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FOREWORD

Scientiric ComputaTiON ForuM, sponsored by the
International Business Machines Corporation, was
held in the IBM Department of Education, Endicott,
New York, from August 23 to August 26, 1948. The
Forum concluded with two sessions held in New York
City on August 27.
Earlier meetings in this series, which began in
1940, were devoted largely to statistical procedures. In
the 1948 Forum, for the first time, an attempt was made
to cover many of the fields in which large-scale com-
puting methods have proved important. The exchange
of ideas between workers in fields as diverse as aero-
dynamics and physical chemistry proved fruitful from
the very beginning, yet specialists in the same field also
found time for intensive discussions.
It is hoped that the contributions printed here
will prove of value not only to the participants but to
other members of the growing group engaged in tech-

nical calculations on punched card equipment.
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Evaluation of Higher Order Differences on the
Type 602 Calculating Punch

FRANK M. VERZUH

Massachusetts Institute of Technology

SOME of the uses of the higher differences of a given
function are:

Numerical integration using finite differences,
Numerical differentiation using finite differences,
Subtabulation or interpolation to a fixed interval,
Location of errors in a given set of data,

Smoothing the irregularities in experimentally ob-
tained data.

R L=

This method of evaluating higher differences on the
602 was originally utilized to detect the presence of errors
in a computed table of the function x tanh x.

In this circuit, one card containing the value of the func-
tion is used for each given value of the argument. As
each function card passes through the 602, it has the
higher differences as well as the recomputed function
punched upon it. Since the values of the function and its
higher differences at preceding ordinates are required in
each computation, the cards must be arranged in their
proper sequence. At the beginning of each set of cards,
the higher order differences are not directly available. We
merely assume that they are equal to zero and therefore
the first few values of these differences will be in error.

The recomputed function provides a complete check
upon the entire operation of the Type 602 Calculating
Punch. The recomputed function will be identical with the
given function only if all the crossfooting operations re-
quired to solve the set of algebraic equations are correct.
This agreement is definite proof that all the calculations
are correct.

The comparison circuits of the accounting machine are
used to indicate any discrepancy between the given func-
tion and the recomputed function. An asterisk is printed
adjacent to the error each time a discrepancy occurs. Any
machine errors in the differencing process are immediately
detected by visually scanning the printed record for the
presence of asterisks. ‘

The presence of errors in the given function are also
quite evident. An error of magnitude E in the function
will affect (# 4 1) consecutive values of the nth differ-

ot

ence by an amount E times the binomial coefficients of
(@ — b)"™ An error of 41 affects five fourth differences
by amounts of +1, —4, 4+6, —4, +1. An error of +1
affects three second differences by +1, —2, +1. This
characteristic variation of magnitude and sign serves to
locate errors immediately.

Mathematical Basis of This Differencing Method

The tabulation of a function and its higher differences
shown in Figure 1 illustrates the derivation of the equa-
tions used for the computation of the fourth differences.

Function Differences /

First Second Third Fourth

20 A

-1.5 ..

’f—l.o ; Al*lbo sii
A“0.5 -0.5

foo ) 30 . N,
Alli‘."i i})‘.’)

fl.o . i}.o . Air.o
A].1-5 i Al§15

f 2.0 . 2.0
AV

fso0

Ficure 1. TaBuLaTION OF A FUNCIION AND
Irts HicHER-ORDER DIFFERENCES

The first difference may be‘ defined, for instance, by

Aiz.s = f;;.’o - f2.0 5 (la)
the second difference by
So=Lhy— Nis ; (1b)
the third difference by
B = Ao — Al s (1c)
and the fourth difference by
ir.o = llus - iti)is (ld)

Higher order ditferences may be expressed by equations
of several different forms which are some combination of
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the formulas given in equations (1). The derivation of an
equation for the fourth difference may be given in terms
of the function at two given points and the backward
diagonal differences from the first point:

iv

0 = iﬁs - Aig.is
= Ao — (A% + A%5)
= i2.5 - (Ails + Aixi.o + g.is
= f3.o - (f20+ Ai1.5 + Ai{.o + i‘ifs) .
In addition to the basic equation given for the fourth

difference, the corresponding equations for the differences
of lower order may be given: ‘

(2a)

iy = AYo + A - (2b)
1o = A+ Al (2c)
Aiz.s = izg.o + Ai1.5 ,(Zd)
foo = Ohs + feo (2¢)

These equations are so arranged as to utilize the results
of the preceding equation in the computation of the suc-
ceeding equation.

SCIENTIFIC COMPUTATION

Figure 1 and equations (1) and (2) have illustrated the
origin and derivation of the formulas which are necessary
in the computation of the fourth order differences. How-
ever, the principle of this differencing technique may be
obtained by a consideration of the simpler equations used
for the computation of second order differences which are
indicated below, The succeeding description will be de-
voted to a discussion of these second order difference
equations:

3o = fao— (foo + AiLs) (3a)
Aiz.s = ig.o + Ai15 (Sb)
fso = Abs+ fao (3c)

Operation of the Differencing Circuit

The time-sequence chart shown in Figure 2 illustrates
the flow of information in the Type 602 during a compu-
tation of the second order differences. Assuming that the
value of the function and its first difference at the
preceding argument are available, ie., if f,,, A, and
~ (fzo + L) are in the indicated counters, the second
difference is computed as follows:

Customer, k,E RPZUH Prob. No. Ed. No. Date 4)//0//48
Discussion_£ VALUATION _0OF. 222 Qrper [irrerences Wirsn Zae |
Tyee 02 CAarcCulATar
ultiplier Multiplicand LHC Summary Result Storage
1-2 3 -4 9-1210-11|5-6-7 13 - 16 |1k - 15
. 1 T
X 60 Hez+ 84| &, | £z
MasTer rRC | FC L RC | RC
fsﬂo//ve A ”}’ '}9‘”’ 4 I
Cyere ;'.?,v i
=2 :
Mowrirey 4;/,/ ~ !
AFFoG. Aoo RO-RC ’ljoo |
Cre.l |A2 A2 !
N il
%25 | |
—a] [
FROG. Susr | Aoo
CreZ A, | RO | 1 |azs
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I
|
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Ficurg 2. Frow CHART oF 602 COMPUTATION
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CALCULATING PUNCH-TYPE 602~ CONTROL PANEL
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Ficurk 3. Wirine DracraM FOR EVALUATION OF SECOND-ORDER DIFFERENCES

The value of f,, is added to — (fo, + Al;) in
counters (9, 12) to provide Al
equation (3a).

This value of Al, is stored in the MP counters
(1, 2) and simultaneously added to A, s in counters
(10, 11) to provide the new first difference A, ; in
accordance with equation (3b).

The value of Al ; is subtracted into counters (9, 12)
where it will be available for the computation of the
next card. In addition, A,; is added to f,, in
counters (13-16) to provide the recomputed value
of f,., as indicated in equation (3c).

The value of f,, is subtracted from —A,; in
counters (9, 12) to provide — (fy, +. AL;). This

in accordance with -

quantity is required for the computation of the next
card ; fy, is stored in summary counters (14, 15).

During the transfer-to-storage cycle the values of
i, A, and the recomputed f, , are punched on
the card containing the original function f; .

Since this computation is a sequential operation, i.e., the
terminal values of the computation of the first card become
the initial values for the computation of the next, counters

O,

12), (10, 11), and (13-16) are not reset during the

card feed cycle. A master X60 card is used to clear the
machine after the differencing of an entire set has been
completed. The actual 602 wiring diagram used in the
computation of the second order differences is shown in
Figure 3.
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Ficure 4. Resurrs OsraiNneEp Durine EVALUATION OF

The accounting machine is used to provide the printed
record shown in Figure 4. This record illustrates the in-
formation present on each punched card after it leaves the
602. This record contains a serial number; the given
function, the higher order differences in increasing order,
and the recomputed function. The two errors present in
the functional data are quite evident because of the char-
acteristic appearance of the higher differences.

The flow chart diagram shown in Figure 5 illustrates
the flow of information within the 602 during the evalu-
ation of the fourth order differences. The solution of the
set of simultaneous equations (2) is effected by the indi-
cated crossfooting operations.

Limitations and Advantages of This Differencing Method

- The Type 602 Calculating Punch has been wired to
obtain fourth order differences as well as second order
differences. Whenever the given function is quite irregu-
lar, the higher differences are of appreciable magmtude
In such cases, the available twenty-four positions in the
result storage counter are not adequate to punch all of the

computed differences.. Occasionally, the punching of the

Serar # £ A A ,

1 689 6245 689 6245 689_6245

2 695 6388 6 0143 -683 6102

3 701 6543 6 0155 12

—_— 4 707 709 6 0256 101

5. 7143 6887 6 0088 - 168

6 719 7076 6 0189 101

7 725 TR278 6 0202 13

8 731 7491 6 0213 11

9 737 T715 6 0224 11

10 743 7951 6 0236 12

| — 749 8199 6 1260 0 1024

12 755 8459 5 9248 - 0 2012

13 761 8736 6 0277 0 1029
14 767>9013 6 0277

15 773 9308 6 0295 18

16 779 9614 6 0306 11

17 785 9932 6 0318 12

18 792 0262 6 0330 12

19 798 0603 6 0341 11

A" N £
689 6245 689 6245 689 6R245
=373 2347 -062 8592 695 6388
683 6114 56 8461 701 6543
89 -683 6025 707 6799
-000 0269 -000 0358 713 6887
269 538 719 7076
-000 0088 -000 0357 725 7278
-000 0002 86 731 7491
2 737 7715
1 1 743 7951
1012 1011 749 9211
-000 3036 -000.4048 755 8459
3041 6077 761 8736
-000 1029 -000Q 4070 767 9013
18 1047 773 9308
-000 00OT7 -000 0025 779 9614
1 8 785 9932
-000 0001 792 0262
-000 0001 -000 0001 - 798 0603

FourrH-ORDER DIFFERENCES

first and second differences is omitted, and the available
result storage positions are used to punch the large-size
higher order differences.

The second order difference board is used for many
applications. Whenever the second differences are too
large for proper interpretation, the cards are reinserted
and the operation is repeated. In such a case, the second
order differences are used as an input function, and the
fourth order differences are then obtained.

This method of differencing is quite rapid, as differences
may be obtained at a rate of 1500 an hour. This number
varies slightly with the number of columns punched.

In addition to the error detection properties of this
method, it may be easily used for subtabulation, i.e., inter-
polation to fixed intervals. The 602 may be wired to
perform integration using the given value of the function
and its backward differences.

Since this method does not require any blank cards for
operation, it is capable of a higher operating speed than
the methods which do use blank cards.

DISCUSSION

[This paper and the following one by Dr. Gertrude Blanch were
discussed as a unit.]
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Differencing on the Type 405
Accounting Machine

GERTRUDE BLANCH

Institute for Numerical Analysis, National Bureau of Standards

DIFFERENCES have to be taken frequently, not
only for the purposes of integrating and differentiating
but for the purposes of checking data in the process of
computation. If functions are given at uniformly spaced
intervals, the process of differencing at strategic stages of
the computing process offers a very satisfactory check on
the operations.

Now, since differencing has to be done so frequently, it
is important to be able to do it on many machines.
Sometimes the 602 is tied up on other work and you
want to do it on the accounting machine. The 405 was
used for differencing long before any other IBM machine.
Everybody knows how to take a first difference, summary
punch it, and then take the second difference. In this
manner successive differences of any order can be built
up. But you can also take a sixth difference or fifth differ-
ence or fourth difference without taking intermediate
differences. This is valuable if you want the differences
mainly for checking data. For when you take a high
enough difference—the sixth difference for instance, if it
is small—you can generally detect the errors by the differ-
ence pattern and actually take out the card where the
error occurs.

In the summer of 1947, Dr. E. C. Yowell spent his time
in our New York laboratory. Dr. Abramowitz had picked
up Comrie’s paper on getting higher order differences on
the National bookkeeping machine, and he asked Dr.
Yowell to do something similar on the accounting machine.
Dr. Yowell wired a control panel which has been used
very successfully, and I will try to give you the wiring of
that panel.

(Since the rest of the talk depended heavily on black-
board diagrams and slides, I have taken the liberty to sub-
stitute in its place Dr. Yowell’s own lucid description of
the wiring. It goes into greater detail than my own talk
did, and will be much easier to follow for anyone who
wants to reproduce the wiring.)

*

Sixth Differences on the 405

EVERETT C. YOWELL

Institute for Numerical Analysis,
National Burean of Standards

THE METHOD used in computing the sixth differ-
ence is that given by Comrie.! The first six functions are
used to compute the first through the fifth difference.
There is then available in the machine

fs s Alll/z ’ A25 s A39/2 ’ A44 ’ A57/2 .
The sum of these six quantities is an approximation to f; ,

and the difference between f, and the sum of these terms
will be A%, . This can be verified by writing

f7 = fs + Alls/z ’ Al13/2 = Aln/z + I

Hence

I

Hence

f7 =fe+ Alu/z + A+ A?fulz

fs + A]n/z + A% > A2s Az5 + A311/2

This process can be continued until the fifth difference is
written as the sum of the previous fifth difference and a
sixth difference. Then transposing the equation gives

A64 = f7 - (fs + Al11/2 + A25 + A“s/z + A44 + A57/2) .

The machine process is as follows: we assign one
counter to the function and one to each difference—seven
counters in all. Let us suppose the machine is set up with

¢ in Counter 1, A}/, in Counter 2, AY in Counter 3,
0N,,, in Counter 4, A in Counter 5, Ay, ,, in Counter 6
and f; in Counter 7. In the next eight card cycles we will
compute AS.

14 .
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During the first card cycle, AS, is rolled out of Counter 1
into Counter 2. This addition of AY to A}/, gives A}, in
Counter 2. At the end of this cycle, a total is taken, printing
I\, out of Counter 1 and resetting this counter. During the
second card cycle, A}, is rolled out of Counter 2 and
entered positively into Counter 3 and negatively into
Counter 1. This addition of A}, to A gives /¥ in
Counter 3, while — /Y, stands in Counter 1. During the
third card cycle, A% is rolled out of Counter 3 and entered
positively into Counter 4 and negatively into Counter 1.
This addition of A% to A}, gives A¥,,, in Counter 4,
while — (A%, + /%) stands in Counter 1. During the
fourth card cycle, /¥, is rolled out of Counter 4 and
entered positively into Counter 5 and negatively into
Counter 1. This addition of A¥,,, to A% gives A% in
Counter 5, while —(A3,, + A% + A%,,,) stands in
Counter 1. During the fifth card cycle, A% is rolled out
of Counter 5and entered positively into Counter 6 and nega-
tively into Counter 1. This addition of A% to A/, gives
Az, in Counter 6, while — (A3, + A5 + N + 2%)

stands in Counter 1.

During the sixth card cycle, only the negative transfer
into Counter 1 is needed. In the previous cases, we have
had to build up our difference order of # from a higher
order difference and the previous order of difference #.
But the function has been read from the card, so that the
function does not have to be built up from the previous
function and first difference. Hence, during the sixth card
cycle, AlL,/, is rolled out of Counter 6 and entered nega-
tively into Counter 1, thus giving — (A%, + AL + A%y
+ A%+ Ay,,,) in Counter 1. During the seventh card
cycle, f, is rolled out of Counter 7 and entered negatively
into Counter 1. This gives — (A%, + AL + Ny + 2%
+ Al + f.) in Counter 1. During this cycle, f; is reset
as it rolls, leaving the counter open for receiving the next
function. This process will be explained later.

During the eighth cycle, f, is read positively into Counter
1 and Counter 7. This leaves f, in Counter 7 for use in com-
puting the next difference and completes A% in Counter 1,
for A5 fs - (Aslz + A4 + A311/2 + Az + A]_s/z + f7)
During the eight-cycle operation, each counter has ad-
vanced from one difference to the succeeding difference of
the same order. Hence we are ready to repeat the cycle
again and compute AY%. Since one function card is read
every eight cycles, seven blank cards must follow every
function card.

The first thing to be done is to set up an eight-cycle
control panel. This is done by lacing together seven X
distributors (Figure 1).

As the first card is fed into the machine, the UCI hubs
emit impulses at every digit position. The X impulse is
selected by the digit selector and passed on to the common
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hub of Distributor 7. Since 7 is not energized, the impulse
comes out of the NX hub and into the common hub of 6.
Since this is not energized, the impulse comes out of the
NX hub of 6 and enters the common hub of 5. Since 5, 4,
3, 2 are all unenergized, the impulse finally goes from the
NX hub of 2 to the common hub of 1. This distributor is
unenergized, so the impulse comes out of the NX hub and
picks up Distributor 1. Once picked up, the distributor
holds for one cycle.

As the second card is fed, the UCI hubs emit impulses
for all digits, and the digit selector passes the X impulse
along to the distributor chain. It passes along the lacing,
as the first impulse did, until it reaches Distributor 1.
Since this is still energized, the impulse is shunted to the
X hub of the distributor, and from here to the pickup of
Distributor 2. Once picked up, this also holds during the
next card cycle. As the third card is fed, the UCI hubs
emit impulses for all digits, and the digit selector isolates
the X impulse and passes it along to the distributor chain.
It passes along the lacing until it reaches Distributor 2.
Since this is energized, the impulse is directed to the X
hub of Distributor 2, from whence it picks up Distributor
3. Notice that the impulse never reaches Distributor 1,
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since its path is broken by Distributor 2. As the fourth
card is fed, the UCI hubs and the digit selector pass an
X impulse along to the distributor chain. The impulse
passes along the lacing until it reaches Distributor 3. Since
this is energized, the impulse is-diverted to the X hub of
3, from whence it picks up Distributor 4.

In a similar manner, the fifth card picks up Distributor
5, the sixth card picks up Distributor 6, and the seventh
card picks up Distributor 7. As the eighth card is fed, the
UCI hubs emit impulses for all digits, and the digit se-
lector passes the X impulse on to the common hub of
Selector 7. Since this selector is energized, the impulse is
shunted to the X hub of this distributor. As this hub is not
wired, the impulse has no effect on the machine, and all
selectors are unenergized as the ninth card starts to feed.
This is the same condition that we had when the first card
started to feed. Thus we have wired a sequence of events
which repeats itself every eight cycles.

Seven counters are necessary for a sixth difference com-
putation. This permits handling ten-digit numbers. We
shall assign Counter 4A-6A to the function, 4B-6B to the
sixth difference ; 4C-6C to the fifth difference; 2A-8A to
the fourth difference ; 2C-8C to the third difference ; 2B-8B
to the second difference ; and 2D-8D to the first difference:
All counters are balance coupled, that is, the CI from the
highest position is wired back into the C hub of the units

position and the “hot 9” is jackplugged to the SUP hub.

An analysis of the desired counter additions and sub-
tractions shows that the following counters must be acti-
vated on the indicated cycles.

Roll
Negatively
Roll ) Into the
Cycle Positively Onito NS Counter  Counters

1 AS N°® 4B-6B Subt. (0
4C-6C Add

2 YA A A5 4C-6C Subt.
2A-8A Add (2)
4B-6B Subt.

3 A4 A3 A 2A-8A Subt.
2C-8C Add (3)
4B-6B Subt.

4 N3 VA A3 2C-8C Subt.
2B-8B Add (4)
4B-6B Subt.

5 A2 Al AN 2B-8B Subt.
2D-8D Add (5)
4B-6B Subt.

6 Roll Al 2D-8D Subt. (6)

7 Roll the function 4A-6A Subt. &
4B-6B Subt. /)

.8 Read the new function into the 4A-6A Add

function counter and the A8 counter 4B-6B Add @®
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One cycle of Plug to C impulses is sufficient to control
all but the A® counter. Since any difference counter adds
as the next higher difference counter subtracts, only the
subtraction needs to be wired to the Plug to C. The addi-
tion can be taken care of by wiring 2A-8A add to 4C-6C
subtract; 2C-8C add to 2A-8A subtract; 2B-8B add to
2C-8C subtract ; 2D-8D add to 2B-8B subtract. The sub-
traction impulses are generated as shown in Figure 2.

It is at this stage of the wiring that the differencing

cycles must be correlated with the card feed cycles. Since
we wish to read from the first card, this step must take
place as the first card is under the lower brushes. This is
the last step in the differencing cycle. As the first card
feeds, an X impulse picks up Distributor 1. As the first
card passes the upper brushes, the X impulse picks up
Distributor 2. Hence this distributor is energized as the
first card passes the lower brushes, and the Plug to C
impulse causing Counters 6A and 6B to read must come
from the X hub of Distributor 2. This fixes the end of the
differencing cycle, and the remaining Plug to C impulses
are wired in sequence from this point.

Selector F is used for algebraic sign control. Only the
reading of the function depends on the punched sign. Once
it is entered into the counters as a complement, if negative,
or a true figure, if positive, it will always be transferred
as a complement or a true figure. Another position of the
selector will be used to indicate the sign of the function in
the listing process.

The entry of digits into all but the function and sixth
difference counters is made by using the card cycle total
transfer device. We have already wired the counters to
subtract on the cycle when they transfer, and to add on the
cycle when they receive. The wiring of the counter exit
and counter entry circuits is as follows:

from 4B-6B  Counter total exits.
to 4C-6C  Counter entries.
from 4C-6C  Counter total exits.
to 2A-8A  Counter entries.
from 2A-8A  Counter total exits.
to 2C-8C  Counter entries.
from 2C-8C  Counter total exits.
to 2B-8B  Counter entries.
from 2B-8B  Counter total exits.
to 2D-8D Counter entries.

The function counter receives impulses only from the
brushes:

from Lower brushes.
to 4A-6A  Counter entries.

The sixth difference counter must receive impulses from
all difference counters, the function counter, and the
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brushes. This demands the use of several selectors. Only
five positions will be shown in each selector, but each is to
handle the full ten digit field. '

Selector A is picked up on the card reading cycle by an
X control shot from the pickup hub of Distributor 2 to
the X pickup hub of the selector. Selector B is picked up
by an X control shot from the pickup hub of Distributor 1
to the X pickup hub of the selector. Selector C is picked
up twice; once by an X control shot from the pickup hub
of Distributor 4 to the X pickup hub of the selector, and
the second time by an X control shot from the pickup hub
of Distributor 6 to the D pickup hub of the selector. Se-
lector D is picked up twice; once by an X control shot
from the pickup hub of Distributor 5 to the X pickup hub
of the selector and once by an X control shot from the
pickup hub of Distributor 7 to the D pickup hub of the
selector. These impulses are taken from the pickup hubs
of the distributors. It must be remembered that the pickup
hubs of the selectors and distributors are double hubs so
that an impulse wired into one hub is automatically emitted
from the other. Hence the selectors and the corresponding
distributors will pick up at the same time.

Wiring from the counter list exits is done to avoid the
use of split wires from the counter total exit hubs. When-
ever a counter is impulsed to add or subtract, the counter
list exits and the counter entry hubs are internally con-
nected. Thus, whenever Counter 8A is impulsed to add or
subtract, any number reaching the counter entry hubs will
also reach the X hubs of Selector C by way of the 8A
counter list exits.

The read-in to Counter 6B will proceed as follows: as
Distributor 2 picks up, the first card feeds under the lower
brushes. Selector A also picks up, so that the entries to
6B are connected by way of the double entry hubs of 6A
to the brushes. This reads f into the counter. As Dis-
tributor 2 picks up, Distributor 8 picks up also (Figure 2)
and the new f is added or subtracted into 6B according to
the sign of the function. On the next cycle, Distributor 3
is picked up, but no selector is energized. Hence the 6B
entry hubs are connected to the 8B total exit hubs. As only
the 6C counter is impulsed on this cycle, no impulses are
emitted from 8B into 6B. Also 6B subtracts, so that the
difference in 6B is transmitted out through the total exit
hubs into the entry hubs of 6C which adds the sixth dif-
ference onto the previous fifth difference. On the next
card cycle, Distributor 4 is picked up. Hence 6C subtracts
and 8A adds, and 6B subtracts through the NX hub of
Distributor 8. Selector C is also picked up. Therefore, any
information reaching the 8A entry hubs is emitted from
the 8A list exit hubs and transferred to the 6B entry hubs,
The 8A entry hubs are connected to the 6C total exit hubs.
As 6C subtracts, the fifth difference is emitted from the
total exit hubs and added into the previous fourth differ-
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ence in 8A. It also passes through 8A and is subtracted in
6B. On the next card cycle, Distributor 5 picks up. Hence
8A subtracts and 8C adds and 6B again subtracts through
the NX hub of Distributor 8. Counter 8A transfers the
fourth difference into the 8C entry hubs where it is added
to the previous third difference.

The fourth difference also is emitted from the list exit
~ hubs and reaches the X hubs of Selector D. Since this dis-
tributor is energized, these digits reach the entry hubs of
6B and subtract on top of the fifth difference. On the next
cycle, Distributor 6 and Selector C are energized, 8C sub-
tracts, and 8D adds; 6B still subtracts through the NX
hub of Distributor 8. Since 8C subtracts, it transmits the
third difference to 8B, where it adds to the previous second
difference. The third difference is emitted from the 8B list
exit hubs. From there, it passes through the X hubs of
Selector C into Counter 6B. Note that 8A is not active in

this cycle. Hence the 8A list exit hubs are dead, and no

confusion can result irom double wiring the 8B and 8A
list exit hubs to the X hubs of Selector C. On the next
card cycle, Distributor 7 and Selector D are energized.
Counter 8D adds, while 8B and 6B subtract. Counter 8B
emits the second difference, which enters 8D and adds onto
the previous first difference. It is also emitted from the 8D
list exit hubs and passes through Selector D into 6B.
Again the double wiring of the 8C and 8D list exit hubs
to the X hubs of Selector D causes no confusion as 8C
and 8D are not active at the same time. -
On the next card cycle,as no distributor or selector picks
up, 8D subtracts and 6B subtracts (Figure 2). Thus 8D emits
the first difference from its total exit hubs, and this passes
through the NX hubs of Selector D to Counter 6B. On the
next cycle, Distributor 1 and Selector A are energized and
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6A and 6B subtract. The function is emitted from the
total exit hubs of 6A and passes through the X hubs of
Selector A into Counter 6B. The next cycle feeds another
function card past the brushes and starts the operation all
over again.

All counters are to accumulate the numbers read into
them except the function and the sixth difference counters.
The sixth difference counter should reset after the differ-
ence has been rolled out. This is controlled as shown in
Figure 4.

The function counter is to be reset after it has trans-
ferred its value to 6B. This is best done by rolling the
function out of 6A back into 6A (Figure 5).
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The pickup hub of Selector E is wired to the pickup hub
of Distributor 2. This is to prevent a reset when a nega-
tive function is read into 6A. The resetting principle is as
follows: 6A is subtracting in order to transfer the infor-
mation. Hence all its counter wheels are turning. As each
wheel passes 9, it emits an impulse which enters the
counter through the list exit hub. When an impulse enters
a counter position while that counter is subtracting, it
stops the wheel. Consequently, the counter wheel is stopped
as soon as it emits an impulse—when it stands at 9. A
counter with 9 in every position is a counter containing
zero, if a “nines complement” system is used. Thus the
function counter is reset as it transfers.
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To print the sixth difference and list the argument and
function, the following wiring is used (Figure 6):
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Counters 4B-6B are wired for balance conversion (Fig-
ure 7):

*
o

o\mo v
9 _surl
o o

°

TR T I d
A R R
Ficurg 7 -

The argument and function are listed (Figure 8) :
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This will list an N after each negative function. If a
numerical type bar is used for the sign of the function,
read one Subtract Units Position into Selector F instead
of a “hot 5.”

To get the listed numbers printed, a list cycle must be
introduced before the function card reads. This is done by
wiring the pickup of Distributor 2 to a control position of

SCIENTIFIC COMPUTATION

the comparing relays, and connecting the unequal impulse
to the minor control hubs.

When there is one intermediate and one final total
each cycle, the paper is spaced three times. In order to
bring all the listing and total printing for a single step
onto a single line, the upspace suppress is wired from first
card control intermediate. This wiring kills spacing on the
intermediate total cycle and allows only the single upspace
on the minor listing cycle.

In order to compute an nth difference, an (n 4 2)-cycle
panel is needed and (» + 1) blank cards must be inserted
between function cards. Higher differences than the sixth
can be computed on this same scheme if counter capacity
and distributor capacity are available. No extra selector
capacity is needed, as Selectors C and D can be multiwired
on the same scheme as indicated here.

If the function and argument are read into counters
instead of being listed, they can be summary punched
together with the highest order difference. An interme-
diate summary punch control will be sufficient. Since the
argument and function can be total printed at the same
time as the difference, the listing cycle is not necessary
and the minor control break can be eliminated. The inter-
mediate control can then be shifted to minor control, sav-
ing one cycle for each difference.

The machine is cleared on the last card by wiring all
differencing counters to major total. Since a last card
causes all these total breaks, this will reset all counters
and clear the machine.
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DISCUSSION

Mr. Ferber: Do you insert blank cards?

Dr. Blanch: Yes, seven blank cards behind every func-
tion card, otherwise you couldn’t do the operation. The
cards are put in by the collator.

Mr. Bisch: Are they absolutely blank cards? _
Dr. Blanch: Absolutely blank, and they come out blank.
You can use them over and over again. You are really

programming the accounting machine.

Dr. Abramowitz: I would like to mention that the sixth
difference control panel described by Dr. Blanch may be
used for the computation of differences of lower order if
so desired. To illustrate this property it is instructive to
consider the following operations which take place to pro-
duce the successive differences. Let us consider a table of
values f,, fo, . . . in which we have interspersed seven blank
cards between successive function cards. If the cards have
been fed into the machine and the f; card is at the lower
brushes, we then compute as shown on page 21.



As s At A? A? 1 Function

Counter Counter Counter Counter Counter Counter Counter
#, card +fi 0 0 0 0 0 “+f
Blankcard 1 Clears +fu
Blankcard2  —f, +f
Blank card 3 —2f, +f.
Blank card4  —3f, +f;
Blank card 5 —4f, +1
Blankcard6  —5f,
Blankcard7  —6f, Clears
f, card fo—6f, +f2
Blank card 1 Clears fo—5f
Blankcard2  — f,+ 5f, =4
Blank card 3  —2f,+ 9f, fa=3f,
Blankcard4  —3f,+12f, f2—2f
Blank card 5 —4f,+ 14f,
Blank card 6  —S5f,+15f, fo—fi= L%
Blank card7  —6f,+15f, Clears
. card fa—6f+15f, +fs
Blankcard 1 Clears fa—5£,+10f,
Biankcard2  — fy+ 5f,—10f, fa—4f2+6f,
Blankcard3  —2f,+ 9f,—16f, far=3fa+3fs
Blankcard4  —3f,-+12f,—19f, fo=2fatfi=0
Blank card 5 —d4f,+14f,—20f, Lyt D=1
Blankcard 6  —Sf,+15f,—20f,
Blankcard7  —6f,+15f,—20f, Clears
£, card fo—6Fs+15f,—20f, +fe
Blankcard 1 Clears fa—5fs+10f,— 10f,
Blankcard2  — f,+ 5f,—10f,+10f, fa—Afat6f,—4f,
Blankcard3  —2f,+ 9f,—16f,+14f, fa=3fs+3f—fi =1
Blank card4  —3f,+12f,— 19f,+15f, LD = 0
Blankcard 5 —4f,414f,—20f,+15f, JAVEAVE YAV
Blank card6  —5f,+15f,—20f,+15f,
Blankcard7  —6f,+15f,—20f,+15f, Clears
fs card fs—6fs+15fs—20f,4-15f, +fo
Blank card 1 Clears fs—5fs+10f,— 10f,+ 5f,
Blankcard2  — fy+ 5f,—10f,+10f,—57, fo—4fut6fo—afatfi= O
Blankcard3  —2f,+ 9f,— 16f,+ 14f,~6f, M+ =2,
Blank card4  —3f,+12f,— 19f,+15f, —6f, Lot = 1N,
Blankcard 5 —4f;+14f,—20f,+ 15f, —6f, Nyt LNy =1
Blankcard6  —5f,+15f,—20f,+15f,—6f,
Blank card 7 —6f,+15f,—20f,+15f,~ 6f, Clears
fo card Fo—6Fs+15F,—20f,+15f,~ 6f, +fs
Blankcard1  Clears Fo—5Fs+10f,— 10f, +5f,— f, = 1,
Blankcard2 = fo+ S5f;—10f,+10f,—5f,+f, N L =1
Blank card 3 —2fs4 9f,— 16f,+14f,—6f,+F, L8 Ny= 1,
Blank card 4 —3fs+12f,~ 19,415, —6f, +7; Ny N= NN,
Blankcard 5 —4fo414f,—20f ,+15f,—6f,+F, N = 0
Blank card 6 —5fo+15f;—20f,+15f,— 6f,+f,
Blank card7  —6fs+15f,—20f,+15f,— 6f,+f, Clears
fr card fr—6fo+15f;—20f,+15f, —6f,+f, = /% +fz

*The subscript convention used here differs from that of Yowell in Dr. Blanch’s paper.—Ed:
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To explain the foregoing techniques, let us confine
our attention to the sequence of operations occurring
with the f; card. When the f, card is at the lower brushes,
it is added into the A® counter and function counter. On
blank card 1 the A® counter adds to the A°® counter, the
amount in the A°® prints, and the counter is cleared. On
blank card 2 the amount in the A® adds to the A* counter
and subtracts from the /\® counter. A similar process takes
place on blank cards 2 to 5. On blank card 6 the A* counter
subtracts from the /A\® counter, On blank card 7 the func-
tion subtracts from the A° counter. The function counter
is cleared on this card by having the amount stored in the
counter subtract from itself. This method of clearance
eliminates the necessity of having to stop to take a total.

From this point on the pattern described above continues
to produce the successive values of the sixth difference.
I have only indicated the changes which take place in the
various counters. It is clear that if the add impulse to the
A? counter is eliminated we will transmit a zero balance
on blank card 7 and the order of the differences in the
remaining counters will be reduced by one. Similarly, if
the add impulse to the A?® counter were removed, the
process described would generate second differences only.
If only fourth differences are desired a minor modification
of the above process (using six blank cards) will print all
the columns of differences ‘as true figures. In the sixth
difference control panel only the quantities in the A*®
counter print so that the differences in the other counters
are carried as complements. If one wishes to list all col-
umns of differences it is necessary to introduce additional
counters from which the amounts may be printed as true
figures with appropriate sign indication.

In both cases just described it is possible to difference
ten-digit function values taking account of algebraic signs.
If only fourth differences are desired, the capacity of the
counters may be extended to sixteen digits. It is also pos-
sible to take second differences of three functions (using
four blank cards), or third differences of two functions
simultaneously (using five blank cards).

It is clear that the Type 602 Calculating Punch is a
superior machine for the calcillation of tabular differences
since it is faster and the results are punched on cards.
Although the results can be punched on cards when dif-
ferencing on the accounting machine, this procedure in-
volves summary punching. However, when only a printed
record of the differences are wanted for the purpose of
checking tables, the accounting machine method is desir-
able. Comparison of the speed of the accounting machine
method with that necessary for differencing on a National,
Burroughs or Sundstrand machine shows that it is ap-
proximately four times as fast except for time consumed
in punching the cards. However, once a card file has
been prepared, further computations can be made with
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it, and this usually compensates for the time spent in key
punching. The time necessary for interspersing blank
cards is never appreciable, and this operation can usually
be done at the same time that the differences are being run.

I would like to mention that at the present time we can
compute tables on IBM equipment and type them on the
card-controlled typewriter. From our experience, this type-
writer made one error in typing 35,000 ten-digit numbers.
This is work of a high order of accuracy, but for a table
maker there is no compromise with perfection. The result-
ing manuscript must be subjected to various tests. It would
be highly desirable if there were a means of preparing a
card file from the typed manuscript. This would obviate the
necessity of checking by hand, proofreading or repunching
a new set of cards to be compared with the original files.

My. Hollander: I would like to suggest something about
the notation on the diagrams. There ought to be more detail
about where the information is coming from. When a
counter is indicated by a column, it requires little more
writing to indicate in that column that the counter is being
impuised plus or minus. The flow of information through
the machine can then be more easily determined, because
one knows something is happening in that column.

Dr. Herget: 1 would like to point out that the chain of
X distributors Dr. Abramowitz showed might better be
activated by a punch on one of the function cards, be-
cause, if at any time there is a machine failure, the 405
will go on with an out-of-phase cycle of eight. If started
by the card, each cycle would be independent. '

My. Hollander: The blank cards could all carry control
punches.

Mr. Bell: Another advantage of that is that the board
can be used as a general purpose difference computer with
the order of the highest difference determined by the con-
trol cards used.

" Dr. Eckert: There is one comment I would like to make
about Dr. Abramowitz’ point that we should have auto-
matic means of reading tables so as not to have to key
punch them. If you consider the value of a table and the
amount of work you put into computing, it doesn’t seem
excessive to have such a machine. But to key punch the
figures from a paper you publish for posterity is a com-
paratively cheap method of proofreading. Even though
you check the plates perfectly the printing may have been
bad, so it is very useful to have at least one copy of the
tables looked at by individuals as it comes from the press.

Dr. Abramowitz: The difficulty in the printing doesn’t
detract from the value of a machine for reading back and
checking. You want to be able to read back accounting
machine records, too.

Dr. Grosch: I think many people here already know it is
possible to take second differences on a two-brush account-
ing machine by flip-flops, without interleaving blank cards.



The Use of Optimum Interval Mathematical Tables

H. R. J. GROSCH
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THE ART of constructing printed tables of mathemati-
cal functions is not by any means static. Indeed, of the
half dozen great table makers, two have flourished in our
time: the late Jean Peters and L. J. Comrie. The require-
ments of a good printed table are not often explicitly for-
mulated, but most of the Forum members have worked
with “good” and “bad” specimens. Not only must a com-
puter constructing a printed table worry about interpola-
tion methods, tabular intervals, and the detection and
elimination of errors, but he must consider very carefully
the typography, page format, paper quality, and binding.
Discussion of these latter items is not often found in the
literature ; aside from notes in MTAC reviews and the
introductory material in the new Chambers tables,! the
only discussion I have referred to recently is in the Napier
Memorial.?

Naturally the aim of the table maker is to facilitate the
use of his product. In specifying a figure of merit for use-
fulness, however, one runs some risk of controversy in
assessing a “design” in terms of speed of use, reduction
of ocular fatigue, and protection against misreading ;. the
relative weighting of these estimates is even more uncer-
tain. The human elemént is the vital one in hand comput-
ing, and it is not surprising that attempts to predict what
computers will like have led to rather varied results!

The situation is far different when we turn to automatic
digital computing equipment on the level, say, of the Type
602. For a given system of input, storage, and output the
variables of typography, format, and binding disappear;
estimates of the usefulness of a particular table can be
made with almost the precision of cost accounting; and
machine characteristics become more important than
human foibles. It is not surprising that machine methods
of calculation have led to a very different formulation of
the problem of table design, nor is it surprising that the
formulation can be much more exact than opinions about
printed tables.

A problem involving table lookup should be specified as
completely as possible. As always, one needs to know the
function and range of arguments required. An exact state-
ment of error requirements is needed: not just “five fig-
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ures,” but a detailed analysis of the permissible error as a
function of the argument. Thus a typical specification
might be “no error greater than 2.6 X 10 for + = 1, nor
greater than 2.6x X 10 for # > 1; average error of
random interpolated values to be zero.” The average num-
ber of values to be taken from the table at each use should
be known, as should the probable number of times the
table will be used (on the work to which its construction
cost will be charged).

In addition, the speed and operating cost of the machines
involved both in using and in constructing the table must
be given, and their storage and sequence capacities. Fin-
ally, some sort of estimate may be made of the value of
the table designer’s own time; this is the factor which
makes it unwise to spend a month planning how to save a
total of three or four hours of 604 time!

The most satisfactory type of table, given requirements
permitting its use, is the critical table. No interpolation is
required ; final answers are obtained by sorting or collating
and gang punching. In printed critical tables, one line is
required for each possible value of the function (more if
the function is not monotonic in the range tabulated).
Values of the argument are constructed so as to correspond
exactly to values of the function midway between those
actually printed. In the optimum interval methods I have
developed, a general form of critical table arises from
setting the degree of polynomial approximation equal to
zero—general in the sense that the maximum tabular error
need no longer be exactly one-half in the last place.

Critical tables, however, are indicated only if the num-
ber of values of the function required from each use of
the table is large compared to the size of the table. Thus a
critical table of the sine function from 0° to 80°, with
maximum allowable error 1.5 X 10, will consist of 3283
cards. It obviously would be a good choice if more than a
thousand values were required each time the table was
used, and it obviously would be a poor choice if less than
a hundred values were required.

A table requiring linear interpolation usually is consid-
ered next. It is far easier to construct than higher order
tables, and much smaller than a critical table. But machine
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characteristics may be an important factor; if the multi-
plications involved in the interpolatory process are per-
formed on the 604, for example, quadratic or cubic
formulas take no longer to evaluate than linear ones, and
it is possible to save table bulk subject to limitations im-
posed by the storage capacity of the 604 and by the
extra cost of computing more complicated tables. On the
602, extra multiplications slow down the operational
speed, and a different balance must be struck. On the
601, extra card passes are required ; for quadratic inter-
polation Herget’s card reversal technique eliminates the
extra control panel, but not the second pass.

There is no point in belaboring this subject of economic
decisions too far. I will close this section of my paper by
giving one very detailed example of the process, and then
pass on to more technical matters. Suppose the estimation
procedures to be explained later have been applied to a
certamn problem, and that the following approximate table
sizes resulted :

Critical 18,000cards (12)
Linear 1,400 cards (17)
Quadratic  340cards (23)
Cubic 110 cards - (29)
Quartic 60 cards (35)
Quintic 30cards (42)

The numbers in parentheses indicate the number of digits
punched on each card of the table, including the argument.
The arguments on the detail cards are six-digit numbers.

Further suppose that the equipment available includes
sorter, collator, reproducer; and 602A and 604 punches.
The relative cost of using these machines is taken as
2, 3, 4, 8, and 16 including operator and overhead (these
figures will of course differ from installation to installa-
tion, and also will be changed for different machine models
and extra accessories). Finally, suppose that an average of
250 values is needed for each use of the table.

In the critical case, we shall do best to use both sorter
and collator. First we sort the detail cards on six columns,
then we collate these on all six columns with the 18,000-
card table, selecting out unnecessary table cards. The
merged deck, not much under 500 cards, is passed through
the reproducer and gang punched. A final collator run re-
moves the detail cards and reassembles the big table. The
costs, in arbitrary units, are respectively 0.3, 3.9, 0.4, and
4.0; the total, 8.6. Because of excessive card handling
problems we will adopt 9.0 as our reference figure.

In linear interpolation, collating will still pay in spite of
the drastic reduction in table size. We sort the 250 detail
cards on four columns, collate on four columns with the
1,400-card table, selecting unnecessary table cards, run the
merged deck of say 400 cards through a gang punching
operation, separate and restore the table as before, and
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finally make a multiplication of simple 4 X B + C form
on each detail card. The costs are 0.2, 0.4, 0.4, 0.4, and 1.4
(T'ype 602A) or 0.8 (Type 604). Choosing the 604, the
total cost is 2.2 units, a considerable saving over the pre-
vious critical table.

In quadratic interpolation, it is no longer economical to
select out unwanted table cards, since it is cheaper to pull
apart the table and detail cards on a single pass through
the sorter than to reassemble the table deck by collating,
while the extra cost of running a few unnecessary table
cards through the reproducer is negligible. Hence, the
operations are sorting on four columns, collating without
selection (340 + 250 cards), gang punching the whole
590-card merged deck, sorting once for separation, and
repeated multiplication of the form (4 X B + C) X
A + D on either 602A or 604. The costs are 0.2, 0.2, 0.5,
0.1, and 2.2 ('Type 602A) or 0.8 (Type 604). The total is
1.8 if the 604 is used.

In the cubic case the collator is no longer used, and this
will be true for the still smaller tables in higher-order in-
terpolation. The costs are 0.3 for sorting, 0.4 for gang
punching, 0.1 for separating, and 3.0 (Type 602A) or 0.8
(Type 604) for interpolation. The total cost is therefore
1.6 units.

The quartic case costs 1.4 units, using the Type 604,
since the initial sorting cost drops to 0.2 again and the
gang punching drops to 0.3. This total cost of 1.4 arbitrary
units will not be substantially reduced by going to higher
order interpolation, and in fact the Type 604 has to stop
here, as its capacity for storing the multiple coefficients of
the quintic and higher tables, reading the detail card and
punching the answer is exceeded.

No consideration was given to passing the merged deck
through the 604, omitting the gang punching opera-
tion. Passing a table card through the 604 costs four
times as much as passing either a table or a detail card
through the reproducer; therefore gang punching should
be omitted only if the size of the table is less than one-
third the size of the detail deck. This just begins to be the
case for the quartic, and the costs for that case figure

- 0.2 + 1.0 4+ 0.1 = 1.3, undoubtedly the very best that can

be done.

If the number of times the job is to be done is great
enough to warrant constructing the very complicated quar-
tic table, we may claim that this latter case is the most
economical. If figures amortizing the cost of constructing
the various tables are added to the above, a final choice
can be made.

So much for the economics of special tables; now I
want to tell you about the methods we use to design and
construct optimum interval tables of various orders.

The idea of expanding the interval is not new.®* The
exigencies of hand computation prevented adoption in the
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past, but the advent of punched card equipment in tech-
nical computation immediately brought the matter to the
fore. The linear univariate case was discussed in some
detail,® but even at this level it is possible to increase the
permitted interval by 40 per cent.® The material for the
general case is new.

Let us consider the Besselian interpolation formula

n(n—1)

f=fitn: Aiiﬂ/z + ) AN B S

involving odd and mean even differences. The error of
neglecting the third difference is

- 1/2 -1
= UD0=D .y,

This error is zero at # = 0 and » = 1, and has two ex-
trema of equal size and opposite sign at # = 1/2 + \/1/12.
The extreme error is V3 A/216, or about A'/125. If this
kind of quadratic interpolation is adopted, the rule for
interval would be All= 125 ¢, where € stands for the maxi-
mum allowable error due to neglect of third and higher
differences.
If we define the error of approximation of the jth line
of a table as
P
() —2 Agit ) 5m=x <, (1)
=0
where the A’s are the coefficients of the approximating
polynomial of degree p, we can write this in #-measure as

?

F(n) —2 a;nt, 0=n<l, 2)
=0
with n=—2—""
Kj — X

This is ordinarily a polynomial of degree p + 1; taking
out e we write it as

€ Ep(n) . (3)

Of course e may vary from line to line of the table. In the
example of p = 2 Besselian interpolation, E,(n) was
n/12 — n*/4 + n*/6.

Without further ado, I will simply state that the maxi-
mum possible interval is obtained when the error poly-
nomial E,(#) is chosen from

Ey(n) =1—2n

E,(n) =1— 8u 4 8u?

E,(n) =1 — 18n + 48n? — 32x°

E.(n) =1 — 32n + 160n* — 256n* + 128+

or in general
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(=)
By(n) =1+ (p+ 1))

=0

20 (pi)!
Ci—1)U (p—itD)!

- nt (4a)

= (=1)p1cos [2(p+1) cost V] . (4b)

The identification with Chebyshev polynomials is due to
Dr. C. C. Bramble.

The error of approximation is therefore + eat n = 0,
passes through p extrema (alternately — ¢ and + ¢), and
is (—1)p1 e at n = 1. This is the error distribution which
maximizes the interval o = aj,; — 2. Note that the tabular
values 34,4} are no longer exact except for rounding
error. Instead they are wrong by the maximum allowable
amount + e. |

This material is sufficient to handle certain simple cases.
For example, consider the sine function near the origin,
and quadratic interpolation. We can replace the sine by the
first terms of its series, and write,

(v — 4%/6) — (A, + Ayv + A,2°) =
e+ (1 — 18n + 48n* — 320°).

Then using 4+ = ne and equating like powers of n we find

—1/60Pw® = —32n’e
or
o = (1926

the remaining equations can be solved for the 4’s and the
first line of our table is complete. Next we could write the
Taylor series expansion about #; and repeat the above to
get the next interval x, — x, and the next set of A’s; this
would go along finely until the term +24%/120 began to
bother us.

If one tries this process with a more slowly convergent
series for f(«), even the first line of the table will give
trouble. The square root function is a case in point; I tried
very early in my experiments to construct a table of
V1 — & to be used in going from sines to cosines, but
found that f(«#) =1 — x/2 — 2*/8 — 243/16 — . .. con-
verged too slowly for even the first line of a ten-decimal
p = 3 table.

The clue to a more general approacl comes from pictur-
ing the error polynomial after it is slightly distorted by the
presence of terms of degree greater than p-+1. The shape
is different ; the extrema are no longer exactly —1 or +1;
the positions of the extrema have shifted, but not much!
Therefore, if we insist that the error be + eat n = 0,
(—=DPeat n = ny, and (—1)p*1eat n = 1, where the n;, are

the p roots of dE (n) o
dn ’
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errors very slightly larger than ¢ may occur in the neigh-
borhood of the #;; this excess error may be taken care of
by making the interval very slightly smaller than theory
might indicate.

In general, then, after an interval has been adopted, we
compute the function for the p+2 arguments corréspond-
ing to n = 0, the ny’s, and #» = 1. This is done with the
usual table-making precaution: two or three extra decimal
places are carried. We then write p+2 simultaneous equa-
tions in the unknowns a,, @y, . . . , @, and €:

a + ¢ = £(0)
ao + ma, + nia, + ...+ #nia, — e = f(n,)
a + 1,0, + 1030, + . - a4+ e = f(n,)

-+ "l;zap + (=1)? €= f(ny)
g+ ...+ e+ (=1De= (1)

ao + npa, + nja, + ..
a+  a +

These equations are solved for the a’s and for . If € is less
than but nearly equal to its desired value, the interval has
been chosen correctly.

Due to the nature of the polynomials E,(#n), we are able
to write a general rule for the positions of the extrema:

1, = sin?

kx
34D k=1,23...p. (5)
Thus there are no extrema for p = 0; for p = 1 thereisa
minimum at #, = 1/2; for p = 2 there is a minimum at
n, = 1/4 and a maximum at #, = 3/4; for p = 3 there are
minima at n, = 1/2 — \/1/8and n, = 1/2 + 1/8, and
a maximum at n, = 1/2.

It is evident that if we write the above system in matrix
notation

N-A=TF,

N is a square matrix of order p+2 whose elements depend
only on the choice of p. The inverse of N may therefore
be computed once and for all, for the various values of p,
and the unknown column matrix A formed from

A=N'-F. (6)

The bottom element of A is ¢; {rom the top down, the
others are a,, @y, @, . . ., 0,. Having obtained the a’s, the
linear transformation to the desired A’s is obvious but
laborious, since each line of the table requires a different
transformation. Values of N for p = 0, 1, 2, and 3 are
given in Table I.
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Tasre I
CF12 412 +3/4  +1/2  —1/4
+1/2  —12 1 0 +1
+14 =172 4174
+5/6 +1/3 -1/3 +1/6
—10/3 42 +10/3 -2
+8/3 —8/3 —8/3 +8/3
+1/6 —1/3 +1/3 ~1/6
L i
(478 414 —1/4 414 —18 |
-7 + 42 44 — 42 43
+14  —12v2 -4  +412vZ  —10
-8 + 8vV2 0 — 82 +8
+1/8  —1/4  +1/4 —1/4  +1/8

A very important feature of the matrix presentation is
that the bottom row of N7, which is the one used in cal-
culating € from F, has the general form

1 1 1
[+2(p+1> Tl Thd
(~1p (=D
1 zo+Dl D

This furnishes the definitive estimation process required
in choosing an interval, and is a powerful tool in poly-
nomial approximation theory.

While these matrix methods serve well in the final
stages of table design and in the actual construction,
rougher procedures are valuable in the preliminaries. If
we consider the term ¢ = p 4+ 1in (4a), put » = 1, and
equate it to the (p+41)th term of the Taylor expansion for
f(xr+o) we get

WP F O (p 1) = (= 1)PH - 22 L e

Absorbing the sign ‘into ¢, and remembering the relation
between differences and derivatives, we can write

A = P O = 200 (py )] e, (8)
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The more usual cases are as follows:

p=0 Al = 2¢
=1 Al = 16¢
p=2 Al = 192¢
[)=3 AV = 3072 ¢ .

Suppose we wish to make a linear table of In #, 1.0 =
x < 5.0, with an overall accuracy of 1.8 X 107 through-

out, and no requirement on the mean error. First we have

to consider the form of the table. I have found from expe-
rience that in this sort of problem there is a real gain in
making the A,’s seven-decimal numbers, but not more.

- The A,’s will also be seven decimals. The rounding error

of the worst- A, will not exceed 5 X 1078, the rounding
error of A,x (assuming x to be exact) will not exceed
Sx X 1078 The final rounding of an interpolated answer f
may introduce errors as large as 5 X107 if the answer is
given to six decimals only. Therefore ¢, the maximum al-
lowable error due to the degree of approximation, must be

e = (125 — 5x) x 1078,
From (8) we have
o? fit = (20 — 0.82) x 10 ;

if it is desirable to squeeze the final table down to the very
smallest size, this equation may be used to calculate the
intervals. Usually, however, we would take the worst case
(# = 5.0) and simply use

o? fil = 16 X 107°

or

o? = 0.004(ft)1/2
as the interval rule. For the natural logarithm, fit = —22
and hence the very simple result, giving e a negative sign, is

0 = 0004 X .

As a test we take the last interval, with argument 4.980
and interval 0.020. The column matrix F is

1.60542989
1.60743591
1.60943791

and application of (7) gives e = —1.005 X 10°%. At x = 5.0
the maximum rounding error from all sources will be
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0.80 X 107 so the above value of ¢ is exactly as it should
be. The actual tabular values turn out to be

4, = +0.6074339
A, = 40.2004010 ,

and the errors at = 0, #, = 1/2, and # = 1 are respec-
tively —0.99, +1.02, and —0.99 in units of the sixth
decimal. These errors are small because there happens to
be no error in A4, (at least to eight decimals), the rounding
error of A, was only 1.5 X 107, and the final results were
not rounded at all. This favorable combination of circum-
stances will not hold throughout the table.

As for the size of the whole table, detailed examination
using values of o from 0.004 to 0.019 will show that 430
cards are required. For rough estimates, I use

5.0 5.0 i
dx/o = 250 | dx/x = 2501n 5.0 = 403 .
1.0 1.0

This, of course, assumes a smooth change of interval, and
is usually ten or fifteen per cent low.

It is not practical to describe here the extension of these
methods to other problems. I have worked out approaches
to such variations as cases with error terms of order p+2
instead of p+41, cases where the mean error must be zero
and p is odd (for p even the above methods suffice), and
even the bivariate problem. In general, it is fair to say that
optimum interval methods in the latter case are warranted
only if the table is to be referred to many hundreds of
times, for the work of design and construction is enormous
even for the linear case.
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ELECTRICAL punched card equipment has been used
for matrix calculations of various sorts for some time.
There have been wide discrepancies in the operational
methods, efficiency and general utility of the procedures
being used. From the widespread interest in this subject,
it is evident that there is a genuine need for a good basic
approach to the problem, particularly in terms of actual
machine operations.

The method explained below has been successfully used
for a wide variety of problems over an extended period
of time. Among the advantages of the system are the fol-
lowing :

1. Both card handling and machine operations have
been reduced to a minimum. This results in a definite
time advantage, as well as simplicity from the oper-
ator’s standpoint.

Among the basic matrix operations to which the
same procedure is directly applicable, are the fol-
lowing :

a. Solution of systems of simultaneous equations.
b. Computation of determinants.

c. Calculation of inverse matrices.

The same method, procedure, and control panels can
be used for either real or complex numbers.t

The equipment described is that made by the Interna-
tional Business Machines Corporation.

Mathematical Basis of Method

There is a systematic method of operating on a matrix
in such a way as to make all of the elements of a given
column, except one, equal to zero. The method consists of
subtracting some multiple of a given row from each of the
other rows in such a way as to make one column zero in
-all except one element. The process has been well described
in the literature® ® and is often called the “starring proc-
ess.” A simple numerical example follows.

X
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Given a set of simultaneous linear equations

3X+12Y -7Z = 6
2X — 8Y +8 = 10
6X — 2Y —-3Z = -7 ,
write the matrix ’
3 12 -7 6
2 -8 8 10
6 -2 3% -7 .

The first reduced matrix, by ‘“‘starring” on the A,; term,
becomes

(6 D2 (DE) DD
=) T R
)(6) ®)(2) _®) _®ED
@ TV T 8- 0-"Z
which reduces to
-11 50/3 0 67/3
18 -40/3 0 -26/3
6 - 2 -3 - 7.

Repetitions of this pattern, working each time with the
transformed matrix from the previous operation and
starring on one of the remaining main diagonal terms, will
produce a diagonal matrix from which the unknowns or
the determinant can be computed directly. The basic oper-
ation is thus of the form

A‘z?m Amj

A -

= Ay

where 'A;; is the Ay term in the transformed matrix and
Ay is the starring term in a matrix of order #.

IBM Method

The major problem in matrix work is that a given card,
representing a certain element of the matrix, must be
handled in a different manner at different steps in the



FORUM PROCEEDINGS

procedure. As an example, what is an answer from a pre-
vious transformation might become a multiplier in the
next reduction. An obvious solution is to use a master deck
which knows the factors to be used, the operations to be
performed, and the identity of the resulting term. The
actual numerical values for a particular problem are then
transferred to the master cards by a relating and gang
punching process. A method of this type has been pub-
lished.* The disadvantages of such a process are the neces-
sity of constructing the master files, and the number of
unnecessary operations involved.

The key to the procedure explained here lies in a very
simple way of causing a machine to differentiate auto-
matically between two identical cards. The usual method
of identifying a type of IBM card is with an X punch in
all cards of that type. This is a high punch placed in some
column of the card and falling at the upper edge. It can
be used for controlling the various functions of the dif-
ferent machines through which the card passes. If a card
goes through a machine face up rather than face down,
all punching in the card is transferred to a mirror image
position with right and left transposed. It becomes, to all
intents and purposes, a different kind of card. The fact
that this requires the machine to read each amount from
different columns and from right to left instead of left to
right imposes no restrictions. The card form used is shown
in Figure 1. The card is in its normal reading position ;
when the card is in its reversed or mirror image position,
the machines sense X58.
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Control Panels

The control panels required are as follows:

1. A gang punching control panel which transfers the
factors of the starring row into all related cards. The
starring row becomes gang punch master cards
which are used in the “turned” position. This func-
tion is performed automatically by a Reproducing
Punch, Type 513 or Type 519, at a constant speed
of one hundred cards per minute.

2. A Type 602 Calculating Punch control panel which
performs the operation

Aim Ami

Ay = Ay —
i if A
mne

The factors A;, and A, are in “turned” cards
which are recognized. by the machine by a common
X58. The ratio of these terms is computed by a
division operation and the result stored within
counters in the machine for use on all terms in a
particular row of the matrix. This eliminates any
redundancy in the division operation, which is the
slowest operation performed, requiring approxi-
mately four seconds per card.

On an X23 card (normal position) the machine
multiplies the ratio by A,,; and subtracts it from Ay;
to form the new term ‘A;;, which is punched into
each detail card. The order number of the new
matrix term is simultaneously calculated and re-

/
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corded. The speed here is about twenty-five cards
per minute, All of these mathematical manipulations
are completely automatic, with the 602 sensing the
type of card, determining what is to be read, and
performing the proper operations.

3. A reproducing control panel which at a hundred
cards per minute will make a new deck with the

newly computed transformed elements returned to

the original locations in the new cards in readiness
for the next starring operation.

Procedure

The detailed steps followed by the operators are ex-
ceedingly simple. A complete operating procedure is given
below. This covers the calculation of the diagonal matrix.
This method, as explained above, will give the solution of
simultaneous equations, inverse matrices and determinants.

1. Sort the cards to column 44-45.

2. When column 44-45 equals 59-60, reverse the se-
lected cards, place in front and sort:

46-47 minor
41-43 major
3. Gang punch using control panel (1).
4. Select the X58 (turned) cards and hold aside.
5. Sort remaining cards to 46-47.
6. When 46-47 equals 59-60, reverse the selected cards,
place in front and sort:
44-45 minor
41-43 major

7. Calculate 'A;; the elements of the transformed
matrix, using board (2).

Select X 58 cards and hold aside.

9. Reproduce the balance of the cards on control panel
(3).

This completes one starring operation. Using the new
cards from (9), begin again at step (1) and repeat.
Usually it will be adequate to select the “starring” terms
by going up the main diagonal.

REFERENCES

1. W. D. Brir, “A Simplified Punched Card Approach to the
Solution of the Flutter Determinant,” J. Aeron. Sci., 15 (1948),
pp. 121-22,

2. R. A. Frazer, W. J. Duncan, and A. R. CorLar, Elementary
Matrices (Macmillan, 1947), chap. IV.

3. H. MarcENAu and G. M. Mureny, The Mathematics of Physics
and Chemistry (Van Nostrand, 1943), pp. 482-86.

4. P.D. Jennings and G. E. Quinan, “The Use of Business Ma-
chines in Determining the Distribution of Load and Reactive
Corgponents in Power Line Networks,” AIEL Preprint 46-195
(1946).

SCIENTIFIC COMPUTATION

DISCUSSION

Myr. Harman: When you use the cards face up, don’t
you have trouble with curvature?

Mr. Bell: No trouble at all.

Dr. Caldwell: What kind of climate do you have?

Mr. Bell: Los Angeles.

Dr. Herget: We could do it at Washington.

Dr. Grosch: We did it in New York. )

Mr. Bell: This approach of reversing the cards will
work in many problems. When you reverse the cards in
the matrix work, the identification field is reversed also,
so it is necessar’y to have another field where the identifi-
cation is punched as a mirror image. Then when you turn
them over and sort you do not have to invert the sorting
procedure or change the sorter brush setting.

My, Ferber: Are your elements real in this case?

Mr. Bell: Complex.

My, Ferber: In finding characteristic roots, you make a
guess from previous experience ?

Mr. Bell: Right.

Mrs. Rhodes: You have been very lucky with fiftieth
order linear equations. What did you do about loss of
accuracy, go on faith?

Mr. Bell: Yes, I went on faith.

Mrs. Rhodes: Did you position for division? If so, how?

Mr. Bell: You are talking about a very real problem.
Occasionally we get a matrix that doesn’t want to come
out. I have yet to find a way by which you can easily and
quickly predict that you are about to get into that situa-
tion. And we have been working with relatively small
problems.

In working large problems the gang punch master cards
can be deleted at each stage. Then a straightforward back
solution is used after the first unknown is obtained. This
does not work well if you have just a few equations. It is
more work to do the special back solution than to carry
the extra terms along as you go.

Dr. Grosch: There are still only a few installations
which have had experience with problems of very large
order. We did a problem with forty-one unknowns, carry-
ing the full eight figures permitted by the 601. Our
procedure for size was simply that we never starred a
number which was less than one-tenth as large as the
largest element in its row. We looked at a printed record
produced by the 405 while applying the usual check
sums, In mass production one could suppress listing for
all but the starred row to save paper.

Following that rule, we had to rearrange only once in
forty reductions. We lost only two significant figures. How
many figures did you lose in your fiftieth order problem?

Mpy. Bell: We had four or five decimal accuracy. '

Dr. Caldwell: That is about our experience in large
cases.
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Mr. Ferber: If you want to solve a small set of equa-
tions with seven or eight unknowns, the machines aren’t
adapted to working with such a small number of cards
and one comes to the point where it is quicker to do them
some other way. Then again, since the work goes up very
rapidly with increasing order, you soon come up against a
blank wall in that the work is prohibitive. How do you
handle the problem?

Mr. Bell: We do enough matrix work to keep the basic
602 panels wired up; so we need not allow time for that,
Our operators are familiar with the job, and they handle
it efficiently even with only seven or eight unknowns.
Everything is kept ready for them. To give you some idea
of time, it requires between one and two hours to evaluate
an eighth order complex determinant. If there are encugh
problems, you can split them up so that some are multiply-
ing while others are being sorted and gang punched, with
no idle machines.

We have tried to handle special cases by special proce-
dures, but have lost on it. I feel it is better not to use
special procedures. Instead we stick to methods that all of
our people understand ; then we are more certain of com-
ing out with a good answer.

Mr. Harman: I was wondering if you could get around
the division step in your formula by the expansion of a
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second-order minor, which involves the difference between
two multiplications.

Mr. Bell: We have tried doing that, and here is the prob-
lem we got into: the numbers change tremendously in
size, and it is necessary to stop for inspection. That takes
longer than the regular method.

Dr. Tukey: The thing is to get away from division by
small numbers,

Mr. Bell: Yes. Most of our work is brought in to us.
Sometimes we know what is behind the problems, and
sometimes we do not. Most of the work is in engineering
fields where extreme accuracy is not required. But we do
have to calculate with expanded accuracy occasionally.

Dr. Tukey: As I understand the situation, the pessimists
thought—and I was one of them—that you lost, roughly
speaking, a constant number of significant figures for each
new equation. Now it has been proved! that it doesn’t go
like that; the loss goes like the logarithm of the order.
If you are thinking of big equations that is a tremendous
improvement. I think that size ought not to be taken as
grounds for pessimism.
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Two Numerical Methods of Insegration Using

Predetermined Factors

LELAND W.
Bethesda, Maryland

VARIOUS systems have been proposed for numerically
integrating expressions for which no formal method has
been found. Although many of these systems are highly
accurate, the adaptability of some of them to mechanized
methods of computing has not been fully explored.

The central-difference formula subsequently referred to
offers an unusually accurate method of determining the
definite integral but at the same time presents practical
difficulties in the calculating and handling of differences
through the seventh order. The following discussion, with
corresponding examples, will show two ways of overcom-
ing the practical difficulties involved.

A simple, accurate, flexible method of determining the
value of the definite integral may be described as follows:

1. Determine the ordinates between and including the
specified limits of integration, maintaining a constant
interval.

2. Multiply the first nine ordinates respectively by the
following nine factors:

0.3338047013
1.328926091
0.6872208443
1261894566
0.8333333333
1.071438767
0.9794458223
1.004407242
0.9995286325

3. Multiply the last nine ordinates respectively by the
same factors in reverse order.

4. Add all the eighteen products formed in the-above
steps to the unmultiplied remaining ordinates.

5. Multiply this sum by the constant interval; the re-
sulting product is the definite integral between the origi-
nally specified limits of integration.

*
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SPRINKLE

.9
Example: Find the value of 5. X7dX
J .4

X Ordinate Factor Product
.400 .001638400000 .3338047013 .0005469056
.425 .002504508502. 1.328926091 .0033283067
.450 .003736694531 6872208443 0025679344
475 005455760125 ® 1,261894566 0068845941
.500 . .007812500000 T .8333333333 0065104167
.525 .01099297205 Y 1.071438767 .0117782964
.550 .01522435234 9794458223 .0149114783
.575 .02078140531 1.004407242 .0208729940
.600 02799360000 9995286325 .0279804047
.625 X 03725290298 .0372529030
.650 " 04902227891 .0490222789
.675 & .06384492921 .0638449292
.700 ~,08235430000 .9995286325 .0823154809
725 .1052848896 1.004407242 .1057489056
.750 .1334838867 ~ 9794458223 .1307402352
7753 .1679236701 ® 1,071438767 .1799199300
.800 .2097152000 $ 8333333333 .1747626667
.825 .2601223326 Y 1.261894566 .3282469580
.850 .3205770883 .6872208443 .2203072573
.875 .3926959038 1.328926091 .5218638324
900 .4782969000 .3338047013 .1596577538

2.149064412 (Step 4)

Step 5. The sum in Step 4 multiplied by the constant
interval (.025) of the example equals .05372661030 which

.9

is the value of the integral j X"dX, with an error of

3
only .00000012905.

In the event that four extre ordinates can be accurately
determined at each end of the original group of ordinates,
the following even more accurate method is applicable :

1. Determine the ordinates between and including the
specified limits of integration, maintaining a constant in-
terval; then determine four more ordinates at each end of
the group, still maintaining the constant interval.

2. Multiply the first nine ordinates of the entire group
respectively by the following nine factors:
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0.0004713679453
—0.004407242063
0.02055417763
—0.07143876764
0.5
1.071438767
0.9794458223
1.004407242
0.9995286325

3. Multiply the last nine ordinates of the entire group
respectively by the same factors in reverse order.

4. Combine all eighteen products with the unmultiplied
remaining ordinates.

5. Multiply the above sum by the constant interval ; the
resulting product is the definite integral between the origi-
nally specified limits of integration.

.9
Example: Find the value of j X7dX

4

X Ovrdinate Factor Product
.300 .0002187000000 0004713679453 .0000001031
325 0003829865538 — .004407242063 —.0000016879
.350 0006433929688 02055417763 0000132244
.375 | .001042842865 ) @ — .07143876764  —.0000744994
400 .001638400000 & 5 0008192000
425 .002504508502 ¢ 1.071438767 .0026834275
.450 .003736694531 ™ .9794458223 0036598898
475 005455760125 1.004407242 0054798050
.500 .007812500000 .9995286325 0078088174
525 .01099297205 0109929721
.550 01522435234 0152243523
575 02078140531 0207814053
.600 02799360000 .0279936000
625 X 03725290298 0372529030
650 & 04902227891 .0490222789
675 & .06384492921 0638449292
700 Y .08235430000 0823543000
725 1052848896 .1052848896
.750 .1334838867 1334838867
775 .1679236701 1679236701
.800 .2097152000 .9995286323 .2096163471
.825 .2601223326 1.004407242 2612687547
.850 .3205770883 N .9794458223 .3139878899
875 .3926959038 o 1.071438767 .4207496130
,900 .4782969000 % .5 2391484500
925 5794181954 C — 07143876764  —.0413929218
.950 .6983372961 .02035417763 0143537488
975 .8375915935 — .004407242063 —.0036914689
1.000 1.000000000 0004713679453 .0004713679

2.149059250 (Step %)
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Step 5. The result of Step 4 multiplied by the constant
interval (.025) of the example equals .05372648125 and

.9
is the correct value of the original integral, 5. X7dX,

4
to the number of places shown.

In either of the foregoing numerical integration systems
the number of ordinates chosen may be either even or odd.
Also, advantage is gained in an extended calculation since
the majority of the ordinates are simply added without
change. Further, there is no limit to the number of ordi-
nates that can be used although only nine at each end of
the group are multiplied by factors.

In view of these advantages, the establishment of two
permanent factor files of only eighteen cards each is all
that is necessary to make both systems readily adaptable
to punched card equipment.

The two preceding systems of integration are based on
a central difference formula carried through the fifth
differences by Scarborough.t' ? The author is indebted to
Dr. J. W. Wrinch of the David W. Taylor Model Basin
for deriving an additional term containing the seventh
differences.®
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DISCUSSION

Dr. Blanch: These factors are related to those in our
volume of Lagrangian coefficients.

Dr. Grosch: It is possible to generate integration coeffi-
cients of this sort based on other than polynomial approxi-
mation. Unfortunately in most cases the weighting factors
become functions of the limits of integration, but if the
latter are fixed for a large group of problems one may find
it economical to derive factors based on an approximating
function that suits the physical situation.
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Integration of Second Order Lincar Differential Equations
on the Type 602 Calculating Punch

N. ARNE LINDBERGER

Royal Institute of Technology, Stockholm

THIS PAPER is concerned with the numerical
solution by means of punched cards of the equation
% = g(x)S + p(«) with initial value conditions. In the
second section, the special case of p = O is treated. By
approximation to a difference equation, a step-by-step
procedure is derived which has been set up for automatic
integration on the Type 602, The machine operation is
described in the third section. In the fourth section, the
method is extended to the general second-order linear
differential equation which can be reduced to the case
above, where p 54 0. This can be set up on the Type 602
with a slight change of the control panel descrlbed in the
third section.

Approximation by Finite Differences
Consider the second-order linear differential equation

& = g(0)s (1)

where g is a given function over the integration interval.

Suppose that in the neighborhood of an arbitrary point
&y of the integration interval, a solution S’ and its second
derivative can be developed into a Taylor series. Let the
constant step in # be A, The value of the function S at the
point x,,, = #, + A, is then

Sn+1 = Sn -+ hSri» -+ '{L‘}S;{
Sln hiSiv h5 v 2
FESE S S @)
Here S} = (ﬁ) and so forth.
dx ] x,

The same development of the second derivative gives

Si = Sff-l—hsn?‘-l- Sif-l— Sn+--- (3)

X

In order to eliminate the fourth derivatives, a modified

function y can be defined

h2 ii
y=5-13%

(4)

Insertion of (2) and (3) gives the value of y at the

point x,.,,

3
Yo = Sa+ S} +%Sn+ b osw

hﬁ

~ 195 4
and by reversing the sign of &
Sh i _ P
Yn-1 = Sn hS + Sn - ﬁ n
oo, he
+ m Su 480°"

ES}F-{- A

&)

(6)

The central difference of y around the point #, is now

8'-’3/;; = Yus1 — Zyn + Yna
Insertion of (5) and (6) yields

823,” = )2 S;Ll 240 Sv1+

(7)

(8)

Terms of the sixth and higher orders are going to be
neglected and thus form the truncation error. The approxi-

mation gives
3y = B2 Sy .

Insertion of (1) in (9) and (4) yields
829y = gn 1* Sh
Yo = (1 — gu B2/12) Si .
After rewriting equation (11)
Sn= (14 pa) n

_ guh?/12
bn =1 — gh®/12 -

and

where
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&)

(10)
(11).

(12)
(13)
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Now the approximation of the difference equation
(10) will be

82y1b s 'Yu}’n (14)

(15)

The derivation given here* is essentially the method
used in a paper by Feinstein and Schwarzschild.! The
main machine used in their work was a special multiplying
punch.

In order to apply equation (15) for computation on the
Type 602, it will be written in a different manner. With
the advancing difference notation

with
Yn = 12,“4:, -

Ayn = VYuer — Vu (16)
equation (14) is
Ay = DYy + Yl - (17)

The initial values are vy, and Ay,. In (17), putting n = 1,
Ay, = Ayo + viy: - (18)

From (17) it is evident that every difference Ay, is com-
puted from the previous one by adding y,y,. This proce-
dure will give

n
Dsn = Byot Y i (19)
=1
After having used (19), the next value of ¥ is computed
from (17)

Vo1 = In + Ayn . (20)

The Machine Set-up

In order to describe how the equations (12), (19) and
(20) are set up for automatic integration on the Type 602,
a flow chart will be used. In this, the first eight columns
represent the eight counters MC, MP, RHC, LHC, Sum-
mary Counters 13, 14, 15 and 16. The chart is divided into
ten rows, indicating machine cycles, which are shown in
the ninth column.

Suppose that the integration has proceeded up to the nth
integration cycle (not to be confused with machine cycles).
This means that n—1 cards have been run through the ma-
chine, each one of them carrying the functions y and p.
Every card carries the integration one step forward and
is punched with the computed values of y and S.

The machine has computed y, during the (#—1)th inte-
gration cycle and keeps the absolute value of this number
stored in the MP counter during the reading of the nth
card. In order to perform its function correctly, MP must
contain a true number. The sign of v, has to be stored else-
where, for which purpose SC 13 is reserved. If the con-

*From lectures by Dr. L. H, Thomas.
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tents of this counter are zero or a true number, it is inter-
preted as a positive sign in vy,. If the contents are a com-
plement number, it means that y, is less than zero.

Moreover, the machine stores the progressive differ-
ences of y in SC 14 and 16 which are coupled together.
In the beginning of the uth integration cycle, the stored
difference is

Ayn—j_ = Ayo + Yid'i (21)

as indicated in the flow chart (Figure 1, page 36).

The essence of the procedure is the following. During
the nth card operation, the machine is going to compute
the product y,y, and add it to Ay, ,, thereby yielding Ay,
according to equation (19); Ay, is added to y,, giving
Yusy 5 Yo 1s multiplied with 1 + p, which gives S, by (20)
and (12). Finally S, and ¥,,, are punched out on the nth
card.

The details of the operation appear in the flow chart.
During the card reading cycle, the precomputed numbers
v and 1 + g, are fed from the card into MC and SC 15.
The numbers in the MC and MP counters are then mul-
tiplied. The rounded product comes out in LHC. This
product is transferred to SC 14 and 16 on the first pro-
gram cycle. As it appears positive in LHC, the sign has to
be taken care of by adding the product into SC 14 and 16
if it is positive, and subtracting it, if negative. This is
accomplished in the following manner: an eventual sign
in vy, appears as an X punch in the card, wired to pick up
an entry control selector. A negative sign in vy, appears as
previously mentioned in SC 13 which therefore is balance-
tested during the first program cycle. If vy, is negative, the
test impulse will get through the balance control. From
there it is wired to pick up a selector. By coupling the
above-mentioned selectors in series, a plus or a minus
shot will be available from them, due to the sign of the
product. The impulses are then fed into the appropriate
control hubs of SC 14 and 16 which will take care of enter-
ing the product into the counters with the correct sign.
The details of the wiring are shown in the control panel
diagram.

The quantity 1 4 g, is transferred into MC on the sec-
ond program cycle and multiplied with v, during the third
program cycle. The product S, will appear in LHC where
it is stored until the transfer-to-storage cycle. The sign is
taken care of by balance-testing SC 13, as the sign of .S,
is always the same as that of y,. That sign will now be
stored in LHC; SC 13 can be used for other purposes
and is reset on the fourth program cycle.

On the fifth program cycle, MC reads out y, to SC 13
and 15, coupled together. MC is reset on the same cycle.
As MC always stores true numbers, the sign is taken care
of by balance-testing ILHC, picking up a selector and feed-
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MC MP | RHC LHC SC 13 SC 14 SC 15 SC 16 SEQUENCE
‘ Contains si = =
Xn Ynl of ¥, &n AY + iX1 yi 1 +}1n AYo + ; iji Read card
j] 1=}
{ Yl} [a yo} { A yo}
RC ' RC %¥a Multiply
RO to SC 1k & 16, Balance Test Yn Yn 1st Program
RC Sign Ctrl. by Bal. Cycle
Test of SC 13 and
Entry Ctrl.Sel. 2
1+ }1“ RO to MC 2nd Program
Cycle
. RC | (1 "'/J‘h) Yn = Sy Balance Test 3rd Program
Cycle
RC RC kth Program
Cycle
RO to SC 13
& 15, RC Balance Test Yn Yu 5th Program
Cycle
Yo + AVn RO to SC 13 Yo + A¥n RO to SC 15 6th Program
Cycle
Iy || RO to MP RO to MP Tth Program
n+ Balance Test Cycle
t
RO 5, to Svorage, RO yy 41 to RO y, +1 ° Transfer to
RC Storage Storage RC Storage Cycle
1+ Read Next
. +1
X /‘-1 n Card
n+i
Freurg 1

ing an appropriate impulse to the plus or minus hubs of
SC 13 and 15. As distinguished from MC and MP, the
summary counters and LHC are used to store negative
numbers as complements.

On the sixth program cycle, Ay, is read out from SC 14
and 16 and accumulated in SC 13 and 15. This means that
the operation (20) is carried out.

During the seventh program cycle, y,,, is read into MP.
For reasons previously mentioned, it has to be subtracted
into MP if negative or added if positive. This is again
taken care of by balance-testing SC 13.

The program cycles are now finished and the machine
transfers to storage. S, is read out and punched from
LHC, 3y, from SC 13 and 15. By using the balance punch
feature, negative signs will appear as X punches.

LHC and SC 15 are reset, as distinguished from SC 13
which has to store the sign of y,,, for the next card. If the

sign is negative, there will be a nine in the left-most posi-
tion of SC 13 that will be detected during the balance tests.
The allowed number of digits in the function y must be
limited to nine as there are ten positions in SC 13 and 15
together and the left position has to be left free.

The initial values v, and A4, are fed into MP and SC
14 and 16 from the first card. In the flow chart they ap-
pear within braces. As all counters are reset before the
starting of a new integration, the zeros in SC 13 will indi-
cate the positive sign of the initial value y,.

The control panel has been wired as shown in the wir-
ing diagram (Figure 2) and the procedure has been found
to work satisfactorily. The coefficients of integration,
vand 1 + pu, are conveniently computed with punched card
machines. In the mentioned set-up u was calculated in one
run of the 602 ; y and 1 4 p came out together in one run
on the 601.
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The General Case

Any linear second-order differential equation can be
reduced to the form?®

3 = 9(x) S+ p()

(22)

where the first derivative is lacking. This equation, inserted
in (9) and (4), will give recurrence formulas correspond-
ing to (12), (19) and (20):

Su =1+ ) 30+ gu/12 (23)

Aya = Do +2<wy.a + ) (24)
=3

ynﬁ = Yn + Ayn . (20)

The addition of q, = h? p, (1 + p,) in each step is what
makes (24) differ from (19). It can be done in the setup
of Section 3 by feeding g, from the nth card into SC 14
and 16 which accumulate the difference Ay, .

As for (23), there is no counter storage left for the
additional term ¢,/12. This can be overcome, however, by
letting the machine compute (1 + p,) ¥ in the integration
run and then add the above-mentioned term in an extra
run. The calculation of .S’ can be split in this manner be-
cause it is not part of the progressive computation of y;
gn and ¢,/12 can be computed in one run on the 602.

Another way of relieving the situation is the following.
Define an auxiliary function

z2=y4+hp/12 . (25)

SCIENTIFIC COMPUTATION

After insertion of z, the equations (23), (24) and (20)
will be

Sn = (1 -+ Mrw) Sn (26)
DNezn = N2y + Y (yizi + Pi) (27)
Bney = 8n + Ag'n . (28)
Here
P =nw (p+8&p/12) . (29)

Equations (26) and (28) are basically the same as (12)
and (20) of Section 2. Equation (27) is taken care of in
the same manner as (24), by feeding the additional term
P, from the nth card into the counters that accumulate the
difference in 2. As P can be precomputed in one run on
the 602, the extra run of equation (23) is saved.

Thus it has been shown that the general second-order
linear differential equation can be automatically integrated
on the 602. Reduction to the form (22) has not been
treated here. It will probably imply the same amount of
work as the rest of the procedure.

REFERENCES
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DISCUSSION

['This paper and the following one by Dr. Paul Herget were dis-
cussed as a unit.]
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determined function of #), arises in the computation of
the wave equations for atoms in various stages of ioniza-
tion. In that case it is necessary to replace F by (F + E),
where E is such a constant as will cause P to vanish when
r approaches infinity. In practice the correct value of E
must be determined by trials, and hence it is necessary to
run through this kind of a solution many times.

From the calculus of finite differences we have the fol-
lowing relationships:

= P-F (where F is a pre-

(a2 = (AP (F 4+ E) = f

ARP = f 4+ AWf/12 — AVF/240 + . . .

The ultimate objective of our computations is to obtain a
table of numerical values of P(7) which satisfy these two
conditions and which may be illustrated by the following
arrangement of the intermediate results:

] P AP AP f Axf Anf Alllf
0.0 1.000 000 —0.000 012 0.000 000 —146
—0.072 712 4927 + 3
0.1 0.927 288 +0.000 915 0.000 927 —143
—0.071 797 4784 + 4
0.2 0.855 491 4-0.001 699 0.0601 711 —139
—0.070 098 +645 + 9
0.3 0.785 393 +4-0.002 345 0.002 356 —130
—0.067 753 +515 4+ 8
0.4 0.717 640 -+0.002 861 0.002 871 —122
—0.064 892 +393 +12
0.5 0.625 748 -+0.003 255 0.003 255 —110

This illustration represents the solution of the simplified

equation &P _ Pr, where P(0) = 1,and P () = 0; the

d 2
problem is to find dP/dr at » = O such that the condition
P () = 0 will be fulfilled.

The only numbers which can be entered directly into
the table are in the f column, when they are computed
according to the first equation above. When these are dif-

o4
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ferenced, it becomes possible to compute AP and build
up the AP and P columns by addition. It is necessary to
proceed step by step and by successive approximations.
In the solution of the original, more general, equation
it was possible to employ a Type 601 Multiplying Punch
equipped with sign control and a net balance summary
counter. The board wiring may be illustrated schemati-

cally:
F(Ar)2 A Reading brushes

Multiplier Multiplicand

L, H Counter (5) =1 Pickup

Sum. Counter

Punch

The first position in the punched field receives an X punch.
The group multiplier switch is wired o¥¥ and oN at the
same time. The orr switch permits the multiplier to reset
on every card. The column in which the X is punched is
wired to read as if it were the group multiplier master
card indication. This has the effect that when any card is
punched and then fed through the machine a second time
it will be skipped out as a master card, without punching.

The field A4 is always crossfooted into the LHC and it
transfers to the SC with sign control. The only multiplier
is (Ar)?F, which is prepunched into a set of salmon cards.
The multiplicand is wired reversed from the positions
where the punched field is “reflected” through the center
of the card. All cards have their index numbers pre-
punched. The P’s are manila cards, the A®P’s are green
cards, and the A#f/12’s are blue cards. These must. be
obtained from a previous approxnnatmn and have the
above mentioned X punch.
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One cycle of operations consists of the following (the
index ¢ refers to the ith horisontal line in the numerical
table) :

Card Color Machine Operation Result in Sum. Counter
Salmon (i) Multiply F by P (i) Punch f

Blue (1) Add Alif/12 Non punch AP ()
Green (1 — ¥5) Add AP (i — ¥) = Nonpunch AP (i 4 14)
Green (14 1%) Blank Punch AP (i 4 1)
Manila (4) Add P (3) Nonpunch P (i +4-1)
Manila (+1) Blank Punch P (i 4-1)

Salmon (¢ 4 1) Blank and reversed PunchP (i 4 1)

The operator has the cards of different colors piled
separately before him, each pile in order of the index i.
On one cycle he performs the following sequence of
operations: »

1. The salmon card is allowed to fall into the stacker.
2. The blue card is allowed to fall into the stacker.

3. The top card from the blue pile is picked up and
held in one hand.

4. The first green card is allowed to fall into the
stacker.

5. The second green card is placed behind the blue
card being held in one hand.

6. The top card from the green pile is picked up and
placed behind the other cards being held in one
hand.

7. The first manila card is allowed to fall into the
stacker.

8. The second manila card is placed behind the other
cards being held in one hand.

9. The top card from the manila pile is picked up
and placed behind the other cards being held in
one hand.

10. The top card from the salmon pile is picked up
and placed in the reversed. position behind the
other cards being held in one hand.

11. The last salmon card is placed (in the direct posi-
tion) ahead of all the cards being held in one hand,
and

12. This deck is now placed in the feed hopper to begin
the next cycle.

The operator may be illiterate, so long as he is not color
blind ! The work proceeds at the rate of thirty seconds per
step in the table, which is nearly the speed at which the
cards can pass through the machine.

The SC does not reset except under control of the class
selector. The selector transfer is obtained only from a pre-
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punched X on the salmon card when it is fed in the re-
versed position. This automatically clears the counter at
the end of each cycle of operations.

If we undertake to apply these principles to the solution

of the first order differential equation, (Ar)--— = f, it
works out as follows:

P(i) = 'f(i) — AY(i)/12 + 11 Af(i) /720 — ...

~ where it will be noted that all the quantities on the right
" side are “on the line” in odd difference columns, so that

they are actually the means of the quantities on the half
lines above and below. Then

AP +1/2) = 2f() = o AUYG) + Trag AFG) ..
42 FG 1) = e AU A1) + pas ATFG A1) .

Now, f may consist of the algebraic sum of any number
of cards, and if the higher order difference cards are
already available from a previous approximation, it is only
necessary to include one control card in each control group
and to use two counters in order to build up the table of
numerical values of P. All the cards representing quan-
tities on the sth line are entered into both counters. The
control change causes an intermediate (progressive) total.
This gives the value of the integral, P(7), on the ith line.
As the next control group starts through the machine, the
first card is the control card, and this rolls the second
counter into the first counter, then causes a minor total
which clears the second counter. This enters all of
the quantities from the ith line which are needed for
A'P(i+1/2) into the first counter. Then the remaining
cards in that control group enter the quantities from the
(7 4 1)th line into both counters, as before, and the re-
sultant progressive total in the first counter is P(i 4 1).

DISCUSSION

Dr. Grosch: 1 would like to make the general remark
that Dr. Herget has a big point in using the human element
in his cycle. We can all make use of the tricks that Mr.
Bell and Dr. Herget have described. If you reduce the
number of 601 or 602 control panels that are kept wired
up by thirty or forty percent, you have effected a sub-
stantial saving. We did an optical calculation two years
ago which required twenty-eight boards. I don’t think
we had heard of the reversed card at that time. That
one idea would have released eight 601 control panels for
other work.

Dr. Stanley: 1 have one question. Notice that in Mr,
Lindberger’s equation (22)
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&8 = () S+ pa)

g(x) is a function of one variable only. The equation is
linear and of the second order. Now a more general equa-
tion of the second order in the normal form may be
written

O = 9(5,5) 5+ ()

This equation is non-linear. You might conceivably treat
it in the same manner as the speaker has suggested, except
that you would obviously run into the difficulty of com-
puting the quanties y,. We might construct some suitable
program beforehand and use it to estimate the y,. I wonder
if either of you gentlemen have tried such a method.

Dr. Thomas: This is exactly the thing that Hartree did
in his so-called “Self-consistent Field” computations.
There are two ways you can do it. With the notation:

R, 3
—mv ¢1»+ anpn - Enl//n

where
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Vo=V, — ej Yns_ gy

Y12

He used V' and any numerical approximation to y,, to get
V., then solved the differential equation to get y,, these to
get new V and V,, and so on until you come out with
what you put in. A somewhat different trick was one we
tried a few years ago. Instead of assuming ¥, we assumed
V and put ¢, to get I, continuously as y, was being com-
puted. I don’t think you gain anything by that, except that
every answer you get is a solution of the differential
equation.

Dr. Caldwell: Tt might be possible to do that kind of
thing with the 602 provided the functions were not too
complicated.

Dr. Thomas: It was the double integral that I had in
mind. You can do two of them simultaneously on the
405 as well as the constant. You go all through an
integration to get preliminary values for ¢,. These must
be normalized. These integrals must be obtained to get an
“energy” to put in on the right-hand side before repeating
the integration.



Some Elementary Machine Problems in the
Sampling Work of the Census

A. ROSS ECKLER

Burean of the Census

PERHAPS I have a definite advantage over most of
you in being able to recognize the value of this kind of
meeting. I do not come here as a mathematician nor as an
expert in machine accounting ; so perhaps I am peculiarly
able to see the advantages of bringing together these two
types of people. In my opinion the International Business
Machines Corporation is to be commended for its vision
in making possible meetings of this kind. The advantages
for both groups are very great, and I have been much im-
pressed with the gains from this sort of meeting even
though much of the material is highly technical.

Most of you are familiar with the long-run interest of
the Census in large scale accounting equipment. We are
very proud of the fact that in the early years men like
Hollerith and Powers were employees of the Bureau of
the Census, and we have for many years used equipment
specially developed for our needs. We have used that as
well as very large quantities of the different types of IBM
equipment.

I shall speak primarily of our work in the field of sam-
pling, which involves certain applications of equipment
somewhat different from what we get in our complete
tabulations, and which illustrates some areas in which the
present equipment fails to meet the requirements that we
would like to see met.

It is unnecessary to inform this group about the ad-
vantages of sampling. Most of you are familiar with the
theoretical work to a far greater degree than I am. You
doubtless know that through the application of sampling
we have been able to save very large sums of money in our
tabulating work. Moreover, we have been able to speed up
results so that we have been able to carry out many types
of detailed tabulations which would be far too expensive
to carry out on the basis of complete coverage.

There are several directions in which we apply sampling.
Oneis the use of sampling to serve as a supplement to a
complete census, asking certain questions on a sample basis
only. In this way, we have been able to increase very
greatly the number of subjects covered.

o4
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The second way in which we use sampling is to carry
out independent field surveys based upon a sample of the
population from which we can estimate the total popula-
tion of the country and the population in various economic
and social groups. '

The third way in which we use sampling is in connec-
tion with measuring or controlling the quality of statistical
operations. I will refer to each of these uses very briefly
in some of the applications I will mention.

First of all, I should like to refer to an application of the
machines which is a very happy one. This use is in connec-
tion with drawing samples of blocks for certain types.of
surveys. We want to determine certain blocks in which we
are going to collect information., We have put in punched
cards certain facts relating to each block in all of our cities.
That information, among other subjects, includes the
number of dwelling units, the number of stores, and the
number of various types of institutions. As we take our
population sample, we want to select certain blocks in
which we will do our sampling.

We have determined that under many circumstances an
efficient procedure of drawing the sample of blocks is to
draw it on the basis of probability proportionate to size,
ie., the number of dwelling units, or number of stores.
We have been able to develop a procedure for selecting
blocks by the use of the Type 405 whereby we run through
the cards, accumulate, and select every nth dwelling unit.
The machine can be wired so that if in a very large block
there are two or more units which are to be included in
the sample, this fact will be indicated by the machine. If
any of you are interested in that, we would be glad to have
you write to inquire about the method.

Another area in which we have made use of sampling is
in connection with the processing of data. We are particu-
larly interested in the development of better equipment to
handle sample materials because it will give us a possibility
of increasing the use of sampling, thereby taking greater
advantage of the benefits it offers. We are anxious to ex-
tend the use of this tool as far as possible, and in certain
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areas the mechanical equipment is a limiting factor. We
could go further with it if we had equipment which fitted
the needs more precisely than the present equipment does.

Just as we depend upon equipment to expand the use of
sampling, we also use sampling to improve the use of
equipment. We are carrying out a great many of our
processing operations on the basis of sample verification.
This takes place in a great many fields; one example is
our foreign trade statistics, which involve tabulations of
information on imports and exports by country of origin,
country of destination, etc. We have developed a system
of sample verification, which usually provides for a sample
of one card in fifty. We continue with that sample as long
as the operator is making fewer than sixteen errors per
400 cards sample verified. When she exceeds that rate of
error, we shift over to 100 per cent verification for a short
time. Then, when the evidence is available to show that the
person has come back down to a lower error rate, we shift
back to a five per cent sample and after a period of that,
if the rate still continues low, we go back to the two per
cent sample.

Through the use of that type of sample operation, we
have been able to have the verification of the work of
thirty operators handled by three. This achieves a very
considerable saving in the verification operation, and still
provides control of the work so that we can be sure that
our error rate is under two per cent.

Now I should like to mention the major applications of
sampling which take place in a number of fields in the
Bureau. In the field of current population surveys we are
carrying out samples on a monthly basis. We are doing
somewhat the same kind of work in the field of business
statistics for retail and service firms, and generally similar
work in government statistics, where we collect employ-
ment data for state and local government units.

In the first field I mentioned, our current population
surveys, we interview a sample of about 25,000 households
once a month. We get information from them on the
number of people who are employed, the number unem-
ployed, the hours worked, the occupation, industry, and
so forth. The households are selected by the use of area
sampling, a method probably familiar to most of the people
in this room. It is based upon units which are selected
from sixty-eight different sample areas scattered around
the country, scientifically determined so as to give a good
cross section of the country as a whole. We insist that all
of our samples have measurable accuracy ; in other words,
that the design be such that we can determine the degree
of error in the results.

In this current survey of 25,000 households we estimate
that the figure on the total labor force will be within one
per cent of that which would be obtained from a complete
census nineteen times out of twenty. We achieve that very
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high degree of accuracy partly by virtue of the fact we
have control totals for various groups to which we can
adjust the sample results. Obviously, in a sample survey
of this sort giving monthly information, speed is of great-
est importance. These data are highly perishable and it is
important we make them available as rapidly as possible
because they are widely used. The information we get for
these 25,000 households is punched in about 65,000 cards
for individuals and those cards are weighted according to
the sampling ratios that were used. As each card gets a
weight which depends upon the age, sex, and residence
group of the population from which it is drawn, a con-
siderable number of weights must be applied. There is
nothing about that job which can not be handled by
standard equipment. The difficulty is that it takes quite
a while to carry it out.

It is necessary first of all to sort the cards into these
sub-groups, to determine the total number in each, and
then to determine the weight which has to be applied to
each type of card. Even after considerable experience, we
found ourselves unable to do the whole job in less than
about thirty days, which meant that the data collected in
one month would appear fairly late in the next month.

After some experimental work we shifted over to a
Census-built machine, the unit counter, which has the
advantage of somewhat greater speed of operation; for
this particular kind of job, it can count in a considerable
number of categories—sixty—at the rate of 400 per
minute.

This procedure has certain disadvantages, however ; in
order to use this machine we are forced to use a less pre-
cise weighting system than we could use on the 405. We
accomplish the weighting by classifying our cards in 144
different groups and then rejecting some cards by random
methods and duplicating some others by random methods
so as to get our results weighted according to the pre-
determined weights.

With that slight sacrifice of precision we were able to
speed up results a great deal and I believe, at the present
time, we use about fifteen days. I think it is pretty clear
we don’t yet have ideal equipment for meeting this par-
ticular problem.

One other area of work I will mention briefly in closing.
In connection with our sample work, we attempt to estab-
lish a very careful measure of the degree of accuracy of
the results so that we have to compute large numbers of
variances and, as you well know, that involves calculating
very large numbers of sums of squares and sums of prod-
ucts. In fact, for the measurement of accuracy of just one
item, it is necessary to get the squares of more than three

‘thousand numbers, to weight them by certain factors, and

then to combine them. It is possible to get these sums of
squares and sums of products through a rather compli-
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cated series of operations, but the time required for that

is considerable. It is not a.very efficient procedure. Some

consideration has been given to the extent to which some
of the new high-speed multipliers will meet the problem,
but study of the situation so far indicates that we are still
considerably handicapped in the direction of getting these
measures of the accuracy of the results of sample data.
- There is a need for further development which will in-
crease the use of sampling by making it possible to meas-
ure the accuracy of the results more speedily.

I have brought several types of exhibits in which some
of you may be interested, a number of pamphlets and
bulletins which show cases in which we have made direct
use of machine tabulation sheets for publication: some of
our housing reports, some of our foreign trade reports,
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and a job we did for the Air Forces, on all of which we
printed the 405 sheets directly. If there are questions you
want to ask about them, feel free to write in. There are
also several copies of the booklet on work of the Census
Bureau—Fact-Finder for the Nation. If any of you want
a copy of that, I would be very glad to furnish it.

- DISCUSSION
My, Tilitt: At one time the Bureau of the Census
turned out a little sheet called “Tab Tips.” Is that dis-
tributed any more?
Mvr. Eckler: 1 think I have the first forty. If anything of
that sort is being distributed now, it has not come to my
attention.
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CUTHBERT C. HURD
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THE NUMBER of 1BM applications in Oak Ridge is
great, partly because of the variety of activities in which
Carbide and Carbon Chemicals Corporation engages there,
and partly because of the fundamental importance of
methods of probability and of mathematical statistics in
the atomic energy field. Thus, on the one hand, Carbide
and Carbon, an Atomic Energy Commission contractor,
operates the Oak Ridge National Laboratory, the Mag-
netic Separation Plant, and the Gaseous Diffusion Plant,
the first of these being devoted to fundamental research,
the second and third to development and to production.
On the other hand, atomic energy problems in whatever
state of development are problems which require the most
careful kind of statistical analysis both in the design of
experiments, in the interpretation of experimental results,
and in maintaining statistical quality control in various
production and measurement programs. When the size of
a problem, as measured by the number of measurements
to be made, has been great, we have found IBM methods
advantageous and in some cases almost indispensable.

Originally I had thought to give a survey of the type of
statistical problems encountered in Oak Ridge and to de-
scribe the machine methods which are used in their solu-
tion. However, in view of the previous papers of this
Forum and particularly in view of informal discussions
with other participants I have now decided to describe
only two types of problems and on one of these I should
like to ask your advice. These problems are: one, that of
curve fitting; two, calculating approximate solutions to
partial differential equations,

TuE ProsrLEM oF Curve Firrine
The S trdight Line (One Fixed Variate)

The problem of curve fitting is as old as experimental
science and it is familiar to each of you in one connection
or another, As a beginning, suppose that we are able to
measure each of two variates 4 and y and that we postulate

*Since appointed Director of Applied Science, International Busi-
ness Machines Corporation,
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a linear relation between «+ and y. That is, we assume that
there exists a relation of the form

y=ax+8.

If the assumption is now made that measurements on
can be made with perfect precision, that is, that & is a
fixed variate, we set x at the values x,, x,, . . ., 43, say,
and measure the corresponding values of y: 4, ¥, . . ., Yn.
We realize that the set of n value pairs represents only a
sample of all possible value pairs and consequently we are
confronted with this problem in statistical inference:

On the basis of the # sample values (&3, 1), (%5, ¥.),
-« «y (x4, W), required to estimate the parameters o and 8
of the equation above. Now, mathematical statistics is a
pure science in the sense that conclusions follow inescap-
ably from assumptions ; and, in certain fields, investigators
believe that a reasonable assumption for the present prob-
lem is that of normality of distribution with fixed variance
in y corresponding to each fixed value of x. More specifi-
cally it is assumed that if « is fixed at x,, say, and the
corresponding y measured repeatedly then these y values
will be normally distributed about a mean value given by
a + B x,, and a variance of ¢% say. Similarly repeated
measurements of y corresponding to fixing x at x4, would
result in a normal distribution about a mean value of
a + B x, with the same variance, ¢°.

Under these conditions it is not difficult to show that the

A
. . A . .
optimum estimates a, 8 of « and 8 are given as solutions
of the simultaneous equations

n ”
na -+ ﬁz X, = Ey,-,
fe =1

n

”
GEM + BE v = zﬂ‘i ¥i .
i=1

"
d=1; i=1

I will not define optimum, but will only say that in the
case considered this procedure leads identically to the
least squares solution and the maximum likelihood solu-

A
tion. As such the estimates & and 8 have the properties of
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consistency, efficiency, and sufficiency. Moreover they are
unbiased.?

Now it is clear that the requisite sums and sums of
products #, 3.x, 34% 3y, 34y in the above equations can
be computed on a desk calculator. Also, it is well
known that the accounting machine provides, with the
use of progressive digiting,? an extremely fast method
for computing these sums. A third method would be
to use the 602, punching individual products as the calcu-
lation proceeds. I will not attempt to describe completely
the conditions under which we choose one of the three
methods described above. These general observations can
be made, however: because of the increased opportunity
for checking we generally prefer to use a punched card
method even when the amount of data is small; second,
since the calculation in the linear case is frequently only
preliminary to later work, we are inclined to use either the
602 method or a combined 602 and 405 method. In this
way we calculate individual products and save them in the
card, and toward this end we have permanently wired 602
control panels for some of the curve fitting problems
which we encounter frequently.

Several Fixed Variates

I will now discuss a more general case of curve fitting
and in so doing I will indicate that in an important class of
statistical problems it is necessary not only to compute the
value of the inverse of a matrix but to compute explicitly
the elements of the inverse matrix. We shall see, then, that
the T'ype 602 methods of equation solving which Mr. Bell
described are important in statistics and we will note also
that it is convenient to augment the matrix of coefficients
with the unit matrix in order that the elements of the in-
verse matrix may be obtained explicitly.

One example of curve fitting in several dimensions arises
in the plastic industry. We denote by y the molecular
weight of a plastic. We denote the operating conditions
of a production process as follows: temperature, x,;

pressure, &, ; amount of agitation, x,; time, x, ; amount of

stirring, #;; amount of monomer, x,. We assume that
Xy, Xy . ..., X can be measured with perfect precision
and that they can be fixed at prescribed values. We
then perform an experiment in which » sample values
(¥j; X1j Xajy - w5 )y § = 1,2,...,m > 6, are obtained.
If a linear relation of the form

Y=ap+a ¥+ ... 4 a5 %

is postulated, then the problem becomes that of estimating
the parameters a,, a, . . ., a.

Another example arises in the field of industrial medical
statistics in which it is desired to predict the size of the
dispensary staff and the amount of dispensary equipment
needed in a new plant on the basis of knowledge of char-
acteristics of employees ; age, sex, race, occupation, educa-
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tion, salary, kind of chemicals worked with, etc. The
medical aspects of this problem are under the direction of
Dr. J. S. Felton, the mathematics under Dr. A. S. House-
holder, both of Oak Ridge National Laboratory, and the
calculations include the inversion of a matrix of order
fifty-five, these calculations now being performed on IBM
equipment under J. P. Kelly and B. Carter at the K-25
Plant.

In general, we suppose that we have fixed variates
Xy, Xa . . ., &, in which, for convenience of notation,
we define x, to be identically equal to one. I will not formu-
late the problem in detail but rather will refer you to an
excellent discussion of the problem by Wilks.> We make
certain assumptions about normality of distribution of re-
peated measurements of y corresponding to fixed values of
the 4’s, and we assume that there is a relation of the form

Y= ¥ Fa s, + ...+ ap .
On the basis of a sample of size #
on>k;

the maximum likelihood estimates and likewise the least
. . A A A .

squares estimates a,, a,, - . . , ay of the parameters are then
given as solutions of the simultaneous equations

(M3 Fujp Fapp oo ¥05), § = 1,2,

n " n n
2 —_—
alzﬂ‘u + azzxﬁ EZY] + e + -akExU- Xrj = K15 V5
j=1 j=1 j=1 J=1
n ” n 13
N, )
ay Y Ho Xyt oan Y Xz F b an ) Foj A = Y Ky
j=1 j=1 j=1 j=1
” ” ” "
2 _
alExk,- Xij + a22xkj Xaj 4+ ...+ akzxw _Exkj yj.
j=1 j=1 j=1 j=1

Computationally, the first problem is that of computing
the k(k + 3)/2 sums of products which are exhibited
above. Second, we wish to solve the equations themselves.

We thus arrive at estimates for the parameters which
are optimum in a certain sense but these estimates are
single estimates or point estimates. If pressed for a single
estimate we would give &, as an estimate of a,, etc. But
statisticians prefer to give also a range of values for ay,
a range of values for a,, etc., and to associate this range
of values with a probability statement. For example, we
might choose a confidence level of 95 per cent and then
arrive at statements such as:
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We assert with 95 per cent confidence that
a, lies in the interval (a?, a!)

a, lies in the interval (a, al)

ay lies in the interval (a}, al).

I do not intend to describe either the theory of confi-
dence intervals as developed by Neyman, Pearson and
others or the theory of fiducial probability as developed
by Fisher. Rather, I will say only that, in order to arrive
at statements of this kind, it is essential to compute ex-
plicitly the elements of the inverse of the matrix of the
coefficients of the equations exhibited above. In concluding
this section, let me say that all of us have rule of thumb
methods for deciding when to use hand methods and when
to use IBM methods for solving linear equations. These
rules must be modified in curve fitting problems because
we must not only solve the equations but also compute the
coefficients of the equations and we must compute ex-
plicitly the elements of the inverse matrix. Consequently,
IBM methods are efficient for a lower value of & (number
of equations) in the statistical problem than in the straight-
forward linear equation solving problem.

More General Forms

It should be mentioned that the mathematical models
assumed in the previous sections can be thought of as
including many, but not all, of the situations which one
encounters in science and industry. For example, we note
that parabolic forms can be obtained from

Yy =a; 1 + ay Xy + e —|—ak.‘t'k
by setting

o= lLx, =0, =22, .., 0 =2k

However, there is another type of curve fitting problem
whose solution requires a more complicated procedure
than that given above but for which accounting machine
equipment can still be used advantageously. I refer to a
problem such as that of fitting an equation of the form

By Bur Bir
y=a€ —ae HF...4+aoe .

In this case the equations to be solved in order to minimize
the sum of the squares of the deviations of the observed
from the calculated are not linear. Hence the method
of successive approximation described, for example, by
Deming* must be applied. But by this method we arrive at
a set of linear equations whose solution leads to the num-
bers by which to adjust our first approximations. Conse-
quently, what has been said above concerning the use of
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accounting machine equipment applies also to the present
case.

APPROXIMATING SOLUTIONS
10 PARTIAL DIFFERENTIAL EQUATIONS

I shall only describe a problem on which we are working
for Dr. A. S. Householder and Dr. B. Spinrad at the Oak
Ridge National Laboratory. I should then like to ask for
comments arising from your experience with problems of
this sort.

We have the Laplacian partial differential equation in
two dimensions with boundary conditions given on two
squares, one square being located within the other. Be-
cause of certain symmetry conditions we need to consider
the problem over only a triangular region. We then con-
struct a lattice and replace the differential equation by a
difference equation which relates the value of the solution
at one point to the value of the solution at each of four
neighboring points. By punching cards on which are desig-
nated the coordinates of the lattice points and the bound-
ary values we then proceed in a combination of the
operations of collating, reproducing, and calculating. The
process is that of Gauss-Seidel and we find that, for one
thousand points, we can perform an iteration in about two
hours and a half.

Now the question which I have is whether any of you
have a criterion as to when sufficient convergence has been
obtained. Do you continue to iterate until there is no
change in the final digit carried in your machine? Do you
prescribe in advance an upper bound to the sum of squares
of deviations from one iteration to the next? What is a
good criterion?

In concluding this section I should say that many prob-
lems in industry can be attacked either by curve fitting
methods or by analysis of variance methods. F. C. Uffel-
man and E. W. Bailey of the Y-12 Plant in Oak Ridge
have developed efficient machine methods for applying
analysis of variance techniques. I am sure that Mr. Bailey,
who is at the Forum, would be glad to discuss that particu-
lar problem with you. '
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DISCUSSION
Mr. Stanley: In regard to that last problem and the

criterion required, I notice that the problem seems to be
one which could be very easily adapted to the relaxation
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method of Southwell. I might mention a paper which gives
a very good criterion in that case.! Offhand, I can’t state
whether the criterion can be easily adapted to the Gauss-
Seidel method, but in view of the close similarity between
the two methods it is quite likely that it can be.

In reference to Dr. Hurd’s first problem: in that fitting
of exponentials, I suppose by using least squares, the idea
was to take a number of ordinates and, with the assump-
tion that there were perhaps three terms in its series, to
fit a least squares system to them. You arrive at a cubic
equation and solve it for the three unknowns, whence the
required values. The alphas are relatively easily derived.

However, I wonder how you attack that problem when
the number of dimensions is very great—say twenty or
thirty. Then least square fitting becomes very laborious.

Dr. Hurd: Your first comment, as I understand it, is
about whether the Gauss-Seidel method is a relaxation
method. They are usually talked of as being one and the
same,

Dr. Thomas: I should like to say that while many people
use the names indifferently, I think it is well to make the
distinction that if you iterate regularly you are using the
Gauss-Seidel method ; if you always improve the worst
point you are using the relaxation method.

Dr. Hurd: In reply to Mr. Stanley’s second question,
we wouldn’t have ten ordinates. We would probably have
a thousand or perhaps two thousand. Actually the least
squares method is the way we would approach the problem.

Dr. Tukey: With regard to this problem of fitting the
exponentials, there is an old paper in the Vienna Academy
Proceedings,? when people were first starting to untangle
radioactive chains, which I think probably isn’t as well
known as it should be. It amounts to this, that if you take
your x values, as if you had taken a square network and
projected it down in a slanting manner, then you can solve
these in a particularly simple fashion.

Now where you have a thousand values, you ought to
be able to sort out one hundred which approximately meet
these conditions, and get a rather simple and accurate first
set of values.

Myr. Stanley: As for this relaxation method, I wonder if
you have had any experience in trying to adapt it to
punched card equipment.

As Dr. Thomas has pointed out, the relaxation method
is not well suited to this equipment, as it goes from one
point of the net to another in what might be considered
a haphazard manner. Possibly punched card machines can
be used in a satisfactory manner in conjunction with a
system of block or group relaxations.

Dy, Thomas: In regard to using relaxation methods, it
is more advantageous, at least for convergence, to go over
the network by hand, make the adjustments directly, and
then compute the residuals on the machine, That is the
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main advantage of the relaxation method; adjusting the
worst points gives more rapid convergence.

Mprs. Rhodes: Did you try the harmonization scheme?
I have never tried it on the IBM equipment, but I have an
idea with the Type 604 we might save a great deal of time
using this scheme. Moskovitz® and Frocht* gave this
scheme for just such areas as Dr. Hurd described; it
yields a first approximation in no time at all. Emmons®
gives a problem very similar to the one Dr. Hurd showed,
as an illustration of the superiority of the relaxation
method over the Liebmann transit method of solution. As
I recall, the times for the respective solutions were given
by him as 214 and 11 hours.

Dy. Grosch: To do single point relaxations, one can use
both feeds of a collator to search for the largest residual
in a deck of cards. That means it is possible to survey
eight residuals a second : faster than a human operator by
almost a whole order of magnitude. A twenty by twenty
mesh could be reviewed in two minutes. The catch is that
the machine does not skip right to the troublesome areas
of the mesh in the way the human eye does.

Mr. Stanley: It really seems that, because of the time
consumed, a system of single point relaxation is out of the
question. Group relaxation might do for a part of the
problem.

Dr. Grosch: Unfortunately, group relaxations don't
work out too well in terms of standard equipment. I am
afraid it requires a sort of human thinking that the 604
and the collator won’t do. The SSEC, perhaps, might.

Dr. Thomas: 1 would like to remark that just as in the
problem of ordinary differential equations we talked about
earlier, you can get a simple formula. The error term is in
the sixth order and actually computing is no more com-
plicated. The same thing is also true of partial differential
equations in two or three or more dimensions; in two, if
you take an improvement formula that involves only the
four values at the corners of the square in addition, you can
get a formula which is accurate to error terms in the sixth
differential coefficients; it will enable you to get accurate
results with a much coarser mesh and will save an enor-
mous amount of time where you have a large number of
points.

Mr. Bell: Getting the inverse of a sixty by sixty matrix
is a big problem any way you look at it.
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Some Engineering Applications of IBM Equipment
ar the General Electric Company

FRANK J. MAGINNISS

General Electric Company

WHEN I was asked to give this talk, it was suggested
that I describe one of the problems for which we had em-
ployed our IBM machines. Since we have two sets of these
machines being used for engineering calculations on which
some variety of problems has been worked out, I thought
it might be of interest to give a more comprehensive pic-
ture of what use we are making of these machines, without,
however, going into much detail for any one application.

Our two groups of machines are operated by the Tur-
bine Engineering Division and by the Central Station En-
gineering Divisions. The former set is used for the calcu-
lation of shaft critical speeds and for the solution of a
problem which will be described by Mr. Kraft in his talk.
The other set has been used for a greater variety of prob-
lems. I shall try to describe these problems (with the ex-
ception of Mr. Kraft’s) to indicate why we felt IBM
machines would be useful to us at the General Electric
Company.

Critical Speeds of Turbine Shafts

One of the important problems facing the designer of
large turbine sets is that of determining the critical speeds
of the set. Critical speeds are those rotative speeds which
coincide with the natural frequencies of transverse oscilla-
tion of the shaft. A better set from a vibration standpoint
is obtained if the critical speeds are not too close to the
running speed.

In the past, these criticals were approximated by con-
sidering that each unit between bearings (the high pres-
sure turbine, the low pressure turbine, and the generator)
was a separate entity, and the lowest frequency critical
speed of each of these single spans was calculated under
this assumption. This method was used only because no
other method was available which would give results in a
practical length of time.

Recently, our Turbine Engineering Division decided
that a more accurate determination of the critical speeds
of the multiple-span shaft involving a large number of

ok

49

calculations could be made in a satisfactory length of
time by using IBM machines. Accordingly, a set of these
machines was installed, and for the past two or three years
every new turbine set which has been built at the General
Electric Company has been previously analyzed for the
location of the critical speeds of the shaft. Moreover, all
sets which have been built in the past and are now in
service are being analyzed. In all cases in which test re-
sults are available, they agree very closely with the results
of calculation.

Briefly the method of calculation is this: the shaft (and
by shaft is meant the shaft and the units on it) is assumed
to be made up of a definite number (about thirty) of con-
centrated masses. Equilibrium equations are written for
each of the masses for the forces and moments on it due
to the reaction of adjacent masses and the centrifugal
force due to rotation about the unstressed axis of the set.
A speed of rotation is assumed, and starting at one end
the deflection, slope, shear, and moment are calculated for
succeeding sections until the far end of the shaft is
reached. Unless the speed assumed is exactly a critical
speed, it will not be possible to have both the shear and
moment zero at this point. If the shear is made zero, there
will be a residual amount which may be positive or nega-
tive. When a number of such calculations as described
above has been made for a number of speeds of rotation
(at about 200 rpm intervals for a-3600 rpm machine) the
curve of residual moment vs. shaft speed will indicate by
its zeros the desired critical speeds.

Correlation of Data on Electrical Steel

Obviously a factor of great importance to the manu-
facturer of electrical equipment is the magnetic charac-
teristics of the steel he receives from various fabricators.
Any significant departure from a standard may have seri-
ous consequences in its effect upon the performance of a
rotating machine or a transformer. It is therefore a ques-
tion of some interest to the people in our laboratories
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what factors are responsible for such deviations from
standard. Are they caused by small variations in the
amounts of carbon, manganese, cobalt, silicon or other
elements which enter into the composition of the steel?
Or are they caused by slight differences in the heat treat-
ment the steel may be given by different manufacturers or
by the same manufacturer at different times?

An attempt was made to answer the first of these ques-
tions by determining the correlation between the percent-
age of each of the elements present in the composition of
the steel with certain magnetic properties and by making a
multiple correlation between overall composition and the
magnetic properties. This particular study showed only a
small correlation between chemical composition and mag-
netic properties. .

~ This problem afforded an excellent opportunity to use
the technique of progressive digiting on the accounting
machine,

Multiple Conductor Circuits

A recent trend in the field of transmission of electric
power has been in the direction of higher voltages. A
reason for this is the increased distance between power
source and load center. Tests up to 500 kv are being con-
ducted to determine the feasibility of higher voltage trans-
mission.

When high voltages are to be used, there appear to be.
certain advantages in using more than one conductor per
phase. For example, the line inductive reactance will be
lowered as multiple conductors per phase are used and the
capacity susceptance increased. These result in an in-
creased load-carrying capacity of the line for the same
voltage. It is of interest to determine the spacing and ar-
rangement of conductors in one phase and between phases
which will prevent excessive corona loss. In order to deter-
mine these it is necessary to know the maximum value of
the voltage gradient which will occur at any of the con-
ductors. This in turn depends on the instantaneous value
of the charge on the conductors.

The problem is to set up and solve the equations relating
the charges appearing on each of several conductors with
the voltages on the conductors. In the general case there
will be as many such algebraic equations as there are con-
ductors. Moreover, in order to determine the maximum
gradient it will be necessary to know the charge distribu-
tion for several values of the voltages. For a two conductor
per phase, three phase line with two ground wires, we are
faced with eight algebraic equations. Each variation of
conductor size or spacing which is to be investigated will
require a new set of equations with different coefficients.
The coefficients are Maxwell’s potential coefficients and
the equations may be readily set up. It then becomes a
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question of matrix inversion for the reason mentioned
above. An interesting and significant result of the study
was the fact that the maximum voltage gradient can actu-
ally be decreased for a two conductor per phase line over
that for a single conductor of the same total area per
phase.

Incompressible Fluid Flow

For many field problems it is possible to obtain a very
close approximation to the stream lines and equipotential
lines by using some sort of network calculator such as the
AC Network Analyzer or the DC Calculating Board. As
an example, Concordia and Carter! determined the fluid-
flow pattern in a centrifugal impeller by this method.
However, most network devices are inherently limited in
range and accuracy (as are all simulator type calculators).
If, therefore, it is required to determine flow lines to a
high degree of accuracy in a region of great curvature, a
digital method of solution is necessary.

The reported results of the problem of the centrifugal
impeller study just mentioned were further refined, using
IBM machines to improve their accuracy. A small region
around the trailing edge of the blade was subdivided into
a fine mesh of points, values of the stream function of the
boundaries of this region were assumed to be fixed at the
values obtained from the DC Board study, and values of
the stream function at interior points of the region were
improved by a relaxation method.

Incidentally, we believe that the only way to study a fine
mesh relaxation problem is to start out by setting it up
first on the AC or DC Network Analyzers using as many
units as possible to give reasonably close starting values.
If such a device is unavailable, it would be necessary to
start with a very coarse network and gradually increase
the number of points until the required fineness of the
mesh is obtained.

In addition to the work done on the centrifugal impeller,
a study is at present being carried out to determine the
flow lines around a turbine bucket. In principle the two
problems are identical.

Some other problems we have been or are at present
studying by means of our IBM machines are:

1. A study of the distribution of flux density in the
interior of a steel lamination under conditions of iron
saturation. Such a study could be valuable in predicting
transformer losses to be expected from a new steel. This
problem involved solving one of Maxwell’s equations in
the steel subject to the condition that the total flux in the
steel be sinusoidal in time. This is a rather tricky condition
and difficult to satisfy since the best we could do was to
assume the flux density at a given point, for example at
the center of the lamination, as a function of time and by
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means of a difference equation determine the flux density
at successive points from the center out to the edge. If the
total flux was not sinusoidal in time, a different central
flux density was assumed and the procedure repeated.
Actually, of course, we did a number of cases at the same
time. This problem also led us to develop a method for
harmonic analysis for odd harmonics only.

2. A study to determine crystal structure is being car-
ried on at the present time. The method we are using has
been described by Shaffer, Schomaker and Pauling.?

3. Finally, we endeavored to solve a small but com-
plicated circuit problem involving complex voltages, cur-
rents and impedances to which several different fre-
quencies and values of load were applied. Our conclusion
from this study was that the ratio of the number of steps
involved in the solution to the number of cases considered
was so large as to make this particular problem unsuited
to IBM machine solution.

I think I may state our conclusions as to the use of these
machines as follows. Our set of machines on which the
critical speeds are being calculated is being used very effi-
ciently. Although there are not many cases (that is, values
of frequency) for each turbine set studied, the successive
steps are identical, control panels are permanently set up,
the operators are thoroughly familiar with the procedure,
and the work grinds out day after day.

The other set of machines on which the remaining
problems I have mentioned have been worked out cannot,
obviously, be used so efficiently, since we must be prepared
to solve many different kinds of problems. Of the types of
work we have carried out we believe the most fruitful use
of the machines compared to other means of performing
the same calculation has been in the field of solving alge-
braic equations or matrix inversion.
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DISCUSSION
Mr. Stevenson: On the turbine blade problem, we have
worked a somewhat similar problem using basically the
method of Theodorsen and Garrick! for arbitrary airfoils.
By means of a prepared table, we are able to get pressure
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distribution on an arbitrary airfoil in approximately fif-
teen minutes’ work with a 405 only. That method can be
further expanded to give you either the velocity potential
or any streamline you wanted to specify. I would be glad
to let you know about the method as I think it would re-
duce your machine time.

Dr. Caldwell: T would like to mention two points. Mr.
Maginnis briefly touched on a subject which I believe has
considerable possibility in many of these jobs, and that is
the possibility of using a DC board to get a start on a
numerical solution. Likewise, one can use electronic analog
machines of low precision but high speed to get a rough
approximation, and then jump off from there. I think that
is a very powerful type of combination. If any of you are
doing this, and making it work, I would be interested in
knowing it.

Dr. Fenn: In some work which I may describe later at
these sessions, precisely that was done. We have converted
a gun director into an analog machine, and sets of suitable
approximate solutions for certain iterative digital proc-
esses are actually worked out in large numbers. It is, as
you say, a very powerful method and saves a tremendous
amount of time.

Dr. Caldwell: Another thing I would like to see some-
body do some day is to work some fundamental improve-
ment on the method of crystal structure analysis that has
been described. It isn’t too happy, the way you have first
to draw out a lot of cards—picking them by hand is about
the only practical scheme—and run around the place
juggling little groups of cards. Unless you have a very
conscientious clerical job done, you are going to get some-
thing mixed up. At least I haven’t seen it work yet without
depending a great deal on the human element to keep
things straight. ~

Dr. Thomas: I would like to say we have been develop-
ing much smaller files of cards for these various harmonic
analysis calculations, and we are proposing to do it entirely
by sorting, collating, gang punching and tabulating. It can
be done that way, and in many cases is quite as fast as
using many cards. If you have a really fast multiplier, such
as the 604, you could probably do it quicker with that, but
with only the 601 or even the 602 available, it is quicker
to do the multiplying by progressive digiting.
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Planning Engincering Calculations

for IBM Equipment

BEN FERBER

Consolidated Vultee Aircraft Corporation

CONSOLIDATED VULTEE started back in 1942
to use standard IBM equipment to help solve engineering
problems. The first use was on electrical load analysis. The
solution of electrical load problems continued until about
1944, when the use was extended to structural problems.
Because of the saving in time and money, the equipment
‘has been in use continuously since that time, and has been
applied to a wide variety of engineering problems.

We have found that it is a good idea to get an estimate
from the person who wants a job done as to how long it
would take to do it manually. Then we put it on IBM
machines if we are sure that we can at least better his
cost estimate. Another important point to consider is the
advantage of having the engineer :cooperate and assist in
getting the job on the equipment. We must replan his job
to suit the equipment. In fact, with his assistance we might
discover new techniques and provide him with a better
service than he requested or anticipated.

For a particular problem the first two columns of the
card are used to identify the problem. The card layout
form with the card code is filed for possible later use on
a new problem of the same type. The card code was very
helpful to us in looking back to find the cards that repre-
sented a particular job. It could also be used to sort cards
into sequence, or for control on various machines both as
to its digit and as to its zone punch.

After the war we had a large supply of control panels,
so we used a large number of permanent control panels.
When the time came that we ran short of permanent
panels, we have gone to semi-permanent panels. For a
602 where we have a great deal of basic wiring that does
not change, we use a few manual wires. Perhaps some of
you have considered such a possibility for a 405 differenc-
ing control panel, using manual wires to make minor
changes.

Another use of manual wires combined with permanent
wires might be in wiring a panel for the first time. Testing
the panel after a few steps and substituting permanent
wires for the manual wires enables us to see what we are
doing.

ke
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Many of our jobs use relatively small quantities of
cards but many steps. For these jobs it is often a time
saver to wire a few simple control panels rather than a
single one that is very complicated. Of course, we can
afford to spend more time on the wiring of a complicated
board if it is to be a repetitive job, or if it is very large.

We have very good cooperation with our accounting
machine installation. Having our installations together
does have certain advantages. We can have our multiply-
ing done on one machine and checked on another.

Although the actual procedure used to solve a given
problem would to a large extent be a function of the type
of machine that is available, the following approach to a
common structural problem may prove interesting to some
of you. Let

Myl —M,K)x _(MyI,— M,K) y

fo I,I,— K2 I,I, — K®
where
fo = stress. at any point whose coordinates are
# and vy, measured from any pair of rec-
tangular axes passing through the centroid
of the cross section
M, and M, = bending moment about the x-axis and
y-axis, respectively,
I,and I, = moments of inertia of the cross-section
about the # and y axes
K = product of inertia of the cross-section
about the « and y axes.
If
1
Ci= I, I, — K?
Cg = C1 K
C3 = C1 [$
C,= G Iy
Dy =xC, —yC,
Dy=yC,—xCy
then

fb = M,,‘D“,;—*-IW,,D’, .

What we -did was simply to put # and y inside the
parentheses and take out the bending moments. Most of
the time we wish to hold the section constant and solve
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stress for various combinations of bending moments. If
we wish to continue and solve for shear flow, the basic
formula for shear flow ¢ due to vertical and side shear in
an open section is

_ WK = Vy1) Oy | (VyK = Vuly) Qs
1="7"TLI -k I,I,— K2

where

Vyand V', = shear forces perpendicular to the x and y
axes

Q,and Q, = static moments about the » and y axes

Qa; = E,,;Aiyi
Qy = %Aiﬂ’i
A; = area of the cross-section of the ith item
_ K9, L,Q.
FPedi="cm "7
_KQ. LO,
¥Pvdi="¢ "7

Then
q= szDia}Ai+ Vﬂ%-DiyAi .
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DISCUSSION

Dr. Caldwell: 1 especially appreciate Mr. Ferber’s idea
of getting the customer to estimate how long it would take
to do the job. It is very common to find a customer arriv-
ing at one of these installations that are supposed to do
mass production computations with his eyes bigger than
his stomach. He says, “Well, we can get a lot of work
done here for practically nothing,” so he specifies a lot of
work. Later he says, “Why do you say this is going to
cost thousands of dollars? I could do it for a hundred
dollars.” You investigate a little further and find he is
going to do one per cent of the work for one hundred
dollars!

Myr. Ferber: 1 might add that when a problem is worked
on standard IBM equipment with no extra devices other
than those normally available, one operator does about
twelve machine-hours of work per day.

My, Bell: The indirect saving resulting from the. elimi-
nation of rework in production can be a very important
result of using IBM equipment for engineering design.
This follows directly from the ability to investigate many
design conditions quickly and completely, so that all design
parameters are well in hand before construction begins.



A Survey of the IBM Project at
Beech Aircraft Corporation

JOHN KINTAS

Beech Aircraft Corporation

THE PRESENT PAPER is intended to describe
some important problems being solved by the IBM in-
stallation in the engineering department of the Beech
Aircraft Corporation. Emphasis is placed on the various
types of jobs processed by the IBM group for our engi-
neering and sales departments. Consistent with the stated
objective of the Forum, particular emphasis is placed on
problems which arise frequently in structural engineering.
It is hoped that the ideas contained herein will help stimu-
late discussion and thereby foster a mutual exchange of
ideas.

INTRODUCTION

At the present time the computing installation in Beech’s
Engineering Department includes one each of the follow-
ing International Business Machines:

Type 601 Multiplier

Type 513 Reproducing Punch
Type 080 Sorter

Type 405 Accounting Machine
Type 552 Interpreter

Type 031 Alphabetic Key Punch

The need for such an installation was envisioned during
the war as a practical solution to some problems arising
from critical manpower shortages. It was considered that
the IBM group would function in the following ways:

1. Accommodate certain types of periodic and inter-
mittent work-loads of our engineering department.

2. Alleviate shortages and losses to the armed forces of
skilled technical personnel.
3. Help relieve engineering personnel of routine calcu-

lations, thereby providing time for more important
duties.

To date our IBM group has handled a considerable.

amount of work relating to airplane weight control, struc-
tural analyses, sales research, time-labor studies, field
service engineering, library records, and other engineering
problems. Some of these projects are discussed herein.
Consistent with the stated area of discussion, however,

*
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particular emphasis will be placed on technical problems
of aircraft engineering.

WeicaT CoNTROL PROBLEMS

Of importance is the current usage of machine methods
in weight control calculations. In much of this type of
work the machines are required to shoulder intermittent,
heavy work-loads, and have demonstrated appreciable sav-
ings in time and labor. In a general sense, our weight con-
trol group determines the conditions of weight and balance
of the various Beech airplanes. In particular, this group
investigates the weights and center of gravity locations of
composite airplanes for various loading conditions. Such
information usually is obtained by considering the weights
and centroid locations of all fixed and movable items of
mass in the airplane. Punched card methods are readily
adapted to handle the large volumes of weight and bal-
ance calculations associated with this type of work.

SALES RESEARCH PROBLEMS

Our computing installation was used recently in a sales
research program to determine potential markets for Beech
products. This program was essentially a statistical survey
of numerous parameters relating to sales potentials in
various geographical areas. The labor entailed in the
mathematical manipulation of these parameters was con-
siderable, However, many basic operations were repeated,
and therefore adapted to punched card methods of solu-
tion. The machines relieved the sales research group of
many hours of “donkey work.”

STRUCTURAL PROBLEMS

We are set up to handle the following structural engi-
neering problems by machine methods:

Three-dimensional flutter analyses of aircraft
structures.

Harmonic analysis.
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Solution of linear simultaneous equations.
Solution of complex matrix equations.

Computation of section properties of aircraft
structures.

For each of these problems we have provided our IBM
group with a master deck of precoded cards, wiring dia-
grams, and a set of written instructions. The master decks
are considered as permanent equipment, that is, they are
not processed in the solution of a particular problem. For
specific problems, the master decks are reproduced to
obtain working decks of cards which are processed in
accordance with the written instructions. The instruction
sheets we use at Beech avoid, wherever possible, reference
to technical significances of the steps being performed.
This divorcing of engineering aspects of a problem from
the required machine operations enables the IBM operator
to concentrate mainly on manipulation of the cards.

Flutter

The punched card method of flutter analysis we use is
based on the theory given in ACTR No. 4798.* Standard
procedures have been set up for the following basic flutter
modes:

1. Fixed surface bending vs. fixed surface torsion vs.
rotation of control surface (with or without geared
tab).

2. Fixed surface bending vs. fixed surface torsion vs.
airplane roll or vertical translation.

3. Fixed surface bending vs. fixed surface torsion vs.
rotation of control surface (with or without geared
tab) vs. airplane roll or vertical translation.

These flutter modes are solved entirely by the machines,
except that a few manual operations are required during
the final stages of solution.

Usually, flutter analyses are conducted to determine the
critical flutter speeds and frequencies and the associated
values of damping coefficients. In some cases, additional
information such as mode shapes and amplitude ratios of
the component degrees of freedom also may be required.
The problem of determining these items may be resolved
into the two rather distinct phases of formulating and
solving the stability determinant. We formulate the de-
terminant by straightforward operations on matrices, then
solve the determinant by trial-and-error iteration. Some
discussion on these important steps is considered desirable.

For any mode of flutter, the stability determinant is
composed of complex elements. The numerical value of
each element may be determined by evaluating and sum-
ming up certain aerodynamical and mechanical integrals.
Careful study has shown that:
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1. Each of these integrals may be expressed as a sum-
mation of products of finite quantities. This would
be equivalent to considering that the wing is divided
into a finite number of chordwise strips.

2. Multiplication and summation of these products may
be accomplished readily using methods of matrix
algebra.

3. The numerical value of each element of any stability
determinant may be expressed as the product of four
matrices.

On the basis of these observations, we form stability de-
terminants entirely by machine methods.

As previously mentioned, we solve the flutter determi-
nant by trial-and-error iteration. It has been determined
that this process will converge at a practical rate, since the
preponderant elements usually lie on the principal diagonal.
In most cases the iteration stabilizes satisfactorily in two
or three trials. However, in some cases four or more trials
may be required. In general the iteration process is carried
out in the following way :

1. First a trial value of o is substituted in all but one of
the elements along the principal diagonal.

2. The determinant is reduced to the third order, if
necessary, then expanded to obtain a linear equation
in one unknown.

3. The linear equation is solved to obtain the second
trial value of o.

4. Steps 1, 2, and 3 are repeated until the trial value
of » agrees with the solution.

5. The entire process must be repeated a number of
times equal to the number of degrees of freedom
considered.

Practically all of the labor of solving the stability determi-
nant is done by the machines. However, some manual
operations are required to estimate initial trial values of
and calculate flutter speeds, frequencies and damping co-
efficients at the final stage of solution.

Estimates of the time required for the solution of a
three-degrees-of-freedom flutter mode by manual methods
as compared with our punched card method, based on the
assumption that five values of (7/bw) are investigated for
each mode, are as follows:

IBM Manual

Time Operation Time

35 hours Computation of 30 hours
clements of the
stability determinant

26 hours Solution of the 44 hours
stability determinant

61 hours/mode T'otal time 74 hours/mode

(1 operator) (1 person)
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Waveform. Analysis

Complex periodic waveforms frequently occur on vibra-
tion records of structural investigations such as flight test-
ing, fatigue testing and vibration tests of power plant
installations. It is impossible to analyze many of these
waveforms by ordinary inspection methods. However, any
complex periodic wave may be represented by the super-

" position of a number of simple sine and cosine waves. It
might also be mentioned that aperiodic curves, continuous
in a finite interval, also can be represented by assuming
that the given curve represents a single cycle of variation.

The problem of waveform analysis is primarily that of
determining the amplitudes and frequencies of the sine
and cosine components present in the synthesized wave.
At any point along the reference axis, the ordinate of a
composite waveform is equal to the sum of the ordinates
of the component harmonics.

At Beech, we have expanded the Fourier series to obtain
the general equations corresponding to five, eleven, twenty-
three and forty-seven harmonics. Particular solutions may

be obtained by substituting into these expansions the nu--

merical values of the ordinates of a given curve.

We have transferred the trigonometric constants of
these expansions into a master deck of 4704 coded cards.
Solution of a specific problem may be obtained by punch-
ing into a working deck (reproduction of the master deck)
the measured values of the ordinates. The cards are then
processed in. accordance with standard instriuctions. Solu-
tion is accomplished almost entirely by the machines ; some
divisions and extractions of square roots must be per-
formed manually. :

A comparison of time required by manual and punched
card techniques for waveform analysis is of interest.

Numberof  Corresponding - Est. Manual . Est, Machine
Ordinates Number of Time- Time-
to Curve Harmonics ~Howrs” Hours.
12 5 20 10
24 11 . 7.5 25
48 23 28.0 7.5
9 47 110.0 26.0

Linear Simultaneous Equations

Our IBM group now is set up to solve systems of fifty
linear equations in fifty unknowns. While this number
accommodates our present needs, it can readily be ex-
panded to any practical limit.

In general, we utilize a modified Gauss method. Here,
the linear equations are converted into matrix form. The
matrix equation, on the left side, contains a square matrix
of constant coefficients postmultiplied by a column matrix
of the unknowns. The right-hand side of the equation has
only one column matrix of constants. The square matrix
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of coefficients is operated on by rows and by columns until
all terms below the principal diagonal are zeros and each
term along the diagonal is unity. During operations on
rows, the colummn matrix on the right side of the equation
is also modified. It is clear that the value of the nth un-
known is immediately given on completion of these opera-
tions. The value of the nth unknown then is employed in
a back-tracking process to determine the (n—1)th un-
known, and so on.

It has been determined that time saved by machine
methods over manual methods increases appreciably with
increasing numbers of equations and unknowns. This may
be seen from the following comparison:

Number of Approzximate Time for Solution—Man Hours
Equations IBM IBM _
and Unknowns by Decimals by Powers Manual
10 Approximately Same 85
30. 39 50 74
50 78 148 218

Maztrix Manipulation
We are equipped to handle certain types of matrix
equations by the Kimball method.? It is particularly useful

in performing the basic operations of matrix algebra on

matrices with complex elements. The method is also useful
in manipulating matrices with variable elements when the
solutions are approximately known or when the prepon-
derant elements lie along the principal diagonal. This latter
feature is a reasonable guarantee that trial-and-error iter-
ation will converge at a practical rate.

Other Projects

At the present time we are investigating the feasibility
of solving the following structural problems by punched
card methods:

1. Spanwise airload distribution for monoplane wings.

2. Natural torsional frequencies of crank-systems using

Holzer’s technique.

3. Natural uncoupled frequencies of beams using Sto-

dola’s iteration procedure.

4. Analysis of shear lag in aircraft structures.

TIME ASPECTS

The time estimates previously given for several struc-
tural problems were based on actual performances. They
were determined by solving given problems manually and
by machine. Now the approximate average rates of our
machines are as follows:

Multiplier—15 cards per minute

Reproducer—100 cards per minute

Sorter—450 cards per minute

Accounting Machine— 80 cards per minute Edetail print)

150 cards per minute (group print)
Interpreter—60 cards per minute
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Processing time for most problems can definitely be im-
proved through usage of faster calculating punches. We
probably will consider faster machines when the need for
more rapid processing becomes manifest.

RECOMMENDATIONS

Usually, punched card procedures can be adapted to a
given engineering problem in a number of ways. From
time and labor standpoints some procedures will be more
efficient than others. Among other factors, a determination
of the optimum procedure depends on a knowledge of the
full capabilities of the machines available for our use. For
this knowledge we rely to an appreciable extent on the
Wichita staff of International Business Machines Corpo-
ration. We have always found them highly cooperative.
However, in some cases they were unable to provide us
with enough information on specialized capabilities of the
machines, particularly our Type 601 Multiplier.

We recommend that local IBM offices be provided with
up-to-date information on the full computing capabilities
of the machines in their region. It may be possible to estab-
lish, on a current basis, the flow of such information from
the various IBM research laboratories and computing
centers to branch offices. This would help people like our-
selves to realize the maximum potential utility of IBM
installations and avoid needless duplication of effort.
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sional Flutter Theory to Aircraft Structures,” Materiel Divi-
sion, Air Corps, ACTR 4798 (1942).
2. E. KimBArL, Jr.,, “A Fundamental Punched Card Method for
Technical Computations,” Bureau of the Census, U, S. Depart-
ment of Commerce (undated).

DISCUSSION

Dr. Eckert: I might point out that the use of IBM ma-
chines for technical computation grew very slowly for a
number of years. It was very easy for two or three people
to keep in touch with each other. Within the last two or
three years, there has been such a sudden cloudburst that
to have people everywhere supplied at the right time with
the right information is a little difficult. Steps are being
taken; IBM has now, among other things, special repre-
sentatives in the Sales Department who understand what
you are trying to accomplish. They know what is-available
in IBM, and they are at your call.

With respect to the local manager, he also has a very
tough assignment when you ask him for methods .of doing
things he has never heard of. That gap has to be bridged,
and I am sure it will be in a very short time,

There is still another way which is open at the moment,
and that is to cali on us at the Watson Laboratory or write
us a letter. We are always glad to hear from you. I think
about half of the people in this room have already done
that.
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Mr. Kintas: You probably know Mr. Kimball of the
IBM office in Dallas. Would it be possible for him, or
others like him, to circulate periodically as good-will am-
bassadors? A person like that could not only convey in-
formation from your laboratory to our installations, but
could pick up ideas from us to be passed on. Such repre-
sentatives would be very valuable.

Dr. Eckert: That is the intention. The difficulty is to get
the right man, get him trained in a very difficult field, and
get him to you.

Dr. Korn: Why not send Dr. Grosch?

Mr. Schroedel: Mr. Kimball, Dr. Grosch, and I par-
ticipated in a rather successful experiment along those
lines recently. Lectures were given at the Cornell Aero-
nautical Laboratory in Buffalo, and people from other
computing groups in the vicinity also attended. We learned
a good deal from the meeting. But there are fifty or sixty
installations in various parts of the country, and it is not
easy for all of us to visit every locality and work with you
long enough to really make a contribution. We hope to
have more technically trained representatives in the Sales
Department as time goes on.

Mr. Bisch: Several points, which could stand some com-
ment and emphasis, were picked out of the very interest-
ing talks of our aircraft representatives, Messrs. Ferber,
Bell and Kintas. Instead of taking one point at a time, it
seems more constructive and brief to present all my com-
ments as a whole.

Many engineering organizations are looking today for
powerful means of calculation. What the Engineering De-
partment of North American did four years ago was to
look to IBM for the main answer to this need, after a
general survey of the field. Fast progress was desired,
and to this end production methods were used in the crea-
tion and the development of our Engineering Section of
accounting machines.

Such methods call mainly for extensive specialization
and perfect coordination. To be concrete, we select the
structures section, although the following would be true
for the aerodynamics section as well.

An engineer with a long acquaintance with problems of
structures, company policy, and organization methods was
asked to select the problems and among their various solu-
tions those which result in speed and efficient use of the
IBM machines. This engineer familiarized himself with
the various functions of the IBM equipment and the pat-
tern of calculation most suitable for it, but he made no
attempt to learn how to operate it. As a result, he was able
to increase the contribution of the machines and he
promptly reached the conclusion that for a given standard
problem, the machines can do everything from the punch-
ing of the initial data to the final report printing. It is
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important to remark that he was the only engineer in direct
contact with the accounting machine section.

On the other hand, an IBM operator with several years
of experience and a mathematical knowledge equivalent to
a master’s degree was assigned to program for the ma-
chines the problems offered by the structural engineer, to

propose profitable changes in the mathematical processes, .

to suggest furtlier use of the equipment, and to select the
type and the number of IBM machines. In no case did
he concern himself with the engineering aspects of the
problems.

When this work was sufficiently under way to call for
more than two operators, an experienced operator was
selected as supervisor of this group. This group is an inde-
pendent section of the main accounting section with its
own machines, and it derives many obvious advantages
such as readily available service for the machines and the
incidental facilities of a large installation, by not being
separate from the main IBM body. The two men at its
head, the mathematician and the supervisor, form a per-
fect team for the dual purposes of large volume and con-
tinuous improvement.

The Engineering Section is therefore made of two parts:
the engineering part and the accounting machine part,
through which a perfect coordination is possible by a one-
man contact. It is now opportune to detail further the
duties and achievements of each component.

The engineering part, which is also assigned to seek
new technical and experimental solutions of aircraft engi-
neering problems, to write reports on the algebraic and
tabular solutions of problems and to conduct experimental
work, keeps an accounting of the approximate number of
arithmetical operations required by every job sent to the
IBM section. This number is easily arrived at for standard
problems, using simple algebraic formulas. On the other
hand, an extensive survey has shown that an engineer can
perform an average of one hundred arithmetical opera-
tions for each remunerated hour. As shown by two years
of coverage, an IBM operator performs on the average of
one thousand such operations per hour; therefore his
speed is ten times greater.

Finally, last year’s operations show an average of seven
thousand engineer-hours per month performed by an IBM
Section of four operators, which would cost a minimum
of twenty-one thousand dollars per month, if performed
by engineers, against an over-all cost of six thousand dol-
lars by the IBM group, thus effecting a saving of fifteen
thousand dollars per month. This approximate saving of
seventy-five per cent which was evidenced at the very be-
ginning was the real selling point to our management.
 However, the engineering management has become con-
scious of other less tangible although equally important
advantages. They are:
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Unprecedented dependability from the point of view
of time and accuracy.
An average speed ratio of ten resulting also in cutting
down waste in fabrication, as peinted out by
Mr. Bell.
Availability of solutions of problems, previously
prohibitive on account of cost and time.
I should like to conclude by giving a list of several ques-
tions frequently asked, and brief answers. ‘

What is the accuracy generally used? Eight, sometimes
ten, significant figures.

Why would slide rule accuracy not be a factor in this
selection? Because in extensive calculations, even when
performed in tabular form and on desk machines, there is
a need for mathematical and engineering checks, which
would be meaningless with slide rule accuracy. In some
problems, such as the solution of systems of linear equa-
tions, more accuracy sometimes means the only chance of
getting a correct answer.

Why not ask every engineer the estimate of engineering
time, as practiced by Mr. Ferber? Because it is easier to
gather in one room all the supervisors and experienced
stress men and have them propose once and for all a sober
rounded-off average.

Why not teach engineers how to operate the machines?
Although they are all welcome to visit the installations
and to see the machines performing, they only are inter-
ested in the relief in their task provided by use of the
equipment. Maximum efficiency is obtained by showing
them concrete types of calculations suitable or unsuitable
to these machines ; even this is not necessary for the stand-
ard problems. Finally, all the past experience being avail-
able to the contact engineer, it can be poured into every
new problem.

What is the criterion for a solution by the machines?
The IBM section can solve a mathematical problem in any
way selected for efficiency, provided the final answers
would coincide with the answer found by engineering
methods.

Is the most efficient method reached the first time? Far
from it. First of all, any substantial increase of efficiency
is worthwhile at any time because the gain will be repeated
many times and will outweigh the cost of the changes.
Moreover, the survey of the first numerical application of
a method always suggests other improvements.

Wouldw't the IBM scction soon be confused by a maze
of various methods? On the contrary ; thanks to the spe-
cialization of the engineering group, it has been possible to
restrict them to a few general solutions from which many
problems can be derived as simple cases without change of



FORUM PROCEEDINGS

procedure. For instance, the bending and shear stress dis-
tribution of shell structures can be obtained by the same
process, regardless of the type of cross-section and the
part of the airplane. Several obvious advantages are at-
tached to such generalization. '

What types of solutions are preferred, the type which
is short but inefficient on the machines, or the long but
efficient type? The first type is generally adapted to desk
machines. Our experience shows that the last type is pref-
erable, because it taxes the operator less, and usually the
answer is reached sooner.

What aeronautical problems were found to be solved
efficiently?
1. Conventional and elastic determinations of stresses

and rigidity of shells.

2. Weight balance, static and dynamic.

3. Airplane performances.

4. Determination of design loads, magnitude and dis-
tributions.

5. General problem of arch analysis, stresses and de-
flections.

6. Redundant structure analysis.

W hat mathematical problems?

1. Solution, by iteration methods, of characteristic
equations such as in vibration problems.

2. Direct solution of systems of linear equations up to
seventieth order.

3. Solution, by Galerkin’s method, of systems of linear
differential equations with variable coefficients.

W hat is our trend with respect to wiring control panels?
It may be that the nature of our work calls for flexibility.
In any event, more efficiency is attained by breaking the
process of solution into simple steps which are made with
standard control panels, than with special panels aimed at
shortening such processes.
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Are we trying to use a minimum of cards? In general,
one card is used for one machine operation. The cost and
inconvenience of more cards is outweighed by the ad-
vantages of simpler procedures.

What is the future of such wmachines in aeronautical
engineering? As long as this industry secures experimental
contracts an increasing need for their use will exist.

Has use of IBM machines contributed to the progress
of aeronautical engincering? Very much. Experimentally,
thousands of stresses are daily recorded directly in cards
from a specially wired stress rosette recorder. Technically,
modern airplane structures can now be correctly analyzed
at reasonable cost, whereas before the advent of the ma-
chines, this would have been impossible. Moreover, the
mentioned recorded stresses can be rapidly transformed,
through matrix calculations, into information valuable for
future designs.

Could the progress in use of IBM equipment for aero-
nautical engineering be readily used for other engineering
specialtics? For problems with identical mathematical
equations the answer is obviously yes. As to engineering
problems such as all general structure calculations (like
shell and arch analysis), their IBM solution can readily be
used in civil engineering, when presented under the general
form which is desirable in aircraft.

Finally, T might remark that none of our existing or
planned reports mentions the use or the wiring of the con-
trol panels.

Dr. Korn: Do you have those figures available? I have
to work a little on administration, too, in that respect.

Myr. Bisch: Every month we add to our little book sev-
eral pages about new jobs; I can show you that. We make
entries for every job we send to the IBM machines which
involves at least a hundred man hours of engineering
time. Many jobs are in the thousands of hours. We keep
a close record all the time, and every two or three months
I send in a progress report.



Aerodynamic Lattice Calculations
Using Punched Cards

HANS KRAFT

General Electric Company

WHAT I am going to present to you is by no means a
finished product. It is not even something I am exceedingly
proud of. I would like to show it to you in some detail,
and hope that I will receive from you some criticisms and
help on how we could have this computation done in a
much shorter time than it takes us now. It is possible that
we are on the wrong track entirely.

The problem of the turbine engineer with all its com-
plications is essentially as shown in Figure 1.

Momentary
Streamlines
Nozzles

Relative
Bucket Velocity

Ficure 1

Most of you know that a turbine is essentially a wind-
mill. A very fast flow of steam or gas issues from station-
ary passages which are called nozzles. The moving blades
we of the General Electric Company call buckets. The
steam flow streaming from the nozzles passes between
them and is deflected. This process generates mechanical
power which is removed by the rotating shaft.

We have had a long history of experimentation. We
have experimented very intensively since 1920. We would
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like to do some theoretical computations in addition. We

feel that we are somewhat against a blank wall with only
experimental approach. It is my own honest, private opin-
ion that further improvement in the performance of the

modern turbine—and it performs very well already—will
be made when, and only when, we are able to follow by
calculation the flow through this nozzle and bucket com-
bination with the buckets moving at high speed.

This means that we have to compute a flow through a
row of nozzle profiles. In aerodynamic language such a
row of equally spaced profiles is called a lattice. We will,
in addition, need to know the flow through the bucket lat-
tice. Furthermore, there is an interaction between these
nozzles and buckets. This interaction appears as a time
variation. As the buckets move past the nozzles, different
configurations of the available flow space result.

We cannot rely much on the well-known approximation
of the flow by that of an incompressible fluid. Our ve-
locities are such that we always have to consider the fluid
as compressible, Thus, we must first of all learn to com-
pute compressible flow through a stationary, two-dimen-
sional lattice ; later on we must study interference between
the two lattices as one passes by the other. Theoretically,
we think we know more or less how to handle the problem,
although as far as actual computation is concerned, we
still have a long distance to go.

I should like to discuss some of the initial work which
we have done to describe a simple flow through a row of
buckets. It has been performed for flow of an incompres-
sible fluid, but was done in a manner identical to that to
be followed to give us the compressible counterpart of
this incompressible calculation. The compressible compu-
tation still awaits the completion of a set of input func-
tions before it can be performed.

To solve the incompressible problem Laplace’s equation
must be solved. We do not attempt, however, to solve a
boundary value problem. We try to learn to build up pro-
files from given functions and accept the resulting shape
if it seems to be one which we actually do want, ie., a
shape which will perform well,

We use the representation of a flux function ¢ given as
a function over a field with the coordinates » and y. In the

_ compressible case we will not have this simple Laplace’s
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equation to deal with. Instead we must solve a rather for-
bidding non-linear equation if the problem is written in
terms of the physical coordinates & and y. To evade this
situation the equation is written in other variables, those
of the “hodograph” plane.

Figure 2 shows a streamline in the -y plane. At any
point along any streamline there exists a velocity vector
given by magnitude and direction. The sequence of these
velocities along a streamline can be represented in a co-

ordinate system such that the ends of vectors existing’

along a streamline are connected. The result is a map of
the true streamline. The map of all streamlines so pictured
is called the hodograph representation. It describes the
flow as well as does the original picture.

In the case of incompressible flow Laplace’s equation
describes also the field in this hodograph plane. In the case
of compressible flow the differential equation applying to
the hodograph plane is linear. The important consequence
is that in this plane, solutions can be superimposed.

In our actual computations we are not using the true
hodograph plane. We use the logarithm of the vector and

P (x,y)

Physical Plane
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thus have a Cartesian system. Figure 3 depicts these rep-
resentations for the case of relative flow through a row of
turbine buckets. In the physical -y field the flow comes
from infinity to the left and disappears to infinity at the
right. In the hodograph map all flow must come from the
upper singularity within the closed curve and disappears
into the lower singular point. A number of singularities
correctly placed outside the closed curve is needed to gen-
erate this pattern. These singularities are not shown here.
The streamlines within the closed curve describe all flow
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through the bucket lattice. The two saddle points- at the
left infinity of the logarithmic hodograph represent the
entrance and exit of the buckets.

The object of the computation is to generate closed fig-
ures of this topology. They are generated by a vortex
source representing upstream infinity and a vortex sink
representing downstream infinity, combined with logarith-
mic singularities located outside the closed curve. Their
location and strength distribution will ultimately deter-
mine the contour of the profiles.

The mathematical background of the method is shown
for the more complicated case of compressible flow. The
basic ingredients for the final differential equation are
rather well known: continuity, irrotationality, gas law (in
this case for isentropic flow). Flux function ¢ and poten-
tial ¢ appear as mathematical tools.

Physical Lows
.. 9(pu) 6(pv)
Continuity 9 +——= 3y =0 ¢))
. . o dv
Irrotationality " or 0 (2)
Gas Law (isentropic)% = constant 3)
P
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SCIENTIFIC COMPUTATION

Equations (6) show the important conversion from hodo-
graph variables to the physical flow picture. The linear
hodograph differential equation is Equation (8).

The linear fields so represented can be considered as
arrived at by the intelligent addition of logarithmic singu-
larities. Additional non-logarithmic singularities may also
be added. In general, the desired results can be obtained
from logarithmic singularities alone. So much for com-
pressible flow.

Here we are considering the far simpler case of incom-
pressible flow. It serves as a pilot process for the really
desired more complicated compressible case. The differ-
ence appears in the computation of the logarithmic singu-
larities which serve as input functions. This computation
which is desperately difficult in the compressible case is
much simpler for incompressible flow.

The only input function needed is given by the equation

F=¢+4+iy=In((nw+10), (9)

where
w? = u? 4 v° (10)
tand = v/u . (11)

F is the logarithmic singularity called a source. Multiplied
by ¢ it is called a vortex. This is well known to everybody
reasonably familiar with conformal mapping. The source
in the hodograph plane represents the axial flow compo-
nent emanating from infinity of the 4~y plane. The vortex
furnishes the tangential component of the flow at infinity.
Added together in proper proportion, i.e., with one multi-
plied by the correct factor to depict the flow vector at
infinity, they furnish in the hodograph plane a map of the
physical infinity conditions. What has been said here for
the upstream infinity repeats itself at downstream infinity.
Here the source is negative, in other words, a sink.

We must realize that what is desired in the end is a
picture of the flow in physical space. The conversion from
the hodograph map to physical flow is linear, as is clear
from Equation (6). Hence » and y values can also be
superimposed. If they are known over the whole field of
the logarithmic singularity they can be added in exactly
the same manner as can the ¢ and y values themselves.

In other words, if a field is composed of ¢, and y,,
¢, and v, ; its physical coordinates are added from the
1,4, and y,,y, of the individual singularities.

We calculated this v,y field for one singularity, but we
did not obtain very good accuracy (Figure 4). The equa-
tion for this field is shown on the figure. One-half of this
field has been computed to great detail and accuracy by the
National Bureau of Standards Computation Laboratory in
New York. The field as shown is for a vortex. To find
« and y for a source, the relations are

Fp = =N Yo= +

(12)
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We now have four sets of numbers ¢, ¢, #, ¥y known at
every point of the In w-6 plane. We cover this plane by
a close square mesh of numbers, always four at every in-
tersection. This number system we can reproduce as often
as needed. These systems then can be moved bodily with
respect to each other. The numbers ¢, ¢, &, y then can be
added at every location and a new combined solution
emerges. Obviously, it 1s best to move always in straight
multiples of the mesh interval.

Before addition each system can be multiplied by a
common multiplier. In view of what has been said before
such multiplication is necessary in the case of the singu-
larities ‘representing the flow of infinity. Another multi-
plication is needed for the a-y system every time the
singularity is moved. A motion in the In 2 direction rep-
resents a relative shortening of physical dimensions, and
one in the @ direction means a rotation of the physical
system.

The equations for this correction are:

)1

= e (ycosf — ysin 6) (13)

y = €T ® (ycos 6 + x sin 6) (14)

A\

Simple Turn with Constant Velocity
on Suction Side

where ,y are the physical coordinates of the singularity
displaced by In 7, 6 in the hodograph plane. These multi-
plications and additions must be performed for each dis-
placed singularity before it is added to the others.

Procedure of Computation

One master stack of cards holds the four-value table.
It can be reproduced onto as many stacks as singularities
are needed. This reproduction can already be guided in
such channels that the character of the singularity as
source, sink, positive or negative vortex is taken care of.
Nothing but a control of the signs is needed for this.

Next the singularities must be moved to their predeter-
mined place. This means a displacement of the origin of
each stack, in other words a change of identification, A
constant is added to either independent variable. This new
identification orients the singularities with respect to each
other. Then we must multiply for strength and correct the
#’s and 9’s as shown above.

The field of interest for a particular computation will
be smaller than that of the master table. The overflow
cards are now removed. This involves one sorting.
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In this manner we finish with as many stacks as there
are singularities. They are properly coded with respect to
each other. Next they are fed through the collator. Here
all cards belonging to the same coordinates are stacked to-
gether. This new total stack enters the accounting machine
where the values ¢, ¢, x, y are added together for each
coordinate. A new card is summary punched for each addi-
tion. The new resulting stack is the solution. Other singu-
larities can be added to it if a modification of it is desired.

The solution is not yet in the form in which we need it.
We must find the points for a number of (equally spaced)
constant values of ¢ (stream lines). The x and y values
appearing along these lines furnish coordinates of the
physical stream lines. One of these is the profile. What is
needed is a fast and simple inverse interpolation for ¢ and
a direct interpolation for » and y. In the absence of a fast
method, we use the old and time-honored method of cross
plotting. We hope to be able some day to do this part by
machine, As long as machines become faster there is hope.

60°-60° Bucket Turn
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Here are some of the more simple examples which we
have done. We are collecting experience about the most
promising combination of singularities. Figure 5 shows a
very simple flow turn which has a constant velocity on the
inside of the turn. By the addition of two singularities, one
source and one sink, we arrive at turning streamlines, one
of which has constant velocity throughout. The other
streamlines decelerate first and then accelerate. None of
these streamlines generates a closed profile.

The simplest closed curve we could generate is shown
in Figure 6. A vortex source flows into a vortex sink and
both are opposed by equal and opposite singularities. This
results in a closed curve in both hodograph (circle) and
physical plane. Here we have a saddle point which is not
situated at minus infinity. As a result, the profile does not
have a finite entrance angle at its nose. The velocity there
is not zero. There is, by the way, a very simple condition
which assures that if you have a closed curve in the hodo-
graph map you will also get a closed physical flow curve.
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All that is necessary is that the strength of the infinity
singularities matches the components of the velocity at
which they are situated, and that the residue in the closed
hodograph figure be zero.

I may add that the fate of the compressible counterpart
of this computation is now entirely in the hands of IBM.
IBM is willing to perform the very complicated calculation
of the compressible singularities on the Selective Sequence
Electronic Calculator. After these tables are available we
can calculate subsonic compressible flow. Supersonic flow
is of small interest to us. We leave that to the artillery!

Nothing will help us much, except being able to do two
things. One is to compute with a great deal of accuracy.
If we could sacrifice accuracy, we could proceed along
cheaper ways by experiment alone. The other is to be able
to mass product theoretical results, because what we pri-
marily are after are not solutions for production, i.e., for
the immediate turbine that goes into the shop. We want
series of solutions for experimental purposes. We want to
get experimental parameters which are related to blade
shapes, to the interaction between blade shapes, and to a
number of additional variables which now rather obscure
a clear conception of the working process of a turbine. If
this computation can help here we shall be able to produce
a still better performing machine than we have now.

SCIENTIFIC COMPUTATION

DISCUSSION

Dr. Fenn: How justified is your irrotational flow with
the blades moving past each other?

_Mpr. Kraft: The flow can be considered completely ir-
rotational as long as it is considered as a two-dimensional
problem. Even in three dimensions, when the turbine is
designed for constant circulation, you still would have an
irrotational problem. It becomes rotational only when you
take the boundary layer into account. This must come
necessarily after we can calculate irrotationally. We have
to follow the procedure which the great masters of aero-
dynamics have laid down. We do not think we know any-
thing better.

Mr. Stevenson.: Have you ever tried the classical aero-
dynamic scheme using conformal transformation?

Mr. Kraft: As 1 emphasized at the beginning, if it were
only the incompressible solution we were after, we would
not do this computation as I described it. We do it in this
manner only because we can replace it by the compressible
calculation as soon as the additional logarithmic singularity
tables for compressibility are available. We are well aware
that incompressible lattice computations can be performed
by simpler procedures.



Dynamics of Elliptical Galaxies
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IN HIS CLASSICAL investigations on the dynamics
of elliptical galaxies, Sir James Jean has said, “We have
seen that the density of matter in the central lenticular

masses of nebulae is of the order of 10~ g/cmé?. The free

path in a gas of this density is 10'* cm., whereas the
diameter of the central mass of Andromeda nebula is
about 1.6 X 10%* cm. . . . It follows that the various
nebular configurations may legitimately be interpreted as
configurations of masses of rotating gas.”* He further
calculates the free path of a star, allowing for its gravita-
tional interactions with other stars of the cloud, and finds
that for the same mean density it is equal to 10%® cm.
(about 50,000,000 times the diameter of the nebula). He
concludés that the concept of gas pressure cannot be legi-
timately used in connection with nebular dynamics when
the nebula is supposed to be a cloud of stars, and that
clouds of stars should not assume the special shapes of
observed nebulae. ,

Today we know that the elliptical galaxies and the cen-
tral bodies of the spirals are made up entirely of stars.
This fact, first suggested by the stellar type of their spec-
tra, was established beyond any doubt by the recent work
of Baade? who was able to resolve the celestial objects into
a multitude of individual stars.

To reconciliate Jeans’ theoretical consideration with the
observed fact, George Gamow suggests that the regular
shapes of elliptical galaxies were established in some past
epoch when they were entirely gaseous, and are now re-
tained as “dead skeletons” after all the original gaseous
material was condensed into stars. This stiggestion agrees
with the recent theory of the evolution of the expanding
universe proposed by Dr. Gamow,® according to which the
masses and sizes of galaxies can be predicted on the as-

o
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sumption that they originated as the result of “gravita-
tional instability” of the expanding primordial gas. These
gaseous clouds would tend to assume spherical or ellip-
soidal forms depending upon the amount of angular mo-
mentum, and their internal density distribution was pre-
sumably that of the rotating isothermal gas-spheres. The
linear velocities of gas-masses at each point were pro-
portional to the distance from the rotation axis. As the
star forming condensations took place under the forces of
gravitation and radiation pressure, the net outward force
due to the difference in gas (and radiation) pressure be-
tween the surfaces toward and away from the center of
the galaxy was reduced as a result of the reduction in the
volume and surface arca. Consequently, the stars were
accelerated toward the center under the influence of un-
balanced gravitational force, assuming that at no time dur-
ing the history of the galaxy do the stars exchange any
appreciable amount of energy with their immediate neigh-
bors as a result of close encounters.

The only overall forces acting on a star will be: 1. The
resistance of the gas to its motion, which will be a radial
force as long as the motion is radial and which will dimin-
ish in importance as the gas is consumed in the star forma-
tion process. 2. The radial force exerted by the smoothed
gravitational potential of the remainder of the stars. Then,
the stars will tend to oscillate radially through the center
of the galaxy. The amplitude of oscillation or the points
of maximum elongation of the newly acquired elongated
elliptical orbits of the stars should correspond to the dis-
tances at which they were originally formed. As more and
more stars were formed, the major axes of original ellip-
tical orbits were gradually changing due to the gravita-
tional action of other stars which have originated outside
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of them, but are now penetrating during a certain fraction
of their motion into the interior regions. As a result of
these interactions, the stars acquired an altered distribu-
tion. It is expected, however, that the stellar orbits were

not shuffled; i.e., the stars which were formed at larger

distances from the center and therefore with larger angu-
lar moments will also have their points of maximum elon-
gation farther out from the center. In observing mean
radial velocity of stars at different distances from the
original rotation axis, with respect to an observer, we will
essentially obtain the tangential velocities of those stars
which pass through their point of maximum elongation at
that distance. Since the stars which move beyond that
point will be much smaller in number and will also present
us only with the projection of their actual velocity, it can
be expected that the observed rotational velocities will in-
crease with the distance from the center (linearly in the
first approximation), giving the impression that the entire
galaxy is rotating approximately as a solid body. This
“solid body” rotation is actually observed in elliptical
galaxies and in'the central bodies of spirals, and was con-
sidered an unexplainable phenomena in view of the large
free passes of individual stars.

In the present work we plan to analyze the observed
density- distribution in the elliptical galaxies which was
very carefully measured by Dr. Hubble.*

Computation of the initial density distribution in a spiral
galaxy before formation of stars:

Let p(r)dr = the present mass in the shell between radii
r and » 4 dr

B(a)da = the initial mass between the shells of radii
e and « + da

P(r) = the present potential at 7.

A stellar mass starting at a and dropping inward to » will
lose the potential energy

m[P(a) = P(r)] = mv?/2
and hence acquire the velocity
v = V2[P(a) — P(r)].

The time which the star will spend in the shell of thick-
ness dr will be dr/v (on the inward trip), and the frac-
tion of all its time which it spends in this shell will be
dr/vT (a), where T'(a) is the time required for the mass
to drop from « to the center. The contribution to the mass
observed now between r and » + dr arising from the mass
which started to drop from between « and o + da is

8(a) da dr
T(a)v

SCIENTIFIC COMPUTATION

Then the total mass between » and r 4 dr is

p(r)dr = 5"3 ______B(a)da dr .

T(a)v
Therefore
o =—=(" B(a) da .
P V2,), T(a) [P(a) = P(r)]*/?
Let A4 a4 1

a

= l(?gloa —g; =M=

a9 _ .1
QO = log,r Q?"‘*M P

M = modulus = 434

then fB(a) =
logR
2::2 MT(a) dA[: VP(r) — P(a —P(a) dQ dQ:I (1)

For integration, the Gregory formula is suggested, since
the errors of integration are readily estimated:

1 a+nw

1 ‘ 1
o af(x)dx=(éfo-l—fl-{-fz+...+f,,_1-+§fn)

- 1—12 (A'fur = O —IZ (Aiifn—z — Alify)

— 71790 (Aiiifn_ab — Alf)) — ...

For obtaining derivatives near the end of the tabular se-
quence we use the following:

wf (a) = AYf(a) — 5 AM(a) +3 AW (@)
—-%A“’f(a) ¥

Away from the ends of the tabular sequence the following
central difference formula converges more rapidly:

wf (@) = 3 (D10 170+ Alayys)
- %(Amd 172+ Amal/z) +

1 1 . N
go“(A"a-l/z + Avayy,) — 280 (A¥a.e + AMMayp) + ...

By definition

odr_ 1 dr
T(a) = ‘s;";_?/—?'j; [P(a) _ P(r)]1/2

Q‘ dr 1 r r

= logmr;_dQ dQ/d M '4—3—4:

__1 (™ rdQ :
)= M\/’z‘,,[t [P(a) — P(r)]*/® (2)
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Near r = o, P(7) becomes nearly equal to P(a) and the
integrand diverges. To overcome this a series approxima-
tion in the neighborhood of # = « is suggested.

Let h = (o — 7). Hence the first term is

) .
av T aX YA (3)
For small a the first term approaches zero, and in the

second we may set 3Ma = 4ma® p (0), and p(a) = p(0).
Let & = a;then to the first approximation

11
T() = i\ 5g 5007 - 4)

The third term of the series should be calculated if greater
accuracy is desired.

The equations (1), (2), (3) and (4) with which we are
here concerned, lend themselves readily and very con-
veniently to solutions on standard IBM equipment. It is
gratifying that a computing laboratory of this nature is
available for these investigations. Although to date no con-
clusive results are available, a more thorough investigation
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of the problem is possible. It is the hope of the authors
that in the near future they will be in a position to publish
results of these investigations which will conclusively de-
cide whether this theory is valid.
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DISCUSSION

Mr. Hollander: Do we have any proof that stars are
moving radially, either in or out?

Mpyr. Belzer: It would take very many years to notice any
motion in the stars. I think that according to Dr. Gamow’s
theory of the evolution of the universe, in a period of
about 200,000,000 years the stars might have made seven
or eight oscillations.
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THE FOLLOWING concepts of the application of
punched card machines are the consequence of the particu-
lar problems in which the author is interested, but proba-
bly the examples are typical of present-day theoretical and
physical chemistry.

The Hollerith machine was invented for scientific work,
but reached the present stage of refinement because of its
application to commerce, and in the field of chemistry it
will return to science because of its bookkeeping facilities.
The chemical literature has reached such an enormous
volume that the tremendous burden of bookkeeping is a
serious detriment to efficient research. The application of
punched card techniques to indexing is the center of in-
terest in chemistry today, and outweighs the other possibly
more important applications. One is the recording, storage
and handling of experimental data. Next, there is as a rule
an opportunity for machine methods in the calibrating and
correcting of these data. After this there is the analysis of
the data, various correlations to be searched for and other

ot

statistics to be extracted. Finally, there are purely theoreti-

cal calculations.

Recording Experimental Data Digitally

Today, the recording of data is extremely widespread.
Almost always continuous variables are used to measure
quantities in an experiment or industrial process ; the most
primitive is the visual reading of a meter scale, and re-
cording of the nearest number on the scale. Recording
potentiometers are commonplace. Photographs of oscillo-
scope patterns are used in transient phenomena. Such rec-
ords are rarely useful in themselves. Even if the primary
data on the record is sufficient by itself (for example, the
temperature recorded as a function of time), the study of
more than a few dozen charts by eye is almost impossible.
Usually the primary recorded data have to be converted to
some absolute quantities. An example is the recording of
infrared spectra. The actual conventional record consists
of the distance a pointer is deflected for various angular
displacements of the paper roll. From a knowledge of the
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parameters of the instrument the deflection can be con-
verted to an absorption coefficient and the distance along
the paper converted to wavenumbers. The absorption co-
efficients at a given wavenumber are invariant to the par-
ticular experimental conditions ; it is these quantities, not
the original record, which have universal interest. This
conversion and calibration can only be done after a first
step of visual “reading off” the charts, point by point. This
is a process of conversion from a continuous physical
variable to-an abstract digital number. The conversion and
calibration now proceeds by digital calculations. Clearly, it
would be most desirable to record the original physical
variable (often a voltage) as a digital number. At first
sight, it might seem that such a process is less accurate.
However, this is what the eye ultimately does in “reading
oft” the chart. Furthermore, every good experiment should
be done with equipment that has a definite “noise” level
(in a general sense) just visible. Even measuring a dis-
tance should be done with a scale, or a micrometer eye-
piece, or a cathetometer whose accuracy is just sufficient
to meet the requirements, or if a limiting factor, at its
extreme of sensitivity, so that each reading has a few
percent of “noise.” The magnitude of the noise can be
taken as the unit in the digital scale; and a digital reading
is as accurate as the experiment, even though the con-
tinuous trace may look more precise.

If the readings are to be made digitally, the binary sys-
tem is the best. First, a punched card works on a binary
system. There are two and only two “digits”—a hole or
no hole. Secondly, the binary system is most econornical in
number of required digits per number (above eight). Fin-
ally, as a practical matter only one punching time is re-
quired to (multiply) punch a binary number <1024 in a
single column of a standard card, in contrast with the four
punching times for a four-digit decimal number.

The problem of recording data has been solved by a
Digital Reader, which reads a voltage, converts it to a
digital binary number and punches this in a card. An ac-
curacy of one percent has been achieved with a very simple
circuit. The resulting seven digit (<<128) binary number
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is punched in one column of a card at the fastest puncfling
speed of IBM equipment, namely twenty-five a second.

Processing of Data

With the original measurements directly punched on
cards as primary data with the original “noise” retained,
the conventional processing of the data can proceed with
machine methods. The example of infrared spectra brings
out the power of punched card methods in extracting more
information from experimental data than can be done by
continuous record. Hundreds of new spectra are being
taken every day. For the most part they are compared

with spectra taken in the same laboratory, and in almost

all cases, with spectra already extant in the literature. Sev-
eral thousand infrared spectra are now generally available,
but their comparison is a difficult matter. In addition to
the various scales used in reducing drawings for publica-
tion, there are several conventions of plotting wavelength
or wavenumber, increasing or decreasing to the right. Fin-
ally, even with two records on the same scale, there are
some rather subtle comparisons to make. In general, the
problem is not whether two spectra match at every point,
but whether they have certain peaks in common, and to
what extent. This is similar to the problem of weather pre-
diction carried out by punched card methods, based on the
matching, within tolerances, of today’s weather map with
a file of the last forty years’ maps. This is an ideal situa-
tion for a collator. Methods of calibrating the data, and
extraction of statistical information, are relatively conven-
tional and are to be found in the literature.

There is a converse of the above problem, namely the
plotting of results of calculations done on cards. There is
no question that a plot is more readily understandable
than a table of values. It would be very desirable to have
an instrument which would take the impulses from an
accounting machine and convert them to a continuous
quantity, presumably a voltage, which would drive a re-
corder. Lacking such equipment, we have derived a method
of using the type bars of a 405 to plot points.

Theoretical Calculations

At first sight, one might be sure there are many oppor-
tunities for punched card methods in theoretical chemistry.
There are, however, several arguments against their use.
The cost, if not the very presence, of a battery of IBM
machines in a chemical laboratory will have an undue in-
fluence on the type of work done there. There will be

emphasis on the ponderous data collecting and large scale .

poring over of material notable for its quantity rather than
quality, away from the elegant simple experiment. On a
more theoretical level, the interests and, ultimately, train-
ing of the research worker will be away from analysis and
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be likely to get in a rut of conventional punched card ap-
proaches. There is no time to read Whittaker and Watson
when machines stand idle!

Another difficulty in the introduction of standard ma-
chine methods is the fact that IBM equipment is a parallel
type of computer. The scientific approach inherited from
pre-machine days is sequential. For example, many prob-
lems are developed with the aim of finding the solution as
the root of a polynomial. Now there are no analytical ways
of finding roots of polynomials. But IBM machines are not
suitable for the numerical solution of a single polynomial,
because they are efficient in parallel and not in sequential
calculations. 1f, however, the problem, perhaps by gen-
eralization, requires the solution of a few thousand poly-
nomials, the process could be run in parallel even though
it required very many sequential steps. The best known
numerical method of solving polynomials involves con-
tinued fractions, which are known to converge, and hence
behave better than many approaches in which the root has
to be raised to a high power. The recent development of
the 602 and 604 which can divide has opened up the field
of extraction of roots to machine methods.

The repetitive feature of punched card machines is a
possible advantage to physical chemists, especially in the
construction and tabulation of functions. One example
would be the tabulation of the free energies of all sub-
stances for which information is available, from empirical
constants. This could be done to great advantage at every
degree from —273°C. to 5000°C. and thus save a great
deal of interpolation. Another application is the direct
calculation of the thermodynamic functions from funda-
mental frequencies from spectroscopic analysis, without
the forcing of such data into simple empirical formulas in
order to sum or integrate.

The purely theoretical problems of chemistry lie in a
field in which the role of machines, although certain, is
quite obscure. Chemists deal with molecules, and except
for hydrogen, a rigorous quantum mechanical approach is
beyond the power even of the most advanced machines
today. One difficulty with the quantum mechanics of a
molecule is that it is- many-dimensional, and integration
even in three dimensions in general involves astronomical
numbers of unit operations. It may be possible to approach
these problems with some sort of statistics, as Dr. Thomas
did so well for atoms. Another difficulty in theoretical
chemistry, as contrasted with fundamental physics per-
haps, is that the solutions of problems do not involve
analytical functions. This appears even in the simplest
problems, such as the interpretation of infrared spectra.
The spectrum of water, for example, consists of several
thousand lines which are differences of a fewer number of
energy levels. The latter, however, are not spaced accord-
ing to any elementary function.
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They are roots of polynomials, and are non-elementary
functions of the moments of inertia, so can only be ex-
pressed as tables. Thus, advanced spectrum analysis can
only be approached by machine methods.

Still a further difficulty arises in the real problems of
physical chemistry from the nature of experimental data
themselves. The unravelling of the rotational structure of
an infrared spectrum has been described above as being
very complex. One might infer that, with machine methods
and enough time, a unique interpretation could be made.
This is true when the spectrum is completely resolved, as
in the photographic infrared. In the main infrared region,
lines are not completely separated. The spectrum consists
of a continuous record consisting of a number of peaks,
each of which contains a number of more or less resolved
“lines” which are not mathematical lines, but Gaussian
curves. Thus, the conventional analysis by finding a set of
constant differences between the various lines fails, be-
cause the overlapping of lines in peaks leads to uncer-
tainties in their position of the order of magnitude of
significant differences in the differences.

There is an analogous situation in many x-ray and elec-
tron-diffraction spectra. The classical approach of deduc-
ing a unique structure from its observational data cannot
be carried through. Modern spectrum analysis almost

always is achieved by the stochastic process. A structure

of the molecule is assumed. Certain theoretical expressions
are used to calculate the appearance of the spectrum in
which such a structure would result. The calculated spec-
trum is compared with the observed. Successive trial struc-
tures are assumed until a satisfactory agreement between
calculated and observed spectra is achieved. There is no
proof the final fit is unique, but as a rule the observed
spectra have sufficient complexity that the probability of
any other structure giving rise to the same or better fit is
remote. The application of the stochastic method to the
analysis of rotational structure of infrared spectra has
been described in detail elsewhere.?

It is appropriate to review briefly the wiring of the vari-
ous IBM machines in this work.* Many of the calculations
are straightforword. The only unusual feature in the
collator is the effective use of splitting up the comparing
magnets into nine fields. This allowed comparing, and
hence merging on three fields of quantum numbers simul-
taneously, two of which increased and one decreased.

The whole process consisted of forty steps, of which
seventeen were done on the accounting machine. It might
be interesting to point out that all calculations were done
on the same control panel. The most noteworthy single
calculation done on this control panel was the calculation

*Complete wiring diagrams will be presented in a report to the
Office of Naval Research who supported some of the spectrum
analysis with punched card equipment,
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of the expected spectrum with a finite slit. A deck of cards,
one for each small absorption line in the spectral region
(300cm™ wide) is made as the final step in the purely
theoretical treatment. Each line is represented by a card
giving its position in wavenumbers and its intensity. These
cards are summary punched over a small interval (0.5 cm™)
of the spectrum, so that lines less than 0.5 wavenumbers
apart are combined in intervals. This deck of summary
cards is made complete with blanks, to give a final deck, a
card appearing for every 0.5cm™ interval in the whole
region. This deck then represents the appearance of the
spectrum if the resolving power were 0.5 cm™, In actuality
it is higher. A region of wavenumbers is seen by the slit
of the spectrometer at any one time. It is desirable then
to compute the actual transmission at each wavenumber »

+2

TG) = Y o1 (v+a),
O=-3

where p_,, p-1, pos p1» P2y are weight factors describing how
much on either side of v the slit sees. This summation is to
be carried out for each v, proceeding by intervals of 0.5 cm™
along the region of 300cm™. It was found that values of
p = 1,242,1 or 1,2,1 satisfactorily expressed the experi-
mental slit shape function. Summary cards T'(v) were ob-
tained in one pass through the accounting machine, using
progressive totals in five counters, where counter entries
were fed the number /(v) by a permuting switching ar-
rangement. A minor total cycle occurred every card. One
counter has to be cleared every card. This was done con-
necting the counter exit to entry through the permuting
class selectors.

It should be mentioned that some calculations were
made possible on the single accounting machine control
panel by the use of external manually controlled gang
switches which connected different fields of the cards via
brushes to different counters, which were too few in num-
ber. The well-known “Octal” tube socket was used for
additional hubs, the standard IBM wire fitting the holes
in these sockets somewhat better than the hubs in the con-
trol panel!

Another large field in physical chemistry where large
scale computing machinery will play a great role is statis-
tical mechanics. The properties of a single molecule have
to be determined from experimental measurements by a
stochastic process as outlined above. But the macroscopic
behavior of materials is an average of certain quantities
of an extremely large number of molecules, each one mov-
ing, vibrating, rotating with different velocities, or in a
different configuration. A very simple example is the
theory of rubber-like elasticity as based on a simple theory
of the statistical mechanics of high polymers. Rubber
molecules are long chains of ten thousand or more seg-
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ments. A molecule can therefore exist in very many dif-
ferent configurations, and as a consequence has high
entropy. On stretching, the molecules become less random,
and the chains tend to become parallel. The decrease in
entropy is responsible for the strong force in a piece of
stretched rubber which attempts to contract it to its origi-
nal state of maximum randomness. Clearly the force, and
hence the modulus of elasticity of a plastic made of long
chain molecules, could be calculated if we could enumerate
the possible configurations of such an assembly of chains.
This can be done in a simple way and leads to results in
rough agreement with experiments, at least for highly
elastic substances. The simple theory has a number of de-
fects, principally the fact the molecules have volume and
can only occupy the same volume of space once. The prob-
lem of this effect of “excluded volume” on the number of
configurations is a topological one of great difficulty. We
have set out to solve this topological problem by a straight-
forward enumeration of the configurations of chains. In
essence, we have investigated the famous “random walk”
problem, in a tetrahedral lattice accounting for the effect
of excluded volume.

This, then, is an example of the use of punched cards in
sampling a Gibbsian ensemble, in which each system is
described appropriately on a set of cards. The required
statistical averages can be very readily made by arithmeti-
cal means by conventional processing of these samples
on cards.
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DISCUSSION

Mr. Bell: What mechanical or electrical system is be-
tween your prism and the punch?

Dr. King: A whole bunch of relays; it took me a day to
wire them up. The method is not very complicated.

Dr. Caldwell: This problem of converting a voltage to
a number on punched cards is going to occur more fre-
quently and in more difficult form than is described here.
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One case involves the fact that the voltage is coming from
a device over which you have no control. I think the gen-
eral approach is that you can apply the pulse code modu-
lation system. Within the last year and a half, the Bell
Technical Journal has contained several papers on that
subject, the general principle being to compare voltage
patterns against a standard voltage. That means that you
can easily produce these binary digits ; the real problem is
that they are coming too fast for any punch to record
directly.

Dr. King: We don’t have a storage problem because we
get all the digits out more or less simultaneously. We take
a new reading as soon as the old one is punched.

Dr. Grosch: May I make a remark about this question
of finding the roots of a polynomial? There is a class of
problems which can be handled in parallel fashion—poly-
nomials of degree, say, five to twelve. If you have several
to do at once, so much the better. The process is to evalu-
ate the nth degree polynomial for # 4 1 equal spaced val-
ues of the variable x, without rounding. This is a severe
limitation, since it involves large multiplications toward
the end ; the answers will usually be about # - 6 significant
figures for #<20. These exact answers are then differ-
enced n times ; the single nth difference should equal # !o®
times the original coefficient of s, where o is the interval ;
this is used as a check. Further values of the polynomials
can then be built up from the constant nth difference on
the 405 three or four orders at a time, with summary
punched intermediate results. The tabulation of the poly-
nomial can be extended to cover all real roots, or restricted
to the neighborhood of a single root. Inverse interpolation
for the exact root is the final step; usually this is hand
work.

If the above procedure seems too complicated, another
trick worth trying on the 602 or 604 is to prepare a deck
of n + 1 cards carrying the coefficients of the polynomial,
highest degree coefficient first. A card carrying a guess at
the root is placed in front of the deck, and one pass through
the calculating punch evaluates the polynomial. A new
guess is made, key punched on a fresh card, and the
process repeated. The 602 or 604 is here used as a special-
ized desk calculator.



Application of Punched Card Methods to the Computation
of Thermodynamic Properties of Gases from Spectra®
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THE PRINCIPLES of the statistical calculation of
thermal functions of gases from spectroscopic data have
been used for many years with a large degree of success.
The basis for much of this work is the so-called “summa-
tion method” which was first used by Hicks and Mitchell.*

From the distribution of the molecules of a gas among
the various energy levels of the molecule, the energy and
other thermal properties of the gas can be found through
the evaluation of the partition functions. In the summation
method, this summing takes place over the actual energy
levels of the gas. When there are large numbers of energy
levels, as in all but the simplest molecules, the direct appli-
cation of this method becomes impractical and labor sav-
ing devices must be used. In the past, these have taken the
form of substitution of integrals. for the series involved as,
for example, in the extended Mulholland treatment.? The
present paper introduces a method whereby the original
summation method is adapted to use of punched cards.

The energy levels of the molecule may be obtained
through a study of the band spectrum of the gas. In the
equations for the thermodynamic properties for the gas
from these energy levels, the contributions due to trans-
lation may be separated from the effects due to rotation
and vibration, thus simplifying the expressions to be evalu-
ated. Johnston and Chapman® have introduced the follow-
ing notation whereby the contributions of the rotational
and vibrational energy of the molecule may be expressed
simply in terms of three basic quantities:

34 =3pi e—€/ 1T (1a)
EB = EP,, € e‘€i/kT (lb)
3C = %pié ea/wr | (lc)

*This work was supported in part by the Office'of Naval Research
under a contract with the Ohio State University Research Founda-
tion.
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For convenience, these three quantities may be redefined
in terms of base ten exponentials:

SA*= E‘Pi 10~€i/zxr (2a)
SB*= 2_/7@ q/sz - 10~—¢€i/zkT (2b)
SC*=Spiei /3kT - 107€/z07 (20)’

In the above equations ¢; is the energy of the molecule in
the ith quantum state, p; the statistical weight of this state,
k the Boltzmann constant, T* the absolute temperature of
the gas, and 2z the numerical constant In 10.

The thermodynamic functions are given by the follow-
ing equations.:

E° — E) = 3/2RT + 2RT $B*/3.4* (3a)
Cp = 5/2R + &R [3C*/34*
— (2B*/34%)*] (3b)

So=3/2zRlogM + 5/2zRlog T — 2.3140 -
+ sR [log 54*% — 3B*/54*]  (3c)

F° — ES=5/2R —3/22RlogM — 5/22Rlog T
+ 2.3140 — zR log 34*. (3d)
The final term in each of the equations (3) gives the con-
tribution of the rotational and vibrational states, while the
preceding terms are due to the translation of the molecules.
New quantities appearing in these equations are the gas
constant R, and the molecular weight of the gas M.

This laboratory, with the assistance of Dr. Thomas of
the Watson Scientific Computing Laboratory, has set up
a punched card method for obtaining the quantities 3.4%,
sB*, and 3C*, once a punched card table of the energy
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levels is available. These are readily computed in many
cases. Since the sums are to be comptited for a number of
different temperatures, it becomes convenient to transform
the exponentials of equations (2) into double exponen-
tials. The sums 4%, B*, and C* now have the form

SA* = 3pi 107" (4a)
SB* = 3p; 10% 10707 (4b)
SC* = 3p 100 1070 (4c)

where x; = log ¢/sk — log T' = {; — log T'. The advantage
of this will be apparent when the calculations of these
sums at different temperature is discussed. For the present,
the temperature will be set at 1°K., so that 23 = £. A
master deck of the functions 10710} 10* 107! 102 101" was
prepared for the argument » = —8.00 (.02)-+1.00. This
set includes all the significant values of the three functions
(which vary between zero and one). Before this table can
be utilized, it is first necessary to obtain the logarithms
of the quantities ¢/2k and reduce these to the arguments
of the master table. To achieve the former of these objects,
a six place optimum interval logarithm table is used,
whereby z; is obtained to six decimal places and one whole
number. Four point Lagrangian interpolation coefficients*
are used to distribute the statistical weights p; of the
energy levels ¢ to the appropriate arguments of the master
deck.

The. punched card Lagrangian interpolation table built
up for this purpose consists of 5000 cards at intervals of
0.0001 in the argument, p = Ax/h, for the range 0.0001-
0.5000. Since the table reflects itself for the range 0.5000-
1.0000, the table is punched in a symmetrical manner
around the center‘of the card, with the right half reading
in reverse from right to left. Tumbling the cards puts
them in position for use in the upper half of the interval
range. A secondary argument, ¢ = 2p, is also punched on
the table so that the table may be collated directly with
the last four digits of ;. To accomplish this most readily,
the detail cards are first divided into odd and even groups
on the second decimal digit of 4; to determine which half
,of the table is to be used.

'The use of the interpolation coefficients is shown most
readily by the following illustration. Suppose that for an
energy level ¢ of statistical weight p;, the log ¢/2k is equal
to 0.498306. The distribution of the statistical weight
among the four adjacent arguments is given in Table I.

TasLe I
&y = 046 Pu-1 = pidy
In = 0.48 P,’, = PiAO
Ko =050 pi = pid,
Vnrz = 0.52 Prlu-z = PbAz
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The four coefficients, 4_,, A,, A4,, and A4, are those corre-
sponding to the argument ¢ = 1.8306. A prepared table of
Fueys Nny Aney and &y, with the argument #, is also repro-
duced onto these same detail cards so that the proper
argument may be matched with the new weights p}. In
general, there will be a considerable amount of over-
lapping, and so the p,’s are next summed for each value
of x, such that a total weight, w, = 3, is obtained for
each different value of x,. In practice, it has been found
most convenient to make up three additional sets of cards
so that the arguments x, and the products p, = p;4 always
appear in the same fields and the new weights are obtained
easily on the accounting machine.

The advantages of the procedure described above are
twofold. In the first place, there is a great reduction in the
total number of terms over which the sums are to be
taken. FEven in a relatively simple gas, the total number of
thermodynamically important energy levels lies in the
thousands, whereas the master deck of functions for these
new arguments contains at most 400 cards. Secondly, the
functions 10717 10° 10717 10%* 1071** for the arguments x at
intervals of 0.02 are available in a permanent file and need
only be reproduced into the detail cards to be multiplied
and summed.

Up to this point, the temperature has been neglected.
However, by shifting the table cards one value (0.02) of
x, the detail cards may be prepared for a new temperature.
The entire temperature range may thus be covered in this
way in logarithmic increments of 0.02 in 7. This is the
major advantage of the double exponential form adopted
for the problem. The range of log 7' from 0.00 to 3.84 is
sufficient to cover all temperatures up to 6000°K. The
manipulation of the sets of cards to take account of the
temperature shifts is more clearly shown by the following
numerical example, taken from an actual calculation. The
symbol ¢, has been introduced for the #, used earlier to
avoid confusion. The smallest value of ¢, is 0.24, and the
first set of cards prepared is that for the highest value of
log T" which is equal to 3.84 if the computations are to be
carried up to 6000°K. Successive cards in this set will
have arguments and weights as given in Table II.

TasrLe I1
w, & =024 x, =024-384=—-360=440

wy, & =026 x,=026—384= —3.58 =442
w, ¢ =028 x, =028 — 3.84 = —3.56 = 4.44, etc.

The last card in the set should have the argument 2 = 1.00.
At this point, the functions have dropped to zero and any
left over cards may be discarded.

The second set of cards will be for the next lower tem-
perature, log 7' = 3.82. The master set is shifted up one
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value, thus w and the #, are matched. The last value of w,
will not match any table card and may be discarded. This
is shown in Table III.

Tasre 111
w, & =024 x,=024—382=—3.58 =442
w, & =026 x,=026—2382=—356=444
w, & =028 x, =028—382=—354=746 etc.

The process is repeated until the entire temperature range
has been covered. It has been found possible to condense
the number of individual temperature sets to one third by
including all the necessary data for three temperatures on
one set. The sums A*, B* and C* may now be obtained
according to equations (4). Since the individual products
were not required, this was done by progressive digiting.
There may be as many as thirteen digits in z,, so that this
is quite a prodigious task. It is particularly unpleasant to
handle since the individual groups are so small.

Once the sums have been obtained for the arbitrary
temperatures, they in turn are interpolated using the four
point coefficients, yielding the results for the desired tem-
peratures. From these, the thermodynamic properties
may be readily computed by using the relations given in
equations (3).

A comparison of the hand and machine computed
results is made in Table IV. The data is quoted from a
forthcoming paper on the thermodynamic properties of
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hydrogen by the authors. The major error in the above
procedure is due to the use of the four point interpolation
coefficients. The maximum error in each of the sums is of
the order of 2X 1077 3p;. In cases where the 3p; and hence
this absolute error might seem to become unduly large, the
values of the sums themselves are large and the relative
error remains within reasonable limits. It might also be
pointed out that this error is approximately half the maxi-
mum error attained by the hand computing procedure used
previously for the direct summation method. The agree-
ment of the results as given in Table IV is quite satis-
factory.

The authors wish to express their thanks to Dr. W. J.
Eckert, Dr. L. H. Thomas, and other members of the staff
of the Watson Scientific Computing Laboratory for their
invaluable assistance in getting this program started.
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DISCUSSION

[Discussion of this paper was omitted because of time limitations.]

TasLg IV
CoMPARISON OF THERMODYNAMIC FUNCTIONS
ComruTED BY HAND AND MACHINE METHODS

Hand Machine Per Cent
Temperature Function Computed Computed Deviation
1500°K =A% 18.76256 18.76255 .00005
2B* 8.86564 8.86569 .0006
=C* 9.07780 9.07783 .0008
E'— E} 7711.5 7711.51
cl 7.7103 7.71025
S 42.702 42,7018
—(F—EN/T 35.574 35.5743
5000°K 3 4% 95.79684 95.80611 009
ZB* 69.60681 69.62325 024
BCH 90.85673 90.87847 024
E— E} 31516.1: 31518.3 .0070
c, 9.39459 9.39447 0013
S° 53.0818 53.0823 0013
—(F—~EN/T 44.7921 44.7923 0004



Calculation of the Equilibrium Composition
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THE COMPOSITION of a system at chemical
equilibrium is easily calculated when there is only a single
reaction to be considered. In this case, the concentrations
of each constituent can be related to a single variable, “the
degree of reaction,” and the solution of the mass-action
equation is straightforward. Difficulties are encountered
if this method is extended to a consideration of two simul-
taneous equilibria, and when the number of such simulta-
neous equilibria becomes large, the ordinary methods
become very laborious. '

There is need for a systematic procedure designed to
provide a method for writing down the necessary relations
in the form most appropriate for numerical computation.
When the number of constituents is large, the relations
must usually be solved by an iterative procedure. In the
course of an extended program of such calculations, it is
usually necessary to formulate a number of computational
procedures, in order to assure sufficiently rapid conver-
gence. If the calculations are to be carried out by punched
-card methods, it is desirable that the smallest possible num-
ber of arithmetical operations of different kinds be in-
volved in order to minimize the number of different con-
trol panels required. In a recent publication,® a systematic
procedure for calculating the equilibrium composition of
a system of many constituents was presented. This method
presents a simple rule for formulating the work program
of such calculations, with the result that very little time is
required for setting up a particular problem. The sys-
tematic nature of the computational procedure makes
the method well-adapted to punched card methods. The
method has been routinely employed in this laboratory in
a long series of such calculations. The method is as easily
applied to a mixture with a very large number of con-
stituents as to a mixture with a small number of constitu-
ents, although the time required to obtain the solution
would be greater for the former case than for the latter.

In the publication cited, the method was developed for
systems of a very general nature. In the present communi-
cation, we restrict application of the method to the calcu-

o4

lation of the equilibrium composition of mixtures consist-
ing of a single homogeneous gas phase, and we assume
that the gas phase is adequately described by the ideal gas
equation of state. By taking advantage of these restric-
tions, we are able to formulate a computational method,
applicable to these particular cases, which is substantially
simpler and more systematic than the more general
method. A large number of systems of industrial and
academic importance is included in this category.

Tar, COMPONENTS

In a system containing many constituents, it is possible
to select certain constituents which are sufficient to de-
scribe the composition completely. By this it is meant that
if the system is conceived to consist of the selected con-
stituents only, its gross composition (in terms of the
amounts of each chemical element present) is completely
defined. The constituents thus sufficient to describe the
composition are called the components of the system. An
analytical criterion has been published® for the choice of
the components. In terms of this criterion, the conditions

" for equilibrium may be written in a form which has a high
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degree of symmetry and is particularly well adapted for
formulating a computational method for the calculation of
the equilibrium composition.

The number of constituents of any system depends upon
the accuracy with which it is desired to describe its com-
position. The constituents to be considered must be chosen
a priori, and this choice usually will imply the neglect of
certain equilibria that may be expected to exert a negligi-
ble effect on the composition of the system at equilibrium.

Consider a closed system containing s different sub-
stances, which are assumed to be in chemical equilibrium.
The molecular formula of the ith substance may be repre-
sented by

i ( (k) (m}
Y(“ = Xa%])...Xa,-k...Xa'i';,, N (1)

i=1,2,...5 where X® is the symbol of the kth element,
ai; is the subscript (which may be zero) to this symbol in
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the formula of the ¢th substance, and m is the total number
of elements represented in the system. For every i, the
array of subscripts ay, £ = 1,2, ..., m, may be said to
define a vector

yi = (a,“, e ey Qiky v o oy U.,:m) 5 (2)
which may be called the formula vector of substance i. If
the rank of the matrix of the vector elements a;; is ¢, it
follows from a well-known theorem of algebra that there
are ¢ linearly independent vectors, and if ¢<s there are
(s-¢) linearly dependent vectors which may be expressed
as linear combinations of the independent vectors. It may
be assumed that the independent vectors are designated by
the values 1, 2, . . ., ¢ of their index. Then the dependent
vectors may be expressed as linear combinations of the

form
[
z vii ¥ = i, (3)
j=1
i =c+1,c+42,...,s Toequation (3) there correspond

(s-¢) conceivable chemical reactions

s

vij YW = yw s (4)

I

=1

resulting in the formation, from the ¢ substances with
linearly independent formula vectors, of the (s-¢) sub-
stances with linearly dependent formula vectors. It follows
that the specification of ¢ substances such that their for-
mula vectors are linearly independent is sufficient for a
description of the composition of the system. Therefore,
the number of components of the system equals the rank ¢
of the matrix of the subscripts to the symbols of the ele-
ments in the formulas of the substances comprising the
system. It may be noted that the choice of independent
vectors is not, in general, unique and that, in consequence,
the choice of ¢ substances as components and the expres-
sion of the remaining (s-c¢) substances as products of
reactions involving only the chosen components is usually
not unique.

This discussion has demonstrated the possibility of a
choice of components which makes it possible to express
each of the dependent constituents as products of reactions
involving components only. Our computational procedure
is based upon the possibility of writing down for the case
of interest the reactions that are expressed by equations
(4). In many cases, it is possible to write these reactions
immediately by intuition. In some cases, it may be neces-
sary to formulate the reactions of equations (4) by apply-
ing to the system under consideration the steps indicated
by equations (1) to (3).

SCIENTIFIC COMPUTATION

Ture Basic EQuATIONS

According to the phase rule of Gibbs, a system defined
by ¢ components existing as an homogeneous gas phase
has (¢ + 1) degrees of freedom. The thermodynamic state
is defined by the specification of two state variables, the
temperature and pressure being an appropriate choice. The
gross composition is uniquely defined by the specification
of (¢ — 1) composition variables, giving the relative
amounts of each element available to the system.* We
denote the gram-atom fraction of the kth element by Q,,
and the number of moles of the j-component in the hypo-
thetical mixture consisting of components only (the mole
fractions of the dependent constituents being zero) by g;.
The conversation of each element requires that

4

2 aje g5 = Qr (5)

j=1

k=12,...,c — 1, where ay, is the subscript to the sym-
bol of the kth element in the molecular formula of the jth
component, It will be convenient to employ the normaliza-

tion relation,
Yau=1 . 6)

Jj=1

Equations (5) and (6) consist of ¢ independent, non-
homogeneous, linear equations that can be solved for the
quantities g;. The conservation of each element in the re-
actions (4) for the formation of the dependent constitu-
ents from the components can be expressed in the form

8

2 vij ¥ = qi/n , (7)

i=c+1

x,-+

§=12,...,c, where x; and #; are the mole fractions in
the equilibrium mixture of the ith dependent constituent.
and the jth component respectively, »; is the coefficient of
the formula of the jth component in the equation for the
reaction leading to the formation of the ith dependent
constituent, and # is the total number of moles of gas in
the equilibrium mixture corresponding to the normalized
constants ¢;. In view of equation (4),

8

°,
];xi'i‘ 2

j==C+1

vixi=1/n, (8)

*Since the composition of the system at equilibrium is expressed in
terms of the mole fraction of each constituent in the equilibrium
mixture, the result is independent of the total size of the system,
which may be taken to be any convenient value. From the point of
view of thermodynamics, the molecular form in which the ele-
ments are introduced to the system is a matter of indifference.



FORUM PROCEEDINGS

where

c
Vi = Ew;.

j=1

The mole fractions are subject to the identity relation

ix,-—}- E r=1.

j=1 i=ct1

Therefore, equation (8) becomes

8

1/n=14+ E (vs — 1) 2y, 9)

i=c+1

and equations (7) may be written

8

z [Vij - g (l’z - 1)] iy (10)

f=c+1

The conditions for chemical equilibrium in an ideal gas
mixture obeying Dalton’s law may be written in the form

n= kT4, (1)
j=1
where
=K, p'—1,
i=rc+ 1,...,s and where p is the pressure and k; is

the thermodynamic equilibrium constant for the reaction
leading to the formation of the ith dependent constituent
from the components. The equilibrium constants K; are
independent of the particular system under consideration
and are functions of the temperature T only.

The computation of the equilibrium composition re-
quires the simultaneous solution of equations (10) and
(11). If ;< <« for all 7 and j, the solution may be car-
ried out by the simple iteration method.® An approximate
set of values is chosen for the #;. (In the absence of any
criteria for the choice of the initial set, one may take
x; = gj.) Equations (11) are employed in the computation
of corresponding values of the #;. These in turn are em-
ployed with equations (10) for the determination of an
improved set of values for the x;. This iterative process is
continued until the difference between successive approxi-
mations to the x; is less than the desired precision of the
computation.

The convergence of this simple iteration method is very
slow for larger relative values of the #;, and when the x;
and x; are of the same order of magnitude, this method
may not converge at all for any choice of components.
A more powerful computational procedure is provided by
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the Newton-Raphson method.* Equations (10) may be
written in the form

Fi=g—m— Y Iy—a = Dlx, (12)
i=C+1
j=1,2,...,c. We seek the solution of the equations

F; = 0, subject to equations (11). If the functions F; are
expanded in Taylor series about an approximate set of
values of the variables x; with neglect of terms involving
derivatives of second and higher orders, there results a
set of ¢ linear equations which can be compactly repre-
sented in the notation of matrices by

(471 "] = [F"]1, (13)

where the rth and (» 4- 1)th approximations to the com-
position are related by

w = (14 7Y (14)
and where the elements of the matrix are given by

§

Yol a = Dlw. (15)

i=C+1

Ajp= x; 8y +

The superscript 7 indicates that the designated quantity is
to be evaluated with the rth approximation to the com-
position of the system, and §;; is the Kronecker delta.

Criteria for the choice of components that results in the
maost rapid convergence of the iteration process can be
developed from the remainders to the two-term Taylor
series expansions of functions F;. However, the resulting
expressions. are too cumbersome for practical utility, and
in practice the convergence will be found to be satisfactory
if the components are selected so as to minimize the quan-
tittes kj, 1 = ¢ 4+ 1,...,s.

Nores oN CoOMPUTATIONAL PROCEDURE

In this present section we will describe in some detail
the computational procedure based upon the basic equa-
tions developed in the preceding sections. In this labora-

- tory an extensive program of such calculations is being

carried out with punched card equipment which includes a
Type 602 Calculating Punch. The calculations could be
very easily performed utilizing a Type 604 Electronic
Calculating Punch and programs similar to those described
in another contribution to this Forum.* The procedure
for setting up a particular problem will be found to be
quite routine in nature. This procedure will involve the
following steps:

*It may be noted that these methods have been successfully em-
ployed in an extended series of computations performed by the
Bureau of Mines on the Electronic Numerical Integrator and
Calculator (ENTIAC) at the Aberdeen Proving Ground.
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1. Select a suitable set of components. This selection
can usually be made by intuition. In some cases it may be
necessary to follow the formal procedure previously out-
lined. Subject to the requirement that the components be
linearly independent in the sense defined above, it is usu-

ally desirable to select those constituents that are most
abundant in the equilibrium mixture.

2. Write the chemical equations in the form of equa-
tions (4) which express the formation of the dependent
constituents from the components. These equations can
usually be written by inspection. In some cases it may be
necessary to employ the formal methods previously de-
veloped. ‘

3. Construct a table of the coefficients of equations (4)
vi; 7= 1,2,...,¢c;i=c+1,¢c+2,...,s Tabulate
the quantities (»;—1). If the solution is to be by the New-
ton-Raphson method, form the products
vij vy and vy (Vi; D, 5,/=1L2,...,¢c;t=¢+1,
c+2,...,s .

4. If the solution is to be by the iteration method, write
the explicit form of equations (10) and (11) applicable
to the problem under consideration, using the table of co-
efficients. If the solution is to be by the Newton-Raphson
method, write the explicit form of equations (11), (12),
and (15) applicable to the problem under consideration,
using the table of coefficients. '

5. In the usual problem a relatively small number of
different gross compositions is considered and computa-
tions are performed for a variety of different temperatures
and pressures. Under these conditions the values of the
stoichiometric constants ¢; are most easily obtained from
the specifications of the problem by desk calculations based
upon equations (5) and (6). If a large number of dif-
ferent mixtures is to be considered, it may be desirable to
formulate a routine involving punched card methods for
these calculations. ’

The computational procedure that has been developed
appears to be particularly well adapted to the application
of punched card methods. The procedure involves several
instances where a number of arithmetical operations of
the same general kind are performed. In each instance,
these operations can be performed with a single control
panel that requires only modification of the factor wiring.
The notes that follow are based upon experience gained
in this laboratory in calculating equilibrium composition
and are presented in the hope that they may be useful to
other investigators confronted with the same type of
problem.

1. Select a first approximate set of values of the mole
fractions of the components ;. In the absence of data by
which a more precise set may be estimated, one can adopt
the values &; = g; for all j.

SCIENTIFIC COMPUTATION

2. Compute the quantity,

¢
. vij
i ‘ EZ7
Jj=1

The operations involved in this computation are peculiar
to the specific problem at hand. The design of control
panels for these steps is routine. The coefficients v; are
small integers or simple fractions.

3. Complete the calculation of the values of the mole
fractions of the dependent constituents. x; corresponding
to the approximate values of the x; by means of equation
(11). For this purpose it is useful to sort the cards into
groups according to the temperature and pressure and to
file each such group behind a master card containing the
equilibrium constants k;, which are employed as group
muiltipliers. It is also useful to punch the answers x; on
trailer cards which contain a suitable identification code
and are prepunched with the quantities
(vi—=1), viij(u—=1); i =12...,c
A separate set of these trailer cards is employed for each
value of i. The appropriate set of trailer cards is inserted
by means of the collator prior to the calculation of a par-
ticular #; and withdrawn by selection after the calculation.

Vijs  Vij Vijhs

4. Calculate the quantities F;, j = 1,2,..., c. For
this purpose we rewrite equation (12) in.the form.

8

2 v+ 4 z =D . (16)

i==c+1

Fj=q;— % —
1==C+1

In this calculation we have employed the control panel
illustrated in Figure 1. The trailer cards from the previous
step are sorted into groups with constant values of the g;,
and each such group is filed behind a master card contain-
ing the g;. The figure assumes that the cards containing
the #; are identified by an X punch in position to be read
by the fourth control brush, and the master cards are
identified by an X punch in position to be read by the fifth
control brush. Each group of the cards containing the #;
is followed by an appropriately identified trailer card that
contains the quantities &; and an X punch which we here
assume to be in-position te be read by the first control
brush. The quantity g¢; is read from the master card and
held in the summary counter until the next master card is
read. The master cards are ejected without punching.
For each card containing the x;, the products v; #; and
(vi—1) x; are formed and accumulated in the left com-
ponents counter. These cards are ejected without punch-
ing. The computation is completed on the trailer card and
F; is punched in this card.
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5. Examine the absolute values of the F;, and sort out
those cases that fulfill a convergence criterion of the form

4

ALY

J=1

(17)

where e is a preassigned small number measuring the de-
sired precision of the calculation. If the calculation is being
made by the iteration method, determine an improved set
of values of the x; according to the relation

0 =+ (18)

i=12,...,c, where 24" and x{™" denote the rth and
(7 4+ 1)th approximation to the composition of the system.
The computational sequence beginning with step (2) is
then repeated. If the calculation is made by the Newton-
Raphson method, proceed to step (6).

6. Calculate the coefficients A4;> of equations (13) by
means of equations (15) which may be written in the form

Ay = % 8y + Savijvir i — ¢ Saviy i — 1) 20, (19)
where 87 is the Kronecker delta which equals one for
§' = j and zero for j* 5% j. The control panel illustrated in
Figure 1 may be employed in these calculations. In these
calculations the control panel is modified in the following
manner : the quantity ¢; is read out from the summary
counter to the multiplicand, but not to the right compo-
nents counter; the brushes which are shown reading the

SCIENTIFIC COMPUTATION

quantities v; and (»;,—1) are employed to read »; v; and
vij (v;—1), respectively. In addition, when j’ 5% j the quan-
tity x; is not read into the left component counter.

7. Solve equations (13), and employ equations (14)
to determine an improved set of x;. The computational
procedure beginning with step (2) is then repeated. In solv-
ing equations (13), we have employed Cramer’s method
for cases where the rank of the matrix is less than four.
Under these circumstances, we have found it easy to pro-
gram the evaluation of the necessary determinants, and
the method has the advantage that only a single division is
required. Since the number of multiplications required by
this method increases rapidly with the rank of the matrix,
it is desirable to employ more systematic procedures for
the reduction of the matrix when the rank is greater than
or equal to four. Reference is made to the method pre-
sented by Mr. Bell. '
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Punched Card Calculating and Printing Methods
in the Nautical Almanac Office

FREDERICK H. HOLLANDER
U. S. Naval Observatory

THE IBM EQUIPMENT at the United States Naval
Observatory is used primarily to serve the needs of astron-
omers, navigators, and aviators. We publish annually the
American Ephemeris and Nautical Almanac, the American
Nautical Almanac, and the American Air Almanac.

The Ephemeris supplies data with the highest degree of
accuracy. It contains theoretical positions of the sun,
moon, planets and stars, with an accuracy of a tenth of a
second of arc. Astronomers compare their observations
with these data. The Air Almanac, on the other hand, is
very rough by these standards, giving to the nearest min-
ute of arc positions of the sun, three chosen planets and
the moon for every ten minutes of the day. In other words,
it is a highly interpolated table of relatively low accuracy
to enable an aviator to determine his position rapidly dur-
ing a flight.

The Nautical Almanac stands halfway between the other
two, with an accuracy of a tenth of a minute of arc, and
values given for every hour. The new form of the Nauti-
cal Abmanac, which will be published beginning with the
year 1950, is designed to facilitate use by having all the
essential data for three days at one opening of the book.
The Air Almanac was designed similarly ; all the informa-
tion necessary for the aviator except a few tables is avail-
able on one page opening. This includes corrections for
the parallax of the moon, tables of moonrise and moonset,

o4

and sunrise and sunset, in addition to the values of the -

Greenwich hour angle (GHA) and declination for various
" objects. The star tables are not included on the daily page
of the Air Almanac, because, to this accuracy, a star’s
position remains practically the same from day to day
throughout the year.

All these data for the two almanacs are prepared
by IBM machines from the accurate material of the
E phemeris. In addition, all the information is arranged on
cards so that it may be printed on a special model card-
operated typewriter, of which there are only two in ex-
istence. The U. S. Naval Observatory has the first of these
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machines ;! the other is at IBM World Headquarters in
New York City. They are modifications of the standard
card-operated typewriter, special as to keyboard, and as
to the type of work they can produce.

I am going to devote some attention to the typewriter
and attempt to demonstrate the versatility of its output by
means of illustrations, but I want to show also how the
rest of our IBM equipment fits into the picture, in supply-
ing material for the typewriter.

There are some special problems in setting up the cards,
and that is where the other machines come in. For one
thing, in a table which is published for a navigator or
aviator, accuracy is essential. That means the methods of
checking the results must be practically fool-proof. It is
necessary that the typewriter prepare the copy from single
punched cards. By that I mean each column containing
numerical information must have just one punch, because
our method of proofreading is to take the printer’s proof
as it is returned after a photo-offset plate has been made
and punch the material again line for line on a new set of
cards. Then those cards are compared on the 513 with the
cards which had been used to prepare the copy.

That sounds like a painful process when you consider
that the Air Almanac each year consists of 730 pages of
72 lines, each line consisting of a solid row of figures. It
requires a considerable amount of punching to duplicate
all that. Yet that is the most accurate, and even turns out
to be the fastest, operation. The method is applied also to
the other publications, and so for any job we do, the first
requirement is that the numerical data occupy single
punched columns. The only double punches permitted on
the detail cards are code punches, which are not puriched
in proof.

In addition to the comparison with the original copy
cards, a further proof against errors is made by differ-
encing the functions. This is carried out on the 405,
Since we have several functions on a card, the method is
limited to forming first differences, and summary punch-
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ing these to get second, and so on. It is a slow process to
get sixth differences this way, but that is what is done, for
example, in the case of the ephemeris of Mercury.

The work is by no means all proofreading. As an ex-
ample of computational work I should like to explain the
moonrise and moonset tables which are computed every
year. '

The lunar ephemeris, which gives the position of the
moon for every hour of every day, is combined with a
permanent table of cards which need be made up only
once on the collator so that from the ephemeris are ex-
tracted those times of each day at which a moonrise or a
moonset is possible at certain selected latitudes. The data
from the ephemeris are.then reproduced into new cards,
and these in turn form the basis for an inverse interpola-
tion to find the exact time of the phenomenon. Values of
an hour angle preceding and of an hour angle following
the moon rise or set are obtained in the 405 and summary
punched. An interpolation on the 601 or 602 gives the
accurate time. Corrections are applied to the hour angles
for the moon’s parallax and for its motion in declination
before the interpolation is made. Except for the original
hand punching and checking of the various permanent
tables, everything is done by the IBM machines. The
only hand work is a spot check every year on a few of
the computed values. Other checks include differencing
day by day for each latitude, and differencing valués for
the corresponding day with respect to latitude. The latter
is a most powerful check, for if one adds the moonrise
time to the moonset time for each latitude for a given day,
the sum is practically a constant for all latitudes. This
check is applied also to the sunrise and twilight tables of
the Nautical Almanac.

The only fault to be found with this whole procedure is
that a great deal of hand manipulation of large decks of
cards is required because there is no way of moving cards
from one machine to another except by hand. Considerable
care is necessary to prevent disarrangement of the cards.
At some stages in the process, any such disarrangement
could go undetected long enough to cause serious damage.
The magnitude of the task is obvious when you consider
that we compute moonrise and moonset for thirty-four
selected latitudes from —60° to +73° for every day of
the year.

Another major task is, of course, the computation of
the Greenwich hour angles and declinations in the Nauti-
cal Almanac and Air Almanac. These are subtabulated
from the daily values in the American Ephemeris, by com-
puting the hourly differences, and by progressive totaling
these differences with appropriate starting values, thereby
building up the required functions. The data for the Nau-
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tical Almanac are further subtabulated to give the ten
minute interval of the Air Almanac.

The original installation of the IBM machines at the
Observatory was for the purpose of preparing the Air
Almanac for publication. Since that time, more and more
work has been transferred from the computers’ desks to
punched cards. Among such jobs I might mention the
computation of occultation elements: the time when the
moon will occult a star; apparent star places; precession
and reduction to mean places of stars; heliocentric co-
ordinates of the major planets; research in the theory of
the motions of the major planets and their satellites. Much
of this work is annual, but some of it has been done just
once.

The methods we use do not equal the complexity dem-
onstrated in the solutions to some of the problems which
have been presented earlier. As I have mentioned, we
form differences of the first order and summary punch
them to get second differences. We subtabulate wherever
possible, rather than interpolate, because subtabulation
goes faster and more automatically and, once it is set up,
several functions can be done simultaneously. Checking is
made easier by this method, also. Our intervals are usually
uniform, and we have no problems involving complex
quantities or matrices.

We make one principal demand, and that is the utmost
in accuracy to a large number of decimal places. In the
integration of planetary orbits, ten decimal place accuracy
is common. In our almanac work, extra decimals are
needed to prevent accumulated rounding errors. Both the
large capacity counters and the accuracy are supplied in a
satisfactory way by the Type 405 Accounting Machine
and the Type 602 Calculating Punch. One handicap is the
limited punching capacity of the Type 602.

Now I would like to tell you a little about the card-
operated typewriter. Perhaps the best way is to refer to
the illustrations; then a few comments will give you a
good idea of its capabilities. Figure 1 is a page of the Air
Almanac. It represents the time from noon to midnight of
the same day for every ten minutes of time, giving for
those times the GHA’s and declinations of the sun, moon,
and three planets, and in addition, tables of sunrise and
moonrise. The summary punching which produces the
GHA'’s also produces the cards which will go through the
typewriter ; the declinations and miscellaneous tables are
reproduced into these cards in their proper line relation-
ship. The typewriter prints the numbers from these detail
cards, and the control of the spacing from column to
column is taken care of by a master card which is read
over again for each new line.
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10{| 32 05 187 14} 78 37 344 20 288 53 140 52 33145 141 30 37| 31
20} 34 35 189 44| 81 07 346 50 291 23 143 17 34140 21| 28§21 51| 35
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16 00|} 59 35 N10 18 (214 48106 07 N18 55| 11 52 S 9 47316 27 S22 46167 29 N18 53] 35 281 26{24 07| 65
10} 62 05 217 191108 37 14 22 318 57 169 54 55140 33| 28 20| 68
20| 64 35 219 49 {111 07 16 52 321 28 172 20 57145 40| 31 35| 72
301 67 05 - + 1222 20113 37 - 19 22 - 323 58 - 174 45 18 59|50 48( 34124 54| 78
40]| 69 35 224 50 {116 07 21 52 326 29 177 10 19 01}52 521 36125 03] 80
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201 94 35 249 541141 07 46 54 351 33 201 22 19 {Lat. |Sunset |Twit. set " Diff.
30( 97 05 - 252 251143 37 - 49 24 - * 1354 03 - - 1203 47 21
40| 99 35 254 55 |146 07 51 54 356 33 206 12 23N
501102 05 257 251148 37 54 24 359 04 208 37 24] o | m [m 1k m|m
19 00][104 35 N10 15 (259 56 {151 07 N18 54| 56 55 S 9 49 1 34 S22 46(211 02 N19 26| 70{20 12{ 86(15 21| *
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301|112 06 * * 1267 27158 38 - 64 25 . 9 05 - (218 18 32| 64 37( 56{13 37{118
40 ({114 36 269 57 |161 08 66 55 11 36 220 43 33162 291 51 18{105
501{117 06 272 281163 38 69 25 14 06 223 08 35] 60 23| 47|13 04| 96
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401|129 36 285 00176 08 81 56 26 38 235 14 44150(18 571 34{12 14} 77
501|132 06 287 301|178 38 84 26 29 09 237 39 46| 45 49| 311158 71
40 41} 28 45! 67
21 0011134 36 N10 14 (290 01 {181 08 N18 54| 86 56 S 9 50| 31 39 S22 46|240 04 N19 48} 35 351 26 34| 64
101j137 06 292 311183 38 89 27 34 09 242 29 50| 30 30{ 25 24} 61
201{139 36 295 021186 08 91 57 36 40 244 54 511 20 20{ 23|11 07{ 57
304|142 06 - 297 32 {188 38 - 94 27 - . 39 10 - 247 19 53110 12 22}1053] 52
401{144 36 300 02 (191 08 96 57 41 41 249 44 55
5011147 06 302 33{193 38 99 27 44 11 252 09 57} 0{18 05{ 21 39] 49
22 001{149 36 N10 13 {305 03196 08 N18 54 (101 57 S 9 51| 46 41 S22 46254 34 N19 59
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10{|167 06 322 36|213 38 119 29 64 14 271 30 11} 50 16| 32 08| 21
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LATITUDE 68°

157

SEPTEMBER

g JULY AUGUST OCTOBER NOVEMBER DECEMBER
Re I y Set | R 7 y Set| Rm 1 y Set | Rss I y Set | Rwe I y Set| Rse I y Set
1l @ - - 310213 +20 -5 2155{0425 +5 -5 1933|0612 -2 -4 1726)0810 - 9 ~4 1516{1035 -4 ~ 51302
20 & o o []0219 +19 -5 2150|0429 +5 -4 1928|0616 -2 -5 1722|0814 -10 —4 1512|1041 °* - 61257
3| O e e [D]0224 +17 -5 2145|0432 +5 -4 1924|0619 -1 -4 1717|0818 -10 -5 1508/1048 - -51251
4l O e e+ 3]0229 +17 -5 2140|0436 +4 -5 1920{0623 -2 -4 1713|0823 -10 -4 1503|1054 - - 71246
sl o < e+ 310233 +16 ~5 2135|0440 +5 -4 1915}0626 -2 -4 1709|0827 -11 -4 1459|1101 -~ -71239
6l =@ o - 2]0238 +15 -5 2130} 0443 +4 -4 191110630 ~2 -2 1705{0831 -1 -4 1455{1109 -°- - 71232
7l ©3 e e [22]0243 415 -5 2125/0447 +4 -4 1907|0633 -3 -4 1701|0836 -12 -4 1451|1118 - -101225
g8l T - e [2]0247 +14 -5 2120/045]1 +3 -5 1903|0637 -3 -5 1657{0840 ~15 -5 1447|1129 -+ +-1215
9l 33 e+ ¢ [3]0252 +14 -4 2115|0454 +4 -4 1858{0641 -3 -4 1652|0844 12 -4 1442| =m =< - =B
10)] ©3 ¢ *» [3]0257 +13 -5 2111]0458 +3 -4 1854|0644 -3 -4 1648{0849 -13 -4 1438| =W <+ - N
11 , O3 e+ e+ 30301 +12 -5 2106|0501 +3 ~4 1850]0648 -3 -4 1644{0853 14 -5 1434| =mm =+ = mB
12| O o e+ C3I]0305 +12 -4 2101[.0505 +2 -5 1846|0652 -4 -4 1640(0858 ~14 -4 1429 = < -~ wm
13 3 e+ - 33]0310 +11 -5 2057]0508 +3 -4 1841} 0655 -4 -4 1636/0903 -15 -4 1425 =m < - mm
14) O = = [3{0314 +11 -4 2052|0512 +2 ~4 1837]0659 -5 -5 1632|0907 ~16 -5 1421 mm °+ - mm
15 O3 . e« 30318 +10 -5 2048} 0515 +2 -4 1833|0703 -4 -4 1627{0912 -16 -4 1416| =m = °** =B
loff &3O < < C3]0322 +10 -4 2043{0519 +1 ~4 1829{0707 -4 -4 1623|0917 <17 ~4 1412| =@ < <« =
17} © -+ -172348|0326 + 9 -5 2039[0522 +1 -5 1825|0710 -5 -4 1619|0921 -18 -5 1408| @B < - =
18{| 0025 -+ -11 2331|0331 + 9 -4 2034|0526 +2 -4 1820|0714 -5 -4 1615|0926 -18 -4 1403| =@ - -~ =B
19§ 0042 - <102320]| 0335 + 8 -5 2030]0529 +1 -4 1816|0718 -6 -5 1611{0931 =20 -5 1359| Em =+ < mm
20{{ 0054 -+ — 82310/ 0339 + 9 —4 2025/0533 +1 -4 1812|0722 -5 -4 1606/0936 ~20 -4 1354| =® < - mm
2110103 -+ -82302{0343 + 8 -5 2021{0537 o -4 1808|0726 -6 -4 1602|0941 -22 -5 1350 =m =+ = ==
22]10112 <+ -72254|0347 + 8 ~4 20160540 o0 -5 1804|0729 -6 —4 1558|0946 -23 —4 1345 mm <+ = mwm
2310119 +46 - 6 2247|0351 + 7 -5 2012|0544 +1 -4 1759|0733 -6 -4 1554{095]1 -25 -5 1341| mm = < mm
24]1 0126 +38 ~ 722410355 + 8 -4 2007[0547 0 -4 1755|0737 -7 -4 1550|0956 -26 -4 1336| =m > - =
25110133 +34 - 6223410359 + 7 -4 2003|0551 o -4 175110741 ~7 -5 1546|1002 <29 -5 1332 mm =** °*~ mm
26]0140 +31 - 6 2228|0402 + 6 -5 195910554 ~1 -4 1747|0745 -7 -4 1541{1007 -30 -5 1327| @@ < .« =m
27{| 0146 +28 - 6 2222|0406 + 7 -4 1954|0558 -1 -5 1743{0749 -7 -4 1537[1012 ~33 -5 1322| ®R < < mm
2810152 +26 - 52216[0410 + 6 -4 1950|0601 o -4 1738|0753 -8 -4 1533|1018 -36 -5 1317| ER < .. =m
29} 0157 +24 ~ 2211|0414 + 5 -5 1946j0605 -1 -4 1734|0758 -8 =-4 1529{1024 —41 -5 1312| ER < <« mm
30)10203 +23 - 52205/ 0418 + 6 —4 1941|0608 -1 ~4 1730/0802 -9 -5 1525|1029 —4g -5 1307 WM < < =m
31]]0208 +21 -~ 52200/ 0421 + 5 =4 1937| **c ¢ ¢ 2210806 ~8 ~4 1520 ¢+ oo o ccc] mm e o wm
Twilight Day- Twilight Day- Twilight Day~ Twilight Doy- Twilight Day- Twilight Doy
Civ. Nt Ast. lght| Qiv. Nt Ast.  light] Cw. N. Ast. Ight | Civ. N. Ast light | Oiv. Nt Ast. licht | Civ. N. Ast. Ilight
o oo o) m mom 1942|105 251 Mt 1508055 200 316 1114|105 212 316 0706|152 314 423 0227
3l o ) moun onnr 19211104 242 11 1452|055 201 313 1058({106 214 318 0650{159 322 432 0203
sico o afm monnm 19021102 235 /i 1435|055 200 311 1043|108 216 321 0632|208 332 442 0138
e oo Ol m m i 1842{1101 229 /i 1420{056 200 310 1028110 219 323 0615|219 344 455 0107
9| 0 OO ©O3|211 /i i 18231100 224 /! 1404} 056 200 309 1011{112 222 326 0558249 416 526 wm
110 OO 152 i 1 1805{059 220 /1 1349(056 200 308 0956|114 225 330 0541246 413 524 =m
BNy O O3 3141 i i 17471058 216 431 1333|057 201 308 0941|116 228 333 0522)244 412523 =m
15)| 0 OO O|133 /i 17301058 213 408 1318|057 201 307 0924|119 231 337 0504(242 410522 =m
174 o 2348{127 i hn 1713057 211 355 1303|058 202 307 0909]121 235 341 0447240 409 521 =m
19 mm aon 22384123 i il 1655|057 209 345 12471058 205 308 0853|125 240 346 0428(239 a9 520 mm
21\ m i ni 21591119 1 1638|056 207 337 12311059 204 308 0836(128 244 351 0409{239 408 520 =m
23W i anon 2128|115 i 16211056 205 331 1215[{100 205 309 0821|132 249 356 0350|239 a08 s20 =m
25§\ o uouy 21011112 it it 1604055 204 326 1200{101 206 310 0805|136 254 a0z 03301240 409 s20 mm
27\ m i 2036110 3s2 /i 1548|055 203 322 1145{102 207 312 0748[141 300 408 0310|241 410 521 =m
290 i am i 20141108 32 /i 1532{055 202 319 1129[103 209 313 0731{146 307 15 0248243 411 s22  wm
34 mr amt i 19521106 257 it 1516 e eov oo +e+]104 211 35 0714] v v coo +++1245 13 524 wm
To obtain the values for other than integral degrees of latitude, see pages 14-15,
With the dates as given, all values are for northern latitudes. For southern latitudes, see
page 15.
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FORUM PROCEEDINGS

Figure 2 is a sample of the sunrise and sunset table
which was computed by Dr. Herget. It was published by
the Naval Observatory in 1945. The open squares repre-
sent continuous sunshine, the black squares continuous
night, and the four diagonal strokes continuous twilight.
Choosing the small type in printing is done by the master
card ; the numbers punched on the detail cards have no
special code punches. What this means is that a variety of
type styles and formats is available for any set of detail
cards.

In this case, a complication arose from the fact that the
three blocks July, August, and September, on the left-hand
side of the page, were on one set of cards, and the blocks
October, November, and December were on another set.
The combination totaled more than eighty columns, so
that it wasn’t possible to put both these fields on one card.
The solution was simple but tedious. The first quarter of
the page was run down to the first heavy line, and then
the page was rolled back. With a new master card in the
reading unit, the second set of cards was read. The type-
writer skipped over the previously printed matter and
placed the data in their proper place on the page. When
the heavy line was reached a second time, the whole process
was repeated for the twilights printed below the line.
Thus, each page was done in four parts without removing
it from the typewriter. The present day solution would be
simpler still : the typewriter is able to read a card and print
information from it, then eject the card without returning
the carriage and continue with the next card on the same
line ; finally it ejects that card and returns the carriage for
a new line.

The planet page (Figure 3) of the 1950 Nautical Al-
manac is radically different from the star page (Figure
4), yet both are done with the same control panel with
six changes of wiring. Six jackplugs are removed to do
the planet page, and inserted to do the other. Of course,
the master cards are radically different. I am often
tempted to think of a super control panel for this machine,
with which any printing job could be done merely by
punching up the proper master card. One could wire a
permanent control panel and with a master card to suit
each _job do perhaps 95 per cent of all the work demanded.
There is a practical limit, of course, which comes from the
finite size of the control panel and the number of available
selectors. Beyorid this point back circuits are bound to
occur.

The interpolation table of the Nautical Almanac (Fig-
ure 5) was constructed on the accounting machine from
blank cards by using suitable rolling counters. These pages
give, for the objects on the planet and star pages, a pro-
portional parts table which enables the navigator to inter-
polate without multiplying. We do his multiplying for him,
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making it simple for the navigator to use the data to find
his position.

Figure 6 is a good sample of the versatility of the type-
writer. The apparent positions of selected pairs of stars
were computed on the IBM machines for the International
Latitude Service. The volume was to have very small cir-
culation. It was to consist of perhdps a hundred copies,
and we were not prepared to print it. The obvious thing to
do was to mimeograph it, and that is what was done. The
typewriter did all the stenciling except the heading lines.
The remainder, from the star numbers through the sym-
bols and the data, was read from cards and automatically
printed. The mimeograph stencils were extremely uniform,
due to the electric typewriter action.

The extra upspaces between lines are produced auto-
matically at the proper intervals by code punches in the
detail cards. No blank cards are needed. This saves time
in printing as well as in arranging the detail cards. Such
code punches can be used to suppress unwanted printing
or force desired numbers on certain lines. Thus, it is not
necessary to make sure that the detail card is blank where
no printing is desired.

The Minor Planet Ephemerides (Figure 7) are a mas-
terpiece of typing. They illustrate most of the capabilities
of the typewriter on one page. The only printing not done
by the card-operated machine was the planet names. They
were typed in by hand on an IBM proportional spacing
typewriter.

Figure 8 is another portion of that table. It gives the
elements of the minor planets., In the fourth column
Roman numerals denote the month. These were not only
printed but spaced from the detail card. The master card
couldn’t predict ahead of time which of the numerals was
going to appear ; therefore the detail card had to take over
the spacing. That is the closest approach to proportional
spacing that the machine has. The typewriter itself con-
tains no direct connection between the key pressed and
the space obtained; the spacing is controlled from the
reading unit. It supplies as much as eighteen unit spaces,
or 9/16 of an inch, from one card column. In general, the
amount of space allotted to a character is determined
beforehand from the reading unit and the master card,
except, of course, in such special cases as the Roman
numerals, ’

It would be appropriate to mention here the problem of
point plotting, as it has already arisen in some earlier dis-
cussions. Choose one coordinate as the upspace of the
platen, and the other as a motion of the carriage along the
line. It is possible to arrange a deck of cards which will
determine how far the carriage moves before a symbol is
printed. If ten inches is the width of the page, then, with
320 unit spaces, the accuracy of the plot will be 0.3 per
cent of full scale. Several passages of the same page



168 1950 SEPTEMBER 4, 5, 6, (MON,, TUE, WED)
Gl VENUS — 3.3 MARS 1.4 JUPITER — 2.4 SATURN 1.3 MOON
T GHA GHA Dec. GHA Dec. GHA Dec. GHA Dec. GHA code Dec. code
h o ’ o ’ o ’ -] . o . o ’ o , o r Q ’ ° , o ,
0|342 32.7} 197 203 +14 563]120 02.0 =17 20.8] 8 41.4 ~12 13.3| 169 533 + 5 16.6 {280 55.0 114 +25 47.4 +&7
1]357 35.2 212 19.7 554|135 02.8 213| 23 442 13.4| 184 55.5 16.4 295 25.4 114 25 54.1 + 65
2| 12 37.6] 227 19.1 54.4| 150 03.6 218| 38470 135]199 57.7 163 }309 55.8 113 26 00.6 +64
3| 27 401) 242186 -+ 535[165045 -+ 223| 53498 <+ 136|214599 -+ 162]324 26.1 112 26 07.0 + &3
4| 42 426] 257180 526|180 053 228| 68525 13.8| 230 021 161338 563 11 26 133 + 6l
5| 5745.0{272174 516[ 195 06.1 23.3| 83553 13.9| 245 04.2 160|353 26.4 1 26 19.4 +61
6| 72 475|287 169 +14 50.7) 210 07.0 ~17 23.8] 98 58.1 —12 14.0| 260 06.4 + 5 158| 7565 110 +26 25.5 + 59
7| 87 499)302 163 29.7{ 225 07.8 243)114 008 1411 275 08.6 15.7] 22 265 110 26 31.4 +58
8] 102 52.4] 317 157 48.8] 240 086 248|129 03.6 14.2| 290 108 156 36 565 109 26 372 +57
9|117 549|332 152 -+ 479] 255095 -+ 253|144 064 -+ 143}305130 -+ 155| 51 26.4 108 *26 429 + %
10} 132 57.3] 347 146 4691270 103 253|159 09.1 144|320 15.1 153 | 65 562 108 26 485 +54
11147 59.8| 2 140 46.0] 285 111 263|174 119 146335 173 15.2| 80 26.0 107 26 53.9 +53
121163 023 17 135 +14 451 300 12.0 -17 26,8} 189 14.7 -12 147|350 195 + 5 15.1| 94 55.7 107 +26 59.2 +52
13178 04.7| 32129 4411315 128 273|204 174 148] 5217 150 {109 254 106 27 04.4 +51
141193 07.2| 47 123 43.2] 330 13.6 27.8| 219 20.2 149| 20 238 149123 55.0 105 27 09.5 + 49
15{208 09.7] 62118 -+ 42.2) 345145 -+ 283|234 230 ++ 150} 35260 -+ 1471138 245 105 27 148 +48
16)223 121) 77 112 413|” 0153 2831249 25.8 151] 50 282 146152540 14 27 19.2 + 47
17] 238 146| 92 106 403] 15161 29.3| 264 285 153| 65 30.4 145(167 23.4 13 27 239 +45
181253 17.1] 107 10.1 +14 39.4| 30 169 -17 29.8} 279 313 -12 15.4| 80 32.6 + 5 14.4]181 52.7 103 427 28.4 + 4
19268 19.5] 122 09.5 385| 45178 303] 294 341 155| 95 347 143196 22.0 103 27 32.8 + &
20] 283 22.0( 137 09.0 375| 60186 303|309 368 1561110 369 1414210 513 102 27 37.1 +42
21]298 244|152 084 -+ 36.6| 75194 ++ 313[324396 -+ 157]125391 -+ 14.0]225 205 101 *27 413 + 40
22[313 269{167 078 ° 356 90 20.2 318|339 224 15.8] 140 413 139239 49.6 11 27 453 +3
23328 29.4| 182 07.3 347105 211 32.3| 354 451 159] 155 435 138|254 18.7 100 27 49.2 +38
0]343 31.8[ 197 06.7 +14 337/ 120 219 =17 32.8| 9 479 ~12 161} 170 456 + 5 13.6 {268 47.7 10 +27 53.0 + 3%
1] 358 343) 212 06.1 328] 135 22.7 333| 24507 16.2| 185 47.8 135283 167 % 27 56.6 +35
2| 13 36.8} 227 05.6 31.8] 150 23.5 338] 39534 163|200 500 13.4]297 456 ¢ 28 00.1 +3
3| 2839.2|242 050 -+ 309|165 244 - 343| 54562 ++ 164215522 <+ 133]312145 9 -28 035 +32
4] 43 417|257 045 29.9( 180 25.2 348| 69 59.0 16.5] 230 54.3 13.2{326 43.3 98 28 06.7 +31
5| 58 44.2] 272 039 290195 2600 353| 85017 16.6} 245 565 13.0 [341 121 o7 28 09.8 + 30
6] 73 46.6] 287 03.4 +14 2801 210 26,8 ~17 35.8] 100 04.5 ~12 16.7] 260 58.7 + 5 129|355 40.8 97 +28 12.8 + 8
7] 88 49.1]302 028 27.0{ 225 27.7 363]115 07.3 16.9] 276 009 128]| 10095 % 28156 +27
81103 516|317 02.2 26.1{ 240 285 36.8] 130 10.0 17.0] 291 031 127 24381 9% 28183 +25
91118 540332 017 ++ 251255293 -~ 373|145128 -+ 171|306 052 -+ 125] 39067 9% 28 208 +25
10{ 133 56.5] 347 01.1 24.2| 270 301 37.8] 160 15.6 17.2] 321 07.4 124 53353 o5 28 233 +2
11| 148 589] ~ 2 006 23.2} 285 309 383|175 183 17.3} 336 09.6 123) 68038 9 28 255 +2
12| 164 01.4] 17 00.0 +14 223|300 31.8 —17 38.8{190 21.1 ~12 17.4] 351 118 + 5 12.2| 82 32.2 & +28 27.7 +19
13} 179 039] 31 59.4 213|315 326 39.3[ 205 239 175| 6140 121 97006 %4 28 29.6 +19
141194 063] 46589 °  20.4| 330 33.4 39.8| 220 26.6 1771 21161 . 119|111 290 o 28315 +17
15| 209 08.8] 61583 -- 19.4]325342 - 403|23529.4 +- 17.8| 36183 -7 118125573 @ 28 33.2+16
16{ 224 11.3| 76 57.8 184| 0351 4081 250 32.2 179] 51 205 11.7{140 256 93 28348 + 1
17| 239 13.7] 9157.2 175] 15359 41.3] 265 349 18.0] 66 22.7 116154539 o 28362 +1
18} 254 16.2] 106 56.7 +14 165| 30 36.7 —17 41.8] 280 37.7 ~12 18.1] 81 24.8 + 5115|169 221 92 +28 375+ 11
191 269 18,7} 121 56.1 155| 45375 423|295 405 18.2] 96 270 1131183503 91 28 386 +10
20] 284 21.1§ 136 55.6 146 60383 428]310 43.2 183111 29.2 112|198 18.4 o2 28 39.6 + 9
21| 299 236] 151 550 ++ 136f 75391 - 433{325460 - 185]126 314 - 111|212 466 9 28 405 + 7
22] 314 26,0} 166 545 127 90 40.0 433|340 488 18.6)141 336 110227146 91 28412+ o
23] 329 28,5] 181 53.9 11.7} 105 40.8 433]355 515 18.7| 156 35.7 108{241 427 % 28 418+ 4
0344 31.0] 196 53.4 +14 10.7] 120 416 17 44.8] 10 543 =12 188{171 379 + 5 10.7|256 10.7 % +28 42.2+ 3
1] 359 33.4 211 52.8 09.8] 135 42.4 452{ 25571 189|186 40.1 10.6 [270 38.7 %0 28 425 + 1
2| 14 359) 226 52.2 08.8] 150 43.2 45.7] 40 59.8 19.0] 201 423 105)28506.7 a0 28426 o
3| 29 38.4] 241517 ++ 07.8|165 440 ++ 462]| 56026 ** 19.1|216 444 *+ 104299 346 90 28 42.6 - 2
4] 44 40.8| 256 511 069 180 449 46.7] 71 05.4 19.2| 231 466 10.2 {314 026 s 28 424 - 3
5| 59 433} 271 50.6 059] 195 45.7 47.2} 86081 19.4] 246 488 10.1/328 304 & 28421 -5
6| 74 45.8] 286 50.0 +14 049] 210 465 ~17 47.7| 101 109 ~12 19.5§261 510 + 5 10.0 |342 583 & +28 41.6 - 6
7| 89 48.2| 301 49.5 039] 225 473 482]116 136 196|276 532 0991357 26.2 88 28 41.0 - 7
8{ 104 50.7] 316 489 03.0] 240 481 48.7{131 16.4 19.7| 291 553 09.7| 711540 & 28403 - 9
9]119 53.2| 331 48.4 -- 02.0] 255 489 - 492|146 19.2 -- 19.8|306 575 + 096 26 218 88 *28 39.4 -1
10} 134 55.6} 346 479 01.0} 270 49.7 49,71 161 219 1991321 59.7 095 40 496 s 28 383 -12
11}129 581} 1473 14 00.0] 285 506 502|176 24.7 20.0{337 019 09.4| 55174 8 28371 -13
12| 165 00.5] 16 46.8 +13 59.1{ 300 51.4 =17 50.7| 191 27.5 ~12 20.2 {352 04.1 + 5 09.3 | 69 45.2 &7 +28 358 -15
13 180 03.0] 31 46.2 58.1] 315 52.2 51.2] 206 30.2 203] 7062 091] 84129 s 28343 -1s
14} 195 05.5| 46 45.7 571} 330 53.0 51.7] 221 33.0 20.4| 22 08.4 09.0] 98 40.7 & 28327 -18
151210 079] 61451 -+ 561{345538 -+ 522236358 - 205| 37106 -+ 0891113 08.4 & 28 309 -20
16] 225 10.4] 76 446 552 0546 52.7| 251 385 206 521238 083 |12736.1 & 28 289 -2
17§ 240 129} 91 44.0 542| 1555.4 531 266 413 20.7| 67149 087|142 03.8 87 28 269 -
18] 255 15.3] 106 435 +13 53.2) 30 562 —17 53.6] 281 44.1 -12 20.8| 82 17.1 + 5 085 |156 315 &7 +28 24.6 -2
19| 270 17.8{ 121 429 522| 45571 541|296 46.8 209 97193 084|170 59.2 & 28 222 -25
+20] 285 20.3| 136 42.4 513| 60 579 546|311 496 . 211|112 215 0831185 269 &7 28197 -21
21300 22,7} 151 41.8 - 503| 75587 <+ 551326523 - 212|127 236 - 082199 546 & 28 170 28
22| 315 25.2] 166 413 193] 90 595 556|341 55.1 213|142 258 08.0 {214 223 & 28 14.2 -3
231330 27.7} 181 408 483} 106 003 56.1]356 579 2141157 280 0791228 500 & 28112 -31
24| 345 30.1} 196 40.2 +13 473|121 001 -17 56,6 12 00.6 —12 215[172 30.2 + 5 07.8 |243 17.7 & +28 08.1 -33
codel - -6 - 10 + 8 -5 + 28 -1 + 22 -1
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1950 SEPTEMBER 4, 5, 6, (MON,, TUE, WED) 169
g SUN STARS Lat. |Sunrise| Moonrise ADDITIONAL
¢ Transit begins ALTITUDE
T GHA __ Dec QMo SHA Do MernGif o T 51617 CORRECTIONS
e e e v o hmp Ol mlh o m[hom|h o m|hom|hom[ [Sun
0f180 10.6 + 7 29.0] 1 358323 +28 49.2 112 Alt.JLow'r[Venus|Mars
1195108 281 2 358217 +58526 112|70f 432| m| O o} of| o | jlmb
2210110  272] 3 339429 -18152 147)e8| 441 w| o] ol gl =11 .1 .
3[ 225112 -+ 263| 4 339212 +5958.7 228fe6f 448 m| | O Of O,
4| 240114  254) 5 336011 -57289 24164l 454 113] O| O] O O |5] 02f 01f 01
5255116 244 62| 459| 151[1824] O] O]2202]45] 02] 01] 01
6] 270 118+ 723.5] 6 332365 +89 018 255] 60} 504| 216[19 38|20 05[21 08122 42 ;7| 0.2| 0.1} 0.
7| 285120  226| 7 328540 +23139 3 10| 58| 508| 235[2011{20 46|21 47123 10 75| 0.2| 0.0} 0.0
8300122 217 8 315539 -4029.7 402] 56| 512| 25120 35|21 14|22 1323 31 } 99 | 0.2| 0.0 0.0
9] 315124 -+ 20.8] 9 309 481 +49 412 4 26 54] 5 15| 3 04]20 55/21 36|22 35]23 49
10[ 330 126 19.8]| 10 291 437 +16 249 538 52| 518[ 3 15{21 11]21 54]22 52|24 04
11345128 189 50| 521| 3 24|21 25]22 09} 23 07|24 17 | Moon's Lower Limb
12| " 0130+ 7180)11 281575 - 8151 617] 45| 527| 3 43]21 54}22 4123 37/24 44 ddd__
13| 15132  17.1| 12 281 445 +45570 6 18] 40| 531f 3 57|2217|23 05|24 01| 001 [ART 4 T'5 Te
1a) 30134 162|113 279 228 + 6186 627|35) 535 408|22 36|23 25]24 201 0 20F - [ [, [,
15] 25136 -+ 152] 14 279 125 +28 342 628 30{ 539| 4 17|22 52|23 41|24 37 037]
16| 60139  143f15 276344 - 1136 638 20[ 545{ 431{2320{2410f 010f 1 05| ,[121|125(13.0
17] 75141 134 10| 551| 441}23 4324 35| 035| 129} gli21}|125013.0
18] 90143+ 7125|116 271526 + 7242 657| 0| 555 4 46|24 06| 006] 058| 151);5[12.2{125(13.0
19{ 105145  1Le| 17 26417.4 52396 7 27| 10| 600| 450{24 28| 028| 121] 214]y¢[122|126]131
20/120 147 10618 259155 16385 748 20| 6 05| 452124 52| 052| 1 46| 238]59(12.2|126[13.1
21135149 -+ 09.7) 19 255499 -28 538 801) 30| 611 452| 022| 120] 214] 306]5,{123]127|13.2
22|150151 08820 24549.4 + 5214 841)35) 614] 450 037 136) 232| 322}55]124[12713.2
23|165153 079 40| 617| 4a7| 055] 1551 251 3 41]55]125/128(133
21 244257 +28 09.0 847 45| 621| 443] 116| 219] 3 16| 4 04} 3¢ |1261129[133
0} 180 155+ 7 069} 22 234 38.1 —59 20.7 9 26| 50| 6 26| 4 38| 143| 249] 3 47| 4 34| 40]127]13.0]134
1]195157  060] 23 223 27.8 -4313.7 10 10| 52| 6 28| 435| 156| 3 04| 403 4 49] 44 ]128]13.1[135
2| 210159  o051) 24 221 511 -69 30.6 10 17| 54| 6 31| 433| 211 3 22| 4 21| 505} 45]129]|13.2|13.6
3| 225 161 -+ 04225 218429 — 8 26.4 10 29| 56| 633| 4 29| 228| 3 43| 4 43| 526}, [131]13.4[13.7
41240163 032 58 636| 425] 2501 410f 512| 5512;(12.2[13.5/13.8
5255165  023) 26 208341 +1212.7 1110] 60} 639| 420 3 17| 449| 556} 626 o |13.4{13.6[13.9
6] 270 16.7 + 7 014 27 194299 +62 01.2 12 05 $ oq |135]13.8[14.1
7| 285 169 7005) 28 183 221 +14 510 12 50 Tt es [13.7]139]142
8] 300 171 6595§29 174 033 —62 49.7 13 27 plat|Sunset| o5 Moonset 721139]14.1]143
9] 31517.4 ++ 586}30 172545 ~56 503 13 32 T T T o T 71 76141142145
101330176 577 N ol bttt 80 [243] 144 146
11325178  568] 31 168484 -59 253 13 48| ° ™| g4 |14.4| 1461147
12|~ 0180+ 655832 167023 +56138 1355} 70{1923) m| D] O D@ ©|gg|146/147|149
13} 15182  549]33 159311 455111 1425} 68]1914] m| T| | O O |gg|148|149150
13) 30184  5490]32 159214 -10542 1426} 661907 w | O] o] o] O Add 1o rable
15| 45186 ++ 531}35 153362 +49 33.7 1449 64|19 01|22 42f | O O} O ek vorer
16| 60188 521 62|18 56|22 04}16 55) D] 3|19 08
17| 75190  51.2f36 149 038 ~36 07.3 15 07 | 60] 18 52|21 40{16 01{17 22| 18 10]18 27| Moon's Upper Limb
18| 9019.2+ 6 503 37 146 39.0 +19 26.4 15 17| 58 18 48|21 21{15 2816 41|17 31}17 59 Submort
191 105194  49.3] 38 140 57.1 —60 38.3 15 40| 56| 18 44| 21 05{15 04|16 13|17 04117 38 T4 T 516
20/ 120196 48.4] 39 13717.8 +74 216 15 54] 54| 18 41|20 52|14 45|15 51] 16 43/17 20 |=
21| 13519.8 -- 4751 30 126 51.1 +26 529 16 36| 52 18 38[20 4114 29|15 33| 16 25{17 04} 4} | | -
22 150 200 4656 50| 18 35| 20 32|14 15|15 18| 16 1016 51} ,[17.5{17.3|17.0
23 165 203 45.6] 41 120 389 -22 29.1 17 00} 45} 18 30|20 14{13 47|14 47] 15 39{16 23] ¢]175)173]17.0
42 113 244 —26 19:6 17 29| 40{ 18 25|19 59|13 24| 14 23| 15 16|16 02} ,5|17.5[17.3[17.0
0] 180 20.5 + 6 44.7] 43 109 088 —68 56.8 17 46 35| 18 21/ 19 48]13 06| 14 03| 14 56{15 44 1¢|17.4{17.2[16.9
1] 195 207 43.3] 44 103 063 ~15 40.0 18 10| 30| 18 1819 40 12 50| 13 46| 14 39|15 28] 54|17.4|17.2|169
2| 210 209  428)45 97 261 -37 04.4 18 33| 20| 18 12|19 26| 12 23|13 18 14 1115 02] 5,]17.3|17.1 {169
3| 225 211 -+ 419 A 10/ 18 0719 17|12 00f 12 53 13 46|14 38| 55117.2|17.1|16.8
4l 240 213 410] 46 96 503 +1235.7 18 35| ol 18 0219 11{11 39|12 30} 13 24{14 17| 55117.217.0]16.7
5{ 255215 401} 47 91079 +5129.8 18 58] 10{17 57|19 07{11 18/ 12 08| 13 01/13 55] 5¢|17.1{169]16.7
6] 270 21.7 + 6 39.1] 48 84 463 =34 24.3 19 24} 20| 17 53|19 06]10 55|11 43| 12 36|13 32| 5 |169]16.8{ 166
7| 285219  38.2]| 49 81108 +38 443 19 38} 30| 17 47|19 06] 10 29{ 11 15112 07|13 05| 4, |16.8|16.7} 165
81300 221  373|50 76 56.7 —26 21.7 19 55| 35| 17 44/ 19 08| 10 13/ 10 58] 11 50|12 49| 4c|16.7}16.6|164
9] 315 223 ++ 363 40§17 41|19 11 9 55|10 38| 11 30112 31| 55 |16.6{16.4|163
101330 225  354] 51 62541 + 8442 20 51| 45|17 37/19 15| 934110 15{11 06|12 08] 2¢ |16.4)163]16.2
11} 345 228  345] 52 54 33.0 ~56 539 21 24] 50| 17 32/ 19 20} 9 06f 9 48|10 35/11 39] 77116.2|16.2]16.1
12|~ 0230+ 6336)53 50 035 +45 06,3 21 42| 52| 17 30{19 23] 8 53| 9 29|10 19|11 24 ¢, |16.1[16.0]159
13| 15232 326|548 34333 + 9389 22 44] 54|17 28119 26| 837| 9 11|10 01[11 08] 22l159|159]15.8
14| 30234  3L7]155 28424 -47121 23 07 56f 17 25[19 29| 8 19 850 9 38(10 48] 75|15.7|15.7|15.7
15| 45236 - 308 5817 22119 33| 758] 822 909[10 23] 7¢1156|15.6{156
16| 60238 29856 16156 -2953.0 001] 601171919 38| 729] 743| 8 26| 9 48] g5|15.4|15.4]15.4
17| 75240 289157 14252 +14565 008) ¢ g4 |152|15.2]153
18] 90 242 + 6 280 [ G T Eavation of Time (Aop—Moar) TaT— ag|150]15.1115.1
19} 105 244 270} ¢ GCT of Transit 90149149150
20l 120 246 261 1L 4 5 6 Meridian of Greenwich
21) 135 249 - 252 | ™ s m s m s DAY | Moon | Venus| Mars {Jupiter | Saturn | Subtract from
22/ 150 251 28.2] O+ 0419+ 1016+ 1214 homi homl h om| h om| h m| sableback cover
23| 165253  23.3} 6+ 0468+ 1 065+ 1264 4| 527/10 51} 15 59| 23 21{12 39
12|+ 0 517+ 1 115/ + 1314 5| 618]10 52|15 58] 23 1712 35
24] 180 255 + 6 22.4] 18] + 0 56.6] + 1 16.4| + 1365 6 | 711}10 53|15 56{ 23 1212 32 [Labor Day 4
wd = -9 ]24|+ 1016+ 1214+ 1415 7 | 804]10 54|15 55| 23 0812 28 |Last Quarter 4
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1947

APPARENT DECLINATIONS OF STAR-PAIRS
For the upper transit, meridisn of La Plata

Greenwich meen astronomical dstes

Group X
55 56 57 58 59
L] ’ -] 4 ° I 4 o ’ (-] ’
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” ”n ” ” ”

41.35 54.44 16.82 41.37 26.21
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4241 ; 5493 5 1723 5 4170 5 26.45
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47 % 5498 2 1727 , 4172 2.
B gm o u o an
Ly l L3 o . 0 13 2 .
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By glew W oA xa
* 12 ’ 1 ‘o 10 ' 9 c6.47
4295 12 5538 || 1758 10 4193 . 2654
6307 '; 5549 ', 1768 '3 42.02 . 2662
4316 , 5557 7 1776 o 4209 | 26:69
R R B
1329 , 5569 . 1787 , 4219 5 26,
4333 ] 5573 5 17.90 . 4222 ) 2679
1339 ) 3578 ) 1704 1 433 1 seso
39 , 5578 5 1794 2 4224 2.
R BRI R
4349 5 5986 | 1801 , 4230 | 268>
56 o 5592 o 1807 , 4234 , 2686
4364 0 5600 o 1813 o 4240 o 26,90
4374 )7 5609 .0 1822 | 4248 ° 2697

4385 . 5619 ), 1831 ,, 4257 _ 27.05
4396 ) 5630 ;, 1842 | 4266 .0 2713
4407 © 5641 1852 ' 4276 ' 27.22

[
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DO DWW

-]

60

° ’
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15,59
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1T
ION EPHEMERIDE
S

69

1947 o
1950 P
. 1950 Misc. 1947
17
3 4 h mLyka 1950 6
412360, - ° 1475 ' v Misc
20 12 29.7 &2 - 6 23 511 Davi :
28 % 12 225 -2 5 59 214° 3 h avida
4 s 15 14778 5 og 3 0448 12 12 396 o
13 12 000 - 4 i % -be . 15 Tl 118 455 T
000 7° - 3 %4 o gm3 4 5% {2 281 3° 119 40 5 85°
7 60* 13 12 22.2 5.9 +20 24 4 (0.510
278 1 21 12 16.7 5.5 +§0 56 :2 _371
3 h Paulina 2 120" +2% 14 : 776
lg 12 393,1 o v 12M0 19 0-360,,
12 12338, + 8 32 ‘ 385 1 !
582 12 274 &4 +911 2 346° 3 h matar
4 12 20.4 7.0 + 9 47 36 0.381 12 12 43m P
15 12 13.4 7.0 +10 17 30 -7 20 12 3 .4 7.1 -12 M6
3 12072 % +10 37 % -6 28 ,,12 6.3 g0 ~13 50 44 o
2 %2 410 a4 7 01 4 2215 563 0 3% 13
; 4 53, 13 12 203 &9 - 331, ¢ 0399
217 2 21 12 12.8 7.5 ._%3 09 3 -9-,8
3 ¢li Eudora 12 063 s 21> 00 2
5 15 307 o 1378 s0 1 189+
20 12 349 4.8 + 0 32 ) 929 2
582" 12 293 >¢ +1 272 260° h Algunde
4 s 12 23,2 6.1 + 2 26 59 0.514 312 12 4 m o
13 ig 17.2 &° i 3 26 oo -3/6 gg 12 3%2 6.2 10 1; 1373
5. 2 2458 g 3 _
1135 1 5 %; 03 4 52 i2 284 12 - 931 % 307°
b 5 57* 13 12 21.0 7.4 _ 8 36 55 0.324
1486 . 2 21 12 14.1 6.9 _ 7 33 23 _1071
3 12 h mhlarilyl-‘ 2 084 5.7 - g 5863 0 18‘.“6
12 39,7 ' ° v 15m 6 0.046
20 12 3e12 312 > | 1291 1*
4 5% 12 246 10 - 335 2 235° h Phryne
13 12 1606 8.0 - 2 45 50 0’376 3 12 12 40"‘ °
51 12 091 75 - 1532 -6, 20 12 3 2 g, T11 . 1378
15027 2 0 oa 49 > 28 12 35157 710 12w
‘ -024% 0.1 4 571 29.4 27 - 33, 229°
39 13 12 23.6 5.8 _ 9 43 ¥ 0.507
‘ 1485 13 2] 12 181 5.5 _ 8 50 54 _4.13
3 h Isa ’ 2133 %% - :/, 54 5
lg 12 41:" o s 15m 00 0.347
20 12 36.0 5.4 ~16 38 -5 1530 13
2828 12 301 5.9 -16 31 7 220° 3 h 1938 SG
g 28 12233 oa -16 14 5 %20 12 12 446 o
13 12 175 &4 ~15 48 2 47’ 20 12 34-6 5 —12 ! 177
12 116 >° '_'%5 14 ;; e | 4 2229 12 2;‘-5, 7.8 11 g?, 13 180°
2 36 % 0368, 13 iz 218 7? -10 47 2 0431
1496 7 21 12 14.4 7.4 9 58 49 _6.;5
3 h 1938 SA, 2 07.8 &¢ - 9 06 :20 §
5 15 483 ° 16m 8 16 ° 0222«
20 12 38 57 - 8 53 2 1549 12
5828 12 315 /! -832 272° 3 n Mikko
g 20 12233 Ilo- 756 0332 12 12 453 o
5 121837 7138 -6 % a2l 5 47 1572
12 076 7 -62827 7 28 012 38l ., + At
’ -5 34% 00 4 52"12'30’2 o +6‘ a0 85
098, 13 3919 + 123 49 0.349
12 21 12 152 '} Tso0s® ¢
1 13 093°° 18 ae 2 8
+ 8 46 12 0.095
12*
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ELEMENTS

13

h w Q i
No.| m g | Epoch 0'UT M 1950.0 # n a
m m o o o o o "
601(12.6 85({1943 11l 17 178170|158.150 170.066 16.101| 6.262 639.412 3.1344
602 [12.1 80{1938 1 20 71.960| 41.999 332.805 15215/13.647 649.958 31003
6031139 10.9|1900 I 0 182.506(154.127 344.283 8,028 9.822 871.097 2.5505
604124 8.2|1945 1 25 67.547| 26,630 12980 4.433]|10.421 630.418 3.1641
6051129 9.0(1937 X 24 38.853| 12.440 343.278 19.666| 7.769 682.398 3.0013
606{129 9.8/1900 | 0 134.016| 54.312 319.949 8.683112.681 852425 2.5877
607 |12.6 9.0|1918 II 19 280.374|288,700 286.257 10,088| 4.475 736.802 2.8517
608141 10.2|1942 VII 20 297.605| 67.437 294.668 9.374| 6.790 674.113 3.0259
609|128 881934V 31 112.365[122.275 166.265 4.147] 2.026 653.676 3.0886
610 (156 11.6|1942 V 1 209.601(350.997 20.990 13.088|14.763 656.500 3.0797
611123 84(1939 11 22 51.990254.359 190.333 13.407| 6973 689.747 2.9800
612 |14.6 10.4]|1906 X 9 24.381116.310 205,785 20.492{15.462 636,959 3.1424
613 |13.0 9.3|1945 VIII 13 254.689| 63.224 355185 7.670| 3.583 711.389 29192
614137 10.4 (1919 IX 3 299.931|206.582 218.019 6.996| 6.299 802264 2.6944
615|126 9.4!11900 1 0 270.150(242.400 14.650 2.770| 6.390 831.146 2.6316
616127 9.7|1900 1 0 49.570[105860 356.660 15000 3.410 869.943 25527
6171126 591940 X 9 353.645(303.410 43934 22.103| 8130 299.717 51943
618124 82(1945 VIl 20 307.744)244.184 111.473 17.007| 4.739 623,700 3.1868
6191121 921900 1 0 142,400{174.600 188.420 13,740| 4.370 886.799 2.5203
620}13.6 10.9|1900 I 0 129.740|333.090 0.860 7.770f 7.660 933,328 2.4358
6211139 9.8|1942V 1 129.029| 30.373 67.485 2,357 7.883 641.457 3.1277
6221128 1011917 IX 15 329.798|254.035 142,956 8.641{14.032 945316 2.4152
623112.8 10.0 1900 1 0 111.540(123.030 309.120 14.170{ 6.550 919.333 2.4604
6241132 6.4|1940 XII 19 293.458|177.001 342.152 18267 1.613 304.721 51373
625(12.1 891950 1 0 168.883[198759 127.748 12.093(12977 823,989 2.6469
626|114 841922 XII 15 35.555| 42.387 342.021 25.454{14.041 859.549 25733
627;131 9311933V 21 293.478|177.613 143.053 6.449| 3.383 718676 2.8995
628|122 9.2(1900 I 0 294.0501201.720 112.690 11.541| 2.453 855232 2.5820
6291138 9.7|1946 1 20 23.677| 31.984 87.746 9.322| 8.819 641.364 3.1280
630|135 10.3{1950 1 0 35080 37.780 105710 13.900]| 6.500 834.894 2.6237
631|123 881921 IV 28 68.920(|276.906 225.621 18.830| 4.811 760.172 2.7929
632114.5 11.3{1900 1 0 97.310]247.060 358,770 2.262|11.080 816.653 2.6626
6331129 9.0|1937 11 1 1533721188894 147.937 10.906| 4.947 676,596 3.0184
6341131 91(1937 11 1 113.825(220.407 134.084 12.288|10.494 666.462 3.0489
6351126 85({1944 1 19 58589(227.295 183.961 10.979| 4.688 637.307 3.1413
636112.4 871937 IIl 10 185976(296.589 35429 7.939| 9.975 714.847 2.9098
637114.0 9.8[1941 III 21 12.612{164.666 357.000 0.324| 6.799 631,934 3,1591
6381135 10.1|1943 II1 28 337.124|127.194 103.655 7.708| 9.182 784.808 2.7342
6391121 821943V 25 271.534| 65216 280.666 8559| 6.327 678,516 3.0127
6401130 881936 XI 13 149.283| 18737 236.156 13.374| 3923 630,670 3.1632
641114.5 12.3[1925 1 1 30.102| l6.416 41.106 1.733( 7.392 1072.666 2.2200
642135 931934 1 13 122.898110.525 7.776 8193| 8.481 627.618 3.1735
6431139 9.411945 XIl 16 352206|210.628 255110 13.902| 5.485 581.259 3.3401
6441131 10.0{1900 I 0 66.090|267.510 108940 1.040{ 8980 846.504 2.5997
6451135 93{1939V 5 119.839| 87.782 0,990 7.063] 9.920. 623.667 3.1869
646|145 12111950 1 0 346.145| 36.155 303.047 6.945/12.327 1000.813 23251
647113.,5 10.8{1939 | 15 24.619(173.639 254.826 7.299{10.956 928740 2.4439
648|131 8911938 1V 7 72117|168.389 292,933 9.989|13.102 628.555 3.1704
649|151 12,1|1900 I 0 44,768|347.088 357.887 12.680/16.053 871566 2.5495
650{14.7 11.9{1907 X 5 3.0711175.990 216.357 2.555{10.770 918.478 2.4620
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through the typewriter would permit the superposition of
several curves, if desired. This problem has been solved
in a general way, but some details remain to be worked
out. It will be possible to process data in a Type 602, so
that the resulting punches will operate in the typewriter
to produce the desired plots. Possible uses of such a curve
plotter, with accuracy of this order, may occur to some
of you.

This has been a very brief summary of the machines
and methods in use at the Nautical Almanac Office. As I
have indicated, the scope of our work is continually in-
creasing. There is considerable satisfaction to be derived
from the fact that every astronomical problem to which
the machines have been applied so far has been success-
fully solved. I have no doubt that this will continue to be
the case.

REFERENCE

1. W. J. Eckerr and R. F. Hauer, “The Printing of Mathematical
Tables,” MTAC, 11 (1947), pp. 197-202.

DISCUSSION
Dr. Eckert: 1 would like to point out that copy for the
Air Almanac has been prepared on the typewriter for
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three and a half years. In that time about ten million fig-
ures were computed, typed, proofread as Mr. Hollander
described, and printed in editions running as high as two
hundred thousand copies. Thousands of aviators used
these volumes day after day. And to date there has not
been one single error reported.

Mpr. Hollander: Regarding the accuracy of the type-
writer, it has never been known to replace one figure with
another. The worst it has ever done is fail to read the hole
in the card and thus leave a blank space; this can be de-
tected by inspection.

Dr. Eckert: This proofreading business may sound la-
borious, but you must remember you are putting out a
publication that is going to be studied, used, and sweated
over ; whether the production of a figure takes ten seconds
or eleven doesn’t make too much difference. One girl,
completely inexperienced in technical matters, holding the
lowest grade clerical rating in the Civil Service, can learn
in two weeks to proofread fifteen pages a day by punching
it up. When one error is so important, you certainly can
afford these checks.



Programming and Using the Type 603-405 Combination
Machine in the Solution of Differential Equations

GEORGE S. FENN

Northrop Aircraft, Incorporated

FOR THE PAST two years Northrop Aircraft has
used a small installation of International Business Ma-
chines equipment for engineering calculations. While much
of the work was and is routine—stress distribution, reduc-
" tion of wind tunnel results, and the multiplication and
inversion of matrices—considerable miscellaneous work
in connection with research projects has appeared from
time to time. Last winter two despairing men brought us
a system of differential equations for step-by-step inte-
gration.

The differential analyzer at the University of California
was unable to solve the problem because of the presence of
a term a$ + ¢ where a is of the order of 107. The turn
ratio for the ¢ and ¢ shafts made the time of solution run
into centuries. Large scale digital comptiters were consid-
ered but the earliest schedule times were remote and the
probability of needing additional work after the first set
of solutions were completed introduced the possibility of
another schedule delay—two years if we were lucky. After
telling us this story they presented us with the system

¥ =ax+ by — cfi(2)
J=dy + efy(2)
= fz+ g¥+ hx

f2(2) = =1 2=+43%
0 —d<z+438
+1 2= -3

which is not impressive except for the discontinuity intro-
duced by the f,(2) term, which prevents analytic integra-
tion other than piece-wise. Since there are no products in
which both factors vary, the problem could be integrated
in the accounting machine, using repeated counter trans-
fers for the coefficient multiplications.

Once we had this problem under way, we were given
the full two dimensional problem and were impressed. It

ot

had almost everything—circular functions of a dependent

variable as coefficients, products of variables, a couple of
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arbitrary input functions, and two of everything like the
f.(2) in the case just described. We needed something
that would read factors from the accounting machine on
one cycle, multiply, and enter the product in the account-
ing machine on the succeeding cycle. For example, a Type
603 Electronic Multiplier hooked to the accounting ma-
chine could do the job. In addition, we needed a great
many selectors for controlling counter connections; a
means for converting counters for true figure read-in to
the multiplier; and a balance test impulse available for
every cycle for algebraic sign discrimination.

We asked the local IBM representatives for such a
machine. Mr. A. B. Kimball of IBM was called in. He
suggested, on first sight, going after the answer “hammer
and tongs” style. For some possible time saving ideas he
referred us to an account of step-by-step integration done
at the Thomas J. Watson Astronomical Computing Bureau
in New York by Dr. Eckert. As the problem would require
more than 200,000 steps with at least six function products
punched, carried to the multiplier, to the collator, and
then back to the accounting machine for each cycle, this
was prohibitive. The problem was then taken to IBM
Headquarters in New York where Mr. J. C. McPherson
went over the problem requirements in detail and agreed
with our conclusion with respect to machine requirements.
The machine was built. In fact, we received much more
than we expected. The request was for a bare minimum of
the items noted above. We received a machine comparable
in programming technique to current large computer de-
sign—a poor man’s ENIAC. Only eighty decimal digits
of memory, only six-by-six multiplication, and only 150
computing cycles per minute, but sequence controlled com-
pletely. Our experience indicates this program power is
fundamental.

A description of specific machine features is not amiss.
First, I assume you are familiar with the IBM manuals
on the Type 603 Electronic Multiplier, ‘T'ype 405 Account-
ing Machine and Type 517 Summary Punch. Just about
all available extras are included.
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The first addition of note is the extra connector cable.
This provides for the connection from power supply to
electronic unit via the accounting machine. By disconnect-
ing the extra cable at the power supply and transferring
the accounting machine end of the accounting machine-to-
multiplier connection to the power supply the machines
may be operated independently. This is done now and
again for listing work on the accounting machine, but we
rarely use the multiplier alone as few problems involve
just a product of two factors with no additional calcu-
lations.

The nerve center of the combination is the two-section
auxiliary control panel which has been added to the ac-
counting machine. This panel is located just above the
original three-section standard panel. The multiplier con-
trol panel located on the power supply unit is not used for
combined operation. A description of the auxiliary panel
and the additions to the standard panel will tell in detail
what can be done with the machine. ,

The top six rows of the auxiliary panel require little
description. The first two rows of hubs are the upper card
reading brush hubs and are common to the corresponding

lower panel hubs. These are used mainly for reading pro-

gram X impulses for control and selection. The next two
rows are the selector and chain pickup hubs and below
these are two rows for the lower card reading brushes.
Some program controls are wired from these brushes but
mostly they are used to enter numbers into the counters
or multiplier.

The truly new features of the machine begin with two
rows of hubs which are counter exits. These counter exits
are common to the summary punch counter exits. An extra
emitter has been provided in the accounting machine
parallel to the summary punch emitter to provide impulses
in accounting machine time from these exits in accordance
with the digit in each counter position. Also provided is
the balance test impulse in the “nines” position. The use
of this impulse is described below.

In the next row are column shift pickup hubs, the prod-
uct exit, the product sign exit, and eight pickup hubs for
eight single position selectors. The column shift arrange-
ment requires description. It is impulsed for a specific shift
position up to six places by an X impulse. The product is
shifted to the right in the product exit accordingly. This
saves selector wiring for varying multiplications and per-
mits floating-decimal multiplication. The product sign is
an impulse used for internally reversing the accounting

machine add and subtract connections as made on the

lower panel. If a counter is wired to add and a negative
product sign impulse enters the counter reversal hub on
the upper panel, the counter automatically subtracts. In
case the product is to be used as a multiplier in the next
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cycle, this sign can be entered as the multiplier sign and
the next product sign controlled accordingly.

Set apart by two blank rows above and below are seven-
teen rows of selector and chain entries. There are sixteen
eight-position, four four-position and eight single-position
selectots, as well as five chains each having four eight-
position sets of entry hubs. Three of the entries are con-
nected in accordance with program impulses; the fourth
is connected when the chain is not impulsed. These five
chains are equivalent to fifteen eight-position selectors as
they are usually wired for a problem.

The remaining five rows are multiplier inputs and con-
trols, counter reversal hubs, and counter entries. The mul-
tiplier inputs consist of two sets of six hubs for entering
multiplier and multiplicand. For multiplier control there
are hubs for group multiplier, half entry, multiplier and
multiplicand subtract, and multiplier and multiplicand
sign. When the group multiply hub is impulsed, the multi-
plier is retained for use with another multiplicand. Jack-
plugging the half entry hubs rounds the last digit of the
product in accordance with the column shift position.
When the column shift switches are not wired, they can
be used in lieu of selectors for accumulating partial prod-
ucts in over-capacity multiplications. The multiplier sub-
tract controls are impulsed by the balance test impulse
mentioned above. The left-hand position of the counter
being read in is connected to the proper subtract hub.
When a nine is standing in this position indicating a com-
plement, the balance test impulse reverses the read-in cir-
cuit and the absolute value appears in the multiplier
counter. At the same time the sign control relay is im-
pulsed so that the product sign is set up accordingly. The
multiplier sign hubs are used when subtractive entry is not
required but the factor is negative. This happens when a
product is returned to multiply or when a factor is read
from a card. The X impulse just following read-in time is
used for this sign. Absolute values are always used. in the
multiplier. The counter reversal hubs have been men-
tioned. In addition, the balance test impulse from a counter
may be used to transfer its absolute value to another
counter by impulsing the appropriate reversal hub. The
counter entry hubs are common to the counter list exits
on the lower panel and are just what their name indicates.

The lower panel is just about the same as the original.
The principal change is the addition of thirty-two single-
position selectors for control of the counter add and sub-
tract shots. Balance test hubs for the left-hand position of
each counter with exception of the two-position counters
have been added. These hubs are used when operations
must be discriminated by algebraic sign for lower panel
wiring and are wired to immediate pickup when used for
selection.



FORUM PROCEEDINGS

Needless to say, all work must be done in “nines com-
plement” arithmetic. As list-out is most easily obtained
through a total stroke, the progressive total device is almost
always left unwired except for last card clearing. Counters
are cleared during a program through card cycle total
transfer.

In wiring the control panel there are two basic ap-
proaches. One is to wire for everything and program the
problem on cards, the other is to wire for the specific
problem. Wiring “everything” is accomplished by connect-
ing the selectors into three chains which provide for taking
amounts from any counter to the multiplier, the multipli-
cand, or to another counter entry. All counter entries are
paralleled together in groups of eight and the counter ac-
tually entered is controlled by the add or subtract impulse.
With such wiring a set of standard program instructions
can be drawn up and the construction of program cards
for a specific problem is mechanical. However, this is

usually wasteful of time. Nearly all problems require some

direct transfers of information, or multiplication by pow-
ers of ten where rounding of the final digit is not required.
Such transfers may be made simultaneously with other
computations provided the counter entries are not paral-
leled as is necessary for a standard panel. An example of
this saving is shown in integrating the equation

which is related to the zeros of 2z in the problem above.
We required only the approximate time from the initial
condition

vy=0, y=K

to the first zero of ¢ thereafter. With some labor it could
be calculated from the analytic expression

y=Ae%t + BeBt 4 Ce¥t -4 —B - C

but integration is much easier. Mechanical programming
yields the following:

Mult ¢ ¥ Y ¥ ¢

1 RO
vt At
2 Reset y/At¢t
cd
3 . —cd RO
gt .
4 . RO  yAt
ay ..
5 . ay RO
g\t .
6 . RO  yAt
by :
7 by RO
oy
8 o
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This program was used to explore the effect of varying
the value of At. It was found that coefficient values of
interest could be explored sufficiently well at At = 0.1.
A board for the specific problem was then wired to use the
following program:

Mult y—d ¥ ¥ ¥ ¢
1 —d RO yAt At
ay /At i . .
2 yAt  ayAt RO yAt
byt .
3 ROand byAt

reset
c(y—d) At
c(y—d) At RO

It is seen that four cycles suffice for an adequate com-
putation—just half those required for the standard pro-
gram setup.

Naturally all such methods necessitate a study of the
accuracy required, and for rapidly changing variables the
use of higher order differences rather than a smaller At
should be considered. At this point the counter capacity
may limit the possibilities. With respect to accuracy, we
often save time by inquiring about the physical nature of
the problem. Requests for six and eight figure accuracy
are often tied to mechanisms which already rattle in the
fourth significant digit.

The machine has been used almost exclusively for study
of the differential equation system. However, some time
has been available for other work. Wind tunnel results
are computed completely at the rate of two lines of com-
plete results per minute. The raw data are key punched,
checked, and collated into a program file. The final results
come out. It is hard to be enthusiastic about going back
to the former chop-and-grind method between reproducer
and multiplier, so the wind tunnel man waits for time on
the machine when it is busy rather than start the many
times longer step-by-step process. Eight by eight singular
matrices iterate at a rate of one iteration in seventy sec-
onds, a ratio of thirty to one over the older technique.
Stress distribution analyses for final reports which used
to take over a month can be calculated twice now in proof
form, and the summary cards listed on final vellum in a
day. The proofs are made to check for identical calcula-
tion. Sample calculations are made to be assured the pro-
gram is correct.

Some miscellaneous items of interest to those who think
in terms of individual calculations in the standard ma-
chines are twelve by twelve multiplication, long division,
and extraction of square roots. For twelve by twelve mul-
tiplication the speed is about twenty products per minute
if the results are punched, or twenty-five per minute for
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listing only. Using the desk calculator, long division can
be performed and square roots can be extracted to six
places in about half a minute and a minute, respectively.
This is, of course, tedious. An iteration formula

Xisy =—éxi (3_N'1:"’) R J-i'—>N—1/2 ,

selecting automatically the first digit of the first trial re-
ciprocal root, will converge to six places in twenty-eight
card cycles. One cycle must be added for multiplication by
N for N'/2 or squaring for 1/N to complete the process.
This gives a rate of five calculations per minute.

Future possibilities, if and when we have time, are in-
teresting. At present we iterate matrices for solving vibra-
tional problems. Considerable work has been done manu-
ally before we get the matrix and considerable more when
we are through. The integral equations for the various
vibrational modes and the ease of entering just any old
function for beam characteristics appear to make iteration
of the integral equation in the machine a much easier
solution.

In aerodynamics our theoretical group has derived some
analytic approximations to three dimensional flow in both
sub- and supersonic domains. We have done a variety of
computing on these. Now we feel perhaps we can just
settle for the wave equation and some boundary condi-
tions together with required mesh fineness and arrange-
ment, Iteration will do the rest, possibly not in record time
but far faster than attempting to compute from the very
complicated analytic expressions.

The question of error rate should be mentioned. Natu-
rally the machine was subject to considerable trouble at
first. For this reason the initial two or three months, when
we were lucky to get fifty per cent operating time, should
not be included. At present we spend less than a day a
week fishing for trouble. The machines separately are
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IBM’s most dependable. The accounting machine is an
old work horse of many years’ proving. The Type 603
Multiplier of itself is much more dependable than the
Type 601. To get back to error rate: we have operated
continuously for as long as a week at a time with no errors
shown in sample repetitions or manual checks of the inte-
gration problem. This is a great deal of calculating. The
actual useful time available is better than eighty per cent.
The principal source of lost time is in perfecting a pro-
gram and in making tests and correcting wiring.

Work with the machine has also suggested some addi-
tions, not necessary but highly convenient. One such
would be internal counter clearing circuits impulsed by an
X. This should isolate the counter during the operation as
well as make the transfer impulses available at the aux-
iliary panel counter exits in place of the top counter
emitter impulses. Another improvement, since the eighty
program card positions barely suffice, would be X-R splits
between upper card brush hubs on the auxiliary and
standard panels. With such an arrangement digit impulses
would be available on both panels, but only X impulses on
the auxiliary panel and R impulses on the standard panel.
Arrangement of the auxiliary panel can be improved. We
have already reversed the position of the N and X points
of the selectors to permit jackplugging for chain connec-
tions but the miscellaneous single- and four-position se-
lectors should be in the top corners with the eight-position
selectors blocked solidly above the chains as well.

Increased capacity requires only more memory and se-
lectors. With eighty computing counter positions, the
memory need only store, not accumulate. Summary cards
can be used, of course. Added selectors are only necessary
to select from the memory. For eighty counters the selec-
tors at present are sufficient.

DISCUSSION

[Discussion on this paper was omitted because of time limitations.
A short general discussion follows Dr. Levin’s paper:]



Applications of Punched Card Equipment
at the Naval Proving Ground

CLINTON C. BRAMBLE
U. S. Naval Proving Ground

I WANT to make a few remarks about some of the
computations that we have undertaken at the Naval Prov-
ing Ground. We are responsible to the Bureau of Ordnance
for a good deal of ballistic computation work: the pro-
duction of firing tables for guns, rockets, and projectiles.
Our department covers other agenda, but I will speak
merely of our computation work.

We have at the Proving Ground a set of the usual IBM
machines, including the collator, the Type 601 and the
Type 405, of which much has been said. We put in those
machines as soon as IBM would furnish them to us after
a conference that I had with Dr. Eckert at the Naval Ob-
servatory. I think that must have been back in 1943. We
found them very useful, particularly at times when our
manpower was very short, and our work load was very
large. Sometimes we were operating under a contract
with MIT, so that we had the output of their differential
analyzer. We took the output of the differential analyzer
and digested the results at the Proving Ground. A great
deal of our processing was done on the IBM machinery.

Our ideal has been to produce range tables with very
little being touched by human hands. We are far from
that ideal at the present time. We think that in time we
will approach that with our IBM machines and our
Mark II Calculator as well as our battery of desk type
machines. A point that I think should be made in connec-
tion with any computation laboratory is that you need a
certain balance and that one type of machine does not in
general render the other types unnecessary.

In addition to the machines that I have mentioned, we
have one of the IBM Relay Calculators, of which five
have been manufactured. Two are at Aberdeen Proving
Ground, and I believe two are at the Watson Laboratory.
I am not sure whether any more have been manufactured.
We have just one of them, and we have put it to consid-
erable use.

Among the various projects that we have carried out on
this piece of apparatus has been the computation of sine
functions to seventeen significant figures for each ten min-
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utes of arc. This was done for a special purpose as we
were about to do a job for which the most appropriate
table did not seem immediately available. We have also
for our own purposes calculated tables of ¢® and ¢ to
eighteen significant figures. We have also prepared density
log tables for our own use, and we have done a great deal
of auxiliary work in connection with production of range
tables. The 601 has been particularly useful in the cal-
culation of bombing tables inasmuch as these tables are
produced by four term interpolation formulas from a gen-
eral ballistic table. Among other projects that we have
carried through have been the reductions of field observa-
tions of flight of bombs ; we have reduced the work a good
deal so that we are now in the process of eliminating
graphic procedures almost entirely.

To return to the IBM Relay Calculator, we have calcu-
lated a number of solutions of a differential equation, a
special case of the type that was discussed twice yesterday.
Our special formula involved the calculation of the par-

ticular solution of the differential equation, and was espe-
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cially concerned with the determination of a parameter in
the equation so that the solution would fit a given con-
dition.

One other piece of apparatus I should mention we have:
a card-operated typewriter in which the keyboard was set
up for our own special purpose. I have with me a copy -of
a density table which was made by the use of duplimat
papers in the typewriter and directly produced from the
duplimat ; this is a very nice job. The heading, of course,
was typed with another typewriter.

By the use of our accounting machine, range tables are
also printed on specially preprinted forms. We not only
print on the 405, but also use it for differencing pur-
poses. On this density table there is a sample of six differ-
ences so produced. We can, by use of a properly set up
control panel, run off the cards which contain the data on
our range tables, select any two columns and get first, sec-
ond, and third differences simultaneously. We use this as
our check process and we find it very satisfactory. Various
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schemes for integrating our differential equations have

been tried. I am not sure how generally these are known,
but they are to be found in any books such as Bliss’ Mathe-
matics for Exterior Ballistics.

The differential equations of ballistics are rather trouble-
some ; we have manipulated them many ways and intro-
duced all sorts of independent variables for purposes of
integration. We have studied integration with respect to
different variables and are in the midst of exploring the
possibility of doing this on the IBM Relay Calculator.
I don’t believe enough time studies have been made to
determine whether it is going to pay off, but it is an inter-
esting possibility.

In dealing with a network of trajectories, you first com-
pute the slant range R and the sight angle p; that is, R and
p are the polar coordinates of the projectile. These are
functions of initial angle and time. Then the gunner wants
the table turned inside out. He needs to know what his
time of flight is going to be in terms of slant range and
position angle as well as the angle of elevation for slant
range and the position angle. That means that we have a
tremendous amount of inverse and direct interpolation to
perform. I will not bore you with the details, but the IBM
equipment is very useful in that connection.

I should like to make a few more remarks which are
somewhat general. In a computation section, I commented
that there should be a balanced organization; that there
should be a group concerned with analysis. That is the
group that should have on its desks the IBM motto!

I would like to give just an example from our own work.

problem was sent to us that was concerned with pro-
jectile motions under certain specified circumstances, and
it looked like a difficult problem in gyroscopic motion. It
appeared on the surface to have three or four physical
parameters, but by a little manipulation, the mathematician
soon saw that there was only one essential parameter in-
volved. That reduced the amount of computation from
what the physicist expected to be a library when he sent
it to us, to a single book. The next thing we discovered
was that the motion was periodic. That meant that we
could calculate merely one cycle of the motion and we had
the job done. We then discovered that the motion was
symmetrical with respect to a half period and that cut it
down again by 50 per cent, so that in the end the amount
of computation necessary was perhaps one-half of one
per cent of what was contemplated by the people originally
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submitting the problem. That kind of analysis pays off,
and I don’t see how you can set up a machine and proceed
to do your problems by brute strength and awkwardness.
You must have them digested by an analytical group.
Equations must be transformed into the most efficient sys-
tem possible. Then the programming -should at least be
outlined by the mathematician, who breaks it down into an
efficient program. It is hoped that later on coding will be
entirely unnecessary, so that when the mathematician fin-
ishes his programming the job is theoretically finished.

One observation about this meeting that I would like to
make, at the risk of pointing out something which you all
perhaps have noticed, and that is the prevalence of prob-
lems that are common to so many different interests. Dr.
King, in speaking of his problems in connection with
physical chemistry, finally came around to mentioning
such things as statistics.

I should like to go back and say that, when I was a
graduate student and took my degree, I came through with
very considerable mathematical purity; by force of cir-
cumstances in the first World War, I was driven into
applied mathematics, and to my own surprise, I found it
just as fascinating as pure mathematics. In fact, I was
weaned away from pure mathematics, because you can’t
do too many things in one lifetime and do them all well.
This experience has been duplicated by many people forced
into applied mathematics in the last war who have found
that the problems they got into were just as intriguing,
offered just as much challenge, were just as hard to do,
and in fact, had something about them that is not gener-
ally suspected. If you go into this computation game suffi-
ciently, just when you feel that you are getting away from
pure mathematics, you find that the problems have led
you into analysis and have forced you right back to pure
mathematics again. I think that no young man who is
going into scientific work at the present time should have
any idea that he is misusing his talents in any way by
going into this particular field.

I want to say in conclusion, I appreciate very much being
a member of this group and this meeting. I have met some
old friends here, and I have become acquainted with many
people whom I knew by name only and whose acquaintance
I hope to keep in the future.

DISCUSSION

[Discussion of this paper was omitted because of time limitations.]



Use of the IBM Relay Calculators for Technical
Calculations at Aberdeen Proving Ground

JOSEPH H. LEVIN

Aberdeen Proving Ground

THE TWO IBM Pluggable Sequence Relay Calcula-
tors at the Ballistic Research Laboratories, Aberdeen
Proving Ground, are only part of a battery of computing
facilities. In addition to these machines and an assortment
of standard IBM equipment, the Laboratories have at the
present time a differential analyzer, the ENIAC (Elec-
tronic Numerical Integrator and Computer), and a Bell
Relay Computer. In an installation of this sort the first
decision to be made when a new problem comes in is not
how to program it, but where to assign it. This decision is
largely a question of economics. The relay calculators have
neither the speed of the ENIAC nor the versatility of the
Bell computer. For programs of lesser or intermediate
difficulty the IBM relay calculators are highly valuable.
For long and intricate programs use of the Bell machine
or the ENIAC would be indicated. To assign a siniple cal-
culation involving only a few operations to either of these
machines would clearly be a waste of talent. Of course,
the decision as to where a problem is to be assigned must
also be controlled by such other considerations as urgency
of the problem, current work loads, and so on.

As is generally true of machine calculations, in order
that a problem be adaptable to the relay calculators, it

must be reducible to a routine. For the problems handled-

on the Aberdeen relay calculators, the number of arith-
metic -operations involved per routine has ranged from
perhaps five or six in the simplest cases to somewhere in
the neighborhood of a hundred in the most complex. The
latter are probably beyond the capacity that the machines
were originally designed to accommodate.

Inasmuch as the computing facilities at the Ballistic Re-
search Laboratories are available to outside agencies for
work on government scientific projects, it would be well
for such agencies to have some idea of the kinds of prob-
lems that have been handled on the various types of equip-
ment. The following exposition, confined to the IBM
‘Relay Calculators, is not intended to be a description of
the machines themselves, but is.a brief account of some
types of problems carried out on them. However, there
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are several facts about the machines that should be pointed
out before launching into a discussion of their applica-
tions. The Relay Calculator has two feeds, a reproducing
feed and a punching feed. Cards may be read from both
feeds, but can be punched only in the punching feed. Cards
are fed in each feed at a maximum rate of one hundred
cards per minute. This rate, however, depends upon the
complexity of the routine. For purposes of reading in con-
stants there are four groups of ten-way switches. The
machine may be programmed to perform routines of a fair
degree of complexity consisting of any of the operations
of addition, subtraction, multiplication, division, or square
root. More extensive information on the characteristics
and principles of operation of this machine is available in
MTAC,* and also in a forthcoming publication of the
Ballistic Research Laboratories.?

One rather frequent type of problem is that of sub-
tabulating or interpolating in existing tables. For a third
order interpolation the calculation may be performed as
follows:

F,=F,+n[Ad+n(B+Cn)],

where # is the fractional part of the interval, and 4, B, C
are functions of the tabular differences. 4, B, C are pre-
computed and punched on the cards, while # may be read
from the switches or from cards in either the punching
feed or reproducing feed. The whole operation is easily
programmed for a single run of the cards.

An extensive series of calculations has involved the de-
termination of a great number of direction cosines from
point coordinates. There is nothing remarkable about this
accomplishment. However, it is worth pointing out that it
is a calculation which would be wasteful of the capabilities
of the ENIAC or the Bell machine. At the same time, it is
an awkward calculation on the standard IBM equipment.
On the other hand, this calculation is ideal for the relay
calculator, being easily programmed and rapidly accom-
plished, and it does not tax the facilities of the machine.
Another rather extensive series of calculations of the same
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order of simplicity has been a series of velocity and accele-
ration determinations, given the coordinates of successive
points on a trajectory as a function of time. Again it would
be wasteful for this work to be carried out on the ENIAC
or the Bell machine. But the problem is ideally suited to
the IBM Relay Calculator.

I shall describe the following problem in somewhat
greater detail because of its interest both from the the-
oretical and computational points of view. We are given
the following partial differential equation together with
the indicated boundary conditions :

0v/ot = *v/0x* + mu(t) dv/ox ,

(#=0, m=const.) (1)
v(xt)>0 as r—>o (2)
—20v(0,t) /0x = 1 — p(¢) (3)
v(0t) = 1/Vr 4

v(%,0) = e /4 /7 —
%x(l— 2/v= o da) . (5)

It is desired to obtain solutions of (1) corresponding to
assigned values of the constant m and subject to the
boundary conditions (2) through (4). The usual numeri-
cal procedure consists of replacing (1) by a difference
equation and finding the solution of this equation as an
approximation to that of the partial differential equation.
Putting

v(if) =v(ilAx,jAtl),

(.t =0,1,2,...)
ni=pn(jAt),
and replacing the partial derivatives in (1) by finite dif-

ference approximations, the following difference equation
is obtained:

v(ij4+1) —v(ij) _ v(i=1,§) =2v(if) +v(i+1,)

At (Ax)®
+ Mpg z(""'l’];;z‘(”_ »])

Letting b = At/(Ax)* = > this equation may be written

o(i+1) = 5(1-3 mAm)v(z— )

+3(1+3mbam)oG+L) . (©
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We also substitute a finite difference approximation for
the boundary conditions (3). Using Newton’s forward
interpolation formula we have

0v, (j)/ox =1/ Ax (Ave — 1280 + 1/3Rv + ...),

where v,(j) = v(0,7). For purposes of the present illus-
tration we shall not go beyond third differences. Writing
the differences in terms of the functional values and sub-
stituting in (3), we obtain the following approximate
formula for p;:

3Axp =3Ax — 11/V7
+ [18v(1l,5) — %(2j) + 6w (3,/)] (7

The solution of (6) with boundary conditions (7), (2),
(4), and (5) leads to a function v(4,j) defined over a
rectangular network of points. The procedure for solving
consists in starting with the function (5) defined for the
row j = 0, and with u, = 0, and proceeding by means of
(6) to the row j = 1. The quantity g, is then determined
by (7) and is used in (6) together with the boundary con-
dition (4) to determine v for j = 2, etc. A check on the
procedure is derived in the following manner: both sides
of (1) are integrated with respect to # between the limits
0 and o, giving

f;t(.r,t) dx =ffvm(x,t) + mp(t)vs(x,t)1dx .

In view of the boundary conditions (2), (4), and (3), this
may be written
EE o ]

fv,(x,t) dv = [1

That is,
n=pe Zp.ej;vt(x,t) dx » (8)
where
\/7r
,’Le \/7r + 2m

is the steady state value of p. Integrating the two sides of
equation (8) between the limits O and ¢, interchanging the
order of mtegratlon on the right, and making use of the
fact that

i 1
fv(.r,O)‘dx =3

we obtain

a(?t) = a;(t) dt = [Le[(t +1) - Zf;;(x,t) dx:l .
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By computing o(¢) in the two ways shown in the fore-
going equation, a numerical check is obtained.

The problem described is well suited to a machine of
the type of the IBM Relay Calculator. The machine
method conforms to the hand computation procedure in
that a row of points is computed at a run. For any row
j = constant, the input cards in the reproducing feed con-
sist of cards punched with the values v(4,). In the first
four of these cards are punched the constants appearing
in (7):3Ax — 11/V/x, 18, =9, and 6, respectively. At the
beginning of each run the constants

%(1 - %m[kxw) , —;—(1 + %mA.m,) 9)

are set in two rows of switches. A stack of blank cards is
fed into the punch feed. As the input data are fed through
the reproducing feed, the machine uses the values v(4,7)
to compute the values v(7,j+1) for the next row by (6),
and punches them into the cards going through the punch-
ing feed. Using the first four values #(0,0), v(1,0),
2(2,0), and v(3,0) the machine also computes 3u, A+ by
(7), and the constants (9) to be used in the next run. At
the end of the run the output cards are removed from the
punch stacker, the constants (9) are read and set in the
switches, the cards are placed in the reproducing feed

“while another deck of blank cards is placed in the punching
feed, and the process is repeated.

The interval A¢ must be chosen small to begin with, for
p(t) behaves like V/t for small ¢, so that u’'(0) is infinite.
As the solution progresses and the steady state condition
is approached, /¢ can and should be increased to keep the
computation time within reasonable bounds. It must be re-
membered that in order to satisfy the condition b = 1/2,
A« must be changed whenever A¢ is. In the problems car-
ried out on the relay calculators, the interval Ax was
doubled whenever it was found that the results obtained
upon using the larger interval were the same as those ob-
tained by use of the smaller interval. Solutions were car-
ried out for the cases m = 0, 1, 2, 5, and 10.
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DISCUSSION
Dr. Herget: I have found it pretty dangerous to use

b = 1/2. Haven’t there been papers showing that the solu-

tion may not be stable for the value one-half?

Dr. Levin: The equation we are dealing with is of para-
bolic type. It may be shown that for such an equation the
condition for stability is At/(Ax)* = 1/2. Also a big

103

reason for usingb = 1/2is that it yields a simpler formula.

Dr. Thomas: May I take two minutes for a statement
about this sort of problem?

Suppose you have fixed ranges and even intervals in x,
What you are essentially doing in this sort of work in
going to finite differences is exactly equivalent to using a
finite number of terms in a Fourier expansion. You have
terms, for instance, in sin x, sin 2, sin 3a, . . . ; these in
the exact solution should decay with time at rates ¢, ¢¥,
e™, ... The difference formulas, besides only giving a
finite number of terms of the expansion, make the terms
given decay at the wrong rates.

The later terms decay at less and less accurate rates. In
the simplest case, you can show that if you have # points
corresponding to » terms of the expansion, the first few
terms will decay nicely ; but as you come to higher terms,
the end terms decay more and more slowly, and it is usually
the case that the last term you keep decays a little less
rapidly than the first. So all you can do is get the limiting
form; you get nothing exact about the details after some
time.’ .

You have to look at this sort of thing fairly closely to
estimate what is happening, especially if you hope to ex-
tend it to more complicated cases with curved boundaries,
and so on.

GENERAIL DISCUSSION

Dr. Eckert: We have a few minutes to wind up the
Endicott part of our conference. With reference to the
last papers on special equipment, I might say that you will
see two relay calculators of the type Dr. Levin and Dr,
Bramble mentioned, and a prototype combination machine
somewhat like Dr. Fenn’s, at the Watson Laboratory. The
card-operated typewriter at the SSEC is also on display.

Are there other comments or questions ?

Mpyr. Kintas: We have been considering solving natural
frequency problems for free crank systems and compound
beams. Mr. Mack suggested that both problems could
probably be handled by a single setup of matrix equations
using the coefficients and unknown terms which describe
the conditions of kinetic and potential energy in the sys-
tem. Other aircraft men here have investigated that
problem. :

Mr. Harman: What is the maximum capacity of the
Type 602 in multiplying square matrices of the nth order?
Suppose the elements are two-digit numbers; how many
can be handled at once by the 602?

Dr. Bramble: 1f you put one element on a card there is
no limitation on . .

Dr. Grosch: But then multiplying two unsymmetrical
matrices together would require 2n® cards to pass through
the 602. If there were an unlimited number of pro-
gram steps available, one could store perhaps thirty-two
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two-digit numbers in the machine, reserving only counters
1, 3, 6, 9 and 10 for operational use. I am assuming all

elements are positive. Then every other card passing into

the 602 would carry up to sixteen elements of matrix A
(one row) and the next would carry up to sixteen ele-
ments of B (one column) ; one element of A-B would be
accumulated in LHC 9 and 10 and punched on the B cards.
Only 2n? cards would pass into the 602, for # = 16. But
since fifteen recalculation cycles would be required, the
standard machine would be limited to smaller values of =.
And many selectors would be needed, especially if negative
elements did occur.

I would like to make a statement about the bibliography
on technical applications of punched card methods we put

SCIENTIFIC COMPUTATION

out at the Watson Laboratory in 19471 If any of you have
not seen it, you can secure copies through the IBM Depart-
ment of Education in Endicott. We want to correct, im-
prove and expand that first attempt. In the foreword we
requested suggestions as to format, and especially addi-
tions to the list of references. I am sorry to have to report
that in the first year not one single item has come in except
through our own efforts. If some of you will help, we
might revise and expand the bibliography annually.
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Simultancons Linear Equations

FRANCIS J. MURRAY

Columbia University

I SHOULD LIKE to discuss linear equations and the
solution of linear equations more or less in connection with
the type of machines that we have developed. I am sure
that you are all familiar with many other approaches, and
the mathematical basis of what I would like to say is rea-
sonably well known. The usual theory of linear dependence
such as one finds in Boécher, and the relatively simple
vector constructions, are to be considered not absolutely
but to within a certain accuracy. It seems to me that this
has to be done as soon as one considers systems in which
the size of the results is not obvious.

Now let me briefly describe our objectives in building
the machine which is now in use at the Watson Laboratory.
We set up a machine to solve a system of equations

(1)

However at all times the device regards the x;’s as well as
the a;;’s and b;’s as inputs and evaluates by relatively simple
means

3 i x5 =bi .

po= 3 (Sjav; — bi)?, (2)

which it represents on a meter. One finds a solution of the
equation by manipulating the #;’s so as to minimize p. This
manipulation process is always convergent, an advantage
enjoyed by no other adjusting device, If there is a solution,
we obtain it.

Another objective was to put in the coefficients digitally,
and we succeeded in doing this. The use of alternating
current raised certain phase difficulties and these Mr.
Walker settled.* ‘

In attacking a system of equations (1), we begin by
rounding to three figures. Normally any accuracy can be
obtained by an iterative process which involves merely a
change of the constants b; at each step. However, this is
clearly ineffective when dealing with a problem of this
sort:

1.000000 X + 0.999000 ¥ = 1.000000
0.999000 X + 1.000000 ¥ = 0.000000 ,

since the problem is indeterminate relative to the first three
digits. Nevertheless our machine can be effectively used
here. Before discussing this method, let us point out that
the six figure accuracy of the coefficients is only adequate

*

105

to give about three figures in the result. Eliminating ¥V
yields an equation in X

0.001999 X = 1.000000

where, due to rounding, the last 9 in the coefficient of X
may be off by more than one. The first three digits for
which the matrix of coefficients is singular also corre-
sponds to a loss of accuracy in the answer.

We have a reasonably routine method of handling prob-
lems of this type on our three-digit machine. Mathemati-
cally this process consists in looking for a linear depend-
ence among the columns of the coefficient matrix and by
a suitable change of variables eliminating them. Notice that
if in our example we let X = (+ + y) and\Y = » — y
our equations become

1.999000 # + 0.001000 y = 1.000000
1.999000 # — 0.001000 y = 0.000000 .

By a change of y scale, i.e., y = 1000 2 this becomes

1.999 » + 1.000 z = 1.000
1.000 » — 1.000 2 = 0.000

This problem can be readily solved on the machine. The
coefficient of 2 now has only three significant digits but
these are all usable in the machine and we can obtain all
the accuracy the problem justified.

The advantage of this type of device is that the essential
linear combinations can be found on the machine. Consider
our original system of equations

G 4+ ¥y =bt

@1 ¥y oo @y ¥y = Dyt

In the machine, the b,’s appear multiplied by a gauge vari-
able ¢. This has the result that the unknowns #; are in the
form a7/t and hence not necessarily between —1 and 1.
Suppose that the third column is very nearly a linear com-
bination of the remaining columns. We can readily find
this on the machine as follows: We sett = 0, 4, = 1 and
minimize

po= 3 (@ ¥y + @i vy + i o Qi 7y0)?

relative to &y, 4y, 4y, . . ., 43, This yields the coefficients



106

Y1s Yo + - + » Y1z, Of the linear combination and we can use
these to compute digitally the terms

Gig = Wi Y1+ W Yo+ Qg + @iy Vo + oo Gigp Yo

In this computation all the digits of the a;’s are used. We
then can rewrite our original system of equations

a3 (xl — N45) + @, (2, — yzxs) tay v+ ...
+ @y 45 (73, — Yia¥s) = byt
@21 (¥, — 3423) + a5y, (g = ¥o¥3) +ags ¥+ ...
+ @ gz (1 — Viady) = Dyt .

We now have a system of twelve equations in the twelve
unknowns

B =X — N, By =Xy — Va3, 83 =45 5,000
B2 = X1z — Y1z 43

The « column has been obtained by a minimizing process
relative to the other columns, and if this has been carried
out completely the o column will be orthogonal to the
other columns. The o column will have smaller quantities
in it than the a;; and consequently fewer digits. In these
circumstances, however, we can always change the scale
of x, and, in the machine, utilizz the values of a;; to within
0.1 per cent of the largest a;,. The loss of accuracy repre-
sented by the fewer digits in the other a’s corresponds
precisely to loss of accuracy in these equations themselves,
i.e., the loss of accuracy involved in passing from coeffi-
cients to unknowns. On the other hand, we have elimi-
nated a linear dependence among the coefficient columns
and thus permitted the solution process to proceed.

When there is only one approximate linear dependence
among the columns, the above process permits us to elimi-
nate it by modifying just one column of the coefficient
matrix, i.e., just changing one card. If there are a number
of these dependencies, a number of these steps must be
taken. Theoretically, this modification process can be
pushed to an extreme. We begin by minimizing the second
column relative to the first. This yields a second column
orthogonal to the first. Then we can minimize the third
column relative to these two. This process can be repeated
until we have a matrix whose columns are orthogonal, and
this can be inverted immediately with practically no loss
of accuracy. Let A be the original matrix, 7' the new
orthogonal matrix. We have found a matrix C such that
AC = T and hence A7 = CT. Since the columns of T
are mutually orthogonal, the inverse 77 of T' is very
simply connected with its transpose. Thus if 7' is the
matrix {t;;} where i is the row index, j the column index
and 7; = 3t7, then T is simply {¢;:/7;}. Note that the
accuracy of 7' is essentially that of T and the loss of
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accuracy for the system is represented by the change of
scale factors in C.

These difficulties are present of course in every method
of solving simultaneous linear equations since we are
always limited in the number of digits available. Even in
the elimination process one must always keep in mind
the retention of maximum accuracy. For instance, the
von Neumann-Goldstine estimate of the loss of accuracy
involved in the elimination process is based on the assump-
tion that the largest coefficient available is used as a divisor
in each step.? Failure to follow this as a policy can lead to
a serious loss of accuracy. If we merely choose a coeffi-
cient which is half as big as the largest, in the twelfth
order case at each step we will have lost unnecessarily an
accuracy factor of 2! = 2048. Pyramids have been built
on factors like this.

Finally, one should point out that the type of quasi-
singularity I have discussed above is by no means un-
common. In the majority of practical problems, full digital
regularity is exceedingly difficult to obtain. Instead some
aspect of high accuracy may be reasonably available. For
instance, to locate a point in a plane by linear observation,
two observation points far apart could be used, lines from
each of these points drawn, and their intersection found.
This would yield full digital regularity in the correspond-
ing linear equation problem. However, this is not always
practical. Instead one may have to take the observation
points near together and very accurately measure the di-
rection angles of the lines.

This situation generalizes. Full digital regularity is fre-
quently nonobtainable and we must substitute high accu-
racy procedures instead. This leads to these quasi-singular
situations.
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DISCUSSION

Dr. Blanch: Are you publishing this, Dr. Murray?

Dr. Murray: First I am going to write an operational
manual for the machine; that will be available, anyway.
Then I plan to publish a general consideration of the rate
of convergence of the whole process.

Mrs. Rhodes: Will it be something that will be helpful?
You know what we go through; we get the highest and
lowest characteristic values and then divide them to get
the upper bound of the error. We have to know how close
the determinant is to zero. I hope you will give us some-
thing simple so we can go ahead and make use of it.

Dr. Murrey: 1 have been trying to get something as
simple as possible. I know what you mean; our interest
dies, and we do not determine the least characteristic root.



Computation of Shock Wave Refraction on the
Selective Sequence Electronic Calculator

HARRY POLACHEK

Naval Ordnance Laboratory

TECHNOLOGICAL developments in a number of
scientific fields have reached the stage where the important
bottleneck at the present time is not the difficulty in for-
mulating the mathematical equations involved, but rather
in obtaining numerical results from these equations which
are applicable to specific problems. An outstanding illus-
tration is the field of aerodynamics. The equations of mo-
tion for aerodynamic problems have been derived and
formulated many years ago, and account has been taken
of various effects such as compressibility, viscosity and
heat conductivity. The equations have also been written in
three dimensions, as well as in two or one dimension.

However, in applying these equations it is found that
only a few cases can actually be solved numerically; and
these special cases are usually not applicable to the phe-
nomena that actually take place. For instance, compressi-
bility is usually left out, and so is viscosity and thermal
conductivity, while equations are only solved for one or
two dimensions because solutions in three dimensions are
too difficult.

I would like to cite another example (a problem which
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I had to handle during the war) which illustrates the diffi-

culty of obtaining numerical results from mathematical
equations. This problem arose in connection with the ques-
tion of heat sensitivity of an explosive. The question was:
If a portion of an explosive is heated to a certain tempera-
ture, will it explode, or will the heat be dissipated harm-
lessly and no explosion take place?

The equation describing this problem is just a slight
variation of the ordinary heat equation for which a solu-
tion exists and can be obtained numerically in a matter of
minutes. But there was an extra term involved which ren-
dered the equation nonlinear. With the addition of that
term the solution was so difficult that without access to
automatic machines we had to spend almost a year to find
the solution for just one single set of boundary conditions.

The type of problems that are most difficult, and proba-
bly those which will require the greatest use of modern
calculating machines in the future, are problems involving

107

partial differential equations. However, even in the case
of systems of algebraic equations, the difficulties may be
so great that standard equipment cannot be relied upon to
give sufficient data to enable the scientist to survey the
problem. As a matter of fact, the problem which I am
going to discuss today is a problem which may be repre-
sented mathematically as a system of simultaneous alge-
braic equations. It is the problem of the refraction of a
shock-wave at a free surface separating two gases.

The problem is illustrated in Figure 1. There are two
media of different physical characteristics. A shock-wave
originating in one of these media is propagated toward the
interface which separates the two media, and strikes the
interface at a given angle .

By analogy with the case of normal incidence it may be
expected that a shock-wave will be transmitted into the
second medium, while either a shock-wave or a rarefaction
wave will be reflected into the original medium. In the first

Ficure 1. TriprLE SHocK CONFIGURATION
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instance, the resulting pattern will be a triple-shock con-
figuration; in the second case a refraction configuration
will be formed consisting of two confluent shocks and an
angular rarefaction wave.

The physical formulation of the problem is the follow-
ing : we have to satisfy the well-known Rankine-Hugoniot
relations across the shock-waves. There are three shock-
‘waves in all. (In the case where a rarefaction wave rather
than a shock-wave is reflected, we must replace the Ran-
kine-Hugoniot relations with those governing a Prandtl-
Meyer angular rarefaction wave.) In addition, we must
satisfy the condition of equality of pressures on both sides
of the interface, and the condition that the flow on both
sides of the interface must be parallel, not necessarily of
the same magnitude.

If we combine all these conditions we obtain the system
of equations which is exhibited below.

. . ¢
Given: & o, 7, vor =
0

A. Compute

ot = D (=) Lo =De’42
2y ’ (v+1)o
_(yEDER (G- ()
T (y—DéE+(y+D)
t =7cotew (2)
_ V(¢
h=202(5) ®
M1=\/m
- V+ y=1oe

B. Find k for which F (k) = 0
F(k) = [V (ac’+d'c)+b(a'c’—ac) ] [dfc"—egc]
— [0’ (a’c’—ac) —b(ac’+d'c) Hefc+dge] (10)

where ¢ = sin.w, @’ = cos o, and

7+1 [\/

1 SE——
b= m[(l + VOIE=1) (% Ml—l))
sin(6,— 6,) — (\/ksz—l - \/Mf—l) - cos (8,—6,) ]

0 = wmw—n] (5)
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’ 1 z_ SATZ__ .
b=¢M411+VWM11x&M11>)

cos(0,—6,) + (\/k'“’Mf——l — \/Ml—l) - sin (02—01)]

d=t e=g¢ » (6)
Y

, (y=DM:+2 -1

¢=|o-DFutz ] )

fz _ (Yo+l)f'+(70_1)f
= > ,
Yo

_ (nm D2
=" Getdr @

c=t e yT=a | 9

This is a rather complicated system of equations. To
begin with, there is a total of five independent parameters
that enter the problem: The strength of the shock-wave &
the angle » between the incident shock-wave and the inter-
face, and three other constants which characterize the
gases. Secondly, the unknown quantities are given in im-
plicit, rather than explicit, form. Starting with the basic
parameters, we are able to calculate directly all quantities
entering in equations (1) to (4). We then must satisfy

~ equation {10), which is the basic equation, and which rep-

resents the equality of direction of flow on both sides of
the interface. We must find the value of & for which F = 0.
However, the quantities which express the function F
themselves involve the letter k.

We were obliged to proceed as follows: We chose %
equal to unity, and a sccond value obtained from the pre-
ceding problem. For these two values we calculated the
function F. We then determined if these were of opposite
sign. If they were, we were certain that the solution was
confined within these two limits; and we proceeded by
interpolation to obtain a more accurate solution. If the two
values of F'were not of opposite sign we could not ordi-
narily apply interpolation, because the process may not
converge. In that case we chose a different value of & in
such a manner as to produce two values of F of opposite
sign.

Figure 2 is a compact chart giving the sequence of
operations on the machine, the coding for which was car-
ried out by the staff of the laboratory here, particularly by
Mr. Skillman and Miss Hanson under the direction of Mr.
Clark. The main sequence was used to calculate the value
of F for k = 1, and to test whether (for this value of k) |
F = 0. If this was the case, the machine proceeded to
sequence K, otherwise to sequence L, which was used to
compute the value of the function F for the value of k of
the preceding problem, The machine then examined the
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two values of F and determined if they were of opposite
sign or not. If they were, the machine was instructed to go
to sequence N. If they were not, the machine proceeded
to sequence M, which was used to obtain a new value for %
and a corresponding value for F. Eventually, when op-
posite signs were obtained, the machine proceeded to se-
quence N. It then remained on sequence N, interpolating
between the two last values of k, until the final value of F
equal to zero was obtained.

Before proceeding with the actual analysis of the solu-
tions which we obtained, I would like to point out that a
considerable amount of analysis had to be carried out prior
to the numerical calculations on the machine. In addition
to the complexity of the system of algebraic equations in-
volved, a number of other factors had to be given careful
consideration. First, the system of equations involved pos-
sesses a large number of extraneous mathematical solu-
tions. It may be shown that it is equivalent to a twelfth
order polynomial equation, and thus may have a maximum
of twelve roots. Some of these are real and some complex.
Usually there were multiple solutions, and we had to de-
termine beforehand which of these were physically plausi-
ble. We accomplished this by tying up our solutions with
the previously known solutions, for an acoustic wave (for
which Snell’s law of refraction holds) and for a wave at
normal incidence (for which a unique solution exists).
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Another difficulty is that there are two types of refrac-
tion patterns which may occur. One is a refraction pattern
with a reflected shock-wave, and the second is a refraction
pattern with a reflected rarefaction wave. We had to be
able to tell a priori which one of these two phenomena will
occur. We were able to do that by connecting any solution
with that of normal incidence and by introducing a so-
called transition angle, at which point transition takes
place from one type of refraction pattern to the other.

TaBLE I
Problem vy Yo (co/c1)? Gases
1 5/3 14 0.835 Argon-Nitrogen
2 14 5/3 0.120 Air-Helium
3 14 14 0.875 Oxygen-Nitrogen
4 14 4/3 0.600 Air-Methane
5 4/3 1.4 0.600 CarbonDioxide-Air
6 1.1 14 0.190 Freon-Air
7 1.1 5/3 0.020 Freon-Helium
8 5/3 1.1 0.800 Krypton-Propane
9 5/3 5/3 0.240 Krypton-Neon
10 1.1 5/3 0.460 Freon-Krypton
11 1.1 5/3 0.600 Propane-Argon
12 11 14 0.013 Freon-Hydrogen
13 14 5/3 1/.835  Nitrogen-Argon
14 5/3 14 1/.120 Helium-Air
15 14 1.4 1/.875 Nitrogen-Oxygen
16 4/3 1.4 1/600  Methane-Air
17 1.4 4/3 1/.600  Air-CarbonDioxide
18 1.4 1.1 1/190  Air-Freon
19 5/3 1.1 1/020  Helium-Freon
20 1.1 5/3 1/.800  Propane-Krypton
21 5/3 5/3 1/.240 Neon-Krypton
22 5/3 1.1 1/460  Krypton-Freon
23 5/3 1.1 1/600  Argon-Propane
24 14 1.1 1/.013 Hydrogen-Freon

Table I gives a complete list of all problems considered.
There were a total of twenty-four problems which involve
twelve different gas combinations. We chose these par-
ticular gas combinations for several rcasons. First, these
are typical of the gases that will be used in any experi-
mental work in the future; secondly, they possess prop-
erties which exhibit the various types of solutions which
may occur. We wanted to obtain solutions for which the
refraction pattern is of the shock-wave variety for normal
incidence, and which go over, at the transition angle, to the
opposite type. We wanted also to consider cases for which
no transition takes place. We also wanted to include prob-
lems for which normal incidence produces a reflected
rarefaction wave rather than a shock-wave. We will dis-
cuss several of these cases in some detail.
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Problems 3 and 15 are both concerned with the same gas
combination (oxygen and nitrogen). These have the same
values for the gas constants (ratio of specific heats 1.4),
while the ratio of velocity of sound for the two is 0.875.

We consider Problems 3 and 15 together for the reason
given above. For both Problems 3 and 15, as may be

1.2

Ficure 3. ProBrLEM 3:
& As A FUNCTION OF o

1.1

1.0
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seen from Table II, the transition angle o; exists for all
strengths ¢ of the incident shock. In Problem 15, however,
the limiting angle o, (for which the material speed behind
the incident shock becomes sonic) precedes the transition
angle o, (i.e, o, < o for strong shocks, viz.,, £ = 0.0 and
0.1). Thus no transition can take place for these strengths.

£ .
° 3\\\§=0.5
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E-0.7 \\§=0.9

[
g = PRESSURE RATIO ACROSS REFLECTED WAVE

0 4 8 12 16 20 24 28 32

36 40 44 48 52 56 60 64

(W = ANGLE OF INCIDENCE IN DEGREES

TasrLr 11
Problem ¢ ot o, or, Problem £ o o, or,
3 1.0 43089 90.000 69.295 15 10 46911 90.000 unreal
09 44.000 74.146 69.295 09 48.059 74.146 unreal
07 46.442 65.457 69.295 07 50.779 65.457 unreal
05 49.429 61.945 69.295 0.5 54.205 61.945 unreal
03 53.392 61.439 69.295 0.3 59.110 61.439 unreal
0.1 59.009 64.272 69.295 0.1 66.410 64.272 unreal
0.0 62.833 67.792 69.295 0.0 72,009 67.792 unreal
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Ficure 4. ProBLEM 3:
o’ AS A FUNCTION OF o

(J = ANGLE OF INCIDENCE IN DEGREES

‘ 10 20 30 40

For Problem 3 a reflected rarefaction wave solution exists
at all values of ¢ at normal incidence (o = 0) ; whereas
with the gases interchanged (Problem 15) there is always
a reflected shock-wave for normal incidence.

The dependence of the strength ¢ of the reflected wave
on the angle of incidence o for incident shock strengths
¢ = 10,09, 0.7, 0.5, 0.3, 0.1, 0.0 is plotted in Figure 3.
A pressure ratio greater than 1.0 indicates a reflected
shock-wave ; while a value less than 1.0 indicates a re-
flected rarefaction wave. We sece, as we said before, that
for all strengths of the incident shock wave, the type of
configuration is of the rarefaction variety for normal in-
cidence (o = 0).

A typical curve begins at a value of ¢ less than 1, and
continues upward until it reaches oy, the transition angle,

50 60 70 80 90 100

at which point the configuration changes from a rarefaction
to a shock-wave variety. It extends upward until it reaches
an extreme angle oz, beyond which no further solutions are
possible. The existence of an extreme angle was first dem-
onstrated by J. Von Neumann for the problem of regular
reflection from a rigid wall. The similarity of the two
problems is here illustrated.

Figure 4 is a plot of o’ (the angle of refraction) against
o (the angle of incidence) for the same problem. For weak
incident shock-waves Snell’s law of refraction holds. This
is the relation used for plotting the curve for ¢ = 1. It will
be noticed that for any other shock-wave strengths (in-
cluding infinite strength) the law of refraction does not
differ appreciably from Snell’s law. This is an interesting
result.
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F1curg 5. ProBLEM 15: & As A FUNCTION OF

For this problem all configurations are of the reflected shock-wave variety for
normal incidence, which usually change over to the rarefaction type at larger values
of o. For ¢ = 0.0 and 0.1, however, no transition takes place, as has been pointed
out previously. In that case, the curves reach an extreme angle oz, beyond which no
further solutions are possible.

80
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We will next consider two other problems (10 and 22)

which exhibit slightly different properties. In both Problem
10 and 22 there are no real solutions for the transition
angle for values of ¢ > 0.66. This means that for these
values of ¢ there cannot possibly be any transition from
one. type pattern to the other. In other words, the refrac-
tion pattern which begins at normal incidence must con-
tinue throughout the problem. _

In the case of Problem 10, the starting pattern is always
of the rarefacfi‘on type for values of ¢ > 0.66, but of the

SCIENTIFIC COMPUTATION

shock wave variety for the case ¢ < 0.66, or where the
solution for o, is unreal. For Problem 22 exactly the re-
Verse occurs.

Figure 7 is a plot of ¢ (the ratio of pressures across the
reflected wave) versus o. In the case of strong shock-
waves we start with a rarefaction type of configuration at
o = 0 and go over to the shock wave variety at ;, while
for weak incident shock-waves we start with the shock-
wave variety, which persists throughout the entire range
of o.
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Tasrg 111
Problem & o o, or, Problem £ o o, or,
10 1.0 unreal 9b:000 42706 22 1.0 unreal 90:000 unreal

0.9 unreal 73.554 43.123 09 unreal 74.526 unreal
0.7 unreal 65.378 44.009 0.7 unoreal 65.566 unreal
0.5 11.820 62.929 44972 0.5 16.848 61.439 unreal
0.3 20.739 64.065 46.025 0.3 29476 60.005 unreal
0.1 31.192 70.061 47.183 0.1 44916 61.294 unreal
0.0 37.558 77.690 47.807 0.0 55.360 63.431 unreal
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A refracted angle of 90° indicates a transmitted wave which is normal to the
interface. In acoustics this angle is known as the angle of total reflection, and is the
limiting point beyond which no refraction pattern can take place. For stronger
shock-waves a refraction angle of 90° does occur mathematically ; however, it is
on a portion of the curve which we believe to be physically unreal. We must thus
expect other types of limiting angles for shock waves of finite amplitude.
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In this problem the same gas combination is used as that in Problem 10; however,
the gases are interchanged. For strong shock-waves, a shock-wave is reflected at
small values of  and a rarefaction wave is reflected for large values of w. For weak
incident waves, on the other hand, only rarefaction waves are reflected. The range
of values of o for which solutions exist is limited by a sonic line, beyond which the
material velocity behind the incident shock wave becomes equal ‘to the velocity
of sound.
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In Problems 11 and 23 no real solutions for the transi-
tion angles o; exist at all; hence, the type of pattern which
occurs at normal incidence persists throughout the entire
range of permissible values of angle of incidence. Thus a

SCIENTIFIC COMPUTATION

shock-wave solution always occurs in Problem 11, while a
rarefaction wave solution takes place when the gases are
interchanged (Problem 23).

' ‘
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The shock-wave solutions do not exist for angles of incidence
greater than an extreme angle of.
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TaBLE IV
Problem ¢ o o, or, Problem ¢ o o, or,
11 1.0 unreal 90.000 50.769 23 10 unreal 90.000 unreal
09 unreal 73.554 51.323 0.9 unreal 74.526 unreal
0.7 unreal 65.378 52.512 0.7 unreal 65.566 unreal
0.5 unreal 62.929 53.821 0.5 unreal 61.439 unreal
0.3 unreal 64.065 55.275 0.3 unreal 60.005 unreal
0.1 unreal 70.061 56.903 0.1 unreal 61.294 unreal
0.0 unreal 77.690 57.795 0.0 unreal 63.431 unreal
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To sum up, the refraction problem was formulated in
terms of a complex system of algebraic equations. In
order to solve these equations we first had to carry out a
number of preliminary investigations. First, we had five
independent parameters to deal with. To take into account
all possible variations would probably not be feasible even
on a large-scale machine, and would also fill up several
large volumes which no one would want to read anyway.
We thus selected typical cases of gas combinations ; but in
each case we obtained solutions for all strengths of the
incident shock wave and for all possible angles of inci-
dence.

Secondly, we were faced with the problem of finding out
a priori which ones of the many possible mathematical
solutions were physically plausible. We have solved this
difficulty by connecting our solutions with the known solu-
tions for the acoustic case, and for the case of normal
incidence.

We still had several other difficulties. We had to con-
sider the two types of configurations, and we had to pre-
dict in each case which type of configuration will occur.
We also wanted to have a good representation of the vari-
ous types of characteristic curves that may occur. We
wanted to obtain a sufficient number of solutions which
we can later compare with experimental results. In all, we
solved a total of approximately 3000 points. If a single
point were to be solved by hand, it would probably take an
experienced computer at least one day. If the entire job
were done by hand, it would take one computer approxi-
mately fifteen years or a staff of ten computers about a
year and a half. In both cases, I believe, the problem would
get out of the range of feasibility. It is doubtful if the
problem would ever have been solved without the use of a
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large-scale machine, The actual running time on the ma-
chine was approximately sixty hours. Preliminary prepa-
rations and coding of the problem for the machine took
several weeks. Thus, within a month we actually were able
to obtain a solution to a problem which otherwise probably
would never have been solved.

I would like to make a few general remarks about the
place of machines in the scientific computation field. I do
not believe that machines will ever replace the necessity
for analysis, or for scientific investigation ; however, the
automatic calculating machine certainly represents a new
and powerful tool which the scientist will be able to utilize
in the future in the solution of many difficult and other-
wise unfeasible problems. There are really only two large-
scale electronic machines in this country at present in
actual operation. The ENIAC, at Aberdeen, was the first
machine to prove that large-scale computations of compli-
cated mathematical problems is feasible. The SSEC is the
second machine. When we used it, it had been in operation
for approximately six months, but it had already demon-
strated not only that solutions of complex mathematical
problems on large-scale electronic machines are feasible,
but that these are actually practicable,

In conclusion, I would like to thank the staff of the
IBM Corporation for the excellent spirit of cooperation
they have shown throughout all phases of this problem,
and for the valuable assistance they have offered both in
coding the problem and in preparing the problem for the
machine. I would also like to mention that this work has
been carried out in collaboration with my colleague, Dr.
R. J. Seeger, and that the work was sponsored by the
Mathematics Branch of the Office of Naval Research.
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I PROPOSE not to go into the theory of the problem
that I am going to talk about, but to write down the equa-
tions with as little explanation as possible, and show how
they were transformed to what seemed to me to be a suit-
able form for putting on the machines. Then I will show
you what the people who coded the problem and put it on
the machines gave back to me, and how I had to treat that.
I shall be trying to explain the point of view of the person
who brings a problem to the machine, to try to show you
how much that person has to do and how little he has to
do it with.

It happens that in this case the problem is very small
compared to the capacity of the machine. I do not need
anything like the number of decimal places that the ma-
chine has. I do not need anything like the storage that the
machine has. The problem could perhaps have been done
on a smaller sequence computer. It might have been done,
with considerable inconvenience and taking quite a long
time, on the relay calculators. However, it is much easier
to do it on this machine, and much easier—that is, for me—
simply because 1 do not have to worry about capacity at
all, throughout the problem. I just put the equations there
and say, “do it,” and it turns the solutions out. There is
everywhere ample capacity.

V2 (P —2/n)*/2 = 4P*/3x
%(P - Z/T)Zm Z/r  r—>0
P =5/2x

—rtdydr {—;—(P - 2/1r)2}

atr =r,

Z—n atr=r,

The equation that I want to solve is the above. P is the
density of electrons. The problem is supposed to be sym-
metrical about a single center, the center of an atom; and
this is the statistical equation for an approximate field,
including the correction term for exchange. Z is the charge
of the nucleus, and 7 is the distance of the electron from

the nucleus. The boundary conditions are that% (P—2/x)?

shall behave like Z/r as r tends to zero; and that at a cer-

% .
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tain finite distance r,, P shall take the boundary value 5/2#
while its derivative satisfies the second condition involv-
inz Z — n, where # is the degree of ionization, so that
Z — n measures the part of the nuclear change unneutral-
ized by the electrons around it.

We then have a problem in which the outer boundary
is not fixed beforehand. The equation is a non-linear ordi-
nary equation, since this is a purely one-dimensional prob-
lem. We have one boundary condition at the center; at
r = 7, we have the outside movable boundary. It is known
from much work on this and on more complicated prob-
lems that it is convenient to adopt a logarithmic scale of
distance, using a finer mesh where 7 tends to zero. There-
fore, we make a number of substitutions directed towards
a logarithmic independent variable in place of r, while
leaving a differential equation of the second order without
a first order term in it.

The following substitutions were made:

r=e°, (x—x) =9y, x=e%?g,

Going to a logarithmic scale, if » = 7%, y = ¢/ y removes
the first order term from the resulting equation. It is con-
venient also to scale the problem so that the movable
boundary is fixed, writing »» — 44 = ¥, at y.= 0. Writing
x as shown makes the coefficients of the final equation
simpler.

This gives us the equations in the following form:

Z;": - %w + 8'57’/2{8”/4 o2 4 7}3
where
vy =16¢22/3x% ,
with
e o> 128600 Z /97 asy-—p
eVt /2 = 4 g2 [3g*
do , 1 128 fory =0.
~y/2 2 — —_ —32 —_
e’ (dy+2w) 9.2 ¢ 0 (Z—mn)

Here y —» o corresponds to the radius going to zero.
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What we want are solutions for various values of Z and
n. If we start integrating the differential equation from the
outside, ¥y = 0, n being known, the value of one other
parameter y is all that is needed to start the solution, and
we will have for each value of # a one-dimensional family
of solutions. When we have integrated in sufficiently far
to see what happens as y —» «, we can compute to what
value of Z this value of y was appropriate. The total num-
ber of solutions required is reduced by this scaling process
to a manageable number.

We wish to compute not only the variation of the poten-
tial and the distribution of electrons as you go onwards in
the atom, but alsc over-all integrals of these expressions
which can be used to give various physical properties of
the solution. It turns out that we would like six integrals
over the solution, which, however, have two relations be-
tween them—identical relations if the boundary conditions
are satisfied. .

One of these is a double integral. It represents the mu-
tual potential energy of all the electrons. It is not con-
venient to calculate the double integral, but since we have
two identical relations, if we calculate the other four inte-
grals, we can calculate this one from them, and still have
an identical relation between them, which will act as a very
good check on the accuracy of the results.

I will put down the forms of two of these integrals:

I

4 2
Total Charge E = 3 f P3ridr

Kinetic Energy K = 32— f Pridr .
™

Now P is not given us directly by the solution, but is pro-
portional to ¢¥/* w'/2 4 y, which will occur in the integrals
to a whole number power, 3, 4 or 5. It is convenient to
divide the factors beyond the third power into their terms,
giving four independent integrals to obtain numerically.

I then want to get, with a reasonably small number of
steps, a reasonably accurate solution. I will be quite satis-
fied with four digits if I know they are accurate, because
after all the statistical field is only a rough approximation
to what actually goes on in an atom. However, in this
machine you do not save anything by using less than a
nine-digit register, and so things were set up in nine-digit
registers. It turns out that without taking any special care
we get five-digit accuracy in the answers. In order to have
a reasonably small number of steps I decided that we must
use a more accurate type of integration in which the error
term is in the sixth order of differences. That somewhat
complicates the equations. It does not complicate very
much the work on the machine, because it is necessary
with this differential equation to carry out an iteration for
each step, to ﬁnd the new value of w, in any case,

SCIENTIFIC COMPUTATION

If you replace d®»/dy* by an expression in terms of dif-
ferences, you can solve the equation. If you replace it
merely by the second difference, you can go straight ahead
substituting the new value of o in the right-hand side. All

- that you would have to do would be the square root (a sub-

sequence on this machine). However, if I make use of the

more accyrate formulas, I do not have values of  in my

table which I am building up, but values of o — w?/12 -
d*e/dy®, w being the interval. d®»/dy* is related to o by
the differential equation, and » must be inferred. This is
done by regarding the table value as an approximation to w,
substituting this in the differential equation, evaluating
d’w/dy*, and iterating until an accuracy set in a certain
decimal place is reached. In each iteration it is necessary
to take a square root.

Here we have a main sequence ; then a sub-sequence to
get a new value of v by iteration, in each step of which a
sub-iteration is done to find a square root. When a toler-
ance is reached, we go back to the main sequence, accu-
mulating sums which approximately represent the integrals
desired.

It turned out when we first set this up that we did not
get sufficient accuracy near the beginning of the solution
because the interval there was taken too large. So the
problem was recoded, starting with one-sixteenth this in-
terval, going the first eight steps with the smaller interval,
and then doubling the interval; then four steps and dou-
bling the interval again, and so on, until we came back to
the original interval. This gives enough accuracy. It was
no more difficult to set all these interval doublings than to
set up one or two doublings, since the process is the same.
Of course, it takes a little longer running the problem on
the machine, but only a small fraction of the total time,
since the total number of steps is of the order of seventy.

Well, when this has been done the machine provides me
with sheets from its tabulation stations. It has two tabular
outputs, as shown in Figure 1. One is from the first
printer ; this contains the main part of the integration. It
contains the running sum, o — w?/12 + d%»/dy? and the
result of taking the square root, putting it in (e?/*w'/2 4 y),
and cubing it. Those expressions together are enough to
make it easy to check any line by multiplying a few num-
bers together.

The other printer gives me progressive totals that give
the sums which I want to compute. Actually, you do not
need these progressive totals if a uniform interval has
been used throughout. However, at the places where the

intervals were changed these sums are simply progressive

sums, A correction had to be made to the value of the.
integral.

I now wish that I had asked for that correction to be
put in by the machine. It could have been sequenced and
would have saved me a good deal of trouble in processing
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these solutions. It turns’out that if you try to make a rough
check on results by identical relation between the integrals,
the check is not nearly accurate enough unless you have
added in these extra terms to the sums. I had hoped that
I would not have to do this for the originally assumed
values of y, but it turns out that to get a good check one
must.

Well, then, these solutions were made originally for
n = 0, for a wide set of values of y. Gamma equals 1, 2,
3, 4, 5, 6—1I think that is as far as it went. For each of
these we computed the corresponding value of Z. Actually,
that was computed as we went along, and we found that
this covered the whole of the periodic table. We then took
the part which included the whole of the periodic table and
took even intervals among these values of y = 2.1, 2.2,
and so on, up to 5.9. And with the integrations of the dif-
ferential equations at this distance apart in y, we found
the values of Z. That gave a table in which inverse inter-

polations gave us new values of y which would lead to _

assigned values of Z accurate to five decimals. So that
as it turns out, without too much work, it was possible
to get for any values of # and Z—and we have done this

SCIENTIFIC COMPUTATION

also for # = 1 and 2—by an inverse interpolation, the
corresponding value of y, to put that in as a starting value,
and to compute the whole field for that particular case.

To compute the field by integration, once the sequence
is set up, is a good deal easier than to get the whole field
at each point by interpolation among the solutions that
have been made, although that would be perfectly possible.
I think actually we shall probably tabulate and publish just
certain selected solutions. However, we hope to be able to
do enough so that anyone could interpolate to find any
solution that they might want..

It should again be realized that the statistical fields only
give a rather rough order of approximation to the prop-
erties of the atomic ion. You really want to use these as a
starting field to start after the real approximations in any
particular case in which you are interested. I think it is
clear that it would be too much work to work out complete
sets of Hartree approximations for every possible atom.
If you have once got a statistical field, that is a good start
toward obtaining the Hartree field. You could probably get
the Hartree field with at most two successive approxima-
tions of the Hartree type. .



