
SG24-5130-00

International Technical Support Organization

http://www.redbooks.ibm.com

RS/6000 Graphics Handbook

Laurent Vanel, Mike Carline, Shigeo Murohashi

RS/6000 Graphics Handbook

March 1999

SG24-5130-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 1999)

This edition applies to AIX Version 4.3.2, program number 5765-C34, PEX AND PHIGS for AIX Version
4.2, program number 5765-660 and OpenGL and GL3.2 for AIX V4.2, program number 5765-587.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 267.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Part 1. Hardware . 1

Chapter 1. Hardware Technology . 3
1.1 How Do You Build a Graphics Adapter? . 3

1.1.1 The Chips . 3
1.1.2 Typical Graphics Adapter Functions . 3
1.1.3 A Look at the GXT3000P Design . 6

1.2 Different Classes of Graphics Adapters . 9

Chapter 2. The Graphics Adapters . 11
2.1 The Ancient Adapters . 11

2.1.1 Grayscale Graphics Display Adapter . 11
2.1.2 Color Graphics Display Adapter . 12
2.1.3 POWER Gt1 . 12
2.1.4 POWER Gt1x . 13
2.1.5 IBM E15-type Graphic . 14
2.1.6 S15 Graphics Adapter . 14
2.1.7 The (#2839) - POWER GXT110P Graphics Adapter - PCI 15
2.1.8 POWER Gt3 . 15
2.1.9 POWER Gt3i . 16
2.1.10 POWER GXT150L . 17
2.1.11 POWER GXT155L . 17
2.1.12 High-Performance 3D Color Graphics Processors 18
2.1.13 POWER Gt4e . 19
2.1.14 POWER Gt4 and POWER Gt4x . 20
2.1.15 POWER GTO Accelerator. 22

2.2 The Current Graphic Adapters . 23
2.2.1 The MVP Power Multi-Monitor Graphics Accelerator 23
2.2.2 The GXT120 Family . 23
2.2.3 The GXT150M . 24
2.2.4 The GXT250P . 25
2.2.5 The GXT255P . 26
2.2.6 The GXT550P . 26
© Copyright IBM Corp. 1999 iii

2.2.7 The GXT800 Family . 28
2.2.8 The GXT3000P. 29
2.2.9 Device Drivers . 31
2.2.10 Properties of the Graphic Adapters . 32
2.2.11 Buffer Configuration . 33
2.2.12 Advanced 3D Functionalities . 33
2.2.13 Limitations . 34

Chapter 3. Displays and Cables . 37
3.1 The Supported Displays . 37

3.1.1 The IBM P72 Color Monitor . 37
3.1.2 The IBM P92 Color Monitor . 37
3.1.3 The IBM P202 Color Monitor . 37

3.2 The Cables. 38

Chapter 4. Graphics Peripherals . 41
4.1 Mice . 41
4.2 The Keyboards . 41
4.3 The Tablets . 43

4.3.1 The 6093-011 Model. 43
4.3.2 The 6093-012 Model. 44
4.3.3 The 6093-021 Model. 44
4.3.4 Additional Features . 45
4.3.5 Configuring the 6093 Tablet . 46

4.4 The Dials . 47
4.4.1 Attachment of the Dials to an RS/6000 System. 47
4.4.2 Setting Up the 6094-010 on a Workstation 48

4.5 The Lighted Program Function Keyboard (LPFK) 49
4.5.1 Attachment of the LPFK to an RS/6000 System 49
4.5.2 Additional Features . 50

4.6 The Spaceballs . 54
4.6.1 The IBM 6094 Model 031 Spaceball . 55
4.6.2 The 6094 Spaceball Model 040 . 56

4.7 Magellan . 57
4.8 Stereographics Capabilities . 57

4.8.1 How to Connect the Emitter . 58

Part 2. Software . 59

Chapter 5. X11, Motif and CDE . 61
5.1 The 2D Environment . 61

5.1.1 Configuration . 61
5.1.2 Answers to Frequently Asked Questions. 64
iv RS/6000 Graphics Handbook

Chapter 6. The X Virtual Frame Buffer and Softgraphics 75
6.1 The X Virtual Frame Buffer . 75

6.1.1 Installing XVFB. 76
6.1.2 Starting the XVFB. 77
6.1.3 Testing the XVFB . 78
6.1.4 Implementing XVFB in Application Code. 79
6.1.5 How Does It Work?. 80

6.2 CATweb and the XVFB . 81
6.2.1 DirectSoft OpenGL . 82

6.3 Softgraphics . 84
6.3.1 What is Softgraphics?. 84
6.3.2 Installation of Softgraphics . 85

Chapter 7. graPHIGS . 87
7.1 Definition . 87

7.1.1 Core, GKS, and PHIGS . 87
7.1.2 graPHIGS . 88
7.1.3 Retained Mode Graphics . 89
7.1.4 Technical Content of the IBM graPHIGS Product 89
7.1.5 ISO PHIGS . 92
7.1.6 Graphical Kernel System (GKS) . 92

7.2 Basic Terminology and Concepts . 92
7.2.1 Common Terms . 92
7.2.2 Graphical Resources . 95
7.2.3 Resources and Capabilities . 95
7.2.4 Subroutines . 96

7.3 IBM Implementations . 97
7.3.1 Softgraphics Technology . 97
7.3.2 Hardware-Accelerated . 99
7.3.3 Explicit Traversal Control for Immediate Mode Graphics. 100
7.3.4 Multi-Threaded Graphics Pipeline . 100
7.3.5 graPHIGS on GXT3000P PCI Graphics Accelerator 100

7.4 Configuration . 100
7.4.1 Filesets. 101
7.4.2 Installation . 103

7.5 Overview for Programming . 109
7.5.1 graPHIGS Subroutines . 110

7.6 graPHIGS References . 111

Chapter 8. GL 3.2 . 115
8.1 Definition . 115

8.1.1 Technical Content of GL 3.2 . 115
8.2 IBM Implementation . 116
 v

8.3 Configuration . 117
8.3.1 Filesets. 117
8.3.2 Installation . 118
8.3.3 Demo Programs, Sample Source Code and Utilities 119

8.4 Overview of Programming . 124
8.4.1 Header Files . 125
8.4.2 Link Libraries . 125
8.4.3 Sample Program. 125

8.5 GL 3.2 References . 127

Chapter 9. OpenGL. 129
9.1 Definition . 129

9.1.1 Immediate Mode Graphics . 130
9.1.2 Retain Mode Graphics . 130
9.1.3 Client/Server . 131
9.1.4 Technical Content of OpenGL . 131
9.1.5 The OpenGL Architecture Review Board (ARB) 134
9.1.6 Conformance Test Suite . 134
9.1.7 OpenGL Licensing . 134

9.2 IBM Implementations . 135
9.2.1 Softgraphics Technology . 135
9.2.2 Hardware-Accelerated . 136
9.2.3 OpenGL 1.1 . 136
9.2.4 OpenGL 1.2 . 137
9.2.5 Performance Improvements in OpenGL for AIX 4.3.2 137
9.2.6 New Extensions to OpenGL for AIX 4.3.2 137
9.2.7 Easy MP. 137
9.2.8 64-bit OpenGL Support. 138
9.2.9 Direct Soft OpenGL or OpenGL for a Virtual Frame Buffer 138
9.2.10 The ZAPdb OpenGL Interactive Debugger 138
9.2.11 Development History . 140

9.3 Configuration . 140
9.3.1 Filesets. 140
9.3.2 Installation . 142

9.4 Overview of Programming . 143
9.4.1 OpenGL Programs . 143
9.4.2 Programming Styles . 146
9.4.3 Naming Conventions . 147
9.4.4 Header Files . 148
9.4.5 Link Libraries . 148
9.4.6 OpenGL Rendering Context . 149
9.4.7 Programming with the Rendering Library 149
9.4.8 A Program with the GLUT. 152
vi RS/6000 Graphics Handbook

9.4.9 A Program with the GLX Library and the OpenGL Widgets 158
9.4.10 A Program with the GLX Library . 162
9.4.11 Overlay Window . 163
9.4.12 xglinfo. 165
9.4.13 Debugging Hints . 167

9.5 Performance Tips . 169
9.5.1 Additional Tips . 169
9.5.2 Specific Implementation Notes . 170

9.6 Comparison with Other 3D Graphics APIs . 173
9.6.1 Comparison with GL 3.2 . 173
9.6.2 Comparison with graPHIGS . 182
9.6.3 Open Inventor. 187

9.7 References. 189
9.7.1 OpenGL References . 189
9.7.2 Open Inventor References . 190

Chapter 10. PEX . 191
10.1 Definition . 191

10.1.1 PEX Extension to the X Server . 191
10.1.2 PEXlib . 192
10.1.3 Graphics Environment PEX 5.1 Extensions (CGE PEX 5.1) . . 192
10.1.4 Technical Content of PEX. 193

10.2 IBM Implementation . 194
10.3 Configuration . 195

10.3.1 Filesets. 195
10.3.2 Installation . 197
10.3.3 Other Information in /usr/lpp/X11/README.PEX 200

10.4 PEX References . 204

Chapter 11. Benchmarking . 205
11.1 History . 205
11.2 Which Benchmark to Use . 206

11.2.1 How to Run Benchmarks on Your System 206
11.2.2 How to Interpret Benchmarks Results 208

11.3 Latest Results . 223

Appendix A. 3D Graphics API Additional Information 231
A.1 GL 3.2 Sample Code . 231

A.1.1 Sample Program 2 - Animation Using Double Buffering. 231
A.1.2 Sample Program 3 - Event Loop . 233
A.1.3 Begin-End Style Drawing . 238

A.2 The OpenGL API . 243
A.2.1 Output of xglinfo . 243
A.2.2 Using Easy MP . 245
 vii

A.2.3 OpenGL Extensions Supported on AIX . 247
A.2.4 Extensions Support. 251

Appendix B. Benchmarks Files . 253
B.1 A Sample BRF File . 253
B.2 Viewperf Output from CDRS 03 Test 3. 257
B.3 Input File for GLPerf . 260

Appendix C. Special Notices . 267

Appendix D. Related Publications. 271
D.1 International Technical Support Organization Publications 271
D.2 Redbooks on CD-ROMs . 271
D.3 Other Publications . 271

How to Get ITSO Redbooks . 273
IBM Redbook Fax Order Form . 274

List of Abbreviations. 275

Index . 277

ITSO Redbook Evaluation . 283
viii RS/6000 Graphics Handbook

Figures

1. The IBM GXT3000P Graphics Accelerator (without Shields) 6
2. The Three Classes of Graphic Adapters . 10
3. The IBM GXT120P Graphics Accelerator . 24
4. The IBM GXT550 Graphics Accelerator . 28
5. The IBM GXT800P Graphics Accelerator . 29
6. The IBM GXT3000P Graphics Accelerator . 31
7. The IBM 6094-031 Spaceball with Stealth Black Feature 55
8. Magellan . 57
9. The StereoGraphics CrystalEyes Glasses and Emitter 58
10. The SMIT chdisptype Screen. 67
11. The SMIT chres_refrt Screen. 68
12. The SMIT dtconfig Screen . 69
13. Example of the Default CDE Login Screen . 70
14. A Customized CDE Login Screen . 71
15. Retain Mode Graphics . 89
16. graPHIGS Shell and Nucleus. 90
17. Distributed Capability of graPHIGS . 90
18. Importance of the GP_MIT_SHM Extension . 99
19. Initial Image of runivp. 104
20. Sample of PROFILE . 106
21. A Sample of $HOME/.Xdefaults. 107
22. Define the Application Name in PROFILE . 107
23. Another Sample of $HOME/.Xdefaults . 107
24. Image from the lmodtest Program . 120
25. Image from the lorenz Program . 121
26. Main Panel of ZAPdb. 139
27. Importance of the Viewport Concept . 157
28. The sys_chassis Model . 209
29. The race_car Model . 210
30. The Seafloor Model . 211
31. The cyl_head Model. 212
32. The Head Model . 212
33. The Shuttle Model . 213
34. The Studio Model. 214
35. PLB Report Page 1 . 215
36. PLB Report Page 2 . 216
37. An OPC CDRS-03 Report . 220
38. The GLperf Data Browser . 222
© Copyright IBM Corp. 1999 ix

x RS/6000 Graphics Handbook

Tables

1. Frame Buffer Pixel Formats . 8
2. Device Information for Current Graphics Accelerators 31
3. Standard Graphics Features . 32
4. Buffer Configuration . 33
5. Advanced 3D Functionality Supported in Hardware 33
6. Number of Slots/Max Number of Adapters . 34
7. Cable Feature Number Required per Monitor/Adapter Configuration 39
8. Cable Feature Number Required per Monitor/Adapter Configuration 39
9. Main Properties for the Tablet Models . 43
10. Example of Performance Results with Softgraphics 98
11. Resources for graPHIGS Applications. 107
12. GL Samples Programs. 121
13. Utilities Examples for GL . 123
14. Impact of Softgraphics on OpenGL Performance 136
15. Main Steps in OpenGL Products Development . 140
16. Naming Conventions for OpenGL Components 147
17. Resolutions Supported by softGL on the GXT150 and GXT250 Families 171
18. Graphics Performance . 223
19. Different Forms of the Vertex Subroutines. 240
20. Relinking Rules for Easy MP . 246
21. OpenGL Extensions. 248
22. Support of OpenGL Extensions . 251
© Copyright IBM Corp. 1999 xi

xii RS/6000 Graphics Handbook

Preface

This redbook summarizes the graphics capabilities of RS/6000 systems and
discusses the various graphics adapters that can be installed, as well as the
APIs available.

We introduce the reader to graphic hardware and explain the terms used in
the announcement letter of graphics adapters. We describe graphics
adapters for the RS/6000 systems, including withdrawn graphics adapters.
We summarize the displays available to connect those graphics adapters as
well as the cables that are needed to connect those displays with the
corresponding adapters. We describe the various peripherals that can be
connected to an RS/6000 system to enhance the user’s interaction with the
applications.

We describe the 2D APIs (X11, motif and CDE) and provide answers to
frequently asked questions. We then describe the X Virtual Frame Buffer and
softgraphics and the APIs that let the software take the place of the hardware.

Then we describe in detail each API, so that the reader can knowledgeably
compare the four 3D APIs.

Finally, we discuss benchmark programs. We focus on the standard
benchmark from the Graphics Performance Characterization Group. We also
supply the latest results for all the IBM graphics adapters.

This redbook will be useful to sales people who have to propose a graphic
configuration and must choose among many adapters, peripherals and
software. This redbook can also be used as a reference for support people
who need to know the technical characteristics of graphics adapters and
which filesets to install to support various functions in a given environment.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Laurent Vanel is an AIX specialist at the International Technical Support
Organization Austin Center. He is from Paris, France, where he joined IBM in
February 1990, when the first RS/6000s were announced. Since then, he has
provided AIX support to both field engineers and customers.
© Copyright IBM Corp. 1999 xiii

Mike Carline is a Senior I/T Specialist in Advanced Technical Support,
Westlake, Texas. He has 19 years of experience in IBM. His areas of
expertise include nine years providing technical support on AIX and the
RS/6000 platform. He has taught many IBM classes on AIX, PSSP, and
related subjects.

Shigeo Murohashi is an IT Specialist of IBM Japan. From 1990 to 1995, he
was with IBM Tokyo Research Laboratory and studied computer graphics
systems. He was one of initial members of development of Soft5080 product
in 1992. Since 1996, he has been involved in RS/6000 product management
and marketing and has supported CAD/CAM applications on AIX and NT. He
has written extensively on 3D graphics APIs on AIX.

Thanks to the following people for their invaluable contributions to this
project:

Diane Weires
Manager for PHIGS Development

Iliese Chelstowski
graPHIGS Development

Jeff Piaget
Graphics Performance Analyst

Jeanne Sparlin
AIXwindows Architect

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 283
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xiv RS/6000 Graphics Handbook

Part 1. Hardware
© Copyright IBM Corp. 1999 1

2 RS/6000 Graphics Handbook

Chapter 1. Hardware Technology

This chapter is an overview of the concepts and elements which are the basis
of graphic adapter technology. We introduce terms used in this book and
explain the role of the various components you find on the latest IBM graphic
adapter, the GXT3000P.

1.1 How Do You Build a Graphics Adapter?

The goal of any graphics adapter is to get the pixels that represent an image
onto the screen for the user to view. The exact method for doing this varies
widely among the different hardware vendors. Emphasis is placed on the
particular aspects that differentiate their products by allowing them to perform
certain tasks faster than others.

The problem for the user is in understanding what the various adapters are
able to do, defining the user’s needs, and which adapter is capable of
satisfying those needs at a reasonable price. In this chapter, we attempt to
provide you with some basic information regarding graphics functions and the
hardware that supports them.

1.1.1 The Chips
The basic chip requirements are: an interface to the system bus, (bus
interface), a buffer for storing the pixel information (frame buffer), and a
method for converting the digital information to an analog signal that the
display device utilizes, a Random Access Memory Digital Analog Converter
(RAMDAC). When you add 3D capabilities to the adapter, you need additional
chips to handle textures, lighting, transformations, stereographics,
rasterization, and blitting.

1.1.2 Typical Graphics Adapter Functions
This section describes the adapter functions.

Alpha Buffer A fourth alpha channel for color control of a pixel is
possible. It is used for controlling the first three
channels. This merging of the fourth channel with
the other three is often used to control the
transparency or opacity of a pixel.

Antialiasing A method for smoothing out jagged lines on the
screen.
© Copyright IBM Corp. 1999 3

Bit Planes An individual bit of color information from each pixel
stored in the frame buffer.

Bus Interface Provides the connection between the system bus
and the graphics adapter components.

Culling Removal of pixel information that is not to be viewed
from the rendering process.

Depth Cueing Provides a perception of depth by rendering lines
that are further away from viewer dimmer than
closer lines.

Double Buffering A method of dividing the available memory in half to
improve performance. Half of the buffer is used to
hold the currently displayed image while the next
image is drawn into the other half of the buffer. After
the next image is ready, the buffers are swapped,
and the following image is drawn into the first half of
the buffer.

Flat Shading Calculating a single shade of color for each
individual polygon.

Frame Buffer Stores the pixel information for the display output.

Gamma Correction A logarithmic assignment of color intensities to a
lookup table to adjust the shading of objects to more
closely match the human eye’s perception.

Gouraud Shading Calculating the shade of color for each pixel in a
polygon based on the color of each of the polygon’s
vertices.

Hardware Colormaps Hardware storage for color lookup tables. Since
there are a rather small number of colors possible in
the X server’s colormap, hardware storage is used
to hold multiple colormaps. This allows a colormap
to be assigned to an individual window instead of to
the entire screen. This helps to reduce the incidence
of color flashing while changing focus between
windows.

HLHSRemoval Hidden Line/Hidden Surface Removal is used to
ensure that objects that appear behind other objects
are not rendered.

Luminance This signal describes the amount of light in each
pixel.
4 RS/6000 Graphics Handbook

Motion Blur The perception of motion blurring is achieved by
storing previously rendered images in the
accumulation buffer and mixing them with the
current image on display.

Overlay Buffer Storage for pixel information that is independent of
the frame buffer data and is meant to appear on top
of the frame buffer pixel data on the screen. Useful
for weather maps and pop-up menus.

RAMDAC Digital to analog convertor that also has the color
lookup tables and the gamma correction table.

Rasterizer Performs complex calculations for converting the
polygon information from the application to pixel
information for the display output. Some of the
typical functions performed are blending, shading,
texturing, and lighting.

Rendering The final stage in the process of producing images
for display on the screen.

RGB Indicating the three channels for color control of a
pixel: Red, Green and Blue.

Setup/BLIT unit Processes blit commands and performs any
necessary pixel scaling; performs some lighting
calculations.

Stencil Buffer Used to hold pixel information regarding areas that
are not to be drawn. It acts like a typical cardboard
stencil.

Stereo The frame buffer is essentially split in half to provide
for 12-bit RGB on a per-window basis. Utilizing
special shutter-type glasses, a realistic 3D effect
may be achieved by rendering a left-eye image into
the top half of the buffer and a right-eye image into
the bottom half and then drawing them interlaced
onto the screen and synchronizing the glasses to
the changes.

Texture Buffer Stores images that can then be mapped onto a
surface, like wrapping a box in patterned paper.
Images are represented in collections of texels.

Underlay Buffer Storage for pixel information that is independent of
the frame buffer data and is meant to appear
underneath the frame buffer pixel data on the
Hardware Technology 5

screen. This data will only appear on the screen if
the frame buffer pixel has a value of 0.

Utility Planes A portion of the frame buffer used for utility
functions. For example, they can be used to store
clipping planes so that odd-shaped windows are
supported with minimal performance degradation.

Video Scaling Increasing or decreasing the size of an object
without changing its position or orientation.

Window ID Buffer Stores the X Window System Window ID
information.

Z-Buffer Used to store the depth information for the individual
pixels to be displayed on the screen. Used in Hidden
Surface/Hidden Line Removal.

1.1.3 A Look at the GXT3000P Design
Now that we have the basic graphics adapter information, let’s take a look at
the design of the GXT3000P Graphics Accelerator (shown in Figure 1).

Figure 1. The IBM GXT3000P Graphics Accelerator (without Shields)
6 RS/6000 Graphics Handbook

Bus Interface

The interface between the accelerator and the system bus provides for a
64-bit, PCI revision 2.1-compliant, connection. The chip has dual command
input FIFOs, one for the current 3D API and the other for the 2D GUI. This
minimizes the need for synchronization of the accelerator during context
switches.

The interface also provides a high-function DMA (Direct Memory Access)
controller that the APIs can exploit. This controller can retrieve commands
from system memory and feed them to the 2D or 3D command FIFO. You can
even embed commands for the DMA controller itself in the stream to cause it
to automatically switch between the two FIFOs. The controller also performs
sub-image DMA blits whereby it extracts a small image from within a larger
one, striding across unneeded sections of the larger one as required. The
DMA controller uses scatter-gather techniques to access system memory so
that commands in memory or blitted images may be held in non-contiguous
memory addresses.

There is also an asynchronous frame buffer access path that bypasses the
rendering pipeline and allows the frame buffer to be read and written directly
without a context swap.

Lighting and Blit Chip

The lighting and blit chip accepts commands from the bus interface chip. It
processes blit commands by converting the incoming pixel data stream into
one of the native frame buffer formats. It then performs any required scaling
and distributes the data to the appropriate rasterizer chip.

This chip also accepts drawing commands and vertex data from the bus
interface chip. The vertex data can contain pre-vertex material definitions and
normals that are used to calculate the lit color of each vertex. The results
from the lighting calculations are passed to the rasterizer chips as vertex
colors. Unlike the blit commands and pixel data, drawing commands and their
associated vertex data are sent to all four rasterizer chips at the same time.

Rasterizer Chips

In order to maximize the performance of the GXT3000P, the four rasterizer
chips are designed to operate asynchronously during most operations. Each
rasterizer chip drives one fourth of the frame buffer interleaved on a
pixel-column by pixel-column basis. These chips contain most of the setup
and interpolation logic for rasterizing the drawing primitives. Each chip also
processes textures from its own copy of the texture memory so that there is
Hardware Technology 7

four times as much texture memory physically on the graphics accelerator as
the amount seen by the user. They also contain memory controllers for the
3D-RAM and for the texture SDRAM. Pixel fragment processing is split
between these chips and the 3D-RAM chips.

3D-RAM Chips

The 3D-RAMs are an intrinsic part of the rasterizer data path. They handle
much of the OpenGL per-fragment operations as well as the pixel logic
operations for the 2D GUI. The cache and Arithmetic and Logic Unit (ALU)
inside the 3D-RAMs can be thought of as a special purpose SIMD (Single
Instruction, Multiple Data) computer with the rasterizer chip acting as the tag
RAM for the cache and as the controller for the data path.

Each of the 3D-RAM chips has a 256-bit wide path between its cache and the
DRAM array. The sixteen 3D-RAMS thus have a total bus width of 4096-bits.
This provides a much greater bandwidth to memory than conventional
designs.

The frame buffer’s pixels may be arranged in one of three ways to support
different applications as shown in the table below.

Table 1. Frame Buffer Pixel Formats

ARGB = 8-bits each of Alpha, Red, Green, and Blue
S = 8-bit stencil, Z = 24-bit depth, W = 8-bit Window ID
O = 8-bit Overlay, U = 16-bit Utility
alarrlrrglgrblbr = Stereo: 4-bits each of left/right Alpha, Red,
Green, Blue
I = 8-bit Index, x = reserved

The 32-bit color mode provides for double-buffered, true color applications.
The 16-bit color mode organizes each pixel into four buffers - front/back and
left-eye/right-eye for use with stereo-in-a-window animation. The 8-bit index
mode is also double buffered and supports OpenGL’s color index mode
applications.

Palette Digital Analog Converter (DAC) Chip

Pixel Format Color Buffer A Color Buffer B Stencil/Depth Auxiliary

32-bit color A R G B A R G B S Z W O U

16-bit color alar rlrr glgr blbr alar rlrr glgr blbr S Z W O U

8-bit index x x x I x x x I S Z W O U
8 RS/6000 Graphics Handbook

The palette DAC is a customized version of the IBM RGB640 palette DAC
modified to accommodate the 3D-RAM interface and to support advanced
features used in engineering workstations. It has a 2Kx8 palette RAM for
each color band. This RAM can be used as eight independent 256-entry
palettes or partially subdivided into smaller 64-entry palettes for even more
independent palettes.

The palette DAC also has a gamma correction RAM table that can be
activated on a pixel-by-pixel basis. The window ID Byte that is scanned in
from the frame buffer is allocated as five bits to control the primary buffer and
the remaining three to control the overlay buffer. Thus, there can be up to 32
primary and 8 overlay window IDs concurrently on the screen. Each window
ID can independently select a pixel format and palette, enable gamma
correction, and select from A/B animation or left-eye/right-eye buffers. In
typical usage, many windows will share a common window ID, but a few will
make use of unique IDs. The large number of independent window IDs and
palettes minimizes the annoyance of color flashing when several applications
that use large color palettes are run concurrently.

Other features of this chip include a 10-bit monotonic DAC that is capable of
up to 160 MHz operation in this application and of even higher speeds in
other applications. The chip also provides both crosshair and 64x64 sprite
hardware cursors.

The DAC output is provided to the monitor through a standard DDC-2B
interface. Screen sizes of 1280x1024 at up to 85 Hz and 1024x768 at up to
120 Hz are supported. The 1024x768 at 120 Hz mode is well suited to stereo
display with a minimum of flicker. The stereo output is provided through a
VESA-standard mini-DIN interface.

With all this discussion about the IBM chip’s roles in the graphics accelerator,
we should add that they are implemented in IBM’s 5sa (0.27 micron) and
SA12 (0.18 micron) silicon technologies. The seven IBM chips on the
GXT3000P Graphics Accelerator contain over forty million transistors and are
mounted in IBM’s flip-chip Ceramic Ball Grid Array (CBGA) packages
providing them unparalleled performance and density.

1.2 Different Classes of Graphics Adapters
Hardware Technology 9

There are three classes of graphics adapters. Their attributes can be roughly
described as follows:

Figure 2. The Three Classes of Graphic Adapters

Class I 2D & Entry-Level 3D
All computing and rasterization work is performed on the CPU. 3D
capabilities are achieved through use of the Softgraphics product.

Class II Mid-Range 3D
These adapters provide hardware acceleration support for
antialiasing, texture mapping and rasterization. Geometry
processing (lighting & transformations) is done on the CPU.

Class III High-End 3D
Hardware acceleration for rasterization and geometry processing
is off-loaded to Digital Signal Processors (DSPs) on the adapter
which, in turn, make use of custom rasterization chips.
10 RS/6000 Graphics Handbook

Chapter 2. The Graphics Adapters

This chapter summarizes the hardware information available on the graphic
adapters that can be plugged into an risc system/6000. This information not
only contains the pure hardware details, such has bus type and number of
bits for the colormap, but also elements such as the name of the fileset
containing the device driver for each adapter (when they are still supported).
This information comes from the announcement letter.

2.1 The Ancient Adapters

The adapters discussed in this paragraph are not supported anymore; so why
mention them? Because sometimes you discover an old box in a dark room,
and you wonder what adapters are in this box and what can I do with these?
This section tries to answer those questions.

2.1.1 Grayscale Graphics Display Adapter
The Grayscale Graphics Display is a monochrome graphics adapter for the
deskside systems. It supports a single 4-bit frame buffer and allows the
display of 16 simultaneous shades of gray from a palette of 256 shades of
gray. It attaches to the RS/6000 workstation through a single Micro Channel
slot and supports a display resolution of 1280 x 1024. This adapter is suitable
for applications, such as desktop publishing, CASE, monochrome drafting,
and network management.

Here are some of its characteristics:

 •Frame buffer: single 4-bit (one 4-bit buffer)

 • API support: Xlib, Graphic Kernel System (GKS), Display PostScript,
graPHIGS

 • Maximum adapters per system: Two

 • Options: none

 • Monitor support: 8508 - 1280x1024 at 67 Hz

Its feature code was #2760, and it was withdrawn in the U.S. on June 17,
1994.

You can physically recognize the graphic adapters by the white sticker you
find on the metallic frame. The sticker for this adapter shows: 1-2.
© Copyright IBM Corp. 1999 11

2.1.2 Color Graphics Display Adapter
The Color Graphics Display Adapter is an entry 2D color graphics adapter for
the deskside systems. It supports a single 8-bit frame buffer and allows the
display of 256 simultaneous colors from a palette of approximately 16.7
million colors. The Color Graphics Display Adapter supports a display
resolution of 1280 x 1024 and attaches to the RS/6000 workstation via a
single Micro Channel slot. It is suitable for 2D graphics applications such as:
business graphics/desktop publishing, 2D geographic mapping, entry 2D
mechanical drafting, and entry electrical CAD.

Here are some of its characteristics:

 • Frame buffer: single 8-bit (one 8-bit buffer)

 • API support: Xlib, GKS, Display PostScript, graPHIGS, PEXlib

 • Maximum adapters per system: Two.

 • Options: none.

 • Monitor support:

 • 6091-016 - 1280 x 1024 at 60Hz

 • 6091-19i - 1280 x 1024 at 60 Hz

 • 6091-023 - 1280 x 1024 at 60 Hz

Its feature code was #2770 and it was withdrawn in the U.S., on January 6,
1995.

You can physically recognize the graphic adapters by the white sticker that
you can find on the metallic frame. The sticker for this adapter shows: 1-1.

2.1.3 POWER Gt1
The POWER Gt1 is a low-priced 1-bit graphics frame buffer that attaches
directly to the local processor I/O bus. It supports resolutions of 1280 x 1024
or 1024 x 768 and does not require a Micro Channel slot.

Here are some of its characteristics:

 • Hardware assist.

 • 64 x 64 hardware cursor

 • Rectangle clip function

 • Window offset

 • XY pixel addressing
12 RS/6000 Graphics Handbook

 • Meets ISO 9241 Part 3 at 1024x768 resolution.

 • Maximum of one POWER Gt1 per system can be installed.

 • Option: The POWER Gt1 VRAM Upgrade is an optional feature that is
installed on a POWER Gt1 or POWER Gt1b adapter. This upgrade is
factory- or field-installable. Up to two upgrades can be installed on a
POWER Gt1 or POWER Gt1b. Either adapter can be upgraded to a 4-bit
graphics (16 gray shades or colors) frame buffer with the installation of a
single VRAM Upgrade. The POWER Gt1 or POWER Gt1b is upgraded to
an 8-bit graphics (256 colors) frame buffer when a second VRAM Upgrade
is installed.

Its feature code was #4208, and it was withdrawn in the U.S. on September
19, 1995.

2.1.4 POWER Gt1x
The POWER Gt1x is a low-priced 8-bit, 256 color, graphics adapter that
attaches directly to the local processor I/O bus. It does not require a Micro
Channel slot.

Here are some of its characteristics:

 • 2D hardware drawing support

 • Points

 • Lines

 • Filled triangles

The POWER Gt1b is FCC Class B-certified and supports both 1280x1024
and 1024x768 displays. The base configuration is 1-bit per pixel. VRAM
options allow the POWER Gt1b to be configured with 4-bits or 8-bits per
pixel. Note: Since the bandwidth of the POWER Gt1b is limited to a
maximum of 111 MHz pixel frequency, there may be a very slight difference
in fine graphics detail, though most users will not be able to see the
difference. The POWER Gt1b is functionally identical to the POWER Gt1
EXCEPT that the POWER Gt1b has been certified by the FCC for Class B
devices and therefore is more suitable for home use. Performance and
price remain the same for both adapters. The POWER Gt1 should be
chosen over the POWER Gt1b whenever home use is not an issue.

The Gt1B (#2803) was withdrawn in the U.S. on September 19, 1995.

Note
The Graphics Adapters 13

 • Filled quadrilaterals

 • Color-expanded bit block transfer

 • 16x16 pattern fill

 • Logical operations

 • Plane mask

 • 64x64 three-color programmable hardware cursor

 • 60 to 77 Hz refresh modes

 • Supports a variety of displays

 • Meets ISO 9241 Part 3 at 1280x1024 resolution on IBM POWERdisplays
16S, 16 and 19

 • Maximum of one POWER Gt1x per system can be installed

Its feature code was #4207, and it was withdrawn in the U.S. on September
19, 1995.

2.1.5 IBM E15-type Graphic
The IBM E15-type graphics is a low-cost, medium performance DRAM-based
graphics solution for systems employing a PCI system bus. The E15-type
graphics employs the 64-bit S3 Vision864 graphical user interface (GUI)
accelerator, and the 16-bit 135 MHz S3 SDAC. It comes standard with a 2 MB
frame buffer, providing for up to 1280x1024 resolution, and integrates on the
system board. It uses a standard 15-pin D-shell connector.

This adapter supports the following resolution:

 • 1280x1024x8 bits per pixel at 60 Hz refresh
 • 1024x768x8 bits per pixel at up to 76 Hz refresh
 • 800x600x8 bits per pixel at up to 76 Hz refresh
 • 640x480x8 bits per pixel at up to 72 Hz refresh

2.1.6 S15 Graphics Adapter
The IBM S15 Graphics Adapter is a high-performance VRAM-based PCI
graphics adapter with integrated video coprocessor for use as a premium
graphics solution. The S15 comes in a 2 MB fixed version.

Here are some of its characteristics:

 • The S15 supports the standard 15-pin D-shell (DB-15) monitor cable.

 • Monitors supported: The S15 supports multisync monitors having at least
a 64 KHz horizontal scan capability. Default display modes are structured
14 RS/6000 Graphics Handbook

around the factory presets for the IBM Personal Computer family of
monitors.

Its feature code was #2657, and it was withdrawn in the U.S. on January 21,
1997.

2.1.7 The (#2839) - POWER GXT110P Graphics Adapter - PCI
The IBM POWER GXT110P Graphics Adapter is an 8-bit, 256-color adapter
that attaches through one 32-bit PCI slot. It is designed as an entry-level 2D
graphics adapter.

Here are some of its characteristics:

 • 32-bit PCI bus interface

 • 2 MB DRAM

 • Pattern fill support

 • Rectangular and non-rectangular clipping

 • 256 colors from a palette of 256,000 colors

 • 1 hardware colormap

 • Monitor support

 • Resolution: 640x480, 800x600, 1024x768, 1280x1024

 • Refresh rates: 60 to 85 Hz

Its feature code was #2839, and it was withdrawn in the U.S. on August 14,
1998.

2.1.8 POWER Gt3
The POWER Gt3 is a high-performance 2D color graphics adapter for
deskside systems. It has a single 8-bit frame buffer and allows the display of
256 simultaneous colors from a palette of approximately 16.7 million colors.
The POWER Gt3 supports monitors with a display resolution of 1280x1024.
The POWER Gt3 attaches through a single Micro Channel slot and is suitable
for 2D graphics applications, such as drafting, 2D mechanical CAD,
electronic CAD, civil/architectural engineering, 2D mapping applications, and
CASE.

Here are some of its characteristics:

 • Frame buffer: single 8-bit (one 8-bit buffer)
The Graphics Adapters 15

 • API support: Xlib, GKS, Display PostScript, graPHIGS, PEXlib

 • Maximum adapters per system: Two

 • Options: none

 • Monitor support:

 • 6091-016 - 1280x1024 at 60 Hz

 • 6091-019 - 1280x1024 at 60 Hz

 • 6091-023 - 1280x1024 at 60 Hz

Its feature code was #2777, and it was withdrawn in the U.S. on April 30,
1993.

You can physically recognize the graphic adapters by the white sticker you
can find on the metallic frame. The sticker for this adapter shows: 1-6.

2.1.9 POWER Gt3i
The POWER Gt3i is a high-performance 2D color graphics adapter for
deskside systems. It is also the lowest priced color graphics adapter available
for these systems. It has a single 8-bit frame buffer and allows the display of
256 simultaneous colors from a palette of approximately 16.7 million colors.
The POWER Gt3i supports monitors with a display resolution of 1280x1024
including monitors that comply with Part 3 of the ISO 9241 ergonomic
standard. These ergonomic displays provide users with improved viewing and
physical comfort, minimized reflections and sharper images. The POWER
Gt3i attaches through a single Micro Channel slot and is suitable for 2D
graphics applications, such as drafting, 2D mechanical CAD, electronic CAD,
civil/architectural engineering, 2D mapping applications, and CASE.

Here are some of its characteristics:

 • Frame buffer: single 8-bit (one 8-bit buffer)

 • API support: Xlib, GKS, Display PostScript, graPHIGS, PEXlib

 • Maximum adapters per system: Two

 • Options: none.

 • Monitor support:

 • 6091-016 - 1280x1024 at 60 Hz, 77 Hz

 • 6091-19i - 1280x1024 at 60 Hz, 77 Hz

 • 6091-019 - 1280x1024 at 60 Hz

 • 6091-023 - 1280x1024 at 60 Hz
16 RS/6000 Graphics Handbook

Its feature code was #2768, and it was withdrawn in the U.S.,on September
19, 1995.

You can physically recognize the graphic adapters by the white sticker you
can find on the metallic frame. The sticker for this adapter shows: 1-9.

2.1.10 POWER GXT150L
This graphics adapter is designed for superior 2D performance in an
AIXwindows 2D environment. The POWER GXT150L Graphics Adapter is an
8-bit single buffer, 256 color, graphics adapter that attaches to the PowerPC
local bus graphics expansion slot and does not use a Micro Channel slot.
When used in conjunction with the AIXwindows 3D feature and Softgraphics,
it provides cost-effective 3D performance.

The POWER GXT150L graphics adapter provides 1280x1024, 1152x900 and
1024x768 resolution support, three color palettes and hardware window
support.

Here are some of its characteristics:

 • Frame buffer: single 8-bit (one 8-bit buffer)

 • Z-buffer: none

 • Advanced hardware functions: Three color palettes, hardware window
support

 • API support: Xlib, GKS, Display PostScript, OpenGL, graPHIGS, PEXlib

 • Maximum adapters per system: 1

 • Options: none

Its feature code was #2660, and it was withdrawn in the U.S. on September
24, 1997.

2.1.11 POWER GXT155L
This 8-bit double-buffered 2D adapter is designed to provide enhanced
performance for the Softgraphics implementation of the OpenGL Application
Programming Interface (API). It provides customers with a cost-effective,
entry-level platform for their OpenGL applications.

The POWER GXT155L attaches directly to the PowerPC local bus in models
41W and 41T and does not require the use of any Micro Channel slots. It
supports display resolutions of 1280x1024, 1152x900 and 1024x768. It is
The Graphics Adapters 17

available as an upgrade from the POWER GXT150L on the 42W and 42T.
Softgraphics OpenGL is provided through optional software support.

Here are some of its characteristics:

 • Frame buffer: Double 8-bit (two 8-bit buffers)

 • Z-buffer: none (Z-buffer is implemented by Softgraphics)

 • Advanced hardware functions: T

 • Three color palettes, hardware window support

 • API support: Xlib, GKS, Display PostScript, OpenGL, graPHIGS, PEXlib

 • Maximum adapters per system: 1

 • Options: none

Its feature code was #2665, and it was withdrawn in the U.S. on July 18,
1997.

2.1.12 High-Performance 3D Color Graphics Processors
The High-Performance 8- or 24-bit Color Graphics Processor provides 3D
color graphics capability for deskside systems. The 8-bit adapter (#2780)
supports a single 8-bit frame buffer that allows 256 simultaneous colors from
a palette of approximately 16.7 million colors. The 24-bit adapter (#2781)
supports a single 24-bit frame buffer that allows approximately 16.7 million
simultaneous colors from a palette of approximately 16.7 million colors. This
24-bit frame buffer can be partitioned to support double-buffering. A 24-bit
Z-buffer option that assists with hidden line and surface removal is also
available. Both of these adapters support a display resolution of 1280x1024.
The High-Performance 8- and 24-bit Color Graphics Processors attach to the
7013 through two MicroChannel slots. These adapters are suitable for 3D
applications, such as 3D wireframe CAD (mechanical), solid modeling,
architectural rendering, structural design, and seismic processing.

Here are some of its characteristics:

 • Frame buffer: single 8-bit (#2780); single 24-bit (#2781)

 • Z-buffer: 24-bit (optional)

 • API support: Xlib, GKS, Display PostScript, Graphics Library (GL),
graPHIGS

 • Maximum adapters per system: Two

 • Options:
18 RS/6000 Graphics Handbook

 • 24-bit Z-buffer Solid Rendering Option (#2782, No Longer Available).
This option provides hidden line, hidden surface removal for 3D
applications. It is a daughter card which attaches to the existing two-
card set and does not require an additional Micro Channel slot.

 • 8-bit to 24-bit Upgrade (#2783) for (#2780) only, turns it into a 24-bit
graphic adapter.

 • Monitor support:

 • 6091-016 - 1280x1024 at 60 Hz

 • 6091-019 - 1280x1024 at 60 Hz

 • 6091-023 - 1280x1024 at 60 Hz

 • 5081-016 - 1280x1024 at 60 Hz

 • 5081-016 - 1280x1024 at 60 Hz

Their feature codes were #2780 for the 8-bit frame and #2781 for the 24-bit
frame buffer, and it was withdrawn in the U.S., date unknown.

You can physically recognize the graphic adapters by the white sticker you
can find on the metallic frame. The sticker for this adapter shows: 1-3.

2.1.13 POWER Gt4e
The POWER Gt4e is a single card which provides 3D graphics capabilities for
deskside systems. It has a double 8-bit frame buffer which allows the display
of 256 simultaneous colors from a palette of approximately 16.7 million colors
(24-bit color is NOT available on this adapter). The adapter also comes
standard with a 24-bit Z-buffer which assists with hidden line and surface
removal. The POWER Gt4e supports monitors with a display resolution of
1280x1024, including monitors that comply with Part 3 of the ISO 9241
ergonomic standard. These ergonomic displays provide users with improved
viewing and physical comfort, minimized reflections and sharper images. The
POWER Gt4e attaches to the workstation through a single Micro Channel slot
and is suitable for applications, such as mechanical CAD, engineering
analysis, architectural design, and geographical mapping.

Here are some of its characteristics:

 • Frame buffer: Double 8-bit (two 8-bit buffers)

 • Z-buffer: 24-bit

 • Overlay planes: Two

 • Advanced hardware functions: Dithering, depth cueing, antialiased lines,
Gouraud shading, locallighting, Non-Uniform Rational B-Spline (NURBS)
The Graphics Adapters 19

 • API support: Xlib, GKS, Display PostScript, GL, graPHIGS, PEXlib

 • Maximum adapters per system: Two

 • Options: none

 • Monitor support:

 • 6091-016 - 1280x1024 at 60 Hz, 77 Hz

 • 6091-19i - 1280x1024 at 60 Hz, 77 Hz

 • 6091-019 - 1280x1024 at 60 Hz

 • 6091-023 - 1280x1024 at 60 Hz

Its feature code was #2776, and it was withdrawn in the U.S. on October 25,
1996.

You can physically recognize the graphic adapters by the white sticker you
can find on the metallic frame. The sticker for this adapter shows: 1-9.

2.1.14 POWER Gt4 and POWER Gt4x
The POWER Gt4 and POWER Gt4x adapters provide low to mid-range 3D
graphics capabilities, respectively, for deskside models in addition to
maximum configuration flexibility. Both adapters provide double 8- or 24-bit
frame buffers that allow 256 or approximately 16.7 million simultaneous
colors, respectively, from a palette of approximately 16.7 million colors.
These adapters also include a standard 24-bit Z-buffer that assists with
hidden-line and surface removal. Performance differentiates the functionally
equivalent POWER Gt4 from the POWER Gt4x. The POWER Gt4x has four
additional processors that boost its performance to meet the requirements of
more demanding graphics applications. The POWER Gt4 and POWER Gt4x
support monitors with a display resolution of 1280x1024, including monitors
that comply with Part 3 of the ISO 9241 ergonomic standard. These
ergonomic displays provide users with improved viewing and physical
comfort, minimized reflections and sharper images. The POWER Gt4 and
Gt4x 8-bit adapters both require two Micro Channel slots while the 24-bit
configuration for both requires an additional Micro Channel slot (total of three
slots). The POWER Gt4 is suitable for the same types of applications as the
POWER Gt4e. The POWER Gt4x is suitable for a larger range of applications
including 3D mechanical CAD, aerospace applications, reservoir simulations,
molecular modeling, and geographical mapping.

Here are some of its characteristics:

 • Frame buffer: POWER Gt4 8-bit (#2795) - Double 8-bit (two 8-bit buffers);
POWER Gt4 24-bit (#2796) - Double 24-bit (two 24-bit buffers); POWER
20 RS/6000 Graphics Handbook

Gt4x 8-bit (#2790) - Double 8-bit (two 8-bit buffers); POWER Gt4x 24-bit
(#2791) - Double 24-bit (two 24-bit buffers)

 • Z-buffer: 24-bit

 • Overlay planes: Two

 • Advanced hardware functions: Dithering (8-bit), depth cueing, antialiased
lines, Gouraud shading, local lighting, NURBS

 • API support: Xlib, GKS, Display PostScript, GL, graPHIGS, PEXlib

 • Maximum adapters per system: One

 • Options:

 • The POWER Gt4 8-bit to 24-bit Upgrade (#2792) - Provides an
upgrade to a double 24-bit frame buffer for both the 8-bit POWER Gt4
and 8-bit POWER Gt4x. This upgrade requires one additional Micro
Channel slot.

 • POWER Gt4 Performance Upgrade (#2794) - Boosts the performance
of the Gt4 to that of the Gt4x and requires no additional Micro Channel
slots. This option is a daughter card which attaches to the adapter.

 • Monitor support:

 • 6091-016 - 1280x1024 at 60Hz, 77 Hz

 • 6091-19i - 1280x1024 at 60 Hz, 77 Hz

 • 6091-019 - 1280x1024 at 60 Hz

 • 6091-023 - 1280x1024 at 60 Hz

 • 5081-016 - 1280x1024 at 60 Hz

Their feature codes were #2790, #2791, #2795, #2796 and they were
withdrawn in the U.S. on December 21, 1993.

You can physically recognize the graphic adapters by the white sticker you
can find on the metallic frame. The sticker for this adapter shows: 1-5.

The 24-bit POWER Gt4i graphics adapter (feature #2713) and the 8-bit and
24-bit POWER Gt4xi graphics adapters (features #2711 and 2712,
described below) were announced in September 1993 and replace the
POWER Gt4 and POWER Gt4x (feature #2796, 2790 and 2791). The
enhanced adapters primarily improve the 3D performance of the original
adapters. These were withdrawn in the U.S. on October 25, 1996.

Note
The Graphics Adapters 21

2.1.15 POWER GTO Accelerator
The 7235 POWER GTO subsystem is a high-performance 3D color graphics
subsystem for deskside systems. The GTO has its own product number
(7235) and cannot be ordered as a feature. It is referred to as a subsystem
because it is an external device with its own power supply. The POWER GTO
is available in two different models, Model 01i which provides a double 8-bit
frame buffer and Model 02i which provides a double 24-bit frame buffer.
These models allow 256 or approximately 16.7 million simultaneous colors,
respectively, from a palette of approximately 16.7 million. Model 02i
additionally provides an enhanced shading processor (Model 01i does not
have a shading processor) and a standard 24-bit Z-buffer for the support of
hidden line and surface removal. Model 02i also provides subpixel
antialiasing of lines in hardware. The POWER GTO models support monitors
with a display resolution of 1280x1024, including monitors that comply with
Part 3 of the ISO 9241 ergonomic standard. These ergonomic displays
provide users with improved viewing and physical comfort, minimized
reflections and sharper images. The POWER GTO is an external subsystem
that attaches to the RS/6000 workstation through the POWER GTO
Accelerator (Feature #4350) card which occupies one Micro Channel slot.
This card is ordered as a feature of the RS/6000 and is MANDATORY for
support of the 7235 POWER GTO product. The POWER GTO is suitable for
high-performance applications such as high-end CAD design and analysis,
entertainment graphics, scientific visualization, and aerospace applications.

Here are some of its characteristics:

 • Frame buffer:

 • Model 01i - Double 8-bit (two 8-bit buffers)

 • Model 02i - Double 24-bit (two 24-bit buffers)

 • Z-buffer: 24-bit (Model 02i).

 • Overlay planes: Four

 • Advanced hardware functions: depth cueing (Model 02i), antialiased lines,
Gouraud shading (Model 02i), local lighting (Model 02i), NURBS

 • API support: Xlib, GKS, Display PostScript, GL, graPHIGS, PEXlib

 • Maximum adapters per system: One

 • Options: Model conversions for all of the POWER GTO Models (001, 002,
01i, 02i) only available through RPQ

 • Monitor support:

 • 6091-016 - 1280x1024 at 60 Hz, 77 Hz
22 RS/6000 Graphics Handbook

 • 6091-19i - 1280x1024 at 60 Hz, 77 Hz

 • 6091-019 - 1280x1024 at 60 Hz

 • 6091-023 - 1280x1024 at 60 Hz

Its feature code was #4350, and it was withdrawn in the U.S. on November 4,
1994.

You can physically recognize the graphic adapters by the white sticker that
you can find on the metallic frame. The sticker for this adapter shows: 1-4.

2.2 The Current Graphic Adapters

This section discusses in more detail the supported graphic adapters for the
RS/6000.

2.2.1 The MVP Power Multi-Monitor Graphics Accelerator

The MVP Power Multi-Monitor Graphics Accelerator supports two displays on
a single adapter thus conserving an expansion slot. This allows for the
viewing of multiple data sets simultaneously and is especially beneficial for
applications such as security trading, financial analysis and software
engineering. The unique design of this adapter lets a single mouse move
seamlessly between the two monitors for easy operation.

Some of its characteristics are:

 • 2 MB EDO RAM

 • RAMDAC frequency 135 MHz

 • Resolution: from 640x480x8 to 1280x1024x8

2.2.2 The GXT120 Family
The GXT120P provides entry-level 2D graphics for the PCI RS/6000 servers
and workstations. It is an excellent choice for business graphics or for
attaching a graphical control display to one of these PCI servers.
The Graphics Adapters 23

Figure 3. The IBM GXT120P Graphics Accelerator

Here are some of their characteristics:

 • 2 MB EDO DRAM

 • 32-bit PCI bus interface

 • 8-bit color support

 • Screen resolutions:

 • 640x400 at 60 - 85 Hz vertical refresh

 • 800x600 at 60 - 85 Hz vertical refresh

 • 1024x768 at 60 - 85 Hz vertical refresh

 • 1280x1024 at 60 - 75 Hz vertical refresh

Its feature code is #2837.

2.2.3 The GXT150M
The GXT150M is a Micro Channel adapter. It provides high-performance and
is supported by Softgraphics for RS/6000 workstations. It is standard on the
RS/6000 Model 397.

Here are some of its characteristics :

 • Bus Master
24 RS/6000 Graphics Handbook

 • Hardware acceleration with a 32-bit Graphics Dedicated Processor for:

 • Points

 • Lines

 • Arc

 • Circle

 • Rectangles

 • Font

 • Bit block transfer

 • Pattern fill

 • Hardware rectangular clipping.

 • Hardware cursor (crosshair cursor and image cursor-64 X 64)

 • Monitor support

 • Resolution: 1280x024

 • Refresh rates: 60 to 77 Hz

 • 256 colors from a palette of 16 million

 • Meets ISO 9241 Part 3 on appropriate displays

Its feature code is #2650.

2.2.4 The GXT250P
The GXT250P provides the top 2D performance for PCI accelerators. It is an
8-bit adapter that is capable of displaying up to 256 concurrent colors from a
palette of approximately 16.7 million colors. The double buffer 8-bit is ideal
for entry to midrange OpenGL applications through Softgraphics. The 24-bit
capability provides true color.

Here are some of its characteristics:

 • 64-bit or 32-bit PCI bus interface

 • 3 MB of VRAM

 • Hardware acceleration for points, lines, triangles, rectangles,
quadrilaterals, bit block transfer

 • Rectangular and non-rectangular clipping

 • Up to 256 colors from a palette of 16.7 million

 • Hardware window support (4 window ID bits)
The Graphics Adapters 25

 • Dithering

 • Three hardware color maps

 • Monitor support

 • Resolution: 1024x768 or 1280x1024 (limitation to 1024x768 with
double buffer)

 • Refresh rates: 60 to 85 Hz

 • Capable of driving monitors that meet ISO 9241 Part 3 Specification

Its feature code is #2851.

2.2.5 The GXT255P
The GXT255P provides performance similar to the GXT250P with the added
advantage of either double buffer 8-bit or single buffer 24-bit color support.

Here are some of its characteristics:

 • 64-bit or 32-bit PCI bus interface

 • 8 MB of VRAM

 • Hardware acceleration for points, lines, triangles, rectangles,
quadrilaterals, bit block transfer

 • Pattern fill support

 • Rectangular and non-rectangular clipping

 • Up to 16.7 million colors from a palette of 16.7 million

 • Hardware window support (4 window ID bits)

 • Dithering

 • Three hardware color maps

 • Monitor support

 • Resolution: 1024x768 or 1280x1024

 • Refresh rates: 60 to 85 Hz

 • Capable of driving monitors that meet ISO 9241 Part 3 specifications

Its feature code is #2852.

2.2.6 The GXT550P
The POWER GXT550P graphics accelerator offers exceptional and
affordable 3D graphics for the PCI-based RS/6000 43P Models 140, 150 and
26 RS/6000 Graphics Handbook

240 and for Model F40 workstations. Coupled with IBM’s implementation of
many of the industry’s most popular application programming interfaces
(APIs), these accelerators are an excellent fit for today’s most demanding 3D
graphics applications, such as mechanical design and analysis.

The GXT550P further establishes IBM as a leader in providing
price/performance solutions for a wide range of demanding customer
application requirements.

The GXT550P combines 3D rasterization with the strength of the latest
PowerPC microprocessors. This rasterization technology provides customers
with a cost-effective solution that delivers excellent 3D graphics acceleration
that scales with the PowerPC processor performance of the RS/6000
workstation.

The GXT550P provides hardware acceleration for OpenGL and PHIGS. IBM
is a leader in the industry by offering native support of OpenGL and PHIGS
on the same accelerator. These adapters accelerate advanced 3D graphics
functions, such as Gouraud shading, antialiasing, hidden surface removal,
depth-cueing and transparency. This helps enable your 3D applications to run
more quickly and interactively. For OpenGL, texture maps up to 1024x1024,
and a 64-bit accumulation buffer are also supported through software.

The GXT550P offers highly flexible frame buffers that can be dynamically
configured to provide a broad set of color and feature options. When using
OpenGL and PHIGS, the GXT550P supports 8-bit, 12-bit, and 24-bit
double-buffered color and also includes 8-bits of double-buffered alpha
buffers for more realistic transparency control. It provides 8-bit overlay
buffers, which enhance the speed of the Graphical User Interface (GUI), 8-bit
stencil buffers, and 24-bit Z-buffer for hidden surface removal operations.

The GXT550P graphics accelerator is a 32-bit PCI card that plugs into a
single PCI slot. It supports display resolutions of up to 1280x1024 and
1024x768 and refresh rates from 60 Hz to 85 Hz, including refresh rates that
comply with the ISO 9241 Part 3 ergonomic standard. When used with other
compliant components, including monitors, this standard provides improved
viewing, reduced flicker, reduced reflection, and sharper characters. These
features, coupled with IBM’s powerful RS/6000 43P Models 140, 150, 240,
and Model F40 workstations, make the POWER GXT550P an ideal solution
for demanding 3D application needs.

Its feature code is #2855.
The Graphics Adapters 27

Figure 4. The IBM GXT550 Graphics Accelerator

2.2.7 The GXT800 Family
The POWER GXT800M graphics accelerator provides an enhanced level of
powerful and advanced 3D graphics for the Micro Channel-based RS/6000
Models 397 desktop and 595 deskside workstations. Every GXT800M
features hardware-accelerated texture mapping for generating more realistic
images at interactive speeds.

The GXT800M is particularly well suited for users requiring powerful graphics
performance in systems designed for floating point-intensive applications.
When coupled with IBM’s implementation of many of the industry’s most
popular Application Programming Interfaces (APIs), this accelerator is an
excellent fit for today’s most demanding 3D graphics applications in fields
such as mechanical design and analysis, petroleum exploration and
production, molecular modeling, and scientific research. The GXT800M
further establishes IBM as a leader in providing advanced graphics solutions
for a wide range of demanding customer application requirements.

The POWER GXT800P graphics accelerator provides a new level of powerful
and advanced 3D graphics for the PCI-based RS/6000 43P Models 140 and
240, Model F40, and Model F50 systems. The GXT800P offers an optional
configuration that accelerates texture mapping in hardware, generating more
realistic images at interactive speeds.

The GXT800P is particularly well suited for users requiring the next step in
performance above that provided by the GXT550P graphics accelerator.
Coupled with IBM’s implementation of many of the industry’s most popular
Application Programming Interfaces (APIs), this accelerator is an excellent fit
28 RS/6000 Graphics Handbook

for today’s most demanding 3D graphics applications in fields such as
mechanical design and analysis, petroleum exploration and production,
molecular modeling, and scientific research. The GXT800P further
establishes IBM as a leader in providing advanced graphics solutions for a
wide range of demanding customer application requirements.

The GXT800P utilizes a 5-way rendering engine that processes advanced 3D
graphics in parallel, providing the throughput required to work with complex
geometries at interactive speeds. When this is combined with the latest
PowerPC microprocessors in supported systems, the GXT800P 3D graphics
accelerator delivers increasing performance as you upgrade to more powerful
systems.

The feature code is #2853 for the GXT800P, #2859 for the GXT800P with
texture, and #2850 for the GXT800M.

Figure 5. The IBM GXT800P Graphics Accelerator

2.2.8 The GXT3000P
The POWER GXT3000P graphics accelerator is all about productivity. The
faster the combination of graphics accelerator and RS/6000 workstation, the
more work engineers and scientists can accomplish. The GXT3000P is
designed to deliver outstanding performance at a fraction of the usual cost. It
is a win/win situation when using the GXT3000P for visualizing very large
MCAD models and advanced simulations.

The POWER GXT3000P graphics accelerator marks a speed and feature
breakthrough for the most demanding design and visualization solutions such
as MCAD, MCAE, petroleum and scientific applications. This is because of its
The Graphics Adapters 29

native support for PHIGS and Open GL application programming interfaces
(APIs). Attached to the 64-bit 43P Model 260, the GXT3000P delivers leading
GPC benchmark and application graphics performance. Combining the
GXT3000P and the 43P Model 150 produces winning price/performance, with
over two times the GXT800PT/43P Model 140 MCAD graphics speed.

Features that help ensure the transfer of visual information include:

 • Hardware setup for faster shading and blending

 • Hardware lighting both front and back sides of up to eight infinitely
positioned light sources for OpenGL compatibility

 • Hardware 3D texturing with mipmaps and level-of-detail filtering

 • Hardware luminance filtering and separate specular lighting, applied
after texturing in hardware

 • Hardware support of advanced API rendering modes

 • Stereo in a window without obscuring other windows

 • 16 MB of on-board texture RAM for more texture

The pacesetting capabilities of the GXT3000P are made possible by
innovative electronics design throughout. The PCI bus interface provides a
high transfer rate of 3D graphics commands and data from the CPU. A
lighting and setup circuit prepares the 3D objects for rasterization on the fly,
funneling the elements to be rendered into four-way parallel rasterization
units that match full-instruction microprocessors in complexity. Here,
blending, shading, texturing, and lighting effects are added, and both sides of
a polygon can be simultaneously textured and lighted. The elements are
realized as colored pixels into lightning-fast 3D-RAM graphics memory and
then double-buffered for seamless animation on displays of resolutions up to
1280x1024 at 85 Hz refresh rate. The result is a rich and content-filled display
of the most complex 3D models.

The GXT3000P was designed to support the features of PHIGS and OpenGL
1.2 (including hardware texturing), plus many OpenGL extensions. The four
raster engines on the GXT3000P accept setup data through the APIs in the
form of polygons to be rendered. The rasterization subsystem processes 3D
graphics in parallel, reaching drawing speeds many times those of previous
IBM graphics accelerators.

The GXT3000P graphics accelerator supports display resolutions of up to
1280x1024 and 1024x768, and refresh rates from 60 Hz to 85 Hz, including
refresh rates that comply with the ISO 9241 Part 3 ergonomic standard when
used with other ISO 9241 Part 3-compliant components, including monitors.
30 RS/6000 Graphics Handbook

This standard provides improved viewing, reduced flicker, reduced
reflections, and sharper characters. The GXT3000P is the right choice for
great graphics performance for getting the job done fast. Whether designing a
new avionics system in 3D or animating a flyby of the entire fuselage, the
GXT3000P has the graphics speed you demand.

When you need features and throughput to get your product out to the market
sooner, use the GXT3000P.

Its feature code is #2825.

Figure 6. The IBM GXT3000P Graphics Accelerator

2.2.9 Device Drivers
This table summarizes the device drivers used by each adapter. Use the
lslpp command to check if the correct device driver is installed on your
system.

Table 2. Device Information for Current Graphics Accelerators

Adapter Development
Codename

Class Device
Name

Files Included in Install

GXT110 Brushy I iga0 devices.pci.3353c088.rte
devices.pci.3353c088.X11
devices.pci.3353c088.diag

MVP I iga* devices.pci.33531188.rte
devices.pci.33531188.X11
devices.pci.33531188.diag
devices.pci.33531188.com

Setup/BLIT Unit
The Graphics Adapters 31

2.2.10 Properties of the Graphic Adapters
This table summarizes the properties of the graphic adapters:

Table 3. Standard Graphics Features

GXT120P Sagebrush I mga0 devices.pci.2b101a05.rte
devices.pci.2b101a05.X11
devices.pci.2b101a05.diag

GXT150M Neptune I nep0 devices.mca.8f9a.rte
devices.mca.8f9a.X11
devices.mca.8f9a.diag
devices.mca.8f9a.ucode

GXT250P
GXT255P

SkyBlue I b10 devices.pci.14103c00.rte
devices.pci.14103c00.X11
devices.pci.14103c00.diag

GXT550P Mint II mint0 devices.pci.14105400.rte
devices.pci.14105400.X11
devices.pci.1415400.diag

GXT800M SuperMint II smint0 devices.mca.8f61.rte
devices.mca.8f61.X11
devices.mca.8f61.diag

GXT800P SuperMint II smint0
smintdm0

devices.pci.14105e00.rte
devices.pci.14105e00.X11
devices.pci.14105e00.diag

GXT3000P Sierra II+ mtn0 devices.pci.14108e00.rte
devices.pci.14108e00.X11
devices.pci.14108e00.diag

Adapter Max. # of
Colors

of Color
Tables

Supports
Stereo

Maximum
Resolution
Supported

Gamma
Correction
Tables

GXT120P 256 1 No 1280x1024 No

GXT150M 256 2 No 1280x1024 No

GXT250P 256 3 No 1280x1024 No

GXT255P 16.7M 3 No 1280x1024 No

GXT550P 16.7M 4 Yes 1280x1024 No

Adapter Development
Codename

Class Device
Name

Files Included in Install
32 RS/6000 Graphics Handbook

2.2.11 Buffer Configuration
This table summarizes the existence and size of frame, underlay, overlay,
alpha, stencil, Z-buffer, utility or window ID buffers on the graphic adapters:

Table 4. Buffer Configuration

2.2.12 Advanced 3D Functionalities
This table summarizes the advanced 3D functions of the graphic adapters:

Table 5. Advanced 3D Functionality Supported in Hardware

GXT800M 16.7 Million 4 Yes 1280x1024 No

GXT800P 16.7 Million 4 Yes 1280x1024 No

GXT3000P 16.7 Million 8 Yes 1280x1024 Yes

Adapter # of Bit
Planes

Frame
Buffer

Z Buffer Overlay
Buffer

Stencil
Buffer

Window
ID

Alpha
Buffer

Utility
Buffer

GXT120P 8 8

GXT250P 8 8

GXT255P 24 24

GXT550P 112 24+24 24 8 8 8 8+8

GXT800M 112 24+24 24 8 8 8 8+8

GXT800P 112 24+24 24 8 8 8 8+8

GXT3000P 128 24+24 24 8 8 8 8+8 16

Adapter Hidden
Line

Anti-
aliasing

Gouraud
Shading

Depth
Cueing

Texture
Mapping

Transparencies Blur Lighting Video
Scaling

16-bit
Color

GXT550P Y Y Y Y Y Y N N N N

GXT800M Y Y Y Y Y Y Y N N N

GXT800P Y Y Y Y O Y Y N N N

GXT3000P Y Y Y Y Y Y Y Y Y Y

Y = Yes, O = Optional attachment required

Adapter Max. # of
Colors

of Color
Tables

Supports
Stereo

Maximum
Resolution
Supported

Gamma
Correction
Tables
The Graphics Adapters 33

2.2.13 Limitations
This table summarizes the connectivity and maximum number of adapters per
system and some possible limitations:

Table 6. Number of Slots/Max Number of Adapters

Please refer to the PCI Adapter Placement Reference, SA38-0538, for
important information regarding permissible and optimum slot placement of
your PCI graphics adapters.

You should also be aware of the interaction with other PCI adapters in the
same bus with your graphics adapters. A particularly important point is the
performance degradation that may be seen by placing a 32-bit adapter in the
same bus as the 64-bit GXT3000P adapter.

System 150M 800M MVP 110P 120P 250P 255P 550P 800P 3000P

7012-397 1/1 3/11

7013-J50 1/1

7013-595 1/1 3/1

7015-R50

7017-S70 1/1

7017-S7A 1/1

7024-E30 1/2 1/2

7025-F40 1/11 1/11 1/2 1/2 1/2 1/1 3/1

7025-F50 1/13 1/2 4/11

7026-H50 1/2

7043-140 1/12 1/24 1/24 1/24 1/12 3/12

7043-150 1/46 1/46 1/46 1/15 2/11

7043-240 1/1 1/2 1/3 1/2 1/2 1/12 3/12

7043-260 1/46 1/46 1/46 1/1 2

1Must be located in slot 3.
2Must be located in slot 2.
3Must be located in slot 3,4,5.
4Must be located in slot 1,2.
5Must be located in slot 2,3.
6Must be located in slot 1,2,3,4,5.
34 RS/6000 Graphics Handbook

The Graphics Adapters 35

36 RS/6000 Graphics Handbook

Chapter 3. Displays and Cables

This chapter describes the possible displays you can connect to the graphic
adapters discussed in Chapter 2, “The Graphics Adapters” on page 11.

3.1 The Supported Displays

This section lists the displays supported on the RS/6000 systems. For each of
these displays, it gives the viewable size, the supported resolution, maximum
refresh rate, and as the aperture grille. Further information for the displays
can be found at the following URL:

http://srvteam.greenock.uk.ibm.com/hardware/displays/manual/index.html

3.1.1 The IBM P72 Color Monitor
The P72 monitor is a 17-inch Trinitron CRT with a viewable image size of 16.0
inches (407 mm), incorporating a 0.25 mm aperture grille for bright,
high-definition images. A maximum horizontal frequency of 85 KHz provides
reduced flicker operation at an optimum 1024x768 pels at up to 85 Hz
non-interlaced with a maximum addressability of 1280x1024 pels.

The IBM P72 color monitor comes in two colors: stealth black and pearl white.

3.1.2 The IBM P92 Color Monitor
The P92 monitor is a 19-inch Trinitron CRT with a viewable image size of 17.9
inches (456 mm), incorporating a 0.25 - 0.27 mm aperture grille for bright,
high-definition images. A maximum horizontal frequency of 94 KHz provides
reduced flicker operation at an optimum 1280x1024 pels at up to 85 Hz
non-interlaced with a maximum addressability of 1600x1200 pels.

The IBM P92 color monitor comes in two colors: stealth black and pearl white.

3.1.3 The IBM P202 Color Monitor
The P202 monitor is a 21-inch Trinitron CRT with a viewable image size of
19.8 inches (503 mm), incorporating a 0.25 - 0.27 mm aperture grille for
bright, high-definition images. A maximum horizontal frequency of 107 KHz
provides reduced flicker operation at an optimum 1600x1200 pels at up to 85
Hz non-interlaced with a maximum addressability of 1600x1200 pels.

The IBM P202 color monitor comes in two colors: stealth black and pearl
white.
© Copyright IBM Corp. 1999 37

3.2 The Cables

Now that we have seen the various graphic adapters and displays available
for the RS/6000 systems, the last difficult step is to connect one with the
other, and this is done through cables. The correct cables depends on the
connectors present on the adapter and the display. This section describes the
various cables, and Table 7 on page 39 summarizes the cables needed for
each pair of adapter and display. Let’s start with the list of available cables:

 • The 6091 Attachment Cable:

This display cable is required for attachment of an IBM 5081 or IBM 6091
display. The cable is 1.8 meters (6 ft) in length. Its feature code is #4217.

 • The 15-pin-d-shell to 13W3 Display Cable:

This cable attaches monitors with a 13W3 connector to a graphics adapter
with a 15-pin-d-shell connector. Its feature code is #4235.

 • The 13W3 to 15-pin DDC/ID Bits Switchable Display Cable:

This cable attaches displays with 13W3 video connectors to graphics
adapters with 15-pin connectors. There is a switch in the cable that is
used to enable or disable Plug and Play. When disabled, ID bits are
presented to the attaching system. Its feature code is #4237.

 • The DDC 15-pin to 13W3 Display Cable:

This converter cable attaches displays with a 13W3 connector that either
are DDC (Display Data Channel) capable or do not need ID bits to a
graphics adapter with a 15-pin D-shell connector. Its feature code is
#4238.

 • The 15-pin D-shell cable to the 13W3 connector on the adapter. Its feature
code is #4213.

 • The 15-D Adapter to 3BNC ID Cable:

This cable attaches displays with a 3BNC video connector to graphics
adapters with a 15-pin D-shell connector. Its feature code is #4239.
38 RS/6000 Graphics Handbook

Table 7. Cable Feature Number Required per Monitor/Adapter Configuration

Table 8. Cable Feature Number Required per Monitor/Adapter Configuration

GXT110P
GXT120P

GXT250P
GXT255P

GXT800M
GXT800P

GXT3000P

G52 Display NS NS NS

P70/P200 4238 4238 4238 4238

P201 4237 4237 4237 4237

P72/P92/P202 Display Display Display Display

6091-19I NS 4239 4239 4217

PowerDisplay 4217 4239 4239 4217

GXT150M GXT500P
GXT550P

GXT1000 7250

G52 NS NS NS NS

P50 P72 4213 4213 NS NS

P70 P200 4234 4240 4234 4234

P201 4234 4241 4234 4234

6091-19I 4214 4219 3252 3252

POWERdisplay 17 4214 4219 3253 3252

POWERdisplay 20 4214 4219 3253 3253
Displays and Cables 39

40 RS/6000 Graphics Handbook

Chapter 4. Graphics Peripherals

This chapter briefly examines peripheral devices that enhance the
user/application interaction in the manipulation and preprogramming of
graphic images and applications.

4.1 Mice

There are two pointing devices available for RS/6000 systems. The
announcement letter regarding those devices is #198-242.

 • 3-Button Mouse

The 3-Button Mouse is a dynamic tracking pointing device which utilizes
opto-mechanical technology. Its resolution is 320 DPI, and a 2.74 meter (9
ft.) attachment cord is included. Its feature code is #6041

 • 3-Button Mouse, Black

It is a 3-button dynamic tracking pointing device. It utilizes
opto-mechanical technology, has a resolution of 320 dpi, a 3-meter cable,
is stealth black color, and has standard 6-pin mini-DIN connection.

Its feature code is #8741.

4.2 The Keyboards

The keyboards you connect to the RS/6000 systems are grouped under two
families.

The Quiet Touch Keyboard

 • Feature codes from #6600 to #6640

 • Quiet and soft-touch key depression

 • 3-meter keyboard cable

 • Removable wrist rest

 • Pearl white color

 • Standard 6-pin mini-DIN connection

 • 37 languages supported

 • 101 to 106 keys, depending on language specified

 • Optional keyboard cable with speaker (Feature #6599)

 • Announcement letter #197-279
© Copyright IBM Corp. 1999 41

The Quiet Touch Keyboard, blac:

 • Feature code from #8700 to #8740

 • Quiet and soft-touch key depression

 • 3-meter keyboard cable

 • Removable wrist rest

 • Stealth Black color

 • Standard 6-pin mini-DIN connection

 • 37 languages supported

 • 101 to 106 keys, depending on language specified

 • Euro currency sign support on appropriate national language versions

 • Announcement letter is #198-242

Here is a list of the supported languages:

 • US English, #103P
 • French, #189
 • Italian, #142
 • German/Austrian, #129
 • UK English, #166
 • Spanish, #172
 • Japanese, #194
 • Brazilian Portuguese, #275
 • Canadian French, #058
 • Belgian/UK-Flemish, #120
 • Belgian/French, #120
 • Swedish/Finnish, #153
 • Danish, #159
 • Bulgarian, #442
 • Swiss, French/German, #150
 • Norwegian, #155
 • Dutch, #143
 • Portuguese, #163
 • Greek, #319
 • Hebrew, #212
 • Hungarian, #208
 • Icelandic, #197
 • Polish, #214
 • Romanian, #446
 • Slovakian, #245
 • Czech, #243
42 RS/6000 Graphics Handbook

 • Turkish, #179
 • Turkish, #440
 • LA Spanish, #171
 • Arabic, #238
 • Serbian-Cyrillic, #118
 • Korean, #413
 • Chinese/US, #467
 • French Canadian, #445
 • Thailand, #191
 • Russian, #443
 • Croatian, #105
 • US English ISO9995, #103P(EMEA)

4.3 The Tablets

The IBM 6093 CursorPad and Tablet are digitizing devices that are used for
data input and can be attached to the RS/6000 series of workstations. The
announcement letter for those devices is #197-278.

The following table summarizes the main properties of the three tablet
models:

Table 9. Main Properties for the Tablet Models

A more detailed description for each model is included in the following
section.

4.3.1 The 6093-011 Model
The 6093 Model 011 CursorPad is a small cursor pad that can be
programmed with a resolution of up to 1,279 lines per inch. There is a
programmable button function, which allows customers to adapt the four-
button cursor as well as the six button cursor to their own design of button

Model Programmable
Resolution

Tablet
Size

4-Button
Cursor

6-Button
Cursor

3-Button
Pen

011 1.279 Lines per
inch

Small Yes Yes No

012 1.279 Lines per
inch

Large Yes Yes No

021 2.540 Lines per
inch

Small Yes No Yes
Graphics Peripherals 43

configuration and identification. With appropriate features, it may be used in
place of the 5083 Model 021 CursorPad and Model 022 Tablet.

Its features include:

One selectable feature from:

 • Feature #1511 Four Button Cursor

 • Feature #1512 Six Button Cursor

 • Feature #6351 Two Button Stylus (pen) with a tip switch and two side
buttons

Optional features include:

 • Feature #4015 RS/6000 Attach Kit

 • Feature #4030 Serial Port Cable Kit for attachment to 25-pin
connectors

 • Feature #4035 Serial Port Cable Kit for attachment to 9-pin connectors

4.3.2 The 6093-012 Model
The 6093 Model 012 Tablet is essentially the same as the Model 011. The
tablet measures approximately 15"x16.5" as opposed to the 8"x10.5"
measurements of the Model 011.

Its features include:

One selectable from:

 • Feature #1511 Four Button Cursor

 • Feature #1512 Six Button Cursor

 • Feature #6351 Stylus (pen) with a tip switch and two side buttons

Optional features include:

 • Feature #4015 RS/6000 Attach Kit

 • Feature #4030 Serial Port Cable Kit for attachment to 25-pin
connectors.

 • Feature #4035 Serial Port Cable Kit for attachment to 9-pin connectors.

4.3.3 The 6093-021 Model
The 6093 Model 021 Tablet input device is a state-of-the-art device to ease
the manipulation of computer graphics images. This electromagnetic tablet,
with cordless and batteryless, four-button cursor or three-button pen, and a
4x5 work area provides better accuracy (+/- 0.025 inches) and higher
44 RS/6000 Graphics Handbook

resolution capability (2540 lines per inch, Model 011 = 1280). The 6093 Model
021 Tablet is capable of higher data rates (200+ points per second, Model 011
= 100) and has better connectivity (fewer cabling options).

The 6093 Model 021 Tablet is a follow-on product to the 6093 Model 011
Tablet. The Model 021 Tablet is 8x10.5 inches, with a 4x5 inch active area.

The Model 021 is only supported on AIX Version 4.1.5, 4.2.1, 4.3, or later. It is
functionally compatible to the Model 011, such as a cursor with a four-button
physical layout, and an interface having 8-pin mini-DIN and microcode
compatibility. The Tablet has an attached (non-removable) cable, with an
8-pin mini-DIN connector for attachment to the system tablet port.

Its features include:

One selectable feature from:

 • Feature #1511 Four Button Cursor

 • Feature #6351 Stylus (pen) with a tip switch and two side buttons

Optional features include:

 • Feature #4030 Serial Port Cable Kit for attachment to 25-pin
connectors.

 • Feature #5999 Stealth Black Color Selection for Covers: selects the
stealth black color for covers. If this feature is not selected, the default
cover color is pearl white. This feature is not available on Models 011
and 012.

4.3.4 Additional Features
There are additional features that can be connected or used with these
tablets. Here is a detailed list:

 • Four Button Cursor:

This feature (#1511, P/N 74F3131) allows the customer to have four
different functional options at his/her fingertips. The cursor is
functionally the same as the IBM 5083 cursor. The cursor has a
targeting sight to accurately pick the points as required by the user.

 • Six Button Cursor:

This feature (#1512, P/N 74F3132) allows the customer to have six
different functional options at his/her fingertips. The button
configuration can be changed by the user to the most advantageous
and comfortable for him. The cursor has a targeting sight to accurately
pick the points as required by the user.
Graphics Peripherals 45

 • 5086 Attach Cable Kit:

This feature (#3888, P/N 74F3355) contains the cable for attachment to
the 5086 Graphics Processor and the appropriate publications. The
cable is 1.19m in length.

 • 6095 Attach Cable Kit:

This feature (#3898, P/N 74F3356) contains the cable for attachment to
the 6095 Graphics Processor and the appropriate publications. The
cable is1.19m in length.

 • RS/6000 Attach Kit:

This feature (#4015, P/N 74F3357) contains the cable for attachment to
the RS/6000 and the appropriate publication. The cable is 2.13 meters
long.

Without this feature, the 6093 CursorPad Model 011 cannot be
attached to the RS/6000 processors.

 • PC, PC/XT PS/2 Attach Kit (25-Pin):

This feature (#4030, P/N 74F3358) contains the cable for attachment to
the 25-pin PC, PC/XT, and PS/2 Serial Port and the appropriate
publications.

Also included is a 3.5 inch diskette and appropriate power supply
(default by country code). The cable is 2.43m in length.

 • PC/XT, PC/AT, PS/2 Attach Kit (9-pin):

This feature (#4035, P/N 74F3368) contains the cable for attachment to
the 9-pin connector on the Dual-Sync Adapter for the PC/AT and the
PS/2 and the appropriate publications. Also included is a 3.5 inch
diskette and the appropriate power supply (default by country). The
cable is 2.43m in length.

 • Two Button Stylus:

This feature (#6351, P/N 74F3133) is a hand-held, pen-like, manual
input device that is available with a nylon tipped cartridge. The Stylus
assembly houses a transmitting coil as well as a dome-type switch (tip
switch) to sense if the Stylus is being pressed against the tablet
surface.

4.3.5 Configuring the 6093 Tablet
This section now describes how to install and configure a tablet to an
RS/6000 system.
46 RS/6000 Graphics Handbook

1. Attach the graphics tablet to either the tablet port or to the serial ports of
your machine. The tablet port is not available on all machines. When a
tablet port is present, it is located next to the mouse and keyboard ports.
On some systems, the tablet port is labeled with a T. If the graphics tablet
is attached to a serial port, you may need to add a tty to the system. To
add a tty:

1. Enter smit devices:

2. Select TTY.

3. Select Add a TTY.

4. Select the serial port to which the graphics tablet is connected.

5. Install the following device-dependent software package for the
graphics tablet. Its name is AIXwindows Graphics Input Adapter
Software, and the file is devices.mca.edd5

6. Also install the co-requisite software for the AIXwindows Serial
Graphics Input Adapter. The name of the file is devices.serial.gio.

4.4 The Dials

The 6094 dials Model 010 is an image-manipulation device that allows the
user to manually input scalar values in order to affect the visual image
displayed on the monitor. The dials are a separate desktop unit consisting of
eight potentiometers (commonly used for Pan, Zoom, and Rotation of 2D and
3D figures). The dials may be programmed to provide specific functions
through the application.

The following publication is shipped with the product. Additional copies are
available immediately by ordering IBM 6094-010 Dials Option Instructions,
GA23-2404.

4.4.1 Attachment of the Dials to an RS/6000 System
The 6094 dials may be attached to and used with a variety of IBM and
non-IBM systems configurations. The usual way to attach the dials to an
RS6000 is through a serial line and to use the 6091 display to provide the
power supply.

The POWER displays 17 and 20 do not offer video redrive or auxiliary
power as did the 6091 displays.

Important
Graphics Peripherals 47

If a Micro Channel expansion slot is available in the RS/6000, you can order
the Graphics Input Device Adapter (feature code 2810) and appropriate
signal cables (feature code 2811). The dials and LPFK each need a signal
cable.

Since the Graphics Input Device Adapter supplies power, no additional power
supplies or auxiliary Power cables are needed.

If a Micro Channel expansion slot is not available in the RS/6000, separate
power supplies are needed. For the 6094-010 dials and the 6094-020 LPFKs
please order from the following feature codes (order one per peripheral).

 • Feature #4063 100 volt power supply

 • Feature #4064 120 volt power supply

 • Feature #4065 220/240 volt power supply

4.4.2 Setting Up the 6094-010 on a Workstation
This section describes how to install and configure the dials on the serial port
of your system.

1. Connect all the equipment:

 • Dials unit
 • Plug-in power supply
 • Cable that can accept power cord

2. Plug into serial port on workstation.

3. Use SMIT to add a tty:

1. Choose parent from the list corresponding to port used.
2. Port number is s1 or s2.
3. Terminal type is dumb.
4. Disable login.
5. Default /etc/getty.

4. Verify the correct configuration with the 5080 emulator:

 • With the parameter -ttyd ttyDialNum for example -ttyl 0

or

 • Add the following X resource:

Soft5080.ttyDial: 1
48 RS/6000 Graphics Handbook

4.5 The Lighted Program Function Keyboard (LPFK)

The 6094 Lighted Program Function Keyboard (LPFK) Model 020 is an
application aid device that allows the user to preprogram application
functions to be initiated by striking either a single lighted key or a combination
of lighted keys. The LPFK is a separate desktop unit consisting of 32 keytops
in which bright and easily viewed indicators are imbedded. The keyboard
indicator lights can be turned on and off under processor or host application
control.

The following publication is shipped with the product: IBM 6094-020 LPFK
Options Instructions, GA23-2403. Additional copies are available and
orderable.

4.5.1 Attachment of the LPFK to an RS/6000 System
The LPFK can be attached to an RS/6000 through a special card or through
one of the standard serial ports. The serial port option does not use one of
the card slots (this is an important consideration for desktop RS/6000s), but
does have some drawbacks. The serial port lighted PF keys draw their power
from the 6091 display. If the display is powered-off, the lighted PF keys need
to be redefined to the system before they can be used.

To attach the LPFK using the serial port, you must order Serial Attach feature
#4060 for the lighted PF Keys and Serial Attach Cable #4061.

If you use the display to power your serially connected dials and LPFKs, you
can power down the display without powering down the workstation.
However, you must power down the display for at least 20 seconds before
powering it up. After the display is powered up, it will take at least four
seconds for the dials/LPFKs to be reinitialized. During this period, input
events are ignored. If, after this period, the dials/LPFKs do not appear to
work, power down the display again, wait at least 20 seconds, and then
power up the display. The dials/LPFKs should now work.

If a Micro Channel expansion slot is available in the RS/6000, you can order
the Graphics Input Device Adapter (feature code 2810) and appropriate
signal cables (feature code 2811). The dials and LPFK each need a signal
cable.

4.5.1.1 Setting Up the 6094-020 on a Workstation:
You will need:

 • The LPFK unit
 • The plug-in power supply
Graphics Peripherals 49

 • The cable that can accept power cord and plug into serial port on
workstation

The first step is to put the hardware together; the LPFK should light when the
DIN cable is plugged in last. You may need small black cable on the 5xx
workstation to get to the 25 pin D-shell.

Use SMIT to add a tty:

 • Choose the parent from the list corresponding to the port you plugged the
device into.

 • Select the port number (it can be either s1 or s2).
 • The terminal type is dumb.
 • Disable login.
 • Default /etc/getty.

Start the 5080 emulator with the parameter -ttyl ttyLpfkNum for example
-ttyl 0 (for tty0 or 1 for tty1) or add the following X resource:

Soft5080.ttyLpfk: 0

The LPFK should light when moved into the emulator window.

4.5.2 Additional Features
This section describes additional features that can be connected or used with
the 6094-010 dials or 6094-020 LPFK.

 • (#4000) - Attachment Kit for PAC or 6095 Graphics Processor:

A feature on the 6094-010 dials that is required when attaching to the
Peripheral Adapter Connector (PAC - #4200) or the IBM 6095 Graphics
Processor. The kit consists of a single attachment cable.

 • (#4015) - RS/6000 Workstation Attachment Kit:

This feature allows the 6094-010 dials and the 6094-020 LPFK to be
attached to an RS/6000 workstation. The kit consists of a single
attachment cable.

Attributes required: The RS/6000 workstation must already have the
Graphics Application Input Adapter installed.

 • (#4020) - RS/6000 43P Series, PC-PS/2 (9) Attachment Kit:

This feature allows the 6094-010 dials and the 6094-020 LPFK to be
attached to D serial port interfaces on IBM PC, PC-XT, PS/2 computers or
43P Series (7248-100/120/132 and 7043-140/240) and other RS/6000
models announced after September 1996. The kit consists of an attaching
50 RS/6000 Graphics Handbook

cable, a power supply, and a 3.5-inch diagnostic diskette. The attaching
cable part number is different on each of the products.

Limitations: The number of dials and LPFKs attachable at the same time to
any model of the IBM PC or PS/2 is directly related to the number of
Asynchronous Adapters installed to accommodate them. The 43P Series
machines use two 9-pin serial ports.

NOTE: #9525 must be ordered at the time of the original order placement
if a 5.25-inch diagnostic diskette is required. There are no specific codes
for power supplies; the power supply is based upon the country code of
order origin. There is no default option.

 • (#4025) - PC-PS/2 (25) Attachment Kit:

This feature allows the 6094-010 dials to be attached to the PC-AT or PS/2
computer. The kit consists of an attaching cable, a power supply, and a
3.5-inch diagnostic diskette. The attaching cable part number is different
on each of the products.

Limitations: The number of dials attachable at the same time to any model
of the IBM PC or PS/2 is directly related to the number of Dual Async or
Serial Parallel Adapters installed to accommodate them.

NOTE: #9525 must be ordered at the time of the original order placement
if a 5.25-inch diagnostic diskette is required. There are no specific codes
for power supplies; the power supply is based upon the country code of
order origin. There is no default option.

 • (#4060) - 6094/RS/6000 Serial Attachment:

This feature allows attachment of the 6094 dials Model 010 to the
Standard S1/S2 Serial Port of the RS/6000 POWERstation Models 2XX,
3XXX 5XXX and 7XX.

Feature #4060 does not include a power facility for the 6094 dials or the
6094 LPFKs. If using a 5081 or 6091 display, or POWERdisplay 16 or 19,
choose feature #4061 to obtain power for the 6094 dials or LPFKs. The
IBM POWERdisplay 16-inch monitor has an actual, viewable screen size
of 14.8 inches when measured diagonally. The IBM POWERdisplay
19-inch monitor has an actual viewable screen size of 17.3 inches when
measured diagonally. If using a display other than the 5081, 6091 or
POWERdisplay 16 or 19, choose either feature #4063 (100 volts), #4064
(120 volts) or #4065 (220/240 volts).

NOTE: If your RS/6000 POWERstation configuration already includes a
6094 Serial Attachment Cable, 6094 Serial Power Cable, or 6094 Power
Supply, the 4060, 4061, 4063, 4064, or 4065 features are not required.
Graphics Peripherals 51

Limitation: Diagnostics for the 6094 dials and 6094 LPFK cannot be
executed from a diskette when feature #4060 is installed.

However, disk-based (hardfile) diagnostics for the 6094 dials and 6094
LPFK can be executed after these devices have been configured.

Once a standard serial port has been configured to support the 6094 dials
or the 6094 LPFK, the remaining standard serial port will support only a
6094 dials or 6094 LPFK.

 • (#4061) - 6094/RS/6000 Serial Attachment Display Power Cable:

This feature allows the connection of 6094 dials Model 010 to the power
source provided by the 5081, 6091, or POWERdisplay 16 or 19 Monitor.
The IBM POWERdisplay 16-inch monitor has an actual, viewable screen
size of 14.8 inches when measured diagonally. The IBM POWERdisplay
19-inch monitor has an actual, viewable screen size of 17.3 inches when
measured diagonally. This feature is a dual power connection cable. Only
one feature #4061 is necessary for each RS/6000 POWERstation.

NOTE: If your RS/6000 POWERstation configuration already includes a
Serial Attachment Power Cable, no further order for feature #4061 is
required.

 • (#4063) - RS/6000 Serial Attachment 100 Volt Power Supply:

This feature is a 100 Volt Power Supply that provides power through the
serial attachment cable to the 6094 peripheral. This feature is only to be
used to power the 6094 Peripheral from a facility 100 volt power source.
Quantity: One power supply is needed for each 6094-010 or 6094-020
Peripheral when the Serial Attachment Display power cable (#4061)
cannot be used.

 • (#4064) - RS/6000 Serial Attachment 120 Volt Power Supply:

This feature is a 120 Volt Power Supply that provides power through the
serial attachment cable to the 6094 peripheral. This feature is only to be
used to power the 6094 Peripheral from a facility 120 volt power source.
Quantity: One power supply is needed for each 6094-010 or 6094-020
Peripheral when the Serial Attachment Display power cable (#4061)
cannot be used. Maximum: Two (2) per workstation. Limitations: See
Limitations. Cable Orders: None. Field Installable: Yes. Prerequisites:
None. Co-requisites: For RS/6000 orders, Serial Attachment Cable
(#4060). Customer Setup: Yes.

 • (#4065) - RS/6000 Serial Attachment 220/240 Volt Power Supply:

This feature is a 220/240 Volt Power Supply that provides power through
the serial attachment cable to the 6094 peripheral. This feature is only to
be used to power the 6094 Peripheral from a facility 220/240 volt power
52 RS/6000 Graphics Handbook

source. Quantity: One power supply is needed for each 6094-010 or
6094-020 Peripheral when the Serial Attachment Display power cable
(#4061) cannot be used.

 • (#4200) - Peripheral Adapter Connector:

The Peripheral Adapter Connector (PAC) is an external passive device
that allows attachment of multiple IBM graphics peripheral devices, such
as the 6094 Model 010 dials, 6094 Model 020 LPFK, or 6094 Model 030
Spaceball, to RS/6000 workstations through the serial ports, S1 and S2.
The PAC eliminates the need for individual external power sources for
each attached peripheral by using the required power through the
system's dedicated tablet port. The feature includes a 9-pin D-shell serial
port attachment cable to be used exclusively on the RS/6000 7025-F40,
7043-140 and 240 workstations.

CAUTION: The use of this feature on NON-SUPPORTED systems could
cause damage to the system unit due to excessive power requirements
through the tablet port.

NOTE: 6094 feature 4000 (Peripheral Cable) is required for new
peripherals. It is also required when the PAC replaces an existing external
power supply (black power pack). This cable feature is required for each
peripheral that is used.

 • Attachment Cable (P/N 6247457):

Used to connect the 6094-020 LPFK to the LPFK to the PAC (#4200) and
also to the 6095 Graphics Processor through the Peripheral Connector
Assembly (PCA) under the 5081 or 6091 displays.

 • Attachment Cable (P/N 39F8228):

Used to connect the 6094 Lighted Programmable Function Keyboard
Model 020 to the Standard Serial Port of the RS/6000. See 6094/RS/6000
Serial Attachment (#4060) in 4.5.2, “Additional Features” on page 50.

 • Attachment Cable (P/N 39F8302):

Used to connect the 6094 Lighted Programmable Function Keyboard
Model 020 to the power source provided by the 5081 or 6091 Monitor. See
6094/RS/6000 Serial Attachment Power Cable (#4061) in 4.5.2,
“Additional Features” on page 50.

 • Attachment Cable (P/N 6247480):

Used to connect the 6094-020 LPFK to the Graphics Application Input
Adapter (#2810) of the IBM RS/6000 POWERstation.

 • Attachment Cable (P/N 39F8228):
Graphics Peripherals 53

Used to connect the 6094-020 LPFK to the Serial Port of the IBM PS/2
system and/or to the Async Communications Adapter of the IBM PC or
PC-XT.

 • Attachment Cable (P/N 39F8229):

Used to connect the 6094-020 LPFK to the Dual Async Adapter of the IBM
PS/2 system and/or the Serial Parallel Adapter of the IBM PC-AT.

 • Power Supply (P/N 74F3089):

100 volt power supply that must be used in conjunction with an attachment
cable when attaching the 6094 to any model of the IBM PS/2 or RS/6000
POWERstation.

 • Power Supply (P/N 6247468):

120 volt power supply that must be used in conjunction with an attachment
cable when attaching the 6094 to any model of the IBM PS/2 or RS/6000
POWERstation.

 • Power Supply (P/N 6247469):

220/240 volt power supply that must be used in conjunction with an
attachment cable when attaching the 6094 to any model of the IBM PS/2
or RS/6000 POWERstation.

 • Power Supply (P/N 6247470):

220/240 volt power supply that must be used in conjunction with the
attachment cable when attaching the 6094 to any model of the IBM PS/2
or RS/6000 POWERstation to be used in the United Kingdom.

 • Diagnostic Diskette (P/N 39F8224):

3.5-inch diagnostic diskette that MUST be used when attaching the
6094-020 LPFK to any model of the IBM PC or PS/2 with a 3.5-inch disk
drive.

 • Diagnostic Diskette (P/N 39F8225):

5.25-inch diagnostic diskette that MUST be used when attaching the
6094-020 LPFK to any model of the IBM PC with a 5.25-inch disk drive.

4.6 The Spaceballs

The Spaceball provides users with an easier, more intuitive way to interact
with models and images displayed by their applications. This type of
interaction makes it easier and more productive for users to manipulate and
control the viewing of their data. There are two different models available for
the RS/6000 systems.
54 RS/6000 Graphics Handbook

4.6.1 The IBM 6094 Model 031 Spaceball
The Spaceball is a 3D Input Device that puts 3D manipulation into your
hands. Simply by pressing with your fingertips, to push, pull or twist the ball,
you can rotate and view a computer-generated model from many different
angles, manipulating the on-screen image as if you were grasping and
handling it without any intermediate controls. This simple, intuitive interaction
makes it easier and more productive for you to zoom, pan and rotate your
model data.

A high-performance, 3D input device that attaches to all models of the
RS/6000 workstation family, the Spaceball provides six degrees of freedom
and allows complete interactive spatial control, including simultaneous
translations and rotations about the X, Y and Z axes. In addition, the
Spaceball gives you the ability to lock an object in motion along one axis. Its
fully customizable interface allows you to create and modify button functions.
Using online help, you can set up groups of functions for multiple user
configurations, or modify individual sensitivity settings for panning, zooming
and rotating.

The Spaceball is ideally suited for a wide variety of user-written applications
requiring 3D input. Applications can offer Spaceball users additional
functionality, including selectable viewpoints (object control mode, eyepoint
control mode and orbit mode), the ability to constrain movement of an object
within a certain boundary, and the ability to replay an object’s movements.

Figure 7. The IBM 6094-031 Spaceball with Stealth Black Feature

Here are some of its characteristics:
Graphics Peripherals 55

 • LPFK support - provides the functionality of LPFKs through software
emulation, allowing you to have one less input device and one more
available port on the system.

 • Movable ball control - increases precise intuitive control, making it easier
to apply force equally in any direction.

 • The 6094 Model 031 does not require an external power source. The new
technology uses minimal power acquired through the system serial port.

 • The 6094 Model 031 is enhanced by a new SpaceWare 7.4.7 AIX(R)
driver with many new functions. It delivers a fully customizable interface
that allows users to create and modify button functions. This allows
execution of user-defined controls, it can create groups of functions for
multiple-user configurations, and even modify individual sensitivity
settings for panning, zooming and rotating - complete with online help.

The 6094-031 Spaceball 3D Input Device Installation and User’s Guide is
shipped with the product. This product is fully described in the announcement
letter #198-157.

4.6.2 The 6094 Spaceball Model 040
The 6094 Spaceball Model 040 does not support dials emulation. It is not
intended to be a replacement for the Model 031. The Model 040 is
recommended for use when the application has provided support for full
Spaceball support.

Here are some of its characteristics:

 • Six degrees of freedom:

The Spaceball allows complete interactive spatial control, simultaneous
translations and rotations about the X, Y, and Z axes.

 • Dominant axis filter:

Allows you to lock in motion along pure X, Y or Z axes for finer control of
larger images.

 • SoftButtons user interface:

You can select functions from the on-screen, SoftButton pop-up menu,
allowing you to focus your complete attention on the screen and on your
design.

 • Ease of use:

The ergonomic design coupled with the ability to adjust the ball sensitivity
encourages a very natural, relaxed hand position and helps eliminate arm
56 RS/6000 Graphics Handbook

or hand stress and fatigue while encouraging proper hand positioning on
the ball.

 • The 6094 Model 040 does not require an external power source.

4.7 Magellan

The 6094-600 Magellan is a 3D input device that allows simultaneous, six
degrees of freedom control with one hand. It is used to help view a
computer-generated object or model from any angle. It unifies the features of
a conventional 2D mouse with those of a device for interactive motion control
of 3D graphics in up to six degrees of freedom. The Magellan units are
serially attached through the serial ports and conform to the RS-232
architecture. Magellan is fully described in announcement letter #197-278.

Figure 8. Magellan

4.8 Stereographics Capabilities

Stereo viewing is a method used to add depth to an image rendered on the
two-dimensional surface of a monitor. It is used to enhance the 3D effects of
various applications by providing support for stereoscopic viewing. For a
good review of 3D and stereoscopic concepts and development see
http://www.qualixdirect.com/html/chapter1.html

There are two elements that you need to take advantage of a stereographics
environment:

 • A graphic adapter capable of output in stereo mode. Table 3 on page 32
provides the list of adapters supporting stereo mode.
Graphics Peripherals 57

 • Active shutter glasses that alternately block the view for one eye and then
the other as the image is drawn. The application must be written to take
advantage of this functionality. IBM does not sell these glasses. See
http://www.stereographics.com for details regarding this device.

4.8.1 How to Connect the Emitter
The emitter plugs into the mini-DIN connector on the GXT550P, GXT800M,
GXT800P, and GXT3000P graphics accelerator cards. You need to ensure
that you have the correct emitter for the adapter you are using.

To install the emitter on a system with a GXT3000P Graphics Accelerator,
shut down and remove power from the system. This prevents a blown fuse in
the emitter. After power has been removed, insert the mini-DIN cable end into
the graphics adapter. When you reboot the system, the emitter is detected,
and the graphics adapter is auto configured for 120 Hz operation.

Figure 9. The StereoGraphics CrystalEyes Glasses and Emitter
58 RS/6000 Graphics Handbook

Part 2. Software
© Copyright IBM Corp. 1999 59

60 RS/6000 Graphics Handbook

Chapter 5. X11, Motif and CDE

This chapter briefly describes the 2D environment provided with every Risc
System/6000. This 2D environment is made up of several APIs, X Windows,
Motif, and CDE. Since, there are many other useful sources of information,
this chapter focuses on describing the filesets to install to obtain the desired
functions. The second part contains answers to frequently asked questions.

5.1 The 2D Environment

Since its introduction in 1990, the AIX operating system includes a graphical
environment, including the X11 (that is the X server, the associated libraries
and clients) and Motif (that is the window manager and application). Version
3.1 of AIX included X11R3 with Motif 1.0 and has evolved to X11R4 with Motif
1.1 and then to X11R5 and Motif 1.2.3. The latest version of AIX 4.3 includes
X11R6 and Motif 2.1. Introduced with AIX Version 4 was the COSE Desktop,
also known has CDE.

5.1.1 Configuration
When you set up your system, the installation process will automatically
detect any graphic adapter installed on your system and add the correct
filesets to drive this adapter, as well as the base filesets to obtain the
graphical environment. The default is to have this graphical environment at
boot time. Let’s see now what files are included in the filesets for this 2D
environment and their associated functions so you will know which one to
install if you want to add new functions.

5.1.1.1 Filesets
Here is the description for the filesets associated with the 2D graphical
environment:

X11.Dt — Includes all the components for the CDE environment. The minimal
installation includes:

X11.Dt.ToolTalk AIX CDE ToolTalk Support

X11.Dt.bitmaps AIX CDE Bitmaps

X11.Dt.helpmin AIX CDE Minimum Help Files

X11.Dt.helprun AIX CDE Runtime Help

X11.Dt.libAIX CDE Runtime Libraries

X11.Dt.rteAIX Common Desktop Environment (CDE) 1.0
© Copyright IBM Corp. 1999 61

You can also decide to add these optional filesets:

X11.Dt.helpinfo AIX CDE Help Files and Volumes

X11.Dt.xdt2cde Migration Tool from the xdt to the CDE environment

X11.Dt.adt AIX CDE Application Developers’ Toolkit

X11.Dt.compat AIX CDE Compatibility to the earlier version of the
desktop

X11.adt Includes the necessary files for developing
applications for the X11 environment. It includes:

X11.adt.bitmaps AIXwindows Application Development Toolkit
Bitmap Files

X11.adt.ext AIXwindows Application Development Toolkit for X
Extensions

X11.adt.imake AIXwindows Application Development Toolkit imake

X11.adt.include AIXwindows Application Development Toolkit
Include Files

X11.adt.lib AIXwindows Application Development Toolkit
Libraries

X11.adt.motif AIXwindows Application Development Toolkit Motif

X11.apps Includes most of the default X windows clients
applications. Some are installed by default:

X11.apps.clients AIXwindows Client Applications

X11.apps.config AIXwindows Configuration Applications

X11.apps.custom AIXwindows Customizing Tool

X11.apps.msmit AIXwindows msmit Application

X11.apps.rte AIXwindows Runtime Configuration Applications

X11.apps.aixterm AIXwindows aixterm Application

X11.apps.xterm AIXwindows xterm Application

X11.apps.util AIXwindows Utility Applications

But you can decide to add these additional filesets:

X11.apps.pm AIXwindows Power Management GUI Utilities

X11.apps.xdm AIXwindows xdm Application

X11.apps.pcmcia AIXwindows PCMCIA GUI Utility
62 RS/6000 Graphics Handbook

X11.base It includes the core files for X11, the X server, the
libraries, the directories, or the shared memory
transport extensions.

X11.compat It contains all the filesets that provide compatibility
with older versions of X11 or Motif. Those
compatibility environments are valid for X11R3,
X11R4, or X11R5 and Motif 1.0, Motif 1.1.4, or Motif
1.2

X11.fnt It includes the fonts and the font utilities needed by
the X11 environment. The default fonts are installed
based on the specification for your selected
language, the example for a default language of
ISO8859-1 would be:

X11.fnt.coreX AIXwindows X Consortium Fonts

X11.fnt.defaultFonts AIXwindows Default Fonts

X11.fnt.iso1 AIXwindows Latin 1 Fonts

X11.fnt.util AIXwindows Font Utilities

But you can add any other fonts filesets:

X11.fnt.iso2 AIXwindows Latin 2 Fonts

X11.fnt.iso3 AIXwindows Latin 3 Fonts

X11.fnt.iso4 AIXwindows Latin 4 Fonts

X11.fnt.iso5 AIXwindows Cyrillic Fonts

X11.fnt.ibm AIXwindows Arabic Fonts

X11.fnt.iso7 AIXwindows Greek Fonts

X11.fnt.iso8 AIXwindows Hebrew Fonts

X11.fnt.iso9 AIXwindows Turkish Fonts

X11.fnt.Gr_Cyr_T1 AIXwindows Greek-Cyrillic Type1 Fonts

X11.fnt.ibm1046_T1 AIXwindows Arabic Type1 Fonts

X11.fnt.iso_T1 AIXwindows Latin Type1 Fonts

X11.fnt.iso8_T1 AIXwindows Hebrew Type1 Fonts

X11.fnt.ksc5601.ttf AIXwindows Korean KSC5601 TrueType Fonts

X11.fnt.ucs Includes support for the Unicode fonts

X11.info Up to AIX Version 4.2.1, this fileset provides the
graphical environment for exploring the AIX
X11, Motif and CDE 63

documentation. This fileset is not needed with AIX
Version 4.3, where the documentation is HTML
based.

X11.motif Includes the libraries and binaries for the Motif
environment. Those filesets are installed by default.

X11.samples Includes the samples provided by the X consortium.
It can help developers learning how to develop
applications, but it also provides useful tools for end
users.

X11.samples.lib.Core AIXwindows Sample X Consortium Core
Libraries Binary /Source

X11.samples.common AIXwindows Imakefile Structure for
Samples

X11.samples.apps.aixclients AIXwindows Sample AIX Clients Source

X11.samples.apps.clients AIXwindows Sample X Consortium Clients
binary/Source

X11.samples.apps.demos AIXwindows Sample X Consortium Demos
Source

X11.samples.apps.motifdemos AIXwindows Sample Motif Demos Source

X11.samples.doc AIXwindows Sample Documents Source

X11.samples.ext AIXwindows Sample X Extensions Source

X11.samples.fnt.util AIXwindows Sample Font Server Utilities
Source

X11.samples.rgb AIXwindows Sample Color Database
Source

X11.vfb Includes the code to use the X Virtual Frame Buffer
described Chapter 6, “The X Virtual Frame Buffer and
Softgraphics” on page 75.

X11.vsm Includes the components of the Visual System
Management.

5.1.2 Answers to Frequently Asked Questions
This section will now focus on trying to answer the most frequently asked
questions.
64 RS/6000 Graphics Handbook

5.1.2.1 How Do I Manage Several Graphics Adapters?
Yes, you can have multiple graphics adapters connected to your system. See
Chapter 2, “The Graphics Adapters” on page 11 for the maximum number of
adapters you can have on your system. The first thing to do is to list those
adapters and to decide which one will be the default adapter. The default
adapter will be the one on which the ASCII or the graphic login will be
displayed. Remember, even if you have multiple graphics adapters and
screens, you still have only one keyboard and mouse; so only one screen is
active at a time.

The pair of commands, lsdisp and chdisp, will list the adapters connected on
your systems.

The chdisp command allows to change the default graphic adapter. In our
case the default graphics adapter is the IBM Personal Computer Power
Series S15 adapter. If we decide that we want to change that to the E15
adapter, we use the chdisp command, and we can also decide if we want to
change adapters for this session only and get back to the S15 adapter after
this session, or if we want to pick the E15 graphic adapter but only after
reboot, and that is the role of the -d and -p options.

lsdisp

DEV_NAME SLOT BUS ADPT_NAME DESCRIPTION
======== ==== === ========= ===========
iga0 C0 pci E15 E15 Graphics Adapter
gga0 01 pci S15 IBM Personal Computer Power Series S15 Graphics
Adapter

 Default display = gga0
X11, Motif and CDE 65

Finally, the chdisp command should run from the lft, but redirecting the input
allows you to use this command from any session.

The next part of the question may be, "How do I start my X server on one
screen rather than the other or on both at the same time?" The default with
the latest versions of AIX starts the X server on every screen connected to
the system, and the mouse crosses the screen limits seamlessly. From AIX
Version 4.2.1, the CDE window manager is able to display a front panel on
each of the screen parts of the X server (refer to AIX Version 4.2 Differences
Guide, SG24-4807). So, the real question is now how to start the server on
only one screen. The answer is to use the -P option of the X command that
allows you to organize your screens as a matrix of rows and columns; then
you access each screen by row and column number. If you want to define
only one screen, choose a matrix with one row and one column and add the

chdisp -help
Usage: chdisp [-dDeviceName] [-pDeviceName]
 Changes the default display.

 -d Changes the default display for this session.
 -p Changes the default display in the database. This
 is effective at the next IPL.
 DeviceName is the logical name of the display. This is
 the name in the first column of output of the lsdisp command.
chdisp -p iga0
lsdisp

DEV_NAME SLOT BUS ADPT_NAME DESCRIPTION
======== ==== === ========= ===========
iga0 C0 pci E15 E15 Graphics Adapter
gga0 01 pci S15 IBM Personal Computer Power Series S15 Graphics
Adapter

 Default display = iga0

chdisp
chdisp: 0468-002 Run this command only at an LFT workstation.
chdisp < /dev/lft0
Usage: chdisp [-dDeviceName] [-pDeviceName]
 Changes the default display.

 -d Changes the default display for this session.
 -p Changes the default display in the database. This
 is effective at the next IPL.
 DeviceName is the logical name of the display. This is
 the name in the first column of output of the lsdisp command.
66 RS/6000 Graphics Handbook

-P11 display name to the command line. Here is as example of how to start
the server on the display connected to the iga0 adapter:

If you are using CDE, you will have to modify the X server’s file in the
/etc/dt/config directory to add this -P option.

5.1.2.2 How Do I Change My Display Resolution?
The resolution you can obtain on your screen depends on two factors: the
graphic adapter on your system and the display itself. In order to specify the
maximum resolution for your adapter, you first have to specify the type of
display you are using. Use smit chdisptype to associate your display with its
graphic adapter.

Figure 10. The SMIT chdisptype Screen

xinit -- -P11 iga0
X11, Motif and CDE 67

Then, you can use smit chres_refrt to select the best resolution and refresh
rate.

Figure 11. The SMIT chres_refrt Screen

Even if you can run this command from any session, you will have to quit and
reenter the graphical environment for the changes to take effect. Within CDE,
that implies logging out of your CDE session and clicking on the Reset Login
Screen menu under the Options button.

5.1.2.3 How Do I Specify if I Want a Graphic Login Screen?
Within AIX, you can decide whether you will have a graphical environment at
boot time and if you want a graphical login screen (with CDE) or if you want to
keep the regular ASCII screen. Use the smit dtconfig command to customize
your environment.
68 RS/6000 Graphics Handbook

Figure 12. The SMIT dtconfig Screen

5.1.2.4 How Do I Add Extensions to the Server?
If you decide that you will use 3D API or special functions of the X server,
chances are that you will have to configure an X server extension (refer to the
AIX Version 4.2 Differences Guide, SG24-4807, for a complete description of
X server extensions). These extensions are functions that are not part of the
X server, but can be added if you need them. There are several ways to
indicate which extensions to add the X server. Those extensions are
referenced in two files located in /usr/bin/X11. The first file is static_ext, and it
describes the extensions that are loaded automatically each time the X server
is started. The second one is dynamic_ext, and it contains all possible
extensions for the X server. After that, you control from the command line or
by the EXTENSIONS environment variable which one to load.

A typical line would look like this:

abx /usr/lpp/X11/bin/loadAbx

Where abx is the short name of the extension and /usr/lpp/X11/bin/loadAbx is
the location of the module to be loaded.

If an extension is not specified in the file static_ext, you must use the -x
option on the X command:

xinit -- -x abx -x mbx
X11, Motif and CDE 69

If you specify an extension which is not installed, the X server will not start.
After the X server has started, you can use the xwininfo command to see
which extensions are really loaded.

5.1.2.5 How Do I Configure My CDE Login Screen?
Figure 13 is an example of the default CDE login screen in AIX Version 4.3.2.

Figure 13. Example of the Default CDE Login Screen

You may decide that you want to customize this screen with your own logo or
text. This is done by modifying the X resources file. The template for this file
is located in the /usr/dt/config/$LANG directory. Copy this file into
/etc/dt/config/$LANG directory and change the entries that command the logo
file name, color, fonts, or message.

For example, to change the logo, modify the resource:

Dtlogin*logo*bitmapFile: < your file name location >

To change the welcome message, modify the resource:

Dtlogin*greeting.labelString: < Your welcome message>

The file name that you specify for the logobitmapfile name must contain a
valid pixmap. One of the easiest ways to create such a file is to use the
icon editor included with CDE. You can display any image on the screen
and then grab this image from the icon editor. The last step is to save that
image into the desired location.

Note
70 RS/6000 Graphics Handbook

To change the fonts, modify the resource:

Dtlogin*labelFont: <your favorite font>

Dtlogin*textFont: <your favorite font>

Dtlogin*greeting.fontList: <your favorite font>

The resulting CDE login screen could look like the following figure:

Figure 14. A Customized CDE Login Screen

To obtain more information on how to customize and use the other
components of CDE, refer to the AIX Version 4 Desktop Handbook,
GG24-4451.

5.1.2.6 How Do I Change X Resources?
An X resource is a property for an object that can be defined either in the
source code of the application using this object or in many exterior
configuration files. The value for this resource can then be set in the program
and then customized by users. Users can specify from the command line, for
example, the background color for an aixterm, by specifying the -bg option.
But there are many other locations that can be checked to find out what this
color can be. Here is the list of all the locations inspected when you start an
aixterm:

/usr/lpp/X11/defaults/$LANG/Xdefaults This is the template if you
have implemented an
international environment.

 /usr/lpp/X11/defaults/Xdefaults This is the template for a
common environment.
X11, Motif and CDE 71

/usr/lib/X11/$LANG/app-defaults/Xdefaults This is the default system
location to specify system
wide resources for users
based on their language
environment.

/usr/lib/X11/app-defaults/Xdefaults This is used for an
international environment.

/usr/lpp/X11/defaults/app-defaults/Xdefaults This is the same as
/usr/lpp/X11/defaults/Xdefaults
since they are linked.

/usr/lpp/X11/defaults/$LANG/Aixterm This is specific for the
aixterm command and is
based on the $LANG.

/usr/lpp/X11/defaults/Aixterm This is specific to the
aixterm command, but does
not include the $LANG
variable.

/usr/lib/X11/$LANG/app-defaults/Aixterm This adds the app-defaults
subdirectory.

 /usr/lib/X11/app-defaults/Aixterm This is the default
systemwide location.

$HOME/$LANG/Aixterm This is located in the home
directory if you have
implemented an
international environment.

$HOME/Aixterm This is for a common
environment.

$HOME/$LANG/aixterm You can spell aixterm with
uppercase ’A’ or not.

$HOME/$LANG/.Xdefaults This is the .Xdefaults file
based on your $LANG
variable.

$HOME/.Xdefaults This is the most used file.

$HOME/$LANG/.Xdefaults-displayname You can also specify a
different file based on the
display where you display
your applications.
72 RS/6000 Graphics Handbook

$HOME/.Xdefaults-displayname Same thing as the previous
item but without the $LANG
subdirectory.

$XENVIRONMENT The file you have specified
in the $XENVIRONMENT
variable.
X11, Motif and CDE 73

74 RS/6000 Graphics Handbook

Chapter 6. The X Virtual Frame Buffer and Softgraphics

This chapter discusses two features included in AIX that belong to the
software but are also hardware related since they will either fully or partially
replace the hardware. The X Virtual Frame Buffer allows an application to
render into the main memory of the computer instead of the hardware graphic
adapter, and Softgraphics allows an application to use advanced 3D
functionalities on a 2D adapter.

6.1 The X Virtual Frame Buffer

IBM has enhanced the AIX X server to support a technology called the X
Virtual Frame Buffer. The X Virtual Frame Buffer (XVFB) allows the X server
to initialize and run without the presence of any physical graphics adapter. In
the past, the X server has required one or more graphics adapters in order to
run and would exit with an error if none were present.

Furthermore, in a standard X Window System environment, each 3D
application that is running on a system must share the same hardware frame
buffer. While this is fine for viewing clients locally, it is bad for viewing clients
remotely when the graphics windows overlap in the screen space. This
overlap causes the rendering to be serialized and slows overall performance.

Utilizing the XVFB, each application has a private 3D rendering area. Since
there is no window overlap, rendering can take place in parallel. Of course,
there is a downside for any locally attached display. You cannot see the
image on the screen. It must be displayed over the network to be viewed.

The XVFB environment, shipped with the AIX operating system, is an
environment where an application renders images on a server machine.
These images are then distributed to viewing stations on a network, saved to
a database, or used in some other way.

The XVFB environment fills the need for a method to facilitate viewing 3D
graphics on a low-end system for casual users.

The XVFB software is supported on AIX Versions 4.1.5, 4.2.1, and 4.3.1 or
later. The XVFB is also supported on the RS/6000 SP. You need to install the
X11.vfb package. It requires approximately 1 MB. It will be necessary to
reboot the system after installing this package as it requires a kernel
extension to be loaded at boot time.
© Copyright IBM Corp. 1999 75

6.1.1 Installing XVFB
This section describes how to install the software for XFVB on various levels
of AIX.

6.1.1.1 AIX 4.1.5
XVFB on AIX 4.1.5 is installed from the following filesets.

 • U454863 - OpenGL.OpenGL_X.dev.vfb.04.01.0005.0000
 • U454864 - X11.vfb.04.01.0005.0000

Two PTFs are needed for XFVB to fix a window resizing problem:

 • U456568 - OpenGL.OpenGL_X.dev.vfb.4.1.5.2
 • U455198 - OpenGL.OpenGL_X.rte.soft.P1.4.1.5.8

6.1.1.2 AIX 4.2.1
XVFB on AIX 4.2.1 is installed from the following filesets.

 • U455397 - OpenGL.OpenGL_X.dev.vfb.04.02.0001.0000
 • U455398 - X11.vfb.04.02.0001.0000

Two PTFs are needed for XVFB to fix a window resizing problem. They are
available on fixdist:

 • U456210 - OpenGL.OpenGL_X.dev.vfb.4.2.1.2
 • U456371 - OpenGL.OpenGL_X.rte.soft.4.2.1.8

6.1.1.3 AIX 4.3.0
XVFB on AIX 4.3.0 is installed from the following filesets.

 • U454163 - OpenGL.OpenGL_X.dev.vfb.04.03.0000.0000
 • U454162 - X11.vfb.04.03.0000.0000

Two PTFs are needed to fix a window resizing problem. They are not
available. There is no plan to create these two PTFs for AIX 4.3.0 at
Austin. To use XVFB with AIX 4.3, you must migrate to AIX 4.3.1.

If the PTF U452591 is installed, CATweb Navigator Version 1 runs OK.

 • U452591 - OpenGL.OpenGL_X.rte.soft.4.3.0.1

6.1.1.4 AIX 4.3.1
XVFB on AIX 4.3.1 is installed from the AIX 4.3.1 product CDs. Install the
following filesets:

 • OpenGL.OpenGL_X.dev.vfb.04.03.0001.0000
 • X11.vfb.04.03.0001.0000

Two PTFs are needed to fix a window resizing problem. They are available
on fixdist:
76 RS/6000 Graphics Handbook

 • U456096 - OpenGL.OpenGL_X.dev.vfb.4.3.1.1
 • U456079 - OpenGL.OpenGL_X.rte.soft.4.3.1.1

6.1.1.5 AIX 4.3.2
XVFB on AIX 4.3.2 is installed from the AIX 4.3.2 product CDs. Install the
following filesets:

 • OpenGL.OpenGL_X.dev.vfb.04.03.0002.0000
 • X11.vfb.04.03.0001.0000

6.1.2 Starting the XVFB
The XVFB is loaded into the X server with the -vfb flag.

/usr/bin/X11/X -force -vfb -x abx -x dbe -x GLX

This will start up the X server without using the graphics adapter if it is
present as well as load the OpenGL extensions to the X server.

You can also use the xinit command which will not only start the X server but
also the window manager.

/usr/bin/X11/xinit -- -force -vfb -x abx -x dbe -x GLX

You can also add the -vfb flag to the EXTENSIONS line in your .xserverrc file.

If you desire to have the XVFB effective at system boot, the system
administrator can add an entry in the /etc/inittab file. The following entry will
cause the X server to be started at system boot time as well as cause it to be
restarted automatically if the server ever exits or dies.

xvfb:2:respawn:/usr/bin/X11/X -force -vfb -x abx -x dbe -x GLX
>/dev/null

You can run more than one X server at the same time, with the following
restrictions:

 • No COSE Desktop

 • Only a single instance of the XVFB X server

 • Only a single instance of the X server running to a graphics adapter

If you have a system with a graphics adapter, and you want to run an XVFB X
server and an X server to your graphics adapter, do the following:

Start your X server to the graphics adapter:

xinit
The X Virtual Frame Buffer and Softgraphics 77

From an xterm/aixterm, start your XVFB server:

X -vfb -x GLX -x abx -x dbe -force

6.1.3 Testing the XVFB
Since you can’t see the frame buffer when using XVFB, it is difficult to confirm
that things are working correctly. Fortunately, several X clients ship with AIX
that can be used to query and view window contents, and can be used to help
verify that XVFB is rendering the correct images.

These clients include xwininfo, xwd, and xwud.

6.1.3.1 Verifying that You Are Using XVFB
To verify that the X server is running with the XVFB, you can use the following
command:

/usr/lpp/X11/Xamples/bin/xprop -display sysname:0 -root | grep VFB

XVFB_SCREEN(STRING) = "TRUE" <== indicates XVFB is being used

6.1.3.2 Verifying that XVFB is Working
If you are unsure whether or not XVFB is installed and started properly, you
can use the following method to test XVFB. Your system needs to be on a
network, and you need access to another system (with a screen) in order to
view the contents of the XVFB.

1. On the XVFB system, start the X server using the -vfb flag.

/usr/lpp/X11/bin/X -force -vfb -x GLX -x abx -x dbe

2. On the XVFB system, run the xclock client program.

xclock -display :0.0 &

3. On the other system, make sure X is running and that clients can connect.

xhost +

4. Find the window ID for the xclock client.

xwininfo -root -tree | grep xclock

The first number (0x12345678) is the window ID.

5. On the XVFB machine, use xwd/xwud to display the client window of the
XVFB system on the other system.

xwd -id 0x12345678 | xwud -display othersystem:0.0

You should see an image of the xclock you started on the XVFB system
appear on the other system.
78 RS/6000 Graphics Handbook

6.1.4 Implementing XVFB in Application Code
XVFB allows developers to write Web-based 3D graphics applications for an
RS/6000 server without the need of a 3D graphics adapter. XVFB-enhanced
applications in most environments should achieve near linear scalability by
adding processors to multiple-processor systems. This is because each client
can render into its own frame buffer without interaction with the X server.
End-users viewing data at client systems receive the benefit of XVFB with no
changes to software or invocation methods to applications.

To enable an application to operate in a XVFB environment, the application
must be enhanced in the following way:

1. Method to extract rendered image from rendering server:

The image to be displayed should be extracted or retrieved from the
rendering server. Typically, an application would do an XGetImage for X
applications or a glReadPixels for OpenGL applications.

The application decides the frequency and type of actions that will
result in the extraction of the image from the rendering server. One
criteria might be each time the buffer is swapped using the
XdbeSwapBuffers or glXSwapBuffer subroutine.

2. Method to send commands to remote application on server platform:

To give the application input to perform, such as opening files or
transforming objects, there should be a method to send the application
input from a remote source. This could be a command language, a
socket connection, interaction with an HTTP server or some other type
of communication services. The XRecord and XTest extensions could
be used to send events to the X server and communicate with the
application through traditional X events.

3. Method to display image on a display station:

The XVFB environment should contain a method to display the
rendered image on the display station. The method of display of the
extracted image is at the discretion of the programmer. If the display
station is an AIX workstation executing an AIXwindows X server, the
extracted image could be displayed using the xwud command. The xwud
takes an image in the xwd format, creates a window, and does an
XPutImage to display the extracted image.

More sophisticated methods could include image compression and
Java display applets. The advantage of a Java display applet is that the
image could be displayed on a variety of platform types.
The X Virtual Frame Buffer and Softgraphics 79

Applications can also check for the value of the XVFB_SCREEN property in order
to determine if they are running with the XVFB. The following code shows
how this can be done:

int isXVFB(Display *display,Screen screen)
{

Atom atom,actual_type;
int actual_format,status;
unsigned long nitems,bytes_after;
unsigned char *prop;
atom = XInternAtom(display,"XVFB_SCREEN",True);
if (atom == None)

return False;
status = XGetWindowProperty(display,RootWindow(display,screen),
atom,0,100,False,atom,&actual_type,&actual_format,&nitems,
&bytes_after,&prop);
if (strcmp((char*)prop,"TRUE") == 0)

return True;
return False;

}

6.1.5 How Does It Work?
The XVFB works by providing an X DDX layer (Device-Dependent X) that
drives a software graphics adapter. In other words, the frame buffer is stored
in system memory, and all graphics processing (lines, polygons, text, and so
on) is done completely in software using the system CPU.

The XVFB is intended to be used in a “rendering server” environment. With
XVFB, X applications can run and render images, and the images can be
queried back into the application for saving to a file, distributing across the
network, saving to a database, and so on. In this mode, the X application is
not being used directly by an end user in an interactive way. Instead, the X
application is being driven remotely as a rendering server.

With no physical graphics device, there is no RAMDAC to generate RGB
signals. This means that it is impossible to connect a monitor to your system
and view the contents of the X server Virtual Frame Buffer. While this idea
takes a little while to get used to, it is a good solution for rendering server
environments, where the added expense of a physical graphics adapter and
display are not required. When you cannot see the X frame buffer directly, it
does make debugging of your application more difficult. It is suggested that
applications be developed with a physical graphics adapter and then ported
to the XVFB. X client tools like xwininfo, xwd, and xwud can be used to help
verify your application is running correctly with the XVFB.
80 RS/6000 Graphics Handbook

In addition, input devices in the XVFB environment are not required. Since
you cannot see the frame buffer, moving the mouse around and typing on the
keyboard are not very useful. Rendering server applications instead will be
driven remotely, either with direct socket communication, interaction with an
HTTP server, through CORBA connections, message passing interface
(MPI), and so on. Most applications need modifications in order to be
controlled remotely for a rendering server environment.

OpenGL is currently supported with the XVFB; however, PEX, GL 3.2 and
graPHIGS are not supported. For additional information point, your Web
browser at:

http://www.rs6000.ibm.com/solutions/interactive/rendserv.html .

6.2 CATweb and the XVFB

CATweb Navigator allows end users with Java-enabled Web browsers to view
and navigate product information created with CATIA Solutions. By using the
intuitive set of Java applets that make up the CATweb Navigator client, users
can connect to a CATweb Navigator server machine, select models for
viewing, and then view and navigate the models with a 3D viewer, 2D
schematic viewer, or a report style viewer. One CATweb Navigator server
machine can support multiple concurrently active CATweb Navigator clients.
For each CATweb client that attaches to the CATweb server, one or more
CATweb processes is started on the CATweb server to handle the requests of
that particular CATweb client. One of these CATweb processes is a 3D
rendering application. This application runs on the CATweb server and is
responsible for:

 • Loading the requested CATIA model

 • Rendering the 3D model on the fly as the CATweb client requests new
views

 • Compressing the final rendered image

 • Transferring the image to the Java CATweb client

This application uses both the X Window System and OpenGL libraries to
quickly and accurately render 3D images.

XVFB and DirectSoft OpenGL are both important new IBM technologies that
enhance the RS/6000's capabilities as a CATweb Navigator server platform.
XVFB and DirectSoft OpenGL allow CATweb Navigator server machines to
operate without expensive graphics adapters and to effectively exploit
Symmetric Multi Processing (SMP) machines. In addition, XVFB and
The X Virtual Frame Buffer and Softgraphics 81

DirectSoft OpenGL allow a CATweb Navigator server to be usable at boot
time without requiring a user to log in interactively, making it easier to set up
and administer a CATweb Navigator server. The RS/6000, AIX, XVFB,
DirectSoft OpenGL combination makes the RS/6000 the most cost-effective,
scalable, and easy to administer CATweb Navigator server platform available.

The CATweb Navigator does not use the XVFB by default. The image server
rendering is done through the X real frame buffer and all the concurrent
CATweb renderings are synchronized to share this single resource (CATweb
rendering lock).

In the XVFB mode, each CATweb process uses its own X Virtual Frame
Buffer, and the rendering synchronization is no longer necessary, thus
improving the overall performance in a multi-user environment.

You can deactivate the default CATweb rendering lock by changing the
following value in the runServerCATIA file under the directory
.../CATwebNavigator/bin:

VirtualFrameBufferOn=1 (default value = 0)

The CATweb rendering unlock will be taken into account at the next CATweb
connection.

6.2.1 DirectSoft OpenGL
DirectSoft OpenGL (DSO) is a new IBM OpenGL rendering technology for
AIX and RS/6000. Implemented to work with the XVFB, DSO was designed
specifically to enhance CATweb server performance by eliminating
extraneous interprocess communication, eliminating process context
switching overhead, and making rendering and image reading more direct
and efficient. In addition, when combined with the XVFB, DSO allows the
CATweb server to effectively exploit multiple processors in an SMP machine.

DSO is a pure software implementation of OpenGL that runs as a direct
OpenGL Context. Basically, this means that all of the CPU-intensive OpenGL
work (3D rendering) is part of the application process (not part of the X server
process). By running direct, all of the interprocess communications with the X
server are eliminated, making 3D rendering much more efficient. In addition,
the AIX operating system is not having to perform context switching between
the X server and the 3D rendering applications, making system utilization
more efficient.

Also, DSO and XVFB enable SMP machines as viable and scalable CATweb
servers. DSO actually creates a private rendering area for each 3D rendering
82 RS/6000 Graphics Handbook

application. When it comes time to render a new image, the application draws
to its private rendering area. If two CATweb clients request new images at
exactly the same time, each of the 3D rendering applications can draw new
images concurrently, each to their own private rendering area. Since multiple
3D rendering applications can draw concurrently, multiple CPUs can be
exploited concurrently. Without DSO and XVFB, the 3D rendering
applications are drawing to a physical, shared frame buffer, which means
they must take turns and operate serially. With each 3D rendering application
taking turns to draw, only a single CPU can be effectively exploited.

If you are using an OpenGL application with DirectSoft OpenGL and XVFB,
the testing scenario with xwd and xwud discussed earlier in this chapter will not
work. This is because, to increase performance, the default OpenGL
DirectSoft behavior does not blit the contents of the private frame buffer to
the X Virtual Frame Buffer. This behavior will be fine for most OpenGL
rendering server applications since the image will be queried from the private
frame buffer using glReadPixels. So, using xwd and xwud just grabs the
contents of a blank window.

To verify that DirectSoft OpenGL is working, set the
_OGL_MIXED_MODE_RENDERING environment variable to 1, and then run your
OpenGL application. This will force OpenGL to actually blit the rendered
image from the private software frame buffer to the X Virtual Frame Buffer.
Once this is done, you can once again use xwd and xwud to grab and dump
the contents of your OpenGL window. Note: It is recommended that you do
not keep this environment variable set all the time, since this will slow the
overall operation of DirectSoft OpenGL.

Applications can determine if they are using DirectSoft OpenGL by checking
the OpenGL rendering string (glGetString), and checking the OpenGL context
(glXIsDirect). The following code can be used:

int isDirectSoftOpenGL(Display *display,GLXContext context)
{

if (glXIsDirect(display,context) == FALSE)
return FALSE;

if (strcmp(glGetString(GL_RENDERER),"SoftRaster") == 0)
return TRUE;

return FALSE;
}

The X Virtual Frame Buffer and Softgraphics 83

6.3 Softgraphics

Traditionally, 3D graphics APIs were implemented using specialized graphics
hardware. In this kind of API implementation, all 3D operations are performed
on the graphics adapter. The graphics adapter offers frame buffers, additional
specialized buffers, graphics processing power, a specialized graphics
pipeline, and hardware-implemented algorithms. Geometry processing as
well as raster processing is done on the graphics adapter. This creates
applications that are strongly dependent on certain functions provided by
certain graphics hardware. Two things changed over time in the world of
technical workstations:

 • The power of workstation CPUs increased and entry-level workstations
started requiring 3D graphics capabilities because technical workstations
were now used for a wide variety of different types of applications.

 • Technically, highly specialized graphics hardware could be replaced with a
simple frame buffer adapter plus a strong CPU, system memory and
software.

But this requires a different kind of 3D API implementation. Specialized
graphics operations formerly done in hardware can now be done in software.
The API software implementation works as a glue between the application
code and the hardware. This allows you to utilize the CPU capacity and also
allows applications to be hardware independent. It offers consistent graphics
functions across all graphics adapters independent of their specific
capabilities. It therefore offers integration across hardware products.

6.3.1 What is Softgraphics?
For customers requiring 3D capability, AIX provides the facilities for the
development and execution of 3D applications using a variety of industry
standard APIs. This includes hardware-accelerated support for graPHIGS
and GL 3.2 as well as a pure software implementation of OpenGL, and
graPHIGS referred to as Softgraphics.

Softgraphics allows all 3D functions to be performed by software where the
graphics adapter is used simply as a frame buffer to display the image. This
implementation makes it possible to run 3D applications on any 2D graphics
adapter. Softgraphics performance scales with the performance of the
RS/6000 processor. The faster the system processor, the faster Softgraphics
will perform. The choice between the added price of the 3D adapter, which
provides graphics acceleration, versus the execution of all 3D functions by
the system processor, should be evaluated very carefully on an application by
application basis.
84 RS/6000 Graphics Handbook

Softgraphics provides a uniform development environment for 3D
applications on RS/6000s with entry-level graphics adapters. Programmers
can develop advanced 3D applications for the industry’s most popular APIs
which can easily be moved to any 3D graphics adapter with little or no change
to the source code.

6.3.2 Installation of Softgraphics
Softgraphics is now shipped as part of the AIX base installation. It is installed
with the following code:

 •OpenGL.OpenGL_X.rte.soft

 •PEX_PHIGS.graPHIGS.rte.soft

An installation verification program is supplied with the graPHIGS Base
Run-Time Environment fileset. Run /usr/lpp/graPHIGS/etc/runivp to start the
program.
The X Virtual Frame Buffer and Softgraphics 85

86 RS/6000 Graphics Handbook

Chapter 7. graPHIGS

This chapter describes the IBM graPHIGS product, which is one of the two
major 3D graphics rendering APIs (Application Programming Interfaces)
supported by AIX (PHIGS for AIX 4.3 is included in AIX Version 4.3).

The graPHIGS API is IBM’s implementation of the ISO/ANSI Programmer’s
Hierarchical Interactive Graphics System (PHIGS) standard, which includes a
subset of the PHIGS PLUS extensions (such as independent lighting and
shading controls, advanced primitives, and extended rendering attributes) as
well as IBM’s own extensions. The graPHIGS API is supported on the IBM
Enterprise Systems and the RS/6000 computers equipped with 2D or 3D
adapters.

7.1 Definition

To better understand the graPHIGS API, it is necessary to introduce its
predecessors: Core, GKS and PHIGS.

7.1.1 Core, GKS, and PHIGS
In 1977, a Special Interest Group on Graphics (SIGGRAPH), formed by a
committee of the Association of Computing Machinery (ACM), developed the
first recognized standard computer graphics API known as the 3D Core
Graphics System, or Core. Core, however, was not officially recognized as a
standard by groups such as the American National Standards Institute (ANSI)
or International Standards Organization (ISO). The first API to receive the
endorsement of these organizations was the Graphical Kernel System (GKS).

Though Core was used as a model during its development, GKS turned out to
be an enhanced version of Core (restricted to 2D geometry).

From the initial releases of GKS, it became apparent that a standard for 3D
graphics was needed. In response to this requirement, two separate APIs
appeared: GKS-3D and Programmer’s Hierarchical Interactive Graphics
System (PHIGS). The PHIGS API proved to be a more robust library for
graphics and utility routines and was subsequently accepted by ISO as an
international standard in 1988. PHIGS was also accepted by the ANSI
committee and was adopted by many users in the graphics community.

Extensions to PHIGS which include advanced rendering functions such as
lighting and shading are part of a new standard called PHIGS PLUS. The
© Copyright IBM Corp. 1999 87

PHIGS PLUS functional specification is complete, including a C language
binding.

7.1.2 graPHIGS
IBM’s implementation of the PHIGS standard is called graPHIGS and is
available on all graphics adapters for the RS/6000 as well as on some
Enterprise Systems platforms. Additionally, the graPHIGS API contains
extensions beyond the PHIGS and those of the proposed PHIGS PLUS
standards.

This graphics software contains a suite of advanced graphics functions for
developing complex 3D applications in technical and commercial areas,
including computer-aided design and manufacturing, industrial design,
engineering analysis, and scientific visualization.

For 3D graphics applications, the PHIGS product provides interoperability in
networked heterogeneous environments. This client/server implementation
allows you to increase productivity by distributing your 3D applications
between workstations and computer servers.

The IBM PHIGS product includes the graPHIGS API and ISO PHIGS
language bindings as well as the Graphical Kernel System-Compatibility
Option (GKS-CO), which is an extension to the graPHIGS API.

The advantages that give PHIGS its popularity are:

 • Wide range of graphics functions - from the simple geometry to the
sophisticated rendering of complex surfaces

 • Interoperable across platforms - designed on open API standards to be
fully portable

 • Multi-threaded graphics pipeline - increases selected application
performance by utilizing multiple processors simultaneously without
recompilation

 • Easy to use - includes example programs, application development tools,
and online hypertext information

Though many graPHIGS applications have migrated to OpenGL, the
graPHIGS API is still widely used, not only for CATIA but also for many
customers’ private applications.

Although the strength of graPHIGS is retained mode graphics, graPHIGS has
been extended to provide immediate mode capabilities. For an explanation of
these terms, see:
88 RS/6000 Graphics Handbook

 • Section 7.1.3, “Retained Mode Graphics” on page 89
 • Section 9.1.1, “Immediate Mode Graphics” on page 130
 • Section 7.3.3, “Explicit Traversal Control for Immediate Mode Graphics”

on page 100

7.1.3 Retained Mode Graphics
Retained mode means that the geometry is stored in an internal hierarchical
data structure for later display and modification.

An example of an application where retained mode graphics is well suited is a
simulation of the motion of a robot arm consisting of a base, two links and a
wrist element. Each portion of the arm is connected to the preceding portion;
the base to the first link, the second link to the first, and the wrist to the
second link. The data representing the physical elements of the arm and their
locations is stored in a hierarchically arranged display list. When the base is
rotated, every element is affected, and the transformation matrix which
describes the rotation can be applied globally to the arm without recalculating
the position of each link individually.

Figure 15. Retain Mode Graphics

7.1.4 Technical Content of the IBM graPHIGS Product
The graPHIGS API is architected to allow application programs to run in a
distributed environment, in the same manner as the X Window System. This
distributed capability is achieved by partitioning the graPHIGS API into a shell
(client) and a nucleus (server). The graPHIGS API shell is tightly coupled to
the application and provides communication between the application and the
nucleus. The nucleus controls the resources used by the application program,
such as graphical data storage.
graPHIGS 89

Figure 16. graPHIGS Shell and Nucleus

By utilizing the structure of the graPHIGS API, an application program may be
partitioned into several application processes. Each process has its own
shell. Collectively, they can communicate with a single graPHIGS API
nucleus to share graphics resources.

Figure 17. Distributed Capability of graPHIGS

In addition, graPHIGS provides the following functions:

 • Basic Primitives:

 • 2D and 3D text (annotation text and geometric text)
 • Markers
 • Lines

Application Shell Nucleus
(client) (server)

graPHIGS API

Display Control

graPHIGS
nucleus
(server)

graPHIGS
shell 1

graPHIGS
shell 2

graPHIGS
shell 3

Application
Process 1

Application
Process 3

Application
Process 1

Application Application
Process 2

Application
Process 1

Application
Process
90 RS/6000 Graphics Handbook

 • Polygons

 • Advanced primitives:

 • Triangle strips
 • Quadrilateral meshes
 • Concave and multi-contour polygons
 • Non-Uniform Rational B-Spline (NURBS) curves
 • Trimmed and untrimmed NURBS surfaces

 • Line-on-line highlighting

 • User-defined clipping volumes

 • Antialiased primitives

 • Transparency

 • Dithering

 • Morphing

 • Explicit traversal control (for immediate and mixed mode rendering)

 • Archiving

 • Conferencing

 • National language (font support):

 • Unicode standard
 • Traditional Chinese
 • Hangul (Korean)
 • Kanji (Japanese)

 • 12-bit visual support

 • Hardcopy support for HPGL2 devices

The graPHIGS Development Environment offers:

 • Example programs

 • Application development tools including:

 • Font editor
 • Debugger
 • Tutorial

 • Installation verification program

 • Online hypertext information
graPHIGS 91

7.1.5 ISO PHIGS
In addition to the graPHIGS API, the IBM PHIGS products include the
ISO/ANSI PHIGS Fortran and C language bindings. The current release of
IBM’s ISO PHIGS product does not fully adhere to the Federal Information
Processing Standard (FIPS) because the incremental spatial search function
is not supported. Documentation on the FIPS standard is contained in FIPS
153 available from the United States Federal Government. For complete
documentation on adherence to the ISO PHIGS standards, refer to
Introducing the graPHIGS Programming Interface, SC33-8190.

7.1.6 Graphical Kernel System (GKS)
Although the Graphical Kernel System (GKS) is a 2D graphics API, IBM’s
implementation, called the GKS-Compatibility Option (GKS-CO), is in fact an
extension to the graPHIGS API. GKS-CO adheres to the ISO/ANSI GKS
standard. IBM’s implementation delivers a level of function available in the
GKS standard known as level 2C, which is the highest level of ISO/ANSI
compatibility. Be aware that the default values in GKS-CO are based on the
graPHIGS default values and therefore may be different than those defined in
other standard versions of GKS. Both Fortran and C programming language
bindings are available for the GKS-CO on the RS/6000.

7.2 Basic Terminology and Concepts

This section briefly describes some graPHIGS terms and concepts that are
used later in this chapter and throughout the graPHIGS manuals.

7.2.1 Common Terms
Some of the most common terms used are these.

 • Primitives:

The graPHIGS API defines a graphic system architecture that enables you
to create, modify and display graphical objects. A sequence of elements
defines an object, including output primitives, attributes, and
transformations. Basic output primitive elements include lines, markers,
polygons, and text definitions.

 • Attributes:

Attributes define the characteristics of an output primitive. An attribute, for
example, may define the color or size of a polymarker primitive.

 • Structures:
92 RS/6000 Graphics Handbook

Graphical primitives and attributes group together to form structures. A
structure may represent the geometry of an object, as well as information
regarding the appearance of that object. Elements may be inserted into, or
deleted from, structures at any time in an operation called structure
editing. This editing capability minimizes the need to redefine data in order
to modify it. Structures may be linked in a number of ways, including
geometrically, hierarchically, or characteristically, according to your
application needs.

 • Input:

The graPHIGS API supports a wide range of input devices and provides
the essential tools for application interaction. Input devices operating
synchronously or asynchronously relay information to the application,
which in turn responds by defining, editing, or displaying the graphical
data. The graPHIGS API supports six classes of input devices. These
classes represent generic physical devices that differ from one another by
the type of data they return to the application. Input device classes include
the following:

 • Locator

 • Stroke

 • Valuator

 • Choice

 • Pick

 • String

 • Operating Modes:

The graPHIGS API supports three modes of interaction (Operating Modes)
that allow you to request and obtain data from a logical input device:

1=REQUEST

Your application prompts for input and then waits until the operator
either enters the requested input or performs a break action which
terminates interaction.

2=SAMPLE

Your application obtains the current values of the input device by
explicitly sampling it.

3=EVENT

An asynchronous environment is established between your application
and a chosen device. In this mode, both your application and any
graPHIGS 93

corresponding device operate independently of each other with the
help of a centralized input queue.

 • Workstations:

The term workstation refers to an abstraction of a physical graphics
device. It provides the logical interface through which your application
program controls physical devices.

The graPHIGS API provides an environment that supports multiple
workstations. How your application interacts with a particular workstation
depends on the interactive capabilities of that workstation and the design
of your application.

The graPHIGS API supports three categories of workstations: INPUT,
OUTPUT, and OUTIN. The capabilities of a workstation determine its
category. For example, an INPUT workstation, such as a digitizer,
provides only input, while an OUTPUT workstation, such as a plotter,
generates only output. The OUTIN workstation, on the other hand, is an
interactive design station that offers the capability of providing both input
and output.

On the X Window System, this workstation concept corresponds to a
window containing a graPHIGS drawable, and available workstation types
are X, XSOFT, XLIB, and XDWA.

 • Inquiry Subroutines:

Inquiry subroutines allow the application programmer to access the
program data contained in state lists, description tables or structures.
They are useful for determining both error conditions and device
characteristics.

 • States:

graPHIGS defines several states to track the environment in which your
application runs:

 • The System State:

Defines whether the graPHIGS API has been activated or deactivated
using the Open graPHIGS (GPOPPH) or Close graPHIGS (GPCLPH)
subroutines, respectively. No other subroutine calls can be accessed
until the system is open.

 • The Workstation State:

Defines whether a workstation has been activated or deactivated by
using the Create Workstation (GPCRWS) or Close Workstation (GPCLWS)
subroutines respectively.
94 RS/6000 Graphics Handbook

The graPHIGS API structure display subroutines can only be used if a
workstation is open.

 • The Structure State:

Defines whether the graPHIGS API display structure is open and able
to be modified or closed and unavailable for modification. A structure is
opened and closed with the Open Structure (GPOPST) and Close
Structure (GPCLST) subroutines. Graphics primitives and attributes can
only be created if the structure state is open.

7.2.2 Graphical Resources
The graPHIGS API system consists of graphical resources with subroutines
to control and utilize them. Graphical resources available to your application
include:

 • Structure Stores:

Collections of structures.

 • Workstations:

(See Workstation 7.2.1, “Common Terms” on page 92.)

 • Font Directories:

Collections of displayable characters, typically used for different
languages, appearances, or special-purpose user-defined symbols.

 • Image Boards:

Data collections for displaying images.

These resources are controlled by the graPHIGS nucleus (server).

7.2.3 Resources and Capabilities
A typical use of the resources and capabilities of the graPHIGS API by your
application might include the following:

 • Create graphical data:

Creating structures containing elements and attributes that define
displayed objects. Those objects may include:

 • Figures formed by lines and filled areas (such as a robot arm created
by lines in different locations and colors)

 • Text such as labels, menus of options, and status information

 • Images

 • Open and control a workstation:
graPHIGS 95

Identifying the current workstation and setting its values (such as the color
table) to those required for your application. This includes viewing
information that controls the parts of visible graphical data and their
appearance on the display.

 • Define the displayed content:

Associating structures of graphical data with a workstation so that the
workstation can draw the objects. The display content is modified by
editing structures or changing the view tables used to display the graphical
data.

 • Accept user input:

This allows you to provide input to the application, typically to change the
displayed objects. For example, to change an object, a user might pick the
object, select a choice provided by the function keys, or indicate a point or
position using a tablet.

The graPHIGS API resources and facilities let you create a graphics
application to display objects that a user can modify interactively. Your
application can run in numerous environments, and inquiry subroutines
provide information that enable your application to adapt to different
hardware capabilities.

7.2.4 Subroutines
Types of subroutines available to your application include:

 • Control subroutines:

Provide the basic control functions. These allow your application to open
and close the graPHIGS API and allocate, share, control, and free
graphical resources.

 • Structure subroutines:

Provide control of structures, which are groupings of graphical elements.
You can create, delete and modify structures. Modifications include
changes to the whole structure content (such as emptying a structure)as
well as changes to the elements in the structures (such as deleting or
adding a single element in a structure).

 • Element subroutines:

Provide the basic drawing facilities. These include primitives (such as
lines, text, filled areas, curves, and surfaces) and their attributes (color,
size, and line type).

 • Workstation subroutines:
96 RS/6000 Graphics Handbook

Provide control of a workstation’s facilities, such as setting a color table or
view table entries.

 • Display subroutines:

Provide the controls to display structure content on a workstation.

 • Input subroutines:

Provide control of a workstation's input devices so that users may provide
input to the application. For example, a user may want to pick a displayed
object, provide text from a keyboard, or provide point or stroke (multiple
points) input.

 • Image subroutines:

Define image content and controls, such as color mappings and image
display.

 • Inquiry subroutines:

Provide your application information about the capabilities, state of
resources and the systems

7.3 IBM Implementations

graPHIGS is implemented in two ways by IBM:

 • IBM Softgraphics technology

 • Hardware-accelerated graphics adapter

7.3.1 Softgraphics Technology
The Softgraphics technology uses the RS/6000 software for all graphics
rendering operations. This provides full 3D function at lower cost. (See also
6.3, “Softgraphics” on page 84.)

graPHIGS applications may use the Softgraphics technology by simply
opening a graPHIGS workstation of type XSOFT.

 • Full functionality and adapter independence:

XSOFT offers full-function graPHIGS support. This includes not only the
basic graphics functions but also includes such capabilities as HLHSR
(hidden line, hidden surface removal), lighting and shading, depth-cueing,
transparency, blending, and antialiasing. Previously, this functionality was
not available across all IBM RS/6000 workstations. It is now supported on
all past and current IBM RS/6000 graphics workstations.

 • No display hardware required:
graPHIGS 97

Unique to graPHIGS is the fact that the XSOFT pipeline and rasterizer can
be used when there is no display hardware at all. The graPHIGS IMAGE
type workstation uses the graPHIGS Softgraphics routine to produce
hardcopy output for PostScript and IOCA (IBM’s Image Object Content
Architecture) printer devices.

 • Performance:

Be aware that performance scales with the amount of CPU available.
Softgraphics graPHIGS may provide an entry-level production
environment on an RS/6000 43P 140 or 150 (with POWER GXT255P),
which is beyond the POWER GXT1000 level of performance for
applications like drafting. In the following table, PLBwire and PLBsurf
results show the 3D wire frame and solid surface performance,
respectively. The higher the number the better. For information of
performance benchmarking, see Chapter 11, “Benchmarking” on page
205.

Table 10. Example of Performance Results with Softgraphics

 • graPHIGS Shared Memory Image (GP-MIT-SHM) X Extension:

X has a limit on the size of the protocol buffer, requiring that the XSOFT
rendering target is chunked before being transferred to the X server. This
restriction impacts the visual quality of an update as well as interactive
performance. The GP-MIT-SHM X extension bypasses the client-server
protocol by transferring the rendering target in one piece through shared
memory. This solution improves the image quality and performance. (As
described below, this is valid as long as the graPHIGS nucleus and the X
server run on the same machine.)

 • Xstations and Distributed X Environments:

Whenever the graPHIGS nucleus and the X server are not executing on
the same machine, for example, Xstations, X on NetworkStations, X

Machine
Type

Graphic
Adapter

Using
Softgraphic

PLBWire PLBSurf Comments

43P-150 GXT255P Y 178.6 75.4 on AIX 4.3.2

43P-133 GXT255P Y 91.5 31.9 older machine
AIX 4.1.5

42T GXT1000-2 N 112.9 153.2 older 3D adapter
with AIX V4.1.5

42T GXT500D N 89.4 86.1 older 3D adapter
with AIX V4.1.5
98 RS/6000 Graphics Handbook

emulators on PC, and other distributed X environments, the XSOFT type
workstation cannot take advantage of the GP-MIT-SHM X extension, even
if the extension is loaded. Interactive performance of the XSOFT
workstation is severely impacted without this feature. However, the
GP-MIT-SHM X extension can be used in the distributed graPHIGS
configuration when the graPHIGS shell and nucleus are distributed but the
X server is executing on the same machine as the nucleus. Distributing
graPHIGS in this manner does not limit the performance of the XSOFT
workstation.

Figure 18. Importance of the GP_MIT_SHM Extension

On the Xstations, the X workstation type does not support lighting and
interpolated shading. The XSOFT workstation provides this support that
was not previously available. This configuration may be right for the
occasional or view-only user of an application, or for applications with low
frame rates or those that require minimal user interactions or user
interactions implemented entirely through X.

Applications also have the option to use the X workstation type to provide
interactive performance in the distributed environment and a second
XSOFT workstation to provide a more advanced rendering. This is
possible through the graPHIGS ability to share Structure Stores among
more than one workstation.

7.3.2 Hardware-Accelerated
All or part of the rendering to the graPHIGS API is done by the adapter
hardware and microcode. Section 1.2, “Different Classes of Graphics
Adapters” on page 9, describes the role of class II and III graphics adapters.

X server

XSOFT

workstation

graPHIGS
nucleus

Bad Performance

X server

XSOFT

workstation

graPHIGS
nucleus

Good Performance

with GP_MIT_SHM
extension
graPHIGS 99

7.3.3 Explicit Traversal Control for Immediate Mode Graphics
Immediate mode allows direct control of traversal processing and the
graphics resources of the workstation. The graPHIGS extension is called
Explicit Traversal Control (ETC). Using ETC enables an application to update
a portion of the model’s geometry without redrawing the entire data structure
or rerendering the entire model. Instead, only the changed portion of the
model is redrawn. Increased control over graphical resources, such as frame
buffers and the Z-buffer, is also possible through ETC.

For information about the immediate mode graphics, please see 9.1.1,
“Immediate Mode Graphics” on page 130.

7.3.4 Multi-Threaded Graphics Pipeline
Applications that use the graPHIGS API on the RS/6000 Models 240, 260,
F40, and F50 SMP workstations with supported graphics accelerators are
able to take advantage of the multiprocessor capabilities of those systems to
increase application performance. The graPHIGS API has been enhanced to
include support for a multi-threaded graphics pipeline, which will
automatically be invoked to utilize up to four processors simultaneously on
these SMPs.

Animations and interactive model manipulation would likely benefit the most
from the performance improvements. These improvements can be observed
without any changes to your application because of the graPHIGS API's
embedded client/server capabilities.

7.3.5 graPHIGS on GXT3000P PCI Graphics Accelerator
The graPHIGS API has been enhanced to improve rendering performance.
There is also support for the new high-performance RS/6000 POWER
GXT3000P PCI graphics accelerator which attaches to the RS/6000 43P
Models 150 and 260. The RS/6000 POWER GXT3000P graphics accelerator
for 3D visualization marks a breakthrough in performance and functionality
for design and visualization solutions. The graphics subsystem matched with
IBM Power3 and PowerPC-based workstations delivers outstanding speed
and performance for demanding 3D applications.

7.4 Configuration

The PHIGS for AIX 4.3 product is included in Version 4.3 of AIX. The
installation of the filesets is done with the usual system administration tools,
such as SMIT.
100 RS/6000 Graphics Handbook

7.4.1 Filesets
There are four filesets as follows:

PEX_PHIGS.graPHIGS.rte graPHIGS Runtime Environment
PEX_PHIGS.dev graPHIGS Device Dependent Software
PEX_PHIGS.graPHIGS.adt gP Application Development Toolkit
PEX_PHIGS.graPHIGS.fnt graPHIGS Fonts

The first two filesets must be installed to run any graPHIGS applications on
the system. To develop graPHIGS programs on the system, it is necessary to
install the graPHIGS Application Development Toolkit fileset.

7.4.1.1 graPHIGS Runtime Environment
The fileset PEX_PHIGS.graPHIGS.rte contains the following modules:

PEX_PHIGS.graPHIGS.rte.base Base Runtime Environment

This provides:

 • Runtime code under /usr/lpp/graPHIGS/bin/

 • Library files such as libgP.a under /usr/lib/ and /usr/lpp/graPHIGS/lib/

 • Geometric text fonts /usr/lpp/graPHIGS/fonts/afm0*.sym

 • Sample profile and X defaults file and an installation verification script
(runivp) under /usr/lpp/graPHIGS/etc/

 • An archive utility and a script to run it under, /usr/lpp/graPHIGS/bin/ and
/usr/bin, respectively

PEX_PHIGS.graPHIGS.rte.pipe Pipeline Runtime Environment

This provides Softgraphics pipeline code under /usr/lib/.

PEX_PHIGS.graPHIGS.rte.soft Soft Runtime Environment

This provides soft graphics code under /usr/lpp/graPHIGS/bin/ and
/usr/lib/.

PEX_PHIGS.graPHIGS.rte.rnuc Remote Nucleus Support

This provides command files for remote nucleus and scripts to run them
under /usr/lpp/graPHIGS/bin/ and /usr/bin/.

PEX_PHIGS.graPHIGS.rte.6098 6098 Support

This provides command files for 6098 with FDDI feature under /usr/bin/.

PEX_PHIGS.graPHIGS.rte.plot Plotter Support

This provides configuration files and utilities for plotters under /usr/lib/lpd.
graPHIGS 101

7.4.1.2 graPHIGS Device Dependent Software
The fileset PEX_PHIGS.dev provides the following device dependent
software modules:

PEX_PHIGS.dev.pci.14103c00 GXT250P/GXT255P

PEX_PHIGS.dev.pci.14105400 GXT500P/GXT550P

PEX_PHIGS.dev.pci.14105e00 GXT800P

PEX_PHIGS.dev.pci.1410b800 GXT2000P (N.A.)

PEX_PHIGS.dev.pci.14108e00 GXT3000P

PEX_PHIGS.dev.mca.8f61 GXT800M

PEX_PHIGS.dev.mca.8fbc GXT1000

PEX_PHIGS.dev.mca.8ee3 GT4

PEX_PHIGS.dev.buc.00004002 GXT500

7.4.1.3 graPHIGS Application Development Toolkit (ADT)
The fileset PEX_PHIGS.graPHIGS.adt contains the following modules of the
graPHIGS Application Development Toolkit:

PEX_PHIGS.graPHIGS.adt.include graPHIGS ADT Include Files

This provides include files, afm*.h, under /usr/include/.

PEX_PHIGS.graPHIGS.adt.samples graPHIGS ADT Samples

This provides the following subdirectories under
/usr/lpp/graPHIGS/samples/.

 • Samp/ contains simple sample sources in C, FORTRAN, Pascal.
 • Gettingstarted/ contains sample programs written in The graPHIGS

Programming Interface: Getting Started, SC33-8198.
 • Widgets/ contains graPHIGS widget and its samples.
 • The others, such as cbinding/, contain other samples.

PEX_PHIGS.graPHIGS.adt.clients graPHIGS ADT Clients

This provides the graPHIGS fonts editor (fe), a sample debugger (gPdbg),
and a collection of slicing and contouring demo programs (sliceriso).

PEX_PHIGS.graPHIGS.adt.tutor graPHIGS ADT Tutorial

This provides gPtutor and its README under
/usr/lpp/graPHIGS/clients/gPtutor/. gPtutor is linked to /usr/bin/gPtutor.

PEX_PHIGS.graPHIGS.adt.gks graPHIGS ADT GKS Library

This provides /usr/lib/libgksco.a containing the GKS-CO Library
102 RS/6000 Graphics Handbook

7.4.1.4 graPHIGS Fonts
The fileset PEX_PHIGS.graPHIGS.fnt contains the following fonts modules:

PEX_PHIGS.graPHIGS.fnt.JP Kanji (Japanese) Fonts

PEX_PHIGS.graPHIGS.fnt.KR Hangul (Korean) Fonts

PEX_PHIGS.graPHIGS.fnt.SC_EUC Simplified Chinese Font, EUC
based

PEX_PHIGS.graPHIGS.fnt.TW Traditional Chinese Fonts

PEX_PHIGS.graPHIGS.fnt.uni Unicode Fonts

Each provides the corresponding font files under /usr/lpp/graPHIGS/fonts. A
name of font file is like afm0*.sym.

7.4.2 Installation
Once SMIT has returned from the installation process, you should run the
verification script to make sure that you have a working environment.

7.4.2.1 The Installation Verification Script: runivp
Type in an aixterm or other terminal window with the DISPLAY variable
correctly set :

sh /usr/lpp/graPHIGS/etc/runivp

then a graPHIGS window comes up on the screen if the installation has
successfully completed. In this window, a robot arm is displayed. As the
directions in the window state, pressing the F1 key makes the arm rotate
around. To exit after the animation, press any function key.
graPHIGS 103

Figure 19. Initial Image of runivp

7.4.2.2 xinit Options for GXT3000P, 800P, 550P, 550P, 1000, and 255P
The graPHIGS window must be created in the color planes (layer 0, while the
overlay plane’s layer is 1). For the best performance, it is recommended that
the X root window be created in the overlay planes.

If the X and graPHIGS windows are both created in the color planes,
manipulating the X window causes an exposure event, and more graPHIGS
redraws may occur. On the other hand, if X starts in the overlay planes, there
will be fewer exposure events, and fewer graPHIGS are needed.

Starting X in the overlay planes is only available when the application
specifies one of the supported visuals for the color planes and uses it to
create the graPHIGS window. If the application does not specify visual to
graPHIGS window, graPHIGS uses the visual associated with the root
window and X should then be started in the color planes in this case.

Therefore, the necessary options for the xinit command should be chosen
accordingly:

 • For GXT3000P, 800P, 550P, 550P, 1000:

 • If the application specifies supported visuals for the color planes and
uses it to create the graPHIGS window, type:
104 RS/6000 Graphics Handbook

xinit -- -x dbe -x abx

X then starts in the overlay planes by default.

 • If the application does not pass a selected visual to the graPHIGS
window, the -layer 0 option is required to start X in the color planes,
and more options may be specified depending on the frame buffer
configurations which the application uses:

 • The 8-bit visual:

xinit -- -x dbe -x abx -layer 0

 • The 24-bit DirectColor visual:

xinit -- -x dbe -x abx -layer 0 -d 24 -cc DirectColor

 • The 24-bit TrueColor visual:

xinit -- -x dbe -x abx -layer 0 -d 24 -cc TrueColor

 • For GXT255P:

Almost the same as the above, but the -x abx option should not be
specified.

The extensions -x dbe and -x abx can also be specified to the environment
variable EXTENSIONS in /usr/lpp/X11/defaults/xserverrc file. If the OpenGL
product is also installed on the same machine, these extensions may already
be specified in this file.

If you use the CDE, modify the last line in /usr/dt/config/Xservers to specify
command line options to xinit, such as -layer 0 or -d 24. The line is
originally:

:0 Local local@console /usr/lpp/X11/defaults/xserverrc -T -force :0

Insert the -layer 0 option, for example, as follows:

:0 Local local@console /usr/lpp/X11/defaults/xserverrc -layer 0
-T -force :0

7.4.2.3 xinit Options for XSOFT Workstation Type
As mentioned in 7.3.1, “Softgraphics Technology” on page 97, the
GP-MIT-SHM extension is only available to the XSOFT workstation device
driver when the graPHIGS nucleus is executing on the same machine as the
X server and the X server has the GP-MIT-SHM extension loaded.

To load the GP-MIT-SHM extension, start the X server with -x gpshm
command line option. Alternately, to automatically load the GP-MIT-SHM
extension, change the following line in the /usr/lpp/X11/defaults/xserverrc file
graPHIGS 105

EXTENSIONS=""

to

EXTENSIONS="-x gpshm"

7.4.2.4 The External Defaults File (EDF)
The External Defaults File contains records which consist of User Defined
Specifications (UDSs). The UDSs in this file allow you to change user default
options at runtime without recompiling or rebuilding your application. The API
accesses the External Defaults File as follows:

The file must be named PROFILE, or must be specified in the gPPROFILE
environment variable. At the initialization phase, the graPHIGS API searches
for a PROFILE in this order:

1. gPPROFILE Environmental Variable:

The gPPROFILE environment variable allows you to specify an alternate file
name or an alternate directory path containing the file, PROFILE, as the
external defaults file.

If the gPPROFILE environmental variable is not defined, is defined with an
invalid file name or directory name, or there is no file named PROFILE in
the defined valid directory name, the search continues.

2. Current Directory:

The current directory is searched for a file named PROFILE. If there is no
file named PROFILE in the current directory, the search continues.

3. /usr/lpp/graPHIGS/etc Directory:

The graPHIGS API provides a sample External Defaults File as
/usr/lpp/graPHIGS/etc/PROFILE.

The following examples illustrate a way of specifying the connection identifier
and workstation type with PROFILE. It says that any connection to a
workstation of type X should use the local display:0.

.

Figure 20. Sample of PROFILE

AFMMNICK TOWSTYPE=X,
TOCONNID=:0
106 RS/6000 Graphics Handbook

About the detail of this file, see Chapter 7. Controlling the Environment with
Defaults and Nicknames in The graPHIGS API: Technical Reference,
SC33-8193.

7.4.2.5 $(HOME)/.Xdefaults
graPHIGS is the default application name of graPHIGS application in X
Window System. Using the application name, in the .Xdefaults file in your
$HOME directory, you can define resources for your graPHIGS application
such as the initial position, initial size, window title, icon name, icon bitmap,
minimum aspect ratio, maximum aspect ratio, minimum window size, window
border color, and the window border width.

Entries in the .Xdefaults file to force the window to be a square of 500 pixels
located in the upper-left corner and have My Title in the title bar would look
like this:

Figure 21. A Sample of $HOME/.Xdefaults

If you want to be more specific and associate properties to one specific
graPHIGS application, the default application name, graPHIGS, can be
changed to another using the above PROFILE stanza:

Figure 22. Define the Application Name in PROFILE

Then, the entries in the .Xdefaults file in your $HOME directory would look
like this:

Figure 23. Another Sample of $HOME/.Xdefaults

The following table contains available resources for graPHIGS window:

Table 11. Resources for graPHIGS Applications

Resource Name Description graPHIGS API Default Action

geometry Initial Window
Geometry

Half the width of the screen and
with the same aspect ratio

graPHIGS.geometry: 500x500+0+0
graPHIGS.title: MyTitle

 AFMMNICK TOWSTYPE=X,
TOCONNID=:0,
PROCOPT=((XNAME,MyName))

MyName.geometry: 500x500+0+0
MyName.title: MyTitle
graPHIGS 107

With the following definitions, the graPHIGS window keeps a square shape
when it is resized:

graPHIGS.aspectMinimum: 1x1
graPHIGS.aspectMaximum: 1x1

After you have edited your $HOME/.Xdefaults file, execute the xrdb command
to reload the file as follows:

xrdb $HOME/.Xdefaults

If you would like to remove the window title bar and the window resize frame,
add the following line in $HOME/.Xdefaults; then restart the Motif window
manager or CDE window manager:

(for Mwm) Mwm*graPHIGS*clientDecoration: none
(for CDE) Dtwm*graPHIGS*clientDecoration: none

If you need to resize the frame, replace none with resize in the above lines.

7.4.2.6 SYSPRINT
The name SYSPRINT is often used as the name of error log file where the
graPHIGS API outputs error messages. You can change this to your favorite
name through GPOPPH() subroutine as follows:

GPOPPH(’SYSPRINT’,0);

This file helps with debugging the application. The graPHIGS API does not
overwrite this file; that is, if this file exists, it adds messages to the file.

The following is an example of what an error message looks like:

Mon Nov 16 hh:mm:ss 1998 GPOPWS*AFM2047 XOPENDISPLAY FAILED - CHECK THE
GRAPHIGS CONNID.

minSize Minimum Window Size 100x100

title Window Title Blank Title

iconName Icon Name Default to the Window Name

iconBitmap Icon Bitmap File Name No icon bitmap

aspectMinimum Minimum Aspect Ratio None specified

aspectMaximum Maximum Aspect Ratio None specified

Resource Name Description graPHIGS API Default Action
108 RS/6000 Graphics Handbook

This line contains the date and time, the name of the API subroutine
associated with the error, the message identifier with string AFM followed by
a four-digit message number, and the message text which briefly explains the
error.

With the message identifier, you can look for the detail information in The
graPHIGS API: Messages and Codes, SC33-8196. There you will find an
explanation of the error and description of system action and programmer
response as follows.

2047 XOPENDISPLAY FAILED - CHECK THE graPHIGS CONNID

Explanation: The X workstation is not able to connect to the X server ...

System Action: The workstation is not opened.

Programmer Response: Verify that the connection identifier connid is ...

7.5 Overview for Programming

Learning graPHIGS programming is necessary to develop a brand new
application, but may also be useful to realize the porting of an existing one to
a new API.

To learn or look into graPHIGS programming, the following books may help
you:

 • The graPHIGS API: Understanding Concepts, SC33-8191

 • The graPHIGS API: Getting Started V2R2.2, SC33-8198

Part one of Understanding Concepts describes the basics of using the
graPHIGS API and is especially suited for a first-time user of the graPHIGS
API. Samples are included in every chapter of the basic section to give you
hands-on experience with the graPHIGS API applications, but these are
written in fortran language.

On the other hand, Getting Started is a small book, but consists of sample
programs written in the C language with comments and explanations for
each. This book is also suited for a first-time user of the graPHIGS API.

Some subroutines in these guide books are obsolete; that is, these have
been used since graPHIGS Version 1 was available and have been replaced
with other subroutines since graPHIGS Version 2.

During your study, if you have to check the syntax for a command or its
arguments, refer to The graPHIGS API: Subroutine Reference, SC33-8140.
graPHIGS 109

However, the descriptions in this book are fortran like and it is necessary to
be careful whether the type of an argument is a number or a pointer if you
write a program in C.

To learn more technical details, such as information about the integration with
X or lists of contents of workstation description table, see The graPHIGS API:
Technical Reference, SC33-8193.

7.5.1 graPHIGS Subroutines
Subroutine names are prefixed by GP followed by two or four capitals or
digits. Especially, the names of inquiry subroutines are prefixed by GPQ. For
example, GPOPPH(), GPPL3(), GPQWDT(). There are no constants and types
specifically defined for graPHIGS. The types of variables which are passed to
graPHIGS subroutines are either int or float (32-bit integer or floating point
values).

7.5.1.1 Long Names by afmgp.h
To make the source code easy to read

#include <afmgp.h>

provides a long name for each graPHIGS subroutines and enumerations
defined by these subroutines. For example, the names in the left-hand side
can be replaced with the ones in the right-hand side in the following:

GPOPPH gPOpengraPHIGS

GPPL3 gPPolyline3

GPQWDT gPInquireWorkstationDescription

These long names match the titles in the subroutine reference pages, such as
Open PHIGS, Polyline 3, Inquire Workstation Description. And, for example,
the following enumeration is used to define those arguments:

/*-- gP_istyle Interior Style -- */
typedef enum {

GP_HOLLOW = 1;
GP_SOLID,
GP_PATTERN,
GP_HACTH,
GP_EMPTY,
GP_ISTYLE_INVALID = 0x7fffffff

} gP_istyle;

With these long names, the line:

GPIS(2);
110 RS/6000 Graphics Handbook

can be changed to:

gPInteriorStyle(GP_SOLID);

Before you get familiar with graPHIGS subroutines, here is an easy way to
find out a brief description for each subroutines:

grep GPXXXX /usr/include/afmgp.h

Then, you can replace the short names with the corresponding long names in
your sample or existing application source code to make it easier to read.

7.6 graPHIGS References

These documents are available:

 • On the AIX Version 4.3 Base Documentation CD

 • On the following IBM Web pages:

http://www.rs6000.ibm.com/resource/aix_resource/Pubs/

select AIX Version 4.3 Documentation Library

AIX Version 4.3 Base Documentation

List of Books

graPHIGS

There are nine documents, here are their titles and a brief description of
each:

 • The graPHIGS API: Understanding Concepts, SC33-8191:

This guide helps you understand the use of the graPHIGS API functions in
your application to create, display, and interact with graphics data. It
contains two parts: basic and advanced. Part One describes the basics of
using the graPHIGS API and is especially suited for a first-time user of the
graPHIGS API. Included in every chapter of the Basic section are sample
fortran subroutines to give you hands-on experience with the graPHIGS
API applications.

For the experienced graPHIGS API programmer, Part Two offers
advanced functions and capabilities to further enhance your application
program. It also expands upon some of the concepts introduced in Part
One. Used in conjunction with other graPHIGS API publications, this guide
helps you create complete graphics application programs.

 • The graPHIGS API: Technical Reference, SC33-8193:
graPHIGS 111

This reference provides technical information about the functions and
limitations of the graPHIGS API and its supported workstations. It also
contains reference information, both general and specific, about particular
aspects of writing applications, namely on Character Set Facilities and on
Defaults and Nicknames. The purpose of this manual is to provide
application programmers with a comprehensive volume of the technical
information they need to accurately code or modify applications using the
graPHIGS API screen.

 • The graPHIGS API: Subroutine Reference, SC33-8194:

This reference manual contains the information you need to code your
calls and to declare variables correctly. Each subroutine listed in this
manual has information about error codes and functional relations to help
you identify more readily the source of errors resulting from data, program
flow. Each subroutine description explains the result to the subroutine call
and a list of the errors associated with the subroutine.

 • The graPHIGS API: Customization and Problem Diagnosis, SC33-8130:

This manual is divided into two parts. Part One describes the hardware
supported by the IBM Personal graPHIGS Application Programming
Interface and hardware and software requirements. It explains how to
customize the IBM Personal graPHIGS Programming Interface for optional
environments and plotter support. Part Two provides information needed
to diagnose problems in the IBM Personal graPHIGS Programming
Interface and the graPHIGS gateway. The following information is also
provided: guidelines for locating the symptoms of the graPHIGS API
problem, techniques for collecting the supporting data required for further
analysis, an Authorized Program Analysis Report (APAR) form, and a
description of the information required for submitting the APAR.

 • The graPHIGS API: Messages and Codes, SC33-8196:

This book gives programmers a comprehensive guide to error messages
that can result from installing, using, and maintaining the graPHIGS API.

 • The graPHIGS API: Getting Started, SC33-8198:

This book guides programmers who are familiar with the C language and
an AIX editor through the steps of writing and running their first graPHIGS
API programs. The book consists of sample programs with comments and
explanations for each.

 • The graPHIGS API: Quick Reference, SC33-8195:

This booklet provides a quick reference for the graPHIGS API. It is
intended as a supplement to graPHIGS Programming Interface Technical
Reference, in which the subroutines are described in detail.
112 RS/6000 Graphics Handbook

 • ISO PHIGS Subroutine Reference, SC33-8140:

This reference manual contains the information you need to code your ISO
PHIGS calls and to declare variables correctly. Each subroutine listed in
this manual has information about error codes and functional relations to
help you identify more readily the source of errors resulting from data and
program flow. Each subroutine description explains the result of the
subroutine call and a list of the ISO PHIGS standard errors associated
with the subroutine.

 • ISO PHIGS Quick Reference, SC28-2705:

This booklet provides a quick reference for the graPHIGS API. It is
intended as a supplement to the ISO PHIGS Subroutine Reference, in
which the subroutines are described in detail. To help you find information
quickly in the reference book, each listed subroutine includes a page
reference. This manual contains both a reference-by-function as well as
an alphabetical-by-subroutine listing for both the C and fortran bindings.
graPHIGS 113

114 RS/6000 Graphics Handbook

Chapter 8. GL 3.2

This chapter describes the GL 3.2 API and IBM’s implementation for AIX.
This API has almost become obsolete as a 3D graphics API since OpenGL
has taken its place in the industry. AIX Version 4.3.2 still supports this API for
all previous 3D graphics adapters, but the GL 3.2 API should not be
implemented in the graphics pipeline for the latest POWER GXT3000P.

IBM encourages GL 3.2 customers to migrate to OpenGL.

8.1 Definition

The Graphics Library (GL) API is a 3D API which was developed by Silicon
Graphics, Incorporated (SGI) as a proprietary API for use on their graphics
platforms. This API has been licensed to IBM and several other vendors. It
was once very popular and used by many independent software vendors and
was the basis for their 3D applications.

The strength of GL is immediate mode graphics. See 9.1.1, “Immediate Mode
Graphics” on page 130, for an explanation of this term.

The biggest disadvantage of the GL API is that it does not provide
interoperability in heterogeneous networked environments, and it is not easily
portable even between the few platforms that support it.

For these reasons, and in response to the growing popularity of open
systems, SGI initiated an effort to standardize GL so that it could be easily
supported by multi-vendor platforms. This effort led to the development of an
open 3D API standard called OpenGL, see Chapter 9, “OpenGL” on page
129.

8.1.1 Technical Content of GL 3.2
GL 3.2 is a set of graphics and utility subroutines that provide high- and
low-level support for graphics as well as X Window System integration
facilities. The GL 3.2 library provides the following features:

 • Basic 3D rendering services including:

 • Flat or Gouraud shaded points, polylines, triangle mesh, polygons

 • Matrix and Attribute Stacks

 • Depth (Z-buffering)

 • Non-Uniform Rational B-Spline (NURBS) support (curves and surfaces)
© Copyright IBM Corp. 1999 115

 • Circle and arc capabilities

 • Concave polygon capabilities

 • Antialiased points and lines

 • Display list creation and manipulation facilities

 • Depth-cueing effect

 • Logical image operations

 • Picking and selecting operations

 • Integration with the X Window System including:

 • Window control (initialization, size change, window title, icon, window
mapping)

 • Cursor management

 • Pop-up menu creation

 • Event handling

 • Color map control

 • Query about system resource

 • Renderer access to X11 fonts

8.2 IBM Implementation

IBM's GL implementation is integrated with AIXwindows. This is significant
because IBM was one of the first vendors to successfully integrate GL with an
open system such as the X Window System. IBM's offering of GL does not,
however, support a distributed computing environment.

IBM's current GL implementation is based on SGI GL Version 3.2 and is
provided to support applications that continue to require that interface.

C and fortran bindings for GL are supported on the RS/6000 through
hardware-acceleration only. IBM's offering of GL does not support the
software rendering capability.

Note that the POWER GXT3000P does not support GL 3.2. Therefore, any
GL 3.2 application has to be migrated to OpenGL to run on GXT3000P. GL
3.2 for AIX Version 4.3.2 is supported on systems with the following graphics
adapters (or subsystems):

 • POWER Gt4e, Gt4, Gt4i, Gt4x, Gt4xi
 • POWER GXT500, GXT500D
116 RS/6000 Graphics Handbook

 • POWER GXT500P, GXT550P, GXT800P (with or without texture memory)
 • POWER GXT800M, GXT1000

8.3 Configuration

OpenGL and GL 3.2 for AIX are standard features of IBM AIX Version 4.3,
while these has been offered as Licensed Program Products for IBM AIX
Version 4.2 or 4.1.

8.3.1 Filesets
The GL 3.2 products includes three filesets :

OpenGL.GL32.rte GL Runtime Environment
OpenGL.GL32.dev GL Device Dependent Software
OpenGL.GL32.adt GL Application Development Toolkit

The first two filesets must be installed to run GL 3.2 applications on the
system. To develop GL 3.2 programs on the system, it is necessary to install
the GL Application Development Toolkit fileset.

8.3.1.1 GL Runtime Environment
The fileset, OpenGL.GL32.rte, contains only one module:

OpenGL.GL32.rte.base GL Base Runtime Environment

This provides:

 • /usr/lpp/GL/README

 • Run time code: /usr/lpp/OpenGL/bin/loadR5Proc

 • Library files: /usr/lib/libgl.a, /usr/lib/libfgl.a

 • /usr/lpp/X11/bin/GLcmap and /usr/lpp/X11/bin/GLcmap_R5

 • A directory link for compatibility purpose : /usr/lpp/ibmgl -> /usr/lpp/GL

8.3.1.2 GL Device-Dependent Software
The OpenGL.GL32.dev fileset provides the following device-dependent
software modules:

OpenGL.GL32.dev.pci.14105400 GXT500P/GXT550P
OpenGL.GL32.dev.pci.14105e00 GXT800P
OpenGL.GL32.mca.8ee3 GT4 family
OpenGL.GL32.mca.8f61 GXT800M
OpenGL.GL32.mca.8fbc GXT1000
OpenGL.GL32.buc.00004002.com GXT500 (Common)
OpenGL.GL32.buc.00004002 GXT500
GL 3.2 117

8.3.1.3 GL Application Development Toolkit (ADT)
The OpenGL.GL32.adt fileset contains the following ADT modules:

OpenGL.GL32.adt.include GL ADT Include Files

This provides /usr/include/gl/gl.h, /usr/include/gl/device.h, and so on.
These files are also linked to /usr/include/.

OpenGL.GL32.adt.demos GL ADT Demos

This provides three demo programs and a README file. See 8.3.3.1,
“Demo Programs in /usr/lpp/GL/demo/” on page 120.

OpenGL.GL32.adt.samples GL ADT Sample Source

This provides a number of samples source code and a README file. See
8.3.3.2, “Sample Source Code in /usr/lpp/GL/examples/” on page 121.

OpenGL.GL32.adt.util GL ADT Utilities Source

This provides a number of utility programs with source code and README
files. See 8.3.3.3, “Utility Programs in /usr/lpp/GL/utilities/” on page 123.

8.3.2 Installation
The installation of the GL 3.2 product is performed using the standard AIX
applications such as SMIT.

8.3.2.1 X Server Extensions
To run GL 3.2 applications on adapter such as the GXT1000, GXT5xx or
GXT800, the X Windows Ancillary Buffer Extension (ABX) and the X Windows
Double Buffer Extension (DBE) should be loaded when the X server starts. To
start-up manually, use xinit command-line options as follows:

xinit -- -x abx -x dbe

Or to start-up automatically under xinit, edit /usr/lpp/X11/defaults/xserverrc
and change the line reading

EXTENSIONS=""

to

EXTENSIONS="-x abx -x dbe"

If the OpenGL product is also installed on the same machine, these
extensions are specified.
118 RS/6000 Graphics Handbook

DBE is an official X standard and has replaced the non-standard X
Multi-Buffer Extension (MBX).

If -x abx is not specified, you will find the following error message when you
run a GL 3.2 application.

Xlib: extension "xAncillaryBufferExtension" missing on display ...
Xlib: extension "xAncillaryBufferExtension" missing on display ...
Xlib: extension "xAncillaryBufferExtension" missing on display ...
winopen: PseudCol Visualgl: winopen: 1345-072 The requested X-Windows
Server extension is not installed

And if -x dbe is not specified, you will find the following error message.

Xlib: extension "DOUBLE-BUFFER" missing on display ...
Xlib: extension "DOUBLE-BUFFER" missing on display ...

To check a list of extensions, the currently loaded to the X server, run
xdpyinfo (/usr/bin/X11/xdpyinfo) on local system, or run it with the -display
option on a remote system.

8.3.2.2 Environment Variable
With AIX Version 4.3.1, a modification is brought to GL 3.2 to enable the
default X cursor (black with white border) to appear instead of the hardcoded
red cursor that GL 3.2 normally creates.

To avoid the red cursor, simply export the following environment variable:

(for ksh) export _GL_USE_UNDERLYING_CURSOR=TRUE

(for csh) setenv _GL_USE_UNDERLYING_CURSOR TRUE

8.3.3 Demo Programs, Sample Source Code and Utilities
This section describes demo programs, samples, and utilities provided with
the GL 3.2 product.

Starting the X server with -x mbx instead of -x dbe still currently works on an
AIX Version 4.2.1 system, but not on an AIX Version 4.3.2 system.

Note
GL 3.2 119

8.3.3.1 Demo Programs in /usr/lpp/GL/demo/
The following list shows the program file names with a brief description of the
purpose of each program. These demo programs can be used to verify the
correct installation of the GL product.

Figure 24. Image from the lmodtest Program

Example Program Purpose

lorenz Fast Sphere Demo RIGHTMOUSE click will exit demo.

robotarm Animation/Lighting Demo RIGHTMOUSE click will exit demo.
LEFTMOUSE held down will animate jaws.

lmodtest Lighting Demo explanation is displayed on the screen.

LIGHTING MODEL
AMBIENT LVWR COEFFS LEFTMOUSE to change values

RIGHTMOUSE to leave

LIGHTS:
ON? AMBIENT LCOLOR AZT INC DST

MATERIAL:
EMISSIONEXPDIFFUSE AMBIENTSPECULAR
120 RS/6000 Graphics Handbook

Figure 25. Image from the lorenz Program

8.3.3.2 Sample Source Code in /usr/lpp/GL/examples/
This directory contains a number of GL example programs. Each program
illustrates a different aspect of GL or shows how to solve particular problems
using GL and other AIX operating system features.

Table 12. GL Samples Programs

Example Program Purpose

clover.c Clears the overlay bit planes.

decor.c Example of X/GL integration. Demonstrates how to change
window decorations for GL windows.

depthche.c Example of depth-cued lines.

fork_examp.c A very simple example involving GL and the system fork()
subroutine. Shows how the GL subsystem must be shut
down before using the system fork() routine.

fork_examp2.c A more sophisticated fork() example.

GLexec.c A very simple example involving GL and the system exec()
routine. Shows how the GL subsystem must be shut down
before using any of the system exec() routines.

gen_sig.sh See rqenter.c

getXdpy.c Simple example of X/GL integration. Shows how to obtain the
X Display of a GL session.
GL 3.2 121

IBM does not guarantee that the contents of the source code examples,
whether individually or as one or more groups, will meet your requirements or
that the source code examples are error-free.

The contents of this directory are subject exclusively to the terms set forth in
the Notice to Users that can be found in each of the source code example
files.

glwininfo.c Example of X/GL integration. Prints information about the X
visual being used.

input_test.c Example of use of new X input function. Demonstrates the
new SpaceBall support.

mapwin.c Example of X/GL integration. Demonstrates how to map and
unmap a GL window.

nurbs.c Example of GL NURBS.

rqenter.c Example showing how to write re-entrant queueing code. The
example creates a pipe and then checks for input on both the
pipe and on the GL queue. USR1 signals caught by the
process result in input being placed on the pipe. (The shell
script gen_sig.sh can be used to generate signals). See the
related example: xinput.c

smoothln.c Example of Anti-Aliased Lines. LEFTMOUSE activates
linesmooth (TRUE). RIGHTMOUSE deactivates (FALSE).

Xcolormap.c Example of X/GL integration. Shows how X11 can be used to
manipulate the colormap associated with a GL window.

wincmap.c Example of X/GL integration, colormap snooping utility.

xinput.c Example of X/GL integration. Shows how to simultaneously
manipulate both the GL and the X11 event queues within the
same process. The example can be extended to
simultaneously read other (pipe, socket, or file-based) event
sources. See the related example: rqenter.c.

zover_examp.c Example Z-buffered overlays. Shows how depth-testing (Z-
buffering) can be enabled for overlays.
122 RS/6000 Graphics Handbook

8.3.3.3 Utility Programs in /usr/lpp/GL/utilities/
The utilities/gutil/ directory contains the Makefile and source files for libgutil.a,
which includes useful graphics utilities as listed in the following table. The
directory utilities/examples/ contains samples using this library.

Table 13. Utilities Examples for GL

GL Widgets
The directory utilities/widgets/ contains source files for sample GL widget and
its Motif version.

This version supports GLXlink, GLXgetconfig, GLXunlink, and GLXwinset.
(This version of GL widget sample code replaces the Glib.c code in
/usr/lpp/ibmgl/utilities/gutil).

GL widgets can be used with either Xt-based programs or with Motif-based
programs. Use GlxDraw for Xt and GlxMDraw version for Motif-based
programs.

Screen Dump
The directory utilities/screendump/ contains source files for RGB image dump
utility for RS/6000 with 3D Graphics Adapter.

The following directories will be found:

x24wd Directory containing screendump utility

x24wud Directory containing undump utility

Usage:

 • To compile and link the programs, x24wd and x24wud, type the following:

make

Example Program Purpose

dbcs.c DBCS interface to charst.r

gammacorrect.c Create gamma corrected gammaramps.

gltosnf.c Convert defrasterfonts to SNF.

hashutil.c Hash utilities.

partition.c Colorindex color partitions.

rotaxis.c Rotate about an axis.

visual.c Get the correct GL visual.
GL 3.2 123

This makes the two sub-directories, x24wd and x24wud, which will contain
the executables, x24wd and x24wud.

 • To take a dump of a double-buffered 24-bit RGB or double buffered 12-bit
RGB, type:

x24wd filename

You will be prompted to click on the window you want to dump. The files
will be called, filename.a.X24 and filename.b.X24. These contain the
content of this window for the front and back buffer.

 • To take a dump of single buffered 24-bit RGB window, type:

x24wd -single filename

You will be prompted to click on one window, and the file will be called
filename.X24.

 • To display the result of your dump and make sure it is valid, type:

x24wud filename

where filename does not contain the .X24 suffix.

 • You can use the PBMPLUS (described in X11 R4 release tape from MIT)
utilities, xwdtopnm and pnmtops to convert X24 files to PostScript. The
convert subdirectory contains a script, xwdtops, to accomplish this task.

xwdtops filename

Where filename does not contain the .X24 suffix. This script converts xwd
files to a color PostScript file that can be used with a printer or any
PostScript visualizer.

Note: The utility only works for applications that use DirectColor (actual
numbers in the frame buffer are color values and not indices of a colormap).

You can manipulate the data directly to generate and read your own data
formats. Simply replace the write_data or read_data routines with your own.

8.4 Overview of Programming

This section presents the header files for the GL 3.2 program, how to compile
and link GL 3.2 programs, a sample program showing a simple GL 3.2
program. Appendix A.1, “GL 3.2 Sample Code” on page 231, contains more
elaborate examples. They introduce double-buffering, the event loop, drawing
geometric objects, and so on.
124 RS/6000 Graphics Handbook

8.4.1 Header Files
Here are the two header files for developing code with the GL API.

 • /usr/include/gl/gl.h:

This should be included in every GL 3.2 program. It includes constant,
type, and function declarations needed for all GL 3.2 programs. For
instance, it defines the preprocessor tokens BLACK and GREEN.

 • /usr/include/gl/device.h:

This file contains definitions and type definitions (typedefs) pertaining to
GL devices.

8.4.2 Link Libraries
To compile and link a GL 3.2 program, enter the following AIX command:

cc -o sample sample.c -lgl

To tell the linker to link to the math library, where the sin and cos functions are
located, for example, specify the -lm flag option on the cc command:

cc -o sample sample.c -lgl -lm

8.4.3 Sample Program
The following GL 3.2 program demonstrated some basic concepts of GL,
such as how to open a window on the screen, how to set attributes, and how
to draw. It prints the message "Hello, World!" inside.

#include <gl/gl.h>

void main(void)
{

prefsize(200, 100);
winopen("HI THERE");
color(BLACK);
clear();
color(GREEN);
cmov2(50, 50);
charstr("Hello, World!");
sleep(5);

}

In detail for each line:

prefsize(200, 100);
GL 3.2 125

The prefsize subroutine communicates to the window manager the
suggested size of the window that is created with the winopen subroutine.

The prefsize subroutine does not actually create the window; it only specifies
the window size preferences.

In this case, the preference is a window that is 200 pixels wide and 100 pixels
high.

You can also control other window properties, such as the preferred position
(by the prefposition subroutine) or the window title (by using the wintitle
subroutine).

winopen("HI THERE");

The winopen subroutine creates a window as defined by the current values of
the window constraints.

This new window becomes the current window. If this is the first time that a
program has called the winopen subroutine, the system also initializes the
graphics system.

All drawing (lines, polygons, and NURBS) is done in the current window.
Lighting, depth-cueing, and Z-buffering all apply to the current window. Every
window has an independent set of stacks: matrix stack, name stack, attribute
stack, and viewport stack, and all stack manipulation routines, such as matrix
multiplications‘, are directed at the current window.

A string argument, for example "HI THERE", specifies the window title
displayed on the left-hand side of the title bar. A zero-length string displays
no title.

color(BLACK);

The color subroutine sets the current color. Everything you draw is displayed
in the current color until you change that color. The color subroutine itself
does not draw anything.

clear();

The clear subroutine clears the entire window to the current color. Because
the program line immediately preceding the clear subroutine call sets the
current color to black, the window is cleared to black.

cmov2(50, 50);

The cmov2 subroutine sets the current character position. Every character you
draw is displayed at the current character position until you change that
126 RS/6000 Graphics Handbook

position. In this example, the current character position is set to 50 pixels up
and 50 pixels to the right of the lower left-hand corner of the window.

charstr("Hello, World!");

The charstr subroutine actually draws the text "Hello, World!". The text is
drawn with the current color, which is now green (by color(GREEN);).

sleep(5);

The sleep subroutine is an AIX system call. In this example, the sleep
subroutine prompts the system to do nothing for 5 seconds. After 5 seconds,
the sleep subroutine returns and the program exits.

When a GL program exits, any window that it has created disappears.
Without the sleep call, the window would be created, would flash to black,
with some green text, and would then disappear immediately. You can
replace the sleep call with anything that will keep the program running, such
as an infinite loop. But when the program exits, the window definitely
disappears.

8.5 GL 3.2 References

Additional information about GL 3.2 can also be found:

 • On the AIX Version 4.3 Base Documentation CD

 • On the following IBM Web pages:

http://www.rs6000.ibm.com/resource/aix_resource/Pubs/

Select AIX Version 4.3 Documentation Library

AIX Version 4.3 Base Documentation

List of Books

AIX Programming Guides

GL3.2 Version 4 for AIX: Programming Concepts

AIX Programming Reference

GL3.2 Version 4 for AIX:
Graphics Library (GL) Technical Reference

There are two documents:

 • GL 3.2 Version 4 for AIX: Programming Concepts, SC23-2612

This book provides information on the Graphics Library (GL). GL is an
application programming interface (API) for performing advanced 3D
GL 3.2 127

rendering, window management, and input device support. It serves as
both a tutorial and a guide and is a programmer’s source book for learning
about 3D graphics from a programmer’s perspective.

 • GL 3.2 Version 4 for AIX: Graphics Library (GL) Technical Reference,
SC23-2630

This book provides information on calls and subroutines for the Graphics
Library (GL) and example programs that illustrate using basic GL
subroutines. This application programming interface is for use with the AIX
operating system.
128 RS/6000 Graphics Handbook

Chapter 9. OpenGL

This chapter describes the OpenGL API and its implementation by IBM for
AIX. OpenGL has become one of the two major graphic APIs available on
AIX, and IBM encourages its use for any new development. OpenGL is
easy-to-use, full-featured and network transparent.

9.1 Definition

OpenGL supports a broad array of advanced graphics rendering techniques,
such as texture mapping, line and polygon antialiasing, transparency, and
fog. It provides versatile graphics functions, from simple geometry to the
sophisticated rendering of complex surfaces. Users can generate high-quality
pictures from user-defined graphical objects through a simple low-level
modular interface.

This suite of advanced graphics functions is ideal for developing complex 3D
applications, including computer-aided design and manufacturing
(CAD/CAM), industrial design, engineering analysis, petroleum and chemical
engineering, scientific visualization, and entertainment.

The OpenGL API is licensed from Silicon Graphics, Inc. (SGI) and is
governed by the OpenGL Architecture Review Board. See 9.1.5, “The
OpenGL Architecture Review Board (ARB)” on page 134.

OpenGL is the direct descendant of the proprietary SGI GL (SGI Graphics
Library) API. Since Version 1.0 was released in 1992, OpenGL has gained a
lot of momentum in the industry and is attracting a large number of software
vendors. See 9.6.1.1, “History — From GL to OpenGL” on page 173.

Some of the advantages of OpenGL are:

 • A consistent, industry standard API across present and future IBM
graphics adapters

 • A robust conformance test suite
 • Debugging tools for tracking and check pointing calls to the graphics

libraries.

The strength of OpenGL, as well as SGI GL, lies in their powerful support for
immediate mode graphics, while supporting retained mode graphics. These
terms are described in the following subsections.
© Copyright IBM Corp. 1999 129

9.1.1 Immediate Mode Graphics
Immediate mode graphics is not specific to the Silicon Graphics, Inc. APIs.
Almost all the graphics APIs that had been supplied to PCs are of this type,
and it is familiar to those who make graphics programs on PCs.

In immediate mode, graphics commands are executed as soon as they are
encountered. There is no required display list structure. The data describing
the geometry is not retained for modification or display by the API. Instead,
this data must be retransmitted across the distributed environment every time
the orientation or appearance of the model changes. Immediate mode
graphics is well suited for applications with frequently changing geometric
definitions.

 • An example of this type of application is a car crash simulation where a
car model is heading for a crash wall in the first scene and is a crumpled
wreck in the last. A new description of the car geometry must be used for
each scene (step) of the simulation. In this application, there would be no
benefit in using retained mode graphics since the data definition changes
completely from frame to frame.

 • Another example is an application that uses computational fluid dynamics.
The natural transformation of a sea wave is an example of this function.
As the data representing the wave is recomputed, it needs to be
redisplayed. Since the data is different in each frame that is displayed,
there is no benefit in retaining old data.

9.1.2 Retain Mode Graphics
OpenGL supports the retained mode graphics using the display list
mechanism. A display list can store a sequence of OpenGL commands and
has a unique name (also called an identifier) in an OpenGL context. These
commands are executed in sequence when the display list is called from the
client application. The commands and their arguments are sent from the
client to the OpenGL server when a display list is created. So, in the case of
calling a display list repeatedly, it will reduce traffic between the client and the
server. But because a display list is a resource on the server side, this
mechanism consumes memory on the server to store the data associated
with the display list.

For more information about the retain mode graphics, see 7.1.3, “Retained
Mode Graphics” on page 89.
130 RS/6000 Graphics Handbook

9.1.3 Client/Server
In the OpenGL vocabulary, a client is an application which issues OpenGL
commands, and a server is a window system, such as X Window System with
GLX X extension, where these commands are interpreted and processed to
be ultimately displayed on your screen. The server and the client may or may
not run on the same machine. So the OpenGL is mentioned as network
transparent.

A server may maintain a number of OpenGL contexts, each of which contains
current OpenGL state. On the other hand, a client may connect to more than
one server, but should select one or none of the contexts on these servers at
each moment.

9.1.4 Technical Content of OpenGL
OpenGL consists of several functional pieces: a rendering library, a utility
toolkit, a Window System integration suite, and a networking protocol.

 • The rendering library provides the basic functions of OpenGL.

 • The OpenGL Utility (GLU) toolkit provides some additional useful features
to the rendering library. It internally calls the rendering library.

 • The OpenGL extension to X (GLX) library provides function that integrates
the rendering library with the X Window System, using the standard X11
extension mechanism. Thus, OpenGL has a network protocol and is
thereby network transparent.

The above libraries can be accessed with C, Fortran and Ada language
bindings.

9.1.4.1 The Rendering Library
It provides the following features and capabilities:

 • Basic 3D rendering services including:

 • Flat or Gouraud shaded points, lines, triangles, and polygons
 • Matrix and attribute stacks
 • Per vertex Phong lighting
 • Depth (Z-buffering)

 • Antialiased points, lines, and polygons

 • Subpixel accurate point, line, triangle and polygon rasterization

 • User-defined clipping planes (modeling clip)

 • Texture-mapping support
OpenGL 131

 • Nearest and linear interpolation using texture mipmap images
 • Texture decaling, modulation, and blending
 • Automatic texture coordinate generation for environment mapping

 • Display list creation and manipulation facilities

 • Fog and atmospheric effects

 • Stencil buffers (useful for constructive solid geometry, interference
checking, mirror reflection, and shadow algorithms)

 • Accumulation buffers (useful for image post processing, motion blur and
depth of field effects)

 • Alpha buffers (useful for certain transparency algorithms)

 • Logical image operations

OpenGL 1.1 added new functions such as vertex array, polygon offset, logical
operation in RGB mode, texture proxies, texture objects, and subtexture.

OpenGL 1.2 added new functions such as 3D texturing, additional texture
mapping control, new pixel formatting capability, and support for the Vertex
Array Draw Element function.

9.1.4.2 The OpenGL Utility (GLU) Toolkit
The GLU toolkit provides additional useful features:

 • Non-uniform Rational B-Spline (NURBS) support

 • Basic disk, cylinder, sphere, and quadric capabilities

 • Concave and multicontour polygon tessellation capabilities

 • Simple image scaling and mipmap generation utilities

OpenGL 1.2 updates the GLU with improved NURBS tessellation.

9.1.4.3 The OpenGL Extension to X (GLX) Library
The GLX library provides functions that integrate the rendering library with
the X Window System:

 • Creating and binding of rendering contexts to windows

 • Window creation aids through the extended visual types mechanism

 • Synchronization of the OpenGL with the X11 data stream

 • Renderer access to X11 fonts
132 RS/6000 Graphics Handbook

9.1.4.4 The OpenGL Utility Toolkit (GLUT)
The GLUT is different from the above GLU toolkit. It provides functions that
make programming easier than directly using the GLX, Xt and X11 libraries:

 • Window control (initialization, size change, window title, icon, push/pop)

 • Cursor management

 • Overlay management

 • Menu creation

 • Event handling using callback subroutines

 • Colormap control

 • Query about device, supported extensions, and layer

 • Bitmap and stroke font management

 • Prebuilt models (sphere, cone, cube, torus, decahedron, octahedron,
tetrahedron, and teapot)

9.1.4.5 The OpenGL Widgets
The OpenGL widgets are also provided. These are convenient for creating
OpenGL drawing area widgets, to control their resources, and to register
callback subroutines.

9.1.4.6 The OpenGL Development Environment
The OpenGL development environment includes:

 • The rendering library (included in libGL.a) and header files (gl.h, fgl.h).
 • The GLU library (libGLU.a) and header file (glu.h)
 • The GLX library (also included in libGL.a) and header files (glx.h)
 • GLX X server extension
 • The GLUT library (libglut.a) and header file (glut.h)
 • The OpenGL widgets library (libXGLW.a) and header files
 • ZAPdb, debugging and tracing tool

Previously, the OpenGL Auxiliary library was provided (its library and
header files are libaux.a and aux.h, respectively). It has been withdrawn
from the latest OpenGL development environment.

In the OpenGL Programming Guide: The Official Guide to Learning
OpenGL 1.0, ISBN 0-201-46138-2, sample programs were written using
the aux functions, but those are rewritten using the GLUT functions in its
latest revision for OpenGL 1.1.

The OpenGL Auxiliary (aux) Library
OpenGL 133

 • Viewperf, performance characterization tool
 • Source code for example programs
 • Demo programs

For detailed information, see 9.3.1, “Filesets” on page 140.

9.1.5 The OpenGL Architecture Review Board (ARB)
OpenGL is an industry standard API under the guidance of the OpenGL ARB.
IBM is one of its founding members along with SGI, Digital Equipment
Corporation, Intel and MicroSoft. The current ARB members are IBM, SGI,
Compaq, Intel, MicroSoft, 3DLabs, Evans & Sutherland, Hewlett Packard,
Intergraph, and NVIDIA. There are many OpenGL licensees to help achieve
broad market support for the OpenGL API, related technologies,
programming expertise, and applications.

The ARB meets regularly to define the future of the OpenGL API. It also
resolves issues in the current version of OpenGL and discusses extensions
to the OpenGL standard. Minutes of recent ARB meetings are available for
public review.

The ARB can be contacted through the publicly accessible Internet news
group comp.graphics.opengl. Answers to frequently asked questions (FAQs)
are posted regularly to this news group.

9.1.6 Conformance Test Suite
In order to provide compatibility and interoperability between different
OpenGL implementations, the ARB requires a robust conformance test suite
that must be satisfied before the OpenGL trademark can be used. The level
of testing is rigorous and unprecedented in the 3D graphics marketplace.

9.1.7 OpenGL Licensing
OpenGL is licensed by SGI to interested parties under its standard terms and
conditions. There are many licensees, including software and hardware
vendors, workstation manufacturers, and universities.

Because OpenGL 1.2 is a superset of OpenGL 1.1, all programs written for
OpenGL 1.1 run on OpenGL 1.2 without modification, recompiling, or
relinking. OpenGL 1.1 is also a superset of OpenGL 1.0.

Upper Compatibilities
134 RS/6000 Graphics Handbook

Several forms of licensing are available. Licensed materials include the
OpenGL, GLX and GLU specifications and manual pages, a sample
implementation of OpenGL, GLX and GLU written in the C and/or C++
languages, and a conformance test suite.

IBM has obtained a full license, including the right to relicense modified,
derived, and OpenGL-related source code.

9.2 IBM Implementations

OpenGL and GL 3.2 for AIX provide the OpenGL Version 1.2 and 1.1
compatibility – an excellent choice for developing new applications that use
3D graphics for RS/6000 workstations.

Major applications on AIX systems need an OpenGL runtime environment.
This includes I-DEAS Master Series (SDRC), Alias (Alias/Wavefront),
UniGraphics, and Pro/Engineer, to name a few.

IBM offers OpenGL 1.2 or 1.1 on AIX 4.1, AIX 4.2, and AIX 4.3 for almost
every graphics adapter available in the RS/6000 workstation product line,
from the entry-level to the high-end POWER GXT3000P.

IBM intends to continue providing industry-leading functional enhancements
to the OpenGL product. IBM has provided Softgraphics technology,
multiprocessor support, interactive debugger, Direct Soft OpenGL using
XVFB, and many useful extensions to OpenGL.

The latest OpenGL product (for AIX Version 4.3.2) provides the OpenGL
Utility (GLU) Toolkit Version 1.2, and the OpenGL Utility Toolkit (GLUT)
Version 3.3.

OpenGL is implemented in two ways by IBM:

 • IBM Softgraphics technology
 • Hardware-accelerated graphics adapter

9.2.1 Softgraphics Technology
Softgraphics technology provides a software emulation to the OpenGL
functions for all rendering operations. This provides full 3D function at lower
cost. (See also 6.3, “Softgraphics” on page 84.)

The software implementation of OpenGL API (Soft OpenGL) through this
IBM's Softgraphics pipeline is provided for many of the older graphic adapters
and adapters without direct support of 3D rendering (entry graphics
OpenGL 135

accelerators such as GXT150M, GXT250P and GXT255P). It supports
rendering to 8- and 24-bit visuals.

The software implementation is complete and fully compliant (it satisfies the
criteria set forth by the conformance test suite).

Because all the operations are implemented in software, be aware that
performance scales with the amount of CPU available. In the following table,
PLBwire and PLBsurf results are shown for 3D wire frame and solid surface
performance; the higher number represents the better performance. For
information on performance benchmarking, see Chapter 11, “Benchmarking”
on page 205.

Table 14. Impact of Softgraphics on OpenGL Performance

9.2.2 Hardware-Accelerated
All or part of rendering to the OpenGL API is done by the adapter hardware
and microcode. Section 1.2, “Different Classes of Graphics Adapters” on
page 9, describes the role of class II and III graphics adapters.

3D adapters, including the POWER GXT550P, GXT800P, GXT800M and
GXT3000P, provide OpenGL acceleration by implementing raster operations
in hardware while maintaining lighting, transformation, and clipping
operations in software. The GXT3000P performs some lighting and setup in
hardware as well. Since the transformation pipeline is maintained on the
system processor, most operations scale with the processing power of the
host.

9.2.3 OpenGL 1.1
IBM shipped OpenGL 1.1 for the first time in AIX 4.2.1 in April 1997. In May
1997, OpenGL 1.1 was made available under AIX 4.1.5.

Users of AIX 4.2.1 should look in InfoExplorer for detailed information about
the proper use of OpenGL 1.1.

Machine
Type

Graphics
Adapter

Softgraphics CDRS-03 DX-03 Comment

43P 150 GXT255P Y 10.05 5.02 AIX V4.3.2

43P 133 GXT255P Y 4.87 0.93 AIX V4.1.5

42T GXT1000-2 N 23.84 4.76 AIX V4.1.5

42T GXT500D N 13.42 3.10 AIX V4.1.5
136 RS/6000 Graphics Handbook

With AIX Version 4.1.5, the major changes found in OpenGL 1.1 are
described in PostScript files located in /usr/lpp/OpenGL/docs.

9.2.4 OpenGL 1.2
With AIX 4.3.2, we announce support of OpenGL Version 1.2 on the new
POWER GXT3000P adapter. If you use this graphics adapter, you can make
use of OpenGL 1.2 functionalities; however, the optional imaging extension
subset is not supported by the IBM OpenGL 1.2 implementation at this time.

9.2.5 Performance Improvements in OpenGL for AIX 4.3.2
With AIX4.3.2, IBM OpenGL 1.1 and 1.2 are enhanced to improve
performance in several areas. Users of uniprocessor systems will note faster
drawing of primitives under most conditions. All users should see
improvements in:

 • Throughput and cache utilization
 • Latency when lighting is enabled
 • Overall performance on any primitives using the new MultiDrawArray

extension

9.2.6 New Extensions to OpenGL for AIX 4.3.2
Three new extensions to OpenGL are valuable in AIX Version 4.3.2. These
are the MultiDrawArray Extension, the Texture Mirrored Repeat Extension,
and the Color Blend Extension. Some performance-related extensions
(compiled vertex array, vertex culling, and static data) are also newly added
and enhance performance of a number of applications. For more information
about these extensions, see Appendix A.2.3, “OpenGL Extensions Supported
on AIX” on page 247.

9.2.7 Easy MP
In June 1997, IBM shipped Easy Implementation of OpenGL MP, or Easy MP,
which provides multi-processor support for OpenGL 1.1. This set of
subroutine libraries offers some customers convenient access to MP
performance while running OpenGL in the RS/6000 Models 43P-240, F40
and F50 PCI-based SMP workstation. In most cases, this support is
accomplished without changing any source code or recompiling their existing
programs, and also without having to learn about writing thread-safe
applications.

While Easy MP is not a thread safe library (meaning that the customer should
not attempt to instantiate multiple copies of Easy MP in multiple threads), it is
OpenGL 137

coded to create multiple threads internal to the library layer and split the
application’s drawing requests among multiple processors.

Easy MP is not guaranteed to double your performance. Please read the
caveats in Appendix A.2.2, “Using Easy MP” on page 245.

9.2.8 64-bit OpenGL Support
OpenGL now runs 64-bit binary applications in indirect contexts. Support for
direct contexts is not currently available. Attempts to run 64-bit binaries in
direct contexts are routed to indirect contexts.

9.2.9 Direct Soft OpenGL or OpenGL for a Virtual Frame Buffer
OpenGL is currently supported with the Virtual Frame Buffer (VFB), while
PEX and graPHIGS are not.

The implementation of OpenGL for a VFB screen renders into private
pixmaps. These pixmaps are not shared between OpenGL and the X server,
nor are they shared between two OpenGL direct rendering clients. In other
words, mixed mode (X and OpenGL) rendering is not supported. X rendering
requests are performed on the VFB frame buffer, and OpenGL rendering
requests are performed on OpenGL's private pixmaps. See Chapter 6, “The X
Virtual Frame Buffer and Softgraphics” on page 75, for more information
about VFB and DirectSoft OpenGL.

9.2.10 The ZAPdb OpenGL Interactive Debugger
The ZAPdb OpenGL Interactive Debugger (formerly known as Zapp) is a full
featured OpenGL 1.2 application debugger. This provides a unique set of
debugging features tailored for OpenGL developer and performance analysts.

Unlike other debuggers, ZAPdb operates at the library level, intercepting all
calls to the OpenGL shared library. Consequently, it does not require any
special application modification, recompilation or source code.

ZAPdb provides a number of features designed specifically for the OpenGL
developer, including the ability to:

 • View the OpenGL data stream in a variety of ways
 • Set break points for all OpenGL API functions

ZAPdb was originally developed by IBM and is currently licensed to SGI,
HP, DEC, and Sun. It is also available for Windows NT.

Note
138 RS/6000 Graphics Handbook

 • Review OpenGL API function call usage by resetable call counters
 • Query attributes of the OpenGL graphics context and state

One of this debugger's most powerful features is its ability to generate a C
code trace of the application's OpenGL calls for performance tuning, problem
determination, geometry capture, and test case generation.

For more information about ZAPdb and how to use it, run the command
ZAPdbDoc or see :/usr/lpp/OpenGL/tools/ZAPdb/ZAPdb.html.

Figure 26. Main Panel of ZAPdb
OpenGL 139

9.2.11 Development History
The following table documents the history of AIX OpenGL product
development.

Table 15. Main Steps in OpenGL Products Development

9.3 Configuration

OpenGL and GL 3.2 for AIX are standard features of IBM AIX Version 4.3, but
these had been offered as Licensed Program Products for IBM AIX Version
4.2 or 4.1.

9.3.1 Filesets
There are four filesets included in this product:

OpenGL.OpenGL_X.rte OpenGL Runtime Environment
OpenGL.OpenGL_X.dev OpenGL Device Dependent Software
OpenGL.OpenGL_X.adt OpenGL Application Development Toolkit
OpenGL.OpenGL_X.tools OpenGL Tools

The first two filesets must be installed to run any OpenGL applications on the
system. To develop OpenGL programs on the system, it is necessary to
install the OpenGL Application Development Toolkit fileset. The OpenGL
Tools fileset includes the very useful OpenGL debugger.

AIX Version Date Products/Features

4.1.3 June 1995 Support for GXT500,
GXT500D

4.1.4 October 1995 Extensions

4.2.0 April 1996 Support for GXT250P,
GXT255P

4.1.5 October 1996 Support for GXT500P,
GXT550P, GXT800P

4.2.1 April 1997 Easy MP, OpenGL 1.1

4.3.0 October 1997 Integration with X11R6 and
GXT800M

4.3.1 April 1998 VFB

4.3.2 October 1998 GXT3000P, OpenGL 1.2
140 RS/6000 Graphics Handbook

9.3.1.1 OpenGL Runtime Environment
The fileset OpenGL.OpenGL_X.rte contains the following modules:

OpenGL.OpenGL_X.rte.base Base Runtime Environment

This provides:

 • The /usr/lpp/OpenGL/README file.

 • The runtime code under /usr/lpp/OpenGL/bin/.

 • The library files, such as libGL.a or libGLU.a /usr/lpp/OpenGL/lib/,
are linked from /usr/lib/.

 • The /usr/lpp/OpenGL/samples/xglinfo/xglinfo (/usr/lpp/X11/bin/xglinfo)
file.

OpenGL.OpenGL_X.rte.base+ Enhanced Geometry Pipeline
OpenGL.OpenGL_X.rte.base_mp MP Base Runtime Environment
OpenGL.OpenGL_X.rte.soft Soft Runtime Environment

These include the pipeline module under /usr/lpp/OpenGL/lib/ and so on.

9.3.1.2 OpenGL Device-Dependent Software
The fileset OpenGL.OpenGL_X.dev provides the following device-dependent
software modules:

OpenGL.OpenGL_X.dev.common.bbl GXT150L/155L/150P
OpenGL.OpenGL_X.dev.pci.14103c00.PPC GXT250P/GXT255P
OpenGL.OpenGL_X.dev.pci.14105400.PPC GXT500P/GXT550P
OpenGL.OpenGL_X.dev.pci.14105e00.PPC GXT800P
OpenGL.OpenGL_X.dev.pci.1410b800.PPC GXT2000P (N.A.)
OpenGL.OpenGL_X.dev.pci.14108e00.PPC GXT3000P
OpenGL.OpenGL_X.dev.pci.14105400.PPC_mp MP GXT500P/GXT550P
OpenGL.OpenGL_X.dev.pci.14105e00.PPC_mp MP GXT800P
OpenGL.OpenGL_X.mca.8f61 GXT800M
OpenGL.OpenGL_X.dev.common.rby GXT1000
OpenGL.OpenGL_X.buc.00004002 GXT500

It also provides:

OpenGL.OpenGL_X.vfb Virtual Frame Buffer
Support

9.3.1.3 OpenGL Application Development Toolkit (ADT)
The fileset OpenGL.OpenGL_X.adt contains two ADT modules:

OpenGL.OpenGL_X.adt.include OpenGL ADT Include Files
OpenGL 141

This contains include files such as gl.h under /usr/lpp/OpenGL/include/.
which is linked as /usr/include/GL

OpenGL.OpenGL_X.adt.samples OpenGL ADT Samples

This provides sample source code and READMEs under
/usr/lpp/OpenGL/samples/. These samples demonstrate the use of
OpenGL and the GLUT library. There are four directories as follows:

 • prog_guide/

Contains the source code to the examples referenced in the Addison &
Wesley OpenGL Programming Guide, ISBN 0-201-46138-2

 • glx_prog_guide/

Contains the source code to the examples referenced in OpenGL
Programming for the X Window System published by Addison-Wesley,
ISBN 0-201-48359-9

 • libglut/

Provides the GLUT source code

 • xglinfo/

Provides xglinfo and its source code

9.3.1.4 OpenGL Tools
The fileset OpenGL.OpenGL_X.tools contains the following modules:

OpenGL.OpenGL_X.tools.base OpenGL Base Tools

This creates a link from /usr/lpp/OpenGL/tools/glxscope to
/usr/lpp/X11/Xamples/aixclients/xscope.

OpenGL.OpenGL_X.tools.debugger OpenGL Debugger

This provides the followings under /usr/lpp/OpenGL/tools/ZAPdb:

 • OpenGL debugger bin/ZAPdb, which is linked as /usr/bin/ZAPdb, and
the README file for it

 • Utilities under util/, which will be used with ZAPdb

 • OpenGL library files under bin/, which are called from ZAPdb

 • Manual pages (HTML files) and README under ZAPdb/doc/

 • doc/ZAPdbDoc, which is linked as /usr/bin/ZAPdbDoc

9.3.2 Installation
Installation is done using the standard AIX tools, such as smit install_latest.
142 RS/6000 Graphics Handbook

Please refer to the release notes in /usr/lpp/OpenGL/README first.

9.3.2.1 /usr/lpp/X11/defaults/xserverrc
The commands used to start up the OpenGL Extension to X Window System
(GLX) automatically are in /usr/lpp/X11/defaults/xserverrc, which contains the
following line:

EXTENSIONS="-x GLX -x abx -x dbe"

Otherwise, to start up automatically under xinit, edit the file and change the
line reading:

EXTENSIONS=""

Or, to start up manually, use xinit command line options as follows:

xinit -- -x GLX -x abx -x dbe

On this command line, GLX refers to the OpenGL Extension to X, abx refers
to the X Windows Ancillary Buffer Extension, and dbe refers to the X Windows
Double Buffer Extension (DBE). DBE is an official X standard and has
replaced the nonstandard X Multi-Buffer Extension (MBX).

To check a list of extensions currently loaded to the X server, run xdpyinfo
(/usr/bin/X11/xdpyinfo) on the local system, or run it with the -display option
on a remote system.

9.4 Overview of Programming

The OpenGL Programming Guide, ISBN 0-201-46138-2, published by
Addison-Wesley, is a good guidebook to learn OpenGL programming. See
9.7, “References” on page 189. It provides plenty of sample codes. Those
sample codes also in the directory /usr/lpp/OpenGL/samples/prog_guide
when OpenGL.OpenGL_X.adt.samples installed on your system.

This section describes an overview for OpenGL programming. Section
9.4.13, “Debugging Hints” on page 167 shows simple hints that may be useful
for your first time programming.

9.4.1 OpenGL Programs
To summarize an OpenGL program:

Starting the X server with -x mbx instead of -x dbe still works on an AIX
Version 4.2.1 system, but not on AIX Version 4.3.2 system.

Note
OpenGL 143

1. The first part of OpenGL program is creation of both OpenGL windows and
contexts.

2. Next, because most of OpenGL programs are event driven, proper
callback subroutines should be registered for events your program will
handle. Those events have to be selected.

3. Almost every OpenGL call is used in the callback subroutines. It is
necessary to make current a pair consisting of one OpenGL window and
one context as the drawing target before any OpenGL calls.

4. The OpenGL program usually has a main event loop.

5. Of course, in the main loop, the program flow should be changed
dynamically by control of callback subroutine registrations.

Because OpenGL includes no Window Systems subroutines, to manage
windows, OpenGL contexts and events, it is necessary to call the GLX or
toolkit subroutines. Section 9.4.2, “Programming Styles” on page 146,
describes how to implement those actions.

9.4.1.1 Creation of OpenGL Windows and Contexts
Both OpenGL window and context need reference to a visual that is one of
those supporting OpenGL on the X server.

First, you should decide the requirements for the visual:

 • Double-buffered or single-buffered

 • RGBA or color indexed

 • 8-bit RGBA or 24-bit RGBA

 • With or without depth/stencil buffer

 • With or without accumulation buffer

 • Level (for example, level 1 and 0 correspond to overlays and normal
windows, respectively)

The command xglinfo shows a list of visual configurations available for the X
server. This command is described in 9.4.12, “xglinfo” on page 165.

OpenGL contexts and corresponding OpenGL windows should refer to the
same visual.

9.4.1.2 Initialization of OpenGL Context
OpenGL program may or may not have a callback subroutine for a
window-mapped event. If it exists, the initialization of the OpenGL context is
done there. If you do not implement such a callback, you should first make
144 RS/6000 Graphics Handbook

sure that the OpenGL window is mapped, and then initialize the OpenGL
context.

The very first step of the initialization is to make current a pair consisting of
one OpenGL window and one context. They will become the target for any
rendering order.

9.4.1.3 Other Callback Subroutines
There should always be a callback for the window exposure event. It is the
responsibility of the OpenGL application to redraw the content of a window
when this one is exposed.

Callbacks for device inputs, such as keyboard, mouse, tablet, LPFK, dial, and
spaceball, are registered if you want to consider them.

9.4.1.4 Creating a Scene
To create a scene:

1. Make a pair of the OpenGL window and context current.

If the program manages only one OpenGL window and one context, this is
not required. You should do that once at the initialization.

2. Set viewport.

3. Initialize and set the global view matrix (or in other words, view volume, or
projection matrix).

Here, you can choose a perspective view or an orthogonal view, and set
near and far clipping planes.

In a perspective view: Your eyes are located at the origin of the world
coordinates, and they look in the direction of
positive Z along the Z axis.

In an orthogonal view: Your eyes are located at infinite point in the
negative side of Z, and they look in the direction
of positive Z in parallel with the Z axis.

In both cases, the X and Y axes point to your right-hand side and your
upper side, respectively.

4. Initialize the local view matrix (or in other words, model view matrix).

5. Often set the local view matrix first, so you can move all the objects in the
view in one matrix modification.

6. Draw figures on the color buffer(s).
OpenGL 145

7. Flush OpenGL calls or swaps color buffers to show the scene on the
screen.

9.4.1.5 OpenGL Windows and Contexts
Several windows in a display can share an OpenGL context. On the other
hand, several OpenGL contexts may exist for one display, but only one at a
time can be attached to a window.

9.4.1.6 Multiple Windows, Multiple Viewports or Multiple Contexts
To implement multiview on your application window, there are different ways:

 • First, there is only one viewport in each OpenGL context.

 • You can set the viewport as many times as needed in a window so that the
window has multiple viewports.

 • You can attach multiple OpenGL contexts to a window even if only one is
active at a time. You can then assign one of your multiple viewports to
each OpenGL contexts.

 • You can use a set of multiple subwindows in your application main window
as multiple viewports in a window.

9.4.2 Programming Styles
Based on the way you want to manage your windows, OpenGL context and X
events, you may choose to use either:

 • The OpenGL Utility Toolkit (GLUT)

 • The OpenGL widgets and the OpenGL extension to X (GLX) library

 • The GLX library without the GLUT or the OpenGL widgets

With a double-buffered view, one of the two color buffers is displayed on
the screen each time. The visible buffer is called the front buffer, and the
other invisible buffer is called the back buffer. If you swap these color
buffers, the previous front buffer is now the back buffer — in other words,
invisible.

You can draw figures either in the front or in the back buffer or in both at
once. While the figures are drawn in the front buffer, you can see the
drawings even before they are completed (but flushing OpenGL calls may
be needed sometimes).

Double-Buffered View
146 RS/6000 Graphics Handbook

The last option has more flexibility, but needs more lines of code. To learn
OpenGL, programming with the GLUT is the easiest method, you can even
create very sophisticated applications with the GLUT.

If you would like to make your application with other widgets, you should use
the GLX library with or without the OpenGL widgets but including the GLUT.
And you should not mix the GLUT and the OpenGL widgets in an application.

All OpenGL subroutines are available to use in your application whatever
toolkit you choose.

9.4.3 Naming Conventions
Naming conventions in OpenGL are very simple and are designed to reduce
name clashes with other packages.

Subroutine names, constants, and types are prefixed by gl, GL_, and GL, in
C. And similar naming conventions are also applied in the GLU, GLX, and
GLUT. Prefixes for these are listed in the following table:

Table 16. Naming Conventions for OpenGL Components

For example, you will soon get familiar with such names:

 • Subroutines : glBegin(), glEnd(), glEnable(), glDisable(), glDepthFunc()

 • Constants : GL_LINE, GL_TRIANGLES, GL_DEPTH_TEST

 • Types : GLubyte, GLint, GLfloat, GLdouble

Many OpenGL subroutines (commands) take a certain type of values and/or
enumeration constants. These subroutines are suffixed to indicate the
number of elements (if needed) and the type of values. For example:

 • glVertex2i() requires two GLint values (as x, y).

 • glVertex4f() requires four GLfloat values (as x, y, z, w).

Library Subroutines Constants Types

GL gl GL_ GL

GLU glu GLU_ GLU

GLX glx GLX_

GLUT glut GLUT_
OpenGL 147

 • Suffix v in glVertex2iv() means that it has a pointer to an array that holds
two GLint values.

 • glVertex*() stands for all of such subroutines.

9.4.4 Header Files
OpenGL header files are located under /usr/include/GL/.

#include <GL/gl.h> This is required in any OpenGL program;
however, it is included in other header files
as follows.

#include <GL/glu.h> This is required to call the GLU subroutines.
It includes gl.h.

#include <GL/glx.h> This is required to call the GLX subroutines.
It also includes gl.h.

#include <GL/glut.h> This is required to call the GLUT
subroutines. It includes both gl.h and glu.h.

#include <GL/GLwMDrawA.h> This is required to use the OpenGL widgets.
It includes both gl.h and glx.h. This is the
same as writing
#include <X11/GLw/GLwMDrawA.h>

9.4.5 Link Libraries
-lGL and -lX11 should always be specified, for instance. In the simplest case,
you can make an executable file as follows:

cc -o sample sample.c -lGL -lX11

If the GLU is used, then -lGLU should be specified.

cc -o sample sample.c -lGLU -lGL -lX11

If the OpenGL widgets and the GLU are used, then -lXGLW and -lXm -lXt are
additionally required for the OpenGL widgets:

cc -o sample sample.c -lXGLW -lGLU -lGL -lXm -lXt -lX11

If your code includes the GLUT and the GLU subroutines, the link options should
be:

cc -o sample sample.c -lglut -lGLU -lGL -lXmu -lXext -lX11
148 RS/6000 Graphics Handbook

9.4.6 OpenGL Rendering Context
A context is a complete set of OpenGL state variables. The configuration of
the frame buffer is also part of OpenGL state, while the contents of frame
buffers are not.

Because performance is critical in 3D rendering, the OpenGL extension to X
allows OpenGL to bypass the X server’s involvement in data encoding,
copying, and interpretation and instead renders directly to the graphics
pipeline.

If the graphics adapter supports direct rendering and the X server connection
is local, the application can use the direct context; otherwise, the indirect
context is used.

9.4.7 Programming with the Rendering Library
The following subsections describe typical OpenGL subroutines.

9.4.7.1 Geometric Primitives
The general syntax of drawing primitives is described below:

 • Start with glBegin(primitive_type).

 • Set attributes, using glColor*(), glNormal*(), and so on.

 • Specify the first vertex with glVertex*(1st_vertex_data).

 • Set attributes, if any.

 • Specify 2nd vertex with glVertex*(2nd_vertex_data).

 • Specify nth vertex with glVertex*(nth_vertex_data).

 • End with glEnd().

Whenever a vertex is specified with glVertex*(), the current attributes, such
as color and normal vector coordinates, are assigned to that vertex. You can
change the values of those attributes before each glVertex*() call.

The argument passed to glBegin() specifies the type of primitive, and it is one
of the following 10 values:

GL_POINTS, GL_POLYGON, GL_LINES, GL_TRIANGLES, GL_QUADS,
G_LINE_STRIP, GL_TRIANGLE_STRIP, GL_QUAD_STRIP,
GL_LINE_LOOP, GL_TRIANGLE_FAN.

Between a glBegin() and glEnd() pair, only the following nine OpenGL
subroutines are valid, and making any other OpenGL call generates an error.
OpenGL 149

glVertex*() set vertex coordinates
glColor*() set current color
glIndex*() set current index
glNormal*() set normal vector coordinates
glEvalCoord*(), glevalPoint*() generate coordinates
glCallList(), glCallLists() execute display list(s)
glTexCoord*() set texture coordinates
glEdgeFlag*() control drawing of edges
glMaterial*() set material properties
glArrayElement() extract vertex array data

These subroutines also can be called outside of glBegin() and glEnd() block.

For example, this code draws a red colored loop with n+1 line segments:

glColor3f(1.0, 0.0, 0.0);/* red */
glBegin(GL_LINE_LOOP);

glVertex3f(x0, y0, z0); /* GLfloat x0, y0, z0,..., xn, yn, zn;*/
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
...
glVertex3f(xn, yn, zn);

glEnd();

9.4.7.2 Mode Control
Many state variables, such as texture coordinates, materials or test functions,
refer to modes such as 2D or 3D texture, lighting or depth test. Those modes
are enabled or disabled with glEnable() or glDisable() subroutines. For
example:

glEnable(GL_TEXTURE_3D);
glEnable(GL_LIGHTING); /* enables lighting mode */
glEnable(GL_LIGHT2); /* enables one of eight lights */
glEnable(GL_DEPTH_TEST);

9.4.7.3 Shade Model
Flat shade or Smooth (Gouraud) shade is selected by the glShadeMode()
subroutine. Flat shade is the default. This code shows a red object in flat
shade mode or a smooth shaded object in smooth shade mode:

glShadeMode(GL_FLAT or GL_SMOOTH);
glBegin(primitive_type);

glColor3f(1.0, 1.0, 1.0); /* white */
glVertex3f(x0, y0, z0);
glColor3f(1.0, 1.0, 0.0); /* yellow */
glVertex3f(x1, y1, z1);
...
150 RS/6000 Graphics Handbook

glColor3f(0.0, 0.0, 1.0); /* blue */
glVertex3f(xn, yn, zn);

glEnd();

9.4.7.4 Push and Pop Attributes and Transformation Matrix
Using glPushAttrib() and glPopAttrib() subroutines, you can save and later
restore the values of a collection of state variables on an attribute stack, or in
another words, attribute changes can be encapsulated in a block. For
example, in this code the colors assigned to the 1st and the 2nd vertices are
both blue:

glColor3f(1.0, 0.0, 0.0); /* red */
glColor3f(0.0, 0.0, 1.0); /* blue */
glVertex3f(x0, y0, z0); /* the 1st vertex */
glVertex3f(x1, y1, z1); /* the 2nd vertex */

But in the following code, the 1st vertex is assigned the blue color, while the
2nd vertex is assigned the red color:

glColor3f(1.0, 0.0, 0.0); /* red */
glPushAttrib(GL_CURRENT_BIT);

glColor3f(0.0, 0.0, 1.0); /* blue */
glVertex3f(x0, y0, z0); /* the 1st vertex */

glPopAttrib();/* we go back to the red */
glVertex3f(x1, y1, z1); /* the 2nd vertex */

glPushMatrix() and glPopMatrix() saves and later restores the transformation
matrix in the same way.

9.4.7.5 Display List
Using a display list, an object, a group of OpenGL subroutines can be used
repeatedly, in a scene or in different scenes. For example, this code makes a
display list containing an object, such as a block, without specifying colors:

glNewList(listid, GL_COMPILE);
glBegin(primitive_type);

glVertex3f(...);
...
glVertex3f(...);

glEnd();
glEndList();

Later, this object can be called at a different location with a different color as
follows:

glColor3f(1.0, 0.0, 0.0);
glPushMatrix();

glTranslatef(...);
glCallList(listid);

glPopMatrix();
OpenGL 151

glColor3f(0.0, 0.0, 1.0);
glPushMatrix();

glTranslatef(...);
glCallList(listid);

glPopMatrix();

Notice the difference between the following two codes:

glNewList(listid, GL_COMPILE);
glColor3f(1.0, 1.0, 1.0); /* white */
glBegin(primitive_type);

glVertex3f(...);
...

glEnd();
glEndList();

The above display list changes the current color to white when it is called,
and will remain white after this call. But the display list below will change the
current color to white and then the restore previous color before exit:

glNewList(listid, GL_COMPILE);
glPushAttrib(GL_CURRENT_BIT);

glColor3f(1.0, 1.0, 1.0);
glBegin(primitive_type);

glVertex3f(...);
...

glEnd();
glPopAttrib();
glEndList();

9.4.8 A Program with the GLUT
The code in this section is not the complete source code for an application.
For instance, no error handling is described here, but it serves as an
explanation for OpenGL programming. (The code in the following two
sections is not complete.)

9.4.8.1 main()
The following subroutine is a typical main function in the sample programs
you have in the OpenGL Programming Guide: The Official Guide to Learning
OpenGL 1.1, ISBN 0-201-46138-2

int main(int argc, char **argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(250, 200);
152 RS/6000 Graphics Handbook

glutInitWindowPosition(100, 150);
glutCreateWindow("sample");
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMainLoop();
return 0;

}

In the main() subroutine:

 • The first five GLUT subroutines configure a main window as an OpenGL
drawable. This window is mapped on the screen after glutMainLoop() is
executed.

 • Next, init(), as shown below, initializes the OpenGL context.

 • Each of the next three subroutines sets a callback subroutine to the
corresponding event.

The detail for each line is:

glutInit(&argc, argv);

Initializes the application context. (cf. XtAppInitialize() or
XtOpenApplication().)

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

Requests a single-buffered RGB(A) visual with depth (Z) buffer.

glutInitWindowSize(250, 200);
glutInitWindowPosition(100, 150);

Sets the main window width and height to 250 and 200 pixel size and locates
the window’s upper-left corner at x = 100, y = 150 on the screen.

glutCreateWindow("sample");

Creates a main window with the above attributes (visual, size, and position)
and gives a string "sample" to the window title.

If all RGB(A) visuals have a Z-buffer, one of them is chosen by this
command even if you do not specify GL_DEPTH. You do not have to
handle the Z-buffer in that case.

Note
OpenGL 153

glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);

Registers callback subroutines. In an event loop, if the main window is
displayed (exposed) on the screen, a callback subroutine, display(), for the
exposed event is executed. When the application user changes the
application window sizes, reshape() is called. Any keystroke causes a call for
keyboard().

About 20 functions are ready to use to register a callback: glutMouseFunc(),
glutMotionFunc(), glutTabletButtonFunc(), glutDialsFunc(), glutTimerFunc(),
glutIdelFunc(), and so on.

If you want to remove a callback subroutine later, specify NULL as shown
below :

glutKeyboardFunc(NULL);
glutMainLoop();

Starts the main loop. (cf. XtAppMainLoop()).

9.4.8.2 init()
This is the place where you should initialize the OpenGL context properly.

void init (void)
{

glClearColor(0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glEnable(GL_DEPTH_TEST);
}

The detail of each line is:

glClearColor(0.0, 0.0, 0.0, 0.0);

Sets the clear color to black. To make black the default, this line can be
omitted. This command is valid in RGBA mode or for RGB(A) visual. In color
index mode,

glIndexi(n); /* n is one of available color indices */

In this main() subroutine, you don’t see the creation of any OpenGL
context. But the GLUT subroutines create one context and make it current
with the newly created window.

OpenGL Context
154 RS/6000 Graphics Handbook

is valid and sets the clear color index to n.

glShadeModel(GL_FLAT);

After this call, polygons and lines are flat shaded. If you need Gouraud
shading, pass GL_SMOOTH to this command. GL_FLAT is the default; so
this line can also be omitted.

glEnable(GL_DEPTH_TEST);

Enables the depth test. By default, the test is disabled, so this line is
necessary to make it available.

9.4.8.3 Callback Subroutines
The subroutines shown below are samples of callbacks.

First, this is a sample callback subroutine for the exposure event. This should
be registered by glutDisplayFunc(), and will be called every time the main
window is exposed — in other words, when it is initially mapped or when it is
restored from icon.

void display(void)
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/*******************/
/* drawing a scene */
/*******************/
glFlush();

glutSwapBuffers();
}

The detail for each line is:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Clears the drawable RGBA buffer and Z-buffer at once. To clear the RGBA
buffer, the clear color is used. The Z-buffer is cleared with the maximum
number. GL_COLOR_BUFFER_BIT is valid in both RGBA and color index
modes.

glFlush();

Flushes all of the commands that are not yet executed on the OpenGL server.
It is necessary to call it if you work on a single-buffered visual. For a
double-buffered visual, this also works well; however, sometimes the things
go well without this command because of buffer swapping. This happens
OpenGL 155

because the remaining commands are executed in the back buffer, and you
don’t see the result.

glutSwapBuffers();

If the visual is double buffered, this command swaps color buffers. For
instance, it makes the invisible color buffer (back buffer) visible, and vice
versa. If the visual is single-buffered, nothing will happen with this command.

Next, this is a sample callback subroutine for the window reconfiguration
event. This should be registered by glutReshapeFunc() and will be called at the
window creation as well as when the user changes the window sizes. It resets
the viewing information in the OpenGL context:

void reshape(int w, int h)
{

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 1.0, 0.0, 1.0 * (GLfloat) h / (GLfloat) w, -1.0, 1.0);
/* or gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 30.0); */
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
/*... some transformations you need */

}

The detail for each line is:

glViewport(0, 0, (GLsizei) w, (GLsizei) h);

Adjusts the viewport to the reshaped window size and assures you that you
can still use the maximum size of the window for your drawing.

Without this line, the result can be quite surprising. For example, if the size
of a window, which is originally 150" width and 100 in height, changes to
150x100, the bottom 50 rows are not available for drawing because the
viewport is unchanged, and your figures are clipped by viewport boundary.
See Figure 27 on page 157.

And, of course, if you want to keep the original viewport regardless of
window size changes, you don’t need to call glViewport() here. Further if
you set both of the projection and modelview matrices properly in init(),
you may not have to call glReshapeFunc() itself.

Note
156 RS/6000 Graphics Handbook

Figure 27. Importance of the Viewport Concept

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 1.0, 0.0, 1.0 * (GLfloat) h / (GLfloat) w, -1.0, 1.0);

First, reset the projection mode matrix to unit matrix; then set the orthogonal
view volume. This glLoadIdentiy() is important. glOrtho() generates a
transformation matrix and applies it to the current projection matrix.
Therefore, the following lines might create unexpected results.

glMatrixMode(GL_PROJECTION);
glOrtho(0.0, 1.0, 0.0, 1.0 * (GLfloat)h / (GLfloat)w, -1.0, 1.0);

To use a perspective view, call:

gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 30.0);

instead of glOrtho().

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

Change the matrix mode to GL_MODELVIEW mode, and reset the modelview
matrix to the unit matrix.

Next is a sample callback subroutine for key input event. This should be
registered by glutKeyboardFunc(). It will be called every time a key is hit.

void keyboard(unsigned char key, int x, int y)
{

switch(key) {
case ’q’:
case ’Q’:
exit(0);

Original Reshaped

Viewport
100

150

150

100

You can’t draw
here.
OpenGL 157

default:
break;

}
}

9.4.9 A Program with the GLX Library and the OpenGL Widgets
Sample main() subroutine and some callback subroutines are shown here
using the GLX library and GLw widget.

9.4.9.1 main()
The following subroutine is a typical main() function:

#include <X11/Intrinsic.h>
#include <GL/GLwMDrawA.h>

void ginitCB(Widget w, XtPointer client_data, XtPointer call_data);
void exposeCB(Widget w, XtPointer client_data, XtPointer call_data);
void inputCB(Widget w, XtPointer client_data, XtPointer call_data);

int main(int argc, char **argv)
{

...
int glxconfig[] = {

GLX_DOUBLEBUFFER,
GLX_RGBA,
GLX_RED_SIZE, 8,
GLX_GREEN_SIZE, 8,
GLX_BLUE_SIZE, 8,
None

};
XVisualInfo *visualinfo;
GLXContext glxcontext;
Widget glw;
...

toplevel = XtOpenApplication(&app_context, "sample",...);
...
visualinfo = glXChooseVisual(display, screen, glxconfig);

glxcontext = glXCreateContext(display, visualinfo, None, GL_TRUE);

n = 0;
XtSetArg(args[n], GLwNvisualInfo, visualinfo); n++;
XtSetArg(args[n], XmNwidth, 256); n++;
...
glw = GLwCreateMDrawingArea(toplevel, "glw", args, n);
158 RS/6000 Graphics Handbook

XtManageChildren(glw);

XtAddCallback(glw, GLwNginitCallback, (XtCallbackProc)ginitCB,
(XtPointer)option1);

XtAddCallback(glw, GLwNexposeCallback,
(XtCallbackProc)exposeCB, (XtPointer)option2);

XtAddCallback(glw, GLwNresizeCallback,
(XtCallbackProc)resizeCB, NULL);

XtAddCallback(glw, GLwNinputCallback,
(XtCallbackProc)inputCB, NULL);

XSelectInput(display, XtWindow(glw),
XtBuildEventMask(glw) | PointerMotionMask);

XtRealizeWidget(toplevel);
XtAppMainLoop(app_context);
return 0;

}

In this main() subroutine:

 • The glXChooseVIsualInfo() subroutine returns a pointer to an XVisualInfo
structure describing the visual that best meets the client’s specified
attributes.

 • The glXCreateContext() subroutine creates a OpenGL context with
visualinfo.

 • The GLwCreateMDrawingArea() subroutine creates an OpenGL widget.

 • Each XtAddCallback() subroutine registers a proper callback subroutine for
corresponding event type.

The detail for each part is:

int glxconfig[] = {
GLX_DOUBLEBUFFER,
GLX_RGBA,
GLX_RED_SIZE, 8,
GLX_GREEN_SIZE, 8,
GLX_BLUE_SIZE, 8,
None

};

Describes the client’s specified attributes.

XVisualInfo *visualinfo;
visualinfo = glXChooseVisual(display, screen, glxconfig);
OpenGL 159

Returns a pointer to an XVisualInfo structure describing the visual that best
meets the attributes with the above glxconfig[].

GLXContext glxcontext;
glxcontext = glXCreateContext(display, visualinfo, None, GL_TRUE);

Creates an OpenGL context with visualinfo.

Widget glw;
Arg args[10];
int n;
n = 0;
XtSetArg(args[n], GLwNvisualInfo, visualinfo); n++;
XtSetArg(args[n], XmNwidth, 256); n++;
...
glw = GLwCreateMDrawingArea(parent, "glw", args, n);
XtManageChildren(glw);

Creates and manages an OpenGL widget specifying visualinfo and the other
attributes.

void ginitCB(Widget w, XtPointer client_data,
GLwDrawingAreaCallbackStruct *call_data);
...
XtAddCallback(glw, GLwNginitCallback,
(XtCallbackProc)ginitCB, (XtPointer)option1);
XtAddCallback(glw, GLwNexposeCallback,
(XtCallbackProc)exposeCB, (XtPointer)option2);
XtAddCallback(glw, GLwNresizeCallback,
(XtCallbackProc)resizeCB, NULL);
XtAddCallback(glw, GLwNinputCallback,
(XtCallbackProc)inputCB, NULL);

Registers a proper callback subroutine for each event type.

9.4.9.2 Callback Subroutines
Subroutines shown below are samples of callbacks.

This will be called just when the OpenGL widget is mapped on the screen.
This is similar to the init() subroutine in the GLUT example except for the
call of GLwDrawingAreaMakeCurrent(), which should be called in advance of any
other OpenGL calls.

void ginitCB(Widget w, XtPointer client_data,
GLwDrawingAreaCallbackStruct *call_data)

{
GLint viewport[4];
160 RS/6000 Graphics Handbook

GLwDrawingAreaMakeCurrent(w, (GLXContext)client_data);

glClearColor(0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glEnable(GL_DEPTH_TEST);

}

The following is called when the OpenGL widget is exposed, and it is similar
to the display() subroutine in the GLUT example:

void exposeCB(Widget w, XtPointer client_data,
GLwDrawingAreaCallbackStruct *call_data)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/*******************/
/* drawing a scene */
/*******************/
glFlush();
GLwDrawingAreaSwapBuffers(w);

}

The following function is called when the OpenGL widget is resized, and it is
similar to the reshape() subroutine in the GLUT example:

void resizeCB(Widget w, XtPointer client_data,
GLwDrawingAreaCallbackStruct *call_data)

{
GLsizei w = call_data->width;
GLsizei h = call_data->height;

glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 1.0, 0.0, 1.0 * (GLfloat) h / (GLfloat) w, -1.0, 1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
/*... some transformations you need */

}

The following function is called when the OpenGL widget gets events from
input devices:

void
inputCB(Widget w, XtPointer client_data,

GLwDrawingAreaCallbackStruct *call_data)
{

switch(call_data->event->type) {
OpenGL 161

case KeyRelease:
...

case ButtonPress:
switch(call_data->event->xbutton.button) {
case Button1:

...
}
break;

case MotionNotify:
...

}
}

9.4.10 A Program with the GLX Library
Sample main() subroutine is shown here using the GLX library. The following
subroutine is a typical main() function:

#include <X11/Xlib.h>
#include <X11/Xutil.h>
...
#include <GL/glx.h>
#include <GL/glu.h>

int main(int argc, char **argv)
{

...
int glxconfig[] = {

GLX_DOUBLEBUFFER,
GLX_RGBA,
GLX_RED_SIZE, 8,
GLX_GREEN_SIZE, 8,
GLX_BLUE_SIZE, 8,
None

};
XVisualInfo *visualinfo;
GLXContext glxcontext;
Window root, window;
XSetWindowAttributes attr;
XEvent event;
...

display = XOpenDisplay(NULL);
screen = DefaultScreen(display);
root = RootWindow(display, screen);
...
visualinfo = glXChooseVisual(display, screen, glxconfig);
162 RS/6000 Graphics Handbook

glxcontext = glXCreateContext(display, visualinfo, None, GL_TRUE);
cmap = XCreateColormap(display, root, visualinfo->visual, AllocNone);

attr.border_pixel = 0;
attr.event_mask = ExposureMask | ButtonPress;
attr.colormap = cmap;
window = XCreateWindow(display, root, 0, 0, 512, 512,

0, visual_info->depth, InputOutput, visualinfo->info,
CWBorderPixel | CWColormap | CWEventMask, &attr);

XSetWMColormapWindows(display, window, &window, 1);

glXMakeCurrent(display, window, glxcontext);
init();
XMapWindow(display, window);

while(!done) {
status = XPending(display);
if(status!= 0) {

XNextEvent(display, &event);
switch(event.type) {
case Expose:

...
case ButtonPress:

...
}

}
}
return 0;

}

9.4.11 Overlay Window
GLUT provides several subroutines to support drawing on overlay planes:

/* GLUT overlay sub-API. */
void glutEstablishOverlay(void);
void glutRemoveOverlay(void);
void glutUseLayer(GLenum layer);
void glutPostOverlayRedisplay(void);
void glutShowOverlay(void);
void glutHideOverlay(void);
/* GLUT callback sub-API. */
void glutOverlayDisplayFunc(void (*)(void));

These are not described in this book.
OpenGL 163

The following is additional information to the above GLX programming with or
without OpenGL widgets.

To get an overlay visual, pass this to glXChooseVisualInfo().

int overlay_config[] = {
GLX_LEVEL, 1,
GLX_TRANSPARENT_TYPE_EXT,
GLX_TRANSPARENT_INDEX_EXT,
None
};

XVisualInfo *overlay_visualinfo =
glXChooseVisual(display, screen, overlay_config);

The OpenGL context and window for overlay planes are created in the same
manner as color planes.

GLXContext overlay_context =
glXCreateContext(display, overlay_visualinfo, None, GL_TRUE);
Widget glw_overlay;
...
XtSetArg(args[n], GLwNvisualInfo, overlay_visualinfo); n++;
glw_overlay = GLwCreateMDrawingArea(toplevel, "glw_overlay", args, n);

In the initialization subroutine (like ginitCB()), it is necessary to get the
transparent pixel for the clear color index as follows:

int transparent_pixel;
glXGetConfig(display, overlay_visualinfo,

GLX_TRANSPARENT_INDEX_VALUE_EXT, &transparent_pixel);
glClearIndex(transparent_pixel);

This process is required to keep portability of the application because the
transparent pixel may change on the other machines. It may be 255 or 0. The
xglinfo command shows the number for transparent overlay on a specified
display.

To handle MapNotify events, whenever mapped, raise the overlay window on
top of the window in color planes and add the event handler as described
here:

XtAddEventHandler (glw_overlay,StructureNotifyMask,False,
(XtEventHandler)structureChanged,"");

The event handler can be defined with:

void structureChanged(Widget w, XtPointer client, XEvent *event)
{

if(w == glw_overlay && event->type == MapNotify)
164 RS/6000 Graphics Handbook

XRaiseWindow(display, XtWindow(w));
}

Because the overlay visual is usually a color-indexed visual, you should
assign colors to color indices. The following code assigns only one color.

Colormap cmap;
ulong pixels[1];
XColor color;

XtVaGetValues(glw_overlay, XmNcolormap, &cmap, NULL);

/* Allocate a color cell */
XAllocColorCells(display, cmap, False, NULL, 0, pixels, 1);

color.pixel = pixels[0];
color.red = color.green = color.blue = 0x0000; /* black */
color.flags = DoRed | DoGreen | DoBlue;
XStoreColor(display, cmap, &color);

glIndexi(pixels[0]);

When the overlay planes are used in the application, there are at least two
sets of OpenGL contexts and windows; therefore, glXMakeCurrent() or
GLwDrawingAreaMakeCurrent() should be called when the drawing target
changes.

9.4.12 xglinfo
The command /usr/bin/X11/xglinfo provides you with useful information for
your OpenGL programming. You should again execute the DISPLAY where
you are going to draw.

To get the information for the screen that is in front of you, just type xglinfo or
/usr/bin/X11/xglinfo. To get the information for the screen on the remote
host, if the X server is running on that machine, execute:

xglinfo -display remote_host_name:screen_number

A result of this command on the machine with GXT3000P is shown in
Appendix A.2.1, “Output of xglinfo” on page 243. You have a similar one on
your system. The following explains its contents.

In the output, the Display section shows the X server characteristics with the
X server extension list and GLX and GLU libraries information.
OpenGL 165

The following Screen section shows the graphics adapter’s name, or
"SoftRaster" for the VFB, and a list of available GL extensions.

GL Extension: Vendor = IBM
Renderer = GXT3000
Version = 1.2.0
Extensions = GL_EXT_texture_object GL_EXT_vertex_array
GL_EXT_rescale_normal GL_IBM_rasterpos_clip
GL_IBM_cull_vertex GL_EXT_multi_draw_arrays
GL_EXT_abgr GL_EXT_bgra GL_EXT_blend_color
GL_EXT_blend_logic_op GL_EXT_polygon_offset
GL_EXT_subtexture GL_EXT_texture3D
GL_EXT_texture_edge_clamp GL_EXT_texture_lod
GL_IBM_texture_mirrored_repeat

The last section is information about visuals available on the screen. In the
above case (with GXT3000P), all visuals are available for OpenGL use, but
sometimes you find the following lines for the other type adapters.

OPENGL NOT SUPPORTED

For example:

TrueColor visual: ID = 0x2c (hex) 44 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z Stencil)
GL Sizes: RGBA=(8,8,8,8), Z=24, Stencil=8,
Extensions: visualCaveat=None, OPAQUE
Core X:depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff)
bits=8

This visual has a double-buffered 32-bit RGBA color buffer, a 24-bit Z buffer
and an 8-bit stencil buffer. MONO means nonstereo visual.

TrueColor visual: ID = 0x2e (hex) 46 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z Stencil Accum)
GL Sizes: RGBA=(8,8,8,8), Z=24, Stencil=8, Accum=(16,16,16,16)
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff)
bits=8

This visual, in addition, has a 64-bit RGBA accumulation buffer.

TrueColor visual: ID = 0x28 (hex) 40 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Z Stencil)
GL Sizes: RGBA=(8,8,8,0), Z=24, Stencil=8,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff)
bits=8
166 RS/6000 Graphics Handbook

This visual has a double-buffered 24-bit RGB color buffer but no alpha. It also
has a 24-bit Z-buffer and an 8-bit stencil buffer.

TrueColor visual: ID = 0x25 (hex) 37 (decimal) screen = 0
DOUBLE buffered STEREO RGB visual with (Alpha Z Stencil Accum)
GL Sizes: RGBA=(4,4,4,4), Z=24, Stencil=8, Accum=(16,16,16,16)
Extensions: visualCaveat=None, OPAQUE
Core X: depth=12, colormapSize=16 RGB: masks=(0xf00,0xf0,0xf) bits=4

This visual has a double-buffered stereo RGBA color buffer, but each
component has four bits. Therefore, its color resolution is less than the above
visuals (They all support eight bits per component.)

PseudoColor visual: ID = 0x23 (hex) 35 (decimal) screen = 0
DOUBLE buffered MONO COLOR INDEX visual with (Z Stencil)
GL Sizes: ColorIndex=8, Z=24, Stencil=8
Extensions: visualCaveat=None, OPAQUE
Core X: depth=8, colormapSize=256

This visual has a double-buffered 8-bit indexed color buffer, a 24-bit Z-buffer
and an 8-bit stencil buffer.

PseudoColor visual: ID = 0x22 (hex) 34 (decimal) screen = 0
OVERLAY(1) SINGLE buffered MONO COLOR INDEX visual GL Sizes:
ColorIndex=8,
Extensions: visualCaveat=None, TRANSPARENT INDEX, index value=255
Core X: depth=8, colormapSize=255

This visual has a single-buffered 8-bit indexed color buffer. This is an overlay
visual. Because index 255 is used as the transparent index, the available
color indices are [0,254]. The color map size is 255.

PseudoColor visual: ID = 0x21 (hex) 33 (decimal) screen = 0
OVERLAY(1) SINGLE buffered MONO COLOR INDEX visual GL Sizes:
ColorIndex=8,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=8, colormapSize=256

This is also an overlay visual, but it is opaque.

9.4.13 Debugging Hints
If the result of your first program is not the one you expect, you may be
interested in this section. ZAPdb is very useful for debugging.

 • If the application is coded without GLUT, and the application closes
without any drawing, it is very possible that MakeCurrent is not called in
the correct place or maybe not at all.
OpenGL 167

 • The depth test is disabled by default. And if you select a visual without the
depth buffer on a hardware-accelerated graphics adapter, the depth test
does not work. If you need the depth test, check the supported visuals by
using xglinfo and specify GLX_DEPTH_SIZE in the configuration data for
glXChooseVisual.

 • If no object is seen in the black screen when the lighting is enabled,
disable the lighting first. Then check if objects are rendered.

 • Replace glColor*() with a set of glMaterial*() calls, which are needed
for lighting. There is another way using glColorMaterial() and
glEnable(GL_COLOR_MATERIAL), but it is not usually recommended to use
this. That is, glMaterial*() should be used. And, when lighting is
disabled, use glColor*() (or glIndex*() in color index mode).

 • If, even with glMaterial*(), the picture is not correct, then enable
two-sided lighting as follows:

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

and/or disable face cull.

 • If no object is seen even when the lighting is disabled, check the view
volume. First, remember that viewer (your eyes) are located at the origin
of the world coordinate system, (0, 0, 0). If you use a perspective view,
this is sometimes forgotten.

 • Using an orthogonal view is easier to find objects in view volume. Set
near and far clipping planes to negative infinity and positive infinity,
respectively. If you still cannot see your objects, check the right, left,
top, and bottom boundaries.

 • With a perspective view, set the near clipping plane at near the origin
and set the far clipping plane to positive infinity. And push objects to
the positive direction of Z using glTranslate*(). If you find them, it is
more convenient to move the viewer position to the negative direction
of Z using the gluLookAt() subroutine than pushing objects away from
you (indeed, gluLookAt() does the same thing.) The proper place of
gluLookAt() is:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(...); /* or glOrtho(...),... */
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(...);
168 RS/6000 Graphics Handbook

 • If the application uses a double-buffer visual and nothing occurs, change
the draw buffer to front using glDrawBuffer(GL_FRONT). Then draw a scene
following glFlush(), but do not call the swap buffer subroutine.

 • If drawing on overlay planes fails:

 • First change the clear color to any non-transparent color pixel, and
clear with glFlush().

 • If nothing occurs, check the location (x, y) and the size (width, height)
of the overlay window.

 • If the clear color works correctly, make sure there is a glFlush() after
drawing. For example, with the following code, nothing might be drawn.

clear, draw rubber band, clear, draw rubber band, clear,...

In such a program, insert glFlush() as follows:

clear, draw rubber band, flush, clear, draw rubber band, flush,...

Then, the rubber band will be drawn correctly.

9.5 Performance Tips

For general performance guidelines, consult the OpenGL Performance Tips
in the OpenGL Programming Guide: The Official Guide to Learning OpenGL
1.1, ISBN 0-201-46138-2.

Most of the following topics are described in the latest
/usr/lpp/OpenGL/README file.

9.5.1 Additional Tips
 • For a set of primitives, each composed of a uniform number of vertices,

use the appropriate independent primitive type (GL_LINES,
GL_TRIANGLES, GL_QUADS) instead of a connected primitive type
(GL_LINE_STRIP, GL_TRIANGLE_STRIP, GL_QUAD_STRIP,
GL_POLYGON). This reduces the number of calls to glBegin() and
glEnd().

 • Use the display list rendering whenever possible, especially if you reuse
rigid objects.

 • To get better performance, make display lists as large as possible rather
than making a large number of small ones.

 • Use glVertex3*() commands instead of glVertex4*() if the W component is
1.0.
OpenGL 169

 • Avoid glColorMaterials() unless you really need them; that is, disable
GL_COLOR_MATERIAL and use glMaterial*() instead of glColor*() for
lighting.

 • Use glLoadIdentity(), glRotate*(), glTranslate*(), and glScale*() rather
than calling glLoadMatrix() and glMultMatrix().

 • Avoid GL_NORMALIZE if possible; that is, provide unit length normals if it
is possible to do so. And avoid using glScale*() when doing lighting
because it almost always requires GL_NORMALIZE to be enabled.

 • Avoid multiple OpenGL contexts in a scene. It may be convenient to have
multiple contexts in an application, but context changing is expensive. Use
one context for each visual.

 • If you need to use accumulation buffers for scene antialiasing, try to use
glReadPixels(), glDrawPixels() and your CPU memory in direct rendering
context without accumulation buffers. It might be faster than using
accumulation buffers in indirect context.

 • Use texture objects to encapsulate texture data. OpenGL 1.1 supports it to
improve performance in texture mapping.

9.5.2 Specific Implementation Notes
The following descriptions are performance tips for specific graphics systems.

9.5.2.1 GXT3000P OpenGL
 • Use MultiDrawArrays or DrawArrays.

 • Sometimes performance is better if face cull is disabled on this adapter.
Even if you need face cull, compare performance with or without face cull.

 • Use infinite light and infinite viewer unless you really need point light.

 • Utilize direct rendering contexts when possible. Visuals supporting
accumulation buffers do not support direct rendering contexts. Therefore,
unless accumulation buffers are needed, avoid using visuals with one.

9.5.2.2 Soft OpenGL on VFB
For two OpenGL clients to render into a common pixmap buffer, both clients
must render using indirect contexts. To achieve mixed mode rendering (X and
OpenGL), the environment variable, _OGL_MIXED_MODE_RENDERING may be set to
1. Because of the performance impact, this is intended for verification
purposes only. With mixed mode rendering enabled, the utilities xwd and xwud
can be used to view the VFB frame buffer contents.
170 RS/6000 Graphics Handbook

9.5.2.3 Soft OpenGL on the GXT250 Family/GXT150 Family
The softGL implementations accelerate some OpenGL rasterization in the
following X server resolutions:

Table 17. Resolutions Supported by softGL on the GXT150 and GXT250 Families

Since all the operations are implemented in software, it is important that the
following guidelines are observed in order to maximize system performance.

 • Avoid rendering to unnecessary buffers. For example, if destination alphas
are not needed, disable alpha writes using:

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_FALSE)

 • If Z-buffering is not required, disable the depth test:

glDisable(GL_DEPTH_TEST)

 • If possible, use the default depth test of GL_LESS.

 • Minimize synchronization function calls like glFlush(), glFinish(),
glXWaitX(), and glXWaitGL().

 • Utilize display list rendering whenever possible.

 • Avoid dithering for the clear color. This can be achieved by specifying a
clear color, which is displayable without dithering, or by disabling
dithering.

 • Lines and polygons are rendered in hardware when the following states
are selected:

 • glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_FALSE).

 • glDisable(GL_DEPTH_TEST)

 • glShadeModel(GL_FLAT)

In addition, the GXT250 series renders color-interpolated lines.

 • glShadeModel(GL_SMOOTH)

Graphic Adapter 1280x1024 1024x768

GXT255P X X

GXT250P X

GXT155L X X

GXT150L X

GXT150P X
OpenGL 171

GL_FLAT is still the fastest line renderer, though.

 • If possible, disable dithering when rendering to color-index drawables.

 • Pixmap rendering is supported in indirect context only.

9.5.2.4 GXT500 Family/GXT800 Family OpenGL
Performance can be maximized if the following guidelines are observed:

 • Use direct rendering contexts when possible. Visuals including
accumulation buffers do not support direct rendering contexts. Therefore,
unless accumulation buffers are needed, avoid using visuals with one.

 • Use MultiDrawArrays or DrawArrays.

 • Use face cull, if possible.

 • (GXT800 Family only) For those systems equipped with texture memory,
primitives textured with texture maps larger than 512x512 (without
borders, 256x256 with borders) are textured using software. To maximize
texture mapping performance, make sure the texture images are no larger
than these limits.

9.5.2.5 GXT1000 OPENGL
Consult the 7250 POWER GXT1000 Graphics Accelerator User’s Guide,
SA23-2070, for more information on the GXT1000.

Performance can be maximized if the following guidelines are observed.

 • Utilize direct rendering contexts whenever possible.

 • When rendering in immediate mode, do not artificially extend
glBegin()/glEnd() primitives by adding degenerate vertices.

 • Use the GXT1000 Model 2 with the Advanced Graphics (AG) option to
maximize texture mapping performance. Also use that model if large
texture maps or deep accumulation buffers are required.

 • If several textures are used repeatedly, wrap the glTexImage() calls by
defining each texture in a display list. This allows the adapter to cache the
images in the adapter texture memory, even if other texture images are
subsequently defined.

 • The GXT1000 can be configured to swap the frame buffers of a
double-buffered window on horizontal retraces. The default configuration
is to swap on vertical retraces. Swapping on horizontal retrace increases
performance, but may produce small visual artifacts. Consult the 7250
POWER GXT1000 Graphics Accelerator User’s Guide, SA23-2070, for
more information.
172 RS/6000 Graphics Handbook

On the GXT1000, the value returned by a query of
GL_MAX_TEXTURE_SIZE represents the size of the largest texture image
that can be defined with *BOTH* mipmaps and borders. Images without
mipmaps or borders that are larger than GL_MAX_TEXTURE_SIZE are
supported by the GXT1000:

 • Images with either mipmaps or borders (but not both) can be up to twice
the size reported by GL_MAX_TEXTURE_SIZE.

 • Images with neither mipmaps nor borders can be up to four times the size
reported by GL_MAX_TEXTURE_SIZE.

Double-buffered windows with an accumulation buffer are only available on a
GXT1000 Model 2 with the Advanced Graphic option where the environment
variable HW_TEXTURE_CFG is set to TX96.

For information on rendering in stereo or using the GXT1000 Video Output
Option (VOO), consult the 7250 POWER GXT1000 Graphics Accelerator
User’s Guide, SA23-2070. The GXT1000 renderer currently does not support
pixmap rendering.

9.6 Comparison with Other 3D Graphics APIs

In this section, OpenGL is compared with GL 3.2 and graPHIGS. This section
also introduces Open Inventor.

9.6.1 Comparison with GL 3.2
As stated earlier in this chapter, OpenGL comes almost directly from the
proprietary GL API developed by Silicon Graphics, Inc.

9.6.1.1 History — From GL to OpenGL
GL has been very popular as a 3D graphics API, but it has some
disadvantages because it does not provide interoperability in heterogeneous
networked environments and is not easily portable even between the few
platforms that support it.

For these reasons, and in response to the growing popularity of open
systems, SGI initiated an effort to standardize GL so that it could be easily
supported by multivendor platforms. This effort led to the development of an
open 3D API standard called OpenGL.

IBM, DEC, Microsoft, and Intel were invited by SGI to join the OpenGL ARB
to help formulate the definition of the OpenGL API. OpenGL Version 1.0 was
OpenGL 173

released in 1992. IBM is still an active member of the ARB and continues to
contribute to the OpenGL specification.

OpenGL is not backwards compatible with former GL versions; in fact,
OpenGL calls are completely different from previous GL implementations. For
this reason, OpenGL requires ports from older versions of GL, like 3.2, 3.3,
and 4.0, on all vendors’ platforms.

SGI’s and IBM’s strategic direction is away from a proprietary windowing
system to an open system. Therefore, GL customers are encouraged to
migrate to OpenGL by separating windowing and input calls (which are better
handled by Xlib) from 3D rendering calls.

9.6.1.2 Advantages of OpenGL Over IBM’s GL Offering
IBM encourages GL 3.2 customers to migrate to OpenGL. This is because of
the many advantages of OpenGL over GL 3.2, as described here.

 • Additional rendering capabilities:

OpenGL offers additional rendering capabilities not present in IBM's
current GL offering, including texture mapping, stencil and accumulation
buffers. See 9.1.4, “Technical Content of OpenGL” on page 131, for
OpenGL rendering capabilities.

 • Better integration with window systems:

OpenGL does not provide the support for windowing, input, events,
cursors, and pop-up menus that GL includes. Instead, OpenGL relies on
the libraries for the window system which are better equipped to handle
these functions on each platform and therefore is more integrated with the
window system than GL. For example, such libraries are the X11 library
(Xlib), Xt and OSF/Motif for AIXwindows.

 • Open licensing:

As described in 9.1.7, “OpenGL Licensing” on page 134, OpenGL is
licensed by SGI to interested parties under its standard terms and
conditions, whereas, GL remains proprietary.

 • Technical control over the API under the OpenGL ARB:

As described in 9.1.5, “The OpenGL Architecture Review Board (ARB)” on
page 134, together they create detailed specifications and conformance
test suite criteria. GL, on the other hand, is a proprietary API developed by
SGI.

 • Rigorous conformance test suite:
174 RS/6000 Graphics Handbook

As described in 9.1.6, “Conformance Test Suite” on page 134, OpenGL
requires test suite conformance.

 • Available on low-end, low-cost adapters:

OpenGL offers a software rendering version to provide 3D function on 2D
adapters. See 9.2, “IBM Implementations” on page 135, for more
information. IBM's offering of GL does not support this software-rendering
capability.

9.6.1.3 Technical Differences of OpenGL and GL
The following segments describe the major differences between OpenGL and
GL 3:

Window Management
As described before, OpenGL includes no window system commands. It is
always supported as an extension to a window system. For example, the GLX
includes about 10 commands for this purpose. GL 3.2 provides window
management subroutines, too.

In OpenGL, an application window has static frame buffer configurations, but
GL 3.2 subroutines, such as gconfig and drawmode, can change the
configuration dynamically.

 • Buffer Swapping:

The GL 3.2 subroutine swapbuffers() requires no argument, but the GLX or
OpenGL widget library requires target drawable. The swapbuffers()
subroutine can be emulated as follows:

void swapbuffers(void)
{

glFlush();
GLwDrawingAreaSwapBuffers(current_drawable);

/* argement is a widget */
/* or glXSwapBuffers(display, current_drawable);
the second argument is a window */

}

current_drawable can be controlled by the application, or can be obtained
by glXGetCurrentDrawable().

Clear
 • Clear Color:

OpenGL provides subroutines to set clear color, glClearColor() and
glClearIndex(). In the GL 3.2 application, the color set by color(), in color
index mode, is used as the clear color and the vertex color. For example,
OpenGL 175

the clear color for overlay planes might be set to the transparent pixel
value once in the initialization subroutine.

 • Clear Options:

OpenGL clears buffers without applying the currently specified pixel
operations such as blending and logicop, regardless of their modes. To
clear using such features, you have to render a window-size polygon.

 • clear() and czclear():

The clear() subroutine of GL 3.2 only clears color buffers. czclear()
clears both color buffers and the depth buffer. In the OpenGL application,
clear target buffer can be specified by glClear() as follows:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Transformation
 • Matrix Mode:

All OpenGL matrix operations operate on the current matrix, rather than
on a particular matrix, as do the GL 3.2 ortho, ortho2, perspective, and
window commands. All the OpenGL matrix operations except
glLoadIdentity and glLoadMatrix multiply the current matrix rather than
replacing it (as do ortho, ortho2, perspective, and window in the GL 3.2).

GL 3.2 does not transform geometry by the modelview matrix while in
projection matrix mode. OpenGL always transforms geometry by both the
modelview and the projection matrix, regardless of the matrix mode.

 • Conversion Samples:

The following code shows samples of conversion from GL 3.2 to OpenGL:

void ortho2(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top)
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(left, right, bottom, top);
glMatrixMode(GL_MODELVIEW);
}

void ortho(GLfloat xmin, GLfloat xmax,
GLfloat ymin, GLfloat ymax, GLfloat zmin, GLfloat zmax)
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(xmin, xmax, ymin, ymax, zmin, zmax);
glMatrixMode(GL_MODELVIEW);
}

176 RS/6000 Graphics Handbook

void perspective(GLshort view_angle,
GLfloat aspect, GLfloat near_clip, GLfloat far_clip)
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(0.1 * view_angle, aspect, near_clip, far_clip);
glMatrixMode(GL_MODELVIEW);
}

void frustum(GLfloat xmin, GLfloat xmax,
GLfloat ymin, GLfloat ymax, GLfloat zmin, GLfloat zmax)
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(xmin, xmax, ymin, ymax, zmin, zmax);
glMatrixMode(GL_MODELVIEW);
}

void rotate(GLshort angle, char axis)
{
glRotated(angle * 0.1,
axis == ’x’ ? 1.0 : 0.0,
axis == ’y’ ? 1.0 : 0.0,
axis == ’z’ ? 1.0 : 0.0);
}

void lookat(GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble rot)
{
GLdouble vx = centerx - eyex;
GLdouble vy = centery - eyey;
GLdouble vz = centerz - eyez;

glLoadIdentity();
if(vx == 0.0 && vz == 0.0) /* Z-up */
gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, 0., 0., -1.);
else
...
}

Color
 • Lighting Equation:

The OpenGL lighting equation differs from the GL 3.2 equation.

 • Flat Shade Color:
OpenGL 177

GL 3.2 polygons take the color of the last vertex specified, but OpenGL
polygons take the color of the first vertex specified.

 • Packed Color:

GL 3.2 accepts packed colors both for geometric and pixel rendering.
OpenGL does not accept them for geometric rendering.

c3s()
The c3s() subroutine of GL 3.2 maps [0, 255] to [0.0, 1.0]; however,
glColor3sv() of OpenGL maps [-32768, 32767] to [-1.0, 1.0], and
glColor3ubv() maps [0, 255] to [0.0, 1.0]. Therefore, c3s() should be
replaced as follows:

void c3s(GLshort v[3])
{

glColor3ub((v)[0], (v)[1], (v)[2]);
}

Or, use GLubyte v[3] for GLshort v[3]; then glColor3ubv(v) is available.

Primitive Drawing
 • Scalar and Vector Arguments:

All OpenGL commands that are accepted between glBegin and glEnd have
entry points that accept scalar and vector arguments, such as,
glColor4f(red,green,blue,alpha) and glColor4fv(v).

 • Triangle Mesh:

OpenGL provides GL_TRIANGLE_STRIP and GL_TRIANGLE_FAN. GL
3.2 offers the triangle mesh drawing subroutine and the swaptmesh()
subroutine to support triangle strips and triangle fans.

 • Polygon Mode:

GL 3.2 supports hollow polygons, but OpenGL does not support them. To
render hollow polygons in an OpenGL application, the stencil capability is
useful.

OpenGL polygon modes are specified separately for front- and
back-facing polygons, but GL 3.2 shares a single mode for all polygons.

 • Polygon Vertex Count:

GL 3.2 polygons are limited to a maximum of 255 vertices, but OpenGL
primitives have no limitation to the number of vertices between glBegin()
and glEnd().

 • Antialiased Line Stippling:

OpenGL stipples antialiased lines, but GL 3.2 cannot do that.
178 RS/6000 Graphics Handbook

 • Draw and Read Pixels:

lrectwrite() and lrectread() subroutines of GL 3.2 cannot be replaced
with glDrawPixels() and glReadPixels() directly. The following code works.

void
lrectwrite(int left, int bottom, int right, int top, ulong *pixels)
{
GLint viewport[4];

glGetIntegerv(GL_VIEWPORT, viewport);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho(0.0, viewport[2], 0.0, viewport[3], -100.0, 100.0);

if(left >= 0 && bottom >= 0) {
glRasterPos2i(left, bottom);
glDrawPixels(right - left + 1, top - bottom + 1, GL_ABGR_EXT,
GL_UNSIGNED_BYTE, (GLubyte *)pixels);

}
else {

int tempx, tempy, skipx, skipy, tempw, temph, orgw;
int ii, ij;
GLubyte *temppixels, *pt, *qt;

tempx = (left < 0) ? 0 : left;
tempy = (bottom < 0) ? 0 : bottom;
skipx = tempx - left;
skipy = tempy - bottom;
orgw = right - left + 1;
tempw = orgw - skipx;
temph = top - bottom + 1 - skipy;

temppixels
 = (GLubyte*)malloc(sizeof(GLubyte) * tempw * temph * 4);

pt = (GLubyte*)pixels + skipy * orgw * 4;
qt = temppixels;
for(ii = 0; ii < temph; ii++) {
 pt += skipx * 4;
 memcpy(qt, pt, tempw * 4);
 qt += tempw * 4;
 pt += tempw * 4;

}
glRasterPos2i(tempx, tempy);
OpenGL 179

glDrawPixels(tempw, temph,
 GL_ABGR_EXT, GL_UNSIGNED_BYTE, temppixels);
free(temppixels);

}
glPopMatrix();

glMatrixMode(GL_MODELVIEW);
glPopMatrix();

}

void
lrectread(int left, int bottom, int right, int top, ulong *pixels)
{
glReadPixels(left, bottom, right - left + 1, top - bottom + 1,
GL_ABGR_EXT, GL_UNSIGNED_BYTE, (GLbyte*)pixels);

}

Display List
 • Defs and Binds:

OpenGL does not have the concept of material or light objects, only of
material and light properties. Use display lists to create material or light
objects so that the display lists contain only material properties or light
properties. GL 3.2 does not support texture mapping, but the SGI GL later
version does and has the concept of texture objects. From OpenGL 1.1,
texture objects are supported.

void
setlinestyle(int index)
{
if(index == 0)
glDisable(GL_LINE_STIPPLE);

else {
glCallList(linestyle_binding_base + 2);
glEnable(GL_LINE_STIPPLE);

}
}
void
setlinestyle(int index)
{

if(index == 0)
glDisable(GL_LINE_STIPPLE);

else {
glCallList(linestyle_binding_base + 2);
glEnable(GL_LINE_STIPPLE);

}
}

180 RS/6000 Graphics Handbook

 • Fonts and Strings:

OpenGL expects the character glyphs to be manipulated as individual
display lists. It provides a display list calling function that accepts a list of
display list names, each name represented as 1, 2, or 4 bytes.
glCallLists() adds a separately specified offset to each display list name
before the call, allowing lists of display list names to be treated as strings.

This mechanism provides all the functionality of GL 3.2 fonts, and
considerably more. For example, characters comprised of triangles can be
as easily manipulated.

There is an OpenGL Character (GLC) library, and it is used to access
particular fonts, but the IBM OpenGL implementation does not provide this
library yet.

The following code shows a sample of how to use fonts to draw strings
(simulation of charstr()):

char useFontName[256] =
"-misc-fixed-medium-r-normal--14-*-*-*-*-*-jisx0201.1976-0";

void makeRasterFont(int base)
{
XFontStruct *fontInfo;
Font id;
unsigned int first, last;

fontInfo = XLoadQueryFont(display, useFontName);

if (fontInfo == NULL) {
fprintf(stderr, "no font found \n");
base = 0;

}
else {
id = fontInfo->fid;
first = fontInfo->min_char_or_byte2;
last = fontInfo->max_char_or_byte2;

glXUseXFont(id, first, last-first + 1, base + first);
}

}

void charstr(char str[])
{
glListBase(raster_font_base);
glShadeModel(GL_FLAT);
glCallLists(strlen(str), GL_UNSIGNED_BYTE, (GLubyte *)str);
OpenGL 181

glShadeModel(GL_SMOOTH);
}

Others
 • Error Checking:

OpenGL checks for errors more carefully than GL 3.2 does. For example,
all OpenGL commands that are not accepted between glBegin and glEnd
are detected as errors, and have no other effect.

When an OpenGL command results in an error, its only side effect is to
update the error flag to the appropriate value. No other state changes are
made. (The exception is the OUT_OF_MEMORY error; whether the
offending command is ignored or not is undefined.) See the glGetError()
manual page.

When an OpenGL command that returns a value detects an error, it
always returns zero. OpenGL commands that return data through pointers
make no change to the array contents if an error is detected.

 • Invariance:

OpenGL guarantees certain invariances that GL 3.2 doesn’t. For example,
OpenGL guarantees that identical code sequences sent to the same
system, differing only in the blending function specified, will generate the
same pixel fragments. (The fragments may be different if blending is
enabled and disabled, however.)

9.6.2 Comparison with graPHIGS
This section describes considerations of migration tasks and differences of
functionalities between graPHIGS and OpenGL.

9.6.2.1 Consideration of Migration
It is possible that the graphics application currently using the graPHIGS API
may be migrated to OpenGL in the future. Such applications may rely on the
graPHIGS architecture and utilize its functionalities, and it is natural because
the graPHIGS architecture and functionalities matched the needs for those
applications. However, many of the functionalities that graPHIGS provides
are not supported by OpenGL itself and should be implemented by software
during the conversion process.

The migration is possible because, although OpenGL provides a low-level
API, a very sophisticated graphics application can be built on top of it. The
OpenGL API has been enhanced; therefore, the migration gets a little bit
easier than it was before.
182 RS/6000 Graphics Handbook

If you consider resource usage, graPHIGS initially requires much more
memory than OpenGL because it always reserves space at least for one
workstation description table, structure store, and so on. Add to that the fact
that graPHIGS provides many more subroutines and predefined attributes,
and the subroutine set for OpenGL is rather compact.

9.6.2.2 Differences in Functions
There are many differences between OpenGL and graPHIGS. The following
descriptions list differences and some similarities. For graPHIGS terms, see
7.2, “Basic Terminology and Concepts” on page 92.

Viewing
 • Number of viewports:

The graPHIGS application can hold a number of views (or viewport) for
each window (graPHIGS workstation) at a time, but OpenGL has only one
viewport for each context. With graPHIGS, each view has its own view
volume and other attributes, such as a drawing priority to the other views,
a border color, a background (shielding) color, an HLHSR mode, an
antialiasing mode, a transparency (blending) mode, and so on.

 • Background Clear:

There is no clear subroutine in the graPHIGS API. GPUPWS() – The update
workstation subroutine implicitly clears the window background, then fills
each view with its shielding color before primitive drawing if view shielding
is enabled.

 • Direction of Z:

The Z axis of the world coordinates points to the viewer in graPHIGS, but
it points to the opposite direction in OpenGL. In both, X and Y axes point
to the right and top, respectively. The coordinate systems of graPHIGS
and OpenGL are right-hand and left hand, respectively.

 • Transformation Matrices:

The graPHIGS view matrix corresponds to the OpenGL projection mode
matrix. Combination of global and modeling transformation of graPHIGS
corresponds to the OpenGL modelview mode transformation. OpenGL
glRotate*() or glTranslate*() directly change the transformation matrix in
a mode, where graPHIGS rotation or translation tool subroutines only
produce a matrix from the specified rotation angle around an axis or
translation values. The resulting matrix can be multiplied by another
matrix. To set or update the global or local transformation matrix, the
application passes such a matrix, or application-calculated matrix, to the
corresponding transformation subroutine.
OpenGL 183

 • Window Resize:

Whenever the graPHIGS API window is resized, the device driver
establishes a new display surface size within that window. This is the
largest subarea of the resized X Window that maintains the aspect ratio
provided by the application or user, or the root window by default. The
current display contents are scaled uniformly to this new mapped display
surface size. The OpenGL application can fit its viewport to the resized
window.

Structure Hierarchy
The graPHIGS structure store can be simulated using OpenGL display lists. A
graPHIGS structure can call other structures using the Execute Structure
subroutine, GPEXST(). This mechanism creates the structure hierarchy.
OpenGL display lists can also call other display lists. graPHIGS Structure
Stores support not only structure hierarchy but also many ways of editing
structures. Display lists can’t be edited.

Attributes
 • Current Color:

OpenGL’s current color (or color index) and materials are applied to all
points, polylines and polygons. With the graPHIGS API, colors for
polylines, polygon, polymarkers, edges, and text strings are held
independently.

 • Colormap Table:

In color index mode with OpenGL, the application uses the X colormap
directly. graPHIGS has its own colormap tables.

 • Color Setting by RGB or Index:

There are two types of subroutines to set the colors in OpenGL. glColor*()
is used for windows with RGB visual, and glIndex*() is used for windows
with color index visual. graPHIGS also provides two types of subroutines
for color setting, and both are valid any time. For example, the Set
Polyline Color Index subroutine, GPPLCI(), and the Set Polyline Color
Direct subroutine, GPPLCD(), are available to set the color for polylines.

 • Color Model:

graPHIGS supports four color models: RGB, HSV, CMY, and CIELUV.
OpenGL supports the RGB color model only.

 • Edge Line Style:

In the graPHIGS API, edges for polylines or polygons are two different
primitives, and line style (line stipple) and edge style are applied to
184 RS/6000 Graphics Handbook

polylines and edges, respectively. In OpenGL, the line loops and polygons
in GL_LINE mode are similar, line stipple pattern, line width, and line
antialiasing mode are applied to both, but polygons have front and back
facets.

 • Line Style:

The graPHIGS API’s line type representations can be roughly simulated in
OpenGL with line stipple. But some detailed controls, like
SCALED_TO_FIT_RENDERING, should be implemented by the OpenGL
application.

 • Line End Type:

With wide lines in graPHIGS, three types of line end-shapes are available:
FLAT, ROUND, and SQUARE. In OpenGL, such line representations
cannot be implemented without using the polygon primitive.

 • Line-on-Line Color:

If you want to implement the line-on-line facility in an OpenGL application,
you will have to use the logical operation with color buffers.

 • Interior Style:

graPHIGS provides five interior styles for polygon rendering:

HOLLOW Transparent with interior not pickable

SOLID Filled in with the designated color

PATTERN Filled in with an application-defined pattern

HATCH Filled in with a workstation-dependent hatch

EMPTY Transparent with interior pickable

HOLLOW and SOLID are similar to the OpenGL polygons in GL_LINE and
GL_FILL modes, respectively. As for the pick facility, other than for the
HOLLOW type, the OpenGL application should use GL_FILL mode for
polygon rendering during the pick operation in GL_SELECT mode. (In this
mode, no primitives are drawn in the color buffers.) graPHIGS HATCH
interior style can be simulated in OpenGL using the polygon stipple or a
combination of scissor test and 2D line drawings. For graPHIGS
PATTERN interior style, polygon stipple or texture mapping is available in
OpenGL, and the use of scissor test is convenient.

Primitives
 • Primitive Drawing Subroutines:

The graPHIGS drawing subroutines, such as Polyline3 or Polygon 3, are
passed vertex data in arrays. OpenGL glBegin() and glEnd() drawing
OpenGL 185

needs many more subroutine calls between them, but it has the advantage
of flexibility; that is, the color or normal vector, for example, can be
changed for any coordinates. With one type of graPHIGS drawing
subroutine, such as the Polygon3, you cannot change the color per vertex.
With another type, such as Polygon3 With Data subroutine, you can do
that, but even if you would like to change only one vertex color, colors
should be supplied for all of the vertices.

 • Markers:

Only one of the graPHIGS polymarkers, the dot type, has a counterpart
with the OpenGL polypoints. The other types are roughly simulated by a
combination of OpenGL current raster position and bitmap drawings. As
for graPHIGS polymarkers, their positions are transformed, but their
shapes are not affected by the transformations. Their sizes are changed
by their scale factors, but the other factors are invariable.

 • Text:

There are two types of text primitive in graPHIGS API, annotation text and
geometric text. Annotation text is similar to polymarker, but the character
shape of geometric text is affected by the transformations.

 • Polygon Edges:

The graPHIGS polygon edges are defined with a line type and a scale
factor (line width) as well as color facilities. OpenGL polygon edge drawing
can be simulated using polygon offset, depth test and polygon mode
functions as well as line stipple and line width, but the effect of the edge
line type may be different from the graPHIGS edge.

 • Polygon Tessellation:

The concave or multicontour (multisubarea) polygons supported by
graPHIGS can be drawn using GLU polygon tessellation.

 • OpenGL Unique Primitives:

Among OpenGL primitives, GL_TRIANGLES (individual triangles),
GL_QUADS (individual quadrilaterals) and GL_TRIANGLE_FAN are
OpenGL unique. The vertex array version of these primitive drawings may
be more effective than using graPHIGS drawing subroutines such as
Polygon3 or Triangle Strip3.

Client and Server
The graPHIGS nucleus corresponds to the OpenGL server. The OpenGL
extension must be loaded to the window system where the graphics windows
are displayed. We don’t need a specific extension for graPHIGS application if
we use X or XSOFT graPHIGS workstation types. The graPHIGS nucleus can
186 RS/6000 Graphics Handbook

display graphics drawables on the window system of a different machine or of
an Xstation through the X protocol. Note that using graPHIGS without X
server extensions results in some limitation of functionalities or interactive
performance.

The OpenGL extension must be loaded when the window system starts. This
server should give the client machines access permission (by xhost on the X
Window System). On client machines, a display server should be specified
(by the DISPLAY environment variable) before the client application is
executed.

The graPHIGS nucleus can be started or terminated any time during the X
server session. The nucleus should give client machines access permission
by the gPhost command. From the client application, a nucleus should be
specified as "hostname:nucleus_id" or "*" in the application program or
PROFILE. "*" specifies a local nucleus for server and $DISPLAY for display.

9.6.3 Open Inventor
The Open Inventor product was originally shipped with the OpenGL and GL
3.2 for AIX Version 4.2 and 4.1. This product was developed by Portable
Graphics, Inc. (PGI). However, PGI was acquired by Template Graphics
Software, Inc. (TGS). TGS continues to support existing licenses of the PGI
product, but does not provide new licenses for PGI’s Open Inventor that is
included in OpenGL and GL 3.2 for AIX Version 4.2 and 4.1. Now, TGS
provides their own Open Inventor products for AIX. TGS encourages PGI
customers to upgrade to this new release of Open Inventor from TGS
because the PGI product will no longer be updated.

For questions or to place an order for Open Inventor, contact TGI:

http://www.tgs.com/

TGS U.S. info@tgs.com (619) 457-5359, fax (619) 452-2547

TGS Europe europe@tgs.com +33 (1) 42.37.66.66
fax +33 (1) 42.37.27.15

UNIX Sales diane@tgs.com (619) 457-5359 ext. 260

Hotline support@tgs.com (800) 428-7588

Europe
Support

maint@g5g.fr +33 (5) 56.13.37.70
OpenGL 187

OpenGL and GL 3.2 for AIX Version 4.3 do not include Open Inventor
anymore.

The following is a short overview of Open Inventor:

Open Inventor is a 3D object-oriented developer’s toolkit that assists software
developers in developing high-performance 3D graphics applications;
however, from an industry acceptance perspective, Open Inventor has not
gained wide acceptance to date. One of the reasons is that they have a doubt
about its chances of becoming a major standard in the future. Graphics
application developers do not want to double their effort to learn a new API.
Only a small number of 3D application vendors have selected Open Inventor
for their applications.

Open Inventor for AIX exploits the capabilities of OpenGL. Open Inventor’s
programming model is based on a 3D hierarchical scene database which
simplifies and accelerates graphics programming. This new approach
replaces the traditional hardware-based drawing model with a more natural,
powerful and flexible object model.

Open Inventor can be a cost-effective tool that saves programmers time and
effort:

 • Extensive functionality:

The object model introduces numerous concepts that the traditional frame
buffer approach cannot.

For example, Open Inventor offers true geometric picking, 3D locate
highlighting, animation, physical constraints, object names, level-of-detail,
object culling, interactive direct manipulation, bounding box calculations,
selection, automatic render caching, reusable viewers, a standard 3D file
format for data exchange, instancing, and 3D cut and paste.

In addition, its flexible, object-oriented architecture provides an elaborate
group of preprogrammed building blocks the programmer can customize
and extend.

 • Completeness:

Open Inventor provides the tools a programmer needs to develop
high-performance 3D applications that feature animation and a high level
of user interactivity.

 • Ease-of-Use:

Passwords license@tgs.com (800) 544-4847
188 RS/6000 Graphics Handbook

With the ease and modularity of a toolkit, Open Inventor gives an
application programmer the functionality of OpenGL while operating at the
peak rendering performance of the underlying graphics environment.

 • Reduces programming time while extending 3D programming capabilities:

Open Inventor includes a wide variety of geometry, property and group
objects, as well as manipulators for user interaction and high-level viewers
and editor components. Its rich set of objects includes cubes, polygons,
text material, cameras, light, trackballs, handle boxes, and ready-to-use
3D viewers and editors — all designed to reduce the programming time
required of the programmer and to extend their 3D programming
capabilities.

 • Increases programming productivity:

Open Inventor can greatly increase programming productivity over
programming with straight OpenGL code.

For example, opening a window with OpenGL requires 14 lines of code.
Opening a window with Open Inventor only requires two. Programming a
texture map for a 3D object with OpenGL takes more than 200 lines of
code, versus 11 with Open Inventor.

 • Portable:

Based on OpenGL and licensed to TGS, Open Inventor applications can
easily be ported to other PC platforms and workstations.

9.7 References

This section introduces references for OpenGL and Open Inventor.

9.7.1 OpenGL References
The two main reference books of the Open ARB are part of the
Addison-Wesley OpenGL Technical Library:

 • OpenGL Programming Guide: The Official Guide to Learning OpenGL 1.1,
ISBN 0-201-46138-2

Describes how to create OpenGL 1.1 programs, assuming only a
knowledge of C programming. Sample programs from this book are
located in /usr/lpp/OpenGL/samples/prog_guide and are also available
through anonymous FTP (ftp://sgigate.sgi.com/pub/opengl/opengl.tar.Z)

 • OpenGL Reference Manual, ISBN 0-201-46140-4

Provides a technical view of how OpenGL operates on data that describes
a geometric object or an image to produce an image on the screen. This
OpenGL 189

book also contains full descriptions of each set of related OpenGL
commands, the parameters used by the commands, the default values for
those parameters, and what the commands do.

The information in this book is also available on the AIX Version 4.3 Base
Documentation CD.

Books specific to operating systems are also part of the Addison-Wesley
OpenGL Technical Library:

 • OpenGL Programming for the X Window System, ISBN 0-201-48359-9

Describes how to tightly integrate OpenGL applications with the X Window
System.

Also see the following Web sites

 •http://www.rs6000.ibm.com/software/OpenGL/

This page contains information about products and activities relating to the
OpenGL 3D graphics API, both inside and outside of IBM. It also has
many links to useful Web sites including:

 •http://www.opengl.org/

 •http://www.opengl.org/Documentation/Specs.htm

 •http://www.specbench.org/gpc/opc.static/

9.7.2 Open Inventor References
The following reference books are part of the Addison-Wesley OpenGL
Technical Library:

The Inventor Mentor: Programming Object Oriented 3D Graphics with
Open Inventor, Release 2, ISBN 0-201-62495-8

The Inventor Toolmaker: Extending Open Inventor, Release 2, ISBN
0-201-62493-1

Open Inventor C++ Reference Manual: The Official Reference Document
for Open Inventor, Release 2, ASIN 0-201-62491-5
190 RS/6000 Graphics Handbook

Chapter 10. PEX

This chapter describes PEX and the IBM PEX product, which has not become
a major 3D graphics API and is now only supported by AIX Version 4.2.1
systems. AIX Version 4.3 doesn’t support the PEX API. Therefore
descriptions in this chapter are provided only for migration from current PEX
applications.

For applications that still require that interface, AIX Version 4.2.1 remains
available. IBM encourages PEX customers to migrate to the preferred 3D API
standard, OpenGL.

10.1 Definition

PEX is a protocol (like X11) and designed as a 3D extension to the X server,
the PEX extension. The PEX protocol is generated when an application
program accesses the PEX extension by programming in an API such as
PHIGS or PEXlib.

PEX products provide interoperability for 3D graphics functions in networked
heterogeneous environments. Target market segments include industrial
design and modeling (CAD), engineering analysis, entertainment, and
scientific visualization segments.

However, from an industry perspective, PEX has not gained wide acceptance
to date, but OpenGL has gained lots of momentum in the industry. Only a
small number of 3D application vendors have selected PEX as the basis for
their applications.

10.1.1 PEX Extension to the X Server
The advantages of PEX include:

 • Interoperability:

Enables users to execute applications on one vendor's machine while
simultaneously displaying the 3D graphical output on a second vendor's
platform.

 • Open API standards:

Designed for portability and interoperability of applications across
platforms.

 • No licensing requirements:
© Copyright IBM Corp. 1999 191

Provides an inexpensive access to the standard. All specifications and
materials available through the Open Group are free and available to the
public, including the CGE PEX 5.1 extensions.
(http://www.opengroup.org/).

PEX supports immediate mode as well as retained and mixed mode
rendering through the structure store, a hierarchical graphical database
manager.

10.1.2 PEXlib
The API provided with the PEX Sample Implementation, PEX-SI, is called
PEXlib. PEXlib exposes the full power of PEX, including server-side
implementation of lighting, shading, modeling and viewing transformations,
and many of the other features found in PHIGS and PHIGS PLUS.

10.1.3 Graphics Environment PEX 5.1 Extensions (CGE PEX 5.1)
With the Common Graphics Environment (CGE) programming interface, the
user can create highly portable 3D graphic applications on any platform that
supports the Common Open Software Environment (COSE). CGE offers
users increased portability and eliminates the need for vendor-specific code
paths or drivers. It also provides access to some PEX 5.2 functionality:

 • Texture Mapping:

Enables the user to project pixmap-like images onto various PEX
primitives.

 • Antialiasing:

Enables the user to create higher quality pictures.

 • Transparency:

Offers the user the ability to create objects that transmit light to varying
degrees. Though defined in the PEX 5.1 specification, it was not a
required feature.

 • New Drafting Primitives:

Maintains interoperability by making typical PEX 5.1 vendor extensions
more standard. These primitives include circles, ellipses, and elliptical
arcs.

CGE also requires several functions, which are optional with PEX 5.1. The
CGE PEX 5.1 extensions conform to the rules and interoperability
conventions defined by the X Consortium standard. This means that if a
192 RS/6000 Graphics Handbook

customer upgrades to CGE PEX 5.1, all of their PEX 5.1 applications will still
work without requiring modifications.

CGE is shipped with PEX and PHIGS Version 4.2.1 for AIX. It includes the
CGE libraries, online documentation (a reference manual derived from the
CGE PEX 5.1 specification and a CGE portability guide), and sample
programs.

10.1.4 Technical Content of PEX
The PEX and PHIGS Version 4.2.1 for AIX product fully supports PEXlib 5.1
as the primary PEX programming interface. With PEXlib and CGE PEX 5.1
extensions, the user has access to graphics functions including:

 • Basic primitives:

 • 2D and 3D text

 • Markers

 • Lines

 • Polygons

 • Extended drafting primitives:

 • Circles and circular arcs

 • Ellipses and elliptical arcs

 • Advanced primitives:

 • Triangle strips

 • Quadrilateral meshes

 • Fill area sets (SOFAS)

 • Concave and multi-contour polygons

 • Non-Uniform Rational B-Spline (NURBS) curves

 • Trimmed and untrimmed NURBS surfaces

 • Hierarchical structure store including:

 • Object inheritance and attribute sharing

 • A networking protocol including:

 • Server-side implementation of lighting, shading, modeling, and viewing

 • Transformations with retained structures

 • User-defined clipping volumes

 • Antialiasing of primitives
PEX 193

 • Depth cueing and fog

 • Transparency

 • Texture mapping:

 • Texture creation from array or window

 • Texturing of with-data primitives

 • Replacing or blending with the primitive's intrinsic color

 • Interpolation based on perspective correction criteria

 • Utilities for creating color maps, extended visuals, and windows

In addition, the PEX and PHIGS Version 4.2.1 for AIX offering includes PEX
and CGE PEX 5.1 example programs, application development tools, an
installation verification program, and online hypertext information with links to
user-modifiable sample programs.

10.2 IBM Implementation

PEX and PHIGS Version 4.2.1 for AIX supports the X Consortium standard,
PEXlib 5.1, and the Common Graphics Environment (CGE) PEX 5.1
Extensions. It follows the PEX protocol for distributed client/server support
approved by the PEX-Interoperability Center (PEX-IC), a multivendor
organization established for PEX vendors to test early releases and verify
conformance within a distributed environment. CGE offers increased
portability and access to some PEX 5.2 functionality, including some new
drafting primitives.

The PEX server is implemented in two ways by IBM:

 • IBM Softgraphics technology:

Using the RS/6000 for all rendering operations, this provides full 3D
function at lower cost. See 6.3, “Softgraphics” on page 84.

The IBM PEX server provides functions such as culling, lighting, shading,
and HLHSR on low-end, low-cost graphics adapters, including the 2D
graphics adapters. Be aware that performance scales with the amount of
CPU available.

 • Hardware-accelerated graphics adapter:

All or part of rendering to the PEX server is done by the adapter hardware
and microcode. Section 1.2, “Different Classes of Graphics Adapters” on
page 9, describes the role of class II and III graphics adapters.
194 RS/6000 Graphics Handbook

Supported 2D and 3D graphics adapters:

 • POWER GXT150 family

 • POWER GXT250 family

 • POWER GXT500 family

 • POWER GXT800 family

 • POWER GXT1000 family

10.3 Configuration

PEX and PHIGS Version 4.2.1 for AIX is offered as a Licensed Program
Product for IBM AIX Version 4.2.

10.3.1 Filesets
There are four filesets included in this product :

PEX_PHIGS.PEX.rte PEX Runtime Environment
PEX_PHIGS.PEX.dev PEX Device Dependent Software
PEX_PHIGS.PEX.adt PEX Application Development Toolkit
PEX_PHIGS.info PEX Programming Guide

The first two filesets must be installed to run PEX applications on the system.
To develop PEX programs on the system, it is necessary to install the PEX
Application Development Toolkit fileset.

Be aware that directories and files have changed from previous releases.

10.3.1.1 PEX Runtime Environment
The fileset PEX_PHIGS.PEX.rte contains two modules:

PEX_PHIGS.PEX.rte.base PEX Base Runtime Environment

This provides:

 • /usr/lpp/X11/README.PEX. See 10.3.3, “Other Information in
/usr/lpp/X11/README.PEX” on page 200.

 • Run time code under /usr/lpp/X11/bin/

 • A library file /usr/lpp/X11/lib/libPEX5.a (/usr/lib/libPEX5.a links to it)

 • Font files under /usr/lpp/X11/lib/X11/fonts/PEX/

 • An installation verification program /usr/lpp/X11/Xamples/pex/ivp/cube.
See 10.3.3.2, “Other Notes about PEX Server” on page 201.

PEX_PHIGS.PEX.rte.soft PEX Soft Runtime Environment
PEX 195

This provides soft graphics code for SoftGraphics PEX.

10.3.1.2 PEX/graPHIGS Device-Dependent Software
The fileset PEX_PHIGS.dev provides the following device-dependent
software modules:

PEX_PHIGS.dev.pci.14103c00 GXT250P/GXT255P
PEX_PHIGS.dev.pci.14105400 GXT500P/GXT550P
PEX_PHIGS.dev.pci.14105e00 GXT800P
PEX_PHIGS.buc.00004002 GXT500
PEX_PHIGS.mca.8ee3 GT4
PEX_PHIGS.mca.8ffd GTO
PEX_PHIGS.mca.8fbc GXT1000

10.3.1.3 PEX Application Development Toolkit (ADT)
The fileset PEX_PHIGS.PEX.adt provides:

 • PEX PEXlib Application Development Toolkit

See 10.3.3.3, “PEXlib Programming Interface” on page 202, and 10.3.3.4,
“CGE Extensions to PEX 5.1” on page 202.

 • PEX SI-PHIGS Application Development Toolkit

See 10.3.3.5, “PHIGS-SI Programming Interface” on page 203.

 • PEX Application Development Toolkit Tools

The following is a more detailed view of what is included in these filesets:

PEX_PHIGS.PEX.adt.pexlib.include PEXlib ADT Include Files

This provides include files such as PEX.h or PEXlib.h under
/usr/lpp/X11/include/X11/PEX5/.

PEX_PHIGS.PEX.adt.pexlib.clients PEXlib ADT Sample Clients

This provides source code of PEXLIB5.1 and CGE clients
under/usr/lpp/X11/Xamples/pex/pexlib/5.1 or cge/clients/.

PEX_PHIGS.PEX.adt.pexlib.util PEXlib ADT Utilities

This provides source code of PEXLIB5.1 and CGE utilities
under/usr/lpp/X11/Xamples/pex/pexlib/5.1 or cge/util/.

PEX_PHIGS.PEX.adt.si_phigs.include SI-PHIGS ADT Include Files

This provides include files for SI-PHIGS under
/usr/lpp/X11/Xamples/pex/si-phigs/include/phigs/.

PEX_PHIGS.PEX.adt.si_phigs.clients SI-PHIGS ADT Clients
196 RS/6000 Graphics Handbook

This provides source code of SI-PHIGS clients under
/usr/lpp/X11/Xamples/pex/si-phigs/clients/.

PEX_PHIGS.PEX.adt.si_phigs.lib SI-PHIGS ADT Library

This provides /usr/lpp/X11/Xamples/pex/si-phigs/lib/libphigs.a and
/usr/lpp/X11/Xamples/pex/si-phigs/lib/X11/PEX/phigsmon and so on.

PEX_PHIGS.PEX.adt.si_phigs.man SI-PHIGS ADT Man Pages

This provides README and man pages under
/usr/lpp/X11/Xamples/pex/si-phigs/man/.*

PEX_PHIGS.PEX.adt.tools PEX ADT Tools

This provides a tool, pexstdcmap, and its source code under
/usr/lpp/X11/Xamples/pex/tools/.

10.3.1.4 PEX Programming Guide
The fileset PEX_PHIGS.info.en_US provides the following module:

PEX_PHIGS.info.en_US.PEX PEX Programming Guide - U.S.

10.3.2 Installation
The PEX and PHIGS Version 4.2.1 for AIX is a fully integrated IBM product
and is installed using the usual system administration tools, such as SMIT.
Once this product is installed, you have to add extensions to the server in
order to use it.

10.3.2.1 X Server Extensions
The commands used to start up the PEX Extension to X Window System
automatically are in /usr/lpp/X11/defaults/xserverrc. To start-up automatically
under xinit, edit the file and change the line reading:

EXTENSIONS=""

as follows:

For X11R5: EXTENSIONS="-x pex -x dbe"
For GXT1000: EXTENSIONS="-x pex -x abx -x dbe"

If the OpenGL is installed, -x abx and -x dbe are specified with -x GLX in
another line in this file; so, you will just have to change the line to:

EXTENSIONS="-x pex"

Or, to start-up manually, use xinit command-line options as follows:

For X11R5: EXTENSIONS="-x pex -x dbe"
For GXT1000: EXTENSIONS="-x pex -x abx -x dbe"
PEX 197

Once again, if OpenGL is installed, type

xinit -- -x pex

On this command line, pex refers to the PEX Extension to X, abx refers to the
X Windows Ancillary Buffer Extension, and dbe refers to the X Windows
Double Buffer Extension (DBE). DBE is an official X standard and has
replaced the non-standard X Multi-Buffer Extension (MBX).

If -x pex is not specified, you get the following error message when you run a
PEX application.

Could not access PEX extension.
Message returned from PEXInitialize: Could not initialize the PEX
extension on the specified display

To obtain the list of the extensions currently loaded to the X server, run
xdpyinfo (/usr/bin/X11/xdpyinfo) on your local system, or run it with the
-display option from a remote system.

Starting the X server with -x mbx instead of -x dbe still works on an AIX
Version 4.2.1 system, but not on an AIX Version 4.3.2 system.

Note

Some PEX client programs, such as some older ones, create windows that
inherit attributes from the root window. These clients perform better on
24-bit adapters if the root window is configured to a depth of 24-bits.

It is also often advantageous to configure the root window to use a
TrueColor visual on 24-bit adapters to promote colormap sharing between
all clients running on the same server.

To start X with the PEX extension, a 24-bit deep root window and a
TrueColor visual, the xinit command is:

For X11R5: xinit -- -x pex -x dbe -d 24 -cc 4

For GXT1000: xinit -- -x pex -x abx -x dbe -d 24 -cc 4

Other Useful X Server Options
198 RS/6000 Graphics Handbook

10.3.2.2 /usr/bin/X11/xstdcmap
Many PEX clients search for a standard colormap on an X server and use it if
one is found. This promotes colormap sharing and avoids executing the
series of steps needed to create and initialize a colormap. If a client program
starts and terminates almost immediately issuing a message involving a
standard colormap that it couldn’t find, run:

xstdcmap -all

This command creates all the standard colormaps and makes them available
to the client programs. Run this command early in an X session so that all
clients that seek and use standard colormaps can take advantage of them.

10.3.2.3 /usr/lpp/X11/Xamples/pex/tools/bin/pexstdcmap
The command pexstdcmap performs the same steps as xstdcmap, except that it
can guarantee that the colormaps are usable by the PEX server, in terms of
color approximation. Use the -pex option to force pexstdcmap to create these
standard colormaps.

See /usr/lpp/X11/Xamples/pex/tools/src/pexstdcmap for the source files.

10.3.2.4 Environment Variable IBMPEXSOFT
With AIX Version 4.2.1, the PEX server extension operates on all IBM
graphics adapters except the GrayScale Graphics Adapter and GXT3000P.
The PEX server extension utilizes the graphics accelerator hardware on the
GtO, Gt4, Gt4X, Gt4e, and Gtx1000 graphics adapters. On all other
supported adapters, the server uses IBM SoftGraphics technology to
generate the graphics with software.

If the IBM SoftGraphics PEX support is not installed and you attempt to use
this support, the PEX extension will not be available, but you can continue to
use the X server without PEX.

The IBM SoftGraphics PEX support is shipped as an optional Runtime
Environment package, PEX_PHIGS.PEX.rte.soft, that must be installed to
use PEX on an adapter that is not fully hardware accelerated. If you use
hardware-accelerated adapters or if you do not use PEX, then you may
decide not to install this fileset since it requires approximately 20 MB of
disk space.

Note
PEX 199

If you wish to use the software-based PEX server, even when running on a
hardware-accelerated adapter, you should set an environment variable
before starting the server as follows:

For ksh: export IBMPEXSOFT=1

For csh: setenv IBMPEXSOFT 1

10.3.3 Other Information in /usr/lpp/X11/README.PEX
On an AIX Version 4.2.1 system, /usr/lpp/X11/README.PEX includes the
other information as follows.

10.3.3.1 PEX Specification Deviations
The PEX server extension implements the PEX 5.1 specification with the
following exceptions:

All Adapters:
PEXSearchNetwork Request is not implemented. A BadImplementation error
is returned to the client if the client sends this request to the server.

Hardware Accelerated Adapters:
 • Back Face Attribute InteriorStyle, InteriorStyleIndex, ReflectionAttrs,

ReflectionModel and SurfaceInterpMethod Output Commands are not
supported. The implementation uses the surface interior (front) attributes
when rendering back-facing surfaces.

 • The InteriorBundleLookupTable attributes ReflectionAttrs,
ReflectionModel, InterpMethod, BFReflectionAttrs, BFReflectionModel,
BFInterpMethod, BFStyle, BFStyleIndex, and BFColor are not supported
and have no effect.

 • The AnnotationText Output Commands (OC) support only one substring or
mono encoding per OC on hardware-accelerated adapters. The server
sends the client a PEXOutputCommandError if the client sends an
AnnotationText OC with more than one substring.

 • All Output Commands over 65532 bytes in length are not supported on
hardware accelerated adapters. The server returns a
PEXOutputCommandError to the client if the client sends an OC with a
length greater than 65532 bytes. The SetOfFillAreaSets (SOFAS) OC is
the only exception, as long as each individual FillAreaSet defined by the
SOFAS is no longer than 65532 bytes.

 • The server on hardware-accelerated adapters can only accept a subset of
the possible entries in the Color Approximation Table. Invoke the Color
200 RS/6000 Graphics Handbook

Approximation Query Escape to determine if the server can support a
given entry.

 • PEX clients should avoid associating multiple renderers to the same
window on hardware-accelerated adapters.

 • Clip lists are not supported and are ignored on hardware-accelerated
adapters.

 • The hardware-accelerated server cannot render to Pixmap Drawables.
This condition is reflected in the information returned by the
MatchRenderingTargets request.

 • Only the POWER GTX1000 can render to Buffer Drawables using
hardware acceleration. This condition is reflected in the information
returned by the MatchRenderingTargets request.

 • In addition to the standard marker types, extended marker types are also
available and may be inquired using the PEXGetEnumTypeInfo PEXlib
subroutine.

Softgraphics Adapters:
The software-based PEX server does not render primitives that contain color
types other than RGBFloat and Indexed. The server renders primitives that
contain color types other than RGBFloat or Indexed with the color stored in
entry 1 of the color lookup table. If entry 1 of the color LUT is not defined, if or
the color LUT does not exist, the server renders the primitive with the color
white.

10.3.3.2 Other Notes about PEX Server
 • The software-based PEX server performs better on 8-bit adapters when

the PEX client uses a full 322 or best colormap.

 • The virtual memory requirement for the PEX server is larger due to the
size of the SoftGraphics rendering code. You may need more real memory
or disk paging space to run the PEX server effectively.

 • The software based PEX server does not normalize direction vectors that
are found in the Light LUT Entries and in primitives that specify vertex or
facet normals. The PEX specification requires that the client normalize
these vectors for correct results. A PEXlib function is available for this
purpose.

 • The client program should accomplish double buffering by using the X
DBE with the IBM SoftGraphics technology and the POWER GTX1000.
You cannot use DBE for double buffering on the GtO, Gt4, Gt4x, and Gt4e
adapters. In the case of these adapters, use the double buffering escapes
PEX 201

instead. See /usr/lpp/X11/include/X11/PEX5/extensions for more
information.

 • To access the color approximation query and double buffering escapes,
use the PEXEscape PEXlib function. The header files defining the constants
and data structures needed to use these escapes are:

/usr/lpp/X11/include/X11/PEX5/extensions

 • A sample test program is available in: /usr/lpp/X11/Xamples/pex/ivp/cube.
You may find this program useful for verifying correct installation and
operation of the PEX server.

10.3.3.3 PEXlib Programming Interface
PEXlib is the primary PEX API. This product meets the X Consortium PEXlib
5.1 standard.

 • Include files: /usr/include/X11/PEX5
 • Library file: /usr/lib/libPEX5.a
 • Samples: /usr/lpp/X11/Xamples/pex/pexlib/5.1/clients

With the PEX program product, you have the option to install the PEX/PEXlib
InfoExplorer documentation. This information should serve as the primary
reference for PEXlib and can be viewed by invoking:

info -l pex

You are not required to install InfoExplorer Version 3.2.5 or later to view the
PEX 4.1.0 InfoExplorer documentation.

The PEX documentation can be used with single-byte languages only.

10.3.3.4 CGE Extensions to PEX 5.1
The CGE extension operates on all IBM graphic adapters except the
GrayScale Graphics Adapter and GXT3000P. IBM servers fully support CGE
PEX 5.1 on all the adapters through the IBM SoftGraphics technology.

PEXlib
CGE PEX 5.1 is integrated into IBM's PEXlib library. To access the CGE
functions, add the preprocessor directives to include the standard PEXlib 5.1
header file and the CGE PEX 5.1 header file:

#include <Xll/PEX5/PEXlib.h>
#include <X11/PEX5/PEXExtlib.h>

 • Include files: /usr/include/X11/PEX5
 • Library file: /usr/lib/PEXExtlib.h
 • Samples: /usr/lpp/X11/Xamples/pex/pexlib/cge/clients/ptorus
202 RS/6000 Graphics Handbook

For the InfoExplorer documentation about CGE PEX 5.1, invoke

info -l pex or
info -l pex -h cgetoc

to directly locate the CGE PEX 5.1 Portability Guide.

Utility Extensions
CGE offers utilities to assist you with visual and colormap organization. The
header files defining the constants and data structures needed to use these
utilities are in:

 • Include files: /usr/lpp/X11/Xamples/pex/pexlib/cge/util/Cmap
 • Library file: /usr/lpp/X11/Xamples/pex/pexlib/cge/util/libPEXUt.a
 • Samples: /usr/lpp/X11/Xamples/pex/pexlib/cge/clients/ptorus

10.3.3.5 PHIGS-SI Programming Interface
This is the PHIGS Sample Implementation library from the X11R5 distribution.
It implements a PHIGS/PHIGS PLUS style C binding and does not fully
conform to the ISO PHIGS PLUS C bindings. The library requires the PEX
Workstation Subset in the PEX server, which may not be implemented in
some vendors' PEX servers.

 • Include files: /usr/lpp/X11/Xamples/pex/si-phigs/include/phigs
 • Library file:/usr/lpp/X11/Xamples/pex/si-phigs/lib/X11/PEX
 • Samples: /usr/lpp/X11/Xamples/pex/si-phigs/clients
 • Man pages: /usr/lpp/X11/Xamples/pex/si-phigs/man
 • PHIGS monitor: /usr/lpp/X11/Xamples/pex/si-phigs/lib/X11/PEX/phigsmon

Use the following to set the environment variable for the PHIGS monitor:

(ksh:) export PEXAPIDIR=/usr/lpp/X11/Xamples/pex/si-phigs/lib/X11/PEX

(csh:) setenv PEXAPIDIR /usr/lpp/X11/Xamples/pex/si-phigs/lib/X11/PEX

The man pages replace the hardcopy manuals, use them as user’s guide and
subroutines reference.

Please see the README file in the main directory for more information. The
Text Formatting filesets are required to read the man command.

10.3.3.6 graPHIGS Programming Interface
If a graPHIGS application uses an XPEX workstation type, it automatically
generates the PEX protocol.
PEX 203

10.4 PEX References

The following two books are published by O’Reilly & Associates.

 • PEXlib Programming Manual: 3D Programming in X. Gaskins, T., ISBN
1-56592-028-7, 1992

 • PEXlib Reference Manual: 3D Programming in X. Talbott, S., ISBN
1-56592-029-5, 1992
204 RS/6000 Graphics Handbook

Chapter 11. Benchmarking

This chapter discusses some benchmarking issues. Since the performance of
the systems is highly subject to changes, we focus more on describing the
different benchmarks used in the graphic area and how to obtain the latest
results rather than providing figures.

Just remember that, when it comes to standardized benchmarks, your
mileage may vary, but, after reading this chapter, at least you will have a fair
idea of the type of car you need to buy.

11.1 History

In the past, graphics performance was often measured in terms of vectors per
second or polygons per second. Since the terms were ambiguous, it was
difficult to compare one vendor’s product with another’s. Typical
discrepancies were the length of the vectors and whether they were being
drawn end to end or separately or what size of polygon was being drawn and
how it was shaded or what type of lighting was being utilized.

This was not only frustrating for customers but also for vendors.

In late 1986, the major workstation vendors and users met to discuss this lack
of standardized methods for measuring graphics performance. From this and
subsequent meetings grew the Picture Level Benchmark (PLB) project. This
benchmark, created with the assistance of Digital Equipment Corp. (now
Compaq), Hewlett-Packard, IBM, and Sun Microsystems, is a software
package that provides a practical comparison of graphics display
performance for different hardware platforms.

The OpenGL Performance Characterization project was started in 1993, and
it published the first numbers for the Viewperf benchmark in the fourth quarter
of 1994. The GLperf benchmark was released in August 1997.

These benchmark projects are all part of the Graphics Performance
Characterization (GPC) Group which joined the Standard Performance
Evaluation Corp. (SPEC) in early 1996.

The latest addition to the GPC is the Application Performance
Characterization project group that just announced its first benchmarks in
1998.
© Copyright IBM Corp. 1999 205

11.2 Which Benchmark to Use

The standard benchmark tests, that RS/6000 graphics workstation users
should be concerned with, are the Picture Level Benchmark (PLB), the
OpenGL Performance Characterization (OPC), and the X Performance
Characterization (XPC).

The PLB is designed to measure the performance of CRT based display
systems. This includes, but is not limited to, engineering workstations,
personal computers, and special-purpose attached display systems.

The OPC is set up to characterize graphics performance for computer
systems running applications, not overall graphics performance. The
Viewperf benchmark measures 3D rendering performance of systems running
under OpenGL. The GLperf benchmark is designed to measure optimal
performance of 2D and 3D graphics primitives. Both of these benchmarks are
available for download for UNIX, Windows (95 & NT), and for OS/2 from the
GPC.

The APC is working to provide benchmarks that measure system
performance based on how users typically interact with graphics-intensive
applications. They have so far announced a benchmark for SolidWorks 98
CAD/CAM software and for the Quake II game. They are also working on a
Pro/ENGINEER benchmark scheduled for release by the end of 1998. The
downloadable versions of these benchmarks will only work on Windows
platforms. You must have the actual applications installed on your system.
They are not provided with these benchmarks.

The XPC project group created the Xmark93 benchmark, which uses the
x11perf executable. IBM still reports the XPC benchmark results although the
XPC project group has disbanded and has retired the Xmark93 benchmark.

Of course, even though these standard benchmarks give you a very good
starting point in your search for the best graphics workstation for your money,
the best benchmark is still running your own applications in a real world
situation.

11.2.1 How to Run Benchmarks on Your System
The results for the above described benchmarks are published for a given
hardware and software configuration. This section explains how you can
reproduce these benchmarks on your own system.
206 RS/6000 Graphics Handbook

11.2.1.1 The PLB Benchmark
This version is not available on the specbench ftp site. When IBM runs this
benchmark, the graPHIGS API is used.

11.2.1.2 The OPC Benchmark
Download the GLperf code from the ftp.specbench.org site and view the
README file for instructions on how to compile the benchmark test.

Once the GLperf code is compiled, you can issue the following command to
start a test:

GLperf [-d] [-p] [-s] [-u] input_file [< input_file]
where -d specifies delta output, default is no delta
where -p specifies pixel metrics (e.g. pixels/sec), default is objects
where -s specifies default state delta output, default is no default
state delta
where -u specifies microsecond timings, default is objects per second
input_file is the name of the input file

GLperf will also take input from standard input if no input file is given.

You can download the Viewperf code and instructions for running the
benchmark from the ftp.specbench.org site along with any of the five viewsets
you wish to run. There are several precompiled versions of the Viewperf
executable available as well. IBM has supplied one for the PowerPC platform
as well as one for Windows NT on the x86 architecture.

Viewsets are designed by the vendors and not by the OPC project group
although the OPC will assist the vendors. The five standard viewsets are:

1. Parametric Technology’s CDRS (to be replaced soon by Parametric
Technology Corporation’s Pro/DESIGNER)

2. IBM’s Data Explorer

3. Intergraph’s DesignReview

4. Alias/Wavefront’s Advanced Visualizer

5. Lightscape Technology’s Lightscape Visualization System

Be aware that the viewsets have had some new versions released and
ensure that you are comparing the same versions of benchmarks across all
platforms under test.

The Viewperf benchmarks are run from shell scripts included with the
individual viewsets, for example, ~/viewperf.5.1/Light-01/Light-01.sh.
Benchmarking 207

11.2.1.3 The XPC Benchmark
The x11perf code is included in your shipment. It can be found in
/usr/lpp/X11/Xamples. You may have to build the example code. If so, follow
the instructions in the /usr/lpp/X11/Xamples/README file.

You will also have to ensure that the base Japanese fonts are installed
(lslpp -l bos.loc.pc.Ja_JP).

Prior to starting the X server, you should execute:

export X_SHM_SIZE=252.

To start the benchmark, run the following command:

x11perf -all -rop GXcopy GXxor -repeat 2

Then direct the output to a temporary file.

11.2.2 How to Interpret Benchmarks Results
If you have followed the previous step, you should now have a resulting file.
This section covers how to interpret these results.

11.2.2.1 The PLB Results
Currently, the PLB results are reported in terms of PLBwire93 and PLBsurf93.

Only one number is significant in each of these categories: PLBwire93 and
PLBsurf93. These numbers represent the geometric mean of the PLBlit and
PLBopt figures for the standard benchmark files in the two categories. The
PLBlit number is obtained by running the benchmark with no optimization for
the specific hardware. The PLBopt number is from running the benchmark
with an optimization for the specific hardware.

The benchmark consists of six major components:

1. The Benchmark Interchange Format (BIF), the file format for specifying
the geometry and actions that will be performed in a test.

2. The Benchmark Timing Methodology (BTM), which provides a
standardized performance measurement.

3. The Benchmark Reporting Format (BRF), for standardized reporting of
test results.

4. The Picture Level Benchmark (PLB) program, which implements BIF file
processing and runs the test. This program is platform-dependent and
must be ported to the device under test.

5. A suite of files for testing PLB implementation.
208 RS/6000 Graphics Handbook

6. A suite of BIF standard benchmark files that are used for graphics
performance tests.

The best method for running this benchmark is for the users to convert their
applications into BIF files and run them directly on the vendors’ ports of the
PLB program. However, since few users may have the time or technical
expertise to do this, the PLB project group has developed eight BIF files
based on popular applications.

It is important to note that although the PLB allows buyers to compare
performance, it does not address the issue of display quality. This subjective
issue is left to the eyes of the beholder.

PLBwire93 is a composite of three tests: sys_chassis, race_car, and seafloor.
These benchmarks are representative of entry level 3D wireframe
applications. These benchmarks are rendered without Z buffering, depth
cueing, anti-aliasing, or wide lines.

The file designated as sys_chassis is a 3D wireframe model of a computer
chassis. During the course of the test, the chassis is rotated, panned,
zoomed, and viewed from different perspectives. The chassis is composed of
6,107 3D solid polylines and 158 3-D dashed polylines. The number of
vertices per polyline ranges from two to 11; there is a total of 19,064 vectors.
Five hundred (500) frames are displayed in this test.

Figure 28. The sys_chassis Model

The race_car file is a data set representing a 3D wireframe model of a race
car that is seen from different views. Unigraphics 3D modeling software was
used to create the car model. The model is displayed and animated in four
Benchmarking 209

different simultaneous views on the screen. There is an average of 17,917 3D
solid polylines containing 141,934 vectors with 129 color attribute changes
per frame. The animation sequence contains 600 frames.

Figure 29. The race_car Model

The seafloor file is a 3D wireframe model representing the contour lines of
the ocean floor and the islands above. This data is typical of applications that
do mapping of seafloor terrain for exploration purposes. Color is used to
depict elevations, with deep blue representing the deepest part of the ocea,
and red the highest areas above sea level. The sea-level boundary is
depicted as a white contour line. While the file is being run, the terrain data is
rotated 360 degrees, followed by additional translations and rotations. The
data set comprises 984 contour lines on 211 depth levels. Each contour line
is represented as solid 3D polylines. There are 540 total frames with an
average of 229,682 vectors per frame.
210 RS/6000 Graphics Handbook

Figure 30. The Seafloor Model

The PLBsurf93 is a composite of four benchmarks: cyl_head, head, shuttle,
and studio. These benchmarks are representative of applications which
shade 3D surfaces. All of these benchmarks utilize Z-buffering and Gouraud
shading, and some incorporate multiple light sources.

The cyl_head file contains a 3D solid model of an automobile engine’s
cylinder head. The test reflects a typical 3D mechanical CAD application. The
cylinder head is rotated, translated and zoomed in on during the test. It is
composed of 3,621 3D polygons and 32 3D fill-area sets. There is an average
of 4.8 vertices per polygon.

The fill area sets have an average of 55.7 vertices and 2.7 contours per
frame. There are 225 frames displayed in this test. All colors in this file are
true color (RGB) values, and all polygons are Gouraud shaded. There are
three light sources that use ambient, diffuse and specular light components.
Benchmarking 211

Figure 31. The cyl_head Model

The head file depicts a 3D human head modeled using data generated by a
laser scanner. This type of file is typical of applications in animation, special
effects, and biomedical areas. The data set consists of nearly 60,000
triangles that are rendered using multiple T-mesh strips. There are four
directional light sources illuminating the object as it rotates three times
around the Y-axis in 240 frames.

Figure 32. The Head Model

The shuttle file is an example of low-end simulation consisting of 560 frames.
The scenario depicts the rendezvous of a space shuttle with a satellite in a
low planet orbit. An astronaut uses the shuttle’s robot arm to maneuver within
repair distance of the satellite. The shuttle and satellite are modeled using
212 RS/6000 Graphics Handbook

quadrilateral meshes, triangle strips, and polygons for a total of 3,355 facets.
The planet model consists of quadrilateral meshes totalling 5,632 facets.
Constellation data was derived from the BOSS star catalog and is modeled
using 2,283 3D markers. Three light sources - ambient, directional and point -
are used to light the scenes.

Figure 33. The Shuttle Model

The studio file is an architectural walk-through consisting of 300 frames. The
viewer is given a tour of the interior of a photorealistic two-floor design studio,
which features light coming from a variety of sources. Lighting conditions are
generated using radiosity methods that were precomputed outside the PLB.
The file contains 7,518 quadrilaterals in eight MULTI_POLYGON3’s; the first
seven MULTI_POLYGON3’s have 1,000 quads, and the last has 518 quads.
There are no light sources; shading is accomplished with the vertex colors
present on every quad. No facet data is present in the file.
Benchmarking 213

Figure 34. The Studio Model

The oceantopo file is an extension of the database used to produce the
current standard benchmark called seafloor. Like seafloor, the new file is a 3D
wireframe model of the ocean floor contour lines and some islands above.
The data is typical of applications that do mapping of seafloor terrain for
exploration purposes. Color is used to depict elevations, with deep blue
representing the deepest part of the ocean and red the highest areas above
sea level. The sea-level boundary is depicted as a white contour line. While
the model is being rotated and translated, the depth-cue mapping is changed
several times to make the foreground data more visible. The data set
comprises 991 contour lines on 211depth levels. Each contour line is
represented as anti-aliased, depth-cued 3D polylines. The file contains a total
of 600 frames with an average of 459,809 vectors per frame.

Once you have run the PLB benchmark an intermediate file, the .BRF file is
created. An example of this file is shown in Appendix B.1, “A Sample BRF
File” on page 253. This information is then processed to generate the PLB
report as shown in the following figures.
214 RS/6000 Graphics Handbook

Figure 35. PLB Report Page 1
Benchmarking 215

Figure 36. PLB Report Page 2

11.2.2.2 The XPC Results
After you complete the x11perf benchmark, you should run the results file
through the Xmark.sh script that is in the /usr/lpp/X11/Xamples/bin directory.

The output from the Xmark.sh script contains three numbers:

 • The weighted x11perf number for the server under test
 • The weighted x11perf number of a Sun SparcStation 1
 • The Xmark - the ratio of the first two numbers
216 RS/6000 Graphics Handbook

It will appear similar to this:

Weighted x11perf of International Business Machines server = 54025
Weighted x11perf of SparcStation 1 server = 2119
Xmark = 25.5012

The higher the Xmark value, the better it is.

The x11perf benchmark creates a series of standard X11 graphics patterns
and measures the time it takes to draw them on the display.

11.2.2.3 The OPC Results
Viewperf measures performance for the following entities:

 • 3D primitives, including points, lines, line_strip, line_loop, triangles,
triangle_strip, triangle_fan, quads and polygons

 • Attributes per vertex, per primitive and per frame
 • Lighting
 • Texture mapping
 • Alpha blending
 • Fogging
 • Anti-aliasing
 • Depth buffering

Viewperf is not a single-number benchmark. In order to use it to its fullest
advantage, ISVs and users need to relate the benchmark to their actual
applications. Here are the five steps recommended for using Viewperf
effectively:

1. Identify software code paths that are important to the application.

2. Identify the primitives used within the application.

3. Select datasets that are most appropriate to the application. The datasets
should reflect the level of geometry and rasterization found in the
application.

4. Identify attributes and the level at which they are applied (per vertex, per
primitive or per frame).

5. Assign a weight to each path based on the percentage of time in each path
and the importance of the path to the application.

The Viewperf program is command line driven. The viewset’s shell scripts
may call the Viewperf executable multiple times with different options.

The possible options are:

-polygon -pg <file> : Viewpoint object to be used in the tests
Benchmarking 217

-triangle -tr <file> : Viewpoint object to be used in the tests
-quad -qd <file> : Viewpoint object to be used in the tests
-mesh -mh <file> : Mesh object to be used in the tests
-rendermode -rm <mode> : POINT, VECTOR, LINE, POLYGON, TMESH, TFAN,
 TRIANGLE, or QUAD - default LINE
-vcriteria -vcrit : AUX Visual selection criteria - EXACT, MIN
 - default MIN
-vid <id> : Ask AUX for visual with ID = <id>
-vaccum -vac : Ask AUX for an accumulation buffer visual
-valpha -val : Ask AUX for an alpha buffer visual
-vdepthbuffer -vz : Ask AUX for a depth buffer visual
-vstencil -vst : Ask AUX for a stencil buffer visual
-indirectrender -ir : Render indirect - default direct
-nodither -ndi : Disable dithering
-ortho -or : Parallel/Orthographic projection - default
Perspective
-displaylist -dl : Render with display list mode
-colorper -cp <mode> : FRAME = Color per Frame,
 : PRIMITIVE = Color per Primitive,
 : VERTEX = Color per Vertex - default FRAME
-texture -tx <file> : MTV image for texturing
-texgen -txg <file> <mode> : <file> is MTV image for environment mapping
 <mode> is SPHERE_MAP, OBJECT_LINEAR, EYE_LINEAR
 - default EYE_LINEAR
-magfilter -magf <flt> : NEAREST, LINEAR - default NEAREST
-minfilter -minf <flt> : NEAREST, LINEAR, NEAREST_MIPMAP_NEAREST,
 LINEAR_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_LINEAR - default NEAREST
-texenv -te <env> : Texture environment, MODULATE, DECAL, BLEND
 - default DECAL
-texcomp -tc <num> : Texture components where <num> is 1,2,3, or 4
 : -default 3
-blend -bl : Enable Blending
-srcblendfunc -sbf : ZERO, ONE, DST_COLOR, ONE_MINUS_DST_COLOR,
SRC_ALPHA, ONE_MINUS_SRC_ALPHA, DST_ALPHA, ONE_MINUS_DST_ALPHA,
SRC_ALPHA_SATURATE - default SRC_ALPHA
-dstblendfunc -dbf : ZERO, ONE, SRC_COLOR, ONE_MINUS_SRC_COLOR,
SRC_ALPHA, ONE_MINUS_SRC_ALPHA, DST_ALPHA, ONE_MINUS_DST_ALPHA, - default
ONE_MINUS_SRC_ALPHA
-linewidth -lw <width> : Linewidth for wire/vector tests - default 1.0
-xwinsize -xws <side> : Size of test windows X dimension - default 700
-ywinsize -yws <side> : Size of test windows Y dimension - default 700
-numframes -nf <num> : Number of frames to be rendered during measurement
 Takes priority over -mp
-numilights -nil <num> : Turns on <num> infinite lights - default 0
-numllights -nll <num> : Turns on <num> local lights - default 0
-colormaterial -cm <side> <mode> :
218 RS/6000 Graphics Handbook

 <side> is FRONT, BACK, FRONT_AND_BACK - default
FRONT
 <mode> is AMBIENT, DIFFUSE, EMISSION, SPECULAR,
 AMBIENT_AND_DIFFUSE - default AMBIENT_AND_DIFFUSE
-backface -bf : Cull Backfacing primitives - default off
-frontface -ff : Cull Frontfacing primitives - default off
-singlebuffer -sb : Single buffer mode
-fog -fg : Enable fog
-linesmooth -ls : Enable line antialiasing
-polysmooth -ps : Enable polygon antialiasing
-facetnormal -fn : Use facet normals when lighting
-linestipple -lp : Enable line stipple
-polystipple -pp : Enable polygon stipple
-toggle -tg <cap> : Toggle per primitive - BLEND, DEPTH_TEST, DITHER,
 LIGHTING, LINE_WIDTH, LINE_STIPPLE, POLYGON_STIPPLE,
 or MATRIX - multmatrix
-batch -bt <num> : Batch <num> primitives together per glBegin/glEnd
 Valid with POINT, VECTOR, TRIANGLE, and QUADS
-polymodefront -pmf : POINT, LINE, or FILL - default FILL
-polymodeback -pmb : POINT, LINE, or FILL - default FILL
-flat -f : Set shademodel to FLAT - default GOURAUD
-zbuffer -zb : Enable zbuffer for tests - default off
-clip -c : Align object on 3D clip boundary
-lighttwoside -l2s : Light both sides of model
-localview -lv : Define local viewer for lit tests
-minperiod -mp <num> : Set minimum testing period in seconds
-mblur <num> : Use motion blur with num being amount of decay
-aa_multi <x> <r> : Full scene antialiasing rendered x times at an
 : offset of r. r should be tuned to the viewset
-walkthru -wt : Walkthru mode
-threads -th <num> : Sets number of threads (no arg means 1 per
processor)

Appendix B.2, “Viewperf Output from CDRS 03 Test 3” on page 257, shows
the Viewperf output from CDRS-03 Test #3. The last line of the output
provides the number of frames per second for that portion of the test. This
result, along with the rest of the test’s results, is printed in the report page
that is submitted to the OPC and is published in the GPC News. A single
composite number is also reported that is derived using a weighted geometric
mean methodology.
Benchmarking 219

Figure 37. An OPC CDRS-03 Report

There is a very good paper explaining the reasoning for and method of
calculating the weighted geometric mean. It is available for viewing or
download at http://www.spec.org/gpc/opc.static/geometric_mean.html.
220 RS/6000 Graphics Handbook

11.2.2.4 The GLperf Result
The OPC project group has approved a set of 13 GLperf scripts for reporting
results within its Web publication, the GPC News. These are split into 10 RGB
scripts and three color-index scripts. The scripts are further divided by
functionality. The OPClist scripts (RGB and color index) contain a number of
tests for a variety of graphics primitives and other operations (such as
window-clears). These tests are probably the closest parallel to
primitive-level results available from most vendors today. Other scripts
feature specific graphics operations, such as CopyPixl.rgb, DrawPixl.rgb,
ReadPixl.rgb, TexImage. rgb measure glCopyPixels, glDrawPixels,
glReadPixels, and glTexImage2D RGB operations. DrawPixl.ndx and
ReadPixl.ndx are the color index analogs to DrawPixl.rgb and ReadPixl.rgb.

Remaining scripts address underlying graphics concepts that affect OpenGL
performance. BgnEnd.rgb measures performance as it varies with the
number of primitives batched together (in a glBegin/glEnd pair). FillRate.rgb
measures how fast rasterization operations are performed (how many pixels
are drawn per second). Light.rgb measures the effect of the number of
enabled light sources on drawing a particular primitive, and LineFill.rgb and
TriFill.rgb measure the effect of increasing primitive size on the drawing rates
of lines and triangles, respectively.

An example of an input file format is shown in Appendix , “The input file
scripts look something like the following:” on page 260. For an in-depth
explanation for the format, attributes, and the properties, please read the
tutorial available at:: http://www.spec.org/gpc/opc/glperf_publish/GLperf.htm.

For a reasonable interpretation of what all these numbers mean, check out
the Java-based tool at
http://www.spec.org/gpc/opc/glperf_publish/index.htm.
Benchmarking 221

Figure 38. The GLperf Data Browser

Both Viewperf and GLperf measure the graphics performance of a system
through the OpenGL API. They were designed, however, with different goals
in mind. While Viewperf draws an entire model with differing sizes of
primitives (as you would see in an actual application), GLperf artificially
assigns a specific size to every primitive drawn within a test. While Viewperf
attempts to emulate what an application would do graphically and measure it,
GLperf makes no such attempt. Instead, GLperf provides a more controlled
environment within which to extract and measure the highest performance or
upper bound of a particular system.

Another difference is that Viewperf reports results in frames drawn per
second, whereas GLperf measures its results in primitives drawn per second,
whether the primitive is pixels, points, lines, triangles, or some other object.
222 RS/6000 Graphics Handbook

11.3 Latest Results

After studying the various benchmarks available, here are the latest results
available for the different combinations of RS/6000 systems and graphics
adapters:

Table 18. Graphics Performance

Adapter System Clock Rate Op. Sys. L2
cache

GPC/XPC
Xmark93

GXT120P 43P-140 233 AIX430 1 MB 12.77

GXT120P 43P-140 3323 AIX430 1 MB 14.13

GXT150M 595 AIX421 NA

GXT150M 3CT AIX421 NA

GXT250P 43P-133 166 AIX421 512 KB

GXT250P 43P-140 233 AIX421 1 MB 24.27

GXT250P 43P-240(1) 166 AIX421 512 KB 18.93

GXT250P 43P-240(1) 233 AIX421 1 MB 21.07

GXT250P 43P-240(2) 166 AIX421 512 KB 18.16

GXT250P 43P-240(2) 233 AIX421 1 MB 19.80

GXT250P F40(1) 166 AIX421 512 KB 18.93

GXT250P F40(1) 166 AIX421 1 MB 21.07

GXT250P F40(2) 233 AIX421 512 KB 18.16

GXT250P F40(2) 166 AIX421 1 MB 19.80

GXT255P 43P-140 233 AIX421 1 MB 21.27

GXT255P 43P-140 332 AIX431 1 MB 24.27

GXT255P 43P-150 --- AIX432 1 MB 29.21

GXT255P 43P-240(1) 166 AIX421 512 KB 19.55

GXT255P 43P-240(1) 233 AIX421 1 MB 19.73

GXT255P 43P-240(2) 166 AIX421 512 KB 18.96

GXT255P 43P-240(2) 233 AIX421 1 MB 18.93

GXT255P 43P-260(1) --- AIX432 4 MB 25.79
Benchmarking 223

GXT255P 43P-260(2) --- AIX432 4 MB 25.56

GXT255P F40(1) 166 AIX421 512 KB 19.55

GXT255P F40(1) 233 AIX421 1 MB 19.73

GXT255P F40(2) 166 AIX421 512 KB 18.96

GXT255P F40(2) 233 AIX421 1 MB 18.93

GXT255P F50 166 AIX431 256 KB 24.62

GXT550P 43P-140 233 AIX421 1 MB 15.36

GXT550P 43P-140 332 AIX431 1 MB 16.73

GXT550P 43P-140 332 AIX432 1 MB ---

GXT550P 43P-150 --- AIX432 1 MB 18.10

GXT550P 43P-240(1) 166 AIX421 512 KB 12.17

GXT550P 43P-240(1) 233 AIX421 1 MB 13.41

GXT550P 43P-240(2) 166 AIX421 1 MB 11.96

GXT550P 43P-240(2) 233 AIX421 1 MB 113.00

GXT550P F40(1) 166 AIX421 512 KB 12.17

GXT550P F40(1) 233 AIX421 1 MB 13.41

GXT550P F40(2) 166 AIX421 512 KB 11.96

GXT550P F40(2) 233 AIX421 1 MB 13.00

GXT800M 397 160 AIX430 NA ---

GXT800P 43P-140 233 AIX421 1 MB 18.80

GXT800P 43P-240(1) 166 AIX421 512 KB 14.20

GXT800P 43P-240(1) 233 AIX421 1 MB 15.71

GXT800P 43P-240(2) 166 AIX421 512 KB 14.03

GXT800P 43P-240(2) 233 AIX421 1 MB 15.31

GXT800P F40(1) 166 AIX421 512 KB 14.20

GXT800P F40(1) 233 AIX421 1 MB 15.71

Adapter System Clock Rate Op. Sys. L2
cache

GPC/XPC
Xmark93
224 RS/6000 Graphics Handbook

GPC/PLB Results (PLBwire and PLBsurf)

GXT800P F40(2) 166 AIX421 512 KB 14.03

GXT800P F40(2) 233 AIX421 1 MB 15.31

GXT800PT 43P-140 233 AIX421 1 MB 18.39

GXT800PT 43P-240(1) 166 AIX421 512 KB 14.59

GXT800PT 43P-240(1) 233 AIX421 1 MB 16.35

GXT800PT 43P-240(2) 166 AIX421 512 KB 14.17

GXT800PT 43P-240(2) 233 AIX421 1 MB 15.49

GXT800PT F40(1) 166 AIX421 512 KB 14.59

GXT800PT F40(1) 233 AIX421 1 MB 16.35

GXT800PT F40(2) 166 AIX421 512 KB 14.17

GXT800PT F40(2) 233 AIX421 1 MB 15.49

GXT3000P 43P-150 --- AIX421 1 MB 37.17

GXT3000P 43P-260(1) --- AIX432 4 MB 37.35

GXT3000P 43P-260(2) --- AIX432 4 MB 37.09

Adapter System Clock
Rate

Op.
Sys.

L2
cache

PLBwire PLBsurf

GXT250P 43P-140 233 AIX421 1 MB 62.90 38.50

GXT250P 43P-240(1) 166 AIX421 512 KB 41.60 29.50

GXT250P 43P-240(1) 233 AIX421 1 MB 50.80 35.50

GXT250P 43P-240(2) 166 AIX421 512 KB 56.90 41.40

GXT250P 43P-240(2) 233 AIX421 1 MB 62.10 46.90

GXT250P F40(1) 166 AIX421 512 KB 41.60 29.50

GXT250P F40(1) 166 AIX421 1 MB 50.80 35.50

GXT250P F40(2) 233 AIX421 512 KB 56.90 41.40

GXT250P F40(2) 166 AIX421 1 MB 32.10 46.90

Adapter System Clock Rate Op. Sys. L2
cache

GPC/XPC
Xmark93
Benchmarking 225

GXT255P 43P-140 233 AIX421 1 MB 127.10 45.90

GXT255P 43P-140 332 AIX431 1 MB 152.70 51.50

GXT255P 43P-150 --- AIX432 1 MB 178.60 75.40

GXT255P 43P-240(1) 166 AIX421 512 KB 83.80 35.60

GXT255P 43P-240(1) 233 AIX421 1 MB 96.20 40.00

GXT255P 43P-240(2) 166 AIX421 512 KB 97.60 49.00

GXT255P 43P-240(2) 233 AIX421 1 MB 100.40 52.20

GXT255P 43P-260(1) --- AIX432 4 MB 158.60 78.10

GXT255P 43P-260(2) --- AIX432 4 MB 213.30 106.00

GXT255P F40(1) 166 AIX421 512 KB 83.80 35.60

GXT255P F40(1) 233 AIX421 1 MB 96.20 40.00

GXT255P F40(2) 166 AIX421 512 KB 97.60 49.00

GXT255P F40(2) 233 AIX421 1 MB 100.40 52.20

GXT255P F50 166 AIX431 256 KB 121.70 80.60

GXT550P 43P-140 233 AIX421 1 MB 134.30 133.90

GXT550P 43P-140 332 AIX431 1 MB 149.70 144.20

GXT550P 43P-140 332 AIX432 1 MB 149.90 144.00

GXT550P 43P-150 --- AIX432 1 MB 152.80 160.40

GXT550P 43P-240(1) 166 AIX421 512 KB 114.30 108.80

GXT550P 43P-240(1) 233 AIX421 1 MB 135.30 123.70

GXT550P 43P-240(2) 166 AIX421 1 MB 141.30 129.10

GXT550P 43P-240(2) 233 AIX421 1 MB 146.30 153.00

GXT550P F40(1) 166 AIX421 512 KB 114.30 108.80

GXT550P F40(1) 233 AIX421 1 MB 135.30 123.70

GXT550P F40(2) 166 AIX421 512 KB 141.30 139.10

GXT550P F40(2) 233 AIX421 1 MB 146.30 153.00

Adapter System Clock
Rate

Op.
Sys.

L2
cache

PLBwire PLBsurf
226 RS/6000 Graphics Handbook

GPC/OPC Results (CDRS-03, DX-03 and DRV-04)

GXT800M 397 160 AIX430 NA 158.70 257.80

GXT800P 43P-140 233 AIX421 1 MB 131.40 202.40

GXT800P 43P-240(1) 166 AIX421 512 KB 113.60 167.30

GXT800P 43P-240(1) 233 AIX421 1 MB 134.00 198.40

GXT800P 43P-240(2) 166 AIX421 512 KB 140.00 223.80

GXT800P 43P-240(2) 233 AIX421 1 MB 148.40 269.40

GXT800P F40(1) 166 AIX421 512 KB 113.60 167.30

GXT800P F40(1) 233 AIX421 1 MB 134.00 198.40

GXT800P F40(2) 166 AIX421 512 KB 140.00 223.80

GXT800P F40(2) 233 AIX421 1 MB 148.40 269.40

GXT800PT 43P-140 233 AIX421 1 MB 134.00 207.40

GXT800PT 43P-240(1) 166 AIX421 512 KB 114.50 168.70

GXT800PT 43P-240(1) 233 AIX421 1 MB 137.70 202.50

GXT800PT 43P-240(2) 166 AIX421 512 KB 140.80 228.90

GXT800PT 43P-240(2) 233 AIX421 1 MB 154.80 277.20

GXT800PT F40(1) 166 AIX421 512 KB 114.50 168.70

GXT800PT F40(1) 233 AIX421 1 MB 137.70 202.50

GXT800PT F40(2) 166 AIX421 512 KB 140.80 228.90

GXT800PT F40(2) 233 AIX421 1 MB 154.80 277.20

GXT3000P 43P-150 --- AIX421 1 MB 257.30 468.90

GXT3000P 43P-260(1) --- AIX432 4 MB 436.90 610.80

GXT3000P 43P-260(2) --- AIX432 4 MB 627.40 866.20

Adapter System Clock
Rate

Op.
Sys.

L2
cache

CDRS-03 DX-03 DRV-
04

GXT150M 595 421 NA 7.85 1.54 0.91

Adapter System Clock
Rate

Op.
Sys.

L2
cache

PLBwire PLBsurf
Benchmarking 227

GXT150M 3CT 421 NA 4.26 0.79 0.47

GXT250P 43P-133 166 421 512 KB 3.26 0.80 0.56

GXT250P 43P-140 233 421 1 MB 4.75 1.16 0.79

GXT250P 43P-240
(1)

166 421 512 KB 3.07 0.81 0.59

GXT250P 43P-240
(1)

233 421 1 MB 4.63 1.11 0.77

GXT250P F40(1) 166 421 512 KB 3.07 0.81 0.59

GXT250P F40(1) 166 421 1 MB 4.63 1.11 0.77

GXT255P 43P-133 166 421 512 KB 5.81 2.17 1.12

GXT255P 43P-140 233 421 1 MB 7.90 3.13 1.62

GXT255P 43P-140 332 431 1 MB 9.02 4.06 2.04

GXT255P 43P-150 --- 432 1 MB 10.05 5.02 2.52

GXT255P 43P-240
(1)

166 421 512 KB 5.73 2.15 1.09

GXT255P 43P-240
(1)

233 421 1 MB 6.69 2.80 1.41

GXT255P 43P-260
(1)

--- 432 4 MB 8.06 4.35 2.08

GXT255P 43P-260
(2)

--- 432 4 MB 8.06 4.35 2.08

GXT255P F40(1) 166 421 512 KB 5.73 2.15 1.09

GXT255P F40(1) 233 421 1 MB 6.69 2.80 1.41

GXT255P F50 166 431 256 KB 8.18 4.75 2.18

GXT550P 43P-140 233 421 1 MB 30.53 6.50 2.67

GXT550P 43P-140 332 431 1 MB 32.70 8.21 3.28

GXT550P 43P-140 332 432 1 MB 32.51 8.22 3.27

GXT550P 43P-150 --- 432 1 MB 33.77 10.30 3.96

Adapter System Clock
Rate

Op.
Sys.

L2
cache

CDRS-03 DX-03 DRV-
04
228 RS/6000 Graphics Handbook

GXT550P 43P-240
(1)

166 421 512 KB 24.49 4.84 2.02

GXT550P 43P-240
(1)

233 421 1 MB 30.03 6.50 2.68

GXT550P 43P-240
(2)

233 421 1 MB 31.51 8.12 3.00

GXT550P F40(1) 166 421 512 KB 24.49 4.84 2.02

GXT550P F40(1) 233 421 1 MB 30.00 6.01 2.65

GXT550P F40(2) 166 421 512 KB 30.39 6.93 2.44

GXT550P F40(2) 233 421 1 MB 31.51 8.12 3.00

GXT800M 397 160 430 NA 41.67 7.70 3.79

GXT800P 43P-140 233 421 1 MB 33.47 6.47 2.84

GXT800P 43P-240
(1)

166 421 512 KB 29.03 5.02 2.17

GXT800P 43P-240
(1)

233 421 1 MB 33.92 6.52 2.89

GXT800P 43P-240
(2)

166 421 512 KB 34.09 6.91 2.47

GXT800P 43P-240
(2)

233 421 1 MB 35.75 8.29 3.02

GXT800P F40(1) 166 421 512 KB 29.03 5.02 2.17

GXT800P F40(1) 233 421 1 MB 33.92 6.52 2.89

GXT800P F40(2) 166 421 512 KB 34.09 6.91 14.03

GXT800P F40(2) 233 421 1 MB 35.75 8.29 3.02

GXT800PT 43P-140 233 421 1 MB 38.51 6.43 3.27

GXT800PT 43P-240
(1)

166 421 512 KB 33.76 4.96 2.56

GXT800PT 43P-240
(1)

233 421 1 MB 39.16 6.49 3.36

GXT800PT 43P-240
(2)

166 421 512 KB 39.47 6.83 3.00

Adapter System Clock
Rate

Op.
Sys.

L2
cache

CDRS-03 DX-03 DRV-
04
Benchmarking 229

GPC/OPC Results (light-01 and Awads-01)

GXT800PT 43P-240
(2)

233 421 1 MB 41.54 8.25 3.68

GXT800PT F40(1) 166 421 512 KB 33.76 4.96 2.56

GXT800PT F40(1) 233 421 1 MB 39.16 6.49 3.36

GXT800PT F40(2) 166 421 512 KB 39.47 6.83 3.00

GXT800PT F40(2) 233 421 1 MB 41.54 8.25 3.68

GXT3000P 43P-150 --- 421 1 MB 94.76 11.16 6.17

GXT3000P 43P-260
(1)

--- 432 4 MB 218.17 16.37 7.32

GXT3000P 43P-260
(2)

--- 432 4 MB 218.17 16.37 7.32

Adapter System Clock
rate

Op sys L2cach
e

light-01 Awadvs-01

GXT800M 397 160 430 NA 0.69 7.27

GXT800PT 43P-140 233 421 1 MB 0.66 7.46

GXT800PT 43P-240(1) 166 421 512 KB 0.48 5.40

GXT800PT 43P-240(1) 233 421 1 MB 0.65 7.34

GXT800PT 43P-240(2) 166 421 512 KB 0.63 7.43

GXT800PT 43P-240(2) 233 421 1 MB 0.73 9.69

GXT800PT F40(1) 166 421 512 KB 0.48 5.40

GXT800PT F40(1) 233 421 1 MB 0.64 7.34

GXT800PT F40(2) 166 421 512 KB 0.63 7.43

GXT800PT F40(2) 233 421 1 MB 0.73 9.69

GXT3000P 43P-150 --- 421 1 MB 1.22 13.77

Adapter System Clock
Rate

Op.
Sys.

L2
cache

CDRS-03 DX-03 DRV-
04
230 RS/6000 Graphics Handbook

Appendix A. 3D Graphics API Additional Information

This appendix contains information that is too long or of a minor interest to be
included in the main chapters discussing GL or OpenGL. You’ll find here, for
example, the illustration of complex program written with the GL 3.2 API, an
example of output for the xglinfo command, a discussion about Easy-MP,
and a detailed list of the OpenGL extensions supported on the graphics
adapter.

A.1 GL 3.2 Sample Code

The following section is a light introduction to GL3.2 programming. It shows
several easy programs and provides a step-by-step explanation for every line
of code.

A.1.1 Sample Program 2 - Animation Using Double Buffering

The following example program demonstrates how to create an animated
scene. When this example program executes, the "Hello, World!" text moves
around in a circle. This is done by clearing and redrawing the text again and
again, each time at a new location.

This action is complicated by image flicker, which occurs because the system
draws each image quickly, but perceptibly; that is, you do not see each
individual character being drawn, only an irregular flashing and flickering. The
flashing can be mild to severe, depending on what else is happening in the
system or on the screen at that time.

To avoid this flashing, double buffering is used. The frame buffer is partitioned
into two pieces, front and back. The front buffer contains data for the pixels
that are visible. The back buffer, which also contains pixel data, is invisible,
but identical to the front buffer in other respects. To get smooth animation,
never draw to the front buffer; instead, limit all drawing to the back buffer.
When drawing is complete, the front and back buffers are swapped, and what
was previously hidden is now visible.

The result is a smooth, flicker-free animation. The actual, step-by-step
drawing process is not visible, only the final result. The following example
shows how to create an animated scene by using double buffering:

#include <math.h>
#include <gl/gl.h>

void main(void)
© Copyright IBM Corp. 1999 231

{
int i, ix, iy;

prefsize(200, 100);
winopen("HI THERE");
doublebuffer();
gconfig();

for(i = 1; i < 1800; i++) {
color(BLACK);
clear();
color(GREEN);
ix = (int)(40.0 * cos (((double) i) / 20.0));
iy = (int)(40.0 * sin (((double) i) / 20.0));
cmov2(50 + ix, 50 + iy);
charstr("Hello, World!");
swapbuffers();

}
}

The detail for each line is:

prefsize(200, 100);
winopen("HI THERE");

First, a window is created exactly as before:

doublebuffer();
gconfig();

Next, the system is told to convert this window into a double-buffered window.
The program does this in two steps:

1. Alerts the system with the doublebuffer() subroutine.

2. Sets double buffering into operation with the gconfig() subroutine.

The process requires two steps because there are, in fact, a number of
configurations into which a window can be placed.

for(i = 1; i < 1800; i++) {
color(BLACK);
clear();
color(GREEN);
ix = (int)(40.0 * cos (((double) i) / 20.0));
iy = (int)(40.0 * sin (((double) i) / 20.0));
cmov2(50 + ix, 50 + iy);
charstr("Hello, World!");
swapbuffers();
232 RS/6000 Graphics Handbook

}

Next, the program goes into a loop that is repeated 1800 times. Inside this
loop, we clear the screen and draw the text as before.

The sin() and cos() subroutines are AIX system calls that return the sine and
cosine of an angle. They are useful for drawing circular primitives.

The program uses the loop counter as an angle and moves the current
character position accordingly.

Finally, when drawing is complete, the swapbuffers() subroutine exchanges
the front and the back buffers.

After looping 1800 times, the program exits, and the window disappears.

Note: Not all adapters support double buffering.

A.1.2 Sample Program 3 - Event Loop

The next program demonstrates how to obtain input and illustrates the
concept of an event loop.

The event loop is critical to writing applications for a windowing system. An
event loop allows a program to respond to events occurring in the system that
are beyond the control of the application program, such as when a user picks
up a window and moves it, has a window obscured and then unobscured by
other windows, or resizes a window.

At this point, return to the first program (Sample Program 1), change the
sleep time to 50 seconds, then recompile and rerun the program. While it is
running, pick up another window (for instance, the xclock), drop it on the HI
THERE window, pick it up again, and remove it. Notice that the original
"Hello, World!" display was destroyed. This occurred because the other
window overwrote the pixel data in the HI THERE window, and the
overwritten data was not saved (GL does not support backing store or
save-under).

When the contents of a window are destroyed that way, the application itself
must redraw the window. GL provides an event that indicates that a window
may have to be redrawn. The application must test for this event and redraw
the window whenever the event is received. The discussion after the
following program explains how the testing and redrawing is done:

#include <gl/gl.h>
#include <gl/device.h>
3D Graphics API Additional Information 233

/* This subroutine draws stuff */
drawstuff(int xxx, int yyy)
{

color(BLACK);
clear();
color(GREEN);
cmov2i(xxx, yyy);
charstr("Hello, World!");
swapbuffers();

}

void main(void)
{

int ox, oy;
int ix = 150, iy = 200;
int update = TRUE;

/* Create and configure window */
prefsize(400, 400);
winopen("HI THERE");
doublebuffer();
gconfig();

/* get window origin */
getorigin(&ox, &oy);

/* queue up input devices */
qdevice(REDRAW); /* window needs to be redrawn */
qdevice(WINQUIT); /* user selected "close" from window menu */
qdevice(MOUSEX); /* mouse x position, in pixels */
qdevice(MOUSEY); /* mouse y position, in pixels */
qdevice(ESCKEY); /* user pressed escape key */
qdevice(RIGHTMOUSE);/* user pressed right mouse button */

/* enter event loop */
while(TRUE) {

long dev;
short value;

/* if there aren’t any events, and data has changed, redraw */
if(!qtest() & update) {
drawstuff(ix, iy);
update = FALSE;

}

/* get the next event */
234 RS/6000 Graphics Handbook

dev = qread(&value);

/* dispatch the next event */
switch(dev) {
case MOUSEX:

ix = value - ox; /* update x location */
update = TRUE;
break;

case MOUSEY:
iy = value - oy; /* update y location */
update = TRUE;
break;

case REDRAW: /* redraw it */
getorigin(&ox, &oy); /* get window origin */
update = TRUE;
break;

case ESCKEY: /* if user presses escape key, quit */
case RIGHTMOUSE: /* if user presses right mouse button, quit */
case WINQUIT: /* if "close" selected from window menu */

exit();
default:

break;
}

}
}

When you run this program, you will find that the character string "Hello,
World!" follows the cursor around. You can pick up the window, move it,
obscure it, and uncover it, but it will always appear correctly. The following
discussion examines the operation of this complicated program in detail.

The detail for each line is:

/* This subroutine draws stuff */
drawstuff(int xxx, int yyy)
{
color(BLACK);
clear();
color(GREEN);
cmov2i(xxx, yyy);
charstr("Hello, World!");
swapbuffers();
}

To make the program easier to read, the drawing section has been put into its
own subroutine, drawstuff, which contains a set of GL subroutines. When you
want the program to draw, call this subroutine.
3D Graphics API Additional Information 235

/* Create and configure window */
prefsize(400, 400);
winopen("HI THERE");
doublebuffer();
gconfig();

The program begins as before. The first step opens a window.

/* get window origin */
getorigin(&ox, &oy);

Next, the program obtains the window origin with the getorigin() subroutine,
which will be needed later.

/* queue up input devices */
qdevice(REDRAW); /* window needs to be redrawn */
qdevice(WINQUIT); /* user selected "close" from window menu */
qdevice(MOUSEX); /* mouse x position, in pixels */
qdevice(MOUSEY); /* mouse y position, in pixels */
qdevice(ESCKEY); /* user pressed escape key */
qdevice(RIGHTMOUSE);/* user pressed right mouse button */

Then, a number of devices are queued up. These devices, the REDRAW
device, the MOUSEX device, and so on, generate events and place them on
a queue. The program reads events from the bottom of the queue and
processes them according to what came in. The qdevice() subroutine itself
does not generate or process events, but only initializes these devices and
readies them for use.

/* enter event loop */
while(TRUE) {
...
}

Next, the program enters the event loop.

switch(dev) {
...
case ESCKEY: /* if user presses escape key, quit */
case RIGHTMOUSE: /* if user presses right mouse button, quit */
case WINQUIT: /* if "close" selected from window menu */
exit();
...
}

Although this looks like an infinite loop, if the user presses either the escape
key or the right mouse button, or else chooses the Close option from the
window menu, the program ends.
236 RS/6000 Graphics Handbook

long dev;
short value;

/* if there aren’t any events, and data has changed, redraw */
if(!qtest() & update) {
drawstuff(ix, iy);
update = FALSE;
}

/* get the next event */
dev = qread(&value);

In the loop, the program tests to see if there are any events on the event
queue. If the queue is empty and the picture needs to be redrawn, the
program begins to draw at this time.

If the queue is not empty, then the program reads the next event and
processes it. The qread() subroutine returns the device that generated the
event and a value associated with that event.

/* dispatch the next event */
switch(dev) {
...
}

Depending on the device, the switch statement branches to the correct code
to handle the event.

case MOUSEX:
ix = value - ox; /* update x location */
update = TRUE;
break;
case MOUSEY:
iy = value - oy; /* update y location */
update = TRUE;
break;

If, for instance, the event is a mouse-motion event, the new x or y coordinate
(or both) is recorded.

case ESCKEY: /* if user presses escape key, quit */
case RIGHTMOUSE: /* if user presses right mouse button, quit */
case WINQUIT: /* if "close" selected from window menu */
exit();

If the event is an Escape key press, then the program is ended.

case REDRAW: /* redraw it */
3D Graphics API Additional Information 237

getorigin(&ox, &oy); /* get window origin */
update = TRUE;
break;

If the user moves the window, a REDRAW event is generated. In this case,
the window origin is obtained, so that the character string can be drawn in the
right place later.

After a nonterminating event is processed, the program returns to the
beginning of the event loop and processes the next event.

A.1.3 Begin-End Style Drawing

Begin-end style drawing subroutines draw primitive graphical figures. In these
subroutines, all points, lines, and polygons are described in terms of vertices
(sets of coordinates that identify points in space).

 • A point is described by a single vertex.

 • A line segment is described by two vertices indicating its end points.

 • A polygon is described by a set of three or more vertices indicating its
corners.

To draw a graphical figure, use a series of vertex subroutines surrounded by
a pair of begin and end subroutines, which mark the beginning and end of the
figure. For example, the code to draw a set of five points A, B, C, D and E
takes the following form:

<beginning of point vertices>

<vertex A>

<vertex B>

<vertex C>

<vertex D>

<vertex E>

<end of point vertices>

To draw a polygon whose corners are the same five points, the code takes
the form:

<beginning of polygon vertices>

<vertex A>

<vertex B>

<vertex C>
238 RS/6000 Graphics Handbook

<vertex D>

<vertex E>

<end of polygon vertices>

A.1.3.1 Lines
This code draws a pair of lines connecting its opposite corners:

Int32 vert1[2] = { 100, 100 }; /* lower left corner */
Int32 vert2[2] = { 100, 500 }; /* upper left corner */
Int32 vert3[2] = { 500, 500 }; /* upper right corner */
Int32 vert4[2] = { 500, 100 }; /* lower right corner */

bgnline();
v2i(vert1);
v2i(vert3);

endline();
bgnline();

v2i(vert2);
v2i(vert4);

endline();

In this example, four long arrays are declared, vert1, vert2, vert3, and vert4.
Values are assigned to all the elements of each array.

The next four lines of code draw a line from (100, 100) to (500, 500) — the
lower-left corner to the upper-right corner. The bgnline() subroutine tells the
system to prepare to draw a line using the following vertices. Then the v2i()
subroutine takes an array of coordinates as its parameter and creates a
vertex at those coordinates.

The first v2i() subroutine call after the bgnline() subroutine creates the first
end point of the line segment. The second v2i() subroutine call after the
bgnline() subroutine creates the end point of the line segment, and the
system draws a line. The endline() subroutine call tells the system that it has
all the vertices for the line. The next four lines of code draw a line from (100,
500) to (500, 100), the lower-right corner to the upper-left corner.

A.1.3.2 Polylines
If more than two points are listed between the bgnline() and endline()
subroutines, each point is connected to the next by a line:

bgnline();
v2i(vert1);
v2i(vert2);
v2i(vert3);
3D Graphics API Additional Information 239

v2i(vert4);
v2i(vert1);

endline();

Note: The first vertex, v2i(vert1), is repeated to close the series of line
segments.

A series of connected line segments is called a polyline. GL cannot draw
polylines with more than 256 vertices. Other than the number of vertices,
there are no restrictions on a polyline. The segments can cross each other,
vertices can be reused, and if the vertices are defined in terms of three
dimensions, you can place them anywhere within 3D space. In a 3D space,
the vertices need not all lie in the same plane.

A.1.3.3 Closed Lines
In the previous subsection, the code draws a closed polyline — a line
segment connecting the last point in the polyline to the first point in the
polyline. Because this is a fairly common operation, there is a pair of
subroutines to do it: the bgnclosedline() and endclosedline() subroutines.

This code generates the same figure as the previous code does.

bgnclosedline();
v2i(vert1);
v2i(vert2);
v2i(vert3);
v2i(vert4);

endclosedline();

A.1.3.4 Vertex Subroutine
The code in the above examples only one form of the vertex subroutine: a 2D
version with 32-bit integer coordinates. GL contains 12 forms of vertex (v)
subroutines. The coordinates can be short integers
(16-bits), long integers (32-bits), single-precision floating-point values
(32-bits), and double-precision floating-point values (64-bits).

For each of these types, there is a 2D version, a 3D version, and a version
that expects vertices expressed in homogeneous coordinates.

The vertex subroutines are illustrated in the following table.

Table 19. Different Forms of the Vertex Subroutines

Elements type 2D vectors 3D vectors 4D vectors

16-bit integer v2s v3s v4s
240 RS/6000 Graphics Handbook

All forms of the vertex subroutine begin with the letter v. The second
character is 2, 3, or 4, indicating the number of dimensions, and the final
character is s for short integer, i for long integer, f for single-precision
floating-point, and d for double-precision floating-point. For example, the 2D
syntaxes are as follows:

void v2s(Int16 vector[2])
void v2i(Int32 vector[2])
void v2f(Float32 vector[2])
void v2d(Float64 vector[2])

The following code illustrates the use of some of the different vertex
subroutines. It draws exactly the same picture as the previous code does, but
uses different versions of the vertex subroutine.

Int16 vert1[3] = { 200, 200, 0 };
Int32 vert2[2] = { 200, 400 };
Float32 vert3[2] = { 400.0, 400.0 };
Float64 vert4[3] = { 400.0, 200.0, 0.0 };

bgnline();
v3s(vert1);
v2i(vert2);
v2f(vert3);
v3d(vert4);
v3s(vert1);

endline

This code illustrates two things:

 • Within one geometric figure (in this case, a polyline), you can mix different
kinds of vertices together. In a typical application, all the vertices tend to
have the same dimension and form.

 • GL treats all geometric figures as 3D figures. 2D versions of the vertex
subroutines are actually shorthand for an equivalent 3D subroutine with
the z coordinate set to zero.

32-bit integer v2i v3i v4i

32-bit floating point v2f v 3f v4f

64-bit floating point v2d v3d v4d

Elements type 2D vectors 3D vectors 4D vectors
3D Graphics API Additional Information 241

A.1.3.5 Points
To draw a set of unconnected points in GL, enter a set of vertices specified
between the bgnpoint() and endpoint() subroutines. The system draws each
vertex as a one-pixel point on the screen.

bgnpoint();
v2i(vert_first); /* draw first point */
...
v2i(vert_last); /* draw first point */

endpoint();

As for the line-drawing subroutines, you can have no more than 256 vertices
between calls to the bgnpoint() and endpoint() subroutines.

Polypoints Subroutine
The points that are drawn by the bgnpoint() and endpoint() subroutines are
precisely one pixel in size. This size cannot be changed. Although GL does
not have any explicit bgnpolymarker() or endpolymarker() subroutines, there
are several methods you can use to get polypoints that are larger than one
pixel.

Font Subroutines — defrasterfont, font
If you want polypoints in the shape of raster patterns, use the font
subroutines. That is, the set of rasters to use should be associated with
letters of the alphabet with the defrasterfont() subroutine. This font is then
made current with the font subroutine. The raster patterns, which do not have
to look like letters, can be positioned and drawn with the cmov() and charstr()
subroutines, respectively.

Nonraster Polymarker Primitives Using Display Lists
Nonraster polymarker primitives can be created with display lists. For
instance, display list line drawings in the shape of boxes, stars, crosses,
asterisks, and so forth, can be created by using the makeobj() subroutine,
followed by the drawing, followed by a closeobj() subroutine. To draw one of
these items, position with the translate() subroutine and draw it with the
callobj() subroutine.

A.1.3.6 Other Primitives
Other aspects of begin-end style drawing include Points, Polygons,
Point-Sampled Polygons, Polygonal Shading, and Triangular Meshes.
242 RS/6000 Graphics Handbook

A.2 The OpenGL API

This section provides several additional information about the OpenGL API,
such as the output of the xglinfo program (that provides information about
the environment available to display your OpenGL program), a description of
Easy MP, and a list of all the OpenGL extensions supported on the RS/6000
graphics adapters.

A.2.1 Output of xglinfo
================================= Display :0.0 =================================
name of display: :0.0
version number: 11.0
vendor string: International Business Machines
vendor release: 6100
max request size: 262140 bytes
motion buffer size: 0
bitmap: unit = 32, bit order = MSBFirst, padding = 32
image byte order: MSBFirst
keycode range: minimum 8, maximum 254
focus window: 0x100000a, revert to RevertToPointerRoot
default screen num: 0
number of screens: 1
pixmap formats: 4 total

depth 1, bits_per_pixel 1, scanline_pad 32
depth 8, bits_per_pixel 8, scanline_pad 32
depth 12, bits_per_pixel 16, scanline_pad 32
depth 24, bits_per_pixel 32, scanline_pad 32

Server Extensions: 15 total
XTestExtension1, SHAPE, MIT-SHM, XInputExtension,
XTEST, BIG-REQUESTS, SCREEN-SAVER, XC-MISC, RECORD,
aixCursorExtension, xColormapExtension,
xDirectAccessExtension, xAncillaryBufferExtension,
DOUBLE-BUFFER, GLX,

GLX Extension: error base = 137, event base = 84, Version 1.2
GLX Library: Vendor = IBM

Version = 1.2
Extensions = GLX_EXT_visual_info GLX_EXT_visual_rating
GLX_EXT_import_context

GLU Library: Version = 1.2.3 AIX
Extensions = GLU_EXT_nurbs_tesselator
GLU_EXT_object_space_tess

=================================== Screen 0 ===================================
screen: 0
dimensions: 1280x1024 pixels (356x284 millimeters)
resolution: 91x92 dots per inch
depths: (4 total): 8, 8, 12, 24
root window id: 0x32
depth of root window: 8 planes
default visual id: 0x21
number colormaps: minimum 7, maximum 29
default colormap: 0x30, number colormap cells 256
preallocated pixels: black 0x0, white 0x1
options: backing-store NO, save-unders NO
input event mask: 0x30003c

ButtonPress ButtonRelease EnterWindow
LeaveWindow SubstructureRedirect FocusChange

GLX Server: Vendor = IBM
3D Graphics API Additional Information 243

Version = 1.2
Extensions = GLX_EXT_visual_info GLX_EXT_visual_rating
GLX_EXT_import_context

Useable Extensions = GLX_EXT_visual_info
GLX_EXT_visual_rating GLX_EXT_import_context

GL Extension: Vendor = IBM
Renderer = GXT3000
Version = 1.2.0
Extensions = GL_EXT_texture_object GL_EXT_vertex_array
GL_EXT_rescale_normal GL_IBM_rasterpos_clip
GL_IBM_cull_vertex GL_EXT_multi_draw_arrays
GL_EXT_abgr GL_EXT_bgra GL_EXT_blend_color
GL_EXT_blend_logic_op GL_EXT_polygon_offset
GL_EXT_subtexture GL_EXT_texture3D
GL_EXT_texture_edge_clamp GL_EXT_texture_lod
GL_IBM_texture_mirrored_repeat

=================== 15 Visuals for Screen 0 (default = 0x21) ===================
PseudoColor visual: ID = 0x21 (hex) 33 (decimal) screen = 0
OVERLAY(1) SINGLE buffered MONO COLOR INDEX visual GL Sizes: ColorIndex=8,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=8, colormapSize=256

PseudoColor visual: ID = 0x22 (hex) 34 (decimal) screen = 0
OVERLAY(1) SINGLE buffered MONO COLOR INDEX visual GL Sizes: ColorIndex=8,
Extensions: visualCaveat=None, TRANSPARENT INDEX, index value=255
Core X: depth=8, colormapSize=255

PseudoColor visual: ID = 0x23 (hex) 35 (decimal) screen = 0
DOUBLE buffered MONO COLOR INDEX visual with (Z Stencil)
GL Sizes: ColorIndex=8, Z=24, Stencil=8
Extensions: visualCaveat=None, OPAQUE
Core X: depth=8, colormapSize=256

PseudoColor visual: ID = 0x24 (hex) 36 (decimal) screen = 0
DOUBLE buffered MONO COLOR INDEX visual with (Z)
GL Sizes: ColorIndex=8, Z=24,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=8, colormapSize=256

TrueColor visual: ID = 0x25 (hex) 37 (decimal) screen = 0
DOUBLE buffered STEREO RGB visual with (Alpha Z Stencil Accum)
GL Sizes: RGBA=(4,4,4,4), Z=24, Stencil=8, Accum=(16,16,16,16)
Extensions: visualCaveat=None, OPAQUE
Core X: depth=12, colormapSize=16 RGB: masks=(0xf00,0xf0,0xf) bits=4

TrueColor visual: ID = 0x26 (hex) 38 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Z)
GL Sizes: RGBA=(8,8,8,0), Z=24,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

DirectColor visual: ID = 0x27 (hex) 39 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Z)
GL Sizes: RGBA=(8,8,8,0), Z=24,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

TrueColor visual: ID = 0x28 (hex) 40 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Z Stencil)
GL Sizes: RGBA=(8,8,8,0), Z=24, Stencil=8,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8
244 RS/6000 Graphics Handbook

DirectColor visual: ID = 0x29 (hex) 41 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Z Stencil)
GL Sizes: RGBA=(8,8,8,0), Z=24, Stencil=8,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

TrueColor visual: ID = 0x2a (hex) 42 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z)
GL Sizes: RGBA=(8,8,8,8), Z=24,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

DirectColor visual: ID = 0x2b (hex) 43 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z)
GL Sizes: RGBA=(8,8,8,8), Z=24,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

TrueColor visual: ID = 0x2c (hex) 44 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z Stencil)
GL Sizes: RGBA=(8,8,8,8), Z=24, Stencil=8,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

DirectColor visual: ID = 0x2d (hex) 45 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z Stencil)
GL Sizes: RGBA=(8,8,8,8), Z=24, Stencil=8,
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

TrueColor visual: ID = 0x2e (hex) 46 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z Stencil Accum)
GL Sizes: RGBA=(8,8,8,8), Z=24, Stencil=8, Accum=(16,16,16,16)
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

DirectColor visual: ID = 0x2f (hex) 47 (decimal) screen = 0
DOUBLE buffered MONO RGB visual with (Alpha Z Stencil Accum)
GL Sizes: RGBA=(8,8,8,8), Z=24, Stencil=8, Accum=(16,16,16,16)
Extensions: visualCaveat=None, OPAQUE
Core X: depth=24, colormapSize=256 RGB: masks=(0xff0000,0xff00,0xff) bits=8

A.2.2 Using Easy MP

This section discusses the use of Easy MP.

To successfully use Easy MP, you must meet the following requirements (as
of November 1998):

 • Your workstation must have multiple processors.
 • Your workstation must contain one of the following adapters:

GXT500P, GXT550P, GXT800P (with or without texture option)

and you must run your OpenGL application on that adapter.

Note that Easy MP is not supported on the GXT3000P.

 • your application must request a "Direct" context at the time you call
glXCreateContext().
3D Graphics API Additional Information 245

A.2.2.1 Preparation
No coding changes in the application are needed. Effective with the release
of AIX Version 4.3.2, it is no longer necessary to relink your applications to
use Easy MP, but with the previous release of AIX, your application must be
recompiled using the thread-enabling compiler whose name is cc_r (instead
of cc).

The application automatically selects the uni-processor version of OpenGL if
your system has only one processor, you are running on an adapter that Easy
MP does not support, or a direct context is not available for your application
(for example, if you are using accumulation buffers, you are not permitted to
run direct on current MP-capable adapters).

Note, that the target machine must NOT be down level to the relinking
machine, because AIX does not guarantee backward binary compatibility. As
long as your application is intended for use on AIX Version 4.1.5, 4.2.1, or
4.3.0, you can relink your application for use by Easy MP according to the
following rules:

Table 20. Relinking Rules for Easy MP

A.2.2.2 Use of Easy MP
You can select whether you would rather have it run UP (run in uniprocessor
mode, using the traditional OpenGL libraries). The default is that you get the
UP libraries. To actually run the Easy MP code, you must set one
environment variable, as follows:

For ksh: export _OGL_MP_ENABLE=1

For csh: setenv _OGL_MP_ENABLE 1

Once this is done, you can start up your application and enjoy the
performance advantages that Easy MP has to offer. If you are unsure of
whether your application is successfully loading our Easy MP code, a

Target Machine Re Linking Machine Compiler to Use

AIX Version 4.1.5 AIX Version 4.1.5 cc_r

 4.2.1 4.1.5 cc_r

 4.2.1 4.2.1 cc_r

 4.3.2 4.1.5 cc_r

 4.3.2 4.2.1 cc_r

 4.3.2 4.3.2 cc
246 RS/6000 Graphics Handbook

different environment variable can be used to show one line message in
command line console at the time the application is coming up:

for ksh: export _OGL_OUTPUT_LIB_INFO=1

for csh: setenv _OGL_OUTPUT_LIB_INFO 1

The message will tell you whether you are running "MP" or "UP".

A.2.2.3 Caveats
Many factors go into the performance results that your specific application will
experience:

1. Some applications already feed the hardware as fast as it can run. These
hardware-bound applications will not see any performance improvements
using Easy MP. In fact, under certain circumstances, users may actually
see performance degradations.

2. Some applications don’t really spend a lot of time in the EasyMP libraries.
If your application spends 20 percent of its time in the libraries, and 80
percent elsewhere (in the application layer, in the X Server, in the kernel),
the time required for some long rendering step might shrink from 10
seconds to 9 seconds (as a theoretical best case).

3. Applications which spend a large percentage of their cycles tieing up the
memory bus are going to find that Easy MP does not help them
significantly. This includes applications that do lots of BLTs
(glDrawPixels(), glBitmap()) or applications that move large quantities of
data from one place to another.

4. We have seen the best improvements in those applications which make
heavy use of large display lists. This is understandable, given the
architecture of Easy MP.

A.2.3 OpenGL Extensions Supported on AIX

The following table lists the OpenGL extensions currently supported on AIX.
The "OpenGL Version" entry indicates what version of OpenGL incorporated
the feature. The entries "1.2" and "1.2 Imaging" refer to extensions that are
3D Graphics API Additional Information 247

incorporated in OpenGL 1.2 and the official OpenGL Imaging Subset,
respectively.

Table 21. OpenGL Extensions

Extension Name
OpenGL
Version

Description

GL_EXT_abgr - Accepts pixels in an ABGR format
compatible with SGI GL.

GL_EXT_bgra 1.2 Accepts pixels in an BGR and BGRA
order format compatible with typical
Windows component ordering. Is
usually used with the
EXT_packed_pixels extension.

GL_EXT_blend_color 1.2 Extends the blending equation by
defining a constant color that can be
include in the blending equations.

GL_EXT_blend_logic_op 1.1 Performs bitwise operations
between RGB colors of incoming
pixels and those in the frame buffer.
Useful for rubberbanding in RGB
mode. The 1.1 Version has a
different interface than the
extension.

GL_EXT_blend_minmax 1.2
Imaging

Performs min/max operations
between the color components of an
incoming pixel and the stored pixel,
leaving the minimum or maximum in
the frame buffer.

GL_EXT_blend_subtract 1.2
Imaging

When blending a multiplied source
and destination color, subtract one
from the other instead of adding.

GL_EXT_compiled_vertex_array - Allows the results of transformation
and lighting of static vertex array
data to be compiled and reused for
glDrawElements calls.

GL_EXT_multi_draw_arrays - Accommodates the bundling of
multiple vertex array calls in a single
OpenGL call.

GL_EXT_packed_pixels - Provides for non byte-aligned
packing of pixels in a format that may
more closely matches that of the
physical frame buffer.
248 RS/6000 Graphics Handbook

GL_EXT_polygon_offset 1.1 Displaces polygons in the Z buffer to
avoid Z fighting artifacts and allows
for edges to be drawn on polygons.
Because of interpolation artifacts on
the GXT500D 500P / 550P / 800P /
1000 rasterizer, you will have to set
the factor and/or bias to values
larger than strictly necessary. The
1.1 version has a different interface
than the extension.

GL_EXT_rescale_normal 1.2 Rescales previously normalized
normals to compensate for a uniform
scale matrix. Produces correct
lighting effects without having to
compute normal length and a
reciprocal square root.

GL_EXT_subtexture 1.1 Allows an application to define
(replace) a subset of a texture
image. Allows the rendering library
to download only the defined subset
of an image, when a NULL pointer is
passed to glTexImage(). This can
improve download time when using
images that don’t exactly match a
power of two as texture maps.

GL_EXT_texture3D 1.2 Allows the application to do texture
mapping using a 3D image.
Hardware acceleration is not present
in all products - only in the
GXT3000P.

GL_EXT_texture_edge_clamp 1.2
Imaging

Defines a new texture wrap method
that clamps texture coordinates and
samples clamped coordinate texels
only from the edge of the image -
never sampling border texels.

Extension Name
OpenGL
Version

Description
3D Graphics API Additional Information 249

GL_EXT_texture_object 1.1 Allows an application to encapsulate
a number of texture attributes
(including images) into a named
object. That named object can then
be bound when rendering. For
applications with multiple textures,
using texture objects allows all
textures to be cached and frees the
application from having to respecify
texture images each time they are
used. Superior to putting TexImage
calls into display lists (the
officially-sanctioned 1.0 version);
this was accelerated only on
GXT1000

GL_EXT_vertex_array 1.1 Allows an application to pass
pointers to application data and
render using indices or ranges of
vertices relative to the base pointers.
Produces transformation
performance comparable to display
lists without having to keep an extra
copy of the user’s data around. The
interface was extended (adding
glDrawElements) in OpenGL 1.1.

GL_IBM_rasterpos_clip - Allows an application to specify a
raster position without having it
culled if it is out of bounds. Useful for
geometry-aligned markers near the
edge of the window where portions
of the marker would be visible if the
raster position were not culled.

GL_IBM_static_data - Allows implementations to defer
dereferencing of vertex array data
which is promised by the application
to be static. Useful ONLY for
EasyMP to avoid making copies of
vertex data for use by other threads.

Extension Name
OpenGL
Version

Description
250 RS/6000 Graphics Handbook

A.2.4 Extensions Support

The following table documents under which release an extension was first
supported and by which adapters.

Table 22. Support of OpenGL Extensions

GL_IBM_texture_mirrored_repeat - Extends the texture wrap modes to
include a mode
(GL_MIRRORED_REPEAT_IBM)
that effectively uses a texture map
twice as large at the original image in
which the additional half of the new
image is a mirror image of the
original image.

GL_IBM_vertex_cull - Provides and alternate method of
culling in which dot product of the
normal and the eye direction
determine the face direction of a
polygon. Normally the face direction
is determined by the geometric order
of the vertices. Can be used to
improve software culling
performance.

Extension Name
(first implemented)

VFB

250P
255P

500
500D

500P
550P

800P
800M

1000 3000P

GL_EXT_abgr (4.1.4) Y Y Y Y Y Y Y

GL_EXT_bgra (4.3.2) Y

GL_EXT_blend_color
(4.3.2)

Y

GL_EXT_blend_logic_op
(4.1.4)

Y Y Y Y Y Y Y

GL_EXT_blend_minmax
(4.1.4)

Y Y Y Y Y Y

GL_EXT_blend_subtract
(4.1.4)

Y Y Y Y Y Y

GL_EXT_compiled_verte
x_array (4.3.0)

Y Y Y Y Y

Extension Name
OpenGL
Version

Description
3D Graphics API Additional Information 251

GL_EXT_multi_draw_arr
ays (4.3.2)

Y Y Y Y
(up

only)

Y
(up

only)

Y

GL_EXT_packed_pixels
(4.3.2)

Y

GL_EXT_polygon_offset
(4.1.4)

Y Y Y Y Y Y Y

GL_EXT_rescale_normal
(4.1.4)

Y Y Y Y Y Y Y

GL_EXT_subtexture
(4.1.4)

Y Y Y Y Y Y Y

GL_EXT_texture3D
(4.2.0)

Y Y Y Y

GL_EXT_texture_edge_c
lamp (4.3.2)

Y

GL_EXT_texture_object
(4.1.4)

Y Y Y Y Y Y Y

GL_EXT_vertex_array
(4.1.4)

Y Y Y Y Y Y Y

GL_IBM_rasterpos_clip
(4.2.1)

Y Y Y Y Y Y Y

GL_IBM_static_data
(4.2.1 PTF)

Y
(mp
only)

Y
(mp
only)

GL_IBM_texture_mirrore
d_repeat (4.3.2)

Y

GL_IBM_vertex_cull
(4.3.0)

Y Y Y Y Y Y

Extension Name
(first implemented)

VFB

250P
255P

500
500D

500P
550P

800P
800M

1000 3000P
252 RS/6000 Graphics Handbook

Appendix B. Benchmarks Files

This appendix includes several files that are too big to be included in the
chapter dedicated to benchmarks. You will find here an example of an
intermediate output for the GPC/PLB benchmark, a Viewperf output for the
CDRS 03 test, and an input file for the GLperf benchmark.

B.1 A Sample BRF File

Here is a sample of what a BRF file will look like. It is made of several
sections. The title for each of these sections is written in bold.

 Graphics Performance Characterization Committee
 Standard Graphics System Benchmarks

 Date : Mon Nov 18 16:54:31 1991

 Benchmark Information

 Benchmark Title : Level 2: Picture Level Benchmark
 Benchmark Authors : SimGraphics Engineering Corporation

 Implementation Information

 Implementation Title : Acme Computer Corporation Port of PLB
 Implementation Version : V1.2 Rev A
 Implementation Date : Mon Oct 14 16:05:56 PDT 1991
 Implementation Authors : ACC Engineering

 Graphics Library : YAGL
 Graphics Library Version: 2.0

 System Configuration

 System Make and Model : Acme Model 111 with TurboGraphics
 Hardware Configuration : 16MB RAM
 : 8 color bit planes

 Operating System : Acme OS 2.5
 Windowing System : Louver Windows 2.5
 PLB Window Size : 900 x 720 pixels (not including borders)
 Stopwatch Accuracy : 10 ms

 Invocation Information

 plb brftest.vrb
 LITERAL TEST

© Copyright IBM Corp. 1999 253

 Beginning Of Test Loop 1

 Graphics Lighting/Shading Summary Table

 Average Average Average Average Average
 Times Ambient Directional Positional Spot
 Called Lights Lights Lights Lights
 Per Frame Per Frame Per Frame Per Frame Per Frame

 1.0 LIGHT_STATE:. 1.0 1.0 1.0 1.0
 2.0 INTERIOR_SHADING: GOURAUD:

 Graphics Primitives: Polygon Summary Table

 Average Average Average Average Average
 Times Vertices Facets Edges contours
 Called Per Frame Per Frame Per Frame Per Frame
 Per Frame

 3.0 POLYGON:. 14.0 3.0 14.0 3.0
 3.0 POLYGON3: 14.0 3.0 14.0 3.0
 2.0 FILL_AREA_SET:. . . . 21.0 2.0 21.0 5.0
 2.0 FILL_AREA_SET3: . . . 22.0 2.0 22.0 5.0
 2.0 TRIANGLE3:. 13.0 9.0 13.0 9.0
 2.0 QUAD_MESH3: 25.0 13.0 25.0 13.0
 1.0 INDEX_POLYGONS3:. . . 6.0 2.0 8.0 2.0

 Graphics Primitives: Polygon Optional Data Summary Table

 Average Average Average Average Average
 Times Vertex Vertex Facet Facet
 Called Colors Normals Color Normals
 Per Frame Per Frame Per Frame Per Frame Per Frame

 3.0 POLYGON3: 4.0 0.0 0.0 0.0
 2.0 FILL_AREA_SET3: . . . 13.0 9.0 0.0 0.0
 2.0 TRIANGLE3:. 0.0 0.0 0.0 0.0
 2.0 QUAD_MESH3: 0.0 0.0 0.0 0.0
 1.0 INDEX_POLYGONS3:. . . 6.0 0.0 0.0 0.0

 Graphics Primitives: Polygon Edge Visibility Table

 Average Average
 Times Edges
 Called Visible
 Per Frame Per Frame

254 RS/6000 Graphics Handbook

 2.0 FILL_AREA_SET3: . . . 14.0
 1.0 INDEX_POLYGONS3:. . . 6.0

 Graphics Primitives: Non Uniform Bspline Curves/Surfaces

 Average Average Average Average
 Times number Rational Non Rational
 Called Control Points Splines Splines
 Per Frame Per Frame Per Frame Per Frame

 2.0 NURBS_CURVE:. 11.0 1.0 1.0
 2.0 NURBS_SURFACE:. . . . 10.0 1.0 1.0
 2.0 TRIMMING_CURVE: . . . 6.0 0.0 2.0

 Graphics Primitives: Non Uniform Bspline Curves/Surfaces

 Average Average Average Average
 Times Uorder Vorder TrimCurves
 Called per per per
 Per Frame Primitive Primitive Primitive

 2.0 NURBS_CURVE:. 2.5
 2.0 NURBS_SURFACE:. . . . 2.5 2.0 1.0
 2.0 TRIMMING_CURVE: . . . 2.0

 Graphics Primitives: Line, Marker, and Text Summary Table

 Average Average
 Times Individual
 Called Primitives
 Per Frame Per Frame

 4.0 MARKER: 11.0 markers
 8.0 MARKER3:. 25.0 markers
 5.0 LINE: 15.0 vectors
 12.0 LINE3:. 22.0 vectors
 4.0 TEXT: 37.0 characters
 8.0 TEXT3:. 82.0 characters
 5.0 ANNOTATION_TEXT3: . . 37.0 characters

 Graphics Attributes: Summary Table

 Average
 Times
 Called
 Per Frame

 8.0 MARKER_TYPE:
Benchmarks Files 255

 4.0 MARKER_SIZE:
 9.0 MARKER_COLOR:
 4.0 LINE_WIDTH:
 12.0 LINE_COLOR:
 2.0 INTERIOR_STYLE:
 10.0 INTERIOR_COLOR:
 1.0 SURFACE_PROPERTIES:
 3.0 EDGE_TYPE:
 2.0 EDGE_COLOR:
 1.0 TEXT_COLOR:
 3.0 CHAR_HEIGHT:
 1.0 CHAR_EXP:
 1.0 CHAR_SPACE:
 11.0 LINE_TYPE:
 1.0 INTERIOR_LIGHTING:
 2.0 BACKFACE_PROCESSING:
 8.0 EDGE_FLAG:
 1.0 TEXT_PREC:

 Matrix Operations: Summary Table

 Average
 Times
 Called
 Per Frame

 1.0 ACTIVE_VIEW:

 Structure Calls: Summary Table

 Average
 Times
 Called
 Per Frame

 1.0 EXECUTE_STRUCTURE:
 1.0 CALL_STRUCTURE:
 1.0 INVOKE_AT_FRAME TOTAL:
 1.0 INVOKE_AT_FRAME CALL:
 0.0 INVOKE_AT_FRAME EXECUTE:

 Global Exception: Summary Table

 This test cannot be double buffered on this hardware.
 Dot and Phong shading not supported; Gouraud substituted.
 GEN_SPHERE3 not currently supported by this PLB version.

256 RS/6000 Graphics Handbook

 Port Notes

 Note: True color approximated on this system by a 5x9x5 color cube.

 Conversion Time Information

 Conversion Time (total) : 21.61

 Test Loop Timing Information
 Test Loop of 2 frames from File brftest.vrb

 Number of Frames : 2
 Elapsed Time (sec) : 4.03 (literal test)
 Transport Delay : 0.02
 Avg. Frames per Second : 0.50
 Avg. Time per Frame : 2.02
 Timing Merit Mthd 1 : 94.47%
 Timing Merit Mthd 2 : 21.16%

B.2 Viewperf Output from CDRS 03 Test 3

Here is this example of output from the Viewperf benchmark. The long first
part is a description of the environment in which the benchmark took place.
The very interesting part is the very end of this file where the real results are
located, with the information Number of Frames.

Viewperf Version 5.0
 Viewperf Arguments -mh mower-ts -dl -rm
TMESH -vz -bl -zb -nil 1 -cp PRIMITIVE -mp 10
 Month 12
 Day 12
 Year 1996
 Host mayhem
 Operating System AIX
 Operating System Version 4.1
 Host Vendor IBM
 Host Model unknown (CPU_id=0X4C)
 Host CPU PowerPC 604
 Host CPU Count 1
 Host Memory Size (MB) 256
 Host Primary Cache Size (KB) 32/32 (D/I)
 Host Secondary Cache Size (KB) 1024
Benchmarks Files 257

 Window System X Window System V11
 Driver Version NA
 OpenGL Vendor IBM
 OpenGL Version 1.0.0
 OpenGL Extensions GL_EXT_texture_object
GL_EXT_vertex_array GL_EXT_rescale_normal GL_EXT_abgr
GL_EXT_blend_logic_op GL_EXT_blend_minmax GL_EXT_blend_subtract
GL_EXT_polygon_offset GL_EXT_subtexture GL_EXT_texture3D
 OpenGL Renderer GXT800 Texture
 OpenGL Client Vendor IBM
 OpenGL Client Version 1.1
 OpenGL Client Extensions GLX_EXT_visual_info
GLX_EXT_visual_rating GLX_EXT_import_context
 GLU Version 1.2.1 AIX
 GLU Extensions
 Direct Rendering False
 Double Buffer True
 Stereo False
 RGBA True
 Color Index Size 1
 Red Size 8
 Green Size 8
 Blue Size 8
 Alpha Size 8
 Accum Red Size 0
 Accum Green Size 0
 Accum Blue Size 0
 Accum Alpha Size 0
 Depth Size 24
 Stencil Size 4
 Auxiliary Buffer Count 0
 Frame BufferLevel 0
 Visual ID 0X28
 Visual Class TrueColor
 Window Width (pixels) 700
 Window Height (pixels) 700
 Screen Width (pixels) 1280
 Screen Height (pixels) 1024
 Display :0.0
 OpenGL Server Vendor IBM
 OpenGL Server Version 1.1
 OpenGL Server Extensions GLX_EXT_visual_info
GLX_EXT_visual_rating GLX_EXT_import_context
 GLX Server Version 1.1
 GLX Server Extensions GLX_EXT_visual_info
GLX_EXT_visual_rating GLX_EXT_import_context
 Screen Number 0
258 RS/6000 Graphics Handbook

 Shared Memory Connection True
 Visual Selection Criteria MINIMUM
 Number of Execution Threads 1
 Geometry File ./mower-ts
 Input Mode -mh
 Minimum Test Period 10.000000
 Number of Frames 0
 Number of Primitives 71
 Number of Vertices per Frame 31380
 Number of Vertices per Primitive 441.971831
 Toggle Mode NONE
 Batching Count 0
 Render Mode TMESH
 Color per COLOR_PER_PRIMITIVE
 Orthographic Projection FALSE
 Display List TRUE
 Clip Geometry FALSE
 Walkthrough Mode FALSE
 Back Face Cull FALSE
 Front Face Cull FALSE
 Front Polygon Mode FILL
 Back Polygon Mode FILL
 Polygon Stipple Enable FALSE
 Polygon Antialiasing Enable FALSE
 Line Width 1.000000
 Line Stipple Enable FALSE
 Line Antialiasing Enable FALSE
 Number of Infinite Lights 1
 Number of Local Lights 0
 Color Material Enable TRUE
 Color Material Face FRONT
 Color Material Mode AMBIENT_AND_DIFFUSE
 Facet Normals FALSE
 Two Sided Lighting Enable FALSE
 Local Viewer Enable FALSE
 Flat Shading FALSE
 Fog Enable FALSE
 Texture Enable FALSE
 Texture Generation Mode NO_TEXTURE_GENERATION
 Texture File NONE
 Texture Minification Filter NEAREST
 Texture Magnification Filter NEAREST
 Texture Environment Mode DECAL
 Texture Components 3
 Depth Test Enable TRUE
 Blend Enable TRUE
 Source Blend Function SRC_ALPHA
Benchmarks Files 259

 Destination Blend Function ONE_MINUS_SRC_ALPHA
 Dithering Enable TRUE
 Motion Blur Amount 0.000000
 Full Scene Antialiasing Redraws 0
 Full Scene Antialiasing Jitter Amount 0.000000
 0.140 sec (DL Build) -mh mower-ts -rm TMESH -cp PRIMITIVE
 -dl -zb -nil 1 -bl -vz

 Number of frames run: 174, Test period: 9.980000 (sec)
 17.4 frames/sec -mh mower-ts -rm TMESH -cp PRIMITIVE
 -dl -zb -nil 1 -bl -vz

B.3 Input File for GLPerf

The file format to run the GLperf benchmark can be described as follows:

The input file scripts look something like the following:

//
// OPC GLperf ReadPixl.rgb script (version 0.3)
//

(FileName "ReadPixl.rgb 0.3")

// This script will generate data for the following 2 bar charts:
// * ReadPixels (RGB, ubyte)
// * ReadPixels (RGBA, ubyte)
//

Suite > GlobalProperty Suite | TestDescription Suite |TestDescription
TestDescription > TestName | TestName { LocalPropertyList }
LocalPropertyList > Property | Property LocalPropertyList
GlobalProperty > Property
Property > (PropertyName AttributeValue)
AttributeValue > Range | List | Wildcard
Range > from int to int | from int to int step int | from int to int
step int % | from float to float | from float to float step float |
from float to
float step float %
List > Value | Value List
Value > Enumerated | float | int | 0xhex
Wildcard > ALL | *
260 RS/6000 Graphics Handbook

// All tests are run in Immediate Mode.
// In each case above, the width and height of the ReadPixels
// image (ImageWidth, ImageHeight) will be incremented from
// 16 to 512, stepping by powers of 2. (16, 32, 64, 128, 256, 512)

// Put all your "discretionary" global property definitions here.
// These are the following properties:
//
/*
AccumAlphaSize
AccumBlueSize
AccumGreenSize
AccumRedSize
AlphaSize
AuxBuffers
BlueSize
ClearColor
DataAlignment
DepthSize
DirectRender
DoubleBuffer
DrawBuffer
GreenSize
IndexSize
LoopFuncPtrs
LoopUnroll
RedSize
StencilSize
Stereo
VisualClass
VisualId
*/
//
// For example:
// (LoopUnroll 8)
// (LoopFuncPtrs True)

//
// These are all the "default" values for this script that will
// remain constant unless otherwise specified in a particular test.

(AcceptObjs 1.0)
(AlphaBias 0.0)
(AlphaRef 0.0)
(AlphaScale 1.0)
(AlphaTest Off)
(Antialias Off)
Benchmarks Files 261

(Aspect 1.0)
(AtoAMapSize 1)
(Blend Off)
(BlueBias 0.0)
(BlueScale 1.0)
(BtoBMapSize 1)
(CharFont f9x15)
(CharsPerString 16)
(ClearAccumBuffer False)
(ClearColor White)
(ClearColorBuffer True)
(ClearDepthBuffer False)
(ClearIndex 0.0)
(ClearStencilBuffer False)
(ClipAmount .5)
(ClipMode Random)
(ClipObjs 0.0)
(ColorData None)
(ColorDim 3)
(ColorMask TTTT)
(ColorMaterialMode GL_AMBIENT_AND_DIFFUSE)
(ColorMaterialSide GL_FRONT)
(CopyPixelsType GL_COLOR)
(CullFace Off)
(DataAlignment 0)
(DepthBias 0.0)
(DepthMask On)
(DepthOrder BackToFront)
(DepthScale 1.0)
(DepthTest Off)
(DirectRender True)
(Dither On)
(DrawBuffer GL_FRONT)
(DrawOrder Spaced)
(DrawableType WindowDraw)
(DstBlendFunc GL_ONE)
(ExecuteMode Immediate)
(FacingBack 0.0)
(FacingFront 1.0)
(Fog Off)
(GreenBias 0.0)
(GreenScale 1.0)
(GtoGMapSize 1)
(ImageAlignment 4)
(ImageFormat GL_RGBA)
(ImageLSBFirst False)
(ImageSwapBytes False)
262 RS/6000 Graphics Handbook

(ImageType GL_UNSIGNED_BYTE)
(IndexMask 0xfff)
(IndexOffset 0)
(IndexShift 0)
(InfiniteLights 0)
(ItoAMapSize 1)
(ItoBMapSize 1)
(ItoGMapSize 1)
(ItoIMapSize 1)
(ItoRMapSize 1)
(LineStipple Off)
(LineWidth 1.0)
(LocalLights 0)
(LocalViewer Off)
(LogicOp Off)
(LoopFuncPtrs False)
(LoopUnroll 1)
(MapColor Off)
(MapStencil Off)
(MinimumTime 5)
(NormalData None)
(Objs 1)
(ObjsPerBeginEnd 1)
(Orientation Random)
(PixelZoomX 1.0)
(PixelZoomY 1.0)
(PointDraw Off)
(PolygonModeBack GL_FILL)
(PolygonModeFront GL_FILL)
(PolygonSides 4)
(PolygonStipple Off)
(PrintModeDelta Off)
(PrintModeMicrosec Off)
(PrintModePixels On)
(PrintModeStateDelta Off)
(Projection Perspective)
(RasterPosDim 2)
(ReadBuffer GL_FRONT)
(ReadOrder Spaced)
(RedBias 0.0)
(RedScale 1.0)
(RejectObjs 0.0)
(RenderMode GL_RENDER)
(Reps 1)
(Rgba True)
(RtoRMapSize 1)
(Scissor Off)
Benchmarks Files 263

(ShadeModel GL_SMOOTH)
(Shininess 10.0)
(Size 10.0)
(SpecularComponent On)
(SrcBlendFunc GL_ONE)
(StencilTest Off)
(StoSMapSize 1)
(TexBorder 0)
(TexComps 3)
(TexData None)
(TexFunc GL_DECAL)
(TexGen Off)
(TexHeight 64)
(TexImageBorder 0)
(TexImageComps 3)
(TexImageLevel 0)
(TexImageMipmap None)
(TexImageSrc SystemMemory)
(TexImageTarget GL_TEXTURE_2D)
(TexLOD 0.0)
(TexMagFilter GL_NEAREST)
(TexMinFilter GL_NEAREST)
(TexTarget Off)
(TexWidth 64)
(TexWrapS GL_REPEAT)
(TexWrapT GL_REPEAT)
(TransformType Rotate)
(TwistsPerStrip 0)
(TwoSided Off)
(VertexDim 3)
(WindowHeight 600)
(WindowWidth 600)

//
// Pixel Read Tests
//

ReadPixelsTest {
 (UserString printf("ReadPixels (Immediate, RGB, ubyte, %dx%d)",
ImageWidth, ImageHeight))
 (ImageFormat GL_RGB)
 (ImageType GL_UNSIGNED_BYTE)
 ([ImageWidth ImageHeight] from 16 to 512 step 100%)
}

ReadPixelsTest {
 (UserString printf("ReadPixels (Immediate, RGBA, ubyte, %dx%d)",
264 RS/6000 Graphics Handbook

ImageWidth, ImageHeight))
 (ImageFormat GL_RGBA)
 (ImageType GL_UNSIGNED_BYTE)
 ([ImageWidth ImageHeight] from 16 to 512 step 100%)
}

Benchmarks Files 265

266 RS/6000 Graphics Handbook

Appendix C. Special Notices

This publication is intended to help RISC SYSTEM/6000 sales people to
understand the variety of solutions provided for the IBM platform and for
support people to quickly locate information needed to solve problems
regarding the configuration of graphics adapters or their functions. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by IBM or the OpenGL Architecture
Review Board. See the PUBLICATIONS section of the IBM Programming
Announcement for graPHIGS, PEX, GL, and OpenGL for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the
customer’s operational environment. While each item may have been
© Copyright IBM Corp. 1999 267

reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

400 AIX
AIXwindows AT
GXT150L GXT150M
GXT1000 IBM
Micro Channel OS/2
PC/XT POWER Gt1
POWER Gt3 POWER Gt3i
POWER Gt4 POWER Gt4e
POWER Gt4x POWER Gt4xi
POWER GTO PowerPC 604
RS/6000 SP
XT
268 RS/6000 Graphics Handbook

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
Special Notices 269

270 RS/6000 Graphics Handbook

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 273.

 • AIX Version 4 Desktop Handbook, GG24-4451

 • AIX Version 4.2 Differences Guide, SG24-4807

D.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

D.3 Other Publications

 • IBM 6094-020 LPFK Options Instructions, GA23-2403

 • IBM 6094-010 Dials Option Instructions, GA23-2404

 • 7250 POWER GXT1000 Graphics Accelerator User's Guide, SA23-2070

 • PCI Adapter Placement Reference, SA38-0538

 • Introducing the graPHIGS Programming Interface, SC33-8190

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1999 271

 • The graPHIGS API: Understanding Concepts, SC33-8191

 • The graPHIGS API: Technical Reference, SC33-8193

 • The graPHIGS API: Subroutine Reference, SC33-8194

 • Personal graPHIGS Customization and Problem Diagnosis, SC33-8130

 • The graPHIGS API: Messages and Codes, SC33-8196

 • The graPHIGS API: Getting Started V2R2.2, SC33-8198

 • The graPHIGS API: Quick Reference, SC33-8195

 • ISO PHIGS Subroutine Reference, SC33-8140

 • ISO PHIGS Quick Reference, SC28-2705

 • GL 3.2 Version 4 for AIX: Programming Concepts, SC23-2612

 • GL 3.2 Version 4 for AIX: Graphics Library (GL) Technical Reference,
SC23-2630

 • The Inventor Mentor: Programming Object Oriented 3D Graphics with
Open Inventor, Release 2, ISBN 0-201-62495-8

 • The Inventor Toolmaker: Extending Open Inventor, Release 2, ISBN
0-201-62493-1

 • Open Inventor C++ Reference Manual: The Official Reference Document
for Open Inventor, Release 2, ASIN 0-201-62491-5

 • OpenGL Programming Guide: The Official Guide to Learning OpenGL 1.1,
ISBN 0-201-46138-2

 • OpenGL Reference Manual: The Official Reference Document for
OpenGL Version 1.1, ISBN 0-201-46140-4

 • OpenGL Programming for the X Window System, ISBN 0-201-48359-9

 • PEXlib Programming Manual: 3D Programming in X. Gaskins, T., ISBN
1-56592-028-7, 1992

 • PEXlib Reference Manual: 3D Programming in X. Talbott, S., ISBN
1-56592-029-5, 1992
272 RS/6000 Graphics Handbook

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com/.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 273

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
274 RS/6000 Graphics Handbook

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

ABX Ancillary Buffer
Extension

ACM Association of
Computing Machinery

AIX Advanced Interactive
eXecutive

ALU Arithmetic and Logic
Unit

ANSI American National
Standards Institute

APA All Points Addressable

APAR Authorized Program
Analysis Report

APC Application
Performance
Characterization

API Application
Programming Interface

ARB Architectural Review
Board

BIF Benchmark
Interchange Format

BLAST Bit Line and Span
Transform

BRF Benchmark Reporting
Format

BTM Benchmark Timing
Methodology

CAD Computer Aided
Design

CAM Computer AIded
Manufacturing

CBGA Ceramic Ball Grid Array

CDE Common Desktop
Environment
© Copyright IBM Corp. 1999
CGE Common Graphics
Environment

CMY Cyan Magenta Yellow

COSE Common Open
Software Environment

CPU Central Processing Unit

CRT Cathodic Ray Tube

DBE Double Buffer
Extension

DDC Display Data Channel

DDX Device Dependent X

DMA Direct Memory Access

DSO DirectSoft OpenGL

DSP Digital Signal
Processor

EDF External Defaults File

ETC Explicit Traversal
Control

FIPS Federal Information
Processing Standards

GKS Graphical Kernel
System

GKX-CO Graphical Kernel
System Compatibility
Option

GL Graphic Library

GLU OpenGL Utility

GLUT OpenGL Utility Toolkit

GLX OpenGL Extension to X

GPC Graphics Performance
Characterization

GUI Graphical User
Interface

HLHSR Hidden Lines Hidden
Surfaces Removal
 275

HSB Hue Saturation
Brightness

HSV Hue Saturation Value

IBM International Business
Machines Corporation

IOCA Image Object Content
Architecture

ISO International Standards
Organization

ITSO International Technical
Support Organization

LPFK Lighted Program
Function Keyboard

MBX Multi-Buffer Extension

MPI Message Passing
Interface

NURBS Non-Uniform Rational B
Splines

OPC OpenGL Performance
Characterization

PAC Peripheral Adapter
Connector

PCA Peripheral Connector
Assembly

PEX-IC PEX-Interoperability
Center

PEX-SI PEX Sample
Implementation

PGI Portable Graphics, Inc.

PHIGS Programmer’s
Hierarchical Interactive
Graphics System

PLB Picture Level
Benchmark

RAM Random Access
Memory

RAMDAC Random Access
Memory Digital Analog
Converter

RGB Red Green Blue

ROM Read-Only Memory

SGI Silicon Graphics,
Incorporated

SIGGRAPH Special Interest Group
on Graphics

SIMD Single Instruction,
Multiple Data

SMP Symmetric Multi
Processing

SPEC Standard Performance
Evaluation Corporation

TGS Template Graphics
Software, Inc.

UDS User Defined
Specifications

VFB Virtual Frame Buffer

VOO Video Output Option

X X Windows

XPC X Performance
Characterization

XVFB X Virtual Frame Buffer

Xlib X Windows Library
276 RS/6000 Graphics Handbook

Index

Symbols
.Xdefaults 107
/etc/inittab 77
_GL_USE_UNDERLYING_CURSOR 119
_OGL_MIXED_MODE_RENDERING 170

Numerics
3-Button Mouse 41

black 41
3D-RAM Chips 8
64-bit 138

A
abbreviations 275
accumulation 5
accumulation buffer 132
acronyms 275
active shutter glasses 58
alpha Buffer 3
antialiasing 3, 10, 192
aperture grille 37
Application Performance Characterization 205
Architecture Review Board 129, 134
attachment Cable Kit 46

5086 46
6095 46
PC/AT 46
PC/XT PS/2 46
RS/6000 46

Awads-01 230

B
benchmark 205, 223
Benchmark Interchange Format 208
Benchmark Reporting Format 208
Benchmark Timing Methodology 208
bit planes 4
blit 7
blitting 3
bus interface 4, 7
bus type 11

C
CATIA 81, 88
© Copyright IBM Corp. 1999
CATweb 81
CDE 61
ceramic ball grid array 9
CGE 192
charstr 127
chdisp 65
Choice 93
classes of graphics adapters 10
clear 126
cmov2 126
color 126
Color Graphics Display Adapter 12
colormap 11, 203
comp.graphics.opengl 134
compatibility 63
context 83
Core 87
culling 4
cursorpad 43
cyl_head 211

D
DDC-2B 9
default graphics adapter 65
depth cueing 4, 21, 22
development toolkit 62
device driver 11, 31
devices.mca.8f61 32
devices.mca.8f9a 32
devices.pci.14103c00 32
devices.pci.14105400 32
devices.pci.14105e00 32
devices.pci.14108e00 32
devices.pci.2b101a05 32
devices.pci.33531188 31
devices.pci.3353c088 31
DirectSoft OpenGL 81, 82, 138
DISPLAY 103
display list 151
Display PostScript 11, 12, 20, 22
dithering 91
DMA 7
double buffering 4

E
Easy MP 137
277

emitter 58
explicit traversal control 91
EXTENSIONS 77, 105, 118, 143, 197
External Defaults File 106

F
feature code

1511 44
1512 44
2650 25
2657 15
2660 17
2665 18
2711 21
2712 21
2713 21
2760 11
2768 17
2770 12
2776 20
2777 16
2780 19
2781 19
2782 19
2783 19
2790 21
2791 21
2792 21
2794 21
2795 20, 21
2796 20, 21
2803 13
2810 48
2811 48
2825 31
2837 24
2839 15
2850 29
2851 26
2852 26
2853 29
2855 27
2859 29
4000 50
4015 44, 50
4020 50
4030 44
4035 44

4060 51
4061 52
4063 52
4064 52
4065 52
4200 53
4207 14
4208 13
4213 38
4217 38
4235 38
4237 38
4238 38
4239 38
4350 22
6041 41
6351 44
8741 41
9525 51

fileset 61, 76, 85, 100, 117, 140, 195
flat shading 4
Fortran 92, 116, 131
four button cursor 45
frame buffer 3, 4, 11

G
G52 39
gamma correction 4, 9, 32
GKS 11, 12, 20, 22, 87
GKS-3D 87
GKS-CO 88, 92
GL 20, 22
GL 3.2 84, 115
GL Widgets 123
GLperf 206, 207, 222
GLU 131, 132
GLUT 133, 146
GLX 131, 132, 146
Gouraud shading 4, 21, 22, 115, 131
GP-MIT-SHM 98, 105
gPPROFILE 106
Graphical Kernel System 92
Graphics Performance Characterization 205
graPHIGS 11, 12, 20, 22, 84, 87, 88
Grayscale Graphics Display Adapter 11
Gt1b 13
Gt4 116
Gt4e 116
278 RS/6000 Graphics Handbook

Gt4i 116
Gt4x 116
Gt4xi 116
GXT1000 117, 195
GXT120P 23, 32, 33
GXT150 195
GXT150M 24, 32
GXT250 195
GXT250P 25, 32, 33
GXT255P 26, 32, 33
GXT3000P 6, 33, 58, 100, 115
GXT500 116, 195
GXT500D 116
GXT550P 26, 32, 33, 58
GXT800 195
GXT800M 33, 58
GXT800P 33, 58

H
hardware acceleration 10
hardware colormap 4
hardware cursors 9
High-Performance 3D Color Graphics Processors
18
HLHS Removal 4

I
IBM E15-type Graphic 14
IBMPEXSOFT 199
image board 95
immediate mode 88, 100, 115, 130, 192
InteriorBundleLookupTable 200
ISO PHIGS 92

K
keyboard

quiet touch 41
quiet touch black 42

L
language 42

Arabic 43
Belgian/French 42
Belgian/UK-Flemish 42
Brazilian Portuguese 42
Bulgarian 42
Canadian French 42

Chinese/US 43
Croatian 43
Czech 42
Danish 42
Dutch 42
French 42
French Canadian 43
German/Austrian 42
Greek, 42
Hebrew 42
Hungarian 42
Icelandic 42
Italian 42
Japanese 42
Korean 43
LA Spanish 43
Norwegian 42
Polish 42
Portuguese 42
Romanian 42
Russian 43
Serbian-Cyrillic 43
Slovakian 42
Spanish 42
Swedish/Finnish 42
Swiss, French/German 42
Thailand 43
UK English 42
US English 42

light-01 230
Lighted Program Function Keyboard 49

Attachment 49
Setting Up 49

lighting 3, 10
lmodtest 120
Locator 93
lorenz 120
lsdisp 65
luminance 4

M
Magellan 57
MatchRenderingTargets 201
material 7
mice 41
monochrome 11
morphing 91
Motif 61
 279

motion blur 5
MVP Power Multi-Monitor 23

N
naming conventions 147
nucleus 89
NURBS 21, 22, 115

O
oceantopo 214
OpenGL 8, 81, 83, 88, 129, 191, 222
OpenGL context 131
OpenGL extensions 77
OpenGL Performance Characterization 206
OpenGL Widget 133
operating mode 93
overlay buffer 5, 8

P
P201 39
P202 37
P70 39
P72 37
P92 37
palette DAC chip 8
PCI 7
performance 169
performance degradation 34
PEX 191
PEXGetEnumTypeInfo 201
PEXlib 12, 20, 192, 193, 202
PEXOutputCommandError 200
PEXSearchNetwork 200
PEX-SI 192
PHIGS 87, 192
PHIGS PLUS 87, 88, 192
Phong 131
Pick 93
Picture Level Benchmark 205, 208
pipeline 7
PLBsurf 225
PLBsurf93 211
PLBwire 225
PLBwire93 209
polygons per second 205
PostScript 98
POWER Gt1 12

POWER Gt1x 13
POWER Gt3 15
POWER Gt3i 16
POWER Gt4 20
POWER Gt4e 19
POWER Gt4i 21
POWER Gt4x 20
POWER Gt4xi 21
POWER GTO Accelerator 22
POWER GXT110P 15
POWER GXT150L 17
POWER GXT155L 17
POWER GXT3000P 29
POWER GXT500P 117
POWER GXT550P 117
POWER GXT800M 28, 117
POWER GXT800P 28, 117
power management 62
PowerDisplay 39
prefsize 126
primitives 193
PROFILE 106
programming 109, 124, 143, 203

R
race_car 209
RAMDAC 3, 5
rasterization 3, 10
rasterizer 5, 7
refresh rate 68
removable wrist rest 41
rendering 5
resolution 32, 43, 67
retained mode 88, 89, 192
RGB 5
robotarm 120
runivp 103

S
S15 Graphics Adapter 14
screen dump 123
SDRAM 8
seafloor 209, 210
setup/BLIT unit 5
shuttle 211, 212
SIGGRAPH 87
SIMD 8
six button cursor 45
280 RS/6000 Graphics Handbook

sleep 127
SMIT 67, 68, 142
Soft OpenGL 135, 171
Softgraphics 10, 84, 97, 135, 194, 201
spaceball 54
Standard Performance Evaluation Corp 205
stencil buffer 5, 8, 132
stereo 5, 8
stereographics 3, 57
String 93
Stroke 93
Structure State 95
Structure Store 95
Structures 92
studio 213
synchronization 7
sys_chassis 209
SYSPRINT 108
System State 94

T
tablet 43
technology 3
texture 3
texture buffer 5
texture mapping 10, 131, 192
transformations 3, 10
transparency 192
Trinitron 37
two button stylus 46

U
underlay buffer 5
utility buffer 8
utility planes 6

V
Valuator 93
vectors per second 205
vertex 7
VESA 9
video scaling 6
Viewperf 217, 219, 222
Visual System Management 64

W
window ID buffer 6

winopen 126
Workstation State 94

X
X 78
X Consortium 64, 192
X Extensions 62, 69
X Performance Characterization 206
X resource 71
X Server Extension 118
X Virtual Frame Buffer 64, 75, 83
X Window System 115
X_SHM_SIZE 208
X11 61
x11perf 206, 208, 216
x24wd 123
x24wud 123
xclock 78
Xdefaults 71, 72
xdpyinfo 198
xdt 62
xhost 78
xinit 77, 104, 118
Xlib 11, 12, 20
Xmark 217
Xmark.sh 216
Xmark93 206
xprop 78
xserverrc 105, 143
XSOFT 97, 105
Xstation 98
xstdcmap 199
xwd 79, 80, 83
xwdtops 124
xwininfo 80
xwud 79, 80, 83

Z
ZAPdb 138
Z-buffer 6
 281

282 RS/6000 Graphics Handbook

© Copyright IBM Corp. 1999 283

ITSO Redbook Evaluation

RS/6000 Graphics Handbook
SG24-5130-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-5130-00

R
S/6000 G

raphics H
andbook

S
G

24-5130-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Hardware Technology
	1.1 How Do You Build a Graphics Adapter?
	1.1.1 The Chips
	1.1.2 Typical Graphics Adapter Functions
	1.1.3 A Look at the GXT3000P Design

	1.2 Different Classes of Graphics Adapters

	Chapter 2. The Graphics Adapters
	2.1 The Ancient Adapters
	2.1.1 Grayscale Graphics Display Adapter
	2.1.2 Color Graphics Display Adapter
	2.1.3 POWER Gt1
	2.1.4 POWER Gt1x
	2.1.5 IBM E15-type Graphic
	2.1.6 S15 Graphics Adapter
	2.1.7 The (#2839) - POWER GXT110P Graphics Adapter - PCI
	2.1.8 POWER Gt3
	2.1.9 POWER Gt3i
	2.1.10 POWER GXT150L
	2.1.11 POWER GXT155L
	2.1.12 High-Performance 3D Color Graphics Processors
	2.1.13 POWER Gt4e
	2.1.14 POWER Gt4 and POWER Gt4x
	2.1.15 POWER GTO Accelerator

	2.2 The Current Graphic Adapters
	2.2.1 The MVP Power Multi-Monitor Graphics Accelerator
	2.2.2 The GXT120 Family
	2.2.3 The GXT150M
	2.2.4 The GXT250P
	2.2.5 The GXT255P
	2.2.6 The GXT550P
	2.2.7 The GXT800 Family
	2.2.8 The GXT3000P
	2.2.9 Device Drivers
	2.2.10 Properties of the Graphic Adapters
	2.2.11 Buffer Configuration
	2.2.12 Advanced 3D Functionalities
	2.2.13 Limitations

	Chapter 3. Displays and Cables
	3.1 The Supported Displays
	3.1.1 The IBM P72 Color Monitor
	3.1.2 The IBM P92 Color Monitor
	3.1.3 The IBM P202 Color Monitor

	3.2 The Cables

	Chapter 4. Graphics Peripherals
	4.1 Mice
	4.2 The Keyboards
	4.3 The Tablets
	4.3.1 The 6093-011 Model
	4.3.2 The 6093-012 Model
	4.3.3 The 6093-021 Model
	4.3.4 Additional Features
	4.3.5 Configuring the 6093 Tablet

	4.4 The Dials
	4.4.1 Attachment of the Dials to an RS/6000 System
	4.4.2 Setting Up the 6094-010 on a Workstation

	4.5 The Lighted Program Function Keyboard (LPFK)
	4.5.1 Attachment of the LPFK to an RS/6000 System
	4.5.2 Additional Features

	4.6 The Spaceballs
	4.6.1 The IBM 6094 Model 031 Spaceball
	4.6.2 The 6094 Spaceball Model 040

	4.7 Magellan
	4.8 Stereographics Capabilities
	4.8.1 How to Connect the Emitter

	Chapter 5. X11, Motif and CDE
	5.1 The 2D Environment
	5.1.1 Configuration
	5.1.2 Answers to Frequently Asked Questions

	Chapter 6. The X Virtual Frame Buffer and Softgraphics
	6.1 The X Virtual Frame Buffer
	6.1.1 Installing XVFB
	6.1.2 Starting the XVFB
	6.1.3 Testing the XVFB
	6.1.4 Implementing XVFB in Application Code
	6.1.5 How Does It Work?

	6.2 CATweb and the XVFB
	6.2.1 DirectSoft OpenGL

	6.3 Softgraphics
	6.3.1 What is Softgraphics?
	6.3.2 Installation of Softgraphics

	Chapter 7. graPHIGS
	7.1 Definition
	7.1.1 Core, GKS, and PHIGS
	7.1.2 graPHIGS
	7.1.3 Retained Mode Graphics
	7.1.4 Technical Content of the IBM graPHIGS Product
	7.1.5 ISO PHIGS
	7.1.6 Graphical Kernel System (GKS)

	7.2 Basic Terminology and Concepts
	7.2.1 Common Terms
	7.2.2 Graphical Resources
	7.2.3 Resources and Capabilities
	7.2.4 Subroutines

	7.3 IBM Implementations
	7.3.1 Softgraphics Technology
	7.3.2 Hardware-Accelerated
	7.3.3 Explicit Traversal Control for Immediate Mode Graphics
	7.3.4 Multi-Threaded Graphics Pipeline
	7.3.5 graPHIGS on GXT3000P PCI Graphics Accelerator

	7.4 Configuration
	7.4.1 Filesets
	7.4.2 Installation

	7.5 Overview for Programming
	7.5.1 graPHIGS Subroutines

	7.6 graPHIGS References

	Chapter 8. GL 3.2
	8.1 Definition
	8.1.1 Technical Content of GL 3.2

	8.2 IBM Implementation
	8.3 Configuration
	8.3.1 Filesets
	8.3.2 Installation
	8.3.3 Demo Programs, Sample Source Code and Utilities

	8.4 Overview of Programming
	8.4.1 Header Files
	8.4.2 Link Libraries
	8.4.3 Sample Program

	8.5 GL 3.2 References

	Chapter 9. OpenGL
	9.1 Definition
	9.1.1 Immediate Mode Graphics
	9.1.2 Retain Mode Graphics
	9.1.3 Client/Server
	9.1.4 Technical Content of OpenGL
	9.1.5 The OpenGL Architecture Review Board (ARB)
	9.1.6 Conformance Test Suite
	9.1.7 OpenGL Licensing

	9.2 IBM Implementations
	9.2.1 Softgraphics Technology
	9.2.2 Hardware-Accelerated
	9.2.3 OpenGL 1.1
	9.2.4 OpenGL 1.2
	9.2.5 Performance Improvements in OpenGL for AIX 4.3.2
	9.2.6 New Extensions to OpenGL for AIX 4.3.2
	9.2.7 Easy MP
	9.2.8 64-bit OpenGL Support
	9.2.9 Direct Soft OpenGL or OpenGL for a Virtual Frame Buffer
	9.2.10 The ZAPdb OpenGL Interactive Debugger
	9.2.11 Development History

	9.3 Configuration
	9.3.1 Filesets
	9.3.2 Installation

	9.4 Overview of Programming
	9.4.1 OpenGL Programs
	9.4.2 Programming Styles
	9.4.3 Naming Conventions
	9.4.4 Header Files
	9.4.5 Link Libraries
	9.4.6 OpenGL Rendering Context
	9.4.7 Programming with the Rendering Library
	9.4.8 A Program with the GLUT
	9.4.9 A Program with the GLX Library and the OpenGL Widgets
	9.4.10 A Program with the GLX Library
	9.4.11 Overlay Window
	9.4.12 xglinfo
	9.4.13 Debugging Hints

	9.5 Performance Tips
	9.5.1 Additional Tips
	9.5.2 Specific Implementation Notes

	9.6 Comparison with Other 3D Graphics APIs
	9.6.1 Comparison with GL 3.2
	9.6.2 Comparison with graPHIGS
	9.6.3 Open Inventor

	9.7 References
	9.7.1 OpenGL References
	9.7.2 Open Inventor References

	Chapter 10. PEX
	10.1 Definition
	10.1.1 PEX Extension to the X Server
	10.1.2 PEXlib
	10.1.3 Graphics Environment PEX 5.1 Extensions (CGE PEX 5.1)
	10.1.4 Technical Content of PEX

	10.2 IBM Implementation
	10.3 Configuration
	10.3.1 Filesets
	10.3.2 Installation
	10.3.3 Other Information in /usr/lpp/X11/README.PEX

	10.4 PEX References

	Chapter 11. Benchmarking
	11.1 History
	11.2 Which Benchmark to Use
	11.2.1 How to Run Benchmarks on Your System
	11.2.2 How to Interpret Benchmarks Results

	11.3 Latest Results

	Appendix A. 3D Graphics API Additional Information
	A.1 GL 3.2 Sample Code
	A.1.1 Sample Program 2 - Animation Using Double Buffering
	A.1.2 Sample Program 3 - Event Loop
	A.1.3 Begin-End Style Drawing

	A.2 The OpenGL API
	A.2.1 Output of xglinfo
	A.2.2 Using Easy MP
	A.2.3 OpenGL Extensions Supported on AIX
	A.2.4 Extensions Support

	Appendix B. Benchmarks Files
	B.1 A Sample BRF File
	B.2 Viewperf Output from CDRS 03 Test 3
	B.3 Input File for GLPerf

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

