing variables and constants may also be
used.

Variable values printed to the print file can be written in a variety of forms.
Available options include the ability to print integers as signed or unsigned,
hexadecimal values and characters.

The syntax for using variable formatting is as follows :

variable[/ [+] [[0]#] c|i|u|x|E|X]

where

/ Terminates the string to be formatted

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 fprint print_string
Debugger Command Reference 5-59

fprint
+ Prints an integer preceded by a + or - sign. This option is only
valid for the i format.

Specifies that at least # characters are printed. If the result
contains less than # characters, the output will be left-padded
with spaces. This option is only valid for the i, u, x, and X
formats.

0 This option, if included, must always precede the # option. This
specifies that at least # characters are printed. If the result
contains less than # characters, the output will be left-padded
with 0s. This option is only valid for the i, u, x, and X formats.

c Prints a value as a series of four ASCII characters. Unprintable
characters are output as a period (.).

i Prints a value as a signed integer.

u Prints a value as an unsigned integer.

x Prints a value as a hexadecimal integer. The letters a, b, c, d, e,
and f appear in the output.

X Prints a value as a hexadecimal integer. The letters A, B, C, D, E,
and F appear in the output.

E Prints a value in scientific notation (i.e. n.nnE-n).

X Prints a value as a hexadecimal integer. The letters A, B, C, D, E,
and F appear in the output.

To use variable formatting, place the / character immediately after the last
character of the variable name and then follow it with the formatting options you
desire. To format expressions, place the formatting options directly after the last
argument in the expression. For example:

fprint addr + 0x1234 / 4/08X

A single fprint statement may contain multiple string literals, variables and
expressions in any order. If this is done, each item in the command must be
separated with a comma (,).

The following pseudo-variables may be used in the print and fprint commands for
your convenience :

$DATE This will be replaced by a string which contains the current date
in the format DAY MONTH DATE YEAR.

$ERRORS This will be replaced by a string which contains the number of
errors generated by executed commands.

$TIME This will be replaced by a string which contains the current time
in the format HOUR:MINUTE:SECOND.
5-60 RISCWatch Debugger User’s Guide

fprint
$TIMER This will be replaced by a string which contains the number of
seconds in the clock timer. See the timer command for more
details.

Flags

print_string This is a user definable string containing string literals,
user-created variable names and the same type of expressions
used in the set command.

Examples

The following commands implement a short loop which writes successive memory
locations, reads back what was written and prints the result of the comparison
between the two values :

fctrl new test.mem

fprint "Start : ", $TIME, "\n"

create mem_addr = 0x0000FFFF

while (mem_addr < 0x00010000)

fprint "Addr : ", mem_addr/08X

fprint "\n"

write dmem mem_addr 0xFFA55AFF

read mem_addr S0

if (S0 == 0xFFA55AFF)

fprint "Test : PASSED\n\n"

elseif

fprint "Test : FAILED\n\n"

endif

set mem_addr = mem_addr + 1

endwhile

fprint "End : ", $TIME, "\n"

fctrl close

See Also

• fctrl on page 3-47
• print on page 3-105
Debugger Command Reference 5-61

freeze
freeze

Syntax

Description

freeze controls how and when the processor timers are to be frozen.

A freeze setting is effective only until the next processor reset. After any reset, the
freeze setting defaults to ‘never’.

If no parameter is entered, the current freeze setting is displayed.

Flags

always Forces timers to be frozen regardless of the processor state.

never Forces timers to be free running (not frozen) at all times
regardless of the processor state.

stop Forces timers to be frozen whenever the processor is stopped.
Timers will remain stopped until the next run is performed.

401/5x 403x 602 603x 604x 7xx

JTAG • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 freeze

always

stop

never
5-62 RISCWatch Debugger User’s Guide

funcdisp
funcdisp

Syntax

Description

funcdisp changes the Functions window display to show either all functions in the
program sorted by address (all_addr), all functions in the program sorted by
name (all_name), functions with symbolic debug information sorted by address
(dbg_add r), or functions with symbolic debug information sorted by name
(dbg_name). This is the same capability provided by the Functions Mode
groupbox on the Functions window.

Entering the funcdisp command with no parameters will toggle the current
Functions window display (from functions with symbolic debug information to all
functions, or the reverse), while keeping the sort algorithm for the display (by
name or by address) the same as the current display.

Flags

all_addr Sets the Functions window display to show all functions in the
program, sorted by addr.

all_name Sets the Functions window display to show all functions in the
program, sorted by name.

dbg_addr Sets the Functions window display to show only functions with
symbolic debug information, sorted by addr.

dbg_name Sets the Functions window display to show only functions with
symbolic debug information, sorted by name.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 funcdisp

 all_addr

 all_name

 dbg_addr

 dbg_name
Debugger Command Reference 5-63

funcdisp
Example

• Set the Functions window display to show all functions in the program, sorted
by address

funcdisp all_addr

See Also

“Functions Window” on page 3-62
5-64 RISCWatch Debugger User’s Guide

goto
goto

Syntax

Description

goto causes the source line designated by line to be the next source line run. The
specified source line must be in the same function as the current source line.

Flags

label Specifies the location within a command file to transfer execution
control.

line Specifies the next source line to be run in the file which contains
the current instruction.

addr Specifies execution is to be resumed at a given address.

line Specifies that execution is to be resumed at a given
filename:line_number.

address Address at which to resume execution.

file:line File name and line number at which to resume execution.

Example

• Change the next source line to be executed to line 100 of the current file.

goto 100

• Change the next source line to be executed to line 10 of a file.

goto line hello.c:100

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 goto line

 label

 addr address

 line file:line
Debugger Command Reference 5-65

halt
halt

Syntax

Description

halt controls the state of the processor Halt line. If neither the on nor the off
parameter is specified, it displays the current Halt line state.

Flags

on Activate the Halt line.

off Deactivate the Halt line.

401/5x 403x 602 603x 604x 7xx

JTAG • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 halt

 on

 off
5-66 RISCWatch Debugger User’s Guide

hidewins
hidewins

Syntax

Description

hidewins hides all the currently visible RISCWatch windows except for the Main
window.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

hidewins
Debugger Command Reference 5-67

ip
ip

Syntax

Description

ip generates messages in the I/O window giving the current Instruction Pointer
address, as well as the Function, File, Line Number, and Current Program
associated with the ip address if there is debug information available
corresponding to it.

For JTAG targets, the Instruction Pointer is actually the current Instruction Address
Register (IAR). For non-JTAG targets, it is the process copy of the IAR for the
application being debugged.

See Also

• showip on page 3-123

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

ip
5-68 RISCWatch Debugger User’s Guide

jtag
jtag

Syntax

Description

jtag displays or sets the JTAG TCK clock speed on the RISCWatch Processor
Probe.

Flags

value Specifies the clock speed to set, where:

1 = 10MHz

2 = 5MHz

3 = 2.5MHz

4 = 1.25MHz

5 = 625KHz

6 = 312.5KHz

7 = 156.25KHz

for the older probes.

For the newer probes, values 1 to 7 are still supported but

the actual value of the JTAG clock will be different

based on the processor. The values that should be

used are 512K, 1M, 2M, 3M ... 40M. For example,

“jtag clock 20M” will set the jtag clock to 20MHz.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

jtag clock

value
Debugger Command Reference 5-69

kill_thread
kill_thread

Syntax

Description

kill_thread ends a source mode debug session with OS Open by destroying the
thread which is currently being debugged.

Examples

• Kill the current thread

kill_thread

See Also

• attach on page 3-17
• detach on page 3-38
• start_thread on page 3-129

401/5x 403x 602 603x 604x 7xx

JTAG

OS Open • • • • • •

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

kill_thread
5-70 RISCWatch Debugger User’s Guide

line
line

Syntax

Description

line scrolls the contents of a window to a physical line of text in the window.

If the line number specified is larger than the number of lines in the window, the
last line is shown at the bottom of the window. If the window keyword is not
specified, the last window specified for this command is used. It initially defaults to
the Source window. If neither the line number nor the window keyword is
specified, the last line number and window specified for the command are used.
The line number initially defaults to 1.

This function is also available via the input line, as described in “Input Line Usage”
on page 3-48.

Flags

line Specifies the physical line number to be scrolled to.

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

line

line window

 pane

line
Debugger Command Reference 5-71

linestep
linestep

Syntax

Description

linestep steps the program to the next source line. If a value is specified, the
action is repeated for the number of times specified in the passed value.

If the current source line contains a call to a function, that function and any
subsequent functions will be executed until the program returns to the source line
immediately following the current line, or until a breakpoint is hit.

See Also

• asmstep on page 3-12

• callstep on page 3-26

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

linestep

 value
5-72 RISCWatch Debugger User’s Guide

load
load

Syntax

Description

load is used to load memory, registers or window layout information using the
contents of the specified file. Each of the load commands expect files formatted
appropriate to the type of data they contain.

Flags

binary Load the contents of a binary file into data memory.

bin Same as the binary flag.

dmem This command is the complement to the save mem command
and can only process those files which were generated by the
save mem command. The file contains a block of memory

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

load binary

dmem

filename

 motorola

 mot

 reg

 imem

 bin

filename

d=addr t=addrs=addr

address

 int_var

imm_var

 file

host

ss=size

 layout filename

image

excludetg=
Debugger Command Reference 5-73

load
values in a human-readable ASCII format. This allows the saved
state of the memory to be loaded back in at any time.

When loading the saved memory block, the data can loaded to
the same address from which it was saved, or a new address
can be specified with the command allowing the data to be
placed anywhere in the processor's memory.

imem This command is the same as the load dmem command except
that it ensures that the contents of the instruction cache is
updated along with data memory.

layout This command is used to load a window layout definition that
was filed with a save command.

file Loads selective sections (text, data, etc.) of an ELF or XCOFF
file into target memory and loads the host system with internal
data structures used to perform source level debug.

host Loads the host system with internal data structures used to
perform source level debug on ELF or XCOFF file formats. The
target system is not altered. This command is used to enable
source level debug on user applications which have been
preloaded on the target system. ROM resident code is one
example of a preloaded application.

image Loads the target system with the contents of a Boot Image file
(images created with the eimgbld/nimgbld tool of the evaluation
board support package). The first 32 bytes of data is assumed to
be a ‘header’ record containing a ‘load address’ (bytes 4-7) and
an ‘entry point address’ (bytes 16-19). All data following the 32
byte header is loaded on the target system, starting at the ‘load
address’. The instruction address register (IAR) is loaded with
the value designated by the ‘entry point address’. See Loading
Boot and Boot Image Files on page 3-46 for further
discussions on the use of this flag.

motorola Load the contents of a Motorola format file into data memory.

mot Same as the motorola flag.

reg This command is the complement to the save reg command and
can only process those files which were generated by the save
reg command. The file contains all the processor register values
in a human-readable ASCII format. This allows the saved state
of the registers to be loaded back in at any time.

address Memory address to load file contents.

d= Indicates that the specified address is to be used to locate the
data segment (ELF and XCOFF formats only).
5-74 RISCWatch Debugger User’s Guide

load
s= Indicates that the specified address is to be used to set the stack
address (ELF and XCOFF formats only). If this value is not
supplied, the STACK_ADDR in the environment resources file
will be used. THE USE OF THIS FLAG IS NOT
RECOMMENDED.

t= Indicates that the specified address is to be used to locate the
text segment (ELF and XCOFF formats only).

ss= Indicates that the specified size is to be used to calculate the
stack address. The stack address is set to ‘size’ bytes beyond
the last byte loaded on the target (usually the last byte of bss
data). If this value is not specified, the STACK_SIZE in the
environment resources file will be used. If STACK_SIZE is
undefined, the default size of 16K bytes is used.

exclude Portions of the load can be excluded to improve performance
under certain circumstances. The options listed below can be
used individually or together :

nosym Indicates that symbol table and string table are NOT to be
loaded on the target. This applies to boot files only (images
created with 403GA evaluation board support package
entry code). See “Loading Boot and Boot Image Files” on
page 3-46 for a discussion of boot files.

nozero This keyword directs RISCWatch to bypass segment
initialization. Segment initialization is the term used to
describe the act of zeroing out the uninitialized global
variables (BSS) of an application. The ‘NOZERO’ keyword
should only be used on applications which zero out their
own initialization segments at program start up.

size ss= byte count for stack size.

tg= Specifies the thread group for OS Open systems with virtual
memory support. See start_thread on page 3-129 for more
information.

filename Name of the file containing the data, in the appropriate format, to
be loaded.

int_var Any integer variable created with the create command.

imm_var An assigned user-created variable specifying an immediate
value that may be used as a data memory address.

Note: If the file name specified in the load command is qualified (a directory path
is indicated), then the file is search in the designated directory only. If the file
name is not qualified, then the directory search will be governed by the order
specified via the srchpath command; if not found, the current directory will be
checked.
Debugger Command Reference 5-75

load
See Also

• save on page 3-115

• srchpath on page 3-126

• start_thread on page 3-129
5-76 RISCWatch Debugger User’s Guide

log
log

Syntax

Description

log writes typed message strings to the log file. The entire log message will be
echoed to the log file just as if it had been typed on the command line.

Messages will only be written to the log file if the logging command has been set
to on (the default).

Flags

message The message to be written to the log file.

Examples

• Write the message 'R3 Test Passed' to the log file.

if (r3 != 0x12345678)

log R3 Test Passed

endif

See Also

• logging on page 3-78

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 log message
Debugger Command Reference 5-77

logging
logging

Syntax

Description

logging determines the current logging status and enables or disables the writing
of log messages to the log file. On initial program start up, logging is set to on.
This allows all commands and program error and status messages to be written to
the log file for that session.

To stop these messages from being written to the log file, use the off flag. No
messages will be written to the log file until a logging on command is given. If
neither the off nor on flag is specified, the command prints the current logging
state.

There is also an environment variable that is used to control logging while running
a command file. This variable, CMD_FILE_LOG, is in the environment resources
file (rwppc.env) and can be set to YES or NO. Use of this variable in no way
affects the current setting of the logging state as set by the logging command.
When running command files that are very large or contain loops that will execute
many times, use of this variable is suggested to disable logging during the
command file run. This will prevent a very large log file from being generated in
such cases.

Under normal circumstances, logging will be enabled. But should a case arise
where a command file is generating log files that are too large, the
CMD_FILE_LOG variable can be set to NO. This will keep the commands and
messages generated by the command file out of the log file, allowing only
commands entered from the command line and their messages to be logged.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 logging

 off

 on
5-78 RISCWatch Debugger User’s Guide

logging
Flags

on Logging is turned on (enabled).

off Logging is turned off (disabled).

See Also

• log on page 3-77
Debugger Command Reference 5-79

logoff
logoff

Syntax

Description

logoff allows a user to start an OS Open Boot Image using the ROM Monitor
target. When issued, this command informs the ROM Monitor to leave the debug
state and continue execution with any previously attached process.

The sole purpose for logoff is to load and execute a Boot Image file. No debug is
possible once this command is executed. See “Loading Boot and Boot Image
Files” on page 3-46 for further details.

Example

• Load and execute an OS Open boot image file.

load image applprog.img

logoff

401/5x 403x 602 603x 604x 7xx

JTAG

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 logoff
5-80 RISCWatch Debugger User’s Guide

memacc
5

memacc

Syntax

Description

memacc enables the user to define to RISCWatch unique address access
restrictions for specified regions of memory.

Flags

clear Specifies that all user defined memory access entries are to be
removed. Address validation proceeds using the default
checking provided internally by RISCWatch.

disable Specifies that RISCWatch is to ignore all user defined entries for
address validation. Performs the same function as the clear
option except the entries are not removed.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memacc clear

enable

access

size

type

use

physical

disable

add

phy_addr

end_addr

delete

logical

beg_addr
5-81

memacc
enable Specifies that RISCWatch is to enable user defined access
checking previously disabled by a memacc disable command.

add Specifies a new user defined address access entry is to be
added. This entry will override any previously defined entry or
internal default RISCWatch checking within the specified
address range.

delete Specifies that an access check entry is to be deleted. If the
memacc add command was used to define two identical access
entries, the last one added will be removed.

use Specifies a new RISCWatch Memory Access Mode.

beg_addr Specifies the beginning address for a region of memory. It can
be in the form of an integer, imm_var, int_var, or mem_var.

end_addr Specifies the end address for a region of memory. It can be in
the form of an integer, imm_var, int_var, or mem_var.

access Specifies the allowable accesses for a region of memory. Valid
types are the keywords NA (no access), RO (read only), WO
(write only), or RW (read/write). Alternatively, a corresponding
integer value can be specified explicitly, or in the form of an
imm_var or int_var. Valid integers are 0 (NA), 1 (RO), 2 (WO), or
3 (RW). The default if no access is specified is RW.

size Specifies the byte size of memory accesses within the region of
memory. It can be in the form of an integer, imm_var, int_var, or
mem_var. Valid values are 0, 1, 2, 4, or 8 bytes. If no size is
specified, or a size of zero is indicated, it will be set to the default
size as determined by the target processor (4 bytes for 4xx
processors, 8 bytes for all other processors).

type Specifies the type of access to be checked for a region of
memory. Valid types are the keywords IMEM (instruction only),
DMEM (data only), or MEM (instruction and data). Alternatively,
a corresponding integer value can be specified explicitly, or in
the form of an imm_var or int_var. Valid integers are 1 DMEM, 2
IMEM or 3 MEM. The default if no type is specified is MEM.
Since users are not aware of how RISCWatch internally
accesses memory, the default value of MEM should be used.

phy_addr Specifies a physical address associated with beg_addr. It can be
in the form of an integer, imm_var, int_var, or mem_var. If not
specified, phy_addr will be set to beg_addr.

logical Specifies RISCWatch Logical Memory Access Mode. Addresses
presented to RISCWatch will also map directly to some physical
address (no address redirection will take place). The phy_addr
field will be ignored. This is the default mode of operation for all
RISCWatch memory reads or writes.
5-82 RISCWatch Debugger User’s Guide

memacc
physical Specifies RISCWatch Physical Memory Access Mode.
Addresses presented to RISCWatch will map to the physical
addresses designated by the phy_addr field. This provides a
level of user defined address translation. This address
redirection will occur regardless of address translation state of
the target processor.

Examples

• Disable all internal memory access checking done by RISCWatch by creating a
user defined entry which defines the entire address space.

memacc add 0x00000000 0xFFFFFFFF RW

• Make the region of memory from 0 to 0xFFFF read only with an access size of
4.

memacc add 0 0xFFFF RO 4 MEM

• Make memory address 0x4000 write only with an access size of 1 byte.

create serial_addr = 0x4000

assign serial_size = 1

memacc add serial_addr serial_addr WOserial_size

See Also

• “Core + ASIC Resources” on page 3-9

• “Reading and Writing Memory” on page 3-104
5-83

memchk
memchk

Syntax

Description

memchk tests the integrity of the processor's memory. The values 0x00, 0xA5,
0xFF and 0x5A are written to the specified address one at a time and then read
back to verify that they were indeed written correctly. An error message is
displayed for any read, write or compare failure detected.

Flags

address Specifies the memory address to be checked.

length Specifies the number of sequential addresses to check. The
default value is 1.

int_var A user-created integer variable that may be used as the memory
address to be written or length to be checked.

imm_var An assigned user-created variable specifying an immediate
value that may be used as a data memory address or length to
be checked.

See Also

• memcopy on page 5-87

• memfill on page 5-88

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memchk address

int_var

imm_var

length

int_var

imm_var
5-84 RISCWatch Debugger User’s Guide

memcoh
memcoh

Syntax

Description

memcoh is used to control data and instruction cache updating during reads and
writes. The command performs the same actions as the selections on the Memory
Coherency Window. See "Memory Coherency Window (JTAG Targets Only)" on
page 3-105 for more information about the coherency model terms used here.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memcoh

reset

read

phys

mm

reset

write dmem bypass

mm

reset

thru

imem iidb

iidu

iudb

iudu

reset
5-85

memcoh
Flags

reset Reset the coherency model or one of its attributes to the default
value.

read Set the read memory attribute of the coherency model.

write Set the write memory attribute of the coherency model.

imem Specifies the instruction memory as the write attribute being set.

dmem Specifies the data memory as the write attribute being set.

bypass Specifies the cache is to be bypassed on data memory writes.

iidb Specifies icache invalidate, dcache bypass on instruction
memory writes.

iidu Specifies icache invalidate, dcache update on instruction
memory writes.

iudb Specifies icache update, dcache bypass on instruction memory
writes.

iudu Specifies icache update, dcache update on instruction memory
writes.

mm Specifies the memory model is to be used for memory reads and
data memory writes.

phys Specifies the physical model is to be used for memory reads.

thru Specifies the dcache is treated as write thru for data memory
writes.

See Also

• “Memory Coherency Window (JTAG Targets Only)” on page 3 - 105
5-86 RISCWatch Debugger User’s Guide

memcopy
memcopy

Syntax

 Chapter 5

Description

memcopy copies a block of memory from one address to another. The memory
block is copied from the source address to the destination address. The number of
bytes to copy is specified.

Flags

source Specifies the source memory address

dest Specifies the destination memory address

length Specifies the number of bytes to copy

int_var A user-created integer variable that may be used as the memory
address to be written

imm_var An assigned user-created variable specifying an immediate
value that may be used as a data memory address

See Also

• memchk on page 5-84
• memfill on page 5-88

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memcopy source

int_var

imm_var

dest

int_var

imm_var

length

int_var

imm_var
5-87

memfill
memfill

Syntax

Description

memfill fills a region of the processor's memory. The value specified is written
starting at the specified address for the specified number of bytes.

Flags

address Specifies the memory address to start the fill at

length Specifies the number of bytes to fill

value Specifies the value to be written

int_var A user-created variable that may be used as a memory address
or a value to be written

imm_var An assigned user-created variable specifying an immediate
value that may be used as a data memory address or a value to
be written

See Also

• memchk on page 5-84
• memcopy on page 5-87

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memfill address

int_var

imm_var

length

int_var

imm_var

value
5-88 RISCWatch Debugger User’s Guide

memfind
memfind

Syntax

Description

memfind locates the address of the first occurrence of a specified string in
memory. A message is printed indicating successful completion of the command.
The fourth parameter is used to hold the address where the string or value was
found. If the string is not found, the fourth parameter will be set to the first address
outside the specified range (address + length).

Flags

address Specifies the memory address to start searching.

length Specifies the number of bytes to search.

“string” Specifies a string of ASCII characters to be searched.

“str_var” A user-created variable that holds a string of ASCII characters to
be searched.

value Specifies a string of hexadecimal characters to be searched.

int_var A user-created variable that may be used as a memory address,
length, or a value to be searched for.

imm_var An assigned user-created variable specifying an immediate
value that may be used as a data memory address or a value to
be written.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memfind “string”

 value

address

int_var

imm_var

length

int_var

imm_var int_var

str_var

int_var
5-89

memfind
Examples

• Search for the string “TEST” starting at address 0xFFC0 for the next 0x200
bytes.

memfind 0xFFC0 0x200 “TEST”

• Search for the same string in the previous example but by specifying hex
characters.

memfind 0xFFC0 0x200 54455354

• Search for second occurrence of string ‘HELLO’ within the address range 0 to
0x200.

create find_addr = 0

create loop_count = 0

create find_value = “HELLO”

create length = 0x200

while (find_addr < 0x200 && loop_count != 2)

set loop_count = loop_count + 1

if (find_addr != 0)

set length = 0x200 - find_addr - 1

set find_addr = find_addr + 1

endif

memfind find_addr length find_val find_addr

endwhile

if (find_addr < 0x200)

log second occurrence found

elseif

log second occurrence not found

endif

See Also

• memchk on page 5-84
• memcopy on page 5-87
5-90 RISCWatch Debugger User’s Guide

memrwait
memrwait

Syntax

Description

memrwait displays or sets the delay used in memory read operations. This
command is typically used to slow reads down when reading from a memory
mapped I/O device.

Flags

value Specifies the delay time to set in microseconds. The valid delay
range is 0 to 10,000,000 µs (10 seconds). The initial delay is
zero.

See Also

• memwwait on page 5-92

401/5x 403x 602 603x 604x 7xx

JTAG • • • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memrwait

 value
5-91

memwwait
memwwait

Syntax

Description

memwwait displays or sets the delay used in memory write operations. This
command is typically used to slow writes down when writing to a memory mapped
I/O device.

Flags

value Specifies the delay time to set in microseconds. The valid delay
range is 0 to 10,000,000 µs (10 seconds). The initial delay is
zero.

See Also

• memrwait on page 5-91

401/5x 403x 602 603x 604x 7xx

JTAG • • • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 memwwait

 value
5-92 RISCWatch Debugger User’s Guide

mpsset
mpsset

Syntax

Description

mpsset changes the current debugger context to target the specified chip. For
more information about multiprocessor support, see “Multi-Processor Resources”
on page 3-28

Flags

mps_id Specifies which chip RISCWatch will target as the current
context. The string must match one of the chip names initially
defined in the MPS file.

See Also

• “Multi-Processor Resources” on page 3-28

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 mpsset mps_id
5-93

pagedn
pagedn

Syntax

Description

pagedn scrolls the contents of a window down one page.

If the window keyword is not specified, the last window specified for this command
is used. It initially defaults to the Source window.

Flags

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

See Also

• pageup on page 5-95

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

pagedn

window

pane
5-94 RISCWatch Debugger User’s Guide

pageup
pageup

Syntax

Description

pageup scrolls the contents of a window up one page.

If the window keyword is not specified, the last window specified for this command
is used. It initially defaults to the Source window.

Flags

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

See Also

• pagedn on page 5-94

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

pageup

window

pane
5-95

parms
parms

Syntax

Description

parms allows one or more parameters to be passed into a command file when it
is executed.

Flags

variable The names of variables to be created. At least one variable
name must be specified. The variables are initialized to the
values specified in the parameter list. If there are more variables
specified in the parms list than there are values in the parameter
list, the left-over variables are initialized to 0. If there are more
values in the parameter list than there are variables in the parms
list, the extra values are discarded.

Examples

• Within a command file, use the parms command to pass a memory address
value:

parms {mem_addr}

read dmem mem_addr

The variable mem_addr can now be used like any other user-created variable
inside the command file. When RISCWatch is invoked to run this command file,
it is now possible to pass the desired memory address into the command file
for execution:

rwppc mem_test{0xFFFF0000}

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 parms { variable }

,

5-96 RISCWatch Debugger User’s Guide

parms
Note: Be sure that there is NO space between the command file name and the
opening ‘{‘ character. Also make sure that there IS a space between the parms
command and the opening ‘{‘ character.

See Also

• “Command File Parameters” on page 3-130
5-97

poll
poll

Syntax

Description

poll enables the user to control the various polling requests RISCWatch uses
during debug operations. It allows the user to override the setting specified in the
environment file.

Flags

id Turn background polling on or off for a given board or mps id.

query Show the current poll settings.

run Alter the frequency at which RISCWatch polls the target for a
stop when running.

status Alter the frequency at which RISCWatch polls the target for a
change in status while stopped.

target Target board or mps id to turn status polling on or off. See
“Multi-Processor Resources” on page 3-28 for a description of
valid board and mps ids.

value Polling interval requested, in milliseconds.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

 poll run value

imm_var

int_var

status

id target on

off

query
5-98 RISCWatch Debugger User’s Guide

poll
imm_var An assigned user-created variable specifying the requested
polling interval, in milliseconds.

int_var A user-created variable specifying the requested polling interval,
in milliseconds.

Examples

• Shut the polling off on a board in an MPS debugging session:

poll id Board1 OFF
5-99

post
post

Syntax

Description

post enables the user to open dialog boxes on the interface that contain specified
information and format. This feature can be useful when used in command files to
provide pass/fail information at the end of a test, or for providing progress
indication that the user must acknowledge.

Flags

err Information specified is to be posted with an error indicator.

note Information specified is to be posted with an note indicator.

warn Information specified is to be posted with an warning indicator.

string string of text to display in dialog box

Examples

• Here is a command file excerpt that uses the post note command to indicate
that the command file execution has proceeded to the point that it now requires
the user action and acknowledgment before continuing execution:

Board 1 init is done at this point of the file...

POST NOTE Board 1 set up complete. Power on board 2.

Code below here will not execute until user confirms

note in dialog box

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 post string

warn

note

err
5-100 RISCWatch Debugger User’s Guide

prefer
prefer

Syntax

Description

prefer allows the user to customize various program settings to their liking. Some
settings apply to windows, some to commands and others were created to allow
for control over program wide features.

Prefer commands are typically contained in the startup command file so that the
designated preferences apply to the entire debug session. Prefer commands
executed during program execution can be used to override previously set
options.

In particular, the src_vars setting enables the user to designate the default
display preference for source variables.

Flags

src_vars This specifier is used to change the default display preference
for source variables of different types.

type Indicates a fundamental type of the ‘C’ programming language.
Valid types are:

addr integer and signed integer

uint unsigned interger

short short and signed short

ushort unsigned short

long long and signed long

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

•

 prefer src_vars type = format

window

pane = value

option

command
5-101

prefer
ulong unsigned long

char character and signed character

uchar unsigned character

longlong longlong and signed longlong

ulonglong unsigned longlong

float float point

cfloat complex float

double double float

ldouble long double

cdouble complex double

format Indicates the default display format to be used for the
fundamental type specified. Valid formats are:

bin binary

default restore to default RISCWatch format

hex hexadecimal

oct octal

signed signed decimal

unsigned unsigned decimal

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3.

pane Some windows contain multiple panes of data. If a specific pane
is specified, only its option setting will be modified.

command A valid RISCWatch command .

option The name of the option being set.Here is a list of supported
options:

addr This is the default memory address for displaying data on any of
the memory windows.

base Used by the Custom Memory window to indicate whether data is
to be displayed in ascii , bin ary, dec imal or hexadecimal..

lines The number of lines used for display text when a window is first
created. This is useful for the memory and source windows.

sign Used by the Custom Memory window to indicate whether
memory data is to be displayed in signed or unsigned format.

size Used by the Custom Memory window to indicate whether data is
to be read and displayed as 1, 2 or 4 byte “words.”
5-102 RISCWatch Debugger User’s Guide

prefer
value The specific value to set a window or command option to.This
can be left blank to erase the current option value thereby setting
it to its default value.

Examples

• Change the default source variable display of all unsigned integers to
hexadecimal.

prefer srv_vars uint = hex

• The following commands can be used to select whether the dis command
displays extended or non-extendedoptocdes:

prefer dis mnemonics = ext

prefer dis mnemonics = non-ext

• The following command is used indicate that execution of a command file
should stop if an error is encountered:

prefer exec error = stop

• The following commands can be used to indicate if the register prefix is to
appear for each register listed in an ASIC window:

prefer window asic prefix = yes

prefer window asic prefix = no

• The following commands can be used to indicate that the Custom Memory
window is to start display data at address 0xA0C4, read/display data as 2 byte
words while displaying them in unsigned decimal notation:

prefer custom addr = 0xa0c4

prefer custom size = 2

prefer custom base = decimal

prefer custom sign = unsigned

• The following command is used to force the Assembly Debug window to always
display 20 lines of text:

prefer debug lines = 20

• The following command is used to fix the size of the main window command
pane regardless of how the window is resized:

prefer main pane maincmd fixed

Note: If the window were resized, the command pane would remain the
same size while the message pane would grow or shrink accordingly.

• The following does the same for the message pane:

prefer main pane mainmsg fixed
5-103

prefer
Note: If the window were resized, the message pane would remain the same
size while the command pane would grow or shrink accordingly.

• The following command is used to fix the ratio of the main window command
pane lines to its message pane lines:

prefer main ratio = 3

Note: If the window were resized, the two panes would grow or shrink
accordingly but always retain the same ratio of lines to each other.

See the sample startup command file (startup.cmd) provided with RISCWatch for
additional examples.
5-104 RISCWatch Debugger User’s Guide

print
print

Syntax

Description

print takes print_string and prints it in the host window. See the fprint command
for more details and a list of formatting options.

Flags

print_string This is a user definable string containing string literals,
user-created variable names and the same type of expressions
used in the set command.

Examples

• Write the print message 'R3 Test completed'.

if (r3 != 0x12345678)

PRINT "R3 Test completed"

endif

See also the Examples section of the fprint command

See Also

• fctrl on page 5-47
• fprint on page 5-59

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

•

 print print_string
5-105

quit
quit

Syntax

Description

quit terminates the program. If the processor is running when this command is
given and the user interface is active, a prompt is displayed to provide notification
of the processor state and confirm the intent to terminate.

Avoid using the quit command in a command file. If the command file is executed
while the user interface is active, execution of the quit command will not only stop
the command file but will also terminate RISCWatch. Use the end command
within a command file to stop execution of the command file.

Flags

-f Using this flag forces termination regardless of the processor
state.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 quit

 -f
5-106 RISCWatch Debugger User’s Guide

read
read

Syntax

Description

read is used to read register values, four bytes of data memory, or currently
scoped global and local source variables. The readb command is used to read
one byte of data memory while the readh command is used to read two bytes of
data memory.

The first argument is used to indicate the object (memory, register, or source
variable) to be read. If a second argument is specified, it indicates the object to be
written using the value just read.

Flags

address Specifies an immediate address value from which to read data
memory

mem_var Any memory variable created with the assign command

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

reg_name

reg_var

int_var

 read

 readb

 readh

address

imm_var

int_var

mem_var

reg_var

reg_name

src_var
5-107

read
imm_var An assigned user-created variable specifying an immediate
value that may be used as a data memory address

reg_name A valid processor register name to be read and/or written

reg_var An assigned user-created variable that may be used to specify a
processor register to be read and/or written

src_var Any valid local or global source variable name that is currently in
scope. The name must be preceded by a colon “:”. See “Source
Variable Command Support” on page 3-103 for further
information.

int_var A created user-created variable that may be used to hold the
value just read

Examples

• Read the value of the IAR.

read IAR

• Read the value at memory address 0x1FB470.

read 0x1FB470

• Create a user variable to represent a memory location and then use it to read
memory.

assign mem_addr = 0x000F701A

read mem_addr

• Read the contents of source ‘array[7]’ and store it in GPR R1.

read :array[7] R1

See Also

• write on page 5-150
5-108 RISCWatch Debugger User’s Guide

reg
reg

Syntax

Description

reg is used to force a read of a specified class of registers or a subset of ASIC
registers which share a common prefix. This is the equivalent functionality of
pressing the Read button of the appropriate register window.

Flags

reg_class Specifies the class of registers to be read. See the description
for this flag in “Command Quick Reference” located at the
beginning of this chapter.

reg_pre Specifies the subset of ASIC registers to be read. See the
description for this flag in “Command Quick Reference” located
at the beginning of this chapter.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 reg read reg_class

reg_pre
5-109

reset
reset

Syntax

Description

reset resets the processor or system. For further details about the processor
reset, see the chapter concerning Reset and Initialization in the PowerPC
400Series User’s Manual for the specific controller being reset.

Note: For 6xx/7xx processors, core and chip reset are equivalent. The processor
will be reset and stopped at instruction address 0XFFF00100. Execution of sys
reset on 6xx/7xx processors will reset and run the processor.

Flags

core Reset the processor core.

chip Reset the processor core and ASIC.

sys Reset the entire system.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 reset

 chip

 sys

 core
5-110 RISCWatch Debugger User’s Guide

restart
restart

Syntax

Description

restart restarts the debug session.

The debug session is restarted essentially by reloading the program onto the
target. However, the debug environment remains intact. This means that any
breakpoints that were set will still be set, and all currently selected windows and
customizations will be preserved and their context updated as appropriate.

Note: If the program was dynamically loaded, the breakpoint addresses will be
recalculated based on the new location of the reloaded program.

OS Open Note: If the program being debugged was started via a start_thread or
an attach command, then the program will not be reloaded. The thread will be
restarted or reattached only. This means that the data area and bss sections will
not get reinitialized.

See Also

• attach on page 5-17
• start_thread on page 5-129

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

restart
5-111

retstep
retstep

Syntax

Description

retstep returns the debugger to the previous function caller.

This location to which the IAR is returned is effectively the contents of the current
link register.

Note: When stepping through code that contains no debug information, the link
register contents could be altered by subsequent branch and link instructions. In
these instances, retstep does not produce the desired results. Instead, a
breakpoint should be set at the desired return location, and a run command
executed to carry out the intended action.

See Also

• asmstep on page 5-12

• bp on page 5-20

• callstep on page 5-26

• run on page 5-113

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

retstep
5-112 RISCWatch Debugger User’s Guide

run
run

Syntax

Description

run starts the processor (JTAG target) or process (non-JTAG) running. If the
timeout parameter is omitted, the processor/process runs until a breakpoint is
reached or a stop command is issued.

Flags

to Run to a specified address or line number within a file. The
program will run until the specifed location or a breakpoint is
reached.

addr Address to run to.

file:line Filename and line number to run to. The program containing the
specified file must already have been loaded.

timeout The time, in seconds, that the processor/process is allowed to
run. If the processor/process is still running after the specified
time, the processor/process is stopped. This timeout value may
also be specified using a created variable or an assigned
immediate variable.

If a run command is issued with a timeout value and then a stop
command is issued with a timeout value, when either command
has timed out the processor/process is stopped.

When a run command is executed from within a command file,
execution of the command file does not proceed until the
processor/process has stopped.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

run

timeout

to addr

file:line
5-113

run
Examples

• Run the processor/process for a maximum of 10 seconds

run 10

• Run until the program reaches address 0xFFFF0700.

run to 0xFFFF0700

• Run until the program reaches line 24 of demo1.c.

run to demo1.c:24

See Also

• stop on page 5-130
5-114 RISCWatch Debugger User’s Guide

save
save

Syntax

Description

save is used to save memory, register values, register address information,
register field information, or the current window layout to a file. This command
complements the load command and generates the files used by the load
command.

With the exception of the “bin” option, the files generated by save are human
readable ASCII files that can be used to capture the state of processor facilities.
Since these files are human readable, they make excellent reference material
when debugging a problem or for providing hard-copy output.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

bytes

int_var

imm_var

reg

 layout

 save address

int_var

imm_var

filename

 mem filename

reginfo

bin

regfldinfo

append

reg_class

reg_pre
5-115

save
Once saved, the values in these files may be loaded back into the processor,
thereby restoring the processor's state at a later time.

Flags

bin Specifies that a portion of processor memory is to be saved in
binary format.

mem Specifies that a portion of processor memory is to be saved in
an ASCII readable format.

layout Specifies that the window layout is to be saved.

reg Specifies that processor register values are to be saved. If no
register class or ASIC prefix are specified then all registers will
be saved.

reg_class Specifies which class of registers are to be saved.

reg_pre Specifies which subset of ASIC registers are to be saved.

regfldinfo Specifies that all register field information is to be saved..
Registers containing more than one set of field definitions will
use an instance number to differentiate each occurrence.

reginfo Specifies that all register address information is to be saved. All
register names known to RISCWatch will be saved along with
their respective addresses.

filename The name of the file to save data.

address The address of memory where to start saving data. This may
also be specified using a created variable or an assigned
immediate variable.

bytes The number of memory bytes to save. This may also be
specified using a created variable or an assigned immediate
variable.

int_var A create variable whose value may be used in place of the
address or bytes flags.

imm_var An assign variable specifying an immediate value that may be
used in place of the address or bytes flag.

append Append the saved memory to the designated file.

See Also

• load on page 5-73

• create on page 5-35

• assign on page 5-13
5-116 RISCWatch Debugger User’s Guide

set
set

Syntax

Description

set is used to set a processor resource (memory or register) or RISCWatch
variable's value to the value represented by the specified expression.

Source variable names (program local or global variables) are preceded by a
colon (:) to distinguish them from RISCWatch variable names. A variable is
expanded to the corresponding expression within other commands.

The set command is used to store computed values in memory address locations,
registers or user-created variables. The first argument specifies where the result
of the expression is to be stored (memory, register or variable).

Following the first argument (or optional = sign), is the expression to be evaluated.
This expression may be composed of registers, registers fields (logically related
sequences of bits within a register), memory addresses, immediate values,
user-created variables, program source variables, and various operators. See
command expr on page 5-45 for details.

If the very first argument of expression is the keyword (print) then this designates
that expression is to be evaluated as a print string. This option should only be
used when argument references a string variable. See fprint for a description of
the syntax of print strings.

The pseudo-variables $ERRORS and $TIMER may also be used in an
expression.

Memory address values which appear on the right hand side of the = sign must be
enclosed in () so that they may be differentiated from immediate values. A

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 set =argument expression

(print)
5-117

set
memory address value on the left hand side of the = sign can be written as is
since it is not possible to assign the value of an expression to an immediate value.

In its simplest form, the set command works exactly like a write command; writing
a value to an object (memory, register or variable).

However, the set command allows for complex expressions to be assigned
whereas the write instruction does not. For example, the following command adds
two (2) registers, divides the result by another and then shifts the result:

set R4 = LR + R0 / R17 >> 4

The result could have just as easily been assigned to a memory address location
as opposed to the register GPR4. When using these expressions there are a few
rules which must be kept in mind:

1. Expressions are always evaluated from left to right; no right associative
operators are supported (+=, -=, etc.).

2. Registers, register fields, and address locations are treated as unsigned val-
ues.

3. When setting a variable that was created with the create or assign com-
mand, the variable will increase in size, if required, to contain the full value
determined for the right side of the equation. Variable size expansion is
done on multiples of 4 bytes.

4. Operations are performed based on the type of arguments being evaluated.
The cast operator can be used to override the default size and sign.

The following list shows the supported operators and describes their functionality:

Operator Function

~ bitwise negation(one’s complement)

! logical negation

- arithmetic negation, subtraction

* integer multiplication

/ integer division

% integer modulus

mod integer modulus

+ arithmetic addition

>> bit shift right

<< bit shift left

< logical less-than

<= logical less-than-or-equal-to
5-118 RISCWatch Debugger User’s Guide

set
> logical greater-than

>= logical greater-than-or-equal-to

== equality

!= inequality

& bitwise AND

^ bitwise XOR

| bitwise OR

&& logical AND

|| logical OR

The evaluation precedence is as follows, but can be overridden using parenthesis:

1. func(), literals, variables and pseudo-variables

2. ()

3. ~ ! + -

4. * / % mod

5. + -

6. >> <<

7. < <= > >=

8. == !=

9. &

10. ^

11. |

12. &&

13. ||

The set command also supports limited logical operations should this sort of
processing power be desired. The logical operations are used mainly for the
programming constructs of command files but have been also included for the set
command for completeness.

One thing that must be kept in mind when using logical expressions is that their
result is only one of two values; 0 or 1. They NEVER return any other value. The
form of a logical expression is restricted to one basic form when it appears in a set
command:

arg1 op arg2
5-119

set
In this expression, arg1 and arg2 may be simple references to registers, register
fields, memory address, immediate values or user-created variables. Each
argument may also consist of the type of mathematical expressions described
above.

Flags

argument = (address) | int_var | src_var | reg_name[.field_name|.#] |

reg_var

expression = [(] logical|mathematical [)]

logical = expression|expression log_op expression

mathematical = [math_op1] expression [math_op2 mathematical]

expression = reg_name[.fld_name|.#] | (address) | immed | variable |

mem_var | src_var | func

func = supported functions : random()

log_op = == != > >= < <=

math_op1 = + - ~

math_op2 = + - * / mod % & | ^ << >>

= ordinal bit number

Registers specified must not be larger than 32 bits.

Examples

• Write a value of 0x1234 to GPR0.
write R0 0x1234

• Use the set command to do the same thing.
set R0 = 0x1234

• Set the integer variable S4 to indicate if the IAR exceeded some known memory
address boundary.

create S4
assign max = 0xFFFFC14A
set S4 = IAR > max

In this example, if the IAR was greater than 0xFFFFC14A, variable S4 would
get set to a 1. If not, S4 would have been set to 0.

• Set the IA1 field of register DBCR.
set DBCR.IA1 = 1

• Set bit 4 of GPR17 and clear bit 12 of GPR5.
set R17.4 = 1
set R5.12 = 0
5-120 RISCWatch Debugger User’s Guide

set
• Set local variable ‘array[7].member_i’ to the decimal value 17.
set :array[7].member_i = 17

See Also

• “Command File Programming” on page 3-127
5-121

shell
t

Syntax

Description

shell is used to pass a user-defined command string to the native operating
system for execution. The command string should only contain valid host
operating system commands.

A special operating system call is used to create a new process for the command
string to run under. To ensure correct command file processing, this new process
is allowed to finish execution before control is returned to RISCWatch. Therefore,
care must be taken as to the commands passed to the operating system using
this command

Flags

expression = a string expression containing the command to be executed

str_var = string variable created with the assign or create commands
and containing the command to be executed.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 shell expression

str_var
5-122 RISCWatch Debugger User’s Guide

showip
showip

Syntax

Description

showip updates the entire Debugger context based on the current Instruction
Pointer address. All appropriate source debug windows are updated accordingly.
For JTAG targets, the Instruction Pointer is actually the current Instruction Address
Register (IAR). For non-JTAG targets, it is the process copy of the IAR for the
application being debugged.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

showip
5-123

socket
socket

Syntax

Description

socket displays and alters parameters associated with socket communication to a
target. If socket is issued without value to set, the current setting is displayed,
otherwise the setting is changed to value.

Flags

timeout The length of time in seconds that RISCWatch waits for
information from a target before timing out.

value Number of retries or timeout value in seconds

Examples

• Examine current timeout setting

socket timeout

• Set the timeout to wait for a target to 3 seconds

socket timeout 3

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: JTAG Ethernet is the only supported JTAG target.
TTY mode is available only on RS/6000 and Sun workstations.

socket timeout

value
5-124 RISCWatch Debugger User’s Guide

srcdisp
srcdisp

Syntax

Description

srcdisp changes the Source window display to show either source lines only
(source), or mixed source/assembly lines (mixed). This is the same capability
provided by the Source Mode groupbox on the Source window. If no parameters
are entered, the mode is toggled.

Flags

mixed Sets the Source window display to show mixed source/assembly
lines.

source Sets the Source window display to show source lines only.

Example

• Set the Source window display to show mixed source/asm

srcdisp mixed

See Also

“Source Window” on page 3-51

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

srcdisp

source

mixed
5-125

srchpath
srchpath

Syntax

Description

srchpath determines the file search order used by the debugger to reference
source files and executables. It is typically used when an unqualified file name is
designated on a command. For example, if no directory path is indicated in the file
name portion of the load file command, then the path(s) specified via the
srchpath command are searched, in order, until the file is found. If the file is still
not found, the current directory is also searched. Note that the current directory
can be included anywhere in the search path by explicitly ordering it via the
srchpath command.

Current directory is defined as the following:

UNIX platform The directory which began the debug session. For example, if
you were in /home, and typed /usr/rwppc/rwppc to start
RISCWatch, the current directory would be /home.

Windows The Working Directory specified under the Program
Manager’s File-> Properties pulldown for the RISCWatch
icon. It is originally set to the same directory as the installed
executable.

Flags

q[uery] Shows current directory search setting in main I/O command
status window

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

srchpath

set dir1 [dir2 ... dirN]

q[uery]

add dir

c[lear]
5-126 RISCWatch Debugger User’s Guide

srchpath
set Sets the search path to the directories listed, in the order that
they are entered. Note this deletes any previous setting.

add Adds a directory to the search path at the end of the current
setting.

c[lear] Clears the search path setting, which will default the search to
the current setting.

Examples

• Set the search path for source and executables.

srchpath set /u/stevewin/sandbox /u/mandzak/lib
/u/kburke/test

If no directory path is indicated on a file name, the search path order for source
and executables is set to

1./u/stevewin/sandbox

2./u/mandzak/lib directory, and if still not found,

3./u/kburke/test.

4.Current directory
Note: Qualified source file names (those shown in the Source and Files
Windows), are first checked in the designated directory. If not found, the directory
path is removed from the name and the search continues as defined here.

• Add a directory to the current search path.

srchpath add /u/marsala/lib

The search order would proceed as in the above example, except that
/u/marsala/lib would be searched before the current directory.

See Also

• “Environment Resources” on page 3-5
• load on page 5-73
5-127

srcline
srcline

Syntax

Description

srcline scrolls the contents of the Source window to a source line in the current
file, highlighting the line if it contains text.

This command is equivalent to the line command for the Source window if it is in
'Source Only' display mode. It is useful if the Source window is in 'Mixed
Source/Asm' mode, where assembly instructions are interspersed with source
instructions.

If the line number specified is larger than the number of source lines in the file, the
last source line is shown at the bottom of the window. If the line number is not
specified, the last line number specified for the command is used. The line
variable initially defaults to 1.

This function is also available via the input line, as described in “Input Line Usage”
on page 3-48.

Flags

int_var A created user-created variable that whose value may be used
in place of the line number.

imm_var An assigned user-created variable specifying an immediate
value that may be used in place of the line number.

line Specifies the source line number to scroll to

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

srcline

line

imm_var

int_var
5-128 RISCWatch Debugger User’s Guide

start_thread
start_thread

Syntax

Description

start_thread initializes a source mode debug session with OS Open by
scheduling a thread to be queued, beginning with the function designated by
funcname. The function must have been previously linked with or dynamically
loaded on OS Open. Threads are started using OS Open default thread
characteristics.

For OS Open systems that support Virtual Memory, if tgrp_id is specified, the
function will be started in the existing thread group tgrp_id, otherwise the thread
will be in its own newly formed thread group.

Flags

funcname Name of function to be started.

tgrp_id ID of thread group for funcname.

Examples

• Schedule a specified thread to be queued:

start_thread routine1

See Also

• attach on page 5-17

• detach on page 5-38

• kill_thread on page 5-70

• load on page 5-73

401/5x 403x 602 603x 604x 7xx

JTAG

OS Open • • • • • •

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

start_thread funcname

tgrp_id
5-129

stop
stop

Syntax

Description

stop forces the processor (JTAG target) or process (non-JTAG) to stop running.
This command is used whenever the processor/process is running and you want
to stop it.

If run is issued with no timeout value and no debug events set, the
processor/process keeps running until the resident program completes execution
or stop is issued by the user.

stop has an optional timeout value. If a timeout value is specified and the
processor/process is stopped, the timeout is ignored and the processor/process
stopped normally. If a timeout value is specified and the processor/process is
running, a timer is started and the processor/process is left running. If the
processor/process is still running when the timer expires, the stop command is
given to stop the processor/process. If the processor/process stops on its own
before the timer expires, the timer is cancelled and the stop command is given to
insure a stopped processor/process.

If a run command is issued with a timeout value and then a stop command is
issued with a timeout value, when either command has timed out the
processor/process is stopped.

Flags

timeout Specifies the number of seconds to wait before sending
the stop command to the processor/process.

See Also

• run on page 5-113

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 stop

timeout
5-130 RISCWatch Debugger User’s Guide

stuff
stuff

Syntax

Description

stuff is used to stuff a 4-byte machine instruction directly into the head of the
instruction execution queue where it is immediately executed by the processor.
This command must be used with caution since no error checking is done on the
machine instruction that is given with the command.

The machine instruction value is sent directly to the processor so an invalid
machine instruction could produce disastrous results. It would be wise to use
either the dis or assm command to verify the machine instruction before the stuff
command is executed.

It is also possible to stuff an assembly instruction into the processor using the built
in line assembler. Simply enclose the assembly instruction in quotation marks and
pass it to the stuff command. If the stuff command detects a string in quotes, it
passes the string to the line assembler. If the instruction is assembled without
error, the equivalent 4-byte machine instruction is stuffed.

Another variation of the stuff command allows the contents of a register or
user-create variable to be stuffed. Instead of specifying an immediate value or
assembly instruction string, place a register or variable name after the stuff
command. Once entered, the contents of the register or variables are read and
then stuffed into the processor.

Flags

opcode An immediate machine instruction value to be stuffed.

401/5x 403x 602 603x 604x 7xx

JTAG • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

stuff opcode

“assembly”’

reg_name

variable
5-131

stuff
assembly A valid assembly instruction string enclosed in quotation marks
to be assembled and then stuffed.

reg_name The name of a register whose contents are to be read and then
stuffed. The register must not be larger than 32 bits.

variable The name of a user-created variable whose contents are to be
read and then stuffed.
5-132 RISCWatch Debugger User’s Guide

timer
timer

Syntax

Description

timer allows for the timing of events from within a command file. The resolution of
the timer is one second.

When the timer is stopped, a status message is displayed indicating the time that
has elapsed since the timer was started. This elapsed time value is also stored so
that it may be printed using the $TIMER variable in a print/fprint command. It
may also be referenced in a set expression.

Flags

start If the timer is stopped, this flag starts it running. If the timer is
running, it updates the $TIMER program variable so that it may
be printed while leaving the timer running.

stop Stops the timer and saves the time elapsed since the start was
given into the $TIMER program variable

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

timer start

stop
5-133

top
top

Syntax

Description

top scrolls to the first line of a window, highlighting the line if it contains any text.

If the window keyword is not specified, the last window specified for this command
is used. It initially defaults to the Source window.

Flags

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

See Also

• bot on page 5-19

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

top

window

pane
5-134 RISCWatch Debugger User’s Guide

trace
trace

Syntax

Description
trace allows start and stop control of the trace function on 400Series processors.
The command assumes that the prerequisite setup has been done prior to issuing
the start command. For more information about the trace capabilities of
RISCWatch, see “Using RISCTrace (400Series JTAG Processor Probe Only)” on
page 4-2

Flags
run Specifies that the trace is to be started.

reconstruct Specifies that the trace output file is to be reconstructed. The
trace output file is designated by filename and was obtained
using the ‘trace save buffer filename’ command.

save Specifies that the trace is to be saved on disk.

after Specifies the number of cycles to collect after the trigger event.

before Specifies the number of cycles to collect before the trigger event.

buffer Specifies the trace buffer contents are to be saved. The resulting
file can be used on the ‘trace reconstruct’ command to create a
formatted trace.

filename Specifies the fully qualified filename in which to save the trace.

401/5x 403x 602 603x 604x 7xx

JTAG • •

OS Open

ROM Mon

Modes
Cmd Line Cmd File TTY

• • •

Note: JTAG Ethernet is the only supported JTAG target.
TTY mode is available only on RS/6000 and Sun workstations.

trace save

run before after

filename

nostop nomem

buffer

reconstruct filename

nomem
5-135

trace
nomem An optional parameter that tells the RISCTrace reconstruction
software to use the program files that were previously loaded
with the RISCWatch load command during the reconstruction
process. Any address required by the reconstruction process
and not found in the program files is read from memory on the
user’s target.

nostop An optional parameter that tells RISCWatch not to stop the
processor at the completion of the trace. The user must issue
the stop command or push the stop button to view the trace.

Note: For processors that support forward trace only, the before cycle count should
be set to 0 and the after cycle count should be set to a minimum of 10 cycles and a
maximum of the total number of cycles that the JTAG processor probe can handle. For
processors that support backtrace, the after cycle count should be set to a minimum of
150 cycles and the sum of before and after cycles should not exceed the total number
of cycles that the JTAG processor probe can handle.

See Also

• “Using RISCTrace (400Series JTAG Processor Probe Only)” on page 4-2
5-136 RISCWatch Debugger User’s Guide

unassign
unassign

Syntax

Description

unassign is used to remove a variable that was prevoiusly defined with the
assign command.

Flags

variable The name given to a previously assigned variable

all Indicates all previously assigned variables will be
unassigned

Example

• Assign a register to a variable and then uses the variable to initialize and read
the register's value. Unassign the variable when the read is complete.

assign count_reg = SPRG1 # make count_reg = SPRG1
set count_reg = 0 # init count register
read count_reg # i.e. read SPRG1
unassign count_reg # remove assignment

• Assign an immediate value to a variable which is then used to initialize the
value of a register. Unassign this variable and all others that may exist.

assign reg_val = 0x11223344
set SPRG0 = reg_val
unassign all

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

 unassign variable

all
5-137

unassign
See Also

• assign on page 5-13

• uncreate on page 5-139
5-138 RISCWatch Debugger User’s Guide

uncreate
uncreate

Syntax

Description

uncreate is used to remove a variable that was previously defined with the create
command.

Flags

variable Name of the immediate variable that was previously created.

all Indicates all previously created variables will be uncreated

Examples

• Uncreate a variable named cr_var1.

create cr_var1 = 0x1234
uncreate cr_var1

• Create two variables, i and j, and use them to calculate a value to write to
GPR0. When complete, removes all previously created variables.

create i # create variable i
create j # create variable j
set i = (0x12345678) # read memory into i
set j = i - IAR # subtract IAR from i
write R0 j # write value of j to GPR 0
uncreate all

See Also

• create on page 5-35

• unassign on page 5-137

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

uncreate variable

all
5-139

unload
unload

Syntax

Description

unload removes the program specified by filename from the debugger. It also
removes any breakpoints set within the specified program context. However, any
loaded program will continue to reside in target memory.

Also, this command applies only to files loaded to perform source level debug via
the load file or load host command option.

Flags

all Unloads all programs currently loaded in the debugger.

filename Specifies program to be unloaded. If unqualified, the file
unloaded will be determined by the srchpath settings currently
in effect.

Seae Also

• load on page 5-73

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

unload all

filename
5-140 RISCWatch Debugger User’s Guide

up
up

Syntax

Description

up scrolls the contents of a window up a number of lines from the top line visible in
the window.

If the number of lines specified is larger than the number of lines from the top of
the window, the first line is shown at the top of the window. If the window keyword
is not specified, the last window specified for this command is used. window
initially defaults to the Source window. If neither the lines variable nor the window
keyword is specified, the last lines value and window specified for the command
are used. The lines variable initially defaults to 1.

Flags

lines Specifies the number of lines to be scrolled up in window

window The window keyword applies to a subset of the windows listed in
“Window Quick Reference” on page 5-3. The items marked with
an asterisk (*) indicate the subset of valid window keywords for
this command.

pane See list of pane keywords in “Command Quick Reference” on
page 5-4 (page 5-3).

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

up

lines

window

pane
5-141

up
Examples

• Scroll up two lines in a window previously specified, or the Source window if
none was previously specified.

up 2

• Scroll up six lines in the Breakpoints window.

up 6 break

See Also

• down on page 5-41
5-142 RISCWatch Debugger User’s Guide

varinfo
varinfo

Syntax

Description

varinfo changes the Local or Global variable window display to show type,
address, and size information for each visible variable. It also allows a user to
specify the method used to read variable data. This is the same capability
provided by the Display Information groupboxes on the Variable Configuration
window.

Flags

locals Specifies Locals variable window

globals Specifies Globals variable window

all Shows the address, size and type for each variable

none Shows no address, size and type information for each variable

addr Shows the address of each variable

rdblk Specifies that the variable information is to be read as a block of
contiguous data.

size Shows the size of each variable

type Shows the type of each variable

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 varinfo

globals

locals all

none

addr

rdblk

size

type
5-143

varinfo
Example

• Set the Locals window display to show address and type information for each
visible variable

varinfo locals addr

varinfo locals type

• Change the Globals window display to show address information only, and
specify that the varaibles are each to be read as contiguous data blocks.

varinfo globals none # clears current settings

varinfo globals addr

varinfo globals rdblk

See Also

“Reading and Writing Memory” on page 3-104
5-144 RISCWatch Debugger User’s Guide

varvis
varvis

Syntax

Description

varvis changes the visibility of variables on the Locals or Globals variable
windows. This is the same capability provided by the relevant pushbuttons on the
Variable Configuration window.

Note: Initially, RISCWatch will default to all local variables being visible, and all
global variables being invisible. These defaults could be changed by putting the
appropriate varvis command entries in a startup command file after a file is
loaded.

Flags

locals Specifies Locals variable window

globals Specifies Globals variable window

src_var Any valid local or global source variable name that is currently in
scope. The name must be preceded by a colon “:”. See “Source
Variable Command Support” on page 3-103 for further
information.

vis Make the variable(s) visible

invis Make the variable(s) invisible

Example

• Set the Globals window display to show all variables

varvis globals vis

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 varvis

globals

locals

invis

vis

src_var
5-145

varvis
• Show only the global variable show_me in the Global window display.

varvis globals invis #clear previous settings

varvis :show_me vis

See Also

“Variable Configuration Window” on page 3-83
5-146 RISCWatch Debugger User’s Guide

view
view

Syntax

Description

view allows for a specified file to be viewed. The specification of the filename is
optional. If it is not specified, a file dialog box is presented for the user to navigate
the directory structure and select a file to view. This functionality is only available
when you are using the graphical user interface, not from within a command file.

Once a file has been selected, a window is displayed and the contents of the file
are displayed within it. The file may be viewed but not edited. Text size can be
adjusted using the menubar Font pulldown. To search for specified text, enter it in
the ’Find string’ field and press the Enter key or click on the Find button. To
perform a backward or case-sensitive search, click on the appropriate check
boxes. To go to a specific line in the file, enter the line number in the ’Goto line’
field and press the Enter key. To go to the last line, enter "$", "last" or "bottom".

This command is equivalent to using the View option of the File pull-down menu.

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

 view

filename
5-147

window
window

Syntax

Description

window allows the user to either bring up a new window instance or to surface an
existing window from the command line interface. For new windows, this is the
same capability provided by the main menu pulldowns. For existing windows that
can not have multiple instances, it provides the same function as the Window List
pulldown. When used for windows that already exist and can have multiple
instances, a new instance is created when the command is invoked.

Flags

cfss Specifies the Command File Window.

inspect Specifies a Variable Inspect Window.

regfld Specifies a Register Field Window.

udw Specifies a User Defined Window.windowThe window keyword
applies to a subset of the windows listed in “Window Quick
Reference” on page 5-3, including items marked with an asterisk

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• •

window

:mps_id

cfss

udw

window

filename

regfld

:mps_id

reg_name

:instance

:mps_id

inspect :” filename”: line_num:variable

:reg_pre
5-148 RISCWatch Debugger User’s Guide

window
(*). The command will give an error if the window keyword
specified is not valid for the command.

filename The name of the file containing the desired variable to inspect.
Note it must be enclosed in quotations.

line_num The specific line number within a file that contains the desired
variable to inspect.

variable The name of the variable to inspect.

reg_name A valid processor register whose field window is to be displayed.

reg_pre When ASIC is specified for window, this specificies a unique
ASIC window which contains the registers with the specified
prefix. See the description for this flag in “Command Quick
Reference” located at the beginning of this chapter.

instance A register or window instance number.

mps_id The mps id of the window.

Examples

• Bring to the foreground the source window on Board 2 while in Board 1 context.

window source:Board_2

• Bring up a source window in the current context.

window source

• Bring up a second instance of the debug window in the current context,
assuming one is already active.

window debug

• Bring up an inspect window to look at the contents of variable my_struct.name,
found on line 24 of file testit.c :

window inspect :”testit.c”:24:my_struct.name

• Bring up a user defined register field window in an MPS environment.

window regfld:Board_2 MSR:2
5-149

write
write

Syntax

401/5x 403x 602 603x 604x 7xx

JTAG • • • • • •

OS Open • • • • • •

ROM Mon • • • • • •

Modes
Cmd Line Cmd File TTY

• • •

Note: TTY mode is available only on RS/6000 and Sun workstations.

value

int_var

imm_var

 imem

 reg_name

 write

 reg_var

 dmem

mem_var

int_var

imm_var

address

reg_name

reg

 src_var

reg_var

 writeh

 writeb dmem value

int_var

imm_var

 reg_name

reg_var

mem_var

int_var

imm_var

address

“ascii_value”

str_var imem

 write dmem

mem_var

int_var

imm_var

address

 writeb
5-150 RISCWatch Debugger User’s Guide

write
Description

write is used to write a value to either a register, a 4-byte data memory location, a
4-byte instruction memory location, a source variable, or to a breakpoint register.

writeb is used to write a 1-byte data memory location, while writeh is used to
write a 2-byte data memory location.

write reg Write a new value to a register. Note the reg keyword is optional.

write dmem Write a new value to a data memory location. Up to four (4)
bytes of data can be written to a valid address.

writeb dmem Write a new value to a data memory location. One (1) byte of
data can be written to a valid address.

writeh dmem Write a new value to a data memory location. Two (2) bytes of
data are written to a valid address.

write imem Write a new value to an instruction memory location.write tlb
Write a new value to an entry of a unified TLB.

Flags

dmem Write to a data memory address.

imem Write to an instruction memory address.

reg An optional parameter indicating a write to an architected
register in the chip.

address Specifies an immediate value which represents the memory
location to be written.

ascii_value Specifies an immediate ASCII string value to be written. It must
be enclosed in double quotes, The null terminator character is
not written.

expression Additional information required by the specific write command
issued.

mem_var Any memory variable created with the assign command.

int_var A created user-created variable that may be used as the
memory address to be written or as the value to be written.

imm_var An assigned user-created variable specifying an immediate
value that may be used as the memory address to be written or
as the value to be written.

reg_name A valid processor register name to be read and/or written.

reg_var An assigned user-created variable that may be used to specify a
processor register to be read and/or written.
5-151

write
src_var Any valid local or global source variable name that is currently in
scope. The name must be preceded by a colon “:”. See “Source
Variable Command Support” on page 3-103 for further
information.

str_var Specifies a user create d string variable containing the ASCII
data to be written. The null terminator character is not written.

value An immediate value to be written to the specified memory
address or register.

Examples

• Write 0xDEADBEEF to the IAR register.

write reg IAR 0xDEADBEEF

• Write 0x11112222 to GPR0.

write R0 0x11112222

• Write the contents of SRR0 to R14.

write R14 SRR0

• Write 0xDEADBEEF to address 0xFFFFFFF0.

write dmem 0xFFFFFFF0 0xDEADBEEF

• Write an immediate hex value bit for bit into a 64-bit register:

write FPR0 0x1234567812345678

• Write an immediate value specified in scientific notation into a 64-bit register in
floating point format:

write FPR0 1.23456e+002

• Write the contents of GPR3 to memory at address 0xFFFF0000.

write dmem 0xFFFF0000 R3

• Write the contents of the user-created variable var1 into memory at address
0xFFFF0000.

create var1 = 0xDEADBEEF
write dmem 0xFFFF0000 var1

• Write the contents of the user-assigned variable mem_val to the address found
in the user-assigned memory variable mem_addr:

assign mem_addr = (0xABCD1234)
assign mem_val = 0xDEADBEEF
write mem_addr mem_val

• Write the contents of the user-assigned variable, mem_val, to the address
found in the user-assigned register variable, mem_reg, which points to the R0
register.
5-152 RISCWatch Debugger User’s Guide

write
assign mem_val = 0xDEADBEEF
assign mem_reg = R0
set R0 = 0x1234ABCD
write mem_reg mem_val

• Write the contents of source global variable ‘ptr->member_a’, defined in file
‘test.c’, to the immediate value 0x12345678:

write : “test.c “:ptr->member_a 0x12345678

• Write the ASCII value “KJ The Porcupine” into memory starting at address
0x500:

write imem 0x500 “KJ The Porcupine”

Note: Any of the write dmem examples are also valid for write imem , just
replace the word dmem in each example to imem .

See Also

• read on page 5-107
5-153

write
5-154 RISCWatch Debugger User’s Guide

Appendix A. Interfacing RISCWatch to a Target Board
This appendix describes the requirements for connecting RISCWatch to a
PowerPC processor on a target development board. For the list of PowerPC
processors, consult the README file for this version of RISCWatch.

IEEE 1149.1 (JTAG) Port

For RISCWatch to interface to the JTAG port on a PowerPC processor, a 16-pin
male 2x8 header connector, shown in Figure A-1, must be available on the target
development board.

Note that position 14 of the header connector on the target development board
should not contain a pin. The mating receptacle supplied with a RISCWatch JTAG
adapter cannot be installed if pin 14 has not been removed from the header.

This header connects the RISCWatch JTAG hardware (parallel port adapter or
processor probe) to the JTAG port of the PowerPC processor on the target
development board, using the electrical connections described below. The header
should be placed as close as possible to the processor to insure signal integrity.

Table A-1 describes the header connections for the PowerPC 400Series
processors, and Table A-2 provides the same for the PowerPC 6xx/7xx
processors. Consult the specific processor manual for the processor pin number if
required.

1

0.1"

0.1"

2

KEY

15 16

Figure A-1. JTAG Header Connector (top view)
Interfacing RISCWatch to a Target Board A-1

1PU = pullup, PD = pulldown, SR = series
2The +POWER signal is sourced from the target development board and is used as a reference signal by the

RISCWatch Processor Probe. The voltage presented on this pin should indicate the voltage level of the
processor I/O. Newer versions of the processor probe will adjust voltage levels on input pins to the
processor accordingly.

3This 1K ohm series resistor provides short circuit current limiting protection only. If the resistor is present, it
should be 1K ohm or less.

Note: Pin 4 should be connected to TRST on the PPC405GP/PPC405CR
processors and should be pulled up with a 10K resistor.

Table A-1. PowerPC 400Series JTAG Interface Connections and Resistors

Header Pin I/O Signal Name Board
Resistor 1

1 Out TDO

2 No Connect

3 In TDI 10KΩ PU

4 No Connect

5 No Connect

6 +POWER2 1KΩ SR3

7 In TCK 10KΩ PU

8 No Connect

9 In TMS 10KΩ PU

10 No Connect

11 In HALT 10KΩ PU

12 No Connect

13 No Connect

14 KEY

15 No Connect

16 GND
A-2 RISCWatch Debugger User’s Guide

1PU = pullup, PD = pulldown, SR = series
2The +POWER signal is sourced from the target development board and is used as a reference signal by the

RISCWatch Processor Probe. The voltage presented on this pin should indicate the voltage level of the
processor I/O. Newer versions of the processor probe will adjust voltage levels on input pins to the
processor accordingly.

3This 1K ohm series resistor provides short circuit current limiting protection only. If the resistor is present, it
should be 1K ohm or less.

4If the target development board does not use this signal, the board must have a 1KΩ PD connected to this
pin. This signal allows the processor to enter the soft stop state. Otherwise, the target development board
must provide the proper logic, so that the QACK goes Low in response to a QREQ. If the proper logic is not
provided, the processor will not be able to enter the soft stop state.

The HRESET, SRESET, and TRST signals from the RISCWatch Processor
Interface Assembly connector must be logically ORed with the HRESET,
SRESET, and TRST signals that connect to the processor on the target

Table A-2. PowerPC 6xx/7xx JTAG Interface Connections and Resistors

Header Pin I/O Signal Name Board
Resistor 1

1 Out TDO

2 No Connect

3 In
TDI 10KΩ PU

TDI 1KΩ PD

4 In TRST 10KΩ PU

5 No Connect

6 +POWER2 1KΩ SR3

7 In TCK 10KΩ PU

8 No Connect

9 In TMS 10KΩ PU

10 No Connect

11 In SRESET 10KΩ PU

12 No Connect

13 In HRESET 10KΩ PU

14 KEY

15 Out
CHECKSTOP

10KΩ PU
CKSTP_OUT

16 GND

N/A In

QACK4 1KΩ PD

L2_TEST_CLK

10KΩ PU
L1_TEST_CLK

LSSD_MODE

ARRAY_WR
Interfacing RISCWatch to a Target Board A-3

development board. They cannot be “dotted” or “wire-ORed” on the board. In
addition, the ORed signals should only reset the processor and no other devices
on the target board.

For further information concerning RISCWatch support for processor reset, see
“Processor Reset Window (JTAG Targets Only)” on page 3-138.

Trace Status Port (400Series JTAG Processor Probe Only)

A 20-pin male 2x10 header connector (3M 3592-6002 or equivalent) is
recommended for connecting to the Trace Status Port of a PowerPC 400Series
processor. The connector outline, shown in Figure A-2, and the signal

descriptions in Table A-3 match the requirements of RISCTrace, when used with
the RISCWatch processor probe with RISCTrace option or the TracePort Analyzer.
The connector for RISCTrace should be placed as close as possible to the
processor to insure signal integrity. For the 405, it is recommended that the trace
signals have 33 ohm source terminators and that the connections from the trace
pins to the trace connector be of equal length.

There are seven Trace Status(TS) signals, TS0:6, on the PPC403GA and
PPC403GC/GCX processors. There are six Trace Staus signals, TS1:6, on the
PowerPC 401 Core processors. There are eight Trace Status signals, TS1:2O,
TS1:2E and TS3:6, on the PowerPC 405 Core processors. These signals are
sampled on the rising edge of the trace clock.

Figure A-2. RISCTrace Header (top view)

1

0.1"

2

19 20

Index

Key Notch

0.1"
A-4 RISCWatch Debugger User’s Guide

Table A-3 describes the assignment of the TS signals and the trace clock (TrcClk)
output to the header pins:

For additional information, see “Using RISCTrace (400Series JTAG Processor
Probe Only)” on page 4-2.

Note that TrcClk is the system clock for the PPC403GA/GC/GCX processors. For
the 401 and 405 based processors, TrcClk is a processor output.

Table A-3. RISCTrace Header Pin Description

Pin Signal Name Pin Signal Name

1 No Connect 11 No Connect

2 No Connect 12 TS1O

3 TrcClk 13 TS0/TS2O

4 No Connect 14 TS1/TS1E

5 No Connect 15 TS2/TS2E

6 No Connect 16 TS3

7 No Connect 17 TS4

8 No Connect 18 TS5

9 No Connect 19 TS6

10 No Connect 20 GND
Interfacing RISCWatch to a Target Board A-5

JTAG and Trace Connector Requirements

1. Individual JTAG and Trace connectors must be placed as close as possi-
ble to the processor and close to each other. It is highly recommended
that individual JTAG and Trace connectors be placed parallel to each
other with the orientation exactly as shown below

2. Support for individual JTAG and Trace connectors is being replaced by
one combined Mictor connector for better electrical and mechanical char-
acteristics as shown below.

Table A-1. Mictor Connector Signal Assignments

PIN PPC401 PPC403 PPC405 Notes

6 TrcClk TrcClk TrcClk

7 HALT HALT HALT

11 TDO TDO TDO

12 VREF VREF VREF (POWER SENSE)

15 TCK TCK TCK

17 TMS TMS TMS

19 TDI TDI TDI

21 N/A N/A TRST

1

0.1"

2

19 20

Index

Key Notch

0.1"

1

0.1"

0.1"

2

KEY

15 16

Figure A-1. RISCTrace 2 x10 and RISCWatch 2 x 8 Headers
A-6 RISCWatch Debugger User’s Guide

Target Monitor Debugging

In addition to RISCWatch communicating directly to processor hardware via a
JTAG connection, RISCWatch can also communicate with target monitor software
included in both the IBM OS Open real-time operating system and the PowerPC
evaluation kit ROM monitor. This communication can must use an Ethernet
(TCP/IP) connection.

Custom target monitors can also be created using the available Board Support
debug libraries supplied in the PowerPC evaluation kits. This provides the ability
to port the software debug capabilities of RISCWatch to custom board solutions.

For further information, consult the OS Open and evaluation kit documentation
listed in “Related IBM Publications” on page xxiv.

24 TS1O

26 TS0 TS2O

28 TS1 TS1 TS1E

30 TS2 TS2 TS2E

32 TS3 TS3 TS3

34 TS4 TS4 TS4

36 TS5 TS5 TS5

38 TS6 TS6 TS6

Table A-1. Mictor Connector Signal Assignments

PIN PPC401 PPC403 PPC405 Notes
Interfacing RISCWatch to a Target Board A-7

A-8 RISCWatch Debugger User’s Guide

Appendix B. Register Definition File (Outdated)
This appendix describes the file format of the Register Definition File (RDF).
Starting with RISCWatch 4.3, the Processor Configuration File should be used in
place of the RDF. In addition to supporting the RDF features, the PCF format
enables users to define their own chips, macros and IMR registers. Please refer to
section “Processor Configuration File (PCF)” on page 3-10 for details on how to
convert your Register Definition File to the PCF format.

Register Definition File

When RISCWatch is first started, the environment file (rwppc.env) is read to
determine the debug environment. The PROC environment variable is used by
RISCWatch to enable a unique set of predefined processor registers. For
example, if the PROC environment variable indicates a 401 core (ie. 401m1),
RISCWatch will only enable the SPR registers defined for that core processor.

By using the REG_FILE environment variable, users can identify a customized
Register Definition File. This file, created by the user prior to starting RISCWatch,
contains additional register definitions that RISCWatch will add to its list of valid
processor registers.

The Register Definition File is searched for using the following rules:

• If the file name is qualified (directory path indicated), the file search is
performed using the specified directory only.

• If the name is not qualified, the file search is performed using the directory
paths designated with the RISCWatch SEARCH_PATH environment
variable. If not found, the current directory is searched.

File Syntax

The Register Definition File is an ASCII file that can be created with any text
editor. The file is identified to RISCWatch via the REG_FILE environment variable,
and must have a file extension of “.reg”. A sample Register Definition File, called
rwppc.reg , is provided with RISCWatch and contains comments which detail the
required syntax described here.

The general syntax rules are as follows:

1. The “#” character denotes the start of a comment. All text following the “#”
character on a given line will be ignored.

2. Blank lines are allowed and will be ignored.

3. Any error detected during the processing of the Register Definition File
will surface an error message which will be saved in the RISCWatch log
file and execution will terminate.
Register Definition File (Outdated) B-1

The following sections define the complete list of valid line entries. Unless
specifically stated otherwise, a record is defined to be a single line contained in
the Register Definition File.

DCR Register Definitions

A DCR register definition identifies a unique register that can be accessed via the
PowerPC mtdcr and/or mfdcr instructions. Each DCR record must adhere to the
following syntax:

DCR name number size type [VOLATILE]

Where:

• DCR indicates a new DCR register definition and must appear in
uppercase.

• name indicates the name of the register being defined and must not
exceed 6 characters.

• number indicates the DCR register number, as defined by the PowerPC
mfdcr or mtdcr instruction. Valid numbers can be expressed in hex (leading
“0x” or “0X’), octal (leading “0”), or decimal.

• size is a decimal number indicating the number of bits in the register.
• type indicates the type of access allowed. Valid types are “R” (read only),

“W” (write only), or “RW” (read and write).
• VOLATILE is an optional keyword which indicates this register will change

its value after a read operation is performed. It must be entered in
uppercase. RISCWatch users must issue an explicit read to display the
contents of a volatile register. Having the auto-update mode enabled on a
window containing these registers will not cause them to be read during
the update.

Examples:

DCR BRCRH0 0x70 32 RW

DCR BEAR 0x090 32 R

DCR records are valid for PowerPC 400 Series processors only.
B-2 RISCWatch Debugger User’s Guide

SPR Register Definitions

An SPR register definition identifies a unique register that can be accessed via the
PowerPC mtspr and/or mfspr instructions. Each SPR record must adhere to the
following syntax:

SPR name number size type [VOLATILE]

Where:

• SPR indicates a new SPR register definition and must appear in
uppercase.

• name indicates the name of the register being defined and must not
exceed 6 characters.

• number indicates the SPR register number, as defined by the PowerPC
mfspr or mtspr instruction. Valid numbers can be expressed in hex (leading
“0x” or “0X’), octal (leading “0”), or decimal.

• size is a decimal number indicating the number of bits in the register.
• type indicates the type of access allowed. Valid types are “R” (read only),

“W” (write only), or “RW” (read and write).
• VOLATILE is an optional keyword which indicates this register will change

its value after a read operation is performed. It must be entered in
uppercase. RISCWatch users must issue an explicit read to display the
contents of a volatile register. Having the auto-update mode enabled on a
window containing these registers will not cause them to be read during
the update.

Examples:

SPR estat 0x03d4 32 RW

SPR DEAR02 0x03d5 32 R

SPR records are valid for PowerPC 400 Series processors only. SPR records
allow users to create their own register names of any core SPR registers. They
provide a form of register name aliasing which can be used in conjunction with
FLDDEF records to customize the display of core registers.
Register Definition File (Outdated) B-3

MMIO Register Definitions

An MMIO register definition identifies a unique ASIC memory-mapped register
that can be accessed via the PowerPC load and/or store instructions. Each MMIO
record must adhere to the following syntax:

MMIO name address size type [access] [VOLATILE]

Where:

• MMIO indicates a new memory-mapped register definition and must
appear in uppercase.

• name indicates the name of the register being defined and must not
exceed 6 characters.

• address is a hex number indicating the address to use on the appropriate
PowerPC load or store instruction. A leading “0x” or “0X’ is allowed, but not
required.

• size is a decimal number indicating the number of bits in the register.
• type indicates the type of access allowed. Valid types are “R” (read only),

“W” (write only), or “RW” (read and write).
• access is an optional parameter which is used on JTAG ethernet and JTAG

parallel port RISCWatch targets. It is a decimal number which indicates the
access size, in bits, RISCWatch must use when reading or writing this
memory location. The access size should be a multiple of eight, with each
multiple identifying a unique PowerPC load/store instruction to use. For
example, an access size of “16” instructs RISCWatch to read the register
by executing the “load halfword” PowerPC instruction. Specifying an
access size will override any access size settings made with the memacc
command. If no access size is specified, RISCWatch will use the access
size defined for the memory region. See memacc on page 5-81 for
information about how to set up a unique memory region access size.

• VOLATILE is an optional keyword which indicates this register will change
its value after a read operation is performed. It must be entered in
uppercase. RISCWatch users must issue an explicit read to display the
contents of a volatile register. Having the auto-update mode enabled on a
window containing these registers will not cause them to be read during
the update.

Examples:

MMIO ASIC01 0000A000 32 RW

MMIO ASIC02 0000A004 32 RW 8

MMIO records are valid for all PowerPC processors.
B-4 RISCWatch Debugger User’s Guide

ALIAS Definitions

An ALIAS definition identifies a new name for one of the predefined processor
registers. Each ALIAS record must adhere to the following syntax:

ALIAS new_name = old_name

Where:

• ALIAS indicates a new ALIAS register definition and must appear in
uppercase.

• new_name indicates the name of the register being defined and must not
exceed 6 characters.

• old_name indicates a valid register name for the target processor, which
may include any previously processed SPR, DCR, or MMIO records.

Examples:

ALIAS PC = IAR

ALIAS GPR0 = R0

ALIAS records are valid for all PowerPC processors.

Register Field Definitions

Register field definitions span multiple lines of the file and are used to indicate
field names for contiguous groups of bits in a register. Each register field definition
must adhere to the following syntax:

FLDDEF reg_name

field_name start_bit size
.....

ENDFLDDEF

Where:

• FLDDEF indicates the start of a new register field definition and must
appear in uppercase.

• reg_name indicates a valid register name for the target processor, which
may include any previously processed SPR, DCR, or MMIO records.
Subsequent field_name records will be assigned to this register.

• field_name indicates the name given to a contiguous group of register bits
and must not exceed 6 characters. This record is only allowed between
enclosing FLDDEF and ENDFLDDEF records.

• start_bit is a decimal number which indicates the first bit of the register
associated with this field name. A value of zero indicates the first bit of the
register. This value should not exceed the bit size of the register.
Register Definition File (Outdated) B-5

• size is a decimal number which indicates the total number of bits assigned
to this field name. The sum of start_bit and size should not exceed the total
bit size of the register.

• indicates one or more field_name records which are used to completely
define field names to all bits of the designated register.

• ENDFLDDEF indicates the end of a register field definition and must
appear in uppercase.

Example:

FLDDEF estat

mcheck 0 4
progexc 4 3
resv0a 7 1
storexc 8 2
resv0b 10 22

ENDFLDDEF

Register field definitions are valid for all PowerPC processors. They are generally
used to assign bit field names to user defined registers and core processor
registers which do not have any predefined bit fields.
B-6 RISCWatch Debugger User’s Guide

Index

Numerics
400Series features 3-58
403GC/GCX MMU 4-1

A
application programs

demos 2-2, 2-3, 2-6
file format 1-1
programming languages 1-1

ASCII Memory window 3-108, 3-110
asmstep command 3-48, 5-12
Assembly Debug window 2-14, 3-47, 3-52, 3-

54, 3-74
assembly stepping 3-57, 3-58
assign command 5-13
assm command 5-15
attach command 3-44, 3-47, 3-52, 5-17

B
beep command 5-18
boot files 3-46
boot image files 3-46
bot command 5-19
bp command 3-72, 5-20
bpmode command 3-53, 3-56, 3-63, 5-24
Breakpoint Mode 3-53, 3-63, 3-71, 3-72, 3-73,

3-74
Breakpoint Select window 3-75
breakpoints

clearing 3-56, 3-74
hardware 3-56, 3-70, 3-72, 4-7
setting 3-56, 3-74
software 3-56, 3-70, 3-71

Breakpoints window 2-5, 3-73

C
cache coherency 3-106
Cache windows 3-113
Calculator window 3-143
Callers window 2-8, 3-60
callstep command 3-48, 5-26
capture command 3-143, 5-28
capture file

rwppc.cap file 3-143
cfss command 5-30
Change Array Variable window 2-12
Change Variable windows 3-85
color command 5-32
command file programming 3-127
command files 3-1, 3-125

blank lines 3-127
comments 3-127
execution 3-34, 3-133
Output window 3-139
parameter definition 3-130
parameter list 3-130
programming example 3-133
programming syntax 3-127
pseudo-variables 3-131, 3-132
shell scripts 3-126
special commands 3-126
special expressions 3-129
window 3-135

command history usage 3-42
command history window 2-2, 3-39
command line usage 3-42
commands

asmstep 3-48, 5-12
assign 5-13
assm 5-15
attach 3-44, 3-47, 3-52, 5-17
beep 5-18
bot 5-19
bp 3-72, 5-20
bpmode 3-53, 3-56, 3-63, 5-24
callstep 3-48, 5-26
capture 3-143, 5-28
cfss 5-30
color 5-32
config 5-34
create 3-131, 5-35, 5-139
delay 5-37
detach 5-38
dis 5-39
down 5-41
end 5-43
exec 3-131, 3-133, 5-44
expr 5-45
Index X-1

fctrl 5-47
file 5-49
find 5-50
findb 5-53
finde 5-55
focus 5-56
fold 5-57
fprdisp 5-58
fprint 3-131, 5-59
freeze 5-62
funcdisp 5-63
goto 5-65
halt 5-66
hidewins 5-67
ip 5-68
jtag 5-69
jtagclk 5-34
kill_thread 5-70
line 5-71
linestep 3-48, 5-72
load 3-44, 3-46, 3-52, 5-73
load image 3-47
log 5-77
logging 5-78
logoff 3-47, 5-80
memacc 5-81
memchk 5-84
memcoh 5-85
memcopy 5-87
memfill 5-86, 5-88
memfind 5-89
memrwait 5-91, 5-92
mpsset 5-93
pagedn 5-94
pageup 5-95
parms 3-130, 5-96
poll 5-98
post 5-100
prefer 5-101
print 3-131, 5-105
quit 5-106
read 5-107
reg 5-109
reset 5-110
restart 3-44, 3-48, 3-52, 5-111

retstep 3-48, 5-112
run 3-48, 3-72, 5-113
save 5-115
set 3-131, 5-117
showip 5-123
socket 5-124
srcdisp 5-125
srchpath 3-61, 5-126
srcline 5-128
start_thread 3-44, 3-47, 3-52, 5-129
stop 5-130
stuff 5-131
timer 5-133
top 5-134
trace 5-135
unassign 5-137
unload 5-140
up 5-141
varinfo 5-143
varvis 5-145
view 3-61, 5-148
window 5-148
write 5-151

Compound Trigger/Trace window 4-12
config command 5-34
conventions

highlighting xxii
input xxii
numeric notation xxii

create command 3-131, 5-35, 5-139
cross-development environment 1-1
current directory

definition 5-126

D
data coherency 3-106
DCRs 3-116
debugger

loading files 3-44
debugger facilities 3-1
debugger quick reference 3-2, 4-1
default capture file 3-143
delay command 3-126, 5-37
demo programs 2-2, 2-3, 2-6
detach command 5-38
X-2 RISCWatch 400 Debugger User’s Guide

Device Control Registers 3-116
directory

current 5-126
dis command 5-39
down command 5-41

E
end command 3-126, 5-43
environment resources 3-5

rwppc.env file 3-5, 3-47, 3-138, 3-141
target name 3-6
target type 3-5

exec command 3-131, 3-133, 5-44
executing the program 3-47
expr command 5-45

F
fctrl command 5-47
file command 5-49
file formats 1-1
File menu 3-41
file Syntax 3-120
file syntax 3-8

user-defined window 3-123
Files window 3-61
find command 5-50
findb command 5-53
finde command 5-55
Flags 5-69
Floating Point Registers 3-116, 3-117
focus command 5-56
fold command 5-57
following program execution flow 3-47
forms

reader’s comments xix
user’s comments xvii

fprdisp command 5-58
fprint command 3-126, 3-131, 5-59
FPRs 3-116, 3-117
freeze command 5-62
funcdisp command 5-63
Functions mode 3-62
Functions window 2-6, 3-62, 3-63

G
General Purpose Registers 3-116, 3-117

Globals window 3-79
goto command 5-65
GPRs 3-116, 3-117

H
halt command 5-66
Hardware menu 3-41
Help menu 3-41, 3-42
Help window 3-145
hidewins command 5-67
host systems

PC 2-2
RS/6000 2-2

how to use this book xxi

I
IEEE 1149.1 port A-1
input line usage 3-48
Inspect Variable window 3-81
Inspect variable window 3-81
Instruction Address Register 3-58
instruction pointer 3-47, 3-52, 3-59
instruction, assembly 3-56
ip command 5-68

J
jtag command 5-69
JTAG Ethernet target 3-6
JTAG port A-1
JTAG target 2-2, 3-41, 3-42, 3-44, 3-53, 3-57, 3-

105, 3-113
jtagclk command 5-34

K
kill_thread command 5-70

L
line command 5-71
linestep command 3-48, 5-72
load command 2-1, 3-44, 3-46, 3-52, 5-73
load image command 3-47
loading files 3-44
Locals window 2-10, 3-77
log command 5-77
Log Comment window 3-142
log files 3-141
Index X-3

creation 3-141
directory 3-141
disabling 3-141
user commenting 3-141, 3-142

logging command 3-141, 5-78
Logging State window 3-142
logoff command 3-47, 5-80

M
Main window 3-38, 3-47

command history 2-2, 3-39
command history usage 3-42
command line usage 3-42
message window 3-39, 3-43

managing breakpoints 3-70
memchk command 5-84
memcopy command 5-87
memfill command 5-86, 5-88
memfind command 5-89
memory

reading 3-104
writing 3-104

Memory Coherency window 3-105
memory management unit

PPC403GC/GCX 4-1
memrwait command 5-91
memwait command 5-92
menus 3-39

File menu 3-41
Hardware menu 3-41
Help menu 3-41, 3-42
Source menu 3-41
Utilities menu 3-41, 3-42
Window 3-139
Window menu 3-41, 3-42

message window 3-39
Mixed source/assembly mode 2-16, 3-51, 3-52,

3-53
mpsset command 5-93

O
online help 3-41, 3-42, 3-145
operating modes

batch (command file) 3-1
normal 3-1
TTY 3-1, 3-35

OS Open
ELF version 3-6

OS Open target 3-45, 3-46, 3-47, 3-53, 3-57, 3-
66, 3-70, 4-10, 4-14

OS Open window 3-66

P
pagedn command 5-94
pageup command 5-95
parms command 3-126, 3-130, 5-96
PC host 2-2
poll command 5-98
post command 5-100
prefer command 5-101
preparing the program for debug 3-43
print command 3-126, 3-131, 5-105
Processor Reset window 3-138
processor/process status indicator 3-57
programming languages 1-1
programming, command files 3-127
Programs window 3-58
pseudo-variables 3-131

Q
quit command 5-106

R
read command 5-107
reader’s comments form xix
reading and writing memory 3-104
reading and writing registers 3-116
reading the syntax diagrams xxiii
reg command 5-109
Register Definition File B-1
Register definition file B-1
registers

Device Control 3-116
Floating Point 3-116, 3-117
General Purpose 3-116, 3-117
reading 3-116
Segment 3-116, 3-117
Special Purpose 3-116, 3-117
writing 3-116

related publications xxiv
reset 5-110
reset command 5-110
X-4 RISCWatch 400 Debugger User’s Guide

Processor Reset window 3-138
restart command 3-44, 3-48, 3-52, 5-111
retstep command 3-48, 5-112
RISCWatch connector A-1
ROM Monitor 3-6
ROM Monitor target 2-2, 3-44, 3-47, 3-53, 3-57,

4-10, 4-14
RS/6000 host 2-2
run command 3-48, 3-72, 5-113
running a command file 3-133
rwppc.cap file 3-143
rwppc.env file 3-5, 3-47, 3-138, 3-141
rwppc.wdf file 3-125

S
sample user-defined window file 3-123
save command 5-115
screen capture 3-143
Segment Registers 3-116, 3-117
set command 3-131, 5-117
shell scripts 3-126
showip command 5-123
socket command 5-124
Source menu 3-41
source mode 3-52
Source window 3-47, 3-51

Mixed source/assembly mode 2-16, 3-51, 3-
52, 3-53

Special Purpose Registers 3-116, 3-117
SPRs 3-116, 3-117
srcdisp command 5-125
srchpath command 3-61, 5-126
srcline command 5-128
SRs 3-116, 3-117
start_thread command 3-44, 3-47, 3-52, 5-129
stop command 5-130
stuff command 5-131
syntax diagrams, how to read xxiii

T
target board

RISCWatch connector A-1
target name 3-6
target type 3-5

JTAG 2-2, 3-41, 3-42, 3-44, 3-53, 3-57, 3-
105, 3-113

OS Open 3-45, 3-46, 3-47, 3-66, 3-70, 4-10,
4-14

ROM Monitor 2-2, 3-44, 3-47, 4-10, 4-14
timer command 5-133
TLB window 4-15
top command 5-134
trace command 5-135
translation lookaside buffer 4-15
Trigger/Trace window 4-7

U
unassign command 5-137
unload command 5-140
up command 5-141
user’s comments form xvii
using hardware breakpoints 3-72
using software breakpoints 3-71
Utilities menu 3-41, 3-42

V
Variable Configuration window 2-10, 3-79, 3-81,

3-83
varinfo command 5-143
varvis command 5-145
view command 3-61, 5-148

W
who should use this book xxi
window command 5-148
window descriptor file

rwppc.wdf 3-125
window layout 3-138
window list 3-141
Window menu 3-41, 3-42
windows

ASCII Memory 3-108, 3-110
Assembly Debug 2-14, 3-47, 3-52, 3-54, 3-

74
Breakpoint Select 3-75
Breakpoints 2-5, 3-73
Cache 3-113
Calculator 3-143
Callers 2-8, 3-60
Change Array Variable 2-12
Command File 3-135
Compound Trigger/Trace 4-12
Index X-5

Files 3-61
Functions 2-6, 3-62, 3-63
Globals 3-79
Help 3-145
Inspect 3-81
Locals 2-10, 3-77
Log Comment 3-142
Logging State 3-142
Main 3-38, 3-47
Memory Coherency 3-105
OS Open 3-66
Output 3-139
Processor Reset 3-138
Programs 3-58
sample user-defined 3-123
Source 3-47, 3-51
TLB 4-15
Trigger/Trace 4-7
Variable Configuration 2-10, 3-79, 3-81, 3-83
window layout 3-138
Window List 3-141

write command 5-151
X-6 RISCWatch 400 Debugger User’s Guide

	Contents
	Figures
	Tables
	User’s Comments Form
	Reader’s Comments Form
	About This Book
	Who Should Use This Book
	How To Use This Book
	Conventions Used In This Book
	Numeric Notation and Input Conventions
	Highlighting Conventions
	Syntax Diagram Conventions

	Where to Find More Information
	Related IBM Publications

	Chapter 1. Introducing the RISCWatch Debugger
	Embedded System Software Development
	Programming Languages

	Features

	Chapter 2. Quick Start
	Starting the Debugger
	Entering Commands
	Loading the Demo Program
	Scrolling Through Source Code
	Setting Breakpoints
	Stepping Through the Code
	Altering and Displaying Variables
	Debugging at the Assembly Level

	Chapter 3. Using the RISCWatch Debugger
	Debugger Facilities
	Environment Resources
	Core + ASIC Resources
	Processors, Cores and Chip Resources
	Processor Configuration File (PCF)
	File Management
	File Syntax
	REFER Definitions
	MACRO Definitions
	CHIP Definitions
	INCLUDE Definitions
	EXEC Definitions
	FIELD Definitions
	NAME Definitions
	PVR Definitions
	REG Definitions
	REGALIAS Definitions
	REGFLD Definitions
	REV Definitions

	PCF Compiling
	PCF Example
	MEMACC Command
	Use of MEMACC ADD
	Practical Application Example

	Window Descriptor File

	Multi-Processor Resources
	MPS File Syntax
	Board Definitions

	MPS Debugging
	MPS Context
	MPS Windows

	Invoking the Debugger
	JTAG Ethernet Targets and the RISCWatch Processor Probe

	Main Window Resources
	Menus
	File Menu
	Source Menu
	Hardware Menu
	Window Menu
	Utilities Menu
	Help Menu

	Command Line Usage
	Command History Usage
	Message Window

	Running Your Programs
	Preparing the Program for Debug
	Loading Files
	Loading Boot and Boot Image Files
	Executing the Program
	Following Program Execution Flow
	Input Line Usage

	Source Level Debugging
	Source Window
	Scrolling Source Window Contents Using the Keyboard

	Assembly Debug Window
	Programs Window
	Callers Window
	Files Window
	Functions Window
	Load Memory Window

	OS Open Debugging
	Managing Breakpoints
	Using Software Breakpoints
	Using Hardware Breakpoints
	Breakpoints Window
	Breakpoint Select Window

	Reading and Writing Program Variables
	Local Variables Window
	Global Variables Window
	Inspect Variable Windows
	Variable Configuration Window
	Change Variable Window
	Formatting Examples
	Expansion/Contraction from Locals or Globals Window
	Displaying ASCII Strings
	Handling Multiple Data Elements Referenced by a Single Pointer
	Changing Multiple Instances of a Variable Within an Array
	Type Casting a Variable

	Source Variable Command Support

	Reading and Writing Memory
	Memory Coherency Window (JTAG Targets Only)
	ASCII Memory Window
	Custom Memory Window
	Cache Windows (JTAG Targets Only)

	Save Memory Window
	Reading and Writing Registers
	Register Windows
	Register Field Windows

	User-Defined Windows
	File Syntax
	Keyword Definition/Syntax
	Creating the Window
	Example

	Command Files
	Using Shell Scripts to Execute Command Files
	Startup Command File
	Special Command File Commands
	Blank Lines and Comments in Command Files
	Command File Programming
	Command File Special Expressions
	Command File Parameters
	Command File Pseudo-Variables
	Command File Programming Example
	Running a Command File
	Command File Window

	Processor Resources
	Processor Reset Window (JTAG Targets Only)

	General Resources
	Window Layout
	Output Window
	Window List
	Log Files
	Logging Control
	Logging User Comments
	Screen Capture
	Calculator Window

	Online Help

	Chapter 4. Using Processor-Specific Debug Features
	PowerPC 400Series MMU Implementation Notes
	Managing Hardware Breakpoints and Trace Events
	Using RISCTrace (400Series JTAG Processor Probe Only)
	RISCTrace Operational Notes
	RISCTrace Output

	Trigger/Trace Window (400Series Only)
	RISCTrace Controls

	Compound Trigger/Trace Window (401, 403 Series Only)

	Memory Resources
	Translation Lookaside Buffer Window (Applicable Processors Only)

	Processor Resources

	Chapter 5. Debugger Command Reference
	Processors Currently Supported
	Reading the Syntax Diagrams
	Using RISCWatch Debugger Commands
	Window Quick Reference
	Command Quick Reference
	asmstep
	assign
	assm
	attach
	beep
	bot
	bp
	bpmode
	callstep
	capture
	cfss
	color
	config
	create
	delay
	detach
	dis
	down
	end
	exec
	expr
	fctrl
	file
	find
	findb
	finde
	focus
	fold
	fprdisp
	fprint
	freeze
	funcdisp
	goto
	halt
	hidewins
	ip
	jtag
	kill_thread
	line
	linestep
	load
	log
	logging
	logoff
	memacc
	memchk
	memcoh
	memcopy
	memfill
	memfind
	memrwait
	memwwait
	mpsset
	pagedn
	pageup
	parms
	poll
	post
	prefer
	print
	quit
	read
	reg
	reset
	restart
	retstep
	run
	save
	set
	t
	showip
	socket
	srcdisp
	srchpath
	srcline
	start_thread
	stop
	stuff
	timer
	top
	trace
	unassign
	uncreate
	unload
	up
	varinfo
	varvis
	view
	window
	write

	Appendix A. Interfacing RISCWatch to a Target Board
	IEEE 1149.1 (JTAG) Port
	Trace Status Port (400Series JTAG Processor Probe Only)
	JTAG and Trace Connector Requirements
	Target Monitor Debugging

	Appendix B. Register Definition File (Outdated)
	Register Definition File
	File Syntax
	DCR Register Definitions
	SPR Register Definitions
	MMIO Register Definitions
	ALIAS Definitions
	Register Field Definitions

	Index

