
UNCLASSIFIED
, .0. 31 P2-2FSQ7-2

BASIC THEORY
OF COMPUTERS

ANjFSQ-7

COMBAT DIRECTION CENTRAL

1 April 1957

The work reported in this document was performed under a government con­
tract; information contained herein is of a proprietary nature. ALL INFOR­
MATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE. No
information shall be divulged to persons other than IBM employees authorized
by the nature of their duties to receive such information or individuals or
organizations who are authorized in writing by the Department of Engineering
or its appointee to receive such information. GOVERNMENT RELEASE MUST
BE OBTAINED THROUGH THE IBM PATENT DEPARTMENT BEFORE
THIS INFORMATION MAYBE USED FOR COMMERCIAL APPLICATIONS.

MILITARY PRODUCTS DIVISION

INTERNATIONAL BUSINESS MACHINES CORPORATION _____ --1

KINGSTON, NEW YORK

UNCLASSIFIED

COpy NO. 874:

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Reproduction for non-military use of the information or illustrations contained in this publi­
cation is not permitted without specific approval of the issuing service (BuAer or USAF).
The policy for use of classified publications is established for the Air Force in AFR 205-1
and for the Navy in Navy Regulations, Article 1509.

;r---------------LlST OF REVISED PAGES----------------.

A

INSERT LATEST REVISED PAGES. DESTROY SUPERSEDED PAGES.

NOTE: The portion of the text affected by the current revision is indicated by a vertical rule in the left margin of a left-hand page
and in the right margin of a right-hand page.

*The asterisk indicates pages revised, added or deleted by the current revision.

UNCLASSIFIED
USAF

PARTS 1 to 5

Heading

UNCLASSIFIED
10. 31 P2-2FSQ7-2

CONTENTS

PART 1 INTRODUCTION

CHAPTER 1 PURPOSE AND P'LAN OF MANUAL

1.1 General.

1.2 Division of Manual into Parts

CHAPTER 2 THE NATURE AND FUNCTIONS OF
COMPUTING MACHINES

2.1

2.1.1

2.1.2

2.1.3

2.2

2.2.1

2.2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.4.1

2.4.2

What Computing Machines Are.

Definition

Example of Machine Data Processing .

Arithmetic and Control Operations .

The Need for High-Speed Computers.

General

Air Defense Needs

Basic Classes of Computing Machines

Basis of Classification

Digital Computers

Analog Computers

Physical Size of Computers .

History of Computers.

Early Computing Machines

Advent of Large, High-Speed Computers .

CHAPTER 3 ELEMENTS AND COMPONENTS REQUIRED

3.1

3.2

3.2.1

3.2.1.1

3.2.1.2

3.2.1.3

3.2.2

BY DIGITAL COMPUTERS

The Language Used by Digital Computers .

Digital Computer Elements.

Data Processing

General

Example of Simple Data Processing .

Machine Requirements for Data Processing .

Input Element .

UNCLASSIFIED

Page

1

1

1

1

3

3

3

3

4

5

5

5

5

5

5

5

6

6

6

6

9

9

9

9

9

10

10

11

Contents

Contents

ii

Heading

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

CONTENTS (cont'd)

Page

3.2.3 Output Element 11

3.2.4 Arithmetic Element .. 11

3.2.5 Storage Element .. 12

3.2.6

3.2.7

3.2.8

3.2.9

Control Element

General Organization

General Operation

Summary

.. 13

.. 14

...................................... 14

.. 16

PART 2 COMPUTER ARITHMETIC 17

,CHAPTE'R 1 INTRODUCTION 17

17

17

1.1

1.2

1.3

Computers and Information

Possible Number Systems

Which Number System Is Best 17

CHAPTER 2 NUMBER SYSTEMS 19

19

19

19

2.1

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.4.1

2.4.2

2.4.3

2.4.4

Decimal Numbers .

General

Positional Notation

Radix 19

Counting , , 19

Expression of a Decimal Number . 19

The General Expression for a Number 20

Binary Numbers

General

20

20

Binary Counting " , 20

General Meaning of a Binary Number .. 21

Generating Binary Numbers .. 21

Octal Numbers .. 21

General 21

Octal Counting .. 21

General Meaning of an Octal Number .. 22

Use of Octal Numbers 22

UNCLASSIFIED

PARTS 1 to 5

PARTS 1 to 5

Heading

UNCLASSIFIED
1.0. 31 P2-2FSQ7-2

CONTENTS (cont'd)

CHAPTER 3 RADIX CONVERSION

3.1 Introduction

3.2 General Method

3.3 Binary to Decimal Conversion

3.4 Decimal to Binary Conversions

3.4.1 General Method

3.4.2 Radix Subtraction Method

3.4.3 Division - Multiplication Method .

3.5 Octal to Decimal Conversion

3.6 Decimal to Octal Conversion

3.6.1 General Method

3.6.2 Radix Subtraction Method

3.6.3 Multiplication - Division Method

3.7 Octal to Binary Conversion

3.7.1 General Method

3.7.2 Inspection Method

3.8 Binary to Octal Conversion .

3.8.1 General Method

3.8.2 Inspection Method

CHAPTER 4 BINARY ARITHMETIC

4.1 Addition

4.1.1 General Rules

4.1.2 Addition of Binary Numbers

4.2 Binary Subtraction

4.2.1 General

4.2.2 Direct Subtraction .

4.2.3 Complementing Method in Binary Subtraction ..

4.2.3.1

4.2.3.2

4.2.3.3

4.2.3.4

4.2.3.5

4.2.3.6

General

Modulus

Derivation of Complement Method of Subtraction.

Generation of l's Complement.

l's Complement Subtraction

Generation of 2's Complements

UNCLASSIFIED

Contents

Page

23

23

23

23

23

23

24

25

26

27

27

27

28

28

28

29

29

29

29

31

31

31

31

32

32

32

32

32

32

33

33

33

34

iii

Contents

jv

Heading

4.2.3.7

4.2.3.8

4.2.3.9

4.3

4.3.1

4.3.2

4.3.3

4.4

4.4.1

4.4.2

4.4.3

4.4.3.1

4.4.3.2

4.4.3.3

4.4.4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

CONTENTS (cont1d)

2's Complement Subtraction

Binary Sign Conventions ...

Page

......................... 34

.................. 35

Comparison of l's and 2's Complement Subtraction. 35

Binary Multiplication 36

General Method . 36

Add and Shift Multiplication 36

Multiplication (or Division) of Negative Numbers . 36

Binary Division.

General

Direct Division

Division by Subtract and Shift Methods .

General

Restoring Method .

Nonrestoring Method

Nonrestoring Division Using Complement Subtraction

36

36

................. 36

37

37

37

.... 38

39

CHAPTER 5 OCTAL ARITHMETIC OPERATIONS. 41

41

41

42

42

42

5.1 General

5.2 Octal Addition

5.3 Octal Subtraction

5.4 Octal Multiplication ...

5.5 Octal Division.

CHAPTER 6 NUMBER REPRESENTATION IN A COMPUTER 45

6.1

6.2

6.3

6.4

6.5

6.6

Introduction

Word Size

Fixed and Floating Point Computers .,.

Precision and Accuracy

Positional and Absolute Significance .. .

Scaling

PART 3 COMPUTER CIRCUITS AND DEVICES.

CHAPTER 1 INTRODUCTION

1.1 Information Signals

UNCLASSIFIED

...................... 45

45

45

46

46

46

. 49

49

49

PARTS 1 to 5

Heading

1.1.1

1.1.2

1.1.3

1.1.3.1

1.1.3.2

1.1.3.3

1.1.4

1.1.4.1

1.1.4.2

1.1.5

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.2

UNCLASSIFIED
10. 31 P2-2FSQ7-2

CONTENTS (cont1d)

V oltage Level Representation

Pulse Representation

Transmission Methods

Parallel

Serial

Comparison of Methods.

Timing

Parallel Transmission

Serial Transmission

No-Signal Condition

Switching Logic

Logic Operations

OR Logic ..

AND Logic

NOT Logic

Circuit Logic

...............

CHAPTER 2 SWITCHING AND SMALL-SCALE

2.1

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.1.6

2.2

2.2.1

2.2.1.1

2.2.1.2

2.2.1.3

2.2.1.4

2.2.2

2.2.3

2.2.3.1

STORAGE CIRCUITS .. .

Computer Logic Circuits ..

Relay Logic Circuits.

Diode Logic Circuits.

Vacuum Tube Logic Circuits ...

Transistor Logic Circuits

Magnetic Core Logic Circuits

Matrices

Small-Scale Storage Circuits

Bistable Circuits

Relay Storage

Vacuum Tube Flip-Flops

Transistor Flop-Flops

Dynamic Flip-Flops

Delay Circuits

Word-Length Registers

Storage Registers

UNCLASSIFIED

Page

49

50

50

50

51

51

52

52

52

53

53

53

53

54

54

55

57

57

57

59

62

64

66

70

71

71

73

73

74

75

76

76

76

Contents

v

Contents

vi

Heading

2.2.3.2

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

CONTENTS (cont'd)

Shifting Registers .. .

Page

79

2.3 Electrical Considerations and Nonlogic Circuits 81

2.4 Circuit Packaging 83

CHAPTER 3 ARITHMETIC AND CONTROL 85

3.1

3.1.1

3.1.2

3.2

3.2.1

3.2.2

3.3

3.4

3.4.1

3.4.2

3.5

3.6

3.6.1

3.6.2

3.6.2.1

3.6.2.2

Counting 85

Binary Counters

Ring Counters

Addition

Adders

Accumulators

Subtraction

Multiplication

Parallel Methods .

Serial Methods

Division

Control Circuitry

Program Control

Operation Control

Synchronous Control

Asynchronous Control

85

87

...................... 88

88

91

93

94

97

100

103

107

107

109

109

111

CHAPTER 4 LARGE-SCALE STORAGE AND MEMORY 113

4.1

4.2

4.2.1

4.2.2

4.2.3

4.3

4.4

4.5

4.5.1

4.5.2

Requirements of Memory Element

Magnetic Storage

Magnetic Tapes

Magnetic Drums

Magnetic Cores

Electrostatic Storage

Acoustic Delay Line' Storage .

Mechanical Storage

Punched Hole Storage

Control Panel Storage .

UNCLASSIFIED

113

114

115

116

118

.... 121

121

122

122

123

PARTS 1 to 5

PARTS 1 to 5

Heading

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

CONTENTS (cont'd)

CHAPTER 5 INPUT-OUTPUT EQUIPMENT

5.1

5.1.1

5.1.2

5.2

5.2.1

5.2.2

5.2.2.1

5.2.2.2

5.2.2.3

5.2.3

5.2.3.1

5.2.3.2

5.2.3.3

5.2.3.4

5.2.4

5.2.5

5.2.6

Equipment, General

Introduction

Definition of Input-Output Devices .

Description of Input-Output Equipment .

General

Tapes and Tape-Handling Equipment.

General

Paper Tape Equipment

Magnetic Tape and Tape-Handling Equipment

Card-Handling Equipment

General

Cards and Card-Punch Equipment.

Card Reader

Line Printer.

Typewriter

Visual Displays

Other Input-Output Equipment

PART 4 COMPUTER ORGANIZATION

CHAPTER 1 INTRODUCTION

1.1

1.2

1.2.1

1.2.2

1.2.2.1

1.2.2.2

1.2.2.3

1.2.2.4

1.2.2.5

1.2.2.6

1.2.2.7

General

Sample Computer Description.

Requirements

General Description

Analog or Digital .

Fundamental Elements

Program Control.

Single Address or Multiple Address

Word Length

Arithmetic

Type of Logic

UNCLASSIFIED

Page

125

125

125

125

125

125

125

125

125

125

126

126

127

127

127

128

128

130

133

133

133

133

133

133

133

134

136

136

138

138

138

Contents

vii

Contents

viii

Heading

1.2.2.8

1.2.2.9

UNCLASSIFIED
1.0. 31 P2-2FSQ7-2

CONTENTS (cont'd)

Input-Output System

Summary of General Considerations

CHAPTER 2 SAMPLE SYSTEM STORAGE

Page

138

138

2.1 Introduction .. .

139

139

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.5.4

2.5.5

2.6

2.6.1

2.6.2

2.6.3

2.7

2.7.1

2.7.2

2.7.3

2.7.3.1

2.7.3.2

2.7.3.3

2.7.3.4

General Requirements of a Storage System .

Types of Storage .

Types of Storage in Sample System

General Requirements of Sample Computer Direct Access
Memory

Access

Size

Storage Medium

Memory Controls

Summary of Requipments

Magnetic Core Storage .

Operation of Array

Sample Computer Memory Element Operation ."

Operation of Memory in Computing System .

Auxiliary Memory

General

Choice of Auxiliary Memory Medium

Operation of Sample Computer Auxiliary Memory .

General

System Operation

Program Operation

Operation of Direct Access and Auxiliary Memory

CHAPTER 3 CONTROL

3.1

3.1.1

3.1.2

3.1.2.1

3.1.2.2

3.1.2.3

Basic Control Assumption

Sequential Operation

Types of Control

Synchronous Operation

Asynchronous Operation

Synchronous-Asynchronous Combinations .

UNCLASSIFIED

......... 139

139

139

139

139

140

141

141

141

141

141

143

145

146

146

146

146

146

147

147

149

151

151

151

151

151

151

151

PARTS 1 to 5

PARTS 1 to 5

Heading

3.1.3

3.1.4

3.1.5

3.2

3.2.1

3.2.2

3.2.2.1

3.2.2.2

3.2.3

3.3

3.4

3.4.1

3.4.1.1

3.4.1.2

3.4.1.3

3.4.2

3.4.2.1

3.4.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

CONTENTS (cant/d)

Coding

Basic Control Element Functions.

Program Time; Operate Time .

Operation of Sample Computer Control .

General

Program Time .

Program Sequencing .

Instruction Decoding

Operate Time

Control Element Operation .

Variation of Program by Control Element .

Changing Program Sequence

General

Conditional Branch . .

Unconditional Branch

Alteration of Instructions

General

Index Registers

CHAPTER 4 ARITHMETIC ELEMENT

4.1

4.2

4.3

4.4

4.4.1

4.4.2

4.4.2.1

4.4.2.2

4.4.2.3

4.4.2.4

4.4.2.5

4.4.2.6

General

Arithmetic Element Purpose.

Requirements of An Arithmetic Element

Operation of Sample System Arithmetic Element .

Introduction .

Arithmetic Element Description

General

Addition

Subtraction

Multiplication

Division

Shifting

CHAPTER 5 INPUTS AND OUTPUTS

5.1 General

UNCLASSIFIED

Page

151

152

152

152

152

152

152

153

155

156

157

157

157

157

157

158

158

159

161

161

161

161

162

162

162

162

162

164

165

168

170

171

171

Contents

ix

Contents

x

Heading

5.2

5.3

5.3.1

5.3.2

5.3.2.1

5.3.2.2

5.3.2.3

5.4

5.4.1

5.4.2

5.5

5.6

5.6.1

5.6.2

5.6.2.1

5.6.2.2

5.7

5.7.1

5.7.2

5.7.3

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

CONTENTS (cont1d)

Sample System Considerations

10 Buffer Drum .

Purpose

Drum Operation.

General

Status Control Operation

Program Operation

Automatic Inputs

General ..

Operation

Typewriter Input ...

Automatic Outputs

General

Operation

Program Operation

System Operation

Display Output ..

General

Program Operation

System Operation

Page

172

172

172

172

172

172

173

174

174

174

174

175

175

175

175

.... 175

176

... 176

176

176

CHAPTER 6 OPERATION OF THE SAMPLE SYSTEM 179

179

179

179

6.1

6.2

6.3

General

Program Loading

Loading and Processing Data

PART 5 PRINCIPLES OF PROGRAMMING 181

CHAPTER 1 INTRODUCTION .. . 181

1.1

1.2

1.3

General

Program Definition .

Necessity for Programming

CHAPTER 2 TECHNIQUES OF PROGRAMMING

2.1 General

UNCLASSIFIED

181

181

...................... _181

183

........................... 183

PARTS 1 to 5

PARTS 1 to 5

Heading

2.2

2.2.1

2.2.2

2.2.3

2.2.4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

CONT.ENTS (cont/d)

Program Preparation

Problem Analysis

Organization

Coding

Testing

CHAPTER 3 PROGRAM EXAMPLES

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.3

3.3.1

3.3.2

3.3.3

General

Straight-Line Program

General

Statement of Problem .

Problem Analysis

Organization

Coding

Logical Program.

General

Statement of Problem .

Problem Analysis

3.3.4 Organization

3.3.5 Coding

3.4 Iterative Program

3.4.1 General

3.4.2 Statement of Problem .

3.4.3 Problem Analysis

Organization

Coding

3.4.4

3.4.5

3.5

3.5.1

3.5.2

3.5.3

Indexed Iterative Program .

General

Statement of Problem

Organization

3.5.4 Coding

CHAPTER 4 TYPES OF PROGRAMS

4.1 General

4.2 Examples

UNCLASSIFIED

Page

183

183

183

183

184

185

185

185

185

185

185

186

186

186

........ 186

186

186

187

187

192

192

192

192

192

192

194

194

194

194

196

199

199

199

Contents

xi

Contents
List of Illustrations

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

xii

Heading

4.2.1

4.2.2

4.2.3

4.2.3.1

4.2.3.2

4.2.3.3

4.2.4

4.2.5

4.2.5.1

4.2.5.2

CONTENTS (cont'd)

Master Program

Subroutines '

Utility Programs

General

Symbolic Program

Assembly Programs

Operational Programs

Maintenance Programs

Reliability Programs

Diagnostic Programs

Page

199

199

199

199

199

200

200

200

200

200

CHAPTER 5 CAPABILITIES AND LIMITATIONS OF COMPUTER 201

5.1

5.2

5.3

5.4

5.5

Problem-Solving Capability 201

201 Speed

Ease of Programming and Operation

Reliabili ty

Conclusion

......................... 201

202

202

INDEX 205

LIST OF ILLUSTRATIONS

Figure Title Page

1-1 The AN/FSQ-7 3

1-2 Data Processing - Finding the Largest of Three Numbers, A, B,
and C... 4

1-3 Digital and Analog Representations of the Number 34 6

1-4 The Abacus - The Number Represented by the Position of the Beads
is 34 ... 7

1-5 Numbers and Control Instructions Represented in the Form of
Voltages 10

1-6 Input Element - This Element Receives Information and Converts
it into Usable Form .. 11

1-7 Output Element - This Element Converts Computer's Answer to the
Problem into Form Usable by External Output Devices. 12

UNCLASSIFIED

PARTS 1 to 5

PARTS 1 to 5 UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

LIST OF ILLUSTRATIONS (cont'd)

Figure Title

1-8 Arithmetic Element - Data Enters and Is Processed by This Element

1-9 Storage Element - Possible Address and Contents Correlation .

1-10 Typical Instructions from Control Element.

1-11 Organization of a Typical Digital Computer .

1-12 Contents of Memory for Solution of the Problem: 512 + 608 = ? .

2-1 Computer Word

3-1 Common Number Signals.

3-2 Parallel Transmission of Numbers

3-3 Serial Transmission of Numbers .

3-4 Timing of Serial Numbers

3-5 OR Situation Symbolized ..

3-6 OR Function

3-7 AND Function

3-8

3-9

NOT Function (Inversion)

AND NOT Diagrammed ..

3-10 Inhibit Function ...

3-11 Logic of Doorbell Situation ...

3-12 Doorbell Circuit, Showing Logic .

3-13 Complete Doorbell OR Circuit ..

3-14 Relay OR Circuit.

3-15 Relay AND Circuit ...

3-16 Relay AND NOT Circuit.

3-17 Sample Relay Logic Combination ..

3-18 Diode OR Circuit ..

3-19 Diode AND Circuit

3-20 Use of Compensating Delay.

3-21 Diode Inhibit Circuit for Pulse Signals .

3-22 Sample Logic Circuit Combination

3-23

3-24

Vacuum Tube NOT Circuit

Vacuum Tube OR Circuit

3-25 Multiple-Input OR Arrangements

3-26 Vacuum Tube AND Circuit .

3-27 Gate Circuit .

3-28 Basic Transistor Switch

UNCLASSIFIED

List of Illustrations

Page

12

13

13

15

16

45

49

51

51

52

53

54

54

54

54

55

55

55

56

57

58

58

59

59

60

60

61

62

62

63

63

64

65

65

xiii

List of Illustrations

Figure

3-29

3-30

3-31

3-32

3-33

3-34

3-35

3-36

3-37

3-38

3-39

3-40

3-41

3-42

3-43

3-44

3-45

3-46

3-47

3-48

3-49

3-50

3-51

3-52

3-53

3-54

3-55

3-56

3-57

3-58

3-59

3-60

3-61

3-62

xiv

UNCLASSIFIED
T.O. 31P2-2FSQ1-2

LIST OF ILLUSTRATIONS (cont'd)

Title

Transistor OR Circuit

Transistor AND Circuit

Sample Transistor Circuit Arrangement .

Page

65

65

66

Tape Core Construction 66

Magnetic Core and Hysteresis Loop.

Magnetic Core OR Arrangement ...

Interconnection of Magnetic Cores .

Magnetic Core Inhibit Arrangement.

Effect of Two Inhibit Inputs

Magnetic Core AND Circuit .

Diode Matrix

Matrix of Logic Circuits

Basic Bistable Storage Circuit ...

Complete Logic Circuit Flip-Flops.

Flip-Flop Circuit Symbols

Relay Storage Arrangement .

Basic Vacuum Tube Flip-Flop .

Transistor Flip-Flop

67

68

68

68

69

69

70

70

71

72

72

73

73

74

Dynamic Flip-Flop 75

Use of Dynamic Flip-Flop .

Basic Delay Line Section.

Parallel Flip-Flop Storage Register

Parallel Core Register .

Circulating Register for Serial Words

Core Register for Serial Words .

Core Shifting Register .

Flip-Flop Shifting Register

Register Using Ripple Shift .

Typical Pulse in Computer Circuitry

Circuits Packaged in Plu,ggable Unit .. .

75

76

................................... 77

77

78

79

79

80

82

82

84

Basic Flip-Flop Counter 86

Higher Speed Counting Register 86

Ring Counter Stages 87

Using Ring Counters in Tandem . 88

UNCLASSIFIED

PARTS 1 to 5

PARTS 1 to 5 UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

LIST OF ILLUSTRATIONS (cont'd)

Figure Title

3-63 Half Adder

3-64 Full Adder

3-65 Parallel Adders

3-66 Full Adders for Serial Operation

3-67 Serial Accumulator

3-68 Parallel Accumulator

3-69 Stage of Accumulator With Faster Carry Propagation.

3-70 Arrangement for Transfer of True or l's Complement Number.

3-71 Shifting Register Feeding Accumulator for Multiplication.

3-72 Gating and Shifting by Switching .

3-73 Shifting Accumulator Used for Multiplication .

3-74 Shifting by Delay of Serial Number.

3-75 Shifting With Circulating Registers .

3-76 Basic Arrangement for Serial Multiplication

3-77 Serial-Parallel Multiplication.

3-78 Shifting Accumulator Used for Division .

3-79 Instruction Control

3-80 Synchronous Control of Operations .

3-81 Asynchronous Control of Operations.

3-82 Delay Lines for Asynchronous Control.

3-83 Magnetic Head .

3-84 Basic Tape Storage Arrangement

3-85 Storage on Magnetic Drum .

3-86 Address Selection of Drum Registers .

3-87 Writing and Reading by Status ...

3-88 Core Memory Plane

3-89 Stacked Memory Planes

3-90 Acoustic Delay Line

3-91 Control Panel

3-92 Paper Tape with Associated Reader and Punch.

3-93 Magnetic Tape Drive Unit

3-94 Cord Arranged in Hollerith Code Format .

3-95 Computer Entry Punch

3-96 Computer - Operated Card Punch.

UNCLASSIFIED

List of Illustrations

Page

89

90

90

91

91

92

93

95

98

99

100

101

101

101

103

106

108

110

111

112

114

116

117

117

118

118

120

122

123

126

127

128

129

130

xv

List of Illustrations

Figure

3-97

3-98

3-99

3-100

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

4-23

4-24

5-1

5-2

5-3

5-4

5-5

xvi

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

LIST OF ILLUSTRATIONS (cont'd)

Title

Card Reader

Line Printer ...

Visual Display Unit

Display Tube, Simplified Diagram.

Elements of the Sample Computer ..

Word Format

Storage Function Relationships

4-Location 3-Bit Register Core Array

Read and Write Operation of Memory ...

Page

130

131

132

132

134

137

140

142

144

Contents of Memory During Execution of Program. 146

Auxiliary Memory Drum . 147

Auxiliary Memory Drum System Operation 148

Program Time: Operate Time, Time Pulse Distributor Operation. 153

Instruction Selection, Readout, and Decoding (Program Time) 154

Instruction Decoding (Operate Time)

Control Operations for ADD Instruction .

155

156

Conditional Branch Instruction Execution (Branch on Full Minus) 157

Address Modification by Index Register

Arithmetic Element Information Flow ...

159

163

Add Instruction Arithmetic Control (Operate Time) 164

Subtract Instruction Arithmetic Control (Operate Time) 165

Contents of A-Register, B-Register, and Accumulator during Mul-
tiplication 166

Contents of A-Register, B-Register, and Accumulator during Division 169

Status Control of Drum .

Input System

Manual Input

Automatic Output System

Display Output

Flow Chart for Straight-Line Program.

Flow Chart, Coded Straight-Line Program.

Flow Chart for Logical Program

173

174

175

177

177

183

186

............ 188

Flow Chart, Coded Logical Program, Preliminary Layout 189

Flow Chart, Coded Logical Program, Final Layout. . 190

UNCLASSIFIED

PARTS 1 to 5

PARTS 1 to 5 UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

LIST OF ILLUSTRATIONS (cont'd)

List of Illustrations
List of Tables

Figure Title Page

5-6 Flow Chart for Iterative Program

5-7 Coded Iterative Program

5-8 Flow Chart for Indexed Iterative Program .

5-9 Coded Indexed Iterative Program

Table

1-1

2-1

2-2

2-3

LIST OF TABLES

Title

Some Possible Instruction

Positive and Negative Power of 2 .

Positive and Negative Power of 8

Octal Addition - Subtraction

192

193

195

197

Page

14

24

27

41

2-4 Octal Multiplication - Division . 43

3-1 Output Changes of Tandem Ring Counters. 88

3-2 Word Shifts in Circulating Registers. 101

3-3 Timing of Serial Multiplication 102

4-1 Summary of Differences Between Read and Write Cycles of a Read

5-1

5-2

5-3

5-4

5-5

5-6

5-7

Operation and a Write Operation 145

Basic Computer Instructions

Straight-Line Program

Branching Instructions

Logical Program

Iterative Program

Indexing Ins tructions

Indexed Iterative Program .

UNCLASSIFIED

185

187

187

191

194

196

196

xvii

List of Related Manuals UNCLASSIFIED
T.O. 31P2-2FSQ7-2

LIST OF RELATED MANUALS

xviii

Manual

T.O. 31P2-2FSQ7-12

T.O. 31P2-2FSQ7-22

T.O. 31P2-2FSQ7-32

T.O. 31P2-2FSQ7-42

T.O. 31P2-2FSQ7-52

T.O. 31P2-2FSQ7-62

T.O. 31P2-2FSQ7-72

T.O. 31P2-2FSQ7-82

T.O. 31P2-2FSQ7-92

T.O. 31P2-2FSQ7-102

T.O. 31P2-2FSQ7-112

T.O. 31P2-2FSQ7-5

T.O. 31P2-2FSQ7-21-
T.O. 31P2-2FSQ7-122

T.O. 31P2-2FSQ7-132

Title

THEORY OF OPERATION

Introduction to AN/FSQ-7, Combat
Direction Central

Basic Circuits for AN/FSQ-7 Combat
Direction Central

Theory of Operation of Central Computer
for AN /FSQ-7 Combat Direction
Central

Theory of Operation of Drum System for
AN /FSQ-7 Combat Direction Central

Theory of Operation of Input System for
AN /FSQ-7 Combat Direction Central

Theory of Operation of Display System for
AN/FSQ-7 Combat Direction Central

Theory of Operation of Output System for
AN /FSQ-7 Combat Direction Central

Theory of Operation of Power Supply
System for AN /FSQ-7 Combat
Direction Central

Theory of Operation of Marginal
Checking for AN/FSQ-7 Combat
Direction Central

Theory of Operation of Warning Light
System for AN/FSQ-7, Combat
Direction Central

Theory of Programming for AN/FSQ-7,
Combat Direction Central

INSTALLATION

Installation of AN /FSQ-7 Combat
Direction Central

OPERATING PROCEDURE

Operating Procedure and Operating
Procedure for Maintenance for
AN /FSQ-7 Combat Direction Central

MAINTENANCE

Introduction and Philosophy of Mainte­
nance for AN/FSQ-7 Combat
Direction Central

UNCLASSIFIED

PARTS 1 to 5

PARTS 1 to 5 UNCLASSIFIED
T.O. 31P2-2FSQ1-2

List of Related Manuals

LIST OF RELATED MANUALS (cont/d)

Manual

T.O. 31P2-2FSQ7-142

T.O. 31P2-2FSQ7-152

T.O. 31P2-2FSQ7-162

T.O. 31P2-2FSQ7-172

T.O. 31P2-2FSQ7-192

T.O. 31P2-2FSQ7-202

T.O. 31P2-2FSQ7-212

T.O. 31P2-2FSQ7-222

T.O. 31P2-2FSQ7-232

T.O. 31P2-2FSQ7-242

T.O. 31P2-2FSQ7-252

T.O. 31P2-2FSQ7-262

T.O. 31P2-2FSQ7-272

T.O. 31P2-2FSQ7-282

T.O. 31P2-2FSQ7-4

Title

Maintenance Techniques and Procedures of
Central Computer for AN /FSQ-7
Combat Direction Central

Maintenance Techniques and Procedures of
Drum System for AN /FSQ-7, Combat
Direction Central

Maintenance Techniques and Procedures of
Input System for AN/FSQ-7 Combat
Direction Central

Maintenance Techniques and Procedures of
Output System for AN/FSQ-7 Combat
Direction Central

Maintenance Techniques and Procedures of
Power Supply and Marginal Checking
for AN/FSQ-7, Combat Direction
Central

Maintenance Techniques and Procedures of
Warning Light System for AN /FSQ-7
Combat Direction Central

SCHEMATICS

Schematics for Central Computer of
AN/FSQ-7 Combat Direction Central

Schematics for Drum System of
AN/FSQ-7 Combat Direction Central

Schematics for Input System of
AN/FSQ-7 Combat Direction Central

Schematics for Output System of
AN/FSQ-7 Combat Direction Central

Schematics for Display System of
AN/FSQ-7 Combat Direction Central

Schematics for Power Supply and Marginal
Checking of AN /FSQ-7, Combat
Direction Central

Schematics for Warning Lights of
AN /FSQ-7, Combat Direction Central

PLUGGABLE UNITS

Pluggable Units for AN/FSQ-7,
Combat Direction Central

PARTS CATALOG
Illustrated Parts Breakdown for

AN/FSQ-7 Combat Direction Central

UNCLASSIFIED xix

List of Related Manuals UNCLASSIFIED
T.O. 31 P2-2FSIl7-2

LIST OF RELATED MANUALS (cont'd)

xx

Manual

T.O. 31P2-2FS~7-31

T.O. 31P2-2FS~7-41

T.O. 31P2-2FS~7-51

T.O. 31P2-2FS~7-71

T.O. 31P2-2FS~7-81

T.O. 31P2-2FS~7-91

T.O. 31P2-2FS~7-101

T.O. 31P2-2FS~7-111

T.O. 31P2-2FS~7-121

T.O. 31P2-2FS~7-131

T.O. 31P2-2FS~7-141

T.O. 31P2-2FS~7-151

Title

SPECIAL TEST EQUIPMENT

Test Set Memory Driver Panel
TS-986/FS~

Test Set Plug In Units
TS-985/FS~

Power Supply PP-15819/FS~

Test Set, Amplifier TS-988/FS~

Dummy Load DA-153/FS~

Test Set, Metallic Rectifier TS-989/FS~

Test Set, Diode Semi-conductor Device
TS-990/FS~

Calibrator, Oscilloscope FR-112/FS~

Marginal Check Control, Remote
(C-2022/FS~)

Test Set, Electron Tube TV-ll/FS~

Distribution Box (J-779 /FS~)

Dynamic Timer Power Pack

UNCLASSIFIED

PARTS 1 to 5

PART 1
CH 1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

D,ivision of Manual
1.1-1.2

PART 1
INTRODUCTION

CHAPTER 1
PURPOSE AND PLAN OF MANUAL

1.1 GENERAL

High-speed digital computers such as those used in
the SAGE System, are complex machines, each of which
may have more than a million electrical and electronic
parts. A maintenance man cannot service such a ma­
chine properly without understanding how it works.
This ~~derstanding should not be confined to one speci­
fic d1g1tal computer model because computer designs
are continually being refined. A digital computer main­
tenance man, therefore, needs a general knowledge of
digital computer design and operation. He must know
what digital computers are, what they do, and how
they do it.

The subject of digital computers, however, covers
a large number of different machines and to discuss all of
them in detail would be impractical. The information
in this manual, therefore, is developed along general
lines. Since this manual is intended for personnel re­
sponsible for maintaining high-speed military digital
computers such as the AN/FSQ-7 and AN/FSQ-8, the
characteristics of this type of computer are emphasized.

1.2 DIVISION OF MANUAL INTO PARTS

The manual is divided into parts so that informa­
tion may be presented in a 10'gical sequence. This se­
quence begins with basic general ideas and continues
toward specific details.

Part 1 of the manual gives a general introduction
to digital computers, presenting background informa­
tion that ties together the details discussed in later

parts. The background material begins with a brief
survey of computing machines in general, since digital
computers comprise only one class of computing ma­
chines. This survey defines computing machines and
gives a brief history of their development. The basic
elements which make up a digital computer are de­
scribed; then an example is given to show how a digital
computer would be controlled and how it would oper­
ate when solving a simple problem.

A digital computer works by performing certain
arithmetic operations on digits. Part 2 describes the
number systems and arithmetic basic to digital com­
puters.

High-speed digital computers are constructed from
special electronic and magnetic components. Part 3 ex­
plains how these components perform the basic tasks
required of a digital computer. The descriptions are fol­
lowed by brief circuit analyses that detail the operation
of the electronic and magnetic components.

The material in Parts 1 through 3 provides a basic
knowledge of the "building-blocks" used in construct­
ing digital computers. How these "building-blocks" are
put together to form a typical computing system is
s~ow.n in :art 4. The system selected for this explana­
tlOn IS typ1cal of many digital computers, but it is perti­
nent to the AN /FSQ-7.

Part' 5 explains programming-how computers are
controlled so that they perform specific operations.
Since the subject of programming is closely related to
computer capacities and limitations, these also are dis­
cussed briefly in Part 5.

UNCLASSIFIED

Blank Page

2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 1

PART 1
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Definition of Computing Machines
2.1-2.1.2

CHAPTER 2
THE NATURE AND FUNCTIONS OF COMPUTING MACHINES

2.1 WHAT COMPUTING MACHINES ARE

2.1.1 Definition

Man uses numerous tools to simplify or speed up
his tasks. As the activities required in business or war
become more complex and more dependent on speed in
handling data, man's dependence on tools to help him
in such activities becomes acute. An important tool
which man uses to simplify and speed up his handling
of data is the computing machine.

A very large computing machine is shown in figure
1-1. Such a computing machine is actually a data pro­
cessing device, that is, a device that performs mathe­
matical and logical operations on data in a prear-

ranged and controlled manner. To perform these oper­
ations, computing machines must be able to: (1) accept
the items of data that are presented to them, (2) mani­
pulate these items in a desired prearranged manner,
and, (3) make the manipulated data available in use­
ful form.

2.1.2 Example of Machine Data Processing

A simple example of data processing is selecting
the largest of three numbers. If a man were asked to
select the largest of three numbers, he could do so by
comparing any two of the three, noting which of these
two is larger, and then comparing it with the third.
The second comparison would show which number was

Figure 1-1. The AN/FSQ-7 (XD-JJ

UNCLASSIFIED 3

Arithmetic Operations
2.1.2-2.1 ~3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 1
CH 2

the largest of the three. In this problem, then, the data
to be processed are the three numbers, and the manipu­
latiQns of the data are the operatiQns Qf cQmparing the
numbers and selecting the largest.

To perform the same data-processing task, a com­
puter ?/ould follov/ t..~e same general procedure of (1)
comparing two Qf the quantities, (2) selecting the
larger, and then (3) cQmparing it with the third. In
some ways, hQwever, the prQcedure of the cQmputer
WQuld differ frQm that Qf a man.

Unlike a man, a computer must perfQrm a cQmpu­
tation in order to select the larger of twO' quantities. In
general, a man can tell by direct inspectiQn which Qf
twO' quantities is the larger; a computer cannot. A CQm­
puter, however, can distinguish the difference between a
plus (positive) and a minus (negative) quantity. There­
fQre, when cQmparing twO' quantities, a computer sub­
tracts Qne from the other and nQtes whether the result
is plus or minus. If the result is plus, the number sub­
tracted is the smaller; if the result is minus, the number
subtracted is the larger. Thus, a cQmputer cQmpares
quantities by perfQrming an arithmetic QperatiQn Qn
them. The prQcess is shQwn in figure 1-2 as it WQuld
be executed by a computer.

2.1.3 Arithmetic and Control Operations

To accomplish the typical data-prQcessing task just
discussed, a cQmputer WQuld perfQrm two subtractiQns
in sequence. In order fQr these two subtractiQns to' lead
to the desired result-selectiQn Qf the largest Qf three
quantities-the computer must fQllow a prQcedure based
Qn certain cQntrol Qperations. The contrQl QperatiQns
are as follows:

a. Selecting any two Qf the quantities for the first
subtraction.

b. Determining from the result Qf the first sub­
traction which of the twO' quantities is the larger.

c. Selecting the correct quantities fQr the secQnd
subtraction.

d. Determining from the result of the second sub­
traction which quantity is the largest of the
three.

All such cQntrQI QperatiQns are based Qn specific rules.
Thus, in the preceding example, the computer selects
the larger Qf two numbers, A and B, according to this
rule: If subtracting A frQm B results in a plus quantity,
select B; if the result is minus, select A. After selecting
the larger number according to this rule, the computer
fQllows a second rule to' decide what quantities it should
Qperate on for the second subtraction: If A is larger
than B, subtract A frQm C; if B is larger than A, sub­
tract B frQm C. From the plus or minus result Qf this
operatiQn, the final answer is Qbtained.

In the example, the cQntrQl operations determine
which quantities the computer operates Qn in perform­
ing the twO' subtractiQns and, also, what the cQmputer
does with the results Qf each subtraction. The example
shows a typical cQmbinatiQn of control and arithmetic
Qperations in the processing of data. In general, CQn­
trQI operatiQns in computer data prQcessing determine
fQur fundamental variables:

a. What quantities the computer manipulates by
arithmetic Qperations

b. What arithmetic QperatiQns the cQmputer per­
forms

SUBTRACT
A-B

(t) RESULT

SUBTRACT
A-C

(-) RESULT

A IS LARGEST C IS LARGEST

(+) RESULT

SUBTRACT
B-C

(-) RESULT

B IS LARGEST C IS LARGEST

Figure J-2. Data Processing - Finding the Largest of Three Numbers, A, 8, and C

4 UNCLASSIFIED

PART 1
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Need for High-Speed Computers
2.1.3-2.3.3

c. What sequence the computer follows in per­
forming the arithmetic operations

d. What the computer does with the results of
each arithmetic operation

Control operations are sometimes called logical oper­
ations because they select and arrange the steps in a
given task of data processing in strict accord with
logical rules for the task.

2.2 THE NEED FOR HIGH-SPEED COMPUTERS

2.2.1 General

If data-processing tasks were confined to simple
problems such as the one discussed in the preceding
section, there would be no need for complex, high­
speed computers. In a small office, for example, where
the only data-processing tasks are simple bookkeeping
procedures, small, hand-operated computing machines
(e.g., adding machines) are sufficient. The case is dif­
ferent when enormous quantities of data must be con­
tinually processed with extreme speed and accuracy. In
such a case, it becomes practical to use a data-processing
machine in place of a group of men working with
pencil and paper or with small, hand-operated calculat­
ing machines.

2.2.2 Air Defense Needs

In the present-day air-defense system of the United
States, huge quantities of data must be continually
searched out and accurately processed at high speed.
For example, when a strange aircraft is detected by
radar, it must be identified as friendly or hostile. To
accomplish this, the flight plans of all commercial air­
lines and friendly aircraft must be searched out and
compared with the movement of the detected aircraft.
At the same time, data must be calculated to determine
precisely when and how the aircraft (or missile) is to
be intercepted if it is found to be hostile. Naturally, if
all these calculations are to be useful, they must be
completed before the aircraft disappears. As the speed
of aircraft increases far beyond 1000 miles per hour
(mph), it becomes impractical for aircraft id.entifica­
tion and interception to depend on a group of men
who thumb through flight plans, ballistic tables, etc.
It is absolutely necessary, therefore, to have a high­
speed device that can accept, store, and process very
large quantities of d.ata rapidly and accurately and de­
liver the correct output information. Only such a high­
speed device can provide correlated data quickly enough
for use in making the correct tactical decisions neces­
sary for air defense.

The large high-speed, electronic computing ma­
chines of today are well suited to this task. Such ma­
chines can multiply 6-digit numbers at speeds as high
as 60,000 multiplications per second, with only one
error in every 10 billion operations. Furthermore, digi-

tal computers can store large quantities of data and
can locate and process needed items in a fraction of a
second.

2.3 BASIC CLASSES OF COMPUTING MACHINES

2.3.1 Basis of Classification

Computers are classified, according to their basic
principles of operation, as digital or analog.

2.3.2 Digital Computers

A digital computer is a computing machine that
processes data expressed as digits or numbers, and man­
ipulates the data by means of arithmetic or logical con­
trol operations in a predetermined manner, and gener­
ally delivers the resulting information in the form of
digits. For instance, the number 34 might be represented
in a digital computer as 3+4 pulses on a line as in A,
figure 1-3.

A digital computer operates on data in much the
same way that a man would manipulate the data in
carrying out arithmetic computations with pencil and
paper. Similar to a man making an arithmetic computa­
tion, a digital computer manipulates digits in a se­
quence of distinct steps determined by certain mathe­
matical rules.

The digits used to represent items of data or speci­
fic instructions for processing the data must belong to a
particular number system (such as the familiar decimal
system) chosen for the computer model being used.
Similarly, the results of operations by a digital com­
puter are usually delivered in the form of numbers.

Since a digital computer operates on data in a
series of distinct steps, there is necessarily some delay
between the start and the completion of each operation.
Furthermore, if a series of arithmetic operations are to
be performed, each operation must be completed in
turn before the next is begun. Nevertheless, the use of
electronic and magnetic elements in digital computers
permits these machines to perform thousands of oper­
ations in an extremely short time-some operations re­
quire only a few microseconds (usec).

In summary then, digital computers have the fol­
lowing basic characteristics:

a. All data handled by the computer must be in
the form of digits of a particular number system.

b. The computer processes data by performing pre­
determined arithmetic and logical control oper­
ations on the digits. These operations al'e per­
formed in discrete steps, much as arithmetic
operations are performed with pencil and paper.

2.3.3 Analog Computers

An analog computer, unlike a digital computer, is
a computing machine in which data are converted, for
purposes of computation, not into digits but into physi­
cally measurable quantities such as lengths, voltages, or

UNCLASSIFIED 5

History of Computers
2.3.3-2.4.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 1
CH 2

I...-.-.----JIUUUL
TRANSM ITTER RECEIVER

TENS UNITS

A. DIGITAL FORM

---------- 40

/

,...--------..\ - - - - - - - - 30
-------- 20
------- 10

___ -..I 1..----- - - - 0

TRANSMITTER RECEIVER

B. ANALOG FORM

Figure 1-3. Digital and Analog Representations of the Number 34

angles (as shown in B, fig. 1-3). Computed results
are obtained by the action of moving parts or electrical
signals. These actions or signals do not represent digits.
Rather, they are related to one another in such a way
as to represent the relationships among the terms of a
mathematical equation. They also interact with one an­
other in such a way as to represent the mathematical
operations indicated in the equation.

In other words, an analog computer solves prob­
lems by causing physical quantities to vary in a manner
analogous to the way in which the variables in a prob­
lem change. For example, if distance equals velocity
multiplied by time, a moto'! running at a speed propor­
tional to velocity during a given time interval will turn
a gear train through an angle proportional to distance.
Thus, a continuous solution of distance in the equation:
Distance = Velocity x Time, may be obtained. Action
of this kind is typical of the manner in which analog
computers solve problems. A fundamental characteris­
tic of analog computers is that they provide continuous
solutions to a given problem.

2.3.4 Physical Size of Components
The physical size of a computing machine is deter­

mined to a great degree by the job which it is to do.
Hence, a simple calculator that is hand-operated and
used only to add or subtract groups of numbers may be
quite small. However, a data-processing machine such
as the AN/FSQ-7, which must automatically store and
process enormous quantities of data, is very large. An
AN/FSQ-7 fills a building several stories high (see' fig.
1-1).

2.4 HISTORY OF COMPUTERS

2.4.1 Early Computing Machines
The first counting aids used by man probably con­

sisted of fingers, pebbles, or other similar items. One of

the earliest "machines" is the abacus, which evolved
from the use of pebbles. This device, shown in figure
1-4, is one of the simplest forms of an adding or
counting machine. It consists of a series of rods on
which the positioning of beads records the numbers 0

through 9. Addition or subtraction can be accomplished
on each bar individually. However, the carrying of the
1 when a sum is greater than 9 cannot be done auto­
matically.

The first machine that made provisions for auto­
matic carrying of digits when the sum of a column is
greater than 9 was the Pascal machine, invented in
1642. This has been termed the first authentic account­
ing machine and it was used to figure English currency.
The machine was basically a hand-operated, gear-driven
counter. Addition was accomplished by turning input
wheels a distance equal to the money to be added. This
is similar to the addition of mileage on an odometer.

The basic forerunner of the modern large-scale
computers was the Babbage Analytical Engine, con­
ceived by Charles Babbage in 1833. This machine, which
operated somewhat similarly to a device called the Ja­
quard Loom, made use of cards and strips of metal
with various holes punched in them to record numbers.
A number was represented by an equivalent number of
holes. After the Babbage machine, several improved
types of computing machines were developed. Notable
among them was the Hollerith machine, which used the
Jacquard idea of holes punched in tape or cards. How­
ever, in the Hollerith machine these holes controlled
electrical mechanisms.

2.4.2 Advent of Large, High-Speed Computers

The first of -the large-scale, high-speed computing
machines was the Mark I, completed in 1944 by Harvard
University and International Business Machines. This

6 UNCLASSIFIED

PART 1
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Fig. 1-4

Figure 1-4. The Abacus - The Number Represented by the Position of the Beads is 34

machine uses the IBM punched-card method to insert
the input data. Its output is typed out by an electric
typewriter. The sequence of operations of the Mark I
is controlled automatically. The machine can add, sub­
tract, multiply, divide, or perform other related arith­
metic operations. It is primarily a relay-operated device.

The Harvard Mark I was highly successful, but
relay operation was undesirably slow. The first all­
electronic digital computer was the ENIAC, built by
the University of Pennsylvania in 1946. This used 18,000
vacuum tubes and could add two 10-digit decimal num­
bers in 200 microseconds, or multiply them together
in 2 to 3 milliseconds.

Most of the refinements in recent years, as exem­
plified by the IBM model 700 series (the first mass­
produced digital computers) and the AN/FSQ-7, have
been concerned with increasing the amount of informa­
tion which can be stored in the machines and increasing
the speed at which the machines operate. The relative
slowness of relays, which are used in the Mark I (and
Mark II), cannot be tolerated when processing data
for the air-defense system. It is necessary to use special
high-speed electronic circuits, which operate very much
faster than relays. In addition, it is necessary to use
special methods of data storage, that permit extremely
high-speed insertion and extraction of data.

UNCLASSIFIED 7

Blank Page

8

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 1

PART 1
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Digital Computers
3.1-3.2.1.1

CHAPTER 3
ELEMENTS AND COMPONENTS REQUIRED BY DIGITAL COMPUTERS

3.1 THE LANGUAGE USED BY DIGITAL
COMPUTERS

The task of a digital computer is to process data,
expressed in the form of digits, by performing certain
predetermined arithmetic and control operations on
the data. These operations are predetermined by a set
of instructions called the pro gram, which has been pre­
viously made up by the operator.

In some computers, the instructions may be in the
form of special wiring (i.e., of control circuits of the
machine). Such a computer would use a control panel
somewhat similar to a telephone switchboard to direct
operations. This is called a control panel program. In
stored program computers, however, the instructions
are expressed in the form of digits. That is, each in­
struction is identified by a code number. The program, a
list of code numbers, is fed to and stored in the computer
in a manner similar to the input and storage of data.
Then, by a process of decoding, the computer can direct
itself in the solution of the problem for which the
program was written.

A computer does not "understand" digits from a
numerical point of view. It merely responds to speci­
fic physical conditions created in the components of
the computer. These physical conditions-voltages, cur­
rents, etc., represent the digits. The physical conditions
interact to produce a set of conditions that represent
digits expressing the solution to a problem. Thus, the
"language" used by computers consists ultimately of
specific physical conditions in its components. Conse­
quently, all data and instructions fed to a computer
must be represented by specific physical conditions in
the computer. For example, if the digits 0, 1, 2, 3, and 4
are to be presented to a digital computer, they must be
presented as five separate physical conditions that can
be set up in the components of the computer.

One type of physical condition that can represent
a digit is a voltage on a voltage input line. To present
five different digits to a computer, therefore, five dif­
ferent voltage input lines could be used. Similarly, volt­
ages on output lines, obtained by processing the input
data, could represent the digits in a desired manner.
Then, if a voltage were applied to the line representing
the digit 1 and another voltage were applied to the
line representing the digit 2, along with the order to
add the two digits, the response of the computer would
be a voltage on the output line that corresponds to the

digit obtained by adding 1 and 2; this would be the
output line representing the digit 3.

The order for the computer to add the input digits
-or any other order that the computer can carry out
-would also be presented to it in the form of groups
of digits. Digits representing instructions to the com­
puter for operating on input data could be fed into a
special set of control lines reserved for instructions
only. With such an arrangement, the digits represent­
ing data and the digits representing orders would not
be confused by the computer. If the order "add" were
assigned the digit group 23, this order could be pre­
sented to the computer by voltages on the control lines
representing digit 2 and the digit 3. Figure 1-5 illus­
trates how such an arrangement would lead to addition
of the digits 1 and 2.

The preceding description is extremely simplified
and not necessarily based on any system in common
use. It does illustrate, however, the type of "language"
that a digital computer "understands." Figure 1-5 gives
an idea of the fundamental nature of information rep­
resentation in a digital computer. To represent a 3, the
3-line must have a pulse on it; if no 3 is present, no
pulse is present on the 3 line. In other words, an on
or off condition represents the presence or absence of
a digit, respectively.

The decimal system of numbers can be represented
this way, but a far simpler number system, made up
entirely of the digits 0 and 1, can be more easily used.
This binary number system can represent any number
by a series of l's and O's. For instance, a binary number
equivalent to decimal 25 is 11001 (see Part 2). Because
binary numbers can be used to represent any quantity,
they can be used in digital computers. A 1 can be repre­
sented by the energized condition of a relay and 0 by
the de-energized relay condition.

3.2 DIGITAL-COMPUTER ELEMENTS

3.2.1 Data Processing

3.2.1.1 General

Should we wish to know a single number that is
equal to 24 times 512, we would multiply the two num­
bers together, thus:

24 x 512 = 12,288

Both sides of the equation are equal-we did.
not gain any information by multiplying (processing)

UNCLASSIFIED 9

Data Processing
3.2.1.1-3.2.1.3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 1
CH 3

DATA INPUT
LINES

4

3

,/"
4

3 n
n 2 ADDER 2

DATA OUTPUT
LINES

n I I

0 0

V ./

~ = VOLTAGE PULSE LI NES REPRESENT DIGITS

c: C

0 I 2 3 4

CONTROL
LINES

Figure J -5. Numbers and Control Instructions Represented in the Form of Voltages

the data, although it is admittedly in a form more suit­
able for such purposes as comparison with other num­
bers, adding to other numbers, etc. It should always be
kept in mind that data processing machines generate,
no new information even though their processing re­
sults in much greater usability of the existing data. It
should also be remembered that the operator or pro­
grammer instructs the machine to perform every re­
quired step. The machine does not think-all of its op­
erations and decisions must be built or programed into
it by human effort.

3.2.1.2 Examples of Simple Data Processing

A man who processes data does so by following
an exact set of rules, although he may not always be
conscious of the fact. In making up a payroll, for ex­
ample, a paymaster performs a series of predetermined
operations which may be written down in a check-list
which he must follow. The operations governed by
the check-list and their sequence may be as follows:

1. Receive and store (write down) necessary data
such as:

a. Number of hours worked by each employee

b. Pay rates for each employee

c. Deductions from gross pay for each employee

2. On data stored for each employee, perform
arithmetic operations such as:

a. Multiply hours by hourly pay rate, write
down partial products, and add partial prod­
ucts for complete product

b. Multiply the sum obtained in operation a
by a tax rate

c. Subtract the product obtained in operation b
from the product obtained in operation a

3. Make available, in a useful form, the results
(output) of the preceding operations (1 and 2).

Throughout the task of making up a payroll, an
efficient paymaster would perform only those operations
required by the rules of the task. He would not, for
example, add up the ages of all the employees, even
if this data appeared on the original documents re­
ceived. On the other hand, the paymaster would oper­
ate on all the data necessary for the task, and he would
perform all necessary operations, as determined by the
rules of the task.

Hence, to perform his work properly a paymaster
must have some means of storing the required data
and the appropriate instructions (such as paper, charts,
tables, etc.). Morever, he must be able to extract data
as needed and perform arithmetic operations in proper
sequence. Finally, he must have means of making avail­
able in useful form the results of the operations-for
example, a means of making out pay checks.

3.2.1.3 Machine Requirement for Data
Processing

If the paymaster were making out the payroll on
a computing machine, the machine would require facil­
ities for:

a. Receiving necessary data

b. Storing the data

c. Controlling, by the rules of the task, the selec­
tion of data to be operated on and the proper
sequence of operations

d. Performing required arithmetic operations

e. Making available in useful form the results of
the operations

10 UNCLASSIFIED

PART 1
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Input Element
3.2.1.3-3.2.4

In other words, the computer would need an input ele­
ment, a storage element, a control element, an arith­
metic element, and an output element.

The operational elements listed above are the ele­
ments required by typical digital computers. The follow­
ing paragraphs describe these elements and explain the
tasks performed by each. Notice the similarity between
corresponding computer operations and human oper­
ations, and remember that all steps originate with the
human operator (programmer).

3.2.2 Input Element

The first operation that a digital computer must
perform in a data-processing task is to accept the data
pertinent to the task, and the instructions (program)
for performing it. As explained in section 3.1, all data
and instructions must be presented to a stored program
computer in the form of digits, and these digits must
be such that they can be represented by physical condi­
tions in the computer components.

If each computer component has only two possible
conditions-e.g., the open and the closed positions of a
relay-all data must be presented as combinations of
only two digits-e.g., 0 and l.

Obviously, there must be an element that can ac­
cept the digits as they are presented by the operator,
and this element should set up representative physical
conditions in the computer. This input unit is called
the input element: it provides one-way communication
from the outside world to the computer. Data and in­
structions are fed to a computer through an input ele­
ment; but an input element returns nothing to the out­
side world.

Items of data presented to the input element are
not necessarily in the exact form that the rest of the
computer elements can use. For example, in figure 1-6,
a typewriter input might be used with which the oper­
ator would type out the data and instructions in a
decimal code. The typewriter would have switches con­
nected to each key which would convert the hitting of a
key into an electrical impulse. The electrical impulse

INPUT DATA IN

VARIOUS TYPICAL

FORMS

/" TYPEWRITER INPUT

rC1~

might then be converted to a binary code so that the
computer could work with it. The input element usually
performs this function of translating terms understand­
able to the outside world to those usable by the com­
puter. Other input devices, such as card and tape read­
ers, as well as various automatic input devices, are pos­
sible means of input. Nevertheless, the purpose of the
input system is always the same-to translate the sym­
bols of the outside world to those of the computer.

3.2.3 Output Element

The results of a digital computer's operations must
be delivered to the user of the machine in an appropri­
ate form. The element that accomplishes the transfer is
the output element. The results of a computer's oper­
ations, however, are not necessarily in the form best
suited for use outside the machine. Hence, an output
element may include facilities for converting the results
of the computer's operations into the form of output
data best suited to the user of the machine. Thus, the
answer to the problem might enter the output element
in the form of binary electrical pulses. The output ele­
ment may then convert these pulses to voltages that
operate an electrically operated typewriter or a print­
ing machine to print the final answer. (See figure 1-7.)

The output element, like the input element, is a
one-way unit. It receives information from the other
elements of the computer and transfers the information
to the final user, but it does not return any information
to the computer.

3.2.4 Arithmetic Element

Since the purpose of a digital computer requires
that the machine perform arithmetic operations on the
input data, a digital computer must obviously contain
an element that can accomplish these operations. This
is the arithmetic element. All data to be operated on
arithmetically must enter this part of the computer. Like­
wise, most instructions determining what computations
are to be performed must control the arithmetic ele­
ment. (See fig. 1-8.)

INPUT

ELEMENT

TO
REMAIN DER

OF
COMPUTER

Figure J -6. Input Element - This Element Receives Information and Converts it into Usable Form

UNCLASSIFIED 11

Storage Element
3.2.4-3.2.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 1
CH 3

VOLTAGES FROM OTHER
ELEMENTS OF COMPUTER

TYPICAL FOR M OF

SOLUTION TO PROBLEM

OUTPUT

ELEMENT

TYPICAL VOLTAGE

FORM OF PROBLEM
SOLUTION AS REQUIRED

{TO OTHER OUTPUT, DEVICES,

SUCH AS BELLS, TELEVISION

SCREENS}

Figure 1-7. Output Element - This Element Converts Computer's Answer to the Problem into Form Usable
by External Output Devices

DATA TO BE OPERATED

ON ARITHMETICALLY

CONTROL TELLING

WHAT TYPE OF
ARITHMETIC TO
PERFORM

L

ARITHMETIC

ELEMENT

•

/

SOLUTIONS TO

ARITHMETIC

PROBLEMS

CONTROL ON WHAT IS TO BE

DONE WITH SOLUTIONS TO

THE ARITHMETIC PROBLEMS

Figure I -8. Arithmetic Element - Data Enters and Is Processed by this Element

Theoretically, it would be possible to build an
arithmetic element which could perform most mathe­
matical operations directly, just as a man performs
them. This however, would require a very large and
complicated arithmetic device and, consequently, is
never done. Instead, the arithmetic element is usually
designed to perform only a few basic operations such
as addition, subtraction, multiplication, and division.
(Three of these four operations are usually only an
adaptation of either addition or subtraction.) If an
arithmetic device can perform either addition or sub­
traction, and a few other simple operations, it can be
made to perform almost any other mathematical oper­
ation by simply breaking the operation down into its
fundamental operations. This is the way in which the
arithmetic element is made to do the more complex
mathematical operations that are often required.

The arithmetic operations in a high-speed machine
such as AN/FSQ-7 and AN/FSQ-8 must be accomplis~ed
very quickly. Entire series of operations must be com;
pleted in a few microseconds (usec). This speed
cannot be attained by mechanical or electro-mechanical
devices (such as relays) but can be attained by electronic
circuits. Electronic circuits for performing arithmetic
operations are described in Part 3.

3.2.5 Storage Element

As stated in paragraph 2.3.2, operations in a digital
computer are carried out in step-by-step fashion. For
this reason, some of the information fed into a com­
puter must be stored for indefinite periods prior to
actual usage. The facilities required for storing informa­
tion in a computer are included in the storage element.

Information fed into a computer is of three kinds:

a. Particular items of data to be processed

b. Instructions for performing the particular data­
processing operations required (the program)

c. Reference data

Reference data-(c) above-must sometimes be
stored for indefinite periods. For example, if the com­
puter is used in the air-defense system, the reference
data will include ballistic tables and Hight plans of
friendly aircraft. Such data are used over and over for
successive problems. It would be impractical to feed
this same information into the computer all over again
for each new problem. If the storage element of the
computer can retain such data indefinitely and quickly
select individual items each· time they are needed, prob­
lems can be solved much faster. Indeed, without fast,
automatic, and reliable insertion and extraction of data

12 UNCLASSIFIED

PART 1
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Control Element
3.2.5-3.2.6

into and out of storage, working with a computer
would be little more efficient than working with hand­
operated calculators and reference tables.

Another type of information that can be stored is
the pro gram, or the set of instructions for performing
a particular data-processing task. With a common pro­
gram and common reference data stored in advance, the
only additional input data required for a series of simi­
lar problems are those items that vary in value from
problem to problem; that is, the actual numbers to be
operated upon. Thus, the time required for insertion of
input data for each new problem is accordingly reduced.

The basic characteristic of an information storage
medium is that it has at least 2 stable states. For in­
stance a light switch may be considered to be a memory
element. It "remembers" whether the light is on or off,
once it is set. In a computer the memory is capable of
"remembering" a great many numbers which at any
time must be almost instantaneously available to the
rest of the computer. To accomplish this, many types of
storage media can be used. One medium used is mag­
netic tape which uses recorders and readers very similar
to home tape recorders. Another medium is magnetic
drums. This device is similar to a tape recorder with
very wide tape and a large number of parallel reading
and recording heads. Actually the wide "tape" is a

INPUT

SELECTS

WANTED
ADDRESS

CONTROL FOR
READING IN

OUT

Figure 1-9. Storage Element - Possible Address
and Contents Correlation

L ./

rotating drum coated with a magnetic material. There
are also other storage devices, such as magnetic cores
and cathode-ray tubes (see Part 3).

All storage elements have some basic characteris­
tics that are similar. They always contain a number of
storage locations, in each of which a single piece of
data may be stored. Each of these locations is assigned
a specific number called an address so that it may be
selected by the computer either for insertion or extrac­
tion of data. For instance, in the diagram of the 8-loca­
tion memory shown in figure 1-9, the addresses are
shown on the left, opposite their actual contents. To
refer to the number 10,121 the computer would refer
to the location whose address is 003.

3.2.6 Control Element

There must be a definite sequence for the flow of
data during processing by a digital computer. Data
must be inserted into particular storage locations and
then used in correct sequence at the appropriate times.
The arithmetic element must also be "told" what oper­
ations to perform on the data and in what order to
perform them. For all desired processing operations,
moreover, the results of the arithmetic operations must
be routed to the appropriate storage or output loca­
tions. Also, the transfer of all output data to the out­
put element and, finally, to the user must be properly
controlled to ensure the required sequence of informa­
tion.

The entire sequence of operations by the computer
is predetermined by the program (and the construction
of the computer) for the data-processing task. The pro­
gram, coded in the digital language used by the com­
puter, is inserted through the input element, to be stored
at specific addresses in the storage element. The element
for interpreting and carrying out instructions contained
in the program is the control element (see fig. 1-10).

By its interpretation of the program, the control
element governs the flow of data and the sequence of
operations performed by the computer. In a high-speed
machine such as the AN /FSQ-7, special electrical cir­
cuits provide the required control. These circuits re­
spond to electrical signals representing the digits that

CONTRO L TO

PROGRAM

STEPS

CONTROL

ELEM ENT

CAUSE ADDITION

MULTIPLY

STORE IN

ADDRESS NO. 356

TYPICAL CONTROL PROVIDED

BY CONTROL E LEM ENT

Figure 1-10. Typical Instructions from Control Element

UNCLASSIFIED 13

General Operation
3.2.6-3.2.8

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 1
CH 3

make up the control instructions or program, produc­
ing appropriate control signals. The control signals
cause arithmetic operations to take place and effect the
transfer of data from one element of the machine to
another. For instance, in figure 1-11 the .action of the
control element on the other element is shown. In this
figure, information transfer is shown in heavy lines
while control lines are light.

Control circuits are similar in some ways to arith­
metic circuits. They operate in close association with
all the circuits that carry out arithmetic or other pro­
cessing operations (see Part 3).

3.2.7 General Organization
Figure 1-11 shows the general organization of the

computer elements in a typical computer. Along with
the various elements, information and control lines are
shown which indicate the flow of information and con­
trol impulses through the computer. The heavy lines are
information transfer lines; these lines will transfer both
data and instructions between the input and the mem­
ory. Between the storage element and the output and
between the storage element and the arithmetic ele­
ment, data is transferred on these lines. From the stor­
age to the control elements, only instructions are trans­
ferred on the heavy line. The light lines from the con­
trol element represent the control voltages which the
control element sends to all elements.

3.2.8 General Operation
Both the computing section and the input-output

elements operate under control of the program. A short
computing operation will be explained; it will be as­
sumed that the program and data are already in the
memory when the computer starts.

The general operation of the computer in follow­
ing a set of instructions can be illustrated by analogy.
Assume that the paymaster (par. 3.2.1) is following a

set of instructions in sequence, and he has just found
the number of hours worked by a man. The next in­
struction he reads says: "Multiply the number of hours
by the hourly pay rate." The paymaster would then
obtain the hourly pay rate from wherever it was written
down (stored) and multiply the hours by the pay rate.
It can be seen that the instruction specified two things:
the operation and the operand to be used in the oper­
ation.

The instructions in a computer program have some­
what the same form. They specify the operation to be
performed and the address of the location in memory
where the operand is kept. For instance a program may
have an instruction in it which says:

"Clear the arithmetic element and add the
number which is in memory location 020."

To execute such an instruction, the control element
would first cause the arithmetic element to be cleared
of any numbers it might contain. Next the control ele­
ment would cause the number in memory location 020
to be transferred from the memory, to be added into
the arithmetic element.

Therefore, the execution of a series of instructions
would be quite a simple matter. The instructions would
be stored in memory in proper order. The data would
be stored in the locations which correspond to the ad­
dresses of the pertinent instructions. After this was
done, the control element would be made to pick out
the first instruction and execute it, pick out the next
instruction and execute it, and so on until an instruc­
tion told the computer to stop.

As an example:
Suppose that it is desired to add the numbers 512

and 608 together and to store the sum in memory location
012. Possible instructions are given in table 1-1 and
it is assumed that the computer could execute the in-

TABLE 1-1. SOME POSSIBLE INSTRUCTIONS

ABBREVIATION

CAD x:

ADD x:

FST x:

HLT:

14

MEANING

Clear the arithmetic element and 'add in the number in memory location x. The
completion of this instruction will cause the arithmetic element to contain the
number which is in memory location x, where x is the address of the memory
location specified.

Add to the number which is in the arithmetic element the number in memory loca­
tion x. The completion of this instruction will cause the arithmetic element to
contain the sum of the contents of the arithmetic element and the number in
memory location x.

Store the contents of the arithmetic element in memory location x. The comple­
tion of this instruction would cause the number in the arithmetic element to be
transferred to memory location x.

Stop the computer.

UNCLASSIFIED

PART 1
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Fig. 1-11

CONTROL ELEM ENT

ARITHMETIC ELEMENT

,---- ----l
I I

- I .. ~ [J]!J -..,.! ---..
I I
I CARD READER I
I I
I
I
I
I~ ,
,

I-
I
I
I
I
,~
I
I~
I
I~
I
I
I, UNIT FOR RECEIVING DATA

lOVER TELEPHONE LI N ES I
L ________ -.J

INPUT ELEMENT

- ~~ INFORMATION DATA LINES

--.. ~ CONTROL LINES

,------­
I
I
I

CRT DISPLAY

PRI NTER

-,
,

I
I

I
I
I
I

I CARD PUNCH I
I I
L-________ -.J

OUTPUT ELEMENT

Figure ,-". Organization ot a Typical Digital Computer

UNCLASSIFIED 15

Summary
3.2.8-3.2.9

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 1
CH 3

structions in table 1-1. To solve the problem, a pro­
gram such as that shown in the symbolic memory of
figure 1-12 would be required.

The control element executes the program by auto­
matically picking out and executing instructions one
after another, starting with location 000. The oper­
ation, therefore, would go somewhat as follows:

1. The operator presses the computer START push­
button.

2. The control element obtains from memory lo­
cation 000 the instruction CAD 005.

3. The control element first clears the arithmetic
element and then transfers from memory loca­
tion 005 to the arithmetic element the data word
(number) 512.

4. The control element obtains from memory loca­
tion 001 the instruction ADD 007.

Address

000

001

002

003

004

005

006

007

008

009

010

011

012

Contents of Location

CAD 005

ADD 007

FST 011

HLT

512

608

1120

Figure J - J 2. Contents of Memory for Solution of
the Problem: 5 J 2 + 608 == ?

5. The control element causes the data word (num­
ber) 608 at memory location 007 to be added
to the number in the arithmetic element to
leave a sum, 1120, in the arithmetic element.

6. The control element obtains from memory loca­
tion 002 the instruction FST 011.

7. The control element causes the data word 1120

in the arithmetic element to be stored at loca­
tion 011 in the memory.

8. The control element obtains from memory loca­
tion 003 the instruction HLT.

9. The control element stops the computer.

3.2.9 Summary

The sequence of events in carrying out a complete
computation on a computer is as follows:

1. A program is prepared by a programmer.

2. Through the input devices, the computer oper­
ator loads the program and data into the com­
puter memory (data storage section).

3. The computer is started and the control ele­
ment automatically follows the program, trans­
ferring data from the memory to arithmetic ele­
ment, (which performs the arithmetic opera­
tions called for in the program), and transfer­
ring intermediate results from the arithmetic
element to the memory.

4. The final results are transferred from the mem­
ory to an output unit (still under control of the
program).

5. The output unit translates the results to a form
that can be read, heard, or seen by the operators.

6. The control element reaches a halt instruction,
and the computer stops operation.

16 UNCLASSIFIED

PART 2
eH 1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Number Systems
1.1-1.3

PART 2
COMPUTER ARITHMETIC

CHAPTER 1
INTRODUCTION

1.1 COMPUTERS AND INFORMATION

A digital computer processes information by the
use of devices whose physical or electrical states corre­
spond to definite, previously agreed upon meanings.
These meanings may be represented in the form of
numbers. Such a representation is a type of code in
which the state of certain computer components is re­
lated to the numbers. These numbers, in turn, may be
related to both numerical and non-numerical informa­
tion, on the basis that certain combinations of numbers
always represent a specific meaning. A number system
is the medium by which information is prepared for com­
puter processing.

1.2 POSSIBLE NUMBER SYSTEMS

Since a digital computer processes information
which is expressed as numbers, a brief investigation of
some available number systems is in order. The decimal
system is the number system most universally known.
This system derives its name from the total number of
symbols used in notation-decem is the Latin word for
ten. The decimal system of numbers uses the arabic no­
tations 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, alone or in com­
bination to express quantity or identity. Other number
systems are possible and are available. The Mayan In­
dians used a vicenary system of very unusual-looking
symbols. The Romans used the marks I, V, X, C, D, L,
and M. Some mathematical tables have been computed
in accordance with the duodecimal system; the eleventh
and twelfth marks being X and E respectively.

Some of these number systems are the results of
historical development peculiar to a culture-for exam­
ple, the "twenty" system of the Mayans. Other systems
are useful for certain functions and owe their existence
to such specific usefulness. A number system is identi­
fied by the kind and the total number of symbols used
to express the idea of quantity.

At present, the Arabic symbols are of major inter­
est in the computer field. The variation in total number

of symbols may be a new concept. The decimal system
uses ten symbols; the binary system, two; and the oc­
tonary system, eight. All three systems use Arabic sym­
bols to express numbers.

1.3 WHICH NUMBER SYSTEM IS BEST

The usefulness of the decimal system is evident
from its universal acceptance as a mode of counting
in science, in business, and in everyday life. The proce­
dures for arithmetic operations in the decimal system
are familiar and the symbols have been traditional for
many centuries. No one would suggest a departure
from the decimal system as far as noncomputer oper­
ations are concerned..

But in selecting a number system for use with a
digital computer, primary consideration must be given
to that system which is most advantageous for the com­
puter. It is possible, and in some cases preferable to
use the decimal system, but such a system is not usually
convenient. A computer consists of physical devices
which are bistable: a hole is either present or absent in
a card; a relay is either opened or closed; a vacuum
tube is either conducting or nonconducting; a magnetic
material is magnetized in one direction or in the oppo­
site; a crystal diode conducts very well in one direction
but becomes a high resistance to current in the opposite
direction. A computer, then, is inherently binary; there­
fore, the natural counting scheme for computer circuits
is the binary system.

The binary system uses two symbols, 0 and 1, and bi­
stable devices have two states; this is one advantage of
this system. Another advantage of the binary system is
the simplicity of arithmetic operations. Only two pro­
cedures are necessary: addition and. subtraction. The
rules to perform these procedures are very simple and
lend themselves to automatic operation. But the binary
system has the disad.vantage of being difficult for a per­
son to read or express quickly in words. This is because
the expression of a number in binary requires a number

UNCLASSIFIED 17

Number Systems
1.3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
CH 1

with approximately 3-V2 times as many digits as the
same number expressed in decimal notatiO'n. For in­
stance decimal 9 expressed in binary is 1001.

It is evident that the decimal system is suitable for
noncomputer operation and that the binary system is
more useful in digital computers. The octal system is a
convenient method for expressing the information that

is being presented as inputs to' the computer. The octal
system uses the Arabic symbols 0, 1, 2, 3, 4, 5, 6, and 7.
There is a natural relationship between binary and octal
numbers and one octal number may represent three binary
numbers. If input-output information is expressed in
octal numbers, there is a reduction in notation and,
therefore, easier reading for the operator.

18 UNCLASSIFIED

PART 2
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Decimal Numbers
2.1-2.1.5

CHAPTER 2
NUMBER SYSTEMS

2.1 DECIMAL NUMBERS

2.1.1 General

The 10 Arabic symbols, which are the familiar no­
tations 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 used in the
decimal system, owe their form to traditional accept­
ance. By definition, each symbol is termed a digit and
represents quantity or identity-$990.00 represents a
quantity of dollars whereas 900 Ninth Avenue may
identify a building.

2.1.2 Positional Notation

The idea of number expressed by these symbols de­
pends on another important characteristic of the deci­
mal system: the value of a digit depends on its posi­
tion; for instance, the digit 7 expresses different values
in the expressions 70, 700, and 7,000. To determine the
position of a digit, some point of reference must be
known; in decimal notation, it is called the decimal
point. The position of the digit to the right or left of
this point indicates the value of the digit.

2.1.3 Radix

The base or radix of the decimal system is 10;
that is, counting in the decimal system is accomplished
by counting from 0 through 9 over and over again
until the count is finished. The base (radix) of any
numbering system always equals the total number of
different symbols used for the digits of the system.

2.1.4 Counting

The decimal number system uses 10 symbols and
an unlimited number of positions to express value. Each
position to the left of the decimal point represents a
positive power of 10, with the power increasing from
each position to the next left position. Positions to the
right of the decimal point represent negative powers of
10, with the power increasing in a negative direction
from each position to the next right position. (The posi­
tive power of a number is the number of times the
number is multiplied by itself, while the negative power
of a number is the number of times the reciprocal of
the number is multiplied by itself.)

A true number system consists of a collection of
symbols with a systematic means of progression from
one number to a higher or lower number. Counting is
the progression from one number to a higher or lower
number. Since numbers are expressed by symbols, a
method of symbol combination is necessary once all the

original symbols have been used. For example, a count
to nine uses all the original symbols; in order to count
past nine, combinations using two symbols are used
up to 99. The combinations are selected in an orderly
way as follows:

Progressing from 9 to 10:

1. Advance the symbol in the right position (9)
back to the first symbol (0);

2. Move left to the next position and advance the
symbol (an implied 0) to the next symbol in
the system (1).

Progressing from 10 to 11 and on to 99.

1. Advance the symbol in the right position (0) to
the next symbol in the system (1).

2. Continue advancing the symbol in this position
until the last symbol (9) is reached.

3. Change the 9 to a 0, then advance to the left
position and add a one to the symbol occupying
that position.

4. Continue in this manner until the number 99 is
expressed.

Progressing from 99 to 100 and on to 999.

1. After the last symbol is used in the right posi­
tion, follow the procedures given in example 2,
advancing to the left one position at a time.

2. This method of counting is used not only in the
decimal system but also in the binary and octal
systems.

2.1.5 Expression of a Decimal Number

The base of the decimal system is 10; any number
may be expressed as a sum of the powers of 10, each
power being multiplied by the coefficient of the term.
For example, examine 2145.401 as a decimal number:

a. Note the reference point, the decimal point.
Powers of 10 to left of the decimals point are
positive, to the right are negative.

b. The expression is equivalent to:

2000 + 100 + 40 -t- 5 + 4/10 + 0/100 + 1/1000

or 2(1000) + 1(100) + 4(10) + 5(1) + 4(.1)
+ 0(0.1) + 1(.001)

or 2 x 103 + 1 x 10~ + 4 X 101 + 5 x 10 + 4 X 10- 1

+ ~ X 10-2 + 1 x 10-....
Coefficient Power of base

UNCLASSIFIED 19

General Expression for a Number
2.1.5-2.3.2

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 2
CH 2

Usually, only the coefficients are expressed, and
the part of the expression concerned with the power
of the base is understood because of the notational
position.

2.2 THE GENERAL EXPRESSION FOR A NUMBER

Any number may be expressed by the formula for
the general expression for a number. The formula de­
fines any number as follows:

N = CnRn + Cn_ 1Rn-1 + ... CoRo + C_1R-1
+ C_ 2R-2 - ...

where:
Cn is the coefficient of the nth term;

R is the radix

The number to be expressed is N.

The highest power to which the radix is raised is n.

For example, the polynominal 212.75 can be ex-
pressed as:

212.75 = 2 x 102 + 1 X 101 + 2 x 10° + 7 X 10-1

+ 5 X 10-2

or as;

N = CnRn + Cn_1Rn-1 + CoRo + C_1R-1
+ C_ 2R-2 ... -.

The number 212.75 is a mixed number; i.e., it is an
integer and a fraction. An integer is a whole number and
the integral portion is 212; the fraction is .75. The deci­
mal point is always the reference point, the numbers to
the left are integers, and those to the right are fractions.

R = 10 because the base of the decimal system is 10.

Cn = 2 because the coefficient of the nth term is 2.
The nth term is always the leftmost number.

Cn -1 = 1 because the coefficient of the term one position
to the right of the leftmost term is 1.

Co = 2 because the rightmost coefficient in the integral
position of an expression is always Co.

C-1 = 7, ,the first number after the decimal point.

C_ 2 =5

Substituting the values in the equation,

212.75(10) = 2 x 102 + 1 X 101 + 2 x 100 + 7 X 10-1

+ 7 X 10-2

212.75(10) = 2 x 100 + 1 x 10 + 2 x 1 + 7 x.l + 5 x .01
= 200 + 10 + 2 +.7 + .05.

212.75(10) = 212.75

Thus it becomes obvious that a number expressed in
the usual arabic symbols is merely a statement of the
coefficients of the general formula. The expression for

any number in any number system can be defined by
the above formula. Take, for example, a number in the
octal system-with a radix of 8. The octal number
245.32(8) can be expressed in decimal as:

245.32(8) = 2 x 8(120) + 4 x 8do) + 5 x 8(~0)

+ 3 x 8(1~) + 2 x 8(1;)

The subscript (8) means that the number is ex­
pressed in octal notation and subscript (10) means
decimal notation.

To complete the operations indicated in the right­
hand side of the above expression would result in the
decimal equivalent for 245.32(8)' R is expressed as
eight, which is a decimal number since seven is the
largest symbol available to express a single digit in
the octal system.

To express the number completely in octal terms,
some octal expression whose value equals decimal 8 must
be substituted for the radix. In the octal system, the
symbol 10 (octal 10) is equal to' decimal 8. The com­
plete octal expression for the octal number 245.32 (8)
would read:

245.32(8) = 2 x 10 2 + 4 x 10 1 + 5 X 10(08)
(8) (8)

+ 3 x 10 ~~ + 2 x 10 (8~

2.3 BINARY NUMBERS

2.3.1 General
From actual experience, it is known that the

amount of equipment required for a digital computer
depends on the base of the number system utilized.
Most modern computers are designed to' use the binary
system (base 2) because this system is the most efficient
with present day components, which are binary in na­
ture. The binary number system, with a base (udix)
O'f 2, utilizes combinatiO'ns O'f twO' digits to represent
any number. A binary number will be made up of the
binary digits 0 and 1 and will appear in a manner
similar to' this: 1101011. The term binary digit has been
shortened sO' that in cQmputer terminQlogya binary
digit is called a bit. The binary numbers can be repre­
sented in electrQnic terms in a manner similar to' the
fQllQwing examples:

(1) Relay

(2) Vacuum tube

2.3.2 Binary Counting

open = 0

clO'sed == 1

cO'nducting == 0

nonconducting == 1

CQunting is started in the binary system in the
same way as in the decimal system with the symbol 0
for the number zero in the right PQsition and with 1

20 UNCLASSIFIED

PART 2
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Binary Numbers
2.3.2-2.4.2

for one as the next progression. But at two in the
binary system there are no more symbols available. To
progress from one to two in the binary system, a carry
operation similar to that used to progress from 9 to 10

in decimal is required. This move is to replace the 1

with a 0 and add a 1 to the next position to the left.
The following is a listing of some numbers of equivalent
value in the binary and decimal systems.

BINARY (BASE 2) DECIMAL (BASE 10)

0 0

1 1

10 2

11 3

100 4

101 5

110 6

111 7

1000 8

1001 9

1010 10

1011 11

In the binary system, the value of the digit is de­
termined by its position in relation to the binary point
(similar to a decimal point).

2.3.3 General Meaning of a Binary Number

An examination of the above list will show that a
binary number is also expressed according to the gen­
eral expression for a number. In the case of binary
numbers, however, there are only the two digits 0 and 1;

hence, the radix of the system is two. The last number
in the list, then, is actually an expression of the follow­
ing equation with the radix expression dropped.

1011 == 1 x 2(130) + 0 x 2(120) + 1 x 2(1~)

+ 1 X 2(1~)

When the expression on the right is evaluated in deci­
mal numbers, it will be found to equal decimal 11.

The meaning of a fractional binary number is also
easily expressed in the general formula. Again, the
powers of the radix to the right of the reference point
(binary point) are negative powers. The expression
. 1101 in binary can be expressed as follows:

. 1101 == 1 x 2-1 + 1 X 2-2 + 0 X 2- 3 + 1 X 2- 4

In decimal this equals:

1 1 0 1 13
"2+4+'8+"16==16

or
.5 + .250 + .0625 == .8125

2.3.4 Generating Binary Numbers

Binary numbers can be made up and checked for
the equivalent decimal value without using a decimal­
to-binary conversion table. The problem of represent­
ing a decimal number in binary form requires the cal­
culation of the correct binary arrangement of l's and
O's. There is a fast and simple method for solving such
a problem and for checking the result. For example:

express 62.375 (10) in N (2)

The first step in this procedure is to write in sequence
the decimal values of the power of two:

64 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32

Since 62 is less than 64, place a 1 under those values
(highest) which when added together equal 62; place a
o under the other values of the base 2. Place a 0 under
the decimal values which are not included in the sum.
Thus, the integral portion of the binary number has
been generated. The fraction .375 equalso/s which is
the sum of l~ plus VB. Place l's under 14 and VB and a
o under V2'
Decimal 64 32 16 8 4 2 1 1/2 1/4 1/8

Binary 0 1 1 1 1 1 O. 0 1 1

To check the result, add all decimal values which have
a binary weight of 1.

32

16

8

4

+ 2

62

1/4

+1/8

3/8 or .375

The binary number for any decimal expression can be
generated by this method.

2.4 OCTAL NUMBERS

2.4.1 General

The octal number system is similar to the decimal
and binary systems. The only difference between the
three systems is caused by the differences in radix.
The radix of the octal system is 8. Therefore, the only
symbols allowed in an octal number will be the digits 0 ..

1, 2, 3, 4, 5, 6, and 7 .

2.4.2 Octal Counting

Octal counting proceeds from 0 to 7 just as in
decimal. However, at 7 in the octal system there are
no more symbols available. To progress from 7 to 8 in
the octal system, a carry operation similar to that used

UNCLASSIFIED 21

Octal Numbers
2.4.2-2.4.4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
eH 2

t.o pr.ogress fr.om 9 t.o 10 in decimal is required. The
f.oll.owing is a listing .of s.ome octal numbers and their
decimal equivalents:

OCTAL (BASE 8) DECIMAL (BASE 10)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

10 8

11 9

12 10

13 11

14 12

15 13

16 14

17 15

20 16

In the .octal system, the value .of a digit is determined
by its P.ositiQn relative tD .octal PQint.

2.4.3 General Meaning of an Octal Number

An examinatiDn .of the abQve list will shQW that
.octal numbers are alsQ expressed accQrding tD the gen­
eral expressiDn fDr a number.

210.8(8) == 2 X 82 + 1 X 81 + 0 x 80 + 2 X 8- 1

The evaluati.on .of the fDrmula shQWS that the .octal
number 210.2(8) is equal tQ the decimal number
136.25(10)'

2.4.4 Use of Octal Numbers

The .octal number system is useful in cQnnectiQn
with digital cQmputers as a fQrm .of shDrthand f.or
binary nDtatiQn. The relatiDnship between the tWD sys­
tems can be stated as fDllQws: since eight is the third
PQwer .of tWD, three places in binary nQtatiQn CDrre­
sponds tD .one place in QctDnary nQtatiQn. Each .octal
digit can be represented in binary by three digits (bits),
and, cQnversely, every cQmbinatiQn .of three bits has a
cQrresPQnding .octal digit. The cQrrespDndence can be
summarized as fDllDWS:

OCTAL BINARY

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

247 010 100 111

526 101 010 110

5647 101 110 100 111

The use .of eight symbQls (QctDnary), rather than tWD
(binary), provides a number language which is easier
tQ read and write, and thus decreases the pr.obability
.of errQr. The advantages .of the .octal number system,
cQupled with simplicity .of the cQnversiQn between .octal
and binary nQtatiQn, make the .octal system a gQQd
wQrking nQtation fDr .operators whQ are preparing sets
.of numbers which eventually must be entered intQ a
cQmputer.

PrQgrammers use the DctQnary system tQ express
infDrmatiQn because .octal nQtatiQn is shQrter than bi­
nary and because cDnversiDn frQm the .octal tD the bi­
nary system can be perfQrmed by inspectiQn.

22 UNCLASSIFIED

PART 2
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Binary to Decimal Conversion
3.1-3.4.1

CHAPTER 3
RADIX CONVERSION

3.1 INTRODUCTION

The preparation of information for digital com­
puters and the processing of this information within
the computer involves the use of the decimal, octal, and
binary number systems. Conversion from one number
system to another is sometimes necessary, and several
methods are possible. In this chapter a general method
based on the general expression for a number will be
given. In some cases this general method involves more
work than necessary, particularly when the method re­
quires that arithmetic be performed in other than the
decimal system. In such cases alternate methods have
also been given.

3.2 GENERAL METHOD

The general method of radix conversion is based
upon the formula:

N = CnRn + Cn_1Rn-l ... CoRo + C_ 1R-l
+ C_ 2R-2 ... -.

The rules to follow when converting by the gen­
eral method are:

1. Write the number in the form of the general
expression for a number. R is the radix of the
number system from which the number is to be
converted, but when Rand C are written in the
formula they are both expressed in the symbols
of the number system to which the number is
to be converted.

2. Add the various terms of the formula, using the
the rules of arithmetic of the number system to
which the number is being converted. The sum
of terms is then the converted number.

Examples of the use of these rules are given in each of
the types of conversion explained below.

3.3 BINARY TO DECIMAL CONVERSION

The conversion of an expression in binary form to
its decimal equivalent is performed by using the general
formula and rules that follow. For example, convert
10110.111 (2) to its decimal equivalent.

10110.111 (2) = a mixed binary number; the integral por­
tion is to the left of the binary point, the fraction to
the right.

R = 2 because the conversion is being made from the
binary system. R is the base of the system from
which the conversion is being made;

C and R are both expressed decimally; i.e., in the num­
ber system to which the number is being converted.

Cn = 1 because 1 is the coefficient of the leftmost posi­
tion.

Rn = 24 because the base is raised to the fourth power;
n equals the total number of integral positions less
one.

Cn- h Cn- 2, Cn- 3 = the binary coefficients following in
sequence from left to right.

Co = 0 because 0 is the rightmost binary bit in the integ­
ral position.

C_ 1 = 1 because 1 is the first binary cofficient after the
binary point.

C- 2, -3 = the binary coefficients following in sequence
to the right of C_1.

N = CnRn + Cn_1Rn-l + Cn_ 2Rn-2 + Cn_ 3RD_3
+ CoRo + C_ 1R-l + C_ 2R-2 + C_ 3R-3

10110.111(2) = (lx24) + (Ox33) + (lx22) + (lx21)
+ (Ox20) + (1 x2-1) + (1 x2-2) + (1 X 2-3)

10110.111(2) = 1 x 16 + 0 x 8 + 1 x 4 + 1 x 2 + 0 xl
+ 1 x 1/2 + 1 x 1/4 + 1 x 1/8

10110.111(2) = 16 + 0 + 4 + 2 + 0 + 1/2 + 1/4
+ 1/8

10110.111(2) = 22.875(1(l)

Notice that arithmetic was performed entirely in the
decimal system, the system to which the number is
being converted.

3.4 DECIMAL TO BINARY CONVERSIONS

Three methods of decimal to binary conversion
are given below. The first is the general method already
explained, and the other two are somewhat easier
methods which avoid use of binary arithmetic.

3.4.1 General Method

The general rule may be used to convert a decimal
number to a binary number. As an example, convert
the decimal number 22.851(10) to its binary equivalent.

22.875(10) = 10 x (1010)1 + 10 x (1010)0
+ 1000(1010)-1 + 111(1010)-2 + 101(1010)-3

UNCLASSIFIED 23

Radix Subtraction
3.4.1-3.4.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
eH 3

1000 111
22.875(10) = 10100 + 10 +-- + ------

1010 (1010) (1010)

101

+ (1010) (1010) (1010)

1100100000 + 1000110
22.875 (10) = 10110 + -----

(1010)3 (1010)3

+ 101
(1010)3

1101101011
22.875(10) = 10110 +----­

(1010)3

22.875(10) = 1.0110.111(2)

In the terms of the formula:

a. R = 10, which is the base of the system from
which the number is being converted.

b. Rand C are both expressed in binary, which is
the system to which the number is being con­
verted.

c. The multiplication of the powers by their co­
efficients and summing of the terms to get the
final binary number is performed in binary
arithmetic.

3.4.2 Radix Subtraction Method

In general, the method is to determine what power
of 2 is the l~rgest that is smaller than the decimal;
this power is subtracted from the decimal number.
Then an attempt is made to subtract the next lower
power of 2 from the remainder. If this is not possi­
ble (results in a negative number), the next lower
power of 2 is subtracted, and so on. For each success­
ful subtraction, a 1 is generated for the binary number.
For each unsuccessful subtraction a 0 is generated. For
example, convert the decimal number 123(10) to its bi­
nary equivalent.

The first step is to determine from table 2-1 the
highest power of 2 which is equal to or less than
123(10); this is 26. The next step is to express in de­
creasing sequence the powers of 2, starting with 26.

26 25 24 23 22 21 20

The formula for the general expression for a number
states that the number is the sum of the coefficients
multiplied by the base raised to the required powers.
Therefore, the third step involves the determination of
the coefficients of the above sequence of powers of 2.
These coefficients will be expressed as the binary 1 or
o. This third step is accomplished by subtracting 26

from 123 and examining the remainder.

123

-64

59 Remainder

TABLE 2-1. POSITIVE AND NEGATIVE POWERS
OF 2

POSITIVE
POWERS NEGATIVE POWERS

20 1

21 2 2-1 1/2 0.5

22 4 2-2 1/4 0.25

23 8 2- 3 1/8 0.125

24 16 2-4 1/16 0.0625

25 32 2-5 1/32 0.03125

26 64 2- 6 1/64 0.015625

27 128 2- 7 1/128 0.007813

28 256 2- 8 1/256 0.003906

29 512 2- 9 1/512 0.001953

210 = 1,024 2- 10 1/1024 0.000977

211 = 2,048 2- 11 1/2048 0.000488

212 = 4,096 2- 12 1/4096 0.000244

213 = 8,192 2- 13 1/8192 0.000122

214 = 16,384 2- 14 1/16,384 0.000061

215 = 32,768 2- 15 1/32,768 0.000031

Note: Decimal fraction values have been rounded off to
the nearest millionth place.

If there is a power of 2 that is equal to or less than
59, another subtraction is performed using that value.
Table 2-1 shows that 25 is less than 59. Thus,

59

-32

27 Remainder

Continue subtracting powers of 2 until a remainder of
o is obtained. Thus:
Thus:

27

-16

11 Remainder

- 8

3 Remainder

-2

1 Remainder

- 1

o Remainder

24 UNCLASSIFIED

PART 2
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Radix Subtraction
3.4.2-3.4.3

It is now possible to write the coefficients in the for­
mula; the coefficient of those powers of 2 which were
subtracted is 1; the coefficient of those powers which
were not subtracted from the remainders is o. Thus:

N(2) = 1 x 26 + 1 X 25 + 1 X 24 + 1 X 23 + 0 X 22
+ 1 X 21 + 1 x 20

Since only the coefficients are normally written, the
binary equivalent is 123(10) is 1111011.

Conversion of a mixed decimal expression to its
binary equivalent is performed in the same manner.
This is the basic rule for performing the operation on
the conversion of a mixed number: (1) the integral part
of the binary number is equal to the integral part of the
decimal number, and (2) the fractional part of the
binary number is equal to the fractional part of the
decimal number.

Advantage is taken of this rule in converting a mixed
number. The integer part of the conversion is per­
formed independently of the fraction conversion. For
example, convert 3028.359375 to N 2. First, find in
table 2-1 the highest power of 2 which is equal to or
less than 3028 - also find the highest negative power
of 2 lower than .359375. Subtract these values 211 and
2-2 from the given decimal expression. Continue to sub­
tract from the remainders, values of the powers of 2
which are equal to or less than these remainders until
a remainder of 0 is obtained.

INTEGRAL PORTION FRACTIONAL PORTION

3028 0.359375

211 -2048 -0.25 2-2

980 0.109375

29 512 -0.0625 2- 4

468 0.046875

28 256 -0.03125 2- 5

212 0.015625

27 128 -0.015625 2- 6

84 0

26 64

20

24 16

4

22 4

0

Write in decreasing sequence the powers of 2, starting
at 211.

211 210 29 28 27 26 25 24 23 22 21 20. 2-1 2-2 2-3 2-4

2-:32- 6

For each power of 2 that was subtracted from the re­
mainders, write 1 as a coefficient of the power; for each
power which was too high for the subtraction opera­
tion, write a 0 as a coefficient of that power. Thus, for
the integral portion the expression is:

1 x 11 + 0 X 210 + 1 X 29 + 1 X 28 + 1 X 27 + 1 X 26

+ 0 X 25 + 1 X 24 + 0 X 23 + 1 X 22 + 0 X 21 + 0 x 20

Note that the decreasing sequence of powers must be
carried down to 20 and when the remainder is 0 at
22, the coefficient must be 0 for 21 and 2°.

Write the coefficients as the binary equivalent,

3028.10 = 101111010100'2

The binary fraction is expressed as the coefficient of
the negative powers of 2. The negative powers of 2
continue in increasing sequence from 2-1 to the highest
negative power that is subtracted from the remainder.
In the example, 2-1 equals .5 which is larger than .3;
thus, it is necessary to subtract 2-2 , which is the highest
power less than .359375. A coefficient of 1 is written
for the term whose power can be subtracted; a 0 is
written as a coefficient of a power which cannot be
subtracted. Thus, for the fractional portion of the
number, the binary expression is the sum:

Ox2-1 + 1 x2-2 + Ox2-3

+ 1 X 2-4 + 1 X 2-5 + 1 X 2- 6

The actual binary fraction is:

.35937510 = .010111 2,

The binary equivalents for the mixed decimal expres­
sion are then united as a single binary expression:

3028.35937510 = 101111010100.0101112

3.4.3 Division - Multiplication Method
A third method of converting from decimal to

binary is done in two parts. First, the integral portion
of the decimal number is converted, and this will equal
the integral portion of the binary number. Then, the
fractional portion of the decimal number is converted
to the fractional portion of the binary number.

To convert the integral portion of the number, the
integral portion is divided by 2; then, the quotient
generated is again divided by 2 and so on. The binary
coefficients are indicated by a 1 each time the division
results in a remainder and by a 0 each time no re­
mainder is obtained. The first binary bit generated is
the least significant bit (LSB) of the binary expression;
the last bit generated is the most significant bit (MSB).
For example, convert 123(10) to N (2):

UNCLASSIFIED 25

Division-Multiplication Method
3.4.3-3.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
CH 3

Since 123(10) is an integral expression, the division pro­
cedure can be used.

DECIMAL
NUMBER QUOTIENT REMAINDER

123 + 2 61 1 LSB

61 + 2 30 1

30 + 2 15 0

15 + 2 7

7+2 3 1

3+2 1 1

1 + 2 0 IMSB

12310 = 1111011

To convert a fraction expressed in decimal form to
its binary equivalent, the following method may be
used. The fraction is repeatedly multiplied by 2. Each
time that the multiplication generates a product having
an integral portion, a 1 is entered as a coefficient of the
equivalent binary expression. (The integer is then
dropped.) Each time the product of the multiplication
is a fraction, a 0 is entered into the binary sequence
of coefficients. This process is continued until the re­
quired number of binary bits has been generated or
until a product which is entirely integral is generated,
in which case an exact conversion has been obtained.
The binary fractional numbers are expressed in order
of generation in relation to the binary point. For ex­
ample, convert 0.875 (HI) to the equivalent binary number:

DECIMAL
CALCULATION

.875 x 2 = 1.75

.75 x 2 = 1.5

.5 x 2 = 1.0

.0 x2 = 0

BINARY
REPRESENTATION

.1

.11

.111

.1110

0.875(10) = .1110(2)

Sometimes the decimal fractions do not have an
exact binary equivalent. In such a case the number of
bits to be generated is determined by the precision of
conversion required. Each bit generated makes the con­
version more nearly exact. The conversion of a decimal
mixed number (i.e., has whole and fractional portions)
to the equivalent binary expression is performed using
both procedures illustrated above. Separate the expres­
sion into the integral portion and the fractional por­
tion, and convert each in accordance with the outlined
procedure.

For example convert 130.359375 to N 2 :

INTEGRAL PORTION

DECIMAL QUOTIENT REMAINDER

130 + 2 65 o LSB

65 + 2 32 1

32 + 2 16 0

16 + 2 8 0

8+2 4 0

4+2 2 0

2+2 1 0

1+2 0 1MSB

13010 = 100000102

FRACTIONAL PORTION

MULTIPLY x 2

.359375 x 2 = .718750

.718750 x 2 = 1.437500

.437500 x 2 = .875000

.875000 x 2 = 1.750000

.750000 x 2 = 1.50000

BINARY RESULT

.50000 x 2 = 1.0000

.35937510 = .010111 2

.0

.01

.010

.0101

.01011

.010111

Combining both operations, the mixed binary equiva­
lent is:

130.35937510 = 10000010.010111 2

3.5 OCTAL TO DECIMAL CONVERSION

Octal to decimal conversion is usually accom­
plished by use of the general rules given in paragraph
2.2. As an example of this type of conversion by use
of the general rules, convert the octal number 227.42(8)
into a decimal number:

227.42(8) = 2 x 82 + 2 X 81 + 7 x 80 + 4 X 8-1

+ 2 X 8- 2

= 2 x 64 + 2 x 8 + 7 x 1 + 4 x .125 + 2 x .015625

= 128 + 16 + 7 + .5 + .031250

227.42(8) = 151.53125(10)

Notice that in the terms of the formula: (1) R= 8 is
the base of the system from which the number is being
converted; (2) Rand C are expressed in the decimal
system, the system to which the number is being con­
verted; and (3) the addition of terms to get the final
decimal number is done in decimal arithmetic.

26 UNCLASSIFIED

PART 2
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

3.6 DECIMAL TO OCTAL CONVERSION

Three methods of decimal to octal conversion are
given below. The first is the general method of para­
graph 2.2; the other two are somewhat easier methods
which avoid use of octal arithmetic.

3.6.1 General Method

A conversion of a decimal number to its octal
equivalent is possible using the general rules. As an
example, convert the decimal number 151.53125(10) to
its octal equivalent:

151.53125(}0) = 1 x (12)2 + 5(12)] + 1(12)°
+ 5(12)-1 + 3(12)-2 + 1(12)-3 + 2(12)-4

+ 5(12)-5

151.53125(10) = 1 x 144 + 5 x 12 + 1 x 1

+ _5_ + _3_ + _1_ + _2_ + _5_
12 122 123 124 125

5(12)4 + 3(12)3
151.53125 (10) = 144 + 62 + 1 +

125 12;:;

151.53125(10) = 227.42(8)

In this conversion operation: (1) R = 10 is the radix
of the number system from which the number is being
converted; (2) Rand C are both expressed in octal­
the number system to which the number is being
converted; and (3) the multiplication of the powers
by their coefficients and the final summing of the terms
is accomplished in octal arithmetic (see Ch. 5).

3.6.2 Radix Subtraction Method

8 1

8 1

8 1

8 1

8°

8°

8°

8°

80

512

573

512

61

8

53

8

45

8

37

8

29

8

21

8

13

8

5

1

4

1

3

1

2

1

1

1

0

Decimal to Octal Conversion
3.6-3.6.2

-.125 8- 1

0

The same basic principles are used in converting
by the radix subtraction method from decimal to octal
as were used in the decimal to binary conversion. The
subtraction operation is performed in order to produce
the coefficient of the powers, and the powers are in­
dicated by the sequential arrangement as in the binary
conversion operation. For example, convert the decimal
number 1597.25(]() to its octal equivalent.

TABLE 2-2. POSITIVE AND NEGATIVE
?OWERS OF 8

The first step in the conversion is to separate the
integral portion of the decimal expression from the
fractional portion and to operate on each separately.
From table 2-2, find the highest power of 8 that can
be subtracted. Continue the subtraction until the re­
mainder is o. Thus:

INTEGRAL PORTION FRACflONAL PORTION

1597

- 512

1085

.250

-.125

.125

8- 1

gO =
81 =
82 =
83 =
84 =
85 =

UNCLASSI FlED

POSITIVE
POWERS

1

8

64

512

4,096

32,768

NEGATIVE
POWERS

8° = 1

8- 1 = 1/8

8- 2 = 1/64

8- 3 = 1/512

8- 4 = 1/4,096

8- 5 = 1/32,768

=1

= .125

= .015625

= .001953

= .000244

= .000031

27

Multiplication-Division Method
3.6.2-3.7.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
CH 3

The next step in this conversion procedure is to
write in sequence the powers of the octal base, starting
at the highest power that was subtracted from the in­
tegral expression. Thus,

83 82 81 8°.

The coefficients of the terms are expressed as the num­
ber of times the power was subtracted from the decimal
expression or any remainder. In the case of 83, the
coefficient is 3 because 512 was subtracted three times
from the expression that was being converted to the
octal equivalent. The coefficients are 3x83 + Ox82 +
7x81 + 5x8°. Writing the octal equivalent in terms of
the integral coefficients, N8 == 3075(8). The fractional
portion of the octal expression is written as the negative
power of the base times a coefficient. The coefficient is
the number of times the power was subtracted from the
expression to be converted. In the example, 8-1 was sub­
tracted twice and the coefficient is 2. Writing the frac­
tional equivalent of .2510, N8 == 2X8-1 or .2. Combin­
ing both operations, the result is expressed:

1597.25(10) == 3075.2(8)'

3.6.3 Multiplication - Division Method
This method of conversion is accomplished in two

parts. The integral and fractional portion of the num­
ber are converted differently. The integral portion is
converted by a dividing process; the fractional por­
tion by a multiplying process. To convert the integral
portion of the decimal number to octal, divide the in­
tegral portion by 8, then divide the quotient by 8 and
so on until the quotient is o. The remainders obtained
in the division will be the coefficient of the octal num­
ber with the least significant digit (LSD) generated
first and the most significant digit (MSD) generated
last. As an example, convert the decimal number 3844(10)
to its octal equivalent:

DECIMAL
NUMBER QUOTIENT REMAINOl:R

3844 + 8 480 4 LSD

480+ 8 60 0

60+8 7 4

7+8 0 7 MSD

3844(10) == 7404(8)

To convert the fractional portion of a decimal
number to octal, multiply the fraction by 8. The. in­
tegral portion of the product thus obtained is the first
digit of the octal fraction. The fractional portion of
the product should be multiplied by 8. This time, the
integral part of the product obtained is the second
digit of the octal fraction. This process continues until
the fraction of the product is 0, or until enough octal

digits have been generated. For example, convert the
decimal number 0.384(10) to its octal equipment.

DECIMAL INTEGRAL
NUMBER PRODUCT PORTION

0.384 X 8 3.072 3 MSD

0.072 X 8 0.576 0

0.576 X 8 4.608 4

0.608 X 8 4.864 4 LSD

0.384(10) == 0.3044 ... (8)

A mixed number is converted by means of these
operations performed upon the integral and fractional
portion of the number, separately. For example, con­
vert the decimal number 204.53125(10) to its octal equi­
valent. First convert the integral portion:

DECIMAL NO.
+ RADIX QUOTIENT REMAINDER

204 + 8 25 4 LSD

25 + 8 3 1

3+8 0 3 MSD

Therefore, the integral conversion is 204(10) == 314(8)'
Now convert the fractional portion of the decimal
number.

DECIMAL NO.
X RADIX

.53125 X 8

.25 X 8

PRODUCT OCTAL DIGIT

4.25000 4 MSD

2.00 2 LSD

Therefore, the fractional conversion is .53125(10) ==
.42(HI and the full conversion is 204.53125(10) ==
314.42(8)'

3.7 OCTAL TO BINARY CONVERSION

Two methods of octal to binary conversion are
given below. One is by use of the general rules of 2.2.
The other, which is the recommended method, is by
inspection.

3.7.1 General Method
The general rules may be used to convert an octal

number to a binary number. As an example, convert
the octal number 26.7(8) to its binary equivalent.

26.7(8) == 10 X (1000)1 + 110(1000)° + 111(1000)-1

111
26.7(8) == 10000 + 110 + --

1000

26.7 (8) == 10110.111 (2)

28 UNCLASSIFIED

PART 2
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Binary to Octal Conversion
3.7.1-3.8.2

Notice that in the operations:

a. R = 8 is the radix of the number system from
which the number is being converted.

b. Rand C are both expressed in binary, the num­
ber system to which the number is being con­
verted.

c. The multiplication of the powers by their co­
efficient and the final summing of the terms are
accomplished in binary arithmetic.

3.7.2 Inspection Method

The recommended method of octal to binary con­
version is by inspection, as there is a natural relation­
ship between octonary and binary numbers. The base
of the octal system is 8; the base of the binary system
is 2; and 23 equals 8. The simple relationship is that
one octal digit may be expressed by three binary bits.

OCTAL - BINARY

0= 000

1 = 001

2 = 010

3 = 011

OCT Ai - BINARY

4 = 100

5 = 101

6 = 110

7 = 111

The conversion from the octonary number to its
binary equivalent can be accomplished by direct sub­
stitution. To convert any octonary number to its binary
equivalent, replace each octonary digit by the grouping
of three binary bits having equivalent value. For ex­
ample, rewrite 56473.246(8) as follows:

101 110 100 111 011 010 100 110

Here the groupings are separated just to call attention
to the equivalences; in actual practice, there is no rea­
son why the binary' number cannot be written directly,
with no spacing between groupings unless it is desired
to retain groupings to facilitate checking.

3.8 BINARY TO OCTAL CONVERSION

Two methods of binary to octal conversion are
given below. One is by means of the general rules

given in 2.2. The other, which is the recommended
method is by inspection.

3.8.1 General Method

A conversion from a binary to an octal number
may be accomplished using the general formula. As an
example of the operation, convert 10110.111 to an
octal number.

10110.111(:!) = 1 X 24 + 0 X 23 + 1 X 22 + 1 X 21 +

o X 2° + 1 X 2- 1 + 1 X 2-2 + 1 X 2-3

10110.111(2) = 20 + 0 + 4 + 2 +0 +.4 +.2 +.1

10110.111(2) = 26.7(8)

Notice that in the terms of the formula:

a. R = 2 is the base of the system from which the
number is being converted.

b. Rand C are expressed in the octal system, the
number system to which the number is being
converted. (Note particularly the fractional
equivalencies.)

c. The addition of terms to get the final octal
number is done in octal arithmetic.

3.8.2 Inspection Method

The recommended method of conversion from bi­
nary to octal is by substitution of the octal equivalents
for the binary groups. To make this conversion, ar­
range the binary bits in groups of three, beginning at
the binary point proceeding to the left and to the
right. Fill out the extreme left or right group with O's
if necessary. Then directly substitute for each binary
group its octal digit equivalent.

For example, convert 11100.1112 to Ns

11100.1112 = 011 100· 1112

001 100. 1112

~ ~ ~
3 4. 7

11100.111 2 = 34.710

UNCLASSIFIED 29

Blank Page

'3~

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

UNCLASSIFIED

PART 2

PART 2
CH 4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Addition
4.1-4.1.2

CHAPTER 4
BINARY ARITHMETIC

4.1 ADDITION

4.1.1 General Rules

Binary additiO'n is simple. Its rules are as fO'llO'ws:

0+0=0

1+0=1

0+1=1

1 + 1 = 0 + 1 to' carry

These rules O'perate in all cases O'f additiO'n and apply
to' bO'th additiO'n O'f integers and O'f fractiO'ns. Binary
numbers are added frO'm right to' left, and the carry is
added to' the adjacent bit O'n the left. The fO'llO'wing
examples illustrate the rules fO'r binary additiO'n. NO'te
that the carry is placed in the cO'lumn, to' which it
will be added, in parentheses.

o

1

1

+1

10

10

11

(11) (1)

11 100 101

100 101 110

The technical terms in additiO'n are defined as the
augend, addend, and the sum. The augend is the term
that is to' be increased; the addend is the term to' be
added to' the augend; the sum is the result O'f the
O'peratiO'n. FO'r example:

101 Augend

+011 Addend

1000 Sum

4.1.2 Addition of Binary Numbers

In adding mO're than O'ne number, the additiO'n O'f
the first set O'f numbers is perfO'rmed and, to' the sum,
is added the third number. TO' the sum O'f the succeed­
ing additiO'ns, add the next number until all the num­
bers have been to'taled. FO'r example, add:

a. 011

111

AdditiO'n O'f the first set O'f
numbers

First sum

AdditiO'n O'f the third number

Final sum

b. 1101

1001

0010

+1111

AdditiO'n O'f the first set O'f
numbers

First sum

AdditiO'n O'f the third number to'

the first sum

SecO'nd sum

AdditiO'n O'f the fO'urth number to'
the secO'nd sum

Final sum

BINARY DECIMAL

011

+111

1010

+110

10000

BINARY

1101

1001

10110

0010

11000

1111

100111

3

+7
10

+6
16

DECIMAL

13

9

22

+2

24

+15

39

Binary fractiO'ns are added in accO'rdance with the
rule that gO'verns whO'le numbers. The binary point is
fixed as in the decimal system. The carry frO'm the
additiO'n O'f the binary fractiO'ns in the first PO'sitiO'n to'
the right of the binary PO'int is an integer. FO'r example,
in the additiO'n O'f the fO'llO'wing fractiO'ns:

a. DECIMAL

1/8

3/8

4/8 O'r.5

BINARY

.001

.011

.100

UNCLASSIFIED 31

B·inary Subtraction
4.1.2-4.2.3.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
CH 4

b.

c.

4/8

+6/8

10/8 or 1.25

5 3/8

6 7/8

12 2/8 or 12.25

4.2 BINARY SUBTRACTION

4.2.1 General

.10

.11

1.01

101.011

110.111

1100.010

The rules for binary subtraction are as follows:

0-0=0

0- 1 = 1 (borrow 1 and make 0 = 10)

1-0=1

1-1=0

The technical definitions of the terms used in sub­
traction 'are minuend, subtrahend, and difference. The
minuend is the number to be decreased; the subtrahend
is the quantity of the decrease; the difference is the
result of the operation. Thus:

0110 Minuend

100 Subtrahend

010 Difference

The similarity which exists between decimal and binary
arithmetic when a carry is involved is analogous to the
similarity which exists when a borrow is invovled.
When subtracting a 1 from a 0, a 1 must be borrowed
from the next higher order, diminishing that order
by 1.

4.2.2 Direct Subtraction
The following examples illustrate the rules for

binary subtraction and the method of borrowing from
the next higher order.

1101

a. -0100

1001

1110

b. -0101

1001

1100

c. -1001

0011

In example a, above, the subtraction of 0 from 1,
o from 0, and 1 from 1 produces the difference. In
example b, a 1 must be borrowed from the second
order when attempting to subtract the 1 of the first
order from o. The 1 in the second order then dim­
inishes to O. In example c, a slightly different borrow
situation arises. The 1 to be borrowed must come from
the third order of the minuend. That 1 then diminishes
to O. The 1 of the first order of the minuend can then
be borrowed from the 10 which appears in the second
order. Borrowing the 1 from 10 leaves a 1 in the sec­
ond order of the minuend. Applying the rules of binary
subtraction then produces the difference shown.

Fractions are subtracted according to the rules
and procedures for integral expressions. The proce­
dures are the same as the ones for decimal subtraction;
the rules are the binary rules for subtraction. For ex­
ample, subtract:

DECIMAL BINARY

a. 21/32 .10101

-16/32 .10000

5/32 or .156 .000101

b. 4 3/4 100.11

-2 1/2 10.10

2 1/4 or 2.25 10.01

4.2.3 Complementing Method in Binary
Subtraction

4.2.3.1 General

The examples that have been used to illustrate
subtraction are methods of direct subtraction. The com­
plement method of subtraction is a means of subtrac­
tion by addition. Computer design requirements do not
allow for borrowing, so the complement method of
subtraction fits in with computer design and capabilities.

A disadvantage of direct binary subtraction is tn-at
the direct subtraction of a number from a smaller num­
ber yields an incorrect result unless the subtraction is
done by subtracting the smaller from the larger and
then changing the sign of the difference. Such a proce­
dure would be difficult in a computer. For example:

5/16

-9/16

-4/16

0.0101

-0.1001

?

The difficulty encountered with negative results and the
problem of providing for borrowing in computer de­
sign are eliminated by converting the subtraction to an
addition of negative numbers by means of the comple­
ment process.

4.2.3.2 Modulus

The complement system of subtraction is possible
because it is possible to limit the number of significant
digits to be used in anyone problem or machine. The
problem is then said to have a modulus, which is the
count of the maximum number of numbers it would be
possible to represent in this problem. For instance, sup­
pose that a binary machine has facilities for handling
only 4 places - the machine could represent 16 differ­
ent numbers from 0 to 1111(2)' Such a machine has a
modulus of 16 and is said to perform modulo 16 arith­
metic.

32 UNCLASSIFIED

PART 2
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Complement Method of Subtraction
4.2.3.2-4.2.3.5

The significance of the modulus of the machine is
that each time an addition results in a number equal to
or greater than the modulus of the machine, an integral
multiple of the modulus is lost. An example of this ac­
tion in everyday life is furnished by the automobile
odometer. When it reaches 100,000 miles, it resets to
zero and starts over. The odometer has lost 100,000 by
resetting to O. This property of machine-counting meth­
ods is important in the use of complements for sub­
traction by addition.

4.2.3.3 Derivation of Complement Method
of Subtraction

The complement method of subtraction may be de­
rived from the following identity:

P - M + (M - N) == P - N

where:

P == Minuend

N == Subtrahend

M == Modulus of the machine

P - N == difference sought.

To derive the complement system of subtraction, let
(M - N) equal a number called the complement of N.
Let C stand for this complement so M - N == C. Now
substitute C in the identity:

P-M+C==P-N
or

(P + C) - M == P - N.

If M is moved to the other side of the identity, it be­
comes:

It now is evident that the minuend plus the comple­
ment of the subtrahend is equal to the difference of the
minuend and subtrahend plus the modulus. It should
now be recalled that when two numbers are added to
obtain a sum greater than the modulus, the modulus is
lost. Therefore:

in any system witn a fixed modulus, provided only that
the sum P + C is greater than the modulus of the num­
ber system used.

The above is a derivation of what, in binary arith­
metic, is called the 2's complement system. A similar
derivation of a l's complement system may be derived
using (M - 1) in place of M. In this case, however, the
final equation will be:

P + C1 - 1 == P - N

which implies that the difference sought will be found

by adding 1 to the P + C1• Note that C1 is equal, in this
case, to (M - 1) - N.

4.2.3.4 Generation of l's Complement

Every computer has a modulus which is one larger
than the largest number the computer can register. For
example, a 6-place binary counter could express all the
numbers from 0 to 1p111(2)' The modulus of such a
computer is 1,000,000(2)'

To obtain the l's complement of a number, it was
shown in the derivation above that the number must be
subtracted from (M - 1). Therefore, to obtain the l's
complement of a number in a 6-place machine, the num­
ber is subtracted from (1000000 - 1)(2); that is, from
111111(2)' As an example, find the l's complement of the
binary numbers 101001(2) and 01101(2):

a.

b.

111111 Modulus - 1

101001 Number

010110 l's complement of number

111111 Modulus - 1

001101 Number

110010 l's complement of number

A close examination of the numbers and their l's
complements will show that the l's complement in bi­
nary arithmetic is nothing more than the original num­
ber with bits reversed. That is, the original number's O's
are l's in the complement while the l's are O's. The way
to get the l's complement, then, is by inspection; just
exchange O's for l's and l's for O's. For example:

100101 number

0110010 complement.

4.2.3.5 l's Complement Subtraction

To perform subtraction by the l's complement
method, proceed in the following manner:

1. Find the complement of the subtrahend with re­
spect to l' s.

2. Add the complement to the minuend.

3. Perform "end-around carry" if there is a carry
out of the highest position of the difference.
(This is explained below.)

The result is the difference in complement form if it is
negative and in true form if it is positive. (Zero is con­
sidered negative.)

There are four possibilities, as shown by the exam­
ples below. All except the last will be treated exactly
the same. The last will require the extra step of end­
around carry. This is a carry from the highest order
around to the lowest order which is required because of

UNCLASSIFIED 33

2's Complement
4.2.:3.5-4.2.3.7

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART ~
CH 4

the cyclical nature of the number system. The only time
it is required is when the minuend is larger than the
subtrahend, that is, when the answer will come out a

true positive answer. Fortunately, whenever it is re­
quired, there is a carry from the left-most position,
which serves as a reminder.

EXAMPLES DIRECT SUBTRACT COMPLEMENT SUBTRACT

a. Minuend is +011011 Minuend 011011 Minuend

smaller than -101010 Subtrahend 010101 Subtrahend l's complement

subtrahend -001111 Difference 110000 Complement of difference

b. Minuend is +011011 Minuend 011011 Minuend

equal to -011011 Subtrahend 100100 Subtrahend l's complement

subtrahend 000000 Difference 111111 Complement of difference

c. Minuend is -011011 Minuend 100100 Complement of minuend

more negative -(-)010011 Subtrahend 010011 Subtrahend

than subtrahend -001000 Difference 110111 Complement of difference

and both are

negative

d. Minuend

is larger

than subtrahend

011011 Minuend

-010101 Subtrahend

+000110 Difference (1)

-i

011011 Minuend

101010 Subtrahend l's complement

000101 True difference less 1

4.2.3.6 Generation of 2'5 Complements

In the derivation of the complement system, it was
shown that a 2's complement of a number is equal to
th'e modulus minus the number, (M - N). Therefore,
to obtain a 2's complement in a 6-place machine, the
number is subtracted from the modulus, 1,000,000. As
an example, find the 2's complement of the binary num­
bers 101001(2) and 001101(2):

a. 1000 000 Modulus

101 001 Number

010 1112's complement of number

b. 1000 000 Modulus

001 101 Number

110 011 2's complement of number

A close examination of the numbers and their com­
plements will show that the 2' s complement of a num­
ber is the same as the l's complement with a 1 added to

End carry ---~) (1)

000110 True difference

it. The 2's complement, therefore, may be formed by
forming the l's complement and adding a 1 to it. As an
example, form the 2's complement of 001101(2):

001101 Number

110010 l's complement of number

110011 2's complement of number

4.2.3.7 2'5 Complement Subtraction

To perform subtraction by the 2's complement
method:

1. Find the 2's complement of the subtrahend.

2. Add this complement to the minuend.

The result is the difference in complement form if it is
negative and in true form if it is positive. (Zero is con­
sidered positive.)

In the 2's complement system, there is no need to
end-around carry. The results will always be correct
without it. For example, solve examples band d of
4.2.3.5 by the 2's complement system:

34 UNCLASSIFIED

PART 2
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Binary Sign Conventions
4.2.3.7-4.2.3.9

EXAMPLE DIRECT SUBTRACT COMPLEMENT SUBTRACT

b. Minuend is 011011 Minuend 011011 Minuend

equal to

subtrahend

-011011 Subtrahend

000000 Difference (1)

101011 2's complement of subtrahend

000000 Difference

t
Discard
Carry

d. Minuend is 011011 Minuend 011011 Minuend

larger than

subtrahend

-010101 Subtrahend 101011 2's complement of subtrahend

000110 True difference +000110 Difference (1)

t

4.2.3.8 Binary Sign Conventions
At this point, it is natural to raise the question of

how negative numbers in complement form can be dis­
tinguished from positive numbers in true form. It turns
out that in this regard, also, binary numbers offer an
advantage with regard to representation. The sign of a
number is binary in nature, that is, a number is either
positive or negative with the exception of 0, which can
be arbitrarily assigned a sign. Thus, a bit representing
the sign can be used in addition to the bits representing
magnitude. A 0 in the sign bit position can be inter­
preted to mean that the number is positive and in true
form; a 1 in the sign bit position can be interpreted to
mean that the number is negative and in complement
form. If the sign bits are assigned to the most signifi­
cant bit position and are treated as a part of the num­
ber in the addition operation, the resultant sign bit will
be a true indication of the sign of the result. This sign
operation is legitimate in both the l's and 2's comple­
ment systems. In order to see how this works, four cases
may be considered. The examples of subtractions listed
in 4.2.3.5 are repeated below, with the sign bits added
to illustrate the results of operating on sign bits in this
manner. The sign bits are on the left, separated from
the magnitude bits by a point (.). This is the usual
practice.

Example:

a. Complement Subtraction
0.011011 Minuend
1.010101 l's complement of subtrahend

1.110000 l's complement of difference

b. 0.011011 Minuend
1.100100 l's complement of subtrahend

1.111111 l's complement of difference (this
is often called negative zero)

Discard
Carry

c. 1.100100 l's complement of minuend

0.010011 Subtrahend

1.110111 l's complenment of difference

d. 0.011011 Minuend

1.101010 l's complement of subtrahend

(1) 0.000101

~
End
Carry~l

0.000110

From the examples, it can be seen that a sign bit
may be used in subtraction as though it were a magni­
tude bit. It will then always indicate the sign. As a mat­
ter of fact, the sign bit increases the capacity of the ma­
chine twofold. This is because it allows the same num­
ber of magnitude bits to signify both positive and nega­
tive numbers.

4.2.3.9 Comparison of 1'5 and 2'5
Complement Subtraction

A study of the examples of 4.2.3.5 and 4.2.3.7 will
show some of the advantages and disadvantages of the
two systems. The chief advantage of the l's complement
system is the ease with which the complement is formed~
Its chief disadvantage are the end-around carry opera­
tions, sometimes necessary, and the fact that negtive
zero must be provided for. It would appear that the l's
complement system would be most suited to operations
where the complementation process itself is a major
part of the operation. The 2's complement process, on
the other hand, would be advantageous in operations
where the addition process is most important.

UNCLASSIFIED 35

Binary Multiplication
4.3-4.4.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
CH 4

4.3 BINARY MULTIPLICATION

4.3.1 General Method

The rules for binary multiplication are similar to
those of decimal multiplication. The rules for multiply­
ing two single digits are the same in both systems. These
rules are:

OX 0=0

°X1=0

The general procedure when multiplying two· multiple
digit binary numbers is the same as that in decimal
arithmetic. That is, the multiplicand is multiplied by a
digit of the multiplier, and the partial product obtained
is placed so that the least significant digit is under the
multiplier digit. When all the partial products have
been found, they are added together to find the final
product. The only difference between decimal and bi­
nary multiplication, therefore, is in the summing of the
partial products. In binary, the binary addition table is
used while in decimal the decimal table is used.

As can be seen from the following examples, the
method of obtaining partial products and then adding
these to' obtain the product is identical to that of deci­
mal arithmetic.

Multiplicand 1010 10.11 1111

Multiplier 1101 100.1 1111

First Partial Product 1010 1011 1111

Second Partial Product 0000 0000 1111

Third Partial Product 1010 0000 0000

Fourth Partial Product 1010 1011 1111

Total Product 10000010 1100.011 11100001

Note the placement of the binary point in the second
example. The same rules hold for its placement as hold
for placement of the decimal point in arithmetic.

The third example also brings olIt an interesting
point. This is the multiplication of the two largest pos­
sible 4-bit numbers. The product is 8 bits long. In other
words, the largest product that can result frO'm the mul­
tiplication of two numbers will be no longer than the
sum of the number of bits in the multiplier and multi­
plicand.

4.3.2 Add and Shift Multiplication

If a number is multiplied by the radix of the num­
ber system, this multiplication has the effect of shifting
the number one place to the left with respect to the
radix point. This is true in any number system. For ex­
ample, multiply 12.51(10) by 10 (the radix of the decimal
system) and multiply the number 10.11(2) by 2(2) (the
radix of the binary system).

Number

Number Times Radix

DECIMAL

12.51

125.1

BINARY

10.11

101.1

Note that binary multiplication is nothing more than a
series of add and shift operations.

4.3.3 Multiplication (or Division) of Negative
Numbers

Two ways of multiplying (or dividing) negative
numbers are possible. One way, which is seldom used
because of its complications, is the multiplication (or
division) of complements. This is possible if new rules
of arithmetic to take care of the sign are used. The sec­
ond way of multiplying (and dividing) negative num­
bers is to change the signs of both multiplier and multi­
plicand (divisor and dividend) so that they are both
positive. Then when the multiplication (division) is fin­
ished, the sign of the product (or quotient) is changed
according to algebraic rules of multiplication (or divi­
sion).

4.4 BINARY DIVISION

4.4.1 General

Binary division is the process of counting the num­
ber of times that the divisor will go into the dividend.
The count of the number of times the divisor may be
subtracted from the dividend before a negative remain­
der results is called the quotient.

4.4.2 Direct Division

Direct binary division is performed by a series of
subtractions of the divisor (actually a multiple of the
divisor), just as it is in the decimal system. For example,
divide 100011100(2) by 1110(2):

bd
1010.001

a. 1110/10001110.000

a 1110

c 1111

1110

10000

1110

10

1

b. 1110/10001110.000
1110000000

In example a, above, the first step in the process is
to place the divisor below the dividend in a position
which is as far to the left as possible but which will
still allow a positive difference to result when the divi­
sor is subtracted from the dividend. Since the divisor
will go into this many bits of the dividend once, a 1 is

36 UNCLASSIFIED

PART 2
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Direct Division
4.4.2-4.4.3.2

placed in the· quotient at b in the same column as the
lowest order digit of the divisor. The divisor is then
multiplied by the quotient digit, and the resulting prod­
uct (which, in this case, is the divisor) is subtracted
from the dividend to produce the positive difference
(line c) called the current remainder. The next digit in
the dividend is brought down to the difference obtained
on line c. Now, two procedures are possible. On the
one hand, if the new number on line c is larger than the
divisor, a 1 is placed in the next empty quotient bit po­
sition. The divisor is multiplied by this digit, and the
resulting product is then placed under the partial re­
mainder. Then the subtraction process can be repeated
to obtain a new current remainder. On the other hand,
if the number on line c is less than the divisor, as in the
example, a 0 is placed in the quotient bit position, col­
umn d. The next digit of the dividend is then brought
down to the difference, and a subtraction is performed.
The process is continued until a quotient of required
length is completed. As shown in the example, the bi­
nary radix point is treated the same as the decimal point
would be in decimal division.

In b, above, only the first digit of the quotient is
shown. When this digit is used to multiply the divisor
(to get the number below the dividend) actually, multi­
plication by 1000(2), (1 x 23), is being performed. In
other words, the actual subtraction from the dividend
is of a number 1000(2) times the divisor. From this, it
can be seen that the amount subtracted from the divi­
dend is the quotient bit times the power of the quotient
bit times the divisor.

Since the quotient bit is always either 0 or 1, the
division process could be reduced to a series of subtrac­
tions of the divisor, multiplied by the power of the
quotient bit being sought from the dividend. Each time
a subtraction resulted in a positive current remainder, a
1 would be placed in the corresponding quotient bit
position, and the process could be immediately repeated
for the next quotient bit. Each time the subtraction re­
sulted in a negative remainder, a 0 would ·be placed in
the corresponding quotient bit. In this case, the current
remainder would have to be restored to a positive num­
ber by adding the divisor back to it. Following this, the
next quotient bit could be obtained by the subtraction
of the divisor multiplied by the power of the next quo­
tient bit.

Since the quotient bits are generated from left to
right, the power of each quotient bit is one smaller than
that of the last bit generated. This means that as the
divisor is successively subtracted from the dividend (or

current remainder), the diviso" ;~ shifted to the right in
relation to the binary point. In other words, the divi­
sion process can be reduced to a process of successive
subtract and shift steps.

4.4.3 Division by Subtraction and Shift
Methods

4.4.3.1 General
When division is mechanized, either of two sub­

tract and shift methods is generally used. The restoring
subtract and shift method is one which, after each un­
successful trial subtraction, adds the divisor back to the
remainder. The nonrestoring technique does not do
this; consequently, it is somewhat faster.

Division will always be built into a machine so the
quotient bits will start to generate in the correct place.
One method of doing this is to make the rule that the
first quotient bit will be in the position corresponding
to or just above the least significant figure of the divi­
sor when the most significant digits of the dividend and
the divisor are lined up for the first trial subtraction.
(Note that this first quotient bit could be a 0.)

4.4.3.2 Restoring Method

The restoring division process is as follows:

a. The dividend and divisor are lined up at the left
so that their most significant digits are in line.
This is the equivalent of multiplying the divisor
by the power of the first quotient bit and then
lining up the radix points of the dividend and
the divisor. The radix points of the divisor, divi­
dend, and quotient are now properly oriented.

b. An attempt is made to subtract the divisor times
the power of the first quotient bit from the divi­
dend. If the attempt is successful (result is posi­
tive or zero), a 1 is entered in the quotient posi­
tion corresponding to the power used to multi­
ply the divisor in step a, above. If the subtrac­
tion results in a negative answer, a 0 is entered
in the quotient, and the divisor is added back to
the dividend (the dividend is restored).

c. The divisor is then shifted right one place and,
again, a trial subtraction is attempted this time
from the current remainder or restored divi­
dend, as the case may be. A 1 is entered in the
next most significant quotient bit if the sub­
traction is successful, a 0 if it is unsuccessful.
This process goes on until the required number
of quotient bits has been generated.

An example should clarify this operation. The example
below illustrates the division of the number 10001100(2)

by 1110(2)'

UNCLASSIFIED 37

Nonrestoring Method
4.4.3.2-4.4.3.3

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 2
CH 4

OPERAND

NUMBER NAME

10001100. Dividend

11100000. Divisor x 24

-01010100. Negative remainder

11100000. Divisor X24

10001100. Dividend

1110000. Divisor x23

+00011100. Positive remainder

111000. Divisor X22

011100. Negative remainder

111000. Divisor x 22

+ 11100. Positive remainder

11100. Divisor x 21

+ 00000. Zero remainder (+)

1110. Divisor

1110. Negative remainder

1110. Divisor

0000. Final remainder

In the example, the dividend is written down and
the divisor is written below it with the left-most digits
in line. To accomplish this alignment while maintain­
ing alignment of the binary points, it would be neces­
sary to multiply the divisor by 10000(2) or 24. This indi­
cates that the first subtraction will determine the quo­
tient bit whose power is 24. When the subtraction is
carried out, it results in a negative current remainder.
Therefore, the quotient bit in the 24 bit position will be
o. It is now necessary to restore the current remainder
to a positive number. This is done by adding the divisor
times 24 back to the current remainder. To determine
the next digit of the quotient, the divisor is shifted one
place to the right, and the resulting number is sub­
tracted from the restored current remainder. This time,
the subtraction results in a positive current remainder,
indicating that the divisor times 23 will go into the divi­
dend once. The bit in the 23 position of the quotient,
therefore, will be 1. Since the current remainder is posi­
tive, no restoring add will be required. The next bit of
the quotient will simply be determined by shifting the
divisor one place to the right and subtracting. This
process continues until a sufficient number of quot~ent
bits have been generated or, in this example, until a re­
mainder of 0 has been obtained.

4.4.3.3 Nonrestoring Method

The nonrestoring method of division is as follows:

OPERATION QUOTIENT

BIT ORDER

Subtract

o
Restoring Addition

Shift and Subtract

1

Shift and Subtract

o
Restoring Addition

Shift and Subtract

1

Shift and Subtract

o 2°

Restoring Addition

Final Quotient 01010

a. The dividend and divisor are lined up left so
that their most significant digits are in line. This
is the equivalent of multiplying the divisor by
the power of the first quotient digit and then
lining up the radix points of the dividend and
divisor. The radix points of the dividend, quo­
tient, and divisor will then be in corresponding
places.

b. A trial subtraction is made. If it is successful, a 1
is put into the quotient position corresponding
to the power used in step a. If it is unsuccessful,
a 0 is put in the quotient bit position.

c. Without restoring the dividend, a shift-right of
the divisor is made. If the previous trial sub­
traction resulted in a negative remainder, the
divisor -will now be added to this remainder. If
the previous trial subtraction resulted in a posi­
tive remainder, the divisor will be subtracted
from the remainder. If the results of this addi­
tion or subtraction, as the case may be, are posi­
tive, a 1 is inserted in the quotient; if they are
negative, a 0 is inserted.

d. The same routine is repeated until all required
bits are generated.

e. The last current remainder may be a positive or
a negative number. If it is a negative number, it

38 UNCLASSIFIED

PART 2
CH 4

UNCLASSIF lED
T.O. 31 P2-2FSQ7-2

Division by Complement Subtraction
4.4.3.3-4.4.4

must- be restored. This is done by adding the
divisor back to the current remainder. As an ex-

OPERAND

NUMBER NAME

10001100. Dividend

11100000. Divisor x 24

-01010100. Negative remainder

1110000. Divisor x 23

+ 0011100. Positive remainder

111000. Divisor x 22

011100. Negative remainder

11100. Divisor x 21

+ 00000. Positive remainder

1110. Divisor x 2°

1110. Negative remainder

1110. Restoring add

0000. Final remainder

In the example, the dividend and the divisor are
lined up on the left. To do this while maintaining ori­
entation of the binary points of dividend and divisor,
the divisor would have to be multiplied by 24. There­
fore, the content of the 24 quotient bit position will be
the first determined. Subtraction of the divisor from the
dividend results in a negative current remainder. This
indicates that the bit in the 24 position of the quotient
will be o. The next step is to shift the divisor to the
right one place and add it to the current remainder.
The combination of the first subtraction of 24 times the
divisor from the dividend and the addition of 23 times
the divisor is the equivalent of subtracting 23 times the
divisor. Since this operation results in a positive current
remainder, a 1 is placed in the 23 bit position. The next
step is to shift the divisor to the right one place and,
because the current remainder is positive, to subtract
the divisor. This subtraction results in a negative num­
ber, so a 0 is placed in the 22 bit position of the quotient.
Again, a shift-right of the divisor is made. This time,
because the current remainder is a negative number, the
divisor is added to the current remainder. Since the re­
sulting new current remainder is a positive number, a 1

is placed in the 21 bit position of the quotient. Once
more, a shift right of the divisor is made, and this time
the divisor is subtracted from the current remainder.
This last subtraction results in a negative number, so a
o is placed in the 2° bit position of the quotient. Since
the final current remainder is a negative number, a re­
storing addition is necessary. The divisor is added back

ample of this method, the division of 4.4.3.2 is repeated
by this method.

OPERATION QUOTIENT

BIT ORDER

Subtract

0 24

Shift and add

1 23

Shift and subtract

0 22

Shift and add

1 21

Shift and subtract

0 2°

Final Quotient = 1010

to the current remainder to give the final remainder
of o.

4.4.4 Nonrestoring Division Using Complement
Subtraction

As previously stated, subtraction is usually per­
formed in a machine by means of addition of comple­
ments. When this is done in division, the actual division
process does not change except that the negative cur­
rent remainders will appear in complement form. The
quotient bit generated will still be a 1 if the current
remainder is a positive number and will be 0 if the cur­
rent remainder is a negative (complement) number.

An example of the nonrestoring process is given
below. The same numbers are used as were used in
4.4.3.3. Two things should be noted about the opera­
tion in the example. First, the 2's complement system is
used. This is done primarily so that no provision for
the end-carry operation will have to be made. The sec­
ond point to notice is that when the current remainder
is shifted to the right, the bit positions seemingly va­
cated on the left actually are having O's shifted into
them. If it is recalled that 1 is the complement of 0, it
will become obvious that when a complemented num­
ber is shifted to the right the left-hand bits will be filled
with l's. This fits in with the convention of using a 1 in
the sign bit to indicate a complement number and 0 to
indicate a true number. When this convention is used
and a shift-right occurs, the bits on the left of the cur­
rent remainder will be filled with the same bit con­
tained in the sign bit position. The sign bits themselves,

UNCLASSIFIED 39

Division by Complement Subtraction
4.4.4

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 2
CH 4

however, are not changed by the right-shift. The gen­
eral procedure for the nonrestoring division by comple­
ment is as follows:

1. Write down the dividend and the 2's comple­
ment of the divisor so that their most significant
bits are in line. This is the equivalent of multi­
plying the 2's complement of the divisor by the
power of the first quotient bit.

2. Add the two numbers. If a true current remain­
der results, place a 1 in the quotient bit position
corresponding to the power used in step 1. If a
complement current remainder results, place a 0
in the quotient bit position.

3. The divisor is now shifted right. If the current
remainder is a true number, complement the

SIGN MAGNITUDE
BITS BITS NAME

0 10001100 Dividend

divisor and add it to the current remainder. If
the current remainder is a negative number, add
the true divisor to it.

4. If the results of this second addition are posi­
tive, insert a 1 in the next quotient position; if
they are negative, insert a O.

5. Repeat this process until all required bits of the
quotient are generated.

6. The last current remainder may be a positive or
a negative number. If it is a negative number, it
must be restored. Do this by adding the true
value of the divisor back to the current remain­
der.

The example of the process follows. The number
10001100(2) is divided by 1110(2)'

OPERATION QUOTIENT
BIT-ORDER

1 00100000 2's complement of divisor X24 Add

1 10101100 Current remainder (negative) 0 24

0 01110000 True divisor shifted right Add

0 00011100 Current remainder (positive) 1 23

1 11001000 2's complement of divisor shifted right Add

1 11100100 Current remainder (negative) 0 22

0 00011100 True divisor shifted right Add

0 00000000 Current remainder (positive) 1 21

1 11110010 2's complement of divisor shifted right Add

1 11110010 Current remainder (negative) 0 2°

0 00001110 True divisor

0 00000000 Final remainder

In this example, the dividend and complement of
the divisor are lined up on the left. Since this is the
equivalent of multiplying the complemented divisor by

24, the first quotient bit generated will be inserted in the

24 order of the quotient. Addition of the two numbers

results in a negative current remainder; so a 0 is en­

tered in the 24 position of the quotient. Since the cur­

rent remainder is a negative number, the true divisor

Add

Final Quotient 1010

will be shifted right and added to the current remain­
der. This addition results in a positive number; so a 1
will be inserted in the next quotient bit. Because the
last current remainder was a positive number, the next
operation will be to add the complement of the shifted
divisor to the current remainder. This process continues
until the four bits of the quotient have been generated.
At this time, the remainder is negative, so a final restor­
ing add is required.

40 UNCLASSIFIED

PART 2
CH 5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Octal Addition
5.1-5.2

CHAPTER 5
OCTAL ARITHMETIC OPERATIONS

5.1 GENERAL

The arithmetic operations, addition, subtraction,
multiplication, and division, are performed in the octal
system in a manner similar to the decimal operations,
although octal counting is difficult. Table 2-3, for
octal addition and subtraction, and table 2-4, for use
in octal multiplication, should be used to check exam­
ples. Octal arithmetic may also be performed in a
roundabout fashion by converting to decimal, perform­
ing the required operation, and then converting back to
octal. In the following paragraphs, only the table meth­
ods will be shown; conversion methods are given in
Chapter 3.

5.2 OCTAL ADDITION

Octal addition is performed in much the same way
as decimal addition. A sum and carry technique is used
in which the sum and carry are determined by reference
to an addition table. Addition and subtraction are given
in table 2-3. The sum of two digits is found where the

column containing the addend digit and the row con­
taining the augend digit intersect. For example, the sum
of 7 and 6 is 15. The difference of two digits is found in
the difference column. Find the minuend which is in the
same column as the subtrahend digit. The row which
contains this minuend also contains the difference. For
instance, 12 - 6 == 4. Examples in the use of this table
for addition are given below. Other than the difference
in addition tables used, the addition processes used in
octal and decimal are exactly the same. The carries are
shown in parentheses.

(1) (1) (112) carries

271.1 254.5 262.3

314.3 311.3 351.7

605.4 566.0 434.7

1271.1

TABLE 2-3. OCTAL ADDITION - SUBTRACTION

(SUBTRAHEND)

(DIFFERENCE) (SUBTRAHEND) ADDEND

AUGEND ADDEND 0 2 3 4 5 6 7 10

0 0 0 1 2 3 4 5 6 7 10

1 1 1 2 3 4 5 6 7 10 11

2 2 2 3 4 5 6 7 10 11 12

3 (Difference) 3 3 4 5 6 7 10 11 12 13

4 Augend 4 4 5 6 7 10 11 12 13 14

5 5 5 6 7 10 11 12 13 14 15

6 6 6 7 10 11 12 13 14 15 16

7 7 7 10 11 12 13 14 15 16 17

10 10 10 11 12 13 14 15 16 17 20

(Minuend)

Sum

UNCLASSIFIED 41

Octal Multiplication
5.2-5.4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
eH 5

5.3 OCTAL SUBTRACTION

Octal subtraction may be performed directly, as in
decimal arithmetic, by a subtract and borrow routine.
In this case, the subtract portion of table 2-3 is used.
When the minuend is smaller than the subtrahend, a 1
must be borrowed from t1).e next column to the left.
This is indicated in the table by the two digit minuend
numbers. In these numbers, the 1 stands for a carry
whereas the other digit stands for the minuend. Exam­
ples of the use of this table and the general methods of
subtraction are given below. The borrows are shown in
parentheses above the column they were borrowed
from.

7254.3

6132.2

1122.1

(11) borrows

7356.3

7266.6

0067.5

5.4 OCTAL MULTIPLICATION

(111) borrows

5432.3

4567.0

0643.3

The operations used in octal multiplication are
similar to the operations used in decimal arithmetic.
The multiplicand is multiplied by one digit of the multi­
plier at a time to form a series of partial products that
must be added to obtain the desired result. The digit-

by-digit multiplications are performed using the prod­
ucts given in the octonary multiplication table, and the
sums are obtained using the octal addition table. The
position of the octonary point in the product, if either
or both of the original numbers are fractional, is deter­
mined exactly as in decimal multiplication; that is, if
there are two digits to the right of the octonary point
in the multiplier and four digits to the right of the
octonary point in the multiplicand, the point is posi­
tioned six places to the left of the least significant digit
in the product.

Table 2-4 is a combination multiplication and
division table. To use it for multiplication, read the
numbers corresponding to the labels not in parenthe­
ses. To use it as a division table, read the numbers
corresponding to labels in the parentheses.

In multiplication, the product is found at the inter­
section of the column containing the multiplicand digit
and the row containing the multiplier digit. For in­
stance, 6 x 7 == 52. In division, the quotient digit is
found by searching the column which contains the divi­
sion digit for the corresponding dividend digit (or
digits). Then the row which contains this dividend
digit intersects the quotient column where the proper
quotient digit is located. For instance, 43 -;- 7 == 5. As
an example, using the table, multiply 462(8) by 35(8)'

TABLE 2-4. OCTAL MULTIPLICATION - DIVISION

MULTIPLICAND
(DIVISION)

0 2 3 4 5 6 7 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 10 11 12

2 0 2 4 6 10 12 14 16 20 22 24

Multiplier 3 0 3 6 11 14 17 22 25 30 33 36

(Quotient) 4 0 4 10 14 20 24 30 34 40 44 50

5 0 6 12 17 24 31 36 43 50 55 62

6 0 6 14 22 30 36 44 52 50 66 74

7 0 7 16 25 34 43 52 61 70 77 106

10 0 10 20 30 40 50 60 70 100 110 120

11 0 11 22 33 44 55 66 77 110 121 132

12 0 12 24 36 50 62 74 106 120 132 144

Product
(Dividend)

42 UNCLASSIFIED

PART 2
CH 5

UNCLASSIFIED
T.O. 31P2-2FSQ1-2

Octal Division
5.4-5.5

462

35

2772

1626

21252

The multiplicand is multiplied by each digit of the
multiplicand, and the carry is added to the product
of each individual multiplication. From the table,
5 x 2 = 12, write 2 and carry 1; from the table 5 x 6
= 36 + 1 (carry) = 37, write 7 and carry 3; from the
table 5 x 4 = 24 + 3 = 27, write both digits. The same
procedure is followed in the multiplication by 3. After
the partial products are found, they are added accord­
ing to the octal addition table.

5.5 OCTAL DIVISION

Octal division is performed like decimal division
except that the octal division and subtraction tables are
used instead of decimal. As an example of octal divi­

sion, divide 21252(8) by 35(8)'

4628

358/212528

164

265

256

72

72

o

30610

2910/887410

87

174

174

o

The most significant number in the quotient is gener­
ated by examining the division of 212 by 35 and decid­
ing, on a trial basis, the largest number that 35 can be
multiplied by, resulting in a product less than 212. The
number selected is 4; this is because 5 x 358 = 221 8, The
multiplication of 4 x 35 is performed using the octonary
multiplication table. The subtraction of the product
from 212 is performed by direct octal subtraction. The
process is continued as in decimal long division until
the required number of octal digits have been gener­
ated. Note that the divisors, dividends, and quotients
agree in magnitude, but that the intermediate steps are
different.

UNCLASSIFIED 43

Blank Page

44

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

UNCLASSIFIED

PART 2

PART 2
eH 6

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Word Size
6.1-6.3

CHAPTER 6
NUMBER REPRESENTATION IN A COMPUTER

6.1 INTRODUCTION

In the discussion in Chapter 1, computer informa­
tion was related to numbers in binary form. The ques­
tion of how this information is arranged for presenta­
tion to the computer may be puzzling. It is kno'wn that
information in the form of arranged patterns of O's
and l's is coded for use in the computer. The unit of
information arrangement and presentation is the com­
puter word. This word may be data which is to be
operated on or instructions which detail the operations
and the order of operations to be performed; no matter
what it means, however, it is numerical in form.

6.2 WORD SIZE

A computer word is of d.efinite size; i.e., it con­
sists of an exact number of binary symbols, each of
which is termed a bit (in a binary machine). Each com­
puter has its own word size which is of fixed length
and arrangement. Some computers have been designed
to handle computer words of 40 bits; others may use
words of 30 bits or less. The number of bits in a
computer word is expressed as its length. The length
or size of the computer word makes available a definite
number of positions for coding information in binary
form. All positions are used whether or not all the bit
positions are needed to represent the information. This
is necessary because the computer handles information
in a pulse-no-pulse cod.e. A no-pulse has meaning, and
unused positions in a word would be handled by the
computer as a no-pulse indication.

The structure of a typical computer word is illus­
trated in figure 2-1. The word illustrated in figure
2-1 has 32 bit positions and is divided into left and
right half-words. Each half word has 16 bit positions,
1 sign-bit position, and 15 positions for information.

SIGN BIT

+
BIT

POSITIONS

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LEFT HALF WORD

The next question to be considered is what deter­
mines word size. The choice of word size is not arbitrary.
There is an optimum word size for any digital computer
which is related to the "average" problem to be solved
by the computer, the number of digits in the instruc­
tion code, and by the degree of accuracy in computation.
In general, the longer the word the more precise a com­
putation will be (more places available).

6.3 FIXED AND FLOATING POINT COMPUTERS

Since arithmetic operations involving fractions are
performed by digital computers, the position of the
binary point is an important consideration. Two design
techniques are used in digital computers for position­
ing the binary point. The fixed point system locates
the binary point in the same position in any register.
The floating point system produces the effect of in­
dicating the binary point by expressing all numbers as
products and in two parts. The first part of the ex­
pression is the coefficient, and the seco'nd part is the
exponent to which the base has been raised. In the
floating point system, 0.0008076 would be expressed
as 0.8076 x 10-3• Multiplication or division of two
fractions involves the appropriate operation by the
coefficients and the addition o'r subtraction of the ex­
ponents. Thus, to multiply .0012 by .0012

.12 x .12 == .0144 since .0012 == .12 x 10-2

10-2 X 10-2 == 10-4

.12 X 10-2 x .12 X 10-2 == .0144 X 10- 6 == 0.00000144.

The answer would be expressed as 0.144 x 10-5•

It is possible to program (using special techniques)
a fixed point computer so that cO'mputations are per­
formed in a floating point manner. Otherwise, the

SIGN BIT , BIT
POSITIONS

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RIGHT HALF WORD

Figure 2-1. Computer Word

UNCLASSIFIED 45

Positional Significance
6.3-6.6

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 2
CH 6

prO'grammer must scale the prO'blem as he prO' grams
it. (Scaling is briefly explained in Section 6.6.)

6.4 PRECISION AND ACCURACY

PrecisiQn and accuracy are terms that have distinct
meanings and applicatiQn in relatiQn to' numerical data.
Accuracy refers to' the CQrrectness Qf the expressiQn;
precisiQn is the degree of CQrrectness. For example, the
symbol rr may be expressed as 3.14. This is a representa­
tiQn Qf the value Qf rr accurate to' three places, but it
is nQt precise. PrecisiQn WQuid require that the value
Qf rr be expressed to' SQme greater number Qf decimal
places, say 3.14159. Even with the value Qf rr expressed
to' the fifth decimal PQsitiQn, the degree Qf precisiQn is
nO't absQlute. The IQwer Qrder digits have been rQunded
O'ff. HQwever, the 5-place precisiQn may be the degree
required fO'r a given O'peratiO"n and WO'uld be suitable.
AnO'ther example may be illustrated from everyday ex­
perience; a persO'n is SQmetimes described as Qver 35
years O'f age. This may be accurate, but it is nO't precise,
because that persQn may be precisely 35 years, 2 mQnths,
1 day, 2 hQurs, 4 minutes, and 10 secQnds in age.
Even this detailed expressiQn eQuId be carried O'ut to'
greater precisiQn.

A quantity which is represented by fQur digits to'
the left Qf the decimal PO'int is said to' be specified
to' a precision Qf 1 part in 10,000 because 10,000 distinct
numbers (0000 thrQugh 9999) can be represented by fQur
such decimal numbers. If an accuracy to' within ±010/0
is specified (in connectiQn with a precisiO'n Qf 1 part in
10,000), it indicates that the unit digit Qf the number
may be incQrrect by 1 unit. The number 4047 ± 0.010/0
WQuid imply a value sQmewhere between 4046.5 and
4047.5.

6.5 POSITIONAL AND ABSOLUTE SIGNIFICANCE

A quantity specified by a decimal number to' a
precisiQn Qf 1 part in 10,000 can be said to' be specified
to' fQur significant places. In numbers, it is important
to' understand the cQncept Qf PO'sitiQnal significance.
ThrQughQut this part, the term "significance" has been
used freely to' designate the positiO'nal relatiQn between
individual digits of a number. In this sense, if digit x
is to' the left Qf digit y, it is mO're significant (has
mQre value) than digit y. In additiQn to' this cO'ncept
Qf relative positiQn significance, there is a cO'ncept Qf
absO'lute significance. In terms Qf this secQnd cQncept, a
digit in a particular number is said to' be either signi­
ficant Qr nQt. In O'rder to' qualify as being significant
in this absQlute sense, a digit must cO'ntribute to' .the
precisiQn required. FO'r example, in the fQllQwing state­
ment, "He is abQut 50 years Qld," the 0 is not signifi­
cant. But a sQmewhat different case Qf significance
arises in the multiplicatiQn of twO' 4-digit numbers,
each Qf which is accurate to' ±O.Ol%. Here, the unit

digits O'f both numbers may be off by as much as
0.9999 in either direction. FO'r example, if 9001 is
multiplied by 8001, the prO' duct is 72,017,001. However,
the specified accuracy is such that the CQrrect values
O'f multiplier and multiplicand may be as small as
9000 and 8000 O'r may be as large as 9002 and 8002
(to' the clO'set unit). Thus, the CQrrect value O'f the
prO' duct may lie anywhere in the range between
72,000,000, (i.e., 9000 x 8000) and 72,034,004, (i.e.,
9002 x 8002). FO'r this reaSQn, the right-hand fQur
digits O'f the prQduct are nQt significant. On the O'ther
hand, the fifth digit frQm the right is significant, since
it specifies the apprQximate center Qf the range O'f
values (72,000,000 and 72,030,000) which bracket the
CQrrect prO' duct. After a calculatiQn Qf this SQrt is CQm­
pleted, the result must be "rQunded O'ff;" i.e., thQse
digits which seem to' cQntribute something to' the ac­
curacy Qf the result, but actually dO' nQt, must be re­
mO'ved. FQr purpQse Qf "rQund Qff" in the illustrative
prQblem, the digit to' the right Qf the least significant
place does have SQme value; fQr if it is 5 O'r more the
least significant digit shQuld be increased by Qne unit.
The abQve example shQuld be rQunded O'ff to' 72,020,000.
(When binary nQtatiQn is used, a 1 in the bit positiQn
to' the right Qf the least significant place has a value
which is equivalent to' the value of a 5 to' the right Qf
the least significant place in decimal nQtatiO'n. Thus,
in rO'unding Qff a binary number, a 1 is added intO' the
least significant bit PQsitiQn if the PO'sitiQn to' the right
cQntains a 1 but nQt if the positiO'n to the right CQn­
tains a 0).

6.6 SCALING

Scaling the variables (the numerical values) which
are to' be Qperated uPQn in a digital cO'mputer sO'lutiQn
is clQsely related to' the concept Qf precisiQn. Assume
that a cQmputer has a decimal mQdulus (4.2.3.2) Qf
10,000. Then, if a variable can be scaled so that its
range falls exactly within the capacity Qf the machine,
it can be represented to' a precisiQn Qf 1 part in 10,000.
If, Qn the Qther hand, it is scaled SO' that its maximum
value is represented (handled) by just three O'rders Qf
the machine, it is Qnly being represented to' a precisiQn
O'f 1 part in 1000. In Qther wQrds, there are twO' O'b­
jectives to' keep in mind when scaling variables fQr a
cQmputer sQlution. One is to' scale the variables sO' that
they dO' nQt exceed the capacity Qf the machine (if this
happens, meangingless results will be Qbtained); the
O'ther is to' scale the variables so as to' use as much O'f
the capacity Qf the machine as possible in Qrder to'
O'btain the maximum precisiQn. The extent to' which the
full capacity Qf the machine can be used to' represent a
particular variable depends uPQn the exactitude with
which the range O'f the variable is knQwn.

Suppose that wind velQcity is to' be scaled fQr

46 UNCLASSIFIED

PART 2
CH 6

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Scaling
6.6

representation in a computer and it is known that no
velocity as large as 40 knots will be encountered in a
particular problem. Then, 40 knots can be made equal
to the largest number which the machine can handle

or represent. On the other hand, if the machine handles
only fractions (or decimals), 40 knots can be equaled
to one machine unit, and a velocity of 20 knots will
appear in the machine as 0.5.

UNCLASSIFIED 47

Blank Page

48

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 2

PART 3
CH 1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Information Signals
1.1-1.1.1

PART 3
COMPUTER CIRCUITS AND DEVICES

CHAPTER 1
INTRODUCTION

The building blocks of a digital computer are its
individual circuits, hundreds, often thousands of them,
interconnected to accomplish the operations of trans­
ferring and processing data. Actually, however, there
are not this many different circuits but a few basic types
that are used again and again in different combinations.
Before discussing in detail these basic computer cir­
cuits and other devices, certain fundamentals must be
examined here, such as the types of electrical signals
commonly used and the nature of the simple logic
operations performed by the circuits.

1.1 INFORMATION SIGNALS

The transfer and processing of information in a
digital computer is done by switching and storing in­
formation signals; that is, electrical signals represent­
ing numbers. Many or most of the common electronic
parts (relays, vacuum tubes, crystal diodes, etc.) per­
form excellently in bistable (2-state or on-off) opera­
tion. Because of this, it is usually easiest to make com­
puters work internally in the binary number system,
and, in this case, the information signals must repre­
sent the binary digits, 1 and o. (Some computers are
built to work in decimal, using 2-state signals in a

code to represent the 10 decimal digits, but this type
will not be considered here.)

There are several possible ways of representing
the binary l's and O's electrically. For example, two
signal lines might be used, a voltage on one representing
a 1, a voltage on the other indicating o. This, however
useful, would require more circuitry than is needed if
used throughout the computer. When it is necessary to
transfer numbers over a single signal line between cir­
cuits, as shown at (a) of figure 3-1, the easiest method
is to place a d-c voltage on the line to represent a
binary 1 but no voltage to represent a o. The polarity
of the voltage might be either positive or negative; the
important point is that the presence of the voltage
represents 1, the absence represents O. (Circuits A and
B are shown grounded to indicate the return circuit, or
common; although the return is always necessary, it is
usually taken for granted and omitted from block
diagrams of computer circuitry.)

1.1.1 Voltage Level Representation

An alternative to this voltage-or-no-voltage
method, perhaps somewhat better suited to vacuum­
tube circuitry, uses a steady-state, positive d-c voltage

(oj S--;NALLEAD~

o
~ UP LEVEL

IbJ U - -- -11- -TIME - -~
DOWN LEVEL

o o

(c)

Figure 3-1. Common Number Signals

UNCLASSIFIED 49

Parallel Transmission
1.1.1-1.1.3.1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 3
CH 1

fDr a 1 and a negative vDltage fDr a o. Any reasDnable
vDltage amplitudes may be used fDr the tWD d-c levels
tD meet circuit requirements. Actually, the negative
vDltage ('Often called the down level) may be negative
'Only in relati'On tD the mDre pDsitive, Dr up level,
vDltage. This methDd 'Of representing num~ers with d-c
levels is shDwn at (b) 'Of figure 3-1. Circuit A in­
dicates a 0 tD circuit B by h'Olding the signal line at
the dDwn level, a negative pDtential. When it is desired
tD signal a 1, the level is brDught up tD a positive
potential and held there as lDngas necessary. As lDng
as the level is up, a 1 is present at the input tD circuit
B; when it is dDwn, the input is o. It is pDssible tD
reverse this methDd 'Of representation and call the
down level a 1 and the up level a o. In practice, this
matter of polarity and number representation can be­
come a headache tD the designer, especially in vacuum­
tube circuits where signal inversiDn takes place between
grid and plate in each tube stage. To simplify circuitry,
the method of representatiDn chosen fDr the cDmputer
may be reversed in SDme grDups of circuits. There is
n'O 'Objection tD this, as long as the 'Operation remains
lDgical and consistent. The Central Computer 'Of the
AN /FSQ-7 and -8 uses this voltage level method 'Of

representing numbers (and another methDd, described
below). The standard levels in this machine are - 30
vDltS for the dDwn level (Dr binary 0), and +10 volts
fDr the up level (or binary 1).

1.1.2 Pulse Representation
One characteristic of the voltage level infDrmatiDn

signal is that it can be held up Dr dDwn as IDng as
necessary. In many cases, hDwever, all that is needed
is a I-signal 'Of very brief duration to trigger the fol­
lowing circuit, SD a pulse can be used tD represent a 1,

as in (c) 'Of figure 3-1. (This is a perfect, square
pulse; in practical circuitry, it would tend tD be rDund­
shouldered.) If a pulse (pDsitive or negative) repre­
sents a 1, it fDllDW that the absence 'Of a pulse IDgically
represents a o.

Using the methDd 'Of pulse signals, the 'Output line
frDm circuit A remains at SDme reference level (usually
ground potential) until a 1 must be transmitted tD cir­
cuit B, whereupDn a single pulse is generated by A and
is placed on the line. The pulse appears at the input
'Of circuit B, signalling at 1, and quickly dies 'Out, but
it must have sufficient amplitude and duration tD prD­
duce the desired triggering 'Of circuit B. When the
qui'ckly passing (transient) pulse has disappeared after
triggering circuit B, the signal line returns tD the zerD
reference level, again indicating 0 at the circuit B input.
NDt until anDther 1 must be indicated is anDther pulse
sent. The AN/FSQ-7 and -8 cDmputer uses pulse signals,
as well as levels, tD represent numbers. The pulse
representing I's are pDsitive, 20 tD 40 vDltS in ampli­
tude and 0.1 micrDsecDnd (usec) in duratiDn.

1.1.3 Transmission Methods

The levels and pulse signals are the twD basic
types (but nDt the only pDssible ones) used tD represent
numbers and, therefore, infDrmatiDn, in digital CDm­

puters. But a single level Dr pulse represents 'Only 'One
binary bit, yet the computer must work with IDng
binary numbers (many bits), Dr words. HDW are these
cDmputer words transmitted frDm one part 'Of the
machine tD anDther?

1 .1 .3.1 Parallel

If 'One signal line between twD circuits can, at a
given moment, transmit a 1 Dr a 0, it is reasDnable
tD conclude that a cDmplete, 5-bit word, fDr example,
requires five lines in parallel (plus 'One commDn signal
return). This is -called parallel transmission. A parallel
circuit capable of handling a sample 5-bit word, using
relays with normally 'Open contacts as cDmbined switch­
ing and storage devices, appears at (a) of figure 3-2.
Assuming that the five relays can be 'Operated and held
operated in any desired combination, any 5-bit binary
number from 00000 through 11111 (decimal 31) can
be transmitted tD the five circuits labelled 24 thrDugh 2°.

With all five relays unoperated, all cDntacts are
open, and nDne 'Of the lines are cDnnected tD the battery.
Each signal line, therefore, is at the dDwn level, and
the input tD each circuit is o. Reading acrDSS all five
inputs at (a), the result is 00000. If relay 0 alDne is
operated, only the input tD circuit 20 is up (cDnnected
to battery). Now, reading across the five inputs at (b)
'Of figure 3-2, the lines are:

24 23 22 21 2°

dDwn down dDwn dDwn up

representing

0 0 0 0 1

Dr decimal 1.

As anDther example, simultaneDusly 'Operating re­
lays 4, 1, and 0 brings up the three cDrrespDnding lines,
as shDwn at (c):

up dDwn dDwn up up

representing

1 o o 1 1

Dr decimal 19.

Changing the level 'On any signal line, in this case
by 'Operating or dropping the cDrresponding relay,
changes the transmitted computer (binary) word. And,
although it has been assumed that the 'Operated relays
are held 'Operated tD prDvide levels, pulse-type signals

50 UNCLASSIFIED

PART 3
CH 1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Serial Transmission
1.1.3.1-1.1.3.3

(01 5fg~G
- - - - -- - - - -

(bl

+ + +

(c 1

(d 1

Figure 3-2. Parallel Transmission of Numbers

could be sent just as easily by simultaneously pulsing
the desired combination of relays. To use the previous
example, if the coils of relays 4, 1, and 0 are pulsed
at the same time, their contacts close briefly and then
open again. As shown at (d) of figure 3-2, this places
a single pulse on each of the signal lines to circuits
24, 2\ and 2°, but there are no pulses on the inputs to
circuits 23 and 22. So the number transmitted is again
10011, but this time it is sent by means of pulse signals
rather than by voltage levels. Finally, remember that
relays are shown in the circuit of figure 3-2 only as
examples of devices providing the switching or storage
functions. Each relay can be replaced by any type of
circuit or device capable of performing the necessary
(bistable) function and of delivering the proper in­
formation signals.

1.1.3.2 Serial

There is one other basic way of transmitting num­
ber signals, in addition to the parallel (or side-by-side)
method just described. This second method also uses
either levels or pulses, but sends the bits of the number,
one after another, down a single line. Thus, the bits
are sent in sequence, or serially, so this is called serial
transmission. In the serial method, it is usual to send
the least significant bit of the number first, followed by
the other bits in order of increasing significance. This

makes sense when it is remembered that addition, sub­
traction, etc., are performed bit by bit in this same
order. The binary number previously used as an ex­
ample, 10011, is shown in figure 3-3 as it would be
sent in serial form, with pulse-type signals. The num­
ber is sent from circuit A to circuit B as a train of
pulses and no-pulses. The first bit transmitted and,
therefore, the first bit received by circuit B, is the least
significant, or 2°, bit, and the more significant bits
follow in order. There must be spacing between suc­
cessive pulses, otherwise they could not be distinguished
by the receiving circuit.

1 • 1 .3.3 Comparison of Methods
The principal differences between the parallel and

serial methods of transmission show up in a compari­
son of figures 3-2 and 3-3. In the parallel method
of figure 3-2, five sending and five receiving circuits
are involved to handle a 5-bit number. In the serial
method (fig. 3-3), only two circuits are needed: one
sending, the other receiving. On the other hand, all

o o

Figure 3-3. Serial Transmission of Numbers

UNCLASSIFIED 51

.
Serial Transmission
1.1.3.3-1.1.4.2

UNCLASS.FIED
T.O. 31P2-2FSQ7-2

PART 3
CH 1

bits are sent simultaneously in the parallel method, so
the entire number is transmitted in the time it takes to
send only one bit. In the serial method, the entire
number is not known until all five bits have been sent,
one after the other; so it takes five times as long to
send the same complete number.

Thus, it becomes apparent that, in general, the
parallel method offers much faster transmission of
numbers than the serial, but requires more circuitry. In
the AN/FSQ-7, -8 computer, in which each word is 32
bits long, use of the parallel method makes number
transmission 32 times faster than if the serial method
were employed. This is achieved at the cost of more
equipment, justified, of course, by the importance oJ
operating speed in this air defense computer. And
while speed of number transmission is only one factor
in determining the final operating speed, it is an im­
portant one.

1.1.4 Timing

Another matter of importance in transmitting num­
bers is timing.

1.1.4.1 Parallel Transmission

Consideration of the parallel method shown in
figure 3-2 indicates that simultaneous operation of the
relays signalling a given number is a must if circuits
2° through 24 are going to operate upon the number as
soon as it is received. If the number signals were volt­
age levels, for example, and relays 4 and 0 were oper­
ated together, followed a moment later by relay 1, the
receiving circuits would first get the number 10001,

which would then change to 10011. With pulse-type
signals of short duration, the same operation of the
relays would send 10001 and then 00010. Either of these
occurrences, resulting in incorrect numbers getting in,
could cause errors in an arithmetic machine. It is im­
portant, therefore, in many or most uses of parallel

BIT - TIMES

T5 T4 T3

0 0
w n 0
=> PULSES ~+
...J
0..0---
:!:-
<X

T5 T4 T3

transtpission, to time all the bits of a number to arrive
simultaneously at their destinations.

1.1.4.2 Serial Transmission

Timing is equally vital in serial transmlSSlOn, as
examination of figure 3-3 will indicate. Since the bit
signals are sent down a single line, one after another,
some rigid timing system is a necessity, especially with
pulse-type signals. If the signals were sent at varying
intervals, for example, the receiving circuit would have
no way of telling whether a long space between pulses
was a 0 or merely spacing. And if voltage level signals
were used, the receiving circuit could not distinguish
between a 1 and two consecutive l's or between a 0
and two consecutive O's. So the timing of serial trans­
mission must be controlled, also. This is done by estab­
lishing the period of time necessary to send one bit,
which is the smallest piece of information handled in
the computer. If a pulse system is used, each pulse must
last long enough to trigger the receiving circuit, and
the space between pulses must allow sufficient recovery
time to prepare the circuit for the receipt of another
pulse. With serial voltage levels, each level must be
held long enough to include both triggering and re­
covery times.

Once the time period for transmission of a single
bit (called one bit-time) has been determined, the
problem of serial timing is handled by rigidly control­
ling the length and spacing of the bit signals in every
number (computer word) transmission. Figure 3-4
shows the timing of both the pulse-type and level-type
signals making up the number 10011. The bit-times,
measured from the start of the first signal in the
number, are shown running from right to left across
the top of the figure (the least significant bit, which
appears first, is at the right). Notice that each bit­
pulse in the pulse system appears at the start of the
corresponding bit-time, lasts for a fixed period, and

T2 TI

n IL
T2 TI

Figure 3-4. Timing of Serial Numbers

52 UNCLASSIFIED

PART 3
CH 1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Switching Logic
1.1.4.2-1.2.1.1

disappears, to be followed by a space four times the
length of the pulse. When the bit to be represented is
a 0, no pulse is sent during that bit-time, of course.
The relative durations of pulses and spaces vary from
one computer to the next. In some, for example, the
space is the same width (in time duration) as the pulse.
In the voltage level system, the line potential rises to
the up level when a 1 is being transmitted and remains
there during the entire bit-time. If the next bit is also
a 1 (as it is in fig. 3-4), the level does not drop, even
momentarily, but remains up for the next bit-time, also.
Only when successive bits are different - changing
from 1 to 0 or 0 to 1 - does the level change.

In many computers, the basic source of timing or
synchronizing signals is the clock, usually a pulse gen­
erator which, controlled by an accurate oscillator, puts
out a continuous string of rigidly timed pulses. The
clock pulses are generated one per bit-time and are sent
to all parts of the computer to control the transmission
of numbers and the timing of operations. Thus, in a
computer using a 1-usec bit-time, the clock must gen­
erate one million pulses per second, at exact 1-usec in­
tervals, from the time the computer is turned on until
it is shut down.

1.1.5 No-Signal Condition

One further point must be mentioned. Whenever
quickly passing (short duration) signals are used (either
pulse-type signals in serial or parallel number trans­
mission or voltage levels in serial transmission) all
signal lines are normally held at the 0 level when no
numbers are being sent. This means, in effect, that O's
are kept in all circuits where no other numbers are
being processed. (It is entirely possible to use a system
of number signals in which this would not be true,
such as positive pulses for l's and negative pulses for
O's, with the line returning to ground potential between
pulses, for example. However, such a system is com­
plex and requires much equipment.)

On the other hand, voltage level signals used in
parallel circuitry are not usually short-duration signals.
In many types of parallel circuitry, the 2-line trans­
mission method described in 1.1 is used, a signal
(usually an up level) on one line representing 0, a
signal on the other representing 1. As in all cases, O's
are kept in all circuits that are temporarily idle, but in
this case the O's are represented by up level voltages
on the 0 lines. The levels, whether indicating O's or
l's, are held on the lines as long as required. When
certain numbers are no longer needed, they are re­
moved from the circuitry holding them by means of
control signals sent to return all circuits to the 0 state.

1.2 SWITCHING LOGIC

The preceding text has shown the basic types of
signals used to represent information in digital com-

puters and the basic methods of moving the informa­
tion from one part of a computer to another. It has
been mentioned that all the arithmetic and other oper­
ations performed in a digital computer are done by
switching and storing information (in the form of
numbers) in the proper combinations and sequences.

The operations carried out by the digital computer
are operations of logic. Arithmetic - all mathematics,
in fact - is rigidly based on logic; in other words,
arithmetic is a systematic process of manipulating num­
bers involving simple operations carried out according
to precise rules. If numbers are to be represented by
voltage levels and pulses, as stated above, some system
of manipulating these voltages according to the logical
rules of arithmetic must be found. Circuits which ac­
complish this function in a computer are called logic
circuits.

1.2.1 Logic Operations

How does switching enter into operations of logic?
This can best be understood by looking first at the
type of logic operation that can easily be performed by
a switching circuit. The actual circuitry will be con­
sidered later.

1.2.1.1 OR Logic

One of the common logic operations is the alterna­
tive or choice, called the OR function. This comes into
play whenever anyone of two or more alternate possi­
bilities can bring about a specified result. For example,
"We'll go to the movies if George, Pete, or Joe shows
up." In this case, the arrival of George OR Pete OR
Joe leads to the result, movies. This can be written in
shorthand form:

George OR Peter OR Joe == Movies

The situation can also be symbolized in diagram form,
as shown in figure 3-5. The label in the block indicates

GEORGE ..
PETE OR

MOVIES ..
JOE

-'" -
Figure 3-5. OR Situation Symbolized

that OR is the relationship between its "inputs," which
are, of course, the arrival of George, Peter, or Joe.
Another way of thinking of it - more accurate when
dealing with equipment - is that the block applies the
OR function to its inputs. The block produces an
"output" - movies - only when the inputs meet the
OR requirements: in other words, when at least one of
the inputs appears. This diagram can be altered, as in
figure 3-6, to illustrate the general case, any OR situa­
tion. Three inputs are shown, although any number

UNCLASSIFIED 53

NOT Logic
1.2.1.1-1.2.1.3

UNCLASStFlED
T.O. 31P2-2FSQ7-2

PART 3
CH 1

_ 0

A OR B OR C" 0

Figure 3-6. OR Function

except one is possible (one condition offers no alterna­
tive, hence no OR). The OR function produces a
specified result, D, when anyone of its input condi­
tions, A OR B OR C, is satisfied. Notice that if any
two, or even all three, of the inputs appear together,
the output is still produced because no restriction is
stated. The OR in this case includes all combinations,
as well as one-at-a-time inputs, so it is called an in­
clusive OR. In digital computer logic circuits, the OR
function is always inclusive unless otherwise specified.

The opposite OR situation is called the exclusive
OR. It requires that anyone, but no more than one, of
two or more inputs produce a specified output. "We'll
play golf if Harry or Jim comes, but not if they both
arrive." Harry OR Jim result in golf, but it is definitely
stated that Harry AND Jim does not.

1.2.1.2 AND Logic

That last statement indicates that the AND (com­
bination) must be another logic function, which it is.
The AND function requires that all of two or more
possible conditions (inputs) be present at the same
time to bring about a specified result (output). For
instance, "You need inductance and capacitance and
resistance to build a bandpass filter." All three are
required - and all at the same time - to produce the
result, a filter. If anyone is missing, or if the three
are present only at different times, the specified result
is not produced. The logic can be written:

LAND C AND R = Filter

Figure 3-7 illustrates the AND function in dia­
gram form. Again, any number of inputs except one is
possible. The AND function produces a specified result,
D, when all its input conditions, A AND BAND C, are
fulfilled at the same time.

1.2.1.3 NOT Logic

Another logic operation of importance is the NOT
function, called inversion. Inversion means a turning

:~:I AND I _0

A AN 0 BAND C " 0

Figure 3-7. AND Function

upsi,Je down or a reversing of relationships. In working
with 2-valued logic, this means changing every quantity
to its opposite. Every "yes," when inverted, becomes a
"NOT yes," which is the same as a "no." Similarly, a
"no," inverted, becomes a "yes." Figure 3-8 shows

I .---I-~ NOT A

A ----... NOT A

NOT A ---. A

Figure 3-B. NOT Function (Inversion)

the symbol for the NOT function. The letter I, in the
block, stands for "inverter," the commonly used name
for the NOT block. The inverter can have only one
input; if more than one quantity is to be inverted, a
separate inverter is required for each. When input A
is applied to the inverter, as shown in the figure, the
output is NOT A. It is also possible to feed NOT A to
the input and obtain A as the output.

The NOT function most often becomes necessary
in conjunction with the OR or the AND. For example,
someone might say "I'll go if Tom does, but not if it
rains." Examination shows that this involves an AND
function and a NOT.

Tom Goes AND (NOT Rain) = I Go

This can be diagrammed with an AND block and an
inverter, as shown in figure 3-9; the combined func-

TOM GOES I I
RAIN ---El1------4:~ AND .----1 ... I GO

Figure 3-9. AND NOT Diagrammed

tions are often called the AND NOT. (An OR NOT
arrangement can be put together in similar fashion
from an OR and an inverter.) Notice that if the in­
verter input (rain, in this case) is present, it prevents
the AND from producing an output. (The presence of
an inverter input means no inverter output; hence, a
missing input to the AND. The AND cannot operate
unless all its inputs are present simultaneously.) This
prevention of the AND operation is called inhibiting
which, used this way, means about the same thing as
prohibiting.

The inhibit function by itself is drawn as shown
in figure 3-10. The semi-circular "button" indicates
the inhibit input; the other inputs are usually arranged

54 UNCLASSIFIED

PART 3
CH 1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Circuit Logic
1.2.1.3-1.2.2

:3 INH I ., D

AND INPUTS: BAND C AND (NOT A) = D

OR INPUTS: B OR C AND (NOT A) = D

figure 3- 10. Inhibit function

to fulfill the AND function, although they can be made
to operate as OR inputs, if desired. Operating in AND
fashion, the inhibitor produces an output, D, when in­
puts BAND C AND (NOT A) are present. The
presence of input A, however, inhibits (stops) the out­
put, even if all other conditions are satisfied. There
may be any number of AND or OR inputs (one or
more), and the same is true of the inhibit inputs.

1.2.2 Circuit Logic
Now that the basic logic functions used in digital

computer circuitry have been examined in terms of in­
formation only, it is time to see how physical circuits
operate according to the rules of these functions. The
inputs are now going to be electrical signals represent­
ing the facts or events that must be logically connected.
The logic blocks previously used to diagram the func­
tions are henceforth actual physical circuits. And, fin­
ally, each output is an electrical signal representing the
specific result of applying the rules of a particular logic
function to a particular set of inputs. To put it an­
other way, each output is a logical conclusion.

To see how a switching circuit performs a logic
function, consider the case of a home owner who wants
to be warned when someone comes to either his front
or back door. This involves the OR function, and the
logic of this situation can be diagrammed as shown in
figure 3-11, using the simple OR block. The ordinary

SOMEONE AT

:1 I FRONT
OR • WARNING

SOMEONE AT
BACK

figure 3-11. Logic of Doorbell Situation

manner of "solving" this, of course, is to install a door­
bell circuit, with a pushbutton switch at the front door
and another at the back and a bell inside the house. A
battery can be used to power the bell, as shown in
figure 3-12.

The pushbuttons are not parts of the logic circuit,
but are simply devices to translate physical facts or
events into electrical signals. They put the information
into the circuit. The fact, "somebody at the front door,"

FRONT
DOOR

BACK

~DDD.

OR

-=- 6 V

1:
Figure 3-12. Doorbell Circuit, Showing Logic

is translated to a voltage of 6 volts when that "some­
body" presses the front-door button. The voltage,
which can also be considered as a binary 1, is applied
to one input of the OR circuit. According to the OR
function rule, an output is produced when one input
OR the other is present. So a binary 1 at the front-door
input results in an OR circuit output that rings the
doorbell. Following this reasoning, a binary 1 at either
OR circuit input represents "somebody present," so a
binary 0 (no voltage, or 0 volts) must represent "some­
body not present."

1 = Somebody present

o = Somebody not present

Thus, electrical signals can be made to represent the
binary numbers which, in turn, are made to represent
specific items of information. The 6 volts can be
thought of as the up level voltage, in which case 0

volts is the down level voltage.
Now, the OR circuit itself, inside the block in

figure 3-12, must be constructed to operate in accord­
ance with the rules (logic) of the OR function; in
other words, it must be built to produce an output
when a binary 1 (up level voltage) appears at one in­
put OR the other. What must the output be? Well, the
bell must ring when somebody is present (at either
door); binary 1 represents "somebody present," so
the output must be a binary 1 or an up level of 6
volts. The current that flows as a result of applying
this up level is capable of ringing the bell, so the
choice of output is logically and electrically satisfactory.
The bell can be considered as a device to transfer the
information, "somebody present," to the homeowner.

When there is nobody present at either the front
or back door, a binary 0 (down level) is present at
each OR circuit input. In this case, the output must
also be a binary 0, or down level, representing "some­
body not present." The down level cannot cause the
bell to ring. The conditions of this situation are so
simple it is apparent that the OR circuit itself need be
nothing more than a parallel connection of wires from

UNCLASSIFIED 55

Circuit Logic
1.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 1

FRONT
DOOR

Figure 3-J 3. Complete Doorbell OR Circuit

the pushbutton switches, as shown in figure 3-13.
Notice that, however simple it may be, this is the only
part of the circuit that fulfills, by itself, the require­
ments of the OR function. It is the parallel method of
connection that offers alternate input possibilities, mak­
ing this an OR circuit. It is important to understand
this distinction, although in practice it is common to
speak of the entire parallel circuit, including the
switches, as the OR circuit.

This doorbell OR circuit provides a simple illustra­
tion of the manner in which a logic operation is carried

out by an electrical or electronic circuit. Regardless of
the type of logic circuit, 2-valued information is repre­
sented by binary numbers 0 and 1, which, in turn, are
represented by electrical signals. Means or devices are
provided to get these signals into the circuit at the
proper place and time. By building the circuit to oper­
ate upon the electrical signals according to the rules
of the desired logic operation, the resulting output
signals represent logical decisions or conclusions
reached in accordance with the built-in rules. To be
useful, these outputs are transmitted or transferred
either to some other circuit or out of the computer.

So the computer logic circuits cannot "think" and
do not know what information their inputs or outputs
represent. There is nothing miraculous about them.
They simply accept electrical input signals and operate
with them in accordance with the circuit design, just as
ordinary radio or TV circuits must do. All the thinking
is done by the designers who build the rules of logic
into the circuits and the programmers who direct the
operation of the computer. The advantage of the com­
plete computer is that it can perform a long sequence
of these simple logic operations, at extremely high
speed, by sending signals through a chain of logic
circuits. By performing the proper sequence of opera­
tions, the computer does arithmetic.

56 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Computer Logic Circuits
2.1-2.1.1

CHAPTER 2
SWITCHING AND SMALL-SCALE STORAGE CIRCUITS

2.1 COMPUTER LOGIC CIRCUITS

What switching devices are commonly used in logic
. ., T cIrcuIts. he answer, today, is relays, semiconductor

(c~stal) diodes, vacuum tubes, transistors, and mag­
netic cores. Tomorrow's answer may be different, for
research is constantly seeking smaller, faster, more effi­
c~ent: and more reliable switching devices. Today's logic
cIrcuIts are shown, briefly, below. The actual circuit
coverage is brief because, except in relay computers
(those composed principally of relays), a good working
knowledge of a digital computer rarely requires know­
ing exactly what is inside a logic circuit.

All the AND circuits in a given computer, for ex­
ample, are usually identical and individually packaged.
The machine is ordinarily serviced by locating and pull­
ing out a defective package and replacing it with a
spare, so the technician works down to the logic circuit
level but not inside the circuit. His schematics are "logic
block diagrams," showing each circuit as a block la­
belled for the type of logic operation it performs, like
the blocks in figures 3-5 through 3-12. (Figure 3-9
is a miniature logic block diagram, showing logic cir­
cuits interconnected.) The technician must know the
types of electrical signals used and the inputs, outputs,
and "rules" of each type of logic circuit. In other words,
to understand and troubleshoot the computer, it is nec­
essary to know the logic but not the individual circuits.
For a complete understanding of the computer, it is
necessary to know how logic circuits are made up, using
the various switching devices mentioned earlier.

2.1 • 1 Relay Logic Circuits

The doorbell OR circuit shown in figure 3-13 is

PRIORITY
TARGET

HIGH SPEED

FROM -=- -=- FROM
RANGE

COMPUTER
SPEED

COMPUTER

Figure 3-J 4. Relay OR Circuit

hardly the sort of thing one would expect to find in a
digital computer. Yet, consider how closely it resembles
the OR circuit from a relay type of computer, shown in
figure 3-14. The relay OR circuit must, of course, pro­
duce an output of 1 when a 1 appears at any of its in­
puts. The manner in which such a circuit can be put to
practical use in making a built-in "logical decision" can
be seen from this example.

Figure 3-14 shows a priority circuit in an air de­
fense computer. If an enemy aircraft is within fairly
close range, or is traveling at very high speed, it must
be dealt with before an aircraft that is further away or
approaching more slowly. To remember that this air­
craft, or target, has special priority, the relay computer
uses the OR circuit, shown in figure 3-14, to operate
the PRIORITY TARGET relay.

Binary 1 signals from small analog range and
speed computers operate either the IN RANGE or the
HIGH SPEED relays (or both) if the aircraft being
tracked by radar is within a certain range or approach­
ing faster than a certain speed. Operating either relay
closes its normally-open contacts and applies an up
level voltage, a binary 1, through the parallel connec­
tion to the relay coil. Thus, the PRIORITY TARGET
relay is operated when the target is in range OR flying
at high speed. The contacts of the PRIORITY T AR­
GET relay are located in other circuits, so this relay is
not only a memory but also a device to transfer the
binary 1, produced by this OR circuit, into other cir­
cuits. An OR circuit like this can be given any reason­
able number of inputs simply by placing more sets of
normally-open contacts in parallel.

This relay computer OR circuit, then, is almost ex­
actly similar to the simple doorbell OR circuit. Com­
puters composed principally of relays are not often
built today, due to the comparatively slow operate and
release times of the relays, but the relay logic circuits
are nevertheless still important. The automatic dial tele­
phone exchanges, for example, the world's largest dig­
ital data-processing machines, or computers, use thou­
sand.s of relays. And some relay circuitry is often used
in electronic computers, especially in the input and out­
put elements.

A relay circuit to handle the AND operation must
produce an output of 1 only when l's are on all its in­
puts. As an example, suppose the bridge of a battleship
must be alerted whenever an aircraft identified as hos-

UNCLASSIFIED 57

Relay Logic Circuits
2.1.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

-:~ ALARM I IIII
I ~L-J

rtf + rfH:STlLE IN
RANGE

1

FROM FROM
RANGE IDENTIFICATION

COMPUTER CIRCUIT

Figure 3-15. Relay AND Circuit

tile flies within 20,000 yards of the ship. The relay com­
puter AND circuit shown in figure 3-15 automatically
sounds the alert. The coil of the HOSTILE relay is con­
nected to an identification circuit that operates this re­
lay whenever a hostile aircraft is detected. Operating
this relay, in effect, signals that there is a binary 1 at
this input. The hostile aircraft is automatically tracked
and a range computer operates the IN RANGE relay if
the aircraft comes within 20,000 yards of the ship. This
signals a binary 1 on the second input. The normally­
open contacts of the two relays are connected in series
in the alarm circuit; thus, when a hostile aircraft is de­
tected AND its range is less than 20,000 yards, both sets
of contacts are closed and a d-c level is applied to the
alarm device to sound the alert. Putting it in general
terms, when binary l's are on both inputs, the circuit
produces an output of 1. The 100gic is:

In Range AND Hostile == Alarm

The circuit is not limited to two inputs, of course. More
sets of normally-open contacts can be added in the
series path.

A very important requirement is that, regardless of
the number of inputs, all must be signaling l' s at the
same time to produce an output 1. In the AND circuit
of figure 3-15, if only one set of contacts closed, or if
one set closed and then opened again before the second
set closed, the alarm device could not operate. In this
example, it is likely that an aircraft would be identified
as hostile before it came within the specified range.

FROM
RANGE

COMPUTER

FROM
IDENTIFICATION

CIRCUIT

Therefore, the HOSTILE relay would be O'perated first.
The AND circuit cannot produce an output, however,
unless both input conditions are satisfied simultane­
ously, so no alert could be sounded (no output pro­
duced) until the IN RANGE relay also operated.

Inversion - the NOT operation - is easily accom­
plished with relays by using a normally-closed set of
contacts. The above discussions have indicated that a
binary 1 is inserted into a circuit by closing a pair of
normally-open contacts. This is done by operating the
relay on which the contacts are mounted. In other
words, a binary 1 operates a relay, and the 1 is trans­
ferred intO' another circuit by the closing of the relay's
normally-open contacts in that circuit. Now, consider
the relay that has normally-closed contacts. When this
relay is not operated, its contacts are placing a binary 1

in some other circuit, so the relay is receiving binary 0
(at its coil) and its contacts are indicating NOT 0, or 1.
When a binary 1 operates the relay, its contacts open,
indicating o. Thus, using normally-closed contacts ac­
complishes the NOT operatiO'n. Either OR NOT or
AND NOT circuits can be built. The AND NOT oper­
ation can be illustrated by making a change in the ex­
ample of figure 3-15. The HOSTILE relay is simply
replaced by a FRIENDL Y relay with a set of normally­
closed contacts connected in series with the normally­
open contacts of the IN RANGE relay, as shown in
figure 3-16.

It must be assumed that the identification circuit
operates the FRIENDLY relay only if an aircraft is

l

Figure 3-16. Relay AND NOT Circuit

58 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Diode Logic Circuits
2.1.1-2.1.2

identified as friendly. When the FRIENDLY relay is
operated~ its contacts open. If the aircraft comes within
20,000 yards, the contacts of the IN RANGE relay
close, but no alarm is given because the alarm circuit is
broken by the open contacts of the FRIENDLY relay.
However, if the incoming aircraft is hostile, the
FRIENDLY relay is not operated, and its contacts re­
main closed. When the RANGE relay now operates, the
alarm circuit is completed, and the alert is given. Be­
cause of the series connection, the network is still an
AND circuit, but the normally-closed contacts introduce
inversion. The logic of the circuit is now:

In Range AND (NOT Friendly) = Alarm

An OR NOT circuit is constructed like an OR, but
using a normally-closed set of contacts in one (or
more) of the parallel paths.

Many different combinations of logic operations
are possible in relay contact networks, of course, using
various arrangements of series-parallel paths. A rela­
tively simple example is shown in figure 3-17, with the
logic written below the circuit. The relay coils are not
shown, which is the normal practice in relay work. In
the logic of figure 3-17, note that there are two paral­
lel OR connections and three parts to the principal
series AND connection. For experience in recognizing
and working with logic, the reader might try drawing
the logic block diagram of this circuit, using logic
blocks like those of figure 3-5 through 3-12. Use as
few blocks as possible to do the job correctly, just as a
designer would attempt to reduce the number of logic
circuits in a computer.

2.1.2 Diode Logic Circuits

Many computers use what is called diode logic,
performing most or all of the logic operations in cir­
cuits made up of semiconductor diodes, and using vac­
uum tube or transistor circuits primarily for building up
attenuated pulses or levels, where necessary. The basic
diode OR circuit appears in figure 3-18. The crystal
diode, of course, is like the vacuum tube diode. It has
an anode and a cathode, identified as shown, and offers

A D

OUTPUT

(A OR B) AND C AND [DOR(E ANDNOTF~=OUTPUT

Figure 3-17. Sample Relay Logic Combination

INPUTS

[
AB

NEGATIVE
VOLTAGE

SOURCE

R

CRYSTAL

DIODE

A OR BJ OUTPUT

Figure 3-J,8. Diode OR Circuit

practically no forward resistance to the flow of elec­
trons from cathode to anode; in other words, it con­
ducts easily when the anode is made more positive than
the cathode. However, when the cathode is more posi­
tive than the anode, the diode offers a very high back
resistance, and practically no current can flow.

The input lines to the diode OR are connected in
parallel, each through a separate diode, to the output.
(Only two inputs are shown, but it is possible to add
more.) As in the doorbell and relay circuits, it is the
parallel connection itself that makes it an OR circuit.
The diodes are required to isolate the inputs from each
other to prevent interaction between the circuits sup­
plying the input signals. The junction is tied through
resistor R to a source of voltage more negative than the
level used to represent binary o. Therefore, when 0' s
are on both input lines, both diodes conduct because
the anodes are more positive than the cathodes. Since
the diodes offer practically no resistance to current flow
in this direction, nearly all the voltage drop in the cir­
cuit is across the relatively large resistance of R. Thus,
the output, tied to the more positive end of R, is at
approximately the same voltage level as the input lines,
indicating binary o. When a positive-going voltage
level, representing a binary 1, appears on either input
line, there is a greater difference of potential between
the negative source and that input. Again, nearly all
the increased voltage drop appears across R, so the volt­
age at the output end of R rises to approximately the
binary 1 level. The same effect occurs if l' s appear
simultaneously on both inputs.

UNCLASSIFIED 59

Diode Logic Circuits
2.1.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

In this manner, the circuit carries out the OR op­
eration by putting out a 1 when there is a 1 on either
input (or both). The circuit shown in figure 3-18 is
basic and could be made to work with either pulse or
voltage level signals but, because of the d-c bias, oper­
ates somewhat better with-levels. For pulse signals, load
resistor R is often connected to ground instead of a
negative voltage source, and a peaking inductance may
be placed in series with the resistor. The circuit opera­
tion is the same as that described above, except that the
diodes do not conduct when O's are on the input lines
and the output line is then at ground potential.

Note that this diode OR circuit of figure 3-18 can
be substituted for the relay OR circuit, shown in figure
3-14, by connecting the range computer to one input
and the speed computer to the other. The PRIORITY
TARGET relay would most likely be replaced by some
other type of memory and information-transfer device
because of loading and other electrical problems. The
important point is that the problem of registering a
priority target can be solved just as well by the diode
OR as by the relay OR circuit.

The diode AND circuit, shown in figure 3-19,
also depends for its operation upon the voltage drop
across load resistor R, which, in this case, is connected
to a source of positive bias voltage. The diode connec­
tions are the reverse of those in the OR circuit, and
positive-going binary 1's are applied to the cathodes.
(More AND inputs can be added, although only two
are shown in this figure.)

When relatively negative binary O's are on both in­
puts, both diodes conduct because the anodes are more
positive than the cathodes. The forward resistance of
the diodes under these circumstances is only a few
ohms, so practically all the voltage drop is across the
load resistor, placing the output line at approximately
the binary 0 level. As long as there is still a 0 at one in­
put, the diode in that line continues conducting, and
the voltage drop across resistor R keeps the output line
at the 0 level. Therefore, the anode of the other diode
is held at the 0 level, and a more positive 1 appearing
at its cathode cuts it off but does not affect the output
level.

reA
INPUTS ~

POSITIVE

VOLTAGE

SOURCE

R

..---0 A AND ~ OUTPUT

Figure 3-79. Diode AND Circuit

When 1's appear simultaneously at both input
lines, the total voltage drop across the circuit is de­
creased by an amount equal to the amplitude of the 1
signal. Both diodes conduct, and nearly all the de­
creased voltage drop is across resistor R, so the voltage
at the output end of R rises to approximately the level
of the input lines, or binary 1. (When pulse signals are
used, the output is a pulse; applying the simultaneous
input pulses and getting the pulse output is sometimes
called firing the AND.)

As soon as the signal at any input drops back to
the binary 0 level, the total voltage drop across the cir­
cuit to that input increases. Since this drop is chiefly
across R, the output line returns to the 0 level, and the
diodes in the other lines are again cut off. Thus, the
diode AND produces an output of 1 only when all its
inputs are 1's. This diode AND, therefore, can easily
substitute for the relay AND circuit of figure 3-15.

When the AND circuit (diode or any other type)
is used with pulse signals, it immediately becomes ap­
parent that timing is vitally important, since all the 1
inputs to the AND must appear at the same instant. It
is possible that these pulses may come from different
parts of the computer, some even from outside, and,
therefore, they may become available at slightly differ­
ent times. For this reason, it is often necessary to intro­
duce devices that delay some of the pulse signals by
differing amounts of time. For example, if the signal
coming to input A of the AND circuit in figure 3-19
is available at bit-time T1, while the 1 signal for input
B appears at T 4, the A signal must be delayed three bit­
times to make the two ap'pear simultaneously at the
AND circuit. As shown in figure 3-20, a three bit-time

(Til ~ (T4l
A 0-0 -----I.~~

e 0 (T4l

Figure 3-20. Use of Compensating Delay

delay circuit is placed in the lead to input A. The pulse
enters this circuit at T1 and spends the next three bit­
times getting through it. When the signal comes out, at
T4, the second signal is just arriving on input B of the
AND, so the two are made to arrive together by means
of the compensating delay.

One other important matter must be mentioned.
Notice that both the diode OR and AND circuits oper­
ate as described only when the binary 1 signals are more
positive than the binary 0 signals. If the signal polar­
ities are reversed - that is, if binary 1 is represented by
a negative-going pulse or level - the OR circuit of fig­
ure 3-18 performs the AND operation, while the

60 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Diode Logic Circuits
2.1.2

+

A AND (NOT Bl]OUTPUT

CR2

TI

Figure 3-21. Diode Inhibit Circuit for Pulse Signfds

AND circuit of figure 3-19 performs the OR opera­
tion. Thus, reversing the signal polarities interchanges
the diode circuit functions. In practice, a circuit is
named for the logic it performs (which does not
change) at the spot where it is used. The NOT opera­
tion is more difficult to accomplish with diodes, al­
though it can be done easily for pulse-type signals by
using a polarity-inverting transformer and a source of
continuous pulses (l's), either from the clock or from
a pulse generator. The basic arrangement, shown in
figure 3-21, is actually an inhibit (AND NOT) cir­
cuit.

The AND leg of the circuit includes resistor R2
and diode CR1, connected from a negative voltage
source to the output line and common load resistor R 1,
which is tied to a positive source. The values and volt­
ages are selected to place the output line at ground
potential (binary 0) when there is a binary 0 on input
A. The inhibiting branch of the circuit contains CR2,
which conducts at all times, and the secondary of polar­
ity-inverting transformer Tl. There is a sizable induct­
ance but practically no resistance in this branch.

When a positive-going pulse, representing a binary
1, appears at input A (with a 0 at input B), the differ­
ence in potential from the cathode of CR1 to the posi­
tive source is decreased, and the voltage on the output
line rises to approximately the binary 1 value. The in­
ductance of the transformer secondary opposes any sud­
den change in current, so there is little change in cur­
rent flow and no clamping action by CR2 during the
brief time that the pulse lasts. Thus, the pulse on input
A is reproduced at the output. If, however, a positive­
going pulse appears at input B at the same time as the
pulse at input A, the secondary of the polarity-inverting
transformer drives the cathode of CR2 more negative.
This causes CR2 to conduct heavily and act as a clamp,
preventing a pulse from rising at the output line.
Therefore, the circuit produces an output of 1 only if a

1 is present at A AND (NOT B). (If a 1 appeared only
at input B, a negative-going pulse would be formed at
the output, but the output line can easily be clamped to
prevent this.)

To use this inhibit circuit as an inverter, it is only
necessary to connect a source of continuous positive
pulses (one pulse each bit-time) to input A and connect
the signal line on which the inversion is desired to in­
put B. Now, the input to A is always 1, so if the signal
on input B is 0, the output is 1; if the signal on B is 1,

however, the output is o. If this circuit is to be used for
inhibition rather than straight inversion, more AND
inputs and more inhibit inputs can be added in parallel
with those shown in figure 3-21. The basic OR circuit
can be modified in a fashion similar to this to develop
an inhibiting OR.

All three types of diode logic are used in a digital
computer by interconnecting them in various combina­
tions and sequences to perform the proper logic opera­
tions on input signals at the proper times. (This is true
of logic circuits using any kind of components, of
course.) For example, consider a case with six inputs,
which can be designated by the letters A through F.
These are available as pulse-type signals on six lines.
Not all are l's at the same instant, or bit-time; instead,
they appear as varying combinations of l's and O's. The
designer knows this and must put together or arrange
a group of logic circuits to produce an output pulse
(binary 1) only when certain input combinations ap­
pear. One desired combination, for instance, is l's on
inputs A, C, and D and O's or l's (no matter which) on
inputs B, E, and F. Putting together all the desired
combinations, the designer finds that his circuit ar­
rangement must produce an output of 1 when the fol­
lowing logical conditions are met:

(A OR B) AND C AND [D OR (E AND NOT F)] == 1

where each letter represents the presence of a 1 at that
input.

Once reduced to this form, the rest is easy. The
designer is using diode logic circuits, each of which de­
lays any pulse passing through it by an amount equal
to one-quarter of a bit-time, usually written as 1;4. D.
(The delay is actually due to pulse-timing and reshap­
ing circuits following the diodes.) Inputs A and B must
be fed into an OR circuit, while E and F must go into an
AND NOT or inhibit circuit, as shown at (a) of figure
3-22. Input D and the output of the inhibit go into
another OR circuit. Now, the outputs of the two OR's,
along with input C, are fed to an AND. The output of
the AND circuit should be the desired result. But is it?
Remember that each circuit causes a delay of 1;4. D, and
it immediately becomes obvious that this circuit ar­
rangement at (a) of figure 3-22 will not work as de­
sired for pulse signals. The logic is right, but the timing

UNCLASSIFIED 61

Vacuum Tube Circuits
2.1.2-2.1.3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

A p

OR2
B

--
-- AND - -c OUTPUT

U OR 3
D

~ INH
E

(0) F 1"

(A OR BlAND C AND [D OR (E AND NOT FlJ = OUTPUT

• • ..J OR 2 .. 14 D I I
A

B

.. I ~ D I -- AND ~
I 2 I J Y4 D • I I :] OR 3 ..

C

D

OUTPUT

I
I

.. J a
~ IN H I

E

F

(b)

Figure 3-22. Sample Logic Circuit Combination

is not. (This arrangement at (a), incidentally, is the
correct answer to the problem of drawing the logic of
fig. 3-17.) A pulse appearing on input E, if it gets
through the inhibit circuit, reaches the input to the
AND one-half bit-time later than a pulse entering at
the same instant on input C and encountering no de­
lays. Pulses arriving on A, B, or D are each delayed one­
quarter bit-time before reaching the AND. To make it
possible for the desired input combinations to produce
an output from the AND circuit, the designer must de­
lay all the input signals by equal amounts. This is
done by adding delay circuits in the proper places, as
shown at (b) of figure 3-22. Now, the pulses of any
of the desired combin~tions appearing at the input ter­
minals reach the AND at the same instant and fire it,
producing the binary 1 output pulse.

This illustrates the manner in which logic circuits
are put together to perform the desired combinations
or sequences of logic operations in a digital computer.

2.1.3 Vacuum Tube Logic Circuits
Vacuum tubes are excellent switching devices, of­

fering the advantage of high speed and the possibility
of amplifying signals as they are switched. They nave
comparatively large space, power, and cooling require­
ments, however, and these disadvantages indicate that
the vacuum tube will see less and less use in the future,
as newer devices are perfected.

One of the basic vacuum tube lcircuits is the NOT,
or inverter, shown in figure 3-23. This is a simple
triode amplifier in which driving the grid more posi­
tive makes the plate more negative. Thus, feeding the
grid with a relatively positive signal representing bi­
nary 1 produces a less positive (relatively negative)
plate voltage representing binary O. In other terms, an
input of A produces an output of NOT A. It is also
true that an input of 0, or NOT A, yields an output of
1, or A. Although the NOT circuit is quite straight­
forward, there are many possible variations of the OR
and AND circuits. One type of vacuum tube OR circuit
appears in figure 3-24. A twin-triode tube is used, and
the output is taken from the common cathodes which

+

INPUT r 0----+

_---0 NOT A] OUTPUT

Figure 3-23. Vacuum Tube NOT Circuit

62 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Vacuum Tube Circuits
2.1.3

'"'' [: + +

L-. ___ ~----o A OR ~OUTPUT

Figure 3-24. Vacuum Tube OR Circuit

are returned to a negative voltage source through a load
resistor, R. (Signal inversion is avoided in this circuit
by taking the output from the cathode circuit.)

When binary O's (pulses or voltage levels) are on
both inputs, A and B, both grids are held at a relatively
negative potential, and the common cathodes are main­
tained at approximately this level, indicating binary o.
When positive-going 1 is placed on one of the input
lines, the corresponding tube section conducts, and the
increased current flow through resistor R causes a volt­
age rise on the output line, indicating a binary 1. If a 1

now appears on the second input line also, conduction
increases in the other tube section, but the current flow
through resistor R remains practically unchanged be­
cause the circuit values and arrangement cause the cur­
rent to be divided between the two halves of the tube.
In other words, when both tube sections are conducting
at the same time, the two together draw approximately
the same total current as either section conducting sep­
aretly. This arrangement is necessary because the output
1 must have the same amplitude whether one or both
inputs are l's. Thus, the circuit performs the OR oper­
ation. If more than two inputs must be taken care of,
additional twin-triode stages must be used. With this
type of circuit, two twin-triodes can handle four OR in­
puts; the cathodes of the seco'nd tube are simply tied
to the output line shown in figure 3-24, and one cath­
ode resistor serves both tubes.

In some types of circuitry, however, it is not pos­
sible to tie two circuits together in this fashion. For
electronic reasons of circuit operation, loading, etc., the
two stages must be kept separate, each feeding its own
output line. In a case like this, a third OR stage becomes
necessary to combine the output lines from the first two.
Thus, three 2-input OR stages are required to combine
four OR inputs, and either of the two arrangements
shown in figure 3-25 is possible.

The circuit arrangement at (a) of the figure is un­
desirable for many uses because the input signals do
not all pass through the same number of stages. Input
C and D, for example, must each pass through three
stages, or "levels of logic," while B passes through two
and A through one. In some cases, this could cause timing

INPUTS

[OUTPUT

(a)

A

B

INPUTS j OUTPUT

c

D

(b)

figure 3-25. Multiple-Input OR Arrangements

difficulties of the type illustrated in figure 3-22. From
the timing standpoint, the symmetrical arrangement at
(b) of figure 3-25 is better. Here, the four input
signals are delayed equally, and all pass through the
same number of logic levels. (If the first two OR stages
are vacuum tube circuits, it is entirely possible that the
final OR stage might be nothing more than a parallel
connection of their outputs, most likely through block­
ing diodes that prevent circuit interaction. This parallel
connection is, nevertheless, a stage of diode OR logic.)
This arrangement, at (b), is a basic "many-to-one" set
up, sometimes called a converging switch because many
inputs are brought together and switched down to one
(or a few) outputs. If the inputs must have the AND
relationship, AND circuits are used in place of OR's.
The 10'gic circuits themselves may be made up of switch­
ing devices of any practical type. Another common ar­
rangement (not shown) is a "one-to-many," or diverg­
ing switch, which feeds the output of one logic circuit
to several others in parallel, thus branching a single
signal to several different paths.

One possible vacuum tube AND circuit appears in
figure 3-26. The circuit consists of two inverters, VI
and V2, feedingan inverting AND, V3. This is the
fundamental circuit, of course, like all circuits shown
in this chapter. For satisfactory electrical operation, vari­
ous refinements must be added.

The operation of vacuum tube inverters has been
described; that of V3 can best be understood in terms
of relatively positive and negative signals at its grids
and plate, summarized in the small table included in
the illustration. The electronic operation of V3 is iden­
tical to that of the twin-triode in the OR circuit in that
one section alone draws approximately the same amount
of current as both sections operating together.

UNCLASSIFIED 63

Vacuum Tube Circuits
2.1.3-2.1.4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

AND OPERATION

INPUTS I OUTPUTS V3 OUTPUT

A B VI V2

- + +-
+ + -

+ +
+ + - - +

+

VI r--+-..... ----{) A AND B OUTPUT

V3
A 0--------1

INPUTS

V2

B 0--------4

Figure 3-26. Vacuum Tube AND Circuit

When positive (1) signals are applied to both grids
of V3, both tube sections conduct heavily, and the out­
put, taken from the plate circuit, is relatively negative
at the binary 0 level. To place l's on both grids of V3,
O's must be applied to the inverter inputs (VI and V2).
In other words, with 0' s at inputs A and B, the AND
circuit output is O. Since either tube section alone can
handle the full current load, it foUows that the circuit
output is 0 as long as there is a 0 at either input because
the corresponding inverter places a 1 at one grid or the
other of V3. Thus, one tube section conducts heavily,
and the output is a O.

When l's appear simultaneously at both inverter
inputs, however, the inverters apply O's to the grids of
V3. These relatively negative voltages cut conduction
through both halves of the twin-triode, and the plate
voltage swings positive, to the binary 1 level. So the
vacuum tube AND circuit provides an output of 1 only
when both inputs are l's. If pulse-type signals are used,
VI and V2 can be replaced by polarity-inverting trans­
formers.

Notice that the logic of these vacuum tube OR and
AND circuits is reversed, like that of the diode cir­
cuits, if l's are represented by negative voltage levels or
pulses instead of positive signals, as described here. That
is, with negative signals, the OR of figure 3-24 becomes
an AND and the AND of figure 3-26 becomes an OR.

At first glance, it seems easy to use a multigrid
tube to perform the AND operation, applying differ­
ent signals to different grids, so plate current can flow
only when all signals are present at the same time. This
seldom works out in practice, however, because differ-

ent grids tend to have different characteristics and vary­
ing effects on the plate current. The design of special
tubes brings in problems of expense and reliability, al­
though a few with two control grids are in use. One
special form of AND circuit using a multigrid tube is
the gate circuit, or gate tube, abbreviated GT. A gate is
a circuit that passes a signal only when another, control­
ling signal is present; actually, it is a 2-input AND. In
this special form, however, the input to be gated is
always a pulse, while the control signal may be either a
voltage level or another pulse. Only when the GT is
made ready, or conditioned, by the presence of the con­
trol signal can the input pulse be gated through.

Since the output is always a pulse (the tube can
conduct only when positive signals are on both grids),
a transformer can be placed in the plate circuit to cor­
rect the polarity inversion. Thus, the output pulse
has the same polarity as the input pulse. The circuit is
shown in figure 3-27, using an ordinary pentode.
Usually, the signal to be gated is applied to the control
grid and the control signal is fed to the suppressor. If
both signals are pulses, the control signal is generally
made to last longer and is applied a little ahead of the
input pulse to prepare the tube to respond to the fast­
rising input pulse.

2.1.4 Transistor Logic Circuits
Although transistors are frequently thought of as

replacements for vacuum tubes and can often be used
in similar logic circuits, some newer types are well­
suited to straightforward use as switches. This type of
circuitry, in fact, has been called direct-coupled tran­
sistor logic. Transistors offer several advantages for

64 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Figs. 3-27 through .3-30

+

PULSE

CONTROL LEVEL [

INPUT PULSE

INPUTS

Figure 3-27. Gate Circuit

~ COLLECTOR

BASEl EMITTER

TRANSISTOR

OUT PUT

INPUT

Figure 3-28. Basic Transistor Switch

A

(NOT) ~ _----0 A OR BJ OUTPUT

B o----------~

Figure 3-29. Transistor OR Circuit

digital computer use. They are small and well-suited to
miniaturized circuits, require little power, and do not
dissipate much heat. As switches, they are as fast as
vacuum tubes; hence, they can be used in high-speed
computers, and they have excellent reliability.

The emitter is grounded, and the collector is normally
biased at about - 3 volts. With no signal on the base,
that is, with the base at approximately ground potential
the transistor is cut off. The input, which must be a
negative-going signal, supplies current to the base,
switching on the transistor and driving it immediately
to saturation. When this happens, the collector swings
from its normal bias of - 3 volts almost to ground
potential, placing a positive-going level or signal on the
output line. Therefore, this is an inverter, or NOT
switch, which means that if a negative signal at the
input is considered to be a binary 1, the positive output
signal must be a binary o. This reversal of polarity
through each circuit might, at first, seem to complicate
the logic of the machine, but actually does not because
it occurs in a regular and consistent fashion, just as it
does in most vacuum-tube circuits.

The transistor OR circuit, shown in figure 3-29,
uses two or more transistor switches in parallel. A
given transistor is turned on when a negative signal
appears at the corresponding input, thus producing a
positive signal at the output line. (If two or all tran­
sistors are turned on, the output is still the positive
signal.) Although this is actually an inverting OR (an
OR NOT), it is rarely called this. In practical circuitry,
it may be followed by an inverter, if necessary.

The transistor AND circuit appears in figure 3-30.
This is nothing more than a pair of switches in series,
and there can be no conduction until both are turned
on at the same time. When this occurs, the output
swings positive. (Again, this is really an AND NOT
and may be followed by an inverter.) More AND in­
puts can be placed in the series arrangement, but there
is a limit to the number because the voltage drops
across the transistors, small as they are, are added to­
gether and reduce the voltage swing of the output.

The manner in which direct-coupled transistor cir­
cuits are tied together is extremely simple. A sample is

(NOT)]
_----0 A AND B OUTPUT

INPUTS

[
B

A

The basic transistor switch is shown in figure 3-28. Figure 3-30. Transistor AND Circuit

UNCLASSIFIED 65

Magnetic Core Circuits
2.1.4-2.1.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

A -

-
B

-
C

o

(A OR B) AND C AND (NOT D) = OUTPUT

Figure 3-3 J. Sample Transistor Circuit
Arrangement

OUTPUT

shown in figure 3-31. This a straightforward connec­
tion of switches to perform the lo'gic operations shown
below the drawing, based on the assumptions that the
input signals are negative and a positive output signal
is wanted when the desired input requirements are satis­
fied. (Under certain conditions, the circuit could be
further simplified.) All important voltage changes occur
at the load resistors, one of which must be connected to
each collector or collector-base junction. Accordingly,
the point where each resistor is connected is called a
node, and the operation is most easily followed by con­
sidering the voltage changes at these nodes.

In figure 3-31, transistors Ql and Q2 form an
OR circuit; thus, when either A or B appears (as a neg­
ative signal), the corresponding transistor is turned on
and node 1 goes from -3 volts to approximately
ground potential. Until this occurs, the base of Q3 is
biased negative by node 1, and Q3 conducts, holding
node 2 at ground and keeping Q4 cut off. When A or B
appears, however, node 1 goes to ground and shuts off
Q3, whereupon node 2 becomes negative and turns on
Q4. Input C, also a negative signal, turns on Q5 di­
rectly. Input D is NOT input, so Q7 must be turned on
only when D is not present. The inverter, Q6, accom­
plishes this. When D is absent, Q6 is shut off, and
negative bias from no'de 4 turns on Q7. When D appears,
however, Q6 turns on, and node 4 goes to ground,
cutting off Q7.

Thus, 4, Q5, and Q7 in the AND circuit are on
only when the desired logic conditions are satisfied.
When these three transistors are conducting, node 3 is
at ground potential, placing the desired positive (rela­
tively positive) signal on the output line. In a manner
similar to this, any desired combination of logic oper­
ations can be carried out with transistors.

2.1.5 Magnetic Core Logic Circuits

Magnetic cores, originally developed and now
widely used as storage devices, appear to have definite
possibilities for use as switching or logic devices as
well. The theory of cores is emphasized here because,
currently, they are used so extensively for storage and
may find equally extensive use for logic in the near
future. The cores, shaped like tiny doughnuts, are made
of a material with magnetic properties giving it a hys­
teresis loop (the characteristic curve of its magnetic
properties) that is nearly rectangular. Some metals and
certain ceramic materials called ferrites possess the de­
sired characteristics and are used to make cores that are
good switching devices. The ferrite cores, small in size,
are used almost exclusively for storage at the date of
this writing. The cores made of metal-usually molyb­
denum permalloy, sometimes a 50-percent nickel-iron
alloy-are called tape cores because they are formed by
wrapping turns of a thin tape made of the metal around
a small bobbin. Thus, the small core is built up of a
number of turns or laminations, as indicated in figure
3-32. This laminated structure holds eddy currents to
a minimum and thereby reduces power losses, increas­
ing efficiency.

At least three small coils are ordinarily wound on
each tape core. Two of these are obviously for input
and output of information; the third is needed for
sensing, to extract, or read out, the information (1 or 0)
stored in the core. To use the core for logic operations,
instead of or in addition to storage, it must have two
or more input coils. The basic, three-winding core is

Figure 3-32. Tape Core Construction

66 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Magnetic Core Circuits
2.1.5

INPUT [] OUTPUT

READOUT

(OR RESET. SHI FT OR CLEAR)

+8

4
5 ---

r I 'i
I
I
I

+H/2 I
0 I

-H I + H
I
I
I
I
I

2 .J..j
~

6 - -- - 3

-8

Figure 3-33. Magnetic Core and Hysteresis Loop

shown schematically in figure 3-33, along with the
closed-curve hysteresis loop of its magnetic character­
istics. Since the core is made of a magnetic material, it
is really a small magnet with the direction of flux (mag­
netic lines of force) running either clockwise or counter­
clockwise inside the metal ring. This direction of mag­
netization can be quickly reversed by applying a cur­
rent pulse of the proper polarity and amplitude to a
coil wound on the core. Thus, by deciding that one
direction of flux represents a 1, the other a 0, a pulse
on the input coil can be made to insert a 1 which the
core then stores because its direction of magnetization
can be changed only from outside. Inserting information
into a core can be called writing a 1 or a 0 into the
core, or setting the core to 1 or o. Taking out the stored
binary bit is called reading out, or simply readout.

How are these operations performed? This can
best be seen by use of the hysteresis loop of figure
3-33, which shows the effect of an external magnetiz­
ing force, H, on the density and direction of the mag­
netic flux, B, in the core. The signs indicate magnetic
polarity, or flux direction. The magnetizing force is
applied, of course, by sending a pulse through a coil
wound on the core, making the dotted terminal (fig.
3-33) negative. (Dots at the terminals of all input
coils and the readout coil indicate the terminals that
must be made negative to apply a magnetizing force in
the desired direction. The output coil dot indicates the
terminal that becomes negative when a 1 is read out.)

When no pulse is applied and there is no current

in the coil, the external magneuzmg force (H) is at
zero, and the density of the lines of force remaining
in the magnetic core (called the remanent flux density)
is shown by the point at which the loop intersects the
B axis. Since the remanent flux may be aligned in either
direction (clockwise or counterclockwise, looking at the
core in figure 3-33), there are two possible points of
intersection, labeled 1 and 2.

For the sake of illustration, it can be assumed that
flux in the direction -B represents binary 0, the direc­
tion +B represents binary 1, and that the core has been
left in the 0 state, with the remanent flux density at
point 2. If a pulse is now applied to the input coil, a
magnetic field begins rapidly building about the coil,
and this external magnetizing force, acting in the direc­
tion +H, opposes the remanent flux in the core. As
H increases, the total flux density decreases from point
2 toward point 3 on the curve. When the external field
reaches half-strength (+H/2), the flux density is at
point 3. As H continues to increase, a point is reached
(the bend or knee of the curve, beyond point 3) whe~e
the external field overcomes the permanent field of the
core. The flux in the core swiftly drops through zero
and reverses direction. The flux density then increases
very rapidly toward point 4 on the curve as H rises to
its maximum value. At point 4, the core is saturated
(cannot hold any more lines of force). As the pulse in
the input coil dies away, H returns to zero, and the
flux density decreases from point 4 to point 1, where it
remains until some other external force is applied. Thus,
the core has been switched and is now storing a 1. The
switching takes place in a few microseconds at the most.
If another 1 is applied to the input coil, the external
field this time strengthens, rather than opposes, the
flux in the core, so the flux density simply goes from
point 1 to saturation at point 4, then back to point 1

again. Since input pulses are always the same polarity,
the input coils are used only to set the core to 1.

To read information out of a core, a pulse is ap­
plied to the readout winding in a polarity (dotted ter­
minal negative) that sets up a field in the -H direction.
In other words, the readout pulse acts to set the core to
O. The readout winding may be called by various other
names, such as reset, shift, or clear winding. If the
core is at 0 already (has not been set to 1) the remanent
flux density is at point 2 on the hysteresis loop, and
the application of the magnetizing force -H merely
moves the flux density to point 6 (saturation in the 0

direction). When the force is removed, the flux density
returns to point 2. This small change in flux density
induces only a very small voltage in the output coil.

However, if the core is in the 1 state when the
readout pulse is applied, the remanent flux density is at
point 1. The force -H is sufficient to pull the flux
density past the knee of the curve at point 5 and down

UNCLASSIFIED 67

Magnetic Core Circuits
2.1.5

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 3
CH 2

to saturation in the 0 direction at point 6, thus switch­
ing the core back to o. When -H disappears, the
remanent flux density returns to point 2. The large
change in flux density from +B to -B induces a large
voltage in the output coil. (The dotted output terminal
goes negative.) This voltage, of course, can be used to
set other cores or drive other logic circuits. (Notice
that there must also be an induced output voltage when
the core is set to 1 because of the flux change from -B
to +B. This voltage is opposite in polarity to the de­
sired output voltage, however, and can be blocked by
simply connecting the anode of a crystal diode to the
un dotted output terminal.)

Before leaving the hysteresis loop and the theory of
magnetic core operation, one other important matter
must be mentioned for future use. This is the fact that
a magnetizing force of half-strength (H12, positive or
negative) is not capable of switching the core from one
state to the other. Therefore, a pulse of half the normal
input or readout current amplitude cannot switch the
core, since the strength of a magnetic field is directly
proportional to the amplitude of the current used to
set it up. This is not particularly important in dealing
with cores used as logic devices, but becomes significant
in using arrays of cores for large-scale storage, which
is discussed in Chapter 4.

A magnetic core OR circuit, shown in figure 3-34,

A

INPUTS

B

A OR B] OUTPUT

'1-/----0

READOUT

Figure 3-34. Magnetic Core OR Arrangement

is easily made by winding a core with two or more input
coils, each of which can set the core to 1, independently
of the others, when a pulse input signal is received. (It
should by now be apparent that pulse-type signals are
used in most core applications.) When one of the OR
inputs is pulsed, the core is switched and stores the 1

until a readout pulse is applied. As explained above,
the readout signal resets the core to 0 and, in the
process, reads out the stored 1 as a pulse on the out­
put line. The device is then ready to perform the OR
operation again. Notice particularly that if more than
one input pulse appears before the readout pulse, this
arrangement does not produce an output for each of
them. In the usual circuits, however, all readout wind­
ings are pulsed at regular intervals, ordinarily every

bit-time. Thus, if a core is set to 1 by a pulse (or simul­
taneous pulses) appearing during a given bit-time, the
core is almost immediately set back to 0 by the next
readout pulse, so an output is produced for each input
or combination of inputs, when desired.

An output pulse (if any) is produced almost at
the instant the readout pulse is applied. This output
may be sent to the input of another core which gets its
readout pulse from the same readout line as the first
core. This means that the second core could receive an
input pulse and a readout pulse at the same time.
Whether this core would be read and set properly or
not would depend on the split-microsecond timing of
the two pulses, and such chances cannot be taken in
computer circuitry. The problem is easily solved by
delaying the output pulse from each core long enough
to be certain that the readout pulse has passed before
the output pulse reaches the next input. The delay is
introduced by inserting a resistance-capacitance, or re­
sistance-capacitance-inductance, network in series with
each output, as shown in figure 3-35.

The inhibit operation is easily performed by a mag­
netic core. As shown in figure 3-36, the core has one
or more OR input windings and an inhibit winding that
is larger than and opposite in polarity to the others.
When a pulse is present on the inhibit input, the
resulting magnetic field opposes or bucks the field set
up by one or more OR inputs and thus prevents the
core from being set to 1. The inhibit winding must,
therefore, be large enough to cancel the effect of sim­
ul,taneous pulses on all the OR inputs. Two or more

Figure 3-35. Interconnection of Magnetic Cores

INHIBIT
INPUT

r-----,
C

ORI"pur{. A OR B AND (NOT Cl]OUTPUT

READOUT

Figure 3-36. Magnetic Core Inhibit Arrangement

68 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Magnetic Core Circuits
2.1.5

inhibit windings can be placed on a single core, space
permitting. In this case, a pulse on either inhibit wind­
ing (or both) prevents the core from being set to 1 by
an OR input.

In practical computer logic circuitry, the AND op­
eration is difficult to perform reliably using a single
core. It seems a relatively simple matter to wind two
or more AND input coils in such manner that all must
be energized simultaneously to provide enough mag­
netizing force to switch the core, and it is true that this
can be done under controlled conditions, such as in the
main memory element. In actual logic circuits, however,
the amplitudes of the information pulses cannot be
rigidly controlled because the diodes and delay net­
works attenuate them, often by differing amounts, and
any two cores may produce output pulses of somewhat
different amplitudes. For OR and inhibit cores, all that
is necessary is to insure that every pulse has at least
sufficient amplitude to switch or inhibit a core; oversize
pulses are no problem. For a core with AND input
windings, however, oversize pulses on two out of three
inputs might set the core to 1, while undersize pulses
on all three might not. Also, the hysteresis loops may
vary somewhat from core to core, further complicating
the problem. One reliable means of performing the
AND operation requires three inhibit cores and three
simple pulse generators. A pulse-generating core can
be made to put out a continuous stream of pulses (l's)
by placing a steady d-c voltage level on the input wind­
ing and applying a readout pulse each bit-time. The
readout winding must be large enough to switch the
core back to 0, each time a readout pulse appears,
against the opposition of the field set up by the input
voltage level. As soon as the readout pulse passes, the
input level sets the core to 1 again.

Performing the AND operation by using cores with
other functions depends on two facts. The first is that
a quantity inverted twice is returned to its original
state. When a 1 is inverted, for example, it becomes a O.

Invert it a second time and it becomes a 1 again. In
logic terms:

NOT (NOT A) = A

The second useful fact is that two inhibit inputs to a
single circuit bear an AND relationship to each other.
To get an output from such a circuit, as diagrammed
at (a) of figure 3-37, the normal input, C, must be
present, and both the inhibit inputs, A and B, must be
simultaneously absent. If a pulse generator 1S connected
to input C, l's are always present on C, and the circuit
produces an output only when the inputs are (NOT A)
AND (NOT B).

Because of the relationship between the two inhibit
inputs, this arrangement is the same as that shown at
(b) of figure 3-37, two inverters feeding an AND cir­
cuit (sometimes called a NEITHER . . . NOR circuit).

~ ==3 INH -I---i·· OUTPUT

C AND (NOT A) AND (NOT B) OUTPUT

(a)

NOT A ----<~

A AND B

NOT B

(b)

Figure 3-37. Effect of Two Inhibit Inputs

The output is A AND B, as required, but the inhibit
circuit (core) must be fed with NOT A and NOT B.
This means that A and B, which are represented in the
magnetic core circuitry by pulses, must be inverted be­
fore being sent to this 2-inhibit-input core. This can
be done for each signal by an inhibit core and pulse
generator combination, by connecting the signal line
to the inhibit winding. The complete arrangement for
performing the AND operation in this manner is dia­
grammed in figure 3-38. The inhibit cores are repre­
sented by the blocks labeled INH, the pulse generator
cores by the encircled l's. When either A or B is not
present (no pulse), the corresponding inhibit core puts
out l's (inserted by the pulse generator core) to one
of the inhibit windings of INH 4. With a 1 at either of
its two inhibit windings, INH 4 cannot produce an
output 1. When A and B are present at the same instant,
however, no output pulses are produced by INH 2 and
3. No pulses appear at the twin inhibit windings, and
INH 4, therefore, puts out a pulse representing A
AND B. The AND operation is thus achieved through
the use of six magnetic cores. Once the three simplest
logic functions can be handled, as shown here, complex

A AND B

Figure 3-38. Magnetic Core AND Circuit

UNCLASSIFIED 69

Matrices
2.1.5-2.1.6

UNCLASSIFIED
T.O. 31P2-2FSQ7;..2

PART 3
CH 2

0

-~

"" 2
,.,.

"" DECIMAL 3
INPUTS

,.,.
~

" ~ 4 ,
5 -, ~
6

~ ~
7

~ ~ ~
8

,.,.

~
9 -,

~

BINARY OUTPUTS

Figure 3-39. Diode Matrix

chains of core logic circuitry can be built up by com­
bining them.

2.1.6 Matrices
The logic circuits and circuit arrangements con­

sidered thus far have been types producing a single

A

E

F

INPUTS G

OR
H

K

B

output, usually from two or more inputs. Another type
of importance is the multiple-output switching network,
especially the category called matrices. A multiple-output
network produces a different output for each different
input or combination of inputs. The matrix performs
the same job but gets its name from the manner in
which it is drawn schematically (and often built), with
components and connections arranged in rows and col­
umns. A very simple, but typical, matrix of diodes is
shown in figure 3-39. This matrix is capable of trans­
lating any of 10 positive input signals representing the
10 decimal digits into parallel binary tetrads (groups
of four bits). At first glance, it appears that the diodes
are unnecessary, but actually some sort of isolating,
I-way device is needed at the interconnection points
to prevent the signal on one line from backing up on
others. In operation, a level or pulse appearing on in­
put 5, for example, puts signals on the 2° and 22 out­
put lines. The resulting output is 0101, the binary
tetrad representing decimal 5.

In the example of figure 3-39, a signal on one
input results in a particular combination of output
signals. Figure 3-40 shows a small matrix, using logic
circuits, in which each desired combination of inputs
produces a separate output. In this array (which means
regular or symmetrical arrangement), the input signals
go through intermediate OR circuits before being com­
bined in the matrix proper (the six AND circuits). This
is only one of many possible matrices. Diode matrices
of several varieties and matrices constructed of OR and
AND circuits are especially common, but they can be

INPUTS

c D

Figure 3-40. Matrix of Logic Circuits

70 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Small-Scale Storage Circuits
2.1.6-2.2.1

made up of nearly any type of switching device or
logic circuit.

2.2 SMALL-SCALE STORAGE CIRUITS

The fact that all arithmetic and data-processing
operations in a digital computer are accomplished by
switching and storing electrical signals has been men­
tioned several times. Now, the switching circuits that
perform the logic operations have been examined in
detail, alone and in simple combinations satisfying va­
rious conditions. It is easy to see that if signals repre­
senting l's and O's must be combined in certain logic
circuits and if a signal available now is needed a little
later, some means of storing this signal must be found
to hold it until it can be used. This necessity was pointed
out back in the discussion of figure 3-22, in showing
how logic circuits are put together. Each of the delay
circuits in (b) of that figure can be thought of as a
temporary storage circuit, capable of storing or hold­
ing one pulse-type signal for one-quarter or one-half of
a bit-time.

This type of storage device (usually some form of
electromagnetic delay line) works nicely for pulse sig­
nals and for brief storage periods of a few bit-times.
But what if voltage levels are used and what if the
storage period must be 50 bit-times, or 10,000, or in­
definite? It is certainly impractical to send signals from
all parts of the computer to the main memory or storage
element. The resulting circuitry would be an impossible
maze, for one thing, and the memory would have to be
adapted 1'0 handle single bits as well as words. What is
needed is small-scale, on-the-spot storage for use dur­
ing operations.

A little thought indicates that the answer is a bi­
stable device or circuit that can be set to 1 or 0 by the
signal it receives and that will then remain in that
state, after the input signal disappears, until it is re­
set. It must, of course, be able to indicate its 1 or 0 state
to other circuits by means of one or more outputs. This
indication may be continuous or it may be supplied
only when demanded, as in the case of a magnetic core
which indicates the bit stored only when a readout

~

~ OR 2 I 2 SET -..

CLEAR [

AS INPUTS

-

pulse is applied. With such a device or circuit, it be­
comes an easy matter to store a single bit until it is
needed. And in parallel transmission, it is equally easy
to store a complete word (number) simply by providing
storage places in parallel for each bit of the word. A
group of devices or circuits for storing a complete word
is called a register.

Where serial transmission is used, a somewhat dif­
ferent storage method is needed because, obviously, a
series or train of bits fed to a single storage device
would set and reset it and only the last bit would
actually be stored. One possible solution would be to'

switch the serial word into parallel form to store it,
but, except for certain special purposes, this is clumsy
and requires extra circuitry. Another, more commonly
used, method will be described.

2.2.1 Bistable Circuits

With the possible exception of semiconductor di­
odes, all the switching devices used in logic circuits can
be easily adapted to circuits for bit storage. Magnetic
cores were originally developed for this purpose, and
their use in logic circuits came later. The idea of using
switching devices to create storage circuits may seem a
little strange, but consider figure 3-41. This is a bi­
stable storage circuit made up of switching circuits and
a feedback loop.

When O's are on both inputs, the 0 at the input of
inverter 12 produces a 1 at its output. The 1 passes
through OR 3 to the input of 13 which produces 0 at
the circuit output. This 0 is also fed back around the
loop through OR 2 to the input of 12, so with O's at
output and input the circuit is stable and remains in
this state. The circuitry leading to inputs A and B is so
arranged that l's never appear on both lines at the
same time. If a 1 now appears temporarily on input A,
which is labeled as the set input, it goes through OR 2 to
12 and causes 12 to put out o. This 0 goes to 13 which
then places 1 on the output line. Since this 1 also is fed
back to the input at OR 2 and 12, the circuit is again
stable. Thus, a 1 on the set input switches the circuit
to the 1 state where it remains after the input has

.~

I .. J I OR3 I 3
I --I I -) OUTPUT

Figure 3-41. Basic Bistable Storage Circuit

UNCLASSIFIED 71

Bistable Circuits
2.2.1

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 3
CH 2

-
-

~ ..
...J SET I I ... OR2 .. 12 ~ -- OR 3 I 3

~ I -I I - -
~

] OUTPUTS

CLEAR

INPUTS I,
.. I • AND l~ J INH

I I -
I

COMPLEMENT

Fioure 3-42. Complete Logic Circuit Flip-Flop

• ~ I

0 I

FF
1

0

FF
o

FF

I • I~ I I

C LEAR SET CLEAR SET COMPo

COMPo

Figure 3-43. Flip-Flop Circuit Symbols

disappeared. A 1 appearing on input B, called the
clear or reset input, causes 13 to produce a 0, switching
the circuit back to the 0 state.

An arrangement of this sort is called a flip-flop
(abbreviated FF), and various types are widely used in
digital computers for bit storage. The inputs are nor­
mally pulses, although it is possible to use levels; the
outputs are voltage levels.

The flip-flop output shown in figure 3-41 is al­
ways called the 1 output, whether it is indicating 1 or o.
Notice that a second output from the circuit can be
taken from 12 and that this is opposite in state to the
1 output. In other words, when the 1 output carries a
down level (indicating that the flip-flop contains 0),
the output from 12 is up, and vice versa. This output
from 12 is called the 0 output. In this manner, ·it is
possible to indicate not only the state of the flip-flop
but its complement (opposite) as well, which is often
useful.

The use of only one output line (either one) is
called single line transfer; using both is double line

transfer. It is also possible-and common practice-to
add a third input, so arranged that a pulse on this
input switches the flip-flop, regardless of its state. This
complement input can be added as shown in figure
3-42. The extra circuits, the AND and the INH, are
used to switch the complement input to the proper OR
circuit to either set or clear the flip-flop, depending upon
its state at the time the pulse is received. (It is assumed
that there is sufficient delay in the logic circuits to pre­
vent switching 12 before the input pulse has dis­
appeared.) For some purposes, flip-flops do not require
separate set and clear inputs and, therefore, have only
the complement input.

Flip-flops have their own circuit symbols, which
may resemble any of the three shown in figure 3-43.
The designation, FF, is often omitted, but the 0 and 1

output sides are always shown. The input leads are not
usually labeled. Intead, for ease of understanding, the
set input is always drawn on the same side of the block
as the 1 output, the clear input on the same side as the
o output. Thus, a pulse entering on the 1 side sets the

72 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Vacuum Tube Flip-Flops
2.2.1-2.2.1.2

PT

IR 1 1 HS

- -
Figure 3-44. Relay Storage Arrangement

flip-flop to 1. The complement input enters at the cen­
ter of the block.

Constructing a flip-flop of logic circuits is instruc­
tive but not very practical, of course, since bistable
storage circuit such a multivibrators can be made di­
rectly from vacuum tubes, transist'Ors, etc.

2.2.1.1 Relay Storage

Even the lowly relay can be made to remain in the
operated (1) state after the passing of the operating
signal. One of the simplest methods of accomplishing
this (there are several) is shown in figure 3-44. This
is essentially the same circuit as that in figure 3-14,
but with the addition of a hold path to make the PT
relay act as a storage device. The PT relay operates
when either the IR or the HS relay is operated, closing
the corresponding set of contacts and completing the
circuit to the PT coil. As s'Oon as PT operates, however,
one pair of its own contacts closes the hold path to
ground through the normally-dosed contacts of RL. If
IR or HS now releases, removing the original operating

SETo-----e-------~

INPUTS COMPo 0---.

signal, relay PT nevertheless remains operated through
its hold path. When the time comes to release PT
(return it to the unoperated state), relay RL is oper­
ated and its contacts open the h'Old path of PT. By
this means or others, relays used in logic circuitry can
be made to store information indefinitely.

2.2.1.2 Vacuum Tube Flip-Flops
The basic bistable multivibrator circuit appears in

figure 3-45. Actually, this circuit is bistable only if the
component arrangement and values are correct; this,
however, is a design problem. In operation, the cross­
coupling between either plate and the opposite grid
means that one triode at a time can c'Onduct, but not
both. The decrease in plate potential that occurs when
one tube conducts is coupled to the grid of the opposite
tube, driving it to cutoff. With VI conducting and V2
cut off, for example, the circuit is in one of its two stable
states. The plate potential of VI is relatively low, placing
a down level voltage on the 1 output. The plate potential
of V2 is high because the tube is not conducting, so an
up level voltage is on the 0 output and the circuit is said
to contain a O.

To change the state, a positive pulse is applied
to TI through the set input. This pulse is inverted
through the transformer action, and a negative pulse is
placed on the grid of V1. This drives the tube toward
cutoff; the plate potential rises as conduction decreases;
and the rising potential is coupled to the grid of V2.
As V2 begins conducting, the decrease of voltage at its
plate is coupled to the grid of VI, helping the initial
pulse to cut off VI completely. With VI cut off, its
plate potential is high, so an up level voltage is now
on the 1 output, while conduction through V2 places a
down level on the 0 output.

+

.--_II_~ -----------0 ~ J OUTPUTS

CLEARo-----~--~

Figure 3-45. 8as;c Vacuum Tube Flip-Flop

UNCLASSIFIED 73

Fig. 3-46 UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

(a)

I OUTPUT 2 o OUTPUT

SET INPUT CLEAR INPUT

(b)

Figure 3-46. Transistor Flip-Flop

The circuit is now in its second stable state, indi­
cating a I on the I output line. If a second pulse is re­
ceived on the set input, nothing happens because VI
is already cut off. To dear the circuit and return it to
the 0 state, it is necessary to apply a pulse on the dear
input. This cuts off V2 and starts VI conducting again.

A pulse on the complement input changes the
state of the circuit regardless of whether it contains 0

or 1. This puts pulses on both inputs simultaneously.
The one reaching the grid of the cutoff tube has no
effect, but the other causes the switching action to take
place by cutting off the conducting tube. The diodes are
necessary to prevent pulses on the set or dear inputs
from reaching both grids and complementing.

The vacuum tube flip-flop is comparatively simple
and stable and can be made quite fast in its switching
action.

2.2.1.3 Transistor Flip-Flops
Transistors can be used to replace vacuum tubes

in multivibrator circuits similar to that shown in figure

3-45, resulting in savings in power and space. As in
the logic circuits, however, they may also be used
in the form of the grounded-emitter switch. The result­
ing direct-coupled transistor flip-flop appears at (a)
of figure 3-46. Here, again, either transistor conducts
if its base is driven negative. When a transistor is
turned on, its collector swings in a positive direction
almost to ground potential. If Q2 is turned on, for ex­
ample, node 2 is almost at ground, and this relatively
positive voltage on the base of QI keeps QI shut off.
At the same time, node I is about 3 volts negative,
supplying the currents to keep Q2 conducting. This can
be called the 0 state of the circuit, Q I off and Q2 on.
To switch the flip-flop to the o'pposite state, it is neces­
sary to drive more positive the base of the transistor
that is turned on, Q2. As Q2 shuts off, its collector
goes negative, turning on Q1. This causes node I to
swing up toward ground, keeping Q2 shut off. Now,
with QI on and Q2 off, the flip-flop is in the second of
its stable states, the I state. To return it to the 0 state

74 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Dynamic Flip-Flops
2.2.1.3-2.2.1.4

again, the base of QI must be driven up toward
ground.

The manner in which the transistor flip-flop is used
in direct-coupled circuitry is shown in skeleton form at
(b) of figure 3-46. The inputs, typically, are supplied
by transistors whose collectors are connected to the
flip-flop nodes, while the outputs drive the bases of one
or more transistors associated with other nodes. Again,
it may be assumed that the flip ... flop is in the 0 state,
with Ql off and Q2 on. The potential of the 0 output
line is near ground; that of the 1 output is about - 3
volts. To switch the flip-flop to the 1 state, the transistor
connected to the set input line is turned on. Its col­
lector (and node I) swings up toward ground, shutting
off Q2 by applying a positive-going voltage to its base.
Node 2 returns to about -3 volts when Q2 is turned
off, switching on Ql and holding node 1 almost at
ground potential. The flip-flop is now in its 1 state, Ql
on and Q2 off. The 1 output is near ground and the 0

output is at -3 volts. Even if the transistor (or logic
circuit) supplying the set input line is turned off, the
circuit remains in the 1 state. Notice that this transistor
can be turned on again without any effect, since Q2 is
already turned off.) To clear the flip-flop, or return it
to the 0 state, QI must be turned off by driving its base
more positive. This is done, of course, by turning on
the transistor in the clear input line.

This direct-coupled transistor flip-flop provides an
extremely small, reliable storage circuit.

2.2.1.4 Dynamic Flip-Flops

Tlie so-called dynamic flip-flop is not really a flip­
flop at all, but it serves the same purpose - that of
storage - in circuitry that uses pulse-type signals ex­
clusively. When set to the 1 state, the dynamic flip-flop,
puts out a continuous stream of pulses, one each bit­
time, until it is reset, or cleared, to the 0 state again.
In the 0 state, it produces nothing. Thus, it somewhat
resembles a pulse generator that can be turned on or
off, as required, and is sometimes referred to as a pulse
generator (PG) or circulating memory (MEM) circuit.
The flip-flop is simple, consisting of an inhibit circuit
with OR inputs plus a delay circuit located in a loop
that feeds the INH output back to one of the inputs,
as shown in figure 3-47. The total delay in the loop
- that of the delay circuit plus that of the INH - is
made to equal one bit-time. When a pulse is applied to
the set input (and there is no-pulse on the clear input
at that instant), the INH circuit produces a pulse on
the output line. This pulse is fed back through the
delay circuit to the other OR input. Since the total
delay around the loop equals one bit-time, a second out­
put pulse appears exactly one bit-time after the first.
The pulse continues circulating in the loop (and pro­
ducing I's at the output) until a clear pulse is applied

(SET

INPUTS lCLEAR

I I r----t 0 1-

~

- }OR
INH -

==-jDFFI •
SYMBOL

Figure 3-47. Dynamic Flip-Flop

) OUTPUT

to inhibit it, whereupon die dynamic flip-flop returns
to the 0 state and puts out nothing.

Diodes or other suitable switching devices can be
used in the INH circuit, but the circulating pulse will
be attenuated and eventually drop below limits unless
some sort of amplifying and reshaping circuit is in­
cluded in the loop.

The dynamic flip-flop is used to store a 1 bit for
longer periods than is practicable with delay circuits,
which must be lined up in series usually with amplifi­
cation between) to obtain longer delay times. If, for
example, a certain pair of pulses must fire an AND cir­
cuit, but one pulse appears 42 bit-times later than the
other, the use of delay circuits is not practical. Since it
is difficult to achieve a delay of more than about S bit­
times (SD) in a single circuit, a string of at least 9
delay circuits and several amplifier-reshapers would be
required to hold up or store one pulse until the other
showed up.

The problem may be solved instead, as shown in
figure 3-48, by feeding the first pulse to the set input
of a dynamic flip-flop which has its output connected to
one AND input. The other pulse is fed directly to the
other AND input. Now, when the first pulse appears,

EARLY
PULSE

INPUTS

LATE
)

PULSE OUTPUT

Figure 3-48. Use of Dynamic flip-Flop

UNCLASSIFIED 75

Storage Registers
2.2.1.4-2.2.3.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

O~----~~-----J['-----~\tVV~--~O

IN PUT I OUTPUT

o-------------------~----------------O

E
out

1-.. ____ .,
I r--DELAy------I

TlME---+

Figure 3-49. Basic Delay Line Section

it sets the flip-flop to putting out l' s. These have no
effect until 42 bit-times later, when the other pulse
comes along. Since this pulse appears at the same in­
stant as the 42nd pulse from the flip-flop (ignoring
fractional delays), the AND is fired. Once this is ac­
complished, another pulse can be sent to clear the flip­
flop; in fact, the output pulse from the AND circuit
could easily be fed back for this purpose, as shown. It
is possible, of course, to drive the inputs of a number of
other circuits from the output of a single dynamic flip­
flop.

2.2.2 Delay Circuits
The need for delay circuits to compensate for

small differences in the arrival times of pulses has been
brought out in connection with other matters, and the
manner of using the delay circuits has been shown. All
that remains is to show the makeup of these temporary
storage circuits.

One basic delay circuit (fig. 3-35), suitable for
briefly delaying the output pulse from a magnetic core,
has been shown. Most delay circuits - or delay lines,
as they are commonly called - are patterned on the
arrangement shown in figure 3-49, which is electri­
cally similar to a long piece of transmission line.

A pulse travelling through a I·mile length of
transmission line might require 5 usec to complete its
trip. Obviously, it is not practical to coil up a mile or
two of transmssion line between two circuits in a
computer, hut the artificial transmission line of figure
3-49 offers similar characteristics lumped conveniently
in the form of coils, capacitors, and resistors. A single
section such as this offers only a very short delay, but
by using special techniques of coil construction' and
connecting several line sections in series, delays of up
to 4 or 5 usec can be obtained.

2.2.3 Word-Length Registers
A register, as mentioned earlier, is a group of stor­

age devices or circuits used f'Or storing a complete word.

Since information is usually moved about and operated
upon in the computer word-by-word, rather than bit­
by-bit, a number of registers will be needed. (Don't un­
derstand this word-by-word idea; the circuits have to
handle each individual bit, but the computer is so ar­
ranged that groups of circuits usually handle a word at
a time in response to an instruction or a command.)
Since the two principal methods of information­
transmission are parallel and serial, some registers are
designed to take words in parallel form, some to take
serial words. A third type, sometimes useful, is the
serial-parallel register, which accepts a number (word)
in parallel form and feeds it out in serial form, or vice
versa.

Registers have uses aside from simple word storage
and are frequently built for such specific jobs as count­
ing or shifting. Counting properly belongs under the
heading of arithmetic and is covered in Chapter 3. The
present discussion is restricted to storage and shifting
registers.

2.2.3.1 Storage Registers

The simplest registers are those used solely for
word storage. One type of parallel flip-Bop registers
appears at (a) of figure 3-50. This is nothing more
than a set of flip-flops with no connections between
them, one for each bit in the word. Since five stages are
shown, this register could handle only 5-bit words, each
flip-flop representing a different bit position.

There are two methods of writing words into this
register. The first, and least likely to be used, is to
place a pulse on the set input of each flip-flop that must
store a 1 and a pulse on the clear input of each flip-flop
that must store a o. (This is essentially double line
transfer.) Thus, to store the word 11001, pulses would
appear on the following inputs, left to right in the il­
lustration:

1 1 o o
2° (Bit Position)

1 (Input Word)

Set Set Clear Clear Set (Inputs Pulsed)

The drawback to this method lies in the fact that for
each bit position containing a 0, a pulse must be gener­
ated and switched to the clear input line. This, of
course, means added circuitry. The second, and easier,
method begins by placing a pulse on each clear input
before the word to be stored arrives. This clears aU
the flip-flops in the register to the 0 state, wiping out
any word that may have been stored previously. Then
the word to be stored is applied in parallel form to the
set inputs. (This is single line transfer.) The pulse in
each bit position where there is a 1 sets the correspond­
ing flip-flop to 1. No pulses appear in the bit positions
where there are O's, so the flip-flops in these positions
remain at 0, and the correct word is stored.

76 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQl-2

Figs. 3-50 & 3-51

CLEAR
PULSE

FF

(a)

FF

FF

,~--~/
INPUT WORD

(b)

figure 3-50. Parallel flip-flop Storage Register

OUTPUT WORD

0"-
2

READOUT
PULSE

'~--~I
INPUT WORD

Figure, 3-51. Parallel Core Register

Instead of generating a separate pulse to clear each
flip-flop before storing a new word in the register, the
practical thing to do is use a single pulse, as shown at
(b) of figure 3-50. By connecting all the clear inputs
in parallel, a single pulse can be made to clear the
whole register just before the new word to be stored is
due to arrive. A parallel storage register of magnetic
cores can be built up in a manner similar to this. Such
a register appears in figure 3-51. Each bit of the in­
put word is applied to the input winding of a separate
core. The readout windings, connected either in series
or in parallel, serve a dual purpose. When a readout

pulse is applied, it not only reads out (in parallel form)
all the bits stored in the individual cores, but it also
clears the register by resetting all cores to o. The regis­
ter is then ready to store a new word. When cores are
used for parallel word storage, like this, the readout
pulse does not appear each bit-time but is more in the
nature of a control pulse generated only when the
stored information is needed.

These are -the basic parallel storage registers. What
about storage of words in serial form?

This appears rather difficult, at first thought, but,
actually, it is quite simple. A clue to one often-used

UNCLASSIFIED 77

Storage Registers
2.2.3.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 2

method lies in the dynamic flip-flop, or circulating mem­
ory, shown in figure 3-47. There, a feedback loop with
a total delay of one bit-time keeps a single pulse circu­
lating until it is desired to stop it. Why not extend this
idea and keep a whole word circulating until the time
comes to take it out of the loop? All that is needed to
do this is a total delay in the loop equal to the number
of bits in the word to be stored, plus the means of
switching the words into and out of the loop, when
necessary. The arrangement is shown in figure 3-52.
The loop itself consists of the OR circuit and the long
delay line (which must include an amplification and re­
shaping circuit). If 5-bit serial words, for example,
"~re to be stored, the total delay here must be 5 bit-times.
This might be divided as l;iD in the OR and 4-% D in
the delay line. The two AND circuits are used as gates
to switch the words into and out of storage (gate tubes
could be used just as well).

The word to be stored arrives as a train of five
bits at the input of AND 2. To gate it into the storage
loop, a train of five control pulses (often called write
pulses) is generated and timed so that the first write
pulse reaches the AND at the same instant as the first
(least significant) bit of the input word. If this bit is
a pulse, or 1, the AND fires and puts a 1 into the loop;
if the bit is a 0, the AND cannot fire so a 0 is put into
the loop. In this manner, as shown in the small chart
on figure 3-52, the five write pulses gate the five bits
of the word through AND 2.

Once through the OR circuit, the first bit of the
stored word cannot get through AND 3 because no
readout pulses are yet applied to this circuit, which is
the output gate. Therefore, the bit follows the feedback
path and enters the delay line. The second bit of the
word enters the delay line one bit-time later, and the
others follow in sequence. The first bit emerges from

rl LONG DELAY

WORD IN

WORD IN

WRITE PULSES

AND OUTPUT

~

WRITE
PULSES

AND 2

I 0 0

I 0 0 I

C 5D

-• - I
11 OR .. I

the delay line 4-% bit-times after it entered. It requires
another l;i bit-time to pass through the OR circuit
again, so it is back at the beginning of the feedback
loop exactly 5 bit-times after it was last there. The
other four bits of the words are spaced at I-bit intervals
behind it. By thus providing a closed loop with a delay
exactly equal in time to the length of the word, it is
apparent that the word will continue to circulate and,
therefore, will be stored as long as desired. To take the
word out of storage, it is only necessary to wait until
the first or least significant bit emerges from the OR
circuit, then apply the first of a train of five readout
pulses to the second input of AND 3. The readout
pulses then gate the stored word out of the loop in the
same fashion as the write pulses gate it in.

Notice, however, that reading the word out of the
circulating register does not clear the latter, since a
pulse at the input of AND 3 is also sent back over the
feedback path whether it is gated through the AND
or not. So the word still remains in the loop, even
after it has been read out to other circuits. This, inci­
dentally, is called nondestructive readout because the
information is not lost from the storage circuit through
the reading process. Destructive readout is the type oc­
curring in magnetic cores, where the readout process
clears the cores.

To be able to store a new word in the register,
the old information must be cleared out; otherwise, for
example, a pulse (1) in the old word that was left in
the register might take the place of a blank (0) in the
new word being fed in. The register can be cleared
easily if an inhibit circuit is used in place of the OR cir­
cuit. Simply placing a string of five clearing pulses on
the inhibit input stops each of the circulating pulses,
and the loop then contains O's.

l_
I

)

The circulating register is practical and widely

READOUT
PULSES

.. -,
- AND 3 I ..

I
WORD OUT

Figure 3-52. Circulating Register for Serial Words

78 UNCLASSIFIED

PART 3
eH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Storage Registers
2.2.3.1-2.2.3.2

WORD
IN

READOUT OR
SHIFT PULSES

WORD
CUT

Figure 3-53. Core Register for Serial Words

PARALLEL WORD IN

SERIAL ~
WORD
IN

(

SHIFT
PULSES

..

"
:-0 SERIAL r----, ~

~l~r4, ~~;D

~~----------------------------~----------------------------~)
PARALLEL WORD OUT

Figure 3-54. Core Shifting Register

used in serial m.ode c.omputers. An.other useful type .of
register f.or serial w.ords can be made with magnetic
c.ores, as sh.own in figure 3-53. T.o follow the .opera­
tion .of this register, consider the effect .of applying a
single pulse (1) to the input c.oil .of the c.ore at the
left and then applying a series .of readout pulses,
.one each bit-time. The input pulse sets the first c.ore t.o
1. The first read.out pulse immediately resets this c.ore
t.o 0, pr.oducing an .output pulse which is applied t.o the
input .of the next c.ore. The delay circuit between c.ores
(which includes the necessary di.ode t.o c.ontr.ol p.olarity)
prevents the pulse fr.om setting the second c.ore t.o 1 un­
til the read.out pulse has died away. So, the applicati.on
.of .one read.out pulse shifts the 1 fr.om the first c.ore t.o
the sec.ond. The next read.out pulse resets the sec.ond
c.ore t.o 0 and shifts the 1 t.o the third c.ore. This effect
c.ontinues with the third and f.ourth read.out pulses,
shifting the 1 finally t.o the c.ore .on the right. If the
read.out pulses (which may in this use be called shift
pulses) are stopped at this point, the 1 remains st.ored
in the right-hand c.ore. With a c.omplete, 5-bit w.ord
fed into the register, instead .of a single bit, the same
shifting acti.on takes place up.on applicati.on .of the
read.out .or shift pulses. The shift pulses are applied at
intervals .of .one bit-time s.o the first bit that enters the
left-hand c.ore is shifted .out in time to clear it f.or the
sec.ond bit .of the input w.ord, etc. When it is desired t.o

read the w.ord .out .of the c.ore register, all that is nec­
essary is t.o apply a string .of five shift pulses, at I-bit
intervals. This shifts the bits .of the w.ord t.o the .output
line in the pr.oper relati.onship. The principles .of shift­
ing in c.ore registers can be seen clearly in this example.
Shifting is simply a matter .of m.oving all the bits .of a
w.ord in step, .one .or m.ore places t.o the left .or right.
The register .of figure 3-53 w.ould seem t.o qualify as a
shifting register, but actually d.oes n.ot. It perf.orms the
shifting .operati.on .only as a means .of getting serial
w.ords into' and .out .of it; its functi.on is simple st.orage.

2.2.3.2 Shifting Registers

A shifting register is built with the intenti.on .of
shifting any numbers st.ored in it f.or a purp.ose .other
than that .of .ordinary st.orage. The purp.ose may be t.o
c.onvert w.ords fr.om serial t.o parallel f.orm, fr.om paral­
lel t.o serial, .or it may be t.o multiply .or divide the num­
bers by s.ome p.ower .of 2. (Remember fr.om Part 2 that
shifting a binary number .one place t.o the left multiplies
it by the radix, 2; .one place t.o the right divides it
by 2, etc.)

One means .of changing the register .of figure 3-53
t.o a true shifting register is t.o add a sec.ond input c.oil
t.o each c.ore, as sh.own in figure 3-54. If a w.ord in
parallel f.orm is applied t.o these inputs, the c.ores are
set acc.ording t.o the pattern .of l's in the w.ord. Then,

UNCLASSIFIED 79

Shifting Registers
2.2.3.2

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 3
CH 2

applying a string of five shift pulses shifts the bits of
the word to the output line in serial form.

By taking outputs in parallel off the capacitors in
the delay networks between cores (plus that in the out­
put line), a serial word can be written into the register
and then taken out in parallel form upon the applica­
tion of a single readout pulse. With parallel outputs
available, the use of shifting for arithmetic purposes
can easily be shown. The serial input and output can be
ignored for the moment (consider them disconnected).
A word is written into the regiser on the parallel
inputs and stored momentarily. The word might be, for
example:

0.1110

(which equals decimal 14/16).
If a single shift pulse is now applied, each bit of

the word is shifted one core to the right. The bit in the
right-hand core, however, has no place to go, with the
serial output line disconnected, and thus is lost. The
left-hand core shifts the bit it contained to the core on
its right, but there is no incoming bit to replace it, so
this core is reset to 0 by the shift pulse and remains
in the 0 state. Therefore, the register now contains:

0.0111

(which equals decimal 7/16).
The shift of one place to the right has thus divided

the number in the register by 2. Notice that during
the shift the original number appeared on the parallel
output lines taken from the delay networks. The core
switching can be so arranged, however, that these out­
puts can be ignored at this time. They will be used only
when it is desired to take the shifted number out of the
register, by applying one more readout or shift pulse.
Notice, also, that any remainder left by the division is
lost because the right-hand (least significant) bit is
lost. If the sample number shown above is shifted once
more, the number left in the register is:

0.0011

(which equals 3/16), instead of 0.00111, the exact an­
swer. Since the lost remainder in division by shifting
is always smaller than the least significant bit, however,
dropping it has only a minor effect on the accuracy of
computations.

Multiplication by shifting requires a shift to the
left, instead of the right. To accomplish this, the series-

Figure 3-55. Flip-Flop Shifting Register

80 UNCLASSIFIED

PART 3
eH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Shifting Registers
2.2.3.2-2.3

connected input and output coils of the cores in figure
3-54 must be reversed so that the output of each core
goes to the one on its left. Now, the most significant bit
of the shifted number is lost, and the least significant
bit is replaced by o.

Although it is perhaps easiest at first to follow
the operation of a shifting register in terms of num­
bers written in and read out in parallel form, the same
operations can be performed on serial words. A serial
word is written into the register, the input and output
lines are opened or switched off, the shifting operation
is performed, and then the shifted word is read out.

When shifting registers are made up of flip-flops
and logic circuits, there are many possible arrange­
ments. Which one will be used in a given case depends
upon the exact operations to be handled, plus such fac­
tors as the requirements of associated circuitry.

One of the simplest of such shifting registers ap­
pears in figure 3-55. Only three stages are shown, for
darity, and the connections are arranged for a shift to
the right. Each flip-flop is set to either 0 or 1 when a
word is written into the register, and each flip-flop out­
put then conditions the corresponding gate tube. When
the time comes to shift the word in the register, a single
pulse is applied on the shift line. This pulse can be
passed only by the one gate of each pair that is condi­
tioned by the flip-flop. The pulse, therefore, is gated to
the transfer line corresponding to the state of the flip­
flop and sets the next flip-flop at the right to that state.
The delay circuits are needed to prevent the possibility
that the state of a flip-flop might be changed before it
had sent an adequate signal to the next one.

By connecting the transfer lines from each flip­
flop to the one at its left, instead of the one at its right,
the register could be made to shift numbers to the left.
In some applications, it is desirable to be able to shift
in either direction. A register to handle this can be made
by using two sets of gate tubes and transfer lines, one
set leading to the right, the other to the left, each set
having its own shift pulse line. A pulse on one line
would provide a shift to the right; a pulse on the
other would result in a shift to the left.

The shifting registers of figures 3-54 and 3-55
both provide what is called broadside shift, ot: simulta­
neous shift; i.e., all bits of the word in the register are
shifted at the same instant because the shift pulse hits
all conditioned gates at the same time. It is also pos­
sible to shift one bit at a time, in rapid succession, a
process called ripple shift. Starting at the right-hand
end of the register if the shift is toward the right (at
the left end for a shift left), the output of each flip-flop
is gated in turn. As shown in figure 3-56, this is done
by switching the shift pulse through the conditioned
gate tubes in series instead of applying it to all of them
in parallel. When the shift pulse enters, it gates the

output of the 21 flip-flop to the corresponding input of
the 2° flip-flop. (The bit originally in the 2° flip-flop
is lost, as mentioned earlier, in a shift to the right, un­
less special provisions are made to save it, outside the
register.) The gated pulse passes through the OR cir­
cuit and is applied as the shift pulse to the next set of
gates, shifting the 22 bit into the 21 flip-flop, etc. In this
manner, the bits shift one after the other in a wave or
ripple down the register. Although the ripple shift is
not as fast as the simultaneous shift, it can often save
operation time. In an arithmetic operation involving
carries, for example, a ripple shift can be started while
carries are still being transmitted from stage to stage
down the register. A simultaneous shift, on the other
hand, can be made only when all other activity has
ceased and any transients have been given time to die
out.

Numerous other circuit arrangements can be used
in constructing shifting registers but they differ little
from the basic types described here.

2.3 ELECTRICAL CONSIDERATIONS AND
NONLOGIC CIRCUITS

The information signals that have been illustrated
thus far in this part (figs. 3-1, 3-3, and 3-4) have
stood tall and square - as, in theory, they should. In
actual circuitry, however, as mentioned earlier, there are
many factors that act to attenuate or knock down the
amplitudes of the signals and to make them round­
shouldered instead of square. Pulses are more subject
to these difficulties because they appear and die out
quickly - usually in less than a microsecond - but lev­
els also lose amplitude and their leading edges become
rounded. As a result, the typical pulse taken from a
digital computer and displayed on an oscilloscope
might look almost as good as those in figure 3-4, but
is far more likely to have the appearance of that in
figure 3-57. In this figure, the actual pulse is seen to
have an amplitude considerably smaller than that of
the ideal pulse and to last somewhat longer. The ac­
tual pulse also rises more slowly and overshoots the
baseline on its return to zero (the ideal rise time is
instantaneous and therefore impossible).

None of these seeming drawbacks of the actual
pulse may be severe enough to make it an unusable one.
Although the ideal pulse for a given machine might be,
for example, 30 volts in amplitude and 0.1 usec in dura­
tion, it is necessary in practice to set limits for the
actual pulses. Thus, the circuits in this example might
be designed to be definitely triggered by any pulse be­
tween 20 and 40 volts in amplitude and 0.08 and 0.12
usec in duration. If the pulse shown in figure 3-57
were between these limits, it would be a good, usable
pulse. In some types of computer circuitry, a limit is set
on rise time. That is, a pulse must rise to a certain am-

UNCLASSIFIED 81

Nonlogic Circuits
2.3

UNCLASSIFIED
T.O. 31P2-2FSQ1-2

PART 3
CH 2

~-------'~+-----r---+------------------~~~~s

Figure 3-56. Register Using Ripple Shift

plitude within a certain time. There may also be a limit
on the amount of overshoot permitted.

Whenever a pulse or a level must travel through a
number of circuits or devices without amplification, loss
of amplitude must be expected. Such attenuation oc­
curs in diode logic circuitry, for example. Circuits or
signal paths with poor high-frequency response
lengthen the rise times of pulses or levels, rounding
the leading edges. Excessive capacitance in signal lines
or circuits causes attenuation, distorts pulses, and may

IDEAL PULL

r -l
I I
I

+
o -

I
I
I
I

Figure 3-57. Typical Pulse in Computer Circuitry

upset timing because of undesired phase shifts. And im­
pedance mismatches are particularly serious and diffi­
cult to locate. They may result in misshapen pulses,
severe attenuation or complete loss of signals, or phase
shifts affecting signal timing. Mismatches of this sort
can be caused by improper resistive values terminating
coaxial signal lines (setting up reflections or standing
waves on the lines); changing values of circuit compo­
nents, often due to aging; leakage or partial shorts,
and other factors. These are some of the electrical or
electronic problems encountered in digital computers
by both designers and maintenance technicians. The de­
signer must include circuits to amplify and reshape
pulses or reset levels wherever it appears possible that
the pulses or levels may be forced outside limits. He
may also have to provide impedance-matching and
power-amplifying circuits to drive loads too large for
the ordinary logic circuit to handle. Circuits such as
these, included because of electrical necessity but not
performing operations necessary to the logic of the com­
puter, are called nonlogic circuits. Examples are cathode
followers for both impedance-matching and power
amplification, pulse amplifiers, level setters, register

82 UNCLASSIFIED

PART 3
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Circuit Packaging
2.3-2.4

drivers, etc. Pulse generators may produce an output of
one pulse or a series of pulses and may be used either
for reshaping or for logic.

Nonlogic circuits of a particular type are usually
identical throughout a given computer; therefore, they
can be drawn as circuit blocks on the machine sche­
matics, like logic circuits. Since they contribute nothing
to the logic operations, they are normally omitted from
the simplified or "pure" logic block diagrams used to
describe the theory of operation, but must be included,
of course, in the complete diagrams of the equipment.

2.4 CIRCUIT PACKAGING

It has been mentioned that digital computer cir­
cuits are usually packaged, either individually or in
small groups. The circuit connections are made by some
sort of plug-in arrangement, so once a trouble has been
localized to a given circuit, replacement is a simple
matter of pulling out the defective circuit package and
plugging in a good one from a supply of spares. The
computer is then ready to run again, much sooner than
it would have been if the circuit had to be repaired in
the machine. Business expense or military necessity
makes it important to keep almost every computer
(commercial or military) running and solving prob­
lems as continuously as possible. Thus, the mainte­
nance time saved by using pluggable packaged circuits
is important.

It would not be practicable to attempt to describe
all of the many different packaging methods used.
Among the principal aims in all designs are making the

circuit packages as small as possible while maintalmng
efficient cooling for reliable operation, making wiring
simple and uniform, and simplifying repair (except in
types designed to be thrown away if they fail). Printed
circuits and miniaturized circuit components are widely
used.

In the AN/FSQ-7, -8 computer, for example, circuits
are constructed in rectangular metal forms of uniform
size, illustrated in figure 3-58. These pluggable units,
as they are called, are designed to be plugged into rack
assemblies, one above the other, like drawers in a bu­
reau. The circuit components are mounted on etched
cards, one or more to a circuit, which are then inserted
in vertical slots in the pluggable unit. The vacuum tubes
are mounted horizontally on the front of the unit, and
standard wiring is used to connect the cards and the
tube socket pins. When all the units are in place in a
stack, conditioned air is blown up from the base and
escapes through openings around. the tube sockets in
each unit, cooling the cards and the tubes.

These pluggable units are fairly sizable, but conve­
nient for one man to handle. By way of contrast, one
transistorized digital computer for airborne use has its
circuits individually packaged in small plastic cubes,
each less than half the size of a cigarette package. The
circuit packages are interconnected by printed wiring
on the cards upon which groups of circuits are
mounted, and the cards, in turn, are plugged into air­
conditioned cabinets. The entire computer occupies less
space than the average office desk.

UNCLASSIFIED 83

Fig. 3-58

84

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Figure 3-58. Circuits Packaged in Pluggable Unit

UNCLASSIFIED

PART 3
CH 2

PART 3
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-~

Counting
3.1-3.1.1

CHAPTER 3
ARITHMETIC AND CONTROL

The previous chapter has described the basic types
of logic and storage circuits, their operation, and some
of the ways in which they can be arranged to perform
combinations or sequences of logic operations. The dig­
ital computer is built by assembling networks of these
basic circuits to perform the operations of arithmetic,
to handle the input and output of information, and to
control the internal working of the machine.

This chapter will examine some of the networks
that can be used to accomplish the functions of arithme­
tic and internal control in computers working with the
binary system. These networks will be shown by means
of logic block diagrams because it is the logic of opera­
tion, rather than the electrical theory, that is most im­
portant to a clear understanding. For this reason, non­
logic circuits will not appear, although it is known that
they are often needed for amplification, level setting, etc.

Some types of the basic circuits described in
Chapter 1 could be used to construct these networks
without change, but others, for electrical reasons, would
require modifications of the networks to make them
work. This, however, would not change the overall
principles of operation. It can be assumed, for most of
the networks to be described, that either voltage level
or pulse signals, or both, could be used in different parts
of the network.

There are usually several different network ar­
rangements that will perform a given arithmetic opera­
tion and it is not possible or practical to treat all of
them here. What is intended is to give a clear picture of
the basic ways in which logic and storage circuits are
put together to accomplish the various jobs that must
be done in the computer. Remember, therefore, that
the approaches to be shown here are not by any means
the only ones possible.

3.1 COUNTING

The cyclic nature of the counting process makes
it easy to design networks or circuit arrangements that
can count input signals. Such circuits, called counters,
are used for various purposes, such as counting steps
in the program as they are executed. In any of these
uses, a signal - usually a pulse - is generated each
time the event to be counted occurs. The counter then
counts these signals. For instance, a signal is gener­
ated and sent to the program counter each time a
step of the program is completed. In this manner, the

counter keeps track of the progress of the program
by counting the individual signals.

The cycling of the bits in a binary number can be
seen by examining a simple count:

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 1

o

o

o

o

o

o

o

o

1

1

1

1

1

1

1

1

o

o

o

o

o

1

1

1

1

o

o

o

o

1

1

1

1

o

o

o

1

1

o

o

1

1

o

o

1

1

o

o

1

1

o

20

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

Note that the bit in each binary place (order)
changes state from 0 to 1 and back to 0 again as the
count progresses. Each time the bit in a given place
changes back to 0, the bit in the next more significant
place (to the left) also changes state.

3.1.1 Binary Counters

This cycling count suggests that a group of flip­
flops might be arranged as a counter, using one flip-flop
to represent each binary place, as shown in figure 3-59.
When a signal is applied to the complement input, a
flip-flop switches from one of its stable states to the
other. Since each flip-flop is driven by the 0 output of
the one in the next lower place, each changes state only
when the bit in that place goes from ,I to O. (The ca­
pacitor in each output line represents a differentiating

UNCLASSIFIED 85

Binary Counters
3.1.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH :3

OUTPUT NUMBER

INPUT

PULSES

Figure 3-59. Basic: Flip-Flop Counter

circuit that changes the voltage level rise into the nec­
essary pulse when the 0 output level goes up.)

The pulses to be counted are fed to the flip-flop in
the least significant place. The first pulse (assuming
the counter has been cleared to 0000) sets the 2°
flip-flop to 1, and the counter output is 0001. The second
input pulse resets the 2° flip-flop to 0 and the differen­
tiated voltage level rise on its 0 output line sets the 21
flip-flop to 1, so the output is now 0010. The third in­
put pulse sets the 2° flip-flop to 1 a second time, but
this has no effect on the 21 flip-flop. The counter output
is 0011. When the fourth input pulse arrives, the first
two flip-flops are reset to 0 and the 0 output from the
21 flip-flop sets the 22 flip-flop to 1, producing an output
from the counter of 0100.

Counting continues in this manner until the 15th
input pulse has produced an output of 1111. The 16th

pulse then resets the counter to 0000 and it is ready to
begin the counting process again. It is possible to clear
this counter at any time by applying a pulse to all t~e
flip-flop clear inputs, which can be connected in paral1el
f'Or this purp'Ose. N 'Otice that the input pulses d'O not
have to appear at regular intervals. This group of flip­
flops is storing a number, between input pulses, so it
also may be called a counting register.

The counter of figure 3-59 has one drawback­
the input pulse often has to switch a number of stages
in series, so the counter may be slow to respond. This
is especially true where a count to 12 or 16 or more
places may be required. An arrangement providing faster
operation, but requiring more switching equipment, is
shown in figure 3-60. In this counting register, the input
pulses are applied almost simultaneously to the flip-flops
of all places to be switched.

When the counter is cleared to 0000 and the first
input pulse arrives, it sets the 2° flip-fl'OP t'O 1 but cann'Ot
get through GT 2 because the gate has not been condi­
ti'Oned. (The delay circuit is needed to prevent the flip­
fl'OP fr'Om changing state and conditi'Oning the gate tube
before the pulse ends.) After the first pulse disappears,
the counter is at 0001, and the 1 output of the 2° flip-flop
is conditioning GT 2. The second input pulse passes
through GT 2 and sets the 21 flip-flop to 1, at the same
time resetting the 2° flip-flop to 0 and removing the con­
ditioning voltage from GT 2. Now the counter output is
0010 and GT 3 is conditioned but GT 2 is not. The third
pulse, therefore, can only set the 2° flip-flop to 1 again,
making the output of the counter 0011. When the f'Ourth
input pulse appears, it now finds both GT 2 and GT 3
c'Onditi'Oned, S'O it changes the state of the first three flip­
fl'Ops and the counter 'Output bec'Omes 0100.

OUTPUT NUMBER

Figure 3-60. Higher Speed Counting Register

86 UNCLASSIFIED

INPUT
PULSES

PART 3
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Ring Counters
3.1.1-3.1.2

In this manner, the count continues to 1111, where­
upon the next pulse received resets the counter to 0000.
It can, of course, be cleared at any time by pulsing the
clear inputs of all flip-flops.

Again, the input pulses do not have to appear at
regular intervals. If they do, however, the arrange­
ment can also be used as a frequency divider. Consider,
for example, an input of 1000 pulses per second (pps).
Then, since only one pulse in two gets through GT 2,
the output of GT 2 is 500 pps, a frequency division of
2: 1. Similarly, the output of GT 3 is 250 pps, or 4: 1,
that of GT 4 is 125 pps, 8:1, etc. In other words, each
additional stage provides an additional division by 2
of the input frequency.

3.1.2 Ring Counters
The two counters described thus far are both

binary counters - that is, their outputs are parallel
binary numbers. Often, however, all that is needed is
some definite indication of the progress of the count,
such as one output line at a time energized (called a
one-hot indication).

In such a case as this, it is apparent that only one
stage of the counter at a time need be in the 1 state.
This state is passed along from one stage to the next on
the receipt of each new input pulse to be counted.

Counters of this type are called ring counters and
they are often in the form of' closed rings, with the last
stage connected to the first in such fashion that the count
automatically starts over. In some cases the ring is not
closed and there is some separate means of turning on
(to the 1 state) the first stage.

There are a great many possible circuits for ring
counters, as there are for the other types. Four stages
of one such circuit are shown in figure 3-61.

4

-
:;:::::: 10 I I I FF 4

, I

o

If FF 2 is on, or in the 1 state, the other stages off,
only output 1 is hot, carrying an up level voltage.
The next pulse arriving on the input line clears FF 2 but
cannot affect the other flip-flops since they already
contain O's. As FF 2 changes stage, the voltage level rise
on its 0 output line is differentiated in the circuit repre­
sented by the capacitor symbol, yielding a pulse that
sets FF 3 to 1. Again, the delay circuit is here to allow
the input pulse to die out before FF 3 is turned on.

In this manner, each input pulse turns off the one
flip-flop that is on and this change in state is used to
turn on the next stage. One output after another be­
comes hot in turn as input pulses "step" the on stage
around the ring. Thus, as input pulses continue to come
in, the outputs are:

0001

0010

0100

1000

Etc.

It is common practice to use two or more ring
counters together, with the last stage of one supplying
an input pulse to the next counter, as shown in figure
3-62. The tandem setup shown here has five stages
feeding three - other combinations can be used, of
course, and the second counter can feed a third, etc.

In this arrangement, five input pulses must be re­
ceived by the first counter to produce one input pulse
to the second. The 3-stage counter, then, counts by 5's
(the number of stages in the first counter), so the com­
plete tandem counter can count to 15, although it has a
total of only 8 stages. A 16th input pulse starts the
count over again.

2

,

o o

-

INPUT
PULSES

figure 3-6 J. Ring Counter Stages

UNCLASSIFIED 87

Addition
3.1.2-3.2.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

INPUT
PULSES -

..

I
I
I
I
I

,

l I I
I

I I I
I I I
I I I

l' "

I I
I I .. --- I I --
! I

I

., l' , ,
Figure 3-62. Using Ring Counters in ,andem

There is always one hot output from each counter.
Assuming that the first pulse received turns on the left­
hand stage of each counter, the output indications
~ha?ge. as shown in table 3-1. To produce a signal
IndicatIng that a certain-numbered input pulse has
been received, therefore, it is only necessary to bring
together in an AND circuit the two output lines that
are made hot by that pulse.

If it is desired to obtain an output after the eighth
input pulse, for example, table 3-1 shows that the
center output from each counter is hot, so these two
lines are combined in an AND. In fact, a three-by-five
matrix of AND circuits, similar to that shown in figure
3-40 (but without the OR's), can be used to give a
separate output for each of the 15 input pulses on the
common line. Thus, outputs can be obtained for any or
all of the pulses to he counted.

TABL.E 3-1. OUTPUT CHANGES OF TANDEM
RING COUNTERS

INPUT PULSE OUTPUT INDICATIONS

1 10000 100

2 01000 100

3 00100 100

4 00010 100

5 00001 100

6 10000 010

7 01000 010

8 00100 010

9 00010 010

10 00001 010

11 10000 001

12 01000 001

13 00100 001

14 00010 001

15 00001 001

1 10000 100

3.2 ADDITION

Simple arithmetic addition is nothing more than a
short-cut method of counting up from smaller numbers
to larger ones. Since the only binary digits are 0 and I!
binary addition is just a matter of counting in columns
and properly handling the carries between columns.

Although it is common practice in pencil-and-paper
work, decimal or binary, to add a whole column of
figures at one time, this has not been found practical
in digital computers. Instead, a computer adds the first
two numbers, then separately adds the third to the sum
of the first two, then the fourth to the sum of the first
three, etc., always taking the numbers two at a time.

3.2.1 Adders

The circuit requirements for binary addition can
be calculated by examining the rules for addition of any
two bits. There are only four possible combinations of
two bits:

o 1

o 1

o 1

1

Augend Bit

Addend Bit

Sum Bit

(0) (0) (0) (1) Carry Bit
(The carries will henceforth be placed in paren­

theses to avoid confusion with the sum bits.)
So what is needed is a logic circuit arrangement

that will take any two bits and produce the proper sum
output and carry output for each of the input combina­
tions shown above.

The easiest starting method is to consider sep­
arately the requirements for the sum bit and the carry
bit. If the augend bit is called A and the addend bit B
then the sum bit is 1 when: '

(A OR B) AND NOT (A AND B)

The carry bit is (1) when:

(A AND B) = (1) (Carry)

1 (Sum)

Since the requirement for the carry bit is the same
as one term of that for the sum bit, it should he possi-

88 UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Adders
3.2.1

A

B

:~:I H :1 :
(b)

figure 3-63. Half Adder

ble to use only one AND circuit for (A AND B), tak­
ing the carry output directly from it. An inverter and a
second AND will take care of the AND NOT (or an
inhibit circuit, if pulse transmission is used), and an
OR circuit handles the (A OR B). The arrangement is
shown at (a) of figure 3-63.

This arrangement for adding two binary bits and
producing the proper sum anI carry bits is called a half
adder. The common circuit symbol appears at (b) of
figure 3-63, and it should be remembered that the
symbol may represent any of several possible circuit ar­
rangements, as well as the one at (a).

In operation, if only one input, A or B, is 1, the
output 1 from the OR circuit is applied to one input
of the following AND. The first AND circuit cannot
produce an output with only one input present, so the
carry is (0). This carry is inverted to 1 and applied to
the other input of the second AND circuit, resulting in
a sum bit of 1. If A and B are both l's, the input AND
circuit produces a carry of (1), which is inverted to 0
and applied to one input of the second AND circuit.
With a 0 on one input, this AND cannot provide an
output, even though a 1 comes from the OR circuit, so
the sum bit is o. Finally, if A and Bare O's, both the
sum and carry bits are O's.

An arrangement of this type is called a half adder
because it cannot by itself add two binary numbers, al­
though it can add two bits. The reason can be seen by
performing a sample binary addition, showing the car­
ries from one column to the next:

o.

o.

O.

(1)

o

o

1

(1)

1

o

o

(1)

1

1

1

1

o

Column Carry

Augend

Addend

Sum

Although only two numbers are being added~ some

columns require that three bits be summed because of
the carries from the previous columns. A single half
adder cannot do this, but some means must be found.

First of all, it is necessary to establish a fixed and
definite pattern that will cover all possible addition
problems. The example above used 5-bit words, but in
an actual computer the words might be of any length
and carries could occur in any column. (When the l's
complement system is used to represent negative num­
bers, remember that the end carry, if it occurs, must be
taken around and entered into the least significant col­
umn.) To make the addition pattern regular, the prac­
tical thing to do is consider that there will always be
a carry into each column, but the carry may be (1) or
(0). Thus, the example above becomes:

(0)

O.

O.

O.

(1)

o

o

1

(1)

1

o

o

(1)

1

1

1

(0)

1

1

o

Column Carry

Augend

Addend

Sum

The carry in the least significant column is always
(0) at the beginning of an addition, although an end
carry may have to be entered there later. Unlike the
column carries, the end carry (not shown) is usually
ignored unless it is a (1). Therefore, it is commonly
said that there is no end carry unless it is a (1).

Now, there are three bits to be added in every
column. One half adder will add two of them, but a
second half adder must be used to add the third bit to
the sum of the first two. And, since there will be a
carry of (0) or (1) from each half adder, some addi­
tional logic circuitry is needed to handle the carry to
the next column.

Probably the most common method, shown at (a) of
figure 3-64, is to add the augend and addend bits (A
and B) in the first half adder, producing a temporary
sum bit and a first carry.

1 Augend Bit

1 Addend Bit

0 Temporary Sum Bit

(1) First Carry

Then, in the second half adder, the carry from the
column to the right is added to the temporary sum bit,
producing the column sum bit and a second carry.

0 Temporary Sum Bit

(1) Column Carry

1 Sum Bit

(0) Second Carry

UNCLASSIFIED 89

Adders
3.2.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

COLUMN
CARRY TO
NEXT HIGHER
COLUMN

A

(a)

(b)

B

COLUMN
SUM BIT

Figure 3-64. Full Adder

COLUMN
CARRY FROM
NEXT LOWER
COLUMN

If either the first O'r the second carry is (1), this
must be the cO'lumn carry, since any carry resulting frO'm
additiO'n in a given cO'lumn must be sent to' the next.
NO'tice, hO'wever, that bO'th carries cannO't be l's- if
the first is a (1), as in the example abO've, the secO'nd
can O'nly be (0). SO' all that is necessary to' prO'duce the
cO'lumn carry is to' feed bO'th first and second carries to'
an OR circuit, as shO'wn at (a) in figure 3-64.

The arrangement in this figure 3-64 is a full adder,
sO' called because it can prO'perly handle the carries be­
tween cO'lumns. It is O'nly O'ne O'f a number O'f PO'ssi­
ble arrangements. The usual symbol is shO'wn at (b) O'f
figure 3-64.

CO'nsider nO'w the previO'usly-given additiO'n O'f twO'
binary numbers, 0.0111 + 0.0011, as it WO'uld be per­
fO'rmed by five O'f these full adders in parallel, shO'wn
in figure 3-65.

o o
o o o

(0)

o o

NO'tice that the cO'lumn carries must travel (O'r
"prO'pagate") through all the stages in sequence, frO'm
the least to' the mO'st significant. That is, the additiO'n
in the secO'nd cO'lumn frO'm the right cannO't be com­
pleted until the carry frO'm the first cO'lumn is received,
the additiO'n in the third cO'lumn depends uPO'n the
carry frO'm the secO'nd, etc. The time required for this
carry proptlgation definitely slO'WS dO'wn the additiO'n
process, especially if the cO'mputer wO'rd cO'ntains many
bits. A number O'f methO'ds have 'been devised to' speed
up carry prO'pagatiO'n, but it remains a prO'blem.

The cO'mplete picture O'f the additiO'n prO'blem rep­
resented in figure 3-65 can be seen by examining what
happens inside the adders.

First, the augend and addend bits are brO'ught
frO'm registers where they have been stO'red intO' the
first half adders.

o.

o.

o

o

1

o

1

1

1

1

Augend Bits

Addend Bits

O. 0 1 0 0 TempO'rary Sum Bits

(0) (0) (0) (1) (1) First Carries

Next, beginning in the least significant cO'lumn, the
tempO'rary sum bit is added to' the cO'lumn carry frO'm
the next IO'wer cO'lumn. Remember that this actiO'n takes
place in sequence frO'm right to' left, althO'ugh it ap­
pears belO'w as if simultaneO'us. In the least significant
cO'lumn, the carry is autO'matically made (0). The secO'nd
half adders prO'duce the sum bits and the secO'nd car­
ries, which are cO'mbined with the first carries in the
OR circuits.

0 0 1 0 0 TempO'rary Sum Bits

(0) (1) (1) (1) (0) CO'lumn Carries

0 1 0 1 0 Sum Bits

(0) (0) (1) (0) (0) SecO'nd Carries

Thus, the sum is 0.1010, taking the adder O'utputs
in parallel. Of cO'urse the binary PO'ints dO' not appear
in the machine words.

AUGEND

ADDEND

(0) g~~~~N

F
c S

o SUM

Figure 3-65. P·arallel Adders

90 UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Adders
3.2.1-3.2.2

AUGEND

ADDEND

COlUM N
CARRY

OR

TEMP.
SUM

D

H

2nd

CARRY

figure 3-66. full Adder for Serial Operation

In this manner a digital computer can perform
addition of numbers in parallel form. What about the
addition of numbers transmitted serially?

The principles underlying the two methods are the
same, so a switch to addition of serial binary numbers is
a matter of adapting the circuitry to the requirements
of serial transmission. Half adders and full adders will
still be necessary. Assuming that the numbers are trains
of pulses and blanks, transmitted least significant bit
first, notice that the columns to be added are separated
in time instead of space ("space" meaning the separate
wires of the parallel system). This means that only one
full adder is needed to add two serial binary numbers
of any length, instead of one adder per column.

The basic half adder of figure 3-63 is satisfactory
for serial use, except that the inverter and second AND
circuit would probably be replaced by an inhibit cir­
cuit, which is better suited for pulse work.

The full adder arrangement is changed to that
shown in figure 3-66. Although the adder of figure
3-64 could be made to work for serial numbers, the
handling of carries would become involved with longer
delays.

The operation of the serial full adder is almost
identical to that of a single parallel full adder, except
that the addend bit and the column carry are added
first, then the augend bit is added to the temporary sum
bit that results. Assuming that each successive pair of
bits of the augend and addend arrive at the same in­
stant, the bits of the augend must be delayed to arrive
at the second half adder at the same time as the cor­
responding temporary sum bits. In other words, the aug­
end delay must be equal to that in the first half adder.
Correspondingly, the first carry must be delayed to ar­
rive at the OR circuit at the same instant as the second
carry.

The timing of the entire arrangement must be such

that the column carry gets back to the input of the first
half adder just as the next addend bit arrives.

With these details arranged satisfactorily, the se­
rial adder accepts any two binary numbers, adds them,
and feeds out the sum in serial form, least significant
bit first. The total delay in the adder is usually one bit­
time, so the time required for addition of computer
words containing N bits is N + 1 bit-times. Two S-bit
words, for example, are added in 6 bit-times.

Bit-time 6 5 4 3 2 1

Augend 0 0 1 1 1

Inputs

Addend 0 0 0 1 1

Output Sum 0 1 0 1 0

The parallel method of addition is normally much
faster than this, even allowing for carry propagation,
but on the other hand the serial method requires much
less circuitry.

3.2.2 Accumulators

The adders that have been described above simply
add two numbers and send out their sum. The usual
practice is to feed this sum to a register for temporary
storage. If another number is to be added to it, the sum
must be removed from the register and sent with the
other number to the inputs of the adders, after which
the new sum is stored in the register.

An accumulator is defined as a device that stores a
number, adds to it any new number received, and then
stores the sum. The number previously held in the accu­
mulator is wiped out in the process. Thus, for example,
if an accumulator is cleared and eight numbers are fed
into it, one after another, the number stored at the
end of the process is the sum of the eight.

It is entirely possible to combine a register with
the parallel adders previousy shown to form an accu­
mulator. And in the case of the serial full adder, it is

r---i LONG DELAY t+-

Il

NUMBERS
j S

F
SUM

figure 3-67. Serial Accumulator

UNCLASSIFIED 91

Accumulators
3.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

extremely simple. All that is necessary is to' make a
wQrd-Iength IQQP frQm the sum Qutput line back to'
either the augend Qr addend input line, as shQwn in
figure 3-67.

The wQrd length IQQP thrQugh Qne Qr both half
adders acts as a circulating register. When a number is
fed in, it begins circulating in the IQop (a gate in the
Qutput line is kept clQsed until it is desired to' read Qut a
sum). Each time thrQugh the adder, the number is
added to' zerO' and thus remains unchanged until a new
input number is applied. Timing is very important, as
in all serial circuits, and the arrival Qf each input num­
ber must be timed SO' that the least significant bit is
added to' the least significant bit Qf the circulating num­
ber. When this is prQperly dQne, the new number is
added to' the stQred number and the sum remains in
the IQQP. The number Qriginally stored is wiped out
in the additiQn process. In this manner, the accumula­
tor stores the sum Qf all numbers fed to it.

Parallel accumulators using 1lip-flQPs to add by a
counting action in each column are found in many digi­
tal cQmputers. There are a large number Qf' different
circuits for these, but the chief differences are in the
methods Qf handling carries.

-

-

One Qf the simpler arrangements appears in figure

1°

I

I
~

/3
2

•

FF I I
~

OR
l_
I

•

GT I
I~

I
I

.~

0

I I :::r: FF

•

•
0 I OR I

I-
- I

GT I
.~ .~

I
I

3-68, which shQWS fQur stages Qf a parallel accumu­
latQr. The bits Qf the number (the addend) to' be added
to' that in the accumulatQr may be stQred in a flip-flop
register (nQt shQwn). The 1 Qutputs from the register
are applied to' the gate tubes as inputs to' the accumu­
latQr. Thus, the Qnly gate tubes cQnditiQned are thQse
receiving the l's in the input number. (It WQuld be PQS­
sible, as always, to' use AND circuits in place Qf the gate
tubes.)

When the addend has been IQaded intO' the stQrage
register and the gate tubes are cQnditiQned, the add
pulse is applied. Pulses are gated thrQugh the cQndi­
tioned GT's and applied, thrQugh the OR circuits, to

the cQmplement inputs Qf the corresPQnding flip-flQPs.
These flip-flQPs change state, "cQunting up" by 1 in each
cQlumn that receives an addend 1.

When the 1lip-flQP in any cQlumn changes to' the 0

state, a carry pulse is sent to' the next higher cQlumn
(delayed until the input pulse dies out). It is possible,
of CQurse, that SQme Qf these carries may cause Qther
carry pulses frQm the stages receiving them. Thus the
carries travel automatically through all the columns. At
the cQmpletiQn Qf the carry propagatiQn prQcess, the
number left in the accumulatQr is the sum Qf the
number previQusly stQred there and the input number.

OUTPUT SUM

I

0

I I ::::~ FF

I~

,

0 OR -
- •

GT I
• ~

0
::::::::

I 0
l -

I
•

FF

~

GT

0" 2
.~

I I

•

I
ADD
PULSE

2 3 22 21 20

,~---~/
INPUT NUMBERS

Figure 3-68. Parallel Accumulator

92 UNCLASSIFIED

PART 3
eH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Accumulators
3.2.2-3.3

CARRY
TO NEXT
HIGHER
COLUMN

ADDEND
BIT

SUM BIT

CARRY
FROM NEXT
LOWER
COLUMN

Figure 3-69. Stage of Accumulator With Faster Carry Propagation

This sum can be read at any time on the output lines
shown. The entire accumulator can be cleared by pulsing
the clear inputs of all the flip-flops.

Although the carry propagation in this accumula­
tor is automatic, it is quite slow because the carry delays
act in series. In other, faster methods, carries are
switched to the proper columns without passing
through each flip-flop; in some cases they are generated
by sampling the addend and augend bits before addi­
tion begins, or even added simultaneously, although the
latter method requires so much switching it is seldom
practical for more than three or four stages.

One stage of a fairly common type of parallel ac­
cumulator appears in figure 3-69. Again the bits of
the addend are assumed to be stored in a flip-flop reg­
ister. If the addend bit applied to a given stage is a 1,
GT 2 of that stage is conditioned and the add pulse
is gated to OR 2 to switch the flip-flop.

As soon as the flip-flops have been switched, the
logic circuits are prepared for the carry-handling proc­
ess, which cannot occur, however, until a carry pulse is
applied to the AND circuits of all stages. After the ad­
dition of the addend, if the flip-flop is in the 0 state and
the addend bit is a 1, then the addition in this column
must have been 1 + 1 = 0 and a carry of (1) has to be
developed. This is done by the AND circuit when the

carry pulse arrives. The pulse passes through OR 3 to
the stage representing the next higher column.

If, on the other hand, the flip-flop is in the 1 state,
any carry from lower columns must switch it to 0 and
develop a new carry. To save propagation time, how­
ever, GT 3 is conditioned by the 1 side of the flip-flop
and a carry pulse arriving under this condition is gated
without delay through GT 3 and OR 3 to the next
higher column. In this manner, a carry pulse can
quickly be switched through several consecutive columns
(stages) indicating l' s. This is called "ripple-through"
carrying.

In each stage where a carry is received (or passed
through), it is delayed and then fed through OR 2

to switch the flip-flop. The delay allows the pulse on
the carry line to die out before the flip-flop changes
state, preventing the development of a false carry
through the AND circuit O'r GT 3.

With accumulators operating along lines similar to
these, carry-handling is considerably faster than in the
first type shown.

3.3 SUBTRACTION

The rules of binary subtraction can be tabulated
like those of addition. The four possible cases are:

UNCLASSIFIED 93

Subtraction
3.3-3.4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

0 1 0 1 Minuend Bit

-0 -0 -1 -1 Subtrahend Bit

0 1 1 0 Difference Bit

(0) (0) (1) (0) Borrow Bit

It is possible to build a half subtracter that will
accept any two bits and produce a difference bit and a
borrow bit according to these rules. A full subtracter
can be made with two half subtracters and an OR cir­
cuit.

In practice, however, subtracters are almost never
used. Compare the above table to the table for addition
and it becomes apparent that the difference bits are
exactly the same as the sum bits for the same cases. The
only change is that the two right-hand borrow bits are
the opposites of the corresponding carry bits.

In addition:

o 1

(0) (1) Carry Bits

But in subtraction:

o 1

-1 -1

1 0

(1) (0) Borrow Bits

Since these are the only differences between addi­
tion and. subtraction, it is comparatively easy to modify
an adder into an adder-subtracter, a device that can
either add or subtract in response to the control sig­
nals sent to it. An accumulator can be modified for the
same purpose. In the adder, it is only necessary to sup­
press one possible carry and generate one borrow when
the command to subtract is received. Two inhibit cir­
cuits with AND inputs accomplish this. In an accumula­
tor, a borrow should be produced when a Hip-flop
changes to the 1 state (and the subtrahend bit is 1) and
borrows should be passed through any stages that are
in the 0 state. For subtraction, therefore, switching is
added to interchange the 0 and 1 output lines from
each accumulator flip-flop.

Probably the most common subtraction method of
all, however, is to add the complement of ~the subtra­
hend to the minuend. Straightforward adders or accu­
mulators are used and the only extra switching required
is to complement the numbers. If the subtrahend is fed
to the accumulator from a flip-flop register, addition or
subtraction can be handled very easily by inserting gates
in all the 1 and 0 output lines from the register flip-

flops, as shown in figure 3-70. If addition is to be per­
formed, the 1 gates are pulsed and the number in its
true form is sent to the accumulator or adders. For sub­
traction, the 0 gates are pulsed, feeding out the l's
complement of the number in the register.

Another common practice is to complement the
subtrahend right in the register and then add. Only the
normal set of gates is required.

The 2's complement is more difficult to obtain di­
rectly. The effect of using it can be accomplished by
generating the l's complement, as above, but adding 1

as the carry to the least significant place in the accu­
mulator and allowing any resulting carries to propa­
gate.

In many computers, negative numbers are kept in
complement form at all times and are even stored in
memory in this form. This makes addition and subtrac­
tion very easy, although there are some pitfalls. For
example, when a positive number is subtracted directly
(not by complementing and adding) from another
smaller than itself, the subtraction circuitry always gives
the negative difference as the 2's complement of the
true answer. This is due to the cyclic nature of the
numbering system. The 2's complement can be changed
to the l's complement by bringing around and subtract­
ing the end carry. It is often easiest to keep such a neg­
ative number in complement form and, by so doing,
the problem of keeping track of changing signs is han­
dled automatically.

The comparative advantages of the l's complement
against the 2's complement are difficult to evaluate
and the choice of one or the other for use depends
upon the overall requirements of the computer.

With the l's complement system, complementing is
easy, but end carries must be handled (requiring extra
propagation time) and there are two values for zero, as
explained in Part 2. The positive zero value, 00000,
never occurs as a result of addition or subtraction; in­
stead, it is always negative zero, 111111, that appears
in these cases. This can be awkward since it is often
desirable to have zero appear as a positive number. In a
computer using serial transmission, the end carry can
be handled only by passing the sum through the adder
a second time, which makes addition or subtraction com­
paratively slow.

The end carry does not occur with the 2's comple­
ment system and zero is always positive, 00000, so de­
spite the greater difficulty of forming complements, this
system offers certain definite advantages, especially for
serial operation.

3.4 MULTIPLICATION

The binary multiplication table consists of only
the first two places of the decimal table, and hence is
very simple.

94 UNCLASSIFIED

PART 3
CH 3

Multiplier

Bit

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

ADDERS OR
ACCUMULATOR

REGISTER FLlP- FLOPS

Figure 3-70. Arrangement for Transfer of True or l'S Complement Number

o 1 Multiplicand Bit

o o o

1 o 1

Multiplication
3.4

I GATES

TRUE
(ADD)

From an example, it can be seen that the whole
process is relatively uncomplicated:

Each partial product, in binary as in decimal mul­
tiplication, is the product of the multiplicand and one
bit of the multiplier. Since the binary bits can only be
o or 1, each partial product must therefore be either
zero or the multiplicand. The only arithmetic process
actually involved, therefore, is addition, so it should
be possible to perform multiplication with adders or,
better, with an accumulator. Note, however, that each
partial product must be shifted a number of places equal
to the position of the multiplier bit.

DECIMAL

11

14

44

11

154

BINARY

01011 Multiplicand

01110 Multiplier

00000

01011 Partial

01011

01011 Products

00000

010011010 Product

The zero partial products in the binary example
seem to be unnecessary, but a shift must occur for every
multiplier bit, even if nothing is added to the partial
products. This becomes especially important when it is
recalled that the arithmetic circuitry cannot add a col­
umn of numbers such as these partial products simul­
taneously, but instead must add them two at a time.

One problem that complicates the picture is the
fact that the maximum length of the product equals the
length of the multiplicand plus the length of the multi­
plier. Most computers are built to handle words of
some fixed length, so for a word length of N bits, the

UNCLASSIFIED 95

Multiplication
3.4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

product must contain 2N bits. The example given previ­
ously showed a product of 2N-1 bits, but only because
the multiplicand and multiplier were small in compari­
son to the largest possible 5-bit number, which is 11111.
When larger whole numbers are multiplied, a carry
occurs from the last place on the left, making the
product 2N bits long. For example:

10110 Multiplicand

11001 Multiplier

10110

00000 Partial

00000

10110

10110

Products

1000100110 Product

A great many computers, however, use fractional
binary numbers and carry negative numbers in comple­
ment form. In this case, the most significant bit is the
sign bit and the binary point always appears immedi­
ately to the right of it. Again using 5-bit numbers as an
example, the largest possible positive nUmber is 0.1111
and the largest negative number is either 1.0001 (2's
complement) or 1.0000 (l's complement).

The location of the binary point in the product is
determined in the same manner as in decimal multiplica­
tion-by counting off the number of fractional binary
places in the multiplicand plus the number of fractional
places in the multiplier. For words of N bits (including
sign), since each contains N-1 fractional binary places,
the product must contain 2N-2 places to the right of
the decimal point. Adding one bit in the most signi­
cant place to indicate the sign, the total length of the
product becomes 2N-1 bits when fractional numbers
are used.

0.1011 Multiplicand (N)

0.1110 Multiplier (N)

00000

01011 Partial

01011

01011 Products

00000

0.10011010 Product (2N -1)

As long as both multiplicand and multiplier are
positive numbers, no carry beyond the most significant
place can occur. This brings up the question of how to
handle negative numbers in complement form, which

obviously cannot be multiplied according to the rules
for positive numbers since, for one thing, these rules
do not allow for filling out partial products with chang­
ing signs. For example:

-0.1111 Negative Multiplicand

0.1001 Positive Multiplier

-0.0000 1111 1st Partial Product

The first partial product is negative, according to
the rule of signs which states that a negative times a
positive yields a negative. The 2's complement of this
first partial product is 1.11110001. But, following the
regular rules of multiplication and using the 2's com­
plement of the multiplicand:

1.0001 Negative Multiplicand

0.1001 Positive Mutiplier

0.00010001 1st Partial Product

So, this partial product is incorrect because it is not
the 2' s complement of the true value. One solution is to
devise new multiplication rules, which can be done
quite easily for the 2's complement system but is some­
what more complicated when the l's complements are
used.

Actually the easiest method, and probably the most
commonly used, is to put all numbers in true (positive)
form before multiplying. This can be done by testing
the sign bits of the multiplicand and multiplier, com­
plementing either or both of these numbers to make
them positive, and then complementing the product
after the multiplication, if it should be negative.

The sign of the product of any multiplication is
determined as follows:

MULTIPLICAND & MULTIPLIER PRODUCT

Both positive Positive

One negative

Both negative

Negative

Positive

In the arithmetic circuitry, this is easy to handle. A
sign flip-Hop is cleared before the signs of the multipli­
cand and multiplier are sensed (tested for value). If
either number is found to be negative, the Hip-Hop is
complemented at the same time as the number. Thus,
after the process, the Hip-Hop indicates 0 if both num­
bers were positive or if both were negative (in the lat­
ter case, it is complemented twice). It indicates 1 if one
number was negative, the other positive. The output of
the Hip-Hop, therefore, can be used to indicate whether
or not the product must be complemented.

Another problem is introduced by the fact that the
product of a multiplication is nearly twice the fixed

96 UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Parallel Methods
3.4-3.4.1

word length that can be handled by the computer cir­
cuits. With the sample 5-bit words given previously,
for example, the products are 9 bits long if the numbers
are fractional.

An obvious answer in the case of fractional num­
bers is simply to chop the product to length, retaining
the proper number of most significant bits. Thus, in
the last full-length example, the product, 0.10011010,
would be chopped down to 0.1001. Actually, however,
this is not very accurate because the part being thrown
away makes this product closer in actual value to 0.1010
than it is to the retained value of 0.1001. What is needed
to avoid sizable errors, then, is a method of rounding
o fJ to the nearest value.

This is done exactly as in the decimal system, ex­
cept that it is somewhat easier. A decimal number such
as 33.X is rounded off to the nearest whole number
value by observing whether O.X is more or less than
half the corresponding power of the radix. If less than
half (0.0 to 0.4), the actual value is nearest 33.0; if
half or more (0.5 to 0.9), the nearest whole number is
34.0. This can be done mechanically, without thinking,
by adding half the corresponding power of the radix
in the most significant place to be dropped, then chop­
ping.

For example:

33.X 33.2

+ .5 round off

33.7

33 chop

33.X 33.6

+ .5 round off

34.1

34 chop

In the binary system, half a given power of the
radix is a 1 in that place. To round off the binary
product shown above, therefore, a 1 is added to the
most significant place to be thrown away, which is the
fifth place to the right of the decimal point:

0.10011010 product

+ 1 round off

0.10100010

0.1010 chop

The round-off of whole numbers becomes involved
with the question of significance of digits, and round­
off methods are usually suited to the particular applica­
tion, with variations too great to be covered here.

The foregoing are some of the major problems en-

countered in preparing to "mechanize" binary multipli­
cation; that is, to design circuitry capable of perform­
ing it.

3.4.1 Parallel Methods
Certainly the most common approach to multipli­

cation in computers handling numbers in parallel form
is the repeated addition of the multiplicand, with appro­
priate shifts, in a set of adders or an accumulator. The
multiplier is stored separately and its bits are used in
sequence to determine whether the multiplicand or zero
is added to the accumulated sum of the partial products.

(It is possible to build a "simultaneous multiplier"
that accepts the multiplier and multiplicand simulta­
neously and produces signals representing the product,
but this requires so much equipment that it is seldom
practical for numbers of useful length.)

The problem of shifting can be attacked in either
of two ways. That is, the multiplicand can be shifted
to the left between entries into the accumulator, or the
accumulated sum of the partial products can be shifted
to the right after each addition.

Since the multiplicand is usually held in a register
and gated into the accumulator, one solution is to use
a shifting register of extra length. In multiplying two
numbers, each N bits long, N-l shifts must be made,
so the register must contain N + (N-l) = 2N-l
places. There must be a gate for each place, so the
"gate string" is the same length as the register.

At the start of the multiplication problem, the
multiplicand is loaded into the N places at the right
of the register and shifted one place left after each
entry into the accumulator. This type of arrangement,
using 5-bit numbers as an example, appears in figure
3-71.

The gating of the multiplicand into the accumulator
is done by the multiplier bits, stored in another register
and fed into the accumulator one at a time, least signi­
ficant bit first. When the multiplier bit is a 0, the gates
are not opened and nothing (a zero partial product)
is added to the accumulator contents. The multiplier
bit (inverted if it is a 0) is delayed long enough to
allow proper gating and then applied to shift the con­
tents of the shifting register one place to the left. (The
diode prevents an inverter output from getting back to
act as a false gate signal.)

The accumulator itself must also be increased in
length - to 2 N places if the computer uses whole num­
bers, 2 N -1 places if fractional numbers are used. If
the extra place on the left (not shown in fig. 3-71) is
needed, its only input is a possible carry from the most
significant place shown here.

The rounded-off product is taken from the N most
significant places of the accumulator. The rounding-off
is accomplished by adding a 1 in the place shown after
the product has been formed (or at any convenient time

UNCLASSIFIED 97

Parallel Methods
3.4.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

MULTI PLiCAND

SHIFTING

REGISTER

GATES

ACCUMULATOR I

/

.~ ~

U tJ U U U U
r I , r

r I I , , ,r

I

ROUNDOFF I
r , , , ,

'~ ______________________ -J/

PRODUCT

~ ~ ~
~

SHIFT
0 - -

.~

-
tJ U 1~ I

• I , • r
~ GATE

•

MULTIPLIER
BITS

II

"

I

Figure 3-71. Shifting Register Feeding Accumulator for Multiplication

during the summing of the partial products).
In operation, the register and accumulator are both

cleared and the multiplicand is loaded into the shifting
register while the multiplier is placed in a register of its
own. (If necessary, each is complemented to put it in
positive form and a sign Hip-Hop is set.) Assuming the
multiplicand and multiplier to be 0.1011 and 0.1110,

respectively, the shifting register and accumulator at
this point contain:

01011 Reg

000000000 Acc

(The unfilled spaces in the register contain O's;
they are omitted so the position of the multiplicand can
be clearly seen.) Now, the least significant bit of the
multiplier, 0, is brought in. It cannot fire the gates, but
it does cause a shift after a short delay. The result of
this "add zero and shift" is:

01011 Reg

000000000 Acc

The next multiplier bit is a 1, which has the effect
of a command to "add multiplicand and shift." This
gates the multiplicand down into the accumulator before
another shift is made. F oUowing this first 1:

01011 Reg

000010110 Acc

The next two multiplier bits are also l's, each of
which also adds the multiplicand into the corresponding
places of the accumulator and then shifts the multi­
plicand. The effects are:

01011 Reg

001000010 Acc

01011 Reg

010011010 Acc

The last multiplier bit is a o. Furthermore, it must
always be a 0, because these fractional numbers are al­
ways placed in positive form before multiplying. There­
fore, the multiplier sign bit can have no effect on the
product, which is already in the accumulator. To save
multiplication time, the sign bit can be suppressed or
dropped out of the circuitry and the time that would
otherwise be spent in uselessly shifting the multiplicand
again Qln be used to round off. If the multiplier sign
bit is dropped, the most significant place in the shifting
register and gate string can be eliminated.

The round-off process is:

010011010 Acc

1 Add 1 to round off

01010 Rounded product

• UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Parallel Methods
3.4.1

B A

2

3

I I ,~ ,- ,~ ,- I I I' -
I AND I I AND I AND I I AND I AND I I AND I

~ I ~ I
~ ~

OR I I OR I

I , I ,~

Figure 3-72. Gating and Shifting by Switching

This is the basis of one common approach to par­
allel multiplication. There are, of course, a number of
different ways to accomplish the same results. One fault
of the arrangement shown in figure 3-71 is that it uses
a considerable amount of extra circuitry, since the shift­
ing register, gate string, and accumulator must all be
extra-length.

One possible modification would be to use a word­
length storage register for the multiplicand and to use
switching networks to accomplish both gating and shift­
ing at the same time. An arrangement of this sort, ca­
pable of shifting two bits in parallel to any of three
places on receipt of a signal on the 1, 2, or 3 line, is
shown in figure 3-72. A control signal on the 2 line,
for example, causes a shift of two places to the left. The
number of AND circuits alone, however, amounts to the
product of bits and shifts, so the method is not practical
for large numbers.

An alternative, mentioned earlier, is to shift the
accumulated sum instead of the partial products them­
selves. To do this requires a shifting accumulator, which
IS easily made by adding shifting lines and gates to the
usual accumulator.

The shift must be to the right, to line up the accu­
mulated sums properly with the multiplicand, so the
accumulator must be extended to the right. The multi­
plicand can be held in a simple, word-length storage
register since it is not shifted. This means that the

multiplicand is always entered into the same places of
the accumulator; hence the accumulator extension to the
right need only be a shifting register, since no addition
is performed there.

The arrangement is shown in figure 3-73. If the
computer uses whole numbers instead of fractional num­
bers, one additional accumulator place on the left must
be provided to take care of possible carries out of the
most significant place. These do not occur with positive
fractional numbers. If the product is to be rounded off,
the place where the round-off 1 is added must also be an
accumulating place to handle the addition.

Since the accumulator and shifting register are
cleared at the beginning of the multiplication opera­
tion, there is no reason why the multiplier cannot be
stored in the shifting register. It is true that one bit of
the multiplier is lost after each shift, but only after it
has been used to determine whether zero or the multi­
plicand should be entered, so the loss makes no differ­
ence.

The shift can be made to occur automatically after
each addition or, if the multiplier bit is a 0, after it is
determined that zero is to be added.

The operation from this point on is illustrated be­
be followed by observing the contents of the combined
accumulator-shifting register, since the multiplicand
does not shift. The multiplier and multiplicand are com­
plemented to positive form, if necessary, before the

UNCLASSIFIED 99

Serial Methods
3.4.1-3.4.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

STORAGE
REGISTER

GATES

ACCUMULATOR
AND SHIFTING
REGISTER

MULTIPLICAND

'~ ______________________ -J/

PRODUCT

ROUND OFF I

,~--------------------~/
MULTI PLiER

Figure 3-73. Shifting Accumulator Used for Multiplication

multiplication begins. This may be done before they
arrive in the arithmetic circuitry, or after they are in
the registers. The sign flip-flop is set during this process
to indicate the sign of the product.

The operation from this point on is illustrated be­
low by multiplying the same two numbers as in the
previous example, 0.1011 and 0.1110. The multiplier
bits are enclosed in parentheses to make it easier to
keep track of them in the shifts.

o. 1 0 1 1 Multiplicand

0 0 0 0 0(0. 1 1 1 0)

0 0 0 0 0(0. 1 1 1 0)

0 0 0 0 0 0(0. 1 1 1)

0 1 0 1 1 0(0. 1 1 1)

0 0 1 0 1 1 0(0. 1 1)

1 0 0 0 0 1 0(0. 1 1)

0 1 0 0 0 0 1 o (0. 1)

1 0 0 1 1 0 1 o (0. 1)

0 1 0 0 1 1 0 1 0 (0)

1

O. 1 0 1 0

Accumulator

Add zero

Shift

Add multiplicand

Shift

Add multiplicand

Shift

Add multiplicand

Shift

Round off

Product

Again, the sign bit of the multiplier can be sup­
pressed and an unnecessary shift eliminated. Had either
the multiplier or the multiplicand (but not both) been
negative, the sign flip-flop would have been set to 1

and this would be used as a signal to complement the
product.

The use of a shifting accumulator to perform
multiplication in this manner is very common. There
are a number of possible variations in circuitry, of
course, but the basic approach is the same.

3.4.2 Serial Methods
Although the principles remain the same, the mul­

tiplication of numbers transmitted serially involves dif­
ferent methods and, again, timing is very important.

It is apparent that the repeated additions can be
performed only by passing the multiplicand and accu­
mulated partial products through an adder the proper
number of times, shifting each time. Thus, the serial
methods are slower than the parallel.

A serial number can be shifted to the left simply
by delaying it, as shown in figure 3-74. This is purely
a matter of relative timing, of course, and the shift is
not noticeable or important except in comparison with
an unshifted number or control signal. In the figure,
a number is shown being fed directly to one input of a
full adder and, in a branch circuit, being delayed one

100 UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Serial Methods
3.4.2

10101-... --------~

ID

FULL
ADDER

10101

10101
111111 SUM

Figure 3-74. Shifting by Delay of Serial Number

L..-----_~A

r-------~B

Figure 3-75. Shifting With Circulating Registers

bit-time before being applied to the other input. On the
direct line, the least significant bit reaches the adder at
a bit-time that can be called Tl. In the branch, however,
the I-bit delay holds up the least significant bit until T2.
All the following bits are also delayed in this branch,
so the I-bit delay shifts the number 1 place to the left
in comparison to the undelayed number.

A shift to the right would mean advancing a num­
ber in time, which is impossible. This is unimportant,
actually, since any shift must always be relative to some
other number and shifting one to the left has the same
effect as shifting the other to the right. This suggests

the use of circulating registers of different lengths to
obtain regular shifts, such as those required in multi­
plcation. Figure 3-75 shows two registers with delays
of Nand N + 1 bit-times, respectively, where N equals
the computer word length.

If words A and B are inserted in the registers
simultaneously, word A makes a circuit of the register
in N bit-times, while word B requires one extra bit-time
to make a complete circuit. Therefore, if they start at
the same instant and are of the same length, word B
shifts one place to the left relative to word A for each
circuit of the registers. Using 3-bit words as an illus­
tration, the results are shown in table 3-2. The bit
positions are numbered in order of significance and
time reads from right to left to show more clearly the
manner in which the words shift.

Only two shifts are possible with 3-bit numbers, of
course, but only N-I shifts are required in any mul­
tiplication, so this arrangement can provide the neces­
sary number. Since word B shifts to the left, this must
represent the multiplicand and word A must represent
the accumulated sum of the partial products. (The bits
of word B, therefore, do not change, but the A bits may
change after each addition; remember that AI, A2, etc.,
show bit positions, not the actual bits occupying them.)
To obtain the accumulated sums, the N register has to
be looped through a serial full adder, as shown in sim­
plified form in figure 3-76. The N + 1 register, con­
taining the multiplicand, must feed the other adder
input. A gate controlled by the multiplier stored (else­
where) lets through the multiplicand or zero, depend­
ing upon the multiplier bit.

TABLE 3-2. WORD SHIFTS IN CIRCULATING REGISTERS

BIT-TIME

N Reg

N + 1 Reg

12

A3

o

MULTIPLIER -

11

A2

B3

~

GATE

10

Al

B2

I

-

9

A3

BI

N

8

A2

o

DELAY

S

-1 F

MULTI PLiCAND

I N+I

l DELAY

7

Al

B3

• I-

• I
I

6

A3

B2

I
GATE

CONtROL

5

A2

BI

J-.

4

Al

o

PRODUCT

Figure 3-76. Basic Arrangement for Serial Multiplication

UNCLASSIFIED

3

A3

B3

2

A2

B2

Al

BI

101

Serial Methods
3.4.2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 3
CH 3

The N register must be cleared at the start of the
multiplication process. Although the delay itself is
marked N, this actually must be the total delay around
the loop, including the full adder and the gate. The
multiplicand, complemented if necessary t.o place it in
positive form, is loaded into the N + 1 register. The
multiplier, also in positive form, is stored in a register
from which it can control the multiplicand gate.

The first time through the adder, the multiplicand
is added to the zero in the cleared N register, resulting
in the first partial product. The next time around, the
multiplicand is shifted and added to this, giving the ac­
cumulated sum of the first and second partial products.
After each addition, the least significant bit of the accu­
mulated sum is actually a product bit because the multi­
plicand will be shifted before being entered again. This
product bit is taken out and stored elsewhere, since the
N register will hold only N bits. An example will show
this more clearly.

MACHINE PENCIL AND PAPER

000 101

+101 Multiplicand 111

101 A 101 A

+101 Multiplicand 101 B

111(1) A + B 101 C

+101 Multiplicand 100011

1000(11) A + B + C

This is done in the arrangement of figure 3-76
by first adding the multiplicand to zero in the cleared N
register. Table 3-3 shows the complete timing of this
serial multiplication.

A3

B3

(A4)A3

A2

B2

A2

Al

Bl

Al

000 NReg

101 Multiplicand

(0) 101 1st Partial Product

The least significant bit in the Al position of this
first partial product (which is the first accumulated
sum) is the least significant bit of the final product. It is
not involved in any further additions and therefore is

gated by a control pulse out of the N register to a
separate register that stores the product bits. This oc­
curs immediately after the Al bit is formed (bit-time 1
in table 3-3). The bits in places A2 and A3, plus the
carry (in the place left vacant by the removal of the Al
bit), are sent through the N register. The bit in the A2
place reaches the adder input again at bit-time 5, along
with bit Bl of the shifted multiplicand, making its sec­
ond pass.

(A4)

B3

(A5) A4

A3

B2

A3

A2

Bl

A2

(0)10

1 01 Multiplicand

(0) 1 11 Acc Sum

This time, the new bit in the A2 place is gated to
the product register and the new carry (A5) is returned
at bit-time 8 to fi11 out the accumulated sum to N bits.
On the last pass of the multiplicand:

(AS) A4 A3 (0)11

B3 B2 Bl 1 01 Multiplicand

(A6) AS A4 A3 (1) 0 00 Acc Sum

These are the final product bits and all are gated
out to the register, the exact method depending upon
the control circuitry. Rounding off and chopping the
product to length can be done in the adder and gate, if
desired. Notice that bit (A6) occurs at bit-time 12 as a
carry but is actually the most significant bit of the
product. It is treated as a normal product bit, of course.

This is the basic approach to serial multiplication.
Many variations are possible, as in all the arithmetic
methods, but all are comparatively slow due to the need
for passing the multiplicand repeatedly through the
adder. Since the multiplicand plus shift is N + 1 bit­
times in duration, and it must go through the adder N
times, the minimum time required for serial multiplica­
tions is N (N + 1) bit-times. If fractional numbers in
true (positive) form are used and multiplication by the
sign bit is suppressed, N2 bit-times are required, so the
saving is minor in comparison to the speed of parallel
methods.

Obviously, the multiplication could be speeded up
enormously if a method could be found that required
only one passage of the serial multiplicand. It is equally

TABLE 3-3. TIMING OF SERIAL MULTIPLICATION

BIT-TIME 12 11 10 9 8 7 6 5 4 3 2

NReg (A6) AS A4 A3 (AS) A4 A3 A2 (A4) A3 A2 Al

N + 1 Reg 0 B3 B2 Bl 0 B3 B2 Bl 0 B3 B2 Bl

Product A6 AS A4 A3 A2 Al

102 UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Division
:3.4.2-3.5

~D~'r~~LlCAND-IO...:...:....1 ___ ,..-----------t~---------__.

GT

3rd PARTIAL
PRODUCT

10

GT

2nd PARTIAL
PRODUCT

101
101
I III

GT

1st PARTIAL
PRODUCT

101
I III

100011
PRODUCT

'ow •••• FULL ADDER • ___ 1 FULL ADDER

Figure 3-77. Serial-Parallel Multiplication

obvious that this cannot be done with a single adder,
but adders are comparatively cheap and speed is very
important in many or most computers.

The clue to such a method, often called serial­
parallel multiplication although it is basically a serial
method, appeared in figure 3-74. This figure illustrates
the possibility of shifting a number and adding it to
itself, which is what must be done many times over in
multiplication.

Consider that the delay in a serial full adder is
usually (or can easily be made) one bit-time, and it
becomes apparent that the sum shown in figure 3-74
has been shifted one place to the left in comparison
with the input number. This must be the case, since the
first bit of the input word reaches the adder input at
bit-time 1 on the direct line, but the first sum bit does
not emerge until bit-time 2 because of the delay through
the adder.

BIT-TIME 7 6 5 4 3 2 1

Number 1 o 1 o 1

Delayed 1 o 1 o 1

Sum 1 1 1 1 1 1

This immediately suggests that the input number
might be fed simultaneously at bit-time (1) to one input
of a second adder and the shifted sum to the other in­
put, to produce a second shift and addition. Figure
3-77 shows two adders used in this fashion to multiply
the same pair of 3-bit numbers shown in the serial
method. Through gates controlled by the bits of the
multiplier, held in a serial-parallel register, all the par­
tial products are entered simultaneously. The 3rd par­
tial product is shifted by the I-bit delay circuit and
added to the 2nd. The sum of these two is shifted by
the delay in the first adder and added to the 1st partial
product.

To multiply numbers N bits long, N-l adders are

required and the necessary N-l shifts are obtained in
the series adder string. The only delay in producing the
final product is that introduced by the last adder, one
bit-time, so the product begins emerging at bit-time 2.
Since the longest possible product is 2N bits, the maxi­
mum time required for this serial-parallel multiplica­
tion method is 2N + 1 bit-times.

3.5 DIVISION

Division is a process of repeated subtractions. It
appears, at first glance, to be the direct opposite of
multiplication, but there are important differences, in­
cluding the factor of trial and error.

The division operation consists of repeated attempts
to subtract the divisor, first from the dividend and then,
with appropriate shifts, from the successive remainders.
The element of trial and error occurs because the di­
visor either "goes" or "does not go" into any given
remainder, depending upon whether the remainder is
larger than the divisor.

In pencil-and-paper work (binary), if the divisor
"goes," a 1 is recorded in the quotient and the sub­
traction is performed, leaving a positive balance as the
new remainder. If the divisor "does not go," a 0 is re­
corded in the quotient since the divisor is larger than
the remainder and, if the subtraction were performed,
the balance would be negative (in 2's complement form).
Actually, a variety of subtraction is done mentally in
comparing the sizes of the remainder and divisor. When
the divisor does not go, the previous remainder must
be restored, the divisor shifted one place to the right,
and a new trial made. The necessity for backing up to
the previous remainder gives this process its name, the
restoring method.

This method is satisfactory for pencil-and-paper
division because the remainder and divisor can be in­
spected and no subtraction is made if the divisor is
larger. In computer circuitry, it would be possible to
compare the two numbers before subtracting, but this is

UNCLASSIFIED 103

Division
3.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 3

time-consuming and would make division even slower
than is otherwise necessary. It turns out to be just as
practical to go ahead and subtract. If the balance is
positive, a 1 is placed in the quotient, and the balance
becomes the new remainder from which the shifted
divisor is subtracted in the next step.

If, however, the balance after subtraction is nega­
tive, a 0 goes in the quotient and the previous remainder
must be restored for the subtraction in the next step.
The simplest way to restore the remainder is to add the
divisor back in. For example:

0110011 Remainder

01110

(-)1111011

01110

0110011

01110

(+)0010111

Etc.

Subtract Divisor

Balance (Quotient Bit 0)

Add Divisor

Previous Remainder

Shift and Subtract

Balance (Quotient Bit 1)

This process can be performed, of course, in a set
of parallel adders, in a shifting accumulator, or in a
serial adder with circulating registers. In short, by add­
ing the proper control circuitry, it can be done in any
of the arrangements shown for multiplication, except
the serial-parallel. The necessary shifts can be accom­
plished by shifting the divisor to the right or the re­
mainder to the left, whichever is most convenient. The
usual practice is to shift the remainder.

The restoring method of division is slow because
of the extra time required to add the divisor back in
each time a negative balance occurs. Analysis of the
process shown in the above example indicates that the
divisor is added to the negative remainder, then shifted
one place to the right (which divides it by 2), and
subtracted to obtain the next balance. Adding the di­
visor and then subtracting half of it has the same effect
as adding half the divisor, which could be done in one
step instead of two.

Thus, the restoring process can be eliminated and
the same result obtained by shifting and adding the
divisor when the balance from the previous subtraction
is negative. Since there is no need to back up to the
previous remainder, this is a non-restoring method of
division. Using the same example as before, it works
like this:

0110011 Remainder

01110

(-)1111011

01110

(+)0010111

Subtract Divisor

Remainder (Quotient Bit 0)

Shift and Add

Remainder (Quotient Bi.t 1)

This is considerably faster for machine computing
than the restoring method.

In the case of computers using fractional binary
numbers, a special restriction is placed upon division.
Since a machine of this type cannot hold (without error)
a number as large as + 1, the dividend must not be
equal to or larger than the divisor, for the quotient
would then be +1 or greater. The computer would
perform such a division but the answer would be com­
pletely misleading, due to the nature of the numbering
system. It is therefore up to the programmer to make
certain that such a situation does not occur. Because of
this restriction on fractional numbers, there are two
possible approaches to starting the division process with
these numbers.

The first step in some computers is to line up the
binary points in the divisor and dividend and subtract.
If the balance is negative, this is proof that the dividend
is smaller than the divisor and the quotient will fit the
machine. A positive balance from this first subtraction,
however, indicates the impossible situation. The sign
of this balance can be used to' stop the division process
or warn the operator or, in some cases where an approx­
imation will serve, write the largest positive or negative
quotient the machine will hold.

Other computers have no built-in protection against
an incorrect division. In these cases, division may start
with an initial shift since it is assumed that the subtrac­
tion of the lined-up divisor and dividend would always
yield a negative balance.

The easiest way to obtain a clear picture of the
mechanization of division is to follow a problem as it
is handled by a typical machine. Figure 3-78 shows,
in simplified form, a parallel arrangement for division
using a shifting accumulator.

In this case, the accumulator and shifting register
connected to it are set up to shift to the left, since the
dividend (and therefore all succeeding remainders) will
be held and operated upon in the accumulator. There is
no actual need for a connection between the least signi­
ficant place of the accumulator and the most significant
of the shifting register, since no information need be
transferred from the register to the accumulator. On
the other hand, it is easier to shift both with one control
signal and no harm is done to the division process by
the connection.

As in multiplication, if either number involved in
the division is negative, it is complemented to put it in
true or positive form before division and the sign of
the quotient is corrected afterward (that is, the quotient
is complemented). If, however, subtraction is performed
by adding the complement (as is most often the case in
an accumulator), the divisor may have to be in true
form for one step, complement form for the next. For
this reason, the divisor in this arrangement is placed in

104 UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Division
3.5

true form in the storage register and a string of comple­
menting gates is used to obtain either form when needed.

Since the method of nonrestoring division calls for
subtraction when the remainder is positive, a sign bit
of 0 from the most significant place of the accumulator
is used to gate the complement of the divisor, after a
delay to allow time for shifting. As an alternative, it is
possible to complement the divisor right in its register
and then gate whatever the register contains. Both the
complementing gates and the easiest method of register
complementing (a pulse on the complement inputs of
all flip-flops) produce the l's complement of the di­
visor, which means extra time for propagation of an
end carry. To save this time, a carry of 1 is added into
the least significant place of the accumulator whenever
the complement of the divisor is used, converting to the
2's complement form.

The sample problem to be solved in the circuitry
of figure 3-78 is 0.0101 divided by 0.0110. Using the
nonrestoring, pencil-and-paper method, the solution
looks like this:

0.1101

0.0110/0.0101

STORAGE
REGISTER

COMPLEMENTING

GATES

ACCUMULATOR
AND SHIFTING
REGISTER

DIVISOR

/

~~----------------------~/
DIVIDEND

-00110

00100 A

-00110

00010 B

-00110

11110 C

+00110

00010 D

On the assumption that the dividend will always be
kept smaller than the divisor, making the sign bit of the
quotient at 0, the first step is a shift of one place and a
subtraction. Direct subtraction is used here, although
in the arrangement of figure 3-78 it will be done by
complementing and adding. Remainder A, the result of
this first subtraction, is positive, calling for subtraction
after another shift. The complement of its sign bit is
the first quotient bit to the right of the binary point.
Note that in additions or subtractions, carries beyond
the most significant place of the shifted divisor do not
affect the results and hence can be ignored.

QUOTIENT

Figure 3-78. Shifting Accumulator Used for Division

UNCLASSIFIED 105

Division
3.5

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 3
CH 3

In this manner the division process continues-on
paper-until a sufficient number of places in the quo­
tient have been filled. The quotient is normally required
to have the same length as all other computer words,
so in this 5-bit example division is carried to 5 places.
The quotient here is 0.1101, but there is- also a final
remainder of 0.00000010 (remainder D). This is simply
another way of saying that the division does not come
out even at this number of places and that the final
remainder is the amount left over. Proving it by multi­
plying the 5-place quotient, 0.1101, by the divisor, 0.0110,

does not equal exactly the dividend.

0.1101 5-place Quotient

X 0.0110 Divisor

0.01001110 Product

+0.00000010 Final Remainder

0.01010000 Dividend

The final remainder is ordinarily just discarded,
unless there is need for great accuracy in the results of
division. In this case, it is possible to store the final
remainder separately. When it is thrown away, the quo­
tient may be rounded off by the method described under
multiplication, but this requires that the division be
carried out to one extra quotient place, and it also
means that the quotient must be sent to the accumulator
so that the addition can be performed. Other round-off
methods, such as forcing or "stuffing" a 1 into the least
significant place whether the actual quotient bit there
is 1 or 0, do not require arithmetic operations but are
less accurate.

Now, to the mechanization of this division problem
in the circuitry of figure 3-78. To begin the process, the
dividend and divisor are put in positive form, if neces­
sary, by complementing, and a sign flip-flop is set, as
in multiplication, to determine whether the quotient
must be complemented after it is formed. The accumu­
lator and registers are cleared and the dividend is
placed in the accumulator (often by gating it in through
the divisor register). The divisor is then entered into its
register.

Again assuming that the dividend will always be
smaller, there is no need to subtract the divisor from
it, so the accumulator and shifting register contents are
immediately shifted one place to the left. The sign bit
of the dividend is pushed out of the most significant
place in this shift, but it is not complemented and sent
to the quotient register, since the sign of the quotient
is known to be a O. The complementing gate (labeled
COMP.) prevents this from happening. The least sig­
nificant place of the accumulator picks up a 0 from the

shifting register, so the accumulator after the shift con­
tains:

01010

The dividend sign bit, although not sent to the
quotient register, is used to start the first subtraction
after the shift by gating the complement of the divisor
into the accumulator.

01010 Accumulator

11001 Divisor l's Comp

1 Carry for 2's Comp

00100 Remainder in Ace

The resulting number in the accumulator is re­
mainder A (compare with the pencil-and-paper exam­
ple shown earlier). As soon as the subtraction is com­
pleted, another shift occurs. The 0 from the most signi­
ficant place of the accumulator is spilled out, comple­
mented to a 1, and sent to the least significant place of
the quotient register, which now contains 00001. This
most significant 0 is also used to start the next sub­
traction:

01000 Shifted Acc

11001 Divisor l's Comp

1 Carry for 2's Comp

000 1 0 Remainder B

Again the shift is made. The quotient bit in the
least significant place of the shifting register is moved
one place to the left, so room is made for the new
quotient bit shoved out of the accumulator and comple­
mented. After a short delay to allow any transients to
settle, the next subtraction begins when the comple­
ment gates are opened.

00100 Shifted Acc

11001 Divisor l's Comp

1 Carry for 2's Comp

11110 Remainder C

The shift this time pushes the most significant 1

out of the accumulator. This becomes a 0 in the quotient,
and the 1 is used to open the normal gates, bringing
the divisor in true form into the accumulator for ad­
dition.

11100 Shifted Acc

00110 Divisor

00010 Remainder D

A final shift complements the 0 in the most signi­
ficant place and sends it around to the quotient register.
The bit this time is prevented from gating either the
divisor or its complement, however, so the division
process ends here.

106 UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Control Circuitry
3.5-3.6.1

The entire process can be seen in capsule form by
observing the contents of the accumulator and quotient
register after each step. The remainders are lettered, as
above.

Accumulator Q Register

00101 00000 Start

01010 00000 Shift

A 00100 00000 Subtract

01000 00001 Shift

B 00010 00001 Subtract

00100 00011 Shift

C 11110 00011 Subtract

11100 00110 Shift

D 00010 00110 Add

00100 01101 Shift

End

The correct quotient is now in the quotient regis­
ter. If this were supposed to be a negative number, the
sign flip-flop would be set to complement it, either in
the register or when it is removed.

The mechanization of division in a serial arrange­
ment similar to that shown for multiplication in figure
3-76 follows along the same basic approach as the
parallel method described here, with appropriate modi­
fications for the serial requirements.

3.6 CONTROL CIRCUITRY

In all of the arithmetic arrangements, the need is
clear for control pulses and signals fed to the proper
places at the proper times to open or close gates, to
start and stop operations, to transfer numbers from
one place to another, etc.

The circuitry that generates, times, and distributes
these control signals-usually called commands-may be
as complex as the actual arithmetic circuitry, especially
in a large computer. The generating, timing and ma­
jor distributing circuits, taken together, are most often
called the control element. This element must provide
commands not only to the arithmetic portion of the
computer, but to the main storage, input, and output
parts as well.

For a complete understanding of the role played
by the control element, it is necessary to recall some of
what was said in Part 1 about the manner in which the
program govern the operation of the entire computer.
The program, of course, is a set of instructions, coded
in the form of numbers (words) that are stored in the
main storage element or memory in stored-program com­
puters along with the numbers representing informa­
tion or data.

Regardless of where the program is kept, each in­
struction word is taken in a separate step (in the proper
sequence) by the control element and decoded to see
what major operation must be performed next. The con­
trol circuitry then develops the complete set of com­
mands or control signals that enable all the small parts
of that operation to be carried out by the other elements
of the machine.

An instruction, for example, gives the order,
"Add." (Usually it also gives the storage address of the
number to be added to the contents of the accumulator.)
The control element must then put out a series of com­
mands which may be single pulses, levels, pulse series,
or combinations. There are as many possible variations
in a set of commands to perform the addition operation
as there are variations in adder-accumulator circuitry.
A sample set, for example, might be a sequence of single
pulses meaning:

"Clear addend register"

"Accept number from storage"

"Gate addend into accumulator."

The first would be a pulse on the clear inputs of all
flip-flops in the addend storage register, the second a
pulse to a set of AND switches to take the number into
the register, and the third a pulse to the set of gates
between the register and the accumulator. Properly
timed and applied, these commands make the circuitry
carry out the addition process, using the number at the
storage location specified by the address portion of the
instruction.

The operation portion of an instruction may, of
course, call for any of a number of jobs to be done in
the computer, instead of an arithmetic operation. The
variety of operations depends upon the capabilities of
the machine. One major job in nearly every computer is
transferring numbers from place to place, another is
control of input-output devices, etc.

3.6.1 Program Control

When one instruction (one program step) has been
carried out, the control element must obtain the next
from storage. But how does it know the location of the
next instruction? Although there are several possible
solutions to this, one of the easiest is to set aside a
block of memory addresses in which the program is
always kept and use an instruction or program counter
(usually a binary counter) to keep track of the progress
of the program and the instruction addresses. An ar­
rangement of this type appears in figure 3-79.

In this (or any other) arrangement, the memory
or main storage element must be capable of storing
many numbers, including the input information with
which the computer is to work, partial results to be
held for later use, final results, and-in stored-program

UNCLASSIFIED 107

Program Control
3.6.1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 3
CH 3

computers-the program itself. There are several types
of storage devices (described in Ch 3) but it is easiest
to think of the memory as a large bank of pigeonholes
or mailboxes, numbered 0, 1, 2, 3, 4, etc., and each
capable of holding one computer-length word. The
number of each is its address. There must also be selec­
tion circuitry to translate a binary address into an actual
electrical connection to the correct pigeonhole so that
a number can be put in or taken out.

Ordinarily, a block of the lowest-numbered ad­
dresses is set aside for the program. Assuming, for ex~
ample, that addresses 0 through 99 were reserved for
this purpose, any program would be stored with its
first instruction in address 0, its second in address 1, its
third in address 2, etc. Thus, a 67 -step program would
be stored in sequence in addresses 0-66.

The instruction counter shown in figure 3-79 is
cleared before the program begins. Its indication of
000 . . . 000 is sent to the storage selection circuits
which quickly make a connection to address o. The first
instruction is taken out and sent to the control element
through switching circuits operated by commands issued
for that purpose. The time spent in this process of
obtaining the instruction is sometimes called a program
cycle, or an instruction cycle.

Once in the control element, the instruction is
placed in a temporary storage register called either the
instruction register or the operation-address register.
The control circuits issue commands to carry out the
operation called for by this first instruction during what
is called the execution or operation cycle. The address
part of the instruction goes to the memory selection

circuits to obtain the number representing the data to
be operated upon. (Or the address may call for a con­
nection to one of the input or output devices to obtain
or send out information.)

Toward the end of the operation being performed,
a pulse is sent from the control circuits to advance the
instruction counter by 1. When the operation cycle ends,
control is turned over again to the instruction counter
and a new instruction cycle begins. The counter now
sends 000 ... 001 to the storage selection circuits, the
second instruction of the program is taken from ad­
dress 1 to be sent to the operation-address register,
and this instruction is then executed.

The process of bringing each instruction in se­
quence from the memory, executing it, and stepping the
instruction counter by 1 continues in this manner until
the entire program has been performed or until a
Branch instruction is encountered. This type of instruc­
tion (sometimes called Transfer or Jump) makes it pos­
sible to change a program or repeat parts of it, either
unconditionally or under control of the results that
have been computed. For example, a branch may be
ordered only if the number left in the accumulator is
negative. If sensing (checking its state) shows it to be
positive, the branch is not made.

When a branch is to be made, the address part of
the instruction is taken from the address register and
loaded directly into the instruction counter, replacing
whatever number was previously there. Therefore, the
next instruction taken from memory is not from the
next address in the sequence that was being followed,
but from the address given by the Branch instruction.

ADDRESS

MEMORY "'-:~-----------'"""i SELECTION

CIRCUITS

108

TO ALL

ELEMENTS --

TO INPUT­

OUTPUT
DEVICES

.. -
r ---,.------ ---- -------1--- -1------,
I OPERATION I ADDRESS. - I I I. I

I~ ~ I
I I CONTROL I I INSTRUCTION I. :

;~E:~~TS - i I CIRCUITS "i---t-~l COUNTER ·I-----I~-------' I
I I
I I L ________ ~N:::L_E..:.:M.::T _________ ~

Figure 3-79. Instruction Control

UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Synchronous Control
3.6.1-:3.6.2.1

From this point on, the instruction counter is again
pulsed once for each instruction carried out, so a fresh
numerical sequence of instructions is followed until an­
other branch is ordered. A branch can be made to either
a higher or lower numbered step of the program.

In other types of computers-that is, those not stor·
ing the program instructions in the memory element­
different methods of instruction control may be used.
These depend to a great extent, of course, upon the na­
ture of the device or arrangement used to hold the
program. Usually, the instructions are made available
in sequence and, when each operation is completed, the
control element senses the next instruction. This proce­
dure is somewhat similar to the one described for stored­
program computers, except that such useful program­
ming techniques as branching are difficult and expensive.

3.6.2 Operation Control
The commands necessary to carry out an instruc­

tion have been described as a set of pulses (sometimes
other types of signals) sent to the proper places at the
proper times. Different sets are needed, of course, to
carry out different operations, although certain individ­
ual commands may well be used in a number of oper­
ations.

There are two basic approaches to the problem of
handling operations in sequence. First, it is possible to
use a timing arrangement of some sort and rigidly time
each separate operation, issuing each command at the
proper instant. The timing arrangement is called the
clock and, because all operations performed in the com­
puter are synchronized by the clock, this is a synchro­
nous control method.

In the second method of control, called asynchro­
nous, no clock is used for timing operations (although
there may r.~ a clock for other purposes). As soon as
one operation is finished, a signal is provided to start
the next. The timing of commands is done by starting a
pulse through a long delay line (when each operation
begins) and tapping it off as commands at the proper
intervals.

Some computers use one system, some the other,
and quite a number of computers use combinations of
the two, with synchronous control for short operations
but asynchronous handling to speed up the longer ones.
Although it is true that operations can often be per­
formed faster under asynchronous control because no
fixed time intervals (cycles of the clock device) are
used, this type of circuitry is generally more complex
than the synchronous.

3.6.2.1 Synchronous Control
The first item of interest in this system is the clock

and the method of timing. There are certain time inter­
vals of importance in any computer, of which one is
the period required to transmit a single bit of informa-

tion and to allow the circuits to recover from transients.
This period, of course, is one bit-time.

In a serial-mode computer, the bits of a word fol­
low each other on a single wire, and exact timing is so
essential (at the inputs to an AND circuit, for example)
that a clock must be used to set the basic pulse repeti­
tion frequency or bit-time interval. If pulse-type signals
are used, clock pulses at bit-time intervals must be dis­
tributed throughout the circuitry to provide the fre­
quent reshaping and retiming of information pulses
that is necessary. This holds true even if the control
element itself is asynchronous in operation and does not
depend upon the clock.

In parallel-mode machines, the bit-time interval is
usually less vital to successful operation, so the clock
pulses need not occur every bit-time. They may instead
be produced at some longer or shorter interval more
useful in synchronizing the operations of the computer.
It is not often that a different interval is selected, how­
ever, since the bit-time is the basic measure of the speed
with which numbers can follow one another in the cir­
cuitry and therefore is one controlling factor in obtain­
ing the fastest possible operation.

Whatever the basic interval selected, the clock pulse
intervals, of course, bear some relationship to real time
-that is, time in the outside world. Many types of
problems solved by computers involve keeping track of
real time. Military weapon-control computers, for in­
stance, must solve time-speed-distance problems against
an incoming enemy, while computers operating various
types of machines must often time the operations. So, it
is frequently valuable to select a clock pulse interval
that can be easily converted to real time. A fairly
common clock rate, for example, is 1 megacycle, which
means pulses at 1 microsecond intervals. Using decimal
counters or other circuits for frequency division, it is
possible to obtain pulses at I-second intervals for useful
time-measurement in the computer.

The device which produces the clock pulses is an
accurate oscillator of some sort, generally crystal-con­
trolled, followed by amplifying and pulse-shaping cir­
cuits.

It becomes apparent, however, that the continuous
stream of clock pulses thus produced must still be
counted or somehow kept track of. How many clock
intervals are required to perform addition or division,
for example? How many for an instruction cycle, for
transferring a number? It is obviously impractical to
run a continuous count of the clock pulses-in 10 sec­
onds of operation, the count would be between 5 and
20 million for most computers.

A cycling count, on the other hand, proves emi­
nently practical. By counting a given number of clock
pulses and then beginning the count over again, the

UNCLASSIFIED 109

Synchronous Control
3.6.2.1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 3
CH 3

passage of time in the computer is divided into intervals
of useful length that can be called clock cycles, or
machine cycles. A simple ring counter can do this and
provide a different one-hot output for each step of the
count.

The number of clock pulses to be counted in the
clock cycle may depend upon several factors. In a serial­
mode computer, the word length is quite closely related
to the speed of operation since a 20-bit word, for ex­
ample, requires one word-time, or 20 bit-times, to be
transferred past a given point in the circuitry. Thus, one
word-time might be chosen as a useful length for the
clock cycle-or it might be 2, 6, or 10 word-times if one
of these lengths were more convenient. A word-time is
of no importance in a parallel-mode computer, since it
is the same as a bit-time.

A factor that must be considered in all machines,
parallel or serial, is the time required to transfer num­
bers into or out of memory, called access time. This is
the principal limitation on the speed of operation be­
cause each number to be used in computation and each
result must go through this transfer.

The access time in most computers is somewhat
longer than the time needed for the shorter operations
such as addition, subtraction, shifting, etc. By making
the length of the clock cycle equal to the access time,
the all-important transfers of numbers and the shorter
operations can be performed in one clock cycle each.
When one of the longer operations such as multiplica­
tion or division must be done, the required number of
complete clock cycles is allowed for it.

Using an arrangement of this sort, illustrated in
figure 3-80, two complete clock cycles are the mini­
mum required to carry out any instruction. The first
must be a program or instruction cycle, to get the in­
struction out of memory and load it into the operation­
address register. The -one-hot signals from the various
stages of the clock ring counter are gated or otherwise
switched to provide commands controlling the address
selection circuits, etc., to obtain the instruction.

When this instruction cycle is nearly done, a com­
mand sets a flip-flop or switch to make the next an
operation cycle. Now, the circuits gating the clock ring
outputs come under control of the signal representing
the operation called for and the result is the set of com­
mands necessary to perform that operation. The com­
mands must be timed to allow the maximum time for
each part of an operation to be completed, plus a safety
factor. In binary addition, for example, time must be
allotted for the propagation of a possible carry from
each place, even though no carries at all may occur in
some problems. If more than one operation cycle is re­
quired, a simple counter keeps track of them and
changes the gating for each cycle.

When the operation is almost completed, the
switching is reset for another instruction cycle and the
instruction counter is advanced one step, to take the
next instruction from memory. In this arrangement, all
program or instruction cycles are identical, but the op­
eration cycles depend upon the operation to be per­
formed. All commands are provided by the timed pulses
from the clock ring, switched through the gating cir­
cuitry under control of either the operation signal or

r---------------------l
CONTROL ELEMENT I

110

OPERATION ..
MISC. ..

L __________ _

START

CLOCK I

GATING

I
I
I
I
I
I
I
I
I

f-- C'::"MANDS __ ~

STOP TRANSFER
NUMBER

r •• " ,-1-------...........
ARITHMETIC

ELEMENT
- ..
- NUMBERS - MEMORY

Figure 3-80. Synchronous Control of Operations

UNCLASSIFIED

PART 3
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Asynchronous Control
3.6.2.1-3.6.2.2

various miscellaneous signals, such as the one that de­
termines whether an instruction or an operation cycle
is required. The operation signal is translated (usually
in a matrix) from the operation portion of the instruc­
tion, placed in the operation-address register (fig.
3-79).

3.6.2.2 Asynchronous Control

There are a number of possible variations of the
asynchronous control method. The basic approach ap­
pears in figure 3-81, showing how the timing of com­
mands is accomplished through the use of a long delay
line, instead of a clock.

The delay line consists of a number of long series
paths of delay circuits (and switching circuits where
necessary). Commands are tapped off between circuits
at the required intervals.

An operation requiring 24 bit-times for its oper­
ation cycle, for example, could be handled by a string
of delays totaling 24 bit-times. Commands might be
taken off at the end of 1, 9-14, 16, 20-1/2, 21, 22-%,
and 24 bit-times, as shown at (a) of figure 3-82.

A pulse is inserted in the delay line when the
operation signal appears. One bit-time later, it emerges
from the first delay circuit, goes out on the first com­
mand line, and also enters the next delay section. Per­
haps this first command might clear a storage register
and start the address selection circuitry through the pro­
cess of taking a number out of memory. The pulse
emerges from the second delay section 9-14 bit-times
after the operation was started, and is sent out on
another command line to perform some other control
function. In this fashion the pulse travels through the
entire length of the delay line and is tapped off at
intervals to form the commands. From the end of the
line the pulse goes to an OR circuit at which all lines
meet and emerges from that as a command calling for
the next instruction.

Although it might seem necessary to have one delay
line for the process of obtaining instructions and one
for each different operation, this would require an un­
necessary amount of circuitry. Actually, many opera­
tions are quite similar and the parts of longer ones are
often repeated, so it is possible to use what amounts
to one long delay line with switching circuits, alternate
paths, and feedback loops to produce commands for
all operations.

One small portion of such a line is shown at (b)
of figure 3-82. The heavy, downward-pointing arrows
are commands and the input leads labeled X are con­
trolled by the operations called for. Some, but not all,
of the X leads are energized when a given operation is
to be performed. The operation of the circuitry is
straightforward and should be clear enough, except pos­
sibly for the feedback loop involving the counter. If a
pulse enters this loop through the OR circuit and finds

r----------
I CONTROL ELEMENT

NEXT I INS TRUCTION

I
I
I
I
I
I
I
I

OPERATION

COMMANDS

I
I
I
I
I
I
I
I
I
I
I L ___ _ _ ______ -1

START STOP

ARITHMETIC

TRANSFER
NUMBER

ELEMENT "~-NU-M-B-E-R-S~~ MEMORY

Figure 3-8 J. Asynchronous Control of Operations

that operation signal X2 is present, the feedback loop
through the INH is opened and the pulse goes out
without additional delay through the AND circuit. If
X2 is not present, however, the pulse cannot get
through the AND but must enter the loop through the
INH and circulate, being delayed by the amount of
time needed to travel the loop. Each time the pulse re­
turns to the OR circuit, it also steps the counter. When
a predetermined count is reached-meaning the pulse
has circulated and been delayed this many times-the
counter output opens the loop and enables the pulse to
exit through the AND circuit.

Thus, one long delay line with many possible paths
and loops enables the commands for any operation to
be produced. A common path at the beginning of the
delay line produces the commands necessary for procur­
ing each instruction. The timing of each operation is
exactly what it requires, not a number of fixed-length
cycles (with the possibility of wasted time if the actual
operation ends before the end of the last cycle).

This idea of asynchronous control can be extended
in some types of circuitry by letting the control pulse
run through the circuits themselves as the operation is
being performed. An asynchronous adder, for example,
can be built to allow the control pulse to run with the
carries. As soon as carry propagation is completed, the
control pulse is returned to the control element as a
"next instruction" command. Multiplication can be han­
dled in similar fashion. In this type of arrangement,
the control element tells the arithmetic element, "Start,"
and then waits for a signal to come back saying,
"Finished."

UNCLASSIFIED 111

Fig. 3-82

OPERATION

10

X

PULSE

(COMMAND)

112

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

I~O --..... ~ 4

I 9! 16 20.!. 21 22~
,~ _________ 4 ____________________ 2 ____________________ ~

COMMANDS

A

B

Figure 3-82. Delay Lines for Asynchronous Control

UNCLASSIFIED

PART 3
CH 3

NEXT
INSTRUCTION

,.!. 0
4 24

NEXT
INSTRUCTION

PART 3
eH 4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Memory Element Requirements
4.1

CHAPTER 4
LARGE-SCALE STORAGE AND MEMORY

4.1 REQUIREMENTS OF MEMORY ELEMENT

The simple description in Chapter 3 of the memory
or main storage element of the digital computer re­
ferred to it as a bank of pigeonholes or mailboxes, each
with its own, separate address and each capable of
storing one computer-length word.

Without a memory such as this, the automatically
sequenced computer could not perform a long string of
arithmetic computations and logical decisions without
stopping. It must have some place to keep all the input
information it has to work with, the intermediate re­
sults that will be used in later computations, and the
final results that have to be fed out when the program
calls for outputs. In a stored-program computer, the
principal type under consideration here, the memory
must also provide enough pigeonholes (actually word­
length storage registers) to hold all the instructions of
the program.

The first requirement of the memory element, then,
is size. It must contain enough storage registers to hold
all the data and all the instructions of the program. In a
very large computer, this may not be feasible and aux­
iliary storage space may be provided outside the main
memory element. In this case, the memory must be suf­
ficiently large to hold information and instructions
enough to keep the computer running for a reasonable
length of time.

While it would be entirely possible to build a mem­
ory of flip-flop registers, like those used elsewhere in
the computer for temporary storage purposes, this
brings up the question of physical size, especially if
vacuum tube flip-flops were to be used. From a few
hundred to many thousand registers may be needed in
the memory, and the sheer bulk of many flip-flops, plus
the power required to operate them, makes their use
impractical. Some early computers did use this type of
storage, but newer devices require far less space and
power for the same amount of storage.

Another important requirement of the memory ele­
ment is the speed with which numbers can be put in or
taken out. As mentioned in Chapter 3 this access time
largely controls the speed of operation since many op­
erations can be performed faster than the numbers can
be obtained to work with. So, a fast-access memory is
required and, once obtained, another reason for storing
the program instructiens in memory becomes apparent.
For maximum operating speed, the instructions must be

made available just as fast as the numbers to be operated
upon, so the logical place to keep them is with the
data numbers.

Part of the access time (sometimes called the mem­
ory cycle) must be used to translate the address (also
in number form) and set up electrical connections to
the desired storage register, in order to write in or read
out a number. Writing or storing is the process of put­
tmg a number into a storage location; reading is the
process of taking it out.

Translating the address in the address selection
circuits rarely takes long, but actually reaching the
proper ,storage register, when some types of storage
devices t are used, may require much time. The effect is
as if the registers were seats on a merry-go-round or
cars on a roller coaster and it were necessary to wait for
the desired one to come by. Thus, the computer may be
forced to wait for the information it is to work with.
Certain techniques in preparing programs can be used
to cut this access time to a minimum, but these tech­
niques often make the problem of writing the program
very complex.

A better solution is to use fast-access storage de­
vices for the main memory and use the slower devices
as auxiliary storage facilities outside the computer prop­
er, reached through input-output circuits. ("Memory"
usually means the main storage element inside the com­
puter.) Then, large groups of numbers at a time can be
sent back and forth, as required, and stored in con­
secutive storage registers. Sometimes the computer can
continue its computations during the transfer. Instead
of having to locate individual registers in the auxiliary
storage, the access is made to large blocks of registers.

Only the main memory is used for all operations
going on inside the computer. When the memory fills
up with intermediate results, instructions send a large
block of them out to the auxiliary storage and may
bring back in some fresh data or even additional pro­
gram instructions, as required.

Four types of storage devices are in most common
use today: magnetic (ferrite) cores, magnetic tapes,
magnetic drums, and electrostatic storage tubes. Others,
such as the acoustic delay line, have been used in some
machines and will be described briefly, along with
punched paper cards and tapes.

The internal organization of a computer is affected
to some degree by the type of storage device (or de-

UNCLASSIFIED 113

Magnetic storage
4.1-4.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 4

vices) used, not only because of the physical differences
between devices but because of the access problems.

Of the magnetic storage devices (cores, tapes, and
drums), the cores offer the easiest and by far the fastest
access to any storage location. In fact, ferrite cores and
electrostatic storage tubes are probably the most satis­
factory of present storage devices for use in the inter­
nal computer memory, since all registers are equally ac­
cessible. The other types of storage devices generally
require the computer to wait for the transfer of infor­
mation, but they offer such other advantages as low
cost, fast serial operation, or easy changing of the
stored information by an operator.

4.2 MAGNETIC STORAGE

Magnetic storage takes two principal forms: one
stores the individual bits in separate cores, as described
in 2.1.5 and figure 3-33 of Chapter 2; the other stores
each bit by magnetizing a separate, tiny spot of a mag­
netic material coated on the surface of a plastic tape or
a metal drum. In both forms of storage, the magnetic
field that is left (remanent flux) after writing the in­
formation indicates by its direction (polarity) whether
a 1 or a 0 is stored.

The magnetic material coated on the surfaces of
tapes or drums must, like the core materials, have a
nearly rectangular hysteresis loop so that it will retain
most of the flux impressed upon it after the magnetizing
force has been removed. Thus, the magnetized portion
of the material acts like a permanent magnet, the direc­
tion of whose field can be reversed by applying a sec­
ond magnetizing force of sufficient strength. This ex­
ternal force is usually a temporary magnetic field about
a coil through which a pulse of current is passed. The
magnetic coating for tapes is normally one of several
iron oxides, finely powdered and mixed with a binder or

MAGNETIZED SPOT

COIL

adhesive that is dried under controlled conditions to
hold the oxide particles in a thin, even film or coat.
The drum surface is usually a plating of a metallic
alloy, such as nickel-cobalt.

A coating of such a material on a surface that is
relatively flat does not form a closed magnetic circuit
for small fields (as the closed ring of a core does), so
separate areas of the surface can be magnetized in oppo­
site polarities without interfering with each other, as
long as there is sufficient distance between them. If the
applied magnetizing force is kept in a very small field,
only a correspondingly small spot of the tape or drum
coating is magnetized and more bits can be stored on a
surface of given size. To magnetize different spots, either
the coil providing the magnetizing force or the coated
surface could be moved, but in practice the surface is
always moved past the stationary coil at a constant
speed, and writing and reading are done with the sur­
face in motion. Long lengths of magnetic tape are
wound on compact reels and pulled past the coils used
for reading and writing (called magnetic heads). A
magnetic drum revolves on its axis, passing its coated
cylindrical surface under fixed heads.

The problem of holding the applied magnetizing
force or field to a very small area is solved in the follow­
ing manner. It is known that if a coil is wound on one
side of a rectangular or ring-shaped core of magnetic
material, as in figure 3-83, the core forms a closed
magnetic circuit. When the coil is energized, the field
set up finds it much easier to complete its circuit through
the core material than through the surrounding air;
hence virtually all the lines of force remain in the core.
If the core is cut through at one point, forming a gap,
the flux lines jump across the gap to complete their
circuit.

MOVING MAGNETIC SURFACE

.. CORE

Figure 3-83. Magnetic Head

114 UNCLASSIFIED

PART 3
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Magnetic Tapes
4.2-4.2.1

As shown in figure 3-83, not all the flux lines
jump straight across the gap. Instead, because the air
offers greater reluctance (magnetic resistance) than the
core, the field tends to spread out, or expand in cross­
section, through the gap. The portion of the field that
arcs out beyond [he core area is called the fringing
flux. Now if a magnetic surface is pulled past the gap,
very close to it, the fringing flux produced by a pulse
of current in the coil magnetizes a very small spot of the
surface. When the short-duration pulse disappears, the
motion of the surface pulls the spot away and then
another current pulse can magnetize another spot, etc.

The magnetic head is made in this manner. The gap
is usually about o.OOl-inch wide, so the fringing flux is
held to a very small area and, in practice, up to about
100 bits can be stored as magnetized spots in an inch­
length of surface.

When the small magnetized spots representing
stored bits of information are passed again under the
head, each tiny magnetic field enters and travels quickly
around the magnetic circuit of the core, inducing a
voltage pulse cycle into the head coil. The bit is identi­
fied (by reading circuits) as a 1 or a 0, depending upon
whether the negative or the positive peak appears first.
The magnetized spots are unchanged by reading, so this
is nondestructive readout; i.e., the stored information
remains on the tape or drum.

Any stored bit can be changed from 1 to 0 or from
o to 1 simply by writing over it. If a 0 is stored by
passing a negative current pulse through the head, it is
changed to a 1 by applying a positive current pulse the
next time this spot passes under the head. The resulting
applied field, opposite in direction to that of the spot,
switches the remanent flux in the spot just as a core is
switched, leaving a 1 stored where the 0 had been.

It is also possible to remove all stored informa­
tion from a tape or drum surface by erasing, leaving a
blank, unmagnetized surface. This is done by applying
to the surface an a-c field strong enough to produce
saturation, then reducing the field strength gradually
to zero. At saturation, the field overcomes all previously
written magnetized spots and fills the entire surface
under its influence with flux, switching the flux direc­
tion rapidly as the field reverses in polarity. As the
field strength is reduced, it applies less flux to the sur­
face on each reversal-enough to switch the remanent
flux but less than the amount previously applied. The
result is less remanent flux retained in the surface after
each polarity reversal, until both the applied field and
the remanent flux in the magnetic surface are reduced
to zero.

Erasing of drums is not usually necessary to change
the stored information, which can be simply written
over (if it can be located easily), but is used to rid the
surface of noise caused by stray magnetic flux picked

up over a period of time. On tapes, where a single
word or bit is difficult to locate, erasing is used to
wipe out old information, a complete block at a time,
to make way for new data.

4.2.1 Magnetic Tapes

The oxide-coated plastic tapes used in computer
work may be the standard quarter-inch widths used in
home recording and other applications, or they may be
special types up to about an inch in width.

In any case, there must be a tape transport or drive
mechanism to hold the full and empty reels and to pull
the tape past the head (or heads) used for reading
and writing. This mechanism must be capable of moving
the tape at a rigidly controlled speed for writing or
reading operations, which generally require careful tim­
ing. It must also be capable of very fast starts and
stops and of high-speed forward and backward wind­
ing to locate a block of stored information or a blank
space into which new information is to be written. All
of this must be accomplished with minimum danger of
damage to the thin tape.

There must be control circuitry to make the tape
drive mechanism perform the desired operations when
called for by the computer. A few manual controls are
generally necessary, as well, since the operator must be
able to take control for changing tapes and other oper­
ations.

In addition to the mechanical operations, there
must be circuitry for the electrical functions of writing
and reading, synchronizing, etc. One basic arrangement
of a tape storage element appears in figure 3-84.

Magnetic tape is excellent for storing large amounts
of information whenever rapid access is not required. If
the information desired is at the opposite end of the
tape from that under the heads, it is generally a matter
of seconds before it is reached, during which time the
average computer could perform thousands of opera­
tions. For this reason, access is usually programmed
and blocks of information may be stored in such man­
ner that they can be counted to locate a given one.

Ordinarily, neither reading nor writing is done
continuously, so the tape movement is stopped after
each operation to avoid wasting long lengths of tape.
Accordingly, spaces of blank (unrecorded) tape are left
between blocks of information to allow for starting and
stopping times, since the drive mechanism cannot react
instantaneously to start or stop commands.

When information recorded on the tape has to be
changed, the common method is to erase and rewrite
the complete block of information in which changes
must be made, because of the difficulty of locating in­
dividual bits or words.

Since tape reels can easily be changed by an oper­
ator, the tape element is often used as an input device.

UNCLASSIFIED 115

Magnetic Drums
4.2.1-4.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 4

Arithmetic programs and data, programs for checking
the operation of parts of the computer, lengthy mathe­
matical tables, and other input information can be made
available to the computer in this manner.

4.2.2 Magnetic Drums
Though tapes are valuable for storing large

amounts of information, when it is essential to write
and read information at frequent intervals and in ran­
dom order, magnetic drums offer much faster access
times, commonly ranging from 10 to 40 milliseconds.
Because the information is stored on the surface of a
cylinder revolving under fixed magnetic heads, the drum
provides a form of cyclic storage (once written, a word
comes back under the heads on every revolution).

As the drum rotates, the area in which a single
fixed head can write or read is only a very narrow
strip-called a track or channel-running around the
circumference of the drum. Information can be stored
in serial form simply by sending serial words to the
single head while the drum revolves (translating O's and
l's to current pulses of the proper polarities). The bits
of each word are then stored as a sequence of mag­
netized spots along the single channel running around
the drum.

Another common storage method is parallel stor­
age, shown in figure 3-85. To store a 5-bit word by
this process, five heads are lined up side by side, each
writing in a separate channel. The translated current
pulses representing the bits of the word are sent in
parallel form to the heads and the bits are written
simultaneously. Now, the bits are stored as a row of
magnetized spots in ad jacent channels. So, in this
method, the registers are strips of drum surface run­
ning toward the ends of the drum and including as
many channels as there are bits in the computer word.

READ-WRITE

CIRCUITRY

In the example of figure 3-85, a register stretches
across five channels. The band of registers extending
completely around the drum is called a field.

Typical drums used with the AN/FSQ-7, -8 meas­
ure 10.7 inches in diameter and 12.5 inches long. Using
33-bit words, one of these drums holds six fields of
2,048 registers each, for a total storage capacity of
12,288 words.

Locating a given register or group of registers on
the rotating drum to read or write information requires
some means of keeping track of the drum position.
One common method uses a special timing channel in
which is written either a series of l's or a regularly
repeated combination of l's and O's. These bits are
read by the timing channel head and used to synchro­
nize the access circuitry with the drum rotation and to
locate registers by a cycling count. A special combina­
tion of l's and O's at one point on the track can be
used as an index mark to tell the circuits that a new
revolution of the drum is beginning.

In this method, each register in a field has its
own address, and a given register is located by first
selecting the proper field (by switching connections to
the heads), then selecting the register by address. The
method, sometimes called address selection, requires a
circuit arrangement similar to that shown in figure
3-86.

It is entirely possible, of course, to write informa­
tion on the drum with one set of heads and to read it
with another set positioned over the same field. One
reason for doing this may be to use the drum as a time
buffer, or isolating device, between the fast-operating
computer and much slower input or output devices.

With this method, writing is a matter of looking
for a register in which to put new information and

CONTROL

CIRCUITRY

MANUAL

CONTROL

DATA

INSTRUCTIONS J
TO

COMPUTER

Figure 3-84. Basic Tape Storage Arrangement

116 UNCLASSIFIED

PART 3
CH 4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Figs. 3-85 & 3-86

SINGLE
REGISTER

TIMING
CHANNEL

ADDITIONAL
FIELDS

figure 3-85. Storage on Magnetic Drum

COMPUTER

READ-WRITE
CIRCUITRY

ADDRESS
CONTROL

FIELD
SELECTION

TIMING

FIELD

TIMING
CHANNEL

figure 3-86. Address Selection of Drum Registers

reading is concerned only with taking out information
that has not been read before. Each set of circuitry,
therefore, is interested in the status (state or condition)
of each register in the field. Furthermore, each side is
able to tell the other what it needs to know. This
can be done by using two extra drum channels for con­
trol, a write channel and a read channel (fig. 3-87).

When the writing side has information to store, it
must locate one or more registers that are empty; that
is, contain information that can be written over because
is has already been read. To indicate the latter, the
reading side inserts a 1 in the write channel each time
its reads a register. Thus, when the writing side finds a
1 in the write channel, it is free to write fresh informa­
tion into the corresponding register. As it does this, it
inserts a 1 in the read channel, telling the reading side
that this register now contains information that has
not been read. A 0 in either channel tells the circuits

that the corresponding register should not be written
in or read.

This process is called writing or reading by status.
Timing is necessary, as shown in figure 3-87, but in
this case only to synchronize the access circuits to the
drum. Writing and reading are not done continuously.
When input information is available, the writing side
finds empty registers and writes it into them. When the
computer wants more input information, the reading
side locates registers containing it and reads it out to
the computer. In output operations, of course, the com­
puter side does the writing and the output side the
reading.

Status and address are two of the principal meth­
ods of reading and writing on drums, using them either
as the main memory or as auxiliary storage. There are a
great many possible variations in the details, using
either method.

UNCLASSIFIED 117

Magnetic Cores
4.2.3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART :3
CH 4

INPUT

DEVICE

WRITE

CIRCUITRY

STATUS

CIRCUITRY

READ

CIRCUITRY

STATUS

CIRCUITRY

COMPUTER

Figure 3-87. Writing and Reading by Status

4.2.3 Magnetic Cores
Ferrite cores are probably the best present-day de­

vices for use in comparatively large, fast-access memory
elements. No other device offers faster access time and
the core registers can all be reached with equal speed
and ease.

The theory of operation of cores has been covered
in Chapter 1, including the description of core regis­
ters. These discussions were concerned primarily with
tape cores, but all the principles apply equally well to
the ferrite cores used in the memory element. The two
types differ physically in that the ferrite core is a
ceramic-like material, rather than a metal, and can be
made very small for memory use. The required coil can
be replaced by a single wire threaded through the open
center of the core.

When a number of core registers are grouped to­
gether, as must be done in the memory element, the
problem of reaching the individual cores of a given
register to insert or remove a word becomes a little
more difficult than in a single register. The principle
emphasized in Chapter 1 is used to solve this-the prin­
ciple that a magnetizing force of H is more than enough
to be certain of switching a core, while a force of H/2
definitely will not switch it. These forces must be closely
controlled, which can be done by controlling the cur­
rents used to set up the fields. If a current, I, sets up a
field of force H about a conductor, then a current of
1/2 will set up a field of H/2.

Using this principle, four registers grouped side
by side in a 2-dimensional array (sometimes called a
memory plane) are shown in figure 3-88. This is called
a 4-by-4 array because there are four cores on a side.

Yz

\..~--+T- ADDRESS I

Xz ADDRESS 2

....,::r-.--- ADDRESS 3

ADDRESS 4

Figure 3-88. Core Memory Plane

Each horizontal row of cores is a separate, 4-bit regis­
ter. The leads labeled X and Yare the wires that make
up the core windings. The X windings of all cores in a
single register are in series, while the Y windings of the
cores in each vertical column are series-connected. Each
X line, therefore, selects a particular register, and each
Y line selects a certain bit position in all registers.

To write the word 0001 in the register at address 3,
for example, a current pulse of 1/2 is placed on the Xa
line to select the desired register (all registers are as-

118 UNCLASSIFIED

PART 3
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Magnetic Cores
4.2.3

sumed to be cleared). At the same time, the word is
applied in parallel form to the Y lines, using current
pulses of 1/2 to represent 1 's, blanks to represent O's.
The word 0001, therefore, is entered as a single half­
current pulse on the Y 4 line.

Now, both the X and Y windings of core 12, at
the intersection of X3 and Y 4, receive half-current
pulses, setting up a field about each winding of force
H/2. The windings are so arranged that these fields
add, producing a total magnetizing force of H, which
switches core 12 to the 1 state. Notice that cores 9, 10,

and 11 on the X3 line each received a half-current pulse
in its X winding, but none in its Y winding; hence
these cores were not switched. Cores 4, 8, and 16 had
their X windings energized but not their Y windings,
so these were not switched either. Since the write oper­
ation was being performed, a half-current pulse on any
line can be called a half-write pulse. In reading, it is
called a half-read pulse.

To read a word out of a register, one additional
winding is needed in each core. This is the output or
sense winding. (For the sake of clarity, it is not shown
in fig. 3-88.) Since only one register at a time is read,
all sense windings from a given bit position can be
connected in parallel to a single output terminal. That
is, the sense windings from cores 4, 8, 12, and 16 on the
Y 4 line, for example, are paralleled, so that the least
significant bit from any register being read appears at
this output terminal (Y4). Similarly, the sense windings
from all cores on the Y 3 line are brought to a separate
output terminal, those on the Y 2 line to another, etc.

For the reading process, the desired register is se­
lected by a half-read pulse placed on the proper X
line, and half-read pulses are applied to all the Y lines.
These half-read pulses are opposite in polarity to the
half-write pulses. In other words, the magnetic fields
set up by the half-read pulses tend to set the cores to
the 0 state.

Again using the register at address 3 as an exam­
ple, to read out the word previously written in, half­
read pulses are sent to the X3 line and to all the Y
lines. Each core in register 3, therefore, receives a half­
read pulse in both its X and its Y winding. The result­
ing fields add in a direction that sets the core to o. The
word stored in register 3 is 0001, so cores 9, 10, and 11

are already in the 0 state and are not switched. Core 12,

however, is storing a 1 and the combined half-read
pulses switch this core to the 0 state, producing a pulse
on the output line from the Y4 bit position. Thus, the
word 0001 that was in register 3 appears at the ouput
terminals as a single pulse in the least significant place.
The register itself is cleared (all cores reset to 0).

The cores in registers 1, 2, and 4 are all half­
selected by the half-read pulses on the Y lines, but since
no pulses are sent through their X windings, they are

not switched. Notice that the process of writing also
must produce pulses in the sense windings of any cores
that are switched to 1. These pulses, however, are oppo­
site in polarity to those produced in the reading process
and can be either blocked or ignored at the output
terminals.

The fact that a register is cleared by the process
of reading a word out of it is not good. This is de­
structive readout, as it is usually desirable to continue
storing the word in the register after readout, since
anyone piece of information might be needed a number
of times in the course of a program. The solution is to
write each word back into the register from which it
came immediately after reading it out. At the same time,
of course, it is also sent to the arithmetic element or
wherever it is needed. The necessity for rewriting each
time a word is read out slows the access time since the
memory circuits cannot handle another operation until
rewriting is completed. Nevertheless, the total access
time using ferrite cores is usually 10 microseconds or
less.

An arrangement like the single memory plane
shown in figure 3-88 is sometimes used in other parts
of the computer to store a group of words and read
them out in sequence, on demand, to some slower­
acting circuitry or output device. This can easily be
done by connecting the outputs of a ring counter to
the X lines. The ring counter is designed to produce
half-current pulses as its outputs. Another circuit is
arranged to distribute half-read pulses to all Y lines
each time the one-hot output of the ring counter is
shifted during reading. In writing, these are suppressed
(inhibited) .

Using this arrangement, the computer (or other
circuitry) loads the memory plane by pulsing the ring
counter once as each word to be stored is sent to the
Y lines. Each time the ring counter is pulsed, it applies
a half-current pulse to the X line of a different regis­
ter, so words are written into one register after another
until the plane is filled. The ring counter serves to se­
lect the registers in sequence. During this writing pro­
cess, the half-read pulses are suppressed.

When the memory plane is loaded and the output
device or other slow circuitry is ready to receive the
first stored word, it sends a control pulse to the ring
counter. (Since the pulse is sent to obtain data, it is
often called a "demand pulse.") The counter output
shifts back to the first register in the plane and half­
read pulses are gated to all the Y lines, so the word in
the first register is read out. When this word has been
processed in whatever manner is necessary, another de­
mand pulse is sent to the ring counter and the word in
the second register is read out. The memory plane,
used in this fashion, can accept words at the fast rate
dictated by the computer and give them to other cir-

UNCLASSIFIED 119

Magnetic Cores
4.2.3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 3
CH 4

cui try at a much slower rate. Tape cores can be used
instead of ferrite cores.

Returning to the main memory, the fact that words
must be rewritten because of the destructive readout
does lead to one advantage, which is that each memory
operation, reading or writing, can consist of the same
sequence of events with minor variations, somewhat
simplifying the access and control circuitry.

For a reading operation, the desired register is
read and the output word is sent where it is needed and
also written back into the same register. On a writing
operation, when a new word is to be placed in a regis­
ter, the desired register is read to clear it but the word it
contained is discarded and the new word is written in­
to it instead. (Of course, a register is not selected to re­
ceive new information unless the programmer knows
that the word in it is no longer needed, or it is empty.)
During each memory cycle, therefore, the selected regis­
ter is read and then written into, whether the opera­
tion called for is reading or writing.

The single memory plane under discussion thus far
is not large enough to provide the amount of storage
space needed in a big computer, although-depending
upon word. length - a large number of registers can be
wired into a plane of reasonable size. To provide the
required storage space in a compact arrangement, mem­
ory planes are stacked in a 3-dimensional array, as
shown in figure 3-89.

Now, there are two possible ways of arranging the
registers. If each memory plane contains a group of reg­
isters, as previously described, each address must specify
the number of the X line and the number of the plane.
This method, however, is likely to lead to complicated
wiring within the plane itself. The alternative method is
the one shown in figure 3-89. Here, each bit position
of a register is in a different plane.

SELECTED
X-CO-ORDINATE
WINDINGS - X3

SELECTED
Y-CO-ORDINATE
WINDINGS - Y 4

PLANE 4

Figure 3-89. Stacked Memory Planes

To see this clearly, consider core 12 in figure 3-88,
which is selected by half-current pulses on lines X:{ and.
y 4' Stack up four planes identical to this one and con­
nect the X3 lines of all planes in series, then do the
same with the Y 4 lines, as illustrated in figure 3-89.
Placing half-current pulses on the X3 and Y4 lines now
selects core 12 in each of the four planes, so the four
core 12's can be used as a single register.

The drawback to this is immediately apparent. It
is fine for reading, when all cores in the selected regis­
ter are set to 1, but how are words written in? Obvi­
ously, each bit of a word in parallel form must be
applied to a different plane, to the core of the selected
register in that plane. Since selection (in the writing
process) sets all the cores to 1, the logical way to write
a word is to inhibit those cores that must represent O's
in the word. This can easily be done by adding an
inhibit winding (not shown) to every core.

Then, to write a word into storage, half-write
pulses are placed on the proper X and Y leads, selecting
the register and tending to write l's into all the cores
in it. At the same time, a half-current inhibit pulse is
developed for each 0 in the input word and applied to
the inhibit winding of the core in the corresponding
bit position. The inhibit pulse and winding are so ar­
ranged that the resulting magnetic field cancels the
field set up by one of the write pulses, so the core
cannot be switched to 1.

Since only one core in a given memory plane be­
longs to the selected register, the inhibit windings of
all cores in the plane can be connected in series. An
inhibit pulse on this lead can affect only the core that
is fully selected. Similarly, in the reading operation,
only one core in the -plane is selected and can produce
an output pulse, so this means that the sense windings
(not shown) of all cores in the plane can also be series­
connected. Neither the inhibit pulse nor the output
pulse can have any important effect on unselected or
half-selected cores in the plane.

In the reading operation, of course, the half-read
pulses are of a polarity that sets all cores of the selected
register to o. The cores that were storing O's are un­
affected, those that were storing l's are switched, pro­
ducing output pulses that are taken off in parallel form
from the sense windings of the separate memory planes.
The word is thus read out as a parallel set of pulses
and blanks. As described earlier, it is then rewritten
into the register from which it was taken.

The address selection circuitry used with such a
core memory is usually simple in nature. The address
received from the operation-address register in the con­
trol element must be decoded or translated into a pair
of one-hot signals, one to select the X line, the other
the Y line. This decoding is commonly done in a matrix
of some sort. If a new word is to be written into stor-

120 UNCLASSIFIED

PART 3
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Storage
4.2.3-4.4

age, it is held temporarily in a register (often a comple­
menting register) in which an inhibit pulse is developed
from each bit position containing a O.

For either reading or writing, a half-read pulse is
first gated to the selected X and Y lines. This clears the
desired register and reads out the word (if any) pre­
viously stored there. For the writing process, this word
is discarded since a new one will be stored. In reading,
the word is sent to the circuits needing it and also
gated into the register that develops the inhibit pulses.
In either case, this register now contains the word to
be written into the core register. Half-write pulses are
now gated to the proper X and Y tines and, at the
same time, inhibit pulses are gated to the inhibit wind­
ings of the bit positions containing O's, thus writing or
rewriting the word into the selected core register. All
control circuitry is then cleared in preparation for an­
other memory operation, completing the memory cycle.

In this manner the ferrite core memory array han­
dles the storage requirements of the computer quickly
and efficiently.

4.3 ELECTROSTATIC STORAGE

Electrostatic storage is accomplished by storing l's
as positive charges and O's as negative charges on tiny
separate areas of a dielectric plate in a device similar to
a cathode-ray tube. The dielectric plate structure is
mounted behind what would be the face of an ordinary
CRT and consists of a screen grid on the cathode side
(the dielectric plate) and a conducting plate of metal
on the tube-face side. The electron gun and deflection
plates are practically the same as those in any CRT.

Although there are several possible methods of
control, the effect is similar to that of storing a charge
in a capacitor. It is achieved by changing the potential
of the conducting plate to make the dielectric area
temporarily positive or negative with respect to the
screen grid as the electron beam strikes a small spot on
the dielectric. If the dielectric area is more positive than
the screen grid at this instant, there is practically no
secondary emission and the spot soaks up a surplus of
electrons, thus holding a negative charge when the
beam is removed and the potential of the nearby con­
ducting plate returns to normal.

If, on the other hand, the dielectric area is more
negatively charged than the screen, the electron beam
knocks out a large number of electrons from the di­
electric (secondary emission) and these are picked up
by the screen. The beam actually knocks out more elec­
trons than it puts in, so the spot is left lacking in elec­
trons and hence is positively charged.

Since the dielectric is a nonconductor, these small
areas of charge are held after the beam is removed and
they can be placed close together. By using selected de­
flection voltages, the beam can be moved to any spot on

the plate. The address of a register, however, is a binary
number representing the location of the whole register,
so it must be decoded in such manner as to develop a
set of deflection voltages in steps that will select all the
bit locations of the register, one after the other. This is
often done by deciding the address to an analog cur­
rent, then passing the current through a precision volt­
age divider to develop the deflection voltages.

Reading a bit out of the electrostatic storage tube
is done by aiming the electron beam at a selected bit
location and making the potential of the conducting
plate somewhat negative. If the bit location is positive,
its potential is slightly negative with respect to that of
the screen and there is a sudden increase in secondary
emission that can be detected as an increase in screen
current to the tube. If the beam is striking a negative bit
location, however, secondary emission is already high
and there is no momentary change when the conducting
plate swings negative. Both writing and reading must
be done in serial form, since the beam can strike only
one bit location at a time.

Electrostatic storage is fast of access, but not as
fast as magnetic cores. The principal reason lies in the
need for accuracy in the deflection voltages to aim the
electron beam at the selected bit location and because it
takes time to develop these voltages properly.

Reading information out of the electrostatic stor­
age tube destroys the information. With these tubes,
however, high resistance on the dielectric plate tends to
discharge the bit locations gradually and it is therefore
necessary to rewrite all the stored information at regu­
lar intervals, whether it is read out or not. The time
used in rewriting the information is lost to the computer
as far as normal reading and writing operations are
concerned.

4.4 ACOUSTIC DELAY LINE STORAGE

Information is stored in acoustic (or sonic) delay
lines in the form of mechanical vibrations traveling
along a length of some solid or liquid material, ordi­
narily a column of mercury. (Actually, despite the name,
the vibrations are far above the frequencies of sound.)
Since the computer signals are electrical, there must be,
at each end of the delay line, a transducer, a device that
converts energy from one form to another. Blocks of
quartz crystal are used to convert between the electrical
pulses and the mechanical vibrations.

The acoustic delay line is used in the closed-loop
type of storage arrangement, as shown in figure 3-90.
This means the words to be stored must be in serial
form. The mercury tank is capable of holding several
hundred bits, so a sequence of pulse-type serial words is
stored.

When a serial word is written into the loop as a
train of pulses and blanks, each pulse in turn hits the

UNCLASSIFIED 121

Storage
4.4-4.5.1

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 3
CH 4

CRYSTAL

r-T""'7"""7""'7'""':~ ~ TRANSDUCERS ~ l"7"":lr-"7"'rT..,.

MERCURY DELAY TAN K

WRITE

INPUT OUTPUT

i4---READ

AMPLIFIER­

RESHAPER

Figure 3-90. Acoustic Delay Line

quartz crystal transducer at the input end of the mer­
cury column. Through the piezoelectric effect, the im­
pact of the electrical signal is translated into a me­
chanical vibration of the crystal that is sent into the
mercury column. After traveling the length of the col­
umn at a comparatively slow speed-which introduces
the delay - the wave (vibration) shocks the crystal at
the output end into producing an electrical pulse corre­
sponding to the one that was put in.

Due to attenuation and reflections in the tank, the
output pulses must be amplified and reshaped after
they emerge into the external loop. Or they may simply
be used to gate new, fullsized pulses (usually clock
pulses) into the loop to take their places.

The problem of reading a desired word out of the
loop is one of timing, just as in a word-length circulat­
ing register, except that the desired word is delayed
much longer in getting through the acoustic delay line
to a point in the loop where it is available for reading.
The total delay around the loop is known, so this time
becomes the length of one memory cycle. That is, if a
pulse entered in the loop emerges 400 bit-times later,
for instance, then 400 bit-times is one memory cycle.

During operation, then, a continuous cycling count
from 0 to 399 is made (using the above example). If
the least significant bit of a new word being written
into storage enters the loop at bit-time 50 of a memory
cycle, it will emerge from the delay line and become
available for reading at bit-time 50 of every memory
cycle thereafter, until it is finally erased from the loop.
Thus, 50 is the address of this word.

Several methods can be used to locate and read
out this (or any) stored word. One of the easiest is to
place the address 50 in a counter and then, at the start

of the next memory cycle, use clock pulses to count
down toward zero. When the counter reaches zero, the
read gate is opened for one word-time and the desired
word is read out. Where more than one delay line is
used, each address must also identify the proper line.

Notice that this is nondestructive readout; that is,
the word continues to circulate in the loop even after it
is read out. To remove words, another gate or an in­
hibit circuit can be placed in the main loop. This can
be closed for one word-time or for one memory cycle
to remove a single word or all stored information.

Although the computer must wait for a desired
word to be read out, the pulse repetition rate can be
very high (up in the megacycles) in these acoustic delay
lines, so they have been found practical for use in
serial mode computers. One drawback is that the line
must be temperature-controlled because the velocity of
mechanical vibrations in mercury, like the velocity of
sound in air, varies with temperature. The longer the
line, the more accurate the control must be to avoid
serious timing difficulties.

4.5 MECHANICAL STORAGE

4.5.1 Punched Hole Storage

The idea of storing information by punching or
not punching holes in specified locations on tough pa­
per cards or tape has been in existence a long time. By
arranging regular rows or columns on a card or along
the length of a tape, binary numbers can be permanently
stored by the punch (I)-no punch (0) system.

When a card or tape is properly aligned and drawn
between a metal plate and a set of metal wipers or
fingers, a brief electrical contact is made through each
hole. None is made where there is no punch. Thus,

122 UNCLASSIFIED

PART 3
CH 4

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

Control Panel Storage
4.5.1-4.5.2

punch-no punch is translated to pulse-no pulse, which
is understood by the computer.

A newer and faster method of reading punched in­
formation is to draw the card or tape between a light
source and a set of photocells (one per row or column).
Each punched hole lets through a flash of light to the
corresponding photocell, which produces an electrical
pulse, so again the informamtion is translated to com­
puter language.

Punched cards and tape are not well suited for use
as either main or auxiliary storage mediums in modern
computers, because of the necessity for frequent han­
dling by an operator as well as because of the slowness
of access. For this reason, punched card and tape ma­
chines are most often used as input-output devices and,
as such, are described in Chapter 4.

4.5.2 Control Panel Storage
A telephone switchboard might be considered to be

a type of memory device. Each time the operator plugs
in one of the patch wires, she sets up a connection that
will "remember" which circuits are connected. In com­
puter usage, a similar storage device is the control panel,
often called a plugboard. A device of this type, some­
times used to store programs and data by means of
plug-wires, is shown in figure 3-91. Information is
stored in it by connecting certain hubs (holes) together
with pluggable wires.

Two general types of control panel storage are
used. In some machines, the control panel is used purely
for storage of control information (the program). In
this case, the control panel usually consists of two types
of hubs: exit hubs and entry hubs. In general, the exit

Figure 3-91. Control Panel

UNCLASSIFIED 123

Control Panel Storage
4.5.2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 3
CH 4

hubs are hubs which emit pulses. Entry hubs are con­
nected to circuits controlling various machine functions.
Therefore, when they are pulsed, the functions they
control are initiated. During each machine cycle, the
various exit hubs are pulsed in certain sequences by
the machine. If one of these exit hubs is .wired to an
entry hub controlling a particular function, the pulse,
when it appears, initiates this function. For instance,
a exit hub might be wired to the entry hub which
initiates the addition function. Then, when the machine
pulses this exit hub, it will cause the machine to add.

Another type of control panel storage is more like
the register storage which has been mentioned before.
In this case, the control panel is divided into registers,
and each bit position of each register consists of a pair
of hubs. In such a system, a 1 is usually represented by
a wire connecting the two hubs of a pair, a 0 by no
connection between the two hubs. A 5-bit register, for
example, has five pairs of hubs. If the first, third, and
fifth pairs were connected together and the second and
fourth left unconnected, the register would contain
10101.

124 UNCLASSIFIED

PART 3
CH 5

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Description
5.1-5.2.2.3

CHAPTER 5
INPUT-OUTPUT EQUIPMENT

5.1 EQUIPMENT, GENERAL

5.1.1 Introduction

This chapter discusses in general common types of
input-output (10) equipment and covers in detail how
10 devices are used in digital computing systems.

Many types of 10 devices are available and there
are also devices which could be adapted for preparing
and receiving information for digital computer opera­
tion. This chapter will consider those devices which are
actually used.

5.1.2 Definition of Input-Output Devices

The equipment that introduces input information
into the computer and receives output information from
the computer may be the same device. The function of
this device may vary between its input and output util­
ization. For example, a tape unit may be used as a mem­
ory storage, as an input source, or as an output device.
However, the general characteristics and capabilities of
the tape unit are fixed and do not vary with its func­
tion.

An input or output device may be defined as equip­
ment for communication between the computer and the
external sources or destinations of information and
data; devices may be classified as input-output equip­
ment if they can translate external information into
computer information or vice versa.

5.2 DESCRIPTION OF INPUT-OUTPUT EQUIPMENT

5.2.1 General

Information transfer between a computer and a
person is generally through magnetic or paper tapes,
card machines, typewriters, visual displays, and line
printers. The automatic inputs of the AN jFSQ-7 are
all-electronic equipments which translate information
from the form in which it appears in the telephone
line receiver (serial pulses) to the form used in the com­
puter (parallel pulses).

5.2.2 Tapes and Tape-Handling Equipment

5.2.2.1 General

There are two types of tapes available for use with
digital computer systems, paper and magnetic. Both
types can be used for either input or output functions.
Each type of tape has its own distinctive processing
equipment and the tapes are not interchangeable. A
paper tape must be used with a paper punch and

reader, and magnetic tape must be used with equipment
designed for magnetic tape preparation and processing.

5.2.2.2 Paper Tape Equipment

Paper tape is usually used as an 10 device, although
it has been used for memory storage, and is similar to
teletype tape. Information is coded on the basis of a
hole-no-hole code. In a typical system, the holes are
punched on the tape by a manual keyboard and paper­
tape punch procedure or by the computer and paper
punch arrangement. Normally a computer-prepared tape
is an output procedure and a keyboard prepared tape is
an input procedure. Paper tape with the associated
paper-tape punch and reader is shown in figure 3-92.

The paper-tape reader converts the punched paper­
tape code into electric impulses by means of a photo­
electric system or by sensing the pattern of hole-no
hole with brushes.

The paper-tape reader interprets the punched tape
and can be linked to a printout device as well as to the
input phase; it can also be used to verify the correctness
of a keyboard-prepared tape before the tape is pro­
cessed as input information. In the input phase, tape is
sensed by the reader and the information, expressed in
electrical pulse form, is fed into the computer.

A paper-tape system is a relatively slow process of
information processing (although it is less expensive
than a magnetic tape system) and is generally used
with a special purpose computer solving scientific prob­
lems of a fixed type.

5.2.2.3 Magnetic Tape and Tape-Handling
Equipment

Magnetic tape usually is a coated plastic tape about
liz-inch wide similar to the tape used in home style tape
recorders. The coating varies with the commercial pro­
cesses used to manufacture tape. The coating has mag­
netic properties, that enable the tape to be magnetized
in discrete units (very small magnetized spots).

Information is represented in the form of a pattern
of magnetic bits. In one form of tape recording, a mag­
netized spot or bit may represent a binary one; a non­
magnetized spot on the tape may represent a binary
zero. A more common system of writing on tape requires
that both l's and O's be expressed as magnetized bits.
This is accomplished by recording l's with one north­
south magnetic alignment and O's with south-north
alignment. A large amount of information can be stored

UNCLASSIFIED 125

Tape-Handling Equipment
5.2.2.3-5.2.3.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 5

PAPER TAPE PUNCH PAPER TAPE READER

o
~ 0 0

o
o 0

D 0 0 0

o 000
o 0 0 0

o 0 0

5-HOLE CODE PAPER TAPE

Figure 3-92. Paper Tape with Associated Reader and Punch

on a length of tape. A typical tape is about 2,000 feet in
length and has a word density of 41 computer words
per inch.

Information may be transferred to a magnetic tape
by means of special typewriters, by card-to-tape con­
verters, by card machines, from magnetic drum, or di­
rectly from a computer.

Tape-handling equipment consists of a tape drive
with associated electronic reading and writing circuitry.
A typical tape drive is shown in figure 3-93.

If a program has been coded and is ready for
translation into a form of information usable in a com­
puter, the first step in the procedure is "to write" the
program on the tape using the equipment available in a
given system. This equipment may be a computer or
card machine. When the information is on the tape, the
reel of tape is placed in a tape drive unit. Then, the
information can be read by the read-write head of this
'mit and the pulse pattern transferred to the computer.

Ttapes and tape-handling equipment may also be
used to receive and record outputs from the compwter.
The outputs are operationally processed from the com­
puter to the tape unit. Generally the information is left
on the magnetic tape in its magnetic form since it will
probably be used again by the computer and there is no
need for human monitoring (no printout is necessary).

Sometimes a common program is stored on tape so that
when it is needed again it will be very easy to insert.
When human monitoring of the output is necessary it is
often advantageous to record the output on tape and
then use an auxiliary device (entirely separate from the
computer) to print the results from the tape. This sys­
tem permits a very high speed tape output which can be
monitored.

Tapes and the associated equipment are generally
used as large-capacity slow-access memory storage. They
may be considered 10 equipments since they are used to
initially load information into the computer. As storage
unit, tapes are memory type equipments, slow in rela­
tion to the other memory units.

5.2.3 Card-Handling Equipment

5.2.3.1 General

The term card machines includes all units of a card
handling system that uses the holes punched in paper
cards to represent information. Such a system must be
capable of punching information on cards and reading
the information from the punched cards and printing
it in a form that can be directly read without further
decoding. A card-handling system implies at least three
units; a card punch, a card reader, and a printer.

There are many possibilities of coding information

126 UNCLASSIFIED

PART 3
CH 5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Card·Handling Equipment
5.2.3.1-5.2.3.4

figure 3-93. Magneflc Tape Drive Unit

on cards using numeric or alphanumeric codes. Among
the more important codes are the binary and the Hol­
lerith.

5.2.3.2 Cards and 'Card-Punch Equipment

A typical card (fig 3-94) is of fixed dimensions
and is made of a specified quality of paper. A card may
be of varying format in accordance with the best tech­
niques for translating information from the card to the
computer of any given computer system. The card
punched in Hollerith code is of one definite format
which, despite disadvantages, is suited for use with
mechanical computing equipment. Another similar card,
arranged in other format, is the binary card; this is suited
to electronic computing equipment.

The equipment used to manually transfer informa­
tion onto a card is a card punch. A manual card punch
is an electromechanical device which punches informa-

tion on cards and prints out the information on the
top of the cards. The punching operation is performed
at a keyboard, similar to a standard typewriter key­
board, by an operator. A typical example of a manual
card punch is illustrated in figure 3-95. This particu­
lar card punch also performs the additional function of
reading the punched cards and converting the informa­
tion expressed into a pulse-no pulse pattern for direct
computer input. This type of punch is called a com­
puter-entry punch. First, the card is punched; then the
card is automatically sent to the reading station. At the
reading station mechanical feelers sense the hole-no­
hole pattern and generate voltages corresponding to
this pattern, which in turn are fed to the computer.
Such a system allows the operator to check the card
punches before the information is actually entered in
the computer.

A card punch for transferring outputs from the
computer to cards is illustrated in figure 3-96. This
card punch is operated by the computer through the
memory. The computer generates voltages which oper­
ate punch-selecting electromagnets. When the punches
operate, they punch out a card-hole pattern correspond­
ing to the computer output information. No manual
operation is possible. The computer-operated card punch
is faster than the manual operated punch; the output
punch can process about 100 cards per minute while
the manual-operated punch is limited to the skill of the
operator. A processing of about 3 cards per minute is
within normal operator capabilities.

In most computers it is possible to punch informa­
tion on cards in any of several codes. This may be a
built-in feature or, if not, it may usually be accom­
plished by special programming techniques.

5.2.3.3 Card Reader

The card reader shown in figure 3-97 is used to
transfer information from punched cards into the Cen­
tral Computer. The card reader is directly linked to the
computer. Cards may be read at the rate of about 250
cards per minute. Reading is accomplished by contact
with brushes which sense holes in the card and com­
plete an electrical contact; holes in the cards become
pulses and the intact area becomes the no-pulse in the
binary code arrangement. The reader can be used to
process information from cards directly to the memory
unit of the computer. This information is available for
use in the computer operation or for transfer to mag­
netic tape for storage.

5.2.3.4 Line Printer

A line printer records output information, usually
in alphanumeric form (fig. 3-98). The term line desig­
nates that the printer is capable of printing a line of
characters at a time.

Printers vary in speed of the printout from about

UNCLASSIFIED 121

Typewriter
5.2.3.4-5.2.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 5

Wii DOG 095812010.154 .Z 7~ .6 87 10 92 8 120 2000 18 R 3010 76 .. -:: TOP ROW PRIN rED

I • WIND BAROM ••• :_. BY 026

DATE GROUND 5000 .0000 25000 ~ CEILING CL ~ - :
~ r

I TIM E iDA iMol YR vEL O.R vEL DIR VEL DIR VEL OIR en .., • READ ri.

10 a a a a 1000011000 a 0 a 000 000 000 001 000 000 001 000111 000 00101 000 00000000000000000000000
17 J 45' I • , 10 II 11 Il 14 I~ I. IIISI! 10'1122 231US lIIP'lI 1IJII)I lll!)4 lS'lIil lIlt40 41 41.4144 4~ 45 .7 ".9 5IISISH1Si S15& 51 51 5UUI III fHUI • ., &8. 11171 n 7J 74'15 II 11 Ie IUO

III III 11111111" III III III III III III III III II I I I I III 11111 III 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1

222 2 2 2 2222122222 221 217 2 2 2 22 2 22 2 ~21 2 2 2 212 221222 222 22222 222 22222222222222222222222

3 3 3 3 3 3 3333333333 33 3 3 3 3 3 3 3 33 3 3 J 3 3 3 3 3 3 3 333 333333 333 31333 333 33333333333333333333333

444 144 4444444441 444 444 444 444 444 444 444 444 1144444 444 44444 444 44444444444444444444444

SIS 555 sslssssslS 555 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 555 555555 555 55555 55 S 55555555555555555555555

166 616 6666666666 666 66 6 661 6 6 6 666 666 666 666 666666 666 66666 661 666&6&66666666&66G6~6'.

7 7 7 77. 7777771171 111 111 111 111 1 1 7 711 117 7 7 7 117717 117 7 7 7 11 717 17117171711711111117111

8 8 8 8 8 8 8881111881 888 811 I I 8 818 888 881 881 8 8 8 888881 881 8 8 .8 8 888 88888888888888888888888

9 9 9 9 9 9 9199999999 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 919 999 99 9 999999 999 19999 9-99 99999999999999999999999
17) 4 S , I 6 , 10" 17 I) 14 IS 16 n Ie I' ~'ll n 1''/.4"1$ ~"l1'l1l ., iOJI ~13~ 3S"~ iSl94C1 4141.l44~4Ii 47 «149 5O~I U Il)4 ~S 51 SJ !if ~ IP 61 U 6J M is &Ii I' III 59 1011 12 Il J~ 7S JI; TIll 79 8D

Figure 3-94. Card Arranged in Hollerith Code Format

100 lines per minute to over 1,000 lines. The number
of characters per line also varies. The printer in the
figure above can print out 150 lines per minute, 64
characters per line.

The exact technique of how the printing is accom­
plished is not within the scope of this manual. In gen­
eral the computer generates a pattern of voltages which
are used to energize electromagnets. These electromag­
nets than select the proper letter or number on a type­
wheel and the printer prints. The printer illustrated in
figure 3-98 prints one line at a time by the simultane­
ous positioning of the type wheels (120 in number).
Each typewheel is not positioned in every line of print­
out-only those 64 typewheels which can be selected
within the cycle of line printout are used.

5.2.4 Typewriter

In some systems, typewriters are available for trans­
ferring input and output data into and out of the mem­
ory element of the Central Computer. These typewriters
have an alphanumeric keyboard and may be manually
and computer operated. When typing inputs, typewriters
are manually operated and transmit one character at a
time to the Input System. The keyboard character is
translated into coded electrical pulses for entry into the
memory by means of contacts on each key. Manual op­
eration is a relatively slow input method and is usually
restricted to inputs of a local nature in a computer
system with a fixed program. Outputs are typed out one
character at a time under computer control and selec­
tion. The outputs also are transmitted from the memory.

During output operation the 10 typewriter is oper­
ated by a series of electromagnets and solenoids mount-

ed beneath the keyboard. The magnets and solenoids
automatically actuate keyboard functions of the type­
writers, including carriage return, spacing, tabulation,
ribbon color control, and others. When used as input
devices, electrical impulses are transmitted from the
typewriter by depressing a key. These electrical impulses
may be generated in a coded pulse-no-pulse pattern by
a preset action of the key in relation to a group of
switches.

5.2.5 Visual Displays

Information may be transmitted from a digital com­
puter and displayed visually in a direct-read form. The
equipment used to display such output information is
generally known as visual displays. A typical example
of a visual display equipment is shown in figure 3-99.
Some display a picture similar in physical appearance
to a television picture of printed or pictorial informa­
tion. Other display outputs may be merely graphical,
such as might be seen on the usual cathode-ray oscil­
loscope.

The main component of a display equipment is a
cathode-ray tube (figure 3-99). The special purpose
tubes such as those used in the AN/FSQ-7 have pro­
visions for writing actual alphabetic characters. Figure
3-100 shows a simplified diagram of a typicial display
tube. Writing on the viewing screen is accomplished by
forming a character and positioning the character on
the tube face. Characters may be generated by a stencil­
ing process; that is, the electron beam is directed
through a selected aperture in a character-forming ma­
trix and directed by electrostatic deflection plates to a
selected position on the tube face. The face of the tube

128 UNCLASSIFIED

PART 3
CH 5

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Fig. 3-95

Figure 3-95. Computer Entry Punch

is phosphor-coated. The phosphor emits a blue flash
when illuminated by a writing beam, followed by a
yellowish afterglow which persists long enough for
human perception. In some display systems, it is pos­
sible to retain the character on the tube face by using
another beam of electrons.

Information in binary-coded pulse form is trans­
mitted from the storage element of the computer or
from the Input System to the display equipment. There,
it is converted to analog deflection voltages which gen­
erate the desired visual displays. Since the information
on the tube face does not persist for a long period of

UNCLASSIFIED 129

Figs. 3-96 & 3-97 UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 3
CH 5

Figure 3-96. Computer-Operated Card Punch

time, it is sometimes desirable to record this informa­
tion in a more permanent form. Camera systems are
available which automatically photograph the display
tube face and process the film to provide a positive
transparency. When required, the transparency can be
projected on a screen and the information is visually
available for as long as required. Other information
recording systems photograph the information on the
display tube face and project the images on sensitized
paper where the information is reproduced.

5.2.6 Other Input-Output Equipment

The 10 equipments discussed in the preceding para­
graphs are commonly identified with general purpose
digital computers. Possible types of 10 devices associ­
ated with special purpose computers are limited only
by the capability of any device to transmit or to receive
information in a form that can be converte4 for use in
a digital computer.

Input information can be transmitted from teletype
machines, telemetering devices, analog computers, and
even by human voice. In some way, this information
must be converted to a pulse no-pulse binary number

Figure 3-97. Card Reader

code, after which it is compatible for transmitting into
the computer system as data in a specific problem.

The results of computer computation can be trans­
lated into a form that can be transmitted to guided
missiles, control systems, and wide-spread inventory and
business offices. The devices used to transmit computer
results are teletype systems, telephone lines, radio, and
so forth. These devices may be directly linked to the
computer system and the outputs require no additional
processing by human operators. A dramatic type of
output is the speech output from the computer. This
technique is termed speech communication with the
computer and has been used in diagnostic troubleshoot­
ing for locating causes of failure.

The choice of 10 devices for special purpose com­
puters depends on the sources of information for the
solution of specific problems. These sources are some­
times termed data-links. The digital computers are not
restricted to accepting information only from the tradi­
tional tapes, card-machines, and keyboards. They will
use data from any source as long as the data is trans­
lated into the binary code of pulse no-pulse.

130 UNCLASSIFIED

PART 3
eM 5

UNCLASSIFIED
T .0. 31 P2-2fSQl-2

figure 3-98. Line Printer

UNCLASSIFIED

Fig. 3-98

131

Figs. 3-99 & 3-100

132

CHARACTER
MATRIX

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Figure 3-99. Visual Display Unit

CaNVERGEN~

CHARACTER
POSITIONING
AND VECTOR
GENERATING

PLATES

Figure 3-100. Display Tube, Simplified Diagram

UNCLASS,IFIED

PHOSPHOR

PART 3
CH 5

caATED ~ .
TUBE FACE ~

PART 4
CH 1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Sample Computer Description
1.1-1.2.2.1

PART 4
COMPUTER ORGANIZATION

CHAPTER 1
INTRODUCTION

1.1 GENERAL

Up to this point, this manual has attempted to
show only a very general picture of computer organ­
ization, along with the specific circuits and arithmetic
techniques which make such organization possible. This
part gives a more specific picture of computer organiza­
tion. In particular, the interaction of the various ele­
ments working within a complete computing system
will be shown. A typical computer, which uses many of
the techniques and components developed in previous
parts, will be described.

The computer to be described is non-existent but is
patterned after a simplified version of the AN/FSQ-7.
It will be obvious later that theoretically this computer
could be refined and expanded to meet the needs of the
SAGE function.

1.2 SAMPLE COMPUTER DESCRIPTION

1.2.1 Requirements

Despite the fact that some data processing machines
are said to be general purpose computers, some con­
sideration of the use to which they will be put is neces­
sary if an efficient system is to be designed. It would for
instance, be foolish to build a large data processing
system to compute the payroll of a company employ­
ing only 10 men. Consider the requirements of an air­
craft-control computer. Such a computer obtains infor­
mation on aircraft position and movement over a wide
area from several radar sets. This information is auto­
matically entered into the computer for processing. The
processing consists of calculations of the planes' vel­
ocity, position, and so forth. The processing also in­
cludes a means of presenting this information to human
operators, so that they can decide what ground control
action (shooting down, redirecting, etc.) is necessary.
Of course, there must be a means of taking the result­
ing ground control action into consideration by the
computer. There must also be a means of furnishing
computer information to users other than the actual
operators of the computer; i.e., weapons bases or other
ground control stations. A consideration of the re-

quirements of such a computer brings out at least the
following:

a. The problem is a real-time-control problem. That
is, the computer controls a process which is con­
tinuously changing while the computer calcu­
lates. While the computer is computing, the po­
sition of an airplane is moving. This implies the
need for high-speed computation if the results
of the computer's work are to be useful in, for
instance, shooting down the plane.

b. In the control of an air battle spread out over a
wide area, it must be possible to determine air­
craft positions quite accurately. The hypothetical
computer, then, should have high accuracy as
well as considerable precision.

c. The use to which the computer is put requires
the ability to solve a great variety of prob­
lems. This seems fairly obvious when all the dif­
ferent types of situations possible in an air bat­
tle are considered.

d. The fact that the problem is to obtain real-time
control also requires that a considerable data be
continuously entering and leaving the machine.

e. As is usually the case, the input and output de­
vices of the computer will be slow compared to
the computing section. Therefore, the input-out­
put system requires as much refinement as possi­
ble to get the best speed with the devices avail­
able.

1.2.2 General Description

Before going into the specific details of the com­
puter to be developed, it is necessary to consider some
basic concepts. It is necessary to determine those gen­
eral characteristics which affect the design of the com­
plete computer.

1.2.2.1 Analog or Digital

First, what general type of computer is required,
analog or digital? In the requirements given for the
hypothetical computer, it has been stated that high de-

UNCLASSIFIED 133

Fig. 4-1 UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 1

INPUT INFORMATION OUTPUT INFORMATION

~~

, ,
I -

INPUT OUTPUT 1-.. -en I-
...J ~~ ::>
0 a.
a: l-
I- ::>
z 0
0
u 0

z
a: <I:
w

I-u..
u.. ::>
::> ~,

a.
CD I-

::>
0

INPUT OUTPUT -..
-- BUFFER BUFFER -- -

4I~

en , ,
...J
0
a:
I-z MEMORY

Cf)

0 ...J
U 0

a:
a: I-
w Z
u.. 0
u.. u
::> ~ ~~ CD a:
I- w

u.. ::> u.. a. ::>
~ en CD

>-
...J

0 0 I-a: a: z 0 ::>
<I: I- a. ::E z l-

I-
W 0 ::>

::> ~, ::E u ~, 0
a. 0
~ z

ARITHMETIC <I:

CONTROL ARITHMETIC - I-
CONTROLS ::>

a.
I-
::>
0

Figure 4- J. Elements of the Sample Computer

grees of accuracy and precision were required. This
implies the use of a digital rather than an analog com­
puter.

An analog device can be made quite accurate, but
its precision is limited by fundamental obstacles which
cannot be completely overcome. For instance, since the
data in an analog device may be represented by the
position of a mechanical shaft rotation about its axis,
the slop of the gears and the difficulty of making precise
angular measurements limit the precision possible. E'ur­
thermore, if voltages are used to represent data, any
power supply changes may have a definite effect on ac­
curacy of results. Such considerations limit the accuracy
and precision possible to a few decimal places.

On the other hand the precision of a digital device

is limited only by the length of the word which the de­
vice can handle. If the device can handle three decimal
digits the precision possible will be to two decimal
places. If it can handle 1u decimal digits the precision
can be held to nine decimal places. The accuracy is
theoretically almost infinite. It can, therefore, be as­
sumed that a digital computer must be used if the prob­
lems to be solved demand high degrees of accuracy
and precision.

1.2.2.2 Fundamental Elements

The nature of digital computing dictates several
more general characteristics. In figure 4-1 the basic
elements of a digital computing system, as well as con­
trol and information transfer lines, are shown. The thin

134 UNCLASSIFIED

PART 4
CH 1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Fundamental Elements
1.2.2.2

lines symbolize control functions, the heavy lines, in­
formation transfer. Any digital computing system must
comprise at least five elements: memory, arithmetic, con­
trol, input, and output. This is true whether the sys­
tem consists of a man using pencil, paper, and an add­
ing machine or is a complex electronic computer. The
other elements shown, the buffers, are refinements nec­
essary to attain the high-speed system required.

In the main-adding-machine example mentioned in
the previous paragraph, the operator's memory and the
paper serve as information storage media. Memory is
necessary to store the data to be operated upon as the
results of the operations. In digital computing this in­
formation storage is required because the step-by-step
operation makes it necessary to store some numbers
while they await their turn to be operated upon. For
instance, when adding three numbers together with an
adding machine, two numbers are first added, while the
third is retained in the memory. The final result is
found by adding the number in the memory to the sum
of the first two.

Sometimes, memory is used for a second very im­
portant function, that is, to store the program. Just as a
man operating an adding machine must know when to
push what buttons for the solution of a problem,
so the computer must know the proper sequencing of
its operations. In some computers (control-panel­
programmed), this proper sequencing is accomplished
by means of actually changing the wiring of the com­
puter. In a stored-program computer, however, the in­
structions are actually retained in the memory. There,
the computer can automatically refer to them and can
then perform them in sequence. This type of memory,
in which both data and program are stored in mem­
ory, allows great versatility.

If one thinks again of the computing system com­
prising a man using an adding machine, he realizes that
it is in the adding-machine element that the actual ma­
nipulation of the data takes place. It is here that any
calculations are performed. The adding machine is the
switching mechanism through which transfers of data
are made and, consequently, by which the actual changes
to the data are made. Just as this system needs an arith­
metic unit of some kind, so an actual computer needs
an arithmetic element. It has been stated that the com­
puting process consists of nothing more than a con­
trolled manipulation and transfer of data between stor­
age devices. In a standard computer the arithmetic ele­
ment is the channel of transfer during the actual com­
puting. I t is the device which actually performs the
work of changing the data during transfer.

The function of the control element is to direct the
operation of the other elements of the computer. In a
man-adding-machine computing system, the man acts
as the control element. He directs the transfer and ma-

nipulation of any data. The control element in a com­
puter does the same thing. (Of course, it must be
originally programmed by the operator.) It initiates
transfers, and it directs the arithmetic element in its ma­
nipulations upon the data transferred, and the memory
element in its data storage functions. The control ele­
ment also controls the input and output elements. It
tells what data will be entered from the computer in­
put devices or readout to the output devices. In other
words, the control element controls the overall opera­
tion of the whole system; it co-ordinates all elements
of the system.

A device for entering information into the system
is necessary. Somehow, the information as it is under­
stood by the operator of the computer must be entered
into the machine in such a form that it can be used by
the computer. That is, there must be a method of con­
verting the numbers understood by man into their elec­
trical equivalent (pulses, levels, etc.) used in the com­
puting system. In the man-adding-machine example the
operator performs this function; in a computer an in­
put element is provided to do it. The input element
furnishes the transfer path from the outside world to
the computer, and the means of translating the data
from the language of the external world to that of the
computer.

Consider again the man-adding-machine example.
All the calculations would be of little use if the results
could not be made available to the outside world. To
make the results available, an output device such as a
paper-tape printer (on the adding machine) must be
furnished. Similarly, any other computing system needs
an output device or system. Analysis of an Output Sys­
tem shows that it has two important functions: it fur­
nishes an output data path; and it translates the results
from computer language to the language of the human
being or other user. At first thought, it appears
that a printer to print results for human operators
would be all that is necessary. For computers where
only human beings use the results, this is true, but in
others it is not. For instance it may be necessary to
connect the output to control a machine, a guided mis­
sile, for instance. In this case the output device would
translate from the language of the computer to the con­
trol pulses of the missile guidance system. Such an Out­
put System would still be performing its fundamental
purposes, transfer from computer to outside world
and translation of data from one language to the other.

The Input and Output Systems have one important
consideration in common; they both transfer informa­
tion between a computer and an outside device. This
has a very important effect upon the speed and capacity
of the computer. If the computer is to be able to accept
information from the outside world, it must be con­
trolled to do so. The control pulses for accomplishing

UNCLASSIFIED 135

Program Control
1.2.2.2-1.2.2.4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 1

this may come only at predetermined times. On the
other hand, there is no way of predetermining the
availability of information from the outside world.
There is, then, little chance that the demand of the
computer for information will coincide with the avail­
bility of that information from the outside world.
Therefore, some sort of storage must be provided be­
tween the input-output (10) devices and the computer.
In the case of inputs, this device must be capable of
storing input information at any time, regardless of
what is going on in the rest of the computer. It must
also be capable of transferring the information to the
computer immediately upon demand of the computer.
This is the purpose of the memory buffers between
the 10 system and the computer.

The input buffer will operate somewhat as follows:

a. It always is attempting to read from the input.

b. It collects all data from the inputs and stores
this for quick transfer to the computer.

c. It transfers this data to the computer upon de­
mand.

What has been said for the input buffer memory
also can be applied to the output; the computer can
read into the buffer at its own pace, and devices can
read from the buffer at their own pace. In either buf­
fers the amount of information going in should not ex­
ceed that coming out, or information will be lost; i.e., a
new message might be written over an old message not
yet read. A buffer's main purpose is to match transfer
times of the many slow, intermittent devices (input
and output) to the transfer times of the one rapid de­
vice (the computer).

1.2.2.3 Program Control
It is possible to classify program control according

to the medium used to store the program. Based upon
such a classification, three general types of computer
program are available: external, control panel, and
stored program. Each has its advantages and disadvan­
tages. All three accomplish the same function: they tell
the machine what to do. However, the method of pro­
gram storage has a great effect upon the usefulness of
each in the solution of a given type of problem.

A computer which executes individual instructions
as soon as they are received from an input device is said
to be externally programmed. In this case, the program
is stored externally to the computer, usually on cards
or tapes. The advantages of this. type of program stor­
age are its low cost and its simplicity. However, exter­
nal programming presents two major difficulties: the
speed of program execution depends on the speed of
the input device (particularly during repetitive opera­
tions), and externally stored programs are not easily
changed by the computer during the course of a pro­
gram. The ability to execute repetitive programs and to

change a program while it is in progress are extremely
important characteristics of the modern digital com­
puter.

A higher-speed and more versatile computer must
be used to satisfy the requirements set forth at the be­
ginning of the chapter. The control-panel-program
computer might be used. In this type of control, a con­
trol panel somewhat similar to a telephone switch­
board is used to control the computer. Wires may be
inserted between different control points on the panel
to initiate the various functions of the machine.

In control panel program storage, all steps of the
program are stored within the computer at the same
time (when the control panel is inserted). Therefore,
the program control is not limited in speed by any
input device as was true in the externally programmed
computer. The fact that all steps of the program are
available to the computer also makes repetitive pro­
gramming much simpler. However, there is a practical
limitation to the size of the program which could be
stored on the control panel. As more and more steps
are required (more plug wires required) the board be­
comes too large and complicated to be practical.

Because there are to be long programs and a wide
variety of problems, the best type of program control
to use is the stored program. In this kind of storage,
the program is stored in the machine's internal memory
in the form of "numbers." These numbers can be de­
coded by the machine to direct its operations.

The stored program is the most versatile and high­
est-speed program control yet devised. The program is
loaded into internal memory; this means that the speed
of operation does not depend upon the input device
once the program is in operation. Since all the steps of
the program are available to the computer at any same
time, it is very simple to accomplish repetitive opera­
tions. Another important advantage of this type of con­
trol is that the instructions are stored in the same mem­
ory (usually) and in the same form as regular data.
Consequently the computer can operate upon the in­
structions of the program just as easily as it can on the
data of the problem. In other words, the computer can
change its own program as it goes along. There are two
main reasons, then, for using this type of control in the
sample computer, high speed and great versatility.

1.2.2.4 Single Address or Multiple Address
In Part 3 it was pointed out that the instruction

word always consists of at least two parts, the operation
part and the address part (fig. 4-2). The operation
part of the instruction is a coded number which stands
for the operation to be performed; e.g., ADD. The ad­
dress part of the instruction indicates the location
where the number to be added is stored. A single­
address machine is one in which each instruction word
specifies the address of just one item of data. By con-

136 UNCLASSIFIED

PART 4 UNCLASSIFIED Single or Multiple Address
CH 1 T.O. 31P2-2FS07-2 1.2.2.4

SIGN 2 3 4 5 6 7 8 9 10 II 12 13 14 15

l
I 0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 I

\
/\ 1 V V

OPERATION ADDRESS

V
INSTRUCTION WORD

SIGN 2 3 4 5 6 7 8 9 10 II 12 13 14 15

~

I I
I \

DATA VWORD

Figure 4-2. Word Format

trast, a multiple-address machine is one in which each
instruction word can specify more than one address.

In a single-address machine the addition of a num­
ber, a, to a second number, b, and the storage of the
sum, a+b, might be indicated as follows:

OPERATION

CAD

ADD

FST

ADDRESS

13

14

15

where: a is stored at address 13; b is stored at address
14; and address 15 is assigned for storage of the sum,
a+b. The Clear and Add instruction (CAD 13) would
cause a to be transferred from storage location 13 to
the previously cleared accumulator. The Add instruc­
tion (ADD) would then cause b to be transferred from
storage location 14 and to be added to the number in
the accumulator; and, finally, the Store instruction
(FST 15) would cause the sum, a+b, to be transferred
from the accumulator to storage location 15.

The same addition could be specified in a multiple­
address machine by the simple instruction:

OPERATION

ADD

ADDRESS

13 14 15

where it is the convention that the first two numbers
following the instruction code are the addresses of the
operands, and the last number is the address of the lo­
cation in memory where the result is to be stored.

It would appear from the example that exactly

three times as many instructions are required to exe­
cute any routine using the single-address system as
are required using the three-address system. However,
this is not the case. Suppose, for example, that the addi­
tion a + b + c + n is to be performed. The single­
address machine requires one instruction for each num­
ber involved and a final instruction to store the total.
The three address machine requires one instruction to
add a to b, a second to add (a + b) to c, a third to add
(a + b + c) to d and so on. Since the last of these
instructions can also specify a storage location for the
total, two instructions are saved in adding a sequence,
regardless of its length. If the computer is to be used in
long operations made up of long sequences this saving
is hardly substantial enough to justify the longer word
which is required to specify three addresses instead of
one. If, however, the operations of the computer tend
to be made up of many short disconnected sequences,
the three address system might be used.

In deciding which addressing scheme to use, the
following advantages and disadvantages should be
taken into account. In some programs, the single­
address scheme is slightly slower than the multiple­
address scheme. However, because the single-address
scheme is divided into more basic operations, it is con­
sidered to be a more versatile system. It also has the
advantage of using a shorter instruction word, espe­
cially when a large number of addresses must be dif­
ferentiated. For instance, a 4-address scheme requires
four times as many address bits in each instruction as
does a single-address scheme. This, in turn, implies sim­
pler circuitry in the single-address machine. The single­
address scheme, therefore, will be used in the sample
being developed.

UNCLASSIFIED 137

Arithmetic Section
1.2.2.5-1.2.2.9

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 4
CH 1

1.2.2.5 Word Length
The length of the computer word is determined

upon by consideration of two general requirements,
those of the data word and those of the instruction
word. The length of the data word directly affects the
precision of computing. The longer the word, the more
precise the calculations may be. The length of the in­
struction word is fixed by the number of separate in­
structions the computer will be required to perform and
by the number of memory locations that will be con­
tained in the total computer memory. In the sample
computer the length of either word will be 15 bits plus
a sign bit. Figure 4-2 shows the makeup of instruction
and data words.

1.2.2.6 Arithmetic

Another requirement to be considered in the design
of a computer is the type of arithmetic section desired.
To a great extent this requirement determines the
complexity of circuitry. The binary system, in gen­
eral, requires the least complicated and most flexible cir­
cuitry in the computing and storage sections of the com­
puter, but this system usually requires complicated in­
put-output translation equipment (the equipment to
change the decimal numbers to the binary numbers of
the computer).

Consider the requirements of the sample system
again. At the beginning of the chapter, it was stated
that some input information would be from a decimal
system manual device; however, the majority of the in­
put information would be from telephone lines. It was
also stated that output information will go to tele­
phone lines and to a cathode-ray-tube display. Digital
information sent on telephone lines may be sent in bi­
nary form. It is also generally true that comparatively
simple circuitry can be used to translate binary infor­
mation into analog information, which can be used for
the deflection voltages of a cathode-ray-tube display.
Any other number system may require more complicated
circuitry.

If the binary system is used internally, the only
place complex translation is required is in the manual
inputs section. Since there is comparatively little infor­
mation entered manually, it is practical to do the deci­
mal to binary conversion required, within the computer
by means of an easily prepared program. If this is done,

the binary system appears to be the best system to use.
It is economical, simple, flexible and reliable; it is the
system used in the sample machine to be described.

1.2.2.7 Type of Logic
One more requirement related to the arithmetic

system to be used is the type of logic. Shall the machine
be of the parallel or the serial transfer type? As has
already been explained in Part 3, serial logic is gen­
erally less expensive in equipment and perhaps more
reliable than parallel logic. However, since the com­
puter to be described will be used in real-time control
applications, the high speed possible with parallel
logic will be a great advantage. The system to be con­
sidered, therefore, uses parallel logic.

1.2.2.8 Input-Output System
It has been stated in the requirements that the com­

puter requires a high-capacity input and output facility.
To provide this the inputs of the system consist of direct
telephone line input and a manual input. The direct
input continuously enters data such as radar range and
azimuth which comes in over telephone lines in binary
form. The manual input allows the computer operators
to enter information at the computer site. This is a form
of typewriter input.

The outputs consist of a direct telephone line output
and a cathode-ray tube display. The automatic phone
line output transmits data in binary form to the user
(perhaps a remote weapons base). The display equip­
ment will display such things as plane positions on a
cathode-ray tube.

1.2.2.9 Summary of General Considerations
A review of the general characteristics of the com­

puter required shows that the more accurate and versa­
tile digital type must be used, not the analog type. The
fact that a digital computer is to be used automatically
implies the need for the five elements: storage, arith­
metic, control, input, and output. Buffer storage is also
provided to increase the speed and efficiency of the
whole system. To provide the high speed and versatility
the stored-program, single-address control will be used.
Requirements for simplicity and for high circuit speed
will be met by use of binary arithmetic in parallel transfer
logic. High data input and output requirements demand
the use of direct telephone line inputs and outputs, as
well as a manual input and a display output.

138 UNCLASSIFIED

PART 4
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ1-2

General Information
2.1-2.5.1

CHAPTER 2
SAMPLE SYSTEM STORAGE

2.1 INTRODUCTION

The general system specifications having been
stated, it is possible to go into the individual elements
of the system. The memory is described in this chapter
with particular emphasis upon its interaction with
other elements of the computing system.

2.2 GENERAL REQUIREMENTS OF A STORAGE
SYSTEM

A computing system must have one, and may have
all, of these types of storage. Regardless of the type
of storage used, the storage device has certain basic re­
quirements. Briefly, these are:

a. The device must be able to retain information.
Since the information to be stored is digital,
the ability to store information implies that the
device must be able to assume at least two stable
states.

b. There must be a way of inducing these states
under outside control; that is, there must be a
way of writing the information into the device
and there must be a way of reading the informa­
tion from the device. When the storage element
is made up of more than one register, it must be
possible for an outside control element to select
a particular register from many. It should also
be possible to read and write at such speed that
the rest of the computing system is not delayed
by a reference to storage.

c. The storage device should store information in
the radix which is used in the internal comput­
ing section) except in systems where external
storage is used). Otherwise it is necessary to
provide a radix translating device (such as the
Input System in some external storage sys­
tems).

2.3 TYPES OF STORAGE

There are three general types of storage in a com­
puting system. The first is some high-speed storage de­
vice such as a magnetic core memory or an electrostatic
memory. This storage device stores information to which
the computer must have direct access; that is, it stores
the data as it is being processed. A second type aux­
iliary storage, consists of some intermediate-speed
storage device such as a magnetic drum. This type of
storage is for information which is used fairly often,

but not continuously, by the computer; e.g., some tables
or portions of the program infrequently used might be
stored in auxiliary memory. Finally, there is the exter­
nal storage, consisting of the magnetic tapes, punched
cards, and so forth; these are only available to the
computer through an input device. In general, this type
storage is for seldom used information.

2.4 TYPES OF STORAGE IN SAMPLE SYSTEM

The requirements stated in Chapter 1 of this part
(calling for very high speed, great versatility, and a
large capacity) forces the use of a very large direct­
access, high-speed memory or a medium-size, direct­
access, high-speed memory working in con junction with
a large, intermediate-speed auxiliary memory. These
two types of memory can be made almost equal in speed.
Therefore, since it is generally true that the slo~er
storage media are a good deal cheaper to build than
the faster media, the system chosen is a compromise be­
tween requirements of high speed and economy. A com­
bination of direct-access and auxiliary memory is used.

Figure 4-3 shows the relationship of the two in­
ternal memories and external storage to each other and
to the rest of the computing element. From this figure
it can be seen that the auxiliary memory and external
storage are not accessible to the computer except
through the direct access memory. From there it will be
processed like other information in direct access mem­
ory. External storage will be furnished. Since this may
be in the form of cards, written records, or even oper­
ator's memories, there is little point in discussing exter­
nal storage further here. Just remember that externally
stored information enters the computer from an input
device and that it usually has some manual operation
(such as typing of the information on the computer
entry typewriter), connected with it.

2.5 GENERAL REQUIREMENTS OF SAMPLE
COMPUTER DIRECT ACCESS MEMORY

2.5.1 Access

A digital computer operates in step-by-step
fashion; that is, it executes one complete instruction at
a time, and the instruction execution is done in steps.
All instructions are stored in the memory, and the ex­
ecution of most instructions involves the use of data
which is stored in memory. The step-by-step nature of
computer operation always requires at least one refer-

UNCLASSIFIED 139

General Requirements
2.5.1-2.5.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 2

AUXILIARY
MEMORY

.4

OUTPUT ~
~-

SYSTEM

+ ~Ir
EXTERNAL
STORAGE DIRECT

EG. (PAPER ACCESS
OR MEMORY

RECORDS)
.4 ~ .4 ~

+
INPUT

SYSTEM

,Ir

PROCESSING

Figure 4-3. Storage Function Relationships

ence to memory during the execution of any instruc­
tion, and usually requires two references. The first ref­
erence obtains the instruction and the second, data.
The operating speed of the computer, therefore, de­
pends as much upon the access time (the time required
to withdraw a number from memory) as it does upon
the speed of the arithmetic elements.

"Access" can be d.efined as the method that the
computer must use to select a word stored in memory.
Access will significantly affect the speed of the memory
operation (access time) and, consequently, the speed of
the computer.

A computer is said to have a random-access mem­
ory when the access times to all registers are equal. This
means that it takes exactly the same time -to select a
memory location with a large address as it does to se­
lect one with a small address. Random access is possi­
ble when the computer can always "see" all registers
of the memory equally well. A core memory and a
cathod.e-ray-tube memory are examples of random access
memories.

Some computers have a memory which must be
continuously scanned if information is to be withdrawn.
That is, when the computer requires a word from mem­
ory, it must examine each address in sequence until it
finds the proper location and can withdraw the word

required. This is called non-random, cyclic access, or
block-access. The addressable drums of AN/FSQ-7 fur­
nish an example of this type of access. In these drums,
the computer can select a particular memory location
only by reading each address as it passes under the read
head.

The random-access memory is much faster than
the non-random type built with circuitry of compara­
ble speed. This is because the computer does not have
to wait for the memory searching process each time a
reference is made to memory.

2.5.2 Size

The overall speed of computation also depends to
a great extent upon the size of the direct-access mem­
ory. If the direct-access memory is small and the pro­
gram large, parts of the program which should be di­
rectly accessible have to be held (for instance, in aux­
iliary memory). Consequently, computing begins to de­
pend heavily upon the comparatively slow auxiliary
memory.

When time is a factor, the versatility of the com­
puter also depends on both the speed and size of the
internal memory (direct-access and auxiliary combina­
tion). The speed, particularly that of direct-access mem­
ory, determines whether a problem of a very great
number of steps can be done within a practical time.

140 UNCLASSIFIED

PART 4
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

General Requirements
2.5.2-2.6.1

The size of the internal memory must be large enough
to store all the instructions and data to be used in any
problem. If it is not, the speed of execution of the pro­
gram (part of which requires external storage space)
depends to a great extent upon speed of input-output
equipment.

2.5.3 Storage Medium
The storage medium affects both the speed and

organization of the computer. There are two different
classifications of storage medium, volatile and perma­
nent (non-volatile). A volatile storage device is one
whose stable states are not truly permanent but de­
pend upon some force to keep them in a particular
state. For instance, information may he stored in the
form of a charged spot on a cathode-ray tube. If the
information is to be preserved, this spot must be con­
stantly renewed or the charge will leak off and be de­
stroyed. Long term storage using a volatile medium can
be accomplished as long as some form of automatic re­
writing is supplied. However, such storage requires a
good deal of extra circuitry in the computer and also
uses time which could be used in computing. Another
disadvantage of the volatile type of storage medium is
the fact that when power is shut off, or when the
rewrite process stops for any reason, the information is
lost. This can not be tolerated in any system that must
be highly reliable.

Some outside force, such as an electric current, is
required to set a permanent storage medium in one of
its stable states, but once the medium is set, it changes
state only if a new force, such as a current of opposite
polarity, is applied. An example of a permanent storage
medium is the magnetic core used in the AN/FSQ-7
memory; it is set to one state by magnetizing it in one
direction. It then retains that state until it is forcibly
magnetized in the opposite direction. There are many
advantages to such a system. It saves computing time
since no regeneration is necessary. It saves circuitry for
the same reason. Finally, the fact that information is
not lost during a power failure allows high reliability.

2.5.4 Memory Controls

The control of the various functions of the mem­
ory can be centered within the memory unit itself or
within the control element of the computer. Where
large memories are used, it is usual to accomplish this
control within the memory unit. All that is then re­
quired of the computer control element, when memory
mus t be referenced, is a pulse to tell the memory ot
start the read operation. Once this start pulse is re­
ceived at the beginning of a transfer, the memory cir­
cuits control the rest of the operation. Such a control
system allows the computer to carry out some of its
functions while the memory is in the process of trans­
ferring information, increasing the speed of the com-

puter. Autonomous memory control is, therefore, the
most usual type of memory control in large-scale mem­
ory systems.

2.5.5 Summary of Requirements

The sample computer is to be very large, fast, ver­
satile, and reliable. A review of the points stated for
memory indicate what points to seek in selecting a suit­
able memory system.

To get a large, fast memory at a reasonable cost, a
combination of medium-speed and high-speed memory
should be used. It is easiest to obtain the small access
time required if a random-access memory is used for pri­
mary storage. Furthermore, speed and versatility re­
quire a large primary memory; i.e., it must hold as
much of the program and data at one time as possible.
Both the speed and reliability of the primary memory
are best if a permanent storage medium is used. A
greater computer system speed can be had if the mem­
ory operates under autonomous control.

All of these requirements suggest that the mag­
netic core memory discussed in Part 3 should be used
for primary storage. A random-access memory using
magnetic cores has been constructed with a 6-microsec­
ond access time. Moreover, this same memory is suf­
ficiently large and reliable to perform the primary mem­
ory job for the AN/FSQ-7. A similar memory is to be
used in the sample computer.

The sample memory to be described has the follow­
ing general characteristics:

a. It will store 1,024, 16-bit words in a core array.

b. It will be a random-access memory with a 6-mi­
crosecond access time.

2.6 MAGNETIC CORE STORAGE

2.6.1 Operation of Array

In order to understand the requirements for logi­
cal circuitry to implement the transfer of information
into and out of the core memory, it is necessary to
specify the following:

a. The form in which information is stored in the
cores

b. The mechanism by which information is written
into the cores

c. The mechanism by which information stored in
the cores is sensed during the readout process

d. The organization of the core array into individ­
ual storage locations

In the discussion which follows, a core array like
the one described in Part 3, 4.2.3, is assumed. A review
of the operation of this array follows.

Information is stored in the cores in binary form.
Magnetization in one direction is interpreted as a 1;
magnetization in the other direction is interpreted as
a 0.

UNCLASSIFIED 141

Operation of Array
2.6.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 2

SELECTED X'
CO-ORDINATE
WINDINGS

NOT SELECTED
X CO-ORDINATE,
WINDINGS

NOT SELECTED
Y CO-ORDINATE,
WINDINGS , , ,

........

........ , ~'/"
'/,"
/'

PLANE 3

"

,

...............

...............
SENSE
PLANE 3

~E~~~ 2

............
INHIBIT PLANE I

SELECTED Y
CO-ORDINATE
WINDINGS

INHIBIT PLANE 2

............
INHIBIT PLANE 3

Figure 4-4. 4-Location 3-Bit Register Core Array

Figure 4-4 illustrates the basic selection principles
of a 4-location, 3-bit-register core array. In order to
write l's into all the cores of a particular memory lo­
cation, so-called half-write pulses are applied to two
coils (designated as X and Y co-ordinate windings)
wired as shown in the figure. If the half pulses are
applied to winding A and winding C, the cores where
the two windings meet have two half-write pulses ap­
plied at the same time. In these cores the fluxes induced
by the currents add up to a full-write pulse, which
is enough to switch the core from a 0 to a 1. There­
fore, a core on each plane, located where the A and C
windings cross, will have a 1 written into it. The state of
the other cores on the X and Y windings is not changed
since they only received half-write pulses. The core on
each plane which received a full-write pulse constitutes
a single-bit position of the location selected by the A
and C line combinations.

In general, of course, a word of information con­
tains O's as well as l's. If all the cores of a storage loca­
tion are cleared (i.e., driven to 0) prior to the writing
of a word into that location, the 0' s of the word may be
produced simply by inhibiting the writing of l's on
those cores where 0' s are to be stored. This can be
done by applying an inhibit-current pulse to a third
coil (inhibit plane winding) associated with each of the

cores where a 0 is to be stored, just at the instant when
the half-write currents are applied.. The polarity of the
flux caused by the inhibit current must be opposite to
that of the write current fluxes so that the cancellation
inhibits the writing of a 1. For instance, to write 101

in location A-C of figure 4-4, the location is first
cleared to all O's. The A and C lines are pulsed with
half-write pulses in an attempt to write l's into all
positions. At the same time, an inhibiting pulse is ap­
plied to the inhibit winding of plane 2. This prevents
the writing of a 1 on the selected core of plane 2. The
stored number would then be 101. An important point
to understand is that this system implies that all the
cores in a location must be set to 0 before a word
consisting of l' sand 0' s may be written.

In ord.er to sense a word stored in a particular
storage location, so-called half-read-current pulses are
applied to the X and Y lines associated with the cores
of that location. The half-read currents are equal in
magnitude but opposite in polarity to the half-write
currents mentioned earlier. The effect of the simultane­
ous reception of two half-read pulses is, therefore, to
drive a core into the magnetic state representing o. If
a 0 is stored in the core, there is no change of magnetic
state. If, on the other hand, a 1 is stored in the core, it

142 UNCLASSIFIED

PART 4
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Sample Operation
2.6.1-2.6.2

reverses the core's magnetic state. This polarity reversal
induces a voltage pulse in the sense winding associated
with the plane of cores. The readout process, therefore,
causes pulses to appear on the output lines associated
with each of the cores in the selected location that
contains a 1. Notice that all the cores are left in the 0

state. In other words, the l' s were all destroyed in the
read process. This is called destructive readout.

The half-read pulses, like the half-write pulses,
perform a selection function. The form of the word
read out is, on the other hand, established by the sig­
nals appearing on the sense windings.

In summary, four coils are associated with each
core: the X and Y (selection) windings, the inhibit
winding which forms the pattern of the word being
written, and the sense winding which senses the outputs
of the cores on readout. The selection scheme involving
X and Y windings is based upon the organization of
the core array into a number of X groups and a number
of Y groups. The coils of anyone X group or any ~ne
Y group are connected in series. A set of cores which
belongs to a certain X group and a certain Y group
comprises a storage location. Thus, to select a storage
location for reading or writing it is merely necessary to
apply half-read or half-write current pulses to two in­
put terminals, namely the input terminals of the partic­
ular X and Y groups which specify the particular stor­
age location. It should be understood that cores of
many locations belong to each X group and each Y
group. However, when a core is supplied with only one
half-write or half-read current its magnetic state is not
affected. For this reason it is said to be only half-se­
lected.

Since information is transferred into or out of only
one location in the array at anyone time, groups of
sense windings or groups of inhibit windings can be
series connected on a bit basis. For example, the cores
which store the first or most significant bit in each of
the locations of the array can have their sense (or out­
put) windings connected in series. They can ~lso h~ve
their inhibit (or input) windings connected m serIes.
The same thing is true of the cores which store the sec­
ond bit, and the third, and so on. This means that the
same set of output lines can be used to sense the bits of
every location in the array. Also, one set of input lines
may be used to perform the inhibit function for every
location in the array.

Now that the organization of the array has been
reviewed, it is worthwhile to return to two characteris­
tics of the read-write scheme which were mentioned
earlier:

a. A memory location must be cleared of l's prior
to the writing of information on it.

b. Readout from the core memory is destructive.

Since readout is destructive, a read cycle can be
used to clear a location prior to the performance of a
write operation. Also, since it is usually desirable to re­
tain in a memory location a "copy" of the word read
out of it, a write cycle normally follows the destructive
read operation. These two facts can be restated as fol­
lows: Regardless of whether the purpose of an opera­
tion is the transfer of information out of the core mem­
ory or the transfer of information into the core mem­
ory, the same basic cycle must be performed; i.e., a read
operation followed by a write operation.

2.6.2 Sample Computer Memory Element
Operation

Figure 4-5 illustrates the operation of the mem­
ory during both read (solid lines) and write (dotted
lines) cycles of a word transfer operation. The core ar­
ray is assumed to be a typical ferrite core array capable
of storing 1,024 16-bit words. The timing and control
section shown is a delay line control such as that de­
scribed in Part 3, Chapter 3, paragraph 3.6.2.2. The se­
quence of memory-control pulses generated by this con­
trol device is initiated by a read-operation or write-op­
eration pulse from the computer control. The selection
section is composed of diode matrix decoders. These
matrices decode the address information which specifies
the location to which, or from which, a word is to be
transferred. The sense section consists of amplifiers and
gates which can sense the output of the core array. The
memory buffer is a flip-flop register which is actually
under control of the computer control rather than the
memory timing and control section. Finally, the inhibit
section is a series of gates conditioned by the zero sides
of the memory buffer and pulsed by the timing and con­
trol section.

The operations of the memory are similar whether
a transfer out of memory or a transfer into memory is
called for. In both cases, dual cycles will be required,
one cycle to read from the array, the other to write into
the array. Since the transfer operations are very similar
whether information is entering or leaving memory
figure 4-5 may be used to show both operations. In
this figure, the operations accomplished during a read
cycle of any transfer operation are shown in solid lines.
The operation which occurs during a write cycle is
shown in dotted lines.

When the purpose of the cycle is to transfer a word
out of the core memory, the memory control circuits
transfer the word from the array to the memory buffer
register. The process is as follows: The cycle is s~ar~ed
by the computer control element. One clears the tlmmg
and control section and the memory buffer so that they
are ready to start the memory cycle. Two control pulses
are sent to the memory element. The other, the read­
operation pulse, starts the memory and specifies the

UNCLASSIFIED 143

Sample Memory Element Operation
2.6.2

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

PART 4
CH 2

X AND Y
~ r- "HALF-WRITE---

SPECIFICATION PULSES MEMORY OF CORE SELECTION CORE I PULSES .. SENSE I PULSES
BUFFER LOCATION SECTION ARRAY FROM FULLY TO BE SELECTED

SECTION (ON READ - REGISTER

READ WORD
OUT TO
DESTINATION
WHEN REWRITE
IS FINISHED

X AND Y SELECTED CORES

HALF- READ ~

.~\ PULSES

\
\

\
I
I
L-------- l

OPERATION)

I
I
I

INHIBIT TRANSFER I
TO BUFFER MEMORY I
(FOR CLEARING I
FUNCTION DURING I
A WRITE OPERATION) I

I
, ~

REA D WORD INTO
ORY BUFFER MEM

FRO M SOURCE
ORE STARTI NG
TE OPERATION

BEF
WRI

SELECTION GATE I INHIBIT SENSE
I
I
I
I
I

/
/

/

V/ I
I

READ OPERATION .. I - TIMING I
AND __ ...!..~!!l~ __ ~ INHIBIT 14------.J

CONTROL SECTION
WRITE OPERATION -

CLEAR MEMORY BUFFER

AND MEMORY CONTROLS

I
I
I
I

I
I
I

PULSE
SECTION

L _____________________________ _

READ - OUT

Figure 4-5. Read and Write Operation of Memory

purpose (read) of the operation. At the same time the
computer control element sends the address of the word
to he selected to the selection section of the memory.
From then on, the completion of the transfer operation
depends upon the internal controls of the memory it­
self.

Half-read-current pulses are supplied to the X and
Y coils of the specified storage location, causing all
those cores containing l's to be driven to the 0 state.
The pO'larity reversal of these cores is sensed and is
caused to condition the previously cleared buffer regis­
ter, which now stores the information temporarily. (It
is now apparent that the buffer register had to be
cleared prior to receiving the sense pulses for, other­
wise, it might contain some l's which did not originate
in the core location.) The read cycle of the operation is
followed by a rewrite cycle. During this cycle, the O's
of the number temporarily stored in the memory buffer
register are gated through the inhibit section to furnish
inhibit pulses to the location which is again fully se­
lected, this time by X and Y half-write pulses. (In fig.
4-5, the operations in this rewrite cycle are indicated
by dotted lines.) The result is that the word removed
from storage is rewritten in the same location. How-

ever, a copy of it remains in the buffer register ready
for transfer to some other part of the computer.

When the purpose of the cycle is to transfer a word
into the core memory, the memory control circuits trans­
fer the word from the memory buffer register to the ar­
ray. The process begins with the control element caus­
ing the word to be transferred into the memory buffer
register from the source (e.g., the arithmetic element).
This time the operation is started by a write-operation
pulse from the computer control element. The memory,
therefore, knows that the transfer is to be into the mem­
ory. As in the transfer from memory, the control ele­
ment also sends address information to the selection
section of the memory. From then on the operation de­
pends on the memory control circuits for completion.

The storage location is first fully selected by X and
Y half-read currents from the selection section just as
in the previous case. However, in this operation, the
voltage pulses induced in the sense windings by the
cores containing l's are of no interest, because the op­
eration is performed merely to clear the location for the
receipt of the new word. Moreover, since the buffer
register is temporarily storing the word to be read into
the storage location, the contents of the buffer register

144 UNCLASSIFIED

PART 4
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Operation of Memory
2.6.2-2.6.3

must nDt be destrDyed. CDnsequently, the Dutput Df the
sense windings must be prevented frDm cDnditiDning
the buffer register. This is dDne by cDnditiDning the in­
hibit sense line. By referring again to' the dDtted lines
of figure 4-5, it can be seen that, after the storage 10'­
catiDn has been cleared by the half-read pulses, it is
fully selected again, this time by means Df X and Y half­
write pulses. SimultaneDusly, the O's Df the wDrd in the
memory buffer, which is to be entered into stDrage, are
used to' generate inhibit pulses. Thus, the new word is
written intO' the selected IDcatiDn just as in the write
cycle Df the read DperatiDn.

In summary, it can be seen that, because readDut Df

a CDre memDry is destructive and because writing re­
quires a clearing Df the memDry IDcation, it is CDn­
venient to' make the read and write DperatiO'ns as nearly
alike as pDssible. A read cycle and a write cycle are
provided regardless Df whether the Dperation is a trans­
fer intO' Dr Dut Df memory. The difference between the
twO' types Df transfer lies in the Dperation of the mem­
Dry buffer and the sense sectiDn. Table 4-1 summarizes
the difference.

2.6.3 Operation of Memory in Computing
System

The operatiDn Df memDry in a stDred prDgram CDm­

puting system is based upDn the fact that both instruc­
tion and data wO'rds are stored. The two types of in­
fDrmatiDn are used for quite different purposes: One is
used to' tell the computer what DperatiDn to' perfDrm;
the Dther gives the cDmputer the data that the Dpera­
tiDn is to' be perfO'rmed upon.

Despite the difference in the use Df the twO' types Df

wDrds, they are indistinguishable in fDrm. That is, they
are bDth binary numbers and, in most cases, are Df equal
lengths. The cDmputer distinguishes between the twO' by
keeping track Df where the twO' types of infDrmatiDn are
stored. In a single-address cDmputer distinguishing is
usually dDne by stDring the instructiDns in sequence in
the first addresses Df memory while the data wDrds are

stDred tDward the end Df the memDry addresses. FO'r
instance, the first 300 IDcatiDns of a 1,024 IDcatiDn mem­
Dry may cDntain the instructiDns sequence 0, 1 thrDugh
299 Df the prO' gram while the data is kept in the last
724 IDcatiDns. With such a system, the cDmputer can be
built to' automatically read Dut the instructiDns in se­
quence. The data address is Dbtained simply by refer­
ence to' the address part Df each instruction wDrd.

CDnsequently, the executiDn Df an instructiDn re­
quires Dbtaining data frDm memO'ry, at least twO' mem­
Dry references must be made. The first is the reference
to' obtain the instructiDn frDm the prDgram sequence;
the secDnd is to' Dbtain data frDm the locatiDn in mem­
Dry specified by the address part Df the instructiO'n.

In figure 4-6, the cDntents Df 16 IDcations in mem­
Dry are shDwn. The CDntents consist Df a simple 4-step
prDgram in IDcatiDns 000 thrDugh 003 and the data
which the prDgram is to' Dperate upDn in IDcatiDns
013, 014, and 015. At the end Df the programs execu­
tiDn, IDcatiDn 015 will CDntain the result Df the program
(1600). The prDblem can be stated 1000 + 600 = 1600.
The executiDn Df the prDgram wDuld prDceed as fDl­
IDWS:

a. When the computer is started, the cDmputer CDn­

trDI autDmatically calls fDr the infDrmatiDn in
100catiDn 000 to' be transferred frDm memDry to'

the cDntrDI element.

b. The cDntrDI element decDdes the instruction
thus Dbtained. Since a reference to' memDry is
required, the cDntrDI element sends address in­
fDrmatiDn assDciatd with the instructiDn (IDca­
tiDn 013) back to' the memDry selection circuits
and calls fDr a memDry read DperatiDn.

c. The read DperatiDn transfers the data in IDca­
tiDn 013 (1000) to' the accumulatDr Df the arith­
metic element.

d. At the cDmpletiDn Df this instructiDn, the CDm­

puter autO'matically refers to' the next IDcatiDn
in the sequence Df instructiDn (lDcatiDn 001).

TABLE 4-1. SUMMARY OF DIFFERENCES BETWEEN READ AND WRITE
CYCLES OF A READ OPERATION AND A WRITE OPERATION

CYCLE

Read

Write

TRANSFER INTO MEMORY

1. Started by write-DperatiDn cDmmand.

2. Clearing DperatiDn.

3. CDntents Df memDry IDcatiDn are nDt sensed.

4. CDntents Df memory buffer are not changed.

1. Rewrite former contents of memory 10catiDn
back intO' memory 10catiDn.

UNCLASSIFIED

TRANSFER OUT OF MEMORY

1. Started by read-operation cDmmand.

2. Transfer operatiDn.

3. Contents of memory location are sensed.

4. Contents of memory IDcation transferred to
memory buffer.

1. Write word from outside source into mem­
Dry location via the memory buffer.

145

Auxiliary Memory
2.6.3-2.7 .3.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 2

000 13 CAD

} INSTRUCTIONS

ADD 14 001

002 FST 15

003 HLT.

004

005

o 0 6

007

o 0 8

009

010

o I I

012

013 1000

014 600

015 (1600)

Figure 4-6. Contents of Memory During
Execution of Program

e. The instruction in this location is transferred to
the control element, where it is decoded.

f. Again, the computer control ascertains that a
reference to memory is required. Therefore, ad­
dress information (location 014) is sent to the
memory selection circuits and another memory
operation started. The word in location 014
(600), is transferred to the arithmetic element
and added to the contents of the accumulator.
(As a result the accumulator contains 1600.)

g. The computer then automatically refers to the
next address in the program sequence (at loca­
tion 002). The information in this location is
transferred to the control element to be de­
coded.

h. The control element determines that the refer­
ence to memory is a storing operation. Tliere­
fore, the control element sends the address in­
formation associated with the instruction (loca­
tion 015) to the selection circuits of memory,
together with a store operation control. The in­
formation in the accumulator is then transferred

into location 15 of memory via the memory buf­
fer register.

i. When the Store instruction is completed, the
computer automatically refers to the next loca­
tion in the program sequence. This instruction
is a Halt instruction which stops the computer
so that no more memory locations will be re­
ferred to, either automatically or by instruction.

This last instruction, it will be noted, distinguishes
the instruction words from the data words in the mem­
ory. If no Halt or similar instruction were given, the
computer would automatically continue reading succes­
sive memory locations until the machine was shut off.
This means that eventually (steps 13 and those follow­
ing) the computer would try to use the data words as
instructions.

2.7 AUXUIARY MEMORY

2.7.1 General

It has been stated that the internal memory of the
sample computer consists of primary memory and aux­
iliary memory. It may be recalled that the primary and
auxiliary memory combination is designed to provide a
very large memory, almost as fast as a single, large,
high-speed memory would be. This system has the de­
sired characteristics if two provisions are fulfilled:

a. The two storage systems are compatible in speed
and operating characteristics.

b. The information to be stored is organized so as
to take advantage of the total memory system.

2.7.2 Choice of Auxiliary Memory Medium

In the example computer, core memory is used as
direct-access memory. Choice of the auxiliary memory
medium must, therefore, be limited to one which is com­
patible with the core memory. The auxiliary memory
must also be one which has a potentially large storage
capacity. It must also be as reliable as possible since the
computer can only be as accurate as the data entered
into it. Drum storage can be made to fit all of these re­
quirements and so is used as auxiliary memory in the
sample computer.

2.7.3 Operation of Sample Computer
Auxiliary Memory

2.7.3.1 General

Figure 4-7 shows a typical drum and indicates the
configuration of bits stored. On the right is a timing
track of bits permanently recorded around the drum.
This timing track, as the name implies, is used to time
the reading and writing operations of the drums. The
head, which reads the bits of the timing track, puts out
a pulse which initiates the read or write operation at
each register location around the drum. It can be 'seen,
then, that the timing track determines the position of
each register around the drum.

146 UNCLASSIFIED

PART 4
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Auxiliary Memory Operation
2.7.3.1-2.7.3.3

WRITE
HEADS

Figure 4-7. Auxiliary Memory Drum

When the ttmtng track is originally put on the
drum (during manufacture), it is recorded as evenly
spaced bits around the drum. However, one bit is left
out to indicate a beginning and end of the drum field.
This is called the index point of the drum. Because the
beginning of the field is indicated, it is possible to ad­
dress the different registers of the drum with a counter.
The address of a register is a count of the number of
registers (timing track bits) between the index point
and the register.

Figure 4-7 shows a drum designed for parallel
read and write operation. When a single word is to be
read out, all the read heads of the field are conditioned
to read simultaneously. Then, as the magnetized spots
of the register to be read pass under the heads, they
are read out simultaneously.

2.7.3.2 System Operation
Figure 4-8 shows the drum system in more detail.

The drum with its timing track and its read and write
heads is the same as that just described. The read cir­
cuit consists of amplifiers and gates which transfer a
word being read from the read heads to its first destina­
tion, the drum read-and-write register. The write cir­
cuits perform the same function in reverse for words
to be read into the drum. The drum read-and-write
register is a temporary storage register for words wait­
ing to read into the drum from core memory or into
core memory from the drum.

The timing and control section is a long delay line
control. In this device the timing cycle is started by a
pulse from the timing-track head. This pulse is routed
through a line of delay units and gates to properly se­
quence the control function required. The control
(gates) of the timing and control section are condi-

tioned for a write or read operation according to the
type of start pulse received (start-read or start-write).

The angular position counter and the compare sec­
tion are the selection circuits of the storage system.
The angular position counter counts timing track bits
after being reset to zero by the timing track index
point. The count of timing track bits indicates the
drum register address. The compare section compares
the angular position counter contents (drum register
address) with the register address specified by the com­
puter instruction. When these addresses compare cor­
rectly, the compare section initiates the transfer opera­
tion required.

A read operation begins with the instruction Read
Auxiliary Memory Address 10 (RAM1 0) which is de­
coded by the computer control section. It sends the ad­
dress information (10) to the drum compare section
and then sends a read-from-drum pulse to the drum
timing and control section. The timing and control
is conditioned to cause a read operation to start. The
timing and control section then allows the compare
section to compare the address specified by the pro­
gram with the contents of the angular position counter
(the address of the register under the read heads).
When the location addresses compare, the sought for
register is about to come under the read heads. The
compare section, therefore, conditions the read circuits
to transfer the word read to the drum read-write
register. Here, it is held until the program directs it to
be read into memory. When the compare section con­
ditions the read circuits, it also sends a transfer-com­
plete pulse to the computer. This pulse notifies the
computer control element that the word is in the drum
read-write register, ready for transfer to core memory.
The program, which was automatically stopped by the
RAM instruction, can then proceed to the next in­
struction.

The write process operates in the same· way except
that the transfer is from core memory into the drum
read-write register and then into the drum by way of
the write circuits. The write operation is started by a
write-on-drum pulse. In figure 4-8 the dotted lines
indicate write operations which differ from the corre­
sponding read operations.

2.7.3.3 Program Operation
Auxiliary memory information is accessible to the

computer only through direct-access memory. The par­
ticular (much simplified) system of transferring infor­
mation from the computer auxiliary memory to the
primary memory requires two instructions. One in­
struction (RAM drum address X) specifies the reading
of a word from a specified auxiliary memory register
into the drum read-write Register. A second instruc­
tion, (SAM memory address X) must then be given to

UNCLASSIFIED 147

Fig. 4-8 UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

WORDS READ FROM DRUM TO DIRECT ACCESS MEMORY

r+

TIMING TRACK AND RESET PULSES

t

ANGULAR POSITION
COUNTER

COMPARE
~ SECTION

DRUM ADDRESS OF
WORD TO BE TRANSFERRED

READ - CIRCUITS

j

READ
HEADS

~ ~ I' ~

C DRUM

t f + , ,
I I I I

I I
I I I I
I I I I

WRITE
HEADS

• I

I
I

L __ • WRITE
CIRCUITS

• I
I
I
I
I
•

DRUM READ-
AND-WRITE REGISTER

WORDS TO
DIRECT ACCESS
MEMORY

t
I
I
I
I
I
WORDS FROM
DIRECT ACCESS
MEMORY

TIMING

~

TIMING
TRACK
REGISTER

tJ

I
I
I
I
I

I
I
I
I
I
I

~ ______ ---l

Figure 4-8. Auxiliary Memory Drum System Operation

148 UNCLASSIFIED

1

TIMING
AND

CONTROL

4

WRITE
ON DRUM

PART 4
CH 2

~

RE
FR
DR

AD
OM
UM

PART 4
CH 2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Operation of Direct Access
2.7.3.3-2.7.3.4

cause the word in the drum read-write register to be
stored in a specified core memory register.

When it is desired to transfer the word in auxiliary
memory register 21 into core memory register 77, the
program appears as follows:

RAM 21 - word in drum register 21 to drum read-write
register

SAM 77 - word to memory location 77

One thing should be pointed out about the RAM
instruction. Most instructions take a specified length
of time to complete. This instruction may require a few
microseconds or several milliseconds, depending upon
the position of the specified drum register when the
instruction is given. To take care of this condition,
this instruction automatically puts the computer into a
pause condition (stops progression of program) until
the transfer to the drum read-write register is complete.
When the transfer is complete, the SAM instruction
will be executed, but not before.

One more thing should be noted about this trans­
fer operation. Normally information is transferred in
blocks (several words at a time) by means of a repeti­
tive program whose principles are discussed in Part 5.

When it is required to transfer a word from direct­
access memory to auxiliary memory, two instructions
are again required. One instruction (WAM core mem­
ory address X) specifies the writing of the word at
core memory address X into the drum read-write reg­
ister. The other instruction (T AM drum address Y)
specifies the transfer of the word from the drum read­
write register to drum register Y. The same type of
program is used to accomplish this operation as in the
previous example.

2.7.3.4 Operation of Direct Access and
Auxiliary Memory

The direct-access memory stores any data or pro­
gram which is in immediate use by the computer. Data
processing is essentially a process of transferring in­
formation between two storage devices through a
switching mechanism. The direct-access memory serves
as the eventual source and destination in this process.
In other words, direct-access memory is actually a part
of the processing machinery. It is the only major stor­
age system to which the computer has direct access.

The auxiliary memory is used to store information
which is not of immediate use to the computer. How­
ever, when any is needed, a great deal is required at
high speed. For instance, auxiliary memory is often used
to store tables of data which are needed in certain
computations. A table of friendly aircraft identifica­
tions could be stored in auxiliary memory. Such a table
probably would be used only occasionally. However,
when it was used in an identification, it would be nec­
essary to use the whole table, consisting of, perhaps,

identity information for 50 airplanes. Auxiliary mem­
ory is also used to store parts of the program. Suppose,
for instance, the program is too large to fit completely
in direct-access memory. In this case, part of the pro­
gram would be stored in direct-access memory and part
in auxiliary memory. Such a program might be executed
in three phases. First the part stored in direct-access
memory would be completed, next, the part stored in
auxiliary memory would be completely read into direct­
access memory, and, finally, the new part in direct­
access memory would be completed.

The speed and practicality of the memory system
which consists of a combination of high-speed, direct­
access memory and intermediate-speed auxiliary mem­
ory are directly dependent upon the type of informa­
tion stored. Information in auxiliary memory should be
of the type which is useful in blocks. Another require­
ment of the information is that it should be of the
type used in repetitive operations, that is, it should be
information which is used many times, once it is called
in from auxiliary storage. If it is not, the proportion
of time spent loading the information into direct-access
memory could become so great that it would be more
practical to use a single, fairly high-speed, very large,
direct-access memory in place of the combination. As
an example, consider a table of four numbers which
is stored in auxiliary memory. Assume a 6-microsecond
access time for direct-access memory and a 24-micro­
second transfer time for auxiliary-memory-to-direct­
memory transfers. Forget the time required to find the
first drum register. The total transfer time for the four
words of the table would then be approximately 18
(3 transfer initiating instructions x 6 microseconds)
+ 96 (4 transferred words x 24 microseconds), or 114
microseconds. Now, if the reference to the table, once
it was in direct-access memory, took three instructions
(18 microseconds), the total time for reference to the
table would be about 132 microseconds. This is also the
average access time to the table. On the other hand, if
the table were to be referred 100 times in some repeti­
tive program the average access time would be much
less. If this were the case, the time of loading the four
numbers would be the same, 114 microseconds. The
total time consumed in reading the table 100 times
after it was loaded would be 1,800 microseconds. The

1,914
average access time to the table would then be-----

100
microseconds or about 19.1 microseconds per table
reference.

In summary, it can be said that a combination of
auxiliary and direct-access memory is used to provide
a high-speed, large capacity memory at reasonable cost.
The speed and practicality of the system depends di­
rectly upon the type of information stored and upon
its organization.

UNCLASSIFIED 149

Blank Page

150

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 4

PART 4
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Basic Control Assumption
3.1-3.1.3

CHAPTER 3
CONTROL

3.1 BASIC CONTROL ASSUMPTION

3. 1.1 Sequential Operation

A digital computer functions step by step. The
operation, therefore, depends upon a sequential control
of various functions performed by the computer. To
provide this sequential control, a control element is
included. This element is primarily used to control the
interaction of the operations performed by each of the
other elements so that together they can operate as a
system. In some cases, the control element can also be
used to control the operation within an element. In any
case, however, the control device performs a similar
function; it determines the sequence in which the vari­
ous parts of the computer operate.

3. 1.2 Types of Control

In general, three types of control are possible:
synchronous, asynchronous, and a combination of these.

3.1 .2.1 Synchronous Operation

In synchronous operation the beginning and end
of each operation performed and the timing of that
operation are determined by some central source. This
means that each operation is done in a cycle or in an
integral number of cycles, usually all of equal length
so that it takes the same time to complete two opera­
tions no matter how long one operation is or how short
the other is, if both can be done in the same number
of cycles.

The synchronous mode of operation requires a
central timing source to determine the length of a cycle
and the number of cycles to be used throughout the
computer. Without a central timing source, the various
parts of the computer could not be synchronized. Usu­
ally, this timing source is in the form of a pulse-output
oscillator of fixed pulse repetition frequency (PRF),
together with a time pulse distributor. The oscillator
furnishes the basic timing pulses to the machine. The
time pulse distributor separates these time pulses into
cycles of equal length and distributes them where they
are needed. For instance, it might split the time pulses
into consecutive trains of 15 pulses each to make suc­
cessive cycles 15 pulse-times long. These pulse cycles
can then be sent to the control element to furnish the
time-sequencing necessary to execute the instructions.

3. 1.2.2 Asynchronous Operation

Asynchronous operation is that in which the be-

ginning time of each new operation is determined by
the ending time of the previous operation. In other
words each operation may have a final pulse which is
used to start the next operation. In this case, there is
no set cycle time. Those operations whose execution
require very few different operations do not take as
long to do as those which require many operations.
An example of an asynchronous operation is the oper­
ation of the auxiliary memory drum mentioned in the
previous chapter. When an instruction is given to trans­
fer a word from the drum, the program progression
stops until the transfer is complete, at which time the
drum controls restart the program progression.

Theoretically, in a completely asynchronous paral­
lel machine no timing other than that furnished by
the delays inherent in each operation would be re­
quired. Usually, however, some source of central timing
is required to furnish time pulses.

3.1.2.3 Synchronous-Asynchronous
Combinations

Synchronous operation is generally somewhat
slower than asynchronous operation. However, the fact
that a synchronous system is easier to design and main­
tain than an asynchronous system makes it more suit­
able for computing circuits where the difference in com­
parative speeds is small. Computing circuits are usually
designed to operate synchronously. However, where
the possible time saving is great such as when a com­
puter is transferring information into or out of me­
chanical equipment, asynchronous operation is often
used. In this case, the two systems might operate
synchronously within themselves, but their operation
together would be asynchronous. That is, the computer
would arrive at its results using synchronous opera­
tion. The transfer of the results to the output would
be on demand, or an asynchronous operation.

Actually there is little difference in a control func­
tion whether it be accomplished synchronously or
asynchronously. The function is always to make sure
that the various computer operations occur in proper
sequence. Therefore, since the synchronous system is
much easier to understand, the following explanation
of control deals almost exclusively with synchronous
control.

3.1.3 Coding

The ability to follow a list of instructions, such as

UNCLASSIFIED 151

Basic Control Assumption
3.1.3-3.2.2.1

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 3

a computer program, requires first of all, a method of
communicating the instructions in the list to the com­
puter. This is done by means of a special operation or
instruction code, which each computer is designed to
follow. This operation code may be in any of several
forms. It may be for instance, that the entire program
is built into the machine; this is the case in special
purpose computers meant to do only one specific job.
It also may be that the code will be in the form of
numbers or instruction words, which can be put into
the machine just like data. Such a machine may be able
to execute 50 different instructions. If this is so, 50
numbers will be assigned to stand for these instruc­
tions, and the control element will be built to respond
to these numbers. This last is the case with which this
manual is concerned. This is called a stored program
computer.

When the operation code consists of a series of
numbers, each of the numbers (instructions) has the
same basic format. In general, instructions will consist
of two parts as illustrated in figure 4-2. One part,
called the operation part, specifies the operation to be
performed. The other, -called the address part, specifies
the location in memory where the operand to be oper­
ated upon may be found. There are some exceptions
to this general rule, however. Sometimes there is an
instruction for which no operand must be specified.
For instance, the instruction may tell the computer to

stop computing. In this case the address portion of the
instruction is automatically ignored.

3.1.4 Basic Control Element Functions

Two fundamental abilities are necessary if the con­
trol element is to be able to follow a list of instruc­
tions made up of code numbers as described above:
The control element must be able to pick out the cor­
rect instruction to perform at all times; the control
element must be able to interpret each instruction and
to command the action from the other elements which
will execute the instruction.

3.1.5 Program Time: Operate Time

Each instruction execution may be divided into
two phases. During the first, which is commonly called
"program time," the control element receives the in­
struction and decodes it. During the second phase,
commonly called operate-time, the other elements are
caused to perform the indicated operation.

During program time, the computer generally does
three things. It selects the instruction to be executed;
it will cause this instruction to be read into the control
element; and, finally, it decodes the instruction. This
decoding includes conditioning the circuits in other
elements to perform the operation called for, as well
as selecting the memory location of the operand.

During operate time two things generally occur:

The selected operand is read out of memory (or in
some instructions read into memory), and the opera­
tion is performed.

In any computer control function, two elements
are used to perform the control. One element is the
logic of the circuits. The other is the timing of the
circuits. For instance, a 2-way AND circuit may have
an output only if both inputs are up at the same time.
If the inputs go up and down at different times, no
outputs are produced. In the sample computer, this
principle of timing is used to differentiate between
program-time operations and operate-time operations
by using diffrent timing devices for the two types of
cycles. During program time, time pulses come from
the program-time pulse distributor; during operate
cycles they come from the operate-time pulse distri­
butor. These two time-pulse distributors never distri­
bute their pulses simultaneously. (See fig. 4-9.) A
time pulse distributor is a circuit which distributes
pulses entering it on a single line into cycles of pulses
leaving it on several lines.

3.2 OPERATION OF SAMPLE COMPUTER
CONTROL

3.2.1 General

Both instructions and operands are stored in mem­
ory. Most instructions require two memory cycles for
execution. One memory cycle is required to obtain the
instruction from memory; another is required to obtain
the operand 'from memory. This is in accordance with
the idea of program time and operate time mentioned in
the previous section.

3.2.2 Program Time

3.2.2.1 Program Sequencing

The method of determining the sequence of in­
structions during execution of a program is based upon
the method of storing the instructions. The instructions
are always stored in the proper sequence in consecutive
memory locations. Usually the instructions are located
at the beginning of the memory addresses (lower
numbered addresses). For instance, the first instruc­
tion might be stored at location 000, the second at
location 001, the third at location 002, and so forth.
With such a system of program storage, it is simple
to keep track of the location of the instruction to be
executed. This is done by the program counter, which
counts the number of instructions executed. Since the
counter starts at 0 and the address of the first instruc­
tion is 0, the contents of the counter always equal the
address of the instruction to be executed. Whenever
an instruction is to be read from memory, the contents
of the counter are transferred to the memory-selection
circuits to indicate the address of the instruction to be
selected.

152 UNCLASSIFIED

PART 4
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Program Time
3.2.2.1-3.2.2.2

MASTER CLOCK INPUT

TIME I

TIME 2
--'"

MASTER PROGRAM
CLOCK TIME
INPUT PULSE

TIME 3
PULSES DISTRIBUTOR

1'1 TIME 12
~

TIME I -
TIME 2

OPERATE

~ TIME
PULSE

DISTRIBUTOR TIME 3

~ TIME 12

~------~.~

I
I nL....-__
I
: nL-. ___ _
I

~--------------~Il~--------------

4-----------~Il~~---------------

~------~Il~----~---------------

~,--~Il~--------~--------------­
I

ll __________ -+ __________ __
I
I

Figure 4-9. Program Time: Operate Time, Pulse Distributor Operation

Once the instruction has been selected, it is read
into the decoding register where it is temporarily stored
while the decoding is accomplished.

Figure 4-10 shows the process; the contents of
memory is to be four instructions at addresses 0000
through 0003 and two data words in locations 0004

and 0005. At the beginning of the program, the pro­
gram counter is set to zero. At the beginning of the
first program time, the contents of the program counter
are gated into the memory-slection circuits. The mem­
ory-selection circuits, therefore, are conditioned to se­
lect address 0000, the contents of the program counter,
and also the location of the first instruction. A memory
read operation is started, and the instructions are read
into the memory buffer register. From here, the instruc­
tion word is gated into the instruction register by gates
which are conditioned during program time only.

At the end of program time, the program counter
is stepped by 1 so that it contains the address of the
next instruction to be executed (0001 in this case).
When the next program time occurs, the contents of
the program counter can again be used to select the
proper instruction address. It can be seen, then, that
the instruction sequencing is an automatic function of
the control element. In Part 5, 3.3, a method of altering
this sequence by programming is illustrated.

In figure 4-10 the memory location immediately
following the last instructio:l (Halt) is a data word.

Since data and instruction words are both in the same
form (binary numbers), it is conceivable that a data
word could be mistaken for an instruction word. If the
program should continue beyond program step 4 (in­
struction in location 0003), this mistake would occur.
To prevent it, the Halt instruction is put between the
block of instructions and the data. This instruction
stops the computer before it can mistake data for in­
structions. The only means of the computer's distin­
guishing between data and instruction words is by its
determining where the word is stored and separating
the two storage areas.

3.2.2.2 Instruction Decoding

As soon as the instruction is transferred - from
memory to the operation and address registers, decod­
ing of the instructions can start. The decoding process
depends upon the fact that all instructions words have
fundamentally the same format.

An instruction word, in general, specifies an opera­
tion and the address of an operand. Therefore, part
of the word is decoded to carry out the operation and
another part is decoded to select the proper word from
storage for transfer to the arthmetic element. This
2-part decoding implies that the two parts of the word
must be decoded by separate matrices. In order to
facilitate separate handling, an instruction word is split
into two parts when it is transferred from storage to

UNCLASSIFIED 153

Fig. 4-10 UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 4
CH 3

r - - - - - - - MEMORY - ---,
MEMORY MEMORY I
REGISTER REGISTER
ADDRESS CONTENTS I
0000 INSTRUCTION I
0001 INSTRUCTION I
0002 INSTRUCTION I
0003 HALT MEMORY I - SELECT I 0004 DATA CIRCUITS

0005 DATA I
~ ~ ~

I 1022 -
1023 -- I

I
I
I
I

MEMORY BUFFER

I REGISTER

l- __ - -- -- -- ~---- ~

PROGRAM
COUNTER

GATES

PROGRAM
COUNTER

TIME 12
STEP PROGRAM
COUNTER

~ ME I READOUT PROGRAM COUNTER

TIME 2 START MEMORY READ OPERATION
PROGRAM

INSTRUCTION TIME
REGISTER PULSE f+-

L __ ---=.G.:....:AT~E:..:S=------L. __ -...!..TI~M~E....::5:......!.!R.=;EA~D::...!!.!IN~I.!!;NS:::....:T...!.:R:!::.:UC::..:T...!.:10::.:.::N~R:.:..::E~G.:.:::IS...:.;:T.E=.:.R.:...--_______ t-_-1 DISTRIBUTOR MASTER
TIME
PULSE r - - - ,1- - - - -,

I OPERATION ADDRESS I
L.INSTRUCTION REGISTERj

OPERATION
DECODER

OPERATION
DECODED
LINE

Figure 4-10. Instruction Selection, Readout, and Decoding (Program Time)

the control element. One part is entered into an opera­
tion register and the other into an address register.

The general method for decoding the instruction
and selecting the operand is shown in figure 4-10.

The binary number which forms the operation part
of the instruction is decoded in a decoding matrix
(operation decoder). This decoder conditions a separ­
ate output line (or set of lines) for each instruction.
This line (or lines) condition (s) circuits in the rest of
the control element (such as the transfer address gate
in the figure) so that they will be ready to perform

the operation specified when the operand becomes
available or when the proper time comes.

Once the operation part of the instruction has
been decoded, the address part may be transferred to
the memory selection circuits. This is accomplished later,
during operate time.

In summary, then, the control element accom­
plishes two things during program time: It selects the
instruction from memory; it decodes the operation
part of the instruction to prepare for execution of the
instruction.

154 UNCLASSIFIED

PART 4
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Operate Time
3.2.3

R

'--.
S

MASTE
CLOCK
TIME
PULSE

OPERATE

TIME

PULSE
DISTRIBUTOR

~

TIME I

TIME 2

TIME 3 --
TIME 4 -
TIME 5 --
TIME 10

TIME II --
TIME 12

OPERATION

REGISTER

OPERATION

DECODER

CLEAR AND ADD
(DECODER OUTPU

~t----l
GTI

~
f------, .
GT 21 --~

~ --

~

~ .. ---. • L-.J

T)

CLEAR
ACCUMULATOR

CLEAR
MEMORY
AND START
READ MEMORY
OPERATION

READ INTO
ARITHMETIC
ELEMENT

ADD

TO
ARITHMETIC
AND
MEMORY
ELEMENTS

figure 4- J J. Instruction Decoding (Operate Time)

3.2.3 Operate Time

As soon as the control element has obtained and
decoded the instruction, the computer starts an operate
cycle. During this cycle, the operand is transferred to
or from memory, and the pulses necessary to accomplish
the operation specified are generated. In other words,

the control circuits which were set up or conditioned
during program time will be used during operate time

to control the actual execution of the instruction.
Figure 4-11 illustrates how this is done for a Clear

and Add instruction. It shows the operate-time pulse
distributor feeding into gates which have been pre­
viously conditioned by the instruction decoder outputs.
Since the operate-time pulse distributor produces an
output during the operate cycle, the control pulses are
transmitted to the arithmetic and memory elements as
shown, only during operate time.

UNCLASSIFIED 155

Control Element Operation
3.3

READ
OPERATION

MEMORY

l
,

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

MEMORY

~
SELEC-
TION -

CIRCUITS

r--

,
INSTRUCTION

REGISTER GATES

TIMES

.

,
OPERATION

REGISTER
AND

DECODER

r---I

ADDRESS
REGISTER

PROGRAM ~ I I
TIME I I I TRANSFER r-

PULSE ADDRESS

01 STRIBUTOR 1-.2..4--_-+ __ -+ __ 4--==G=A~T~E=S=~-~
(ACTIVE) 3 I

4 I ~
I I

2 I I

I
. ~ :..:.....-, ----'

OPERATE ~~
TIME

PULSE t---8 __ +--I_~ GT L I ..
DISTRIBUTOR I ~ I

1--9_--t-I_~--'''''~G T I ..
I -~ I

COMMAND I I GENERATOR I
GATES

OPERATION
COMMANDS

>- TO
ARITHMETIC
ELEMENT

PROGRAM
COUNTER

TRANSFER
GATES

TRANSFER
PROGRAM
COUNTER
TO SELECTION
CIRCUITS

PROGRAM
COUNTER

(019)

.~

STEP
PROGRAM
COUNTER

Figure 4- J 2. Control Operations for ADD Instruction

OPERAND
FROM

MEMORY
TO

ARITHMETIC
ELEMENT

PART 4
CH 3

3.3 CONTROL ELEMENT OPERATION

As an example of the operation of the control
element when executing an instruction, assume that the
instruction ADD 36 occurs in a program. This instruc­
tion means that the number in memory location 36
should be added to the number which is already in the
accumulator as a result of previous arithmetic opera­
tions. Assume also that this instruction occurs on step

20 (instruction at address 19) of the program. At the
time considered, step 19 has just been finished. The
following listing is a summary of what happens in the
execution of the instruction. Reference should be made
to figure 4-12.

156

a. At the completion of the previous instruction,
the computer automatically went into program

UNCLASSIFIED

PART 4
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Program Variation by Control Element
3.3-3.4.1.3

time. Therefore, the program-time pulse dis­
tributor is active.

b. Since 19 instructions have been executed, the
contents of the program counter is 019, which
is the address of the 20th instruction. The con­
tents of the counter have been transferred to
the memory selection circuits.

c. A memory operation is commanded, and the
instruction register gates are pulsed to transfer
the instruction word from memory to the oper­
ation and address registers.

d. The instruction word is then decoded. The
operation part conditions the command gen­
erator gates.

e. Program counter is stepped by 1 so that it con­
tains the address of the next instruction to be
executed.

£. Computer goes into operate-time so that oper­
ate-time pulse distributor will be active. The
address part is transferred to the memory selec­
tion circuits to select the proper operand.

g. A memory read operation causes the operand
to be read into the arithmetic element.

h. Command lines, to cause the arithmetic element
to add, are pulsed in their turn.

1. The computer goes back into program time In

order to start execution of next instruction In

program.

3.4 VARIATION OF PROGRAM BY CONTROL
ELEMENT

3.4. 1 Changing Program Sequence

3.4.1.1 General

The control element described so far is capable of
executing a program which has only one possible se­
quence once it is entered into the computer; that is,
once a program is stored in memory, there is no way
to change it except by replacing it with another or part
of another program. Since this is true, it would be
difficult for the computer to make logical decisions; for
instance, "If the number in the accumulator is negative
add a constant to it, but if the number is zero or posi­
tive subtract the constant from it."

The ability to make logical decisions is very im­
portant in a mathematical process. This ability must,
therefore, be included in any computer which is to
solve problems other than the most simple kind.

What is required in the execution of the logical
issue posed above? The results of a previous calcula­
tion must be studied. (Is the answer positive or nega­
tive?) If one result was obtained one process will be
executed; but, if the other result was obtained, a differ­
ent process will be executed. In other words, the se-

quence of operations depends upon the results of a
previous operation. This, in general, is the way that a
computer accomplishes a logical choice. When the pro­
gram requires a logical choice to be made, a special
instruction is inserted which allows the program se­
quence to be changed according to the results of a
previous calculation.

3.4.1.2 Conditional Branch

The special instruction used is called a Conditional
Brancb. It specifies from what location in memory the
next instruction in the program will be taken if the
condition is met. The operation part of the Brancb
instruction gives the conditions of the branch of con­
trol; e.g., it could specify that a branch occur if the
accumulator is negative. The address part of the in­
struction specifies the location of the next instruction
to be executed. If the conditions of the branch are not
met, no change of program sequence will be made;
consequently, the next instruction executed will be the
one which follows the Brancb instruction in the normal
sequence.

A brief illustration may help to make this clear.
Assume that the fifth instruction (in location 004) in
a program is, "branch, if the accumulator is minus, to
location 020." At the time of the instruction, if the
accumulator is minus, the next instruction executed
will be that in memory location 20. If, on the other
hand, the accumulator sign is positive, the branch oper­
ation is ignored and the next instruction is obtained
in the usual way from location 005.

The execution of the Brancb on Accumulator
Minus instruction is done by examining (electrically
sensing) the sign of the accumulator and transferring
the contents of the address register into the program
counter if the sign is minus.

Figure 4-13 illustrates. the execution of the
Bram-b on Full Minus instruction. During program
time, the instruction is transferred to the operation and
address register just as in any other instruction. The
program counter is stepped, and the command circuits
are set up. During operate time, the sign bit of the
accumulator is examined. If this sign is negative, the
contents of the address register are transferred to the
program counter. Otherwise, nothing happens to the
program counter; in which case, the next instruction
is selected as it would be during normal sequential
operation. (Remember that the program counter has
already been stepped.)

3.4.1.3 Unconditional Branch

Another feature which is included to make the
computer more flexible is the Unconditional Branch.
This instruction directs the control element to take its
next instruction from the location specified in the ad­
dress part of the branch instruction.

UNCLASSIFIED 157

Alteration of Instruments
3.4.1.3-3.4.2.1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 4
CH 3

SELECTION
OF NEXT ADDRESS

BRANCH
INSTRUCTION

REGISTER - --INSTRUCTION PROGRAM TO
COUNTER PROGRAM

1 COUNTER
GATES

, .,
I I

OPERATION
REGISTER ADDRESS j

CLEAR
AND REGISTER PROGRAM

DECODER COUNTER
AND READ
ADDRESS
INSTRUCTION

DECODED
BRANCH
OUTPUT

---}NSTRUCTION
PROGRAM ~ READOUT

TIME
PULSE

~ COMMANDS DISTRIBUTOR

STEP PROGRAM COUNTER

.~ .. a
~

OPERATE r----TIME
PULSE r----DISTR I BUTOR SIGN BIT

NEGATIVE

Figure 4-13. Conditional Branch Instruction Execution (Branch on Full Minus)

The Unconditional Branch instruction is accom­
plished by transferring the contents of the address
register into the program counter. The only difference
between the execution of this and of the Conditional
Branch is that there is no sign bit-sensing required.

3.4.2 Alteration of Instructions

3.4.2.1 General
A very common feature of computer programs is

their repetitive nature; for example a program to add
20 numbers together would contain a Clear and Add
instruction, 19 add instructions, and a Halt instruction.
Such a program would require about 41 memory loca­
tions to hold the 21 instructions and 20 operands. But,
in this program, the 19 Add instructions are all the
same except in their address parts. This implies that a

single Add instruction (stored in one memory loca­
tion) might be used to accomplish what 19 Add in­
structions do in this program. This can be done by
changing the computer program sequence so that the
same program step is repeated 19 times. However, each
time the step is repeated the address specified will be
modified by circuits in the control element. The 19
modifications to the address of the instruction will
make the repetitive operation equivalent to a program
where 19 different add instructions are used. A pro­
gram to add 20 numbers together using an address
modification scheme would have the following sequence
of events, assuming the 20 numbers are stored in mem­
ory locations 60 to 79:

1. Clear the accumulator and add in the number
contained in location 60.

158 UNCLASSIFIED

PART 4
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Index Registers
3.4.2.1-3.4.2.2

2. Add the number in location 61 to the contents
of the accumulator.

3. Repeat step two 18 times. Just prior to each
execution, add a one to the address portion of
the instruction of step 2.

4. Stop computing after the 18th repetition IS

completed.

In general, there are two ways to accomplish the
address modification required in this type of program.
One method is by a special programming trick ex­
plained in Part 5, 3.4. Another way is by means of
special program control circuitry called index registers.

3.4.2.2 Index Registers

In a repetitive routine an index register is used to
modify the addresses in the routine, as well as to count
the number of repetitions. The address is changed by
adding the contents of the index register to the address
of the instruction being executed just prior to selection
of the operand (see fig. 4-14). The process, therefore,
results in the selection of an operand whose location
address is the sum of the original address specified by
the instructions and the contents of the index registers.

A repetitive program is accomplished with the
indexing feature as follows:

PROGRAM
TIME
PULSE

PROGRAM
TIME
PULSE

10

II

ADD
DECODE

ADD INSTRUCTION
WITH INDEXING

SPECIFIED

OPERATION
REGISTER

AND
DECODER

'~
~

INDEX
DECODE

'~
~

,

ADDRESS
REGISTER

INDEX
REGISTER

.~ ADD INDEX
REGISTER
CONTENTS
TO ADDRESS
REGISTER
CONTENTS

a. The index register is loaded with the number
of repetitions which are required.

b. During each repetition, any instruction which
requires address modification specifies so as a
part of the instruction. (This is done when the
program is written.) In this case, the contents
of the index register are added to the contents
of the address register between the time when
the address specified by the instruction enters
the address register and the time the (modified)
address is sent to the memory selection circuits.
(See fig. 4-14.)

c. Each time a new repetition is specified, the con­
tents of the index register are automatically
decreased by 1. (1 is called the index interval.)

d. A new repetition is specified by a Branch and
Index instruction, which branches the control
back to the first instruction in the repetitive
routine.

e. The Branch and Index instruction is a condi­
tional branch. The branch occurs only as long
as the index register is positive. When the index
register becomes negative the iterations are over
and the non-repetitive portion of the program
continues.

TRANSFER
ADDRESS

GATES

READ OUT
ADDRESS
REGISTER

MEMORY

I----------I~ SELECTION
CIRCUITS

Figure 4-14. Address Modification by Index Register

UNCLASSIFIED 159

Index Registers
3.4.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
eH 3

To provide this repetitive program facility in the
computer, the following new circuits must be added to
the control element: an index register and adder,
which can add the contents (positive) of the index
register to the contents of the address register; con­
trols to initiate this addition at the proper time; and
circuitry for an extra bit in the instruction word to
indicate that indexing is necessary. Also, there must be
a way of clearing from, and reading into, the index
register through programming. And finally, there must
be a way of stepping the index register down one on
the Branch and Index instruction.

Figure 4-14 shows the operation of the index
register when an ADD instruction, with indexing speci­
fied, is given. The instruction is read out of memory
in the usual way during the first part of program time.
The operation part of the instruction is decoded to
give an add-decode output level as in a normal ADD
instruction. The decoder also puts out an index-decode
level which conditions the indexing command genera­
tor (GT 1). Just before the transfer of the address to

the memory selection circuits, the contents of the index

register are added to those of the address register.

160 UNCLASSIFIED

PART 4
CH 4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Arithmetic Element Requirements
4.1-4.3

CHAPTER 4
ARITHMETIC ELEMENT

4.1 GENERAL

Data processing is accomplished in a computer by
a controlled transfer of information between storage
devices. The transfer is made through a data-manipu­
lating or -switching device. It is this device which does
the actual changing of data which is necessary in the
process. The switching device changes the data by per­
forming simple arithmetic operations upon it. For this
reason the device is called the arithmetic element.

4.2 ARITHMETIC ELEMENT PURPOSE

The arithmetic element of a computer has two
main functions: It operates on data, and it operates
on program instructions. The data operated upon com­
prises the actual numbers of the problem to be solved.
The arithmetic element does the addition, subtraction,
etc., for solution of the problem. As stated in 3.4, it
is often necessary to change the instructions of a pro­
gram as the solution is carried out. Because the instruc­
tions is by programming. In this case, the arithmetic
element can be used to change them while the program
is in progress.

Operations on the program are accomplished in
two general ways. Sometimes the arithmetic element is
used as a part of the control element circuitry; for
instance, the accumulator of the arithmetic element
might be used as an index register. A more obvious
way of using the arithmetic element to change instruc­
tions is by programming. In this case, the arithmetic
element is used merely as an arithmetic device. The
instructions to be changed are taken as operands in an
instruction-changing subprogram. Such a program
changes an instruction by calling it out of its location
in memory, adding or subtracting a previously stored
constant to the instruction, and, then, restoring the
(modified) instruction to its original location in mem­
ory.

4.3 REQUIREMENTS OF AN ARITHMETIC ELEMENT

It would be possible to perform arithmetic by using
a purely logical network in combination with the mem­
ory of the computer. It would also be possible to per­
form arithmetic purely by means of counting registers
and the memory of the computer. A much more efficient
system for doing arithmetic, however, is to use an
arithmetic element containing both logic and limited,
short-term storage facilities which work together with
a large computer memory and a central control element.

In Chapter 2 of Part 3 it is shown that all arith­
metic operations in such an arithmetic element are a
combination of a few simple operations, which the
arithmetic element registers and logic must be able to
do. These are:

a. Read in a number. There must be a means of
reading the operand into the arithmetic element
in one or more ways.

b. Read out a number. There must be a means of
reading the results out of the element.

c. Clear. There must be a way of clearing the ele­
ment.

d. Add. There must be some means of adding two
numbers together.

e. Complement. There must be some means of sub­
tracting a number. Usually, this implies a means
of complementing a number.

f. Sense. There must be a means of sensing the
contents of one or all bit positions of a register.

g. Shift. Finally, there must be a means of shifting
a number either right or left with respect to the
radix point.

In order to perform arithmetic by a combination of
all of these functions, the arithmetic element must have
not only registers and switching circuits but also a
sequence-controlling device. This device must control
the sequence of the various functions so that the proper
mathematical operation is carried out; for instance, to
clear the accumulator and add a number, a sequence
such as the following is necessary:

1. Clear the accumulator.
2. Read the number into the accumulator.

This operation would be unsuccessful if the wrong
basic operations were called for or if the correct opera­
tions were called out in reverse order. Therefore, an
arithmetic control and timing section must be provided.

Not only must the internal functions be properly
sequenced, but also the interaction of the arithmetic
element with the other elements of the system must
be sychronized. This synchronizing function is per­
formed by the control element of the computer. The
internal functions of the arithmetic element could be
controlled by an autonomous control and timing device
such as that used in the memory. However, in most
computers both the internal and external operations of
the arithmetic element are controlled by a single, cen­
tralized control element (Ch. 3).

UNCLASSIFIED 161

Operation of Arithmetic Element
4.4-4.4.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 4

4.4 OPERATION OF SAMPLE SYSTEM
ARITHMETIC ELEMENT

4.4. 1 Introduction

Now that the general properties of an arithmetic
element have been reviewed, an element designed for
operation with the direct-access memory and control
elements already described will be developed.

4.4.2 Arithmetic Element Description

4.4.2.1 General

In Chapter 1 it was stated that the arithmetic ele­
ment of the sample computer would be of the parallel
binary type. The computer uses a word length of 15
magnitude bits plus a sign bit. This, of course, corre­
s ponds to the word length used in the other elements
of the computer. However, in 3.4.2.4 examples of mul­
tiplication are worked out using a word of four magni­
tude bits plus a sign bit. The smaller number of bits
is used to simplify the description of the process.

The arithmetic element operates on numbers by
performing the four fundamental arithmetic opera­
tions: addition, subtraction, multiplication, and divi­
sion. An arithmetic element capable of performing all
four of the arithmetic operations while satisfying the
need for high-speed operation can be built with three
flip-flop registers, together with a logical network that
is essentially a set of full adders. Each of these regis­
ters and adders will contain 15 bits plus a sign bit.

The general layout of the registers and adders of
such a system is shown in figure 4-15. In this arith­
metic element, all arithmetic is performed by an addi­
tion process. Addition itself is an add process. Sub­
traction is accomplished by addition of a complement
number. Multiplication and division are, respectively,
repetitive add and subtract processes. The basic func­
tion of each of the units in the figure can be explained
in terms of these fundamental operations. The A regis­
ter, accumulator, adders, and carry-accumulator gates
perform the addition and subtraction.

When numbers are contained in the A register and
the accumulator, addition is initiated by conditioning
the adder gates. The B register is an auxiliary register
which is used in combination with the accumulator in
the multiply and divide processes. The other gates
shown are included to allow information transfers from
or to the memory buffer. The read-in gates determine
where a word from the memory buffer enters the arith­
metic element. The readout gates determine when the
accumulator contents are read to the memory buffer.

Figure 4-15 indicates that it is possible to read
from the memory buffer directly into the A register or
into the accumulator. It is also possible to read informa­
tion into the accumulator from memory via the A regis­
ter and adders. To insert information in the B register,
it must be first inserted in the accumulator and then

shifted into the B register. Although this is relatively
slow, it saves equipment and decreases the number of
instructions the computer must execute. The only way
to get information from the arithmetic element to the
memory buffer (and then to memory) is to read it out
of the accumulator via the accumulator readout gates.

4.4.2.2 Addition

Addition can be performed by an element which
consists only of two flip-flop registers and a set of full
adders. The routine in the element of figure 4-15 is as
f'Ollows:

a. The augend is entered into the accumulator and
the addend is read out of memory and into the
A-register.

b. Outputs of the two flip-flop registers are fed to
the full adders.

c. The sum developed by the adders is gated to the
accumulator register where it replaces the
augend. The carry-accumulator gates propagate
the carry and gate the sum into the accumulator
register.

In a single-address machine, an instruction to add
means add a number to the number which is already in
the accumulator. If it is assumed that the augend is al­
ready in the accumulator, the following is a summary
of the controls to cause addition in the arithmetic ele­
ment (fig. 4-15) when used in conjunction with the
core memory and control elements discussed in the pre­
vious chapters.

1. Read from memory location specified in the in­
struction. (This gets addend into memory buf­
fer.)

2. Read into the A register. (This transfers in­
formation from memory buffer to A register.)

3. Pulse the carry-accumulator gates. (This causes
. the sum to enter the accumulator register.)

From this summary it can be seen that the only
controls needed will be one to start the readout of the
specified memory location, one to condition the A reg­
ister read-in gates, and one to condition the carry-ac­
cumulator gates. Circuits of the control element ex­
plained in Chapter 3 will be used to accomplish the re­
quired functions.

The operation of the control element during oper­
ate time (execution time) to accomplish this addition
process is shown in figure 4-16. It should be recalled
that during program time (not shown) the operation
and address parts of the instruction word have been
decod.ed.. The operation decoder output in this case is a
single level (add decoded) which remains conditioned
until the end of operate time. This add-decoded level
conditions certain gates of the control element. At the
proper time, then, the control element gates (command
generators) pass pulses, which control the action of the

162 UNCLASSIFIED

PART 4
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Fig. 4-15

MEMORY BUFFER BUS

READ-IN ACCUMULATOR

GATES

READ-IN A REGISTER

GATES

A REGISTER

,
ADDERS

CARRY ACCUMULATOR

GATES ,
SHIFT

ACCUMULATOR B REGISTER

I

ACCUMULATOR

READOUT GATES

Figure 4-15. Arithmetic Element Information Flow

arithmetic registers and gates, to perform the required
addition.

The sequences of the commands to the arithmetic
element are determined by the operate time pulse dis­
tributor. The control element, therefore, controls the
sequence of the fundamental operations of which the
arithmetic is capable. It also controls the start and stop

of the arithmetic element, along with the start of the
memory element. Notice the time lag between the start
of the memory read cycle (when the operand is to be
read from memory) and the actual start of the addition
process. This time lag is necessary because it takes the
memory several time pulse intervals to transfer a word
from a memory location to the memory buffer.

UNCLASSIFIED 163

Addition
4.4.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 4

CLEAR MEMORY AND
START MEMORY
READOUT
COMMAND

PULSE A REGISTER
READ-IN GATES
COMMAND

PULSE CARRY­
ACCUMULATOR GATES

ADD
DECODED

TIME

II

OPERATE
TIME
PULSE

DISTRIBUTOR

MASTER
TIME
PULSES
12 TO A
CYCLE

~CO.M~M~A_N~D ____________________________ ~GTI2 TIME

12

Figure 4-16. Add Instruction Arithmetic Control (Operate Time)

4.4.2.3 Subtraction
Subtraction can be performed using the same com­

ponents and by almost the same routine as addition.
The only additional requirement is that the A register
be able to form the complement of the number it holds.
The l's complements can be obtained readily in a flip­
flop register by pulsing all the complement inputs si­
multaneously. In this element, the subtraction routine
consists of entering the minuend in the accumulator,
entering the subtrahend in the A register, complement­
ing the subtrahend, and performing the addition opera­
tion. That this is equivalent to subtraction by the usual
pencil and paper metho·d is shown in 4.2 of Part 2.

In a single-address machine, the sequence of opera­
tions in the subtraction routine is based upon the as­
sumption that the minuend is already in the accumula­
tor when the instruction is started. The subtrahend must
be obtained from memory just before the start of the
actual subtraction process. Actually, as explained' in
Chapter 3, it is obtained as a part of the subtract in­
struction just as it was in the add instruction. Knowing
the whereabouts of the subtrahend and minuend, the
following summary of operation can be written for the
subtraction process:

1. Start memory readout operation.

2. Read into the A register.

3. Complement A register.

4. Pulse carry-accumulator gates.

As in the add instruction execution, the process, thus,
can be broken down into a series of simple sequential
processes. The control element described in Chapter 3
can be used to control the action of the arithmetic ele­
ment.

Figure 4-17 shows the operation of the control
element during operate time of a subtract instruction.
Notice that the only difference between this and the add
instruction decoder previously described is a new out­
put level from the decoder and a new A register com­
plement pulse gate. Since the figure sho~s only operate
time of the instruction cycle, it can be assumed that the
instruction has already been decoded. This time the de­
coder has two output lines. One of these lines is used to
condition the same add command generators as were
conditioned for the add instruction. The other line con­
ditions a command generator which complements the A
register just prior to the start of the actual addition.
Thus, the add operation is converted to a subtract op­
eration by a difference in decoder outputs.

164 UNCLASSIFIED

PART 4
CH 4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Multiplication
4.4.2.3-4.4.2.4

CLEAR AND
START MEMORY

READ

PULSE A REGISTER
READ-IN GATES

COMPLEMENT A REGISTER

PULSE CARRY­
ACCUMULATOR GATES

ADD
SUBTRACT DECODE
DECODED

GT TIME
2

TIME
GT 10

TIME
GT ---12---1

TIME
PULSE

DISTRIBUTOR

MASTER
TIME
PULSES
12 TO A
CYCLE

Figure 4- J 7. Subtract Instruction Arithmetic Control (Operate Time)

As in the addition process, the operation of the
memory is synchronized with the arithmetic element by
proper timing of the start of the operation of the two
elements. After the memory readout operation is
started, sufficient time is allowed for the word to get
into the memory buffer. Once in the buffer, the word is
available to the arithmetic element, and the arithmetic
process is started.

4.4.2.4 Multiplication

High-speed multiplication can be performed by an
add and shift routine, which employs a third flip-flop
register (called the B register in addition to the ac­
cumulator, the A register, and the adders. The multi­
plication process is more complicated than are the add
and subtract processes. Nevertheless, the example given
below as a brief review of the process (which is thor­
oughly explained in 4.3.2 of Part 2 and 3.4 of Part 3)
shows that the operation can be reduced to a series of
simply controlled basic operations, just as the add and
subtract processes were.

The example is illustrated in figure 4-18. The
numbers held in the three registers after each step of a
multiplication routine are shown. The multiplicand is

assumed to be .1010 (decimal .625) and the multiplier
is assumed to be .1101 (decimal .8125).

The multiplication is always performed on positive
numbers. This means that, if any negative number is to
be multiplied, it must first be made positive. Further­
more, the sign of the product must be determined be­
fore multiplication is started.

In the illustration, as in the arithmetic element, a
sign bit is included as a bit position of each register.
The accumulator and A register sign bits are used when
predetermining the sign of the product. In the actual
multiplication process the accumulator sign bit position
is used not as a sign indicator but as an extra place to
temporarily hold carries. (See step 5.) During multi­
plication the sign bits of the A and B registers are both
unused. Notice therefore, that the shift right from the
accumulator to the B register shifts the right most bit
of the accumulator into the left most bit excluding the
sign bit of the B register.

The details of the multiplication process are as fol­
lows:

a. The multiplicand (.1010) is placed in. the A reg­
ister and the multiplier (.1101) in the accumula­
tor. If necessary, both numbers are made posi-

UNCLASSIFIED 165

Fig. 4-18 UNCLASSIFIED PART 4
T .0. 31 P2-2FSQ7-2 CH 4

A REGISTER

0 I I 1
0

1
I I 0

y

MULTIPLICAND

I 0 I 0 0 0 0 0 0 I
STEP I
SHIFT B REGISTER

ACCUMULATOR ACCUMULATOR I t
INTO CONTROL BIT

I I 0 I B REGISTER 0 0 0 0 0 FOR STEP I 0 I

v
ADD MUL TIPLIER

STEP 2
1

0 I 0 0 0 I I I 0 I
y y

PARTIAL PRODUCT MULTIPLIER
SHIFT

I + CONTROL BIT

I I I 0 0 0 FOR STEP 2 0 0 I I 0

y J '------v-----'
PARTIAL PRODUCT MULTIPLIER

{""ADD
STEP :3

1
0

1
0

I I 0 I I I 0 I 0 I I II I 0 I
)"----y----l

Y

PARTIAL PRODUCT MULTIPLIER
SHIFT

I !
CONTROL BIT

I 0 I I 0 II II I 0 0 0 0 FOR STEP :3

y J'---v---'

ADD
PARTIAL PRODUCT MULTIPLIER

STEP 4 0 0 0 I 0 I 10 I I I I I
v ~

SHIFT
PARTIAL PRODUCT MULTIPLIER

I

1

0 n CONTROL BIT

I 0 I I I 0 0 0 FOR STEP 4 0 I
y

ADD
PARTIAL PRODUCT MULTIPLIER

STEP 5 0 0 0 0 I 0 I 0 I I 1
0 II I

J f y

SHIFT TOTAL PRODUCT MULTIPLIER

0 0 0 0 I 0 I 0 0 0

v
TOTAL PRODUCT

Figure 4-18. Contents of A-Register, S-Register, and Accumulator During Multiplication

166 UNCLASSIFIED

PART 4
CH 4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Multiplication
4.4.2.4

tive and the predicted sign of the product is
stored (in a special sign storage flip-flop). The
first step of multiplication is to shift the multi­
plicand out of the accumulator into the B regis­
ter.

b. The least significant bit of the multiplier is ex­
amined. If this bit is 1, an operation is initiated,
placing the multiplicand in the accumulator
(without clearing it from the A register). If the
least significant bit is 0, no addition is initiated
and the accumulator remains cleared. In either
case, multiplication by the least significant bit of
the multiplier has been carried out, and the ac­
cumulator contains the first partial product.

c. The contents of the accumulator-B-register,
treated as a single register, is now shifted one
place to the right. This moves the least signifi­
cant bit of the first partial product from the ac­
cumulator to first data bit of the B register. At
the same time, the least significant bit of the
multiplier is lost. However, this is of no conse·
quence because the bit has already completed its
part in the multiplication routine. (In example
of fig. 4-18, the product bit which is moved
from the accumulator to the B register is 0, and
the multiplier bit which is dropped is 1.)

d. The second least significant bit of the multiplier
is now examined. If this bit is 1, the multipli­
cand is added to the shifted first partial product
in the accumulator. If the bit is 0 (as in example
of fig. 4-18), no addition is initiated. In either
case, the number occupying the accumulator and
the first bit position of the B register is now the
sum of the first and second partial products.

e. The contents of the accumulator-B-register,
treated as a single register, are now shifted right
a second time, preparatory to the addition of the
third partial product. After this shift, two bits
of the sum of the partial products occupy flip­
flops of the B register, and the second least
significant bit of the multiplier has been
dropped.

f. The routine continues in the same way, provid­
ing a step for each multiplier bit. At each step,
the multiplier bit is examined. If it is 1, an add
command is generated; if the multiplier bit is 0,

no add command is generated. For each step,
there is a shift right of the partial product in
the accumulator-B-register combination until,
after the final step, the product has completely
replaced the multiplier and occupies the entire
combined register.

g. The final step is to correct the sign of the ac­
cumulator, if necessary. The correction has been

determined by the sign storage flip-flop which
counted the number of complement operations
that were necessary to make both the A and B
registers positive at the beginning of the rou­
tine. If the number of complement operations
was even, the result is a product of two negative
numbers and is, therefore, positive. In this case
no sign correction will be necessary. If the num­
ber of complement operations was odd, the re­
sult is a product of a negative and a positive
number, and, therefore, the sign of the product
should be negative. In this case, a complement
of the product would be necessary. In the exam­
ple no complement operation is necessary.

A summary of the routine is given below. This
summary is made under the assumption that a previous
set of instructions has put the multiplier into the ac­
cumulator.

1. Start memory read operation.

2. Read into the A register.

3. Sense sign of A register and make positive.

4. Sense sign of accumulator and make positive.

5. Shift accumulator-B-register 5 places right.

6. Sense least significant bit of B register.

a. If this bit is a 1, pulse the carry-accumulator
gate. (Add.)

b. If this bit is a zero, do not pulse the carry­
accumulator gates. (Do not add.)

7. Shift contents of accumulator- and B-register
one place to the right.

8. Repeat 6 and 7 until as many add-and-shift steps
have been accomplished as there are bits in the
B register (multiplier). In a 15-bit-word ma­
chine, a total of 15 add-and-shift steps will be
required.

9. Correct sign of accumulator (product).

10. Use a round-off instruction to correct the prod­
uct.

It can be seen that the process can be reduced to a
set routine. This same routine gives correct results in
the multiplication of any two numbers up to the capac­
ity of the machine. Without going into the details, the
reader should be able to see that the control element
described previously could be made to perform the se­
quencing of the operations. The general operation of
the element is similar to that for addition and subtrac­
tion. The first part of the instruction is devoted to ob­
taining the multiplicand from memory. The second
phase of the execution process is devoted to the actual
multiplication process described. The only new kind of
equipment required in the control element is a counter
to keep track of the number of repetitions of the partial

UNCLASSIFIED 167

Division
4.4.2.4-4.4.2.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 4

product steps. This counter is a common feature of
computers called a "step-counter."

Of course, the multiplication routine is more com­
plicated than either the addition or subtraction rou­
tines. Therefore, it takes a longer time to perform. This
time is made available; the multiply instruction auto­
matically stops the progression of the program until
completion of the instruction. This is called a "pause".

4.4.2.5 Division
A brief review of a division process (explained in

4.4.3.3 of Part 2 and 3.5 of Part 3) will show that it is
easily mechanized with the arithmetic element registers
shown in figure 4-15. The usual method of dividing
is by a repetitive subtraction process. The number of
times that the divisor can be subtracted from the divi­
dend is counted to determine the quotient. What is left
of the dividend after all the subtractions have been
completed is the remainder.

No new components are required to perform divi­
sion by a subtract and shift routine. The divisor is en­
tered in the A register. As in multiplication, the ac­
cumulator and B register are used to form a single reg­
ister of double capacity. At the outset of the routine, as
the result of previous program instructions, the divi­
dend is placed in this combination register. As the rou­
tine pn)gresses, the dividend is shifted left, making
room for Auotient bits in the B register and dropping
remainder (dividend) bits as one step follows another.
At the end of the routine, the quotient is in the B regis­
ter and the remainder occupies the accumulator.

Figure 4-19 illustrates the general process of divi­
sion. The process shown is a non-restoring subtract and
shift routine. The divisor is plus .1110 (decimal .875)
and the dividend is plus .1000 1100 (decimal .546875).
The quotient is, therefore, four bits excluding the sign
bit.

Division is only performed upon positive numbers.
As in multiplication, therefore, the signs of the divi­
dend and divisor must be corrected if either is negative
when the process starts.

In division the sign bit position of both the A reg­
ister and the accumulator are used as sign indications
throughout the process. The sign bit of the B register
is used as a sign indicator only at the end of the process,
when the signs of the remainder and quotient are finally
corrected to their predetermined value. During the ac­
tual division process, the B register sign bit position is
used as an extra position to store one bit of the divi­
dend.

If it is assumed that the dividend, which can be a
double length word, is contained in the accumulator­
B-register as a result of previous instructions, the divi­
sion routine (fig. 4-19) proceeds as follows:

a. The divisor is read out of memory into the A
register.

b. The signs of the dividend and the divisor are
examined. If either is negative, it is comple­
mented to its positive form. (In the example,
both numbers are positive as indicated by O's
in the sign bit positions of the A register and
accumulator. Thus, no conversion is necessary.)
The number of conversions necessary is
counted; the result of the count, which indi­
cates the sign to be given the quotient, is stored
in the sign storage flip-flop.

c. The divisor is now complemented and added to
the portion of the dividend in the accumulator;
i.e., the divisor is lined up left with the dividend
and is subtracted from it. The remainder ob­
tained is negative; consequently, a "0" is inserted
in the least significant position of the B register,
and the combined accumulator- and B-register is
shifted one place to the left.
This "0" will eventually be contained in the B
register sign-bit position. However, it has no
meaning in this process. The step to generate the
zero is merely included to make all the subtract
and shift routines as much alike as possible. The
zero obtained is called a dummy sign bit in the
text below. When the dividend is shifted left, by
shifting the contents of the combined accumula­
tor-B-register, the dividend sign bit is lost, and
the most significant magnitude bit of the re­
mainder occupies the sign bit position of the ac­
cumulator.

d. The divisor, in true form, is now added to the
contents of the accumulator. Notice that the
sign bit of the divisor (which is 0) is lined up
with the most significant magnitude bit of the
remainder as a result of the shift operation. If
the result of the addition is a positive current
remainder, half the divisor has been successfully
subtracted from the full dividend; that is, in the
first step, the full divisor has been subtracted
from the dividend leaving a negative remainder,
while, in the second step, half of the divisor has
been replaced. Thus, the net amount removed is
one-half the divisor. Therefore, a 1 can be
placed in the quotient position that is now the
least significant position of the B register. After
this 1 is inserted another shift left occurs. Now,
a dummy sign bit of the quotient and a one bit
of the quotient have been generated by two sub­
tract-and-shift operations. Note that a 0 was
generated whenever the addition resulted in a
negative remainder and that a 1 was generated
whenever the addition resulted in a positive re­
mainder. It should also be recalled that in this
non-restoring division method, the true form of
the division is added to the negative remainder,

168 UNCLASSIFIED

PART 4
CH 4

STEP I

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

A REGISTER

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

SIGN BIT -.1 ° I I I o I~IVISOR IN TRUE FORM
" FOR STEPS 2,4,6

DIVISOR MAGNITUDE BITS

I I ° I ° I I I 0 I~IVISOR IN 2' COMPLEMENT
" " " " " " FORM FOR STEPS 1,3,5

ACCUMULATOR , DIVIDEND MAGNITUDE BITS
A.

SIGN BIT _I
POSITION~ 0 000

ADD COMPLEMENT
FORM

SHIFT

ADD TRUE FORM

CARRY (I)

SHIFT

ADD COMPLEMENT
FORM

SHIFT

ADD TRUE" FORM

CARRY (I)

SHIFT

~~--~--~--~~

o o

A

o o

A

o 0

o 0

o 0 o

00000

CURRENT REMAINDER
A

o 0 0 0 0

{

ADD COMPLEMENT
FORM

~~---r--~--r--'

o 0 0

{ COMPENSATING ADD
TRUE FORM

FINAL REMAINDER

Fig. 4-19

o = DUMMY SIGN BIT
B REGISTER ,

° °

000

o ° 0 0 I

FIRST QUOTIENT BIT

+

QUOTIENT BITS

°
QUOTIENT BITS

°
QUOTIENT BITS

o

QUOTIENT BITS

o

QUOTIENT BITS

SIGN BIT --I I I
POSITION I'-_0--L __ --L_0--l __ --L_O---'

Figure 4- J9. Contents 01 A-Register, 8-Register, and Accumulator During Division

UNCLASSIFIED 169

Division
4.4.2.5-4.4.2.6

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 4

while the complement of the divisor is added
when the remainder is positive.

The routine continues in this same way, providing
one subtract and shift step for each quotient data bit
(excluding dummy sign bit) that is generated. In this
case, four subtract-and-shift steps are required. In the
case of a IS-bit-word machine, 15 subtract-and-shift
steps are required.

If the last quotient bit is a 0, then an extra compen­
sating addition must be performed so that the final re­
mainder will be positive. This is the case in the illustra­
tion. However, the final remainder turns out to be zero.

At the end of the routine, the quotient is contained
in the last four bits of the B register; the final remain­
der is contained in the last four bits of the accumula­
tor; and the signs of both quotient and remainder are
positive. At this time, the signs of the accumulator and
the B register are converted to the sign which was pre­
dicted when the signs of the dividend and divisor were
made positive. (In this case, no conversion is required.)

A summary of the division routine is given below.
It is assumed that the dividend is already contained in
the combined accumulator-B-register when the divide
instruction is given. Again, it should be noted that the
routine below does not include the program-time oper­
ati<1ns of the control elment. Only the actions required
in execution of the decoded instruction are listed.

1. Start memory read operation.
2. Read divisor into A register from memory.
3. Sense sign of A register complement, if nega­

tive.
4. Sense sign of accumulator, complement, if nega­

tive.
5. Sense sign of accumulator.

a. If positive, complement A register and add
to accumulator.

b. If negative, add true A register contents to
accumulator.

6. Sense sign of accumulator.
a. If negative, insert 0 in least significant posi­

tion of B register.
b. If positive, insert 1 in least significant posi­

tion of B register.
7. Shift combined accumulator-B-register one place

to left.
s. Repeat steps 5, 6, and 7 until one add-and-shift

routine has been completed for each bit of the
quotient to be generated, excluding the dummy
sign bit. In the illustration a total of four add­
and-shift steps are required. If a IS-bit-plus­
sign-bit word were to be generated (as in the
example machine) 15 add-and-shift steps would
be required.

9. Take one extra step 4 and 5.

10. Sense the sign of the accumulator.

a. If negative, add true form of A register to ac­
cumulator (compensate add).

b. If positive, do not compensate add.
11. Correct signs of accumulator and B register.
The example shows that the division process may

also be divided into a set routine. This same routine
gives correct results in the division of any two numbers
if the dividend is smaller than the divisor. Without go­
ing into the details of mechanization, the reader should
be able to see, therefore, that it is possible to incorpo­
rate the controls necessary to perform division in the
control element described in the previous chapter. As
in the multiplication routine, the control element re­
quires a step counter to keep track of the number of
repetitions made.

4.4.2.6 Shifting

Some instructions which the arithmetic element is
called upon to perform do not require a reference to
memory during execution time. In other words, the in­
struction calls for an operation to be performed upon a
number which is already in the arithmetic element. An
example of such an instruction is one to shift the com­
bination accumulator-B-register contents left five places.

This instruction comes from memory to the com­
puter control element in the usual instruction word
form, with an operation part and an address part. The
operation part of the instruction has the usual signifi­
cance. It specifies the operation to be performed (shift
accumulator-B-register left). The address part of the
instruction (5) does not have the usual meaning. In
this instruction the address part specifies the number of
places the registers are to be shifted. Thus, the instruc­
tion itself contains all the information necessary to per­
form the operation; no further reference to memory is
required.

The operation is carried out as follows:

a. The shift left is ordered, and the number starts
to shift.

b. The number of single shifts is counted by the
control element (step counter).

c. When the number of shifts is equal to the ad­
dress part of the instruction, the shifting is
stopped.

The control element devised to control the other arith­
metic operations could be made to sequence the arith­
metic element during a shift operation. All that would
be necessary would be a shift-demand level and a step
counter to count the number of shifts. The step counter
is the same counter as that used to count the number of
add-and-shift operations in the -multiplication process
or the subtract-and-shift operations of the divide pro­
cess.

170 UNCLASSIFIED

PART 4
CH 5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

General
5.1

CHAPTER 5
INPUTS AND OUTPUTS

5.1 GENERAL

The computing section of the computer has been
discussed in the last three chapters. This chapter dis­
cusses the way results obtained from the computing sec­
tion are entered into, and extracted from, the com­
puter; that is, the Input and Output Systems.

In general, the input-output facilities (10) provide
means of communication between the computer and its
environment. This communication is characterized by
translation between the symbols used in the environ­
ment (which could include both men and other ma­
chines) and those used within the computer. For in­
stance, man uses a set of written decimal symbols to
convey numerical information. In a binary computer
whose input information originates from a human op­
erator, the Input System translates from the written
decimal to the binary expressed in electrical terms.

Usually there is a great difference between the sym­
bols used by the computer and those used by its envi­
ronment, and between the comparative speeds of writ­
ing and reading the symbols. If the computer demands
information from an input device and then has to wait
until the input device can deliver it, the computer also
has to wait. Since the input device is invariably much
slower than the computer, this is not a desirable condi­
tion. The Input System, therefore, includes a buffer de­
vice which greatly decreases the time required to effect
the transfer of information between input and com­
puter. The input buffer is a storage device which can be
written upon by the input device at the pace of the in­
put device and can be read from by the computer at the
computer's pace. The output buffer performs the same
function in reverse between the output devices and the
computer. It matches the high speed of the computer to
the slow speed of the output device.

The 10 equipment of a computer determines its
speed, capacity and versatility to a great extent. The
speed and capacity of the computer is affected by the
10 speed in three general ways. If individual transfers
to or from the computer are slow, the computer is de­
layed during these transfers. If, on the other hand, in­
dividual transfers are fast but not frequent enough, the
computing section may be delayed for lack of data to
work on. The effect of the 10 system upon computer
speed is also determined by the amount of translation
which is accomplished within the 10. If the 10 system

does not do a complete job of translation from the sym­
bols of the outside world to those of the computer, the
computing section wastes program time on this func­
tion. For instance, information is often entered into the
Input System of a binary computer in decimal symbols.
The Input System may convert these decimal symbols to

electrical impulses in binary form, or it may convert
them to electrical impulses in a decimally coded form.
The first method requires more equipment in the Input
System, but the second method requires that the com­
puting section do part of the translation by program­
ming. If much decimal to binary conversion is necessary,
the computer can compute at a higher speed if all the
conversion is done by the 10 system. On the other hand,
if very little decimal-to-binary conversion were re­
quired, the average computing speed would not be
greatly affected by the extra time required to do this
conversion within the computing section. In the sample
computer, all necessary translation is performed in the
10 equipment.

The versatility of the computer is also greatly af­
fected by the 10 system. The 10 system (particularly
input) more nearly defines the use to which a computer
can be put than does any other element.

Computing machine uses can be divided into two
general classes. A computer may be used in data proc­
essing to process a great deal of data at a time, or it can
be used, in the solution of mathematical problems, to
process a little data by a great many operations. In gen­
eral, the data processing machine requires a high-capac­
ity 10 system; a computer used in mathematics re­
quires only a small capacity 10 system.

Computing machines are sometimes used for real­
time control systems. Unless the 10 system properly
matches the computer to the control process, this use is
not possible. In the SAGE computer the data comes in
to the computer site from the various radar and other
sources via telephone line. If the necessary speed of
operation is to be obtained, the 10 system must be able
to enter this information directly from the phone lines
to the computer without human intervention. Commu­
nication from operator to computer is limited to low­
volume information transfer, except during program
loading. In this case, a low capacity manual input may
be efficiently used. The air defense control process re­
quires that the output of the computer present a great

UNCLASSIFIED 171

10 Buffer Drum
5.1-5.3.2.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 5

deal of information to the operator in a form which
can be quickly assimilated. A display output makes this
possible.

A computer which is to be used for business pur­
poses requires still different types of 10 devices. The
input and output should be compatible with the data
reduction system used in the outside world. For instance
some offices use punched cards for their data processing.
A computer in such an office should certainly be
equipped with punched card 10 equipment.

5.2 SAMPLE SYSTEM CONSIDERATIONS

The requirements for the sample system were
stated in Chapter 1. It was stated that the system would
need an automatic input and output to transfer binary
information to and from remote machines. It was also
stated that the system would require a manual input for
such functions as program insertion, and a display Out­
put System which would present the entire air situation.
The comparative speeds of the 10 devices and the com­
puter also require that each device feed into, or be fed
from, a buffer device. This is a temporary storage device
which allows the asynchronous transfer of large
amounts of information between the 10 equipment and
the computer. Drums which are accessible to both the
computer and the 10 equipment are used for this pur­
pose.

5.3 10 BUFFER DRUM

5.3.1 Purpose
The purpose of an 10 buffer drum is to match the

speed of the computer to that of the 10 devices. It uses
an asynchronous demand system of reading and writ­
ing. This means that the device writing into it or read­
ing from it governs the speed of writing or reading.
The drums also serves as an assembly memory where
information to be read or to be written can be assem­
bled into blocks of information, thus allowing the com­
puter to read or to write a large number of words at
once whenever an input or output operation is required.

5.3.2 Drum Operation

5.3.2.1 General
All of the buffer drums are used to transfer infor­

mation only one way; that is, the input drums always
transmit their information from the input device to the
computer. Similarly, the output drums only transfer in­
formation from the computer to the output device. Con­
sequently, each drum must have a set of reading heads
connected to, and controlled by, the reading element
and a set of writing heads connected to, and controlled
by, the writing element. This arrangement allows both
reading and writing elements to transfer information at
their own pace.

Figure 4-20 illustrates the general operation of

the drum in either an output or an input system. If the
system described is an output device, the writer repre­
sents the computer and the reader represents the out­
put. If, the system described is an input device, the
writer of the illustration is the input while the reader
is the computer. The general operation is for the writer
to write a word on the drum when an empty drum regis­
ter (does not contain useful information) is found. The
reader then reads all words which are in full registers
(contain useful information) as soon as it can; i.e.,
when the word comes under the read heads and at the
same time the reader has someplace to put the word.
This method of controlling the drum is known as status
control operation. The operation of the drum is con­
trolled by an outside device (reader or writer) accord­
ing to the full or empty status of the drum register.

5.3.2.2 Status Control Operation

When a drum is controlled by status it must have
two extra status control channels (fig. 4-20). These
channels have bits recorded in them to correspond with
each register in the drum. These bits may be read or
written by the writer- and reader-control circuits to in­
dicate the status of each corresponding register; that
is, to indicate whether the information in the register
has been read before (register empty) or is yet to be
read (register full). The bits in the write status control
channel cause a write operation if the register under the
heads is empty (has been previously read) and if a
word is available. The bits in the read status control
channel cause a read operation if the register under the
heads is full (has not been previously read) and if a
word is demanded.

The status of a register is indicated by the bits of
the status control channel which controls the particular
operation being determined. If a read operation is be­
ing determined, a 1 bit in the read control channel indi­
cates that the register is full; a 0 bit here indicates that
the register is empty. If a write operation is being de­
termined, a 0 bit in the write control channel indicates
that the register is empty and that it can be written
upon; a 1 bit here indicates a previously filled register.

The operation of the status-control circuit, then, is
as shown in figure 4-20. When the writer writes a
word on the drum, it also writes a 1 bit in the read con­
trol channel. This channel is then monitored by the
reader-control circuit. The 1 bit being read by these
read control circuits indicates that the corresponding
drum register is full and, so, may be read. If the reader
needs the information, it can read this full register. As
the reader reads the register it also causes a 0 to be
written in the write control channel. When this register
arrives back at the write heads, the 0 indicates to the
write-control circuits that the register is again empty.

172 UNCLASSIFIED

PART 4
CH 5

UNCLASSIFIED
T.O. 31P2-2FSQ7-'

Program Operation
5.3.2.2-5.3.2.3

WRITER
L
I

,
----.J DRUM L
~CONTROLSI··· WRITER

READY

I'

-.. DRUM ~
BUFFER

AND
WRITE

CIRCUITS

•

DRUM

WRITE
WRITE WORD CONTROL

IF WRITER IS READY~':";';";';':"'="'''':':''''::~----....I CHANNEL

READ
CIRCUITS

I

WORD
TRANSFER

AND WRITE CONTROL /------...... WRT WRITE 0
CHANNEL CONTAINS READ 0 ~OD ," '0 \4-------\

o I- THEN WRITE I0Il,..1---...... _....,:..:..:::::.:..::......;:..--1 IIIII-t---+I\A-:":IIR:-:T::-I
THe WORD AND I"" ~--...,

READER I

J DRUM L
lCONTROLSI

IF READER IS
READY AND

READ CONTROL
BIT IS I,l. THEN
READ THt:. WORD
AND WRITE 0 WRITE I IN I -

READER CONTROL '--
CHANNEL ~--4--~

READ L IN THE WRITE
.----t---..tCONTROL CHANNEL

WRITER
NOT
READY

IF WRITER IS NOT
READY .AN..Q. WRITE -J---....J
CONTROL C~ANNEL

~CONTAINS O. THEN
DO NOT WRITE
WORD AND DO

WRITE 0 IN READ -
CONTROL CHANNEL

READ
CONTROL
CHANNEL

I

READER
NOT
READY

IF READER IS NOT
READY AND READ

~-~CONTROLCHANNEL

READ I -
BIT IS I :\.-THEN _

DO NOT Rt:.AD -
WORD BUT DO
WRITE I IN

~ ,------,
~~I__+_-......,'"'' ''''''~ID

WRITE CONTROL
CHANNEL

L..-__ ---4I~WRT ILLJ-
-~

figure 4-20. Status Control of Drum

Now consider the alternate operations from the
writer's point of view. If the writer reads a 0 in the
write control channel but for some reason cannot write
a word (no word to write), it will write a 0 in the read
control channel. When this register gets to the read
heads, the 0 indicates that the drum status is empty and,
therefore, the register will not be read. If the write con­
trol channel contains a 1 bit, a 1 bit automatically is
rewritten into the read control channel.

If the alternate operations are considered from the
reader's point of view, the operation is very similar to
the operation above. If the reader reads a 1 in the read
control channel but is unable to read the word at that
time, the reader-status-control circuits write a 1 in the
write control channel. This 1 protects the information
in the register when the register gets to the write heads.
If the reader reads a 0 in the read control channel, a 0 is
written into the write control channel.

5.3.2.3 Program Operation

The sample computer reads an input word as the

result of a single instruction. The operation part of the
instruction specifies the read operation and which input
to select. The address part of the instruction specifies
where in memory the word is to be stored. The drum­
control circuits themselves specify which words are to
be read from the drum. They specify that the first
word which comes along after an instruction and which
has not been read before is to be read.

This system requires a special type of instruction
which is typical of all drum operations in the sample
computer. When the instruction is first given, it may be
some time before the first full register comes along.
During execution of the usual (not drum) instruction,
the program control comes to the instruction and at­
tempts to execute it whether the operand is available
or not. It then goes right on to the next instruction
in the program. Some provision must be made, there­
fore, to stop the progression of the program until the
drum operation has been completed. Such a provision
in this computer is included in all drum-reading and
-writing instructions. These 10 instructions cause the

UNCLASSIFIED 173

Automatic Inputs
5.3.2.3-5.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 5

~ -......

CORE PARALLEL

READ WRITE MATRIX TRANSFER CORE
COMPUTER CIRCUITS DRUM CIRCUITS - STORAGE SHIFT

16 REGISTER
REGISTER

WRITE
CONTROL

.~ ~ CHANNEL .~ WRITE WORD .~ I
WRITE 0 ""...--- READ 0
~

WORD - -READ - .. ,~RIT1' TRANSFER -
CONTROL
CHANNEL

V --...
.-"

w
.....
w DATA AVAILABLE ..J SERIAL Q. - -~ READ WRITE INPUT
0 STATUS STATUS u

a: CONTROL I:EAD I

CONTROL EMPTY REGISTER
w

(IS DATA AVAILABLE LL
(J)

IF SO, TRANSFER) z «
a:
.....

READER
READY

'--

DRUM
CONTROL

SELECT
INPUT NO.1

Figure 4-21. Input System

computer to go into a pause (stop program progres­
sion) until the 10 operation is finished.

5.4 AUTOMATIC INPUTS

5.4.1 General
The input information comes over telephone lines

in a continuous stream of serial, binary words. Each of
the words has the same format and contains the same
type of information. The job of the input device is
merely to take in each serial word, translate it to
parallel, and put it on the input buffer drum. Once the
word is on the input buffer drum, it is accessible to
the computer.

5.4.2 Operation
Figure 4-21 illustrates the operation of the auto­

matic input system. Serial information from the tele­
phone lines is shifted into the core shift register a bit
at a time. This core shift register is provided with a
serial input and a parallel output. (See 2.2.3.2 of
Part 3.) As soon as the core shift register contains a
full word, it is transferred to the core matrix storage.
This is a 16-word matrix storage used to store the in­
put words until an empty drum register becomes avail­
able. When the write status control indicates that an

empty drum register is under the write heads, this core
matrix storage is examined. If data is available, the
status control causes the oldest word in core matrix
storage to be written on the drum.

The drum serves as an assembly point to collect
information from the Input System. The computer pro­
gram is set up sO' that it only asks fO'r an input reading
operation at intervals. These intervals are of sufficient
length so that the drum nearly fills up before a Read
instruction is given. Then, a Read instruction causes
the drum to read out a large block of information.
(In this computer, this can be accomplished by an
indexed repetitive prO'gram).

When the computer is instructed to read a word
from the input, a pulse is sent to the drum selection
controls. These controls conditiO'n the read-status-cO'n­
trol circuits. When a full register is found by the status
circuits, a wO'rd is transferred from the drum to the
computer. When this transfer is complete, a pulse is
sent to the computer to indicate that the transfer is
complete. This pulse is used to' conditiO'n the cO'mputer
contrO'I so that it may continue with the prO'gram.

5.5 TYPEWRITER INPUT

The operator communicates with the computer by

174 UNCLASSIFIED

(

PART 4
CH 5

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Automatic Outputs
5.5-5.6.2.1

INPUT
MANUAL

INPUT INPUT
CORE - STORAGE - DRUM - COMPUTER SHIFT

REGISTER MATRIX AND DRUM
CONTROLS

r-----------------------t-------,
OCTAL

TO
BINARY

CONVERTER
(SINGLE

CHARACTER)

I
TYPEWRITER

KEYBOARD

------------------------------~
Figure -22 .. Manual Input

means of a modified typewriter. Since this typewriter can
only type octal numbers, the operator must code any
information he wishes to insert in the computer into
an octal number code before it is entered. This is com­
mon practice in all programming work.

The typewriter has a converter which converts
each octal number to binary as it is typed. This binary
input from the typewriter enters the machine in serial
form and is treated in exactly the same manner as was
th input information entered in the automatic inputs.

Figure 4-22 illustrates the manual input system
described. The output of the typewriter in octal-coded
characters is fed into the octal-to-binary converter. The
output of this converter (binary) is shifted into the
input system core shift register. From there it reaches
the computer via a status-controlled drum, as in the
automatic input system.

5.6 AUTOMATIC OUTPUTS

5.6.1 General

The use of the computer in a real-time control
process such as air defense requires on-line automatic
outputs. These outputs feed binary information serially
to telephone line transmitter. This output can then be

transferred to remote users (such as missile directors)
on telephone lines.

The information on telephone lines is a series of
serial, binary words. Each word has the same format
and length. The job of the output system, therefore,
is to obtain the word from the computer, translate it
from parallel to serial and then transfer it to a modula­
tor which will transmit it over telephone lines.

5.6.2 Operation

5.6.2.1 Program Operation

When it is necessary to read a word from the
computer, the instruction Write Automatic Output from
memory address X is given. This instruction stops fur­
ther computing and causes the word in memory loca­
tion X to be translated into the output buffer register.
It remains there until the first empty drum register
comes under the write heads. At this time, the status
control circuits cause the word to be transferred. When
the transfer is complete, the drum control circuits pro­
duce a pulse which allows the computer to start on the
next instruction. Again, this type of operation is em­
ployed to allow for drum-search time necessary during
the transfer operation. Normally, the outputs are read
out of the computer a drum at a time by a series of

UNCLASSIFIED 175

Display Output
5.6.2.1-5.7 .3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 5

repeated W,rite instructiO'ns. When this is dO'ne the
drum will start O'ff empty sO' that the search time IO'st
is nO't great.

5.6.2.2 System Operation
Figure 4-23 illustrates hO'W a wO'rd is read O'ut O'f

the cO'mputer by autO'matic O'utputs. When the instruc­
tiO'n is given, the wO'rd is transferred frO'm memO'ry
to' the drum buffer. FrO'm there the status cO'ntrO'I cir­
cuits cause it to' transfer to' the drum and, eventually,
to' the cO're matrix stO'rage. FrO'm the cO're matrix stO'r­
age it gO'es intO' a cO're shift register where it is trans­
lated intO' a serial fO'rm. In serial fO'rm it is fed O'ut O'f
the cO'mputer and intO' a telephO'ne line mO'dulatO'r,
which sends it O'ut.

5.7 DISPLAY OUTPUT

5.7.1 General

One O'f the best ways to' present a great deal O'f
infO'rmatiO'n to' a persO'n in a easily assimilated fO'rm
is by means O'f a picture. This is the purpose O'f the
cathO'de-ray-tube display O'utput. The infO'rmatiO'n is
prO'cessed in the cO'mputer SO' that the variO'us binary­
number results are prO'PO'rtiO'nal to' the defiectiO'n VO'lt­
ages necessary to' generate a picture O'utput. The infO'r­
matiO'n is read O'ut O'f the cO'mputer intO' the display

system where the binary infO'rmation is cO'nverted intO'
analO'g vO'ltages prO'PO'rtiO'nal to' the quantity expressed
by the binary numbers. These analO'g vO'ltages are then
used as the X and Y directiO'n deflectiO'n vO'ltages O'f a
cathode-ray-tube. Thus, the picture desired is fO'rmed.

5.7.2 Program Operation

Th prO'gram O'peratiO'n is the same as that O'f the
autO'matic O'utput, except that the instructiO'n used is
Write Display address X. First, the data is pr~pared
in memO'ry SO' that a blO'ck O'f infO'rmatiO'n gives the
desired picture; then, this blO'ck O'f infO'rmatiO'n is
transferred to' the display system.

5.7.3 System Operation

The system O'peratiO'n O'f the display is, as shO'wn
in figure 4-24, similar to' that O'f the autO'matic O'ut­
puts, except in the translatiO'n and O'utput device sec­
tiO'ns. The infO'rmatiO'n is transferred thrO'ugh the drum
by status. When it gets to' the O'utput read heads, the
reading is under cO'ntrO'I O'f the display cO'ntrO'ls and
the drum status cO'ntrO'ls. The display cO'ntrO'ls call
periO'dically fO'r a transfer O'f all informatiO'n O'n the
drum. This infO'rmatiO'n is cO'nverted to' analO'g deflec­
tiO'n voltages by the cO'nverter, and the O'utput appears
as a picture O'n the cathO'de-ray tube.

176 UNCLASSIFIED

PART 4
CH 5

WRIT
OUTP

E
UT

l..OMPUTER

I

,

DRUM
CONTROLS

DRUM
BUFFER

~ AND
WRITE

CIRCUITS

TRANSFER
COMPLETE

,.

c -
~ ~

ii:

~~ ~

WRITE
STATUS
CONTROL

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

~ --...

READ .
DRUM CIRCUITS

~-----, 1-------.... I--
...... -......... --- READ INTO

CORE MATRIX
STORAGE

c -
~ t

~ ~ 3 ,

--REGISTER
AVAILABLE

READ
STATUS
CONTROL

Figure 4-23. Automatic Output System

Figure 4-24. Display Output

UNCLASSIFIED

CORE
MATRIX

STORAGE

1

Figs. 4-23 & 4-24

CORE
SHIFT

REGISTER

SERIAL
OUTPUT

CORE SHIFT
REGISTER
EMPTY

,

I MODULATOR I

TELEPHONE LI N ES

CATHOD
RAY
TUBE

177

Blank Page

178

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 4

PART 4
CH 6

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

loading and Processing Data
6.1-6.3

CHAPTER 6
OPERATION OF THE SAMPLE SYSTEM

6.1 GENERAL

The sample computer was developed to be able to
process data for an air defense control activity. The
description below is given with this purpose in mind.
It should be remembered that the computer could easily
be used for different purposes, particularly if the inputs
and outputs were adapted to a different use. For in­
stance, if the inputs and outputs were changed from
automatic to card machines, the computer could easily
be used as a business data processor.

The operation of this or any other computer can
be considered as consisting of four phases. The pro­
gram must be entered first because all operation de­
pends upon it. Next, the data is entered under the
control of the program. Once enough data has entered
the machine, the actual processing starts. Finally, of
course, the output must be presented to the user.

Once the program is finished one of two things
may be done. In some cases the computer stops and a
new program and data must be inserted for solution
of a new problem; in a real-time application, however,
the computer repeats the same program over and over
again, each time using a new block of input informa­
tion.

6.2 PROGRAM LOADING

The method of loading the program depends upon
the complexity of the program storage requirements.
In this sample computer, a manually operated control
is furnished which causes the computer to read words
from the input drum into sequential addresses of the
memory, starting with address 000. This control is
operated. Then, the coded instructions are inserted via
the typewriter input. This system works well when
there is no complication in the program's storage re­
quirements. However, when a complicated storage pat­
tern exists (e.g., some of the program being stored in
auxiliary memory), a loading program must be used.

A loading program is one used to control the load­
ing of the operational program. When the loading
program is used, it is inserted first under manual con­
trol. Then, the operational program is stored according
to the instructions of the loading program. After the
operational program is stored, the computer is prepared
to start computing. This it does according to the last
instruction of the loading program, which is a branch
to the first instruction of the operational program.

6.3 LOADING AND PROCESSING DATA

The first step of the operational program is to
store the data to be used. This data is constantly enter­
ing the machine from the automatic input. It is changed
into standard computer words by the input system and
then stored on the input buffer drum. At certain in­
tervals of time, when enough information is on the
drum, the computer calls for a block transfer of the
input information from the input drum to the com­
puter memory. It may be recalled that this transfer
is accomplished by means of a small, repetitive pro­
gram.

Enough data is now in the memory so that the
computer can process it. In general, the processing can
be split into three phases: The information is prepared
for the operator's use; the operator sees the processed
information and decides what action can be taken. The
action decided upon is inserted in the machine and the
machine further processes the information to produce
outputs.

The air defense problem requires the compilation
of information from input sources, processing this in­
formation into an easily used form and then presenting
this information to operating personnel to enable them
to take the appropriate action on the basis of the in­
formation. The operations involved in the air defense
problem and in most other data processing applications
can be classified as data simplification operations; that
is, the .operations tend to reduce a large number of
discrete items of information into a smaller, more com­
prehensible body of information. The simplified data
is presented to the operator in the form of a display.

The main purpose for including the operator in
the system is in the type of decisions he is required
to make. He must make decisions based upon the best
information the computer can give; but his decisions
are also based upon information which is not in the
computer. For instance, his decisions as to the disposi­
tion of a supposedly hostile aircraft will depend not
only upon the fact that the plane is not identified but
upon whether it is likely that a war has started. In
other words the decisions are based upon an overall
picture of the strategy to be followed at the moment.
This is the type of decision which requires the imagina­
tion, intuition, and judgment which only a man posseses.

The human operator obtains the essential informa-

UNCLASSIFIED 179

Loading and Processing Data
6.3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 4
CH 6

tion in its condensed and easily assimilated form from
the display. He combines this information with what
he knows and decides what, if anything, should be
done. He then notifies the computer of his decision by
way of the manual input.

The computer then takes the new information and
processes it further. It is combined with the originally

processed information to be shown to the operator on
the display (if needed). The computer also processes
the results of the whole operation into the form of
an automatic output message. This message then is sent
to the output drum and, eventually, is converted to the
proper form for transmission to the eventual users
(e.g., the weapons bases).

180 UNCLASSIFIED

PART 5
eM 1

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

General
1.1-1.3

PART 5
PRINCIPLES OF PROGRAMMING

CHAPTER 1
INTRODUCTION

1.1 GENERAL

This part presents the information necessary for
an understanding of the principles of programming.
In Chapter 2, the basic techniques involved in pro­
gramming the computer will be explained and will in­
clude the knowledge required of a programmer, prob­
lems encountered in program preparation, and aids
available to a programmer. Several sample problems
will be analyzed utilizing standard techniques. Chapter
3 presents a summary of the capabilities and limitations
of a computer. Various methods for extending the use­
fulness of large-scale computers will also be discussed.

1.2 PROGRAM DEFINITION

A program may be defined as a series of instruc­
ions, coded in a form recognized by the digital com­
puter, calling for the operations to be performed by
the digital computer in the order necessary to solve a
given problem. For example, even the solution of a

simple arithmetic problem requires a program, whether
solved by a digital computer or by a man with pencil
and paper. Although the man can recognize the neces­
sary steps in a program, the digital computer must be
given step-by-step directions for the solution of any
problem.

1.3 NECESSITY FOR PROGRAMMING

Without this series of instructions the computer
would not be capable of performing any type of opera­
tion. The necessity for programming becomes apparent;
it must be used to initiate and exercise control over
the operations of the computer. This control may be
predetermined through the use of a specific instruction,
or it may depend on the value of the numbers being
manipulated at any particular point. In addition to
controlling arithmetical operations in the computer,
programs are used for various other functions, such as
maintenance routines, monitoring, etc. The different
types of programs will be discussed in Chapter 4.

UNCLASSIFIED 181

Blank Page

182

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 5

PART 5
CH 2

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Program Preparation
2.1-2.2.3

CHAPTER 2
TECHNIQUES OF PROGRAMMING

2.1 GENERAL

The program is designed after obtaining a state­
ment of the problem to be analyzed. With this initial
requirement satisfied, four subsequent phases listed be­
low are required to produce a finished program.

a. Problem analysis

b. Program organization

c. Program coding

d. Program testing

In general practice, the first phase, problem analy­
sis, is handled by mathematicians, and the last three
phases are handled by programmers. However, problem
analysis often determines the organization of the pro­
gram; therefore, problem analysis is usually done either
by a mathematician-programmer or by a mathematician
and a programmer working as a team.

2.2 PROGRAM PREPARATION

2.2. 1 Problem Analysis

After a statement of the problem is obtained, all
of the factors that may be encountered have to be ex­
amined and arranged in a mathematical expression.
This expression must represent the problem expressed
as simply as possible. It is usually quite complex at
this point and must be reduced to even simpler terms
(addition, subtraction, etc.) by a mathematical techni­
que known as numerical analysis.

Numerical analysis, involves the reduction of com­
plex mathematical operations to arithmetic operations
within the capabilities of the computer being pro­
grammed. The most common reductions are: calculus
operations to simpler arithmetic operations such as
changing integration to an approximate summation
operation, and changing differentiation to an approxi­
mate difference-quotient operation. These changes re­
sult in approximations to the more complex methods,
but approximations which can be made as exact as de­
sired. Given a method of approximation by the mathe·
matician, the programmer must then determine the
program to obtain the result.

2.2.2 Organization

When the programmer receives a problem and its
numerical analysis, the first step is that of organizing a
program to solve the problem using the arithmetic
methods outlined in the numerical analysis. Program

OBTAI N SUM OF

X AND h

OBTAIN PRODUCT OF

(X'" h) TI M ES p

r

SUBTRACT PRODUCT

p(X+ h) FROM C AND

STORE ANSWER

PROGRAM HALT

Figure 5-1. Flow Chart for Straight-Line Program

organization involves the sequencing of the operations
to be performed into an order which will simplify
coding, minimize execution time, and, if possible, mini­
mize the number of storage registers required. At this
point, a flow chart which is a pictorial representation
of the structure of the program (see fig. 5-1) is useful,
both to keep the entire program in view and to develop
the sequence of operations into the proper order. Very
few programmers can take a complex problem and
draw a flow chart which exactly fits the problem on
the first try. Therefore, the flow chart will start out in
rough form and become finalized only after some
thought and some reworking has gone into it.

2.2.3 Coding

Once a tentative flow chart has been prepared, the

UNCLASSIFIED 183

Testing
2.2.3-2.2.4

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

PART 5
CH 2

program can be coded. The coding operation can be
performed block by block from the flow chart. Con­
sideration must be given to the data provided by the
preceding block and the data required by the follow­
ing block of the program. While the coding is being
done, the techniques of selecting library routines (uni­
versal routines already written and catalogued for use),
of determining the precision required, and of scaling
are brought into play. The product of the coding phase
is a mnemonically coded program, ready for testing.

2.2.4 Testing

Once a program has been completely coded, it

must be tested to insure its proper operation in solving
the given problem. This program testing period is
similar to the shakedown period for a new piece of
equipment; the logical design of the program is tested
and revised until it correctly performs its intended
function. In the course of program testing, modifica­
tions of both the program organization and the coding
may be required to get the program into proper opera­
tion. Program organization and program coding should
be done with utmost care to avoid having program
testing become excessively time-consuming and diffi­
cult.

184 UNCLASSIFIED

PART 5
CH 3

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Straight-Line Program
3.1-3.2.3

CHAPTER 3
PROGRAM EXAMPLES

3.1 GENERAL

This chapter consists primarily of sample pro­
grams together with their respective flow diagrams and
explanations. Each program is considered to be de­
signed for use with the machine described in Part 4.
As the examples become increasingly complex, new in­
structions and techniques used in preparation of pro­
grams will be introduced.

3.2 STRAIGHT-LINE PROGRAM

3.2.1 General

A straight-line program is a series of instructions
which fall into numerical order. In this type of pro­
gram, step 1 is always followed by step 2, step 2 is
always followed by step 3, etc. This is the easiest type
of program to understand from the operator's point
of view. However, it is not necessarily the easiest type
of program for the computer to execute because of the
time required and the space in core memory that is
needed for data storage.

3.2.2 Statement of Problem
In the following case, the problem is to evaluate

the imaginary expression for the amount of fuel re­
maining in the tank of a jet interceptor. The factors

necessary for the derivation of such an expression are:

C == capacity of tank

p == pounds consumed per mile at average
speed of aircraft

x == distance flown

h == altitude factor

The computer instructions which are available to
the programmer for the solution of this problem are
given in table 5-1. The first column lists the instruc­
tion name, and the last column gives the operation per­
formed. The CODE column gives the mnenonic code
for the instruction. The capital letters represent the
operation part of the instruction, and the lower case
x represents the address of the register in core memory
from which the operand is to be obtained. For instance,
CAD 10 means to clear the accumulator and place the
contents of memory register 10 in the accumulator.

3.2.3 Problem Analysis
It is apparent that the resultant expression will be

the capacity of the tank less some combinations of the
other factors. To find the fuel consumed, all that is
necessary is to multiply the miles-per-pound factor by
the distance traveled plus the altitude factor. The alti-

TABLE 5-1. BASIC COMPUTER INSTRUCTIONS

INSTRUCTION NAME MNENONIC CODE

C lear and Add CAD x

Add ADD x

Subtract SUBx

Multiply MULx

Full Store FST

Program Stop (or Halt) HLT

OPERATION PERFORMED

Clears the accumulator of any value remaining from another
operation, then places contents of x in accumulator.

Adds contents of x to the contents of the accumulator. At the
end of the operation, the contents of location x are unchanged.

Subtract contents of x from the contents of the accumulator. At
the end of the operation, the contents of location x are un­
changed.

Multiplies contents of x by the contents of the accumulator. At
the end of the operation, the contents of location x are un­
changed.

Places the contents of the accumulator into memory location x.
Contents of the accumulator also remain there.

Stops computer operation (address portion of this instruction is
meaningless) .

UNCLASSIFIED 185

Logical Program
3.2.3-3.3.3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 5
CH 3

tude factor must be added to the distance traveled
since the height above sea level at which a jet aircraft
Bies determines the rate of fuel consumption. This may
be expressed as C - p(x+h).

No actual numerical analysis is required on this
expression since it does not contain any higher mathe­
matics, only addition, subtraction, and multiplication.
All of these may be handled by the computer; there­
fore, the expression is in its simplest form as it now
stands.

3.2.4 Organization

Because this problem involves straight-line pro­
gramming, the sequence of instructions will be fairly
simple. At this point, the general structure of the pro­
gram may be formed by utilizing a Bow chart. Looking
at the expression C - p(x + h), one can see that x and
h must be added, the resultant sum multiplied by p,
and, finally, the product subtracted from C. The BoW'
chart in figure 5-1 shows what the program is going
to do, and in what sequence, but does not actually list
the steps involved.

3.2.5 Coding

The blocks in the flow chart may now be broken

DATA STORAGE

100 C

101

102

103

700

p

X

h

RESULT

I

2

3

4

5

6

7

8

CAD 102

ADD 103

•
MUL 101

FST 700

CAD 100

SUB 700

FST 700

I

HLT -

Figure 5-2. Flow Chart, Coded Straight-Line
Program

down into individual instructions with the appropriate
operation and address parts specified for each instruc­
tion. The memory locations for the data are arbitrarily
selected by the programmer and do not affect the pro­
gram in any way. Once the coded instructions have
been selected they are numbered sequentially, and the
program is now completed and ready for testing. (Re­
fer to table 5-1 for an explanation of the instruction
codes.) In the coded program shown in figure 5-2,
the number to the left of the mnenonic code for each
instruction is the address of the memory location con­
taining the instruction. An explanation of the coded
program showing the results of each operation is given
in table 5-2. In this table, as well as in figure 5-2,
locations 1 through 8 refer to the location of the in­
struction words which must be in numerical sequence.
No testing is involved in this program because of its
simplicity, but in actual practice the testing phase is
the next logical step of program preparation since
many programs contain several thousand instructions.

3.3 LOGICAL PROGRAM

3.3.1 General

A logical program is one in which the steps in­
volved constitute some type of operation where the
final result will be logical rather than arithmetical. A
human being can use the logical process for such things
as sorting numbers, comparing sizes, etc., but the com­
puter cannot think for itself; consequently, any type of
operation that is considered logical must first be de­
signed by a programmer to fall within the capabilities
of the computer, which are strictly arithmetical. This
type of program does not find the value of an arith­
metic expression, as did the straight-line program in
the first example given, but merely uses arithmetic func­
tions to arrive at some sort of logical decision.

3.3.2 Statement of Problem

The logical operation involved in this program is
to determine the largest of 3 numbers. The numbers
represent three flights of enemy planes, with the largest
number posing the greatest threat. Only the three
numbers, Nb N 2, and N 3, are given.

All the instructions listed in table 5-1 are avail­
able, plus two new instructions given in table 5-3.

3.3.3 Problem Analysis

The problem, in the case cited, is to select the
largest of three numbers, rather than to set up an
arithmetical expression. The analysis may begin by com­
paring any two numbers since the program is not con­
fined to any specific starting point. However, it is
known that to find the largest of three numbers, two
comparisons must be made regardless of which number
is selected first.

186 UNCLASSIFIED

PART 5
CH 3

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

TABLE 5-2. STRAIGHT-LINE PROGRAM

Tables 5-2 & 5-3

INSTRUCTION CONTENTS OF
LOCATION OPERATION ADDRESS COMMENTS ACCUMULATOR

1 CAD 102 Places x in accumulator. x

2 ADD 103 Adds h to x (x + h)

3 MUL 101 Multiplies (x + h) by p. P (x + h)

4 FST 700 Places p (x + h) in location 700. p (x + h)

5 CAD 100 Places C in accumulator. C

6 SUB 700 Subtracts p (x + h) from C. C-p (x + h)

7 FST 700 Places desired result in location 700. C-p (x + h)

8 HLT Stops computer operation. C-p (x + h)

Data Storage
Location Contents Comments

100 C Capacity of fuel tank

101 p Consumption rate

102 x Distance flown

103 h Altitude factor

700 Initial and final result storage

3.3.4 Organiaztion
At this point, a flow chart, with arbitrary selection

of numbers, can be started. As shown in figure 5-3,
the first two numbers compared are Nl and N 2• Since
there are two possible alternatives after this comparison
a decision block must be included in the flow chart.
This block is shown with the two possible paths lead­
ing away from two of the points. A decision block
must follow each comparison, because the value of the
numbers being compared is not known at any com­
parison point. When completed, the chart will enable
the programmer to design a program which will cover

all the possible selections and still determine the largest
number by the process of elimination. Notice that in
the actual execution of the selection, only one path
will be followed depending upon which number is
largest.

3.3.5 Coding

A straight transfer from flow chart to the coded
layout is shown in figure 5-4. The BFM instruction
determines the path the program takes. This program
is correct in every respect and will find the largest
number, if used as shown. However, as shown in figure

INSTRUCTION NAME

Unconditional Branch

Branch on Full Minus

TABLE 5-3. BRANCHING INSTRUCTIONS

MNEMONIC CODE

(0) BPX x

BFMx

OPERATION PERFORMED

This instruction changes the sequence of instructions fol­
lowed in a program. The next instruction executed will be
obtained from location x. The zero (0) specifies that the
branch is unconditional; that is, it does not depend on any
special circuit polarities.

The contents of the accumulator are examined, and if nega­
tive, the next instruction executed will be obtained from lo­
cation x. If the contents of the accumulator are positive,
the next sequential step in the program is taken.

UNCLASSIFIED 187

Fig. 5-3

N2< NI <N3

NO

STORE N3

HALT

188

COMPARE

N I AND N2

~

NI

LARGER?

YES

NI >N2

COM PARE

NI AND N3

NI

LARGER'?

YES N1> N2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

N2 >NI

NO

NI> N3

STORE NI

~

HALT

,

COMPARE

N2 AND N3

t

N2

LARGER?

YES

N2> N3

• N2>NI

STORE N2

~

HALT

Figure 5-3. Flow Chart for Logical Program

UNCLASSIFIED

NI < N2<N3

NO

PART 5
CH 3

STORE N 3

~

HALT

PART 5
CH 3

19

20

21

DATA

30

31
32
58

CAD 32

FST 58

I

H LT -

STORAGE

N,

N2

N3
RESUL T

N3 > NI

I CAD
2 SUB

I

3 BFM

N1> N2

4 CAD
5 SUB

,

6 BFM

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

30

31

N2 > NI
10

30

32

19

,.
10 CAD

II SUB

12 BFM

N2 > N3

NI> N3

13 CAD

14 FST
7 CAD 30

8 FST 58

I
15 HLT

9 H LT -

31

32

16
N3 > N2

31

58

-

Figure 5-4. Flow Chart, Coded Logical Program, Preliminary Layout

UNCLASSIFIED

Fig. 5-4

~

16 CAD 32

17 FST 58

r

18 H LT -

189

Fig. 5-5

I CAD 30

2 SUB 31

3 BFM 10

N, >N2

~

4 CAD 30

5 SUB 32

I

6 BFM 15

N, > N3

7 CAD 30

!
8 FST 58

9 HLT -

190

N2 > N,

N3 >N,

l~

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

10 CAD 31

II SUB 32

12 BFM 15

N2 > N3

/'1"\

13 CAD 31

14 (0) BPX 8

N3 > N2

Figure 5-5. Flow Chart, Coded Logical Program, Final Layout

UNCLASSIFIED

15 CAD

1

16 (0) BPX

PART 5
CH 3

32

8

PART 5
CH 3

UNCLASSIFIED
T .0. 31 P2-2FSQ7-2

Table 5-4

5-5, the program could be written using fewer in­
structions and, consequently, using fewer memory loca­
tions. Upon close examination, it can be seen that the
last two steps (storing the number found to be the
largest and halting the computer) in each of the four
paths are the same. Also, in two cases, Na has been
found to be the largest; so a (0) BPX instructions
can be used to combine the last 3 steps of the two
cases into one 3-step sequence. When this is done,
there remain 3 paths which have two identical, final
instructions. Therefore, by use of a (0) BPX instruc­
tion the final two instructions of the 3 remaining paths

can also be combined into a single 2-step sequence. If
N 1 is the largest number, the store process directly
follows the comparison of N land N a. If N2 or Ns are
larger a (0) BPX will direct these numbers to the FST
instruction. Thus, the program can be reduced from
21 steps to 16 by the use of the (0) BPX instruction.
The (0) BPX instruction is extremely useful in com­
puter operations since it reduces the amount of space
required for storage of the program and gives the
computer added versatility. A full explanation of the
finalized program is given in table 5-4. Again, no
testing phase will be discussed.

LOCATION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Data Storage
Location

1-16

30

31

32

58

TABLE 5-4. LOGICAL PROGRAM

INSTRUCTION
OPERATION ADDRESS

(0)

(0)

CAD 30

SUB 31

BFM

CAD

SUB

BFM

CAD

FST

HLT

CAD

SUB

BFM

CAD

BPX

CAD

BPX

10

30

32

15

30

58

31

32

15

31

8

32

8

COMMENTS

Places N1 in accumulator.

Subtracts N 2 from N l'

Examines contents of accumulator; if nega­
tive, branches program to location 10; if
positive, go on to instruction 4.

Places Nl in accumulator.

Subtracts Na from Nl

Examines contents of accumulator; if nega­
tive, branches program to location 15; if
positive, go on to instruction 7.

Places Nt in accumulator.

Stores largest number in location 58.

Stops computer operation.

Places N2 in accumulator.

Subtracts Na from N2

Examines contents of accumulator; if nega­
tive, branches program to location 15; if
positive, go on the instruction 13.

Places N 2 in accumulator.

Branches program to location 8.

Places Na in accumulator.

Branches program to location 8.

CONTENTS OF
ACCUMULATOR

Nl

Nl

Nl

N2

N2 -Na

N2 -N3

Contents Comments

Storage for largest number

UNCLASSIFIED 191

Iterative Program
3.4-3.4.5

3.4 ITERATIVE PROGRAM

3.4.1 General

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

An iterative program is one in which the same
group of instructions is used several times by modifying
the address portion of the instruction. Such a repeti­
tion of instructions is called an iterative loop and is
employed frequently in computer operations.

3.4.2 Statement of Problem
In this example, the problem is to find the total

number of guided missiles available at a particular
time, for air defense of a sector which has 20 guided
missile bases in the area. The number of missiles avail­
able at each of the 20 bases is known, but the grand
total is not. The number of missiles at anyone base is
stored in one memory location, and the twenty memory
locations storing the missile quantities are in a block
of sequential addresses reserved for missile status re­
ports.

All the instructions listed in table 5-1 and table
5-3 are available for the solution of this problem.

3.4.3 Problem Analysis

No actual analysis of this problem is needed. This
example is intended primarily to show how twenty
numbers can be added employing an iterative program
without the use of index registers and not merely how
to add 20 numbers. The general operation will be to
add the 20 numbers using the same instruction over and
over again with an address which is modified to specify
new data each time the instruction is repeated.

3.4.4 Organization
In this type of problem there must be at least two

branch instructions, one to get into the iterative loop
and another one to leave it. It will be shown that, if
there were no provision for leaving the loop, the pro­
gram would become hung up and could not complete
the problem. However, there must be some provision
for telling the computer when to stop making passes
through the loop. This is done by comparing the re­
sults of a step with a constant, and branching back for
another run through the loop if the result is negative.
The flow chart for this problem is shown in figure
5-6. The general flow of the program is to add one
of the numbers to the accumulated total, modify the
address, determine if the required number of iterations
have been completed, and, if they have, not to repeat
the process. The branch in step 2 is necessary to pre­
vent adding the contents of memory location 150, prior
to the start of the program, into the total b~ing

sought (see table 5-5).

3.4.5 Coding

NO

PLACE FIRST

NUMBER INTO

ACCUMULATOR

UNCONDITIONAL

BRANCH TO

NEXT NUMBER

ADD AND

STORE RESULT

MODI FY

ADDRESS OF

INSTRUCTION BY

ADDING CONSTANT

ITERATIONS

COM PLETED?

YES

HALT

PART 5
CH 3

The flow chart may now be replaced by the coded
program which is shown in figure 5-7. By examina­
tion, it can be seen that this type of program has a Figure 5-6. Flow Chart for Iterative Program

192 UNCLASSIFIED

PART 5
CH 3

I

2

3

4

5

6

7

8

9

10

II

CAD

,

(0) BPX

CAD

ADD

FST

CAD

ADD

FST

SUB

BFM

HLT

II

4

150

12

150

4

35

4

80

3

-

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

LOCATION CONTENT

11- 30 INITIAL DATA STORAGE

35 CONSTANT OF I

80 30 (VALUE OF LAST ADDRESS)

150 TEMPORY AND FINAL RESULT

figure 5-7. Coded Iterative Program

UNCLASSIFIED

Fig. 5-7

193

Indexed Iterative Program
3.4.5-3.5.3

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 5
CH 3

distinct advantage over the straight-line addition of
twenty numbers, because much less memory space is
required for the storage of the program. A full explana­
tion of the program is given in table 5-5.

used in 3.4, the flow chart can be drawn immediately.

3.5.3 Organization

The first thing to be done in the organization of
a program of this type is to determine what value
should be placed in the index register. In this problem,
twenty numbers are to be added together, so the index
register is loaded with the value IS. The justification
of this lies in the fact that 19 repetitions (numbered
o through IS) are to be made, because the first run
through the program is not a repetition. The index
register will modify an address as long as the value
contained in it is positive. Therefore, on the next to
last pass through the program, the index register con­
tains 1. On the last pass, the index register contains
positive zero, so the instruction is not modified (zero
added to it) and the original address is selected. Then
the register steps negative, and the computer stores
the sum of the 20 numbers. The flow chart for this
program is shown in figure 5-S.

3.5 INDEXED ITERATIVE PROGRAM

3.5.1 General
An indexed iterative program is basically the same

as the nonindexed type, the only difference being that
the indexed type has a specific index register which
modifies the instruction. The Branch and Index in­
struction (Unconditional Branch), together with the
one which loads the index register, is explained in
table 5-6. The index registers change the address por­
tion of an instruction by adding the contents of the
register to it. However, the original address specified
in the instruction is not destroyed; it is only modified
for that one particular step.

3.5.2 Statement of Problem
Since the problem to be analyzed is the same one

LOCATION

1

2

3

4

5

6

7

S

9

10

11

LOCATION

1-11

12-30

30

SO

150

194

TABLE 5-5. ITERATIVE PROGRAM

INSTRUCTION
OPERATION ADDRESS

CAD 12

(0) BPX 4

CAD 150

ADD 13

FIT 150

CAD 4

ADD 35

FST 4

SUB SO

BFM 3

HLT

COMMENTS

Places first number in accumulator.

Unconditionally branches to first addition; this prevents the con­
tents of location 150 from being added to the sum in place of
the first number.

Places last partial sum in accumulator.

Adds next number to partial sum (or first number).

Places partial sum (or last addition) into storage.

Places instruction in location 4 in accumulator.

Modifies address of instruction 4 by 1.

Places modified instruction in location 4.

Subtracts value of last address to be added.

Examines accumulator for polarity, if negative branch'!s to step 3.

Stops computer operation.

Location of program

Locatjon of data

Constant of 1.

CONTENTS

Temporary and final result storage.

Constant of 30 (value of last address to be added).

UNCLASSIFIED

PART 5
CH 3

NO

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

LOAD INDEX

REGISTER NO.1
1----------1

~

PLACE FIRST

NUMBER INTO

ACCUMULATOR

~r •
ADD INDEXED INDEX REGISTER -NUMBER NO. I

,
ITERATIONS

COM PLETED?

YES

STORE

RESULT

r

HALT

Figure 5-8. Flow Chart for Indexed Iterative Program

UNCLASSIFIED

Fig. 5-8

195

Tables 5-6 & 5-7 UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 5
CH 3

TABLE 5-6. INDEXING INSTRUCTIONS

INSTRUCTION NAME MNEMONIC CODE

Branch if Positive y BPX (01) x
Index

Load Index Register

Indexed ADD

3.5.4 Coding

yXIN (x)

yADDx

After the flow chart for this problem is blocked
out, the transition to a coded program is made (fig.
5-9). The only instruction which may require clarifi­

cation is the one in memory location 3. The 1 before
the ADD step merely indicates to the computer that

indexing is specified and which index register is to be
combined with the memory location in the. address

portion of the instruction. Thus, the first number added
to the value in memory location 11 would be the value

in memory location 30 (12 + 18). The second number
added (during the next repetition) would be 29 (12 +
17) and so on until the index register becomes negative
and no more repetitions are performed.

OPERATION PERFORMED

Steps the content of index register y down by the amount
1 then, if the contents of the index register is positive,
the computer branches to instruction at location x; if
contents are negative, go on to next instruction.

Loads index register y with the value x.

The contents of index register yare added to the address
of the instruction x (in the control elements), then the
operand at the modified location is added into the ac­
cumulator.

It is worth noting that this type of program is
even more efficient than the iterative program since
the number of instructions required to perform the
addition is less. Also, if there were additional data in
memory locations 31 through 50, the only change nec­
essary in the indexed iterative program would be to set
the index register to a value of 38. However, the
straight-line addition program would require an addi­
tional 20 instructions, one ADD instruction for each
number. The indexed iterative program is employed
to great advantage in computers because of its great
flexibility, as shown in the case of adding 40 numbers
with a program which was originally written for 20
numbers. An explanation of the given problem, using
the indexed iterative method is given in table 5-7.

TABLE 5-7. INDEXED ITERATIVE PROGRAM

LOCATION

1

2

3

4

5

6

196

INSTRUCTION
OPERATION ADDRESS

1 XIN 18

CAD

1 ADD

1 BPX (01)

FST

HLT

11

12

3

150

COMMENT

Loads index register 1 with decimal value 18.

Places operand in location 11 into accumulator.

On first iterative step, adds operand in location 30 (12 + 18,
original address plus contents of index register) into accumu­
lator. On second iteration adds operand in location 29 into
accumulator and so on.

Branches back to location 3 if register is positive, steps index
register down by 1.

Stores final sum.

Stops computer operation.

UNCLASSIFIED

PART 5
CH 3

I IXIN

2 CAD

Ir

3 I ADD

4 I BPX(OI)

5 FST

6 H LT

18

II

12

3

150

-

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

~----------l

t
INDEX REGISTER NO.1

(LOADED WITH DECIMAL 18)

II -3

150

Fig. 5-9

DATA STORAGE

o INITIAL DATA STORAGE

FI NA L RESULT

figure 5-9. Coded Indexed Iterative Program

UNCLASSIFIED 197

Blank Page

198

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 5

PART 5
CH 4

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Program Examples
4.1-4.2.3.2

CHAPTER 4
TYPES OF PROGRAMS

4.1 GENERAL

In this section the different kinds of programs
which are handled by computers will be discussed
briefly. Some computers can perform more programs
than those mentioned.

4.2 EXAMPLES

4.2.1 Master Program

A large program may be made up of several
smaller programs, each performing a portion of the
overall function of the large one. In some cases, the
large program, which does not properly contain these
smaller programs, selects each smaller program in the
proper order to perform necessary data processing
without performing any data processing itself. A pro­
gram of this type, which controls other programs with­
out itself doing any processing, is called a master pro­
gram, an executive routine, or a sequence-selection
program. In effect, a master program can do no
processing except through the use of other programs
which, in turn, cannot perform the entire processing
task without having the master program to control the
sequence in which they are performed.

The smaller processing programs may themselves
contain blocks of instructions which can be called
subprograms or subroutines. For example, if a given
program requires the performance of a particular oper­
ation, a routine may be written to perform that opera­
tion and placed in core memory with the processing
program. The processing program may then be written
to refer to the routine whenever the operation is to
be performed.

4.2.2 Subroutines

A subroutine is a group of instructions which per­
form a distinct function and may be written in one of
two ways, called open or closed subroutines.

An open routine is designed as a group of instruc­
tions which are incorporated into the main body of the
program. These instructions do a specific job at the
particular point of the program where they are inserted.
The routine is open with respect to the rest of the
program; i.e., it falls into a logical order.

A closed subroutine also performs a certain func­
tion; however, this function may need to be repeated
several times in one program. A Brancb instruction is

usually required to get into a closed subroutine, and
another type of Branch is required to leave it. There­
fore, this routine is closed with respect to the main
program and requires specific instructions to utilize the
result of its operation.

4.2.3 Utility Programs

4.2.3.1 General

Utility programs, sometimes called auxiliary pro­
grams, perform nonchecking functions such as loading
programs, assembly programs, tracing programs, and
simulation programs. Loading programs take program­
med information from punched cards, tapes, or drums
and transfer them into the core memory element. As­
sembly programs are used to prepare other programs
for transfer to punch cards. Tracing programs provide
printed records of registers to aid in the following of
program operations. Simulation programs are used to
pretest programs on other computers known to be
operating without error. Simulation programs thus pro­
vide a means of detecting program errors (errors which
are not due to equipment failure but are mistakes in
programmed routines).

Utility programs can also be used to generate a par­
ticular pattern which is used to calibrate portions of the
equipment and to exercise (operate) a particular group
of circuits so that normal waveforms can be observed or
design data obtained.

4.2.3.2 Symbolic Program

This type of program is utilized when a long over­
all program is being drawn up. The final addresses of
the instructions may not be known until the program is
completed, so some sort of symbols (such as a series
starting with 00.00.00) are used to designate memory
locations. Although not strictly necessary, consecutive
instructions are usually assigned consecutive symbolic
locations to simplify sorting of the address steps into
their proper order. Symbolic addresses need be assigned
only to the location of the first instruction in a sequence
and to those instructions whose locations are referred
to in the address halves of other instructions. Further,
not all addresses within the program need be indicated
in symbolic form. If an actual address is known for a
particular operand or operation, it can be written into
the program and is usually indicated by enclosing the
actual address in parentheses. Similarly, those ins truc-

UNCLASSIFIED 199

Maintenance Programs
4.2.3.2-4.2.5.2

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 5
CH 4

tions whose address halves should contain numerical
constants can be written with the absolute value (indi­
cated as absolute by their inclusion in parentheses) in
octonary form.

4.2.3.3 Assembly Programs

Once a program is written in symbolic form, the
task of translating it into absolute form can be per­
formed under control of a utility program called an as­
sembly program. The assembly program accepts a sym­
bolic program presented on instruction cards. An abso­
lute location is assigned to each instruction in the same
order in which the instructions of the program are pre­
sented. The assembly program then makes another pass
through the program being assembled to complete the
assignment of absolute equivalents for all symbolic ad­
dresses and to translate all information in the program
itself into binary form. (Since symbolic addresses are
not translated, they can be written decimally without
introducing any difficulties. The assembly program sim­
ply provides a one-to-one correspondence of symbolic
address to absolute address.) The assembly program
will also punch a deck of binary cards from which the
assembled program may be inserted and executed, to­
gether with a printout of the program, listing all com­
ments, symbolic locations, constants, assigned storage
locations and their contents in octonary form, and the
initial and final drum storage locations, if any.

4.2.4 Operational Program

When speaking of programs, the operational type
is the one most usually discussed. It is the overall pro­
gram for the computer and is written to suit a particu­
lar need, whether it be inventory, business accounting,
or air defense. There are many things to be considered
when writing an operational program, and its suitabil­
ity is determined to a large extent by the programmer
designing it. Good operational programs use the mini­
mum amount of storage space to obtain the best result
in the shortest possible time. However, it is almost im­
possible to achieve the optimum values for these three
things in one program, and something must be sacri­
ficed. Operational programs mayor may not contain

subroutines, but as a rule they do. The program exam­
ples given in Chapter 3 could be called operational pro­
grams, but it must be remembered they are extremely
short when compared to actual useful operational pro­
grams.

4.2.5 Maintenance Programs

4.2.5.1 Reliability Programs
Reliability programs are used to check the opera­

tion of specific portions of the computer equipment.
Performance of these checks enables errors caused

by circuit failure to be detected rapidly. Included in
the error detection performed by reliability programs is
the discovery of failures that may occur only under par­
ticular operating conditions, such as failures that ap­
pear at specific repetition rates and for certain combina­
tions of bits. In order to discover these and other types
of errors, reliability programs check logical operation,
paths of information flow, timing, ability of equipment
to function in all states, execution of instructions, etc.
Because of their ability to perform these varied checks,
equipment reliability programs can be used for both
preventive and corrective maintenance.

4.2.5.2 Diagnostic Programs

Diagnostic programs are corrective maintenance
programs which localize malfunctions to small area of
the computer. They isolate errors to a specific pluggable
unit or a small number of pluggable units. In general,
diagnostic programs are designed to isolate known
failures, unlike reliability programs which are designed
to discover these failures. However, there is no clearly
defined distinction between the two maintenance pro­
gram types. Reliability programs can provide indica­
tions of the nature and location of the failure and may
actually be used as diagnostic programs. By the same
token, diagnostic programs may indicate that a given
portion of the equipment is operating reliably. The
characteristics of reliability and diagnostic programs
fall somewhere between the two extremes of overall
check without failure localization and diagnosis. with
failure isolation.

200 UNCLASSIFIED

PART 5
CH 5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Problem·Solving Capability
5.1-5.3

CHAPTER 5
CAPABILITIES AND LIMITATIONS OF COMPUTER

This chapter discusses some of the capabilities and
limitations of digital computers, explaining how their
performance is affected by different characteristics of
their construction and organization, and by the proce­
dures employed for operation and maintenance.

Different types of problems impose wid.ely differ­
ent requirements for computer performance. For exam­
ple; a computer controlling a process in real time needs
faster 10 equipment and may need faster computing
speeds than the ordinary scientific or business computer.
A computer processing business data often needs a larger
external memory capacity than a scientific computer. A
computer used for real-time control of military oper­
ations needs a high degree of reliability. And, finally,
there are innumerable problems for which present day
computers are unsuitable or where they cannot handle
the problem at all.

5.1 PROBLEM-SOLVING CAPABILITY

What sort of problems can a computer solve, and
what is it that determines whether one computer is
better than another?

If a digital computer is capable of executing only a
few instructions, then the only things that limit the
problem solving ability of the computer are the size of
its memory and the allowable time for solution. Suppose
that a sequentially programmed digital computer of the
internally stored program type is capable of perform­
ing only the operations, Add, Branch if Minus, Clear
and Add, Halt, Multiply, Read, Shift, Store, Subtract,
and Write. It has been proven by the English mathe­
matician Turing that such a computer can be pro­
grammed to solve any problem that any other computer
can solve if its memory capacity is large enough and
if enough time is available.

In practical applications, however, other character­
istics in addition to memory capacity affect the problem
solving ability. Practical limitations on the problem
solving capability of a digital computer include: (1)
the speed of the computer, (2) its ease of programming
and operation, (3) its reliability, (4) the nature of the
10 equipment, and (5) the ability of the programmers.
For scientific problem solving, the most important of
these limitations are usually memory capacity, speed,
ease of programming, and ability of the programmers.
For business data processing, the most important lim­
itations are usually memory capacity and speed. And

for most real time process control applications, the im­
portant limitations are speed, reliability, ease of oper­
ation, and the type of 10 equipment.

5.2 SPEED

The development of computers has been a con­
tinuous quest for faster methods of computing. In the
last decade comparatively few new mathematical tech­
niques have been discovered. Yet, a great number of
problems formerly thought to be insoluble have been
solved through the use of digital computer techniques.
These problems have been solved because for the first
time the speed of the computer has made old methods
of solution practical. Before the advent of computers,
the methods of solving the equations used in the design
of aircraft wings were known; however, such equations
require so much calculation to solve that it used to be
impractical to do so. The wings were, therefore, de­
signed by crude mathematical approximation and ex­
periments. The speed of the digital computer is now
great enough to make mathematical solutions practical.

The solution of some problems requires even
greater speed than can be provided by present day com­
puters. For instance, there are problems that occur in
physics, which it is estimated would require six months
to solve with the fastest of present day computers. It
appears, therefore, that the speed of a computer is its
major capability and an increase in speed the area in
which the greatest improvement can be expected on
future computers.

S.3 EASE OF PROGRAMMING AND OPERATION

The ease with which a computer can be pro­
grammed is one of the most important characteristics
determining its practical usefulness. In a typical appli­
cation, a group of men may spend two months writing
out a program, two weeks checking and correcting it,
and then the computer will take an hour to perform
the computations. It can be seen, then, that a computer
which is easy to program will generally be much more
useful than one which is difficult to program, because a
problem which cannot be programmed economically
cannot be solved economically on a computer.

Another characteristic which helps to make a com­
puter more useful is the ease of operation by personnel
when, in some applications, human intervention is nec­
essary. Often, in the SAGE computers for example, this

UNCLASSIFIED 201

Reliability
5.3-5.5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

PART 5
CH 5

intervention must be accomplished rapidly if it is to be
useful, and the ease of entering information determines
whether the particular operation required can be per­
formed or not. For instance, a Display System was
used in the sample computer of Part 4 because it is the
only method yet found to present a mass of data to the
operator in an understandable form and at high speed.

5.4 RELIABILITY

Reliability is a special problem in digital computers
because of the complexity of their design and oper­
ation. A large digital computer may have thousands of
vacuum tubes, and a breakdown in any of them may
cause an error in any single step which may throw off a
scientific computation involving 10 million steps.

One way to improve reliability is to use selected
components in very conservatively designed circuits
with controlled temperatures and carefully regulated
supply voltages. Tube types are chosen that have low
failure rates, and then the particular tubes to be used
are individually tested. Capacitors are operated at far
below the working voltages recommended by their man­
ufacturers. Forced air cooling is provided, and usually a
large computer is operated in an air conditioned en­
closure.

In addition, to further reduce component failures,
a preventive maintenance routine is employed at regu­
larly scheduled intervals. One procedure in preventive
maintenance is marginal checking which involves the
varying of operating voltages on a few circuits at a
time, in order that any circuits close to failure level will
show their defects at this time. Another procedure in
preventive maintenance is to have the computer check
itself by means of reliability and diagnostic programs
(Ch 4).

No matter how much is done in the way of compo­
nent selection, careful design, and preventive mainte­
nance; errors are still likely to occur from time to time.
Therefore, many computers are designed with special
provisions for automatic detection of errors. One
method often employed is to include in a computer
word one or two extra bits for error checking. For
example, in the 33-bit words used in the AN/FSQ-7,
32 bits are for data or instructions, and the 33rd bit is
for parity check. The total number of 1 bits in an
AN/FSQ-7 control computer word is always supposed
to be an odd number. Therefore if the 32 information
bits have an odd number of l's, a 0 is used as the 33rd,
or parity bit; but if the number is even, then, at the
time the word is originated, the computer writes a r in
the parity position. Several parts of the Central Com­
puter System contain parity checking circuits which
count the number of 1 bits in a word and give an alarm
if . a wrong number is found.

A parity check is a useful safeguard because most

errors due to malfunction of a component or circuit
will affect only a single bit position, and errors ar.e so
infrequent that it is unlikely that two will occur at the
same time. A single error will change the total number
of 1 bits from an odd to an even number. This system
will not detect an even number of bit-change errors.

Even at best, when full use is made of all the re­
sources that have been described for increasing reliabil­
ity, no large computer has yet been developed which
can operate without error more than about 95 to 990/0
of the time. Therefore, in a system such as SAGE where
it may be disastrous for a computer to be out of oper­
ation for even a few minutes, it is necessary to increase
reliability by duplexing many parts of the computer, so
that if one part is out of order or is shut down for pre­
ventive maintenance, the duplicate part can take over.

5.5 CONCLUSION

Digital computers do many types of work exceed­
ingly well, but there are many other types of problems
at which they are quite slow and incompetent in com­
parison with man. For almost any type of numerical
calculation, a high speed computer is roughly ten thou­
sand to a hundred thousand times faster and far more
accurate than the average experienced human calculator
equipped with a desk calculating machine. On the other
hand, a competent human translator is incomparably
superior to the best digital computer in translating from
one language to another.

Computers are better than human beings at nu­
merical calculations because of their greater speed and
accuracy, and because most numerical calculations do
not require tremendously complex programs or vast
amounts of data storage. On the other hand, an expert
translator or chess player draws upon years of expe­
rience involving tens or hundreds of millions of bits of
memory. In fact, any man during a few minut~s of
reasoning, will whether he realizes it or not, ordinarily
make use of much of what he has learned throughout
his life. In other words, a man can make use of a tre­
mendous memory capacity to solve very complex prob­
lems.

But man has one other advantage which so far has
not been built into a computer. He has the ability to
think creatively. The average man can look at a complex
situation and arrive at a conclusion which may never
have been thought of before. A computer on the other
hand can only do what it is told to do; i.e., it can only
come to conclusions which are built into a specific writ­
ten program.

The way in which computers and operating per­
sonnel are employed in the SAGE System makes excel­
lent use of the different abilities of man and machines.
Thus the routine mathematical calculations are per­
formed swiftly and accurately by the computers, while

202 UNCLASSIFIED

PART 5
CH 5

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

Conclusions
5.5

the difficult and critical decisions are made by men. If
at some time in the future, an AN/FSQ-7 computer -dis­
plays a group of unidentified planes approaching the
United States in a suspicious way, then a man must
within a few seconds decide whether to attack immedi­
ately or wait for additional information. Within those

few seconds he must make use of what he knows about
planes and attack strategy, the effects of nuclear weap­
ons, the efJectiveness of the air defense system, possible
intentions of likely enemies, and so forth, involving
thousands of times as much information as is stored in
the AN/FSQ-7's memory.

UNCLASSIFIED 203

Blank Page

204

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

UNCLASSIFIED

PART 5

PARTS 1 to 5 UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

Subject

A

Abacus

Access, direct access memory of sample computer

Acoustic delay line:

illustration

storage

Accumulator:

parallel

serial

with fast carry propagation

Accumulators

Accuracy, precision and

Add and shift binary multiplication ...

ADD instruction arithmetic control (operate time)

Adders

Addition

Addition, binary:

general rules

numbers

Addition, octal

Addition in sample computer

Address:

modification by the index register

selection of drum register

single or multiple

Air defense, need for computers in

Analog computers, class of

Analog or digital

Analog form, illustration

AND circuit:

diode

INDEX

Page

7

139

122

121

92

91

93

91

46

36

164

88

88

31

31

41

162

159

117

136

5

5

133

6

60

UNCLASSIFIED

Figure
or Table

1-4

3-90

3-68

3-67

3-69

4-16

4-14

3-86

1-3

3-19

Index
A

Side
Heading

2.5.1

4.4

3.2.2

6.4

4.3.2

3.2.1

3.2

4.1

4.1.2

5.2

4.4.2.2

1.2.2.4

2.2.2

2.3.3

1.2.2.1

205

Index
A

magnetic core .

relay

transistor

vacuum tube

AND function

Sub;ect

A (cont'd)

AND logic ,

AND NOT circuit:

diagrammed

relay

Arithmetic

Arithmetic and control operations

Arithmetic element:

general

illustration

information flow

sample computer:

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont'd)

Page

69

58

65

64

54

54

54

58

138

4

11

12

163

description 162

operation 162

purpose 161

requirements 161

Arrangement for transfer of true or 1 's complement num- 95
ber , .. .

Array:

4-location, 3-bit core 142

operation in sample computer 141

Assembly programs 200

Asynchronous control 111

Auxiliary memory drum:

drum illustration 147

system operation 148

206 UNCLASSIFIED

Figure
or Table

3-38

3-15

3-30

3-26

3-7

3-9

3-16

1-8

4-15

3-70

4-4

3-81

4-7

4-8

PARTS 1 to 5

Side
Heading

1.2.1.2

1.2.2.6

2.1.3

3.2.4

4.4.2

4.4

4.2

4.3

2.6.1

4.2.3.3

3.6.2.2

PARTS 1 to 5

Sub;ect

B

Basic tape storage arrangement

Binary arithmetic:

addition:

general rules

operations

division:

direct

non restoring method .

nonrestoring by complements

restoring method

subtract and shift methods

multiplication:

add and shift

general method

subtraction:

complement method

direct

general complementing method

general rules

generation of l's complement

generation of 2's complement

l's complement method

2's complement method

Binary counters

Binary numbers:

counting

general

generation

meaning

Binary sign conventions

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

INDEX (cont/d)

Page

116

31

31

37

38

39

37

37

36

36

32

32

32

32

33

34

33

34

85

20

20

21

21

35

Binary to decimal conversion 23

UNCLASSIFIED

Figure
or Table

3-84

Index
B

Side
Heading

4.1.1

4.1.2

4.4.3

4.4.3.3

4.4.4

4.4.3.2

4.4.3

4.3.2

4.3.1

4.2.3

4.2.2

4.2.3.1

4.2.1

4.2.3.4

4.2.3.6

4.2.3.5

4.2.3.7

3.1.1

2.3.2

2.3.1

2.3.4

2.3.3

4.2.3.8

3.3

207

Index
8-C

Sub;ect

B (cont'd)

Binary to octal conversion:

general method

inspection

Bistable circuits:

discussion

dynamic flip-flop

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont1d)

Page

28

29

71

75

relay storage 73

transistor flip-flop

vacuum tube flip-flop

Branch:

conditional in sample computer

unconditional in sample computer

Branching instructions .

c
Capabilities and limitations of computers:

ease of programming and operation

problem solving ..

reliability

speed

Card-handling equipment:

card reader

cards and card-punch equipment

general description ..

line printer

Circuit:

logic

packaging

Circulating registers, word shifts

Classes of computing machine:

analog computers

basis of classification

by size

digital computers

208

74

73

157

157

187

201

201

202

201

127

127

126

127

55

83

91

5

5

6

5

UNCLASSIFIED

Figure
or Table

5-3

PARTS 1 to 5

Side
Heading

3.7.1

3.8.2

2.2.1

2.2.1.4

2.2.1.1

2.2.1.3

2.2.1.2

3.4.1.2

3.4.1.3

5.3

5.1

5.4

5.2

5.2.3.3

5.2.3.2

5.2.3.1

5.2.3.4

1.2.2

2.4

3.2.2

2.3.3

2.3.1

2.3.4

2.3.2

PARTS 1 to 5

Subject

C (cont'd)

Coding

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont'd)

Page

151

Complement method of binary subtraction:

comparison of 1 's and 2's complement method 35

derivation

general rules

generation of l's complement

Computer organization introduction:

general

sample computer description

Computing machines:

arithmetic and control operation

definition

example of machine data processing

Conditional branch instruction execution

Control equipment:

Asynchronous:

components

systems

basic assumption

basic element functions

circuitry

program:

components

discussion

program time - operate time

synchronous:

components

systems

synchronous - asynchronous combinations

types

33

32

33

133

133

4

3

3

157

111

151

151

152

107

107

136

152

109

151

151

151

UNCLASSIFIED

Figure
or Table

4-13

Index
C

Side
Heading

3.1.3

4.2.3.9

4.2.3.3

4.2.3.1

4.2.3.4

1.1

1.2

2.1.3

2.1.1

2.1.2

3.6.2.2

3.1.2.2

3.1.1

3.1.4

3.6

3.6.1

1.2.2.3

3.1.5

3.6.2.1

3.1.2.1

3.1.2.3

3.1.2

209

Index
C

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

INDEX (cont/d)

Sub;ect

C (cont'd)
element:

discussion and illustration

operation example

instruction

operation ..

operation of sample computer:

for ADD instruction

instruction decoding

Page

13

156

108

109

156

153

operate time . 155

program sequencing

program time

Control panel storage

152

152

123

Controls, direct access memory of sample computer. . 141

Core memory plane .

Core register:

parallel

serial .

shifting

Core storage in sample computer:

array operation

118

77

79

79

141

memory element operation 143

system operation 145

Cores, magnetic

Counter:

basic flip-flop

118

86

binary 85

ring

Counting:

binary

87

20

circuitry 85

decimal

octal

register, high-speed

210

19

21

86

UNCLASSIFIED

Figure
or Table

1-10

3-79

4-12

3-91

3-88

3-51

3-53

3-54

3-59

3-60

PARTS 1 to 5

Side
Heading

3.2.6

3.3

3.6.2

3.2.2.2

3.2.3

3.2.2.1

3.2.2

4.5.2

2.5.4

2.6.1

2.6.2

2.6.3

4.2.3

3.1.1

3.1.2

2.3.2

3.1

2.1.3

2.4.2

PARTS 1 to 5

Data processing:

example

general

illustration

Subject

D

machine requirements for .

Decimal numbers:

counting

expression of

general

positional notation

radix

Decimal to binary conversion:

division-multiplication method

general method

radix subtraction method

Decimal to octal conversion:

division - multiplication method

general method

radix subtraction method

Delay:

circuits

compensating

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

INDEX (cont/d)

Page

10

9

4

10

19

19

19

19

19

25

23

24

28

27

27

line section .

76

60

76

33 Derivation of complement method of subtraction

Diagnostic program

Digital, analog and:

200

discussion 133

illustration 6

Digital computer . 3

Digital computer elements:

arithmetic element 11

control element . 13

input element 11

UNCLASSIFIED

Figure
or Table

1-2

3-20

3-49

1-3

1-1

Index
o

Side
Heading

3.2.1.2

3.2.1.1

3.2.1.3

2.1.4

2.1.5

2.1.1

2.1.2

2.1.3

3.4.3

3.4.1

3.4.2

3.6.3

3.6.1

3.6.2

2.2.2

4.2.3.3

4.2.5.2

1.2.2.1

3.2.4

3.2.6

3.2.2

211

Index
o

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont'd)

Subject

D (cont/d)

operation

organization

output element

storage element

Diode logic circuit .

Direct access memory of sample computer:

access

controls

requirement summary

size

storage medium .

Direct division, binary

Display:

output

program operation

sample computer

system operation

tube, simplified diagram

unit illustration

visual

Division:

binary:

direct

nonrestoring by complements

nonrestoring, general

restoring

subtract and shift

contents of A-register, B-register, and accumulator

octal:

discussion

table

sample computer

Page

14

14

11

12

59

139

141

141

140

141

36

177

176

176

176

132

132

128

36

39

38

37

37

169

42

43

168

212 UNCLASSIFIED

Figure
or Table

4-24

3-100

3-99

4-19

2-4

PARTS 1 to 5

Side
Heading

3.2.8

3.2.7

3.2.3

3.2.5

2.1.2

2.5.1

2.5.4

2.5.5

2.5.2

2.5.3

4.4.2

5.7.2

5.7.1

5.7.3

5.2.5

4.4.2

4.4.4

4.4.3.3

4.4.3.2

4.4.3

5.5

4.4.2.5

PARTS 1 to 5

Subject

D (cont'd)

shifting accumulator used for

Doorbell circuit logic

Drum, auxiliary:

description

illustration

Drum buffer:

operation

purpose

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont1d)

Page

106

55

146

147

172

172

to inputs and outputs of sample computer 172

Drum operation, 10 buffer:

equipment 172

program operation 173

status control 172

Drums, magnetic 116

Dynamic flip-flop 75

E

Effect of two inhibit inputs 69

Elements, fundamental 134

Elements and components required by digital computer:

arithmetic 11

control 13

data processing 9

input 11

language 9

output 11

storage 12

Electrostatic storage 121

F

Fixed and floating point computers 45

Flip-flop:

circuit symbols 72

• UNCLASSIFIED

Figure
or Table

3-78

3-12

4-7

3-48

3-37

3-43

Side

Index
D-F

Heading

2.7.3.1

5.3.2

5.3.1

5.3

5.3.2.1

5.3.2.3

5.3.2.2

4.2.2

1.2.2.2

3.2.4

3.2.6

3.2.1

3.2.2

3.1

3.2.3

3.2.5

4.3

6.3

213

Index
F-I

Subject

F (cont'd)

complete logic circuit

dynamic

register:

shifting

storage, parallel

transistor

vacuum tube .

Floating point

Full adder:

logic

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont1d)

Page

72

75

80

77

74

73

45

90

serial operation 91

G

Gate circuit

Gating and shifting

H

Half adder

History of computers:

advent of modern computers

early machines

Hollerith code

Index registers .

Indexed iterative program:

coded

flow chart

table

Indexing instruction:

Information, signals:

discussion

no signal condition

pulse representation

65

99

89

6

6

128

159

197

195

196

196

49

53

50

214 UNCLASSIFIED

Figure
or Table

3-42

3-47

3-55

3-50

3-46

3-45

3-64

3-66

3-27

3-72

3-63

3-94

4-14

5-9

5-8

5-7

5-6

PARTS 1 to 5

Side
Heading

2.2.1.3

2.2.1.2

6.3

2.4.2

2.4.1

3.4.2.2

1.1

1.1.5

1.1.2

PARTS 1 to 5 UNCLASSIFIED Index
T.O. 31P2-2FSQ7-2 I

INDEX (cont'd)

Figure Side
Sub;ect Page or Table HemUng

I (cont'd)

represen ta tion 49 1.1.1

timing 52 1.1.4

transmission 50 1.1.3

Inhibit:

circuit for pulse signals 61 3-21

function 55 3-10

magnetic core 68 3-36

Input:

manual 175 4-22

system 174 4-21

typewriter 174 5.5

Input element 11 1-6 3.2.2

Input-output equipment:

definition 125 5.1.2

description:

card handling 126 5.2.3

other 10 equipment 130 5.2.6

tapes and tape handling 125 5.2.2

typewriter 128 5.2.4

visual displays 128 5.2.5

introduction 125 5.1.1

Inputs and outputs of sample computer:

automatic inputs:

general 174 5.4.1

operation 174 5.4.2

automatic outputs 175 5.6

buffer drums 172 5.3

display 176 5.7

general 171 5.1

typewriter 174 5.5

Instruction:

alteration 158 3.4.2.1

UNCLASSIFIED 215

Index UNCLASSIFIED PARTS 1 to 5
I-L lO. 31P2-2FSQ7-2

INDEX (cont'd)

Figure Side
Subject Page or Table Heading

I (cont'd)

basic computer .. 185 5-1

branching 187 5-3

decoding:

operate time 155 4-11

sample computer 153 3.2.2.2

index registers 159 3.4.2.2

indexing " . 196 5-6

selection 154 4-10

Inversion, NOT function 54 3-8

Iterative program:

coded 193 5-7

flow chart. 192 5-6

table 194 5-5

L

Language used. by digital computers 9 3.1

Line printer 127 5.2.3.4

Logic:

AND 54 1.2.1.2

circuit 55 1.2.2

combinations 62 3-22

diode 59 2.1.2

doorbell 55 3-11

magnetic core 66 2.1.5

matrices 70 2.1.6

NOT 54 1.2.1.3

operation 53 1.2.1

OR 53 1.2.1.1

relay circuits 57 2.1.1

sample computer 138 1.2.2.7

transistor 64 2.1.4 ~
vacuum tube .. 62 2.l.3

216 UNCLASSIFIED

PARTS 1 to 5

Sub;ect

L (cant/d)

Logical program:

final layout

flow chart

preliminary layout

table

M

Magnetic head

Magnetic core:

array operation

hysteresis

interconnection

operation

Magnetic drums

Magnetic storage

Magnetic tape:

description

tape-handling equipment

Maintenance programs

Manual input

Master program

Matrix:

diode

logic circuit

Mechanical storage

Memory:

auxiliary:

choice of medium

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont'd)

Page

190

188

189

191

112

118

67

68

66

116

114

115

125

200

175

199

70

70

122

146

contents during execution of program 146

general 146

direct access, req uiremen ts for 13Y

element requirements 113

element operation in sample computer 143

UNCLASSIFIED

Figure
or Table

5-5

5-3

5-4

5-4

3-82

3-33

3-35

4-22

3-39

3-40

4-6

Side

Index
L-M

Heading

4.2.3

2.1.5

4.2.2

4.2

4.2.1

5.2.2.3

4.2.5

4.2.1

2.1.6

2.1.6

4.5

2.7.2

2.7.1

2.7.1

2.5

4.1

2.6.2

217

Index
M-N

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont'd)

Sub;ect

M (cont'd)

operation of sample computer:

auxiliary

direct access and. auxiliary

general

program

system

read and write operations

Modulus

Multiplication:

binary:

add and shift

general method

contents of A-register, B-register, and accumulator

negative numbers

octal

parallel

sample computer

serial:

discussion of methods

multiplier

timing

serial-parallel

shifting accumulator used for

table

N

Negative numbers, multiplication or division of

No signal condition

nonlogic circuits

Nonrestoring binary division by complements ..

NOT circuit, vacuum tabe

NOT function

NOT logic

Page

146

149

146

147

147

144

32

36

36

166

36

42

97

165

100

101

102

103

100

43

36

53

81

39

62

54

54

218 UNCLASSIFIED

Figure
or Table

4-5

4-18

3-76

3-3

3-77

3-73

2-4

3-23

3-8

PARTS 1 to 5

Side
Heading

2.7.3

2.7.3.4

2.7.3.1

2.7.3.3

2.7.3.2

4.2.3.2

4.3.2

4.3.1

4.3.3

5.4

3.4.1

4.4.2.4

3.4.2

4.3.3

1.1.5

2.3

4.4.4

1.2.1.3

PARTS 1 to 5 UNCLASSIFIED Index
T.O. 31 P2-2FSQ7-2 N-O

INDEX (cont/d)

Figure Side
Subject Page or Table Heading

N (cont'd)

Number and control instruction representation 10 1-5

Number representation in a computer 45 Ch6

Number systems:

general expression for 20 2.2

selection of 17 1.3

types of 17 1.2

0

Octal arithmetic operations:

addition 41 2-3 5.2

division 42 2-4 5.5

multiplication 42 2-4 5.4

subtraction 42 2-3 5.3

Octal numbers:

counting 21 2.4.2

general 21 2.4.1

meaning 22 2.4.3

use 22 2.4.4

Octal to binary conversion:

general method 28 3.7.1

inspection 29 3.7.2

Octal to decimal conversion 26 3.5

l's complement:

generation 33 4.2.3.4

subtraction 33 4.2.3.5

Operate time in sample computer 155 3.2.3

Operate time, program time 152 3.1.5

Operation:

control 109 3.6.2

of computer 14 3.2.8

Operational program 200 4.2.4

OR circuit:

diode 60 3-19

UNCLASSIFIED 219

Index UNCLASSIFIED PARTS 1 to 5
o-p T.O. 31P2-2FSQ7-2

INDEX (cont'd)

Figure Side

Subject Page or Table Heading

o (cont'd)

doorbell 56 3-13

magnetic core 68 3-34

multiple input 63 3-25

relay 57 3-14

transistor 65 3-29

OR function 54 3-6

OR logic 53 1.2.1.1

OR situation symbolized 53 3-5

Output element 11 1-7 3.2.3

Outputs, sample computer:

automatic:

general description 175 5.6.1

illustration 177 4-23

program operation 175 5.6.2

system operation 176 5.6.2.2

display:

general operation 176 5.7.1

illustration 177 4-24

program operation 176 5.7.2

system operation 176 5.7.3

P

Packaging 83 2.4

Paper tape equipment .. 125 5.2.2.2

Parallel:

adders 90 3-65

multiplication 97 3.4.1

transmission of numbers:

discussion 50 1.1.3.1

illustration 51 3-2

timing 52 1.1.4.1

Pluggable unit 84 3-58

220 UNCLASSIFIED

PARTS 1 to 5 UNCLASSIFIED Index
T.O. 31P2-2FSQ7-2 P

INDEX (cont'd)

Figure Side
Sub;ect Page or Table Heading

P (cont'd)

Positional notation, decimal numbers 19 2.1.2

Powers:

eight table 27 2-2

two table 24 2-1

Precision and accuracy 46 6.4

Printer, line:

discussion 127 5.2.3.4

illustration 131 3-98

Program:

indexed iterative:

coded illustration 197 5-9

coding discussion 196 5-7 3.5.4

flow chart 195 5-8 3.5.2

general description 194 3.5.1

organization 195 5-8 3.5.3

problem statement . 195 3.5.2

table 196 5-7

iterative:

coded 193 5-7

coding 192 3.4.5

flow chart 192 5-6 3.4.4

general description 192 3.4.1

organization 192 5-6 3.4.4

problem analysis 192 3.4.3

problem statement 192 3.4.2

program 194 5-5

logical:

coding 187 3.3.5

final layout 190 5-5

flow chart 188 5-3

general description 186 3.3.1

organization 187 3.3.4

UNCLASSIFIED 221

Index
P

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont/d)

Sub;ecf

P (cont'd)

preliminary layout .

problem analysis

problem statement .

program

straight-line:

coded

coding

How chart.

general description

organization

problem analysis

problem statement .

program example

Program control

Program sequencing in sample computer

Program time-operate time

Program time operations in sample computer

Program types:

assembly

diagnostic

general

maintenance

master

operational

reliability

subroutines

symbolic

utility

Program variation in sample computer:

changing sequence

conditional branch

instruction alteration

222

Page

189

186

186

191

186

186

183

185

186

185

185

187

107

152

152

152

200

200

199

200

199

200

200

199

199

199

157

157

158

UNCLASSIFIED

Figure
or Table

5-4

5-4

5-2

5-1

5-2

PARTS 1 to 5

Side
Heading

3.3.3

3.3.2

3.2.5

3.2.1

3.2.4

3.2.3

3.2.2

3.6.1

3.2.2.1

3.1.5

3.2.2

4.2.3.3

4.2.5.2

4.1

4.2.5

4.2.1

4.2.4

4.2.5.1

4.2.2

4.2.3.2

4.2.3

3.4.1

3.4.1.2

3.4.2

PARTS 1 to 5 UNCLASSIFIED Index
T.O. 31 P2-2FSQ7-2 P-R

INDEX (cont'd)

Figure Side

Subiect Page or Table Heading

P (cont'd)

unconditional branch 157 3.4.1.3

Programming:

introduction:

definition 181 1.1

necessity 181 1.2

techniques:

coding 183 2.2.3

organization 183 2.2.2

preparation 183 2.2

problem analysis 183 2.2.1

testing 184 2.2.4

Pulse:

representation of information signals 50 1.1.2

waveform 82 3-57

Punch:

computer entry 129 3-95

computer-operated 130 3-96

Punched hole storage 122 4.5.1

Purpose and plan of manual:

division into parts 1 1.2

general 1 1.1

R

Radix conversion:

binary to decimal:

formula 23 3.3

general method 29 3.8.1

inspection 29 3.8.2

decimal to binary:

division-multiplication method 25 3.4.3

general method 23 3.4.1

radix subtraction method 24 3.4.2

UNCLASSIFIED 223

Index
R

decimal to octal:

Subject

R (cont'd)

division-multiplication method

general method

radix subtraction method

general method

introduction

octal to binary:

general method

inspection

octal to decimal

Radix, decimal

Reader, card:

discussion

illustration

Register:

circulating

ripple shift ..

shifting

storage

word length

word shifts

Relay logic:

circuits

combination of circuits

UNCLASSIFIED
10. 31 P2-2FSQ7-2

INDEX (cont'd)

Page

28

27

27

23

23

28

29

26

19

125

130

78

82

79

76

76

101

57

59

Relay storage 73

Reliability program

Ring counters:

discussion

illustration

tandem:

ill ustra tion

table of output changes . .

224

200

87

87

88

88

UNCLASSIFIED

Figure
or Table

3-97

3-52

3-56

3-2

3-17

3-61

3-62

3-1

PARTS 1 to 5

Side
Heading

3.6.3

3.6.1

3.6.2

3.2

3.1

3.7.1

3.7.2

3.5

2.1.1

5.2.2.3

2.2.3.2

2.2.3.1

2.2.3

2.1.1

2.2.1.1

4.2.5.1

3.1.2

PARTS 1 to 5 UNCLASSIFIED Index
T.O. 31P2-2FSQ7-2 S

INDEX (cont'd)

Figure Side
Subject Page or Table Heading

5

Sample computer description:

analog or digital 133 1.2.2.1

arithmetic 138 1.2.2.6

elements 134 4-1 1.2.2.2

general 133 1.2.2

10 system 138 1.2.2.8

logic 138 1.2.2.7

program control 136 1.2.2.3

requirements 133 1.2.1

single or multiple address 136 1.2.2.4

Sample computer operation:

data loading and processing 179 6.3

program loading 179 6.2

Sample computer storage:

auxiliary memory 146 2.7

direct access memory general req uiremen ts 139 2.5

introduction 139 2.1

magnetic cores 141 2.6

types 139 2.4

Scaling 46 6.6

Serial multiplication:

discussion 100 3.4.2

timing 102 3-3

Serial-parallel multiplication 103 3-77

Serial transmission 51 3-3 1.1.3.2

Shifting:

accumulator:

division 106 3-78

multiplication 100 3-73

register in multiplication 98 3-71

sample computer operation 170 4.4.2.6

serial number 101 3-74

UNCLASSIFIED 225

Index
S

UNCLASSIFIED
T.O. 31 P2-2FSQ7-2

INDEX (cont'd)

Subject

5 (cont'd)

with circulating registers

Sign conventions

Signals, common number

Significance, positional and absolute

Size, direct access memory of sample computer

Small-scale storage circuits bistable circuits

Stacked memory planes

Status drum control:

illustration

operation

Storage:

acoustic delay line

basic bistable circuits

circuits small scale

control panel

electrosta tic

element:

discussion

illustration

function relationships

magnetic

magnetic drum

mechanical:

control panel

general

punched hole

relay

sample system

system, general requirements

types

Straight-line program

Subtract and shift methods of binary division:

nonrestoring

226

Page

101

35

49

46

140

71

120

173

172

121

71

71

123

121

12

13

140

114

117

123

122

122

73

139

139

139

185

38

UNCLASSIFIED

Figure
or Table

3-75

3-1

3-89

4-20

3-41

1-9

4-3

3-85

3-44

PARTS 1 to 5

Side
Heading

4.2.3.8

6.5

2.5.2

2.2.1

5.3.2.2

4.4

2.2

4.5.2

4.3

3.2.5

4.2

4.5.2

4.5

4.5.1

2.1

2.2

2.3

3.2

4.4.3.3

PARTS 1 to 5 UNCLASSIFIED Index
T.O. 31P2-2FSQ7-2 S-T

INDEX (cont'd)

Figure Side
Sub;ect Page or Table Heading

5 (cont/d)

nonrestoring by complements 39 4.4.4

restoring 37 4.4.3.2

Subtract instruction arithmetic control 165 4-17

Subtraction:

binary:

complement 32 4.2.3

direct 32 4.2.2

general rules 32 4.2.1

generation of l's complement 33 4.2.3.4

generation of 2's complement 34 4.2.3.6

l's complement method 33 4.2.3.5

2's complement method 34 4.2.3.7

octal:

discussion 42 5.3

sample computer 164 4.4.2.3

table 41 2-3

Summary of differences between read and write cycles
of a read operation and a write operation 145 4-1

Switching or logic circuits 53 1.2

Symbolic program 199 4.2.3.2

Synchronous control:

components 109 3.6.2.1

operations 110 3-80

systems 151 3.1.2.1

T

Tandem ring counters output changes 88 3-1

Tape core construction 66 3-32

Tapes and tape-handling equipment:

general 125 5.2.2.1

magnetic 125 3-93 5.2.2.3

paper 127 3-92 5.2.2.2

storage 115 4.2.1

UNCLASSIFIED 227

Index
T-W

Subject

T (cont'd)

Time pulse distributor operation

Timing:

information signals

parallel transmission

serial transmission

Transistor:

circuit sample

logic

switch

UNCLASSIFIED
T.O. 31P2-2FSQ7-2

INDEX (cont1d)

Page

153

52

52

52

66

64

65

Transmission methods for information signals:

comparison

parallel discussion

parallel illustration

serial discussion

2's complement:

generation

subtraction

Typewriter inputs:

discussion

in sample c(1mputer

u
Utility programs

v
Vacuum tube logic

51

50

51

51

34

34

128

174

199

Voltage level representation of information signals

62

49

w
Word:

format

length

size

Writing and reading by status ..

228

137

138

45

118

UNCLASSIFIED

Figure
or Table

4-9

3-4

3-31

3-28

3-2

3-3

4-2

3-87

PARTS 1 to 5

Side
Heading

1.1.4

1.1.4.1

1.1.4.2

2.1.4

1.1.3.3

1.1.3.1

1.1.3.2

4.2.3.6

4.2.3.7

5.2.4

5.5

4.2.3

2.1.3

1.1.1

1.2.2.5

6.2

