
--------- - - --- - -- - ---- - - ------ · ---- ·-

I

Systems Application Architecture

An Overview

I
I 101

I I I

GC26-4341-0

I
I
I
I

First Edition (May 1987)

This edition applies to the initial announcement of IBM's Systems Application Architecture.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, and 4300 Processors Bibliography,
GC20-0001, IBM System/36 Guide to Publications, GC21-9015, or IBM System/38 Guide to Publications,
GC21-7726, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality.

©Copyright International Business Machines Corporation 1987. All rights reserved.

About This Manual
This manual is intended to help managers and technical personnel evaluate IBM's
Systems Application Architecture, and do some preliminary, high-level planning for
its implementation. More detailed information will be available in individual refer­
ence manuals.

iii

Contents

Part One: Introduction . 2
Systems Application Architecture . 2

Background . 2
What It Covers . 2
How It Gives Value . 3

Common Programming Interface . 5
Specifications for Consistency . 5
Advantages for Independent Software Vendors . 5
Full Implementation, Plus . 5
Scope . 6
Using the Programming Components Together . 6

Common User Access . 8
Elements of the Interface . 8
Flexibility . 9
Evolution . 9
Summary of Benefits . 9

Common Communications Support 10
Types of Support ... 10
Current Product Base 11
Expansion ... 12

Common Applications 13
Benefits ... 13
Initial Focus .. 13
Current Product Base 13

Continued Support in Other Areas 14
Future Growth .. 15

General Areas . 15
National Language Support 16

Summary ... 17

Part Two: Contents of the Programming Interface . 20
Languages . 21

Application Generator . 22
c ... 26
COBOL ... 31
FORTRAN ... 38
Procedures Language 40

Services . 45
Database Interface . 46
Dialog Interface ... 50
Presentation Interface 52
Query Interface .. 58

Contents V

Part One: Introduction

1

Part One: Introduction

Systems Application Architecture

Background

What It Covers

IBM offers systems based on several different hardware architectures and control
programs. By pursuing a multiple-architecture strategy, IBM has been able to
provide products with outstanding price/performance ratios across an ever­
broadening spectrum of customer requirements. Today, IBM's systems span a
near.ly thousand-fold capacity range, and support the information processing needs
of people in very different environments.

To make movement between these systems easier, to facilitate multi-system use,
and to bring the breadth of IBM's product line to bear on customers' needs in all
environments, IBM has introduced Systems Application Architecture. The results
of Systems Application Architecture are intended to be:

• Programming skills that have broader applicability

• Applications that can be ported with less effort, or that can span systems

• User access to these applications that is simpler and more uniform.

Systems Application Architecture is a collection of selected software interfaces,
conventions, and protocols that will be published in 1987. Systems Application
Architecture will be the framework for development of consistent applications
across the future offerings of the three major IBM computing environments:

• System/370 (TSO/E under MVS/XA, and CMS under VM)

• System/3X

• Personal Computer (Operating System/2 ™). 1

These interfaces, conventions, and protocols are designed to provide an enhanced
level of consistency in the following areas:

• Programming interface - the languages and services that application devel­
opers use in building their software

• User access - the use of screen panels, keyboard layouts, display options, and
other interaction tools and techniques

• Communications support - the connectivity of systems and programs

• Applications - software built and supplied by IBM and other vendors.

1 Operating System/2 is a trademark of the IBM Corporation.

2 Systems Application Architecture: Overview

Figure 1. Large Enterprises Seek Multi-System Solutions

How It Gives Value
Systems Application Architecture will facilitate an increased level of consistency
across the participating systems. As a result, the development and use of applica­
tions should be:

• Less expensive
• More timely.

Those users who need access to data on one system today and another system
tomorrow can benefit. The programs they run are similar, and the actions they
perform while running those programs are more uniform. Screens, keyboards,
procedures - their appearance and behavior will often be the same. With less
relearning, users have faster and easier access to data, and business efficiency
increases.

Programmers, too, benefit from this increased consistency. Skills learned in one
environment are transferrable to others, and there is less need for retraining or for
system specialists. A programmer familiar with one environment can readily move
to another and soon be productive.

Part One: Introduction 3

Consistency means portability, and building applications for multi-system solutions
becomes faster and easier. The source for a program built on one system can be
taken to another system and implemented more smoothly. The effort expended in
creating a general data processing solution is therefore lessened, along with
development time.

Thus, there is much value in the growing consistency of the interface to the
System/370, System/3X, and Personal Computer. The people who build the appli­
cations and the people who use the applications will all benefit.

In addition to these new benefits, in each of the Systems Application Architecture
environments IBM plans to continue to support the execution of existing applica­
tions, thus conserving customers' current investments.

System/370 System/3X Personal Computer

Figure 2. Consistency across Systems

4 Systems Application Architecture: Overview

Common Programming Interface
As has been noted, one important part of Systems Application Architecture is a
common programming interface - the languages, commands, and calls that pro­
grammers employ. The components of the interface fall into two general catego­
ries, as follows:

• Languages

Application Generator
c
COBOL
FORTRAN
Procedures Language

• Services

Database Interface
Dialog Interface
Presentation Interface
Query Interface

Specifications for Consistency
For each component of this programming interface, IBM is establishing a defi­
nition, or specification. A number of existing IBM products are already aligned
with these specifications. More importantly, each specification will be used within
IBM to promote and control software development and facilitate the consistency of
all future products within the Systems Application Architecture framework. Those
portions of the products controlled by the Common Programming Interface specifi­
cations are intended to have consistent implementation on the participating
systems.

These IBM specifications have generally been developed with regard for estab­
lished industry standards. Part Two of this manual (page 20) gives more detail on
the content of each specification.

Advantages for Independent Software Vendors
Just as these specifications will be advantageous for the customers who use IBM
software to build their own applications, they will benefit the software companies
who build applications to sell. Using the common programming interfaces to IBM
products, these companies can more easily design applications suitable for all the
supported systems.

Customers seeking to reduce their data processing backlogs with prebuilt applica­
tions will also benefit, because the vendors will be able to produce applications
more quickly and cost effectively.

Full Implementation, Plus
Over time, it is IBM's intent to supply products within Systems Application Archi­
tecture that will fully implement the interface specifications. In addition, some pro­
ducts may go beyond this to offer extensions that exploit features of the operating
system or hardware on which they run.

Part One: Introduction 5

Scope

When an application is being created for more than one system, its designers and
coders can stay within the boundaries of the IBM specifications and obtain easier
portability. If they want to create a program that takes advantage of one particular
system, they can make use of that product's unique features. The choice is avail­
able.

Figure 3. Products Will Meet or Exceed the Specification

The interface specifications cover many aspects of a programmer's interaction with
selected IBM software. Other aspects will not immediately participate in this com­
monality. Things such as installation procedures, tuning considerations, and
compile-time and run.;tim'e options are particular to individual products. Further­
more, other facets of the programming task, such as the use of job control lan­
guage, will continue to be specific to operating systems and hardware, and remain
outside the scope of the initial specifications.

Using the Programming Components Together
The components for which IBM specifications have been established offer a broad
span of function that can meet most data processing needs.

Each component of the interface, as provided by applicable IBM products, is a val­
uable and efficient data processing aid in itself. Each is a tool that can be used on
its own to get work done. In addition, many of these interface components can also
be used together to create larger, more complex applications that accomplish
sophisticated ends.

6 Systems Application Architecture: Overview

For example, an integrated application could be built from a combination of appli­
cation generator and COBOL programs. Commands or queries could be incorpo­
rated into a FORTRAN program to obtain information from a data base. A program
written in C could process data and then utilize the presentation interface to show
results in a graphic format. Procedures language and the dialog interface could be
used to tie together a multi-step application built of various program parts. The
possibilities are many.

Because these components span the spectrum of common application needs, they
offer the assistance customers require -whether to do a programming job using a
single component, or to build a more complex data processing solution using mul­
tiple components of the commmon programming interface. And on top of this, of
course, they offer all the value of cross-system consistency.

Part One: Introduction 7

Common User Access
The Common User Access defines the specifications for the dialog between the
human and the computer. It establishes how information appears on a display
screen, and how people respond to that information. It includes definitions of inter­
face elements and rules for interaction techniques such as panels, procedures for
moving from one panel to another, choice selection, color and emphasis, mes­
sages, help, and terminology.

The Common User Access consolidates the latest technology in interface elements
and techniques. Based on a foundation of fundamental concepts, and designed
from the top down, its principles will apply across the range of Systems Application
Architecture systems.

The Common User Access provides several advantages. Because it incorporates
superior technology, it is by definition easier to learn and use. And because it is
consistent across the participating systems, it has the benefits of familiarity. Users
moving from application to application or from system to system need less time to
adapt. And the programmers who create and maintain these applications should
also be able to do so more quickly and easily - both in building the user interface
portions of the applications, and in using the computer themselves.

Elements of the Interface
An interface between user and computer has three main components:

• The way the machine communicates with the user
• The way the user communicates with the machine
• What the user understands about the interface.

The first aspect is what the user perceives, what face the program and the hard­
ware show to the person at the workstation, how the instructions and data are pre­
sented. The user has to recognize this information, understand it, and come up
with an appropriate response. This response, consisting of established actions
such as key selection or mouse movement, is the second aspect of the interface.

The third aspect, how users understand this entire process, is really part of the first
two. Users' perceptions and expectations - their "conceptual models" - are influ­
enced by their previous experience. To the extent that the interface is aligned with
these expectations, it will be easy to use. To the extent that the interface is inte­
grated and has a good overall design, it will be easy to learn.

The specifications being established for the Common User Access are intended to
accomplish both these ends. They set forth a consistent set of concepts that are
readily acquired and that provide continuity from application to application, system
to system.

An interface can be consistent with respect to three broad categories or dimen­
sions: physical, syntactical, and semantical.

• Physical consistency refers to the hardware: the keyboard layout, the location
of keys, and the us~ of the mouse. For example, it would be physically con­
sistent for the function keys to be in the same place on the keyboard regard­
less of the system being used. Likewise, it would be physically consistent for
button 1 on a mouse to always select an item.

8 Systems Application Architecture: Overview

Flexibility

Evolution

• Syntactical consistency refers to the sequence and order of appearance of ele­
ments on the display screen (the presentation language) and the sequence of
keystrokes to request actions (the actions language). For example, it would be
syntactically consistent to always center the panel title at the top of the panel.

• Semantic consistency refers to the meaning of the elements that make up the
interface. For example, it would be semantically consistent for the command
SAVE to have the same meaning (what is saved and what happens next) on all
systems.

An interface for user access is dependent on device capabilities. An interface
designed for an intelligent workstation will not have the same dynamic features as
one for a less-sophisticated mainframe terminal. Thus, the design of a common
user interface requires a balance between the desire for consistency and the
desire for full exploitation of technological capabilities.

Although the Common User Access lays down rules for interface elements and
interactions, it gives application designers a fair degree of flexibility. The Common
User Access defines a number of types of panels and acknowledges that designers
might require other, application-specific panel types not defined by the Common
User Access. The Common User Access recommends that programmers try to use
the defined panels but, if they can't, to use the common components of defined
panels.

The Common User Access is still evolving. It is being created for intelligent work­
stations and will grow through the midrange systems to the mainframe systems.
The workstation was chosen as the starting point because it provides the greatest
dynamic capabilities for the interface.

When the initial level of the Common User Access has been completely defined,
those IBM specifications will be published and made generally available, and
writing applications that follow these specifications will be encouraged.

In the future, the Common User Access will define added elements and interaction
techniques as technologies evolve.

Summary of Benefits
A defined, common user interface benefits the user and the programmer. For both,
the benefits are the same: saving time and money.

Users should benefit because they will need less time to learn how to use an appli­
cation and, when using the application, take less time doing their work. A con­
sistent interface also reduces users' frustration levels and makes them feel more
comfortable.

A consistent user interface also benefits application designers and programmers.
The Common User Access defines building blocks for an interface through speci­
fied interface elements and interaction techniques. These building blocks allow
programmers to create and change applications more quickly and easily.

Part One: Introduction 9

Common Communications Support

Types of Support

Data Streams

Common Communications Support is used to connect applications, systems, net­
works, and devices. This will be achieved by the consistent implementation of des­
ignated communication architectures in each of the Systems Application
Architecture environments. These communication architectures are the building
blocks for distributed function to be detailed in future announcements of the
Common Programming Interface and IBM-provided Systems Application Architec­
ture applications.

The architectures selected to date have been chosen from Systems Network Archi­
tecture (SNA) and international standards. Each was also included in the Open
Communication Architectures announcement of September 16, 1986 (Announce­
ment Letter 286-410), thus reaffirming IBM's commitment to openness.

Included in Common Communications Support at this time are data streams, appli­
cation services, sessions services, network, and data link controls. The aspects of
each of these are described below.

The 3270 Data Stream consists of user-provided data and commands, as well as
control information that governs the way data is handled and formatted by IBM dis­
plays and printers. The Systems Application Architecture computing environments
will all support the 3270 Data Stream. In addition, the System/3X family will con­
tinue to support the 5250 Data Stream. The 3270 Data Stream is documented in
IBM 3270 Information Display System Data Stream Programmer's Reference,
GA23-0059.

Document Content Architecture (DCA) defines the rules for specifying the form and
meaning of a text document. It provides for uniform interchange of textual informa­
tion in the office environment and consists of format elements optimized for docu­
ment revision. This is documented in Document Content Architecture:
Revisable-Form-Text Reference, SC23-0758.

Intelligent Printer Data Stream (IPDS) is the high-function data stream intended for
use with all-points-addressable page printers. Documentation of this data stream
will be available shortly.

Application Services
SNA Distribution Services (SNADS) provides an asynchronous distribution capa­
bility in an SNA network, thereby avoiding the need for active sessions between
the end points. SNADS is documented in SNA Architecture Format and Protocol
Reference Manual: Distribution Services, SC30-3098.

Document Interchange Architecture (DIA) provides a set of protocols that define
several common office functions performed cooperatively by IBM products. This is
documented in Document Interchange Architecture: Technical Reference,
SC23-0781.

SNA Network Management Architecture describes IBM's approach to managing
communication networks. The protocols of problem management offer a vehicle

10 Systems Application Architecture: Overview

Session Services

Network

Data Link Controls

for monitoring network operations from a central location. This is documented in
SNA Format and Protocol Reference Manual Management Services, SC30-3346.

LU Type 6.2 is a program-to-program communication protocol. It defines a rich set
of interprogram communication services, including a base and optional supple­
mentary services. Support of the base is included in all IBM LU 6.2 products that
expose an LU 6.2 application programming interface. This facilitates compatibility
of communication fur:ictions across systems. LU 6.2 is documented in SNA Format
and Protocol Reference Manual: Architecture Logic for LU Type 6.2, SC30-3269.

Low-Entry Networking Nodes (Type 2.1 Nodes) support peer-to-peer communi­
cation. Type 2.1 nodes can be either programmable or fixed function systems.
SNA Low-Entry Networking allows, through a common set of protocols, multiple
and parallel SNA sessions to be established between Type 2.1 nodes that are
directly attached to each other. Low-Entry Networking is documented in SNA
Format and Protocol Reference Manual: Architecture Logic for Type 2.1 Nodes,
SC30-3422.

Synchronous Data Link Control (SDLC) is a discipline for managing synchronous,
code-transparent, serial-by-bit information transfer between nodes that are joined
by telecommunication links. This is documented in IBM Synchronous Data Link
Control Concepts, GA27-3093.

Token-Ring Network consists of a wiring system, a set of communication adapters
(stations), and an access protocol that controls the sharing of the physical medium
by the stations attached to the LAN. The IBM Token-Ring Architecture is based on
the IEEE 802.2 and 802.5 standards. This is documented in Token-Ring Network
Architecture Reference (part number 6165877).

X.25 defines a packet-mode interface for attaching data terminal equipment (DTE)
such as host computers, communication controllers, and terminals to packet­
switched data networks. An IBM-defined external specification, The X.25 Interface
for Attaching SNA Nodes to Packet-Switched Data Networks: General Information
Manual (GA27-3345), and the 1984 version of this interface (GA27-3761), describe
the elements of CCITT X.25 that are applicable to IBM SNA products that can attach
to X.25 networks. X.25 is shown here as a data link control to reflect its implemen­
tation within SNA. In the OSI Reference Model, X.25 is one of the options available
for the physical, data link, and network layers.

Current Product Base
Most of the Common Communications Support architectures are already supported
in the Systems Application Architecture environments. In MVS and VM, support is
available through the following product sets:

Print Services Facility (PSF)
Graphical Data Display Manager (GDDM)
Netview
Virtual Telecommunications Access Method (ACF/VTAM)
Network Control Program (ACF/NCP)

Part One: Introduction 11

Expansion

In IBM Operating System/2, the architectures are supported primarily in the Com­
munications Manager portion of the Enhanced Edition 1.1, and in the applications
that use the Communications Manager services.

Future offerings of the System/3X will support the Common Communications
Support protocols and interfaces. In the current System/36 and System/38 offer­
ings, support is available throught the following product sets:

DisplayWrite/36
Personal Services/36
System/36 Office Management System
System/36 System Support Program and Communications Features
Personal Services/38
System/38 Control Program Facility and Communications Management Func­
tions

Through communications networking and, in particular, through the Common Com­
munications Support elements, existing applications developed for the current ver­
sions of the major IBM computing environments will be able to interact with
applications, functions, and data in the Systems Application Architecture environ­
ments. This conserves current application investment in existing systems.

Extensions to the above products and new Systems Application Architecture
announcements for Common Applications will complete the product support for
these Common Communications Support architectures in these environments.

As IBM expands the Systems Application Architecture, additional communications
architectures will be evaluated for inclusion in Common Communications Support.

12 Systems Application Architecture: Overview

Common Applications

Benefits

Initial Focus

It is IBM's intent to develop applications that conform to Systems Application Archi­
tecture, making use of the common user access, the common programming inter­
face, and the common communications support. These will be key applications
that satisfy a significant customer need for use across the three Systems Applica­
tion Architecture environments. Availability of these applications will help cus­
tomers solve today's qusiness problems in the most efficient and effective way.

These IBM-written applications will obtain the same benefits from Systems Appli­
cation Architecture as those applications written by customers and independent
software vendors. They will offer consistency in how functions are implemented,
how panels are laid out, and how the user navigates within the application in all
the supported environments. Thus, an application initially developed for one envi­
ronment and subsequently ported to another will appear consistent to the applica­
tion user. This consistency will also apply to integrated "families" of applications
which will be offered.

Users of MFI (Mainframe Interactive) workstations and IWS (Intelligent Work­
stations) could have a consistent set of defined functions, and where applicable,
the IWS user may have additional defined functions available for the application or
family of applications. Hosts controlling the MFI station will provide the user
access functions. These functions will, within the limits of technology, have area­
sonable consistency with the IWS's user access.

Initially, the IBM application development effort will focus on integrated office and
decision support. Later, it will expand into industry-specific applications.

In the initial focus on office applications, the elements being defined include:

• Document processing
• Document library
• Personal services, mail
• Decision support.

Current Product Base
Many of IBM's current office and decision support products already use Document
Content Architecture (DCA), Document Interchange Architecture (DIA), and SNA
Distribution Services (SNADS). These key architectures are part of Systems Appli­
cation Architecture, and will conserve the investments that customers have made
and offer a transition path to new Systems Application Architecture product offer­
ings.

Part One: Introduction 13

Continued Support in Other Areas
While this new emphasis will bring additional value to those interested in general­
ized business solutions, the familiar types of support will continue to be provided
and enhanced.

• Continuity will be maintained with existing products and systems. This means
that current investments in applications and knowledge will retain their value.

• Many other IBM systems and products will be offered outside the Systems
Application Architecture, ensuring that customers with environment-specific
business requirements will continue to have those needs satisfied.

System/370 System/3X

Figure 4. Both Common and Specialized Solutions Are Offered

14 Systems Application Architecture: Overview

Future Growth

General Areas

In its initial form, Systems Application Architecture and its current IBM product
implementations offer a starting point. It is IBM's intent that both definitions and
implementations increase over time in an evolutionary process.

Growth is expected to occur in three general ways:

1. The current specification levels will receive full implementation in all the
Systems Application Architecture environments.

2. Individual interfaces will grow and become more powerful, incorporating new
features into the original specifications.

3. Additional software interfaces and applications will be defined and included
under the Systems Application Architecture umbrella.

Thus, consistency will grow, and with it - the value to customers.

Figure 5. Future Growth

Part One: Introduction 15

National Language Support
Systems Application Architecture provides IBM with the foundation to enhance the
availability and consistency of national language implementation in software pro­
ducts. It is IBM's intent to develop the Systems Application Architecture specifica­
tions with support for the implementation of a broad set of national language
representations.

'16 Systems Application Architecture: Overview

Summary

Benefits

Future Growth

Systems Application Architecture is a definition aimed at helping IBM's customers
obtain business solutions. With it, IBM is initiating an evolution in cross-system
consistency, while continuing to provide its established products and systems.

Systems Application Architecture is designed to afford growing commonality
across the System/370 (TSO/E under MVS/XA, and CMS under VM), System/3X,
and Personal Computer (Operating System/2) in the areas of programming inter­
faces, user access, communications support, and prebuilt applications, as well as
national language support.

For each of these areas, IBM is establishing and will publish specifications - defi­
nitions of the elements that will be common across the three systems. Future IBM
Systems Application Architecture products will then implement those specifica­
tions.

IBM's Systems Application Architecture will offer customers several advantages:

• Programming skills that have broader use

• Applications that can be ported with less effort, or that can span systems

• User access to these applications that is simpler and more uniform.

Both development costs and training costs should be reduced. Customers seeking
broad solutions for their personal, departmental, and enterprise-wide data proc­
essing needs will profit. And independent software vendors who choose to build
on IBM products will benefit as well.

The initial IBM definitions and product implementation levels provide a starting
point for cross-system consistency. Over time, both the definition and implementa­
tion of Systems Application Architecture will expand, and the level .of consistency
wi 11 increase.

Thus, customers will see an evolutionary process - a continual broadening and
reinforcement of consistency, with an attendant increase in benefits.

Part One: Introduction 17

Part Two: Contents of the Programming Interface

19

Part Two: Contents of the Programming Interface

Reference Manuals

On the following pages are descriptions of the components of the Common Pro­
gramming Interface, with accompanying tables. Each table provides:

• A high-level list of the contents of the component - those elements in the IBM
specification

• An indication of where each element is currently supported - that is, what
Systems Application Architecture environments already have a released or
announced licensed program which implements that interface element.

System/3X Considerations: Although the System/3X computing environment is not
referenced in the tables, it is IBM's intent to implement the Common Programming
Interface in future offerings of the System/3X. It is also IBM's intent that current
System/36 and System/38 programming interfaces will continue to be supported on
future offerings of the System/3X, conserving current application investment.

The tables here offer a general overview of the contents of the components of the
interface. Comprehensive reference manuals are being prepared as well. These
manuals will provide the full contents of each component, and constitute the IBM
specifications for them. As the interface expands, the manuals will be updated
accordingly.

The IBM Common Programming Interface may be reproduced, used, and distrib­
uted for the purpose of developing application programs in accordance with the
terms accompanying the copyright statement in the reference manuals.

20 Systems Application Architecture: Overview

Languages

Application Generator 22

c 26

COBOL 31

FORTRAN 38

Procedures Language 40

Part Two: Contents of the Programming Interface 21

Application Generator
An application generator is a generalized application development tool. It allows
one to build some types of programs easily without using a traditional high-level
language or being involved with system details. Application generators can be cat­
egorized as fourth-generation tools for the professional programmer.

Seated at the terminal, a programmer can create an application interactively. An
application generator offers:

• A dialog-oriented, fill-in-the-blanks approach

• Immediate interactive syntax checking

• Prompting, tutorials, and a help facility.

Use of an application generator eliminates many of the steps required when cre­
ating applications using conventional methods. Each phase of certain projects -
defining and validating screens, files, and logic; testing and debugging programs;
and running trial executions of the application - can be completed under its guid­
ance. Through each of these steps, it buffers the user from the complexities of
system and data management.

IBM's application generator interface is tailor-made for supporting portability
across systems. Its two-part structure - an application development portion (AD)
and an application execution portion (AE) - allows an application to be built on
one system and easily run on another (where the AE functions are installed}. The
AD function generates an application that is relatively independent of operating
system and hardware considerations. When the application is actually used, AE
handles the implementation and automatically adapts the code to the specific
system it is running on.

The Interface for Systems Application Architecture
The interface specification is based on the existing System/370 Cross System
Product/Application Execution. Thus, current product users will find the contents of
the new interface to be familiar. For more information, see the table on the fol­
lowing pages.

22 Systems Application Architecture: Overview

Languages - Application Generator

The table below lists the elements currently in the application generator interface
for Systems Application Architecture.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular language element.

On MVS and VM, the implementing product is Cross System Product/Application
Execution, Version 3 (5668-814). An asterisk(*) indicates interface elements avail­
able in EZ-RUN Cross System Product/Application Execution (6317011 feature
number 9375) running in PC DOS compatibility mode of Operating System/2.

Interface Element MVS VM OS/2

Processing Statements
Arithmetic operators x x *
Conditional operators x x *
MOVE data item content x x *
MOVE corresponding at structure level x x *
Logic controls (IF, ELSE, AND, OR, WHILE) x x *
FIND in a table x x *
RETRIEVE from table x x *
SET record status x x *
SET map status x x *
SET map item attribute x x *
TEST map, map or data item, record, or x x *

entry key
CALL application x x *
TRANSFER to an application x x *
PERFORM a process x x *
Go to a process x x *
Statement group subroutines x x *

Process Options
EXECUTE statements x x *
DISPLAY a map x x *
CONVERSE a map x x *
ADD a record into a file x x *
DELETE a record from a file x x *
Read a record (INQUIRY) x x *
Read record for update (UPDATE) x x *
REPLACE a record x x *
SCAN for next record x x *
CLOSE a file or printer x x *

Figure 6 (Part 1 of 3). Major Elements of the Application Generator Interface

Part Two: Contents of the Programming lnter1ace 23

Languages-Application Generator

Interface Element MVS VM OS/2

Special Functions
Transfer application name variable x x *
Gregorian date x x *
Julian date x x *
Time x x *
Exit from an application x x *
Exit from statement group x x *
Go To application flow logic x x *
Entry key ID (AID) x x *
MSG ID to be displayed x x *
Map message field x x *
User ID x x *
Control hard 1/0 errors x x *
Control arithmetic overflows x x *
Test overflow results x x *
Data base commitment control x x *
Table FIND result (row number or array x x *

index)

File and Data Base
Indexed access x x *
Relative access x x *
Serial access x x *
Working storage definition x x *
Redefined records x x *
Key item name x x *
Alternate record specification x x *

Record Data Items
Item name x x *
Structures x x *
Arrays x x *
Binary data x x *
Character data x x *
Hexadecimal data x x
Unsigned numeric data x x *
Signed numeric data x x *
Packed numeric data x x *
Unsigned packed numeric data x x *
Decimal positions x x *

Figure 6 {Part 2 of 3). Major Elements of the Application Generator Interface

24 Systems Application Architecture: Overview

Languages - Application Generator

Interface Element MVS VM OS/2

Reference and Edit Tables
Reference table x x *
Match valid edit table (include) x x *
Match invalid edit table (exclude) x x *
Range match valid edit table x x *
Column definition x x *
Contents definition x x *

Screen and Printer Maps
Map group name x x *
Map name (within a group) x x *
Map size for partial maps x x *
Partial map position x x *
Initial cursor position x x *
Fold character input option x x *
Help map name x x *
Help PF key x x *
Map formats x x *
Map variable field name x x *
Map field arrays x x *
Field attribute definition x x *
Display device selection x x *
Map variable editing sequence x x *
Map variable output editing x x *
Map variable input editing and validation x x *

Application
Name x x *
Type (main or called, transaction or batch) x x *
Default help PF key x x *
Process 1/0 option x x *
Process object name x x *
Process 1/0 error routine x x *
Logic flow x x *
Table and additional records list x x *
Called parameter list x x *

Figure 6 (Part 3 of 3). Major Elements of the Application Generator Interface

Part Two: Contents of the Programming Interface 25

c
C is a programming language designed for a wide variety of programming tasks. It
has been used for system-level code, text processing, graphics, and for develop­
ment of engineering, scientific, and commercial applications.

The C language itself is compact, with function added through its library. This divi­
sion has resulted in C being regarded as both flexible and efficient. An additional
benefit is that the language is highly consistent across different systems.

C's flexibility permits its users to deal easily with machine-level entities at a low
level, while at the same time having the high-level control and data structures
found in other modern, structured programming languages.

Included is an extensive library of functions to provide input and output, math­
ematics, exception handling, string and character manipulation, dynamic memory
management, as well as date and time manipulation. Use of this library helps to
maintain program portability, because the underlying implementation details for
the various operations need not be of concern to the programmer.

C supports numerous data types, including characters, integers, floating-point
numbers and pointers - each in a variety of forms. In addition, C also supports
data aggregates such as arrays, structures (records), unions, and enumerations.

The Interface for Systems Application Architecture
The interface specification has been developed in accord with the draft proposed
American National Standard Programming Language - C (X3J11). For more infor­
mation on the IBM specification, see the table on the following pages.

26 Systems Application Architecture: Overview

Languages - C

The table below lists the language elements currently in the C interface for
Systems Application Architecture.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular language element.
On Operating System/2 (Personal Computer), the implementing product will be IBM
C/2.

An asterisk(*) indicates language elements that are consistent with the C Program
Offerings for MVS and VM (5713-AAG and 5713-AAH). Although not part of Systems
Application Architecture, these program offerings can b~ used to gain early experi­
ence with the C interface.

Language Element MVS VM OS/2

Data Types
signed keyword * * x
volatile keyword * * x
canst keyword * * x
void * pointers * * x
enumerated datatype * * x
long daub le datatype * * x

Language Features
Adjacent strings concatenated * * x
Full function prototypes * * x
Ref-Def model for externs * * x

Preprocessor Directives
if /ifdef /ifndef * * x
else/elif/endif * * x
define * * x
line * * x
include * * x
pragma * * x
undef * * x
Escape sequences

\a \b \f \n \r \t \v * * x
\ooo - octal * * x
\xhhh - hexadecimal * * x

Predefined Macros
LINE macro * * x - -
FILE macro * * x - -

Figure 7 (Part 1 of 4). Major Elements of the C Interface

Part Two: Contents of the Programming Interface 27.

Languages - C

Language Element MVS VM OS/2

Standard 110:
Standard streams

stdi n/stdout/stderr * * x
File operations

remove * * x
rename * * x
tmpfile/tmpnam * * x

File access
fclose * * x
ff lush * * x
fop en * * x
freopen * * x
setbuf /setvbuf * * x

Formatted 1/0
pri ntf /fpri ntf /spri ntf * * x
vpri ntf /vf pri ntf /vspri ntf * * x
scanf/fscanf /sscanf * * x

Character 110
fgetc/getc/getchar * * x
fputc/putc/putchar * * x
fgets/gets * * x
fputs/puts * * x
ungetc * * x

Direct 110
fread/fwrite * * x
ftell/fseek * * x
rewind * * x

E rro r-handli ng
clearerr * * x
feof * * x
ferror * * x

Figure 7 (Part 2 of 4). Major Elements of the C Interface

28 Systems Application Architecture: Overview

Languages - C

Language Element MVS VM OS/2

Signal Handling:
signal function * * x

Signals Supported:
SIGABRT * * x
SIGFPE * * x
SIGILL * * x
SIGINT * * x
SIGSEGV * * x
SIGTERM * * x
SIGUSR1 * * x
SIGUSR2 * * x

Non-Local Jumps:
setjmp/longjmp * * x

Mathematical:
cos/sin/tan * * x
a cos/ asi n/ a tan/ atan2 * * x
exp/log/log10 * * x
f rexp/ldexp * * x
modf/fmod * * x
pow/sqrt * * x
ceil/floor/fabs * * x
Bessel functions * * x

General Utilities:
String conversion

atof/atoi/atol * * x
strtod/strtol * * x

Pseudo-random numbers
rand/srand * * x

Memory management
calloc/malloc/realloc * * x
free * * x

Environment interactions
abort * * x
exit * * x
getenv * * x
system * * x

Searching and sorting
bsearch/qsort x

Integer arithmetic
abs/labs * * x

Figure 7 (Part 3 of 4). Major Elements of the C Interface

Part Two: Contents of the Programming Interface 29

Languages - C

Language Element MVS VM OS/2

Variable Arguments:
va_start/va_arg/va_end * * x
vpri ntf /vfpri ntf /vspri ntf * * x

String Operations:
strlen * * x
strstr x
strtok * * x
strpbrk * * x
strcat/strncat * * x
st rem p/strncm p * * x
strcpy/strncpy * * x
strchr/strrchr * * x
strspn/strcspn * * x

Memory Block Operations:
memcpy, memcmp * * x
memchr, memset * * x

Date and Time:
Time manipulation

difftime * * x
time * * x

Time conversion
asctime * * x
ctime * * x
gmtime * * x
localtime * * x

Character Handling:
Character testing

isal num/isal pha/iscntrl * * x
isdigit/isgraph/islower * * x
isprint/ispunct/isspace * * x
isupper/isxdigit * * x

Character case mapping
tolower/toupper * * x

Figure 7 (Part 4 of 4). Major Elements of the C Interface

30 Systems Application Architecture: Overview

COBOL
COBOL is a widely-used application programming language. Its success is due
largely to:

• Its power in handling the data processing needs of business

• The natural English-like appearance of the language, which makes it easy to
write and maintain applications.

Programs written in COBOL are geared to handle large volumes of data from
sources as different as magnetic tapes and display terminals. After manipulating
this data, the programs can produce a variety of outputs, such as printed reports or
files on disk storage devices. COBOL is also flexible enough to handle a wide
range of data processing needs -from the overnight processing of a company
payroll to the "I-need-an-answer-now" demands of insurance claim inquiries.

The Interface for Systems Application Architecture
In general, the language elements in the IBM specification fall into three catego­
ries:

• American National Standard Programming Language - COBOL, ANSI
X3.23-1985, ISO standard 1989-1985, Intermediate Level

• Some elements from ANSI X3.23-1985, High Level

• IBM enhancements to this standard - such as COMP-3 and COMP-4 data
items.

Because the IBM specification is based largely on these well-known and accepted
industry standards, programmers will find several benefits:

• Familiarity

• Ability to use existing standard programs currently running on IBM systems

• Ability to take standard programs from non-IBM systems and run them on the
supported architectures.

For enhanced programmer productivity and ease of use, IBM's specification will
contain other language features beyond the industry standards. For more informa­
tion, see the table on the following page.

Part Two: Contents of the Programming Interface 31

Languages - COBOL

The table below lists the language elements currently in the COBOL interface for
Systems Application Architecture. This specification is based largely on the 1985
ANS COBOL standard, at the Intermediate Level. (Language elements that are
new in the 1985 standard are printed in italics.) To this standard, IBM also adds
certain extensions.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular language element.

On MVS and VM, the VS COBOL II product (5668-958) provides the COBOL inter­
face, with the exception of certain 1985 ANS COBOL Intermediate Level items. On
Operating System/2 (Personal Computer), the implementing product will be IBM
COBOL/2.

Language Element MYS VM OS/2

ANS LANGUAGE ELEMENTS

NUCLEUS MODULE

Language Concepts:
COBOL words x x x
Characters a-z in COBOL words x
Literals x x x
PICTURE character-strings x x x
Comment-entries x x x
Qua I ification x x x
50 levels of qualifiers x x x

Subscripting (data-name/I iteral) x x x
Mixed indexes and subscripts x
Relative subscripting x

Subscripting (index-name) x x x

Reference format:
TITLE x x x
Sequence number x x x
Comment lines x x x
Debugging lines x x x

IDENTIFICATION DIVISION:
PROGRAM-ID paragraph x x x
AUTHOR paragraph x x x

Figure 8 (Part 1 of 6). Major Elements of the COBOL Interface

32 Systems Application Architecture: Overview

Languages - COBOL

Language Element MVS VM OS/2

INSTALLATION paragraph x x x
DATE-WRITTEN paragraph x x x
DATE-COMPILED paragraph x x x
SECURITY paragraph x x x

ENVIRONMENT DIVISION:
Configuration Section:
SOURCE-COMPUTER paragraph x x x
OBJECT-COMPUTER paragraph x x x
SPECIAL-NAMES paragraph x x x

Alphabet-name clause:
word ALPHABET x
STANDARD-2 option (ISO 7-Bit Code) x
CLASS clause x

Input-Output Section:
File control entry: x x x

ASSIGN TO literal x

DATA DIVISION:
Working-Storage Section:
BLANK WHEN ZERO clause x x x
Data-name or FILLER clause x x x
JUSTIFIED clause x x x
Level-number x x x
OCCURS clause x x x

VALUE clause allowed with OCCURS x
PICTURE clause x x x
REDEFINES clause x x x
RENAMES clause x x x
SIGN clause x x x
SYNCHRONIZED clause x x x
USAGE clause x x x

BINARY x
PACKED-DECIMAL x

VALUE clause x x x

PROCEDURE DIVISION:
Arithmetic expressions x x x
Conditional expressions x x x

Relation condition: x x x
Relational operators: x x x

GREATER THAN OR EQUAL TO x
>= x

Figure 8 (Part 2 of 6). Major Elements of the COBOL Interface

Part Two: Contents of the Programming Interface 33

Languages - COBOL

Language Element MVS VM OS/2

LESS THAN OR EQUAL TO x
<= x

Class condition: x x x
ALPHABETIC (uppercase and lowercase x
alphabetic characters)

ALPHABETIC-LOWER x
ALPHABETIC-UPPER x
class-name x

ACCEPT statement x x x
ADD statement x x x

TO identifier/literal GIVING identifier x
NOT ON SIZE ERROR phrase x
END-ADD phrase x x x

AL TEA statement x x x
COMPUTE statement x x x

NOT ON SIZE ERROR phrase x
END-COMPUTE phrase x x x

CONTINUE statement x x x
DISPLAY statement x x x
DIVIDE statement x x x

NOT ON SIZE ERROR phrase x
END-DIVIDE phrase x x x

ENTER statement x x x
EXIT statement x x x
EV ALU A TE statement x x x
GO TO statement x x x
IF statement x .. x x

END-IF phrase x x x
INITIALIZE statement x x x
INSPECT statement x x x

CONVERTING phrase x
MOVE statement x x x
MULTIPLY statement x x x
NOT ON SIZE ERROR phrase x
END-MULTIPLY phrase x x x

PERFORM statement x x x
In-line Perform x x x
END-PERFORM phrase x x x
UNTIL phrase x x x

WITH TEST BEFORE/AFTER phrase x x x
VARYING phrase x x x

WITH TEST BEFORE/AFTER phrase x x x
SEARCH statement x x x

END-SEARCH phrase x x x

Figure 8 (Part 3 of 6). Major Elements of the COBOL Interface

34 Systems Application Architecture: Overview

Languages - COBOL

Language Element MVS VM OS/2

SEARCH ALL statement x x x
END-SEARCH phrase x x x

SET statement x x x
Mnemonic-name TO ON/OFF x
Condition-name TO TRUE x x x

STOP statement x x x
STRING statement x x x

NOT ON OVERFLOW phrase x
END-STRING phrase x x x

SUBTRACT statement x x x
NOT ON SIZE ERROR phrase x
END-SUBTRACT phrase x x x

UNSTRING statement x x x
NOT ON OVERFLOW phrase x
END-UNSTRING phrase x x x

1-0 MODULES

ENVIRONMENT DIVISION:
Input-Output Section:
File control entry:
SELECT clause x x x
ASSIGN clause x x x

ASSIGN TO literal x
ORGANIZATION clause x x x
ACCESS MODE clause x x x
RECORD KEY clause x x x
ALTERNATE RECORD KEY clause x x x
FILE STATUS clause x x x
RESERVE AREA clause x x x

1-0-CONTROL paragraph:
RERUN clause x x
SAME clause x x x
MULTIPLE FILE TAPE clause x x x

DATA DIVISION:
File Section:
FD file name x x x

BLOCK CONTAINS clause x x x
CODE-SET clause x x x
DAT A RECORDS clause x x x
LABEL RECORDS clause x x x
LINAGE clause x x x

Figure 8 {Part 4 of 6). Major Elements of the COBOL Interface

Part Two: Contents of the Programming Interface 35

Languages - COBOL

Language Element MYS VM OS/2

RECORD clause x x x
VALUE OF clause x x x

Record description entry x x x

PROCEDURE DIVISION:
CLOSE statement x x x
DELETE statement x x x
NOT INVALID KEY phrase x
END-DELETE phrase x x x

OPEN statement x x x
READ statement x x x
NOT AT END phrase x
NOT INVALID KEY phrase x
END-READ phrase x x x

REWRITE statement x x x
NOT INVALID KEY phrase x
END-REWRITE phrase x x x

ST ART statement x x x
NOT INVALID KEY phrase x
END-START phrase x x x

USE statement x x x
WRITE statement x x x
NOT AT END-OF-PAGE (EOP) phrase x
NOT INVALID KEY phrase x
END-WRITE phrase x x x

File Status Codes x x x
New File Status Codes x

INTER-PROGRAM COMMUNICATION MODULE

LINKAGE SECTION x x x

PROCEDURE DIVISION:
PROCEDURE DIVISION USING x x x
CALL statement x x x

ON EXCEPTION phrase x
NOT ON EXCEPTION phrase x
END-CALL phrase x x x

CANCEL statement x x x
EXIT PROGRAM statement x x x

Figure 8 (Part 5 of 6). Major Elements of the COBOL Interface

36 Systems Application Architecture: Overview

Languages - COBOL

Language Element MVS VM OS/2

SORT-MERGE MODULE

ENVIRONMENT DIVISION:
Input-Output Section:
FILE-CONTROL paragraph x x
File control entry x x

SELECT clause x x
ASSIGN clause x x

ASSIGN TO literal x
SAME clause x x

DATA DIVISION:
File Section:
SD Sort-Merge File x x
Record description entry x x
DATA RECORDS clause x x
RECORD clause x x

PROCEDURE DIVISION:
MERGE statement x x
RELEASE statement x x
RETURN statement x x

NOT AT END phrase x
END-RETURN phrase x x

SORT statement x x
DUPLICATES phrase x

SOURCE TEXT MANIPULATION MODULE
COPY statement x x x

IBM EXTENSIONS

Special Register WHEN-COMPILED x x x
ID DIVISION abbreviation x x x
Optional IDENTIFICATION DIVISION para- x x x
graphs in any order
Second file status x x x
USAGE COMPUTATIONAL-3 (COMP-3) x x x
USAGE COMPUTATIONAL-4 (COMP-4) x x x
ACCEPT FROM CONSOLE/SYSIN x x x
DISPLAY UPON CONSOLE/SYSOUT x x x
GOBACK statement x x x
EJECT and SKIP1 /2/3 statements x x x
TITLE statement x x x

Figure 8 {Part 6 of 6). Major Elements of the COBOL Interface

Part Two: Contents of the Programming Interface 37

FORTRAN
FORTRAN is a programming language designed for jobs involving mathematical
computations and other manipulation of numeric data. This makes it especially
well-suited to scientific and engineering applications.

Because it is simple and easy to learn, and because it produces efficient code,
FORTRAN is widely used. It forms a convenient and familiar tool for anyone
involved in mathematical computation. Scientists, engineers, and students are
only a few of the many people who use it.

The original FORTRAN was developed by IBM. Over the years, IBM has continued
to enhance the language and to offer more powerful and sophisticated FORTRAN
products with a variety of features on all its systems.

The Interface for Systems Application Architecture
The interface specification provides a language that has the familiar simplicity of
its predecessors, but also incorporates new features. In general, the language ele­
ments fall into two categories:

• American National Standard Programming Language - FORTRAN, ANSI
X3.9-1978 (FORTRAN 77), ISO standard, 1539-1980.

• Enhancements to this standard - such as the ability to use names that are up
to 31 characters long.

Because the IBM specification is based on the ANS standard, users will obtain
several benefits:

• Familiarity

• Ability to use existing programs currently running on IBM systems (many of
which are based on the ANS 77 standard)

• Ability to take standard programs from non-IBM systems and run them on the
supported IBM architectures.

For enhanced programmer productivity and ease of use, IBM's specification will
contain language features beyond the industry standards. For more details, see
the table on the following page.

38 Systems Application Architecture: Overview

Languages - FORTRAN

The table below lists the language elements currently in the FORTRAN interface for
Systems Application Architecture.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular language element.

On MVS and VM, the VS FORTRAN Version 2 product (5668-806) provides the
FORTRAN interface, with the exception of the INCLUDE statement. On Operating
System/2 (Personal Computer), the implementing product will be IBM FORTRAN/2.

Language Element MVS VM OS/2

1977 ANS FORTRAN - all elements x x x
INTEGER*2 x x x
LOGICAL*1 x x x
COMPLEX*16 x x x
COMPLEX*16 intrinsic functions x x x
ISA S61.1 bit routines x x x
IMPLICIT NONE x x x
INCLUDE x
31-character names x x x
Mixed case names x x x
IBM minimum compiler limits x x x

Figure 9. Major Elements of the FORTRAN Interface

Part Two: Contents of the Programming Interface 39

Procedures Language
IBM's procedures language allows one to write programs in a clear, structured
way. In its REXX implementation, it has proved to be easy to learn and teach. The
clarity it offers makes it useful to professional programmers and "casual" users
alike. Powerful character and arithmetic abilities make it suited for programs large
or small. Its conventional syntax provides a flexible language suited for use not
only as a command and macro language, but as a full-function development lan­
guage as well.

Ease of use is a distinctive feature of the procedures language. Furthermore, its
design allows dynamic interpretation of statements, if desired.

The procedures language's other features include:

• Presentation of host commands to the system

• External and internal calling mechanisms

• Structured programming constructs, such as IF-THEN-ELSE and SELECT

• Expressions, including arithmetic, concatenation, comparative, and logical
operators - all of which act upon variables that can contain either character
strings or numbers

• Extensive string parsing by pattern matching; a string (possibly the input from
an external source) can be split into parts and assigned to variables as needed

• Exception handling and tracing mechanisms.

The Interface for Systems Application Architecture
The interface specification is based largely on the REXX language currently avail­
able as part of the VM operating system. For more information on the contents of
this specification, see the table on the following pages.

40 Systems Application Architecture: Overview

Languages - Procedures Language

The table below lists the language elements currently in the procedures interface
for Systems Application Architecture.

The table indicates (with an "X") which systems already have an IBM component
announced or available that implements a particular language element.

The current implementation in the CMS component of VM/SP is the System Product
Interpreter (also known as REXX).

Language Element MVS VM OS/2

General Concepts
Assignment statement x
Null clause x
Labels x
Commands x
Simple variables x
Compound variables x
Constant symbols x
Literal strings x
Hexadecimal literal strings x
Internal function calls x
External function calls x
Integer numbers x
Decimal numbers x
Exponential notation x

Instructions
ADDRESS instruction x
ARG instruction x
CALL instruction x
simple DO x
repetitive DO x
DO FOREVER x
DO WHILE x
DO UNTIL x
controlled repetitive DO x
DROP x
EXIT x
IF-THEN-ELSE x
INTERPRET x
ITERATE x
LEAVE x
NOP x
NUMERIC DIGITS x
NUMERIC FORM x
NUMERIC FUZZ x
OPTIONS x
PARSE ARG x

Figure 10 (Part 1 of 4). Major Elements of the Procedures Language

Part Two: Contents of the Programming Interface 41

Languages - Procedures Language

Language Element MVS VM OS/2

PARSE PULL x
PARSE SOURCE x
PARSE VALUE x
PARSE VAR x
PARSE VERSION x
PROCEDURE x
PROCEDURE EXPOSE x
PULL x
PUSH x
QUEUE x
RETURN x
SAY x
SELECT x
SIGNAL x
SIGNAL ON x
TRACE x

Functions
ABBREV built-in function x
ABS built-in function x
ADDRESS built-in function x
ARG built-in function x
BITAND built-in function x
BITOR built-in function x
BITXOR built-in function x
CENTRE built-in function x
CENTER built-in function x
COMPARE built-in function x
COPIES built-in function x
C2D built-in function x
C2X built-in function x
DATATYPE built-in function x
DATE built-in function x
DELSTR built-in function x
DELWORD built-in function x
D2C built-in function x
D2X built-in function x
ERRORTEXT built-in function x
FORMAT built-in function x
INSERT built-in function x
LASTPOS built-in function x
LEFT built-in function x
LENGTH built-in function x
MAX built-in function x
MIN built-in function x
OVERLAY built-in function x
POS built-in function x

Figure 10 {Part 2 of 4). Major Elements of the Procedures Language

42 Systems Application Architecture: Overview

Languages - Procedures Language

Language Element MVS VM OS/2

QUEUED built-in function x
RANDOM built-in function x
REVERSE built-in function x
RIGHT built-in function x
SIGN built-in function x
SOURCELINE built-in function x
SPACE built-in function x
STRIP built-in function x
SUBSTR built-in function x
SUBWORD built-in function x
SYMBOL built-in function x
TIME built-in function x
TRACE built-in function x
TRANSLATE built-in function x
TRUNC built-in function x
VALUE built-in function x
VERIFY built-in function x
WORD built-in function x
WORDINDEX built-in function x
WORDLENGTH built-in function x
WORDS built-in function x
XRANGE built-in function x
X2C built-in function x
X2D built-in function x

Operators
= comparative operator x
--, = comparative operator x
> comparative operator x
< comparative operator x
< > comparative operator x
> < comparative operator x
> = comparative operator x
--, < comparative operator x
< = comparative operator x
--, > comparative operator x
= = comparative operator x
--, = = comparative operator x
& boolean operator x
I boolean operator x
&& boolean operator x
Prefix --, boolean operator x
(blank) concatenation x
11 concatenation x
(abuttal) concatenation x
+ arithmetic operator x
- arithmetic operator x

Figure 10 (Part 3 of 4). Major Elements of the Procedures Language

Part Two: Contents of the Programming Interface 43

Languages - Procedures Language

Language Element MVS VM OS/2

* arithmetic operator x
I arithmetic operator x
% arithmetic operator x
II arithmetic operator x
** arithmetic operator x
Prefix - arithmetic operator x
Prefix + arithmetic operator x
Parentheses and operator precedence x

Parsing
Word parsing x
Literal parsing triggers x
Variable parsing triggers x
Absolute column parsing x
Relative column parsing x

Special Features
RC special variable x
RESULT special variable x
SIGL special variable x
Variable pool interface (EXECCOMM in CMS) x

Figure 10 (Part 4 of 4). Major Elements of the Procedures Language

44 Systems Application Architecture: Overview

Services

Database Interface 46

Dialog Interface 50

Presentation Interface 52

Query Interface 58

Part Two: Contents of the Programming Interface 45

Database Interface
Access to data bases is provided through SQL (Structured Query Language). It
allows users to define, retrieve, and manipulate information in a relational data
base.

SQL is nonprocedural. Users specify what they want to do, and don't need to be
concerned with how it's done. Syntax is straightforward and easy for even occa­
sional users to learn and remember. Simple yet powerful, single statements can
perform the same function as many lines of conventional code. SQL makes
complex operations possible and typical tasks easy.

SQL also provides built-in functions and arithmetic operations, so programmers
can perform immediate mathematical operations on data, often without having to
write traditional programs. On the other hand, if noninteractive processing is
desired, SQL statements can be imbedded in traditional application programs,
written in such languages as COBOL or FORTRAN, and then precompiled.

SQL is based on the relational data model, an advanced technology that makes
data easier to access and use. Various pieces of information can be viewed in
relationship to each other without predefining that relationship in the data base
structure. This easier, more flexible method allows users and applications to
share and access data in an ad hoc fashion to support changing requirements for
information.

The description of how data is stored or managed is not a part of the application.
Therefore, storage and management of data can be optimized to each environment
without impacting the portability of the application or the application development
process.

The Interface for Systems Application Architecture
The specification for the SQL language provides a framework for similar data
access in the supported architectures. This means th.at an application can be
moved from environment to environment with minimal change.

IBM's specification has been developed with consideration for the American
National Standard Database Language - SQL, ANSI X3.135-1986. The IBM specifi­
cation is almost identical to the language in DB2 and SOLIDS, so current users of
those System/370 licensed programs will have the benefits of familiarity. For more
specifics, see the table on the following page.

46 Systems Application Architecture: Overview

Services - Database Interface

The table below lists the language elements currently in the database interface for
Systems Application Architecture.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular language element.

On MVS, the implementing product will be DB2 Release 3 (5740-XYR). On VM, it
will be SOLIDS Version 2 (5688-004). On the Personal Computer, the implementa­
tion will be provided by the IBM Operating System/2 Database Manager.

Language Elements MVS VM OS/2

SELECT Expressions
SELECT list x x x
FROM clause x x x
WHERE clause x x x
GROUP BY clause x x x
HAVING clause x x x

Data Definition
CREATE TABLE x x x
CREATE VIEW x x x
ALTER TABLE x x x
CREATE INDEX x x x
DROP INDEX x x x
DROP TABLE x x x
DROP VIEW x x x
COMMENT ON x x x

Authorization
GRANT x x
REVOKE x x

Basic Statements
INSERT x x x
SELECT x x x
UPDATE ... WHERE x x x
DELETE ... WHERE x x x

Figure 11 (Part 1 of 3). Major Elements of the Database Interface

Part Two: Contents of the Programming Interface 47

Services - Database Interface

Language Elements MVS VM OS/2

Cursor-Oriented Operations
DECLARE CURSOR x x x
ORDER BY x x x
SELECT ... FOR UPDATE x x x
UNION x x
OPEN x x x
FETCH x x x
DELETE x x x
UPDATE x x x
CLOSE x x x

Dynamic Facilities
PREPARE x x x
DESCRIBE x x x
EXECUTE x x x
EXECUTE IMMEDIATE x x x
SQLDA x x x

Miscellaneous Statements
INCLUDE x x x
LOCK TABLE x x x
WHENEVER x x x

Data Types
CHARACTER x x x
VARCHAR x x x
LONG VARCHAR x x x
INTEGER x x x
SM ALLI NT x x x
DECIMAL x x x
FLOAT x x x
DATE x x x
TIME x x x
TIMESTAMP x x x

Figure 11 (Part 2 of 3). Major Elements of the Database Interface

48 Systems Application Architecture: Overview

Services - Database Interface

Language Elements MVS VM OS/2

Other Language Elements
Null Values x x x
Host Variable References x x x
Indicator Variables x x x
Column References x x x
Ordinary Identifiers x x x
Delimited Identifiers x x x
Functions: AVG, MIN, MAX, SUM, COUNT x x x
Arithmetic Operators x x x
Comparison Operators x x x
BETWEEN Predicate x x x
IN Predicate x x x
LIKE Predicate x x x
IS NULL Predicate x x x
ALL/ANY Predicate x x x
EXISTS Predicate x x x
Search Condition x x x
SQLCA x x x

Pre-Compilers
c x
COBOL x x x
FORTRAN x x

Figure 11 (Part 3 of 3). Major Elements of the Database Interface

Part Two: Contents of the Programming Interface 49

Dialog Interface
Dialog services help programmers develop interactive applications. These ser­
vices fall into two broad categories:

• The control of the display and interaction of panels containing constant and
variable information on a screen, including:

menu selections
help information
data requests
messages

• The passing to the application of data and function requests from the user.

Thus, assistance is provided when a user is choosing general functions available
in the whole system, or when data (input and responses) is being moved between a
user and a specific application.

From the application developer's point of view, this management function can be
thought of as a convenient, easy-to-use extension of the operating system's ser­
vices. It helps the application developer code functions such as input field vali­
dation, message services, and help facilities.

Along with presentation, consistent dialog management buffers the programmer,
the application, and the user from device-dependent considerations. This
enhances application portability and simplifies application development. The pro­
grammer will use similar development tools across operating environments,
gaining in productivity. And the users of these applications will have a consistent
view across applications and systems.

The Interface for Systems Application Architecture
The interface specification for dialog is based on the existing Personal Computer
EZ-VU Run Time Facility. Thus, current product users will find the new interface
familiar. For more information, see the table on the following page.

50 Systems Application Architecture: Overview

Services - Dialog Interface

The table below lists the elements currently in the dialog interface for Systems
Application Architecture.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular element.

On the Personal Computer, the implementation will be provided by the IBM Oper­
ating System/2 Dialog Manager.

Dialog Service MVS VM OS/2

Panel Services
CONTROL (changes panel characteristics) x
DMSELECT (selects another menu panel) x
PANDEL (deletes a panel) x
PANDISP (displays a panel) x
PANREAD (gets input from a panel) x
PANWRITE (writes a panel) x
SETCUR (positions cursor) x
SETMSG (writes a message) x

Variable Services
VDEFARR (defines an array) x
VDEFINE (defines a scalar) x
VDELETE (deletes a variable) x
VGET (gets a variable) x
VOBTAIN (gets a variable) x
VPUT (puts a variable) x
VRESET (deletes a pool) x
VUPDATE (puts a variable) x

Supported Languages
C support x
COBOL support x
FORTRAN support x

Figure 12. Major Elements of the Dialog Interface

Part Two: Contents of the Programming Interface 51

Presentation Interface
Presentation services provide programmers and users with a comprehensive set of
functions that allow information to be displayed or printed in the most effective
manner.

The major functions provided are:

• A windowing system that the user can tailor to display selected information
from one or several applications

• Support for presentation and interaction via the keyboard and mouse to enable
applications to conform to the Common User Access

• Comprehensive graphics support

• Limited image support

• Saving and restoring graphics pictures

• Support for many types of display terminals, printers, and plotters.

By their very nature, presentation services buffer the programmer, the application,
and the user from device-dependent considerations, thus enhancing application
portability and simplifying application development. A cross-system specification
augments these inherent benefits.

The Interface for Systems Application Architecture
The interface specification is based largely on the existing System/370 GDDM
(Graphical Data Display Manager). Thus, the new specification will be familiar to
current GDDM users.

For more information on the contents of the specification, see the table on the fol­
lowing pages.

52 Systems Application Architecture: Overview

Services - Presentation Interface

The table below lists the calls currently in the presentation interface for Systems
Application Architecture.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular call.

On MVS and VM, the GDDM/MVS and GDDM/VM products (5665-356 and 5664-200,
respectively) provide the presentation interface, with the exception of certain ele­
ments (primarily in the area of windows). On the Personal Computer, the imple­
mentation will be provided by the IBM Operating System/2 Presentation Manager.

Language Element MVS VM OS/2

Graphics:
Floating-point: GSCP, x x

GpsSetCurrentPosition, ...
Fixed-point: GICP, x

GpiSetCurrentPosition, ...
Line functions:
GS/GICP Gps/GpiSetCurrentPosition x x x
GS/GIFLW Gps/GpiSetF-raclineWidth x x x
GS/GILINE Gps/Gpiline x x x
GSL T GpiSetlineType x x x
GSLW GpiSetlineWidth x x x
GS/GIMOVE Gps/GpiMove x x x
GS/GIPLNE Gps/GpiPolyline x x x
GS/GIQCP Gps/GpiQueryCurrentPosition x x x
GSQFLW GpiQueryFraclineWidth x x x
GSQL T GpiQuerylineType x x x
GSQLW GpiQuerylineWidth x x x

Arc functions:
GSA RC GpiCi rcArc x x
GSELPS GpiEllipArc x x
GS/GIPFLT Gps/GpiPolyFillet x x x

Area functions:
GSAREA GpiBeginArea x x x
GSENDA GpiEndArea x x x
GSPAT GpiSetPattern x x x
GSQPAT GpiQueryPattern x x x

Color and mix functions:
GSBMIX GpiSetBackMix x x x
GSCOL GpiSetColor x x x
GSMIX GpiSetMix x x x
GSQBMX GpiQueryBackMix x x x

Figure 13 {Part 1 of 5). Major Elements of the Presentation Interface

Part Two: Contents of the Programming Interface 53

Services - Presentation Interface

Language Element MYS VM OS/2

GSQCOL GpiQueryColor x x x
GSQMIX GpiQueryMix x x x

Character functions:
GS/GICA Gps/GpiSetCharAngle x x x
GS/GICB Gps/GpiSetCharBox x x x
GS/GICBS Gps/GpiSetCharSpacing x x x
GSCD GpiSetCharDirection x x x
GS/GICH Gps/GpiSetCharShear x x x
GSCHAP GpiCharString x x x
(at current position)

GS/GICHAR Gps/GpiCharStringAt x x x
(specified position)

GSCM GpiSetCharMode x x x
GSCS GpiSetCharSet x x x
GSTA GpiSetTextAlignment x x x
GS/GIQCA Gps/GpiQueryCharAngle x x x
GS/GIQCB Gps/GpiQueryCharBox x x x
GS/GIQCBS Gps/GpiQueryCharSpacing x x x
GSQCD GpiQueryCharDirection x x x
GS/GIQCH Gps/GpiQueryCharShear x x x
GSQCM GpiQueryCharMode x x x
GSQCS GpiQueryCharSet x x x
GSQTA GpiQueryTextAlignment x x x
GS/GIQTB Gps/GpiQueryTextBox x x x

Symbol set functions:
GSDSS GpiloadSymbolSet x x x
GSRSS GpiDeleteSymbolSet x x x
GSQNSS GpiQueryNumberSymbolSets x x x
GSQSS GpiQuerySymbolSets x x x
GSQSSD GpiQuerySymbolSetData x x x

Marker functions:
GS/GIMARK Gps/GpiMarker x x x
GS/GIMB Gps/GpiSetMarkerBox x x x
GS/GIMRKS Gps/GpiPolyMarker x x x
GSMS GpiSetMarker x x x
GS/GIQMB Gps/GpiQueryMarkerBox x x x
GSQMS GpiQueryMarkerSymbol x x x

Image function:
GSIMG Gpilmage x x x

Transform functions:
GS/GICALL Gps/GpiCallSegment x x x

Figure 13 {Part 2 of 5). Major Elements of the Presentation Interface

54 Systems Application Architecture: Overview

Services - Presentation Interface

Language Element MVS VM OS/2

GS/GISCT Gps/GpiSetModelTransform x x x
GS/GISORG Gps/GpiSetSegmentOrigin x x x
GS/GISTFM Gps/GpiSetSegment x x
Transform Matrix
GS/GISAGA Gps/GpiSetSegmentTransform x x x
GS/GISVL Gps/GpiSetViewinglimits x x x
GS/GIUWIN Gps/GpiSetUniformWindow x x x
GS/GIWIN Gps/GpiSetWindow x x x
GS/GIQAGA Gps/GpiQuerySegment x x
Transform
GS/GIQORG Gps/GpiQuerySegmentOrigin x x x
GS/GIQSVL Gps/GpiQuerySegmentViewing x x x
Limits
GS/GIQTFM Gps/GpiQuerySegmentTransform x x
Matrix
GS/GIQWIN Gps/GpiQueryWindow x x x

General attribute and control functions:
GSAM GpiSetAttrMode x x x
GSCLR GpiClearGraphicsField x x
GSDEFE GpiEndDefaults x x x
GSDEFS GpiBeginDefaults x x x
GSFLD GpiDefGraphicsField x x x
GSPOP GpiPop (restore attributes) x x x
GSQAM GpiQueryAttrMode x x x
GSQFLD GpiQueryGraphicsField x x x

Correlation and boundary functions:
GS/GICORS Gps/GpiCorrelateStructure x x x
GSTAG GpiSetTag x x x
GSQTAG GpiQueryTag x x x

Segment manipulation functions:
GSSATI GpiSetlnitialSegmentAttrs x x x
GSSATS GpiSetSegmentAttrs x x x
GSSCLS GpiCloseSegment x x x
GSSDEL GpiDeleteSegment x x x
GSSEG GpiOpenSegment x x x
GSSPRI GpiSetSegmentPriority x x x
GSQATI GpiQuerylnitialSegmentAttrs x x x
GSQATS GpiQuerySegmentAttrs x x x
GSQPRI GpiQuerySegmentPriority x x x

Metafile support:
GSGET GpiGetGraphicsData x x

Figure 13 (Part 3 of 5). Major Elements of the Presentation Interface

Part Two: Contents of the Programming Interface 55

Services - Presentation Interface

Language Element MVS VM OS/2

GSGETE GpiEndGetGraphicsData x x
GSGETS GpiBeginGetGraphicsData x x
GSPUT GpiPutGraphicsData x x

Picture exchange:
Picture exchange x x x
GSLOAD GpiloadSegments x x
GSSAVE GpiSaveSegments x x

Windows (specialized windows and controls for
Common User Access, including text and entry
fields):
Environment management:

WMBEEP WinBeep x
WMDISP WinDispatchMsg x
WMDWP WinDefWindowProc x
WMGET WinGetMsg x
WMINIT Winlnitialize x
WM MINT Wi nSetMsgl nterest x
WMPEEK WinPeekMsg x
WMPOST WinPostMsg x
WMRCL WinRegisterClass x
WMSCUP WinSetCursorPos x
WMSCUR WinSetCursor x
WMSEND WinSendMsg x
WMSHCU WinShowCursor x
WMSLE WinSetlastError x
WMSSYS WinSetSysValue x
WMTERM WinTerminate x
WMWAIT WinWaitMsg x
WMQCLI WinQueryClasslnfo x
WMQCLN WinQueryClassName x
WMQCUP WinQueryCursorPos x
WMQLE WinQuerylastError x
WMQSYS WinQuerySysValue x
WMQVER WinQueryVersion x

Device management:
WDCLS DevCloseDC x
(device context)

WDCRDC WinCreateWindowDC x
WDOPEN DevOpenDC x
WDQCAP DevQueryCaps x

Figure 13 (Part 4 of 5). Major Elements of the Presentation Interface

56 Systems Application Architecture: Overview

Services - Presentation Interface

Language Element MVS VM OS/2

Window management:
WICRT WinCreateWindow x
WIDEL WinDestroyWindow x
WIEWU WinEnableWindowUpdate x
WISCRL WinScrollWindow x
WISHOW WinShowWindow x
WISMPS WinSetMultipleWindowPos x
WISPOS Wi nSetWi ndowPos x
WISTXT Wi nSetWi ndowText x
WIQVIS Wi nlsWi ndowVisi ble x
WIQRCT WinQueryWindowRect x
WIQTXT WinQueryWindowText x

Presentation space management:
WPCRT GpiCreatePS x
(presentation space)
WPDEL GpiDestroyPS x
WPQRY GpiQueryPS x

Dialog and menu support:
WCCRD WinCreateDlg x
WCCRDB WinDlgBox x
WCCRM WinCreateMenu x
WCDELD WinDismissDlg x

Utility functions:
WUCOMP WinCompareStrings x
WULOW Winlower (lowercase) x
WUPPER WinUpper (uppercase) x
WUQALP Wi nlsAI pha x

Programming languages:
COBOL (GSCP, ...) x x x
FORTRAN (GSCP, ...) x x x
c (GpiSetCurrentPosition, ...) x

Figure 13 (Part 5 of 5). Major Elements of the Presentation Interface

Part Two: Contents of the Programming Interface 57

Query Interface
Query and report writing services allow one to compose queries of a relational
data base and to create reports based on the answers.

Query/report writing is an interactive service. Using an easy, menu-interaction
approach, users can access and summarize information, and then format the
results. This means that rather than having to write a program to produce
answers, a person can merely create and run a query. Results can be obtained
much more quickly.

The functions are easy to learn and use. The command set is simple, so one need
know only a few commands to start becoming productive. Furthermore, online
assistance guides users so they can make their requests more easily.

Query and reporting facilities are also available to applications through a program­
to-program call interface. Applications can thus build and manipulate queries, pro­
cedures, and report specifications. Results can also be stored and then accessed
by other applications.

Query can benefit a variety of users - from data processing experts to those who
know nothing about data processing techniques. Query lets users concentrate on
what they are trying to do, rather than how to do it.

The Interface for Systems AppHcation Architecture
The interface specification for query is based on an extension of the interfaces
found in today's QMF - the Query Management Facility familiar to System/370
users.

For more information on the contents of the query commands, see the table on the
following pages.

58 Systems Application Architecture: Overview

Services - Query Interface

The table below lists the interface elements currently in the query interface for
Systems Application Architecture.

The table indicates (with an X) which systems already have an IBM licensed
program announced or available that implements a particular element.

On MVS and VM, the Query Management Facility products (5668-AAA and
5668-721, respectively) provide the query interface, with some exceptions. An
asterisk(*) indicates interface elements that will change in or be added to the
current QMF. QMF intends to provide this implementation by December, 1988.
The program call interface element (indicated by**) is planned to be described in
the Systems Application Architecture query interface reference manual (to be
available third quarter 1987), and is based on the command interface available in
QMF today.

On the Personal Computer, the implementation will be provided by the IBM Oper­
ating System/2 Query Manager.

Interlace Elements MVS VM OS/2

Program Call
Dialog Interface Select Service ·~ **

Commands
Erase:

Query * * x
Form (report definition) * * x
Procedure * * x
Table * * x

Export:
Query * *
Form (report definition) * *
Procedure * *
Table * * x

Import:
Query * *
Form (report definition) * *
Procedure * *
Table * * x

Print:
Query * * x
Form (report definition) * * x
Procedure * * x
Report * * x

Figure 14 {Part 1 of 3). Major Elements of the Query Interface

Part Two: Contents of the Programming Interface 59

Services - Query Interface

Interface Elements MYS VM OS/2

Run:
Query * * x
Procedure * * x

Save:
Table data * * x

Exported Objects
Query x x
Procedure x x
Table x x x
Form (report definition) x x

Query Capabilities
SQL Selection x x x

Prompted Query
Table selection x
Column selection x
Row selection x
Row ordering x
Duplicates x
Join columns x

Reporting Capabilities
Page:

Heading text x x x
Footing text x x x
Blank lines before/after text x x x
Text alignment x x x
Numbering of pages x x x

Column:
Spacing x x x
Width x x x
Heading editing x x x
Heading separators x x x
Data editing x x x
Aggregation:

Average x x x
Count x x x
Maximum x x x
Minimum x x x
First x x x
Last x x x

Figure 14 (Part 2 of 3). Major Elements of the Query Interface

60 Systems Application Architecture: Overview

Services - Query Interface

Interface Elements MVS VM OS/2

Sum x x x

Breaks on Columns:
Six levels x x x
Heading text x x x
Footing text x x x
Text alignment x x x
Blank lines before/after text x x x
Summary separators x x x

Final summary:
Final text x x x
Text alignment x x x
Blank lines before text x x x
Summary separators x x x

Detail Lines:
Line spacing x x x

Variables:
Page x x x
Date x x x
Time x x x

Print destination x x x

Figure 14 {Part 3 of 3). Major Elements of the Query Interface

Part Two: Contents of the Programming Interface 61

--------- - ---- - -- - ---- - ------------ ·-

Printed in U.S.A.

GC26-4341-0

File Number
S370-20

