3-112-0

'THEORY OF
PROGRAMMING

"FOR

AN/FSQ-7
COMBAT DIRECTION CENTRAL
AND ’
AN/ESQ-8 |
COMBAT CONTROL CENTRAL

1 APRIL 1959

This document contains information of a proprietary nature. Any use or repro-
duction of this document for other than government purposes is subject to the
prior consent of International Businéss Machines Corporation.

MILITARY PRODUCTS DIVISION
INTERNATIONAL BUSINESS MACHINES CORPORATION

KINGSTON, NEW YORK

3-112-0

Reproduction for non-military use of the information or illustrations contained in this publi-
cation is not permitted without specific approval of the issuing service (BuAer or USAF).
The policy for use of classified publications is established for the Air Force in AFR 205-1
and for the Navy in Navy Regulations, Article 1509.

LIST OF REVISED PAGES

INSERT LATEST REVISED PAGES. DESTROY SUPERSEDED PAGES.

NOTE: The portion of the text affected by the current revision® is indicated by a vertical rule in the left margin of a left-hand page
and in the right margin of a right-hand page.

*The asterisk indicates pages changed, added or deleted by the current revision.

USAF

PARTS 1 to § 3-112-0

CONTENTS

Heading Page
PART 1 INTRODUCTION oo 1
CHAPTER 1 PURPOSE AND SCOPE ... 1
1.1 PULPOSe ... 1

1.2 SCOPE .ot 1
CHAPTER 2 DIGITAL COMPUTERS 3
2.1 History of Digital Computers ... 3

2.2 Digital Computer OPeration ... 5
CHAPTER 3 NUMBER SYSTEMS i, 9
3.1 General Description ... 9

3.2 Decimal Number System ...l 9

3.3 Binary Number System ... 9

3.4 Octal Number System ... 18
CHAPTER 4 THE SAGE SYSTEM e, .. 18
4.1 The Air Defense Problem ... 23

4.2 ~ Elements of SAGE ... 23

43 Logical Elements of AN/FSQ-7 and AN/FSQ-8 23
PART 2 Basic PROGRAMMING ... 27
CHAPTER 1 INTRODUCTION . i 27
1.1 General ..o 27
12 Computer Word Description ... 27
1.2.1 Instruction Words ... 27

1.2.2 Data WOLdS ..o e 29

1.3 Central Computer Timing ... 29

1.3.1 Machine Timing ... 29

1.3.2 Memory TIming ... 30

1.3.3 Instruction TIMing ... 30

1.4 Central Computer System Analysis ... 31

Contents

Contents

3-112-0

CONTENTS (cont'd)

Heading Page
1.4.1 Memory Element ... 32
1.4.1.1 General ... 32
1.4.1.2 Core MemOLy ... 32
1.4.1.3 Test MeMOLYccooooooiiiiiniiiiiiiioee 35
1.4.1.4 Clock Register ... 35
1.4.1.5 Memory Buffer Register ... 35

14,16 Memory Address Register 35
1.4.1.7 Memory Addresses ... 35
1.4.2 Instruction Control Element ... 36
1.4.3 Program Element ... 36
1.4.3.1 General ... 36
1.4.3.2 Program Counter ... 36
1.4.3.3 Address Register ... 36
1.4.3.4 Index Registers ... 36
1.44 Arithmetic Element ... 36
1.4.4.1 General ... 36
1.4.4.2 A Registers ... 36
1.4.4.3 Adders ... 36
1.4.4.4 Accumulators ... 38
1.4.4.5 B Registers ... 38
1.4.5 Selection Element ..o 38
1.4.6 IO Element ... 38
14.7 Overall System Information Flow ... 38

CHAPTER 2 BASIC INSTRUCTIONS 39
2.1 General ... 39
2.2 Halt Instruction ... 39
2.3 Clear and Add Instruction ... 39
2.4 Add Instruction ... 39
2.5 Full Store Instruction ... 40
2.6 Sample Programs Involving Addition ... 40
2.7 Clear and Subtract Instruction ... 41
2.8 Subtract Instruction 41
2.9 Twin and Add Instruction ... 41
2.10 Twin and Subtract Instruction 41

PARTS 1 to 5

PARTS 1 to §

Heading

2.11
2.12
2.13
2.14
2.15
2.15.1
2.15‘.2
2.15.3
2.154
2.154.1
2.15.4.2
2.15.5
2.15.5.1
2.15.5.2
2.15.6
2.15.7
2.15.8
2.16
2.16.1
2.16.2
2.16.3
2.17
2.17.1
2.17.2
2.17.3
2.17.3.1
2.17.3.2
2,174
2.18

3-112-0

CONTENTS (cont‘d)

Page
Sample Programs Involving Subtraction and Twinning 41
Left Store Instruction ... 42
Right Store Instruction ... 42
Sample Programs Involving Half-Word Storage 42
Branch Instructions ... 43
General ... 43
Branch on Left Minus Instruction ... 43
Branch on Right Minus Instruction ... 44
Table Construction Prbgram .. 44
Preliminary Flow Chart ... 44
Final Flow Chart ... 44
Number-Sorting Program ... 46
Preliminary Flow Chart ... 46
Final Flow Chart ... 46
Branch on Full Minus Instraction ... 48
Branch on Full Zero Instruction............................... 48
Sample Program Using BFM and BFZ Instructions 49
Add One Right Instruction ... 50
Uses of the AOR Instruction ... s 51
Address Modification Using the AOR Instruction 51
Counting by Use of the AOR Instruction ... 53
Indexing ... 53
General ... 53
Reset Index Register Instruction ... R 56
Branch on Positive Index Instruction ... 56
General ... 56
Applications of the BPX Instruction ... 57

Using the BPX Instruction as an Unconditional Branch ... 58

Summary of Basic Instructions ... 59

PART 3 PROGRAMMING THE CENTRAL COMPUTER SYSTEM 61

CHAPTER 1 GENERAL DESCRIPTION ..., 61
1.1 Purpose of Central Computer System ... 61
1.2 System Requirements ...l 61

CHAPTER 2 INDEXING TECHNIQUES 63
2.1 General 63

Contents

Contents

3-112-0

CONTENTS (cont’'d)

Heading Page
2.2 Additional Uses of the BPX Instruction 63
2.3 Reset Index Register from Right Accumulator Instruction . 63
2.4 Using the Right Accumulator as an Index Register 66
24.1 Table Lookup Procedure ..., 66
2.4.2 Table Makeup Procedure ... 67
2.5 Store Address Instruction ... 68
2.6 Add Index Register Instruction 68
2.6.1 Instruction Analysis PR 68
2.6.2 Programmed Use of the ADX Instruction ... 69
2.7 Summary of Indexing Techniques 71

CHAPTER 3 INSTRUCTIONS ... 73
3.1 Clear and Add Magnitude Instruction ... 73
3.2 Difference Magnitude Instruction 73
3.3 Program Example Using Absolute Magnitudes 73
3.4 Add B Registers Instruction ... 74
3.5 Multiply Instruction ... 74
3.6 Twin and Multiply Instruction ... 74
3.7 Divide Tnstruction ...l 74
3.8 Twin and Divide Instruction ..., 76
3.9 Shift Left and Round Instruction e 76
3.9.1 General ... 76
3.9.2 EX@Cution ...t 76
3.10 Sample Programs Involving Multiplication and Division .. 76
3.10.1 Multiplication Programs ... 76
3.10.1.1 Basic Multiplication ... 76
3.10.1.2 Function Evaluation Programs ... 76
3.10.1.3 Co-ordinate Conversion Program ... 77
3.10.2 Division Programs ... 78
3.10.2.1 Requirements for Division 78
3.10.2.2 Division Example ... 78
3.11 Shift InStructions ... 79
3.11.1 General ... 79
3.11.2 Dual Shift Left Instruction ..., 79
3.11.3 Dual Shift Right Instruction ... 79

PARTS 1 to 5

PARTS 1 t0 5 3-112-0 Contents

CONTENTS (cont'd)

Heading Page
3.11.4 Left Element Shift Right Instruction ... 79
3.11.5 Right Element Shift Right Instruction ... 79
3.11.6 Accumulators Shift Left Instruction 80
3.11.7 Accumulators Shift Right Instruction 81
3.11.8 Program Examples of Shift Instruction ... 81
3.12 Cycle INStructions ... 83
3.12.1 General ...l 83
3.12.2 Dual Cycle Left Instruction ... 83
3.12.3 Full Cycle Left Instruction 83
3.12.4 Examples of Cycle Instructions ... 84
3.13 Logical Instructions ... 85
3.13.1 General ... 85
3.13.2 Extract Instruction ... 85
3.13.2.1 EXECUtIONoccoooiviiiiiiiiioi oo 85
3.13.2.2 Program Example ... 85
3.13.3 Load B Registers Instruction ... 86
3.13.4 Deposit Instruction ... 86
3.13.4.1 Execution ... 86
3.13.4.2 Program Example 87
3.13.4.3 Summary of Deposit Instruction ... 87
3.14 Exchange Instruction ... 88
3.14.1 Execution ... 88
3.14.2 Use of Exchange Instruction ... 89
3.15 Compare Instructions 89
3.15.1 General ... 89
3.15.2 Basic Compare Instructions ... 89
3.15.2.1 Compare Left Half-Words Instruction 89
3.15.2.2 Compare Right Half-Words Insttuction ... 89
3.15.2.3 Compare Full Words Instruction ... 89
3.15.24 Compare Masked Bits Instrudion .. 20
3.15.2.5 Program Examples ... 90
3.15.3 Compare Difference Instructions ... 91
3.15.3.1 Compare Difference Left Half-W ords Instruction 91
3.15.3.2 Compare Difference Right Half-W ords Instruction ... 91

Contents

vi

Heading
3.15.3.3
3.15.3.4
3.15.3.5
3.16
3.16.1
3.16.2
3.16.3
3.16.4
3.17
3.17.1
3.17.2
3.17.3
3.18
3.18.1
3.18.2
3.18.3
3.18.4
3.18.5
3.18.6
3.18.7
3.18.8
3.19
3.19.1
3.19.2
3.19.3
3.19.4
3.19.5
3.19.6

3.19.7
3.19.8
3.19.9
3.19.10
3.19.11
3.19.12
3.19.13

3-112-0

CONTENTS (cont'd)

Page
Compare Difference Full Words Instruction 92
Compare Difference Masked Bits Instruction ... 92
Program Examples ... 92
Test Bits Instruction ... 93
Test One Bit Instruction ..o 93
Test Two Bits Instruction ... 94
Bit Selection for TOB and TTB Instructions 94
Program Examples ... 94
Clear and Add Clock Instruction ... 96
EX@CULION ... 96
Interpretation of Clock Register Contents 96
Program Example ... 97
Operate Instruction ... 97
Condition Lights (1-4) ... 98
Set INACHVILY ... 98
Reset INACHIVILY ..o 98
Intercommunication Flip-Flops (1-4) ... 98
Test Clock Register ... 99
Inhibit Alarms ... 100
Reset Alarms ... B 100
Generate Alarm Tand 2 ... 100
Branch on Sense Instruction ... 100
Condition Lights ON (1-4) 101
Inactivity ON ... ST PO UUPRRUPRO 101
Left Overflow ON ...l 101
Right Overflow ON ... 101
Memory Parity Error ... 101
Addressable Drum Parity Error ... 101
Tape Parity Error ... 102
Sense Switch ACTIVE (1-4) ..o, 102
Status Drum Parity Error ... 102
Duplex Switching Completed ACTIVE ... 102
Alarm TON 102
Alarm 2 ON 102
Intercommunication Flip-Flops ON (1-4) ... 102

PARTS 1 t0 5

PARTS 1 to §

3-112-0

CONTENTS (cont'd)

Heading Page
CHAPTER 4 17-BIT ADDRESS SELECTION 103
4.1 General 103
4.2 Indexing Changes ... 103
4.3 Other Registers Changed ... 104
4.3.1 Address Register ... 104
4.3.2 Program Counter ... 104
4.3.3 Right A Register ... 104
4.4 Instruction Options ... 104
4.4.1 STAOption ... 104
4.4.2 AOR OpHion ... 104
44.3 RST OPtion ... 104
44.4 ADD, SUB, and ADB Option ISR T TR TUU RSP 104
4.5 Overflow Control ... 104
4.6 Instruction Summary .. 105
PART 4 PROGRAMMING THE INPUT-OUTPUT SYSTEMS ... 107
CHAPTER 1 INTRODUCTIONo, 107
1.1 General Information ... 107
1.2 Input-Output Element 107
1.2.1 Description ... 107
1.2.2 Break Cycles ... 107
1.2.3 Registers and Counters ... 108
1.2.3.1 IO Register ..., 108
1.2.3.2 IO Buffer Register ... 108
1.2.3.3 IO Address Counter ...t 108
1.2.3.4 IO Word Counter ... 109
1.2.4 Control Circuitry ... 109
1.2.4.1 Break Command Generators ... 109
1.2.4.2 Data Transfer Control Circuits ... 109
1.3 IO Instructions ... B 109
1.3.1 Select Instruction ...l 109
1.3.2 Select Drums Instruction ... 109
1.3.3 Load 10 Address Counter Instruction 109
1.3.4 Read Instruction 109

Contents

vii

Contents

viii

3-112-0

CONTENTS (cont'd)

Heading Page
1.3.5 Write InStruction ..o 110
1.3.6 Clear and Subtract Word Counter Instruction ... 110
1.4 10 Programming ...t 110
141 General ... 110
1.4.2 Normal Operation ... 111
1.4.2.1 Real-Time Considetations ... 111
1.4.2.2 Branch IF 10 Interlock On lnstruction ... 111
1.4.3 10 Pausecooooviiiiiiiie e 112
1.44 IO Hangup ... 112
14.5 Use of CSW Instruction 113
14.6 IO Test INStructionsccccoooo oo 113
1.4.6.1 General ..., 113
1.4.6.2 Select 10 Register Instruction ..., 113
1.4.6.3 Clear 10 Interlock Instruction ... 114
1.4.6.4 Lock 10 Address Counter Instruction ... 114

CHAPTER 2 PROGRAMMING THE AM DRUMS AND

IC FIELDS, 115
2.1 Auxiliary Memory Drum Fields ... 115
2.1.1 General ..., 115
2.1.2 Program Examples ... 115
2.2 Intercommunication Drum Fields ... 116
2.2.1 General ..., 116
2.2.2 Selecting the IC Drum Fields ... 117
22211 Select IC (Other) Field e 117
2222 Select IC (Own) Field ... 117
2223 Select IC (Own Test) Field ... e 117
223 Programming IC Transfers 117

CHAPTER 3 PROGRAMMING CARD MACHINES AND TAPES .. 121

3.1

3.2
3.2.1
3.2.1.1
3.2,1.2
3.2.1.3

Introduction ... 121
Information Storagecccocooeeiiniiini e, 121
Punched Cards ...l 121
Instruction Card ... 122
Binary Card ... 122
Octonary Card ... e 123

PARTS 1 to 5

PARTS 1 to 5

3-112-0

CONTENTS (cont’d)

Heading Page
3.2.1.4 Card Image ... 125
3.2.2 Line Printing ...l 125
3.2.3 Magnetic Tape ... 125
3.3 Programming Techniques ... 126
3.3.1 General ... USSR 126
3.3.2 Card Reader ... 126
3.3.2.1 Description ... 126
3.3.2.2 Selection ... 126
3.3.2.3 Sense for Card Reader Not-Ready ... 126
3324 Reading ... 126
3.3.2.5 Program Example ..., ... 126
3.3.3 Card Punch ... 127
3.3.3.1 Description ... 127
3.3.3.2 Selection ... 128
3.3.3.3 Sense for Card Punch Not-Ready ... 128
3334 WHNg 128
3.3.3.5 Program Examples ... 130
3.3.4 Line Printer ... 131
3.3.4.1 Description ... 131
3.3.4.2 Selection ... 132
3.3.4.3 Sense for Line Printer Not-Ready ..., 133
3.3.44 WG ..o 133
3.3.4.5 Program Example ... 133
3.3.5 Magnetic Tapes ... 133
3.3.5.1 Descriptionccocooiiiiiiiii e 133
3.3.5.2 Selection ... 134
3.3.5.3 Sense for Tape Unit Not-Ready ...l 134
3.3.54 Sense for Tape Unit Not-Prepared ... 135
3.3.5.5 Reading ... 135
3.3.5.6 WEItIng ... 135
3.3.5.7 Tape InStructions ..o 135
3.3.5.8 Tape Programming ..., 137

CHAPTER 4 PROGRAMMING THE INPUT SYSTEM ... 139
4.1 Descriptioneiiiii 139
4.2 Data Forms ... 139

Contents

Contents

3-112-0

CONTENTS (cont’'d)

Heading Page
4.2.1 LRI Data Drum Word Layout 139
4.2.2 GFI Data Drum Word Layout ... 140
4.2.3 XTL Data Drum Word Layout ..., 141
4.3 Drum Field Selection ..., 141
4.3.1 LRI Drum Fields ... 141
4.3.1.1 Reading by Status ... 142
4.3.1.2 Reading by Identity ... 142
4.3.2 GFI Drum Field ..., 143
4.3.3 XTL Drum Field ..., 143
4.4 Input Test Pattern Generator 143
4.4.1 LRI Testing ..o 143
4.4.2 GFI Testing ... 144
443 XTL TeStifig ..ot 144

CHAPTER 5 PROGRAMMING THE OUTPUT SYSTEM ... 145
5.1 Description ... 145
5.2 OPperation ... 145
5.3 Information Forms ... 145
5.3.1 Bursts ... 145
5.3.2 Output Drum Word ... 146
5.4 Drum Transfers ... 146
5.5 Output Alarms ... 147
5.5.1 Overall Output Alarm ... 147
5.5.2 Nonsearch Alarm ... 147
5.5.3 OB Drum Parity Alarm ... 147
5.5.4 Illegal Address or Section Alarm ... 147
5.5.5 G/G Parity Alarm ... 147
5.5.6 TTY Parity Alarm ..., 147
5.5.7 G/A-TD Parity Alarm ... 147

CHAPTER 6 PROGRAMMING THE DISPLAY AND

WARNING LIGHT SYSTEMS 149
6.1 Description ... 149
6.2 OPeration ... 149
6.2.1 General ... 149
6.2.2 Situation Displays ... 149

PARTS 1 to 5

PARTS 1 to 5

Heading
6.2.3
6.2.4
6.2.5
6.2.5.1
6.2.5.2
6.25.3
6.2.54
6.2.6
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.1.3
6.4.1.4
6.4.1.5
6.4.2
6.4.2.1
6.4.2.2
6423

6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.4

3-112-0

CONTENTS (cont’d)

Digital Displays ...
Display Consoles ...
Manual Inputs ...
General ...
Light Guns ...
Area Discriminator ...
Manual Input Matrix
Warning Light System ...
Message Types ...l
Situation Displays ...
Radar Data Messages
Track Data Messages
Digital Displays ...
Manual Inputs ...
Warning Lights ...
Program Instructions ...
Situation Displays ...
RD and TD Drum Field Selection
RD Scan Counter
Situation Display Test ...
SD Camera Modes
Sense Display ...
Digital Displays ...
DD Drum Field Selection ...
DD Drum Field Test Selection

Start Digital Display Sections (1 and 2)

Manual Inputs ...
MI Drum Field Selection e
Area t)iscriminator Operation
Manual Input Matrix Selection ...

Warning Lights ...

CHAPTER 7 PROGRAMMING THE MARGINAL

7.1
7.2

CHECKING SYSTEM ...

Introduction ...

Page
149
149
149
149
151
151
151
151
153
153
153
153
154
154
154
156
156
156
156
156
157
157
157
157
157
157

157
157
157
157
157

159
159
159

Contents

Xi

; Contents

xii

3-112-0

CONTENTS (cont'd)

Heading Page
7.2.1 General ... 159
7.2.2 Excursion Application ... 159
7.2.3 Excursion Removal ... 161
7.2.4 Excursion Detection ... 162
7.2.5 Use of the LS Bit ... 162
7.2.6 RESEArLS ..o 162
7.2.7 Time Duration ... 163
7.2.8 Polarity ... 163
7.2.9 Safe Limit ... 163
7.2.10 Excursion Magnitude ...l 163
7.3 Instruction Summary ...l 163

PART 5 AbvANCED PROGRAMMING METHODS 165

CHAPTER T UTILITY SYSTEMS ... 165
1.1 General ... 165
1.2 Lincoln Utility System ..o 165
1.2.1 Description and Purpose ... 165
1.2.2 OPeration ..., 166
1.2.3 Internal Program Communication 166
1.2.3.1 Internal Tags ... 166
1.2.3.2 Pseudo InStructionsccoccooiiimiiiiiiie e 167
1.2.3.3 Location Tags ..., 167
1.2.3.4 RC Tags ..o 167
1.2.3.5 Temporary Storage Tags ... 167
1.2.4 Communication between Programs 168
1.24.1 System Tables ... 168
1.2.4.2 Ttems . 168
1.2.4.3 Table Tags ... RO T U TS U UU P UUUOPTOUISRPUURUOOS 168
1.2.5 Communication Tags ... 168
1.2.5.1 Compool ... 168
1.2.5.2 Ttem Tags ... 168
1.2.5.3 Parameter Tags ... 169
1.2.6 Summary of Symbolic Expressions ... 169

PARTS 1 to 5

PARTS 1 to 5 3-112-0 Contents

CONTENTS (cont'd)

Heading Page
CHAPTER 2 SCALING 171
2.1 Introduction ... 171
2.1.1 General ... 171
2.1.2 Pure Numbers and Physical Measurements ... 171
2.1.3 Scaling for Central Computer System ... 171
2.1.3.1 Principle of Scaling 171
2.1.3.2 Scaling a Constant| 172
2.1.3.3 Scaling of Variable Numbers 172
2.2 Arithmetic Requirements for Scaling 172
221 General ... 172
2.2.2 Addition and Subtraction 173
2.2.2.1 Requirements ... 173
2.2.2.2 Numerical Example ... 173
2.2.2.3 Other Considerations 173
2.2.3 Multiplication 173
2.2.3.1 Requirements ... 173
2.2.3.2 Numerical Example ... 174
2.2.3.3 Other Considerations 174
224 Division 174
2.2.4.1 Requirements ... 174
2242 Numerical Example ... 175
2.24.3 Other Considerations ... 175
2.3 Scaling of Combined Operations 175
2.3.1 General ... 175
232 Addition and Subtraction of Several Numbers ... 175
2.3.2.1 Maximum Precision Scaling ... 175
2.3.2.2 Constant Scaling e 176
2.3.3 Multiplication and Division of Several Numbers 176
2.34 Evaluation of a Function 178
2.4 Summary ... 179
APPENDIX A ILLEGAL INSTRUCTIONS 181
Al SCOPE ...ciiii e 181
A2 Illegal Miscellaneous Class Instructions ... 181
A3 Illegal Add Class Instructions ... 181

Xiii

Contents

. List of Illustrations

Xiv

3-112-0

CONTENTS (cont’‘d)

PARTS 1 to 5

Heading Page
A4 Illegal Multiply Class Instructions 181
A5 Illegal Store Class Instructions ... 181
A6 Illegal Shift Class Instructions ... 181
A7 Illegal Branch Class Instructions ... 181
A8 Illegal IO Class Instructions ... 181
A9 Illegal Reset Class Instructions 181
FINDE X o e 183
LIST OF ILLUSTRATIONS
Figure Title Page
1-1 Representation of Numbers in Digital and Analog
COMPULEILS ...t 5
1-2 Digital Computer, Block Diagram ... 7
1-3 Registers Used in Multiplication ... 16
1—4 Comparison of Binary and Octal Notation ... 20
1-5 SAGE System, Simplified Diagram ... 24
1-6 AN/FSQ-7, Simplified Block Diagram 25
2—1 Computer Word Layout ... 27
2-2 Instruction Word Layout ... 28
2-3 Basic Machine Cycle ... 29
2.-4 Relationship of Machine Cycle to Memory Cycle 30
25 Cycle Configuration for 2-Cycle Instruction 31
2—6 Various Cycle Configurations for AN/FSQ-7 and AN/FSQ-8 .. 31
2—-7 Central Computer SyStem ... 32
2—8 2562 Memory Unit33
2—9 642 Memory Unit ... 34
2—10 ‘Overall Information Flow, Central Computer 37
2—11 Preliminary Flow Chart, Table Construction Program ... 45
2—12 Final Flow Chart, Table Construction Program 46
2—13 Preliminary Flow Chart, Number-Sorting Program 47
2—14 Final Flow Chart, Number-Sorting Program ... 47

PARTS 1 to 5

2-23

3—1
32
3-3

3—4

4-5

4—7
4—8
4—9
4—10
4—11

4—12

3-112-0

LIST OF ILLUSTRATIONS (cont'd)

Title
Preliminary Chart Using Full Branch Instructions
Final Flow Chart Using Full Branch Instructions ...
Address Modification Using AOR Instructions

Counting by Use of the AOR Instruction,
Preliminary Flow Chart ...

Counting by Use of the AOR Instruction,
Final Flow Chart ...

Word Layout for XIN Instruction ...
Table Sorting by Using the BPX Instruction

Number-Sorting Program Using Unconditional Branch,
Preliminary Flow Chart ...

Number-Sorting Program Using Unconditional Branch,
Final Flow Chart ..o

Data Sorting and Counting Program Flow Chart ...
Use of STA Instruction ..o

Flow Chart Showing One Index Register Used
in Two Programs ...

Layout of Air Traffic Problem ...
Air Traffic Program ...,
Execution of Shift Instructions
Magnitude Sorting Program ...
Marker Bit Identification Program ...
Execution of Cycle Instructions ...
Indicator Register Testing Program
Input-Output Element, Information Flow ...
Relationship of IC Drum Fields ...,
Intercommunication Routine ...
IBM Card Showing Hollerith Code Zones and Field Division ...
Instruction Card
Binary Card ...
Relation of Card Image to IBM Card ...
Type Wheel, Pictorial Diagram ..., R
Tape Word Bit Positions ... e
Card Reader, Type 713 ..., s
Card Punch, Type 723 ...
IBM Card Punched in Identity Field ...

List of liustrations

List of llustrations

List of Tables

xvi

Figure
4—13
4—14
4—15
4—16
417
4—18
4—19
4-20
4—21
4—22
423

424
4-25

4-26

3-112-0

LIST OF ILLUSTRATIONS (cont'd)

Line Printer, Type 718 ...,
Tape Drive Unit, Type 728
LRI Message Drum Field Layout ...
GFI Message Drum Field Layout ...
XTL Message Drum Field Layout ...
Output Drum Word Layout
Display Console ...
Radar Data Message Drum Layout ...
Tabular Message Drum Layout ...
Vector Message Drum Layout ...

Situation Display Tube Character Matrix and
Octonary Addresses ...

Digital Display Message Drum Word Layout ...

Digital Display Tube Character Matrix and
Octonary Addresses ...

MDI Message Drum Field Layout ...

LIST OF TABLES

Title
Representation of Binary Digits ...
Binary and Decimal Equivalents ...

Powers of TWO
Rules of Binary Addition ...
Binary Addition with Carry of 1 ...
Rules of Binary Multiplication
Multiplication by Addition and Shifting
Division by Nonrestoration ...,
Decimal, Octal, and Binary Equivalents
Powers of Eight
Octal Addition

Octal Multiplication

AN/FSQ-7 Memory Addresses ...

PARTS 1 to §

Page
132
134
140
141
142
146
150
152
152
153

154

155

155
156

Page

PARTS 1 to 5

Table
2—2
2-3
2—4
25
2—6
2-—7
2—8
2-9
2—-10

2—11
2—12
2—13
2—14
2—15
2—16
2—17
2—-18
2—19
2~20
3—1
32
3-3
3—4
3—5
3—6
3-7
3-8
3-9
3—10
3—11
3—12
3—-13
3—14
3—15
3—16
3—17
3—18

3-112-0

LIST OF TABLES (cont'd)

Title Page
AN/FSQ-8 Memory Addresses ... 35
Basic Addition Program ... 40
Memory Reference Program ... 41
Sample Subtraction Program ... 42
Sample Program Using Half-Word Store Instructions 42
. Additional Example of Half-Word Storage 43
Table Construction Program 44
Number-Sorting Program ... 48
Combinations Satisfying the Branch on Full Zero (BFZ) Condi-
THOMIS ... 48
Execution of Branch on Full Zero (BFZ) Instruction 49
Program Using Full Branch Instructions ... 49
Address Modification Using the AOR Instruction 52
Straight Line Addition Program 53
Program Using the AOR Instruction as a Step Counter 53
Indexed Addition Program ... 57
Table-Sorting Program Using the BPX Instruction ... 57
Programmed Delay Using the BPX Instruction 58
Sorting Program with Unconditional Branch ... 59
Summary of Basic Instructions 60
BPX Instruction Configurations ... SUTRTR 63
Data Sorting and Counting Program ... 64
Index Register Loading Routine ... 66
XAC Instruction Configurations ..., 66
Table Lookup Program ... 67
Table Makeup Program ..., 67
Basic Multiplication Program ... 77
Function Evaluation Program ... 77
Co-ordinate Conversion Program ... 78
Division Program ..ot 78
Application of Cycle Instruction oo, 84
Display Makeup Program ... 85
Number Determination Program ... 86
Deposit Instruction Execution USSR U RRRPROON 87
Relocation Programooooe 89
Compare Masked Bits Instruction Execution ... 90
Register Comparison Program ... 91
Tape Program Search RoOUtine ..., 91

List of Tables

xvii

List of Tables

Xviii

3-112-0

LIST OF TABLES (cont'd)

Title Page
Compare Difference Masked Bits Instruction kxecution ... 93
Register Compare and Branch Routine ... 93
Partial Word Compare Program ... 93
TOB and TTB Bit Selection ... 95
Instruction Word Checking Program ... 95
Sample TTB Program ... 96
Time Determination Routine ... 97
Equality Check Routine ... 98
Clock Register Stepping Routine ... 929
Overflow Alarm Suppression Routine ... 105
Summary of Central Computer System Instructions ... 105
Interleave Code ... 110
Data Read-In Program ... SR 112
IO Pause Program ... 112
Word Count Transfer Routine ... 113
Program to Clear 256 Memory ..., 114
Program to Load Memory with a Fixed Pattern ... 114
Auxiliary Memory Drum Fields ... 115
Drum Loading Routine ... 116
Drum Reading Routine ... 116
Intercommunication Test Loop ... 119
Hollerith Code for Punched Catds ... 122
Card Reader Transfer Routine ... 128
Card Punch Transfer Routine ... 130
‘Gang-Punching Routine ... 130
‘Card Image for Identity Punching ... 131
Line Printer Routine ... 133
Tape Unit Readiness Check ... 136
Tape Rewind Program ... 137
Program to Rewind More Than One Tépe 137
Tape Backspace Routineeaai 137
Tape Record Location Program ... 138
Crosstell Marker Program ... 143
Output Section Address Codes ... 146
Marginal Checking Control Word Layout ... 160
Summary of IO InStructions ... 163
Scaling Procedures for Fixed-Point Computation ... 179

PARTS 1 to §

PART 1
CH 1

3-112-0 Scope

1.1-1.2

PART 1
INTRODUCTION

CHAPTER 1
PURPOSE AND SCOPE

1.1 PURPOSE

This manual explains the program instructions used
in the AN/FSQ-7 and AN/FSQ-8. Although the manual
is designed to be used primarily in the training of IBM
field engineers, it also serves as a reference manual for
IBM field engineers and other personnel assigned to
the various air defense sites.

1.2 SCOPE

The manual was written to serve as an introduction
to programming digital computers in general and the
AN/FSQ-7 and AN/FSQ-8 in particular. Some chapters
apply to all the courses of instruction conducted by
Field Engineering Education; others pertain only to
one of the courses. A detailed description of each part
of the manual follows.

Part 1 covers the history of computing devices from
the abacus to the modern digital computer. A descrip-
tion of the binary number system, which is used in many
digital machines (including the AN/FSQ-7 and -8), is
presented and examples of arithmetic operations using
this system are given. This part also outlines the gen-
eral organization and operation of the SAGE System
employed in air defense. A brief introduction to the
AN/FSQ-7 and AN/FSQ-8, the computing elements of
the SAGE System, is presented.

Part 2 contains the information necessary for an
understanding of the programmed operation of the
AN/FSQ-7 and AN/FSQ-8. The various systems which
make up the AN/FSQ-7 and AN/FSQ-8 are described
and their overall relationship is discussed. Some of the

basic instructions of these two machines are described,
and program examples of their use are given. In addi-
tion, techniques, such as indexing, which are useful in
programming operations, are introduced.

The third part of the manual presents a detailed
description of the instructions which are applicable to
the Central Computer System of the AN/FSQ-7 and
AN/FSQ-8. Wherever possible, examples of the appli-
cation of these instructions are given. In addition, Part
3 explains some of the programming options which are
available for the AN/FSQ-7 as a result of the installa-
tion of an expanded memory unit.

Part 4 describes the programming of equipment
and systems which are external to the Central Com-
puter System. The various instructions which are used
to program these external systems are given, as are pro-
gram examples. Each chapter within this part is con-
cerned with the programmed operation of one of the
logical groups of external equipment.

Advanced programming methods, such as the con-
tent and operation of utility systems and the scaling of
fixed point numbers, are contained in Part 5. This part
enables the reader to understand all of the operations
necessary, in addition to the coding of a program to
prepare it for entry into the AN/FSQ-7 and AN/FSQ-8.

Appendix A lists those codes which are referred to
as illegal instructions within the AN/FSQ-7 and AN/
F5Q-8. The effect that the execution of these illegal
instructions has on the Central Computer System is de-
scribed, and the use of some of them is presented.

PART 1
CH 2

3-112-0

Computer History
2.1

CHAPTER 2
DIGITAL COMPUTERS

2.1 HISTORY OF DIGITAL COMPUTERS

The word “computer” comes from the latin verb
“computare” which means to reckon or think. Thus, a
digital computer is a machine that reckons (or calcu-
lates) with digits. The following text contains a brief
history of computing devices which brought about the
modern digital machines.

Before the advent of large-scale digital computers,
man had to rely on manual methods and slow mechani-
cal calculators to perform arithmetic operations. No
doubt the first devices used by man as an aid in compu-
tation were fingers, sticks, stones, and similar objects.
These items served only as reminders or indicators of a
particular quantity and could not themselves do any
work; the actual computation was carried out in the
mind of the individual. The abacus, originated some-
time before 1200 A.D., evolved from the use of pebbles
as counters, and has been highly touted as a computer;
however, it is really nothing more than an indicating
device.

After the abacus and the soroban (a refinement of
the abacus) came into use, little progress was made in
the field of computing devices for several years. Then,
in 1642, Pascal, the French mathematician, invented
what was perhaps the first actual accounting machine.
This machine was used to figure currency in a customs
house. It was basically a hand-operated, gear-driven
counter, with addition performed by turning a wheel a
distance equal to the currency to be added. Pascal’s
machine did not attract much attention, possibly be-
cause he was only 19 years old at the time. However it
was noteworthy because it was the first instrument with
provision for an automatic carry into the next higher
order column when the sum of a column exceeded 9. In
1673, a German mathematician named Leibnitz devel-
oped a similar machine, which could multiply as well as
add. Unfortunately, it did not work well enough to be
of much value in computation.

After Leibnitz’s machine, there was a period of in-
activity until 1801, when another Frenchman named
Joseph Jacquard came upon the idea of punched cards.
Jacquard used a chain of perforated cards to control
weaving of figured fabrics on a loom. This mechanism
functioned quite successfully, and the Jacquard loom
proved to be the basis for some remarkable develop-
ments, as we shall see later.

During the 19th century, several developments
took place which furthered the use of automatic ac-
counting machines. First, an American named Thomas
invented a desk calculator in 1820 which utilized the
same principles as Leibnitz’s machinery and was also re-
liable. Improved models of Thomas’ calculator were
used in business and industry for the next 100 years.
Two years later, Charles Babbage, a brilliant but highly
unpopular English mathematician started work on what
he called a “difference engine.” This device was to be
used to calculate mathematical tables to 20 places. Bab-
bage’s design was fundamentally sound, but produc-
tion techniques at that time were not, and after many
unsuccessful attempts to construct a working machine,
the British government stopped supplying funds for
this project. Despite the furor caused by his failure to
produce the difference engine, Babbage was elected to a
chair in mathematics at an English University. He dis-
tinguished himself in this position by refusing to de-
liver even one lecture in the 11 years he held the posi-
tion. Then in 1833, the remarkable Mr. Babbage again
received a grant from the British government to work
on another computing machine, called the Babbage
Analytical Engine. Elaborate plans were prepared for
the construction of this computer, which differed largely
from Babbage’s first machine because it was controlled
by punched cards and was capable of making logical
decisions. Parts of it were completed and made to work,
but the project failed as a whole because Babbage’s de-
sign was still too advanced for the engineering tech-
niques then in existence. Nevertheless, Babbage con-
tinued to work on his computer for another 10 years
or so, until government funds were exhausted. Detailed
descriptions of his machine were preserved, as were
substantial parts of it, but Babbage’s idea was soon for-
gotten,

In 1886, a very important milestone in computer
history was reached when Dr. Herman Hollerith in-
vented a machine using punched cards. Hollerith was
head of the U. S. Bureau of Census at the time, and he
discovered that the 1880 census was not yet completed,
due largely to the fact that all calculations were being
made by hand. He set to work to find a way by which
all recording, tabulating, and aralyzing of facts could
be done by machine. His solution, which was based upon
Jacquard’s idea of punched cards, was to record the
facts of any situation by punching holes in a definite

3

Computer History
21

code in a piece of paper. Hollerith had originally
planned to use strips of paper, but he found it neces-
saty to rearrange the information, so he cut the strips
into a standard size and shape and thus had a card for
each situation. Once the card was developed, Dr. Hol-
lerith developed a sorting device, using these cards, and
opened up a whole new field of computing aids.

As business and industry grew during the first part
of the 20th century, the demand for accounting ma-
chines grew steadily. In 1914, a mechanical key punch, a
gang-punch, a vertical sorter, and a tabulator were
available to meet the accounting needs of the nation.
As time went on, more and mote equipment was intro-
duced which eased the task of calculations. However,
all of this equipment was electromechanical in nature,
‘and each machine could petform only one or two basic
operations. What was needed was a machine that could
perform a multitude of tasks at a high rate of speed.

The man who set about to design such a general-
purpose machine was Dr. H. H. Aiken of Harvard Uni-
versity, He directed a project which started in 1939 and
was climaxed by the construction of the automatic Se-
quence Controlled Computer in 1944. This computer,
commonly referred to as the Mark I, was built by IBM
for Harvard from components already in use in IBM’s
electromechanical business machines. It is believed that
the Mark I is an outgrowth of Babbage’s analytical en-
gine, since his work was reviewed in great detail before
the actual construction began. Although the Mark I
was electromechanical in nature, and therefore was still
quite slow, it marked the appearance of the first of a
long line of large digital computers.

The first electronic computer was the Electronic
Numerical Integrator and Calculator, or ENIAC, built
in 1946 by Dr. J. W. Mauchley and Mr. J. P. Eckert of
the Moore School of Engineering of the University of
Pennsylvania. The ENIAC utilized 18,000 vacuum tubes
as storage elements instead of the relays and switches
used in the Mark I. The fact that vacuum tubes were
used at all represented a considerable venture in com-
puting techniques, since the performance of tubes at
that time was not very reliable. However, ENIAC
proved to be a highly successful digital computer, and
is still in operation today, although it has been obso-
leted for some time. As an example of the improvement
in arithmetic speed between Mark I and ENIAC, let
us consider the addition of two numbers. Mark I re-
quired 300 ms to perform this task, whereas ENIAC
could do the same thing in two-tenths of a millisecond.
or, roughly, 1,500 times faster. From this comparison,
it is possible to see the tremendous boost given the com-
puter field with the advent of vacuum tubes and elec-
tronic circuitry.

4

3-112-0

PART 1
CH 2

After ENIAC, the next big computer of signifi-
cance was the Selective Sequence Electronic Calculator,
or SSEC, built by IBM in 1948. This machine, installed
at IBM World Headquarters, proved beyond a doubt
that large-scale digital computers had commercial ap-
plications. The government, which was doing research
in the atomic energy field, utilized the SSEC as an aid in
solving some of its large problems. Other customers
soon realized that the SSEC could solve problems which
were never before attempted. The success of this com-
puter prompted many manufacturers of electronic
equipment to develop digital computers for commercial
use,

About the same time, a group at Cambridge Uni-
versity in England built the first stored-program com-
puter. The man in charge of the project was M. V.
Wilkes, and he called the computer EDSAC. EDSAC
was modest in size and capability, but Wilkes and his
associates made significant contributions to the com-
puter field by refining programming techniques ‘and
procedures. They were the first to make extensive use
of program subroutines with an assembly system for
making new programs.

In 1946, the designers of ENIAC, Dr. Mauchly and
Mr. Eckert, resigned from the University of Pennsyl-
vania and set up their own firm, called the Electronics
Control Company. They began to develop an electronic
computer which could handle alphabetic as well as
numeric data, and which would be more versatile than
any machine then in existence. This machine was called
the Universal Automatic Computer, or UNIVAC, and
was first produced in 1951 by the Remington-Rand
corporation, which had made the Mauchly-Eckert firm
one of their divisions. UNIVAC proved to be the nu-
cleus for a new computer field; namely, the large-scale,
general-purpose digital machine.

In addition to the UNIVAC, several other com-
puters were developed at this time, most of them by
the government and leading universities. For example,
the MANIAC, built by Princeton; the SEAC, built by
the Bureau of Standards; and the WHIRLWIND, built
by the Massachusetts Institute of Technology. All of
these machines aided the advancement of computers
and computing techniques. At the same time, they con-
firmed the belief, started with the introduction of the
SSEC, that large digital machines could prove a power-
ful tool to both science and industry.

The vast experience gained in the punched-card
field enabled IBM to develop an entire “family” of
large digital computers, known as the 700 series. First
came the 701, a scientific computer with a2 memory com-
posed of electrostatic storage tubes. This computer was
extremely fast and reliable, and was used extensively

PART 1
CH 2

in the aircraft industry to perform design calculations.

In 1955, the first 702 was installed at the Monsanto.

Chemical Company in St. Louis. This model was de-
signed to handle mostly commercial data processing
such as billing, stock inventory, payrolls, etc. These two
machines were capable of handling any type of problem
that could be reduced to some combination of the basic
arithmetic processes. However, improvements were still
being made in the computer field, mainly in the type of
memory to be utilized with the computer. IBM intro-
duced two computers in 1955 which contained magnetic
cores as the high-speed memory device. The 705 was
designed to replace the 702, and the 704 was the succes-
sor to the 701. Use of the new memory and other im-
provements enabled both machines to compute much
faster than their predecessors. As an example, the 704
can select two numbers from core memory, add them
together, and place the sum in a temporary storage reg-
ister in 24 usec. Newest of the 700 series is the 709,
also a scientific computer, which has the added capabil-
ity of handling up to six input and output mediums at
one -time. Previously, computers had been limited in
their speed of calculation because only one input or out-
put unit at a time could be used to feed in or receive
information, a disadvantage overcome by the 709.

Of particular interest are the AN/FSQ-7 and AN/
FSQ-8 digital computers, also manufactured by IBM.
These machines are the world’s largest digital comput-
ers and form the center of a huge air defense network.
The remainder of this manual is devoted primarily to a
study of the techniques involved in programming these
two computets.

- This history of computers and computing devices
is, of necessity, incomplete. Only those events which
have been milestones in the development of today’s
digital computers have been included. Future develop-
ments in the field may radically change the operation
of digital computers. These developments will prob-
ably occur in the use of bigger and faster memories,
reduction in physical size of computers, and increased
flexibility in programming. However, the basic concepts
of Pascal, Babbage, and others who have contributed to
this art will remain the same; that is, using machines to
ease the task of computing and calculating.

2.2 DIGITAL COMPUTER OPERATION

As was explained previously, a digital computer
works with digits or numbers. To illustrate the method
by which a digital computer handles a quantity, a com-
parison will be made with the other type of computer
presently in use; namely, the analog machine. In con-
trast to the digital computer, a quantity in an analog
computer is represented by a direct relation, or analogy,
to some machine function such as voltage variations. As
an example, suppose we wish to represent a quantity of

3-112-0

Computer Operation
2.1-22

12 units in both types of machines. Figure 1—1, part A,
shows a possible representation of 12 in a digital com-
puter; part B shows the same quantity as it might be
represented in an analog machine. Now, if we multiply
12 by a factor of 2, the resulting product (24) is shown
in part C of figure 1—1 for the digital computer and
in part D for the analog computer. In this example,
pulses were used to represent digits, but this is only one
of the many techniques available for digital representa-
tion.

In order for a digital computer to operate, certain
elements are required for the proper handling and mani-
pulation of data, just as a man needs certain tools to
perform arithmetic tasks. This comparison is easily sup-
ported by describing the elements of the computer that
cotrespond to a man working at a desk. Assume that
the man is a clerk working in a payroll office, comput-
ing the net pay of various individuals. The “in” box on
his desk contains the pay rates of the personnel in-
volved, plus miscellaneous data, such as the initiation of
bond deductions, etc. A digital computer has an input
element which is capable of accepting various types of
data and of presenting it to the computing portion of
the equipment. The clerk has several tables he refers to,
such as tax deduction tables, standard weekly deduc-
tions, etc.; in addition, he has a pad and paper on
which he notes the deductions applicable to each em-
ployee. In a digital computer, the memory element
would serve as the temporary storage -device for all

LU

NITS

A

LU

TENS UNITS
c

24
18
12

VOLTS
D

Figure 1—1. Representation of Numbers in Digital
and Analog Computers

Computer Operation
22

these facts. The actual computation of an individual
salary is done in the payroll clerk’s head, or, perhaps
with a desk calculator; in either case, this function is
the same as that performed by the arithmetic element of
a digital machine. Once the net pay of each person has
been calculated, the clerk fills out a standard form which
contains the employee’s name and the amount due. He
then places all these forms in the “out” box on his desk,
thus completing his job. The output element of a digital
computer accepts the results of computation by the
arithmetic element and ‘presents the results in a form
recognizable by the user. Of course, all the actions of
the payroll clerk are controlled and co-ordinated by his
nervous system. The control element co-ordinates the
actions of a digital computer and is connected to all
the other elements. From this discussion, we can see that
a digital computer is essentially composed of the follow-
ing elements:

a. Input

b. Output

¢. Memory
d. Arithmetic
e. Control

Each of these elements is discussed in detail below, and
reference is made to the general organization and op-
eration of each.

The input element is capable of accepting data in a
variety of forms and converting it to a standard format
which is used by the computing portion of the equip-
ment. The type of inputs which constitute the input
element for different machines vary a great deal; there-
fore, it is not possible to say that any one combination
of units makes an input element. However, some of the
more common types of input units are punched card
readers, magnetic tapes, paper tapes, typewriters, and
telephone lines which transmit data from remote loca-
tions. The input element provides 1-way communica-
tion between the computing elements and external
sources: information is received through the input ele-
ment, but no information or data is returned.

As might be expected, the output element is almost
the opposite of the input element. The results of com-
puter operation are fed through the element to desig-
nated locations, but no information is given back to the
computing elements. Some examples of output units that
might constitute a typical output element are line print-
ers, card punches, magnetic tapes, and visual indicators.
As with the input element, the output element makeup
is flexible and varies widely from one computer to an-
other.

The memory element comprises a large number of
storage locations in which information can be stored
until it is needed by one of the other elements. As a

3-112-0

PART 1
CH 2

rule, memory elements have absolute addresses assigned
to each location, and such an address is specified when
information is needed. For instance, a typical computer
instruction might be to “add the quantity which is
stored in location 1000.” The instruction which stated
that address 1000 contained the desired operand is also
stored in the memory element; this makes the memory
element a “shared” device. Sometimes the instructions
for performing a given operation are always contained
in the same physical portion of the memory element;
sometimes they may be located any place within the
memory. Memory elements may be constructed of several
types of mechanisms; however, some of these are rarely
used because of new developments which have taken
place. At present, magnetic cores are the most popular
device, primarily because of their high speed and stabil-
ity. Other devices which have been used include acous-
tic delay lines, electrostatic tubes, and magnetic drums.
The AN/FSQ-7 and AN/FSQ-8 both utilize magnetic
cores in the memory element.

The arithmetic element of a digital computer is
basically a device which performs addition only; the
other arithmetic functions are simply variations of the
addition function. For example, multiplication in an
arithmetic element is simply a repetitive addition. Arith-
metic elements are, for the most part, made up of
various vacuum-tube circuits and switches. The basic
circuit in an arithmetic element is the flip-flop, which is
used to store or transfer the results of computation.
There are about 100 such flip-flop (FF) circuits in the
arithmetic element of the AN/FSQ-7 and AN/FSQ-8.

The function of the control element is to generate
the proper signals at the proper time which will cause a
desired action to take place within the computer. Several
decoders are used in the control elements, along with
flip-flops and other switching devices. The control ele-
ment keeps track of what instruction is to be decoded
and performs part of the decoding. In addition, this
element provides timing pulses which synchronize all
elements of the computer.

Figure 1—2 shows the five elements we have been
discussing arranged as a typical computer configuration.
Information, which includes computer instructions as
well as data, enters the computer through the input
element, where it may be converted to a common form
and placed in a buffer storage device. The memory ele-
ment accepts this information at specific intervals and
places it in the proper storage location. Notice that
there are two paths leading out of the memory element;
one to the control element and the other to the arith-
metic element. Earlier, we spoke of the memory element
as a shared device, and this is true because it serves as
the memory for two other elements. The -instructions
are transferred from memory to the control element,

PART 1
CH 2

where they are decoded, and certain commands are set
up by the control element. One of these commands is
to go into memory again and transfer out the designated
operand to the arithmetic element. Following the calcu-
lation in the arithmetic element, the results of a desired
operation are usually programmed to be returned to
memory and then transferred to the output element
during an alloted time interval.

From this, we can see that a digital computer fol-
lows a basic flow pattern during its operation. The time
when the instructions are decoded is known as program
time (PT); the time when the calculation is performed
is known as operate time (OT), Most of the operations
that can be carried out by the AN/FSQ-7 and AN/FSQ-8
follow this PT-OT pattern, usually referred to as cycle
configuration. The cycle configuration varies slightly
among the various operations because more time is
sometimes required for one operation than for another.
In addition, the AN/FSQ-7 and AN/FSQ-8 are capable

of performing a few operations which do not require

any OT time; however, these are of a specialized nature
and are explained in detail in the appropriate parts of
the manual.

In figure 1-2, you will notice that the memory,
control, and arithmetic elements are enclosed in a box,
and referred to as the central computer. This has been
done to clarify the use of the terms ‘‘computer” and
“central computer.” A computer comprises all the ele-
ments necessary for proper operations, including the
input and output elements. The central computer refers
only to that portion of the equipment which does the
actual calculations. This distinction is necessary because

3-112-0

Computer Operation
22

INSTRUCTIONS

AND RAW DATA RESULTS
=1
I I
| INPUT L OUTPUT
™ ELEMENT ™1 ELEMENT

MEMORY
EL EMENT

PT | oT

|
|
I
I
CONTROL
L ELEMENT [~ ™

|
I
I
|
I
I
————"

ARITHMETIC
ELEMENT

CENTRAL COMPUTER

. «§—— |NFORMATION
¢ — — CONTROL

Figure 1—2. Digital Computer, Block Diagram

the two terms are used frequently throughout the man-
ual, and it is important to know whether all or only a
portion of the equipment is being referred to at any
one time.

PART 1
CH 3

3-112-0

Decimal System
3.1-32

CHAPTER 3
NUMBER SYSTEMS

3.1 GENERAL DESCRIPTION

When we speak of a “number,” it usually brings to

mind some combination of the decimal digits 0 through
9. This number may represent several different things, al-
though in each case only the digits mentioned above are
used. For instance, we might think of a 10-day course of
instruction. In this case, the number 10 is used to repre-
sent a quantity of items namely, days. Therefore, one
use of a number is as a quantity designator, or a num-
ber that specifies an amount. However, numbers do not

always indicate an amount or a quantity. Consider a -

post office mail box. The number on the mail box does
not indicate how many mail boxes are located in the
post office nor does it tell how many letters are in the
mail box. What the number does tell is the location of
the mail box with respect to other mail boxes, or the
address of the box. All incoming mail with that particu-
lar box number on it will be placed in that box. In this
case, the number has told us only the location of the
mail box, and nothing else. There is one mote general
use to which numbers are put; i.e., as an identification
code. For instance, a telephone number does not in-
dicate quantity or a location but merely tells the auto-
matic dialing equipment what phone to ring when some-
one dials a particular number. In the above examples,
the decimal system has been used simply because it is the
one we are most familiar with. However, the fact that
numbers can act as quantity designators, addresses, or
identification codes holds true for all number systems.

All number systems have many properties in com-
mon, and these properties are explained, using the deci-
mal systems as an example. The use of the decimal
system will permit us to see exactly what effect each
property has without giving us trouble with the mathe-
matics involved, since we are all used to doing arith-
metic in this system. Later on, each of the properties
discussed will be used with the two other number sys-
tems covered in this chapter, and we will see that the
same rules still apply.

3.2 DECIMAL NUMBER SYSTEM

The decimal number system derives its name from
the fact that it is composed of 10 different symbols.
These symbols are, of course, 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9. Any one of these symbols may appear in any
position of a number. When we count in the decimal
system, adding a 1 to any number O through 8 gives

the next higher number (e.g, 7 4+~ 1 = 8, 3 + 1 = 4,
etc.). However, adding a 1 to 9 does not give a higher
number but, instead, causes a return to the lowest sym-
bol and causes a 1 to be added to the next position to
the left (9 4- 1 = 0 plus a carry of 1 to the left, or 10).
From this, we can see that 10 steps are required to use
all the symbols in the decimal system and cause a return
to the lowest order symbol. Also, there are 10 different
symbols in the decimal system. These two facts can be
stated by saying that the decimal number system has a
radix or base of 10. The radix of any number system
thus indicates the number of symbols in that system and
the number of steps in the counting cycle.

Numbers have different values in the decimal num-
ber system according to the symbol being used, and the
position of that symbol. Of course the number 5 has a
higher magnitude than 4, but the number 23 is larger
than 9, even though the digits used are not. Adding a
digit to the left of a number increases its value by the
power of the radix times the digit added. Using 3 as an
example, adding a 2 to the left and multiplying by 10,
we increase the value of 3 by 20, or 2 x 10, The fact
that the value of a number is determined by the position
of its digits is known as positional notation of magni-
tude. In the case of the number 23, this is actually an
abbreviation of the positions and their magnitude;
namely, (2 X 10') 4 (3 X 10°). Similatly, the number
4735 actually represents the sum of the terms (4 X 10%)
+ (7 X 10%) + (3 X 10') 4 (5 X 10°). It is important
to keep in mind that the power of the radix increases by
1 for each position to the left of the preceding digit.

When dealing with the decimal system, it is not
necessary to show numbers in the above form, since it is
generally understood by everyone what each digit posi-
tion indicates; namely, some power of the radix. The
same thing holds true for the other number systems we
are going to study; the value of the number is detet-
mined by the position of its digits.

There is one more property of the decimal system
that we wish to examine; that is the concept of modulus.
Modulus refers to the number of numbers that can be
contained in a restricted number of digit positions. If
there were no limitations on the size of numbers, there
would be no need to discuss the modulus. However,
most devices used in counting, computing, etc., have
definite limits as to the size of number that can be mani-
pulated. A mileage indicator such as that used in an

9

Binary System
3.2-33

automobile is a good example of a limited position
device. If a particular mileage indicator had five digit
positions it would be capable of showing 100,000 dif-
ferent numbers (0 through 99,999). Such a counter
would have a modulus of 100,000. The importance of
modulus becomes apparent when we deal with numbers
that exceed the capacity of a particular device. For ex-
ample, a distance of 105,000 miles on the indicator
mentioned above would appear the same as a distance
of 5,000 miles. Once the modulus is exceeded, the coun-
ter resets itself to 0, and the count starts over again.
Later on, it will be shown how the AN/FSQ-7 and
AN/FSQ-8 are capable of handling a number that ex-
ceeds the modulus of their storage and arithmetic regis-
ters.

3.3 BINARY NUMBER SYSTEM

Several different number systems are currently in
use with digital computers. Each of these systems has its
particular advantages and disadvantages, and no at-
tempt will be made to compate one system against
another. However, one number system that is becoming
increasingly popular with manufacturers of digital ma-
chines is the binary system. As indicated by the prefix
“bi,” this system utilizes only two symbols, 0 and 1, in
its counting cycle. Therefore, the binary number system
has a radix of 2, and all the numbers in this system are
combinations of various powers of 2. This number sys-
tem lends itself very well to electromechanical and elec-
tronic circuits, since the majority of these circuits are
bistable devices. Table 1—1 lists the various devices
used in digital computers, and shows how they are em-
ployed to represent a binary digit, in the AN/FSQ-7
and AN/FSQ-8 computets.

3-112-0

PART 1
CH 3

An illustration of a binary number in a computer
can be given by using an electron tube circuit, since this
is one of the most common binary devices used within
the AN/FSQ-7 and AN/FSQ-8. Keep in mind that if a
tube is conducting, it represents a 1; if it is cut off,
it represents a 0. If we have three tubes side by side in
a circuit, and they are all conducting simultaneously,
the output of that circuit is 111. This is read as one-one-
one, not one hundred and eleven, since we are no longer
dealing with the decimal system. Remembering that the
radix is 2, and that positional notation of magnitude is
used, the output 111 is actually a representation of the
series (1 X 22) + (1 X 21) 4 (1 X 2%) or (1 X 4) +
(1x2)+ (1xX 1_)or4+2-T-1:7.Tths,binary
number 111 is equivalent to decimal 7. All of the num-
bers in the binary system are represented in the same
manner, and it is very easy to find out the decimal equiv-
alent of any binary number by using the same method.
Table 1—2 gives some of the numbers in the binary sys-
tem and their decimal equivalents.

To prove the validity of table 1—2, assume that it
is desired to find the decimal equivalent of the binary
number 1010. From inspection, it is possible to see that
this number is an abbreviation for

(1X 2%) + (0X 22) 4 (1 X 2') + (0 X 2°) or
(1X8) + (0X 4) + (1 X 2) 4 (0 X 1) or
8+0+42+40=10.

Referring back to table 1—2, we see that binary 1010
does indeed equal decimal 10. More examples of con-
version from the binary system to the equivalent number
in the decimal system follow.

TABLE I—"I. REPRESENTATION OF BINARY DIGITS

DEVICE

BINARY 1

BINARY 0

Electron tube

Punched card Hole present
Switch Active (on)
Neon indicator On

Relay ~ Closed
Pushbutton Depressed
Plugboard Pin plugged

Magnetic core
Magnetic drum

Magnetic tape

Tube conducting

Flux in one direction
Flux in one direction

Change in flux

Tube cutoff

Hole missing

Inactive (off)

Oft

Open

Not depressed

Pin missing

Flux in opposite direction
Flux in opposite direction

No change in flux

10

PART 1
CH 3

Binary 11110100111 = (1 X 2%°) 4 (1 X 2%) +
(1X 2% + (LX 2) + (0X 29 + (LX 2) +
(0X 2 + (0 X 29 + (LX 2) + (LX 2) +
(1% 2%)

" This reduces to the following:
(1 X 1024) + (1 X 512) + (1 X 256) +
(1 X 128) + (0 X 64) + (1X 32) +
©X16) + (0 X 8) + (1 X 4) + (1 X 2) +
(1 X 1) or 1024 - 512 4 256 4 128 + 32
4 4 2 + 1 = 1959 decimal.
Binary 10000010 — (lX 27y + (2)(26)
(0 X 25) 4 (0 X 24) ++ (0 X 2%) 4 (0 X 2%) +
(1 X2Y) + (20X 29.

This series is equivalent to:

(1 X 128) + (0 X 64) + (0 X 32) + (0 X 16) + -

(0X 8) + (0 X 4 + (1 X 2) + (0 X o
130 decimal.

From the above examples, we can see that it is use-
ful to know the various powers of 2 when converting
from binary to decimal. Table 1—3 lists the powers of
2 up to 217, The limit of 217 was chosen because this is
the highest power of 2 that is represented in the AN/
FSQ-7 and AN/FSQ-8.

Conversion from the decimal system to the binary
system is accomplished by reversing the process used for

TABLE 1—2, BINARY AND DECIMAL EQUIVALENTS

BINARY DECIMAL

000 0
001

-

010
011
100
101
110
111
1000

o 0 N AN WM R W N

1001
1010

—
(=]

3-112-0

Binary System
33

TABLE 1-3. POWERS OF TWO

POWER EQUIVALENT
20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1024
2u 2048
212 4096
213 8192
214 16384
215 32768
216 65536
217 131072

binary to decimal conversion. A binary number tells at a
glance what powers of 2 are present or absent by the
inclusion of a 1 or 0 in each digit position. However, a
decimal number does not tell this, and some method
must be used to determine what powers of 2 are present,
and then place the corresponding 1’s in the proper posi-
tion to form the binary number. One method that can
be used is to refer to table 1—3 and pick out what
powers of 2 are present. The largest power of 2 that is
less than the decimal number is located and then sub-
tracted from the number. This process is repeated with
the remainder, and all succeeding remainders, until the
remainder is 0. In this manner, the powers of 2 that
make up the number will have been found. Then a 1 is
placed in the digit position, commonly called a “bit”
position in binary numbers, for each power of 2 that is
present, and 0’s are placed in the other bit positions.

1

Binary System
33

For example, to find out the binary number that is
equivalent to decimal 100, we refer to table 1—3 and
see that 26(64) is the largest power of 2 that is con-
tained in decimal 100. Therefore:

100
—64 (2%)

partial remainder of 36
—32 (25)

partial remainder of 4
—4 (22)

0

This shows that 100 = 26 - 25 |- 22, Substituting 1’s for
these powers and 0’s for the absent powers, we have:

100 = (1 X 2%) 4 (1 X 29) + (0 X 2%) +
(0X2%) + (1 X 2?) 4 (0 X 2) + (0 X 2°) or
decimal 100 — 1100100 in binary.

Another system of decimal to binary conversion is
to divide the decimal number by 2 and record the
partial quotient and remainder. The partial quotient is
again divided by 2, and so is each succeeding partial
quotient until the quotient is 0. Each division will leave
a remainder of 1 or 0; this remainder represents a bit
position in the corresponding binary number. As an ex-
ample, consider the number 100 again, and let us find
out the binary equivalent by division. We proceed as
follows:

2)100

1st partial quotient 1st remainder

2nd partial quotient 2nd remainder
3rd partial quotient 3rd remainder
4th partial qﬁotient 4th remainder
5th partial quotient 5th remainder

G6th partial quotient

final remainder

final quotient

Reading from bottom to top we have 1100100 in binary,
which is the same result as that achieved by the process
~ of finding the highest power of 2 from a table. A
further example of this method is to find the binary
equivalent of the number 7221.

TABLE 1—4. RULES OF BINARY ADDITION

ADDEND 4+ AUGEND — SUM WITH CARRY OF

0o + 0 = 0 0
1+ 0 = 1 0
o 4+ 1 = 1 0
1+ 1 = 0 1

12

3-112-0

6th remainder -

PART 1
CH 3

1
0
1
0
1
1
0
0
214 0
(0
B
(1
EN

Thus, decimal 7221 = 1110000110101 in binary.

The important thing to remember when dealing
with this method of conversion is that it is not merely
some “short cut” that happens to work, but that it is
based on powers of 2, just as the other method shown.
Division by 2 will determine what powers of 2 are
present in the number. The only actual difference be-
tween the two systems is that division by 2 will deter-
mine the lowest power of 2 first, rather than the highest
power. Both methods have distinct advantages, but it is
completely arbitrary which method is used; both will
yield the same result.

Since binary numbers do resemble decimal numbers,
or numbers in any system, for that matter, the usual
practice is to place a subscript by the number being
used. The subscript gives the radix of the number sys-
tem, employed for a particular number. For example,
1010, is read as one-zero-one-zero, indicating binary
representation. On the other hand, 1010, is read as one
thousand and ten, indicating decimal representation.
Subscripts are used with all numbers in the remainder
of this chapter.

Now that it is possible to convert both to and from
the decimal system, we can start to learn the arithmetic
associated with the binary system. The basic arithmetic
function performed by the AN/FSQ-7 and AN/FSQ-8
computers is that of addition, so addition is considered
first. Essentially, the addition process in binary is the
same as that in the decimal system; adding a 1 to a
digit (or bit in the binary system) gives the next higher
order digit, until the highest digit is reached. A 1 added
to the highest digit gives a return to the lowest order

PART 1
CH3

digit, with a carry of 1 to the next position to the left.
However, in the binary system, there are only two bits,
0 and 1; so adding to a bit will always give the op-
posite bit. This may be seen by examining the low order
bit position of the binary numbers listed in table 1-2.
Notice that there is an alternating pattern of 1’s and
0’s as the binary numbers go higher in magnitude. Be-
cause we have only two bits to deal with, the rules of
binary addition are simple. These rules are shown in
table 1—4.

This gives us the four basic rules from which any
binary addition can be performed. However, in the above
case, it was assumed that there was no carry of 1 into the
bit positions being added. If there had been a carry of
1, the table could be expanded slightly to show the
effect. The results of binary addition with a carry of 1
are shown in table 1—S5.

As an example of binary addition, consider
101011010, - 0010111,. A carry of 1 from one bit posi-
tion into the next is indicated by an arrow (£&2).

c=1 ¢=1 ¢=1 ¢=1

&~ &~ &£ &
1 0 1 0 1 1 0 1 0
+ o o 1 o0 1 1 1
1 0 1 1 1 0 0 0 1
c=1 ¢c=1 ¢c=1 ¢c=1 c=1
e~ e e e~
1 0 1 0 1 1 0 0
—+ 1 1 1 1 1 0 0 1
1 1 0 1 0 0 1 0 1

To check on our binary addition, we can convert out of
and into the decimal system, using one of the methods
previously described. For example, convert and add
631y + 124¢.

2/63 2)12
2] 31 1 2J6 |o
215 |1 2)3 | o
217 1 2)1 |1
2]3 |1 o 1
2)1 |1
ol 1

3-112-0

Binary System
33

Therefore:

1 1 1=63,
+ 1 0 0= 1210
1 0 0 1 0 1 1

Coanverting 1001011, to decimal, we get (1 X 2°) +
(1X 29) 4 (1X 2) + (1 X 2°) or
64+8+2+ 101‘7510.

Of course, 75,, is the correct sum of 63,y -+ 12,4, so we
are assured that our binary addition is correct.

It is not necessary to consider addition of more than
two binary numbers, since the AN/FSQ-7 and AN/
FSQ-8 can not add more than two numbers at one time.

In the foregoing examples, we assumed that it was
always possible to make a carry-out from the highest
order bit position into the next position, if necessary.
However, since the AN/FSQ-7 and AN/FSQ-8 have
arithmetic elements with a specific limit or modulus,
it is not always possible to do this. When two numbers
that are added together produce a sum that is greater
than the capacity of the machine, a condition known
as “overflow” exists. For ease of explanation, assume
that we are dealing with an arithmetic element that has
only six bit positions. Computer overflow would result
from this addition:

| =l E
1 0 1 0 0 0

[=]
O
o fm

o
| -
oo

The carry of 1 from bit position 6 is added back into
the low order bit position, giving us a result that is
incorrect numerically. Also, an alarm is generated, in-
forming operating personnel of the AN/FSQ-7 and AN/
FSQ-8 that a problem which exceeds the capacity of the
arithmetic element has been attempted. Care should be
taken by the programmer to avoid computer overflow
if possible.

Previously, it was mentioned that the AN/FSQ-7
and AN/FSQ-8 computers are capable of addition only.
The philosophy behind this fact is easily explained. By

TABLE 1—5. BINARY ADDITION WITH CARRY OF 1

~ ADDEND + AUGEND -+ CARRY OF 1 = SUM WITH CARRY OF
0 + 0 + 1 = 1 0
1 + 0 + 1 — 0 1
0 + 1 —+ 1 = 0 1
1 + 1 + 1 1 1

13

Binary System
3.3

limiting the arithmetic element to one process, it is pos-
sible to use the same circuits for all the operations in
the computer. This, in turn, results in the saving of
space, and easier maintenance, This restriction would
seem to pose a problem when considering the other
arithmetic functions; however, this is not the case. Con-
sider the subtraction of two numbers, for example. We
usually think of subtraction in the decimal system as a
process whereby we “borrow” digits from the minuend.
This is known as direct subtraction, and it is possible
to do the same thing in the binary system; however, it
is not necessary. In the AN/FSQ-7 and AN/FSQ-8 com-
puters, subtraction is first converted to addition, and
then the normal addition process takes place. This is
possible by means of complementing the subtrahend,
or number to be subtracted. From trigonometry we
know that the complement of an angle is that angle
which is added together with the original angle to form
a right angle, In other words, it is the missing part
which makes up the whole. The same definition is valid
for the complement of a binary number; it is that part
which makes the whole. The “whole” in this instance
is the largest possible binary number that can be ex-
pressed. Of course this means a number containing all 1
bits. In the AN/FSQ-7 and AN/FSQ-8, this number is
217 ‘or 17 1 bits, but since this is a rather cumbersome
upper limit to work with, we shall again use an upper
limit of 26 or 111111,. To obtain the complement of a
binary number, we can perform a direct subtraction
from this number. For instance, the complement of
010100, is:

111111
—010100 original number

101011 complement
Also, the complement of 110111, is:

111111 ;
—110111 original number

001000 complement

We can generate the complement of any binary
number in this manner, but closer inspection of the
above examples will show a short-cut method, Notice
that the complement of the number is simply a reversal
of each bit position; that is, if a bit position contains a
1, the complement contains a 0, and vice versa. Al-
though it is not necessary to actually perform direct
subtraction to obtain a complement, it should be re-
membered that this is what is effectively taking place. A
. complement formed by the reversal of bit positions is
known as the 1’s complement and is used almost ex-
clusively in arithmetic operations in the AN/FSQ-7 and
AN/FSQ-8.

The application of complements in the case of the
subtraction process can be best explained by giving an

14

3-112-0

PART 1
CH 3

example, such as 101101, minus 011000,. We proceed as
follows:

a. Complement the subtrahend 011000., which gives
us 100111,

b. Perform a normal addition 101101 minuend
~+100111 (complement)
C=1 ——
— 010100 difference

Now we are faced with a situation which we encoun-
tered before: there is a carry of 1 out of bit 6; but the
limit or modulus of the number has been placed at 6, so
we can not create a seventh bit. Examination of the bi-
nary numbers being subtracted will show the difference
to be in error by 1, so the carry-out of the sixth bit is
added back into the low order bit to correct the error,
as follows:

101101 minuend
+100111 (complement)

010100 difference (uncorrected
C=1 < 1 ()

010101 difference (corrected)

Another example of binary subtraction is:
111111
—111110

This becomes: 111111
. -+000001 complement

000000 difference (uncorrected
C=1 (>1 ()

000001 difference (corrected)

Adding the carry-out of the most significant bit back
into the low order bit is called the “end-around carry,”
or more commonly “end carry.” (This same condition
may result from pure addition also, with a different
significance, as previously explained.)

Sometimes a binary subtraction will yield a result
that can not be interrupted directly; for instance:

101111
—111110

which is complemented to become an addition, or

101111
4000001 (complement)

110000 (difference)

Notice that there was no end carry from this problem,
and examination would seem to show the difference as
being incorrect. However, inspection of the original
problem reveals that we were subtracting a large sub-
trahend from a smaller minuend; therefore, the differ-
ence will be a negative number. The arithmetic element
of the AN/FSQ-7 and AN/FSQ-8 is not capable of dis-
tinguishing between positive and negative numbers as
such, so the answer appears to be wrong, if we attempt
to interpret it directly. To avoid this error, it is neces-

PART 1
CH 3

sary to remember that negative quantities are contained
in the arithmetic element in complemented form. Thus,
our answer in the above problem is not 110000, but
—001111,, Obviously, in calculations where the results
are determined as rapidly as they are in the AN/FSQ-7
and AN/FSQ-8, it would be impossible for us to keep
track of what quantities were in true form and those
which were in complement form. To tell the signs of the
various magnitudes, an additional bit is added to the
left of the magnitude bits. A 1 in this position (called
the sign bit) tells us that the number is negative and in
complemented form; a 0 indicates that the number is
positive and in true form. The sign bit is processed by
the arithmetic element just as if it were a magnitude bit.
For instance, if sign bits were added to the magnitude
bits in the foregoing example, we would have:

0.101111
—0.111110 or

0.101111
—+1.000001 (complement)

1.110000

Now we can see at a glance that the result is negative
and in complement form by the presence of the 1 in the
sign bit position.

Because the AN/FSQ-7 and AN/FSQ-8 work with
the complement system, an interesting possibility arises
in the case of 0. The number 0.000000, is read as *“posi-
tive” 0 (40) whereas its complement 1.111111, is read
as ‘“negative” 0 (—O0). Both numbers have the same
numerical value, and it is unimportant which 0 is used
in arithmetic operations. However, in cases where logi-
cal decisions are involved, there is a significant differ-
ence between the two representations.

Multiplication in the binary system is accomplished
exactly as it is in the decimal system. However, since
the only digits that can be combined in a binary multip-
lication are 1 and 0, the products can only be 1 or 0 also.
The binary multiplication table showing all possible
products is given in table 1—6,

TABLE 1—-6. RULES OF BINARY MULTIPLICATION

MULTIPLIER X MULTIPLICAND — PRODUCT
1 1 1
1 0 0
0 1 0
0 0 0

3-112-0

Binary System
33

As an example, consider multiplication of the numbets
110101, and 100100.,.

0.110101
0.100100
000000 1st partial product
000000 2nd partial product
110101 3rd partial product
000000 4th partial product
000000 5th partial product
110101 6th partial product
0.011101110100, final product

The method shown is direct binary multiplication, and
although it is not exactly how the AN/FSQ-7 and AN/
FSQ-8 perform multiplications, it will serve as the basis
for an explanation of the machine method. Notice that
all the partial products are 0’s except when a 1 bit is
encountered in the multiplier, in which case the partial
product is the multiplicand. In the above example, there
were two 1 bits in the multiplier; therefore, the multi-
plicand appeared twice as a partial product (products
3 and 6). To obtain the final product, the partial prod-
ucts are added together, as shown above. Thus, multi-
plication also becomes a function of addition. Examina-
tion of the partial products shows that each time a new
product is formed it is shifted one position to the left
before being placed in the column. In the AN/FSQ-7
and AN/FSQ-8, the need to shift left is overcome by
shifting the previous partial product one place to the
right and performing a normal addition when a 1 bit is
sensed in the multiplier. When a 0 bit is encountered,
no addition of the multiplicand occurs, but the entire
partial product is still shifted one place to the right.
This process is called the “inherent shift right” and, as
its name implies, is performed automatically during
multiplication. (The inherent shift right also occurs
during pure addition and subtraction problems but is
compensated for at the end of each addition or sub-
traction by a correctional shift left.) Now we can fol-
low our original example of 0.110101, multiplied by
0.100100 as it occurrs in the AN/FSQ-7 and AN/FSQ-8.
Since multiplication of two 6-bit numbers will result in
an 11- or 12-bit product, it is necessary to join two reg-
isters of the arithmetic element together during muléi-
plication. These registers are the accumulator register,
where addition is normally performed, and the B regis-
ter, which is an auxiliary register. At the start of the
multiplication, the multiplier is placed in the B register;
the multiplicand is contained in the A register (a tem-
porary storage register); and the accumulator is cleared.
Figure 1—3 shows this arrangement. First, the low or-
der bit of the multiplier is sensed. If it is a 1, the multi-
plicand and accumulator are added together. If it is a
0, no action is taken. Then the partial product is shifted

‘one place to the right, and the action is repeated until

15

Binary System
33

all the multiplier bits (except sign bit) have been sensed.
‘Table 1—7 shows the execution of this problem.

TABLE 1-7. MULTIPLICATION BY ADDITION
AND SHIFTING

PARTIAL AND FINAL PRODUCT

STEP MULTIPLICAND ACCUMULATOR MULTIPLIER

Start 0.110101 0.000000 0.100100
1 0.000000 0.010010
2 0.000000 0.001001
3 0.110101 0.011010 1.000100
4 0.001101 0.100010
5 0.000110 1.010001
6 0.011101 1.101000

During steps 1 and 2, only 0 bits were sensed in the
multiplier, so the partial product was merely shifted
to the right two places. This left a 1 bit in the low order
position where it was sensed and caused an addition
and shift at step 3. Steps 4 and 5 sensed O bits and
caused two more shifts to the right. The last addition
and shift occurred at step 6, and upon completion of
the step, the final product is contained in the accumula-
tor and B register (step 6). Examination will show this
answer to be the same as that obtained by direct multi-
plication, except for the inclusion of an extra 0 at the
right of the product. This 0 is the sign bit which has
been shifted to the right and, therefore, is not a sig-
nificant digit. Excluding this last digit will produce the
correct answer.

The binary division process is perhaps the most
difficult of all the binary arithmetic processes to under-
stand. However, it is actually nothing more than the
reverse of multiplication, just as in the decimal system.
To multiply in binary, we added; to divide in binary, we

"A"REGISTER
0.110101
ACCUMULATOR "B" REGISTER
0.000000 0.100100

LT

Figure 1—3. Registers Used in Multiplication

16

3-112-0

PART 1
CH 3

subtract. But binary subtraction consists of the addition
of complements, so, again, the addition function is em-
ployed. One slight difference exists when subtracting
for a division problem, however; instead of using the
’s complement, the 2's complement of the number is
used. This complement is generated by first obtaining
the 1’s complement (reversing bit positions) and then
adding a 1 to the low order bit position. Thus, binary
0.101, complemented becomes 1.010,, and the addition
of 1 gives us 1.011,, which is the 2’s complement of
0.101,. It will be recalled that the use of the 1’s comple-
ment left the final remainder in error by 1, so the carry-
out from the addition had to be added back into the
low order bit position to compensate for this deficiency.
Since a 1 bit is already added into the 2’s complement,
no correction of the remainder is necessary, and the
carry-out may be ignored. Use of the 2’s complement
for the division process is based on the fact that the
execution time for each trial subtraction is less than it
would be with the 1’s complement. This is true because
it is not necessary to correct the remainder after each
trial subtraction. Let us follow an example of direct bi-
nary division, often called the “restoring” method. As-
sume that we wish to divide 0.001101011101, by
0.010010,. Notice that the first six bits of the dividend
are smaller in magnitude than the corresponding divi-
sor bits. This condition will result in a fractional an-
swet, since we are dividing a small number by a larger
number. The AN/FSQ-7 and AN/FSQ-8 treat all num-
bers as fractions; therefore, it is desirable that our
quotient also be a fraction. The use of fractions rather
than whole numbers is unimportant at this point and
will be explained later, First, it is necessaty to generate
the 2’s complement of the divisor. This is accomplished
in the following manner:

0.010010 — divisor
(reverse bits) 1.101101 = 1’s complement
(add 1) 1

1.101110 = 2’s complement

Common sense will tell us that it is useless to try to di-
vide this number into the first six bits of the dividend
because the dividend is too small. So a shift one place
to the left is petformed on the dividend before the first
division step. Remember that when we say “divide” we
are actually adding the complement of the divisor. Our
first step in division then looks like this:

1
0.010010 / 0.001101011101
2’s complement (1.101110) 1101110

c=1 0001000

Notice that there was a 0 bit in the most significant
position of the current remainder; this indicates that

PART 1
CH 3

the first trial subtraction was successful, so a 1 bit is en-
tered in the quotient. The next step is to shift the re-
mainder one place left, bring down the next bit from
the dividend, and attempt another trial subtraction.
Therefore:

10
0.010010 / 0.001101011101
(1.101110) 1101110 1st subtraction
00010001 1st remainder
1101110 2nd subtraction
1111111 cutrent remainder

This time the remainder has a 1 as its most significant
bit; this means that the subtraction was not successful
since it resulted in a negative number, so a 0 bit is en-
tered in the quotient, Now it is necessary to restore the
remainder to its original shifted magnitude (1st re-
mainder) and shift another position to the left. This is
accomplished by adding the uncomplemented value of
the divisor to the current remainder to offset the 2nd
subtraction. The restoration step is shown below:

3-112-0

Binary System
33

Notice that the current remainder now has the same
value as the 1st remainder, except that it is shifted one
place to the left. The rest of the problem is completed
in the manner shown. The entite problem is illustrated
below:

101111
0'01101010 0.001101011101
(1.101110) 1101110 Ist subtraction
00010001 1st remainder
1101110 2nd subtraction
11111111 2nd remainder
0010010 restoration
00100011 3rd remainder
1101110 3rd subtraction
00100010 4th remainder
1101110 4th subtraction
00100001 5th remainder
1101110 5thsubtraction
0001111 final remainder

Thus, the final quotient is 0.101111, plus a remainder of

10 1111,.
0.010010 / 0.001101011101 The method of binary division explained above is
(1.01110) 1101110 1st subtraction fine for paper and pencil problems, but it is not efficient
00010001 1st remainder enough for actual use within the AN/FSQ-7 and AN/
1101110 2nd subtraction FSQ-8 because it is too time-consuming, Each time a
11111111 2nd remainder trial subtraction results in a negative remainder, the
0010010 restoration restoration step is necessary. This step can be elimi-
00100011 current remainder nated first by shifting the negative remainder one place
TABLE 1-8. DIVISION BY NONRESTORATION
STEP ACTION DIVISOR CURRENT REMAINDER QUOTIENT
1 0.010010 0.001101011101 (dividend) —
2 Complement 1.101110 0.00110101110 —
3 Subtract 1.101110 1101110
0.0010001 1
4 Subtract 1101110
1.111111 10
5 Double 1.1111111
1111111 10
6 Subtract 0.010010 0010010
00100011 101
7 Subtract 1.101110 1101110
00100010 1011
8 » Subtract 1.101110 1101110
00100001 10111
9 Subtract 1.101110 11101110 101111
0001111 (final remainder) 0.101111

17

Octal System
3.3-34

to the left and then performing another trial subtrac-
tion with the uncomplemented divisor. This method of
division is referred to as the “nonrestoring” method.
The rest of the division process is the same. In the divi-
sion process, the shift of one place to the left effectively
multiplies the number by the radix (2) or doubles it.
For this reason, the shift left is commonly referred to
as the “double” step. Table 1—8 shows the execution
of the same division problem by the nonrestoring
method. Naturally, division by this method gives the
same result as direct or restoring division.

3.4 OCTAL NUMBER SYSTEM

Now that we have covered all the phases of the
binary system, it is easy to see that the exclusive use of
binary notation is cumbersome. For this reason, com-
mon usage is made of the octal number system, which
serves as a type of shorthand notation for the binary
system. By referring to table 1—2, it can be seen that
it is possible to represent a maximum of eight numbers
with three binary bits. Thus, if we devise a number
system with a radix of 8, each digit in that system will
correspond to three binary bits. This is exactly what
the octal system does. Table 1—9 gives a comparison
of the decimal, octal, and binary equivalents.

TABLE 1-9. DECIMAL, OCTAL, AND
BINARY EQUIVALENTS

DECIMAL OCTAL BINARY

0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111
8 10 001 000
9 11 001 001
10 12 001 010
20 24 010 100
50 62 110 010
75 113 001 001 011
001 100 100

100 144

Notice that the binary numbers are grouped by threes;
“this is done to provide for easier inspection of the num-

18

3-112-0

PART 1
CH 3

ber. Since it has been stated that any octal number may
be represented by three binary bits, conversion from
octal to binary and back again may be made by inspec-
tion. For example, octal 12(12g) may be represented by
the binary equivalents for 1 and 2, or 001, and 010.
Thus, 12g = 001 010. Table 1—9 proves this to be true.
To convert any binary number to octal, or vice versa, it
is necessary only to memotize the binary equivalents for
03—75. This is easily accomplished, and a little practice
will enable one to become quite rapid when making
binary-octal conversions. Some examples of such con-
versions are:

10101000101011101010, = ?;

First, separate the binary numbers in groups of three,
starting from the low order bit position, This gives us:

010 101 000 101 011 101 010,

Since there are only two binary bits at the high order
position (10,), we assume that there is a leading 0 and
append it as shown. Now, each group of three bits is
converted to its octal equivalent:

010 101 000 101 011 101 010,
2 5 0 5 3 5 2
Thus, 10101000101011101010, = 2505352,

Converting from octal to binary is just as easy. For
instance, to convert 73410764 to binary:

7 3 4 1 0 7 064
111 011 100 001 000 111 110, or
73410763 = 111011100001000111110,.

Not only does the octal system serve as an abbreviated
notation for the binary system, but it can also be used
as an intermediate step when converting to decimal
notation from binary. This does not imply that it is
always easier to employ the octal system for this pur-
pose, but it may be used if desired. In addition, by first
converting to the octal system from binary or decimal,
and then to the desired system, a check on the direct
conversion may be made. For example:

7221, = 1110000110101,

by direct conversion, as shown in 3.3. However, if
7221,, was first converted to octal, and the resulting
octal number was converted to binary by inspection, we
could check the result. To convert 7221;, to octal, we
proceed exactly as in a decimal-to-binary conversion, ex-
cept that we are now dealing with powers of 8 rather
than 2. Table 1—10 gives the values of various powers
of 8.

PART 1 3-112-0 Octal System

CH 3
TABLE 1-10. POWERS OF EIGHT
POWER EQUIVALENT

890 . 1
8! 8
82 64
83 512
8t : 4096
85 32768
8¢ 262144

By referring to this table, we can convert 7221,, as
follows:
7221
—4096 (1 X 8%)
3125
—3072 (6 X 83%)
53
—48 (6 x 81)
5
—5 (X8
0

Remember that 82 was not used, so a 0 must be included
for this power. Therefore, 7221, — (1 X 8% +
(6 X 8) + (0 X 8) 4 (6 X 8) + (6 X 8) +
(5 X 8%) or 7221,5 = 16065;. Converting this octal num-

ber to binary by inspection gives us:
1 110 000 110 101, or 1110000110101,

This result is the same as that obtained by the direct
decimal-binary conversion. The other conversion system
employed in decimal-binary conversion is also applicable
to the octal system. Dividing the decimal number by the
radix (8) and recording the partial quotient and remain-
der gives us:

8] 7221

1st partial quotient 8/ 902 5 1st remainder

2nd partial quotient 6 2nd remainder
3rd partial quotient 0 3rd remainder

4th partial quotient 6 4th remainder

final quotient 0| 1 final remainder

Reading from the bottom up, we have 16065, exactly the
same result obtained by the other method.

To convert from octal to decimal, two methods are

again available for our use. One method is based on

34

powers of 8, as listed in table 1—10. The position of each
octal number determines what power of 8 is contained in
the decimal equivalent. For instance, 32473 — ?,,. Of
course, this means (3 X 8%) + (2 X 8%) 4 (4 X 81) 4
(7 X 8°) or 1536 + 128 + 32 + 7. Thus, 3247, —
1703,,. Another example of this method of conversion is
165055 = ? 1. Expanding the number gives us (1 X 8%)
+(6><83)+(5><82)+(0><81)-|-(5><8°),0r
4096 + 3072 4 320 + 0 + 5. Adding these numbers
will produce a sum of 7493, the decimal equivalent of
16505;. The other method of octal-decimal conversion
uses a combination of multiplication and addition, just as
the first method, but it is not necessary to know the
powers of 8 for this conversion. The rules of conversion
are as follows:
1. Multiply the most significant digit by the radix
(8 in this case).
2. Add the next most significant digit to this product
and again multiply by the radix.
3. Repeat step 2 for every significant digit except the
low order digit. Simply add this digit and do not
multiply. '

Using the number 165055 again, let us perform a conver-

sion by this method:

Step 1. 1X8=28

Step2. 8+ 6—14
(repeat) Step2. 14 X 8 = 112
(repeat) Step 2. 112 4 5 —= 117
(repeat) Step 2. 117 X 8 = 936
(repeat) Step 2. 936 4 0 = 936
(repeat) Step 2. 936 X 8 — 7488

Step 3. 7488 + 5 — 7493,

It should be noted that this method can be used to convert
a number from any system to the decimal system and is
not limited to the octal system alone.

The rules of octal arithmetic are no different than
the rules for any number system; it is only necessary to
remember that we are dealing with a radix of 8. How-
ever, since the octal system does have several symbols
which are used in the decimal system, the results of octal
arithmetic may sound odd at first. It is surprising to hear
someone say that “seven plus seven equals sixteen” or
“five times five equals thirty-one.” But examination will
show that 73 - 73 = 165 and 54 X 53 — 31 are true
statements. Octal arithmetic must be learned the same
way we learned decimal arithmetic: by memorization of
tables. For convenience, table 1—11 shows octal addition
and table 1—12 shows octal multiplication.

19

Octal System 3-112-0 PART 1
34 CH 3
TABLE 1—11. OCTAL ADDITION 1565 = 1104,
——718_—_ 5710
AUGEND ADDEND 655 = 5319
0 1 2‘. 3 4 5 6.7 10 11 12 6is:(§><81)+(3><8°)=48+5=531o
0 012 3 4 5 6 71011 12 135 = 1149
X13g = 114,
1 1 2 3 4 5 6 710111213 41— 11
13 11
2 2 3 4 5 6 71011 12 13 14 171, = 1215,
4 4 5 6 710 11 12 13 14 15 16 1 =121, :
5 5 6 7-10 11 12 13 14 15 16 17 1765 = 1264,
: 4205 = 272,
6 6 710 11 12 13 14 15 16 17 20 000 252
' ’ 374 882
7 S 7101112 13 14 15 16 17 20 21 170 - 252
10 10 11 12 13 14 15 16 17 20 21 22 102740, — 34272,
11 . 11 12 13 14 15 16 17 20 21 22 23 102740 = (1) 1 X 8 = 8
12 12 13 14 15 16 17 20 21 22 23 24 (2)840=38
: (3)8 X 8 =064
Some examples of octal arithmetic (and the decimal (4) 64 +2 =66

equivalents performed as a check) are as follows:

748-: 6010
432, = 26, -
1268 == 8610

1265 = (1< 82) + (23X 8') + (6 X 8°) =64 + 16 4
6__—8610—- - -

0000l100I010010 0.000001000000000 0.00011000001001

0001100101001 0.000011010100000 v o.ooonomo;bonon

0000i1001010I00 0.000101001000000 0.000000001011001

(5) 66 X 8 =528
(6) 528 + 7 = 535
(7) 535 X 8 = 4280
(8) 4280 X 8 — 4284
(9) 4284 X 8 — 34272
" (10) 34272 -+ 0 = 34272,

TABLE 1--12. OCTAL MULTIPLICATION

b

MULTIPLIER MULTIPLICAND

A
03122 0.01000 0.06023
03123 0.03240 0.051i3
03124 0.05100 0.00131
Ol GFI MC 53

B

Figure 1—4. Comparison of Binary and
Octal Notation

20

23456 7 10 11 12
00000 0 0 0 0
123456 7:‘;101112
£ 61012 14 16 20 22 24
611 14 17 22 25 30 33 36
10 14 20 24 30 34. 40 44 50

12 17 24 31 36 43 50 55 62

o © © ©o © © ©o© ©

14 22 30 36 44 52 60 66 74

B - NV L

| 16 25 34 43 52761 70 77 106
1o 01020 30 40 50 60 70 100 110 120
11 011 22 33 44 55 66 77 110 121 132
12 0 12 24 36 50 62 74 106 120 132 144

PART 1
CH3

Obviously, octal division and subtraction can be per-
formed simply by referting to tables 1—11 and 1—12.
As mentioned previously, octal arithmetic may seem
confusing at first, but, in reality, it is simply a straight-
forward application of the laws concerning radix and
positioned notation of magnitude.

As a tule, it is not necessary to perform a great
number of arithmetic operations while in the octal sys-

3-112-0

Octal System
34

tem, since the main use of octal notation occurs when it
is substituted for long binary expressions, and when
converting between the binary and decimal system. Fig-
ute 1—4 (part A) shows the binaty notation of an
actual maintenance program used in the AN/FSQ-7;
part B of this figure shows the equivalent octal notation.
It can readily be seen that the latter notation is much
easier to interpret than the equivalent binary notation.

21

PART 1
Ch 4

3-112-0

Air Defense Problem
41-43

CHAPTER 4
THE SAGE SYSTEM

4.1 THE AIR DEFENSE PROBLEM

Several years ago, the military authorities realized
that the system of air defense then in use was outmoded
and could not maintain adequate security for our nation.
The problem of many planes flying at high speeds was
more than a manual control center could handle, and it
became apparent that a system was needed which could
keep track of all the planes in the air, together with
any and all data collected about each plane. At the
same time, this system would have to be flexible enough
to allow human monitors to make important decisions
regarding weapons assignment, target identification, etc.

After considerable research and study, the Air
Force decided that the large-scale digital computers
being developed at the time were the best instrument
to bring our air defense system up to its best operating
capability. These computers would handle all the data
which could be gathered concerning the air movements
in a given sector, and would be capable of updating this
information and presenting it to human monitors. How-
ever, the manual system could not be abandoned im-
mediately, because it would take some time for these
computers to be installed, if they proved to be feasible.
In addition, the problem of integrating the radar sets,
etc., associated with the manual system, was still un-
solved. The need for an improvement of the air defense
system was very real, but the task of bringing about
such an improvement was a problem of equal weight.

In 1950, the Air Force contracted for civilian as-
sistance in solving the air defense problem. At the time,
the geal of this project was to find the most efficient
application of a digital computer to meet the ever-
growing problem. The first of many systems to evolve
as a result of these studies was the Cape Cod System,
established in 1953. The Whirlwind 1 computer, built
by MIT, was the nucleus of the system, and it utilized
several small radar sets in the New England area. This
system provided valuable data concerning the size and
speed of the computer that was necessary to do the job
the Air Force wanted and proved the feasibility of
using digital computers. In 1954, the system was ex-
panded to employ more radar sets as inputs, and ad-
ditional improvements were made in the accuracy of the
detection programs being run in the computer. Satisfied
that digital computers could handle the air defense
situation, the Air Force set up what was known as the

semi-automatic ground environment system (SAGE), a
huge network of computers and radar sites. The radar
sitess would supply information about an area to a
SAGE computer, which could then decide what action
to take, depending on the situation. The first experi-
mental SAGE subsector was installed in 1955, using a
huge digital computer, designated AN/FSQ-7 (XD-1),
which was built by IBM. This computer was located at
Lexington, Mass., and its objectives were to provide
data on computer reliability, operating procedures, and
training of personnel for the newly formed SAGE sys-
tem. a

4.2 ELEMENTS OF SAGE

As mentioned earlier, radar sites provide much of

_the information which is used as raw data for the com-

puter. However, there are many other elements in the
SAGE System which provide raw data to the computer’s
input system; among these are status reports from sur-
rounding air bases and weather stations, Ground Ob-
server Corps reports, and relay information from adja-
cent computers. The computer outputs go to airborne
aircraft, other computers, and various defense centers
employing teletype receivers. Each SAGE computer is
connected to some or all of these devices; together, they
form what is known as a SAGE sector. As each sector
is concerned only with the geographic area in which it
is located, a higher echelon of command, which surveys
the overall air defense situation, has been established.
This command level is referred to as a division, and is
controlled by a cbmputer similar to those used at the
sector level. Instead of raw data as inputs, however, a
SAGE division level computer receives data already
processed by the other computers. In turn, the division
summary of its air defense situation is forwarded to the
headquarters of the Continental Air Command. The
computers used at the sector level are designated AN/
FSQ-7 Combat Direction Central; those used at the
division level are designated AN/FSQ-8 Combat Control
Central. Figure 1—5 is a simplified drawing showing
how the various elements described are integrated into
the SAGE System.

4.3 LOGICAL ELEMENTS OF AN/FSQ-7 AND
AN/FSQ-8

It can be seen from figure 1—5 that the basic build-
ing block of the SAGE System is the AN/FSQ-7. This

23

| A

AUTOMATIC MANUAL
INPUTS INPUTS
A A
LONG- SHORT- OTHER TEXAS AIRBORNE AIR TRAFFIC GROUND WEATHER DEFENSE RADAR
RANGE RANGE AN/FSQ-T'S TOWER RADAR CONTROL OBSERVER STATIONS ASE PICKET
RADAR RADAR RADAR CENTERS CORPS SES SHIPS
AN/FSQ-7
y
TELETYPE GROUND- GROUND-
RELAY AIR RELAY GROUND RELAY
¥
AN/FSQ-8
y]
MANUAL
CENTERS INTERCEPT OTHER
(INCLUDING WEAPONS AN/FSQ-7'S
THOSE ABOVE)

Figure 1—5. SAGE System, Simplified Diagram

¥ HY

51 84

0-Zii—-¢

I L4vd

PART 1
CH 4

computer is a high-speed, general-purpose machine
which is used in a real time situation. (Real time means
that the data being processed will provide information
about an event that is in progress at the time of proc-
essing.) Because the AN/FSQ-7 is such a large com-
putet, and its operating characteristics ate unique, it
includes seven separate systems. These systems, together
with their proper logic numbers, are listed below:

. Central Computer System

. Drum System

. Input System

. Output System

. Display System

- Power Supply and Marginal Checking System
. Warning Light System

g " 0o A n o B

The function of the Central Computer System is to
process the data delivered to the AN/FSQ-7. The actual
arithmetic operations are performed by this system; in
addition, the Central Computer also synchronizes many
of the operations of the other systems. The Drum Sys-
tem has a dual capacity within the AN/FSQ-7; it serves
as a buffer, or time delay, between the high-speed Cen-
tral Computer and the other systems, and is also used
as an auxiliary storage device. Raw data from the sources
shown in figure 1—5 is delivered to the Input System

3-112-0

Elements of AN/FSQ-7 and -8
43

in a variety of forms and is decoded and rearranged
into a standard form for use within the AN/FSQ-7. The
processed data is handled by the Output System where
it is sorted into the proper categories and transmitted to
relay stations. Human monitoring and tactical decisions
are made through the use of the Display System which
presents processed data in visual form. The Power Sup-
ply and Marginal Checking System supplies the neces-
sary voltages to the AN/FSQ-7 and, in addition, pro-
vides for a special testing facility used by maintenance
personnel. Figure 1—6 shows the logical arrangement
of these systems within the AN/FSQ-7.

Due to the fact that the proper operation of the
AN/FSQ-7 is so vital to the air defense system, provi-
sions are made for two identical Central Computer Sys-
tems to be included in each AN/FSQ-7. Some portions
of the other systems are also duplicated, or duplexed.
The basis for duplexing some equipment but not all of
it was determined by the overall effect that equipment
would have on the operating capability of the AN/
FSQ-7 if it were to fail. That is, equipment that would
render the entire AN/FSQ-7 useless if it failed was
duplexed, but equipment that would merely lower the
performance standards slightly if it failed was not du-
plexed. The identical Central Computer Systems are
referred to simply as “computer A” and “computer B.”

DISPLAY
SYSTEM
DRUM
SYSTEM
CENTRAL
RAW INPUT | DRuM »|COMPUTER DRUM OUTPUT PROCESSED
DATA ' SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM DATA
) TO ALL SYSTEMS
WARNING
LIGHT
SYSTEM
POWER SUPPLY AND
MARGINAL CHECKING
SYSTEM
TO DISPLAY
AND

INPUT SYSTEMS

'Fi/gure 1—-6. AN/FSQ-7, Simplified Block Diagram

25

Elements of AN/FSQ-7 and -8
4.3

One or the other of these computers is in active status
24 hours daily, ensuring continuous functioning of the
air defense network. The other computer is said to be
on standby status, receiving preventive maintenance or
running data reduction programs.

The AN/FSQ-8 Combat Control Central is a2 modi-
fied AN/FSQ-7. Its Input System is not as extensive as
that of the AN/FSQ-7, since the data it receives has

26

3-112-0

PART 1
CH 4

already been processed by one of the AN/FSQ-7’s under
its control. Similarly, the Output System does not have
to transmit data to as many places as the AN/FSQ-7
and is proportionately smaller. However, in general
operation, both the AN/FSQ-7 and AN/FSQ-8 are alike,
and are discussed together throughout this manual.
Where differences in equipment that may affect pro-
grammed operation occur, the AN/FSQ-8 will be dis-
cussed separately.

PART 2
CH 1

3-112-0

Computer Word Description
1.1-1.21

PART 2 ‘
BASIC PROGRAMMING

CHAPTER 1
INTRODUCTION

1.1 GENERAL

For proper operation, a digital computer must be
able to execute a problem or series of problems in strict
accordance with a known method of solution. Obvi-
ously, the computer cannot devise its own method of
solution; therefore, all computer operations must be
controlled by a series of instructions to the computer.

. This series of instructions is referred to as a program,
or computer program. This part of the manual presents
some of the basic instructions associated with the AN/
FSQ-7 and AN/FSQ-8 and the various ways of combin-
ing such instructions to produce a desired program.

1.2 COMPUTER WORD DESCRIPTION

A digital computer must be able to recognize the
instructions it receives. Therefore, these instructions
must be presented in a combination of digits, since this
is the only “language” the computer can interpret. The
AN/FSQ-7 and AN/FSQ-8 utilize a system of pure bi-
nary numbers for all operations; therefore, it is man-
datory that computer instructions are coded in binary.
Data must also be in binary form. To allow air defense
data and instructions to be processed by the same cir-
cuits, a standard form or layout is necessary for both
types of numerical information. This layout is referred
to as a computer “word” and is composed of 32 bits in
the AN/FSQ-7 and AN/FSQ-8. The computer word is
divided into two half-words, simply referred to as the
- “left half-word” and the “‘right half-word.” The reason
for this division is that the Central Computer System
has dual arithmetic elements, allowing two operations
to take place simultaneously. The arithmetic elements

< LEFT HALF-WORD

are also designated as left and right, with the left arith-
metic element processing the left half of a computer
word and the right arithmetic element processing the
right half. Figure 2—1 shows the word layout for the
AN/FSQ-7 and AN/FSQ-8. Each half-word consists of
15 magnitude bits, plus one bit for sign. In addition, an
extra bit is included at the extreme left of the word.
The bit is generated by the Central Computer and is
used to check the information transfer to and from the
Central Computer. This bit, called the parity bit, is not
used in arithmetic computations and does not have to
be assigned a position for instructions or data. It is in-
cluded to show that a word stored in core memory ac-
tually consists of 33 bits — the two half-words plus the
parity bit. Often, it is necessary to refer to single bits
within a computer word; for this reason, the letter L or
R is placed before the bit position to designate the
proper half-word. For instance, a reference to L9
means that we are concerned with the ninth magnitude
bit of the left-half word.

1.2.1 Instruction Words

As previously mentioned, the computer cannot
function by itself, but must be controlled by programs.
The instructions within the program direct the com-
puter to add, subtract, print results of computations,
accept more input data, and perform various other op-
erations. The instruction word is composed of several
parts, each of which gives part of the information re-
garding the overall function of the instruction. Figure
2—2 shows the instruction word layout, with the vari-
ous portions indicated.

RIGHT HALF-WORD >

L2|L3|L4|LS|LejL7|L8|LI|LIO|Ll[LI2|Li3

L4

LIS

RS| Rl |R2| R3|R4|R5|R6|R7 |R8 RIO|RIl |RI2 |RI3 [RI4 |RIS

Figure 2—1. Computer Word Layout

21

Instruction Words
1.2.1

The left half-word is commonly referred to as the
operation portion of the instruction because this half-
word tells what operation is to be performed. Analysis
of the various bits in the operation portion is as fol-
lows:

LS—In the AN/FSQ-7, this bit is logically con-
nected to the right half-word (address). This
resulted from the installation of an expanded
memory which has a greater number of ad-
dresses than can be specified by the right half-
word alone. The AN/FSQ-8 does not have an
expanded memory so bit LS is not used as part
of the address.

L1 through L3 — These bits specify what index regis:
ter, if any, is to be used for address modification.

L4 through L6 — Any one of eight classes of instruc-
tions are indicated by these bits.

L7 through L10 — Any one of several variations pos-
sible within each particular class of instructions
is indicated by these bits.

L10 through L15 — These bits are referred to as
auxiliaty bits because they serve various put-
poses, depending on the instruction. In several
instances, only some of the available bits are
used. A list of the various uses of the auxiliary
bits, together with the particular bits employed,
is given below:

a. Index interval (Bits L10-L15. Determines

the amount the index register selected by
L1-L3 is to be reduced.)
Sense code (Bits L10-L15. Determines what
device is to be sensed for a particular con-
dition.)
Select code (Bits L10-L15. Selects an 10
device.)
. Operate code (Bits L10-L15. Starts or stops
an internal operation.) .
Select drum code (Bits L10-L15 plus RI.
Selects a drum field for reading or writing.)

LEFT HALF-WORD

3-112-0

PART 2
CH 1

Interleave code (Bits L13-L15. Specifies the
increment between drum registers to be used
in reading or writing.)

. Overflow suppression (Bit L13 only. Sup-
presses all overflow alarms.)

. Left overflow control (Bit L14 only. De-
termines whether action is to be taken when
overflow occurs in left arithmetic element.)

Right overflow control (Bit L15 only. De-
termines whether action is to be taken when
overflow occurs in right arithmetic element.)
Compare variation code (Bits L10-L12. Used
in conjunction with bits L4-L9 to determine
which one of eight compare instructions is
to be executed.)

. Test variation code (Bits L10-L15. Bit L10
determines which one of two test instructions
is to be executed; bits L11-L15, which one
of 32 bits is to be tested.)

Seventeen bit option code (Bit L12 only.
Used to determine whether 16-bit operation
or 17-bit operation is used in conjunction
with certain instructions.)

It can readily be seen that bit L10 has an overlapping
function. Generally, it is used to specify the last bit of
the class variation; however, it is sometimes used as an
auxiliary bit. No difficulty is encountered, however, be-
cause the codes for the different instructions are so ar-
ranged that when bit L10 is used as an auxiliary bit it
is not needed as a class variation bit.

The right half-word of an instruction word is re-
ferred to as the address portion. The term “address”
does not necessarily mean that an absolute location will
always be found in this half-word, although this is a
common use of the right half-word. When explaining
the layout of the address portion, it is necessary to re-
member that bit LS is logically part of the right half-
word in the AN/FSQ-7. As mentioned before, bit LS is
not needed in the AN/FSQ-8 as part of the address be-
cause of the smaller memory it contains. Bit RS is not
needed either. Thus, these two bits may be disregarded
when speaking of the address portion of the AN/FSQ-8.

RIGHT HALF-WORD

[INDICATOR
FIRST BIT OF ADDRESS

Lsiul [L2fL3|La|us|Le|L7]Ls|Louiojn fLiz|u3jLi4|LiS|RS | Rl |R2 | R3 |R4| RS | R6|R7 | R8| RO [RIO |R!I [RI2|RI3 [RI4|RIS
. CLASS
G—INDEX—OQ—CLASS—DQ—VARIAT‘ON—D ADDRESS >
[¢———AUXILIARY ———

Figure 2—2, Instruction Word Layout

28

PART 2
CH 1

A list of the uses of the right half-word is given be-
low. The LS and the RS through R15 bits are used ex-
cept where noted:

a. Actual address of an operand (memory loca-
tion).
b. Initial address of an addressable drum.

¢. Number of words to be transferred to or from
internal memory during an input-output (I0).

d. Number of steps in a shift or cycle instruction.

e. Drum group selection (Bit RS only. Determines
whether the main drum or auxiliary drum group
is selected for reading or writing.)

f. Identity code (Five codes, consisting of either
R5 through R10, R7 through R15, R11 through
R15, R12 through R15, or R14 through RI15.
These codes tell the source or type of informa-
tion desired by the Central Computer.)

g. Value to be loaded into an index register.

h. A constant.

1.2.2 Data Words

Just as with instruction words, a data word consists
of two half-words which are processed simultaneously
by the dual arithmetic elements of the Central Com-
puter System. Data received from various sources will
have various forms, so the most general layout of a data
word is what we shall consider. This lvayOut conforms
with the word layout shown in figure 2—1. The sign bit
of a data word actually indicates polarity, whereas it
served only as a code in an instruction word. There-
fore, we have two balf-words of 15 bits plus magnitude.
In the discussion on binary division, it was stated that
all numbers in the AN/FSQ-7 and AN/FSQ-8 are treated
as fractions. This restriction is placed on data primarily
so that the multiplication of two numbers will always
result in a product smaller than either of the numbers,
thus positively avoiding overflow. Another considera-
tion is that the results of a multiplication may be stored
from one register without a loss of bit significance. As
a result of this restriction, all numerical data within the
AN/FSQ-7 and AN/FSQ-8 lies somewhere between the
limits of 41 and —1. Data which has an actual magni-
tude of more than unity must therefore be scaled (fac-
tored) so that it appears in fractional form,

3-112-0

Central Computer Timing
1.2.1-13.1

1.3 CENTRAL COMPUTER TIMING

In the discussion of digital computers (Part 1, Ch
2), it was stated that most computers follow a definite
cycle configuration during operation. For a better un-
derstanding of how certain combinations of cycles are
employed in the execution of various instructions, we
must first examine the basic timing of the AN/FSQ-7
and AN/FSQ-8.

1.3.1 Machine Timing

The AN/FSQ-7 and AN/FSQ-8 operate on a pulse
frequency of 2 mc per second. In other words, all inter-
nal operations are controlled by a timing generator that
issues pulses every 15 usec. These pulses are referred to
as timing pulses (TP’s), and they constitute the primary
component in machine timing. Twelve consecutive TP’s
make up a machine cycle, a period 6 psec long. For ease
of identity, each pulse is numbered from 0 through 11,
and we usually consider a machine cycle to start at TP 0.
Figure 2—3 illustrates a typical machine cycle for the
AN/FSQ-7 and AN/FSQ-8. Five types of machine cycles
are used during operation of the Central Computer Sys-
tem. The type of cycle depends on the control signals
being generated at any one time. Since two of these ma-
chine cycles are used for IO transfers, they will be dis-
cussed subsequently. The three remaining cycles are PT
(program time) cycles, OTA (operate time A) cycles,
and OTB (operate time B) cycles.

A PT cycle is used to obtain an instruction from
memory and decode it. In some cases, the actual execu-
tion of an instruction may also be performed at this
time because of the simplicity of the operation and be-
cause an operand from memory is not required. How-
ever, the majority of instructions available for use in the
AN/FSQ-7 and AN/FSQ-8 require operands from mem-
ory, so the main purpose of the PT cycle is to select
and decode an instruction. One significant point to re-
member is that while a PT cycle is usually thought of in
terms of instruction decoding, arithmetic operations
may be going on at the same time. The two functions
are completely separate, but they may occur within the
same PT cycle. This will be demonstrated in the discus-
sion on instruction timing (1.3.3).

Two types of operate time cycles are necessary be-
cause it is not possible to select an operand from mem-
ory, perform an operation on it, and return the operand

™o TPl ™2 T3 P4 ™5 ™6 ™7 P8 ™9 P10 il TPO
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
USEC USEC USEC USEC USEC USEC USEC USEC USEC USEC USEC USEC
[\ J
Y
6 USEC

Figure 2—3. Basic Machine Cycle

29

Instruction Timing
13.1-133

to memory within the 6-usec period. Therefore, an OTA
cycle is used to select an operand from memory and
transfer it to the arithmetic element, and an OTB cycle
is used to select a memory location and store an operand
from the arithmetic element in that location.

1.3.2 Memory Timing

When we execute an instruction that necessitates
obtaining an operand from or placing a number in core
memory, it is necessary to energize certain circuits that
will accomplish the desired transfer to or from the core
memory location. The same thing is true for obtaining
the instructions themselves, since they are stored in
core memory along with the operands. The length of
time that is necessary to accomplish a core memory
transfer is known as a memory cycle. The memory cycle
for the AN/FSQ-7 and AN/FSQ-8 is 6 usec in duration,
enabling internal memory to operate in the same length
of time as a machine cycle. Figure 2—4 shows the rela-
tionship of the machine cycle to the memory cycle.

At approximately TP 2, the selection of the regis-
ter is completed and its contents are read out of the
magnetic cores. Then the word is rewritten back into
the same location or a new word is substituted, depend-
ing on the instruction. The delay between the read and
write portions of the memory cycle is to allow the cir-
cuitry associated with rewriting to stabilize.

1.3.3 Instruction Timing

As mentioned in 1.3.1, above, most instructions are
composed of PT and OT machine cycles. Therefore,
most instructions require some multiple of 6 usec for
their execution. Certain instructions, such as multiplica-
tion and division, require more execution time than is
available in the OT cycles because of the formation of
partial products and quotients. Referring to figure 2—4,
we can see that an instruction is completely read out of
memory by TP 6; therefore, it is available for decoding
at TP 7. From TP 7 on, signals are generated which are
necessary for the arithmetic element to become pre-
pared for an operation (if the next cycle is an OT cy-

T™PO TP T 2 T3 TP 4 ™5

3-112-0

PART 2
CH 1

cle) or for the next instruction to be read (if the next
machine cycle is a PT cycle). For purposes of conven-
ience, the time pulses are referred to by the name of the
machine cycle in which they occur. Therefore, we say
that an instruction is ready for decoding at program
time PT 7. It is important to remember that there is
no PT 7 pulse as such; it is simply the eighth timing
pulse issued during the PT cycle. Similarly, the first tim-
ing pulse that occurs during an OTA cycle is referred to
as OTA 0. Because an instruction is available for decod-
ing at PT 7, we consider this time to be the start of an
instruction. Some justification for this may be necessary,
since it would appear that the logical starting point for
instruction execution would be with the selection of
that instruction. If the latter were true, a typical opera-
tion (such as addition) would require an entire PT cy-
cle to select and decode the instruction and an entire
OTA cycle to start the addition process. However, the
addition is not completed at the end of the OTA cycle;
the process will continue approximately another 3 usec.
Thus, we have on the order of 15 psec for an addition
to be performed. However, if the selection of the addi-
tion instruction was considered part of the previous in-
struction (regardless of what it was), we could start the
addition instruction of PT 7. From PT 7 through PT
11, the decoding would be performed, and the next ma-
chine cycle would be an OTA cycle, enabling us to start
the addition process. Just as with the first example, the
addition is not completed at the end of the OTA cycle;
however, instead of waiting for completion, we can
start another PT machine cycle to select the next in-
struction. This will occur at PT 0 and carry on through
PT 6. This is a period of 3 psec, which is enough time
to complete the addition. Thus, during PT 0 through
PT 6, two operations are going on simultaneously
within the Central Computer System: the execution of
the current instruction is being completed and the next
instruction is being selected from memory. With this
type of operation, we have also effectively reduced the
time required for an addition to 12 psec.

TP 6 ™7 TP 8 P9 TP IO TP I TPO

A. MACHINE CYCLE

6 USEC >

SELECT
MEMORY REGISTER READ

NN whrte

B. MEMORY CYCLE

Figure 2—4. Relationship of Machine Cycle to Memory Cycle

30

PART 2
CH 1

All instructions used in the AN/FSQ-7 and AN/
FSQ-8 operate on this principle of starting an instruc-
tion at PT 7. The addition instruction described above
is known as a 2-cycle instruction, since it requires one
complete PT machine cycle and one complete OTA ma-
chine cycle. This cycle configuration is shown in figure
2-5.

A few instructions available for the AN/FSQ-7 and
AN/FSQ-8 are so simple that their execution can be
carried out during one PT machine cycle. These 1-cycle
instructions take place from PT 7 through PT 6. Figure
2—6 (part A) shows the configuration of this type of
instruction.

Many of the instructions associated with the AN/
FSQ-7 and AN/FSQ-8 require only one operand to be
transferred to or from memory. These are the 2-cycles
instructions, and their configuration is shown in figure
2—5. However, some instructions require that an oper-
and be read out of memory and then returned. In this
case, both an OTA and an OTB machine cycle are re-
quired in addition to the PT cycle; therefore, these in-
structions are known as 3-cycle instructions (fig. 2—6,
part B).

3-112-0

Instruction Timing
1.3.3-14

Some arithmetic instructions do not fall into any
of the above cycle configurations because they require a
variable amount of time to execute, Instructions dealing
with operands from memory (such as multiplication
and division) require a PT cycle, an OTA cycle, and
what is known as an arithmetic pause. This type of
cycle configuration is shown in figure 2—6, part C. Still
another type of instruction does not utilize an operand
from memory (such as round-off of a number already
in the arithmetic element). These instructions have a
cycle configuration comprising a PT cycle and an arith-
metic pause, as illustrated in figure 2—6, part D. During
these pauses, machine operation is controlled by the
2-mc pulses issued by the master oscillator.

1.4 CENTRAL COMPUTER SYSTEM ANALYSIS

Before beginning a study of the actual instructions
used in the AN/FSQ-7 and AN/FSQ-8, it is useful to
become acquainted with a general description of the
Central Computer System and the various registers in-
volved in arithmetic operations. The Central Computer
System comprises several elements which are listed be-
low with their proper logic numbers:

PT 6

PT 7 OTA 0 PTO
PT oTA PT
< 3 USEC e 6 USEC =II< 3 USEC »
Figure 2—5. Cycle Configuration for 2-Cycle Instruction
PT 7 PTO PT 6
A. 1-CYCLE INSTRUCTION
PT? 0TA O 0TB 0 PT O PT 6
B. 3—CYCLE INSTRUCTION
PT O
l4————————2 MC PULSES ————
PT7 OTA O PT6
S [
C. 2—CYCLE INSTRUCTION WITH PAUSE
PTO

‘ |¢—————2-MC PULSES —————»f

PT 7 PT6

/PAUSE/

D.

I-CYCLE INSTRUCTION WITH PAUSE

Figure 2—6. Various Cycle Configurations for AN/FSQ-7 and AN/FSQ-8

31

Memory Element
1.4-14.1.2

0.1 Memory element

0.2, 0.3 Instruction control element
0.4 Program element

0.5 Arithmetic element

0.6, 0.7 Selection element

0.7 IO element

In addition, the manual controls associated with the
Central Computer System are usually included in any
discussion of the system. However, these controls are
not considered an integral element of the Central Com-
puter since they are located on consoles which contain
controls for all systems within the AN/FSQ-7 and AN/
FSQ-8. The logic number for the manual conttols is
(7.). Figure 2—7 shows the elements of the Central
Computer System as they are related in the AN/FSQ-7
and AN/FSQ-8.
1.4.1 Memory Element

1.4.1.1 General

The memory element in the AN/FSQ-7 and
AN/FSQ-8 is a high-speed, large-capacity device. As can
be seen by referring to figure 2—7, it stores both data
and instructions, making it a shared memory, similar to
the typical digital computer described in Part 1, Chapter
2. The main component of the memory element consists
of two magnetic core storage units. In addition, a test
memory facility is provided for maintenance purposes.
Also logically associated with the memory devices are

3-112-0 PART 2

CH 1

four registers: the left and right memory buffer regis-
ters, the memory address register, and the clock register.
Each of these components is discussed below.

1.4.1.2 Core Memory

In the AN/FSQ-7, the physical core memory units
are referred to as memory 1 and memory 2. Memory 1
contains 65,536, or 200,000, storage registers; memory
2 contains 4,096,, or 10,000, storage registers. In the
AN/FSQ-8, both memory 1 and 2 contain 4,096;, or
10,000, registers. The core memories are nonvolatile,
meaning that they retain the information which is stored
in them, even when power is not applied to the units.
We also consider the memories to have random access,
meaning that any memory location may be selected and
read out in the same amount of time. This time is re-
ferred to as random access time (or memory cycle) and
is 6 psec in the AN/FSQ-7 and AN/FSQ-8. Thus, a
minimum of 6 psec must elapse between successive word
transfers. One more important point to consider is that
readout from core memory is nondestructive. If we trans-
fer the contents of location 100g to the arithmetic ele-
ment, the word is automatically rewritten into memory
location 1003 and can be used again. However, when
we write a word into core memory, the contents of the
selected register are destroyed, and replaced by the new
word. Figure 2—8 shows memory 1 and figure 2—9
shows memory 2 for the AN/FSQ-7. Figure 2—9 also
represents both memory units for the AN/FSQ-8.

DATA
MEMORY
ELEMENT " DATA(TRANSFERRED
(0.1 AT OT TIME)

INSTRUCTION WORD

(TRANSFERRED AT A

PT TIME)

‘ g%NJ;zI?SL CONTROL
SELECTION INSTRUCTION PROGRAM SIGNALS ARITHMETIC
ELEMENT CONTROL ELEMENT ELEMENT
ELEMENT
(0.6,0.7) (02,03) (0.4) (0.5)
A
CONTROL CONTROL CONTROL
SIGNALS SIGNALS SIGNALS TO ALL ELEMENTS
10 TO ALL ELEMENTS
= ELEMENT
(0.7)
MANUAL
CONTROLS
DATA , CONTROL (7.)
SIGNALS .
S —)

IO DEVICES

Figure 2—7. Central Cohputer System

32

.
-

i :

. L
T SR SR

e e -

Figure 2—8. 256* Memory Unit &S, e
& f/;(’ PIE nigpsy 33

Fig. 2-9 : 3-112-0 , ' PART 2

i
\%;BB i "
’ ;ﬁ’?@m o
G
e

5

i

e
e

o
g
.

-
e

A bl% m&“arj
70 ICRI e O L ure 2-9. 64 Memory Unit

34

PART 2
CH 1

1.4.1.3 Test Memory

In addition to the core memories described above,
the AN/FSQ-7 and AN /FSQ-8 each contain another stor-
age device referred to as test memory. Test memory con-
sists of 16 plugboard registers and two toggle switch
registers located on the duplex maintenance console, and
a flip-flop register located in the arithmetic element.
Thus, there are 19 test memory registers that may be
used. However, only 16 addresses have been reserved
for test memory, so 16 is the maximum number of regis-
ters that can be used at any one time. The main purpose
of test memory is to allow information to be entered
directly into the memory element without resorting to
punched cards, etc. Naturally, since only a limited num-
ber of addresses are available, most information entered
in this manner is for maintenance purposes. The Central
Computer System can read information out of any of the
test memory registers at the normal rate of 6 psec. When
writing into test memory, the flip-flop register, com-
monly called the “live register,” is always selected, re-
gardless of which of the 16 available addresses is speci-
fied.

1.4.1.4 Clock Register

Although it is not actually used as a storage regis-
ter, the clock register is considered an active memory
device. It is located in the right arithmetic element and
consists of 16 flip-flops which form a counting circuit.
The clock register is pulsed every 1/32 of a second, and
thus maintains accurate track of real time. The contents
of this register are used when it is desired to use real
time increments in various calculations.

1.4.1.5 Memory Buffer Register

The memory buffer register consists of 33 flip-flops
which accommodate the left- and right-half portions of
a computer word, plus the parity bit. (Refer to 1.2.)
The function of this register is to provide temporary stor-
age for a word being transferred into and out of a
memory location. Temporary storage is necessary be-
cause the memory cycle is such that word transfers may
be made faster than the arithmetic element can perform
operations. Therefore, after a location is specified by a
memory address, the contents of that location are trans-
ferred to the memory buffer register and remain there
until ready for use. The parity check is also performed
by the circuitry associated with this register and the
proper bit placed in the P (parity) portion of the com-
puter word.

1.4.1.6 Memory Address Register

The memory address register contains the circuitry
that actually performs the memory register selection.
This register receives information from one of three
other registers which contain the address of the desired
location. The memory address register then drives decod-

3-112-0

Memory Addresses
1.413-14.17

ing matrices which, in turn, select the proper core wind-
ings and, finally, the proper register in core memory.
Only one address may be handled at any one time by
the memory address register; however, it is used to select
both instructions and operands from memory.

1.4.1.7 Memory Addresses

All of the storage locations within core memory
and test memory are assigned absolute addresses. This
is necessary because we must know the location of both
the instructions in a program and the operands to be
used before the program can be correctly executed. Since
the AN/FSQ-7 and AN/FSQ-8 have different size mem-
ories, the addresses assigned to them are necessarily
different. Table 2—1 gives the octal addresses used in
the AN/FSQ-7. ‘

TABLE 2—1. AN/FSQ-7 MEMORY ADDRESSES

Y

0.00000 — 1.77777 Memory 1
2.00000 — 2.07777 Memory 2
2.10000 — 3.77757 Illegal addresses

3.77760 — 3.77777 Test memory

The addressing system used in the AN/FSQ-7 pro-
vides for the inclusion of another memory the same
size as memory 1. Therefore, the addresses listed above
which are now illegal are reserved for the additional
locations that will be available if another expanded
memory is installed. In the meantime, if an illegal ad-
dress is specified, the memory register actually selected
will be the register in memory 2 corresponding to the
last four octal digits in the original address. For exam-
ple, if the illegal address 2.76355 was specified, the regis-
ter selected would be 2.06355. '

The AN/FSQ-8, which has no expanded memory at
this time, utilizes a slightly different address designa-
tion. Table 2—2 lists the octal addresses which may be
specified in the AN/FSQ-8.

TABLE 2—2. AN/FSQ-8 MEMORY ADDRESSES

0.00000 — 0.07777 Memory 1
0.10000 — 0.17777 Memory 2
0.00000 — 0.07777 Memory 1
0.60000 Clock register

We reserve an address for the clock register in the

. AN/FSQ-8 because originally there was no instruction -

that could specify the clock register. Although both the
AN/FSQ-7 and AN/FSQ-8 can now select the clock

35

Program Element
1.4.1.7-1.443

register through the use of a clock instruction, only the
AN/FSQ-8 can select the clock register using a different
instruction containing an address of 0.60000.

1.4.2 Instruction Control Element

The instruction control element accepts a portion of
the instruction word from the memory element and de-
codes it. The decoder is capable of recognizing each of
the various binary codes that indicate what operation is
to be performed. More specifically, bits L1-L12 of the
instruction word are transferred to a register, known as
the operation register, which determines the class of in-
struction and instruction variation to be executed. The
output of the operation register and its associated cir-
cuitry constitutes control signals which are sent to all
the other elements of the Central Computer at specific
times (depending on the instruction) and cause the
instruction to be executed.

1.4.3 Program Element
1.4.3.1 General

The overall purpose of the program element is to
supply the correct memory address to the memory ad-
dress register so that the proper location in core memory
may be selected. The program element is composed of
the program counter, the address register, and four in-
dex registers.

1.4.3.2 Program Counter

The program counter is a flip-flop register which is
responsible for keeping track of the location of instruc-
tions within a program. During normal operation of a
program, the program counter will contain the address
of the next instruction to be executed. Thus, during
PT time, the contents of the program counter will be
transferred to the memory address register, and the
program counter will be stepped once. The contents of
the program counter may also be changed when we wish
to “jump” or branch to an instruction which is not in
sequence within the program. In this case, the contents
of the address register (which contains the location we
wish to reach) are transferred to the program counter
and then to the memory address register,

1.4.3.3 Address Register

The address register accepts the right-half instruc-
tion word during PT time and does the necessary de-
coding to provide the memory address register with sig-
nals. In the case of memory 1 for the AN/FSQ-7, the LS
bit is also transferred to the address register.

1.4.3.4 Index Registers

The Central Computer System can perform many
routine functions such as sorting, tabulating, table
makeup, etc., by the use of programs which will repeat a
certain number of instructions as often as necessary.
When a program such as this, called an iterative pro-

36

3-112-0

PART 2
CH 1

gram, requires data stored in sequential locations, the
data can be obtained through the use of a single instruc-
tion and an associated index register. The index register
may be loaded with any value up to 2'%, and each time
the instruction is executed, the amount remaining in
the index register is added to the contents of the address
register, causing an address modification. For example, if
we wished to add 100 numbers stored in sequential loca-
tions, it would not be necessary to use 100 instructions
to add, but only one instruction specifying the first
number. Then the index register (which is reduced for
every repetition) is added to the address register each
time another operand is required, enabling us to select
all 100 numbers. The AN/FSQ-7 and AN/FSQ-8 each
contain four index registers, plus the right accumulator
of the arithmetic element which is sometimes used as a
type of index register. Indexing is discussed in greater
detail in Chapter 2 of this part.

1.4.4 Arithmetic Element
1.4.4.1 Generadl

The actual computations which are specified by the
instructions within a program are carried out by the
arithmetic element. The arithmetic element in the AN/
FSQ-7 and AN/FSQ-8 is a dual element, and the circuitry
in each is identical. The left arithmetic element handles
the left-half data word; the right arithmetic element
handles the right-half data word. When an instruction
is executed, the same action occurs in the two elements,
enabling data processing to proceed at a higher rate of
speed. It should be noted, also, that the arithmetic ele-
ment will perform arithmetic operations on instruction
words as well as data. If a memory register containing
an instruction is to be added to a number already in
the arithmetic element, the addition will take place in
the normal manner, because the arithmetic element can-
not distinguish between types of words. The main units
in the arithmetic element are the A registers, adders,
accumulators, and and registers.

1.4.4.2 A Registers

The A registers contain one of the operands used
during ar%thmetic operation. The memory buffer register
contents are transferred to the A register, and then the
arithmetic process actually begins. Since all operations

consist basically of addition, the A registers condition
the adders.

1.4.4.3 Adders

Basically, the adders consist of various logical cit-
cuits which are capable of producing a sum and a carry
for each bit added. The accumulator register supplies one
of the bits to be added for each position; the A register
supplies the other. The sum produced by each adder is
transferred to the corresponding flip-flop of the accumu-
lator registers.

- ADDRESS
- REGISTER MEMORY

A
LEFT AND RIGHT |

l HO
¢ luvd

MEMORY . ELEMENT MEMORY BUFFERS

> MEMORY o INTERNAL I
L]
1

0-CL1-¢

i€

I PROGRAM | ! -l
COUNTER | [l l LEFT A REG. RIGHT A REG. I
[- - l |
l | ADDRESS I OPERATIONS , INDEX INTERVAL] |
REGISTER l I REGISTER REGISTER LEFT ADDERS RIGHT ADDERS
] ~ |
T, INDEX REG. | I [
NO. | INSTRUCTION REGISTER , I
DECODING - DECODING
INDEX REG. I LEFT ACC. REG. RIGHT ACC. REG. I
NO. 2 I OPERATE L
TIME PULSE CIRCUITS
INDEX REG. GENERATOR] 1
NO. 4 SENSE
| CIRCUITS ‘ | LEFT B REG. RIGHT B REG.
Lel COMMAND
INDEX " REG. —] GENERATORS
NO. 5 _| seLECT .
I CIRCUITS
INSTRUCTION
. CONTROL SELECTION
| PROGRAM ELEMENT ELEMENT l ELEMENT I ARITHMETIC ELEMENT I
COMMANDS TO - -
ALL ELEMENTS
10 ELEMENT
I0 DEVICES <a—CONTROL *
: INSTRUCTIONS 8 DATA

Figure 2—10. Overall Information Flow, Central Computer

01-7 ‘34

Selection Element
144.4-14.7

.I 4.4.4 Accumulators

As mentioned above, the accumulator registers con-
tain the result of operations performed by the adders.
Thus, the accumulators may contain a number which
represents a sum of an addition, the difference after a
subtraction, the most significant bits of a product (fig.
1—3), or the remainder after a division. The accumula-
tors may also be used in the execution of several instruc-
tions that shift numbers already in the arithmetic ele-
ment (such as rounding off a product). '

1.4.4.5 B Registers

The B registers act as extensions of the accumulators
during execution of instructions such as multiplication
and division (fig. 1—3). These registers are made up of
flip-flop circuits, just as the accumulators are; however,
they are not associated with any adder circuitry. In addi-
tion to containing the least significant bits of a product
or the magnitude of a quotient, the B registers can also
petform shifting operations on their contents,

1.4.5 Selection Element
The selection element is composed of various groups

of logical circuits which enable us to perform a number

of operations on all the systems in the AN/FSQ-7 and
AN/FSQ-8. For instance, we can start an input test pat-
tern generator or cause the tape units to rewind. These
are primarily unconditional commands; in each case, we
are directing (or “operating”) the computer to take some
definite action. However, thete are occasions when we
wish to examine the status of various parts of the com-
puter and take some sort of action, depending on the
status, For example, if we want to print something with
the printer, we must first check to see whether the
printer is ready for use. This is known as “sensing” the

38

3-112-0

PART 2

CH 1
status of the printer. If the printer is not ready, we can
take corrective action, depending on what options we
have made available to the computer through the pro-
gram. The third operation that the selection element
petforms is to determine whether an IO unit has been

selected for operation and, if such is the case, to condi-
tion the IO element.

1.4.6 10 Element

Once this element receives a signal from the selec-
tion element indicating that we wish to read or write
using an IO unit, it takes over the task of performing
this operation. Several of the functions of this element
are as follows:

a. Controlling the amount of information that is
transferred. ‘

b. Determining where in memory we read or write
the information.

c. Determining what IO unit is involved.

d. Acting as a buffer storage device between the
IO unit and internal memory.

1.4.7 Overall System Information Flow

The main transfer paths for both data and instruc-
tions within the Central Computer System are shown in
figure 2—10. Not all the paths have been shown; how-
ever, those which connect the registers and circuitry
primarily responsible for decoding and the execution of
instructions are indicated. The IO element has not been
broken down to show any of its operational registers
because it is not involved in any of the basic instruc-
tions we are about to study. This element will be dis-
cussed more fully when IO programming and IO in-
structions are considered.

PART 2
CH 2

3-112-0

Basic Instructions, General
21-24

CHAPTER 2
BASIC INSTRUCTIONS

2.1 GENERAL

As previously stated, a program is a series of instruc-
tions which control the operations of a computer. Each
instruction is used to cause some action which is a part
of the overall task we wish to perform. Therefore, we
say that an instruction is the basic building block of a
computer program. :

An efficient program makes full use of the instruc-
tions which are available to accomplish the task in the
shortest possible time and uses the least number of in-
structions. In most cases, one criterion, either time or
the number of instructions, has to be chosen over the
other, and the program is developed along this line. If
time is important, we try to write a program which uses
instructions of short duration but may use quite a few
memory locations for storage. On the other hand, if
time is relatively unimportant, but only a few restricted
locations are available, we must then choose instruc-
tions which do a number of things or will cause the
computer program to run through the same routine more
than once. Later, we shall see how two different pro-
grams can be written to perform the same task, one
being fast in execution time but the other requiring less
memory space.

From the above discussion, it is apparent that to
write a satisfactory program it is necessary to have a
thorough knowledge of the instructions we can use.
This includes execution time, the overall purpose of the
instruction, when the instruction may be used, and the
state of the computer after the instruction has been car-
ried out. In addition, we should know whether the
instruction can be indexed and what internal conditions
must be satisfied before it can be executed. The follow-
ing text describes 17 basic instructions that are used in
the AN/FSQ-8. Each description contains the informa-
tion listed above, and program examples of the instruc-
tions are given. Since most problems have several
possible solutions, the program given for a particular
problem may not represent the most efficient way of
arriving at an answer. Rather, the programs are de-
signed-to show the application of individual instructions
within a program.

2.2 HALT INSTRUCTION

The Halt (HLT) instruction causes the computer
to stop executing instructions under program control.

However, any operation which is in progress at the time
the HLT instruction is decoded will be completed first.
For example, if we are reading information into memory
from a deck of 150 punched cards, all 150 cards will be
read before the computer halts, even though the HLT
instruction may have been issued just after the reading
operation began. This instruction requires 12 psec to
execute and is designated by an octal code of 000 (bits
L4-L10). The address portion of the HLT instruction
is not used; therefore, indexing is not possible. When
the computer is halted by this instruction, the program
counter contains the address of the instruction imme--
diately following, so that restarting the computer will
cause this next instruction to be executed.

2.3 CLEAR AND ADD INSTRUCTION

The Clear and Add (CAD) instruction is used to
enter a quantity into the accumulators from memory
without changing the sign or magnitude of the words.
This instruction is usually used when it is desired to
begin a type of addition problem. The accumulators
are first cleared, and then the location specified by the
address portion of the CAD instruction is transferred
to the A registers. Then an actual addition between the
A registers and accumulators is started; however, since
the accumulators are cleared to -0, this addition has the
overall effect of transferring the word from memory
into the accumulators unchanged. The memory location
used is unchanged, and the A registers are cleared to
—+0 after execution of the CAD instruction, An octal
code of 100 is used to designate a CAD instruction, and
it may be indexed. Execution time for this instruction is
12 psec,

2.4 ADD INSTRUCTION

This instruction is similar to the CAD instruction
except that it does not provide for clearing the accumu-
lators before the addition process begins. Thus, the
ADD instruction will generate the sum of the word con-
tained in the specified memory address and anything
that may be in the accumulators. This sum is placed in
the accumulators, and the A registers are cleared to
+0. The ADD instruction requires 12 psec for execu-
tion and may be indexed. The octal code for this in-
struction is 104. It should be noted that the ADD in-
struction can cause an overflow if the numbers added
together are sufficiently large. If this happens, the result

39

Programs Involving Addition
24-26

in the accumulator is meaningless. Because the arith-
metic elements are dual, an overflow may occur in one

accumulator and not the other; however, overflow in

both accumulators may occur as a result of the same
ADD instruction. Later on, we shall see how this condi-
tion (overflow) can be dealt with by a computer pro-
gram,

2.5 FULL STORE INSTRUCTION

The Full Store (FST) instruction is used to transfer
words from the accumulators into a memory location spe-
cified by the address portion of the instruction. The
left accamulator is stored in the left half-word and the
right accumulator is stored in the right half-word. Thus,
this instruction enables us to place the results of any oper-
ation performed by the arithmetic element into memory
for future use. The contents of the specified register are
first cleared, and then the contents of the accumulators
are stored in via the memory buffers. However, the accu-
mulators remain unchanged by this instruction. Execution
time for this instruction is 12 psec, and it may be indexed.
The FST instruction is designated by an octal code of
324.

2.6 SAMPLE PROGRAMS INVOLVING ADDITION

Now we have learned enough instructions (HLT,
CAD, ADD, and FST) to solve a basic and simple prob-
lem involving addition only. However, the programming
principles presented in this problem are the same as those
outlined previously; ie., to choose the proper instruc-
tion and place it in the proper sequence in our program.
Assume that the problem is to add several sets of quanti-
ties together and store the results for future use. Before
we can write a program, we must know where in memory
those quantities are stored initially; we must also know
where to place their sum. In addition, we must have
memory locations available for storage of the computer
program itself. For ease of explanation, assume that
memory locations 03— 105 are available for the program;
locations 1005 — 2005 are available for data, including the
result. Further assume that the quantities we wish to
add are contained in memory locations 100s, 1253, and
1355. Let the quantities be designated A, B, C, D, E,
and F, and have them located as follows:

a. Memory location 1004 contains A in the left half-
word and B in the right half-word.

b. Memory location 1255 contains C in the left half-
word and D in the right half-word.

¢. Memory location 1354 contains E in the left half-
word and F in the right half-word.

Now we are ready to solve the problem. The progtam
used is given in table 2—3.

40

3-112-0

PART 2
CH 2

TABLE 2--3. BASIC ADDITION PROGRAM

LOCATION OPERATION ADDRESS
0.00000 CAD 0.00100
0.00001 ADD 0.00125
0.00002 ADD 0.00135
0.00003 FST 0.00150
0.00004 HLT -

Notice that the octal notation is used when referring to
memory locations; this method simplifies the reading
of the program, as previously explained. Now let us take
the first instruction in the program and see what it
does.

The instruction itself is located in memory location
0.0000, and it says to CAD location 0.00100. This will
cause the accumulator to be cleared to positive zero and
the contents of 0.00100 to be added in. Since we speci-
fied that 0.00100 contains A, B, the left accumulator will
contain A and the right accumulator will contain B
after execution of the CAD instruction. It should now be
obvious that the CAD instruction is the best instruction
with which to start our program, since our problem is to
add numbers together, and the ADD instruction would
not suffice since it is possible (and probable) that the ac-
cumulators would not be cleared at the start of the
program. Thus, using an ADD instruction might lead
to a result we do not want. The next instruction, which
is located in 0.0001, tells us to ADD 0.00125. After
execution of this instruction, the left accumulator con-
tains A 4 C and the right accumulator contains B ++ D.
Remember that simultaneous addition is carried on in
both arithmetic elements. The third instruction, ADD
0.00135, will add in E and F so that the left accumulator
contains A 4 C + E and the right accumulator contains
B 4 D 4 F. Now the result we wished to obtain is in
the accumulators. However, to be of any real value, the
result must be stored in memory, so the fourth instruction
tells the computer to FST these sums in 0.00150, Now
location 0.00150 contains A 4 C -+ E in the left half-
word and B + D -+ F in the right half-word, regardless
of what quantity may have been there previously. Of
course, these sums are also still contained in the accumu-
lators. The last instruction in our program is HLT, which
causes the computer to stop operation.

This problem has been simple, and no doubt the
solution was obvious from the beginning. However,
most problems do not offer such straight forward meth-
ods of solution. In some cases, it is advantageous to add
one quantity before another, although in the above ex-
ample it made no difference which quantities were in-
itially placed in the accumulators, since the end result

PART 2
CH 2

would have been the same. In addition, the choice of
memory location 0.00150 for the result was arbitrary,
the only restriction being that it had to be somewhere
between locations 0.00100 - 0.0200, as mentioned before.
In many cases, however, the results of computation have
to be in a particular location or locations because another
program or portion of the same program may refer to
that location on the assumption that the proper quantities
have been placed there. The following example shows
how a program may refer to a location that has just
been used for storage. Assume that we wish to obtain
the sums 2A + 2C, 2B + 2D, using the same data loca-
tions as those given in the first program. The program
to obtain these sums is given in table 2—4,

TABLE 2—4. MEMORY REFERENCE PROGRAM

LOCATION OPERATION ADDRESS
0.00000 CAD 0.00100
0.00001 ADD 0.00125
0.00002 FST 0.00150
0.00003 ADD 0.00150
0.00004 FST 0.00150
0.00005 ‘ HLT -

!

Of course, this is not the only method of solution, merely
one of the possible ones. However, it does show how
one memory location may be used several times
~ in the same program. The first instruction places A, B in
the accumulator. The second instruction, ADD, will
leave the sum A - C, B ++ D in the accumulators. Now
we FST these sums in 0.00150, with the result that A 4 C,
B + D is now in both the accumulators and the speci-
fied memory iocation. The fourth instruction adds the
sums we have just stored, leaving the desired result
2A + 2C, 2B +- 2D in the accumulators. Then we FST
in 0.00150 again and HLT.

2.7 CLEAR AND SUBTRACT INSTRUCTION

The Clear and Subtract (CSU) instruction is used
to enter a quantity into the accumulators in com-
plemented form. This is accomplished in much the same
manner as the CAD instruction. The accumulators are
cleared to +-0, and the contents of the register specified
in the address portion of the instructions are transferred
to the A registers,- However, the A registers are then
complemented, which results in having the original con-
tents of the selected memory register in negative form.
Then a normal addition takes place between the A regis-
ters and the . accumulators, placing the complemented
number in the accumulators. The CSU instruction re-
quires 12 psec to execute and will not cause a computer

3-112-0

CSU Instruction
2.6-2.11

overflow. An octal code of 130 designates the CSU in-
struction, which may be indexed.

2.8 SUBTRACT INSTRUCTION

A subtract (SUB) instruction is used to subtract the
contents of the selected memory register from the ac-
cumulators. Again, we employ the normal addition pro-
cess between the A registers and the accumulators after
first complementing the A registers, which contain the
contents of the specified register. The accumulators are
not cleared, however, so that the result will be the differ-
ence between whatever is in the accumulators and the
A registers. Execution time of the SUB instruction is
12 psec, and it may be indexed. The octal operation code
is 134, and it should be noted that the SUB instruction
may cause a computer overflow.

29 TWIN AND ADD INSTRUCTION

The Twin and Add (TAD) instruction causes the
left half portion of the contents of the specified memory
register to be added to both the left and right accumula-
tors. The right half of the data word is not used at all,
otherwise this instruction is identical in execution to the
ADD instruction. The octal operation code for the TAD
instruction is 110, and it may be indexed. Since the same
value is added to both accumulators, overflow may occur
in either ot both accumulators, depending on their ori-
ginal contents. The TAD instruction requires 12 psec to
execute.

2.10 TWIN AND SUBTRACT INSTRUCTION

The Twin and Subtract (TSU) instruction is em-
ployed to subtract the left half portion of the specified
memory register contents from both the left and the
right accumulators. This instruction is similar in execu-
tion to the SUB instruction. The left half word is trans-
ferred to both A registers where it is complemented and
then added to the accumulators. The difference appears
in the accumulators, and just as with the TAD instruc-
tion, overflow may occur in either or both accumulators
as a result of the TSU instruction. The octal operation
code that designates a TSU instruction is 140, and re-
quires 12 psec to execute. This instruction may also be
indexed.

2.11 SAMPLE PROGRAMS INVOLVING
SUBTRACTION AND TWINNING

Now that we have learned enough instructions to
cover two of the four basic arithmetic processes, it is
possible to write programs which will solve problems
that are more complex than those given previously. In
the following examples, the locations of data are listed
at the end of the tables containing the program. Assume
that our programs will always start at location 0.00000
and that we have up to 0.00050 available for the instruc-
tions. The first problem is to compute two sets of values;

|

LST Instruction
2.11—2.]4

namely, A —C 4 2E,B— D 4 E + Fand A — C + 2E,
2A — B — 2C 4 D + 3E — F. The program is executed

as shown in table 2—5.

TABLE 2—5. SAMPLE SUBTRACTION PROGRAM

3-112-0

LOCATION OPERATION ADDRESS
0.00000 cSU 0.00151
0.00001 ADD 0.00150
0.06002 ADD 0.00152
0.00003 TAD 0.00152
0.00004 FST 0.00200
0.00005 cSU 0.00200
0.00006 FST 0.00250
0.00007 TAD 0.00200
0.00010 SU 0.00250
0.00011 FST 0.00250
0.00012 HLT
0.00150 A B
0.00151 C D Data
0.00152 E F
0.00200 First result
0.00250 Second result

PART 2
CH 2

ister and the right A register is transferred to the right
memory buffer register, so that during the OTB cycle,
these quantities are stored in memory.

2.13 RIGHT STORE INSTRUCTION

The Right Store (RST) instruction is similar to the
LST instruction except that it involves the opposite half
of the dual arithmetic element. Its function is to replace
the right half of the selected register with the contents
of the right accumulator. This is accomplished in the
same manner as the LST instruction just described. An
octal code of 334 is used to designate an RST instruction,
and it may be indexed. The execution time for the RST
instruction is 18 psec.

2.14 SAMPLE PROGRAMS INVOLVING
HALF-WORD STORAGE

The use of the LST and RST instructions can best

_ be illustrated through the use of some program samples.

Remember that the solutions given for a particular prob-
lem do not represent the only method of solution, but
merely one of the possible ones. Our first problem is to
compute the following: A — C 4 E, B — C 4~ E 4 2F,
3E — C,E — C 4 2F, 6E — 2C, E — C - 2F. The pro-
gram to compute these values is given in table 2—6.

TABLE 2—6. SAMPLE PROGRAM USING
HALF-WORD STORE INSTRUCTIONS

2.12 LEFT STORE INSTRUCTION

The Left Store (LST) instruction will place the con-
tents of the left accumulator into the left half portion of
the specified memory register. The right half portion of
this register is not changed, nor are the accumulators.
The octal operation code of the LST instruction is 330,
and it may be indexed. Execution time is 18 usec. At this
point, the reader may wonder why the LST instruction
should require 18 psec for completion when the FST
instruction requires only 12 psec. The reason is simply
this: During execution of an FST instruction, it is not
necessary to preserve any part of the register involved, so
only one OT cycle is required to read the contents out
and place the new contents into memory. An LST instruc-
tion must preserve the right half-word of the selected
register, so two OT cycles are required, one to read out
the contents of the selected register, another to replace
the left half portion of the register and then write both
this changed portion and the original contents of the
right half-word back into memory. This is accomplished
by reading the original contents of the memory register
into the A registers during the OTA cycle. The left
accumulator is transferred to the left memory buffer reg-

42

LOCATION OPERATION ADDRESS
0.00000 CAD 0.00075
0.00001 ADD 0.00077
0.00002 SU 0.00076
0.00003 LST 0.00430
0.00004 TAD 0.00077
0.00005 ADD 0.00077
0.00006 RST 0.00430
0.00007 SUB 0.00075
0.00010 EST 0.00440
0.00011 RST 0.00450
0.00012 ADD 0.00440
0.00013. LST 0.00450
0.00014 HLT
0.00075 A B
0.00076 C D . Constants
0.00077 E F

PART 2
CH 2

TABLE 2—6. SAMPLE PROGRAM USING
HALF-WORD STORE INSTRUCTIONS (cont’d)

3-112-0

Branch Instructions
2.14-2.15.2

TABLE 2—7. ADDITIONAL EXAMPLE OF
HALF-WORD STORAGE

LOCATION OPERATION ADDRESS
0.00430 First result
0.00440 Second result
0.00450 Third result

Here, we can see the advantage of using the LST
and RST instructions. For instance, at program step
0.00003, we used the LST instruction to store the value
A — C + E. However, this in no way affected the con-
tents of the accumulators, so we were able to proceed
to step 0.00006 where the proper value for the right
half-word was arrived at and stored. The last two results
called for the same value in their right half-words, so
after an FST instruction at 0.00010, an RST instruction
was given to place the desired value in another location.
Notice that the third result required a value in the left
half-word that was exactly twice the value of the left
half-word in the second result. This could have been
computed by a series of ADD and SUB instructions;
however, it was much more convenient to merely add the
second result to itself, which was done at step 0.00012.
This is a valid procedure and in no way affects the second
result; we are merely using it as another constant in
this case. The sum in the right accumulator is of no
importance either, since the proper value for the right
half-word is already stored; all that is necessary is the
LST instruction given in program step 0.00013.

Another example involving the use of LST and RST
instructions is given below. We wish to compute the fol-
lowing values: — A, C — B 4 D and + 0, 2D. The pro-
gram to compute these values is given in table 2—7.
Notice that in program step 0.00005 we used a CAD
instruction, giving the address of the HLT instruction
as the desired memory location. Since we know that the
octal code of an HLT instruction is 000, this means
that the left half portion of the HLT instruction is +-0.
Therefore, we can use the HLT instruction as a constant
of 0, as has been done here. It is a valid programming
technique to perform arithmetic operations on instruc-
tions since they are read out of memory during an OT
cycle, in this case, and are not decoded, but treated as
straight binary numbers. As a rule, it is not necessary
to use instructions in this manner; however, it should be
remembered that they are simply numbers in internal
memory and do not have any significance to the Central
Computer unless they are decoded during a PT cycle.

LOCATION OPERATION ADDRESS
0.00000 cSU 0.10000
0.00001 LST 0.22050
0.00002 ADD 0.20000
0.00003 TAD 0.20000
0.00004 RST 0.22050
0.00005 CAD 0.00012
0.00006 LST 0.22051
0.00007 CAD 0.20000
0.00010 ADD 0.20000
0.00011 RST 0.22051
0.00012 HLT 0.00000
0.10000 A B
0.20000 C } Constants
0.22051 First result
0.22050 Second result

2.15 BRANCH INSTRUCTIONS
2.15.1 General

Up to this point we have discussed only those in-
structions which specify that definite action is to take
place, such as ADD, FST, HLT, etc. However, if we
limited the AN/FSQ-7 and AN/FSQ-8 to execution of
this type of instruction only, it would seriously limit
the capabilities of the machine. What we need are instruc-
tions that can examine the computer and decide what to
do, depending on the condition we are looking for. These
instructions are known as Branch instructions, and the
first ones we will study involve checking the accumula-
tors for one condition or another. Branching simply in-
volves transferring the program control to the ad-
dress specified in the right half-word of the Branch in-
struction if the condition we are checking for is met.
Branch instructions constitute some of the most power-
ful instructions that can be placed in a computer program,
and they allow us to put a great deal of flexibility into
various computer programs.

2.15.2 Branch on Left Minus Instruction

The Branch on Left Minus (BLM) instruction ex-
amines the sign bit of the left accumulator and branches
to the location specified in the address portion of the
instruction if the sign bit contains a 1 bit. When the

43

Table Construction Program
2.15.2-2.15.4.2

branching condition is met, the program counter, which
has already been stepped, is transferred to the right A
register, and the address register is transferred to the
program counter. Thus, at the completion of a BLM
instruction (assuming the branch condition is met), the
program counter will contain the location of the next
instruction we desire to execute. If the sign bit of the left
accumulator is positive, the branch condition has not
been met, and the next instruction executed will be the
one immediately following the BLM instruction.

The accumulators are not affected by the execution
of this instruction. Execution time of the BLM instruc-
tion is 6 usec, and it cannot be indexed. The octal opera-
tion code for this instruction is 550.

2.15.3 Branch on Right Minus Instruction

The Branch on Right Minus (BRM) instruction
checks the sign bit of the right accumulator and branches
to the memory location designated by the address portion
of the instruction if the right sign bit is negative. As with
the BLM instruction, the program counter is transferred
to the right A register, the address register is trans-
ferred to the program counter, and the accumulators are
left unchanged. If the sign of the right accumulator is
positive, the program executes the next sequential instruc-
tion. An octal code of 554 designates a2 BRM instruction
which requires 6 psec to execute. This instruction cannot
be indexed.

2.15.4 Table Construction Program
Following is a program which illustrates the use of
the BLM and BRM instructions. Assume that the prob-
lem is to examine both halves of a data word stored in
memory and to construct a table of all negative values,
using right half-words, beginning at location 0.00100. We
do not know the values of the left and right portions of
the data word. The solution to this problem may be rather
simple; however, when writing programs of the type
that involves a number of decisions, it is useful to con-
struct a program flow chart. This chart is actually a
graphic representation of what is desired and depicts
a method of arriving at a solution. The technique is to
separate the problem into a number of blocks, each of
which contributes to the solution. Then the actual pro-
grammed instructions that can be used to perform the
function of each block are determined, and the end result
is the finished program. The problem given above will

be laid out using the flow chart method.

2.15.4.1 Preliminary Flow Chart

The problem stated that we are to examine a data
word for negative quantities and construct a table from
these quantities, if any are present. In addition, we
know that this table is to start at location 0.00100 and
that we must use the right half-word for storage. With
this much information, we can lay out a preliminary

44

3-112-0

PART 2
CH 2

flow chart. This chart should resemble the one shown
in figure 2—11.

2.15.4.2 Final Flow Chart

From the examination of figure 2—11, it should
now be obvious that we can use the BLM and BRM
instructions to arrive at a solution to this program. There
are four possible arrangements of the signs within a data
word, and this flow chart will handle all of them. Now
we can proceed to fill in each of the blocks as done in
figure 2—12. For ease of explanation, assume that the
data word we are interested in is located at address
0.00050 and that it contains the quantities x and y in the
left and right-half words, respectively. A listing of this
program is also given in table 2—8.

TABLE 2—8. TABLE CONSTRUCTION PROGRAM

LOCATION OPERATION ADDRESS
0.01000 CAD 0.00050
0.01001 BLM 0.01004
0.01002 BRM 0.01011
0.01003 HLT 0.00000
0.01004 CAD 0.01003
0.01005 TAD 0.00050
0.01006 RST 0.00100
0.01007 CAD 0.00050
0.01010 BLM 0.01002
0.01011 RST 0.00101
0.01012 CAD 0.00100
0.01013 BRM 0.01003
0.01014 CAD 0.00101
0.01015 RST 0.00100
0.01016 BRM 0.01003
0.00050 X y
0.00100 First value
0.00101 Second value

Note that figure 2—12 specifies that we are check-
ing x and y to see if they are smaller than 0. This is
necessary because —0 will contain a sign bit of 1 and
will satisfy the branching conditions. Therefore, it is pos-
sible that one or both of the values could be —0 and
not actually numbers with an absolute magnitude of
less than 0. Later, we shall see how another branching
instruction can be used to determine whether the quanti-
ties being tested are really negative numbers.

PART 2 3-112-0 Fig. 2-11
CH 2
START
CHECK
NO LEFT WORD. IS YES
IT NEG
?
Y
PLACE LEFT
WORD IN RIGHT
ACCUMULATOR
Y STORE RIGHT
ACCUMULATOR
CHECK ves

RIGHT WORD.
IS IT NEG
?

\

REPLACE DATA
WORD IN
ACCUMULATOR

\

STORE RIGHT
ACCUMULATOR

Is
LEFT WORD YES

IN TABLE
?

NO

Y

MOVE RIGHT WORD
UP IN TABLE

HALT -

Figure 2—11. Preliminary Flow Chart, Table Construction Program

45

Flow Charts
2.15.5-2.15.5.2

2.15.5 Number-Sorting Program

As another problem involving the use of branching
instructions, let us consider three numbers of unknown
magnitude. We will assume that the numbers are all
positive integers and that they are stored in the left half
portions of the data words concerned. We want to write
a program which will sort through these three numbers,
select the largest, and store it in a specified location. Here,
again, the best solution to this problem is to use the flow
chart method previously illustrated.

2.15.5.1 Preliminary Flow Chart

We know that our problem is to sort through three
numbets and select the largest, Since we do not know the

3-112-0

PART 2
CH 2

magnitude of the numbers, it is necessary to compare all
three numbers against each other. This involves making
two comparisons, determining which number is larger at
each compatison, and finally storing the correct value.
The flow which graphs this solution is shown in figure
2-13.

2.15.5.2 Final Flow Chart

The final flow chart for this program is shown in
figure 2—14. It can be seen that the use of the BLM
instruction has enabled us to determine quite rapidly
what is the largest number and to store it. Notice that
there are two separate ways in which the third number
compared can be found to be the largest number. Since

4

START
<> 40 . 1000 CAD 50 <40
100l BLM 1004
1004 CAD 1003
1005 TAD 50
y
y2*0 1002 BRM 1011 y<to 1006 RST 100
1007 CAD 50
1010 BLM 1002
101l RST 10!
% NOT IN TABLE 1012 CAD 100 x IN TABLE
1013 BRM 1003
1014 CAD IOl
10i5 RST 100
016 BRM 1003

1003 HLT, +0

Figure 2—12. Final Flow Chart, Table Construction Program

PART 2

3-112-0 Figs. 2-13, 2-14
CH 2
START —————————
OBTAIN
FIRST
NUMBER
COMPARE
NO FIRST & SECOND YES
NO'S. 1S SECOND
LARGER
P
COMPARE COMPARE
FIRST & THIRD YES NO SECONDS& THIRD YES
NO'S. 1S THIRD NO'S. IS SECOND
LARGER LARGER
2 ?
4
STORE STORE STORE
FIRST NO. THIRD NO, SECOND NO.
AND HALT AND HALT AND HALT
Figure 2—13. Preliminary Flow Chart, Number-Sorting Program
START ———————
0 CAD 100
1
A>B I suB 10l B>A
2 BLM Il
1
3 CAD 100 Il CAD 10!
A2C | 4 sus 102 -S4 c>8 i2 SUB 102 B>¢C
5 BLM 17 13 BLM I7
Y
6 CAD i00 17 CAD 102 14 CAD 101
7 FST 150 20 FST 150 I5 FST 150
10 HLT - 21 HLT - 16 HLT -

Figure 2—14. Final Flow Chart, Number-Sorting Program

47

BFZ Instruction
2.15.5.2-2.15.7

this is the case, we can use one group of instructions to
place this number in the desired memory location, and
allow entry to this group from two separate points. For
purposes of explanation, we have assumed that the num-
bers to be compared are A, B, and C and that they are
in memory locations 0.00100, 0.00101, and 0.00102, re-
spectively. Location 0.00150 is used to store the result
of the compatison. This program is listed in table 2—9.

TABLE 2—9. NUMBER-SORTING PROGRAM

LOCATION OPERATION ADDRESS
0.00100 CAD 0.00100
0.00001 SUB 0.00101
0.00002 BLM 0.00011
0.00003 CAD 0.00100
0.00004 SUB 0.00102
0.00005 BLM 0.00017
0.00006 CAD 0.00100
0.00007 FST 0.00150
0.00010 HLT -
0.00011 CAD 0.00101
0.00012 SUB 0.00102
0.00013 BLM 0.00017
0.00014 CAD 0.00101
0.00015 FST 0.00150
0.00016 HLT -
0.00017 CAD 0.00102
0.00020 FST 0.00150
0.00021 HLT -
0.00100 A . -
0.00101 B Data
0.00102 C -
0.00150 Result

This type of program is commonly referred to as a
logical program because, strictly speaking, no arithme-
tic operations are performed on the data. We use arith-
metic processes to determine which of the three numbers
is the largest; however, no computation is made with
this number once we know what it is. By comparison, a
program which utilizes data to evaluate a function is
referred to as an arithmetic program, since the data itself

48

3-112-0

PART 2
CH 2

does not represent an answer but merely part of the in-
formation needed to compute an answer.

2.15.6 Branch on Full Minus Instruction

The Branch on Full Minus (BFM) instruction
checks the signs of both the left and right accumulator
and branches to the memory location specified by the
address of the instruction if both accumulators are nega-
tive. Thus, it can be seen that this instruction is a
combination of the BLM and BRM instructions. As with
these other instructions, only the sign bits of the accumu-
lators are checked, and if they both contain a 1, the
branching condition is met. When this is the case, the
contents of the program counter are transferred to the
right A register, and the address portion of the BFM
instruction is transferred to the program counter. If the
branching condition is not met, the program counter will
select the next instruction in sequence. Execution time of
the BFM instruction is 6 psec, and it is not indexable.
This instruction is designated by an octal operation code
of 544.

2.15.7 Branch on Full Zero Instruction

The Branch on Full Zero (BFZ) instruction checks
the contents of both accumulators to see if they are 0.
Since the AN/FSQ-7 and AN/FSQ-8 utilize both a posi-
tive and a negative zero, there are four combinations of
positive and negative zero which will satisfy the branch-
ing conditions. These combinations are given in table
2—10.

TABLE 2—10. COMBINATIONS SATISFYING THE
BRANCH ON FULL ZERO (BFZ) CONDITIONS

LEFT ACCUMULATOR RIGHT ACCUMULATOR

0.00000 0.00000
1.77777 1.77777
0.00000 1.77777
1.77777 0.00000

The execution of this instruction is carried out in
the following manner. First, the contents of both ac-
cumulators are made positive if they are not already so.
Then the accumulators are complemented and made
negative. A 1 is added to both accumulators by initiating
a carry of 1 at bit 15, and the carry-out of the most
significant bit is disregarded. If the accumulators con-
tained either positive or negative zero, complementing
and then adding 1 without the end carry would have
rippled through the accumulator bits and cleared them
to 0. At this point, the accumulators are complemented
again, and the sign bits are checked. If the sign bits
contain 1 bits, we know that the original values were

PART 2
CH 2

TABLE 2—11. EXECUTION OF BRANCH ON
FULL ZERO (BFZ) INSTRUCTION

3-112-0

LEFT RIGHT

ACCUMULATOR ACCUMULATOR ACTION

1.77777 0.00000 Initial starting point
*0.00000 *0.00000 Make accumulators
positive
1.77777 1.77777 Complement ac-
cumulator
0.00000 0.00000 Add “1;” no end
carry
1.77777 1.77777 Complement ac-
cumulator
1.77777 1.77777 Test, branch con-
ditions met
0.00000 0.00000 Add “1;” no end
carry
*1.77777 #0.00000 Restore accumu-

lators

*These steps conditional, depending on sign of accumu-
lator.

either positive or negative zeros, and the branching con-
dition has been satisfied. As with all branching instruc-
tions that find their conditions satisfied, the BFZ in-
struction will transfer the program counter to the right
A register and the address portion of the instruction
itself to the program counter if both sign bits are 1. Due
to the number of operations involved, an OT cycle is
required for the BFZ instruction steps described thus
far. After the test of the sign bits has been made, the
“carry 17 line is again pulsed, and the accumulators
may be complemented, to restore them to their original
values. Execution time for this instruction is 12 psec; the
instruction is designated by a code of 540. The BFZ
instruction cannot be indexed. Table 2—11 shows the
various steps encountered during the execution of a BFZ
instruction. In this case, we have assumed that both ac-
cumulators are zero but have different algebraic signs.

By performing the above steps on a number not
positive or negative zero, the reader may easily see that
the sign of the accumulator is always positive at the
time of test. Therefore, we can always be sure of the
contents of the accumulators with respect to zero by the
BFZ instruction.

2.15.8 Sample Program Using BFM and BFZ
Instructions

The following example illustrates how the BFM and
BFZ instructions can be used to aid in the solution of a

BFZ Instruction
2.15.7-2.15.8

problem. Suppose we wish to sort through a group of
three data words and make up a table of those that have
both half-words equal to or greater than zero. Because
~—0 and 0 both give the same results when used in
arithmetic computation, it is necessary for us to make
provisions in our program to check for —0. The prelim-
inary flow chart for this problem is shown in figure
2—15. Here, the diamond-shaped “decision” blocks
clearly indicate the use of the BFM instruction when
checking for positive values. However, the possibility of
a —O satisfying the branching conditions of the BFM
instruction has to be dealt with by a second check on the
word, this time using a BFZ instruction. If the check
discloses that the word is not —0, we know definitely
that it is a true negative number and proceed to the next
word. This program is also a logical program, since the

TABLE 2—12. PROGRAM USING FULL
BRANCH INSTRUCTIONS

LOCATION OPERATION ADDRESS
0.00000 CAD 0.01000
0.00001 BFM 0.00012
0.00002 FST 0.67770
0.00003 CAD 0.01001
0.00004 BFM 0.00014
0.00005 FST 0.67771
0.00006 CAD 0.01002
0.00007 BFM 0.01016
0.00010 FST 0.67772
0.00011 HLT —
0.00012 BFZ 0.00002
0.00013 BFM 0.00003
0.00014 BFZ 0.00005
0.00015 BFM 0.00006
0.00016 BFZ 0.00010
0.00017 HLT
0.01000 Word one
0.01001 Word two |}Data
0.01002 Word three
0.67770 Storage
0.67771 Storage
0.67772 Storage

419

AOR Instruction
2.15.8—-2.16

data is left unchanged. We will assume that the pro-
gram starts at location 0.00000 and the data is stored at
0.01000 through 0.01002. The table is to start at loca-
tion 0.67770 and run in sequence. A finalized form of
this program is shown in figure 2—16 and listed in
table 2—12,

2.16 ADD ONE RIGHT INSTRUCTION

The Add One Right (AOR) instruction is used to
add one to bit R15 of the memory location specified
by the address portion of the instruction. The execution
of the AOR instruction takes places in the following
manner. The right accumulator is cleared, and the con-
tents of the selected memory register are transferred

START

OBTAIN WORD ONE

YES IS o
WORD

-

3-112-0

PART 2
CH 2

to the A registers. Then the carry 1 line into the bit
R15 adder is pulsed, thus adding 1 to the address portion
of the word. It should be remembered that the
AN/FSQ-7 can have an address of 17 bits; therefore,
if 17-bit operation is specified the LS bit is also used
in the addition process. Also, an AOR instruction can
cause computer ovetflow. After the address modifica-
tion has taken place, the right accumulator is trans-
ferred to the right memory buffer (and bit LS of the
left accumulator is transferred to the left memory buffer
sign during 17 bit operation). The entire word (including
the left half portion which has been stored in the left A
register) is then replaced in its original memory loca-

POS.P

<

>

1
STORE WORD ONE |

YES IS NO

& OBTAIN WORD TWO

WORD
ZEROP

<
m
(7]
>_
Z
o

WORD

POS.P

<

!
STORE WORD TWO

> ¢

YES IS NO

WORD
ZEROP

1 OBTAIN WORD THREE |

YES IS NO
WORD

>

POS.P

<

!
STORE WORD THREE

ok

YE IS NO

HALT

WORD
ZEROP

<

HALT

Figure 2—15. Preliminary Flow Chart Using Full Branch Instructions

50

PART 2 3-112-0 Uses of AOR Instruction
CH 2 2.16-2.16.2
START
1
0 CAD 1000
WOR E POS. WORD ONE NEG.
D ON 0S | BEM 12 ORD
|
WORD ONE = ZERO WORD ONE # ZERO
2 FST 67770 |= 12 BFZ 2
L 3 CAD 00l
WORD TWO POS. WORD TWO NEG.
4 BFM |4
i \
WORD TWO =ZERO WORD TWO # ZERO
S5 FST 67771 - i4 BFZ 5
- 6 CAD 1002
WORD THREE POS. . WORD THREE NEG.
7 BFM I6
WORD THREE = ZERO WORD THREE # ZERO
10 FST 67772 [= 16 BFZ 10
y
Il HLT 17 HLT

Figure 2—16. Final Fiow Chart Using Full Branch Instructions

tion. The AOR instruction is similar to the FST instruc-
tion in that it takes an entire word from memory and
replaces the same register with a different word. Because
of this, an OTA and an OTB cycle are required in addi-
tion to the PT cycle, making execution time of the
AOR instruction 18 psec. The octal operation code for
this instruction, which is indexable, is 344.

2.16.1 Uses of the AOR Instruction

The AOR instruction has two primary uses in most
programs written for the AN/FSQ-7 and AN/FSQ-8.
One use involves modifying the address portion of an
instruction so that the same instruction can be used more
than one time but with a different address portion.
This technique is called indexing and can be performed
in other ways that are more efficient than using the
AOR instruction; however, the general purpose of in-
dexing can be shown by the use of this instruction.

The second use for the AOR instruction is to step
(increase) the value of a register by one each time a
desired action has taken place, thus keeping the count
of the number of occurrences. Such an occurrence might

be the successful completion of a program which is
written to continuously repeat itself. If we used an AOR
instruction that specified the same register each time the
program was completed, that register would contain
the number of successful completions (or “passes™)
through the program. A register used in this manner
is commonly referred to as a pass counter.

2.16.2 Address Modification Using the AOR
Instruction

Assume that we have 11 numbers which are located
in memory address 0.01100 through 0.01112. It is de-
sired to find the sum of these numbers and store it in
location 0.00150, using the least number of instructions
possible. Of course, it is possible to use a series of ADD
instructions, but this is quite lengthy. By use of the
AOR instruction, we can use the same ADD instruction
as many times as we need it. However, it is also
necessary to have some sort of control that tells us when
we have added all 10 numbers. For this, we can use a
constant which represents the last address we wish to
use, and compatre it against the address we are using.

51

Address Modification
2.16.2

When the two match, we know we are using the last
address we are interested in. We will assume that the
sum of the 11 numbers will not cause an overflow and
that the memory location 0.00150, which is to be used
for final result storage, is cleared at the start of the
program. The preliminary flow chart for this program
is shown in figure 2—17, part A; the final chart is
shown in part B of this figure.

It can be seen from figure 2—17 that we are modify-
ing the address of the instruction in location 0.00001
by the use of the AOR instruction at program step 3.
Then the HLT instruction is subtracted from the new
memory address which is left in the right accumulator
after execution of the AOR instruction. The right half
of the HLT instruction is being used as a constant; it
contains the address of the last number to be added. Each
time the address in the accumulator is smaller than the
final address, we will get a negative result. The BRM con-
dition will be satisfied and will cause the program to se-
lect the partial sum and add another number to it. When
the address being used reaches 0.01112, the AOR instruc-
tion will step it to 0.01113. The subtraction will leave
0.00001 in the right accumulator; the branch condition

START

OBTAIN PARTIAL SUM

3-112-0

PART 2
CH 2

will not be met, and the program will fall through to the
HLT instruction.

The program desctibed above is listed in table 2—13.
In table 2—14, a straight-line program that achieves the
same result without modification is listed for comparison.

TABLE 2—13. ADDRESS MODIFICATION USING
THE AOR INSTRUCTION

\

ADD NEXT NUMBER

\

STORE PARTIAL SUM

\

MODIFY ADDRESS
OF ADDEND

SUBTRACT CONSTANT

WwAS
THIS THE
LAST
ADDEND
P

YES

HALT

(A)

LOCATION OPERATION ADDRESS
0.00000 CAD 0.00150
0.00001 ADD 0.01100
0.00002 FST 0.00150
0.00003 AOR 0.00001
0.00004 SUB 0.00006
0.00005 BRM 0.00000

- 0.00006 HLT 0.01112
0.01110 - 0.01112 Data
0.00150 Result

START
0 CAD 150 -
\
| ADD 1100
\
2 FST 150
3 AOR |
]
4 suB 6
)
5 BRM O
1
6 HLT, IlI2

(B)

Figure 2—17. Address Modification Using AOR Instructions

52

3-112-0

PART 2
CH 2
TABLE 2—14. STRAIGHT LINE
ADDITION PROGRAM
LOCATION OPERATION ADDRESS

0.00000 CAD 0.01100
0.00001 ADD 0.01101
0.00002 ADD 0.01102
0.00003 ADD 0.01103
0.00004 ADD 0.01104
0.00005 ADD 0.01105
0.00006 ADD 0.01106
0.00007 ADD 0.01107
0.00010 ADD 0.01110
0.00011 ADD 0.01111
0.00012 ADD 0.01112
0.00013 FST 0.00150
0.00014 HLT -

Notice that while the program using the AOR in-
struction requires only seven memory locations as op-
posed to the 13 needed for the straight line program,
the straight line program is considerably faster. The
straight line program requires a total of 27 machine cy-
cles, or 162 psec. On the other hand, the indexed pro-
gram requires 13 machine cycles for each number added,
or a total of 145 cycles (11 x 13 plus two cycles for the
HLT instruction). This means 870 psec are needed to
complete this program. Thus, we have two programs
which arrive at the same result, one being shorter and
the other being faster. As mentioned previously, one of
~ these criteria will have to be sacrificed, depending on the
situation.

2.16.3 Counting by Use of the AOR Instruction

Now let us take an example of the other common
use of the AOR instruction, that of stepping a pass
counter. In a certain table, some words have both halves
negative; several have only the right half negative; some
have only the left half negative; and others have both
halves positive. We wish to know the total number of
each type of word. The table is located at memory loca-
tion 0.01000 through 0.01500, and locations 0.02000-
0.02003 will be used to store the number of full negative,
right negative, left negative, and full positive words,
respectively. The preliminary flow chart for this pro-
gram is shown in figure 2—18,

In this type of program, we can make good use of
the various branching instructions to test for the condi-

Counting by Use of AOR Instruction
2.16.2-2.17.1

tions we are interested in. The final flow chart is shown
in figure 2—19. Notice that after the four possible com-
binations of half-words have been checked, we step one
of the four pass counters and then branch (or fall
through) to the data address modification which uses an
AOR instruction in exactly the same manner as the pro-
gram discussed in 2.16.2. The program using the pass
counters is listed in table 2—15.

2.17 INDEXING
2.17.1 General
As previously explained, indexing is the process
whereby the address portion of the instruction word is
modified so that the same instruction may be used re-
peatedly but with a different operand each time it is
executed. An example of this was given in 2.16.2 by

TABLE 2—15. PROGRAM USING THE AOR
INSTRUCTION AS A STEP COUNTER

LOCATION OPERATION ADDRESS
0.00000 CAD 0.01000
0.00001 BFM 0.00011
0.00002 BRM 0.00014
0.00003 BLM 0.00017
0.00004 AOR 0.02003
0.00005 AOR 0.00000
0.00006 SUB 0.00010
0.00007 BRM 0.00000
0.00010 HLT -
0.00011 AOR 0.02000
0.00012 SUB 0.00010
0.00013 BRM 0.00005
0.00014 AOR 0.02001
0.00015 SUB 0.00010
0.00016 BRM 0.00005
0.00017 AOR 0.02002
0.00020 SUB 0.00010
0.00021 BRM 0.00005

0.0100 - 0.01500 Data

0.02000 Pass counter
0.02001 Pass counter
0.02002 Pass counter
0.02003 Pass counter

53

Indexing, General
2171

using the AOR instruction to modify the address portion
of the instruction. While this method is certainly valid,
it leaves several things to be desired. For instance, each
time we wish to modify the address portion of the in-
struction, it is necessary to read the word out of memory,
perform the addition, and then write the word back in
memory. This is time-consuming and would make a pro-

START

3-112-0

OBTAIN
DATA WORD

PART 2
CH 2

gram requiring several hundred modifications excessively
long, In addition, notice that we can add only one
to the address portion of the instruction word. If we
wished to select every other register from a table of
operands, two AOR instructions would be required to
increase the address portion of the instruction by two,
or else a constant of two would have to be used to

ARE
BOTH HALVES
NEG%TIVE

YES

STEP -
PASS COUNTER

)

1S
RIGHT HALF
NEGéTIVE

)

PASS COUNTER

STEP STEP
PASS COUNTER

\

SET UP
CONDITIONS
AND BRANCH

SET uP
CONDITIONS STEP
AND BRANCH PASS COUNTER '
SET UP
CONDITIONS
AND BRANCH
MODIFY
DATA ADDRESS
1S
HALT THIS THE

LAST WORD
H

NO

Figure 2—18. Counting by Use of the AOR Instruction, Preliminary Flow Chart

54

PART 2
CH 2

START

O CAD i000 |=

3-112-0

Indexing, General
2171

i
BOTH HALF BOTH HALF WORDS
WORDS NEGATIVE | BFM I NOT NEGATIVE
RIGHT HALF RIGHT HALF WORD
Il AOR 2000 WORD NEGATIVE 2 BRM 14 NOT NEGATIVE
i i
12 SUB 10 LEFT '-r!lAELG’-:\T VE NEITHER HALF
WORD | WORD NEGATIVE
|3 BRM 5 14 AOR 200l 3 BLM 17
i
15 SuB 10
16 BRM 5 17 AOR 2002 4 AOR 2003
20 suB 0
2| BRM 5
|
f————® 5 AORO -
’ .
DATA ADDRESS =1500 6 SUB 10 DATA ADDRESS < 1500
7 BRM O

i

10 HLT, 1500

Figure 2—19. Counting by Use of the AOR Instruction, Final Flow Chart

perform the address modification. Finally, since the mod-
ification of the address takes place in the arithmetic ele-
ment, overflow may be encountered when a true over-
flow condition does not exist.

From the above discussion, it can be seen that in-
dexing by this method is unsatisfactory for our purposes.
" Therefore, the AN/FSQ-7 and AN/FSQ-8 make use of
four index registers to perform address modifications.
These registers may be loaded with a value of up to 21
and then added to the address portion of an instruction
word. The index register actually contains 17 bits; how-
ever, the sign bit is used strictly as a control bit and does
not affect the amount by which an address is changed.
It is also possible to reduce the contents of the index reg-
isters at.any time by a separate instruction, causing the
next address selected to be lower than the one previ-
ously selected by the instruction concerned. Index regis-

ters are especially valuable when we are writing compu-
ter programs because the address modification of an in-
struction does not require any additional time over and.
above the normal execution time of the instruction. Thus,
when we wish to modify the address portion of an ADD
instruction, we can do so and still execute the instruction
in 12 psec, using the modified data address.

By referring to figure 2—10, it can be seen that
index registers designated 1, 2, 4, and 5 are transferred
to the address register. The right accumulator is some-
times used as an index register and is designated as
index register 3. It also may be transferred to the address
register. Actually, only one of these five registers is se-
lected at one time and its contents transferred to a por-
tion of the address register, known as the index adder,
during PT 7-11. Of coutse, the instruction from memory
is also transferred out during this time, with the address

55

BPX Instruction
217.1-2.17.31

portion of the word going to the address register. The
original data address and the contents of the selected
index register are added in the index adder, and the modi-
fied address is transferred to the memory address regis-
ter. All of this occurs during PT 7-11, and therefore
does not lengthen execution time of the instruction.

2.17.2 Reset Index Register Instruction

The Reset Index Register (XIN) instruction pro-
vides us with the capability of loading a value into index
registers 1, 2, 4, or 5. No provision is made for loading
the right accumulator with this instruction because it
may be loaded in a variety of ways through the use of
other instructions (such as CAD, etc). The address
portion of this instruction does not refer to a memory
address but contains the value which we wish to place in
the specified index register. The index register which is
to be loaded is designated by the first three bits in the
left half-word of the XIN instruction. Only one index
register may be loaded with one XIN instruction, Thus,
if we wish to load index register 4 with a value of 100y,
we would write the instruction as 4 XIN 144, The octal
operation code for the XIN instruction is 754, and it
requires 6 psec to execute. Because it is used to load an
index register, this instruction cannot be indexed by an-
other index register. Figure 2—20 shows how the in-
struction 4 XIN 144 is actually represented in binary.

2.17.3 Branch on Positive Index Instruction

2.17.3.1 General

Now that we have an instruction which enables us
to load an index register, we need an instruction which
will reduce its contents, so that different operands may
be obtained by using the same instruction and index reg-
ister. The instruction that does this is called the Branch
on Positive Index (BPX) instruction, In addition to
reducing the specified index register, the BPX instruction
will transfer program control to the location speci-
fied in the address portion of the BPX instruction if
the branching condition is met. This condition is that
the index register contain a positive value; hence, the
name of the instruction. If the branching condition is not
satisfied, the program falls through to the next sequen-

LEFT HALF WORD

3-112-0

PART 2
CH 2

tial instruction, The index register to be reduced is spe-
cified by bits L1-L3 of the instruction, and the amount
this register is to be reduced is specified by auxiliary
bits L10-L15. Previously, it was stated that bit L10 of
the instruction word had a dual function; i.e., it served
as a class variation bit and as an auxiliary bit. When
it is necessary to utilize the auxiliary bits, the final class
variation bit is not needed, This is the case with the
BPX instruction; its octal operation code is simply 51,
leaving bits L10-L15 to specify the amount the index
register is to be reduced. A typical BPX instruction is
written as] BPX(01)500, and it means to branch to
location 0.00500 if index register 1 is positive and to
reduce the contents of this register by one.

The BPX instruction is executed in the following
manner, The sign bit of the selected index register is
sensed, and, if it is positive, the program counter, which
contains an address one greater than the BPX instruction
itself, is transferred to the right A register. Then the
address register, which contains the memory location
we wish to branch to, is transferred to the program
counter and then to the memory address register. The
address register is then cleared and loaded with the
complement of bits L10-L15. The specified index register
and the complemented number are then added in the
index adder, and the resultant difference is placed back
in the proper index register. Because no operand is re-
quired from memory, the BPX instruction is executed in
6 psec. In addition, the BPX instruction cannot be
indexed by another index register.

It is important to remember that the sign of the index
register is sensed before its contents are reduced, since
this fact determines the amount with which the index
register is loaded originally. For example, if we wish to
select five sequential data addresses by use of an index
register, we will load the index register with a value
of 3. Some justification for this may appear necessary,
but if we examine a sample program, the reason will
become apparent. Assume that we wish to take the sum
of the data located in addresses 0.01000 - 0.1004. The
program is listed in table 2—16.

RIGHT HALF WORD

[o] 1]1]01]0 | | | | o] ! | oj]OoO|O}O ojojojojo|loOojo|oOo}! | olol1]0]0
\ v I\ v I v S\ v AN v J\ v A\ ~v 7
INDEX CLASS AUXILIARY
INDICATOR CLASS VARIATION BITS n (4 (4
LEFT RIGHT
SIGN SIGN
8T BIT

Figure 2—20. Word
56

Layout for XIN

Instruction

PART 2
CH 2

TABLE 2—-16. INDEXED ADDITION PROGRAM

LOCATION OPERATION ADDRESS
0.00000 1 XIN 0.00003
0.00001 CAD 0.01000
0.00002 1 ADD 0.01001
0.00003 1 BPX(01) 0.00002
0.00004 FST 0.10000
0.00005 HLT -

Notice that step 0.00001 placed the contents of loca-
tion 0.01000 in the accumulator without the use of an
indexed instruction, leaving us with only four numbers
to be added. Step 0.00002 will select address 0.01004 dur-
ing the first pass (address 0.01000 plus contents of index
register one). At step 0.00003, we check the index regis-
ter, find it positive, branch back to step 0.00002, and re-
duce the contents of the index register. On successive
passes through the program, data addresses 0.01003 and
0.01002 will be selected. When data address 0.01002 is
selected, the contents of index register 1 contains one. The
branch condition is satisfied, and the program returns to
step 0.00002, However, the index register has been re-
duced by one which clears the 16 significant bit posi-
tions and sets the sign bit to a 1, This is a modified form
of —O0 but is treated in the same manner as a true —O0,
The important thing to keep in mind is that the sign bit
acts as a control, and when it is set to 1, indicating that
the index register has become negative, the branch condi-
tion will no longer be satisfied. The sign bit of the index
register is not added to the address register; therefore,
adding the index register contents (2.00000) to the ad-
dress portion of the ADD instruction will not modify
this address, and the original address (0.01001) will be
selected. The check of the index register will show its
sign bit to be negative, and the program will fall through
to the FST instruction.

In general, the rule to remember when loading an

index register is to set it to one less than the number of

passes to be made. In the above program, five numbers
were to be added, but the first one was placed in the ac-
cumulator without using an index register, Four numbers
remained to be added, which required four passes through
the program. Therefore, the index register was loaded
with three. Once again, it should be noted that this is
not a rigid rule, but depends on how the program is
written, particularly where the BPX instruction is placed
in relation to the instruction being modified.

2.17.3.2 Applications of the BPX Instruction

The following examples show how the BPX instruc-
tion may be used in various programs, Assume that we

3-112-0

Applications of BPX Instruction
2113.1—-2113.2

wish to sort through a table which is stored in data loca-
tions 0.02500 through 0.03000. We want to place all
numbers with both half-words negative into a table start-
ing at location 0.00500 and the rest of the numbers into a
table starting at location 0.04000, The sample flow chart
for this program is shown in figure 2—21 (part A). We
have no way of knowing how many, if any, of these
numbers are negative in both half-words; therefore, it is
wise to provide a halt after each table address modifica-
tion in the event that all the numbers were placed in one
table or the other. Part B of figure 2—21 gives the
final flow chart for this problem. The program is also
listed in table 2—17.

As another example of the uses of the BPX instruc-
tion, assume that we wish to program a delay of 120
psec into the Central Computer System. There are vari-
ous ways in which this could be done, but using the
BPX instruction to branch back to itself is probably the
one method which uses the least memory space. A sam-
ple program showing this delay is listed in table 2—18.

Step 0.00002 will load index register 5 with a value
of 22 or 18,. This step consumes 6 psec. The next step
causes the index register to be stepped down by a decre-
ment of one and to branch to the same instruction. What
we are doing, in effect, is continually sensing the sign
of index register 5, waiting for it to go negative. The sign
bit will be positive for 18, times; however, the branch
condition will have been met before the index register
is stepped from 0.00001 to 2.00000, so the BPX instruc-

TABLE 2—17. TABLE-SORTING PROGRAM USING
THE BPX INSTRUCTION

LOCATION OPERATION ADDRESS
0.00000 1 XIN 0.00300
0.00001 2 XIN 0.00300
0.00002 4 XIN 0.00300
0.00003 1 CAD 0.02500
0.00004 BFM 0.00010
0.00005 2 FST 0.04000
0.00006 2 BPX(01) 0.00013
0.00007 HLT —
0.00010 4 FST 0.00500
0.00011 4 BPX(01) 0.00013
0.00012 HLT -
0.00013 1 BPX(01) 0.00003
0.00014 HLT —

51

BPX Instruction as Unconditional Branch
211.3.2-2.114

tion will be executed 19, times or a total of 114 psec. Ad-
ding the 6 psec for the execution of the XIN instruction
will give the required 120-usec delay.

2.17.4 Using the BPX Instruction as an
Unconditional Branch

There is one important feature of the BPX instruc-
tion which we have not discussed. Although the name of
the instruction implies the use of an index register, it
is also possible to use this instruction as an unconditional
branch. This is accomplished by omitting a number
from index indicator bits L1—L3. When this is done,
the BPX instruction will automatically transfer program
control to the address specified in the right half portion
of the BPX instruction. The execution time remains at
6 psec, and the octal operation code is simply 51. When
the BPX instruction is used in this manner, it can often
save several steps in a routine. For instance, let us con-
sider the number-sorting routine which was presented
in 2.15.5. This program sorted three numbers, found the
largest, and stored it in a specified location. The BLM

START

!

LOAD
INDEX REGS

1

OBTAIN

3-112-0

DATA

ARE

YES NO
BOTH HALVES
MINUS
\ 0
STORE STORE
IN TABLE IN TABLE
\
MODIFY MODIFY
INDEX REG. INDEX REG.

IS
THIS THE
LAST WORD

YES NO

!

MODIFY DATA
ADDRESS, BRANCH

(A}

HALT "

PART 2
CH 2

instruction was used in this program and 18,, steps were
required. Now let us solve the same program using the
BPX instruction as an unconditional branch. The three
numbers were A, B, and C, and wete stored in the left
half portions of locations 0.00100, 0.00101, and 0.00102,

TABLE 2—18. PROGRAMMED DELAY USING THE
BPX INSTRUCTION

LOCATION OPERATION ADDRESS
0.00000 CAD 0.01000
0.00001 ADD 0.01050
0.00002 5 XIN 0.00022
0.00003 5 BPX(01) 0.00003
0.00004 FST 0.02250
0.00005 HLT —

START
O | XIN 300
| 2XIN 300
2 4 XIN 300
1
3| CAD 2500
\
BOTH BOTH HALVES
HALVES MINUS 4 BFM 10 NOT MINUS
\
10 4FST 500 5 2 FST 4000
\
114 8PX(0l) 13 6 2 BPX(OnI3
12 HLT — 7 HLT —
113 | BPX(O1) 3
LAST ~
WORD
14 HLT —

(B)

Figure 2—21. Table Sorting by Using the BPX Instruction

58

PART 2 3-112-0 Summary of Basic Instructions
CH 2 2.17.4-2.18
STaRT TABLE 2—19. SORTING PROGRAM WITH
UNCONDITIONAL BRANCH
OBTAIN A
LOCATION OPERATION ADDRESS
0.00000 CAD 0.00100
0.00001 SUB 0.00101
! 0.00002 BLM 0.00005
oBTAIN B OBTAIN A 0.00003 CAD 0.00100
0.00004 BPX 0.00006
STORE LARGER .__J 0.00005 CAD 0.00101
0.00006 FST 0.00150
0.00007 SUB 0.00102
COMPARE
LARGER WITH C. 0.00010 BILM 0.00012
IS C LARGER
3 0.00011 HLT —
HALT OBTAIN ¢ 0.00012 CcAD 0.00102
‘ 0.00013 FST 0.00150
0.00014 HLT
STORE C
0.00100 A
l 0.00101 B Data
HALT
0.00102 C
0.00150 Result

Figure 2—22. Number-Sorting Program Using
Unconditional Branch, Preliminary Flow Chart

respectively. The largest number was to be stored in
location 0.00150. The preliminary flow chart for this
program is shown in figure 2—22. Notice that this flow
chart arrives at the same place from two different out-
comes; since the computer program proceeds sequen-
tially, some provision must be made to allow us to do
this. The BPX instruction is what is used, and the final
flow chart is listed in figure 2—23. The program is writ-
ten in 13y, steps, a saving of five memory spaces over the
former program. This program is also listed in table
2—19. This is just one example of the use of an uncondi-
tional branch, but it serves to show the importance of
this instruction. It is also used widely when entering and
leaving program subroutines and with various other pro-
gramming techniques. The BPX instruction as an uncon-
ditional branch is more fully explained in the following
chapters.

2.18 SUMMARY OF BASIC INSTRUCTIONS

A listing of the basic instructions which have been
discussed in this chapter is given in table 2—20. This ta-
ble includes the actual name, mnemonic name, octal
operation code, execution time, and other pertinent in-
formation about each of the 17 instructions covered up
to this point,

START

!

0 CAD 100
B>A 1 SUB 101 A>B
| 2BLM 5 I
3 CAD 100
5 CAD 101 A OR B 2BPX 6
I‘D 6 FST 150 W——l
AOR B>C 7 SUB 102 C>A ORB
10 BLM 12
\)
" HLT — 12 CAD 102
13 FST I50
14 HLT —

Figure 2—23. Number-Sorting Program Using

Unconditional Branch, Final Flow Chart

59

Table 2-20 3-112-0 PART 2
CH 2
TABLE 2—20. SUMMARY OF BASIC INSTRUCTIONS
MNEMONIC OCTAL EXECUTION CAUSE
INSTRUCTION NAME NAME CODE TIME INDEXABLE OVERFLOW
Halt HLT 000 12 psec No No
Clear and Add CAD 100 12 usec Yes No
Add ADD 104 12 psec Yes Yes
Twin and Add TAD 110 12 psec Yes Yes
Clear and Subtract cSU 130 12 psec Yes No
Subtract SUB 134 12 psec Yes Yes
Twin and Subtract SU 140 12 psec Yes Yes
Full Store FST 324 12 psec Yes No
Left Store LST 330 18 psec Yes No
Right Store RST 334 18 psec Yes No
Add One Right AOR 344 18 psec Yes Yes
Branch on Positive Index BPX 51- G psec No No
Branch on Full Zero BFZ 540 12 psec No No
Branch on Full Minus BFM 544 6 psec No No
Branch on Left Minus BLM 550 6 usec No No
‘Branch on Right Minus BRM 554 6 psec No No
Reset Index Register XIN 754 6 psec No No

60

PART 3
CH 1

3-112-0

Purpose of Central Computer System
1.1-1.2

PART 3
PROGRAMMING THE CENTRAL COMPUTER SYSTEM

CHAPTER 1
GENERAL DESCRIPTION

1.1 PURPOSE OF CENTRAL COMPUTER SYSTEM

The prime purpose of the Central Computer System
is to process, algebraically and logically, the information
supplied to it by the Input System via the Drum System
to arrive at results which are pertinent to the air defense
situation. This processing takes the form of numerical
computation with binary-coded data concerning the tac-
tical conditions or reliability of the AN/FSQ-7 and
AN/FSQ-8. Both tactical and maintenance information
supplied to the Central Computer System is in binary
numerical form, and the Central Computer System pro-
cesses the data as if it were numerical in both content
and nature. The Central Computer System is a mathemat-
ical machine, although the information with which it
deals need not be purely mathematical in nature.

As tactical information is introduced into the Cen-
tral Computer System, it is processed and correlated in
a fixed pattern. The actual manner of processing is pre-
determined by additional information (a program) in-
troduced into the Central Computer System. This pro-
grammed information consists of a series of orders which,
when executed in the prescribed sequence, cause the Cen-
tral Computer System to process the tactical data so as
to arrive at the proper results. After the results of the
computations have been obtained, they are transferred
from the Central Computer System into the Drum Sys-
tem for storage. From this system, they are distributed
to the Output and Display Systems. From the Output
System, these results are transmitted via telephone and
teletype lines to locations where defense action is carried
out. The Central Computer System results which are
sent to the Display System are presented in visual form
to operating personnel for monitoring, interpretation,
and control purposes.

In addition to its function of processing raw infos-
mation, the Central Computer System acts as the control
center for AN/FSQ-7 and AN/FSQ-8 as information is
processed by the Central Computer System, as ordered,
and sent to the Drum System for use by the Input,
Output, and Display Systems. These signals control the
transfer of data between systems, initiate operational

cycles, set up control circuits for impending operations,
and generally synchronize the action of each of these
systems with that of the Central Computer System.

In summary, the purpose of the Central Computer
System may be separated into two parts:

a. Information processing
b. Synchronization and control

Information processing takes place within the Central
Computer System and involves the calculation of results
from supplied information. The synchronization and
control of the Central Computer System co-ordinates
the acquisition, transfer, transmittal, and storage of in-
formation throughout the AN/FSQ-7 and AN/FSQ-8 so
that all operations take place at the proper time and in
the proper sequence.

1.2 SYSTEM REQUIREMENTS

Up to this point, we have discussed only those in-
structions which will permit us to solve relatively simple
problems. However, to perform the job of air defense
efficiently the AN/FSQ-7 and AN/FSQ-8 must be capa-
ble of executing many instructions which can rapidly pro-
cess tactical data and maintenance information and, at
the same time, keep a constant check on the slate of
the various systems and elements. The Central Computer
System has the capability of large information storage
and fast access but requires several additional instruc-
tions, beyond what we have already discussed, to make
full use of these facilities. The majority of instructions
that are executed in the AN/FSQ-7 and AN/FSQ-8 deal
with the Central Computer System; therefore, this part
will discuss all those instructions which are executed
directly in the Central Computer System and involve reg-
isters, sense units, etc., within the Central Computer
System. Only those instructions which deal with 10 de-
vices will not be discussed at this time.

In paragraph 2.17 of the last chapter, a general
description of indexing was presented, and some of the
applications of this technique were shown. However,
there are many uses to which indexing may be applied
other than what we have covered so far; in addition, two

61

System Requirements 3-112-0 PART 3

12 _ . CH1
more indexing instructions are available for use within a computer program, the following chapter is devoted
the AN/FSQ-7 and AN/FSQ-8. Because indexing of rou- to more extensive applications of indexing and an analy-
tines is such an important consideration when writing sis of two more indexing instructions and their variations.

62

PART 3
CH 2

3-112-0

Additional Uses of BPX Instruction
2.1-23

CHAPTER 2
INDEXING TECHNIQUES

2.1 GENERAL

As explained in Part 2, indexing is essentially a
technique whereby address modification of an instruc-
tion may be made without increasing the time required
to execute the instruction. We have discussed problems,
which could be solved by the use of index registers,
to reduce the storage space required for a program and
to cause delays in internal operations. However, aside
from the obvious uses of indexing instructions, there are
many applications which have not yet been discussed.
This chapter will show some of the additional uses to
which indexing may be applied and two instructions and
their variations which can be used in obtaining even
greater program flexibility.

2.2 ADDITIONAL USES OF THE BPX
INSTRUCTION

The BPX instruction is used primarily for two pur-
poses: either to reduce the contents of a selected index
register and transfer program control back to the start
of a routine or to act as an unconditional branch.
However, this instruction may also be used to cause a 6-
usec delay in internal operations. This takes place if either
index register 6 or 7 (which are nonexistent) is specified.
This variation of the BPX instruction is useful when a
mistake has been made in a program and it is desired to
delete an instruction from the sequential listing without
reshuffling the instruction locations. A 6 BPX or 7
BPX is put in the same address as the deleted instruction,
and when the program reaches this point, no action will
take place for 6 psec, the time normally required to
execute the BPX instruction. The program will then fall
through to the next sequential instruction.

In some cases, we wish to examine the contents of
an index register and take some action, depending on
what we find, without disturbing the contents of the
specified index register. This may be done by using an
index interval of 0. For instance, if we wished to check
the contents of index register 4 and branch to some
location if it was positive, we would write the instruction
as 4 BPX (00). This instruction will be executed in
the same manner as a normal BPX. However, the index
register will not be reduced because the complement of
bits L10—L15 equals —0, and adding this to the index
register results in no change in the register contents.

Table 3—1 shows all the possible combinations that
may be used with the BPX instruction and the corres-

ponding action that will take place. The instruction lay-
out shows an index interval of one in each case where
the index interval is applicable; however, it should be
remembered that the index interval may be loaded with
any number through 77y (capacity limit of bits L10—
L15).

2.3 RESET INDEX REGISTER FROM RIGHT
ACCUMULATOR INSTRUCTION

The Reset Index Register from Right Accumulator
(XAC) instruction is used to load the specified index reg-
ister with the contents of the right accumulator. The in-
struction is executed by first clearing the address register
and then transferring the contents of the right accumu-
lator into the address register. The address register then
transfers its contents to the selected index register, which
has also been cleared. The octal operation code for the
XAC instruction is 764, and it requires 6 psec to execute.
This instruction does not utilize the address portion,
since the index interval bits determine where the con-
tents of the right accamulator are to be placed. For this
reason, the XAC instruction is not indexable.

TABLE 3—1. BPX INSTRUCTION CONFIGURATIONS

INSTRUCTION ACTION

0 BPX (-) Unconditional branch

3 BPX (-) Unconditional branch

1 BPX (01) Branch if index register 1 is positive
and reduce its contents by one

2 BPX (01) Branch if index register 2 is positive
and reduce its contents by one

4 BPX (01) Branch if index register 4 is positive
and reduce its contents by one

5 BPX (01) Branch if index register 5 is positive '
and reduce its contents by one

1 BPX (00) Branch if index register 1 is positive

2 BPX (00) Branch if index register 2 is positive

4 BPX (00) Branch if index register 4 is positive

5 BPX (00) Branch if index register 5 is positive

6 BPX (—) No operations for 6 psec

7 BPX (—) No operations for 6 psec

63

XAC Instruction
23

As an example of the use of the XAC instruction,
let us assume that we are going to process some tactical
data on the AN/FSQ-7 or AN/FSQ-8. We are interested
only in data that has been received after midnight, but we
do not know how much data has been received. We will
assume that the data we are concerned with is the status
of missiles at various launching sites and that all status
reports transmitted to the AN/FSQ-7 or AN/FSQ-8
after midnight will have a 1 in the LS bit position. Mem-
ory locations 0.00300 through 0.00550 are reserved as
a block for unsorted missile status reports, and locations
0.06000 through 0.06250 are reserved as a block for
those reports received after midnight. Once the reports
have been sorted, we wish to arrange them in a form
in which they may be further processed. Our problem
here is not quite as simple as some we dealt with in
preceding chapters, because more than one operation is
involved. First, we must determine what data we are
going to process, then temporarily store it, and, at the
same time, record the amount of data that we will be
processing. It is obvious that index registers will be used
in this operation to obtain the raw data. Recording the
amount of usable data can be done by stepping a cleared
location. The flow chart for this problem is shown in
figure 3—1, and the program is listed in table 3—2.
Wherever possible, preliminary and final flow charts
will be consolidated in one figure (as has been done in
fig. 3—1) throughout the remainder of the manual.

It can be seen that this program performs several
operations with relatively few instructions. Besides pet-
forming the preliminary sorting necessary, the program
will set an index register so that further processing may
be done on the reports stored in locations 0.06000 —
0.6250. It is necessary to reduce the contents of the index
register after it is loaded so that the proper number of
loops will be executed. Another instruction then branches
to a routine which will then do the final processing on the
status reports.

The XAC ipstruction may also be used when a cer-
tain number of results are known to be possible from a
particular arithmetic or logical operation. When one of
these results occurs, it is possible to test for it and then
branch to a corresponding place in a table of constants
and load the index register with a constant by use of
the XAC instruction. Thus, the contents of the right ac-
cumulator may not directly contain the number desired
to be placed in the index register but can direct the pro-
gram to select the proper number. As an example of this,
assume that we know that the outcome of a certain logical
operation will be either 0.00004, 0.00010, or 0.00020 in
the right accumulator. We will assume that the left ac-
cumulator contains 0. If the outcome is 0.00004, we
wish to go to a routine which will loop three times; if it
is 0.00010, we want to loop four times; and if it is

64

3-112-0

PART 3
CH 2
TABLE 3—2. DATA SORTING AND
COUNTING PROGRAM
LOCATION OPERATION ADDRESS
0.00000 1 XIN 0.00250
0.00001 cAD 0.05771
0.00002 FST 0.05770
0.00003 1CAD 0.00300
0.00004 BLM 0.00012
0.00005 1BPX (01) 0.00003
0.00006 CAD 0.05770
0.00007 4 XAC -
0.00010 4 BPX (10) 0.00011
0.00011 BPX 0.00030
0.00012 FST 0.06000
0.00013 AOR 0.05770
0.00014 AOR 0.00012
0.00015 BPX 0.00005

0.00300 - 0.00550 Initial data storage

0.06000 - 0.06250 Sorted data storage

0.05770 Report counter

0.05771 Constant of 40

0.00020, we want to loop five times. The program to ac-
complish this is listed in table 3—3.

Here, it can be seen that while we are dealing with
the values 4g, 10g, of 205, we wish to load an index regis-
ter with corresponding values of 3g, 4, or 54. In addition,
this program contains one more feature that we have
not discussed yet, but which is very useful in program.-
ming. This is the HLT instruction in location 0.00005.
We are assuming that the previous program has placed
one of the three allowable results in the right accumula-
tor. If this is the case, the program will always branch
around the HLT instruction, even on the last pass
through it. However, if, for some reason, an incorrect
value was stored in location 0.01420, the program would
make three unsuccessful attempts to compare and then

PART 3 3-112-0 Fig. 3-1
CH 2

START

SET UP INDEX REGISTER

0 | XIN 250

CLEAR REGISTER

| CAD 5771
2 FST 5770

OBTAIN REPORT

3 | CAD 300

RECEIVED
AFTER MIDNITE ?
4 BLM 13

YES NO

RECORD AND STORE RESULT

IS THIS THE
LAST REPORT ?
5 | BPX(OI) 4

YES

12 FST 6000
I3 AOR 5770 i

OBTAIN NUMBER OF REPORTS

6 CAD 5770

MODIFY ADDRESS
AND BRANCH

14 AOR 12
1) BPX S

LOAD INDEX REGISTER

7 4 XAC

SUBTRACT ONE

10 4BPX(0) 11

!
BRANCH

Il BPX 30

Figure 3—1. Data Sorting and Counting Program Flow Chart

65

Right Accumulator as Index Register
23-241

fall through to the HLT instruction. This is known as
an “‘error halt” because, under normal circumstances,
we would not halt but branch to the desired routine
after setting index register 2. Therefore, if the program
does halt at this location, we know the result of the
previous program was incorrect.

The XAC instruction also has a configuration that
enables it to be used for more than its one stated purpose.
The various configurations are shown in table 3—4.

2.4 USING THE RIGHT ACCUMULATOR AS AN
INDEX REGISTER

It has been stated that the right accumulator can be
used as an index register; however, so far, we have used
only index registers 1, 2, 4, or 5 to perform program
loops or address modification. There is no provision in
the AN/FSQ-7 or AN/FSQ-8 to reduce the contents of
the right accamulator by a branching instruction; there-
fore, it is of no use to us when we wish to loop through

TABLE 3—3. INDEX REGISTER
LOADING ROUTINE

LOCATION OPERATION ADDRESS
0.00000 1 XIN 0.00002
0.00001 CAD 0.01420
0.00062 1 SUB 0.00060
0.00003 BFZ 0.00006
0.00004 1 BPX (01) 0.00001
0.00005 HLT -
0.00006 1 CAD 0.13350
0.00007 2 XAC —
0.00010 BPX (To desired routine)
0.01420 Result of previous program
0.00060 -0, 0.00004
0.00061 -+0, 0.00010
0.00062 -0, 0.00020

Constants
0.13350 -+0, 0.00002
0.13351 -0, 0.00003
0.13352 --0, 0.00004

3-112-0

PART 3
CH 2
' TABLE 3—4. XAC INSTRUCTION
CONFIGURATIONS
INSTRUCTION ACTION
0 XAC No operation for 6 psec
3 XAC No operation for 6 psec
6 XAC No operation for 6 psec
7 XAC No operation for 6 psec
1 XAC Reset index register 1 from right
accumulator
2 XAC Reset index register 2 from right
accumulator
4 XAC Reset index register 4 from right.
accumulator
5 XAC Resét index register 5 from right

accumulator

a certain portion of a program or separate routine. How-
ever, the right accumulator is extremely useful when it is
used to modify addresses of various operands. This may
not be apparent at first, since it would appear that we
cannot obtain sequential memory locations as is the case
with the normal index registers. This seeming dis-
advantage is actually a useful programming technique,
as we shall see in the following examples.

2.4.1 Table Lookup Procedure

We already know that the right accumulator cannot
cause a program to select sequential locations, so we must
utilize it when it is desired to select locations out of se-
quence. Such is often the case when we are looking up
various tables such as sine, cosine, etc. The tables are
stored in the AN/FSQ-7 and AN/FSQ-8 in the order of
magnitude, and if we wish to select some operand at ran-
dom out of the table, it is necessary merely to load a
proportionate value into the right accumulator, modify
the CAD instruction, and select the desired operand.
For instance, let us assume that we wish to perform
co-ordinate conversion from polar to rectangular form on
several sets of targets. To do this, we need to know
the various angles of these targets in relation to north.
We shall call these angles ¢. The actual co-ordinate
conversion requires us to use the sine of ¢ and the
cosine of ¢. We have a table containing sine ¢, cosine
¢ in the left and right half-words, respectively, in incre-

PART 3
CH 2

TABLE 3—5. TABLE LOOKUP PROGRAM

LOCATION OPERATION ADDRESS
0.00000 1 XIN 0.00061
0.00001 1 CAD 0.00020
0.00002 3 CAD 0.12200
0.00003 1 FST 0.01100
0.00004 1 BPX (01) 0.00001
0.00005 HLT -

0.12200 - 0.12577 Sine, cosine table

0.00020 - 0.00101 Target angles

0.01100 - 0.01161 Storage for sine, cosine values

ments of 1/256 of a circle or about 1.4°. (Such a table
is actually used in the AN/FSQ-7.) This table is stored
in locations 0.12200 through 0.12577. Since there are
256 possible units of azimuth possible, each angle ¢ may
be represented as a value between 0g and 377,. Thus, 1.4°
would be représented as 0.00000; 2.8° would be 0.00001,
etc. There are 50,, targets stored in locations 0.00100
through 0.00161. Since the targets are not stored in a
particular order, we must have some method of random
access to the table of sine ¢, cosine ¢. Otherwise, it will
be necessary to sort the target angles and place them in
ascending order. This can be overcome by placing the
angle ¢ itself in the right accumulator and using this
value to modify the address of the first entry in the
table. Then, as different angles are placed in the right
accumulator, they will cause a corresponding modifica-
tion of the table address and enable us to select the
proper sine ¢, cosine ¢. The program to accomplish
this, often called a table lookup program, is listed in
table 3—5.

In table 3—5, it can be seen that the larger the angles,
the higher will be the address selected in the table. This
type of operation saves a great amount of time that would
otherwise be spent arranging the angles so that sequen-
tial access to the table could be achieved.

2.4.2 Table Makeup Procedure

Many tables, such as the sine and cosine table in-
volved above, are loaded into the AN FSQ-7 and AN/
FSQ-8 already in the proper sequence. These tables are
“permanent” tables; the information contained in them
is always valid and can be used over and over again. How-
ever, the AN/FSQ-7 and AN/FSQ-8 require many tem-
porary tables concerning the air defense situation which

3-112-0

Table Makeup Procedure
241-242

cannot be prepared externally and then placed in in-
ternal memory. These tables must be generated as the
information required is received into the Central Com-
puter System, This information often comes in at random
times, and several operands are sometimes required before
a table can be “built up.” As an example of such a
table, let us consider the program dealing with counting
and sorting missile status reports which was discussed
in conjunction with the XAC instruction. The “output”
or final result of this program was to provide a list of
missile reports that had been received after midnight
and to keep track of the number of reports involved. It
was mentioned at the time that this program would lead
to another program which would further process these
reports. (See table 3—2.) Such a program is the table
makeup program. Let us assume that we have already
set an index register to the proper value as a result of
the last program and that our reports received after mid-
night are stored, starting at location 0.06000. However,
all we really know about these reports is that they fell
within the time limit; we do not have a useful table of
reports, since they were received randomly, and we can-
not assume that they are in any kind of order. If we
assign each missile base a code number and include this
code number as part of the right half-word, we can
make up a table, assigning the locations by use of the
code number. For ease of explanation, we will assume
that the code numbers of the missile installations will
form a numerical sequence when arranged propetly. Our
problem is to make this numerical arrangement so that
a master program can refer to a known location at any
time and find out the status of the missile base by exam-
ining the contents of that location. Using ordinary sort-
ing techniques would require an excessive amount of
time, just as with the table lookup program. However,
we can again make use of the right accumulator to
modify the starting address of the table and construct
the table so that the code numbers fall in sequence. The
program for this function is listed in table 3—6.

The first instruction will place a Missile Status
report in the accumulator. We then use the Code Num-
ber contained in the right half-word to determine the
location of the report in the final report, by using the
right accumulator as an index register.

By now, the flexible programming that can be
achieved with the right accumulator as an address modi-
fier should be quite clear. The main uses to which this
programming technique can be put are those of table
lookup and table makeup, as illustrated in the above
programs. Any other process whereby the result of an
arithmetic or logical process can be used to select or
build a table is equally valid. Later, we shall see this
application of the right accumulator used again in con-
junction with various other instructions.

67

STA Instruction
24.2-25

TABLE 3—6. TABLE MAKEUP PROGRAM

LOCATION OPERATION ADDRESS
0.00030 4CAD 0.06000
0.00031 3 FST 0.07300
0.00032 4 BPX (01) 0.00030
0.00033 HLT -

0.06000 - 0.06250 Status reports received after

midnight

0.07300 - 0.07550 Report table in numerical

order

2.5 STORE ADDRESS INSTRUCTION

The Store Address (ST A) instruction is used to re-
place the right half portion of the specified memory
location with the contents of the right A register. The
right A register is used as the modifying register in this
instruction because many other registers utilize it dur-
ing their execution, and its contents are often valuable.
One example is the entire class of branching instruc-
tions which automatically transfer the contents of the
program counter to the right A register during their
execution. An application of this is shown below. The
ST A instruction is executed in much the same manner
as the RST instruction except that the right A register
is used to supply the new address portion of the mem-
ory location rather than the right accumulator. The ST A
instruction requires 18 usec to execute and may be
indexed. It has an octal operation code of 340.

As an example of the STA instruction, let us con-
sider a routine of a program which is to be frequently
used in conjunction with a main or master program.
Such a routine might be the table makeup routine we
discussed previously. As the routine is written now, we
halt as soon as the table is made up. However, in the
actual operation of the AN/FSQ-7 and AN/FSQ-8, it is
not feasible to perform just a few instructions and then
halt; the computer program must run continuously. In
order to do this, we must be able to get in and out of
routines, or subroutines, without halting. This may be
accomplished with the use of the ST A instruction in the
following manner. Assume that the last address of a
certain program was 0.00100 and that another routine
was needed to make up a table from the results of the
last program. After this is done, however, we wish to
return to another address which will start the execution
of a new program. This may be accomplished by, placing
a BPX (unconditional branch) instruction at location
0.00100. The execution of the BPX instruction will

68

3-112-0

PART 3
CH 2

cause the program counter, which contains 0.00101, to
be transferred to the right A register. If the first in-
struction of the routine to which we branch is a STA
instruction, it will place the contents of the right A
register (i.e., the program counter) in the right half-
word of the desired location. By specifying the last
instruction (also a BPX) of the subroutine as the right
half portion of the STA instruction, we can assutre out-
selves of a way to get out of the subroutine and back
to another program which starts at location 0.00101.
The flow of program control through these routines is
shown in figure 3—2.

A routine of this type which can be entered and
left with unconditional branches and a ST A instruction
is known as a “closed” subroutine. This means that the
routine is closed with respect to the rest of the program
and requires a branch to and from it. However, it may
be used many times by several different programs. In
contrast to the closed routine, the “open” subroutine
is one which is sequenced through normal stepping of
the program counter. It may perform a discrete function
within a program but it cannot be entered from another
program and, therefore, has a limited application.

With the programming capability that the AN/
FSQ-7 and AN/FSQ-8 have for branching to and from
subroutines, it can be seen how important it is for the
programmer to know exactly what the contents of var-
ious blocks in internal memory contain. With the ex-
planation of more instructions, we will see that the
AN/FSQ-7 and AN/FSQ-8 have many instructions that
are designed especially to check the status of various
blocks and even to check specific bits within an instruc-
tion or data word. Also, many instructions, such as the
ST A instruction, are used primarily to preserve or utilize
the contents of certain operating registers. A discussion
of such an instruction follows.

2.6 ADD INDEX REGISTER INSTRUCTION
2.6.1 Instruction Analysis

The Add Index Register (ADX) instruction is used
to add the contents of the specified index register to the
address of the instruction. The execution of this instruc-
tion is similar to any address modification specified by
an index register. The address -portion of the ADX
instruction and the selected index register are added in
the index adders of the address register. However, the
modified address is then transferred to the right A
register, where it may be dealt with by a ST A instruction.
The execution time of the ADX instruction is 6 psec and
is designated by an octal operation code of 770.

The ADX instruction is used primarily when it is
desired to preserve the contents of an index register
for a particular reason. Up to this time, we have had no
way of obtaining the contents of an index register once

PART 3
CH 2

it has been loaded. However, with the ADX instruction,
we can specify an address portion of 0.00000 and thus
obtain the value of the specified index register which
will be transferred to the right A register. Then a STA
instruction may put the number in a desired location.

2.6.2 Programmed Use of the ADX Instruction

The main reason for preserving the contents of an
index register is to set up control for some other pro-
gram or because the index register is required midway
through the execution of a program for loop control
of another program. This occurs frequently in various
programs run on the AN/FSQ-7 and AN/FSQ-8 because
there may be several routines or subprograms that re-
quire indexing control and there are only four index
registers. If we are executing an indexed program which
is being controlled by index register 1, and a more
important program requests the use of the same index
register, it is necessary to preserve the original contents
of the index register so that the program in progress
at the time of interruption may continue from the point
of interruption once the intervening program is com-
pleted. This can best be shown by an example of just such

/77

| MAIN
PROGRAM

LAST PROGRAM

100 BPX 7000

CLOSED SUBROUTINE

7047 BPX 101

NEXT PROGRAM

10l CAD 3250
102 ADD 1400

I
I
|
I
I
I
I
I
!
I
I
l 7000 STA 7047
|
|
I
I
I
I
I
I
I
I

Figure 3—2. Use of STA Instruction

3-112-0

ADX Instruction
2.6.1-2.6.2

an occurrence. Assume that we have a program which is
contained in locations 0.00150 through 0.00156. The
function of the program is to add several numbers to-
gether with the use of an index register. If, at some point
in the addition, a large negative number is encountered
which causes the right accumulator sum to go negative,
we wish to branch to a number-sorting program using
the same index register, which is contained in locations
0.01625 through 0.01634. After this program is com-
pleted, we wish to return to our original program and
complete it from its point of interruption. The reader
should not be concerned with the actual function of these
two programs; the illustration is to show the transfer of
control back and forth between these routines, one of
which has priority over the other. The fact that priority
exists has been established by the fact that a control
word containing a large negative value may have been
placed in the table of operands used by the first pro-
gram. Thus, even a third program enters into the picture.
However, this fact is beyond the scope of the example
at this time. Assume that this condition may occur
and that the program must be written to include this
occurrence. The flow chart for this program (or pro-
grams) is shown in figure 3—3.

The analysis of this flow chart will show that pro-
gram 1 may run to completion and halt at location
0.00156. This is true if the sum, which is checked after
each addition by the BRM instruction at location
0.00153, remains positive. As soon as the sum goes nega-
tive, a branch directly into a subroutine takes place,
which stores the contents of the program counter (loca-
tion branched from plus one). If we had only one
program such as program 1, this first step in the sub-
routine would not be necessary since we would always
know where the branch took place. On the other hand,
if we had 10 programs which performed the same func-
tion as program 1 and had the same provisions for
branching, this step would be necessary to assure us
that we returned to the correct memory location in the
correct program. Then the sum of program 1 is re-
turned to the value it contained before the branch, and
the contents of index register 1 are preserved. Here
again, we must assume that some action may take place
in a third program which will clear the large negative
value out of the table of operands used by program 1.
If this was not done, we would continually branch to
the subroutine. After program 2, the priority program,
has been executed to completion, index register 1 is
restored to the value it contained at the time the branch
from 1 took place. The sum is also restored and we
branch back to our program at the point of interruption.
The index register is reduced just as if the operand
which has contained the negative control word had been
positive; however, the sum will show only the sum of
the numbers up to the point the control word was en-

69

0L

PROGRAM NO. | START | | PROGRAM No.2 | | susrouTies :‘51
1 T T H * [N
] - L
LOAD INDEX SAVE LOCATION OF
REGISTER NO.I | I I | PROGRAM NO. |
I | LOAD INDEX l |
150 1 XIN 67 | REGISTER NO.I 2077 STA 2110
* i | 1625 | XIN 30 i i]
OF
OBTAIN DATA | | v l | PROGRAM NO. || AND
| I OBTAIN DATA | 2100 li‘::vaE 2001
15 CAD 2000 | | > I 2101 FST 2000
I l 1626 1 CAD 1400 I l *
| I OBTAIN CONTENTS
ADD DATA I | OF INDEX REGISTER
> | l | NO. | AND SAVE
sz 1aw 2001 | || | | | L3183 stA Sooo
| | | | {
| I I l BRANCH TO PROGRAM
NO. 2
oy el || . || o
153 BRM 2077 ' | STORE IN TABLE STORE IN TABLE | 2104 BPX 1625 E;‘
| | || z
} } 1630 | FST 1500 1633 1 FST 1450 | { %
MORE RESTORE INDEX
DATA TO ADD ? |
154 1 BPX(O1) 152 ' | 1 I : R ROGRAM N1
B wwor || || [3ees =
’ |
STORE AND HALT { I e2¢ 1634 BPXx 163 : i RESTORE SUM FOR
I PROGRAM NO. |
IS5 FST 4440 I |
156 HLT I I BRANCH TO | | 2107 CAD 2000
| | SUBROUTINE || ‘
} I 1632 BPX 2105 | l BRANCH T0
| ‘ | PROGRAM NO. |
} } i i 2110 BPX 154
[] L 1 1 J
I I =
L=
Figure 3—3. Flow Chart Showing One Index Register Used in Two Programs f, :

PART 3
CH 2

countered. Therefore, we may conclude that while. this
program is interested in obtaining an arithmetic sum of
some operands, it also is “searching” for a signal that
enough data is available for a program with a higher
priority to be executed.

2.7 SUMMARY OF INDEXING TECHNIQUES

At this time, the reader may feel that an example
such as the one given above has little or no application
to the AN/FSQ-7 and AN/FSQ-8. However, many of the
instructions for these two machines were designed espec-
ially for the air defense problem, and, therefore, ex-

3-112-0

Summary of Indexing Techniques
26.2-2.1

amples of their uses will necessarily resemble tactical
operations. It is beyond the scope of this manual to
present even a general idea of how the tactical air
defense problem is programmed because of its magni-
tude. The various indexing techniques and program con-
trols discussed in this chapter were presented from a
practical viewpoint. It should be remembered that main-
tenance programs are often a simulation of tactical opet-
ations and may utilize programs and subroutines similar
to the actual tactical program. As more instructions are
explained in the remaining chapters, the program ex-
amples will have more and more practical significance.

n

PART 3
CH 3

3-112-0

DIM Instruction
3.1-33

CHAPTER 3
INSTRUCTIONS

3.1 CLEAR AND ADD MAGNITUDE INSTRUCTION

The Clear and Add Magnitude (CAM) instruction
_is used to place in the accumulators the positive absolute
magnitude of the contents of the memory location speci-
fied by the right half portion of the instruction. For an
operand that is already positive, the CAM instruction
is equivalent to a CAD instruction; for a negative
operand, the CAM instruction is equivalent to a CSU
instruction. Thus, the value contained in the accumu-
lators after the execution of this instruction is always
positive, regardless of its original sign. The reason for
this is to ensure a known starting condition for an
operation which deals with magnitudes only. The CAM
instruction requires 12 usec to execute and may be
indexed. It is specified by an octal operation code of 160.

3.2 CLEAN AND ADD MAGNITUDE INSTRUCTION

The Difference Magnitude (DIM) instruction is
used to generate the difference in absolute magnitudes
between a number in the accumulator and the operand
contained in the memory location specified by the right
half portion of the DIM instruction. Since the number
in the accumulator may not be positive, it is necessary
to make the contents of the accumulator positive for
proper execution of the DIM instruction. However, the
original contents of the accumulator may need to be
preserved for some other operation; therefore, the ac-
cumulators are first transferred to the B registers. It
was stated during the discussion on binary arithmetic
that the B registers serve as extensions of the accumu-
lators; the DIM instruction makes use of this facility.
After the accumulator contents are duplicated in the B
registers, the accumulators are made positive, if neces-
sary; the operand to be used is placed in the A regis-
ters, made positive, if necessary, and then complemented.
Thus, the effect of adding these two positive numbers
together will be to subtract the contents of the A regis-
ter from the accumulator, If the accumulator contents
are still positive after the execution of this instruction,
we know that the absolute magnitude of the operand
from memory was smaller than the absolute magnitude
of the accumulator contents. On the other hand, if the
accumulator is negative, we know that its contents were
larger in absolute magnitude than the operand from
memory. The DIM instruction can be executed in 12
usec, and it may be indexed. It is designated by an
octal operation code of 164.

3.3 PROGRAM EXAMPLE USING ABSOLUTE
MAGNITUDES

Assume that we are processing air traffic data, and
a request comes to the Central Computer System to clear
a “corridor” of air space 20 miles wide for use by a
flight of cargo planes. It is the responsibility of the
Central Computer System to define this corridor so that
it may be displayed on the various monitor consoles
within the AN/FSQ-7 or AN/FSQ-8. However, we must
first notify all planes presently near the corridor that
they must change course in order to clear the area. We
wish to make up a list of all tracks close to the corridor
and display this list on a digital display tube so that a
ground controller may direct the necessary planes out
of the way. We will assume that the corridor is to run
north of the AN/FSQ-7 or AN/FSQ-8 installation, east
to west, and that its southern boundary will be 50 miles
to our north. This layout is shown in figure 3—4. There-
fore, it is necessary for us to contact all planes with a
“y” co-ordinate of either 50 or 70 miles since they are
on the boundary of the corridor. We can do this with
the use of the magnitude instructions. There is one -
precaution we must take, however, and that is to dis-
card all tracks that are located south of us, since we do

+40—1
+30 1

AN/FSQ-7 OR
+20-+4 AN/FSQ—8
+10 1

! 1 ! ! ' i |
T T T T T | T
-70 -60 -50 -40 -30 -20 -I0

+II0 +2I0 +?0 +1|i0 +|50 +(?O +'IIO
T T T 1 T 1 1

-+-10
-T-—20
-T-—30
~}-—40
-T--50
~+-60

+-70

Figure 3—4. Layout of Air Traffic Problem
13

-

MUL Instruction
3.3-3.7

not wish to regard tracks with a y co-ordinate of —50
or —70 miles. Assume that the co-ordinates for all
tracks we have are located in addresses 0.03000 through
0.03600. For the purposes of this problem, we will also
assume that these locations contain only the y co-
ordinates in the left half-words and that the right half-
words contain 0. This table of y co-ordinates has been
made up by a subroutine which will not be explained
at this time. The program flow chart to accomplish the
task we have outlined above is shown in figure 3—5.

First, the index registers are loaded to the value
which will enable us to process the maximum number
of tracks that could be contained within the Central
Computer System. The y co-ordinates of these tracks
are examined, and those with positive values are stored,
starting at 0.04600. Each time we find a positive co-
ordinate, we step an indicator register at 0.00100. Then
the index register which is to control the iterations of
the second part of the program is set by subtracting -1
from the contents of the indicator register. The starting
address of the table to be used with index register 4 is
determined by subtracting the indicator register from
the highest address in the table. We determine whether
-our co-ordinates are either ---70 or 450 by two DIM
instructions. For example, if we were testing a co-
ordinate of 50, the first DIM insttuction at location
0.00021 would leave —10 in the left accumulator. The
second DIM instruction would leave —0 in both the
left and right accumulators. When the BFZ condition is
satisfied, we AOR in the location containing the co-
ordinate just tested, changing the right half-word from
40 to 0.00001. Thus, this program produces a table
containing marker bits in R15 of each location which
has a y co-ordinate of 470 or -50. Then another pro-
gram can test for the presence of marker bits in the
table and display the corresponding track numbers.

3.4 ADD B REGISTERS INSTRUCTION

The Add B Registers (ADB) instruction is used
to add the contents of the B registers to the accumu-
lators. The address part of this instruction is not needed
because no operand is required from core memory. How-
ever, the contents of the B registers are treated just as
if they were contained in a core memory location. The
contents are transferred to the A registers and then
added to the accumulators in the normal manner. Over-
flow may occur with the execution of this instruction.
The ADB instruction, which is not indexable, requires
12 psec to execute. It has an octal operation code of 114.

3.5 MULTIPLY INSTRUCTION

The Multiply (MUL) instruction is used to obtain
the product of the contents of the accumulator and the
contents of the specified memory location. Execution of
this instruction leaves a 30-bit product in the combined

14

3-112-0

PART 3
CH 3

accumulator and B register. The least significant bit of
the B register (B15) is identical to the sign of the
multiplier (original contents of the accumulator) and is
not considered part of the product. The actual process
involved in multiplication of two binary numbers is by
addition and shifting, as explained in Part 1, Chapter
3. The MUL instruction is executed in the AN/FSQ-7
and AN/FSQ-8 in the following manner. The accumu-
lator contents are first made positive and then trans-
ferred to the B registers. Then the addition and shifting
is performed in accordance with the contents of bit 15
of the B register. These shifts are controlled by 2-mc
pulses from the time pulse generator. However, some of
these pulses are not associated with a particular machine
cycle; therefore, most of the shifting part of the MUL
instruction takes place during an arithmetic pause. The
product generated by a MUL instruction is always posi-
tive at the completion of the shifting; then the true sign,
which has been determined algebraically, is restored to
the product. Execution time of the MUL instruction is
16.5 psec, plus or minus 15 usec. This variance allows
for delay in synchronization of the 2-mc pulses. The
MUL instruction is designated by an octal code of 250
and may be indexed.

3.6 TWIN AND MULTIPLY INSTRUCTION

The Twin and Multiply (TMU) instruction multi-
plies the left half-word contained in the specified mem-
ory location by the contents of the left and right ac-
cumulator. Thus, the TMU instruction causes the left
half-word to be used as the multiplier and in both the
left and right arithmetic elements. Aside from this dif-
ference, the TMU instruction is executed in the same
manner as the MUL instruction. The execution time of
the TMU instruction is 16.5 psec, plus or minus 1/ psec,
and is an indexable instruction. It is designated by an
octal operation code of 254.

3.7 DIVIDE INSTRUCTION

Execution of the Divide (DVD) instruction pro-
duces the quotient of the contents of the specified mem-
ory address (divisor) and the contents of the combined
accumulators and B registers (dividend). The execution
of this instruction leaves an unsigned quotient of 16
significant bits in the B register and the remainder and
sign of the quotient in the accumulators. Binary division
in the AN/FSQ-7 or AN/FSQ-8 takes place as described
in Part I, Chapter 3. The Central Computer System
carries out the process of trial subtractions and shifting
with the use of 2-mc pulses from the time pulse genera-
tor, as with the MUL instruction. However, a trial sub-
traction cannot be performed with one pulse, so the
pulses are separated into groups of five pulses each,
called divide time pulses (DVTP). Each DVTP cycle,
whose pulses are numbered DVTP 0 — DVTP 4, causes

PART 3 3-112-0 Fig. 3-5
CH 3

START
LOAD INDEX
REGISTERS | AND 2
o} I XIN 600
I 2 XIN 600

OBTAIN CO-ORDINATE

2 I CAD 3000

1S
CO-ORDINATE
POSITIVE ?

3 BLM 7

YES

'

STORE IN TABLE

4 2 FST 4000

|

STEP INDICATOR
REGISTER AND BRANCH L

5 AOR 100
6 2 BPX (0O 7

IS THIS THE NO
LAST CO-ORDINATE ?
71 BPX (0N 2

YES

SET INDEX REGISTER 4
AND INDICATOR REGISTER

10 CAD 100
11 suB 1350
12 4 XA
13 RST 100
CONSTANTS
y
OBTAIN STARTING
1350 O,I ADDRESS OF TABLE
!33’2'2 8’?8 14 CAD 1353
» 15 suB 100
1353 0,0.04600

i
STORE ADDRESS

16 RST 20
17 RST 26

Y
OBTAIN CO-ORDINATE

1S THIS THE
LAST CO-ORDINATE ?
27 4 BPX (0120

IS THIS THE

24 4 BPX (01)2Q

20 4 CAM *

PROGRAM HALT

DETERMINE MAGNITUDE , PROGRAM HALT
30 HLT —
SET MARKER BIT 2 DIM 1351
22 DIM 1352 25 HLT —

26 4 AOR *
[

1S CO-ORDINATE
ON BORDER ?
23 BFZ 26

YES

% ADDRESS DETERMINED BY
INSTRUCTIONS 14 AND 15

Figure 3—5. Air Traffic Program
15

SLR Instruction
3.7-3.10.1.1

the execution of one trial subtraction. Sixteen trial sub-
tractions are required, yielding an arithmetic pause time
of 39.0 psec plus or minus 15 psec. The addition of
the normal PT-OT cycles brings total execution time
of the DVD instruction to 51.0 psec plus or minus 1/
usec. The DVD instruction is indexable and is specified
by an octal operation code of 260.

3.8 TWIN AND DIVIDE INSTRUCTION

The Twin and Divide (TDV) instruction, which
operates like all twin instructions, uses the left half-
word contained in the specified memory location as the
divisor for both the left and right arithmetic element.
The TDV instruction is executed in the same manner
as the DVD instruction. Execution time of the TDV
instruction is 51.0 psec plus or minus 15 psec; this in-
struction is indexable. The octal operation code for this
instruction is 264.

3.9 SHIFT LEFT AND ROUND INSTRUCTION
3.9.1 General

The Shift Left and Round (SLR) instruction pro-
vides the means for manipulating a number within the
arithmetic element and rounding off that number of 15
significant bits. You will recall that the result of a
multiplication leaves a 31-bit product (including sign)
in the combined accumulators and B registers, and the
result of a division leaves a 16-bit unsigned quotient
plus the remainder in the combined accumulators and
B registers. Neither of these results is compatible with
the word length of the AN/FSQ-7 or AN/FSQ-8, since
we deal with half-words of 16 bits, and these numbers
are almost twice as long as the maximum length we can
handle. Therefore, some method must be found to re-
duce these numbers to 15 significant bits and yet pre-
serve the most accuracy it is possible to give to the
magnitude of the number. This is accomplished by the
SLR instruction, whose execution is explained below.

3.9.2 Execution

The SLR instruction shifts the number in the com-
bined accumulators and B registers left the number of
places specified by the right half portion of the instruc-
tion and rounds off the accumulator contents to 15
significant bits. “Shifting” in the AN/FSQ-7 or AN/
FSQ-8 refers to displacing the contents of a bit position
to the left or right within the same register; in the SLR
instruction, the bits are shifted left only. The basic shift
operation transfers the contents of one flip-flop to the
adjoining - flip-flop; this operation may be repeated as
many times as specified. Thus, a shift to the left of two
places will transfer the contents of bits 1 and 2 out of
the register, with bit 3 moving into the bit 1 position,
bit 4 moving into the bit 2 position, etc., fhrough the
entire register, except for the sign bit position which

16

3-112-0

PART 3
CH 3

remains unchanged. Roundoff in the AN/FSQ-7 and
AN/FSQ-8 is performed in much the same manner as we
perform roundoff with a number on paper. In the ma-
chine, the sign bit of the B register is sensed, and if it
is a 1, the contents of the accumulator are increased by
1. If the sign bit of the B register is a 0, the accumulator
contents are left unchanged. Remember that the sign
of the B register does not indicate polarity of its con-
tents when used with multiplication and division in-
structions, but rather is a significant bit. Actual execu-
tion of the SLR instruction is done by first shifting the
combined accumulators and B registers to the left the
number of places indicated by the right half-word of
the instruction, These shifts are controlled by the 2-mc
pulses from the time pulse generator, with each pulse
causing a shift of one place to the left. After the shift-
ing operation has been completed, the combined regis-
ters are complemented, if negative, and the carry 1 line
to the accumulator is pulsed if the sign bit of the B
register is a 1. Then the sign of the accumulator con-
tents is restored, if necessary. Assuming that the sign
bit of the B register is a 1, rounding off a positive
number will increase its magnitude by 1 and rounding
off a negative number will decrease its magnitude by 1.
The SLR instruction may be executed in 6 psec if no
shifts are called for; if shifting is specified, the execution
time depends on the number of shifts involved. If an
SLR 1 instruction is specified, the execution time is 6.5
usec; SLR 2 requires 7.5 psec execution time. This execu-
tion time for shifts of three or more can be determined
N—1
2
number of decimal shifts that are called for. For example,
SLR 5 would require 6.0 + 2.0 or 8.0 usec to execute.
Since no memory location is referred to, this instruction
may not be indexed. Overflow may occur as a result of the
SLR instruction, which is designated by an octal opera-
tion code of 024.

by the formula: # = 6.0 4- , whete N equals the

3.10 SAMPLE PROGRAMS INVOLVING

MULTIPLICATION AND DIVISION
3.10.1 Multiplication Programs
3.10.1.1 Basic Multiplication

Assume that we wish to write a program which
will compute the value AC?—2AC, BD. We will place our
data in locations 0.01000 and 0.01537, and they shall
contain A, B and C, D, respectively. Our answer will
be placed in location 0.44444. The program to compute
this value is shown in table 3—7.

Notice that we have used an SLR instruction after
each multiplication, so that our product can be used
with another instruction immediately following. No
shifts have been specified in this example, since our
most significant bits are already in the accumulator and
merely need to be rounded off.

PART 3
CH 3

TABLE 3—7. BASIC MULTIPLICATION PROGRAM

LOCATION OPERATION ADDRESS
0.00070 CAD 0.01000
0.00071 MUL 0.01537
0.00072 SLR 0.00000
0.00073 FST 0.44444
0.00074 MUL 0.01537
0.00075 SLR 0.00000
0.00076 SUB 0.44444
0.00077 SUB 0.44444
0.00100 LST 0.44444
0.01000 A B
0.01537 C Constants

3.10.1.2 Function Evaluation Programs

One of the common functions that we evaluated in
mathematics is the general form of the quadratic equa-
tion, which is: y = ax2 4 bx 4~ ¢. This function can be
easily programmed on the AN/FSQ-7 and AN/FSQ-8.
The method of solution is fairly obvious; however, the
sequence of computation does make a difference in the
time it takes to solve this problem. If we program this
function by generating the most obvious products and
sums, we follow the sequence given below:

1. Obtain x
. Multiply by x
. Multiply x2 by a
. Store partial result
. Obtain b
. Multiply by x
. Add ax2 to bx
Add ¢
9. Store result

[I RV S N SV N

While this solution is certainly valid, it is by no means
the best way to arrive at the correct answer. Upon
examination, it can be seen that the equation y — ax2 4-
bx + ¢ can be rewritten to read y = (ax 4+ b) x 4 c.
The problem can now be solved by computing in the
following manner:

1. Obtain a
. Multiply by x
Addb
. Multiply by x
Add ¢
. Store result

AV AW N

3-112-0

Function Evaluation Programs
3.10.1.2-3.10.13

In the latter method of solution, no intermediate storing
is required, and only two multiplication steps are re-
quired instead of the three needed when solving by the
first method. Saving multiplication steps is an important
consideration when writing a program, because each
multiplication step that is saved also saves a rounding-
off step. The function evaluation program as it should
be written is given in table 3—8.

TABLE 3—8. FUNCTION EVALUATION PROGRAM

LOCATION OPERATION ADDRESS
0.00000 CAD 0.15320
0.00001 MUL 0.04000
0.00002 SLR 0.00000
0.00003 ADD 0.15321
0.00004 MUL 0.04000
0.00005 SLR 0.00000
0.00006 ADD 0.15322
0.00007 FST 0.62000
0.00010 HLT 0.62000
0.15320 A AN .
0.15321 B Constants
0.15322 C C
0.04000 X X

Of course, this program will generate two solutions
simultaneously in both the left and right arithmetic
element. If we wished to construct a table of the values
of y, we would probably store the accumulators sepa-
rately in sequential locations and then rearrange the
table so that all values of y were in order and in the
same half-word.

3.10.1.3 Co-ordinate Conversion Program

When targets on tracks are reported to the AN/
FSQ-7, they are given in terms of range and azimuth,
or polar co-ordinates. It is necessary for us to have
these co-ordinates converted to rectangular form so they
may be more easily dealt with in future computations.
This may be accomplished by multiplying the sine and
cosine of the angle of azimuth by the range so that
x=rsin ¢ and y = r cos ¢. If we use a table of sine
and cosine values such as was used previously for the
program listed in table 3—5, our sine and cosine values
will be located in the left and right half-words of mem-
ory locations 0.12200 through 0.12577. We will also
assume that we wish to perform conversions on 50, tat-

n

Division Programs
3.10.1.3-3.10.22

TABLE 3-—9. CO-ORDINATE CONVERSION

PROGRAM

LOCATION OPERATION ADDRESS
0.00000 1 XIN 0.00061
0.00001 . 1 CAD 0.00020
.0.00002 3 CAD 0.12200
0.00003 1 TMU 0.00020
0.00004 SLR 0.00000
0.00005 1 FST 0.01100
0.00006 1 BPX (01) 0.00001
0.00007 HLT -
0.00020 -
0.00101 Range @ (azimuth

angle)

0.01100 -
0.01161 X co-ordinate Y co-ordinate
0.12200 -
0.12577 Sin & Cos O

gets which have their range and azimuth angle in the
left and right half-words, respectively, of locations
0.00020 — 0.00101. The program to generate these x and
y co-ordinates is given in table 3—9.

The proper sine and cosine are selected for each
target by first obtaining the angle of the target and
then using the table lookup procedure, utilizing the
right accamulator as an index register. This step will
place the sine of the angle in the left half-word and the
cosine in the right half-word. A TMU instruction will
multiply both of the accumulators by the range of the
target, leaving R sin ¢ and R cos ¢ in the left and right
accumulators, These results are then rounded off and
stored. The example given above shows how easily an
actual problem may be handled by the Central Com-
puter System when the various facilities such as dual
computation, twinning, and table lookup procedures
are employed.

3.10.2 Division Programs

3.10.2.1 Requirements for Division

Up to this point, we have not discussed the prob-
lem of division in the AN/FSQ-7 and AN/FSQ-8 from
any standpoint except the actual execution of the in-
structions. However, we know that the Central Com-
puter System has been designed to handle only those
numbers which fall between the limits of 1 and —1.
In multiplication, no difficulty was encountered since

18

3-112-0

PART 3
CH3

the product of two fractional numbers is always an-
other fraction. But in division the quotient of two frac-
tions may be a number larger in magnitude than the
AN/FSQ-7 and AN/FSQ-8 can handle. Therefore, we
must make sure that the operand to be used as a divisor
is larger in magnitude than the dividend to always ob-
tain a fractional answer. If this precaution is not taken
prior to execution of the DVD or TDV instruction, the
result in the combined accumulator and B register may
be meaningless.

3.10.2.2 Division Example
We will assume that we wish to evaluate the follow-
ing formula:

x:%-}-%—. Memory locations 0.00427 and

0.00077 contain A, B, and C, D, respectively. The result

TABLE 3—10. DIVISION PROGRAM

LOCATION OPERATION ADDRESS
0.00030 CAD 0.00077
0.00031 SUB 0.00427
0.00032 BLM 0.00034
0.00033 HLT —
0.00034 CAD 0.00033
0.00035 TAD 0.00427
0.00036 SUB 0.00077
0.00037 BRM 0.00041
0.00040 HLT -
0.00041 CAD 0.00077
0.00042 DVD 0.00427
0.00043 SLR 0.00017
0.00044 RST 0.43300
0.00045 CAD 0.00033
0.00046 TAD 0.00427
0.00047 DVD 0.00077
0.00050 SLR 0.00017
0.00051 ADD 0.43300
0.00052 RST 0.43300
0.00053 HLT -
0.00427 A B
0.00077 C D
0.43300 Result

PART 3
CH3

is to be placed in the right half-word of location 0.43300.
Table 3—10 lists the program to evaluate this formula.

The first part of this program checks the numbers
to be divided and halts if any divisor is not larger than
its dividend. If both divisors are larger, the program
will continue. After each division is executed, the SLR
17 instruction moves the unsigned 16-bit quotient from
the B registers into the accumulators and rounds off the
result to 15 significant places, the maximum half-word
length we can store in one memoty,

3.11 SHIFT INSTRUCTIONS

3.11.1 Generadl

The shift instructions are used to position words
within the combined accumulator and B register or
within the accumulator alone. The principle of the shift
instructions is the same as that of the SLR instruction:
bits are simultaneously transferred to their adjacent po-
sitions, with the number of shifts determined by the
contents of the right half-word. The SLR instruction
does not fall into the general shift instruction classifica-
tion since it may specify only a shift left of the com-
bined accumulators and B registers and also performs a
rounding-off operation. All of the other shift class in-
structions merely position the word to the left or right
the number of specified places and do not round off.
When the contents of the accumulator are shifted to
the right, the sign of the accumulator remains un-
changed but is shifted into each position vacated by the
shift. In addition, bits shifted out of bit 15 of the ac-
cumulator (or bit 15 of the B register if the two are
combined) are lost. When a shift to the left occurs, the
sign bit remains unchanged but is shifted into each po-
sition of the accumulator (or B register) that is vacated.
Bits shifted out of accumulator bit 1 are lost.

The placing of the sign bit into the high or low
order bits is, in effect, placing 0’s in those positions. If
the number is positive, 0 bits will be shifted into each
bit position vacated. If the number is negative, 1’s are
placed in each vacated position. However, a 1 bit in a
negative number represents a magnitude of 0 since the
number is in complement form.

Shift instructions are used for two general pur-
poses. In logical or nonarithmetic operations, the bits
may be positioned in order to conduct a test of certain
bits or bit combinations. In arithmetic operations, num-
bers are shifted to increase or decrease their magni-
tudes; this process is known as scaling. Scaling within
the Central Computer System is discussed in Part 5,
Chapter 2. :

Because shift instructions do not refer to a core
memory location, they may not be indexed. In addition,
overflow will not occur upon the execution of a shift
instruction since the sign bits are not changed during
the execution.

3-112-0

Shift Instructions
3.10.2.2-3.115

The time required for the execution of the shift
instructions depends on the number of shifts involved.
If six or less shifts are specified, the instruction may be
executed in 6 psec. If more than six shifts are required,
the Central Computer System uses an arithmetic pause
to complete the operation. Execution time for shifts of
six or more can be determined by the formula: t= 6.0
0.5 (N—5), where N equals the number of decimal
shifts that are called for. For example, DSR 10 would
require 6.0 4 0.5 (8—5) or 7.5 usec to execute. It should
be noted that only bits R10 through R15 are decoded to
determine the number of shifts; therefore, the maximum
number of shifts that may take place during any one
instruction is 63;, or 774 If more than 77 shifts are
called for, only the value represented in bits R10 through
R15 will actually be performed. For instance, if we try
to shift 105 positions, only 54 shifts will be executed. A
description of the various shifting instructions used in
the AN/FSQ-7 and AN/FSQ-8 is presented below.

3.11.2 Dual Shift Left Instruction

The Dual Shift Left (DSL) instruction combines
the accumulator and B register of both arithmetic ele-
ments into a 32-bit register which may be shifted only
to the left. The sign bits of both accumulators are du-
plicated in bit 15 of the B registers as the shifting oper-
ation begins, and bits shifted out of accamulator bit 1
positions are lost. The DSL instruction is designated
by an octal operation code of 400. Execution of this
instruction is illustrated in figure 3—6, part A.

3.11.3 Dual Shift Right Instruction

The Dual Shift Right (DSR) instruction combines
the accumulator and B register of both arithmetic ele-
ments into 32-bit registers for the purpose of shifting
numbers to the right. The sign bits of both accumula-
tors are duplicated in accumulator bit 1 positions, and
bits shifted out of B register bit 15 positions are lost.
An octal operation code of 404 is used to specify a DSR
instruction. This instruction execution is shown in fig-
ure 3—6, part B. !

3.11.4 Left Element Shift Right Instruction '

The Left Element Shift Right (LSR) instruction
combines the left accumulator and left B register into a
32-bit shifting register. The right accumulator and right
B register are not affected by the execution of this in-
struction. The sign of the left accumulator is duplicated
in the L1 bit position, and all bits shifted out of bit 15
of the left B register are lost. The LSR instruction is
designated by an octal operation code of 440. Execution
of this instruction is shown in figure 3—6, part C.

3.11.5 Right Element Shift Right Instruction
This instruction is similar to the LSR instruction
except that it deals with the right arithmetic element
only. Thus, the right accumulator and right B register

19

ASL Instruction
3.11.5-3.116

are combined into a 32-bit shifting register whereas the
left arithmetic element is not affected. The Right Ele-
ment Shift Right (RSR) instruction duplicates the sign
bit of the right accumulator in the R1 bit position, and
all bits shifted out of bit position 15 of the right B reg-
ister are lost. The RSR instruction, which has an actual
operation code of 444, is shown in figure 3—6, part D.

3.11.6 Accumulators Shift Left Instruction
The Accumulators Shift Left (ASL) instruction

3-112-0

PART 3
CH 3

shifts both accumulators to the left the number of
places specified by the right half-word. The execution
of this instruction does not affect the contents of the B
registers. The sign bits are duplicated in bit position 15
of the accumulators, and all bits shifted out of bit posi-
tions L1 and R1 are lost. Because this instruction does
not combine the accumulators and B registers, only the
15 magnitude bits of the accumulators may be shifted.
Thus, an ASL 17; (or greater) will duplicate the con-
tents of the sign bits in all positions of the accumula-

LEFT LEFT B RIGHT RIGHT B
ACCUMULATOR REGISTER ACCUMULATOR REGISTER
l * o l * ol
s |Li L s i RIS/
LOST LOST
DUAL SHIFT LEFT (DSL)
A,
* *
s e L15p—® LOST s —» RiS—® LOST
DUAL SHIFT RIGHT (DSR)
B.
NOT AFFECTED
*
s [LISf—# LOST RIS
LEFT ELEMENT SHIFT RIGHT (LSR)
C.
NOT AFFECTED
*
LI5 s > RIS [—® LOST

RIGHT ELEMENT SHIFT RIGHT (RSR)

D.

* *
- ~-—

Ls|Li Lis rs | = RIS

} ‘ ! ‘

LOST LOST

ACCUMULATORS SHIFT LEFT (ASL)
E.

*L LIS—#= LosT * .
s RS RIS LosT

ACCUMULATORS SHIFT RIGHT (ASR)

F.

NOTE .
¥ REMAINS UNCHANGED

Figure 3—6. Execution of Shift Instructions

80

PART 3
CH 3

tors. The ASL instruction is specified by an octal opera-
tion code of 420. Its execution is illustrated in figure
3—6, part E.

3.11.7 Accumulators Shift Right Instruction

This instruction shifts the contents of both accumu-
lators to the right without disturbing the contents of
the B registers, The sign bit is duplicated in bit posi-
tions L1 and R1 of the accumulators, and bits shifted
out of bit positions L15 and R15 are lost. As with the
ASL instruction, a shift of 17, or greater will make all
bit positions in both accumulators identical with their
respective sign bits. The Accumulators Shift Right
(ASR) instruction is designated with an octal opera-
tion code of 424 and is shown in figure 3—6, part F.

3-112-0

ASR Instruction
3.11.6-3.11.8

3.11.8 Program Examples of Shift Instructions

Let us assume that we wish to find out how many
numbers stored in memory locations 0.01000—0.01031
are larger in absolute magnitude than a particular con-
stant. We can do this by placing the constant in the ac-
cumulators and then using a DIM instruction to com-
pare magnitudes. However, the action of the DIM in-
struction is such that the original contents of the ac-
cumulators are first duplicated in the B registers. There-
fore, after testing to see if the number meets our condi-
tions, we can DCL and restore the number to the ac-
cumulators without going into memory again. The flow
chart to accomplish this is shown in figure 3—7.

As another example of the use of shift instructions,
let us examine a table that contains information in the

START

SET INDEX REGISTER
(0) I XIN 3}

OBTAIN CONSTANT
) CAD 5440

OBTAIN DIFFERENCE

(2) | DIM 1000

IS
DIFFERENCE

YES

NEGATIVEP
BFM 7

ARE

IS
THIS THE

YES

NO NUMBERS
@ EQUALP
] BFZ 4
STEP INDICATOR REGISTER
(10) AOR 62
)
BRANCH
m BPX 4
RESTORE CONSTANT ,
TO ACCUMULATOR -
(4) DCL 20

(5)

LAST NUMBERP
1 BPX(0I) 2

Figure 3—7. Magnitude Sorting Program

y

(6)

END OF PROGRAM
HLT -

81

Program Examples
3.11.8

right half-word only. The left half-words contain 0.
The right half-words have marker bits (1’s) placed at
one particular position within a half-word, but the bit
position used does not have to be the same in each
word. What we want to do is make up another table
telling us in what bit position the matker bit is located
in each balf-word. The program will search locations
0.34040 through 0.34047 and store the results in loca-
tions 0.00050 through 0.00057. A constant of 20g is

START

\

SET INDEX REG
[*] 4 XIN 7

OBTAIN OPERAND
| 4 CAD 34040

DOES
WORD HAVE

NO YES

3-112-0

PART 3
CH 3

stored in the right half-word of memory location
0.00300. The program flow chart for this example is
shown in figure 3—8.

After obtaining the location, we check to make
sure that it contains an operand by use of the BFZ in-
struction at step 0.00002. If the branch condition is not
satisfied, we know that the right half-word is not 0 and
contains a marker bit. Then we shift the right accumula-
tor one bit position to the right and step an indicator

2 A MARKER BITP
BFZ 12

SHIFT WORD RIGHT
3 RSR |
Y BRANCH
STEP INDICATOR REG 6 BPX 3
4 4 AOR 50

NO

5

Y
OBTAIN CONSTANT
7 CAD 300

SUBTRACT INDICATOR REG
10 4 suB 50

WORD STILL
CONTAIN MARKER BIT ¢

DOES

YES

BFZ 7

\
STORE MARKER LOCATION
1 4 RST 50

CLEAR INDICATOR REG
12 CAD |I5
13 RST S50

|

IS
THIS THE

YES

14

LAST WORDP
4 BPX (ON |

END OF PROGRAM
15 HLT —

Figure 3—8. Marker Bit Identification Program

82

PART 3
CH 3

register, If the next check for 0 reveals that the right
half-word has been shifted so that the marker bit is no
longer in the word, the position of this marker can be
determined by obtaining a constant of 204 and subtract-
ing the contents of the indicator register from it, Thus,
if the marker bit for a particular word was located in
bit position R9, seven shifts would be required to re-
move this bit from the right half-word. Subtracting
seven from our constant of 205 would leave 115 (or 94)
in the accumulator. The marker location is then stored,
the indicator register is cleared, and the next operand
selected if the program is not completed.

Although only two examples of shift instructions
have been given, it should be clear in what manner
these instructions deal with the accumulator and ac-
cumulator B register contents, Further and more com-
plete coverage of shift instructions will be given in the
chapter dealing with scaling of numbers to be used in
the Central Computer System,

3.12 CYCLE INSTRUCTIONS

3.12.1 General

There are two instructions which are similar in op-
eration to the shift instructions, except that the sign bit
is shifted in the same manner as the magnitude bits. In
addition, no bits are lost by the shifting process but are
re-entered into the low order position of the registers
involved. The shifting of bits within the registers is ac-
complished in the same manner as with the shift in-
structions.

Cycle instructions do not refer to a memory loca-
tion and therefore cannot be indexed. Their principal
use is to exchange the contents of the left and right ac-
cumulators and to exchange the contents of an accumu-
lator and its associated B register. As with the shift

LEFT LEFT B
ACCUMULATOR REGISTER

S LI -

3-112-0

Cycle Instructions
3.11.8-3.12.3

instructions, the cycle instructions have a variable exe-
cution time, depending on the number of shifts in-
volved.

3.12.2 Dual Cycle Left Instruction

The Dual Cycle Left (DCL) instruction combines
the accumulator and B register of each arithmetic ele-
ment into a 32-bit cycling register. (See fig. 3—9, part
A.) Bits shifted out of the accumulator sign bit posi-
tions are re-entered into the bit-15 position of the B
registers. Bits shifted out of the sign bit position of the
B registers are shifted into bit 15 of the accumulators.
When 404 shifts are specified, the execution of the DCL
instruction will be equivalent to no shifts at all, since
all bits will be restored to their original position. When
greater than 40y shifts are specified, the final result will
be the number specified in the right half-word minus
405. For instance, when DCL 50, is specified, 505 shifts
will take place, but will have the same effect as a DCL
105 instruction. The DCL instruction will not cause an
overflow and may be executed in 6 psec if six shifts or
less are called for. If more than six shifts are specified,
execution time is variable. The DCL instruction is desig-
nated by an octal operation code of 460.

3.12.3 Full Cycle Left Instruction

The Full Cycle Left (FCL) instruction is used to
interchange bit positions of the left and right half-
words in the arithmetic element. Thus, the two accumu-
lators are combined as shown. in figure 3—9, part B.
The contents of the B registers are not affected by the
execution of the FCL instruction. Bits leaving the LS
bit position are re-entered into the R15 bit position,
and bits leaving the RS bit position are entered into the
L15 bit position. If 204 shifts are called for, the FCL
instruction, specifying 40 shifts, will bring the bit posi-

DUAL CYCLE LEFT (DCL)
A.

RIGHT RIGHT 8
ACCUMULATOR REGISTER
S |RI g -t
S [RI -t

FULL CYCLE LEFT (FCL)

Figure 3—9. Execution of Cycle Instructions

83

Examples of Cycle Instructions
3.12.3-3.124

tions into their original places and will be equivalent to
no shifting action. When more than 405 shifts are called
for, the effect is the same as it is for the DCL instruc-
tion. Execution time of the FCL instruction can be 6
psec if six shifts or less are needed; otherwise, it is vari-
able. The FCL instruction, which will not cause on over-
flow, is designated by an octal operation code of 470.

3.12.4 Examples of Cycle Instructions

Assume that we have operands A, B located in
memory address 0.10300 and operands E, F located in
memory address 0.40000. We wish to obtain and store
the quantity (2BE)?, (AB) E? in memory address 0.00700,
which is cleared. Notice that this quantity contains the
operand B in the left half-word, yet the original oper-
and B is contained in the right half-word of location
0.10300. We have no technique available for directly
placing the right half-word operand into the left half
of the arithmetic element, so some other method must
be used to position the quantity as we desite. This is
done by cycling between accumulators, as shown in ta-
ble 3—11.

As another example of the use of cycle instructions,
we will consider a problem that is similar to one actu-
ally solved in the AN/FSQ-7 and AN/FSQ-8. We have
several maintenance programs which are identified by a
4-digit code in the left half-word (referred to as the

TABLE 3—11. APPLICATION OF CYCLE

INSTRUCTION

LOCATION OPERATION ADDRESS

© 0.02670 CAD 0.10300
0.02671 TMU 0.40000
0.02672 SLR 0.00000
0.02673 RST 0.00700
0.02674 ADD 0.00700
0.02675 FCL 0.00020
0.02676 LST 0.00700
0.02677 MUL 0.00700
0.02700 SLR 0.00000
0.02701 FST 0.00700
0.02702 HLT -
0.10300 A B
0.40000 E
0.00700 Result

3-112-0

84

PART 3
CH3

program number) and miscellaneous information in the
right half-word relating to the format of the program.
This identification word is placed at the beginning of
each maintenance program and is used to set up a dis-
play so that the operator will know what program is
about to be run. For instance, suppose the program
number is 6753. In order to display this number on the
face of the display tube, we need to make up a word
with a specific combination of bits. The combination
actually required is not important at this point; we will
assume that the proper combination needed for each
digit is stored in a table. Our problem is to gain access
to this table and make up the proper word. The pro-
gram to accomplish this is listed in table 3—12.

The program is executed in the following manner.
Index register 5 is loaded to a value of three, since we
wish to make four passes through the routine: the num-
ber of digits in the program number. Then the result
register is cleared, and the identification word is
brought into the accumulator. Remember that the pro-
gram number is contained in the left half-word. An
FCL 20, instruction places the program number in the
right half-word and the DCL 20, instruction will fur-
ther move it into the right B register. The accumulator
is then cleared, and a DCL 45 moves the sign bit and the
first three bits of the B register into the accumulator.
This is really the first digit of our program number, or
6. Four bits are required to designate a digit in this
case, because 7, is the largest number that can be rep-
resented by three bits, and the program number might
contain an 8,, or 9,5, which would require four bits.
Thus, the sign bit of this half-word is a magnitude bit
rather than a true sign bit. Now that the first digit of
our program number is in the least significant position
of the right accumulator, we can go through a table
lookup procedure using the contents of the right ac-
cumulator as an index register. This will place the
proper bit combination for six in the arithmetic ele-
ment. These bit combinations consist of three bits in the
left half-word and three bits in the right half-word.
(These bits are actually the x and y co-ordinates neces-
sary to obtain the digit 6 and display it) At step
0.00271, we shift the accumulators left three places to
make room for the next pair of x and y co-ordinates. A
check of the index register reveals that it is still posi-
tive, so a branch is made to obtain the next digit, etc.

At the completion of this program, the proper bits
will be contained in memory location 0.03341. The last
three bit positions of each half-word will contain 0’s,
since we are only dealing with a 4-digit program num-
ber. The word contained in location 0.03341 can then
be used by another routine which will select the proper
pairs of x and y co-ordinates and, hence, display the
proper digit.

PART 3
CH 3

TABLE 3—12. DISPLAY MAKEUP PROGRAM

LOCATION OPERATION ADDRESS
0.00260 5 XIN 0.00003
0.00261 CAD 0.00274
0.00262 FST 0.03341
0.00262 CAD 0.00065
0.00263 FCL 0.00020
0.00264 DCL 0.00020
0.00265 CAD 0.00274
0.00266 DCL 0.00004
0.00267 3 CAD 0.01000
0.00270 ADD 0.03341
0.00271 ASL 0.00003
0.00272 FST 0.03341
0.00273 S BPX (01) 0.00265
0.00274 HLT -
0.03341 Result -
0.00065 Program number Format

0.01000 - 0.01011 Table with bit combinations

3.13 LOGICAL INSTRUCTIONS

3.13.1 General

Some instructions can be executed within the Cen-
tral Computer System of the AN/FSQ-7 or AN/FSQ-8
that have a purely logical function. In other words, al-
though they may use arithmetic to arrive at a certain
result, that result is usually not interpreted as an arith-
metic answer. The branch instructions and shift instruc-
tions could be thought of as logical instructions; how-
ever, they do not employ arithmetic processes during
their execution. The instructions we are going to dis-
cuss involve binary arithmetic to modify or leave un-
changed certain bits within a specified word. The arith-
metic employed is not pure binary but a type referred to
as logical arithmetic. In logical arithmetic, the rules of
binary arithmetic apply except that no consideration is
given to carries from one bit position to the next. Thus,
the logical sum of a “one” and a “one” is still a “one,”
with no carry. Because each bit position is treated inde-
pendently, certain portions of a word within the Cen-
tral Computer System may be dealt with without affect-
ing the rest of the word. We have already mentioned
the logical addition process, but the one that is used

3-112-0

Logical Instructions
3.13-3.13.2.2

most widely is logical multiplication. Logical multipli-
cation involves multiplying one bit position by another
and finding the product in accordance with the rules of
binary arithmetic but without shifting the product. For
instance, the logical product of 0.00101 and 1.10011 is
0.00001. The contents of the two least significant bits
were 1; therefore, the product in that position is a 1.
All other positions contain a 0 because at least one of
the factors in each of those products contained a 0. The
significance of logical multiplication will be seen more
clearly during explanation of the various instructions.

3.13.2 Extract Instruction

3.13.2.1 Execution

The Extract (ETR) instruction is used to obtain
the product of a logical multiplication between the con-
tents of the accumulator and a control word contained
in the memory location specified by the right half of the
instruction. Each bit position in the control word which
contains a 0 will clear the corresponding bit position
in the accumulator, since multiplying anything by 0 will
give a result of 0. Each bit position in the control word
which contains a 1 will leave the corresponding ac-
cumulator bit unchanged. If the accumulator bit was a
0, multiplying by 1 will still yield a 0, and if the ac-
cumulator bit was 1, the result will still be a 1. Execu-
tion of the ETR instruction takes place in the following
manner. The control word is read out of memory into
the A registers. The A registers are then logically multi-
plied by the accumulators, ‘with the results left in the
accumulators. The ETR instruction, which may be in-
dexed, requires 12 psec to execute. It is designated by an
octal operation code of 004,

3.13.2.2 Program Example

Suppose that we wish to sort through a block of
numbers stored in memory and place all those that are
even in one table and all those that are odd in another
table. Assume that the numbers are contained in the
right half-words of the memory locations and that the
left half-words are cleared. We can determine whether a
number is odd or even by examining the contents of the
least significant bit. If the bit is a 1 we know it is odd; if
it is a 0 we know the number is even. We can use the
ETR instruction to examine the contents of the least
significant bit of the number by the method shown in
table 3—13.

Notice that the control word contains all 0’s except
for the least significant bit position of the right half-
word. This position, which contains a 1, will leave bit
15 of the right half-word unchanged during execution
of an ETR instruction. After the ETR instruction has
been executed, the accumulators will be cleared by the
control word with the exception of bit 15. If bit 15
originally contained a 1, it will still contain a 1, and the

85

DEP Instruction
3.13.2.2-3.134.1

BFZ condition immediately following the ETR instruc-
tion will not be satisfied. If this is the case, the program
will fall through to the routine for storing the number
- in the odd table. If the bit was 0 originally, it will still
be 0, and the program will branch to location 0.00772,
where the number will be stored in the even table.

The control word used in executing the ETR in-
struction is commonly referred to as a “mask.” In ef-
fect, it masks out those bits which are not to be utilized
during the execution of the instruction and leaves un-
changed the active bits, or those that are used.

3.13.3 Load B Registers Instruction
The Load B Registers (LDB) instruction is used to
load the B registers with the contents of the memory
location specified by the right half portion of the in-
struction, The LDB instruction could be used when it is
desired to place a word in the B registers prior to exe-
cution of the sort shown in table 3—12, when a program

TABLE 3—13. NUMBER DETERMINATION

PROGRAM

LOCATION OPERATION ADDRESS
0.00760 1 XIN 0.00400 -
0.00761 2 XIN 0.00400
0.00762 5 XIN 0.00400
0.00763 1 CAD 0.25000
0.00764 ETR 0.00500
0.00765 BFZ 0.00772
0.00766 1 CAD 0.25000
0.00767 2 RST 0.40000
0.00770 2 BPX (01) 0.00775
0.00771 HLT -
0.00772 1 CAD 0.25000
0.00773 5 RST 0.70000
0.00774 5 BPX (01) 0.00775
0.00775 1 BPX (01) 0.00763
0.00776 HLT 0.00763
0.00500 0.00000 0.00001

(Control word)

0.25000 - 0.31000 Data Storage —

0.40000 - 0.40400 Storage for odd numbers

0.70000 - 0.70400 Storage for even numbers

3-112-0

PART 3
CH 3

number was cycled into the B register from the accumu-
lators with a DCL 20, instruction. The number could
have been stored and then placed in the B registers by
use of the LDB instruction rather than by cycling. How-
ever, the main use of the LDB instruction is to place a
control word or mask into the B registers in prepara-
tion for the execution of another logical instruction,
called Deposit, which is explained below. The LDB in-
struction is indexable and requires 12 usec to execute.
It is designated by an octal operation code of 030.

3.13.4 Deposit Instruction

3.13.4.1 Execution

The Deposit (DEP) instruction allows the replace-
ment of part of a word in core memory with a corre-
sponding part of the accumulator contents on a bit-by-
bit basis rather than by a full word or a half-word. The
DEP instruction refets to a mask in the B register (usu-
ally placed there by an LDB instruction) to determine
which bits from the accumulator will be stored. If the
bit in the B register contains a 1, the corresponding bit
in the accumulator will be stored in the memory word;
if the mask contains a 0, the corresponding bit in the
memory location will be unchanged. The memory loca-
tion to be modified is specified by the right half portion
of the DEP instruction. Execution of the DEP instruc-
tion takes place in the following manner. The accumu-
lator contents are first complemented; then the mask
from the B register is transferred to the A register. A
logical multiplication takes place between the accumula-
tors and A registers, with the result that the accumula-
tors will be cleared except for those bits in the mask
which contained a 1. In effect, this first logical multipli-
cation erases those bits which are not active. The accu-
mulator contents are then complemented again, and the
specified memory location is transferred to the A regis-
ters. It should be noted that this transfer is not a nor-
mal one, since the A registers are not cleared before
the transfer from the memory buffers, as is usually the
case. This step is equivalent to a logical addition, since
the mask was already in the A registers, and will cause
each position of the memory location contents to be
changed to a 1 wherever a 1 exists in the mask. Then
another logical multiplication takes place between the
A registers and accumulators, leaving the results in the
accumulators. The DEP instruction execution is com-
pleted with the storing of the accumulator contents back
into the specified location.

‘The DEP instruction may be indexed and requires
a total of 18 psec to execute due to the fact that the
word is obtained from memory, modified, and then re-
turned to memory. An octal operation code of 360 is
used to designate a DEP instruction. Because the execu-
tion of this instruction is rather difficult to follow, a
typical example using a half-word is shown in table

PART 3 3-112-0 Program Example
CH3 3.13.4.1-3.134.3
TABLE 3—14. DEPOSIT INSTRUCTION EXECUTION

ACTION ACCUMULATOR A REGISTER MEMORY LOCATION
Start 0.010 101 111 000 011 0.000 000 000 000 000 0.000 100 011 111 101
Complement 1.101 010 000 111 100 0.000 000 000 000 000 0.000 100 011 111 101
Transfer 1.101 010 000 111 100 0.111 000 000 000 111 0.000 100 011 111 101
Logical Multiply 0.101 000 000 000 100 0.111 000 000 000 111 0.000 100 011 111 101
Complement 1.010 111 111 111 011 0.111 000 000 000 111 0.000 100 011 111 101
Logical Add 1.010 111 111 111 011 0.111 100 011 111 111 0.000 100 011 111 101
Logical Multiply 0.010 100 011 111 011 0.111 100 011 111 111 0.000 100 011 111 101
Store 0.010 100 011 111 011 0.111 100 011 111 111 0.010 100 011 111 011

3—14, when the B register contains a mask of 0.111 000
000 111.

3.13.4.2 Program Example

Let us consider a group of programs which are be-
ing run in the AN/FSQ-7 or AN/FSQ-8. One of these
programs requires tables of tactical data which are com-
piled by three other programs. Therefore, these three
programs are really inputs to the fourth program. The
data which is compiled by the three input programs
comes into the Central Computer System in random
fashion; we do not know when the three tables will be
completed. However, as soon as they are, we want to
branch immediately to the program which utilizes them.
What we need is something to tell us when one of the
programs has been completed and also something to
tell us when all three programs are completed. Thus,
we need a subroutine which performs a decision-making
function to tell use whether the tables are ready to be
used.

The conditions for the problem are as follows.
There are three registers in memory which contain -0
when the associated table has not been completed; when
the table is completed, the right half-word will be set to
—O. In addition, there is an indicator register which con-
tains the status of various tables within the Central
Computer System. This register contains -0 in the left
half-word and various values in the right half-word,
depending on the status of the tables. There are 16 bit
positions in a half-word; each one contains the status of
one table. If the table is complete, the bit position con-
tains a 1; if the table is incomplete, the bit position
contains a 0. We will assume that the bit positions
assigned to the three tables we are concerned with are
R11, R14, and R15. This register is what we will be
checking to see if the three tables are complete. The
program to accomplish this is shown in figure 3—10.

This program may be entered from any of the
three table makeup programs whose last few instruc-

tions are shown. Notice that as soon as each program is
completed, it stores —0 in a corresponding location.
The decision-making program sets index register 5 to
two since we will be checking the status of three bits
within the permanent indicator register. Each tempo-
rary storage register associated with one of the table
makeup programs is checked for —0 and sets the corre-
sponding bit in the permanent status register if the tem-
porary register contains —0. Notice that we are taking
the contents of a half-word and reducing it to just one
bit. That is, the status of a table was indicated by a nega-
tive or positive zero in the right half-word of a certain
register and the DEP instruction reduces this indication
to just one bit. If the table was completed, —0 will be
in the right accumulator, the proper mask will be loaded
into the B register, and the bit specified by this mask
will be stored in the permanent indicator register. Then
a constant is placed in the accumulators and is used to
direct the placement of bits R11, R14, and R15 into the
accumulator. The constant is then subtracted, and if all
three bits contained a 1, a —0 will result in the ac-
cumulator. The program can then take appropriate ac-
tion,

3.13.4.3 Summary of Deposit Instruction

The program example discussed above may seem
cumbersome and unnecessarily long when applied to
that problem alone. However, it should be remembered
that adding more masks and constants would enable us
to deal with any bit or combination of bits stored in the
permanent indicator register. Moreover, we can change
the status of one bit within the indicator register by use
of the DEP instruction without affecting the remaining
bits. Thus, the chief use of the DEP instruction is to
provide for a storage of less than one half-word in any
bit position or combination of positions without de-
stroying the remaining bits. This facility is especially
useful when it is desired to update information (change
co-ordinates, etc.) within a word when only part of the

81

ECH Instruction
3.13.4.3-3.141

word requires changing and all the other bit positions
are still significant.

3.14 EXCHANGE INSTRUCTION

3.1 4.1 Execution

The Exchange (ECH) instruction is used to inter-
change the contents of the accumulators with the con-

3-112-0

PART 3
CH 3

tents of the memory location specified by the right half
portion of the instruction. Thus, the ECH instruction is
equlvalent to an FST instruction followed by a CAD
instruction, with the exception that the same memory
location is specified in each case. Execution of this in-
struction takes place in the following manner. The
word from core memory is first transferred to the A

A N R R N

| BPX(ON) | | 2 BPX(ON) |] 4 BPX(O) l

CAD 107 CAD 107 CAD 107 I
| RST 1000 | RST 100 | | RST 1002
| BPX 16200 J BPX 16200 | BPX 16200

STATUS BIT IN STATUS BIT IN STATUS BIT IN
l INDICATOR REG.=RI5 f _ INDICATOR REG.=RI4 INDICATOR REG.=R!I
Y
SET INDEX REGISTER
16200 5 XIN 2

OBTAIN TABLE
STATUS REGISTER
J620t 5 CAD 1000

LAST
NUMBER ?

YES

TABLE
COMPLETE P
16202 BRM 16205

1S

YES

SET STATUS BIT

16203 5 BPX(0I) 1620

IN
INDICATOR REGISTER
16205 5 LDB 100
16206 DEP 103

BRANCH
16204 BPX 16210

LAST
NUMBER P
16207 5 BPX(01) 16201

YES

.

|

OBTAIN

16210 CAD 250

CONSTANT

\

PUT RII,RI4,RIS IN

CONSTANTS
ACCUMULATOR 100 +0,0000!

CHECK STATUS 101 +0,00002 ~ MASKS
16211 ETR 103 102 +0,00020

16212 SUB 250 i

103 INDICATOR REGISTER

NECESSARY TABLES)

Figure 3—10.
88

16213 BFZX,

107 +0,1.77777
250 +0,00023

16214 BPX y ARE
(RETURN TO ONE OF 3 TABLES
BRANCH TO
PROGRAMS COMPILING COMPLETE ? x

(START OF PROGRAM
USING 3 TABLES)

Indicator Register Testing Program

PART 3
CH 3

registers, then the accumulator contents are transferred
to the memory buffer registers, and on into the location
just read. Finally, the A registers are added to the
cleared accumulators, ending the execution. Because a
memory cycle is required to read the word out and an-
other one is needed to store the accumulator contents,
the ECH instruction is a 3-cycle instruction and thus re-
quires 18 psec execution time. This instruction, which
may be indexed, is designated by an octal operation
code of 350.

3.14.2 Use of Exchange Instruction

As an example of the ECH instruction, let us con-
sider two tables that are stored in core memory. We
wish to exchange the locations of these tables without
disturbing their arrangement. The tables are originally
located in 0.13470 through 0.13600 and 0.30000 through
0.30110. The program to exchange the two tables is
given in table 3—15.

TABLE 3—15. RELOCATION PROGRAM

LOCATION

OPERATION ADDRESS
0.00000 1 XIN 0.00110
0.00001 1 CAD 0.13470
0.00002 1 ECH 0.30000
0.00003 1 FST 0.13470
0.00004 1 BPX (01) 0.00001
0.00005 HLT -

3.15 COMPARE INSTRUCTIONS
3.15.1 General

The compare instructions are a group of eight in-
structions which perform basically the same operations
with various parts of a word. Comparison takes place
between the contents of the accumulators and the con-
tents of the memory location specified by the right half-
portion of the instruction. If a satisfactory comparison
is made, the program counter is stepped once, as in not-
mal practice. However, if a satisfactory comparison is
not made, the program counter is stepped an additional
time, thereby causing the program to skip the instruc-
tion immediately following the compare instruction.
Four of the compare instructions involve one additional
step after the comparison, in which the difference (if
any) between the accumulator contents and the speci-
fied operand is obtained. The difference may then be
tested to determine which operand was the larger. A
description of each of the compare instructions is given
below.

3-112-0

Gompare Instructions
3.141-3.15.23

3.15.2 Basic Compare Instructions

3.15.2.1 Compare Left Half-Words Instruction

The Compare Left Half-Words (CML) instruction
is used to compare the contents of the left accumulator
with the contents of the left half-word contained in the
specified memory location. The execution of this instruc-
tion is started by complementing the left accumulator
and clearing the left A register. The left half-word
from memory is then transferred to the left A register.
A comparison is made between the contents of the A
register and accumulator, and if satisfactory, the pro-
gram counter is stepped once, and the next sequential
instruction is selected for execution. If the contents of
the two registers do not compare, the program counter
will be stepped twice, causing the instruction immedi-
ately following the CML instruction to be skipped. Re-
gardless of the result of the comparison, the left accu-
mulator is recomplemented so that its final contents will
be identical with the original contents. Execution time
of the CML instruction is 12 psec, and it may be indexed.
An octal operation code of 044 is used to designate this
instruction.

3.15.2.2 Compare Right Half-Words
Instruction

The Compare Right Half-Words (CMR) instruc-
tion is used to compare the contents of the right accu-
mulator and the contents of the right half-word speci-
fied by the address part of the instruction. The right
accumulator is complemented, and the right A register
is cleared. Then the right half of the specified memory
location is transferred to the right A register where a
comparison between that register and the right accumu-
lator is made. If the comparison is successful, the next
instruction is selected for execution. If the comparison
shows that the two half-words were not equal, the in-
struction immediately following the CMR instruction is
skipped. This instruction is terminated when the right
accumulator is again complemented to restore its con-
tents to their original value. The CMR instruction may
be indexed and requires 12 psec to execute. It is speci-
fied by an octal operation code of 042.

3.15.2.3 Compare Full Words Instruction

This instruction is used to compare a full word
from memory with the contents of the accumulators.
The Compare Full Words (CMF) instruction is exe-
cuted in much the same manner as the CML and CMR
instructions. The accumulator contents are comple-
mented and the A registers are cleared. Then the word
from memory is transferred to the A registers and a
comparison is made. A successful comparison will cause
the next instruction in sequence to be executed; a no-
compare indication will cause the program to skip the

CMM Instructions
3.15.2.3-3.15.25

instruction immediately following the CMF instruction.
It should be remembered that the entire word must
compare in order to cause a successful indication; if
one half-word compares and the other does not, the re-
sult is still a no-compare indication. The CMF instruc-
tion is executed in 12 psec and may be indexed. It is
designated by an octal operation code of 046.

3.15.2.4 Compare Masked Bits Instruction

The Compare Masked Bits (CMM) instruction is
used to compare any combination of bits within a full
word. These bits are specified by a mask which is loaded
into the B registers. If a bit position in the B register
mask contains a 1, the corresponding bit position in the
associated accumulator will be compared with the same
bit position of the memory word; if the mask contains
a 0, the bit is not active as far as the compare circuitry
is concerned. However, it should be noted that all bits
within the B registers, accumulators, and specified mem-
oty location are dealt with during the execution of the
CMM instruction. Those bits which are not active are
automatically made to compare. The execution of the
CMM instruction takes place in the following manner.
The accumulators ate complemented and the A regis-
ters are cleared. The mask from the B registers is then
transferred to the A registers. A logical multiplication
takes place between the accumulators and A registers,
with the result being contained in the accumulators.
The A registers are then complemented and the con-
tents of the specified memory location are logically
added to the A registers. Comparison between the con-
tents of the A registers now takes place, and if the com-
parison is successful, the next sequential instruction is
executed. If the comparison is not successful, the in-
struction immediately following the CMM instruction
is skipped. The accumulator is then complemented, ter-
minating the instruction. In this case, complementing

3-112-0

PART 3
CH 3

the accumulator will not necessatily restore it to its
original contents. Only those bits which were specified
in the B register masks as being active are returned to
their original values; the remaining bits will all con-
tain 1’s regardless of their original contents. The auto-
matic compatison of the inactive bits is forced by the
combination of logical addition and multiplication in
the A registers. An octal code of 040 is used to desig-
nate the CMM instruction, which is indexable. Twelve
psec are required for the execution of this instruction,
which is shown in table 3—16. This table illustrates
the execution on a half-word only; however, the full
word is processed in the same manner. We will assume
that the B register is loaded with a mask of 0.000 111
111 000 111.

In this particular example, the bits selected com-
pared with each other, so the next instruction executed
by the program would be the one immediately follow-
ing the CMM instruction. Notice that although the bits
are checked to see if they contain the same value in
each active position, the actual comparison is made by
taking the complement of the bits to be checked. Thus,
if a bit position in the accumulator contains its comple-
ment in the A register when the comparison is made,
the original value of the two bits is the same. Notice
also that the inactive bits in the accumulator are cleared
to 0’s regardless of their original value, and the corre-
sponding bit positions in the A register are set to Us,
thus forcing an automatic compare of the nonactive bits.

3.15.2.5 Program Examples

Suppose we are stepping two indicator registers by
two different programs. We want to go through a defi-
nite sequence of programs when the contents of the
two registers reach the same value, otherwise we will
continue to execute the two programs which are step-

TABLE 3—16. COMPARE MASKED BITS INSTRUCTION EXECUTION

ACTION ACCUMULATOR A REGISTER MEMORY LOCATION
Start 0.101 _121 92 110 %(_) 0.000 9_(5) 0_0_(_)_ 000 (_)@ 0.100 E)_I_Q_(E_ 000 Oi(l
Complement 1.010 010 110 001 101 0.000 0_0_0 (_)2(1 000 (E_)_ 0.100 &O_Ol 000 010
Clear 1.010 010 1_%._ 001 101 0.000 000 0_00_ 000 000 0.100 101 001 000 010
Transfer 1.010 010 110 001 101 0.000 111 111 000 111 0.100 101 001 000 010
Logical Multiply 0.000 ;1-6 H(: 000 ;)_1_ 0.000 I_II 1_1_1— 000 111 0.100 101 001 000 010
Complement. 0.000 0__1—(2 1_-1—_0_ 000 }E 1.111 O_OTE (E—(l 111 (-)-_0—-2 0.100 !ﬂ 9(1 000 0_12
Logical Add 0.000 010 ILO_ 000 101 1.111 }21 001 111 (112 0.100 }912(2 000 0_1(1
Compare 0.000 010 110 000 101 1.111 101 001 111 010 0.100 101 001 000 010
Complement 1.111 101 001 111 010 L1111 101 (_)_0_1_ 111 (E 0.100 101 001 000 010

0

PART 3
CH 3

TABLE 3-17. REGISTER COMPARISON PROGRAM

3-112-0

LOCATION OPERATION ADDRESS
0.00001 CAD 0.00075
0.00002 CMR 0.00076
0.00003 BPX To new program
0.00004 BPX Return to regis-

ter-stepping

programs
0.00075 Indicator Register one
0.00076 Indicator ~ Register two

ping the indicator registers. We can cause our program
control to branch to a short subroutine which will test
the equality of the two indicator registers at specific in-
tervals. Assuming that the indicator registers are con-
tained in the right half-words of. the memory locations,
the subroutine which will test the contents of the regis-
ters is given in table 3—17.

As another example of the compare instractions,
assume that we are reading in various programs from a
reel of magnetic tape. This tape contains various main-
tenance programs, and each program has a program
number. We have a control word in memory which tells
us that we are searching for the first program number
that starts with the digits 56,5 The programs are read
in one at a time, with the program number always being
stored in the same location. Our problem is to compare
each program number read in with a control word of
56y in the proper bit positions (L1-L6) until we reach
the first program starting with these digits. When we
have determined that we have the proper program, we
wish to execute it. The program to compare these num-
bers is given in table 3—18, '

3.15.3 Compare Difference Instructions

3.15.3.1 Compare Difference Left Half-Words
Instruction

The Compare Difference Left Hdlf-Words (CDL)
instruction tests the left half portion of the memory lo-
cation specified in the instruction to see if it is equal to
the contents of the left accumulator. If the contents
compare favorably, the next sequential instruction is
executed. On the other hand, if the contents of the left
half-words are not identical, the instruction immedi-
ately following the CDL instruction is skipped. After
the comparison check is made, the entire word in the
accumulator is subtracted from the contents of the spec-
ified memory location. Thus, the difference between the
full words will be generated, although only the left
half portions were compared. If the final contents of

CDL Instruction
3.15.2.5-3.15.3.2

the accumulators are in negative form, the original value
in the accumulator was equal to or greater than the
operand. A positive remainder in the accumulator indi-
cates that the operand was larger than the original con-
tents of the accumulators.

Execution of the CDL instruction takes place in
the following manner. The accumulator contents are
complemented, and the A registers are cleared. Then
the word from the specified memory location is trans-
ferred to the cleared A registers. A comparison is made
between the left A register and left accumulator to see
if they contain the complement of each other, and the
program counter is stepped accordingly. This instruc-
tion is then terminated by pulsing the carry-0 line in
the address, thus adding the contents of the full word
from the A registers to the accumulators. However,
since the accumulators are in complement form, this
process is, in effect, subtracting the accumulator con-
tents from the A registers (operand from core mem-
ory). The CDL instruction requires 12 usec to execute
and may be indexed. It is specified by an octal operation
code of 045.

3.15.3.2 Compare Difference Right
Half-Words Instruction

The purpose of the Compare Difference Right Half
Words (CDR) instruction is to test the equality of the
right accumulator contents and the operand contained
in the right half of the memory location specified by
the instructions. As with all compare instructions, the
instruction immediately following the CDR instruction
will either be executed or skipped, depending on the
outcome of the comparison. Execution of the CDR in-
struction is started by complementing the accumulators

TABLE 3—.18. TAPE PROGRAM SEARCH ROUTINE

LOCATION OPERATION ADDRESS
0.00410 CAD 0.06250
0.00411 LDB 0.03341
0.00412 CMM 0.03325
0.00413 BPX Execute this pro-

gram
0.00414 BPX Read in next pro-
gram
0.06250 0.56000 Control word
0.03341 0.77000 (Mask of
0.111 111 000 000 000)
0.03325 Current program number

91

CDM Instruction
3.15.3.2-3.15.3.5

and clearing the A registers. The specified memory lo-
cation contents are then transferred to the A registers,
and the right A register and right accumulator are com-
pared. Following this, both A registers are added to the
complemented accumulators, thereby generating the dif-
ference between the numbers. If the final contents of
the accumulator are still in complement form, we know
that their original contents were equal to or larger
than the operand; if the final accumulator contents are
positive, it means that the operand was larger than the
original value in the accumulators. Twelve usec are re-
quired to execute the CDR instruction, which is index-
able and is designated by an octal operation code of
043.

3.15.3.3 Compare Difference Full Words
Instruction

This instruction is used to compare both the left
and right accumulators with the contents of the mem-
ory location specified by the instruction. The execution
of the Compare Difference Full Words (CDF) instruc-
tion is similar to the execution of all the compare in-
structions. The accumulatot contents are complemented,
the A registers are cleared, and the contents of the speci-
fied operand are transferred to the A registers. Then
both half-words of the accumulators are compared with
both A registers. If a no-compare is generated from
either or both halves, the instruction immediately fol-
lowing the CDF instruction will be skipped. Otherwise
(both halves compare), the next sequential instruction
will be executed. Finally, the A registers are added to
the complemented accumulators, thereby generating the
difference between each half-word of the accumulator
and the corresponding half-word from memory. The
final accumulator contents will be in negative form if
they were originally larger; they will be in positive form
if the operand was larger. The CDF instruction is speci-
fied by an octal operation code of 047. It may be in-
dexed and requires 12 psec to execute.

3.15.3.4 Compare Difference Masked Bits
Instruction
The Compare Difference Masked Bits (CDM) in-
- struction tests the equality of specified bits in the ac-
cumulators with the corresponding bits of the operand
contained in the designated memory location. The bits
that are to be tested are determined by the mask which
is contained in the B registers. For each bit position
that is to be compared, the corresponding bit position
in the B register mask must contain a 1. Bits not in-
volved in the comparison are designated by 0’s in the
mask. After the designated bits are compared, and the
program counter has been stepped in accordance with
the results, the difference between the masked bits of
the accumulators and the operand from memory is ob-
tained.

92

3-112-0

PART 3
CH3

Execution of the CDM instruction takes place in
the following manner. The accumulator contents are
complemented, and the A register is cleared. Then the
mask from the B register is transferred to the cleared B -
registers. A logical multiplication takes place between
the A register and the accumulators, leaving the results
in the accumulators. The A registers are then comple-
mented and the word from memory is logically added
to them. This combination of logical multiplication and
addition will cause an automatic compare of the un-
masked bits, just as with the CMM instruction. After
the comparison takes place, the A registers are added
to the complemented accumulators, thus generating the
difference between the original contents of the speci-
fied bits of the accumulators and the corresponding bits
of the operand. The final contents of the accumulators
will be in negative form if the original bit contents of
the accumulators were equal to or larger than the bit
contents of the operand. If the operand bits were larger,
the result in the accumulators will be positive. The final
results of the accumulators for this instruction indicate
the relative magnitude of the bits compared only if the
sign bit is not included in the mask (inactive). When
the sign bit is active, the final contents of the accumula-
tors are variable, depending on such things as end-
carry, overflow, etc., that may occur when the A register
is added to the complemented accumulator. The CDM
instruction requires 12 psec to execute and may be in-
dexed. An octal operation code of 041 is used to indi-
cate a CDM instruction. An example of the execution
of this instruction is given in table 3—19. Only a half-
word is shown, but the entire word is compared in the
same manner. In this example, the B register has been
loaded with a mask of 0.110 110 110 000 001.

In this case, the bits did not compare, but the final
accumulator contents are positive because the value con-
tained in the memory location was larger than the orig-
inal contents of the accumulator. We know this state-
ment is true because the sign bit was not involved in
the comparison.

3.15.3.5 Program Examples

We are going to test the contents of two specified
memory locations. We want to branch to one of five
subroutines, depending on the results of our test. The
five possible outcomes from a compatison of two full
words are comparison, no-compare with both accumu-
lators negative, no-compare with the left accumulator
negative, no-compare with the right accumulator nega-
tive, and no-compare with both accumulators positive.
A program which will provide for branching to the cor-
rect subroutine, depending on the result, is given in ta-
ble 3—20.

PART 3 3-112-0 Program Examples
CH 3 3.15.3.5-3.16.1
TABLE 3—-19. COMPARE DIFFERENCE MASKED BITS INSTRUCTION EXECUTION

ACTION ACCUMULATOR A REGISTER MEMORY LOCATION
Start 1.010 111 100 011 111 0.000 000 000 000 000 0.100 001 101 010 000
Complement 0.101 000 011 100 000 0.000 000 000 000 000 0.100 001 101 010 000
Clear 0.101 000 011 100 000 0.000 000 000 000 000 0.100 001 101 010 000
Transfer 0.101 000 011 100 000 0.100 001 101 010 000

Logical Multiply 0.100 000 010 000 000

Complement 0.100 000 010 000 000
Logical Add O.EO 0_00 EO 000 002
Compare 0._1_00 @0 210 000 002
Obtain Difference 0.001 001 111 111 11

O.EO 110 110 000 001
O.HO 1_10 1_10 000 001 0.5)0 001 LQI 010 002
1.@1 001 001 111 110 0.100 001 101 o010 000
1.21 0_01 101 111 119 O.EO (_)(_)1 EI 010 009_
1.21 (1(21 El 111 110 O.E)O 0_01 101 o010 002

1.101 001 101 111 110 0.100 001 101 010 000

In this example, the registers compare; therefore,
the program counter will be stepped normally, and we
will execute the branch immediately following the CDF
instruction to subroutine A. If the numbers did not
compare, however, the BPX instruction at location
0.62502 would be skipped. We would then branch to
subroutine B if both accumulators were negative, to
subroutine C if the left accumulator was negative, to
subroutine D if the right accumulator was negative,
and, finally, to subroutine E if both accumulators were
positive. We would probably store the difference be-
tween the two registers compared as the first step in
subroutines B, C, D, and E. This would not be necessary
in the case of subroutine A because we know the register
contents are equal,

As an example of the use of the CDM instruction,
let us check the equality of bit positions R10-R15 of

TABLE 3-20. REGISTER COMPARE AND
BRANCH ROUTINE

LOCATION

OPERATION ADDRESS
0.62500 CAD 0.07300
0.62501 CDF 0.07301
0.62502 BPX To subroutine A
0.62503 . BFM To subroutine B
0.62504 BLM To subroutine C
0.62505 BRM To subroutine D
0.62506 | BPX To subroutine E
0.07300 0.74044 0.65032
0.07301 0.74044 0.65032

TABLE 3—21. PARTIAL WORD COMPARE

PROGRAM

LOCATION OPERATION ADDRESS
0.00001 CAD 0.03314
0.00002 LDB 0.06000
0.00003 CDM 0.03315
0.00004 BPX To subroutine A
0.00005 BRM To subroutine B
0.03314 0.00650 0.02540
0.03315 0.43120 0.01630
0.06000 0.00000 0.00077

two registers. We wish to execute a certain subroutine
if the contents are equal and another one if the contents
are unequal and the number placed in the accumulator
is higher in magnitude than the number being com-
pared with it. This program is listed in table 3—21.

The numbers selected will yield a no-compare, and
the program control will skip the BPX instruction at
0.00004. Since the number placed in the right accamula-
tor was larger than the number compared with it, and
the sign bit was not part of the mask, the final contents
of the right accumulator will be negative, and the BRM
instruction will be executed. Notice that no provision
has been made to check for a no-compare positive ac-
cumulator ‘condition, since this was not one of the
stipulations of the problem.,

3.16 TEST BITS INSTRUCTION

3.16.1 Test One Bit Instruction
The Test One Bit (TOB) instruction is used to
test a particular bit within the operand specified by the

923

TTB Instruction
3.16.1-3.16.4

right half portion of the instruction. The test consists
of adding the bit content to the least significant bit po-
sition of the program counter, Thus, if the bit being
tested contains a 1, it will be added to the program coun-
ter, causing it to skip the instruction immediately fol-
lowing the TOB instruction. If the bit being tested
contains a 0, the program counter will not be stepped an
additional time, and the next sequential instruction fol-
lowing the TOB instruction will be executed. The bit
to be tested is determined by decoding the contents of
auxiliary bits L11 through L15. A maximum of 37 or
314, can be specified by these bits, which is enough to
select any one of the 32 bits within an operand (00
also indicates a bit selection). The TOB instruction is
designated by an octal operation code of 050. The last
octal 0 simply indicates that bit L10 of the instruction
word contains a 0 but has no significance as far as se-
lection of the bit to be tested is concerned. Execution
of the TOB instruction requires 12 psec, and it may be
indexed.
3.16.2 Test Two Bits Instruction

The Test Two Bits (I'TB) instruction is used to
test two particular bits of the operand specified by the
right half portion of the instruction. The test consists
of adding the bit contents to the least significant bits
of the program counter. With two bits, four combina-
tions are possible and can cause the program counter
to be stepped in any of the following ways with the
following results:

a. Bits contain 00. Program counter will be stepped
in the normal manner, causing the instruction
immediately following the TTB instruction to
be executed.

b. Bits contain 01. Program counter will be stepped
one additional time, causing the instruction im-
mediately following the TTB instruction to be
skipped.

c. Bits contain 10. Program counter will be stepped
two additional times, causing the two instruc-
tions immediately following the TTB instruc-
tion to be skipped.

d. Bits contain 11. Program counter will be stepped
three additional times, causing the three instruc-
tions immediately following the TTB instruc-
tion to be skipped.

The bits to be tested are determined by decoding
the contents of auxiliary bits L11 through L15 of the
instruction word. As with the TOB instruction, these
bits may specify only one of the 32-bit positions within
the operand; however, in the case of the TTB instruc-
tion, the second bit to be tested is automatically deter-
mined to be the bit adjacent to and to the left of the se-
lected bit. For example, if bit R12 was designated by
the auxiliary bits, the bit combination to be tested is

94

3-112-0

PART 3
CH 3

R11 and R12. This does not apply to the selection of
either the left or right sign bits; therefore, it is not pos-
sible to specify a TTB instruction using the sign bit po-
sition as the bit to be tested. However, the sign bits
may be tested by a TOB instruction. An octal code of
054 is used to designate a TTB instruction. The octal
four indicates that bit L10 of the instruction word is a 1
but has no bearing on the bit combination selected for
testing. Thus, the TTB instruction is simply a variation
of the TOB instruction; bit L10 of the instruction word
determines whether the test will be performed on one
bit (L10 = 0) or the selected bit and the one adjacent to
and to the left of it (bit L10 = 1). The TTB instruction
requires 12 psec to execute and may be indexed.

3.16.3 Bit Selection for TOB and TTB
Instructions

As stated previously, the contents of bits Li11
through L15 determine what bit of the 32-bit position
is selected, and bit L10 determines whether that bit only
is tested or whether it and its adjacent bit are tested.
Table 3—22 lists the various octal codes that can be
represented in positions L11 through L15 and the bit(s)
they will select.

It should be noted that the contents of bit L10
must be added to the octal notations listed above when
giving the octal word layout of either the TOB or TTB
instruction. For example, if we wish to use a TTB in-
struction (code 054) on bit R5 (code 25), the resulting
code is 0565. Adding an octal 0 in front of these four
digits for the index indicator bits gives us a word layout
of 00565. Similarly, if we wish to test L12 alone, we
specify TTB (code 050) and bit L12 (code 14) to get
00514.

3.16.4 Program Examples

Previously, we illustrated several programs which
required that a test be made on one specific bit to deter-
mine a course of action. There are several ways we can
get a bit into position for testing. One way is to cycle
it into a sign bit position and then use a branch instruc-
tion. Another way is to use the ETR instruction and set
all the inactive bits in the word to be tested to 1's
except the particular bit we are interested in, and then
execute a BFZ instruction. Now, with the addition of
the TOB instruction, we can test any bit we desire with-
out any shifting or masking. For instance, assume that
we wish to check a certain program which had been
read into memory to make sure that 17-bit operation
had been specified for all the instructions within the
program. We can do this very simply because we know
that the presence of a 1 bit in L12 of an instruction
word which does not ordinarily make use of the auxil-
iary bits indicates that 17-bit operation is desired. (We
will assume that the program we are to test contains

PART 3
CH 3

TABLE ’3—22. TOB AND TTB BIT SELECTION

L11-115 BIT(S) SELECTED
TOB TTB

00 LS LS*
01 L1 LS, L1
02 L2 L1, L2
03 L3 L2, L3
04 L4 L3, L4
05 L5 L4, L5
06 L6 L5, L6
07 L7 L6, L7
10 L8 L7,L8
11 L9 L8, L9
12 L10 L9, L10
13 L11 L1o, L11
14 L12 L11,L12
15 L13 L12,L13
16 Li14 L13,L14
17 L15 L14,L15
20 RS RS*
21 R1 RS, R1
22 R2 R1,R2
23 R3 R2,R3
24 R4 R3, R4
25 RS R4, R5
26 R6 RS, R6
27 R7 R6, R7
30 RS R7,R8
31 RO RS, R9
32 R10 R9, R10
33 R11 R10, R11
34 R12 R11, R12
35 R13 R12, R13
36 R14 R13, R14
37 R15 R14, R15

*The sign bits may not be selected in conjunction
with the TTB instruction. 1 f specified, they will be

executed as @ TOB instruction,

3-112-0 Program Examples

3.16.4

only instructions with 0’s in all the auxiliary bit posi-
tions except where 17-bit operation is desired.) The
program which will perform this check is given in table
3—-23. :

As long as the instruction being tested contains a
1 bit in the L12 position, the program will continue to
cycle. However, when a 0 bit is encountered, the pro-
gram counter will not be stepped an additional time
but will select the BPX instruction at 0.00503. This in-
struction will branch to a routine which adds the index
register contents at the time to the starting address of
the program, thus obtaining the address of the instruc-
tion which did not contain a 1 bit in the L12 position.
This address is then stored in location 0.03000, and
the program halts. We can now manually correct the
contents of the instruction stored in location 0.03000
and return to the program.

As an example of the TTB instruction application,
let us assume that after we have performed the program
discussed above, we again want to run through it and
store the address of every instruction which specifies the
right accumulator (3) as its index register. Since the
index indicator contains three bits (L1 through L3), we
cannot use a TOB to determine what we need to know.
As a matter of fact, we could not use a TTB instruction
if we were searching for index registers 4 or 5, since
they need all three bits to identify them. But index
register 3 requires only two bits (L2 and L3); therefore,
we can utilize this instruction. The program to perform
this check is given in table 3—24.

This program will examine the contents of bits L2
and L3 with the TTB instruction at location 0.00512. If
any other bit combination (00, 01, or 10) is found, the
program immediately branches to a step which reduces
the index register by one and selects a new instruction

TABLE 3-—-23. INSTRUCTION WORD
CHECKING PROGRAM

LOCATION OPERATION ADDRESS
0.00501 1 XIN 0.00123
0.00502 1TOB 14 0.01340
0.00503 BPX 0.00506
0.00504 1 BPX (01) 0.00502
0.00505 HLT —
0.00506 1 ADX 0.01340
0.00506 STA 0.03000
0.00507 | HLT —
0.01340 - 01463 Location of program

95

CAC Instruction
3.16.4-3.17.2

in the program for testing. If a bit combination of 11
is found, the address of the instruction it is found in
is stored, starting at location 0.00623, and the next in-
struction is selected for testing. Notice that we used two
different index registers in this program, one to control
the memory locations selected for testing and the other
to control the storage of applicable addresses. We could
have used the same index register to store the addresses;
however, the chances are that the index register con-
trolling the address selection will be stepped several
times for each time that we store an address (which
contains an instruction using index register 3). There-
fore, our table of addresses would not be in sequential
order. To achieve sequential order, a separate index
register was employed.

You will notice that the last two programs dis-
cussed have dealt with operations on instructions them-
selves. This is perfectly valid, since an instruction is
treated just like an operand when it is brought out of
memory during an OT cycle. The fact that instructions
in a specific program were being tested for a particu-
lar condition is no different than testing a block of true
operands for some condition. Both instructions and
operands are in numerical form, and on an OT cycle
where no decoding of the word brought from memory
is performed, the instructions are, in effect, operands.

3.17 CLEAR AND ADD CLOCK INSTRUCTION

3.17.1 Execution
The Clear and Add Clock (CAC) instruction is
used to transfer the contents of the clock register to the
right accumulator. This instruction is similar in execu-
tion to a CAD instruction except that no operand is

TABLE 3—24. SAMPLE TTB PROGRAM

3-112-0

LOCATION OPERATION ADDRESS
0.00510 1 XIN 0.00123
0.00511 2 XIN 0.00123
0.00512 1TTB (03) 0.01340
0.00513 BPX 0.00521
0.00514 BPX 0.00521
0.00515 BPX 0.00521
0.00516 1 ADX 0.01340
0.00517 2STA 0.00500
0.00520 2 BPX (01) 0.00521
0.00521 1 BPX (01) 0.00512
0.00522 HLT _

% o

PART 3
CH 3

required from memory. Instead, the accumulators are
cleared, and the clock register contents are transferred
to the right memory buffer register. From this point,
the action that occurs is identical with that of a CAD
instruction. Execution of the CAC instruction requires
12 psec, and it is designated by an octal operation code
of 170. Indexing is not applicable to this instruction,
since only one clock register may be selected.

Although the CAC instruction does not refer to a
memory location to obtain its operand, the address por-
tion of the instruction is still used. Before this instruc-
tion was available for the AN/FSQ-7 or AN/FSQ-8, the
clock register could be obtained by using any instruction
(usually a CAD) and an address of 0.60000. Now that a
definite instruction is available, the address of 0.60000
is no longer necessary. However, an address of 3.77777 is
used as the right half portion of the CAC instruction. It
should be noted that this address has no significance as
concerns the selection of the clock, but is used to inhibit
parity checks and logical addition in the memory buffer
registers. Address 3.77777 is the highest address in test
memory (for the AN/FSQ-7) and will prevent either
the large or small memory unit from being accidentally
selected. In the AN/FSQ-8, there is no large memory
unit installed; therefore, the address part of the CAC
instruction is meaningless. In addition, control is still
available to select the clock register in the AN/FSQ-8
by using a CAD 0.60000 instruction. However, to select
the clock register in the AN/FSQ-7, a CAC 3.77777
instruction must be given.

3.17.2 Interpretation of Clock Register
Contents
Before a program example of the CAC instruction
is given, a general discussion regarding the reading of
the clock register contents will be helpful. As previously

" mentioned, the clock register consists of 16 flip-flops

connected into an endless counter; i.e., when the clock
register contains the maximum value, the next stepping
pulse will clear the clock register and restart the count.
Pulses are supplied to the clock register at a rate of 32
pulses per second (pps), and the maximum time that
can be represented by 16 bits is 65,536, pulses (approxi-
mately 34.13 minutes). Since the stepping rate is 32
pps, 32 pulses supplied to the clock register equal 1
second of real time. The number 32 has an octal equiv-
alent of 40g; therefore, if the clock register contains
0.00040, it actually represents 1 second. It is necessary
to convert the number represented by the clock register
to its decimal equivalent and then divide by 32 to deter-
mine the actual time in seconds. (This is for use only
when a time indication in actual minutes and seconds
is desired. In the Central Computer System, the clock
register is used directly in figuring time computations.)

PART 3
CH 3

TABLE 3—25. TIME DETERMINATION ROUTINE

3-112-0

LOCATION OPERATION ADDRESS
0.00001 CAC 3,77777
0.00002 RST 0.00150
0.00003 BPX To program
Program (BPX to 0.00004 at end)
0.00004 CAC 3,77777
0.00005 RST 0.00151
0.00006 SUB 0.00150
0.00007 BRM 0.00012
0.00010 RST 0.00155
0.00011 HLT —_
0.00012 CAD 0.00153
0.00013 SUB 0.00150
0.00014 ADD 0.00151
0.00015 RST 0.00155
0.00016 HLT —
0.00150 0.00000 Start time
0.00151 0.00000 End time
0.00153 0.00000 1.7777é
0.00155 0.00000 Running time

For example, if the clock register contained a value of
0.03600 and we desired to find out what real time this
represented, we would convert this number to decimal,
which is 1920. Dividing 1920 by 32 gives us 60, the
number of seconds represented. Thus, a clock register
reading of 0.03600 represents 1 minute of time. Also,
it should be remembered that the sign bit position of
the clock register does not indicate polarity but rather
is the most significant bit position of the register.

3.17.3 Program Example

In many instances, it is desirable to know the time
required for a certain program or routine to be executed.
We can do this by obtaining the contents of the clock
register prior to execution of the program and compar-
ing it with the clock register contents after the program
is completed. The program to determine the running
time is shown in table 3—25.

The routine is executed in the following manner.
The starting time of the program is obtained and stored
in location 0.00150, Then the program is executed and,
at its conclusion, branches back to the routine which

Program Example
3.17.2-3.18

will determine the running time. The current clock read-
ing, representing the end of the program, is obtained
and stored in location 0.00151. The start time of the
program is then subtracted from the end time, and the
result is stored in location 0.00155 if the results are
positive. However, it is possible that our program may
have started as the clock register was neatly stepped to
its maximum count and may have ended after the clock
register was reset. If this is the case, we will get a nega-
tive indication in the right accumulator. The BRM in-
struction will take us to location 0.00012 where we CAD
the maximum value of the clock register (1.77777) and
subtract the start time from it. The difference will be the
amount of time the program ran before the clock was
reset. Next, we add the end time of the program to
this number and have, as a result, the actual time in-
volved in running the program. Let us take two sample
values for the clock register (assuming that the clock
was reset during execution of the program being timed).
The clock reading at the start of the program was
0.67754, and at the completion of the program, it was
0.00071. Subtracting the first from the second will give
us a negative result, so we must subtract the start time
from the maximum content of the clock. This subtrac-
tion (1.77777 minus 0.67754) will leave us with 1.10023.
Adding the end time to this will result in a total elapsed
time of 1.10114. Converting this to decimal gives us a
running time of approximately 1154 seconds, or 19.23
minutes.

3.18 OPERATE INSTRUCTION

The Operate (PER) instruction is used to initiate
a wide variety of actions within the AN/FSQ-7 and AN/
FSQ-8, such as starting a test pattern generator or re-
winding a magnetic tape reel. The PER instruction vari-
ation which is to be performed is designated by bits
L10-L15 of the instruction word (auxiliary bits). The
execution of the PER instruction depends chiefly on a
decoding matrix, which allows for the transmission of a
pulse to a unit specified by the auxiliary bits. As pre-
viously mentioned, this pulse can cause several actions
to take place, depending on what unit is receiving the
pulse. Execution time of the PER instruction requires
12 psec. Because the address portion of this instruction
is meaningless, it may not be indexed. An octal opera-
tion code of 01 is used to specify a PER instruction.
These bits are placed in L4-L9 of the instruction word,
leaving all the auxiliary bits free to specify what action
is to take place.

Many of the variations of the PER instruction af-
fect units outside the Central Computer System. Only
those variations which have an effect on the Central
Computer System itself are discussed below. The PER
variations that affect other portions of the AN/FSQ-7
or AN/FSQ-8 are discussed in Part 4. All the PER

97

Set Inactivity
3.18-3.184

variations are decoded in the manner described above;
only the action of the variations themselves is discussed.

3.18.1 Condition Lights (1-4)

Four condition lights are provided on the duplex
maintenance console which are used to indicate the
course of a specific program. These four condition lights
are turned on by the execution of a PER (01 — (04),
respectively. For example, execution of a PER (03) in-
struction will cause condition light 3 to be turned on,
giving a visual indication that a certain action has re-
sulted in the Central Computer System in accordance
with the program being run.

As an example of the use of condition lights, as- »

sume that we are comparing the magnitude of two num-
bers. We wish to determine which is the larger and
store it in a specified location, However, if the two
numbers are equal, we wish to turn on condition light
2 and cause the program to halt. The routine to check
these numbers is given in table 3—26.

If a negative number is in the accumulator as a re-
sult of the DIM instruction, we check to see if it is
—o0. If it is, we know the magnitudes of the two num-
bers are equal, so we branch to 0.00011 and turn on
condition light 2. If the numbers are not equal, we
obtain the larger, store it in location 0.7300, and branch
to the next routine.

3.18.2 Set Inactivity

There are two types of machine inactivity which we
can check for in the active AN/FSQ-7 or AN/FSQ-8.
The first type involves checking to see if the time pulse
distributor action has been interrupted for a period of
at least 1/32 of a second. This check is initiated by the
execution of a PER (05) instruction. Once this instruc-
tion has been given, it sets up circuitry which is checked
every clock pulse to see if the time pulse distributor
is active. If the time pulse distributor stops for some
reason, an alarm is generated.

The second type of inactivity we can check for is to
see if the Central Computer System is hung up in some
type of idle loop. This check is also initiated by the
execution of a PER (05) instruction. If the Central
Computer System is in an idle loop, an alarm will be
generated after the second consecutive 8-second clock
pulse unless the inactivity alarm circuitry is reset by a
PER (05) instruction before the second 8-second clock
pulse is generated, or the inactivity test is terminated.
Thus, the PER (05) instruction actually initiates two
kinds of inactivity check. If we are testing for time
pulse distributor inactivity, an alarm will occur as soon
as the time pulse distributor has been stopped for 1/32
of a second. If we are checking for an idle *loop, the
alarm will occur approximately 8 to 16 seconds after
the execution of the PER: (05) instruction, if an idle

98

3-112-0

PART 3
CH 3

TABLE 3--26. EQUALITY CHECK ROUTINE

OPERATION

LOCATION ADDRESS
0.00000 CAM 0.01350
0.00001 DIM 0.01351
0.00002 BRM 0.00006
0.00003 CAD 0.01350
0.00004 EST 0.07300
0.00005 BPX To next

routine
0.00006 BFZ 0.00011
0.00007 CAD 0.01351
0.00010 BPX 0.00004
0.00011 PER (02) —
0.00012 HLT -
0.01350 0.00000 A
0.01351 0.00000 B
0.07300 Storage -

loop condition exists. Normal programmed use of the
PER (05) instruction is such that it intervenes between
consecutive 8-second clock pulses, thus preventing the
generation of an idle loop inactivity alarm, if normal
operating conditions exist. This is accomplished by pro-
gramming an iterative loop which executes a PER (05)
instruction every 8 seconds. If an idle loop occurs, the
program will not be able to branch back to the PER
(05) instruction, thus allowing two consecutive 8-
second clock pulses to step the inactivity controls and
generate an alarm. Occurrence of both these alarms de-
pends on whether or not the inactivity check is ter-
minated prior to the time the alarms would take place.

3.18.3 Reset Inactivity

The control needed to terminate a check for in-
activity is provided by the PER (06) instruction which
resets the inactivity alarm circuitry. The PER (06) in-
struction must be used in conjunction with the PER
(05) instruction.

3.18.4 Intercommunication Flip-Flops (1-4)

There are two Central Computer Systems within
each AN/FSQ-7 and AN/FSQ-8, as previously explained,
and while one is performing the active air defense pro-
gram, the other is in the standby status. In the normal
course of operations, it is sometimes necessary for one
system to communicate with the other one. This may be
accomplished by the execution of one of the PER (10)

PART 3
CH 3

—(13) instructions. The execution of one of these
instructions in one Central Computer System will set a
corresponding flip-flop (FF) in the other Central Com-
puter System to indicate that a specific condition exists.
For example, if we give a PER (11) instruction in the
active computer, it will set intercommunication FF 2 in
the standby computer. The standby computer may then
sense its flip-flops to see if any of them are set. In this
case, FF 2 would be set, and the standby computer
would be aware that a certain condition exists in the
active computer.

While the intercommunication flip-flops are most
generally employed in a program to indicate that a
drum transfer from the active Central Computer System
to the standby Central Computer System is ready to take
place, the flip-flops can be used at the discretion of the
programmer to indicate whatever he desires. To illus-
trate the use of the intercommunication flip-flops, as-
sume that the active Central Computer wishes to notify
the standby Central Computer that it is going to make
a switchover. It may do this by setting a flip-flop in the
standby computer; FF 3, for example. This would re-
quire the active computer to execute a PER (12) in-
struction. When the standby computer senses its flip-
flops and finds FF 3 set, it will branch to a routine,
preparing itself to take over the air defense function.
(It should be remembered that a notification of switch-
over between computers may not actually be done in
this manner; switchover was simply picked as a possible
condition that could be indicated from one computer to
the other.)

3.18.5 Test Clock Register

As previously explained, the clock register is nor-
mally stepped at a 32-pps rate. When we wish to test
the stepping action of the clock register, it is desirable
to do it at a much faster rate than 32-pps. The execution
of a PER (14) instruction enables us to test the clock
register at a pulse rate of approximately 167 kilocycles,
or one pulse every 6 usec. The action of the PER (14)
instruction is to disconnect the clock register from its
32-pps input, clear it to 40, and set up a branch con-
trol line to its input, so that every time a BPX instruc-
tion is executed the clock register will be stepped once.
When a second PER (14) instruction is executed, the
clock will be reconnected to its 32-pps input but will
not be cleared. A sample program to check the clock is
given in table 3—27.

We first obtain the current clock register content
and store it in the right half portion of location 0.02153.
Then we set up the clock register for testing by execu-
tion of the first PER (14) instruction. An index register
is loaded with 10005, and we branch in a loop until
the program falls through the 1 BPX (01) instruction,
at which time the clock should have been stepped 1000,

3-112-0

Test Clock Register
3.18.4-3.18.5

times. We then obtain the contents of the clock and
subtract a value of 10004 from it. If the clock register
has been stepped correctly, the right accumulator will
contain —O0 and the BFZ condition will be satisfied. If
the right accumulator does not contain —0, the clock
was stepped incorrectly, and we execute an error halt
at location 0.02150. Assuming that the clock was stepped
correctly, it is then necessary to restore it to its original
contents and proceed. If we branched from location
0.02147 (indicating correct stepping), we then execute
a second PER (14) instruction to reconnect the clock.
A third PER (14) instruction immediately follows to
disconnect the clock and clear it. This is necessary be-
cause the second PER (14) instruction would not clear
the clock. An index register is set to the value originally
contained in the clock, and we step it up to this value
again by execution of a 1 BPX (01) instruction at
0.02154. A fourth PER (14) instruction will reconnect
the clock again to its usual input. It should be remem-
bered that this program may be executed in much less
time than 1/32 of a second, so it is possible to discon-
nect the clock, test it, and reconnect it between the
pulses it would ordinarily receive, without destroying
the continuous stepping action of the clock at a 32-pps
rate.

TABLE 3—27. CLOCK REGISTER
STEPPING ROUTINE

LOCATION OPERATION ADDRESS
0.02140 CAC 3.77777
0.02141 RST 0.02152

10.02142 PER (14) -
0.02143 I XIN 0.01000
0.02144 1 BPX (01) 0.02144
0.02145 CAC 3.77777
0.02146 SUB 0.01000
0.02147 BFZ 0.02151
0.02150 HLT -
0.02151 PER (14) -
0.02152 PER (14) _
0.02153 I XIN Determined by

original clock setting
0.02154 1 BPX (01) 0.02153
0.02155 PER (14) -
0.01000 0.00000 0.01000

BSN Instruction
3.18.6-3.19

3.18.6 Inhibit Alarms

Thete are several alarms which may be generated
in the AN/FSQ-7 and AN/FSQ-8 that can cause auto-
matic branching if it is desired. When this is the case,
the occurrence of a specific alarm will cause a branch
to a designated test memory location. On the other
hand, it is possible to generate these alarms and take
no action at all, or to generate an alarm and halt.
These options are provided for by switches on the du-
plex maintenance console. For each condition that may
generate an alarm (such as inactivity), there is a switch
which determines whether the alarm is active or not. If
the switch is in the inactive position, the occurrence of
an alarm condition will be ignored and the computer
program will proceed. If the switch is in the active con-
dition, the alarm condition is acknowledged, and one
of two actions take place, depending on the setting of
another switch on the duplex maintenance console. This
is the STOP/BRANCH switch, and when set to STOP,
it will cause the program to halt upon the occurrence
of an alarm. If set to the BRANCH position, the pro-
gram will cause an automatic branch to a designated
test memory location upon receipt of the alarm.

When we wish to inhibit the automatic branching
or halting of a computer program upon receipt of an
alarm, we can execute a PER (15) instruction. This will
disable most of the alarm circuitry, and the program
~will proceed sequentially. Thus, execution of a PER
(15) instruction will override any switch settings on
the duplex maintenance console, allowing the program
to determine when an alarm may be generated.

3.18.7 Reset Alarms

As explained above, execution of a PER (15) in-
struction will disable a major portion of the alarm cir-
cuitry. When it is desired to reset this circuitry so that
alarm actions may take place, we execute a PER (16)
instruction. This causes the computer program to once
again follow the settings of the switches on the duplex
maintenance console.

3.18.8 Generate Alarm 1 and 2

There are five types of alarms which will cause
automatic branching if so desired. These five types of
alarms are grouped into two classes of alarms, known
as alarm 1 and alarm 2. Alarm 1 consists of memory
parity, addressable drum parity, and inactivity. Alarm 2
is made up of status drum parity and tape parity. When
one of these alarms is generated in the active computer,
it sets a flip-flop in the standby computer which may be
sensed by a BSN instruction. Further, if an alarm condi-
tion occurs in the active computer, it will cause an
automatic alarm branch to take place in the standby
computer, if its switches are set to do so, and the stand-
by computer will prepare itself to become the active

100

3-112-0

PART 3
CH 3

computer. However, there are many instances in which
the active computer would like to notify the standby
computer to take over the air defense functions that are
not included in the list of actions that will cause the
generation of an alarm 1 condition. For example, if a
selected 1O device fails while we are involved in an
operation with it, it may be desirable to make a switch-
over and repair this device immediately. Since the failure
of an IO device does not cause an alarm 1 generation
to the standby computer, it is necessary for the program
to generate this alarm. This may be accomplished by
the execution of a PER (37) instruction which will
generate an alarm 1 condition that is transferred to the
standby computer. It will also set the alarm 1 and alarm
2 flip-flops in the active computer.

It is anticipated that in the near future the auto-
matic generation of the alarm 1 condition will be dis-
continued. Then, when an alarm occurs, a branch to a
subroutine will take place which will determine what
caused the alarm condition in the active computer and
try to correct the malfunction. If the error cannot be
corrected, a PER (37) instruction will be executed, tell-
ing the standby computer that an error has occurred in
the active computer which cannot be fixed and instruct-
ing the standby computer to prepare to become active.

3.19 BRANCH ON SENSE INSTRUCTION

The Branch on Sense (BSN) instruction provides
for a branch of program control to the address specified
in the right half portion of the instruction if a desig-
nated condition exists. This condition is determined by
decoding the auxiliary bits (L10-L15) of the instruction
word. We can sense for such things as overflow in either
or both accumulators, checking a tape drive unit to see
if it is ready to be used, and various other conditions. The
execution of the BSN instruction takes place in the
following manner. The auxiliary bits are decoded in the
same matrix used by the PER instruction. These bits
will partially condition one unit selected by the bits. If
the unit being sensed is active, it completes the condi-
tioning necessary for a positive indication. The BSN
instruction then strobes all the sense units in parallel
and causes a branch of program control if a unit is on.
Only one unit may be on at the time the check for
branch takes place. If a unit is found to be active, the
contents of the program counter are transferred to the
right A register and the contents of the address register
are transferred to the program counter. (This is the
same action which results when a condition is satisfied
for any of the other branch instructions such as BRM
and BPX.) If the unit being sensed was not active, the
branch will not be executed, and the next sequential
instruction will be selected. Execution of the BSN in-
struction requires 12 psec, and it is not indexable. The
BSN instruction is designated by an octal operation

PART 3
CH 3

code of 52 in bit positions L4-L9. Bits L10-L15 are
thus made available to specify what unit is to be sensed.

As with the PER instruction, many of the codes
specified by the auxiliary bits of the BSN instruction do
not apply to the Central Computer System. Only the
applicable codes are discussed below. The remainder
will be discussed in the part of the manual relating to
programming of the equipment involved. The execution
of the BSN instruction is the same for all codes, how-
ever, so only the action of the BSN variations is covered.

3.19.1 Condition Lights ON (1-4)

The four condition lights on the duplex mainte-
nance console are turned on by the execution of the
applicable PER (01) — (04) instruction. When it is de-
sired to check the condition lights by computer control
to see if they are on, we execute one of the BSN (01) —
(04) instructions. For example, if condition light 4 is
on, execution of the BSN (04) instruction will cause
the program to branch to the address specified in the
right half portion of the BSN (04) instruction, since the
branching condition will be met. Execution of the BSN
(04) instruction will also turn condition light 4 off.

The condition lights are provided to furnish a
visual indication to the programmer if a certain status
exists; however, changes in this status often take place
too rapidly for the programmer to observe. Therefore,
it is desirable to be able to check the condition lights
by program control and also to turn off a condition
light, signifying that a certain status no longer exists.

3.19.2 Inactivity ON

When an inactivity alarm occurs after the execution
of a PER (05) instruction, it setsf an inactivity alarm
flip-flop. We have the option of inhibiting an inactivity
alarm, just as with the other alarms that have been
discussed. However, if an inactivity alarm does occur
and we wish to determine by means of program control
what action to take, we can execute a BSN (05) instruc-
tion. This instruction will examine the inactivity alarm
flip-flop and branch to the memory location specified in
the right half portion of the instruction. Execution of a
BSN (05) instruction will also clear the inactivity alarm
flip-flop.

3.19.3 Left Overflow ON

When an overflow occurs in the left accumulator, it
sets the left overflow flip-flop. The setting of this flip-
flop is controlled, however, by the contents of bit L13
in instruction words which may' cause a left overflow. If
bit L13 is a 1 and a left overflow occurs, the left over-
flow flip-flop and the overflow alarm indicator flip-flop
will be set. If bit L13 contains a 0, the left overflow
circuitry is disabled, and the computer will have no
indication that a left overflow has occurred.

3-112-0

Left Overflow ON
3.19-3.19.6

We can check the status of the left overflow flip-
flop by the execution of a BSN (12) instruction. If the
flip-flop is set and bit L13 of the instruction being
executed contains a 1, the branching conditions for the
BSN (12) instruction will be met, and a branch to the
memory location specified in the right half-word of the
BSN (12) instruction will take place. The program can
exercise control over an overflow alarm by branching
to the desired location when an overflow occurs. This is
true because L14 of the instruction word determines
whether the program will recognize a left overflow indi-
cation or not. If bit L14 contains a 1 (as well as bit
13), the alarm circuitry will check to see if the overflow
switch on the duplex maintenance console is active. If it
is, an overflow alarm will be generated. However, if bit
14 contains a 0, or if the overflow switch was inactive,
only the left overflow flip-flop would be set. In this case,
a BSN (12) instruction is the only way we have of
detecting an overflow in the left accumulator. A BSN
(12) instruction also clears the overflow flip-flop if
it is set.

3.19.4 Right Overflow ON

It is possible to determine whether an overflow of
the right accumulator has occurred by the execution of
a BSN (13) instruction. The action of this instruction
is identical with that of the BSN (12) instruction. Bit
L13 of the current instruction being executed must con-
tain a 1 or the right overflow flip-flop will not be set,
thus disabling all indications of a right overflow. Fur-
ther, bit L15 of the instruction word must also be a 1
to cause an automatic branch upon receipt of a right
overflow indication. If, for some reason, an automatic
branch cannot take place (overflow switch inactive or
bit L15 contains a 0), only the right overflow flip-flop
will be set, allowing the computer to exercise program
control of branching upon receipt of a right overflow.
Execution of a BSN (13) instruction will cause the
program to branch control if the right overflow flip-flop
is on and will also clear the flip-flop.

3.19.5 Memory Parity Error
A check for memory parity error may be made by
the execution of a BSN (15) instruction. If a memory
parity has occurred, the program will branch control
to the address specified by the right half portion of the
BSN (15) instruction and will clear the memory parity
error flip-flop.

3.19.6 Addressable Drum Parity Error
We can check to see if a parity error has occurred
while reading an addressable drum field by the execu-
tion of a BSN (16) instruction. If an addressable drum
parity error has occurred, the addressable drum parity
error flip-flop will be set. The BSN (16) instruction will -
sense this flip-flop to see if it is set and branch control to

101

Alarms 1 and 2 ON
3.19.6-3.19.13

the address specified in the right half-word of the BSN
(16) instruction if the flip-flop is set. Execution of this
instruction will also clear the flip-fiop.

3.19.7 Tape Parity Error

A parity error encountered while we are involved
in an IO operation with one of the tape drives will set
the tape parity error flip-flop. This flip-flop can be
sensed by the execution of a BSN (17) instruction. If
the flip-flop is set, the program will transfer control to
the address specified in the right half portion of the
instruction and clear the flip-flop.

3.19.8 Sense Switch ACTIVE (1-4)

The four sense switches located on the duplex main-
tenance console may be sensed by the execution of one
of the BSN (21)-—(24) instructions. These instruc-
tions will check sense switches 1 through 4, respectively,
and execute a branch to the location specified by the
right half portion of the instruction if the sense switch
is active. Execution of the BSN (21) — (24) instruc-
tions has no effect on the status of the sense switch but
will merely determine its status.

3.19.9 Status Drum Parity Error
If a parity error occurs while reading a status drum
field, the status drum parity error flip-flop will become
set. The program can then check this flip-flop by the
execution of a BSN (25) instruction, If the flip-flop is
- set, the program will branch to the location specified in
the right half-word of the instruction and will clear the
flip-flop.
3.19.10 Duplex Switching Completed ACTIVE
When switchover is effected between computer A
and computer B, several seconds are required before all
the relays have been transferred. When the machine
that is assuming the active status wishes to know at
what time the switchover is completed, a BSN (30)
instruction may be executed. This instruction will check

102

3-112-0

PART 3
CH 3

the status of a sense unit and branch to the location
specified in the right half portion of the BSN (30)
instruction if the switchover is completed. This provides
the computer with a means of determining by program
control when to initiate the active air defense program.,

3.19.11 Alarm 1 ON

When the switches on the duplex maintenance con-
sole are set to prohibit the generation of an alarm 1
condition (inactivity, memory parity, or addressable
drum parity), it is necessary to execute a BSN (41)
instruction to detect the occurrence of an alarm 1 condi-
tion. When an alarm 1 condition is present, it sets the
alarm 1 flip-flop. Execution of the BSN (41) instruc-
tion will check the status of the flip-flop and branch
to the memory location specified in the right half por-
tion of the instruction if the flip-flop is set. The BSN
(41) instruction also clears the alarm 1 flip-flop.

3.19.12 Alarm 2 ON

When we wish to sense for an alarm 2 condition
(tape parity or status drum parity), we can execute a
BSN (42) instruction. This instruction will check the
status of the alarm 2 flip-flop and branch to the location
specified by the right half portion of the BSN (42)
instruction if the flip-flop is set. The BSN (42) instruc-
tion also clears the alarm 2 flip-flop.

3.19.13 Intercommunication Flip-Flops ON (1-4)
When one computer desires to notify the other that -
a specific condition exists, it may execute one of four
instructions, PER (10) — (13), which will turn on inter-
communication FF’s 1 through 4 in the other computer.
These flip-flops can be sensed by the appropriate BSN
(43) — (46) instruction. If the flip-flop being sensed is
set, the computer executes a branch of program control
to the address specified in the right half portion of the
instruction. Execution of a BSN (43) — (46) will also
clear the intercommunication flip-flop being sensed.

PART 3
CH 4

3-112-0

Indexing Changes
41-42

CHAPTER 4
17-BIT ADDRESS SELECTION

(This chapter does not apply to AN/FSQ-8)

4.1 GENERAL

Prior to the inclusion of an expanded memory unit
in the AN/FSQ-7, a total of 4096,, registers were avail-
able for use in each of the two memory units. These
4096, , registers could be designated by a total of 12 bit
positions in the address portion of the instruction
(4096,, = 2'2). These bits occupied positions R4
through R15. If the address specified by these 12 bits was
in core memory 1, this fact was designated by a binary
code of 000 in bits R1 through R3. On the other hand, if
core memory 2 was selected, a binary code of 001 was
specified. Test memory was selected by a binary code of
010 in positions R1 through R3, and the clock register
was selected by a code of 110. This arrangement utilized
all 15 significant bits of the address, which was just suffi-
cient to select all the registers that were available. The
expanded memory unit has a total of 65,536, registers,
which requires 16 significant bit positions (65,536,, — 216)
which is the entire right half portion of the instruction
word, including the sign bit. To provide for the selec-
tion of the small memory and test memory, it was neces-
sary to utilize the LS bit position as the most significant
bit of the address. Bit LS is still physically contained in
the left half-word, but can be used as a bit in the ad-
dress portion of the instruction if it is desired. How-
ever, there are instances when using the LS bit as an
address bit has no advantages; therefore, these instruc-
tions are still handled with 16-bit addresses. For ex-
ample, there is no reason why we should specify 17-bit
operation with an instruction such as DCL, since the
17th bit would never be involved in decoding. It should
be obvious by now that 17-bit operation is desirable
only where absolute addresses can be changed or modi-
fied by various instructions. Operands within the AN/
FSQ-7 are still treated as 16-bit numbers, and any dis-
cussion of 17-bit operation does not include operands
but merely internal memory addresses. The purpose of
this chapter is to explain the use of the 17-bit option
which is available with some instructions: (Technically,
all instructions which do not utilize the auxiliary bits
can be given the 17-bit option; however, the option is
meaningful in only a few instances.) In addition, some
of the pitfalls of programming 17-bit and 16-bit in-
structions together are pointed out; an indication of
how these pitfalls can be avoided is also provided.

4.2 INDEXING CHANGES

We know that the basic process of indexing within
the AN/FSQ-7 involves adding the contents of a speci-
fied index register to the contents of the address register;
in this way, we can modify the address portion of an
instruction while executing the same instruction several
times. Each time a different index register value is added
to the address specified in the right half of the instruc-
tion, we can obtain a different operand. The index regis-
ters were originally 16-bit registers and could be loaded
with a maximum value of 0.77777. If the index registers
had not been changed, we would not be able to index
in the higher addresses in memory. In order to permit
the index register to be set to any number from 0.00000
through 1.77777, an extra bit was added to the index
register. This bit is located between the sign bit and
bit 1 position of the index registers and is referred to
as bit 0. This extra bit is added to index registers 1,
2, 4, and 5 only. The right accumulator (index register
3) is not affected by this change.

Another change brought about when the index
registers were increased to 17 bits is that the sign bit
is cleared to a 1 when the remaining bits are cleared to
0. Thus, the cleared state of the index registers is ex-
pressed as 2.00000, with the number 2 being represented
by 2 1 and 0 in the index register sign and zero posi-
tions, respectively. In addition, the index register sign
bit is no longer transferred to the address register
when a modification is to take place. A requirement for
transfer of a 17-bit number to the index register from
the address register is that the bit position LS of the
address register must contain a 0. When the normal
reduction of the index register takes place, the restric-
tion that bit LS must contain a 0 means that the index
register cannot be stepped lower than its cleared state
of 2.00000, which now becomes the no-branch condition.

As an example of programming with a 17-bit index
register, consider the ADX instruction. This instruction
specifies that the indicated index register be added to
the address register and that the sum be placed in the
right A register. However, since we can no longer trans-
fer the index register sign bit, the transfer consists only
of 16 bits. The transfer from the address register to the

103

Instruction Options
42-45

right A register will still be made up to 17 bits; thus,
it is important to realize that although the address in
the right A register contains 17 bits, it was generated
by adding a 16-bit and a 17-bit number together rather
than two 17-bit numbers.

4.3 OTHER REGISTERS CHANGED

4.3.1 Address Register
Since we can now specify a 17-bit address in the
AN/FSQ-7, it was mandatory that the address register
also be increased one bit position to accommodate the
higher numbered addresses which will be encountered.
The bit used is the LS bit and is the most significant
position of the address register.

4.3.2 Program Counter

It was also necessary to increase the program coun-
ter to 17 bits so that the higher memory addresses can
be obtained when the instructions are being selected by
the normal transfer of the program counter to the
memory address register.

4.3.3 Right A Register

The right A register is used to contain addresses of
instructions after execution of the ADX and all the
branch instructions. Because we will encounter 17-bit
addresses, it was necessary for the right A register to
have one additional bit position connected to it also.
Once again, it should be emphasized that this change
was made to handle higher memory addresses and not
to accommodate operands. When the A registers are
involved in the normal arithmetic processes, the 17th
bit in the right A register has no significance.

4.4 INSTRUCTION OPTIONS

4.4.1 STA Option

The STA instruction may store either a 16- or 17-
bit number from the right A register into the memoty
location specified by the right half portion of the in-
struction. If bit L12 contains a 1, the entire 17-bit right
A register will be stored; if bit L12 contains a 0, only
bits RS through R15 will be stored. Since the ST 4 in-
struction is utilized after the execution of a BPX or an
ADX instruction, the right A register usually contains
an address. Therefore, for all practical purposes, we
can say that 17-bit operation should always be used in
conjunction with the ST A instruction.

4.4.2 AOR Option

When the AOR 17-bit option is used, the contents
of the LS, RS through R15 bit contents will have a 1
added into bit R15. When the 17-bit option is not used,
the addition takes place with the contents of RS through
R15 only. If the AOR register is being used merely to
step a pass counter, the 17-bit option is nog necessary,
and the counter may be stepped up to a limit of 0.77777
without causing overflow. However, if the AOR instruc-

104

3-112-0

PART 3
CH 4

tion is used in conjunction with an address modifica-
tion, the 17-bit option should definitely be employed.
As an example, suppose we wete going to AOR a regis-
ter which contains an address of 1.77777 (highest ad-
dress in the expanded memory unit.) If we specify 17-
bit operation with this instruction, the addition process
will take the carry-out from the RS bit position and put
it in the LS bit position, giving us an answer of 2.00000,
which is a valid address. On the other hand, if 17-bit
operation had not been specified, the addition of 1 to
address 1.77777 would have resulted in an answer of
0.00001, which would be incorrect. Thus, it is impor-
tant to consider what the AOR instruction will be
modifying before assigning the type of operation to be
used.

4.4.3 RST Option

The RST option is contingent on almost the same
thing as the AOR option. If an operand is to be stored
from the right accumulator, 16-bit operation is satis-
factory. However, if an address is involved, it is impor-
tant to exercise the 17-bit option, since failure to do so
could result in a loss of the most significant bit of the
address being stored.

4.4.4 ADD, SUB, and ADB Option

The options available for use with the ADD and
SUB instructions again depend on whether or not we
are dealing with true operands or addresses in the
arithmetic element. As previously mentioned, we do not
use 17-bit operands in the AN/FSQ-7; therefore, we do
not wish to perform arithmetic operations on operands
and specify 17-bit operation, since this will lead to er-
roneous results. On the other hand, if we have an ad-
dress in the right accumulator which we are going to
modify with the use of an ADD, SUB, or ADB instruc-
tion, it is mandatory that we exercise the 17-bit option.
The reason for this is the same as for the AOR instruc-
tion: We do not want to lose a bit of the address when
making modifications to that address by use of the
ADD or SUB instruction. It should be noted that the
carry-out of the LS bit is connected to the right end-
carry input of the R15 position during 17-bit execution
of the ADD and SUB instructions. The carry-out of L1
bit position to the LS bit position is inhibited, so, in
effect, the L1 through L15 addresses perform no useful
function during execution of an ADD, SUB, or ADB
instruction which is using the 17-bit option.

4.5 OVERFLOW CONTROL

Arithmetic modification of 17-bit addresses brings
up a problem which did not concern us with 16-bit op-
eration, The problem concerns the generation of an
overflow alarm when such an indication is not desired.
This can best be illustrated by an example similar to
the one discussed in the AOR operation. If we wish to

PART 3
CH 4

place address 0.77777 in the right accumulator and then
add a value of 0.00002, we can expect to arrive at an
answer of 1.00001. While this answer is correct, and it re-
sults in a valid address, it would cause an overflow
alarm by the carry of 1 into the RS bit position just as
would be the case if two operands of 0.77777 and
0.00002 were deleted. In the case of the operands, we
want to know that we have exceeded the capacity of the
machine; therefore, we generate an overflow alarm. How-
ever, when adding two memory addresses, this condition
is not a true computer overflow and the alarm should be
eliminated. An option has been provided so that we can
suppress the overflow alarms when performing arith-
metic modification of 17-bit addresses. It involves the
use of bit L13 of the auxiliary bits in the instruction
word. When this bit is set to 1, the overflow alarms are
suppressed, and when it is set to 0, the alarm circuitry
functions normally.

To show how this alarm suppression option is util-
ized, let us consider the original problem of modifying
an address of 0.77777 by 0.00002. The routine to ac-
complish this and suppress the overflow is shown in
table 3—28.

3-112-0

Instruction Summary
4.5-4.6
TABLE 3—28. OVERFLOW ALARM
SUPPRESSION ROUTINE
LOCATION OPERATION ADDRESS
0.00370 CAD 0.01425
0.00371 ADD 04 0.05055
0.00372 RST 10 0.01425
0.00373 HLT -

0.01425 CAM 0.77777
0.05055 0.00000 0.00002

The ADD 04 instruction specifies that the overflow
suppression bit (L13) is active and will not cause an
overflow alarm when the address and operand ate
added together. In addition, the RST 10 instruction
specifies that the 17-bit option is being exercised (by
the presence of a 1 in bit L12) and thus will store the
contents of the LS, RS through R15 in the LS, RS
through R15 portions of the designated address.

4.6 INSTRUCTION SUMMARY

A summary of the instructions related to the Cen-
tral Computer System is given in table 3—29.

TABLE 3—29. SUMMARY OF CENTRAL COMPUTER SYSTEM INSTRUCTIONS

MNEMONIC EXECUTION CAUSE
INSTRUCTION NAME NAME OCTAL CODE TIME INDEXABLE = OVERFLOW
Reset Index Register from XAC 764 6 psec No No
Right Accumulator
Store Address STA 340 18 psec Yes No
Add Index Register ADX 770 6 psec No No
Clear and Add Magnitudes CAM 160 12 psec Yes No
Difference Magnitudes DIM 164 12 psec Yes No
Add B Registers ADB 114 12 psec No Yes
Multiply MUL 250 17 == 0.5 psec Yes No
Twin and Multiply T™U 254 17 == 0.5 psec Yes No
Divide DVD 260 51.5 == 0.5 psec Yes No
Twin and Divide DV 264 51.5 == 0.5 psec Yes No
Shift Left and Round SLR 024 Variable ‘No Yes
Dual Shift Left DSL 400 Variable No No
Dual Shift Right DSR 404 Variable No No
Left Element Shift Right LSR 440 Variable No No
Right Element Shift Right N RSR 444 Variable No No
Accumulators Shift Left ASL 420 Variable No No
Accumulators Shift Right ASR 424 Variable No No

105

Table 3-29 3-12-0 PART 3

CH 4
TABLE 3—29. SUMMARY OF CENTRAL COMPUTER SYSTEM INSTRUCTIONS (cont'd)
MNEMONIC EXECUTION CAUSE
INSTRUCTION NAME NAME OCTAL CODE TIME . INDEXABLE OVERFLOW
Dual Cycle Left DCL 460 Variable No No
Full Cycle Left FCL 470 Variable No No
Extract ETR 004 12 ysec Yes No
Load B Registers LDB 030 12 psec Yes No
Deposis DEP 360 18 pusec Yes No
Exchange | ECH 350 18 psec Yes No
Compare Left Half-W ords CML 044 12 psec Yes No
Compare Right Half-Words CMR 042 12 psec Yes No
Compare Full Words CMF 046 12 psec Yes No
Compare Masked Bits CMM 040 12 psec Yes No
Compare Difference Left CDL 045 12 psec Yes Yes
Half-Words
Compare Difference Right CDR 043 12 psec Yes Yes
Half-W ords
Compare Difference CDF 047 12 psec Yes Yes
Full Words
Compare Difference CDM 041 12 psec Yes Yes
Masked Bits
Test One Bit TOB 050 12 psec Yes No
Test Two Bits ITB 054 12 psec Yes - No
Clear and Add Clock CAC 170 12 psec No No
Operate PER 01- 12 psec No No
Branch on Sense BSN 52- 12 psec No No

106

PART 4
CH 1

3-112-0

10 Element
1.1-1.2.2

PART 4
PROGRAMMING THE INPUT-OUTPUT SYSTEMS

CHAPTER 1
INTRODUCTION

1.1 GENERAL INFORMATION

This part will present an introduction to, and a
brief summary of, the operating principles of the Input-
Output Systems associated with the AN /FSQ-7 and AN/
FSQ-8. The specific information necessary for proper
programming of each system will be presented in a
separate chapter. The term, Input-Output System, does
not limit the coverage of this part only to the physical
equipment referred to as the Input System and the Out-
put System in the AN/FSQ-7 and AN/FSQ-8. Rather, it
is intended to refer to all systems that are external to
the Central Computer System. For example, Display
System programming is covered in this part, since the
displays do represent an output as far as the Central
Computer System is concerned. The Drum System is
not discussed as an individual system since it is used in
part by all the other systems within the AN/FSQ-7 and
AN/FSQ-8. Instead, the information pertaining to the
Input System drum fields will be discussed in the chap-
ter dealing with programming of the Input System, in-
formation pertaining to the Output System drum fields
will be discussed in the chapter dealing with program-
ming of the Output System, etc. In addition, the card
machines and tape units which are physically included
as part of the Central Computer System are discussed
in a separate chapter since they also serve as inputs and
outputs to the Central Computer System.

1.2 INPUT-OUTPUT ELEMENT

1.2.1 Description

The input-output (I0) element of the Central Com-
puter System is responsible for the control and transfer
of all information both to and from devices outside the
Central Computer System. This element was not dis-
cussed in conjunction with the Central Computer Sys-
tem since its function is so closely related to the exter-
nal devices. The block diagram of the IO element is
shown in figure 4—1. It can be seen that this element is
composed primarily of various registers and counters
which supply the Central Computer System with both
tactical data and program instructions. Transfers to and

from internal memory from the IO element usually in-
volve blocks of words, whether they are data words or
instructions. For this reason, two types of machine
cycles are required to handle these transfers in place of
the PT, OTA, and OTB cycles discussed up to this
point.

1.2.2 Break Cycles

The execution of a memory cycle is required for
each word transferred by the IO element during an IO
operation. During the execution of this memory cycle,
internal operations are suspended while the Central
Computer System executes a machine cycle called a break
cycle. A word supplied to core memory from the IO
element is written into memory during a break-in (BI)
cycle. Conversely, a word that is read out of core mem-
ory is delivered to the IO element during what is known
as a breakout (BO) cycle. As previously stated, both
the BI and BO cycles are coincident with the occurrence
of a memory cycle and are divided into pulse sequences
just as the other three types of machine cycles. For ex-
ample, an action which is executed at BO 8 means that
this action occurs at the ninth time pulse issued during
a BO cycle. Unlike PT cycles, which occur once for each
instruction executed, and OT cycles, which occur if the
instruction decoding matrix determines whether the in-
struction requires OT cycles, the BI and BO cycles are
executed by request of a device external to the Central
Computer System. This is, of course, the IO device,
which is either reading information out of memory or
writing information into it. Requests for break cycles
may occur at any time during normal internal opera-
tions and are executed at the completion of the internal
machine cycle in progress at the time the break request
was received. (One exception to the execution of break
cycles is the fact that they may be executed during an
arithmetic pause.) Upon completion of the break cycle
the Central Computer returns to its normal operation.

It should be emphasized that the occurrence of BI
and BO cycles is governed by the speed at which the
IO device can accept information from the IO element

107

Registers and Counters
1.2.2-1.233

or transfer information to it. Since all the 10 devices
are slower than core memory, break cycles will usually
not occur one after the other but will intervene be-
tween regular machine cycles at various intervals.

1.2.3 Registers and Counters

1.2.3.1 10 Register

The IO register is the intermediate register through
which all information entering or leaving the Central
Computer System must pass. In transfers from the Cen-
tral Computer to an IO device, the information is ob-
tained directly from the memory buffer registers. Trans-
fers into core memory may be made by directly loading
the IO register with the information or first loading a
buffer register, which then transfers its contents to the
IO register at the proper time. The IO register contains
33 positions, to accommodate a full computer word plus
parity.

1.2.3.2 10 Buffer Register

The IO buffer register performs two main func-
tions: it adapts the high speed of the computer to the
relatively low speed of the various external devices by
acting as a temporary storage device for information
being transferred between the computer and a particu-
lar external device, and, in conjunction with the drum
comparison circuits, it determines whether a computer-

SELECTION ELEMENT

3-112-0

PART 4
CH 1

to-drum information transfer is to take place. During
break-in operations, the IO buffer register is used to
transfer words from the Drum System, card machines,
manual inputs, and the burst-time counter into core
memory via the IO register.

1.2.3.3 10 Address Counter

When words are to be transferred into or out of
core memory, it is necessary to specify which location
in the core memory these words are to come from or go
to. Before an 10 operation can be initiated, the IO ad-
dress counter must be loaded with the address in core
memory from which or to which the first word is to be
transferred. During the break cycle, the content of this
counter is transferred to the core memory so that the
word will be read out of, or stored in, the proper core
memoty location. As each word is transferred between
core memory and the selected IO device, a 1 is added
to the contents of the IO address counter. Thus, when
an 10 operation is in progress, the IO address register
supplies sequential memory addresses to the memory
address register, just as the program counter supplies
the address of the next instruction to be executed dur-
ing a program. (Refer to fig. 2—10.) The IO address
counter is loaded with an instruction which will be ex-
plained later in this chapter.

SELECT TO MEMORY
: > GATES ll BUFFER‘REGISTERS
)
3
10 SELECT LEFT IO RIGHT 10
TO MEMORY
ADDRESS REGISTER CIRCUITS REGISTER ‘-‘ REGISTER [
T y y A A
10 \
—» ADDRESS |«
LOADED COUNTER
iﬁﬁﬁfsss T0 CONTROL LEFT I0 RIGHT IO
REGISTER 10 CIRCUITS BUFFER BUFFER
. WORD REGISTER REGISTER
COUNTER))
. CONTROL
T0 10) DATA
DEVICES DATA

<

-

Figure 4—1. Input-Output Element, Information Flow

108

PART 4
CH 1

1.2.3.4 10 Word Counter

The 10 word counter performs the function of
counting the number of words which have been trans-
ferred in an IO operation. The complement of the num-
ber of words to be transferred between the Central
Computer System and the IO device of the AN/FSQ-7
or AN/FSQ-8 is placed in the IO word counter. Each
time a word is transferred between core memory and
an IO device, a 1 is added to the IO word counter. When
the number of words specified has been transferred, the
10 word counter contains 4-0. As a result of the last
stepping, the word counter generates an end-carry pulse,
which is transferred to the selection element, indicating
that the IO operation has terminated.

1.2.4 Control Circuitry
1.2.4.1 Break Command Generators
The break command generators determine when a
BI or BO cycle will occur. As mentioned previously,
the IO device to be used requests a break cycle, and this
request is honored at the end of the internal cycle then
in progress. Break requests from the various 10 de-
vices are applied to the break command generatots,
which then gate time pulses out of the instruction
control element. These pulses actually form the break
pulses which occur during a break cycle. Thus, the 10
device requests a break cycle through the break com-
mand generators, which initiate, synchronize, and ter-
minate the IO word transfer.

1.2.4.2 Data Transfer Control Circuits

These circuits provide the controls to direct the
transfer of data within the IO element. Since each IO
device operates in a different manner, it is necessary
to provide separate controls for each type of transfer.
In addition, the main drums may be read or written on
by three different modes, and control is provided for
each of these modes.

1.3 10 INSTRUCTIONS

1.3.1 Select Instruction

The Select (SEL) instruction chooses the 10 device
(except for drums) which is to be operated during the
subsequent IO operation. The various devices which
may be selected are specified by bits L10-L15 of the in-
struction word. Each of the codes dealing with the IO
device will be covered in the chapter on the program-
ming of that device. The effect of the SEL instruction
is to prepare the designated 10O device for a data trans-
fer and, in so doing, deselect all the remaining IO de-
vices. The actual selection of a particular IO device is
a‘ccomplished by decoding the auxiliary bits in the same
matrix used for the PER and BSN instructions. Once a
SEL instruction has been given for a particular IO de-
vice, that device will remain selected until another SEL
instruction specifying a different device is executed. The

3-112-0

10 Instructions
1.234-1.34

SEL instruction does not utilize the right half-portion
of the instruction word and, therefore, may not be in-
dexed. Execution of this instruction requires 12 psec. It
is designated by an octal operation code of 62.

1.3.2 Select Drums Instruction

The Select Drums (SDR) instruction is used to per-
form the same function as the SEL instruction, except
that the selections are limited to fields on the magnetic
drums. Bit R1 of the instruction word determines
whether the main drum group or the auxiliary drum
group has been selected. If the bit contains a 1, the
auxiliary drums are selected; if the bit contains a 0, the
main drums are selected. The auxiliary bits (L10-L15)
further designate which particular drum field is to be
used in the IO operation. If the drum is an addressable
one (i.e., the words stored on the drum are referred to
by a specific register number), the address of the first
drum register to be used is specified in the right half-
portion of the SDR instruction. If the drum is read by
identity, the identification code is placed in the right
half-word of the instruction. When an SDR instruction
is given, the particular drum field selected will remain
selected until another SEL or SDR instruction is exe-
cuted. This instruction requires 12 psec for execution
and may be indexed. An octal code of 61 is used to
designate the SDR instruction.

1.3.3 Load 10 Address Counter Instruction

The Load 10 Address Counter (LDC) instruction
is used to replace the contents of the IO address coun-
ter with the value specified in the right half-portion of
the instruction word. This value is the address of the
first core memory location involved in an IO operation.
The LDC instruction may be indexed and requires 6
usec to execute. It is designated by an octal operation
code of 600.

1.3.4 Read Instruction

The Read (RDS) instruction initiates the transfer
of information from an IO device which has been pre-
viously selected by an SEL or SDR instruction. The ad-
dress part of the RDS instruction is used to designate
the number of words to be transferred from the IO de-
vice. This number is placed in the IO word counter in
complement form, and each word transferred to core
memory causes a 1 to be added to this counter, thus ef-
fectively decreasing the value in the counter. When an
addressable drum field is the IO device used to supply
words to core memory, bits L13-L15 of the RDS instruc-
tion specify in what manner the drum registers are to
be read; that is, we can read consecutive registers, or
every 8, 16, or 64 registers, if we desire. This method of
reading is known as interleave, and the code to be
placed in bits L13-L15 for the desired pattern of inter-
leaving is shown in table 4—1.

109

CSW Instruction
1.3.4-1.4.1

When an IO transfer to core memory is initiated
by the RDS instruction, a control flip-flop known as the
10 interlock is turned on. While the IO interlock is on,
no additional IO operations may be started. Thus, if
the IO interlock is on, the execution of the SEL, SDR,
LDC, or another RDS instruction (plus an instruction
requesting words to be transferred to an IO device
from core memory) is delayed until the IO interlock is
cleared. Either a disconnect pulse from the IO device
involved in the operation or the end-carry from the IO
word counter (signifying all words have been read)
will clear the IO interlock. Internal machine operations
which do not affect the IO devices may proceed while
the IO interlock is set. (One exception to this is the
execution of the HLT instruction. Though the HLT in-
struction does not deal directly with an IO device, its
execution while an IO transfer is in progress would
cause a loss of information. Therefore, the HLT instruc-
tion is also delayed until the IO interlock is cleared.)

The RDS instruction requires 6 psec to execute
and is not indexable, It is designated by an octal opera-
tion code of 670.

1.3.5 Werite Instruction

Execution of the Write (WRT) instruction will ini-
tiate a transfer of information from core memory to the
10 device selected by the SEL or SDR instruction. The
address portion of this instruction is used to designate
the number of words to be written, and, as with the
RDS instruction, this number is placed in the 10 word
counter in complement form. The word counter is
stepped by 1 for each word transferred out of core
memory. When an addressable drum is used as the 10
device receiving information from core memory, bits
L13-L15 of the WRT instruction word specify the inter-
leave pattern to be used. The interleave code for the
WRT instruction is the same as for the RDS instruction
and is shown in table 4—1.

In addition to initiating the word transfer from
core memory to the IO device, execution of the WRT
instruction will also turn on the IO interlock. The in-
terlock will delay execution of any IO instruction which
is used to prepare for another 10 operation or the HLT

TABLE 4—1. INTERLEAVE CODE

BINARY CODE INTERLEAVE PATTERN

(Bits L13-L15)

000 Consecutive registers
001 Every 8th register
010 Every 16th register
100 Every 64th register

10

3-112-0

PART 4
CH 1

instruction. It is cleared when all words have been written
or the 10 device sends a disconnect signal.

The WRT instruction is executed in 6 psec and is
not indexable. It is specified by an octal operation code
of 674. '

1.3.6 Clear and Subtract Word Counter
Instruction
‘The Clear and Subtract Word Counter (CSW) in-
struction is used to transfer the contents of the IO word
counter to the right accumulator. This is done when it
is desired to determine the number of words actually
transferred during an IO operation,

Remember that the RDS or WRT instruction placed
the complement of the number of words to be trans-
ferred in the IO word counter. Each time a word is
transferred during an IO operation, a 1 is added to the
contents of the IO word counter. However, when an
RDS or WRT instruction is given, a 1 is added to the
10 word counter before any words are transferred;
therefore, the IO word counter actually contains the 2’s
complement of the number of words to be transferred.
(You will recall that, during the discussion of binary
arithmetic, it was stated that the 2’s complement on a
number was simply the 1’s complement plus 1.) The
2’s complement is used in the IO word counter so that
no end-carry will be necessary when the last word is
read and the last 1 is added to the counter. Thus, read-
ing the last word will clear the 10 word counter to 4-0.
In the event that the specified number of words is not
transferred, the I0 word counter will contain the 2’s
complement of the number of words still remaining to

be read.

The CSW instruction takes place in the following
manner. The right accumulator is cleared (plus the left
accumulator if 17-bit operation is specified), and the
contents of the IO word counter are transferred to the
right accumulator. Since the IO word counter already
contains a complemented number, transferring its con-
tents is the same as subtracting a positive number. It
is important to realize that the action of the CSW in-
struction does not subtract the contents of the IO word
counter from the cleared right accumulator, but merely
transfers them. The CSW instruction does not utilize
the right half-portion of the instruction word; there-
fore, it may not be indexed. The execution time of this
instruction is 6 psec and is specified by an octal opera-
tion code of 020. :

1.4 10 PROGRAMMING

1.4.1 General
When we desire to program a transfer either to or
from core memory, it is necessary to set up a definite

PART 4
CH 1

program pattern using the instructions described above.
First of all, we must know what device we are going to
operate; therefore, we must have an SEL or SDR in-
struction to connect the proper device to core memory
via the IO element. We must also know where in mem-
ory the transfer of words is to start and whether we are
going to read or write; thus we must also have an LDC
instruction in our program. Finally, an RDS or a WRT
instruction is given to initiate the transfer, either to
or from memory. The SEL or SDR instruction and the
LDC instruction may be given in any sequence, but the
RDS or WRT instruction must be the last instruction
in the program since it actually starts the transfer
and sets the IO interlock, thus preventing any other IO
instructions from being executed. The basic IO pattern
of instructions in a program then is as follows:

a. LDC
b. SEL or SDR
c. RDS or WRT

Naturally, each of these instructions has many pos-
sible values that can be specified, or many devices that
can be selected; but the basic IO program must consist
of all three instructions, and the RDS or WRT instruc-
tion must be given last, as previously stated. After the
RDS or WRT instruction has been executed, the pro-
gram will continue to perform internal machine opera-
tions as long as they do not affect the IO devices in any
way. Sometimes, however, it is desirable to take definite
courses of action while an IO program is in progress
and then return to the program immediately following
the 10 program steps. Various methods of operating
the Central Computer System while an IO transfer is in
progress are available, and some of these are discussed
in 1.4.2,

1.4.2 Normal Operation
1.4.2,1 Real-Time Considerations

When we execute the basic 10 program steps listed
above, the IO interlock becomes set and we cannot per-
form any other IO operations until it is cleared. How-
ever, during any one IO operation, it is usually impossi-
ble to tell exactly when the IO interlock will be cleared.
To avoid a loss of operating time with the Central
Computer System when IO operations are being per-
formed, two methods of programming may be used. The
first method involves executing some instructions after
the RDS or WRT instruction has been given, which will
require more time than the word transfer between the
I0 device and core memory. For example, the card
reader is capable of supplying a rate of 150 cards per
minute. If we wanted to read in 100 cards of informa-
tion, we could perform some arithmetic operations on
data already within memory (which would require ap-
proximately 1 minute to execute) and be assured that

3-112-0

Normal Operation
1.4.1-14.2.2

our IO operation is terminated when the intermediate
program is finished. The sequence of an operation such
as this is:

a. SEL

b. LDC

¢. RDS

d. Routine requiring approximately 1 minute

e. Use data read in if desired

1.4.2,2 Branch If 10 Interlock On Instruction

The above method of operation, though satisfac-
tory in many instances, may not be desirable because
the data being read in may be in core memory for some
time before it is utilized. For this reason, the Branch If
I/O Interlock On (BSN 14) is provided. This variation
of the BSN instruction checks the IO interlock and
branches to the memory location specified by the right
half-portion of the instruction if the IO interlock is on.
If the IO interlock is not on, the program falls through
this instruction and selects the next sequential instruc-
tion location. Thus, if we wished to perform an IO op-
eration and utilize the Central Computer System for
some other operation only until the data we wanted was
in core memory, we could utilize the BSN (14) instruc-
tion. After giving the basic IO instructions necessary
for the initiation of any IO operation, a BSN (14) in-
struction immediately following will check to see
whether the IO interlock is on. As long as it is on, we
will branch to a subroutine, execute a pass (or passes),
and then check the IO interlock again. As soon as the
interlock is turned off, we can proceed with the pro-
gram using the data just obtained. As an example, sup-
pose we are reading in some information from the card
reader and wish to process this information as soon as
possible. However, some data already exists in the Cen-
tral Computer System which also needs to be processed,
but not immediately. While we are waiting for the data
from the card reader to be placed in memory, we can
process, at least partially, the data on hand. The method
for doing this is given in table 4—2.

The operation of the program is such that we will
check the IO interlock after each data word processed
by the program contained in locations 0.37001 through
0.37006. If the interlock is still on, we process another
word. (Check to see whether both halves are minus; if
not, store the word.) In the event that all the words
were processed by the alternate program before the
card reader had transferred all the words to core mem-
ory, we attempt to execute an HLT instruction. This
instruction will be delayed until the IO transfer is com-
plete; then it will be executed. Thus, if our program
halts at step 0.37006, we know that all the words were
read in from the card reader and that we also had proc-
essed all the data in locations 0.02000 through 0.06000.

m

10 Pause
14.22-144

If the program does not halt, we know that the IO in-
terlock was turned off before all the words were proc-
essed, and we fell through the BSN (14) instruction at
0.00105, executing the branch to the program utilizing
the data just read in. In this case, it would be necessary
to preserve the contents of the index registers at the
time we branched from location 0.00106, so that the
data-processing going on could be finished at some
other time.

The alternate data-processing program will require
24 psec for one pass through it if the word is negative,
or 42 psec if the word is positive. Thus, we will be
checking the status of the IO interlock at least every 42
psec, sensing for the termination of the 1O transfer.

1.4.3 10 Pause

An IO pause occurs when there is an IO transfer in
progress and no information is available in memory
with which we may occupy the Central Computer Sys-
tem., As explained above, normal operation during an
IO transfer will also utilize the Central Computer Sys-
tem to some extent. However, when the information
needed to petform some program is the same informa-

TABLE 4—2. DATA READ-IN PROGRAM

LOCATION OPERATION ADDRESS
0.00100 SEL (Card Reader)
0.00101 LDC 0.01000
0.00102 RDS 0.00300
0.00103 1 XIN 0.04000
0.00104 2 XIN 0.04000
0.00105 BSN (14) 0.37001
0.00106 BPX . To program using
data supplied by
card reader
0.37001 1CAD 0.02000
0.37002 BFM 3.7005
0.37003 2 FST 0.60400
0.37004 2 BPX (01) 0.37005
0.37005 1 BPX (01) 0.00105
0.37006 HLT -

0.01000-0.01300 Storage for data being read in

0.02000-0.06000 Storage for data already in

memory

0.60400-0.64400 Storage for processed data

112

3-112-0

PART 4
CH 1
TABLE 4—3. |0 PAUSE PROGRAM
LOCATION OPERATION ADDRESS
0.0000 SEL (10 Device) -

0.0001 LDC 0.01000
0.0002 RDS 0.03000
0.0003 LDC 0.04250

tion that is being obtained during an IO transfer, this
is a pause condition. The Central Computer System must
be prevented from executing the instructions immedi-
ately following the instructions which initiate the 10
transfer. This is most easily done by giving another 10
instruction or an HLT instruction immediately after
the RDS or WRT instruction. A sample program which
will start an IO pause is shown in table 4—3.

The selected IO device will start transferring data
to core memory, starting at location 0.01000. We have
specified that 30005 words are to be read; after the read-
ing has started, we attempt to load the IO address
counter with another location. Since the LDC instruc-
tion cannot be executed while the IO interlock is on,
internal machine operations will cease until the IO in-
terlock is cleared by the carryout from the 10 word
counter. Then, the LDC instruction will be executed,
specifying that the same IO device is to prepare for
another transfer, starting at location 0.04250. Termina-
tion of the IO transfer does not deselect the IO device,
and it will remain selected until another SEL instruction
is given which designates a different IO device. In some
instances, IO pauses cannot be avoided; however, we
usually attempt to make as much use of the Central
Computer System as possible while an IO transfer is in
progress.

1.4.4 10 Hangup

If the IO interlock is set by an RDS or WRT
instruction and the IO device is not able to deliver ot
accept information, an IO hangup occurs when we at-
tempt to execute another IO instruction. In this case, the
10 interlock cannot be cleared because no IO operation
will take place, which will result in stepping the IO
word counter to 0. This is actually an infinite IO pause,
and, since the IO operation will not terminate, we will
not be able to execute further instructions. Once this
condition occurs, there is no programmed method of
clearing the 1O interlock. Instead, a pushbutton on the
duplex maintenance console must be used to manually
reset the 10 interlock. An IO hangup will occur if any
of the following conditions exist:

a. A nonexistent device is selected.

b. The selected device is not ready.

PART 4
CH 1

TABLE 4—4. WORD COUNT TRANSFER ROUTINE

LOCATION OPERATION ADDRESS

0.00547 SDR

0.00550 LDC 0.01000
0.00551 RDS 0.05000
0.00552 BSN (14) 0.00552
0.00553 cSw -
0.00554 ADD 0.12450
0.00555 BRM 0.00270
0.00556 5 XAC —
0.00557 5 BPX (01) —
0.00270 No words read, do another

routine
0.12450 0.00000 0.04777

¢. The selected device is not prepared (applicable
only to magnetic tapes).

d. The RDS or WRT instruction is not legal for
the selected device.

1.4.5 Use of CSW Instruction

Although the actual use of the CSW instruction is
in conjunction with programming the Central Computer
System, its application is discussed at this point, since
a better understanding of its function will result. When
an IO transfer is terminated and less than the pre-
scribed number of words have been transferred, we do
not have any direct way of examining the I0 word
counter to determine the contents and so must use the
CSW instruction. As an example, assume that we wish
to perform some operation on data obtained from a
magnetic drum field. In the right half portion of the
RDS instruction, we specified the number of words we
desired to read from the drum. The capacity of one
drum field is 2048,, or 4000, registers; therefore, if we
try to read more than 4000, words from one drum field,
we know that the 10 word counter will always contain
some value at the termination of the IO process. The
CSW instruction can then be used to determine exactly
how many words were transferred., A program to ac-
complish this is shown in table 4—4.

After the drum transfer has been initiated, the
Central Computer will be in an IO pause to be cleared.
When it is cleared, we obtain the 10 word counter
contents and add a constant of 0.04777 to it. This
constant will give the actual number of words read,

3-112-0

Use of CSW Instruction
1.4.4-1.46.2

because its value is such that it will offset the first
stepping of the IO word counter before any IO transfer
actually takes place. (This constant is merely one less
than the number of words specified to be transferred,
as can be seen by examining the right half-position of
the RDS instruction.) In the event that no words were
read, the 10 word counter would contain 1.73000, as it
would be stepped once anyway. Adding the constant
of 0.04777 would give us —0, and the BRM condition
at 0.00555 would be satisfied. If one or more words are
read, the result in the right accumulator will be positive
and indicate the number of words actually transferred.
If we wish to use these words in some sort of indexed
loop, it is necessary to set the index register to a value
of one less than the desired number of repetitions; there-
fore index register 5 is loaded from the right accumu-
lator and its contents are reduced by one.

It should be noted that 17-bit operation is manda-
tory for use with the CSW instruction in the AN/FSQ-7.
If this is the case, transferring the contents of the 10
word counter (which is a 17-bit counter) to the LS and
R1-R15 bits of the accumulator makes it necessary for
us to check the left sign bit of the accumulator for a
minus condition. The left sign bit will be negative only
if no words were transferred, just as the right sign bit
would be with 16-bit operation. Therefore, at location
0.00555, we would substitute a BLM instruction for the
BRM instruction.

1.4.6 10 Test Instructions

1.4.6.1 General

Certain instructions which are available for use
with the AN/FSQ-7 and AN/FSQ-8 are mainly for main-
tenance personnel and are generally not used in a pro-
gram performing IO operations in a tactical situation.
These instructions do not apply to any specific IO de-
vice; therefore, they will be discussed in the following
paragraphs.

1.4.6.2 Select IO Register Instruction

Although the IO register is generally used as the
intermediate storage register between core memory and
a selected IO device, it may itself be selected as an IO
device by the Select 10 Address Register (SEL 04) in-
struction. We usually use an SEL (04) instruction when
we desire to clear core memory or place a fixed pattern
into core memory. When any SEL instruction is given,
the IO register is cleared, and the following RDS or
WRT instruction will again clear it prior to every word
transferred. However, when an SEL (04) is given, the
10 register is not cleared by the subsequent RDS ot
WRT instruction. Therefore, if we wish to clear or
place a definite pattern into memory, we may do so by
selecting the 1O register and then reading the contents

13

Select 10 Register Instruction
146.2-1.46.4

of the IO register into as many locations as desired.
For example, to completely clear the 256> memory unit
of the AN/FSQ-7, we could execute the program listed
in table 4-5.

If we wished to load some fixed pattern containing
1’s and 0’s into memory, it is first necessary to place
the desired pattern in the IO register. This may be done
by giving an SEL (04) instruction, and then writing
the desired pattern into the IO register by using a mem-
ory location which contained the pattern. The pattern
could then be placed in the desired locations by using
the IO register as the device supplying data, which in
this case is the same word every time. However, it is
extremely important to remember that the 10 register
is not selected again before initiating the RDS instruc-
tion, since doing this will clear the IO register and
destroy the word it contains. A sample program to load
a fixed pattern into core memory is given in table 4—6.

Although it is possible to place any desired pattern
in the IO register by writing one word from core mem-
ory into it as we have done in the above program, it is
interesting to note that, if we write more than one
word in the IO register, the register will contain the
logical sum of all the words read at the termination of
the IO transfer. This is true because the IO register is
not cleared before each word transfer takes place when
it is selected as the IO device. As an example of this
feature, assume that we had cleared the 256> memory
unit by the program listed in table 4-5. If we then
proceed to write the entire contents of this memory unit
back into the IO register, the logical sum of all the
words transferred will be contained in the IO register.
Since we were writing all 0’s in the IO register to begin
with, it should still remain cleared after all the words
have been transferred.

TABLE 4—5. PROGRAM TO CLEAR
256> MEMORY

LOCATION OPERATION ADDRESS
2.00100 “SEL (04) -
2.00101 LDC 0.00000
2.00102 RDS 2.00000
2.00103 HLT —

114

3-112-0

PART 4
CH 1

TABLE 4—6. PROGRAM TO LOAD MEMORY
WITH A FIXED PATTERN

LOCATION OPERATION ADDRESS
2.01000 SEL (04) -
2.01001 LDC 2.01050
2.01002 WRT 0.00001
2.01003 LDC 0.00000
2.01004 RDS 2.00000
2.01005 HLT C =
2.01050 1.25252 1.25252

1.4.6.3 Clear IO Interlock Instruction

In some instances, it is desirable to program the
cleating of the 1O interlock once it has been set by an
RDS or WRT instruction. This will normally occur
when an IO operation is taking place that is of secondary
importance, and we do not wish to wait until the 10
operation is terminated. For example, if we wished to
check out the various IO control devices and see whether
they were enabling us to make IO transfers properly,
we could start an IO transfer and then clear the inter-
lock with the Clear 10 Interlock (PER 27) instruction
as soon as it had been determined that all the controls
were working properly. In tactical operations, this in-
struction would probably not be used to any extent.

1.4.6.4 Lock IO Address Counter Instruction

The Lock 10 Address Counter (PER 75) instruc-
tion is used to lock the IO address counter at the ad-
dress it contains at the time the instruction is given,
until the IO interlock is cleared. The PER (75) instruc-
tion usually precedes the RDS or WRT instruction. If
the PER (75) instruction is given before an RDS in-
struction, all the words read from the selected 10 de-
vice will be placed in one core memory location; if the
PER (75) instruction is given before a WRT instruction,
the contents of the specified memory location will be
written in successive locations of an IO device. The
latter technique is very helpful in writing a fixed pattern
on drum fields, writing a test pattern with the printer,
etc.

PART 4
CH 2

3-112-0

CHAPTER 2

PROGRAMMING THE AM DRUMS AND IC FIELDS

2.1 AUXILIARY MEMORY DRUM FIELDS

2.1.1 Generadl

There are 50 drum fields associated with the Central
Computer System of the AN/FSQ-7 and AN/FSQ-8,
which are used as auxiliary memory devices. Each of
these fields contains 2,048 registers; therefore, a total
of 102,400 registers are available for storage of infor-
mation. The information contained on these 50 fields
usually consists of subroutines, mathematical tables, con-
stants, blocks of processed data, or other information
which is used quite often by the Central Computer
System, but not often enough to warrant its inclusion
in core memory. In order to obtain or store information
on these drum fields, the usual IO process must take
place; for that reason, these drum fields are considered
to be IO devices rather than a part of memory, although
their logical function is to serve as storage media.

The physical Drum System in the AN/FSQ-7 and
AN/FSQ-8 is divided into two groups, the main drums
and auxiliary drums. There are six physical drums in
each group, although some of the fields located in the
main draum groups are designated as auxiliary fields.
As explained in the execution of the SDR instruction,
bit R1 of the instruction word specified whether the
main or auxiliary drum group is being selected. There-
fore, the codes which are used to designate the auxiliary
fields may contain either a 0 or a 1. Since auxiliary
drum fields may transfer data only to or from the Cen-
tral Computer System, they cannot transfer any infor-
mation to another system in the AN/FSQ-7 or AN/
FSQ-8. In addition, all the auxiliary fields are address-
able, making it possible to start an IO operation with
any drum register we desire. Table 4—7 lists the
auxiliary memory fields and the codes used to select
them.

2.1.2 Program Examples

As an illustration of the use of the auxiliary mem-

ory fields, assume that we wish to load a group of
mathematical tables onto the auxiliary memory fields.
The tables are originally contained in a deck of punched
cards; therefore, it will be necessary for us to first
place the data in core memory and then wtite it on the
designated auxiliary field. A program to accomplish
such a transfer is given in table 4—8.

AM Drum Fields
21-21.2

TABLE 4—7. AUXILIARY MEMORY DRUM FIELDS

DRUM FIELD

Auxiliary memory 1

Auzxiliary memory 2
Auxiliary memory 3
Auxiliary memory 4
Auxiliary memory 5
Auxiliary memory 6
Auxiliary memory 7
Auxiliary memory 8
Auxiliary memory 9
Auxiliary memory 10
Auxiliaty memory 11
Auxiliary memory 12
Augxiliary memory 13
Augxiliary memory 14
Auxiliary memory 15
Auxiliary memory 16
Auxiliary memory 17
Auxiliary memory 18
Auxiliary memory 19
Auxiliary memory 20
Auxiliary memory 21
Auxiliary memory 22
Auxiliary memory 23

Auxiliary memory 24
Auxiliary memory 25
Auxiliary memory 26
Augxiliary memory 27

Auxiliary memory 28

OCTAL CODE
R1 L10-L15
0 02
0 03
0 04
0 05
0 06
0 07
0 10
0 11
0 12
0 13
0 14
0 15
1 41
1 42
1 43
1 44
1 45
1 46
1 51
1 52
1 53
1 54
1 55
1 56
1 61
1 62
1 63
1 64

115

Program Examples
21.2-2.2.1

TABLE 4—7. AUXILIARY MEMORY

DRUM FIELDS (cont'd)

3-112-0

DRUM FIELD OCTAL CODE
R1 L10-L15
Auxiliary memory 29 1 65
Auxiliary memory 30 1 66
Auxiliary memory 31 1 71
Auxiliary memory 32 1 72
Auxiliary memory 33 1 73
Auxiliary memory 34 1 74
Auxiliary memory 35 1 75
Augxiliary memory 36 1 76
Auxiliary memory 37 1 02
Auxiliary memory 38 1 03
Auxiliary memory 39 1 04
Auxiliary memory 40 1 05
Auxiliary memory 41 1 06
Auxiliary memory 42 1 07
Auxiliary memory 43 1 10
Auxiliary memory 44 1 11
Auxiliaty memory 45 1 12
Auxiliary memory 46 1 13
Auxiliary memory 47 1 14
Auxiliary memory 48 1 15
Auxiliary memory (spare) 0 20
Auxiliary memory (spare)] 21

PART 4
CH 2

The SEL instruction will select the card reader, and
400053 words will be read in core memory, beginning at
location 0.01000. Immediately after the execution of the
RDS instruction, we attempt to select an auxiliary drum
field. However, execution of this instruction will be de-
layed until completion of the RDS instruction. Notice
that the right half-portion of the SDR instruction is
0.40000. This indicates that bit R1 contains a 1, and that
register 00005 of the selected drum field has been chosen
as the first register into which information will be writ-
ten. The combination of bit R1 and the auxiliary bits
tells us that auxiliary memory field 13 has been selected
as the IO device. Our transfer is to start from location
0.01000 in core memory, and we wish to transfer all
40005 words to drum field 13. Since this number (4000,)
is the total number of registers in one drum field, this
program will place information in every register of
auxiliary memory field 13.

As an example of reading information from an
auxiliary memory field, let us assume that we are about
to do some sort of calculation which will require the
use of a sine and cosine table. We have used sine and
cosine tables in previous program examples, but always
assumed that the tables were located in core memory.
Now let us assume that the sine and cosine table is
stored on one of the auxiliary drum fields. All that is
really necessary for us to obtain this data is to program
a conventional IO sequence. No preliminary instructions
are necessary to check the status of the drums, since we
consider the drums to be always ready to receive or
supply information. The program to obtain the sine, co-
sine table is given in table 4—9.

TABLE 4—9. DRUM READING ROUTINE

TABLE 4-8. DRUM LOADING ROUTINE

LOCATION OPERATION ADDRESS
0.04250 SDR (02) 0.03400
0.04251 LDC 0.00500
0.04252 RDS 0.00377
0.04253 HLT -

LOCATION OPERATION ADDRESS
0.00200 SEL (Card Reader) —
0.00201 LDC 0.01000
0.00203 RDS 0.04000
0.00204 SDR (41) 0.40000
0.00205 LDC 0.01000
0.00206 WRT 0.04000
0.00207 HLT -

116

In this case, bit R1 is 2 0, and the auxiliary bits
contain (02); therefore, auxiliary drum field 1 will be
selected by the SDR instruction. We are reading 377,
words from the drum, and they will be stored starting
at memory location 0.00500. The execution of the HLT
instruction will be delayed until the specified numbers
of words have been read from the drum.

2.2 INTERCOMMUNICATION DRUM FIELDS

2.2.1 Generadl

As previously mentioned, there are actually two
Central Computer Systems within each AN/FSQ-7 and

PART 4
CH 2

AN/FSQ-8. These two systems are notmally both in
operation with one performing the air defense function
and the other operating in standby status. For ease of
reference, one system is referred to simply as “com-
puter A” and the other as “computer B.” Periodically,
the active system will transfer information to the
standby system so that both systems have the latest avail-
able information regarding the air defense situation. In
addition, when a scheduled switchover (change of func-
tion between computer A and computer B) takes place,
all the information presently contained in the active
system must be transferred to the system about to be-
come active. In order to allow this interchange of infor-
mation between computer A and computer B, two spe-
cial drum fields are needed. These fields are called the
intercommunication (IC) fields, and they differ from
the rest of the drum fields in that the information placed
on them is read under control of the other Central
Computer System. For example, if information is to be
transferred from computer A to computer B, the se-
quence of transfer is first from core memory A to the
IC drum field associated with computer A. This field
is referred to as the IC (own) field. Then, the informa-
tion is read from this field under the control of com-
puter B into core memory B. When computer B reads
the IC field, it is said to be reading the IC (other)
field. In normal operation, we read and write on the
IC (own) fields, and read the IC (other) field. In
addition, it is possible for one Central Computer System
to read its own IC (other) field for test purposes. It
should be kept in mind that there are only two physical
IC drum fields, but they represent four logical drum
fields to the two Central Computer Systems. Figure
4—2 shows the relationship of the IC fields within the
AN/FSQ-7 and AN/FSQ-8.

2.2.2 Selecting the IC Drum Fields

2.2.2.1 Select IC (Other) Field
The IC (other) field is selected by an SDR (16)
instruction. This prepares the IC (other) field for a read-

READ (TEST)

3-112-0

Selecting IC Fields
221-223

ing operation only. If the SRD (16) is executed in com-
puter A, the IC drum field in computer B is selected
for reading. The SDR (16) instruction requires 12 psec
to execute and may be indexed.

2.2.2.2 Select IC (Own) Field

The IC (own) field is selected by an SDR (26) in-
struction. This instruction will prepare the IC (own)
field for a reading or writing operation. Information is
usually written on the IC (own) field by one Central
Computer System for reading by the other Central Com-
puter System. However, the ability to read the IC
(own) field enables it to serve as a type of auxiliary
drum storage for intercommunication information, if
so desired. The SDR (26) instruction requires 12-psec
execution time and may be indexed.

2.2.2.3 Select IC (Own Test) Field

The IC (own test) field is selected by an SDR (76)
instruction. It is used to prepare the IC (other) field for
a reading operation; however, the RDS instruction is
given by the Central Computer System which contains
that particular IC drum, and the information is read
back into the same Central Computer System to form a
test loop. Thus, the SDR (16) and the SDR (76) in-
structions actually select the same drum field, but in the
case of SDR (16) the field is selected by the other
computer, and in the case of SDR (76) it is selected by
the same computer. By referring to figure 4—2, it can
be seen that computer A can place information on its
IC (own) field, and then obtain this same information
from its IC (other) field for test purposes. The SDR
(76) instruction is indexable, and requires 12 psec to
execute.

2.2.3 Programming IC Transfers
Assume that we wish to make a normal information
transfer from the active computer to the standby com-
puter. In this and the following examples, we will as-
sume that computer A is always the active computer
and that computer B is always in standby. It is important

READ

wc !

COMPUTER

Ic ic COMPUTER

1c
(OWN) | (OTHER)

A
FIELD | FIELD

(OTHER)| (OWN)
FIELD | FIELD

B

READ (TEST)

Figure 4—2. Relationship of IC Drum Fields

17

Programming IC Transfers
223

to keep in mind that a program will be running in
computer B as well as computer A. A program to trans-
fer one drum field of information via the IC drums is
shown in figure 4-—3.

The IC (own) field of computer A is selected by
the SDR (26) instruction, and we transfer 400053 words
to the drum. The first word is obtained from memory
location 0.01000 and is transferred to drum register 0000.
As soon as the IO transfer is started, an SDR (02)
instruction is given to cause an IO pause while the
transfer is taking place. When the IO transfer is com-
pleted, the SDR (02) instruction will be executed. (Ac-

COMPUTER A

START

SELECT IC(OWN)
200 SDR(26)0000

LOAD IO
ADDRESS COUNTER
201 LDC 1000

START DRUM
TRANSFER
202 WRT 4000

|

PAUSE UNTIL DRUM
TRANSFER COMPLETE
BY SELECTING
ANOTHER FIELD
203 SDR (02)

.

TURN ON 1IC

FLIP-FLOP IN
COMPUTER B
204 PER (i0)

l

CONTINUE

3-112-0

PART 4
CH 2

tually, internal operations could take place during this
transfer, if desired.) After that, we set intercommuni-
cation flip-flop 1 in computer B to notify it that the
drum field has been loaded, and that computer B may
obtain the information. While this program is running
in computer A, computer B is in an idle loop, sensing
the status of its intercommunication flip-flop 1. When
the flip-flop becomes set by computer A, the branch con-
dition at step 0.00120 of the program running in com-
puter B is satisfied. The IC (other) field is then selected,
and the information is read in core memory of computer
B, starting at location 0.03500. Immediately after the

COMPUTER B

START

1C TRANSFER
COMPLETE P
(20 BSN{43) 122

NO YES

—

SELECT
IC(OTHER)

BRANCH

f21 BPX 120 122 SDR(16) 0000

LOAD IO ADDRESS
COUNTER AND
START TRANSFER
123 LDC 3500
124 RDS 4000

SELECT IC(OWN)
125 SDR(26)0000

\

LOAD 10 ADDRESS
COUNTER AND
START TRANSFER
126 LDC 4100
127 WRT 4000

l

CONTINUE

Figure 4—3. Intercommunication Routine

18

PART 4
CH 2

40005 words are in core memory, computer B places
them on its IC (own) drum field to be stored. This
can be done because the normal transfer of information
from one Central Computer System to another is from
the active machine to the standby machine. Therefore, the
IC (own) field of computer B may be used as an auxiliary
memory drum field.

If we wish to petform a check on an IC drum, we
can form a loop and compare the information in one
Central Computer System. Since this is a test procedure,
it would normally be performed on the standby com-
puter. For example, if we wish to check the information
transfer and drum storage capabilities of the IC drum,
we can use a program similar to the one listed in table
4—10.

This program will load the IC (own) field with
40005 words taken from core memory locations 0.16000
through 0.21777. Then the SDR (76) instruction enables
the same machine (computer B in this case) to read the
information back into memory, using the circuitry which
would normally be used by computer A. This informa-
tion is transferred to locations 0.02000 through 0.05777:
Thus, if this information transfer has been made cor-
rectly, we should have two identical blocks of data in
core memory. These two blocks of data are compared
word by word by use of the CMF instruction. As long
as the words compare, we will select another word. If,

3-112-0

Programming IC Transfers
223

for some reason, the words do not compare, the pro-
gram will come to an error halt at location 0.00563.

TABLE 4-10. INTERCOMMUNICATION TEST LOOP

LOCATION OPERATION ADDRESS

©0.00550 SDR (26) 0.00000
0.00551 LDC 0.16000
0.00552 WRT 0.04000
0.00553 SDR (76) 0.00000
0.00554 LDC 0.02000
0.00555 RDS 0.04000
0.00556 BSN (14) 0.00556
0.00557 1 XIN 0.03777
0.00560 1 CAD 0.16000
0.00561 1 CMF 0.02000
0.00562 BPX 0.00564
0.00563 HLT —
0.00564 1 BPX (01) 0.00560
0.00565 HLT -

19

PART 4
CH 3

3-112-0

Information Storage
3.1-3.21

CHAPTER 3
PROGRAMMING CARD MACHINES AND TAPES

3.1 INTRODUCTION

This chapter discusses the programming principles
that are used in connection with the IO devices that
are logically a part of the Central Computer System.
The units that will be discussed are:

Card Reader (IBM Type 713)
Card Punch (IBM Type 723)
Line Printer (IBM Type 718)
Magnetic Tapes (IBM Type 728)

The card reader is used to load programs and data
into the Central Computer System. The card punch and
the line printer are used to check out programs (by either
punching information on cards.or by printing informa-
tion on paper) that are stored in memory. The punched
cards or the printout can then be visually checked by a
program. The magnetic tape unit is used to store large
blocks of information in a very small space.

The tape unit is the only device discussed in this
chapter that can be written on or read from by the
Central Computer System. The other devices (reader,
punch, and printer) function in only one direction; the
reader presents information to the computer and the
punch or printer receives information from the com-
puter.

3.2 INFORMATION STORAGE

Information that is contained in the various IO
devices appears in many different forms. Before a pro-
grammer attempts to write a comprehensive IO program,
a knowledge of the way information is stored in each
device is helpful.

3.2.1 Punched Cards

The basic IBM card contains 80 vertical columns of
12 rows each. (See fig. 4—4.) Any information punched
on such a card is binary in form since the presence or
absence of a punch in a particular position is equivalent
to a 1 ora O in that position. Although an IBM card
can hold 960 binary bits (80 x 12), its use in storing
purely binary information has assumed importance only
with the advent of binary digital computers. The card
was originally designed for storage of decimal and al-
phabetical information. The designations of the rows as
numeric or zone rows are derived from this original
use of the card. For example, a decimal digit can be
stored in each column of the card by placing a punch in
the numeric row of that column corresponding in value
to the value of the decimal digit to be recorded (or in
the 0 row if a 0 is to be recorded). In effect, the deci-
mal digit is represented within the column by using a
vertical positional notation of its magnitude; ie., a 6

IDENT IFICATION INFORMATION
FIELD FIELD
(4 . N A N
12 ROW //
ZONE J) grow
ROWS
0 ROW 0000000'0000000U000000000000"00
'Z3l557."U“‘2‘3“|S|5"VU‘52‘)1|27232‘157571181!303'3233.!435]8]7]0JQM‘I‘!‘J“‘S‘S"‘!‘!W")'5?53545556575559605‘5263“555557“59707‘72737‘7575771"!”
- ||11Hl|l|ll||lll“lllllllllll‘l|Ill|ll|l|l|l|‘|ll!|lllll!lllll‘llll||||111l||l?
222222222222222'1222222222222222122
333333333333'33
NUMERIC 44‘44444‘44‘4444444444444444444‘44444444444444444&44‘4444444444444444444444444444
ROWS } 55
v 5536555555655665EGS5666666566566566556656665555655556566668665658556555566655556
7777777?777777771771771777777777777777777777777771777777777777777777777777777777
3883388888888888888888088888880BB838BB888883838388888388088888088888833888888888
- 999999999999 995999999999999999993999 9899
1234567993012 WBIEN8 182021 222324 2526 27 29 29 30 31 31333‘3535373339W‘IQZ‘J“‘-’)‘S"‘BWW.’H51535‘5555575‘59505‘576]5‘5555!1“59’0"72737‘7575”"79"
1IBM 5081

Figure 4—4. IBM Card Showing Hollerith Code Zones and Field Division

121

Punched Cards
3.21-3.2.1.2

can be stored in column 10 of the card by punching the
6-row of column 10.

Alphabetical characters are stored on an IBM card
with two punches per column; one punch in a zone row
to indicate selection of one-third of the alphabet and
one punch in a numeric row to indicate which letter
within that third is represented. Thus, the letter A is
indicated by a punch in the 12-row and the 1-row, the
letter N by a punch in the 11-row and 5-row, and the
letter T by a punch in the 0-row and 3-row. In addition
to letters, 12 special characters are indicated by either
a single punch in a zone row punch, or a zone row
punch plus two numeric row punches. The coding for
all of these symbols, known as the Hollerith code, is
shown in table 4—11. '

TABLE 4—11. HOLLERITH CODE FOR
PUNCHED CARDS

ZONE ROW
NUMERIC ROW NONE 12 11 o0
None + = 0
1 1 A]/
2 2 B K S
3 3 C L T
4 4 D M U
5 5 E N A%
6 6 F O W
7 7 G P X
8 8 H Q Y
9 9 I R Z
8&3 + $)
8&4 - o * %

Using Hollerith code, up to 80 alpha-numeric char-
acters may be represented on a single card with one
character per column. The card machines associated with
the Central Computer System can utilize only 64 col-
umns on each card for storage of information introduced
into or received from that system. Specifically, columns
17 through 80 of each card are used for this purpose.
(See fig. 4—4.) Columns 1 through 16, while not nor-
mally available to the Central Computer System, are
used for card identification which allows processing of
punched cards by machines independently of the Cen-
tral Computer System. In general, the information field
of a card is further subdivided in accordance with the

122

3-112-0

PART 4
CH 3

type of information presented on it. The subdivisions of
the information field are discussed in connection with
each of the three basic card forms. These are:

a. Instruction card
b. Binary card

¢. Octonary card

3.2.1.1 Instruction Card

The card form on which most programs are pre-
pared for initial insertion into the Central Computer
System is the instruction card. Each instruction card may
contain one instruction in alpha-numeric form plus com-
ments to clarify the function of that instruction within
a program. The location field on the card specifies the
storage location of the instruction. The instruction field
contains the operation code in mnemonic code form
and the index indicator and auxiliary bits in octonary
form. The address field specifies the contents of the
address half of the instruction. The identification field
contains program identification and the preparation
date. (See fig. 4—5.)

It should be noted that a program presented on
instruction cards cannot be executed directly by the
Central Computer System. The program must be trans-
lated from its alpha-numeric form into binary form be-
fore it can be executed.

3.2.1.2 Binary Card

The binary card utilizes the binary nature of
punched cards in storing information. The identification
field, whose contents are identical with the identifica-
tion field of the instruction card, is the only field on a
binary card containing information in Hollerith code.
All information on the information field of the binary
card is in binary form. (See fig. 4—6.)

Since there are 64 columns within the information
field of the binary card, each row contains two Central
Computer System words. To distinguish between the two
words in a single row, the word in columns 17 through
48 is called the left word while the word in columns
49 through 80 is called the right word. Another means
of differentiating involves describing the former as the
word in 9-row left and the latter as the word in 9-row
right, where 9 specifies the row in which the two words
are found.

Although the total capacity of the information field
on a binary card is 24 binary words, usually no more
than 22 instruction words are’placed on one card. The
remaining space is taken up by control information
which usually requires one full row within the infor-
mation field. In certain applications of binary cards,
another full row is used for control information, thus
restricting the capacity of the card to only 20 words.

PART 4
CH 3

In either case, program storage on binaty cards
offers two advantages over program storage on instruc-
tion cards. These are (1) binary cards contain more
words per card than instruction cards, and (2) the
words appear in a form which allows their direct execu-
tion. It is for these reasons that an assembly program
(one which translates instructions from the form in which
they are presented on instruction cards) produces a
binary deck as its output.

3.2.1.3 Octonary Card

The third type of card used with the card machines
of the Central Computer System is known as an octonary
card. The octonary card has an intermediate value in
capacity and usefulness between the instruction card and

3-12-0

Octonary Card
3.21.2-3.213

the binary card. Like the instruction card, program words
inserted on octonary cards, must be translated by the
Central Computer System before they can be executed;
like the binary card, the octonary card carries more than
one word. In general, octonary cards are used for inser-
tion of short programs which can be prepared conven-
iently in octonary form. They are also used for insertion
of patch routines, short sequences of instructions to be
added to a program being assembled from instruction
cards.

The octonary card contains an identification field
whose contents are identical with those of binary or
instruction cards. The information field of the octonary
card is divided into several subfields. Four of these sub-
fields can each contain one full computer word in

+ +
INSTRUCTION

LOCATION ADDRESS

N

COMMENTS

3
2
i
z
3
g
0

0000000000000000[o{olo0000{0000i00{00D NG
12345 678 510102131415 16[v7|1el18 20 20 22 23| 24lzs 26 20128 20f30j3t 32 39 4 3
|I|IIH|IIIIHIIH;|IHll:llll!llﬂllll
|
|
2212222222222222221222222'222|222l22222
|
333333333333333333:333333|333:333|33333

l‘t44444444‘l44444:444444:444:444:44444
5555555555555555551555555|555|555:55555
EGSBGBSGESEEGEE565:655666:856:566166586
77717771777771777“777777&177:777}77117

000
36 37 38 39 40 414243 44 4546 4748 49 50 51 5253 54 56 56 57 58 59 60 61 6263 64 6566 67686970 11 1273 1 7576 77 18 79 80
|[ER R AR R R R R R R R R R R R R R AR R
2212
333333233333333333333333333333333333333333333

4444444444444444442444444444444444444444448444

Q¥YD NOILONULISNI

5555555555555555555555555565555556556555556855
666
TI11711117 1017070711110 7700701111117111111171111)
8863869880889808888808888808880888088088888888888888

9999999999
12314567838
M

l
888888880888858BB&N&BB&MBBB;BBG:&BBSB

B

99ls99939s'999lasslaageg

70819 20 21 22 13/‘1‘1119 % zvllu 2030131 3233 4 3

99999999993999999999999999899999
P} Ll

515253545556 5758596061 6263646566 6T BARI DN 1273 M TSI 11 18 79

L1

INDEX >
INDICATOR — 7/ \

/ AUXILIARY
OPERATION / BITS
CODE E—

Figure 4—5. Instruction

Card

00006000000000000
R R R R ERRRRE]
2222222222222222
3353333333333333
4444444444444444
5555555555555555
6666666666666666
1T1711717117111111111
88888838888888888
LEER]

1234

99999

11213141516

9889
7
3

838
83648

im‘p
® 5w

“u00,000000000000+000,000000060000

*]000!0IHIIUODlﬂllﬂI000[+|00D!UOUIDUDIUUD;OOU
| |
+1BU8]000100BIB001000|+E000!0001000:0001000
[[| | I
+'noo-uuowoumuoiuuo|+lnnmuouloun|uuomoo
t2 3|4 5 B|7 8 9lien |2||1|‘|5$ 12 3“ 5 5[7 8 5|10ﬂ 12]!3!4!:

+|000100010D0100OIU00+;00010001000}000|000
| | | | | i |
+|00Nﬂ00|0DD|00UIB00'+[000'000l00010001000
|
+10001000:UI'lBlﬂﬂ0:000]*}000:000:000[000[000
+lﬂﬂU|000|000’00ﬂlﬂl]U|+1000|ﬁﬁl!000|000|(]00
slvaspasslioshonepuns Sl 2 ale s 6l7 8 spionazbans
*IUUUIGUU!OUD:UUU'UUUI IOOUIUGU{UUD:UON‘NO
U]
+]000|000!00GIU00'000:*1000[000000“]00:000
|
+000l0001000:000=000] !I]OUlUODIUl!I]IUBOIUUU

+'ouu!uumuoumuuuuo' 'numoonloooiuuamuu

17118 19 20121 22 23|24 25 26127 22 28130 31 32a3]4 35 36137 38 9140 41 42M43 44 45165 47 48

\
,DUDKOBGIGOOIDDOOOB‘ |000|000000|0001000 \

+|000I000|ﬂ 0 01000!000“’&00!0 0 UI!] 0 0&00 0[0 60
| b I
v]DDUGﬂUlOODIOﬂBIUOGH’DUU!UDDIUOU{UDUWOD
[| | [| | |
!800100050ﬂBlDBUIUUﬂ]*;OOO‘OOBOOO!UUUWDD
S 123|145 86]783j91¢ Z|IJ|41SIS'I 2 3!4 5 6" 8 §{10 11 12131415
:000“]00!00&000'000 BOOiGUUxUDOIDOUIOOU
o !
+0 0 ﬂlﬂ 0 Olﬂ 0 DIB 0 0’0001+]G 0 Biﬂ 0 0|0 0 Oll) 0 0[0 00

i

]0601090:000!000000|+1000‘000‘000'0 0“‘00

| |] |
+'G0010005000‘000|000’+|00DUﬂ(]‘ﬂM'M""OG
Sll 2 3|4 5878 9«!01112'!])“5[5 12314556178 9[!01’['1 415
+]000:000§0001000I000[]000:000;000!000:000

! |
un0:000\0001000;000'4000:0nuiunomﬂciooa

| |
*IDMIOU01000!0001000|+|000OUOIOUUKDOOIOUD
| | |

2 3dAl QHVD AMYNIB

+

&'OOIUUDDDOIOUUIGUBI lﬂﬂﬂlﬂﬂﬂlﬂﬂﬂlﬁﬂﬂ'(}ﬂﬂ
49

51 52183 54 5515 57 58158 60 61152 63 64165166 67 58169 70 72{72 73 1415 76 1717 79 @

Figure 4—6. Binary Card

123

Fig. 4-1

124

3-112-0 PART 4
CH 3

[i2-ROW LEFT | [2-ROW _RIGHT]

[1I~ROW LEFT | [I-ROW RIGHT]

[0-ROW LEFT I 0-ROW RIGHT]

[|-ROW LEFT [|-ROW_RIGHT 1

I 2-ROW LEFT [2-ROW _RIGHT]

[3-ROW LEFT I 3-ROW RIGHT]

[4-ROW LEFT [4-ROW RIGHT |

| 5-ROW LEFT | 5-ROW RIGHT]

[6-ROW LEFT [6-ROW_RIGHT]

[7-ROW_LEFT [7-ROW RIGHT |

{ 8-ROW LEFT l 8- ROW RIGHT J

(9-ROW LEFT [9- ROW RIGHT J

I8M CARD
MEMORY LOCATION X [9-ROW LEFT |
ST 9-ROW RIGHT)
x+2 [8-ROW LEFT]
X+3 | 8-ROW RIGHT]
x+4 [7-ROW LEFT]
x+5 | 7-ROW_RIGHT |
x+6 | 6-ROW LEFT |
x+7 | 6-ROW RIGHT]
x+8 [5-ROW LEFT]
x+9 | §5-ROW RIGHT |
x+10 | 4-ROW _LEFT |
X+ 4-ROW_RIGHT]
x+12 [3-ROW LEFT |
x+3 | 3-ROW RIGHT]
x+i4 [2-ROW LEFT |
X+15 | 2-ROW_RIGHT]
x+16 [I-ROW LEFT J
X+17 | I-ROW RIGHT |
x+18 | O-ROW LEFT |
x+19 [O-ROW RIGHT |
x+20 | 11-ROW_LEFT J
x+21 [| I-ROW RIGHT |
x+22 2-ROW LEFT J
x+23] 12-ROW RIGHT]
CARD IMAGE

Figure 4—7. Relation of Card Image to IBM Card

PART 4
CH 3

octonary form. The first eight columns within the infor-
mation field of the octonary catd contain control infor-
mation of the type contained in the reserved row of a
binary card and contain the assigned storage location for
the first word on the card. This location in absolute or
symbolic form is identical in function to the location
field on an instruction card. Only the location for the
first word on the card is specified; the remaining three
words are assigned locations in sequential order from the
specified location.

3.2.1.4 Card Image

When the contents of an IBM card are transferred
into the Central Computer System, they appear in a
form known as a card image. Figure 4—7 shows the
relationship between the words on a card and the words
in a card image. In effect, the card image in memory
contains the words from the card in the order 9-row
through 12-row. The word from the left half of each
row precedes the word from the right half of the modes
of operation of the card machines and the Central Com-
puter System; i.e., the card machines can handle 64
bits at a time while the Central Computer System can
handle only 32 bits at a time. Since the card image can
contain all the information from a card in a known
pattern, it is possible to program the Central Computer
System to interpret this information just as if the infor-
mation were still in the pattern present on the card
itself.

3.2.2 Line Printing

The line printer prints alphabetic and numeric
characters when supplied with information from the
Central Computer System. The information is stored
in core memory in card image patterns. The card images
are coded by using the Hollerith code. The Central
Computer must supply a card image (64 columns) to
print 64 characters on the printer. The printer prints
a line of characters at a time by simultaneously posi-
tioning all of the 120 type wheels. The type wheels
which are not supplied with information are internally
wired to print out blank spaces. A print wheel is shown
in figure 4—8. Notice that the numeric code used cot-
responds with the first nine rows on a card. The last
three rows (0, 11, 12) are referred to as zone rows.
By placing a 1 bit in the numeric row and a 1 bit in
the zone row any character on the type wheel can be
printed out.

3.2.3 Magnetic Tape
Information is stored on magnetic tape in the form
of small magnetized spots. A computer word is stored
on the tape in groups of five 7-bit characters and one
4-bit character. The bits of a computer word are always
positioned in the same place in the group (fig. 4—9).
Only six of the seven bits in a 7-bit character and only

3-112-0

Magnetic Tape
321.3-3.23

R, COMMA
2, 9 /_

DECIMAL
$ /_

ZERO
“% _o (START)
D

Figure 4—8. Type Wheel, Pictorial Diagram

TAPE TRAVEL

WORD
s A Al
CHARACTER

—
tsf sl el refl rell ris]}
ull R vl Rl el mis
L2l el uvsll rel ro] PJ
T]
L] wll usf rs R Ir.:
.
|

SYNCHRONIZING
CHANNEL

sl vof] rsff rel] rizf] il EEI:)%%F
s ull =R s rsf] [.J
| M

Figure 4—9. Tape Word Bit Positions

three of the four bits in a 4-bit character contain infor-
mation. The remaining bit down the center of the tape
is used for synchronizing the tape drive to ensure correct
tape reading or backspacing.

A group of characters is called a word; a word or
many consecutively -written words is called a record;
and information is transferred to or from the tape one
record at a time. The record can contain any number
of words up to the physical limits of the tape. A group
of consecutively written information records on a tape
is called a file. A file thus is defined as the physical
portion of the tape that is usable for storage. The tape
can contain more than one file (this again is determined
by the programmer). The three bits in the first character
of figure 4—9 (enclosed by dashed lines) can be written
at any point, and these bits determine the physical size
of a file. The normal operation of the tape is to pro-
gram only one file; hence, the end-of-file (EOF) record
would occur only once. '

125

Programming Techniques
3.23-3.3.25

There are two reflective markings on the tape which
are sensed by a photomultiplier tube. One mark, the
load point (LP), indicates when the tape is in position
to be written on or read from; the other mark is placed
approximately 14 feet from the end of the tape and
indicates the end of tape (EOT). If an operation is in
progress (reading or writing), it will continue over the
end-of-tape mark, but no new operations will occur
after the mark is sensed.

During a rewind operation the load point is the
control that stops the tape drive in a position to start
reading or writing.

3.3 PROGRAMMING TECHNIQUES

3.3.1 General

The card machines and tapes associated with the
Central Computer System of the AN/FSQ-7 and AN/
FSQ-8 are programmed in the conventional manner. All
units to be involved in an IO operation with the Cen-
tral Computer System must receive the basic sequence of
SEL, LDC, and RDS or WRT instructions. In addition,
it is possible to check the status of each unit selected
to see if it is ready to participate in an IO operation. The
checking of each unit is performed in basically the
same manner; however, there is some vatriation among
the machines as to what constitutes a ready condition.
For this reason, the check for the readiness of each
machine will be discussed separately.

3.3.2 Card Reader

3.3.2.1 Description

The 713 Card Reader, shown in figure 4—10, allows
the insertion of information from punched cards directly
into the Central Computer System. The card reader
reads a card a row at a time within a cycle of 400 ms,
with a maximum reading rate of 150 cards per minute.
Only columns 17 through 80 of each row are read,
allowing the storage of the information from one row
within two Central Computer System words. The read-
ing of a card 9-row first produces a card image in core
memory. Approximately 15 ms elapse between the read-
ing of successive rows on a card. The remaining time
within the card reader cycle is used to move the card
into and out of the reading section of the card reader.

3.3.2.2 Selection

The card reader is selected for reading only by a
SEL (01) instruction. As a rule, it is desirable to execute
this instruction before an LDC instruction is given, so
that the card reader will have sufficient time to send
the ready signal to the Central Computer System before
the check for readiness takes place. When the SEL (01)
instruction is given, all other IO devices are deselected
and remain so, until another SEL or SDR instruction is
given.

126

3-112-0

PART 4
CH 3

3.3.2.3 Sense for Card Reader Not-Ready

The card reader can be checked to see if it is
ready for an IO operation by execution of a BSN (11)
instruction. The term “card reader ready” means that
the card reader is capable of transferring information
to core memoty immediately upon receipt of an RDS
instruction. To be in a ready state, the following condi-
tions must be satisfied:

Card reader must be under computer control.
. Card must be ahead of the read brushes.
Card stacker must not be full.

- s

. Power must be on.

o a0

 Fuses must be intact.

If all of the above conditions are not present, the branch-
ing condition for the BSN (11) will be satisfied. How-
ever, a BSN (11) instruction should not immediately
follow a SEL (0I) instruction, since this will result in
the status of the card reader being checked before it
has time to indicate whether it is ready or not. For this
reason, the desired sequence of instructions when pro-
gramming the card reader is:

a. SEL (01)
b. LDC (with desired address)
c. BSN (11) (to desired location)

Execution of the LDC instruction in between the SEL
(01) and BSN (11) instructions will provide sufficient
time for the card reader to indicate its status.

If the BSN (11) instruction is not used when pro-
gramming the card reader, and the card reader is not
ready, execution of the RDS instruction will cause an
IO hang-up since the IO interlock will be set and cannot
be cleared.

3.3.2.4 Reading

When an RDS instruction is given to the card
reader, it must be remembered that usually only 24,
binaty words are contained in one card; therefore, exe-
cution of an RDS 30 instruction will cause the contents.
of one card to be completely read by the card reader and
transferred to core memory. If the RDS instruction does
not specify that some multiple of 305 words be read,
only as many words as are specified will be transferred
to core memory, but an entire card will always be read.
Thus, if we executed an RDS 45 instruction, only 454
binary words would be transferred, but two entire cards
would pass through the card reader. Also, if the RDS 0,
instruction is given, one card will pass through the
reader without having any words read from it.

3.3.2.5 Program Example

A typical program utilizing the card reader to ob-
tain information is given in table 4—12.

PART 4
CH 3

3-112-0

Card Punch
3.3.25-3.3.3.1

Figure 4—10. Card Reader, Type 713

After the card reader is selected, and the starting
address in core memory has been loaded into the 10
address counter, we sense the status of the card reader.
If the reader is not ready for use, the BSN (11) will
branch to itself, and the program will continue to loop
at this step until the card reader becomes ready. Then,
the RDS instruction will be executed, and the program
will halt after all 3005 words (10 binary cards) have
been read into core memory.

3.3.3 Card Punch

3.3.3.1 Description .

The 723 Card Punch, shown in figure 4—11, allows
the Central Computer System to present processed in-
formation in punched card form. The card punch has
an operating cycle of 600-psec duration, allowing a maxi-
mum punching rate of 100 cards per minute. Since the
card punch normally punches only columns 17 through
80 of each row, the Central Computer System must

121

Card Punch, Description
3.3.3.1-3.3.34

TABLE 4-—12. CARD READER TRANSFER ROUTINE

LOCATION OPERATION ADDRESS
0.00325 SEL (01) -
0.00326 LDC 0.27500
0.00327 BSN (11) 0.00327
0.00330 RDS 0.00300
0.00331 HLT -

supply two words for each row. The order in which
the card punch handles a card, a row at a time and the
9-row first, requires the preparation of a card image in
core memory in order to have punched information ap-
pear correctly on a card. Approximately 42.8 ms elapse
between the punching of successive rows on a card.
The remaining time within the card punch cycle is uti-
lized in moving the card into and out of the punching
section of the card punch.

Unpunched cards of the desired type are placed in
the card punch hopper, face down with the 9-row to
the right. When the punching of a card is called for by
the Central Computer System program, the card is
moved, bottom edge first, between the punches and the
dies. The card is punched in a particular column of the
row under the punches if the words from the Central
Computer System contain a 1 in the bit position corre-
sponding to that column.

After the card passes through the punching sta-
tion, it goes to a reading station. The card punch can,
under program control, connect the punch brushes,
reading columns 1 through 16, to the punch magnets
over the corresponding columns. With this provision,
the information in columns 1 through 16 of a newly
punched card can be duplicated by gang-punching on
the next card passing through the punch station. A
programming provision also exists for switching the
inputs for the punch magnets over columns 17 through
32 to the punch magnets over columns 1 through 16.
Thus, the Central Computer System can place informa-
tion in the identification field of one card and then
have this information gang-punched on each succeeding
card. After a card has been punched and read by the
punch brushes, it is placed in the stacker from which it
- may be removed for storage or for reinsertion into the
Central Computer System through the card reader.

3.3.3.2 Selection

The card punch is selected for a writing operation

by the execution of a SEL (02) instruction. As with
the card reader, the SEL (02) instruction should be the
first instruction given in the sequence which will initiate

128

3-112-0

PART 4
CH 3

an 1O operation using the card punch. When the SEL
(02) instruction is given, all other IO devices are de- .
selected and remain deselected until another SEL or
SDR instruction is given.

3.3.3.3 Sense for Card Punch Not-Ready

Once the card punch is selected, it is usually desira-
ble to see if it is ready for an IO operation by executing
a BSN (11) instruction. This instruction will indicate
whether the card punch is electrically and mechanically
capable of participating in an IO operation. The func-
tion of the BSN (11) instruction is to check the existence
of the following conditions in the card punch:

a. Card must be ahead of the punching station.

b. Punch must be under computer control.

c. Stacker must not be full.

d. Power must be on.

e. Fuses must be intact.
If all of the above conditions are not present at the
time a BSN (11) instruction is executed, the branching
condition will be satisfied, and program control will be
transferred to the location specified by the right half-
portion of the BSN (11) instruction. As with the card
reader, 2 BSN (11) should ‘not directly follow the SEL
(02) instruction, so that the status check will not take
place before the card punch has time to indicate its
readiness. Therefore, the desired sequence for program-
ming the card punch is as follows:

a. SEL (02)

b. LDC (with desired address)

c¢. BSN (11) - (to desired location)
If the BSN (11) instruction is not used prior to initiating
an IO operation, executing a WRT instruction (which
sets the IO interlock) may result in an IO hang-up. If
the card punch is not ready, the IO interlock cannot
become cleared.

3.3.3.4 Writing

- Writing on the card punch is initiated by a WRT
instruction just as with all IO devices. Normally, only
columns 17 through 80 of the card are punched, enabling
the card punch to handle two computer words at a time.
Once the card punch has been started into its cycle, it
will completely punch a card, or as many words as are
specified by the WRT instruction. If less than 305 words
are punched, the card will be advanced after the punch-
ing operation is completed. Thus, it is not possible to
program more than one IO operation on the card punch
and have the results punched into the same card.

In addition to the normal punching operations that
can be performed on the card punch, it is also possible
to gang-punch, or to duplicate the same information in
more than one card. We use gang-punching to place
the identity of a programmed deck and various other

PART 4
CH 3

information in the identification field of a card (columns
1—16). Since normal operation of the card punch places
information in columns 17-80 only, it is necessary to
program the card punch to place information in col-
umns 1-16. This is accomplished by the use of a PER
(73) instruction. When a PER (73) is executed immedi-
ately after a WRT instruction, the information which
would normally be punched in columns 17-32 of the
card is, instead, punched into columns 1-16.

ﬁgm s
. o
§3“8 %‘;@gg&
.
m%gg

-
e
-
..
e zmgmm@m
-
i gm@ggg@%

e

gﬁgﬂw

3-112-0

- -
T
e

- r

Writing
3334

Once the identification field of a card has been
punched by the execution of a PER (73) instruction,
some provision must be made to duplicate this same infor-
mation in every desired card. This is accomplished
by the execution of a PER ('74) instruction, which causes
the punch to read the information in the identification
field of the card just punched and to transfer this infor-
mation to the punches controlling punching in columns
1-16. Thus, to gang-punch information in the iden-

Figure 4—11. Card Punch, Type 723

129

Program Examples
3.334-334.1

tification fields of a card deck, it is necessary first to
have a card image in memory, a PER (73) insttuction
to place the information in the first card, and a PER
(74) instruction to initiate gang-punching.

3.3.3.5 Program Examples

An example of the use of the card punch in a
normal IO operation is given in table 4—13.

TABLE 4—13. CARD PUNCH TRANSFER ROUTINE

LOCATION OPERATION ADDRESS
0.01504 SEL (02) -
0.01505 LDC 0.01200
0.01506 BSN (11)- 0.01506
0.01507 WRT 0.04540
0.01510 HLT - -

This program will punch the contents of memory loca-
tions 0.01200 through 0.05737 into a deck consisting of
100y cards. The BSN (11) instruction will cause the
program to loop continuously if the card punch is not
ready, until the punch is made ready. Then, after all
words have been punched, the program will halt.

As an example of gang-punching the identification
fields of a deck of cards, assume that the desired card
image is contained in memory location 0.00300 through
0.00327. We wish to gang-punch a deck of 50,, cards
with the information this card image represents. The
program to accomplish this is given in table 4—14.
The first SEL (02) and LDC instructions will prepare
the card punch to start its operations. If the BSN (11)
at step 0.07352 shows the card punch to be ready, we
initiate a writing operation of 304 ‘words (or one com-
plete card). Immediately after the WRIT instruction is
given, a PER (73) is executed which will cause punching
to take place in columns 1-16. It should be remembered
that punching will also take place in the other columns
if information is present. However, the usual process is
to have only the identification field of the first card
punched. To do this, zeros must be present in the card
image locations which would normally contain informa-
tion. We pause while the first card is being punched to
wait until the IO interlock is turned off. Another LDC
instruction will give us the starting location of the
information that is to be punched in columns 17-80. The
WRT instruction will initiate punching of the second

130

3-112-0

PART 4
CH 3

TABLE 4—-14. GANG-PUNCHING ROUTINE

LOCATION OPERATION ADDRESS
0.07350 SEL (02) -
0.07351 LDC 0.00300
0.07352 BSN (11) 0.07352
0.07353 WRT 0.00030
0.07354 PER (73) -
0.07355 BSN (14) 0.07355
0.07356 LDC 0.01000
0.07357 WRT 0.02260
0.07360 PER (74) -
0.07361 HLT -

card, while the PER (74) will start duplicating the
identity field of the first card into the second card.
Thus, we are gang-punching columns 1-16 of the 50
cards with the same information and punching columns
17-80 with the information contained in specified core
memory locations.

To further illustrate the relation between the iden-
tity field of a card and the applicable core memory
card image, assume that the core memory locations
0.00300 - 0.00330 in the above problem contained the
values listed in table 4—15.

The punching from this card image which would re-
sult in the identity field is shown in figure 4—12. Memory
Iocation 0.00300 corresponds to the punching which
would normally be placed in columns 17-32 but is, in-
stead, placed in columns 1-16 by the PER (73) instruc-
tion. As previously explained, the columns of the card
which are to be left blank must be provided for by zeros
in the proper core memory locations. The half-words
actually used in punching the identity field (starting
with the 9-row) are in 0.00300, 0.00302, 0.00304, etc.

3.3.4 Line Printer
3.3.4.1 Description

The 718 Line Printer, shown in figure 4—13,
provides the means for the Central Computer System to
prepare information in printed alpha-numeric form. The

PART 4 3-112-0 Line Printer

CH3 33441
TABLE 4—15. CARD IMAGE FOR IDENTITY TABLE 4--15. CARD IMAGE FOR IDENTITY
PUNCHING PUNCHING (cont’d)
LEFT RIGHT LEFT RIGHT
LOCATION HALF-WORD HALF-WORD LOCATION HALF-WORD HALF-WORD
0.00300 0.20004 0.00000 0.00317 0.00000 0.00000
0.00301 0.00000 0.00000 0.00320 0.04001 ‘ 0.00000
0.00302 0.10004 0.00000 0.00321 0.00000 0.00000
0.00303 0.00000 0.00000 0.00322 0.02017 0.00000
0.00304 0.04777 0.00000 0.00323 0.00000 0.00000
0.00305 0.00000 0.00000 0.00324 0.01101 0.00000
0.00306 ‘ 0.02104 0.00000 0.00325 0.00000 0.00000
0.00307 0.00000 0.00000 0.00326 1.77577 0.00000
0.00310 0.01024 0.00000 0.00327 0.00000 0.00000
0.00311 0.00000 0.00000
0.00312 1.77404 0.00000

line printer prints a line at a time by the simultaneous
positioning of as many of its 120 type wheels as is
0.00314 0.20177 0.00000 possible within one card cycle of 400 ms. The normal
printing rate of the line printer is 150 lines per minute
of 64 characters each. The Central Computer System
0.00316 0.10101 0.00000 must normally supply a full card image for each line of

0.00313 0.00000 0.00000

0.00315 0.00000 0.00000

+|UI]I]ll)ﬂlllﬂl)(l;llﬂolﬂl)llﬁpum00][1001000,000+|ﬂﬂﬂ,lll}B|00l)|000‘900;+|000,0ﬂl)'ﬂﬂﬂlﬂl]ﬂ]ﬂﬂl;\\
+Eﬂ00!:000%0001:000{0005+1000i00UEDUOEOOOEOM410005000100“000500Oi*iﬂﬂﬂiﬂﬂuiﬂﬂoiﬂﬂﬂiotl0
joooomoo0c00000¢0 +,000il]l]01000|0l]0|00|+|00l3l000|l1001000l000+|000I000|000|0001000[*|000|000160ﬁ|0061000
‘*:ﬂﬂﬂil]IIU:UDOIUUl]:lll)ﬂ|+|0l)050il[llﬂl)0;0GO:OM‘f:OO0:000;000:000;000|+|000:000;000:000;00ﬂ

s 1 ZSI‘55’7!9'“"!2['314153! 23!456[709’15“‘2!!3“153‘23]455i7 8'9'10“ !21]3“155|123|¢56!789H01]‘12113“l5
+:0 Goiooo0igooloooioo B|+:ﬂ ooloo 0!0 0 0;0 6010 OD‘F}U 8 0;0 0 0:0 6oi000i06 Ui*iﬂ 0 0;0 60I0GBIBE G:ﬁ 60
| I | | | t | | | ! |
+:0 ggisoolo 00:0 0 0;0 0 0;*10 0 0:0 gologoige 0:000 +000100 0;0 0 0:0 00i60 (H*'}D 0000000 ﬂiﬁ goleoo
| | 1 | i i 1 1 i

!
44+'00B}ﬂUB;OUNUBOillﬂﬂﬂllﬂﬂﬂiﬂﬂﬂillﬂB;BOmﬁﬂﬂﬂﬂOﬂ}OOD:Bﬂﬁ!ﬂﬂ500E,ﬂi}ﬂﬂiﬂﬂﬁ!ﬂﬁﬂluﬁﬂlﬂﬂﬂ
P b | ooy I
55/+1000/000/0000001000;+/0 00500100 0i000/000/+lo0olooowoolooopoolysooinosioosiooonos
si1 2 3'4 §68i{7880I0M IZ[!SNISS! 23les56l789en l2|1.9|”5$ 12 3" 5 3]7 8 Shll" lZ'liM!i[S 12 3!! 58(78 SIWH 20131418

66/+/000100 050] 0{0 0 U{B 0 0:+'0 0 0:0 0 0: 0 0:0 0 0:0 ooj+ooolso 0:0 0 l]:ﬂ 0000 0|+i0 0 0:0 0 0:0 0 0;0 U 0}0 6o
!

Lo !
il+ponmnnmunpuuwonhMOoPunmnomuoPooo
[b
|

2 3dAL Q¥VD AMVNIZ

0001000!000:000:000'”000;000:000180ﬂlﬂﬂﬂ
| | i

| ! I |
] KR *lﬂ [} 0{0 00i0 00:0 IR] Bi+|0 D0i000ci000l000l000/+/600i000l050!00I00 0j+{0 polo00i0goI00000E
} | i | | | |
9949998999999 99*50(‘0[00'000“}30'0Uﬂ‘+|00m(!905035300'}!000 +lﬂ00‘000100050005036'*”00019055033300{“600
123458789100 1263015 15417118 19 20l21 22 20024 25 26127 28 20130 31 22053136 25 36130 33 35 MG 41 42143 44 ¢5145 47 8 leals0 51 52153 54 55156 57 58150 60 51162 63 ealuses €7 saren 70 1 v2 13 valms 6 TR TS &6
IBM 836488

Figure 4—12. Card Punched in Identity Field
131

Line Printer, Description
3.34.1-3342

64 characters. As can be seen by referring to the type
wheel shown in figure 4—8, all characters selectable by
Hollerith code are arranged on the type wheel numeric
sectors with the four characters within each sector se-
lectable by the zone indication.

At the start of a print cycle, all 120 wheels are
lined up with the character 0 in printing position. All
the wheels begin rotating as soon as information is
supplied to their positioning controls. The information
applied to the positioning controls of each type
wheel arrives in the order used in reading one column

SRR
R,
e
x{i@w%‘

.
e
e

s
-
19l
.

s
i

i
i

s
i

=

.
e
= ”?a i

.
-
.

-

S
Siw

n

e

o

s
-
.

e
P

s
=

S
: ﬁ;n%%@@@
B

i
.
o

2

-
o

&

i
e
i

i i
e e
e
.
.
mamE g

S . o
o
%@%&ﬁm@w :
-
. o
2 Lie
P el
. . e “ﬁ%@ﬁ%%%‘?Mf@
o - P e
o . -
et . R e s e
... . . .
Lo .-
i i sEm e e
oo .
N

-
fnﬂ&é

-
-
o

S
:

e
-
-

i
i
o .
. %x@ S‘%}%’@@
o
-
B
e

=

&
s

3-112-0

PART 4
CH 3

on a punched card; ie., 9-row, 8-row, etc., and then
0-row, 11-row, and 12-row. When a bit is encountered
in a numeric row position, the print wheel starts turn-
ing at a constant speed. The presence of a zone bit will
slow the print wheel down so that printing of the
character selected by the combination of bits can be
obtained.

3.3.4.2 Selection

The line printer is selected for a writing operation
only by the execution of a SEL (03) instruction. The

o— S — ; .
- - ey
e .
e . -
e - . e
- . L e
i ' ... -
2 omER S e 0
.-
e e
.

2
GEEeE e
E%m%%’%@@sm% -
i @;sﬁ??;%@s;mﬂ
e i
e o
gt i -
o Te
L
e e
» i i -
e
..
o LamEE
: -
i
el
e

mo
aEE
e

nm
.
.

i S
Lo
f oo i
.
e

Figure 4—13. Line Printer, Type 718

132

PART 4
CH 3

sequence of instructions used to initiate a printing oper-
ation is basically the same as for the reader and punch;
it is desirable to execute the SEL (03) instruction first
so that the printer can indicate its status to the Central
Computer System if a BSN (11) instruction is given.
The SEL (03) instruction will deselect all other IO de-
vices until another SEL or SDR instruction is given.

3.3.4.3 Sense for Line Printer Not-Ready

It is possible to check the status of the line printer
once it has been selected by a BSN (11) instruction.
To be in a ready condition, the following conditions
must exist:

Forms to be printed on must be in the printer.

. Printer must not be in TEST status.

. Printer carriage must not be stopped by a CAR-
RIAGE STOP pushbutton on the printer.

e. Power must be on.

a.
b. Printer must be under computer control.
c
d

f. Fuses must be intact.

g- Line printer control panel must be in place and
PR ON Hub wired.

If any of the above conditions are not present, a branch
of program control will occur. The BSN (11) instruction
should not immediately follow a SEL (03) instruc-
tion, so that an erroneous branch will not take place.
Thus, the desired sequence for operating the printer is:

a. SEL (03)

b. LDC (with desired address)

¢. BSN (11) - (to desired location)
If we attempt to write with the printer when it is not
ready, the IO interlock will become set and cannot be
cleared.

3.3.4.4 Writing

Writing on the printer is initiated by the WRT
instruction, and the printing takes place in accordance
with the number of words supplied to it. If a WRT 0,
instruction is executed, no information will be printed
out, but the line printer will advance the paper form
one line.

The appearance of the information printed on the
line printer is controlled largely by the wiring of the
printed control panel. For this reason, no definite
rules can be formulated concerning the initiation of an
10 operation other than to state that the execution of a
WRT instruction will cause the printer to start a print
cycle. In addition to the actions which normally occur
during a print cycle, a provision is made to program
pulses at certain exit hubs on the line printer control
panel. These hubs are pulsed by a PER (51) — (62)
instruction. For example, execution of a PER (51) in-
struction will cause a pulse to appear at exit hub one
approximately seven milliseconds after execution of the
instruction. The control panel may be wired from this

3-112-0

Writing
3.3.4.2-3.35.1

hub to perform a variety of printer operations. The re-
maining print exit hubs that can be pulsed under pro-
gram control operate in the same manner.

3.3.4.5 Program Example

A basic line printer operation to print the contents
of memory locations 0.70000 through 0.70027 is given
in table 4—16.

TABLE 4—16. LINE PRINTER ROUTINE

LOCATION OPERATION ADDRESS
0.00450 SEL (03) —
0.00451 LDC 0.70000
0.00452 BSN (11) 0.00452
0.00453 WRT 0.00030
0.00454 HLT -

There are two line printer entry hubs which pro-
vide impulses to a set of sense entry hubs on the line
printer control panel in much the same manner as the
IO exit hubs previously described. It is possible to
sense these entry hubs by computer control and take
specific courses of action, if the impulses are present at
the hubs. These hubs are sensed by execution of a
BSN (31) or BSN (32), respectively. For example, if
an impulse is present on entry hub 2 and we execute a
BSN (32) instruction, the branching condition will be
satisfied and a branch of program control will take
place. It is not possible to list actions that will cause
an impulse to appear at the sense entry hubs since this
is controlled largely by the wiring of the line printer
control panel.

3.3.5 Magnetic Tapes
3.3.5.1 Description
-The 728 Magnetic Tape Drive units, shown in
figure 4—14, which are used with the AN/FSQ-7 and
AN/FSQ-8 provide long-term, slow-access information
storage. Unlike the card reader, card punch, and line
printer, the tape units can participate in both reading
and writing operations with the Central Computer Sys-
tem. The method of recording on tape is nondestruc-
tive, so that once binary information is recorded it may
be used indefinitely without re-recording.

The tape is fed through the reading and writing
heads at a rate of 75 inches a second. With a normal
tape length of approximately 2,400 feet, this means
that one entire reel of tape can be written on or read
from in about 6 minutes. The amount of information
that can be recorded on the tape reel is approximately

133

Magnetic Tapes, Description
3.35.1-3.3.5.3

the same as that which could be contained in 20,000
standard IBM 80-column punched cards. Thus, it can be
seen that storage on magnetic tape provides not only
faster access than do punched cards but also requires
much less space to store an equivalent amount of infor-
mation.

Three mechanical operations of the tape drive unit,
selectable by the program of the Central Computet Sys-
tem, are:

a. Move tape forward (read or write)

b. Backspace

c. Rewind

- The tape must be accelerated to the correct speed
before either writing or reading can begin. A normal
delay of 10 ms is allowed (with an additional 40-ms

e
s
s

e

Figure 4—14. Tape Drive Unit, Type 728
134

3-112-0

PART 4
CH 3

delay allowed if writing or reading begins from the
load point). Reading each word requires 324 psec with
a 150-psec delay after the last word of a record. Writing
requires an extra 150 psec, totaling 300 psec after the
last word. This time, which includes the time taken by
the tape in coasting to a stop, produces the blank space
denoting the end of the record.

A backspace operation moves the tape back over
one record, stopping the tape at the beginning of that
record. If the tape is in write status when the backspace
is given, the tape will move forward for 6 ms and will
take another 25 ms to shift into reverse before moving
backward. The record is read backward but is not sent
to the Central Computer System. Only the synchronizing
track is read to sense the beginning of the record.
When the beginning of the record is reached, 1 ms
elapses before the stop-tape signal is generated, and 2
ms elapse before the mechanism shifts into forward.
Twenty-five ms are required to complete the shift.

The rewind operation causes the tape to rewind
onto the file reel until the photoelectric cell senses the
load point. The tape stops and then shifts to forward
status.

3.3.5.2 Selection

There are provisions for as many as six tape drive
units with each Central Computer System. These tape
drives are numbered 1 — 6 and are selected by a SEL (11)
— (16), respectively. When a tape drive unit is selected
for an IO operation, all other IO devices are deselected
and remain so until another SEL or SDR instruction is
given. As in the case of the other machines, it is ad-
visable to execute the SEL (11) — (16) instruction prior
to the LDC instruction so that the circuit indicating
the status of the selected tape drive may have time to
stabilize.

3.3.5.3 Sense for Tape Unit Not-Ready

We can sense to see if a given tape unit is ready
to take place in an IO operation by the execution of a
BSN (11) instruction. To be ready for an IO operation
the following conditions must be present on the selected
drive unit:

a. Unit must be under computer control.

b. Transport mechanism must be loaded.

c. Tape must not be broken.

d. Light for photoelectric sensing of the reflective
spots must be on.

e. Power must be on.

f. All fuses must be intact.

g. Door of the unit must be closed.
If any of the above conditions is not present, the branch-
ing conditions for execution of the BSN (11) instruc-
tion will be satisfied, and a branch of program control
will take place.

PART 4
CH 3

3.3.5.4 Sense for Tape Unit Not-Prepared

There is another class of conditions which are
necessary foi the selected tape drive unit to take part
in an IO operation besides those listed above. These
conditions are as follows:

a. The tape drive unit is not in rewind status.

b. The tape drive unit has not sensed end-of-tape
or end-of-file marks or written end of file.

If either of these two conditions is not present (that is,

the tape drive is in rewind, or the end-of-tape — end-
of-file marks are sensed), the tape unit is considered
not prepared. The existence of these two conditions
may be checked with-a BSN (10) instruction. It should
be emphasized that a selected tape drive unit may be
ready and still not be prepared. Therefore, BSN (11)
is not always sufficient to determine if the tape may
take part in an IO operation without causing hang-up.
Application of these two instructions will be discussed
further in the paragraph dealing with tape programming.

3.3.5.5 Reading

The reading process on a tape drive unit is initiated
by an RDS instruction, just as with any 1O unit. How-
ever, the action of the RDS instruction is slightly differ-
ent from that of other IO devices. We can specify the
number of words we wish to read in the right half-
portion of the instruction, but, regardless of this, one
full record is always read from the tape unit by each
RDS instruction. For example, if we desire to read 200,
words, and the record we are about to read contains
3005 words, the reading operation will continue for
the entire record, even though only 2005 words are
actually transferred to core memory. Even though no
information is being transferred to core memory, the IO
interlock remains set until the end-of-record (EOR) gap
is reached. Then, the tape unit will generate a disconnect
and will clear the IO interlock to stop the tape drive.
In this case, stepping the IO word counter to 0 does
not terminate the 10 operation. On the other hand, if
the IO word counter does not contain 0 after one
complete record is read, the tape drive is still stopped,
and the disconnect signal is transmitted to the Central
Computer System indicating that the 10 operation is
over. For example, if we execute an RDS 4000, instruc-
tion, and the record to be read only contained 3500
words, the tape drive would stop after reading 35004
words. In order to read the remaining words, another
RDS instruction must be given. An RDS 0, instruction
will cause the tape drive to read the next record without
transferring any words to core memory; the effect of an
RDS 0y instruction is to skip the next record as far as
the Central Computer System is concerned.

If a reading operation is in process and EOT is
sensed, or the record being read is an EOF, the tape

3-112-0

Reading
3.3.5.4-3.35.7

is determined to be not-in-file-area (NIFA), and the tape
becomes not prepared. However, reading continues un-
til the EOR gap is reached. No new operations may
take place on this tape unit until the tape has become
prepared. Methods for preparing the tape will be dis-
cussed in subsequent paragraphs.

In summary, the most important thing to remember
when programming an RDS operation for a tape unit
is that a separate RDS instruction must be given for
every record that is on the tape.

3.3.5.6 Writing

Execution of the WRT instruction sets the IO inter-
lock, places the tape drive in the write status, and starts
the tape drive. The words are placed on the tape in
consecutive order until all the words that are specified
by the right half-portion of the WRT instruction have
been written. When the IO word counter goes to 0 the
tape unit is pulsed to create an EOR gap.

If the EOT mark is sensed while writing a record,
the tape unit will become not-prepared, but writing
will continue until the record is completely written.
However, no more operations may take place with that
unit until the tape becomes prepared.

Unlike a reading operation, we cannot specify a
WRT 0, instruction when using a tape drive. This
instruction will cause the IO interlock to become set
and remain set, because the tape drive unit will not be
able to generate a disconnect pulse. This will cause the
computer to be in an IO hang-up. Therefore, a WRT 0,
instruction should never be given with a tape unit.

All writing operations automatically erase previous
information, starting from the point where writing be-
gan. For this reason, an electromechanical device (called
a file protection ring) is provided for use with a tape
drive unit to prevent erroneous writing operations on a
tape, and, thus, destroy previously recorded informa-
tion. When the file protection ring is in place on the
tape reel, writing may take place, but when it is removed,
writing and erasing will not take place. If a WRT in-
struction is programmed on a tape unit that is being
protected, the WRT instruction acts as a disconnect
signal to the Central Computer System. File protection
does not prevent normal reading operations however.

3.3.5.7 Tape Instructions

Because of the flexibility of the tapes, there are
several instructions which will cause actions to take
place on the specified tape drive unit. Some of these
actions are dependent on the IO interlock; and some
may be executed at any time. The cases which will call
for use of these instructions may vary from time to
time; therefore, a paragraph will be devoted to each
instruction, outlining the most general applications of
that instruction. '

135

Tape Instructions
3.35.7

The desired instruction sequence for performing a
reading or writing operation with a tape unit is basi-
cally the same as for all IO devices. As stated previously,
two classes of conditions exist which will prevent the
tapes from taking part in a reading or writing operation.
The first condition, “tapes not ready,” should always be
sensed with a BSN (11) instruction before an 10 opera-
tion is initiated. The desirability of sensing for “tapes
not prepared” depends on the previous action that has
taken place on the tape unit. If we are selecting the
tape unit for the first time, it is usually desirable to
check for both conditions. A program to check these
conditions is given in table 4—17.

TABLE 4-17. TAPE UNIT READINESS CHECK

LOCATION OPERATION ADDRESS
0.01000 SEL (11) -
0.01001 LDC 0.42500
0.01002 BSN (11) 0.01002
0.01003 BSN (10) 0.01005
0.01004 WRT 0.02000
0.01005 SEL (12) —

In this case, after checking to see if the tape unit
was not ready, we also sense to see if it is not prepared.
If the not-prepared condition exists, this means that
the tape is past the usable writing area; therefore, a new
tape unit should be selected. Thus, a branch to the SEL
(12) instruction is provided. Since we had just selected
this tape for an IO operation, it is not possible that
rewinding could be causing the not-prepared condition.
It should be stressed that this may not always be the
- case; sometimes a different procedure may be necessary.

As a general rule, the programmer will know what
has taken place on the specified tape drive unit before
a subsequent 10 operation is attempted. If we knew
positively that we were writing on a blank tape, the
BSN (10) instruction would not be necessary. Since
this is not the case, a BSN (10) instruction is desirable.

Once we have determined that a tape unit is not
prepared, two instructions may be used to make the unit
prepared, if we do not wish to select another tape unit.
The first of these is the Ses Prepared (PER 67) instruc-
tion. Execution of this instruction does not set the 10
interlock or require that the IO interlock be cleared
before the PER (67) is given. The PER (67) instruc-
tion clears the not-prepared condition and permits the
tape to proceed in a forward direction. However, it
should be noted that if a PER (67) instruction is exe-

136

3-112-0

PART 4
CH 3

cuted when the EOT caused the not-prepared condition,
a subsequent RDS instruction will cause the tape to
wind onto one reel.

The second instruction which can be used to make
the tapes prepared is a PER (70) instruction which
causes the selected tape drive unit to backspace one rec-
ord at reading speed. The IO interlock becomes set
during this operation, but no information is transferred
to core memory. Execution of a PER (70) instruction
will thus move the tape back into the usable file area
from where an RDS or a WRT operation may be ini-
tiated.

When the tape drive is determined to have read
or written all of the usable area, or as much of the
area as desired, it is possible to rewind the tape reel to
the LP by execution of a PER (71) instruction. The
PER (71) instruction will make the tapes not-prepared
during the time rewinding is actually taking place; the
instruction also turns on the IO interlock. (It is not
necessary for the IO interlock to be cleared prior to
execution of this instruction.) It should be noted that
the IO interlock is cleared approximately 40 to 80 ms
after the rewind operation is started. This does not
indicate that the rewind operation has been completed,
but only that the selected tape drive unit began to
rewind. The rewind operation is relatively fast com-
pared to the reading or writing speed (approximately
500 inches per second); however, if the entire tape had
to be rewound, it would still require about a minute
to complete, a much longer time than that in which the
IO interlock is set by execution of PER (71).

If the selected tape drive unit was prepared (tape
still in usable area) before execution of a PER (71)
instruction, the tapes will be not-prepared only during
the rewind condition. Then, they will become prepared
again. On the other hand, if the tape had passed the
EOT mark, or had read or written an EOF record, it
would already be not-prepared. In this case, execution
of a PER (71) does not make the tape prepared after
the rewind operation has returned it to the LP.

One precaution should be taken when the PER (71)
is to be used in a program. Since execution of this
instruction does not require that the IO interlock be
cleared prior to its execution, it is possible to initiate
an IO operation with a tape drive unit, and then rewind
the same tape. This may result in permanent tape dam-
age; therefore, extreme care should be used when exe-
cuting a PER (71) instruction.

When all the usable information that is to be re-
corded on tape has been written, we usually write an
EOF record. This is not done by use of a WRT in-
struction, since normal writing on the tape will never
place information into the three bit positions that indi-
cate EOF. (Refer to fig. 4—9.) Instead, a PER (72) in-

PART 4
CH 3

struction is executed, which writes this special one-word
record and also makes the tapes not-prepared. The PER
(72) does not examine the IO interlock before execu-
tion; therefore, care should also be exercised when giving
this instruction since its use at an improper time may
cause a loss of information.

3.3.5.8 Tape Programming

Besides the reading and writing operations which
have been discussed, many other operations using the
instructions described above may take place with a spe-
cific tape unit or units. Certain sequences of instructions
which are desirable when performing any of these opera-
tions are outlined below.

When rewinding one tape unit, it was stressed that
we should be sure no other IO operation is taking place
with that unit. This may be done by making a time
check of the IO interlock and then starting the rewind.
A program to accomplish this is given in table 4—18.

TABLE 4—18. TAPE REWIND PROGRAM

LOCATION OPERATION ADDRESS
0 00420 SEL (13) -
0.00421 LDC 0.01000
0.00422 BSN (11) 0.00422
0.00423 PER (71) —
0.00424 BSN (14) 0.00424
0.00425 PER (67) -
0.00426 BSN (10) 0.00426
0.00427 RDS 0.03000

After the SEL (13) instruction has been executed,
we know the IO interlock is off, so no further check is
required to ensure we will not be interrupting any IO
operation. The BSN (11) instruction will branch to
itself until the tape becomes ready, at which time we
will execute the PER (71) instruction: After that, we
loop at step 0.00424 until the IO interlock goes off.
This tells us that the rewind operation has started and
that the PER (67) may be executed; the execution of
this instruction will clear the condition indicating we
were at EOF or EOT (if this condition exists). The
following BSN (10) instruction will hold the program
until the rewind operation is completed, at which
time an IO operation may be initiated.

It is possible to rewind more than one tape unit at
a time by executing the instructions in the sequence
given in table 4—19.

3-112-0

Tape Programming
3.35.7-3.3.5.8

TABLE 4—19. PROGRAM TO REWIND
MORE THAN ONE TAPE

LOCATION OPERATION ADDRESS
0.01000 SEL (11) -
0.01001 BSN (11) 0.01001
0.01002 PER (71) -
0.01003 BSN (14) 0.01003
0.01004 SEL (12) -
0.01005 BSN (11) 0.01005
0.01006 PER (71) -
0.01007 - BSN (14) 0.01007

This program will select tape unit one and sense to
see if it is ready. Notice that the BSN (11) instruction
immediately follows the SEL instruction, which is usu-
ally not advised. However, since no intervening instruc-
tion can be used to any advantage, and the BSN (11)
branches to itself, no false indication of a not-ready
condition will result. If the unit is ready, the rewind
is started, and the program loops until the IO interlock
is cleared, indicating that another tape unit may be
selected. Then, the same process is followed as often
as desired.

To properly backspace a tape unit, the suggested
sequence is given in table 4—20.

TABLE 4-—-20. TAPE BACKSPACE ROUTINE

LOCATION OPERATION ADDRESS
0.14000 SEL (16) -
0.14001 LDC 0.21205
0.14002 BSN (11) 0.14002
0.14003 PER (70) -
0.14004 RDS 0.00370

An RDS instruction after a backspace operation is
the only one which should be given to start an IO
transfer. This is true because it is not advisable to try
and write a record over an old record, even if the same
numbers of words are involved. Changes in synchroniza-
tion and mechanical differences may result in destroying
some information on the next record. Records may be
reliably written after a backspace operation only if the
record backspaced over was the last record in a file.

137

Tape Programming
3358

When it is necessary to search for a record on a
given tape, there are various ways that can be used.
In our example, we will assume that the records on
the tape are in numerical order, and that they are
maintenance programs. We are searching for a particu-

TABLE 4-21. TAPE RECORD LOCATION

PROGRAM

LOCATION OPERATION ADDRESS
0.00350 SEL (15) -
0.00351 LDC 0.01000
0.00352 BSN (11) 0.00352
0.00353 RDS 0.20000
0.00354 BSN (14) 0.00354
0.00355 CAD 0.01000
0.00356 CDF 0.00065
0.00357 BPX 0.01001
0.00360 BFM 0.00372
0.00371 BPX 0.00351
0.00372 BSN (11) 0.00372
0.00373 PER (70) -
0.00374 BSN (14) 0.00374
0.00375 PER (70) -
0.00376 BSN (14) 0.00376
0.00377 BPX 0.00351
0.00065 0.00000 Constant

3-112-0

138

PART 4
CH3

lar maintenance program which may be identified by
the first word of the record. When the correct mainte-
nance program is located, we wish to start executing it.
We will assume that the first instruction will be the
second word in the record. A tape search routine which
will select a given program according to its identity
word is given in table 4—21. (The identity of the desired
program is contained in the right half-word; the left
half-word contains 0’s.)

This program makes the assumption that the tape
was in a usable area before the program started and was
not being rewound. After the tape has been selected and
found ready, we read in one record. The value 200004
assures us that we are trying to read more words than
will be found in one record. After the record is read in,
we compare the first word with a constant (which is the
identity of the program we want). If the comparison is
successful, we branch to the second word from the
record and start executing the program. If the accumu-
lator contents are negative, this indicates the number
was originally -larger than the operand. This means
we have obtained a record beyond the one we desire, so
it is necessary to backspace until the desired record is
reached. However, if the contents are positive we know
that the accumulator contents were originally smaller
than the constant; therefore, we must read in the next
record.

Assuming that it is necessary to backspace to locate
the record we want, we first sense to see if the unit
is still ready. If it is, we execute a PER (70), which will
place us back at the beginning of the record we just
read. Another PER (70) is necessary to move us to
the next sequentially lower record. Then, we branch
back to the LDC instruction and read the next record
and compare.

PART 4
CH 4

3-112-0

Data Forms
4.1-4.2.1

CHAPTER 4
PROGRAMMING THE INPUT SYSTEM

4.1 DESCRIPTION

The Central Computer System of the AN/FSQ-7
and AN/FSQ-8 is capable of processing reports on air-
craft flying within a given area in order to defend that
area against air attack. Data on potential targets must
be acquired, generally by radar, and introduced into
the Central Computer System. This function is per-
formed by the Input System. (The Input System of the
AN/FSQ-8 handles only processed data reports and does
not receive raw radar data as does the AN/FSQ-7. There-
fore, the following discussion of the radar input ele-
ments will apply to the AN/FSQ-7 only.) The Input
System is divided into three elements, each handling a
different type of information. The long-range radar
input (LRI) element receives data from long-range ra-
dar sets as well as from height-finder radars located
near the long-range radars. The long-range radars are
arranged to provide coverage of every point within the
surveillance area. Those portions of the surveillance
area which are not covered by long-range radars are
covered by short-range radars. These gap-filler radars
are so called because they fill gaps in the long-range
radar coverage. Since data from gap-filler radars is dif-
ferent in form from that supplied by long-range radars,
this data is received and processed by the gap-filler input
(GFI) element.

The crosstell (XTL) input element of the AN/
FSQ-7 receives data already processed by adjacent cen-
trals. Crosstell messages generally describe aircraft mov-
ing out of the surveillance area of the transmitting
central into the area covered by the receiving central.
The XTL element of the AN/FSQ-8 processes messages
relayed from AN/FSQ-7’s in the division controlled by
the AN/FSQ-8. In addition, the XTL element of the
AN/FSQ-8 receives messages from other AN/FSQ-8’s de-
scribing the overall air defense situation.

4.2 DATA FORMS

4.2.1 LRI Data Drum Word Layout

As previously mentioned, the AN/FSQ-8 is not con-
cerned with raw radar reports; therefore, this discussion
of LRI data words is applicable only to the AN/FSQ-7.

The processing of radar data information as it is
received from the various radar sites is processed auto-
matically by the LRI input element. No programming
is required to arrange this information into the format

necessary for presentation to the LRI drum fields. How-
ever, once the radar data is placed on the drum, all
further processing is under control of the Central Com-
puter System. For that reason, a description of the
word layout of a radar message, as it is presented to
the Central Computer System, is included below. Infor-
mation processed by the LRI element is obtained from
the LRI fields by the Central Computer System in the
forms shown in figure 4—15, part A. A search radar
report contains the following information:

a. Drum word 1

1. Run length, L11 through L13.

2. Time delay, R2 through R6.

3. Message label, R7 through R11, identifying
message as search radar IFF, IFF with SIF, or
height reply.

4. Site identity, R12 through R15, identifying
location of data source.

5. Odd-parity bit.

b. Drum word 2

1. Range, L1 through L10.

2. Azimuth, L11 through L15 (least significant)
and R9 through R15 (most significant).

3. Clock time, R1 through RG.

4. Odd-parity bit.

Those bits indicated as blanks, or unused, are written
as 0’s on the drum field.

Information may be placed on the LRI drum fields
which consists of an IFF (Identification Friend or Foe)
report. This report is used to positively identify a radar
return as being either a friendly or hostile aircraft. IFF
reports are generated at the radar sites and, therefore,
are transmitted along with actual radar returns. The
only difference between a search radar report and an
IFF report is in the first dtum word. The message la-
bel indicates that the report is an IFF report with or
without Selective Identification Feature (SIF). If a SIF
response is included, it occupies bits L1 to L13. An IFF
report without SIF contains all 0’s in these bit positions.
An IFF word layout, as it is placed on the LRI drum
field, is shown in figure 4—15, part B. A height reply
shown in figure 4—15, part C, contains the following
information:

a. Drum word 1

139

Brum Word 2
421-4.22

1. Message label, R7 through R11, identifying
report as a height reply.

2. Site identity, R12 through R15.

3. Odd-parity bit.

3-112-

0 PART 4
CH 4

5. New height, R9 through R15 and L11 (least
significant bit).

6. Address, L12, indicating which of the height
finders at the radar site is replying.

b. Drum word 2 7. Request number, L13 through L15, allowing
1. Special reply, L1 through L3, containing a identification of the reply with the target on
pre-arranged coded message. which a height report was requested.
2. Formation, L4 through L5, a coded indica- 8. Odd-parity bit.
tion of the predominant arrangement of the Those bits labeled as blank, or not used, contain
aircraft, reported as one target. 0 when written onto the LRI fields.
3. Separation, L6 through L7, a coded indica- 4.2.2 GFl Data Drum Word Layout
tion of the distance between the aircraft mak- This discussion of GFI data is applicable to the
ing up the target. AN/FSQ-7 only. The form in which a GFI message
4. Number of aircraft, L8 through L10, an ap- appears on a GFI field is shown in figure 4—16. Each
proximation of the number of aitcraft. drum word contains the following information:
=9 SITE
gkl oo St ol 08— SIS e "ERRES B
ORUM WORD | [Fll_s[u LlOlLH LI3ILI4 uiss RI|R2 Rslm Rulmz Rlil

[=] fa]
[=31] bw
(o) AZIMUTH o NOT AZIMUTH
ZSL———— RANGE ‘——'L(LEAST snc)—"z‘:’%"— CLOCK TIME ——’| USED I‘— (MOST SI6)

—

DRUM WORD 2 E[LS'LI LIOILH LI5|RS|R| RGIR? RBlRS RIS]
: SEARCH RADAR
A.
() SITE
O(l}", SELECTIVE IDENTIFICATION NOT TIME MESSAGE |DENT|F|'
<> FEATURE (SIF) USED DELAY LABEL CATION
DRUM WORD | I P ILS|LI |_|3|u4 LISTRS RIIRZ RG‘R? RII|RI2 ms]
58] I AZIMUTH "I AZIMUTH
z5|e RANGE 4 (LEAST SI6) crock Tme —| N fe— (MosT sie)]
DRUM WORD 2 Fstan uoan Llslnslm RSlR? RBlRS Rﬂ
MK X IFF
B.
58 OoT MESSAGE EI;!;$ Fl
[2) N ID IFI-
: z:,L——— ZEROS ,,. USED ——4‘—— ZEROS ‘—4'— LABEL CATION
DRUM WORD | E[Ls[u ’ LI3ILI4 uiss RIIRZ R6‘R7 RIIIRIZ RISJ

52
(2]
25 e—sRY A—’LFORMO‘ SEP ‘NO.

REQUEST
OF A/C|NHI A | NUMBER lo—— NOT USED ———»L— NEW HEIGHT ——bl
DRUM WORD 2 [F]LS‘LI LﬂL4 L5[L6 L7|L8 LIOlLII ILIZ‘LB L15|RS R8lR9 RI51
HEIGHT REPLY
C.
LEGEND

SRY SPECIAL REPLY

FORM FORMATION

SEP SEPARATION

NO. A/C NUMBER OF AIRCRAFT

NH NEW HEIGHT LEAST SIGNIFICANT BIT
A ADDRESS
P PARITY

Figure 4—15. LRI Message Drum Field Layouts

140

PART 4 3-112-0 Drum Field Selection
CH 4 4.2.2-4.3.1

.| NoT cLOCK g NOT SITE

RANGE USED Tve T B[APMUTR T ysen [YioERTIFICATION
§
LS L7{L8|L9 |LIO Lia|Lis|Rs R7|R8 RIO|RII RIS
Figure 4—16. GFlI Message Drum Field Layout

a. Range, LS through L7. _ it can be accepted by one of the two drum fields. The
b. Clock time, L10 through L14, equivalent to clock LRI element is wired so that channels 1 through 18
time in an LRI message but added to a GFI transfer 2-word messages onto LRI Field 2, and channels
message by the Drum System. 19 through 36 transfer their 2-word messages onto LRI
c. Azimuth, RS through R7. Field 1. Only one channel in a group may transfer
d. Site identity, R11 through R15, identifying the data to a drum field at any one time. The method

origin of the target co-ordinates within the mes-
sage.
It should be noted that no parity is added to a GFI
message.

4.2,3 XTL Data Drum Word Layout

An XTL message may be received by both the
AN/FSQ-7 and AN/FSQ-8. However, since the type of
information that may be present in each message varies,
it is not possible to give any specific word layout for
an XTL message. A normal XTL message is made of
three drum words, as is shown in figure 4—17. Each
drum word contains the following information:

a. Drum word 1

1. Message word 1, LS through L15.
2. Clock time, R5 through R10.

3. Site identity, R11 through R15.

4. Odd-parity bit.

Drum word 2

1. Message word 3, LS through L15.
2. Message word 2, RS through R15.
3. Odd-parity bit.

Drum word 3

1. Message word 5, LS through L15.
2. Message word 4, RS through R10.

3. Address, R11 through R15. (Bit R15 is desig-
nated as the All Party bit. If its contents are

a 1, all sites tied together by the XTL tele-

phone lines receive the message.)

4. Odd-parity bit.

4.3 DRUM FIELD SELECTION

4.3.1 LRI Drum Fields
There are two physical drum fields which are used
‘to contain incoming radar messages. There are 36 LRI
channels which hold the data from the radar sites until

by which two words are placed in consecutive registers
on the LRI drum field is known as writing by status.
In addition to the normal channels on a drum field
that are used to contain the bits within a word, there
are two channels, known as the OD (outside-to-drum)
channel and the CD (computer-to-drum) channel. The
presence of a 0 bit in the OD status channel indicates
that the register associated with it is empty or contains
a word already read by the Central Computer System.
A 1 bit in the OD status channel indicates that the
register contains a word not yet read by the Central
Computer System. Writing on the OD status channel is
controlled by the Central Computer System, while read-
ing is performed by the circuitry associated with the
LRI channels. The CD channel is written on by the
LRI CD drum circuitry to indicate to the Central Com-
puter System that a register has information for the
Central Computer System. If the register contains no
information, the CD status channel contains a 0. When
an LRI message is placed on ome of the LRI fields,
a 1 bit is placed in the CD status channel. When the
Central Computer reads this drum message, a 0 bit is
placed into the OD status channel, signifying that a
new message may be placed in that register (or regis-
tets, in the case of LRI drum messages). If the LRI
drum is not selected, there is a connection between the
CD channel read head and the OD channel write head.
Thus, if the Central Computer did not read a register
that contained a message, it would indicate by writing
a 1 in the OD channel, indicating that this register was
still full and should not be written on by the LRI input
channel. There is a similar connection between the OD
read head and the CD write head on the OD side of
the drum. In this way, it is assumed that the Central
Computer System will not read the same message twice,
nor will the Input System attempt to place a new mes-
sage into a register that has not been read yet. ‘

Writing on the LRI drum fields is actually per-
141

Reading by Identity
431-43.12

formed by modified status, since the LRI messages are
composed of two words, and thus require two consecu-
tive drum registers. The action of the CD and OD status
channels remains the same with the exception that only
every other drum register will contain bits in the chan-
nels. If the register containing the bits is determined to
be ready for reading or writing, the next consecutive
register is assumed to be ready also. The two drum
registers are actually treated as one large register and
are referred to as a drum “slot.”

4.3.1.1 Reading by Status

The Central Computer System has three methods by
which it can read the LRI drum fields. The first is by
status only which indicates that the Central Computer
System will accept every slot which contains a message.
Since the incoming messages arrive at random, reading
by status may give the Central Computer information
from several different radar sites. A code of SDR (34)
is used to select LRI drum field 1 for reading by status,
and a code of SDR (36) will select LRI drum field 2
for reading by status.

4.3.1.2 Reading by Identity
The incoming LRI drum messages contain a mes-
sage label in bits R7 through R11 which tells whether

3-112-0

PART 4
CH 4

the message is a report from search radar, a height
finder, or an IFF. In addition, bits R12 through R15
contain the site identity. It is possible to be selective about
what information the Central Computer System will ac-
cept from the LRI drums by placing an identity word
in the right half of the SDR instruction. This identity
word is then transferred to the drum control register
where each incoming message is compared to see if its
bit contents match the identity word. Thus, it is possible
to make the drum perform some degree of message
sorting before the information enters the Central Com-
puter System. There are two modes of reading by identity
that can be specified. The first one utilizes a control
word for bits R12 through R15 only. That means we
can read in messages for any given radar site. The code
used to select LRI drum field 1 for reading by identity
in bits R12 through R15 is SDR (35). An SDR (37)
will select LRI drum field 2 for reading by identity of
bits R12 through R15.

The sorting performed by the drums can be in-
creased still further by specifying an identity code in
bits R7 through R15 in the right half-portion of the
SDR instruction. Since R7 through R11 specifies what
type of message is being transferred, an identity code
of R7 through R15 will select a particular type of

. [MESSAGE WORD | NOT _ e cLock SITE
rs USED TIME IDENTITY
&Q
<Q
a
PlLs LIs|rs R4|RS RIO [RII RIS
DRUM WORD !
> _[#————— MESSAGE WORD 3 MESSAGE WORD 2
[=)
z3
£¢
P ILS LIS|RS RIS
DRUM WORD 2
»o[¢ " MESSAGE WORD 5 MESSAGE WORD 4
3 _DESTINATION | 5
g ADDRESS " o
<C
R
P ILS LI5|RS RIO|RIN Ri4}15

DRUM WORD 3

Figure 4—17. XTL Message Drum

142

Field Layout

PART 4
CH 4

message from a particular site. It is not possible to
select a particular type of message from all sites since
the information would be meaningless. Selecting LRI
drum field 1 by this identity code is performed by
execution of an SDR (50) instruction. A code of SDR
(51) selects LRI drum field 2 for reading by identity
of bits R7 through R15.

4.3.2 GFl Drum Field

- There is one physical GFI drum field which is se-
lected for reading by status or identity. A code of
SDR (32) will select the GFI drum field for reading
by status, meaning that all current messages on the
drum field will be accepted by the Central Computer
System. ’

If it is desired to select messages off the drum from
one particular GFI radar site, this may be done by
execution of an SDR (33) instruction. The right half-
portion of the SDR (33) must contain the identification
of the desired site in bits R11 through R15.

4.3.3 XTL Drum Field

There is one physical XTL drum field which can be
selected for reading by status or identity. It should be
noted that XTL messages are composed of three drum
words, thus making it necessary to provide a 3-word
slot on the XTL drum field for each XTL message. The
Central Computer System determines the placing of slots
on the XTL drum field by placing a bit, called the
marker bit, in a channel similar to the status channels.
The presence of a 1 bit in the marker channel indicates
to the XTL channels supplying XTL messages that the
register containing the marker is the first register of a
3-register slot. The marker bits are usually placed on the
XTL drum field before normal operation is started. An
SDR (40) instruction selects the XTL drum, and the
markers are placed in the marker channel under pro-
gram control. The contents of the LS bit determine the
bit that is placed in the marker channel. A sample
program to place marker bits on the entire XTL drum
field is given in table 4—22.

The index register- is loaded so that the first drum
register to have a marker bit written in it will be 3373,
the highest numbered usable slot on the XTL drum.
The I BPX (03) instruction will cause successively lower
3-register slots to be written.

To select the XTL field for reading by status, an
SDR (24) instruction is executing, indicating that all
3-register slots which contain a current message will
be accepted. If it is desired to read XTL messages from
a particular site, the identity mode of reading is selected
by the execution of an SDR (25) instruction. A code
word corresponding to the contents of bit R11 through
R15 of drum word 1 is placed in the right half-

3-112-0

Input Test Pattern Generator
43.1.2-4.4.1

portion of the SDR (25) instruction, enabling the drum
control register to make the comparison.

4.4 INPUT TEST PATTERN GENERATOR

The Input System has a test pattern generator
which may be operated in several modes. Some of these
modes are completely under program control, while
other modes are partially under program control. The
test pattern generator provides testing of all three in-
put elements, if desired.

4.4.1 LRI Testing

Putting the test pattern generator completely under
computer control is accomplished by selecting the mode
II, type 1 operation. (The mode is determined by
switches on the test pattern generator.) In this mode,
operation is initiated by execution of a PER (24) in-
struction. The contents of the LRI message are deter-
mined by the execution of PER (65) and PER (66) in-
structions. Each PER (65) instruction will generate one
bit of sync. Each PER ('66) instruction will generate one
bit of LRI data. To simulate a complete LRI message,
several successive PER (65) and PER (66) instructions
must be executed until the desired LRI message is
formed. If it is desired to place a preset LRI message into
the LRI channel under test, a PER (63) instruction is
executed. This will initiate a message which has been set
up by the bit selection switches on the tester. Each PER
(63) instruction will initiate only one message. The
Central Computer System can return to complete pro-
gram control of the message being generated by exe-
cution of another PER (24) instruction.

To provide for synchronization of the timing be-
tween generation of LRI messages from the test pattern
generator and the formation of messages within the
Central Computer System, a BSN (34) instruction is
provided. This instruction senses to see if the LRI

TABLE 4—22. CROSSTELL MARKER PROGRAM

LOCATION OPERATION ADDRESS
0.00700 1 XIN 0.03373
0.00701 1 SDR (40) 0.00000
0.00702 LDC 0.01000

t}wété
0.00703 WRT 000005
0.00704 1 BPX (03) 0.00701
0.00705 HLT -
0.01000 1.00000 0.00000
0.01001 0.00000 0.00000
0.01002 0.00000 0.00000

143

GFI and XTL Testing
44.1-443

timing flip-flop is set. If it is, a branch to the address
specified by the right half-portion of the BSN (34)
instruction takes place.

4.4.2 GFl Testing

The GFI test pattern generator may also be oper-
ated in several modes. In mode II, type 1 (again se-
lected manually), a GFI message is initiated by genera-
tion of a PER (64) instruction. The desired GFI message
must then be formed by successive execution of PER
(65) and PER (66) instructions. Each PER (65) in-
struction will provide one bit of GFI target information.
When a message which has been set up manually by
bit selection switches is to be entered into the GFI
channel under test, a PER (63) instruction may be
executed. This will terminate program control of the
GFI message content and initiate continuous GFI pat-
terns from the switches. When it is desired to return
to program control of the GFI message, a PER (64)
instruction may be executed.

The BSN (34) instruction may be executed dur-
ing GFI testing to determine when the GFI range flip-
flop is set. This is to synchronize the actions of the
Central Computer System with the GFI test pattern gen-
erator. If the range flip-flop is set, the program will
branch to the location specified by the right half-portion
of the instructions.

In some instances, the Central Computer System
must know at exactly what time to shift from one type
of GFI operation to another. This shift usually takes

144

3-112-0

PART 4
CH 4

place at GFI north azimuth time (when GFI sweep
passes O degrees). When this occurs, the GFI north
azimuth flip-flop is set. The north azimuth flip-flop can
be sensed by a BSN (47) instruction and will branch
to the location specified by the right half-portion of
the BSN (47) instruction if the north azimuth flip-flop
is set.

4.4.3 XTL Testing

Testing of the XTL element is conducted in the
same way as testing for the LRI element. Mode II, type
1 operation is selected by switch settings and is initiated
by execution of a PER (25) instruction. In this mode, the
XTL messages are made up by execution of PER (65)
and PER (66) instructions. Each PER (65) instruction
will form one bit of XTL sync and each PER (66) in-
struction will cause the formation of one bit of XTL
data. When a change to an XTL message set up by
switches is desited, a PER (63) instruction is executed.
This instruction will allow only one XTL message to
enter a channel and additional PER (63) instructions
are required for each message desired. Shifting back to
complete program control can be accomplished by exe-
cution of another PER (25) instruction.

The BSN (34) instruction can also be executed with
XTL testing. The instruction will check the XTL tim-
ing flip-flop to see if it is on. If it is on, a branch of
program control to the address specified by the right
half-portion of the BSN (34) instruction will result.
This instruction is utilized to synchronize actions of the
test pattern generator and the Central Computer System.

PART 4
CH S

3-112-0

Information Forms
51-5.3.1

CHAPTER 5
PROGRAMMING THE OUTPUT SYSTEM

5.1 DESCRIPTION

The operation of the AN/FSQ-7 and AN/FSQ-8 re-
quires the transmission of processed information to such
sites as air bases, airborne interceptors, antiaircraft ar-
tillery units, radar sites, and other centrals. The Cen-
tral Computer System prepares this information and
delivers it in parallel to drum fields associated with the
Output System. The Output System obtains this infor-
mation from the drum fields in parallel form and con-
verts the information into serial form for transmission
via telephone facilities to its ultimate destination. The
Central Computer System places output information on
the output buffer (OB) fields status. The Output Sys-
tem reads this information from the OB fields by status
identification.

Three types of output information are handled by
the Output System: ground-to-air time division (G/A
TD) information used for airborne interceptors; ground-
to-ground (G/G) information for transmission to other
centrals or to height-finder radar sites; and teletype
(TTY) information for transmission to non-automatized
centers. Ground-to-air information is transmitted via
telephone facilities to radio transmission-equipment for
relay to airborne receivers; G/G information, by tele-
phone facilities to receiving points; TTY information, as
conventional teletype signals via telephone facilities. The
Output System also supplies control information to the
Central Computer System, allowing that system to pre-
assign times of transmission of specific items of informa-
tion.

5.2 OPERATION
The Output System comprises two elements, the

output control element and the output storage element.

The output control element reads output drum words
from the OB fields, performs certain checks on each
word accepted, and directs the output information con-
tained in each word to the appropriate section of the
output storage element. When requested by the Central
Computer System, the output control element also sup-
plies control information to the Central Computer Sys-
tem.

The output storage element, since it handles several
different types of information, is divided into several
sections. Each section receives output information pre-
sented to it by the output control element, performs

further checks on the information, and converts the
information into serial form for telephone transmis-
sion,

Since failure of any element or section of the Out-
put System would seriously impair its functioning, the
Output System is in duplex, i.e., one Output System is
within computer A and the other is within computer B.
The Output System of the active computer feeds the
telephone transmission equipment. The Output System
of the standby computer is not used operationally but
may be used in certain test operations.

5.3 INFORMATION FORMS
5.3.1 Bursts

Each of the three types of information processed by
the Output System is transferred out of the Output Sys-
tem in blocks of fixed duration and content, known as
bursts. Within the interval known as a burst period, a
single block of information is prepared and transmitted
by each section. Bursts from each section are numbered
in sequence. These burst numbers are used to control
the sequence of transmission of information items and,
in certain cases, can also be used to control the exact
time of transmission of a specific item. Each word pre-
pared by the Central Computer System for delivery to
the Output System contains an assigned burst number.
These words are read into the Output System by status
identification, using the burst number as the identity
code. Each storage section accepts only those words
whose assigned burst number corresponds to the num-
ber of the burst being prepared by the section at that
time, as indicated by a counter in the section (the burst
counter). Thus, the assignment of burst numbers to the
output drum words can control the sequence and time
of transmission of information from each section.

The burst counters for each section are read in
sequence by the Central Computer System and are se-
lected by a SEL (21) instruction. Execution of the SEL
(21) instruction will enable the Central Computer Sys-
tem to read the contents of all the burst counters. The
burst period for each output storage section is defined
as the interval between successive steppings of its burst
counter. Two intervals are included within a burst
period, search time and readout time. Search time is the
interval within which words are accepted by a storage
section for transmission during the following readout

145

Output Drum Word
53.1-54

time. Readout time is the interval during which words,
previously assembled, are transmitted.

5.3.2 Output Drum Word

Information is delivered to the Output System in
the form shown in figure 4—18. The right half-word
contains the information to be assembled with informa-
tion from other words for transmission from the Qutput
System in a burst. The left half-word controls the rout-
ing of the right half-word within the Output System.
This left half-word can be divided into four major
parts:

a. Parity bit

b. Output section address

c. Output register address

d. Assigned burst number

The parity bit allows a check on the accuracy of
transfer of the word from the OB drum fields to the
Output System. The word is not accepted by the Output
System unless the parity count for the entire 33-bit
word is odd.

The output section address, LS through L2, desig-
nates the section of the output storage element through
which the right half-word is to be transferred.

The addresses of the various sections are shown in
table 4—23.

The output register address, L3 through L7, desig-
nates the register within the specified storage section
which is to receive the right half-word. Although 32
separate register addresses numbered from 0 through
31 may be specified by five binary bits, not all the
registers are used in any section. Unused register ad-
dresses within each section are designated illegal regis-
ter addresses.

The assigned burst number, a number between L8
and L15, determines the order in which output drum
words having different burst numbers will be read and
transmitted. With eight bits available, 256 burst num-
bers can be specified before the counting cycle must
repeat. The assigned burst number of an output drum
word must coincide with the number of the burst cur-
rently being assembled in the storage section selected
by the section address of that word in order for the
word to be accepted by the output control element.

3-112-0

PART 4
CHS

5.4 DRUM TRANSFERS

When an output message is to be placed on one of
the OB drum fields, a unique drum field selection is
used. Although there are three physical OB drum fields,
the Central Computer System treats these fields as two
logical fields, the OB even field and the OB odd field.
The OB odd field consists of all the odd-numbered
registers on all three drum fields, while the OB even
field consists of all the even-numbered registers on all
three fields. The Central Computer System selects the
OB odd field by execution of an SDR (30) instruction
and selects the OB even field by execution of an SDR
(31) instruction. When one of the above instructions is
executed, the program will thus proceed to place a given
output message in alternate registers on the OB fields.
The Central Computer System places the output mes-
sages onto the OB fields by means of status.

When the Output System reads the OB fields, it
always reads the entire three fields. It is possible for the
Output System to read every register from the drum
fields; however, only alternate registers can contain
words of an output message going to any one particular
output section. This results from the manner in which
the message was placed on the drum (in either odd or
even registers) and was done so that the transfer rate
of information from the drum would be compatible with

TABLE 4-—-23. OUTPUT SECTION ADDRESS CODES

OUTPUT SECTION ADDRESS CODE

Illegal address 000
Illegal address 001
Ground-to-ground 010
Teletype 011
Illegal address 100
#Ground-to-air (time division) 101
Illegal address 110
Illegal address 111

*Not included in AN/FSQ-8.

OUTPUT OUTPUT ASSIGNED
[¢~SECTION-»1¢——REGIS TER——#¢———BURST: > INFORMATION
ADORESS ADDRESS NUMBER
P ILS . L2(L3 L7|L8 LIS{RS 15

Figure 4—18. Output Drum Word Layout

146

PART 4
CHS

the slower acceptance rate of the tape cores used to store
messages in the output sections.

5.5 OUTPUT ALARMS

5.5.1 Overall Output Alarm

When any alarm condition arises in the Output
System, it sets an output alarm flip-flop which may be
tested by the Central Computer System. A BSN (33)
instruction checks to see if the output alarm flip-flop is
set and branches to the address specified in the right
half-portion of the instruction if there is an alarm con-
dition in the Output System. The execution of a BSN
(33) instruction checks to see if the output alarm flip-
flop is set and branches to the address specified in the
right half-portion of the instruction, if there is an alarm
condition in the Output System. The execution of a
BSN (33) instruction will also clear the output alarm
flip-flop.

5.5.2 Nonsearch Alarm

When a word is found on-the output buffer fields
during nonsearch time that has the same burst number as
the burst currently being transmitted, a nonsearch com-
pare alarm is generated. A flip-flop indicating whether a
nonsearch compare alarm exists may be sensed by execu-
tion of a BSN (50) instruction. If a nonsearch alarm does
exist, the program will branch control to the address
specified in the right half-word of the instruction and
turn off the alarm flip-flop.

5.5.3 OB Drum Parity Alarm

The OB drum parity alarm indicates detection of a
parity error received from the OB drum fields. This
alarm will set an OB drum parity flip-flop which may
be sensed by a BSN (51) instruction. If a parity etror
did occur, the BSN (51) instruction will cause the pro-
gram to branch control to the address specified in the

3-112-0

Output Alarms
54-55.7

right-half portion of the instruction and will clear the
flip-flop.
5.5.4 lllegal Address or Section Alarm

If a drum word contains a section or register ad-
dress that is not legal for the Output System, an illegal
address or section alarm will be generated and will turn
on a corresponding flip-flop. This flip-flop may be sensed
by a BSN (52) instruction, and the program will branch
to the address designated by the instruction. If this
alarm condition exists, execution of the BSN (52) in-
struction will also clear the illegal address or section
alarm flip-flop.

5.5.5 G/G Parity Alarm
A G/G message being sent to the telephone lines
from the output storage element is also parity-checked,
and if it is bad, sets a G/G patity alarm flip-flop. A
BSN (54) instruction senses this flip-flop and branches
to the specified location if it is set. Execution of the
BSN (54) instruction will also clear the flip-flop.

5.5.6 TTY Parity Alarm
A parity etror in a TTY message being transmitted
over the telephone lines will result in the setting of a
TTY parity flip-flop. This flip-flop can be sensed by a
BSN ('55) instruction, which will cause the program to
branch to the specified address in the right half-word of
the BSN (55) instruction and will clear the alarm flip-
flop.
5.5.7 G/A TD Parity Alarm
The G/A TD parity alarm flip-flop is set when there
is a defective transmission of a G/A TD message. This
flip-flop may be sensed by a BSN (56) instruction. If

the flip-flop is set, the BSN (56) instruction will cause

the program to branch to the address contained in the
right half-word of the instruction. A BSN (56) instruc-
tion will also clear the flip-flop.

141

PART 4
CH 6

3-112-0

Operation
6.1-6.2.5.1

CHAPTER 6
PROGRAMMING THE DISPLAY AND WARNING LIGHT SYSTEMS

6.1 DESCRIPTION

The Display System of the AN/FSQ-7 and AN/
FSQ-8 is the medium through which all data collected
by the Input System and processed by the Central Com-
puter System must be presented to personnel directing
the defense against air attack. The AN/FSQ-7 data
which must be collected includes the following: the
locations of unidentified, friendly, and hostile aircraft
within the area; the status of defensive weapons that
can be employed against hostile aircraft; and informa-
tion on conditions affecting the usefulness of each
weapon, such as the extent of visibility, velocity of the
wind, etc.

The AN/FSQ-8 Display System presents only data
on aircraft and weapons already under control of the
AN/FSQ-7. The AN/FSQ-8 Display System presents a
summary of all air defense information which has been
processed by several AN/FSQ-7’s. By presenting this
information in digested form to the personnel directing
air defense, the Display System makes it possible for
the operators to make informed decisions on the actions
to be taken in each case. Their decisions are indicated to
the Central Computer System for implementation via
the manual data input element of the Display System.

The information to be presented by the Display
System can be divided into two types: one type, present-
ing a geographical picture of air movements within the
coverage area, must be capable of changing rapidly to
reflect accurately the air movements themselves; the
other type, presenting such relatively static information
as weather conditions or weapons status, need not be
changed as often as the first type. The two types of
information are known as situation display information
and digital display information, respectively. Situation
display information provides a complete picture of air
movements in a plan-position-indicator (PPI) form. It
is identical in function to the plotting-board display of
a manual air defense filter center. Digital display in-
formation provides statistical data in tabular form. It is
identical in function to the tote-board display of a
manual air defense filter center.

6.2 OPERATION

6.2.1 General

The nature of the information handled by the Dis-
play System dictates its division into two subsystems,

situation display and digital display. Both subsystems
receive processed information from the Central Com-
puter System via the Drum System. This information is
supplied to the generator element in each subsystem.
Each generator element, in turn, converts the informa-
tion presented to it into the form required by the indi-
cator element of that subsystem.

6.2.2 Situation Displays

The situation display subsystem consists of the situ-
ation display generator element (SDGE) and the situa-
tion display indicator element (SDIE). The situation
display generator is a centrally located unit which con-
verts processed situation display information into the
form required by the situation display indicator element.
Each situation display indicator element is housed in a
display console. (See fig. 4—19.)

6.2.3 Digital Displays

The digital display subsystem includes the digital
display generator element (DDGE) and the digital dis-
play indicator element (DDIE). The digital generator
element is a centrally located unit which converts digital
display information into the form required by the digital
display indicator element. The digital display indicator
element is also housed with the situation display indi-
cator section in a display console. However, some digital
display indicator sections are separately housed in what
are known as auxiliary consoles, and some are in the
Command Post desk.

6.2.4 Display Consoles

Most display consoles house an SDIS and a DDIS
as well as a panel of pushbuttons for inserting informa-
tion via the manual data input element into the Central
Computer System. Some consoles also have light guns
for designating specific targets by means of the manual
data input element. Two special consoles are included
for specific purposes. One console provides the situation
display which is photographed to provide a large board
display by projection of the photograph. Another con-
sole is equipped with a camera which makes permanent
records of air defense situations for later analysis or for
use in training of console operators.

62,5 Manual Inputs

6.2.5.1 General
All input information to the Central Computer
System AN/FSQ-7 or AN/FSQ-8 that is not processed

149

Manual Inputs, General
6.2.5.1

automatically by the Input System is handled by the
manual input element. However, since most incoming
manual information is in the form of requests from the
Display System, the manual input element is logically
part of the Display System.

An operator at a situation display console may
communicate a decision, a request for other information,
or some information to be associated with a given situa-
tion display message via the manual data input keyboard
mounted on the console. A number of prearranged
actions are written into the program of the Central
Computer System. Each action is performed only if

..
. .
-

5
- @m;ms@mmm.@m
Lo

Q!x@ﬂ&!wmmwa@@%wg JM&%MW@
E
e
:Wm‘“ﬁi@“’?sl’*miéﬁxﬂsm
S
-
-

3-112-0

PART 4
CH 6

called for by a manual input data selection panel mes-
sage. Since the function of each console and the pro-
grammed actions required by that function can be pre-
determined, the keyboard message from that console
need only indicate which of the possible actions is to
be performed at a given time. Thus, the console opera-
tor can depress a particular pushbutton with the knowl-
edge that although only one binary bit may be changed
from 0 to 1, a relatively complicated message has been
conveyed.

Since the Central Computer System may read a data
selection panel before the operator has completed mak-

q 15
Laae
.

i

Figure 4—19. Display Console

150

PART 4
CH 6

ing up the message, some provision must be made to
prevent action on an incomplete message. This is done
by requiring the console operator to indicate the com-
pletion of a keyboard message in one of two ways, by
depressing the ACTION pushbutton on the keyboard
as the last step in making up the message or by pulling
the trigger on the light gun at the console. Either
method sets a core in the manual input core array which
indicates that the message from that keyboard is com-
plete and may be acted on. The choice of method de-
pends upon the type of message being sent via the key-
board. If the message requires no reference to a particu-
lar target, the ACTION pushbutton is used. If the
message must be related to a particular target, the light
gun is used.

6.2,5.2 Light Guns

If a console operator were required to identify a
specific target to the Central Computer System by in-
serting an estimate of its co-ordinates, or its track num-
ber, on keyboard switches, errots in estimation or in-
sertion might result. The light gun, a semi-automatic
target designation device, eliminates this source of errot.

A console operator can specify some action on a
selected target by setting up a keyboard message and
then designating the target with the light gun at the
console. The light gun is positioned so that the red
aiming beam it projects just covers the present radar
data message to be designated or the vector origin of the
tabular track data message to be designated. The console
operator then pulls the light gun trigger (this indicates
keyboard message completion in the same manner as does
depressing the ACTION pushbutton) and intensifies all
point features. When the selected target is written dur-
ing a situation display cycle, the photomultiplier tube
within the light gun detects the initial blue flash and
generates a pulse coincident in time with the presence
of identification information on the selected target in
the situation display generator element (SDGE). The
light gun pulse is applied to the SDGE as an informa-
tion transfer signal that gates the target identification
out of the SDGE through the manual data input ele-
ment onto the manual input drum field. The console
operator is informed that transfer has been initiated
when the aiming beam on the light gun is extinguished
and an indicator on its rear is lighted. The operator
readies the light gun for another transfer by releasing
the trigger on the light gun, restoring the aiming beam,
and extinguishing the rear indicator.

6.2.5.3 Area Discriminator

One type of Central Computer System operation
obtains information from the Display System via the
manual data input element without operator interven-
tion. This operation is automatic track initiation. The
required display information is obtained by the Central

3-112-0

Lights Guns
6.2.5.1-6.2.6

Computer System from an area discriminator, a large
light gun covering an entire situation display tube face.

Automatic initiatior is performed in light air traffic
areas since the decisions involved are purely routine
and efficiency of detection is high. The automatic initia-
tion area discriminator is set to display uncorrelated
present radar data. Those areas in which automatic
initiation is not to be performed are masked out. When
the area discriminator is operated, it transfers reports
on all unmasked targets displayed during. one situation
display cycle. The area discriminator is not used with
the AN/FSQ-8.

6.2.5.4 Manual Input Matrix

As explained above, the manual input mattix (cote
array) acts as a time buffer for keyboard messages pre-
sented to the Central Computer System from the Display
System. The manual input matrix (MIM) is read under
program control and transfers its information to core
memory for analysis by the Central Computer System.

6.2.6 Warning Light System

Although the Warning Light System is a separate
system in the AN/FSQ-7 and AN/FSQ-8, it is utilized
primarily to notify personnel at vatious Display System
consoles of special program conditions or machine mal-
functions. This is accomplished by lighting neon lights
on the various consoles and by generating audible
alarms. Because of the close association of the Warning
Light System with the Display System, it is discussed
in this chapter.

The Warning Light System consists of three ele-
ments: the control element, the storage element, and
the interconnection and indicator element. The control
and storage elements are duplex; the interconnection
and indicator element is simplex. The control element
synchronizes Warning Light System operation with Cen-
tral Computer System operation. The storage element
consists of 256 flip-flops arranged in eight 32-bit flip-
flop registers (called warning light registers), which
control the operation of the warning devices. The in-
terconnection and indicator element consists of a patch-
board interconnection unit and the various indicators
(neons and audible alarms) located at the consoles.
Each indicator at each console is connected to a specific
flipflop in the warning light registers through the in-
terconnection unit. The status of each indicator is deter-
mined by the status of the flip-flop to which it is as-
signed. Thus, if a flip-flop is set, the associated neon
lights remain illuminated until the flip-flop is cleared.
If the flip-flop also controls an audible alarm, the alarm
is turned on by the flip-flop but may be turned off
manually by depressing a momentary-contact pushbut-
ton at the console. The alarm remains off until the con-
trolling flip-flop is cleared and reset.

151

Warning Light System
6.2.6

In order to change the condition of one or mote
warning lights, the Central Computer System must in-
stitute an IO operation, during which the contents of
the eight warning light registers are replaced by the
contents of eight core memory registets. The core mem-
ory registers contain the image of the contents of the
warning light registers. If it is desired to change the
condition of one or more warning lights, the bits in the

3-112-0

PART 4
CH 6

core memory image are changed accordingly. Periodi-
cally, the program calls for the transfer of the eight
words in core memory to the eight warning light resis-
tors. The words transferred to the warning light regis-
ters contain not only the 1 bits corresponding to the
lights that are to be changed but also the 1 bits cor-
responding to the lights that were on and which will
remain unchanged.

NOT | SEE . NOT
|€————— X CO-ORDINATE —>+USEDJ NoTE[¢——Y CO-ORDINATE —"—USED_A
*
Ls LIO /u4us RS RIO /
% NOTE:
L14 -"1" IDENTITY

-"0" NO IDENTITY

L15 - "1" CORRELATED
-"0" UNCORRELATED

Figure 4—20. Radar Data Message Drum Layout

BIT POSITION
WORDILS| LI {L2 |L3|L4|L5|L6|LT L8!L9 Lo LII{LIZ LI3|LI4|LIS| RS | RI R2lR3 R4|R5 |R6| R7 |R8| RO RIOI Rulmz R|3| R14|R|5
1 T L T T 1 1
o ¥* AI A2 A3 A4 E * A| A2 A3 A4 E B
Xo2| Xt | X0] X2 | a1 [x20|Xa2 X2t [Xo0| Xa2[Xa! | Xpo| %02 X2t [X20] |y22|v2! [v20]yaz|yar |y20]¥oz |yar [va0]ya2 |yt |v20]va2]yat |ya0
T T T 1 " T T T T " T T T T v T T T T
] e i
20 |27 |22 |23 2% |25 [2-8|2 7| 2-8|2-%] 20| 2|22 g B L b e e i e B B P P
T T 1 L T 1 1 1 T T T 1 1 T T 1 I I
, CATEGORY * DAB P
2“|23 |22 |2' |2° l]2 3 (4|5 |67 (8]9 ilOlII lIZ1l3||4l|5||61|7‘|8II9|20|2I |22]23]24) 25|26
! LS N UL A L D'AB LA SR S A B B —t 1 1 1 1 7
3 i
27 |2a {29 |3b |3| [32]33 |34 |35 |3s [37 |3e 139|4o|4| 142|43 144|45 |4e |47l4e |49} 5o|5| |52 153154|55156|57|58
T T T T T T T T T T T T T T T E'AB T T T T T T T T T T 1 T T T T
4
5960} 61 | 62|63|64]65 |66 |67 68169 |70 |71 |72]|73|74|75]|76 |77 |78 |79]|80|8I |82 |83|84|85]|86|87 88|89 90
; T y T | T
s I 1 T)'(! ;' 102' Icsi ‘04’ 1 T Y 1 |C2| 03| Ca
20 |21 [22] 23| 27| 2% | 278 o | Xp! | Xp0| X2 X! |Xe0[X2 [Xo! [X20| 2° |2 [272[273 |2* |29 2% ya2 [yar [v20|y22 vt |v20]va2 vt |20
. x T B| ¥ I Bz| I B3I IB4T TBST]BI T T le ra3] T B4| lBsr
xqual | Xe0]x2?| xe! |X2° X2?[X2! [Xe0[x2? X2l | Xp0fX22| X2 [}22P %22 |%o %20 [¥22 | Yo' [¥20] Y22 | Yo' [20]¥22 | Yo | ¥20f 22| ¥o Iyzo
T T [| T T T T T T T T T T T T 4 B T T
2| * D, D, As Ag ¢ 1 D Dz Ag Ag G
Xp2 o [X20PXp2|X o1 | X20 a2 [Xor [Xp0 X2 [Xa! [Xp0fX02/Xa! Kool 1ya2 [¥2! [v20{¥22 [¥2! |v20|¥22 |v2! | v2of vo? | ya' | v20v22 |v2 |v20
% =CONTROL BIT
WORD | POSITION [CONTENT MEANING
0 LS 0 TRACK MESSAGE
] INFORMATION MESSAGE
RS 0 TABULAR FORM
] VECTOR FORM
2 L5 0 SUPPRESS DISPLAY
B | ALLOW DISPLAY
6 LS 0 LIGHT .GUN MAY BE USED
] LIGHT GUN MAY NOT BE USED
7 Ls 0 CHARACTERS TO LEFT OR RIGHT OF VECTOR
| CHARACTERS ABOVE OR BELOW VECTOR
. - Figure 4—21. Tabular Message Drum Layout

152

PART 4
CH 6

6.3 MESSAGE TYPES

6.3.1 Situation Displays

Situation display messages are one of two types:
radar and data messages, and track data messages. Radar
data messages placed on the radar data (RD) drum
fields consist of one word only; track data messages
placed on the track data (TD) drum fields consist of
eight words. Because the AN/FSQ-8 receives reports on
processed air defense data from AN/FSQ-7’s, the dis-
cussion concerning radar data does not apply to this
machine, only to the AN/FSQ-7.

6.3.1.1 Radar Data Messages

Radar data messages are sometimes called point
messages since each such message designates the point
locating a target. The symbol displayed at the point
identifies the radar source (search radar or IFF) and
indicates whether the target report is correlated; i.e.,
whether a track data message can be developed from
the radar report. The age of the message is distinguished
by the brightness of its display: if bright, the message
is a present report; if dim, the message is a past report.
The direction in which the target is moving is indi-
cated by the position of the present (bright) report on
the target. Radar data messages are useful primarily in
manual initiation of tracks and in analyzing trouble-
track situations. They are used most in conjunction with

3-112-0

Message Types
6.3-6.3.1.2

the radar inputs program operations and with the
smoothing and trouble detection program operations.
The drum layout of a radar data message is given in
figure 4—20.

6.3.1.2 Track Data Messages ,

Track display messages are capable of presenting a
great deal of information on the targets they describe.
Two types of track display messages are distinguished,
tabular messages and vector messages. Each subtype
occupies eight drum words. A tabular message, how-
ever, can cause display of ome vector and up to 13
characters (although 18 characters are contained within
the message), whereas a vector message can cause dis-
play of four vectors and four charactets.

A tabular message may be either a tabular track
message describing a target in track or a tabular infor-
mation message describing anything which can be rep-
resented by up to 13 characters. The drum layout of a
tabular message is given in figure 4—21.

A vector message can cause display of up to four
independently positioned vectors and four characters
associated with the fourth vector. Vector messages are
used for a variety of information displays, including
flight histories, geographical boundaries, raid symbols,
and attention devices. The drum layout of a vector mes-
sage is given in figure 4—22.

BIT POSITION
WORD (LS| LI]LZ[L3 L4| L5TL6 L7IL81L9 Llo] Lt lle LI3|LI4|LI5|RS RlJRleB R4|R5]R6 R?IRGIRS RlolRu IRlz RI3|RI4|RIS
s 6, "6, 63 6q b Ax] e 6y 63 Gq X,
Pre?xe!|¥e0 Xzaixz'lxz" X22| X! | X0 X22| X2 | X2 ’ / ¥22|y2'|¥29 Yzzlvz'lvzo vzzlvz'|)’2° Y221Y2'|¥z° 9%
- T T T T T T T 1 / T T T I'] T T ‘o =
| Xy X Y| Y|
zolz;llz-zlz—alz-a 2-5 2—612-7|2-9I2—9 2 olz -|I2-2]2-3|2-412-5 2 o|2—|I2—2|2-312-412-5‘>2-6I2-712-e’2*9 2 012 '1[2—212—3|2-4|2-5
2 T CATEGORY * T T T T 1] T T DAB T T T L T v T T T T T T T T
z“|23J22|2‘ |2° ! I 2 1'3 ! 4 ls [6 I7] 8] 9]|o|n ||2l|3]|4||5 ||sll7jlellslao[2| |22]23|24|25|26
n T T T T T i T T T T T T T L} T T T Al 1 T Al T T T T T L}
DAB
® z7|28 |29 L3o |3| laz |33|34 |35 |36]37|3a I39 l40] a1 |42 |43]44|45 las l47 [48149 |5o]5| | s2 lss]s4 |55 156 |57 Ise
T T ¥ T L] T T T T T T 1 1 T T v 1 T T T T T T T ¥ T T T T T T
DAB
¢ s9]60 |61 |62 |63 |64|65|66 67|68 [69|70 |71 |72] 73|74 |75]76 |77 |78 |79]80] 61 |82 |83 |64 |85 |86 |87 [ee |as |90
T T T T T T T T T H T ! T T T T T T v T T T T T ¥ . T T
5 X2 X2 Yo Y2
20|21 222 3|24 25 28] 27| 28| 292 0] 21| 22| 23] 29 23] 2 ol2]2-2] 2-3| 24125/ 2-6|27| 2-8| 29| 2 0|2 1| 22| 2-3] 2-4 25
. T 1 T U ;3 T T T T T T x13 1 T T t T 1 Y3 T 1 T 1 T T Y3 | T
2 °]2*'|2’2]2‘3]2’°[2‘5] 2‘6I2'7]2'8|2‘9 2°{2"|2‘2|2‘3] 2'412'5 2°]2"|2'2|2‘3]2'4|2‘5|2‘6|2‘7[2‘3|v2'9 2 °[2"|2'2|2'3I 2"[2'5
I 1 I 1 M I I 1 I i 1 A 1 T i i T 1 ¥ i I 1 i L . | i
7 X4 X Y Y4
2 Olz‘j 2'2|2'3‘2‘4|2‘5l2‘5l2’7|2'8|2‘9 2°‘2“'|2‘2}2'3‘2‘4|2‘5 2 °12"|2'2‘2'3‘2"|2'5|2'6l2‘7|2'9|2‘9 2 °|2"J2'2|2'3|2'4l2‘5

3% CONTROL BIT

WORD | POSITION CONTENT MEANING
0. RS (o] TABULAR FORM
) VECTOR FORM
2 LS 0 SUPPRESS DISPLAY
| ALLOW DISPL AY

Figure 4—22. Vector Message Drum Layout

153

Digital Displays
6.3.1.2-6.34

The x and y co-ordinates designated in these two
types of messages refer to the co-ordinates of characters
in a character matrix inside the SD cathode-ray tube.
The character matrix for the SD CRT is shown in figure
423,

6.3.2 Digital Displays

Digital display information is presented on the
screens of 5-inch digital display cathode-ray tubes (DD
CRT’s) located in situation display consoles, auxiliary
consoles, and at the Command Post desk. Digital dis-
plays are used primarily to furnish additional informa-
tion supplementing messages displayed on the situation
display cathode-ray tubes (SD CRT’s) and to summarize
existing situations, such as weather data, assignment
data, and other data of a comparatively stable nature.
Unlike the situation display information which is redis-
played every 2.54 seconds, digital display information
is stored in the DD CRT for any desired period and
must be erased before new information can be written.

The distribution of digital display information dif-
fers from the distribution of situation display informa-
tion. The Central Computer System writes the digital
display data in slots of lengths varying from §'to 32
registers on the digital display (DD) field of the MIXD
drum. Each slot is assigned to a specific digital display
indicator section. (In a few exceptional cases, one slot
is assigned to two indicator sections.) In contrast, situa-

CHARACTER MATRIX

OCTONARY
>yx45670I2j
§3 £ hXNT VY LM on
3 2 |lODPIUAEP o
|G L O I 2 3CJY| oo
o [V R Y45 6 7 S W| oo
7 1aM 8B 9 HBZE|
s |AKDO+ A —F Yo
5 e X & % o — 4+ O 101
‘| mOFN==¥% wlff
100 101 110 1 000 00 00 ol X i
BINARY

3-12-0

PART 4
" CH 6

tion display messages are written by the Central Com-
puter System in slots of equal length (eight registers for
TD and one register for RD messages) on the respective
drums, and these messages contain their own routing
information.

A typical digital display drum message format is
shown in figure 4—24. The x and y co-ordinates referred
to are the co-ordinates of characters contained in the
character matrix of the DD cathode-ray tube. Six bits
are required to completely select one character. For ex-
ample, bits L1-L3 and R1-R3 will select the first char-
acter of a S5-character digital display message. The
character matrix is shown in figure 4—25.

6.3.3 Manual Inputs

Information from the drum entry section is placed
on the MDI field of the MIXD drum by status, with
one item per drum register. The layout of information
within each word is determined by the type of infor-
mation. The drum layout of a track data word is shown
in figure 4—26, part A. A radar data word layout is
shown in figure 4—26, part B.

6.3.4 Warning Lights
It is not possible to give any illustration of a warn-
ing light message, since only core memory registers are
transferred to the watning light registers, and they may
contain any value at any one point.

OCTONARY ADDRESSES OF CHARACTERS
ON CHARACTER MATRIX

cHAR| X | y flcHARl X | y ficHar| X | y [lcHar| X | ¥
Al rtallQialz| 7] o7
Bla|7|R|sf{o|8&8fe |7 {Mio]| 4
Cla| i |S|zlolF|o|7|=|1]|oa
Dis|2|T|o|3|AR|jo|s|| X|[5]s5
Etelza|Ujol|la|=—f1]|s]| ®|]a]s
Fla|e|V]|ajo|lB|es|sl|+]2]|s
Glal i |W| 3 of Q]3|s]]o]3]s
Hi 7 X e|3|m|s || 7|~
Tzl Y] 1 |s|=lz2]a|W| 3]
JIs| | Z| 3| 7|6 |s|dL|4]3
Kls|es| |lz] 1w 7]s5s]|n|s|s3
Lis| 2ol i]elolsiidl|z]s
MEs 23— |s| &3]3
Nl 7 {3{thje|o|@|s|s|D|a]-2
Ole | |Bl7zio|0ls|s| ™ 3]|z2
Ple|z|b6|o]o|+]7]c6s] @;«“\L 4| a

Figure 4—23. Situation Display Tube Character Matrix and Octonary Addresses

154

PART 4 3-112-0 Figs. 4-24, 4-25
CH 6 ’

* X CO-ORDINATES #i * Y CO-ORDINATES

Lsfu Lz |sea|isje|L7|s|LoluofLnfuzfuzfrafLis|rs|RI{R2|R3| R4|R5 | R6 | R7 | R8 | Re |RiO] RII|RIZ2 |RIZ|RI4 RIS

| J J I L L

Y Y Y Y Y Y Y

ST 2ND 3RD 4TH 5TH 1ST 2ND 3RD 4TH 5TH
CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER
NOTE:
% = CONTROL BITS
POSITION .
AND CONTENTS
MEANING
x LS | RS
0 | START OF NEW MESSAGE
o o START THIS ROW IMMEDIATELY BELOW
PRECEDING ROW DISPLAYED
SKIP A ROW BETWEEN THE PRECEDING
I i ROW AND THE ROW ON WHICH THIS
WORD IS TO BE DISPLAYED
DISPLAY THIS WORD ON THE TOP ROW
i 0 ON THE OPPOSITE' SIDE OF THE SAME
INDICATOR SECTION
Figure 4—24. Digital Display Message Drum Word Layout
OCTONARY ADDRESS OF
) CHARACTERS ON CHARACTER MATRIX
CHARACTER MATRIX CHAR| x |y lcHaRl x | y ficaRl x | y [lewar] x |y
OCTONARY Alv 2 Qlalr|9l 1]lell2]l0]
Ay X 4 s 6 7 0o 1 2 3 Blz|7|R|s|oflhlo|se 3|1
- 4 h
2 3 |uw f X N T Y t y[on Cle | v IS]2]oflitlalzfYyls o
8 ' D T m 5 4
g 5 | 2 o |3 5 | s 7 |o
2 . D P T UAE r|oo
Elafz |[Ulojz2fm|a{slé&lolo
G L Ot 2 3 C J|oa FlalefVvialoflole|s |71 1o
a | 3 |o 716 6 | 7
o [VR Y45 6 7 5 wloo | |G W P 8
Hiv 72 X|e|sffr|s|l21%9]0 |7
7 Q ™ 8 . 9 H B Z i I17 2 Y| 3 S | s | @] 7 7
6 | b K & P h d F 4] mo Jl3 || Z]s| 7 |t]|l2]|3|d]l2]s
Kls|el||ale |6 wula]s t] 4
5 | ¢cm o w e sz mniio L)
Lis |1 bl a|eflv]s|s|[=]0]a4
4
LAY-4‘¢X'°°§M57C45W75V74
y|2
lOOIOlIIOIIIOOOOOlOIOOIIXmN73d-36X34A64
BINARY Ofls |1 |elo]|siz]|2]|5|M| s]|a
"
Pszfss’lru(&v“co,

Figure 4—25. Digital Display Tube Character Matrix and Octonary Addresses

155

Program Instructions
6.4-6.4.1.3

6.4 PROGRAM INSTRUCTIONS
6.4.1 Situation Displays

6.4.1.1 RD and TD Drum Field Selection

The information presented to the SDGE consists
of both RD and TD messages. The SDGE combines this
information for presentation to the display consoles by
reading all the radar data fields, then all the track data
fields, etc. There are six track data fields and nine radar
data fields, so the situation display system is capable of
reading and automatically switching between 14 drum
fields (one of the RD fields cannot be read during a
reading cycle; this is the one which is being written on
by the Central Computer System). However, when writ-
ing on the TD and RD fields, there is no automatic
switching between fields, and a separate SDR code exists
for every drum field of the RD and TD drums. The
execution of these codes will select the specified drum
field for a writing operation only; as explained, the
reading is done automatically by the Display System.
The six TD drum fields are selected by execution of an
SDR (41) — (46) which will select TD fields 1-6, re-
spectively. The RD fields are selected by execution of
an SDR (60) — (67), (70) which will select RD fields
1-9, respectively.

6.4.1.2 RD' Scan Counter

One feature of the RD drums is that we cannot
read the field on which we are placing new information.
This results in reading only eight RD fields at one
time. The method used to pinpoint the skipped (not

TRACK NUMBER

3-112-0

PART 4
CH 6

read) RD field is determined by the setting of a counter,
called the scan counter. When set to 0, the scan counter
will prohibit reading on field 1 and will cause fields 2
through 8 to be read. If the scan counter is set to 5,
fields 6 through 9, and then fields 1 through 4, etc,
will be read. Stepping of the scan counter is under
program control. When it is desired to step the scan
counter by 1 (causing a different field to be skipped
and thus allowing writing on a new field), we execute
a PER (77) instruction, When we wish to reset the scan
counter, a PER (76) instruction is executed. The
stepping of the scan counter when it is prohibiting read-
ing of field 9 would result in its being reset; however,
resetting the counter by executing a PER (76) instruc-
tion is more desirable because it is a more reliable opera-
tion.

6.4.1.3 Situation Display Test

When the Central Computer System wishes to com-
pate information placed on the RD and TD drums, an
SDR (47) instruction may be executed. This instruction
will allow the Central Computer System to test-read
(by identity only, of bits R5-R10) the entire 14 drum
fields which make up the situation display information.
Thus, the Central Computer System is simulating the
operation of the Display System, when an IO transfer
involving the use of SDR (47) is made. The normal
testing sequence is for the Central Computer System to
place a fixed pattern on the TD and RD fields and
then to execute an SDR (47) and read this pattern back
into memory to compare it.

TYPE
» C R C2 e C3 R Cq CONSOLE oF
(ALPHA) (ALPHA) (ALPHA) (NUM.) IDENTITY “TTINFO.
LS L5|L6 LijLi2 RI|R2 RS5|R6 RI3|RI4 RIS
0]]
TRAGK
DATA
TRACK DATA WORD
A
.
TYPE
X CO—ORDINATE Y CO—-ORDINATE 0 CONSOLE OF
M T IDENTITY “TINFO.
LS LIo (LN R5 | R6 RI3{Ri4 RIS|
1]0
[
RADAR DATA WORD s
£8
-5
B. o w <
ale W
«|S %
«
238
xjo —

Figure 4—26. MDI Message Drum Field Layout

156

PART 4
CH 6

6.4.1.4 SD Camera Modes

There are cameras utilized with the AN/FSQ-7 and
AN/FSQ-8 which may take pictures of a situation dis-
play for use in training and evaluation. These cameras
may be operated manually or by program control. In
addition, there are two modes of display available for
the camera with a different mode taking a different type
of picture. When we desire to operate the camera in
mode I under program control, we can execute a PER
(31). If the desired mode of operation is mode II, we
can execute a PER (32). Execution of either of these
two instructions will cause the camera to take one pic-
ture of the situation display. In addition, two codes aré
available for the use of more cameras, if so desired.
These codes are PER (33) and PER (34) and are
presently reserved for cameras 3 and 4. At the present
time, these cameras are not in use in the AN/FSQ-7 or
AN/FSQ-8. If we wish to take some action when the
SD camera is being operated, we can sense its status by
execution of a BSN (35) instruction. This instruction
senses a flip-flop which is set when the camera is taking
a picture. If the flip-flop is set, the BSN (35) will cause
the program to branch to the location specified in the
address portion of the instruction. Execution of a BSN
(35) instruction does not clear the flip-flop.

6.4.1.5 Sense Display

If the Display System is displaying track data, a
ﬁi‘p-ﬂop is set, indicating this condition. We can ex-
amine this flip-flop by execution of a BSN (37) instruc-
tion. If track data is being displayed at the time a BSN
(37) instruction is given, the program will branch to
the memory location specified by the instruction. How-
ever, a BSN (37) instruction does not clear the flip-flop.

6.4.2 Digital Displays
6.4.2.1 DD Drum Field Selection
When the Central Computer System wishes to write
information on the DD drum field, it selects this field
by execution of an SDR (27) instruction. This instruc-
tion is valid for writing operations only.

6.4.2.2 DD Drum Field Test Selection

When the Central Computer System desires to test-
read the DD drum field, it may select the DD field for
this purpose by execution of an SDR (17) instruction.
Execution of this instruction will prepare the DD drum
field for reading into the Central Computer System by
identity of bits R14-R15 only. This instruction enables
the Central Computer System to simulate the action of
the Display System. ‘

6.4.2.3 Start Digital Display
Sections (1 and 2)
Unlike the situation displays, which present a pic-
ture of the air defense situation every 2.54 seconds, the
DD display presents information only upon request of

3-112-0

Manual Inputs
6.4.1.4-644

an operator. Thus, it is necessary for the program to
tell the digital display element when to generate a dis-
play. There are provisions for dividing the digital dis-
plays into two sections: the DD 1 section for rapidly
changing information; and the DD 2 section for slower
changing of the information. This would enable part of
the digital displays to be changed, instead of changing
all of them. At the present time, the DD 2 section is
not in use in the AN/FSQ-7 or AN/FSQ-8 and is a spare.
The code used to start generation of a digital display in
section 1 is PER (35), while the DD 2 section is started
by execution of a PER (36) instruction.
6.4.3 Manual Inputs

6.4.3.1 MI Drum Field Selection

The MI drum field can be selected for reading by
the Central Computer System by one of two methods.
If the MI drum field is to be selected for reading by
status, an SDR (22) instruction is given. On the other
hand, if we wish to read the MI drum field by identity
(bits R14-R15), an SDR (23) instruction is executed.

6.4.3.2 Area Discriminator Operation

The area discriminator may be operated in one of
two modes, both selectable by program control. At the
present time, only one mode of operation is in use with
the area discriminator. When an area discriminator is
operated by a PER (20) instruction, it initiates tracks
detected by it over a period of 2.54 seconds (one dis-
play cycle). Then, it is turned off and is not operated
again until another PER (20) ipstruction is executed. A
PER (17) instruction is provided for operation of the
area discriminator in another mode, although this code
is not used at present.

6.4.3.3 Manual Input Matrix Selection

The MIM is selected for reading by the Central
Computer System by execution of a SEL (06) instruc-
tion. A conventional 1O transfer between the MIM and
the Central Computer System may then take place. Since
the MIM consists of 128,, computer words, the entire
MIM is usually read by execution of an RDS 200,
instruction. If any less than 2005 words are read, the
remainder of the information contained in the MIM is
lost, since it is usually replaced with new information
before another SEL. (06) instruction is given.

6.4.4 Warning Lights

The warning light registers are replaced periodi-
cally by the contents of the core memory image. To do
this, a standard IO transfer program must be executed,
requiring that the warning light registers be selected.
A SEL (f@ instruction performs the selection, and
selects the registers in the storage element for a writing
operation only. As a rule, all 8;, warning light registers
are replaced with the core memory image during an IO
transfer, necessitating the execution of a WRT 10, in-
struction.

157

PART 4
CH 7

3-112-0

Programmed Marginal Checking
11-122

CHAPTER 7
PROGRAMMING THE MARGINAL CHECKING SYSTEM

7.1 INTRODUCTION

The marginal checking facilities built into AN/
FSQ-7 and AN/FSQ-8 are used to provide a high de-
gree of equipment reliability. Marginal checking is per-
formed by varying a supply voltage to a group of cir-
cuits. The variation of the supply voltage is called an
excursion. The magnitude of an excursion necessary to
produce operational circuit failure is called a margin.

The circuit margin can be determined by varying
an applied voltage at the same time that a test program
is being run. In order to derive the maximum benefit
from this type of testing, the program used must be de-
signed to fully test the equipment covered by the mar-
ginal checking test program.

The probability of circuit malfunction during nor-
mal operation is very high when the circuit margin de-
creases beyond a prescribed value. To improve relia-
bility, these circuits that have decreased margins should
be replaced. The probability of trouble-free perform-
ance until the next test program is very high if the cir-
cuit functions normally during the marginal checking
program. There are three marginal checking elements
in the AN/FSQ-7 and AN/FSQ-8. Two identical mar-
ginal checking elements are provided for duplex equip-
ment, one for computer A and one for computer B. The
third marginal checking element is provided for the
simplex equipment. Marginal checking programs are
normally performed on that section of the duplex equip-
ment that is in the standby status. Marginal checking
operations can be performed only on simplex units that
are in the standby status.

Marginal checking is accomplished by varying an
applied voltage while a test program is being run. If a
voltage is varied, all circuits supplied by this voltage
have the same excursion applied. Assume the voltage
variation causes the gain of each circuit to which it is
applied to decrease. Further, suppose that several of
these circuits are combined to perform one operation.
Although each circuit functions properly, the slight de-

“crease of amplification through cascaded stages could
produce an error indication. Thus, the test program
would give an erroneous test indication.

In order to overcome the inherent disadvantages
which arise when a system-wide excursion is applied,
only one supply voltage to a single portion of the
equipment is varied at any one time. Of the five d-c

service voltages used for marginal checking, only one
voltage can be varied at any one time. In each computer,
the varied d-c voltage is applied to one of the eight
marginal checking groups. Each of the equipment
groups may be further subdivided into six circuit groups,
and each of the circuit groups may be divided into six
lines. The varied voltage may be applied to any com-
bination of circuit groups and lines within the equip-
ment group.

7.2 PROGRAMMED MARGINAL CHECKING

7.2.1 General

When the marginal checking system is being oper-
ated under program control, each marginal checking
sequence is automatically initiated, as required by the
program. The program also selects the marginal check-
ing group, circuit group, line voltage, and the ampli-
tude and polarity of the excursion. These selections are
made by means of a marginal checking control word
which is transferred from core memory to the live reg-
ister of test memory. The bit assignments and the cor-
responding selections for the AN/FSQ-7 are shown in
table 4—24. It should be noted that the marginal check-
ing control word layout is only slightly different for
the AN/FSQ-8. A binary code of 10 in the L1 and L2 of
an AN/FSQ-8 control word will cause the program to
continue from location 20000y, rather than 37760, Also,
a binary code of 0111 in bits RS through R3 will select
only the XTL common element for checking, as the LRI
and GFI elements are not included in the AN/FSQ-8.

7.2.2 Excursion Application

Once the control word for a marginal checking
routine is placed in the live register by the marginal
checking executive program, the excursion is initiated
by the execution of the PER (21) instruction. This in-
struction delivers the control word to the marginal
checking controls, removes any previously applied ex-
cutsion, and generates a conmtrol clear command just
prior to the program restart called for by the marginal
checking control word. The delay between the execu-
tion of the PER (21) instruction and the generation of
the control clear command varies between 300 and 500
ms. This interval could be used for further calculation
but, since the delay time is variable, the PER (21) in-
struction is usually followed by a Program Stop (HLT)
instruction, leaving the Central Computer System idle
until the program restart occurs,

159

Tahle 4-24

3-112-0

PART 4
CH 7

TABLE 4—24. MARGINAL CHECKING CONTROL WORD LAYOUT

BIT SELECTION CODE ACTION
LS Change or start excursion 1 Start excursion
0 Change excursion
L1-L2 Restart after excursion applied 00 Load from drums
01 Continue from 00000y
10 Continue from 200004
11 Load from card reader
1314 Restart after excursion removed Same as L1-L2
L5-L6 Time duration of excursion 00 Infinite
A 01 3 seconds
10 7 seconds
11 30 seconds
L7 Polarity of excursion 0 Positive
1 Negative
L8 Spare Used by programmers for control de-
coding (safe limit). Does not affect
MC system.
1L9-L12 Excursion magnitude 0000 0 volts
0001 10
0010 12
0011 14
0100 16
0101 18
0110 20
0111 25
1000 30
1001 35
1010 40
1011 50
1100 60
1101 70
1110 85
1111 100
L13-L15 Voltage group selection 001 +250 volts
010 - 4150
011 +90

160

PART 4 3-112-0 Tahle 4-24

CH 7
TABLE 4-24. MARGINAL CHECKING CONTROL WORD LAYOUT (cont'd)
BIT SELECTION CODE ACTION
100 —150
101 —300
RS-R3 Mazrginal checking group 0001 1 Memory
0010 2 Arithmetic
0011 3 Program and control
0100 4 IO control
0101 5 Drums
0110 6 Displays
0111 7 LRI, GFI, XTL common
1000 8 Outputs
1001 Simplex
R4-R9 Circuit group 100000 A
010000 B
001000 C
000100 D
000010 E
000001 F
R10-R15 Lines 100000 1
010000 2
001000 3
000100 4 Used for duplex marginal checking
000010 5
000001 6
R10-R15 Simplex (RS-R3 = 1001) 100000 G)
010000 H
001000)
000100 K (Used for simplex marginal checking
000010 L
000001 M)

The control clear command generated just before
restart clears all computing and control flip-flops in the
Central Computer System, allowing the restart program
to begin from a known condition. Since the index reg-
isters are also cleared by this command (if they are to
be used after the restart), their contents must be stored

temporarily in core memory and then reset by the re-
start program itself.

7.2.3 Excursion Removal
Two separate Operate instructions are available
for the removal of excursions. PER (22) removes ex-
cursions applied to duplex equipment groups; PER (23)

161

Use of LS Bit
1.2.3-1.26

removes excursions applied to simplex circuit groups.
After excursion removal is called for in the marginal
checking word, each instruction generates a control
clear command just prior to the restart. Since the delay
between execution of either of these instructions and
the generation of the control clear command is the
same as for PER (21), the same cautions apply in con-
tinuing calculation after execution of either instruction;
calculation may be continued for 300 ms after any of
these instructions and then be terminated by an HLT
instruction.

It is conceivable that some marginal checking pro-
grams will require margins on duplex equipment for
some phases and on simplex equipment for other phases
of the program. The application of these margins is ac-
complished by proper selection coding of the marginal
checking word in conjunction with the PER (21) in-
struction, However, removal requires that a PER (22)
instruction be used for duplex and a PER (23) instruc-
tion for simplex. This necessitates the placing of both
of these instructions in the same program. When pro-
gramming this type of routine, PER (22) and (23)
should never be given in successive order since this
causes two consecutive restarts, resulting in unpredicta-
ble operation. A method of discriminating between du-
plex and simplex margins should be included in this
type of program, after which the applicable PER in-
struction to remove that margin may be given.

7.2.4 Excursion Detection

One of the functions of the PER (21) instruction
is to turn on the appropriate marginal checking sense
unit, indicating that either duplex or simplex excursions
are applied. The PER (22) and (23) instructions turn
off the duplex and simplex sense units, indicating that
excursions have been removed.

The BSN (20) instruction provides a means of
sensing the duplex marginal checking sense unit to de-
termine if duplex excursions are on or off. The branch
will be executed, only if the sense unit is on, and will
not affect the setting of the sense unit.

The BSN (27) instruction operates in the same
manner for simplex equipment and has its own mar-
ginal checking sense unit. Again, the branch will be
executed only when the sense unit is on. The BSN (20)
and (27) instructions provide a means of discriminat-
ing between margins applied to duplex and simplex
equipment.

7.2.5 Use of the LS Bit

The presence of a 1 in the left sign of a marginal
checking word indicates that it is a start excursion word.
When the PER (21) instruction is executed, any previ-
ous excursion and voltage, equipment group, circuit
group, and line selection will be removed. The new se-
lection, as coded in the marginal checking word, will be

162

3-112-0

PART 4
CH 17

made. In this type of word, all information pertinent
to the margins to be applied must be specified.

Having made the desired selections by means of a
start word, it is possible to alter the excursion magni-
tude, polarity, and the mode of restart by using a change
word after the excursion is applied. A change word is
specified by a 0 in the LS bit position. The change word
does not have provisions for selecting equipment
groups, voltage groups, circuit groups, or lines, nor does
it cause former selections to be removed. Therefore,
any polarity or magnitude changes which have been
made affect the previously selected equipment and can
only be made after a start word has been used to specify
the desired selections.

The duration timer is restarted from time 0 by a
change word, but selection of duration is not affected.
The same timer setting that was specified by the preced-
ing start word will remain selected and will start retim-
ing the new excutsion from time 0. If the time duration,
specified by the start word, expires, causing a control
clear command, the next change word or words will be
useless. This is also true following a programmed PER
(22) or (23) instruction; a change word can be used
only if excursions are still applied to the selected equip-
ment.

When using a change word, the excursion magni-
tude, polarity, and restart (L1 and LZ) must be speci-
fied, with all other bits given as 0. This is true even
when some information affected by a change word is to
remain the same. Since a change word requires approxi-
mately half the time required for a start word, the
change word may prove advantageous when time is a
major problem.

7.2.6 Restarts

Bits L1 and L2 designate restart after excursion
applied, and bits L3 and L4 designate restart after ex-
cursion removed. These restarts are necessary to main-
tain program control. They are initiated after margins
have been applied or removed, and the control clear
has been generated. The restart after excursion applied
is initiated by the PER (21) instruction. Restart after
removal is initiated by the PER (22) or (23) instruc-
tion, or by the duration timer running down to 0. In
either case, there are four possible modes of restart.

The first of these is the load-from-drums mode in
which the first 303 words from auxiliary memory 1 are
read into core memory locations 0.00000 through
0.00027. The program will thén continue from location
0.000005 with the first instruction loaded from the drum
field. The continue from 0.00000 mode causes the pro-
gram to start from core memory location 0.00000 after
the excursion has been applied or removed. Continue
from 3.777605 causes the program. counter to be set to
3.77760s, the first location in test memory from which

PART 4
CH.7

the Central Computer System will obtain its first in-
struction after the restart. It should be remembered that

3-112-0

an address of 0.20000 is used to designate the first test

memory address in the AN/FSQ-8.

The load-from-card-reader mode is equivalent to
depressing the LOAD FROM CARD READER push-
button on the duplex maintenance console. A break-in
operation is initiated, and one card of 304 binary words
is loaded into core memory location 0.00000 through
0.00027;. The program then continues from memory
location 0.00000. Since these four modes are available
for both restarts, neither of which is dependent on the
other, a great deal of versatility is obtainable through
careful programming.

7.2.7 Time Duration

Bits L5 and L6 of the marginal checking word are
devoted to selecting a desired time for an excursion to
remain applied to selected equipment. There are four
preset times available: infinite; 3 seconds; 7 seconds;
and 30 seconds. The duration timers initiate a control
clear command in the event that instructions PER (22)
" or PER (23) bave not been reached by the end of the
desired time. These timers provide a means of retaining
program control by initiating an automatic restart after
excursions are removed. The PER (21) instruction re-
sets all timets to O prior to the selection of a timer by
the marginal checking word.

7.2.8 Polarity

Marginal checking excursions may be applied with
positive or negative polarity. Bit L7 specifies the polar-
ity of the excursion to be applied as selected by the
marginal checking control word. If this bit is 0, a posi-
tive excursion is called for; if the bit is a 1, a negative
excursion is called for,

For certain selections of equipment, voltage circuit
group, and line, only one excursion polarity can be ap-
plied. The safe limit information in marginal checking
breakdown charts indicated whether an excursion of a
particular polarity is permitted on a given line; if a
positive excursion is not permitted, for example, the
positive safe limit is indicated as OV. Only if both safe
limits have values other than 0 can the line tolerate ex-
cursions of either polarity.

7.2.9 Safe Limit

Due to component considerations, certain selec-

tions may not have their supply voltages subjected to

Safe Limit
71.2.6-17.3

excursion beyond definite limits, There are five of these
limits, 0, 25, 50, 75, and 100V, referred to as safe limits.
Although the duplex marginal checking word has pro-
visions for coding in bit L8 for one of two of these
limits (160 or 25V), the code will not directly affect the
marginal checking system. The safe limit bit is for de-
coding purposes only and is used to indicate at what
magnitude the excursion should be removed. This is
primarily a time-saving feature since the system is inter-
locked to prevent the safe limit from being exceeded,
regardless of the coding or mode of operation.

Assume, for example, that excursions are to be ap-
plied from 0 magnitude to failure to a line whose safe
limit is 25V, and that no safe limit is coded in the mar-
ginal checking word or that the control program has
no provision for recognizing safe limits. If no failure is
incurred between 0 and a 25V excursion, the control
program will continue to apply an excursion to that
line. However, the magnitude of the excursion applied
will not exceed 25V because of the safe limit feature of
the marginal checking system. The 25V excursion will
be applied eight more times until the 100V word is
reached. Since the time required to apply an excursion
is in the hundreds of milliseconds, a large amount of
time is wasted in this type of operation. This time can
be saved by providing the control program with a
means of recognizing the safe limit and removing ex-
cursions upon reaching that limit. The safe limits may
be obtained from the marginal checking breakdown
charts.

7.2.10 Excursion Magnitude

There are 16Vpos'sib1<e excursion magnitudes, rang-
ing from 0 to 100V, which are coded in bits L9 through
L12 of the marginal checking word. These bits are de-
coded by the marginal checking system and the proper
magnitude of excursion is applied to the selected line.
If, for some reason, the coded magnitude exceeds the
safe limit for the selected line, only the safe limit will
be applied. Control programs may be designed to in-
crease the magnitude on consecutive passes. In this man-
ner, margins may be applied from a prescribed point to
failure or until the safe limit is reached.

7.3 INSTRUCTION SUMMARY

A summary of the instructions related to the vari-
ous IO systems is given in table 4—25.

TABLE 4—25. SUMMARY OF 10 INSTRUCTIONS

MNEMONIC OCTAL EXECUTION CAUSE
INSTRUCTION NAME NAME CODE TIME INDEXABLE OVERFLOW
Select SEL 62- 12 psec No No
Select Drums SDR 61- 12 psec Yes No

163

Table 4-25 3-112-0 PART 4

CH 7
TABLE 4-25. SUMMARY OF 10 INSTRUCTIONS (cont'd)
MNEMONIC OCTAL EXECUTION CAUSE
INSTRUCTION NAME NAME CODE TIME INDEXABLE OVERFLOW

Load 10

Address Counter LDC 600 6 psec Yes No

Read RDS 670 6 usec No No

Write WRT 674 6 psec No No

Clear and Subtract

Word Counter cSw 020 6 psec No No

164

PART 5
CH 1

3-112-0

Lincoln Utility System
1.1-1.21

PART 5
ADVANCED PROGRAMMING METHODS

CHAPTER 1
UTILITY SYSTEMS

1.1 GENERAL

Utility systems are groups of programs and subrou-
tines which perform some function for other programs.
A utility system program is generally loaded into core
memory and left there while the programs it serves are
loaded and executed. Thus, the utility programs and
subroutines can be easily referenced to by any program
that desires to make use of them.

An example of a utility program is one which trans-
lates information from cards punched in Hollerith code
into binary code and which then stores this information
in core memory. Another type of utility program would
be one which examined a program and assigned an ab-
solute location to each instruction in the program. It
should be remembered that both of these programs are
only part of a utility system; they can be operated inde-
pendently of one another but cannot petform the entire
service that a particular program may need.

1.2 LINCOLN UTILITY SYSTEM

Instead of discussing a utility system not closely re-
lated to the AN/FSQ-7 or AN/FSQ-8 operation, or a
hypothetical system, it was decided to describe, in gen-
eral, a working utility system. The system chosen is
known as the Lincoln Utility System because it was
written by personnel from the Lincoln Laboratory of
‘the Massachusetts Institute of Technology. The reader
should keep in mind that the Lincoln Utility System is
described and discussed in the following paragraphs
only as a typical example of a large utility system. The
discussion is not intended to provide the theory of op-
eration of the Lincoln Utility System, in particular,
but rather is designed to acquaint interested personnel
with a general idea of the concepts involved in the ap-
plication of any large utility system.

1.2.1 Description and Purpose
The Lincoln Utility System is a group of programs
comprising about 60,000 separate instructions. Its main
purpose is to aid programmers responsible for the writ-
ing and testing of the air defense programs used in the

Direction Center Active (DCA) and Control Center
Active (CCA) master air defense programs. These pro-

grams are run in the active computers at the various
AN/FSQ-7 and AN/FSQ-8 sites.

Some of the functions performed by the various
utility programs are as follows:

1. The Lincoln Compiler will translate a deck of
punched cards containing Hollerith-coded in-
struction words into standard binaty form used
by the AN/FSQ-7 and AN/FSQ-8. The compiler
will produce either a tape record or a binary
deck which can later be read back into the com-
puter and operated. Thus, the compiler serves
mainly to translate information from a language
used by the programmer into one which can be
interpreted by the computer.

2. The Read-In program and the Table Simulation
program are used to place on the drums a pro-
gram and the test data it may need. This pro-
gram may then be transferred from the drum to
core memory and operated in a manner similar
to the way it would be used in the air defense
program.

3. The Storage Print program will provide a print-
out of various drum areas for analysis, The
Checker will operate and interpret a program
step by step, printing out errors which may
cause program malfunction. Minor changes to a
program already loaded on the drums may be
made by a program known as the Octal Load
program. These three programs are used mainly
to troubleshoot or correct a program already
loaded into the computer.

4. Several programs which constitute part of the
utility system are used to assist in the mainte-
nance and modification of the utility system.
These programs also assist in the loading and
_processing of tapes.

165

Qperation
1.2.1-1.2.3.1

5. The Utility Control program is the program
which controls the overall operation of the util-
ity system and performs functions which aid
computer operations. This program is of the
“executive” type; it does no actual data process-
ing but, instead, controls the sequencing and
correct execution of the other programs in the
Lincoln Utility System. Naturally, not all of the
programs which comprise the overall Lincoln
Utility System have been covered; examples
have been given of only some of the things the
Lincoln Utility System can do.

1.2.2 Operation

All of the programs which make up the Lincoln
Utility System are stored on one logical tape. A “logi-
cal” tape 1s one which contains a series of consecutive,
related programs or files which may be loaded on the
same physical tape reel with other “logical” tapes. To
operate the utility system, the Utility Control program
is first brought into core memory from the logical tape.
Then, the programmer communicates his requests to
the Utility Control program either by means of push-
buttons on a console, known as the Utility Control con-
sole, or by placing coded words into punched cards
which can be read in through the card reader. When
the Utility Control program is ready to act on the re-
quest it has been given, it reads the contents of the
manual input matrix which has been set by depression
of various buttons on the Utility Control console or
has been set by reading in the coded cards from the
card reader. The Utility Control program then initiates
the requested action by reading in another utility pro-
gram from the tape and branching to it or by perform-
ing the requested function itself.

After a utility program has finished its task, con-
trol is returned to the Utility Control program which
then prepares to accept the next operator request. This
method allows continuous, sequential operation of the
Lincoln Utility System.

To ensure the most rapid and efficient operation,
it is desirable for us to keep at least a part of the Utility
Control program permanently in memory. This portion
of the Utility Control program is contained in memory
locations 0.00000 through 0.00225 and contains storage
areas for vital information as well as program instruc-
tions. Each of the other utility programs which may
be called into core memory to perform some task is con-
structed so as not to destroy the permanent portion of
the Utility Control program. By the same reasoning,
whenever we operate one of the air defense programs
under control of the utility system, care must be taken
to see that this program will not damage the permanent
portion of the Utility Control program and will not
interrupt operation of the overall utility system. One

166

3-112-0

PART §
CH 1

other feature of the utility system which plays an im-
portant part in the successful operation of the overall
system is core image. As we have indicated, the prime
purpose of the Lincoln Utility System is to test an air
defense program. However, a single utility program
which is to perform some operation of a given air de-
fense program may occupy much of core memory, and
the air defense program may be equally large. It is then
necessary for the utility system to time-share its own
program with the program being tested. To allow this,
the utility system combines four auxiliary drums to
form what is known as Core Image. Each drum register
corresponds to a core memory location and serves the
purpose of storing either an air defense program or the
results of that program for inspection and modification
by the Utility Control program, (Core Image was de-
signed into the Lincoln Utility System at a time when
an expanded memoty unit was not available for use.
Today, Core Image would not be necessary for proper
operation of the Lincoln Utility System; however, it
illustrates how the problem of limited memory space
might be dealt with in another utility system.)

This, basically, is the way the overall operation of
the Lincoln Utility System is performed. Most utility
systems operate in similar fashion by using a control
program which selects the proper utility programs, per-
forms the required tasks, and proceeds as rapidly as
possible to the next request.

One of the outstanding features of the Lincoln
Utility System is the large number of automatic coding
devices used. Automatic coding may be defined as the
interpretation of a program written in a language which
is convenient for the programmer, This automatic cod-
ing is performed by another program called a Compiler
or Assembly program whose function is to translate
symbolic expressions into binary form. The use of sym-
bolic expressions and how they serve as a means of
communication within a program and between other
programs is discussed in the following paragraphs.

1.2.3 Internal Program Communication

1.2.3.1 Internal Tags

The most simple application of a symbolic expres-
sion in a computer is its use in representing an absolute
address. It is often much easier to write a symbolic ad-
dress than it is to determine the exact numerical ad-
dress of the register involved. As a rule, the program-
mer need not be concerned with specific addresses of
words except those to which he makes direct reference
in his program. For example, if he wished to branch to
a certain address or to store a result in a designated
register, or to use a specific word as operand, he could
express the addresses of all of these things by a system
of symbols.

PART 5
CH 1

Specifically, a symbolic address might be used in
the following manner. Assume a situation in which we
wish to write an instruction directing the program to
BFZ to 02A. It does not matter what actual address the
term 02A represents, as long as we know what instruc-
tion to branch to and designate its address as 02A. For
instance, if we wished to CAD 065, provided the branch
condition of the BFZ instruction was satisfied, we would
simply give the instruction CAD 065 an address of 02A.
The instructions would thus appear as follows:

BFZ 02A
02A CAD 065

When the program containing these instructions is
loaded into the computer, the Compiler program will
determine what absolute address the instruction at 02A
has. Then, wherever the compiler encounters a symbolic
address of 02A in the program, it will automatically
substitute the actual memory location that 02A was de-
termined to be. Constants as well as instructions may be
referred to by these symbolic expressions or “tags” as
they are commonly called. One of the primary advan-
tages of using symbolic expressions is that insertions
and deletions may be made to a program without rear-
ranging the entire program, as would be the case if it
has been written using actual numerical addresses.

Symbolic expressions can also give directions to a
compiler program such as: “generate a storage block
of 100 registers with all registers being cleared to posi-
tive 0”, or “skip the next 20 registers.”

Using the medium of a compiling program it is
possible to translate into binary form any number of
symbolic terms that we desire. By choosing a vocabulary
of symbolic expressions which make the programmer’s
task of expressing his program as simple and as easy as
possible, we do two things:

1. Reduce the number of programming mistakes

2. Make more time available to the programmer
for concentration on his specific program by
reducing the amount of time needed to express it.

1.2.3.2 Pseudo Instructions

Pseudo instructions are those instructions which
cannot be interpreted directly by the computer but can
be interpreted by another program such as the com-
piler. These instructions are usually used to manipulate
data so that it may be directly stored or processed by a
following legal instruction which the Computer pro-
gram would recognize. For example, if we wished to
place an FCL instruction into a program at a certain
point but did not know exactly how many cycling posi-
tions should be specified, we could insert a pseudo in-
struction which would direct the compiler to insert an
FCL instruction in place of the pseudo instruction and

3-112-0

Types of Tags
1.23.1-1.2.35

calculate the correct number of cycles required in the
right half-word of the FCL instruction by analyzing
what the program had done up to the point at which it
encountered the pseudo instruction.

1.2.3.3 Location Tags ‘

Location tags are defined as symbolic addresses by
which the programmer can refer to words within his
own program. Location tags used with the Lincoln Util-
ity System are expressed by a combination of two deci-
mal digits plus any letter. For example, the tag 024,
which we used earlier, is a location tag. In this case,
the location tag refetred to a core memory address, but
it can also act as the right half-word of a constant and
can serve various other purposes,

The structure of the location tag is intended to
allow for the organization of a program into logical
sections. For instance, the two digits can be used to
denote a region or block of related instructions, while
the letter can be used to differentiate among instruc-
tions within the block. Only those words which are re-
ferred to by other words need to be tagged; however, it
is permissible to tag a word which is not referred to
elsewhere in the program. This is especially helpful
when it is desired to locate and identify various logical
blocks within a program by tagging the first word of a
block.

A particular location tag can be used to signify the
location of only one word in any one program, but it
can be used as the right half-word of as many instruc-
tions as necessary. If a location tag is used to specify
an address in the right half-word of an instruction but
does not appear next to the instruction or constant that
it should, it is known as an unassigned tag and will be
printed out by the compiler, as such. In this way, the
programmer can check to make sure that every location
tag used does actually refer to something.

1.2.3.4 RC Tags

RC tags are symbolic expressions by which the pro-
grammer can refer to a word without assigning that
word any particular location in a program. It is some-
times more convenient to designate the word we desire
rather than to indicate a location for the word. For ex-
ample, if we wish to CAD a constant of negative 0, we
might use an RC tag as follows: This is read as “Clear
and Add” a register containing 1.77777, 1.77777. Thus,
RC is simply an abbreviation for the words “register
containing.” When the compiler encounters an RC tag,
it will assign the word to a location at the end of the
program and will later substitute this location for the
RC tag.

1.2.3.5 Temporary Storage Tags

Temporary storage tags are symbolic expressions
by which we can refer to a temporary storage register

167

Communication between Programs
1.2.3.5-1.25.2

without assigning it a specific location in our program.
A temporary storage tag is composed of the letter T
followed by three decimal digits. If the three-digit num-
ber following the T contains leading 0’s, they may be
omitted. For example, the expressions T004 and T4 re-
fer to the same temporaty storage location. In the Lin-
coln Utility System, the temporary storage tag contain-
ing the largest number is used to automatically deter-
mine how many temporary storage locations will be pro-
vided at the end of the program. Thus, the programmer
should always use consecutively numbered T-numbers,
beginning with 0.
1.2.4 Communication between Programs

Since the overall air defense program is so large
that all of it plus the data it uses cannot be stored in
core memory at one time, some means of communica-
tion must exist among the various individual programs
or subroutines. This communication is achieved by stor-
ing the information generated by one program in ta-
bles for use by another program. These tables are given
tags (called communication tags) to simplify the job
of addressing them when they are being run in conjunc-
tion with the utility system.

1.2.4.1 System Tables

System Tables consist of registers containing one

of the following types of data:

1. Data on which memory space is required during
one cycle (frame) or less of the overall air de-
fense problem.

2. Data to be communicated between individual
programs within a subframe. *

3. Data received from input equipment or data for
output or display equipment.

System Tables are classified into categories depending
on their use and function in the program. The different
classifications and their definitions are as follows:

1. Central Tables — Tables used by two or more
program groups.

2. Communication Registers —A special type of
Central Table which, in general, provide one-
way communication from one program to an-
other.

3. Isolable Tables — Tables used by one program
or program group only.

4. Peripheral Tables — Tables representing an im-
age of an input, output, or display format.

1.2.4.2 Htems

Any independent piece of data constitutes an item.

Items may range from 1 to 32 bits in size and are of two
types: tagged and tagless. Tagged items are specified by
unique four-letter designations, called item tags. Tag-
less items are specified by name, table block, and word

168

3-112-0

PART 5
CH 1

location. The location of tagless items within a particu-
lar table block is guaranteed, whereas the position of a
tagged item is not guaranteed because the program-
mers cannot assume a guaranteed location and because
the tagged item must be treated using the conventions
of the Lincoln Utility System.

1.2.4.3 Table Tags

Each table is identified by the use of a unique des-
ignation consisting of three letters, known as the table
tag. The table is addressed for programming purposes
by means of the Table Block Tag which consists of the
three-letter table tag just mentioned, followed by a digit
representing the block number.

1.2.5 Communications Tags

Up to this point, we have discussed symbolic ex-
pressions which deal with one program and symbolic
expressions which deal with more than one program.
While internal tags are used to specify locations within
one given program, a communications tag is used to re-
fer to other programs or tables. This distinction be-
tween internal and communications tags is useful be-
cause of the way in which the tags are treated in the in-
put process. Internal tags are translated by the compiler
into numerical locations related to the first location oc-
cupied by the program and are adjusted at the time of
read-in. Communication tags, on the other hand, are
translated at the time of read-in by reference to a tag
pool common to all programs. This tag pool is known
as the compool (Communications Tag Pool).

1.2.5.1 Compool

The compool is maintained by an external agency
and contains all of the information needed by the Lin-
coln Utility System to process the tags used. in the air
defense program. Because the compool is not main-
tained by any internal program, any changes in the tag
pool are passed on to all affected programs at the time
of read-in. For example, suppose a table of data was
reassigned to a new storage location. The revision of a
single value in the tag pool (giving the new starting
address of the table) will automatically correct all pro-
grams which have reference to the table, making it un-
necessary to alter words in the individual programs.
The use of a compool in any utility system reduces the
amount of effort that is involved in rearranging tables
and simplifies the writing of a program since the pro-
grammer need not know the exact location of tables
within the overall air defense program in order to make
reference to them.

1.2.5.2 Item Tags

Many tables in the air defense program will have
blocks in which each register contains several items. The
item tag provides for obtaining an item by code designa-
tion, positioning it as desired in the accumulators, mask-

PART 5
CH 1

ing out all bits except those in the selected item, and re-
depositing the item in its original location. It is not
necessary for the programmer to know how many bits
comprise the item, or what manipulation is required
to get it into position, nor how to store the masks for
extracting and depositing the item. An item tag is made
up of four letters with the sole restriction that it can not
start or end with the letter O.

1.2.5.3 Parameter Tags

Parameter tags are used to refer to constants which
are used by several different programs. These tags are
expressed as two letters plus a decimal digit. For any
parameter thus indicated, the compiler will automati-
cally assign an available register at the end of the pro-
gram. A parameter value can later be obtained from a
central source. An example of the use of a parameter
tag is the expression:

CAD RB1

3-112-0

Parameter Tags
1.2.5.2-1.2.6

In this case, RB1 indicates an absolute memory location,
but a parameter tag may also be used as the right half-
word of a constant or as the right half of an RC word.

1.2.6 Summary of Symbolic Expressions

The above paragraphs describing different types of
expressions and references which are coded in symbolic
form for use with the Lincoln Utility System have at-
tempted to show the versatility that can be achieved by
the use of these symbolic expressions on tags. The
reader should not try to familiarize himself with details
of these tags but should gain an understanding of how
tags are used both for expressions internal to one pro-
gram (internal tags) and for expressions relating to sev-
eral programs (communication tags). The use of tags
within any given utility system is highly flexible: this
usage permits rapid processing of programs with a mini-
mum amount of coding by the programmer.

169

=

PART 5 3-112-0

CH 2

Scaling, Introduction
2.1-2.1.3.1

CHAPTER 2
SCALING

2.1 INTRODUCTION

2.1.1 General

Digital computers manipulate only pure numbers.
Therefore, when numbers representing physical quan-
tities are used as operands in a digital computer, the
programmer must keep a record of the units in which
the quantities have been measured. For example, in
computing a velocity, the programmer must be aware
that the quantities representing distance and time are
expressed in miles and hours, respectively, in order to
conclude that the result of the computation expresses
velocity in miles per hour. Fixed-point digital com-
puters, so called because the radix points of the numbers
remain in arbitrarily fixed positions throughout the cal-
culation, require that the programmer manipulate the
actual magnitudes of the numbers. In contrast, floating-
point digital computers reposition the point through-
out the computations, thus automatically arriving at re-
sults of correct magnitude without any action by the
programmer. This advantage of floating-point compu-
tation is offset by the disadvantage of using digits
within the computer words to indicate the position of
the point, thereby reducing the precision that can be
achieved with a given word size.

The Central Computer System is designed to per-
form fixed-point computation with numbers having a
binary point between the sign bit and the first magni-
tude bit. The magnitude of the number designated by a
half-word is restricted to fractional values lying be-
tween +-1 and —1. All numbers representing physical
quantities must be transformed for use in the Central
Computer System into equivalent fractional expressions
by the technique of scaling. This technique involves
separating the number into two parts. One part con-
sists of the significant digits of the number reduced in
magnitude to the range which can be handled by the
Central Computer System. The other part consists of a
factor, which must be handled by the programmer, in-
dicating the magnitude of the original number, Thus,
scaling is an operation performed by the programmer
which allows insertion of the significant digits of a num-
ber into the Central Computer System and which leaves
the magnitude (the true position of the radix point)
and the units of measurement for manipulation by the
programmer.

2.1.2 Pure Numbers and Physical
Measurements

When a physical quantity is measured, the number
generated represents the amount of specific units con-
tained in this quantity. For example, the statement that
the distance between New York and Chicago is 1,000
miles expresses the fact that the distance has been meas-
ured and found to contain approximately one thousand
units of distance. However, the number 1,000 does not
reveal how precisely the measurement has been made,
because the three zeros might indicate magnitude and
not precision. If the measurement is made to the near-
est mile, then all four digits are significant digits. How-
ever, if the measurement is correct to the nearest hun-
dred miles, only the first two digits are significant. The
last two zeros are included to fill up the space to the
decimal point whose position indicates the magnitude
of the number. To avoid this ambiguity, numbers rep-
resenting measurements of physical quantities may be
written in scientific notation, This method of notation
separates the number into two parts; one part consists
of the significant digits, and the other part is a factor
indicating the magnitude of the number. The point is
arbitrarily positioned in the group of significant digits,
usually after the first significant digit. For example, the
velocity of light written in this manner is expressed as
2.998 - 108 meters per second. This notation distin-
guishes between those digits signifying the precision of
the measurement (2998) and those signifying the mag-
nitude of the number. The latter, 105, is called the scale
factor.” The scale factor remains unchanged once the
position of the point is fixed regardless of how many
significant figures the original measurement provides.

2.1.3 Scaling for Central Computer System

2.1.3.1 Principle of Scaling

When numbers representing physical quantities are
scaled for use in the Central Computer System, the
technique of scientific notation is applied, except that
the binary point is placed to the left of the first signi-
ficant digit. The scale factor is always manipulated by
the programmer outside the machine. In general, the
relation between x (the number representing the origi-
nal quantity), x (its fractional representation within
the Central Computer System), and 24 (the scale fac-
tor), is given by the equation:

m

Scaling a Constant 3-112-0 " PART 5

213.1-221

x—21 - x

The smallest power of 2 which is just greater than x is
normally chosen as the scale factor (2%). The exponent
q is the number of places that the true value x must be
shifted to the right (if x is larger than 1) in order to
obtain a fractional representation x with no leading
zeros (i.e., x representing x with maximum precision).

2.1.3.2 Scaling a Constant

To scale the number representing the velocity of
light for use in the Central Computer System, the scal-
ing equation may be set up as follows:

2998 - 108 —=.2998 - 10%°=2¢ - X

If 10° were equal to an integral power of 2, it would
be possible to use the decimal scale factor or its binary
equivalent for manipulation by the programmer, and
to convert only the significant figures into the frac-
tional binary representation acceptable by the Central
Computer System. Since 10° cannot be expressed as an
integral power of 2, one of two methods using the en-
tire number must be chosen to obtain both the correct
scale factor and the fractional representation of the
number. The first method consists of direct conversion
of the decimal number into binary form.

The resulting binary number is:
10 001 110 111 101 001 010 111 000 000

When scaling this number, the binary point must be
moved 29 places to obtain the fraction:

0.100 011 101 111 010 010 101 110 000 00

In order to indicate the original magnitude of this num-
ber, it must be multiplied by a scale factor of 2%%. Note
that this power is equal to 536,870,912 which meets the
requirement that the scale factor is that power of 2
which is just greater than the original quantity x. Be-
cause the length of the scaled binary number exceeds
the length of a half word, the number is rounded off to
15 bits. The final scaling equation thus takes this form:

2.998 - 108 —22° - 0.100 001 101 111 010

The second method converts the decimal number
into an octonary number which in turn is converted into
the equivalent binary number. Although an additional
step is required in this method, the actual arithmetic op-
erations are considerably reduced, thus lessening the
possibilities of arithmetical mistakes during the direct
conversion to binary form. The scaling equation is set
up as follows:

2.998 - 108 =12998 - 10° =129 - X
Writing the original quantity in this manner yields:
299810 = 56668
10° = 303,2405

172

CH 2

Multiplication of these octonary terms gives the follow-
ing result:

303240

5666

2223700

2223700
2223700
1720440

2167512700

This number is converted by inspection to:
010 001 110 111 101 001 010 111 000 000

This result is identical to the direct binary conversion.

2.1.3.3 Scaling of Variable Numbers

When scaling a constant number for use in the
Central Computer System, the only consideration is
maximum precision of representation. Therefore, the
scale factor used is the one which eliminates leading
zeros (zeros between the sign bit and the significant
bits) in the fractional representation of the number. If
each value of a variable number were scaled- for maxi-
mum precision, it would be necessary to provide a dif-
ferent scale factor for each value, thus complicating the
programmed manipulation of the variable. Since pro-
gram simplification is a prime consideration of the pro-
grammer, one scale factor must be found to accom-
modate all values that the variable can assume. The
only scale factor that satisfies this requirement is the
one associated with the maximum value of the variable.
If the scale factor for a value smaller than the maximum
were chosen, representations greater than unity would
result for those values of the variable greater than the
selected value.

To illustrate the scaling of a variable, assume that
a distance x can take any value between 2 and 4,000
miles. To scale this variable, the scaling equation is set
up as follows:
2 =x=4000=27 - x

Since the scale factor must be greater than the maximum
value of the variable, 2¢ must be greater than 4000.
The integral power of 2 just greater than 4000 is 212
which must be used as the scale factor for the variable
or:
24 > 4000
2¢ — 212 — 4096

2.9 ARITHMETIC REQUIREMENTS FOR SCALING
2.2.1 General

The scaling of constant and variable numbers dis-
cussed in the preceding paragraphs satisfies the require-
ments for insertion of the numbers into the Central
Computer System but not necessarily the requirements
for arithmetic manipulation. These manipulations place
additional restrictions on scaling. The scaling restric-

PART 5
CH 2

tions, which depend largely on the type of arithmetic
operation, have the primary objective of correctly scal-
ing the result of the arithmetic manipulations, prefer-
ably to maximum precision.

2.2.2 Addition and Subtraction

2,2.2.1 Requirements

Just as in addition or subtraction of decimal num-
bers, the decimal points of the numbers must be aligned
to obtain a valid result, so the binary points of two
numbers to be added or subtracted in the Central Com-
puter System must be positioned identically in each
number. Because the binary point is positioned by the
scale factor, it follows that, for addition or subtraction,
the scale factors of the two numbers involved must be
identical. A second requirement in scaling numbers for
addition or subtraction is imposed by the inability of
the Central Computer System to interpret correctly any
number equal to or in excess of unity. Care must be
taken that the result of an addition or subtraction does
not produce this condition (overflow). Thus, the num-
bers involved in addition or subtraction must be scaled
not only to fit into the machine but also to insure that
the result of the operation is always fractional. On the
other hand, the result should contain a minimum of
leading zeros to provide maximum precision. In sum-
mary, then, two numbers being added or subtracted in
the Central Computer System must have the same scale
factor which is large enough to permit insertion of the
original numbers in the machine and to prevent over-
flow, yet small enough to afford maximum precision.

2.2.2.2 Numerical Example

The following numerical example illustrates scal-
ing of two binary numbers for addition in the Central
Computer System. Assume that the numbers 111 101,
and 11 001, are to be added. If each of these numbers
were considered independently for insertion in the ma-
chine, the scale factors chosen would be 2¢ and 23, re-
spectively. However, the two numbers are to be added.
Therefore, both numbers must have the same scale fac-
tor. If 2% were used, the result would be greater than
unity. Therefore, 27 is selected as the scale factor. The
first number becomes:

0.011 110 1 - 27
the second number becomes:

0.001 100 1 - 27
Adding these numbers gives this result:

0.011 110 1
-40.001 100 1

0.101 011 O

The resultant number has the scale factor, 27, which
provides the required maximum precision for this num-

3-112-0

Addition and Subtraction
22.1-2.2.3.1

ber. In this example, two numbers of like sign are added
so that the magnitude of the result, which is greater
than the original numbers, determines the scale factor.
If two numbers of unlike sign are added or if a number
is subtracted from a number of like sign, the result is
smaller than either of the original numbers. In this
case, the magnitude of the larger of the original num-
bers determines the scale factor. Although constants
have been used in this example, the same considerations
hold true for variables. The maximum absolute value
(neglecting signs) of the variable must be taken into ac-
count. In general, the scale factor is determined by the
upper bound on the absolute value of the largest vari-
able in the calculation, regardless of whether it occurs
in the original numbers or in the final result.

2.2.2.3 Other Considerations

If more than two numbers are to be added or sub-
tracted in the Central Computer System, each partial
sum or difference formed by two numbers can be treated
as a new number to be added to or subtracted from a
third number and scaled accordingly. This step by step
procedure usually requires rescaling each partial sum or
difference before performing the next operation. Re-
scaling of numbers already in the Central Computer
System is accomplished by a shift instruction. To in-
crease the scale factor, the number is shifted to the
right; conversely, to decrease the scale factor, the num-
ber is shifted to the left. Although maximum precision
of the result can be achieved by rescaling after each
operation, the programmer must be aware that shifting
takes up computer time. Therefore, an alternate method
involves scaling all the numbers to be added or sub-
tracted by the one scale factor which accommodates the
largest upper bound encountered among the original
numbers, the partial sums or differences, and the final
result. The use of this constant scale factor results in a
saving of computer time but a possible sacrifice of pre-
cision in the final result. Depending on the particular
requirements of a problem, the programmer may com-
promise between saving computer time and precision by
rescaling only those partial results which would pro-
duce the greatest loss of precision and by selecting the
scale factors of the original numbers to minimize the
amount of rescaling required,

2.2.3 Multiplication

2.2.3.1 Requirements

Multiplication in the Central Computer System of
two numbers scaled to their fractional representations
yields a sign bit plus a 31-bit fraction. Since the 31st
bit duplicates the sign bit, this bit can always be con-
sidered as a true value zero and not as a significant bit.
Generally, the product must be rounded off to a frac-
tion of 15 significant bits, before the product is further
manipulated in the Central Computer System. The

173

Numerical Example
2.2.3.1-2.2.4.1

round-off operation is accomplished by an SLR instruc-
tion, which can also be used in scaling the product for
further operations.

Multiplication of two binary numbers in the Cen-
tral Computer System, unlike addition and subtraction,
imposes no special restrictions on scaling the numbets.
The numbers are scaled by finding the scale factor of
the upper bound of each number. The resulting scale
factor of the product can be found by adding the ex-
ponents of the scale factors of the two original numbers.
Because the two numbers are scaled for maximum pre-
cision, the product is also represented with maximum
precision. Therefore, the SLR instruction, which rounds
off the product, is chosen so that no shift to the left is
generated to prevent a possible loss of significant bits
in the product.

2.2.3.2 Numerical Example

The following numerical example illustrates scal-
ing for multiplication. Consider the product x-y =z
with the following bounds on the absolute values of the
terms:

x| < 250
ly| =50

Hence, the scale factors are:

x—x - 28 (28 = 256)
y—=y- 28 (2¢ = 64)
Z:x.y:x.y.28+6:z.214

Note that each scale factor chosen is the smallest inte-
gral power of 2 which is greater than the upper bound
on the variable, resulting in a minimum of leading
zeros in the fractional representation. The scale factor
obtained for a z also satisfies this requirement if its
upper bound is assumed to be the product of the upper
bounds on x and y; i.e., z < 12,500 and 21* — 16,384.

It frequently occurs, however, that additional in-
formation is available which limits the upper bound on
the product z to a value smaller than the product of
the maximum bounds on x and y; ie., the maximum
values of the two original variables never occur simul-
taneously. Hence, the fractional representation z would
contain leading zeros, resulting in a loss of precision.
The SLR instruction can be used to rescale z by shift-
ing the leading zeros out of the product in order to
obtain maximum precision.

Assume that in the foregoing example where the
absolute value of z is known never to exceed 4,000
(|z| = 4,000). Therefore, the scale factor for z should be
212 (212 — 4096) for maximum precision. The scaling
equation is written as follows:

x-28.y-20—1z.212
Division by 212 gives:

174

3-112-0

PART 5
CH 2

x-y-22:z

This result indicates that the product of x and y must
be rescaled by a shift of two places to the left by an
SLR 2 instruction to obtain z with the desired scale fac-
tor of 212,

2.2.3.3 Other Considerations

If a certain scale factor -of a product is desired, it
is usually advisable to select the appropriate scale fac-
tors for the initial variables. However, in the event that
the desired scale factor is smaller than the one obtained
without rescaling but greater than the scale factor for
maximum precision of the product, an SLR instruction
can be used to rescale the product for the desired scale
factor. If, in the preceding example, a scale factor of
218 js desired, the scaling equation would be set up as
follows:

x.28.y.26:z.213
which reduces to:
x'y-2l=z

indicating that a shift of one place to the left would be
required. The appropriate instruction would be SLR 1
which would shift the product one place to the left
before rounding off.
2.2.4 Division

2.2.4.1 Requirements

Although the only arithmetic restriction on divi-
sion is the prohibition of dividing by zero, the design of
the Central Computer System imposes another require-
ment which must be taken into account in scaling. This
requirement demands that the divisor must always be
greater in absolute magnitude than the dividend to
prevent the quotient from becoming equal to or greater
than unity, To satisfy this requirement, both the upper
bound of the dividend and the lower bound of the
divisor must be known by the programmer. This knowl-
edge also allows the programmer to rescale the result
for maximum precision.

The division operation places the sign bit for both
the remainder and the quotient in the accumulator sign
bit position, the 15 bits forming the remainder in the
rest of the accumulator register, and the 16 bits of the
quotient in the B register.

Comparison of the bit positions before and after
the division reveals that the least significant bit of the
remainder corresponds in magnitude to the 31st bit of
the dividend, indicating that the remainder has been
scaled up by 216. The first bit of the quotient corre-
sponds in magnitude to the first bit of the dividend, in-
dicating that the quotient has been scaled down by
2—15, These changes in scale factor of the remainder and
the quotient must be taken into account before further
use is made of either one.

PART 5
CH 2

2.2,4.2 Numerical Example
The following example illustrates scaling for divi-

sion. Given the equation — — z with the following
bounds. d
x| =< 1000
2=y =50

The upper bound on z is therefore:

1999 _ 500; || = 500

The scale factors for the numbers are determined as
follows:

X =x - 210 (210 = 1024)
y=y- 26 (26 = 64)
z=—=1z+29 (2° = 512)

The scaled equation is written as follows:
210 . X
26 . y

—=29.z2

This equation reduces to:

X -
—_— 2%z

y
This version of the scaling equation is not usable
because the dividend is greater than the divisor; there-
fore, both sides of the equation are divided by 25:

2-5 . x
y

Note that x is multiplied by 2—5 rather than y by 25
because multiplication of x by 25 is easily accomplished
by a DSR 5 instruction preceding the division operation.
The DSR 5 instruction shifts x five places to the right
without loss of significant bits since 16 additional bit
positions are available in the B register for the dividend.
In addition, performance of this rescaling operation be-
fore the division operation satisfies the requirement
that the divisor must be greater than the dividend.

=z

2.2.4.3 Other Considerations

If the quotient z is to be used for further manipula-
tions, the significant bits of z must be reunited with
their sign bit by shifting them 15 places to the left,
thereby cancelling the factor 2—15 introduced by the
position of the quotient. The shift is accomplished by
an SLR 17 instruction which also rounds off the quo-
tient to 15 significant bits. The remainder, whose posi-
tion z occupies after the shift, is thereby destroyed. The
number of positions by which the quotient may be
shifted left is sharply restricted. A shift greater than
175 places may lead to a loss of the most significant
bits; a shift less than 17, places allows bits of the re-

3-112-0

Other Considerations
224.2-23.2.1

mainder to occupy the most significant bit positions of
the quotient; either one is likely to produce an incor-
rect result. The restrictions on the use of the SLR in-
struction following a division operation render it rela-
tively useless for rescaling, thus offering another reason
for performing rescaling preceding the division opera-
tion.

If the remainder produced by a division operation
rather than the quotient is to be used, no shifting is
required, but the programmer must keep in mind that
the scale factor of the remainder has been increased by
216,

As in multiplication, additional information may
be available which fixes the upper bound on the quo-
tient z to an absolute value smaller than the quotient
of the upper bound of the dividend by the lower bound
of the divisor. The existence of a smaller bound for
z indicates the presence of leading zeros (equivalent
to a loss in precision) in the fractional representation
z. Unlike multiplication where a shift instruction can
be used to rescale the fractional representation of the
product, the restrictions on shifting the quotient bits
make it advisable to take the smaller bound into ac-
count in the initial scaling equation. For example, if
|z] = 100 instead of 1,000 in the numerical example, the
scaling equation reads:

210 . x

26.y

—=2".z (2" = 128)

This equation reduces to:
2-3 . x

y

indicating that x has to be shifted to the right only 3
places instead of 5.

2.3 SCALING OF COMBINED OPERATIONS

2.3.1 General

The following numerical examples illustrate the
application of scaling techniques to combined opera-
tions and the incotporation of these techniques into
the programs for these operations. The first example
shows scaling for maximum precision of a combined
addition and subtraction of several terms. The same
example is also discussed with constant scaling. In the
second example, scaling for combined multiplication
and division is demonstrated, and the final example
shows an application of scaling to a combination of
multiplication and addition.

2.3.2 Addition and Subtraction of Several
Numbers
2.3.2.1 Maximum Precision Scaling

The following four variables are to be added and
subtracted as specified by the equation:

175

Maximum Precision Scaling
23.2.1-23.3

T=u}v—wz
The upper bounds on the variables are given as follows:
lu| =< 200
|v| = 300
|w] = 250
|z| = 700

The Central Computer System performs this operation
by forming t!, the partial sum of the first two vari-
ables; t,, the difference of this partial sum and the
third variable; and T, the sum of the difference and
the fourth variable. This statement is expressed mathe-
matically as:

ufv=t
tl'—W:t2
t2—|—Z:T

Scaling may now be determined according to the re-
quirements for addition and subtraction of two num-
bers. The following scale factors for the individual
numbers are supplied for reference but are not neces-
sarily the final scale factors used in the operation:

u=2%-u (28 =256)
v=2%-v (2° =512)
=291t
w=2% w
== 29 « 2
z =210 .4 (219 = 1024)
T —210.T

For the first equation a choice must be made between
the scale factors 28 and 2°. Only 2° is large enough to
permit insertion of u and v in the machine as well as to
prevent overflow of t;, yet small enough to permit maxi-
mum precision for t;. The scaled equation is written as
follows:

29-u4-29-v=2%-1;

which reduces to:
u + V= tl

Reasoning along the same lines, 2° must be used
throughout the second operation, even through the min-
imum scale factor for w can be 28; therefore, the scaled
operation is written as follows:

29‘t1—29‘W=29‘t2

which reduces to:
tpw—==t

To perform the third operation, t* must be rescaled to

176

3-112-0

PART 5
CH 2

conform to the scale factors of z and T. The scated
equation is written as follows:

29-t2'+21°-z_—_-21°-T

Dividing the equation by the desired scale factor 210
reduces the equation to the following:

2-1 't2+Z=T

This result indicates that t, must be reduced in magni-
tude by multiplication by 21, increasing its scale factor
from 2° to 2'°. The multiplication by 21, is accom-
plished by an ASR 1 instruction which shifts t, one place
to the right. The preceding scaling analysis shows that
the original numbers must be scaled as follows to atrive
at the correctly scaled total T:

u=2%-u
v=2%-.v
w=2%-w
z:zlo.z
T —210.T

The resulting program is written as follows:
CAD (u)
ADD (v)
SUB (w)
ASR 1
ADD (z)
FST (T)
2.3.2.2 Constant Scaling

If in the preceding operation it is more desirable to
save computer time rather than to obtain a result with
maximum precision, the shift operation can be elimi-
nated by the choice of the constant scale factor 2%
throughout the entire operation. In general, the pro-
grammer must perform the scaling analysis as shown,
and, depending upon the requirements of the individual
problem, decide whether it is preferable to use a con-
stant scale factor or to incorporate shifts for a result
with maximum precision.

2.3.3 Multiplication and Division of Several
Numbers
The following variables, are to be multiplied and
divided as specified by the equation:
S
u-w

The absolute bounds of the variables are given as fol-
lows:

PART §

CH 2
|x| < 100
[y| = 50
[z = 70

5= u= 40
10=<|w|< 20
Hence, the implied upper bound for T is:
|T| = 7000

The operation is petformed by the Central Computer
System by forming t;, the quotient of x and u; then
t, the product of t, and y; then t;, the quotient of
t; w; and finally T, the product of t; and z. (An
alternate method is the formation of the products of u
and w, and of x, y, and z followed by the division of
the second by the first. However, the method presented
offers advantages in scaling and requires approximately
the same amount of computer time as the alternate
method.) The operation is expressed mathematically as:

—_—=t |t1| = 20

i =t Its] = 100
w ,

t3'Z=T

The scaling analysis is performed to determine the
amount of rescaling required, rather than to determine
the scale factors for the original numbers as in addi-
tion and subtraction. The numbers are scaled for in-
sertion into the Central Computer System with maxi-
mum precision by considering their upper bounds:

3-112-0

x=27.x ("= 128)
y=2%.y (2= 64)
z=27.2 (2" = 128)
u=26.y (28 = 64)
w=2%w (2= 32)
tp=2%-¢t (25 = 32)
t2 = 210 * t2 (210 = 1024)
t3 = 27 . t3 (27 = 128)
T=218.T (213 = 8192)
The first scaling equation is:
7.
_Z_X_ =25t
26 . g
which reduces to:
2—%.x
= t1
u

Multiplication and Division
233

Therefore, the first rescaling operation is a shift of the
dividend four places to the right. The second scaling
equation is:

25t - 26y =210. ¢
In order to reconcile 21, the product of the scale fac-
tors on the left side of this equation, with 210 the
scale factor required by the absolute bound of t,, the
product of t; and y must be multiplied by 2!. This re-
sult is derived mathematically by dividing the equation
by 210, yielding:

2Lty ry =ty

The rescaling multiplication can be performed by a shift
of t, one place to the left. However, the division oper-
ation which follows may require a shift to the right.
Therefore, the next scaling equation should be analyzed
before a final decision about shifting t, is made. The
third scaling equation is written as follows:

10,

Z—t_2. — 27 . ts
25 . w

which reduces to the following:

272ty =ty
w
The rescaling of the dividend requires a shift of two
places to the right. However, this shift of two places to
the right can be combined with the one-plate shift to
the left from the previous step into a single shift of
one place to the right; i.e., 21 - 2—2 — 21,
The fourth scaling equation is:
27 oty 27z =—213.T
Again the product of the scale factors on the left of
the equation must be reconciled with the scale factor
required to express T with maximum precision. There-
fore, the product is shifted one place to the left, since:

2t tg-z2=T
The resulting program is written as follows:

CAD (x)
DSR 4

DVD (u)

SLR 17,

MUL (y)

DSR 1
DVD (w)

SLR 17,

MUL (2)

SLR 1

FST (T)

177

Evaluation of a Function
233.-234

Although there are four multiplication and division
operations in this routine, only three rescaling opera-
tions are required: DSR 4, DSR I and SLR 1. (The
SLR 17, instructions following the divisions are con-
sidered repositioning operations since they are required
to reunite the sign bit with the quotient.) The DSR 1
instruction actually combines two shift operations into
one. Note that the SLR 1 instruction includes the shift
to the left required for rescaling as well as the round
off normally required after a multiplication operation.
This round off is not needed after the first multiplica-
tion because the subsequent division can utilize the
31-bit fraction produced by the multiplication opera-
tion. :

2.3.4 Evaluation of a Function
The evaluation of a function such as y = ax?
4 bx -+ c is another example of an operation requiring

a careful scaling analysis for proper programming. The
following bounds on the terms are given:

la| < 2
b < 2
lef < 2
x| < 4
yl <28

The scaling analysis uses the bounds on a, b, and ¢
rather than their values as constants to permit evalu-
ation of the function for each value of x with a series
of different values for a, b, and c. Note that the given
bound on y is lower than the bound on y implied by
the bounds on the other terms in the function.

To reduce the number of computational steps, the
function is rewritten as:

y=(ax+b)x4c

Thus, the following terms will be generated:

ax, ax - b, (ax 4+ b) %, (ax + b) x +c

In the first step, a and x are used directly and may

therefore be scaled as:
a— 21 . a
x—22-.x

In the second step, the sum ax -+ b is to be formed.
According to the rules of scaling for addition, the scale
factors of the numbers taking part in the addition must
be identical and are determined by the upper bound
on the sum which is 10. Consequently, the scale factor
used for all the terms in this addition must be 2*. For
this reason, the first scaling equation is written as

21.3-22.x—=2%.2ax

178

3-112-0

PART 5§
CH 2

Dividing by the desired scale factor 2% reduces the
equation to the following:

2-1.a.x=ax

indicating that the product of a and x must be shifted
one place to the right to obtain the desired scale fac-
tor 24,

The second scaling equation is written as:
2% -ax42¢-b=2%(ax 4 b)
which reduces to:
ax ;- b=—ax+4b

The third step involves multiplication of two num-
bers which are therefore scaled according to their upper
bounds; however, the upper bound on the result of the
multiplication is limited by the given upper bound on
the final result.

The original equation can be rewritten as:

(ax4+b)x=y—c

Hence, the upper bound on the product in the third
step is equal to the upper bound on the term (y — ¢);
viz:

ly — ¢ =ly| +Ie] < 30

Consequently, the scale factor used for the product
(ax 4+ b) x is 25 (25 = 32). The third scaling equation
is written as:

2¢ . (ax+b)22-x=2%. (ax+ b) x

Dividing this equation by the desired scale factor 25 re-
duces the equation to:

21 . (ax -+ b) -x:(ax—}-b)x

indicating that the product must be shifted one place
to the left to obtain the desired scale factor 25 in the
result.

In the fourth step, c is added to the product ob-
tained in the previous step. The scale factor of the
numbers involved in the sum is determined by the given
upper bound on y. The scaling equation is therefore
written as:

25 . (ax4+b)x425-c=25-y

which reduces to:
(ax+b)x+c=y

Summarizing the results of the scaling analysis, b
and c are inserted with the scale factors of 2% and 25,
respectively, to reduce the amount of rescaling required.
All other quantities are scaled to their respective upper
bounds. The final scaling equation, which includes all
four steps, may be written as follows:

y=(2lax+b)x:-2tfc¢

PART 5
CH 2

3-112-0

from which the following routine may be coded:
CAD (a)
MUL (x)
DSR 1
SLR o
ADD (b)
MUL (x)

2.4 SUMMARY

Table 5-1

SLR 1
ADD (c)
FST (y)

Table 5—1 summarizes the scaling procedures to
be followed for fixed-point computation.

TABLE 5—1. SCALING PROCEDURES FOR FIXED-POINT COMPUTATION

OPERATION REQUIREMENTS

PROCEDURES

Addition or subtraction of two num-
bers

Binary points of both numbers must
be aligned; overflow must be
avoided; if possible, result should
provide maximum precision.

Multiplication of two numbers No special requirements for inser-
tion of original numbers; product
must be rounded off for further
use; rescaling may be necessary for

maximum precision.

Division of two numbers Divisor must be greater than divi-
dend; lower (as well as upper)
bound on divisor must be known
to determine upper bound quo-
tient. If quotient is to be used,
sign bit must be reassociated with
significant bits; if remainder is to
be used, it must be noted that re-
mainder appears scaled up by 216,

Combined operations Same as for operation with two num-

bers.

Choose identical scale factors for
both numbers; scale for largest
term whether original number or
result; scale factor should be the
smallest that satisfies these re-
quirements.

Scale both numbers for upper
bounds; use an SLR instruction
to round off and, if necessary, to
rescale the product for maximum
precision. To obtain a rescale fac-
tor, divide the scaling equation
by the desired scale factor of the
product.

Choose scale factors of both num-
bers for maximum precision;
scale quotient for upper bound,
then divide scaling equation by
scale factor for quotient to obtain
rescale factor for dividend; re-
scale dividend prior to division
operation. Following division,
program an SLR 17; instruction
to reassociate sign bit with sig-
nificant bits of quotient; if re-
mainder is to be used, multiply
its scale factor by 216,

Perform scaling analysis for each
arithmetic operation; minimize
rescaling by proper choice of ini-
tial scale factors; if possible, com-
bine two rescaling steps into one.
Use constant scale factors to save
computer time if loss of precision
is permissible. Note that round
off operation after multiplication
is omitted if followed by division,

179

APP A

3-112-0

lllegal Instructions
A1-A9

APPENDIX A
ILLEGAL INSTRUCTIONS

A.1 SCOPE

This appendix contains a description of those in-
struction codes which at present are not legal codes for
the AN/FSQ-7 or AN/FSQ-8. Because the execution of
these codes can cause a variety of actions, they have
been grouped together according to the instruction class
into which they fall. It should be kept in mind that
the codes listed as illegal at the present time may later
become valid instructions which would not necessarily
perform the same operations that they do now.

A.2 ILLEGAL MISCELLANEOUS CLASS
INSTRUCTIONS

Octal operation codes 034, 060, 064, 070, and 074
are presently illegal instructions for this class. If any one
of these codes is executed, the Central Computer System
performs no operation for a period of 6 usec.

A.3 ILLEGAL ADD CLASS INSTRUCTIONS

Octal operation codes 120, 124, 144, 150, 154, and
174 are presently illegal instructions for this class. If
any of these codes is executed, the number in the left
half of the specified memory location will be added to
the left accumulator. The results remain in the left
accumulator, The right accumulator is not affected by
these codes; however, both A registers are cleared. Exe-
cution of these codes may cause overflow in the left
accumulator. These codes may be indexed and require
a total of 12 ysec in execution time.

A.4 ILLEGAL MULTIPLY CLASS INSTRUCTIONS

Octol operation codes 300, 304, 310, 314, 320, 354,
230, 234, 240, 244, 270, and 274 are presently illegal in-
structions for this class. If any of these codes is executed,
the Central Computer System will become hung up.

A.5 ILLEGAL STORE CLASS INSTRUCTIONS

Octal operation codes 300, 304, 310, 314, 320, 354,
364, 370, and 374 are presently illegal instructions for
this class. If any of these codes is executed, the contents
of the specified memory location will be cleared to posi-
tive 0. These codes may be indexed and require a total
of 18 psec to execute.

To provide uniformity in writing programs, octal
code 300 has been arbitrarily chosen to be the code used
by programming personnel when they desire to clear
one specific memory location. The code has been given

a mnemonic name of CLR, and its function is described
above. It should be remembered that while this code
will perform the operations described above, it is not
truly a legal instruction and could be used for some
other purpose in the future.

A.6 ILLEGAL SHIFT CLASS INSTRUCTIONS

Octal operation codes 410, 414, 430, 434, 450, 454,
464, and 474 are presently illegal instructions for this
class. Execution of any of these codes will cause the
Central Computer System to perform no operation for
varying periods of time. The amount of delay is deter-
mined by the value in the right half-portion of the in-
struction word. If the value is G or less, the execution
time is 6 psec. If the value is greater than 6, the execu-
tion time varies to a maximum of 35.5 psec.

A.7 ILLEGAL BRANCH CLASS INSTRUCTIONS

Octal operation codes 500, 504, 530, 534, 560, 564,
570, and 574 are presently illegal instructions in this
class. If any of these codes is executed, the Central
Computer System will perform no operations for a pe-
riod of 6 psec. However, execution of one of these in-
structions will clear the A registers.

A.8 ILLEGAL 10 CLASS INSTRUCTIONS

Octal operation codes 604, 630, 634, 640, 644, 650,
654, 660, and 664 are presently illegal instructions in
this class. Execution of these codes, which cannot take
place until the IO interlock is cleared, will cause the
Central Computer System to perform no operations for
a period of 6 psec.

A.9 ILLEGAL RESET CLASS INSTRUCTIONS

Octal operation codes 700, 704, 710, 714, 720, 724,
730, 734, 740, 744, 750, 760, and 774 are presently il-
legal instructions in this class. Execution of these -in-
structions will cause the Central Computer System to
perform no operations for a period of 6 usec.

To provide uniformity in writing programs, octal
codes 700 and 740 have been arbitrarily chosen to be
the codes used by programming personnel when they
desire to introduce a 6-psec delay into a program, These
codes have been given a mnemonic name of NOP, and
their function is as described above. It should be re-
membered that these codes may later be associated with
legal instructions and might perform some action other
than what they do at present.

181

PARTS 1 to 5 3-112-0 Index

A
INDEX
Figure Side
Subject Page or Table Heading
A
Aregisters 36 - 1.4.4.2
Accumulators 38 - 1.4.44
Accumulators Shift Left instruction 80 - 3.11.6
Accumulators Shift Right instruction 81 - 3.11.7
Add B Registers instruction 74 - 34
Add Index Registers instruction:
analysis of 68 - 2.6.1
programmed use of 69 - 2.6.2
Add instraction 39 - 2.4
Add One Right instruction:
general 50 — 2.16
uses of T 51 — 2.16.1
Adders 36 - 1.4.4.3
Address modification using AOR instruction:
general 51 - 2.16.2
illustration of 52 2—-17 -
table of 52 2—13 -
Address register 36 - 1.43.3
Address selection using 17 bits, general 103 | - 4.1
Addressable drum parity error check 101 - 3.19.6
Air defense problem T, 23 - 4.1
Air traffic problem:
flow chare 75 3—5 -
layout of 73 3—4 —
Alarm 1 ON check S 102 — 3.19.11
Alarm 2 ON check 102 - 3.19.12
AN/FSQ-7, simplified block diagram 25 1-6 : =
Appendix A, scope of 181 — Al
Area discriminator:
gemeral 151 — 6.2.5.3
Operate instruction 157 — 6.4.3.2
Arithmetic element, general 36 - 1.4.4.1

183

Index 3-112-0 PARTS 1 to 5
A-B

INDEX (cont‘d)

Figure ~ Side
Subject Page or Table Heading
A (cont'd)
Auxiliary memory drum fields:
general 115 - 2.1.1
table of 115 4-7 -
use of 115 - 2.1.2
B
Bregisters 38 - 1.4.4.5
Basic addition program, 40 2—3 -
Basic Compare instructions, program examples 920 - 3.15.2.5
Basic instructions:
gemeral 39 - 2.1
summary of 60 2—-20 -
Basic machine cycle 29 2-3 -
Basic multiplication program 77 3—7 -
Basic programming 27 - 1.1
Binary addition:
rules of 12 1—4 -
with carry of 1 13 1-5 : -
Binary and decimal equivalents 11 1-2 -
Binary and octal, notation, comparison of 20 1—4 -
Binary card: ;
general 122 - 3.2.1.2
illustration of, 123 4—6 -
Binary digits, representation of 10 1-1 -
Binary multiplication, rules of 15 1-6 -
Binary number system 9 - 3.3
Bit selection for TOB, TTB insttuctions:
general 94 - 3.16.3
table of 95 3-22 -
Branch if 10 Interlock On ipstruction 111 - 1.4.2.2
Branch instructions, general 43 — 2.15.1
Branch on Full Minus instruction 48 - 2.15.6
Branch on Full Zero instruction:
execution of 49 2—-11 -

184

PARTS 1 to 5 3-112-0 Index

B-C
INDEX (cont'd)
Figure Side
Subject Page or Table Heading
B (cont'd)

Branch on Full Zero instruction (cont’d):

general e 48 - 2.15.7

program example 49 2—-12 -
Branch on Left Minus instruction 43 — 2.15.2
Branch on Positive Index instruction:

applications of 57 . — 2.17.3.2

general L 56 — 2.17.3.1

used as unconditional branch 58 — 2.17.4

uses of, additional 63 —_ 2.2
Branch on Right Minus instruction 44 - 2.15.3
Branch on Semse instruction 100 — 3.19
Break command generators 109 - 1.2.4.1
Break cycles 107 — 1.2.2

C

Card image:

general L 125 — 3.2.14

used for identity punching 131 - 4-15 —
Card machines and tapes, information storage 121 - ' 3.2
Card punch: ;

description of L 127 — 3.3.3.1

illustration of 129 4-11 -

program examples 130 — 3.3.3.5

selection of 128 — 3.3.3.2

transfer routine L 130 4-13 . —

writing on o L 128 - ’ 3.3.34
Card reader:

description of L. 126 - 3.3.2.1

illustration of, 127 4—-10 -

program exampleo 126 - - 3.3.2.5

reading from L 126 — 3.3.2.4

selection of 128 — 3.3.3.2

transfer routine 128 4—12 -

Central Computer System:

analysis of 31 — 1.4
185

Index 3-112-0 PARTS 1 to 5

INDEX (cont'd)

Figure Side
Subject Page or Table Heading
C (cont'd)
Central Computer System (cont’d):
information flow 37 2—-10 -
instruction summary:
general 105 — 4.6
table of 105 3—29 -
instructions 73 - Ch. 3
simplified block diagram 32 2—7 -
system requirements 61 - 1.2
timing 29 - 1.3
Clear and Add instruction:
execution of 96 - 3.17.1
general 39 - 2.3
program example 97 - 3.17.3
Clear and Add Magnitude instruction 73 - 3.1
Clear and Subtract instruction 41 - 2.7
Clear and Subtract Word Counter instruction:
general 110 - 1.3.6
use of 113 — 14.5
Clear 10 Interlock instruction 114 - 1.4.6.3
Clock register 35 - 14.1.4
Clock register contents, interpretation of 96 - 3.17.2
Clock register stepping routine 929 327 -
Combinations satisfying the BFZ conditions 48 2—10 -
Communication between programs 168 - 1.2.4
Communication tags 168 - 1.2.5
Compooll 168 - 1.2.5.1
Compare-Difference Full Words instruction 92 - 3.15.3.3
Compare-Difference instructions, program example . . 92 - 3.15.3.5
Compare-Difference Left Half-W ords instruction 91 - 3.15.3.1
Compare-Difference Masked Bits instruction:
execution of 93 3—19 -
general 92 - 3.15.3.4
Compare-Difference Right Half-Words instruction .. 91 - 3.15.3.2
Compare Full Words instruction 89 - 3.15.2.3

186

PARTS 1 to 5 3-112-0 Index

C-D
INDEX (cont’d)
Figure Side
Subject Page or Table Heading
C (cont'd)
Compare instructions, general 89 - 3.15.1
Compare Left Half-Words instruction 89 - 3.15.2.1
Compare Masked Bits instruction:
execution of 90 3—16 —
general L 20 - 3.15.2.4
Compare Right Half-W ords instruction 89 — 3.15.2.2
Computer word:
description of oL 27 - 1.2
layout 27 2—1 -
Condition Lights (1-4) instruction 98 - 3.18.1
Condition lights (1-4) ON check 101 - 3.19.1
Configurations for:

BPX instruction, 63 3—1 -
XAC instruction 66 3—4 } -
Constant scaling P 176 - 2.3.2.2

Co-ordinate conversion program 78 3-9 -
Core memory 32 — 1.4.1.2
Counting by use of the AOR instruction:
final flow chart 55 2—-19 —
general Ll 53 - 2.16.3
preliminary flow chart 54 2—18 -
Crosstell marker program 143 4-22 -
Cycle configurations:
for AN/FSQ-7and -8 31 2—6 -
for 2-cycle instruction 31 2—5 —
Cycle instructions: - , :
application of 84 3—11 -
examplesof 84 - 3.124
execution of 83 3-9 —
general oo il 83 - 3.12.1
D
Data read-in program 112 42 -

Data sorting and counting program:
flow chart L 65 3—1 —

187

Index 3-112-0 PARTS 1 to 5

INDEX (cont'd)

Figure Side
Subject Page or Table Heading
D (cont'd)
Data sorting and counting program (cont’d):
listing of, 64 3-2 -
Data transfer control circuits 109 - 1.2.4.2
Data words 29 - 1.2.2
Decimal number system 9 - 3.2
Decimal, octal, and binary equivalents 18 1-9 -
Deposit instruction:
execution of L. 86 - 3.13.4.1
- program example 87 : - 3.13.4.2
summary of 87 - 3.13.4.3
table of execution 87 3-14 -
Difference Magnitude instruction 73 - 3.2
Digital computer, block diagram 7 1-2 -
Digital computers:
history of 3 - 2.1
operation of 5 - 2.2
Digital data drum field selection 157 - 6.4.2.1
Digital data drum field test selection 157 - 6.4.2.2
Digital display message drum word layout 155 4—-24 -
Digital display messages 154 - 6.3.2
Digital display tube character matrix and
octonary addresses 156 4-25 —
Digital displays 149 - 6.2.3
Display consoles 149 4-19 6.2.4
Display makeup program 85 ' 3—12 —
Display System:
description 149 - 6.1
general operation 149 - : - 621
Divide instruction 74 - 3.7
Division by nonrestoration 17 1-8 -
Division:
example of 78 ; - 3.10.2.2
requirements for e 78 - 3.10.2.1
Division programs, 78 3—10 3.10.2

188

PARTS 1 to 5 3-112-0 Index

D-F
INDEX (cont'd)
Figure Side
Subject Page or Table Heading
D (cont'd)
Drum loading routine RV 116 4—8 -
Drum reading routine 116 4-9 —
Dual Cycle Left instruction 83 — 3.12.2
Dual Shift Left instruction 79 — 3.11.2
Dual Shift Right instruction 79 — 3.11.3
Duplex switch cofnpleted ACTIVE check 102 — 3.19.10
E
Elements of SAGE 23 - 4.2
Equality check routine 98 326 —
Exchange instruction:
execution of 88 — 3.14.1
use of 89 - 3.14.2
Excursion voltage:
application 159 - 7.2.2
detection 162 — 7.24
magnitade 163 — 7.2.10
removal ... o 161 — 7.2.3
Extract instruction:
execution of 85 - 3.13.2.1
program exampleo 85 - 3.13.2.2
F
Flow chart showing one index register used
in two programs P 70 3—3 —
Full Branch instructions:
final flow chare 51 » 2-16 —
‘ preliminary flow chart 50 2—15 —
Full Cycle Left instruction 83 — 3.12.3
Full Store instruction 40 - 2.5
Function evaluation prograrﬁs:
general 76 — 3.10.1.2
table Of 77 3-8 -

189

Index 3-112-0
G-1 PARTS 1 to 5

INDEX (cont'd)

. Figure Side
Subject Page or Table Heading
G
G/A-TD parity alarm check 147 - 5.5.7
Gang-punching routine 130 4—14 -
Generate Alarm | and 2 instruction 100 - 3.18.8
GFI data drum word layout 140 - 422
GFI drum field selection 143 - 43.2
GFI message drum field layout 141 4—-16 - =
GFI testing 144 - 4.4.2
G/G parity alarm check 147 - 5.5.5
H
Halt instruction 39 - 2.2
Half-word storage:
additional example e 43 2—-7 - -
sample program 42 2—6 -
Hollerith code for punched cards 122 4-11 -
I
IBM card:
' punched in identity field 131 4—12 —
showing Hollerith code zones and :
field division 121 4—4 -
Illegal address or section alarm check 147 - 5.5.4
Illegal instructions:
add class 181 - A3
branch class 181 - _ A7
IO class 181 - » A8
miscellaneous class 181 - A2
multiply class 181 - A4
reset class 181 - A9
shift class U 181 - A6
store class 181 - A5
Inactivity ON check 101 - 3.19.2
Index register loading routine 66 3—3 -
Index registers 36 - 1.4.3.4
Indexed addition program

................. - 57 2—16 _ -
190

PARTS 1 to 5

INDEX (cont'd)

Subject

I (cont’d)

Indexing changes

Indexing techniques:

general Lo
summary of L
Indeking, generalo L
Indicator register testing program

Inbibit Alarms instruction

Input-output element:

description of

registers and counters:

address counter

buffer register

register

word counter
Input system, description of
Input test pattern generator

Instruction card

Instruction options:

ADD, SUB, and ADBoption
AOR option
RST option
STAoption
Instruction timing
Instruction word checking program
Instruction word layout
Instruction words S
Intercommunication drum fields, general
Intercommunication Flip-Flops (1-4) instruction
Intercommunication flip-flops (1-4) ON check
Intercommunication routine L
Intercommunication testloop

Interleave code

3-112-0

Page

63
71
53
88
100

107

108

108

108

109
139
143
122
36

104

104
104
104
30

95

28
27
116

98
102

118

119
110

Figure
or Table

3—-23
2—2

4-3
4—10
4—1

Index

Side
Heading

4.2

2.1
2.7
2.17.1
3.18.6
1.2.1
1.2.3.3

1.2.3.2
1.2.3.1

1.2.3.4

4.1
4.4
3.2.1.1
1.4.2

4.4.4
442
44.3
441
1.3.3

1.2.1
2.2.1
3.18.4
3.19.13

191

Index 3-112-0 PARTS 1 to 5
I-L

INDEX (cont’d)

Figure Side
Subject Page or Table Heading
I (cont’d)
Internal program tags 166 — © 1234
IO element 38 - 1.4.6
IO hangupia. 112 - ' 14.4
10 instruction summary 163 - 7.3
IO pause 112 - 1.4.3
IO pause program 112 4-3 -
10 programming techniques, general 126 - 3.3.1
IO programming, general 110 - 14.1
10 test instructions 113 - 1.4.6.1
Item tagso 168 — 1.2.5.2
Items, general 168 — 1.2.4.2
L

Left Element Shift Right instruction 79 - 3.11.4
Left overflow ON check 101 - 3.19.3
Left Store instruction 42 - 2.12
Lightguns 151 - 6.2.5.2
Lincoln Utility System:

description and purpose 165 — 1.2.1

general 165 - 1.2

operation of 166 - 1.2.2
Line printer:

description of 131 - 3.34.1

illustration of 132 4—13 -

program example 133 - 3.34.5

FOULINE\ 133 4—16 -

selection of 132 - 3.3.4.2

wiiting on 133 - 3.3.44
Line printing 125 - ' 3.2.2
Load B Registers instruction 86 - 3.13.3
Load 10 Address Counter instruction 109 - 1.3.3
Location tags 167 - 1.2.3.3
Lock 10 Address Counter instruction 114 — 1.4.6.4
Logical elements of AN/FSQ-7 and -8 23 - 43

192

PARTS 1 to 5

Subject

L (cont'd)

Logical instructions, general

3-112-0

INDEX (cont'd)

LRI data drum word layout

LRI drum field selection
LRI message drum field layout . .
LRI testing,

Machine timing
Magnetic tape

Magnetic tape drive unit

Magnetic tapes:

description of
instructions for
programming of
reading from
selection of
writing on

Magnitude sorting program

Manual input matrix:

general

selection

Manual inputs:

gemeral,

messages

Marginal checking:

control word layout

polarity of

restarts

safe limit

time duration

use of LS bit

Marginal Checking System, introduction to

Marker bit identification program

Page

85
139
141
140
143

29
125
134

133
135
137
135
134
135

81

151
157

149
154

160
163
162

163
163
162
159

82

Figure
or Table

Index
L-M

Side

Heading

3.13.1
4.2.1
4.3.1

4.4.1

1.3.1
3.2.3

3.3.5.1
3.3.5.7
3.3.5.8
3.3.5.5
3.3.5.2
3.3.5.6

6.2.54
6.4.3.3

6.2.5.1
6.3.3

7.2.8
7.2.6

7.2.9
7.2.7
7.25

7.1

193

Index 3-112-0 PARTS 1 to 5

INDEX (cont'd)

Figure Side
Subject - Page or Table Heading
M (cont'd)
Maximum precision scaling 175 - 2.3.2.1
Memory address register 35 - 14.1.6
Memory addresses:
AN/FSQ-7 ..o 35 2—1 -
AN/FSQ-8 35 22 —
general 35 - 1.4.1.7
Memory buffer register 35 | - 1.4.1.5
Memoty element, general 32 - 1.4.1.1
Memory parity error check 101 - 3.19.5
Memory reference program 41 2—4 -
Memoty timing 30 - 1.3.2
Memory units:
illustration of 642 unit 34 2—-9 —
illustration of 2562 unit 33 2—8 —
MI drum field selection 157 - 6.4.3.1
Multiplication:
BasiC . .. 76 - 3.10.1.1
by addition and shifting 16 1-7 -
PIOGLAMSt 76 - 3.10.1
Multiply instruction 74 - 3.5
N
Nonsearch alarm check 147 - 5.5.2
Number determination program 86 3—13 -
Numbetr-sorting program:
final flow chart:
general 46 - 2.15.5.2
illustration of 47 2—14 : -
general 46 - 2.15.5
preliminary flow chart:
geﬁeral 46 - 2.15.5.1
illustration of 47 2—13 =

table of 48 2—9 . —

194

PARTS 1 to 5 3-112-0 Index

N-P
INDEX (cont'd)
Figure Side
Subject Page or Table Heading
N (cont'd)

Number-sorting program using unconditional branch:

final flow chart 59 2—33 -

preliminary flow chart 59 2--22 —
Number systems, general 9 - 3.1

o

OB drum parity alarm 147 - 5.5.3
Octal addition 20 1—11 —
Octal multiplication 20 1—12 -
Octonary card, description of 123 - 3.2.1.3
Operate instruction 97 - 3.18
Output drum word layout 146 4—18 -
Output section address codes 146 4-23 -
Output System:

bursts 145 - 5.3.1

description of 145 - 5.1

drum transfers 146 — 5.4

drum word 146 — 5.3.2

operation of 145 — 5.2

overall alarm 147 - 5.5.1
Overall system information flow 38 - 1.4.7
Overflow alarm suppression routine 105 3-28 -
Overflow control 104 — 4.5

P

Parameter tags 169 - 1.2.5.3
Partial word cbmpare program 93 3—21 -
Powers of eight 19 1-10 -
Powers of two A 11 1-3 -
Program counter 36 - 1.4.3.2
Program element, generai 36 - 1.4.3.1
Program example using absolute magnitudes 73 - 3.3
Program to clear 256> memory 114 4-5 -
Program to load memory with a fixed pattern 114 4—6 —

195

Index 3-112-0 PARTS 1 to §
P-R

INDEX (cont’d)

Figure Side
Subject Page or Table Heading
P (cont'd)
Program to rewind more than one tape 137 4-19 -
Program using AOR instruction as a step counter .. 53 2—-15 —
Programmed delay using BPX instruction 58 2—18 -
Programmed marginal checking, general 159 — 7.2.1
Programming card machines and tapes,
introduction to 121 - 3.1
Programming IC transfers 117 - 223
Programming the AM drums and IC fields 115 - Ch2
Programming the Central Computer System, general 61 - Ch1
Programming the IO systems, general 107 - 1.1
Pseudo instructions 167 - 1.2.3.2
Punched cards 121 - 3.2.1
Pure numbers and physical measurements 171 - 2.1.2
Purpose of Central Computer System 61 - 1.1
Purpose of manual 1 - 1.1
R
" Radar data and track data drum field selection 156 — 64.1.1
Radar data message drum layout 152 4-20 -
Radar data messages e 153 - 6.3.1.1
Radar data scan countet 156 - 6.4.1.2
RC tags 167 - 1.2.34
Read instruction 109 - 1.3.4
Reading: |
byidentity 142 - 4.3.1.2
by SEATUSo 142 - 43,11
Real time considerations 111 - 1.4.2.1
Register compate and branch routine 93 ©3-20 —
Register comparison program 91 3—-17 -
Registers changed by 17-bit address selection:
address register 104 —_ 4.3.1
PIOram COUMLEroo o - 104 - 432
right A register 104 - 4.3.3

196

PARTS 1 to 5 3-112-0 Index

R-S
INDEX (cont'd)
' Figure Side
Subject Page or Table Heading
R (cont'd)

Registers used in multiplication 16 1-3 -

Relation of card image to IBM card 124 4-7 -

Relationship of IC drum fields 117 42 —

Relationship of machine cycle to memory cycle 30 2—4 -

Relocation program 89 3—15 -

Representation of numbers in digital and

analog computers 5 1-1 -

Reset Alarms instruction 100 — 3.18.7

Reset Inactivity instruction 98 - 3.18.3

Reset Index Register from Right Accumulator

instruction 63 - 2.3

Reset Index Register instruction 56 — 2.17.2

Right accumulator as an index register, use of 66 - 24

Right Element Shift Right, instruction 79 - 3.11.5

Right overflow ON check 101 — 3.194

Right Store instruction 42 - 2.13

S

SAGE System, simplified diagram = 24 1-5 -

Sample programs:

' involving addition 40 — 2.6
involving half-word storage 42 - 2.14
involving multiplication and division 76 - 3.10
'in;folvihg subtraction and twinning 41 - 2.11

‘ using BFM and BFZ instructions 49 — 2.15.8

Sample subtraction program e 42 2—5 -

Sample TTB program 96 3—24 —

Scaling:
addition:

numeral exampleof 173 - 2222

other considerations for 173 - 2.2.2.3

requirements for 171 - 2221
combined operations 175 » - \ 2.3.1
constants 172 - 2.1.3.2

197

Index 3-112-0 PARTS 1 to §

INDEX (cont'd)

Figure Side
Subject Page or Table Heading
S (cont’d)
Scaling (cont’d):
division:
numerical example of 175 - : 2,242
other considerations for 175 - 2243
requirements for 174 - 2.24.1
function evaluation 178 - 2.3.4
general 171 - 2.1.1
general arithmetic requirements 172 : - 221
multiplication:
example of 174 - 2.2.3.2
other considerations 174 — 2233
requirements for 173 - 2.2.3.1
several numbers 176 - 2.3.3
principles of 171 - 2.1.3.1
procedures for fixed-point computation 179 5—1 -
summary of S 179 : - 2.4
variable numbers 172 — 2.1.3.3
Scope of manual 1 - 1.2
Select Drums instruction 109 . — 1.3.2
Select IC (other) Field instruction 117 . - 2.2.2.1
Select IC (own) Field Instruction 117 — 2.2.2.2
Select IC (own) Test instruction 117 — 2.2.2.3
Select instructionl 109 - 1.3.1
Select 10 Register instruction 113 - 1.4.6.2
Selection element 38 - 1.4.5
Sense for card punch not-ready 128 - 3.3.3.3
Sense for card reader not-ready 126 - 3.3.2.3
Sense for displayl 157 - 6.4.1.5
Sense for line printer not-ready 138 - 3.3.4.3
Sense for tape unit:
not prepared 135 - 3.3.5.4
not ready 134 : - 3.3.5.3
Sense switch ACTIVE (1-4) 102 — 3.19.8
Set Inactivity instruction 98 - 3.18.2

198

PARTS 1 to §

Subject
S (cont'd)
Shift instructions:
execution
general o0
program examples

Shift Left and Round instruction:

execution of
genmeral0
Situation display camera modes o
Situation display messages, general

Situation display test

Situation display tube character matrix and

octonary addresses
Situation displays
Sorting program usihg unconditional branch
Start digital display sections (1 and 2)

Status drum parity error check

Store address instruction:

Straight line addition program
Subtract instruction
Symbolic expressions, summary of

System tables

Table construction program:

final flow chart:

general 0 L
illustration of

general o

preliminary flow chart:

general
illustration of

table of

3-112-0

INDEX (cont'd)

Figure
Page or Table
....... 80 3—6
....... 79 -
....... 81 -
....... 76 -
....... 76 -
157 —
. 153 -
....... 156 -
....... 154 4-23
....... 149 -
59 2—19
....... 157 -

....... 68 —
....... 69 32
....... 53 2-14
....... 41 _
....... 169 -
....... 168 _
....... 44 -
....... 46 2-12
....... 44 —
....... 44 -
45 2—11
....... 44 2-8

Index
S-T

Side
Heading

3.11.1

3.11.8
3.9.2
3.9.1
6.4.1.4

6.3.1
64.1.3

6.2.2

64.2.3
3.19.9

25

2.8

1.2.6
1.24.1

2.15.4.2

2.15.4

2.15.4.1

199

Index 3-112-0 ‘PARTS 1 t0 5
T-U)

INDEX (cont’d)

Figure Side

Subject Page or Table Heading
T (cont'd)

Table lookup procedure 66 ’ - ’ 24.1
Table lookup program 67 3—5 L -
Table makeup procedure 67 - . 242
Table makeup program 67 ' 36 | -
Table sorting by BPX instruction: 7

_ illustration of JUUT U 58 2-21 -

' table ofl 57 2—-17 -
Table tags o 168 - 1.24.3
Tabular message drum layout 152 4-21 —
Tape backspace routine 137 4-20 -
Tape parity error check 102 - ' 3.19.7

* Tape record location program S 138 4-21 -
Tape rewind program P 137 4—18 -
Tape program search routine 91 3—18 -
Tape unit readiness check o 136 4-17 -

~ Tape word bit positions 125 4-9 -
Temporary StOrage tags 167 - 1.2.3.5
‘Test bits instructions, program examples 94 - 3.16.4
‘Test Clock Register instruction 99 - 3.18.5
Test MEMOLY oo 35 - 1.4.1.3
Test One Bit instruction 93 - ‘ 3.16.1
Test Two Bits instruction 94 - 3.16.2
Time determination routine 97 3—-25 -
Track data messages P 153 S 6.3.1.2
TTY parity alarm check 147 ' - 5.5.6
Twin and Add instruction RO 41 - 2.9
Twin and Divide instruction 76 - 3.8
Twin and Multiply instruction 74 - 3.6
Twin and Subtract instruction ' 41 - 2.10
Type wheel, pictorial diagram 125 4-8 ' -

U
Utility systems, general e 165 - : 1.1

200

PARTS 1 to 5 ‘ 3-112-0 . Index

VX
INDEX (cont'd)
Figure . Side
Subject Page or Table - Heading
\'
Vector message drum layout P B 153 422 ' -
w
Warning Light System, description of 151 - ‘ 6.2.6
Warning lights:
MEeSSAZES 154 - 6.3.4
selection 0 157 - 6.4.4
Word layout for XIN instruction 56 220 -
Word count transfer routine 113 4—4 -
Write instraction 110 - 1.3.5
X
XTL data drum word layout 141 — 4.2.3
XTL drum field selection - 143 , — 4.3.3
XTL message drum field layout 142 4—17 -
XTL testing 144 — ‘ 4.4.3

201

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201

