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PART 1 
INTRODUCTION 

CHAPTER 1 
PURPOSE AND PLAN OF MANUAL 

1.1 GENERAL 

High-speed digital computers such as those used in 
the SAGE System, are complex machines, each of which 
may have more than a million electrical and electronic 
parts. A maintenance man cannot service such a ma­
chine properly without understanding how it works. 
This ~~derstanding should not be confined to one speci­
fic d1g1tal computer model because computer designs 
are continually being refined. A digital computer main­
tenance man, therefore, needs a general knowledge of 
digital computer design and operation. He must know 
what digital computers are, what they do, and how 
they do it. 

The subject of digital computers, however, covers 
a large number of different machines and to discuss all of 
them in detail would be impractical. The information 
in this manual, therefore, is developed along general 
lines. Since this manual is intended for personnel re­
sponsible for maintaining high-speed military digital 
computers such as the AN/FSQ-7 and AN/FSQ-8, the 
characteristics of this type of computer are emphasized. 

1.2 DIVISION OF MANUAL INTO PARTS 

The manual is divided into parts so that informa­
tion may be presented in a 10'gical sequence. This se­
quence begins with basic general ideas and continues 
toward specific details. 

Part 1 of the manual gives a general introduction 
to digital computers, presenting background informa­
tion that ties together the details discussed in later 

parts. The background material begins with a brief 
survey of computing machines in general, since digital 
computers comprise only one class of computing ma­
chines. This survey defines computing machines and 
gives a brief history of their development. The basic 
elements which make up a digital computer are de­
scribed; then an example is given to show how a digital 
computer would be controlled and how it would oper­
ate when solving a simple problem. 

A digital computer works by performing certain 
arithmetic operations on digits. Part 2 describes the 
number systems and arithmetic basic to digital com­
puters. 

High-speed digital computers are constructed from 
special electronic and magnetic components. Part 3 ex­
plains how these components perform the basic tasks 
required of a digital computer. The descriptions are fol­
lowed by brief circuit analyses that detail the operation 
of the electronic and magnetic components. 

The material in Parts 1 through 3 provides a basic 
knowledge of the "building-blocks" used in construct­
ing digital computers. How these "building-blocks" are 
put together to form a typical computing system is 
s~ow.n in :art 4. The system selected for this explana­
tlOn IS typ1cal of many digital computers, but it is perti­
nent to the AN /FSQ-7. 

Part' 5 explains programming-how computers are 
controlled so that they perform specific operations. 
Since the subject of programming is closely related to 
computer capacities and limitations, these also are dis­
cussed briefly in Part 5. 
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CHAPTER 2 
THE NATURE AND FUNCTIONS OF COMPUTING MACHINES 

2.1 WHAT COMPUTING MACHINES ARE 

2.1.1 Definition 

Man uses numerous tools to simplify or speed up 
his tasks. As the activities required in business or war 
become more complex and more dependent on speed in 
handling data, man's dependence on tools to help him 
in such activities becomes acute. An important tool 
which man uses to simplify and speed up his handling 
of data is the computing machine. 

A very large computing machine is shown in figure 
1-1. Such a computing machine is actually a data pro­
cessing device, that is, a device that performs mathe­
matical and logical operations on data in a prear-

ranged and controlled manner. To perform these oper­
ations, computing machines must be able to: (1) accept 
the items of data that are presented to them, (2) mani­
pulate these items in a desired prearranged manner, 
and, (3) make the manipulated data available in use­
ful form. 

2.1.2 Example of Machine Data Processing 

A simple example of data processing is selecting 
the largest of three numbers. If a man were asked to 
select the largest of three numbers, he could do so by 
comparing any two of the three, noting which of these 
two is larger, and then comparing it with the third. 
The second comparison would show which number was 

Figure 1-1. The AN/FSQ-7 (XD-JJ 
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the largest of the three. In this problem, then, the data 
to be processed are the three numbers, and the manipu­
latiQns of the data are the operatiQns Qf cQmparing the 
numbers and selecting the largest. 

To perform the same data-processing task, a com­
puter ?/ould follov/ t..~e same general procedure of (1) 
comparing two Qf the quantities, (2) selecting the 
larger, and then (3) cQmparing it with the third. In 
some ways, hQwever, the prQcedure of the cQmputer 
WQuld differ frQm that Qf a man. 

Unlike a man, a computer must perfQrm a cQmpu­
tation in order to select the larger of twO' quantities. In 
general, a man can tell by direct inspectiQn which Qf 
twO' quantities is the larger; a computer cannot. A CQm­
puter, however, can distinguish the difference between a 
plus (positive) and a minus (negative) quantity. There­
fQre, when cQmparing twO' quantities, a computer sub­
tracts Qne from the other and nQtes whether the result 
is plus or minus. If the result is plus, the number sub­
tracted is the smaller; if the result is minus, the number 
subtracted is the larger. Thus, a cQmputer cQmpares 
quantities by perfQrming an arithmetic QperatiQn Qn 
them. The prQcess is shQwn in figure 1-2 as it WQuld 
be executed by a computer. 

2.1.3 Arithmetic and Control Operations 

To accomplish the typical data-prQcessing task just 
discussed, a cQmputer WQuld perfQrm two subtractiQns 
in sequence. In order fQr these two subtractiQns to' lead 
to the desired result-selectiQn Qf the largest Qf three 
quantities-the computer must fQllow a prQcedure based 
Qn certain cQntrol Qperations. The contrQl QperatiQns 
are as follows: 

a. Selecting any two Qf the quantities for the first 
subtraction. 

b. Determining from the result Qf the first sub­
traction which of the twO' quantities is the larger. 

c. Selecting the correct quantities fQr the secQnd 
subtraction. 

d. Determining from the result of the second sub­
traction which quantity is the largest of the 
three. 

All such cQntrQI QperatiQns are based Qn specific rules. 
Thus, in the preceding example, the computer selects 
the larger Qf two numbers, A and B, according to this 
rule: If subtracting A frQm B results in a plus quantity, 
select B; if the result is minus, select A. After selecting 
the larger number according to this rule, the computer 
fQllows a second rule to' decide what quantities it should 
Qperate on for the second subtraction: If A is larger 
than B, subtract A frQm C; if B is larger than A, sub­
tract B frQm C. From the plus or minus result Qf this 
operatiQn, the final answer is Qbtained. 

In the example, the cQntrQl operations determine 
which quantities the computer operates Qn in perform­
ing the twO' subtractiQns and, also, what the cQmputer 
does with the results Qf each subtraction. The example 
shows a typical cQmbinatiQn of control and arithmetic 
Qperations in the processing of data. In general, CQn­
trQI operatiQns in computer data prQcessing determine 
fQur fundamental variables: 

a. What quantities the computer manipulates by 
arithmetic Qperations 

b. What arithmetic QperatiQns the cQmputer per­
forms 

SUBTRACT 
A-B 

(t) RESULT 

SUBTRACT 
A-C 

(-) RESULT 

A IS LARGEST C IS LARGEST 

(+) RESULT 

SUBTRACT 
B-C 

(-) RESULT 

B IS LARGEST C IS LARGEST 

Figure J-2. Data Processing - Finding the Largest of Three Numbers, A, 8, and C 
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c. What sequence the computer follows in per­
forming the arithmetic operations 

d. What the computer does with the results of 
each arithmetic operation 

Control operations are sometimes called logical oper­
ations because they select and arrange the steps in a 
given task of data processing in strict accord with 
logical rules for the task. 

2.2 THE NEED FOR HIGH-SPEED COMPUTERS 

2.2.1 General 

If data-processing tasks were confined to simple 
problems such as the one discussed in the preceding 
section, there would be no need for complex, high­
speed computers. In a small office, for example, where 
the only data-processing tasks are simple bookkeeping 
procedures, small, hand-operated computing machines 
(e.g., adding machines) are sufficient. The case is dif­
ferent when enormous quantities of data must be con­
tinually processed with extreme speed and accuracy. In 
such a case, it becomes practical to use a data-processing 
machine in place of a group of men working with 
pencil and paper or with small, hand-operated calculat­
ing machines. 

2.2.2 Air Defense Needs 

In the present-day air-defense system of the United 
States, huge quantities of data must be continually 
searched out and accurately processed at high speed. 
For example, when a strange aircraft is detected by 
radar, it must be identified as friendly or hostile. To 
accomplish this, the flight plans of all commercial air­
lines and friendly aircraft must be searched out and 
compared with the movement of the detected aircraft. 
At the same time, data must be calculated to determine 
precisely when and how the aircraft (or missile) is to 
be intercepted if it is found to be hostile. Naturally, if 
all these calculations are to be useful, they must be 
completed before the aircraft disappears. As the speed 
of aircraft increases far beyond 1000 miles per hour 
(mph), it becomes impractical for aircraft id.entifica­
tion and interception to depend on a group of men 
who thumb through flight plans, ballistic tables, etc. 
It is absolutely necessary, therefore, to have a high­
speed device that can accept, store, and process very 
large quantities of d.ata rapidly and accurately and de­
liver the correct output information. Only such a high­
speed device can provide correlated data quickly enough 
for use in making the correct tactical decisions neces­
sary for air defense. 

The large high-speed, electronic computing ma­
chines of today are well suited to this task. Such ma­
chines can multiply 6-digit numbers at speeds as high 
as 60,000 multiplications per second, with only one 
error in every 10 billion operations. Furthermore, digi-

tal computers can store large quantities of data and 
can locate and process needed items in a fraction of a 
second. 

2.3 BASIC CLASSES OF COMPUTING MACHINES 

2.3.1 Basis of Classification 

Computers are classified, according to their basic 
principles of operation, as digital or analog. 

2.3.2 Digital Computers 

A digital computer is a computing machine that 
processes data expressed as digits or numbers, and man­
ipulates the data by means of arithmetic or logical con­
trol operations in a predetermined manner, and gener­
ally delivers the resulting information in the form of 
digits. For instance, the number 34 might be represented 
in a digital computer as 3+4 pulses on a line as in A, 
figure 1-3. 

A digital computer operates on data in much the 
same way that a man would manipulate the data in 
carrying out arithmetic computations with pencil and 
paper. Similar to a man making an arithmetic computa­
tion, a digital computer manipulates digits in a se­
quence of distinct steps determined by certain mathe­
matical rules. 

The digits used to represent items of data or speci­
fic instructions for processing the data must belong to a 
particular number system (such as the familiar decimal 
system) chosen for the computer model being used. 
Similarly, the results of operations by a digital com­
puter are usually delivered in the form of numbers. 

Since a digital computer operates on data in a 
series of distinct steps, there is necessarily some delay 
between the start and the completion of each operation. 
Furthermore, if a series of arithmetic operations are to 
be performed, each operation must be completed in 
turn before the next is begun. Nevertheless, the use of 
electronic and magnetic elements in digital computers 
permits these machines to perform thousands of oper­
ations in an extremely short time-some operations re­
quire only a few microseconds (usec). 

In summary then, digital computers have the fol­
lowing basic characteristics: 

a. All data handled by the computer must be in 
the form of digits of a particular number system. 

b. The computer processes data by performing pre­
determined arithmetic and logical control oper­
ations on the digits. These operations al'e per­
formed in discrete steps, much as arithmetic 
operations are performed with pencil and paper. 

2.3.3 Analog Computers 

An analog computer, unlike a digital computer, is 
a computing machine in which data are converted, for 
purposes of computation, not into digits but into physi­
cally measurable quantities such as lengths, voltages, or 
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TENS UNITS 

A. DIGITAL FORM 

---------- 40 

/

,...--------..\ - - - - - - - - 30 
-------- 20 
------- 10 

___ -..I 1..----- - - - 0 

TRANSMITTER RECEIVER 

B. ANALOG FORM 

Figure 1-3. Digital and Analog Representations of the Number 34 

angles (as shown in B, fig. 1-3). Computed results 
are obtained by the action of moving parts or electrical 
signals. These actions or signals do not represent digits. 
Rather, they are related to one another in such a way 
as to represent the relationships among the terms of a 
mathematical equation. They also interact with one an­
other in such a way as to represent the mathematical 
operations indicated in the equation. 

In other words, an analog computer solves prob­
lems by causing physical quantities to vary in a manner 
analogous to the way in which the variables in a prob­
lem change. For example, if distance equals velocity 
multiplied by time, a moto'! running at a speed propor­
tional to velocity during a given time interval will turn 
a gear train through an angle proportional to distance. 
Thus, a continuous solution of distance in the equation: 
Distance = Velocity x Time, may be obtained. Action 
of this kind is typical of the manner in which analog 
computers solve problems. A fundamental characteris­
tic of analog computers is that they provide continuous 
solutions to a given problem. 

2.3.4 Physical Size of Components 
The physical size of a computing machine is deter­

mined to a great degree by the job which it is to do. 
Hence, a simple calculator that is hand-operated and 
used only to add or subtract groups of numbers may be 
quite small. However, a data-processing machine such 
as the AN/FSQ-7, which must automatically store and 
process enormous quantities of data, is very large. An 
AN/FSQ-7 fills a building several stories high (see' fig. 
1-1). 

2.4 HISTORY OF COMPUTERS 

2.4.1 Early Computing Machines 
The first counting aids used by man probably con­

sisted of fingers, pebbles, or other similar items. One of 

the earliest "machines" is the abacus, which evolved 
from the use of pebbles. This device, shown in figure 
1-4, is one of the simplest forms of an adding or 
counting machine. It consists of a series of rods on 
which the positioning of beads records the numbers 0 

through 9. Addition or subtraction can be accomplished 
on each bar individually. However, the carrying of the 
1 when a sum is greater than 9 cannot be done auto­
matically. 

The first machine that made provisions for auto­
matic carrying of digits when the sum of a column is 
greater than 9 was the Pascal machine, invented in 
1642. This has been termed the first authentic account­
ing machine and it was used to figure English currency. 
The machine was basically a hand-operated, gear-driven 
counter. Addition was accomplished by turning input 
wheels a distance equal to the money to be added. This 
is similar to the addition of mileage on an odometer. 

The basic forerunner of the modern large-scale 
computers was the Babbage Analytical Engine, con­
ceived by Charles Babbage in 1833. This machine, which 
operated somewhat similarly to a device called the Ja­
quard Loom, made use of cards and strips of metal 
with various holes punched in them to record numbers. 
A number was represented by an equivalent number of 
holes. After the Babbage machine, several improved 
types of computing machines were developed. Notable 
among them was the Hollerith machine, which used the 
Jacquard idea of holes punched in tape or cards. How­
ever, in the Hollerith machine these holes controlled 
electrical mechanisms. 

2.4.2 Advent of Large, High-Speed Computers 

The first of -the large-scale, high-speed computing 
machines was the Mark I, completed in 1944 by Harvard 
University and International Business Machines. This 
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Fig. 1-4 

Figure 1-4. The Abacus - The Number Represented by the Position of the Beads is 34 

machine uses the IBM punched-card method to insert 
the input data. Its output is typed out by an electric 
typewriter. The sequence of operations of the Mark I 
is controlled automatically. The machine can add, sub­
tract, multiply, divide, or perform other related arith­
metic operations. It is primarily a relay-operated device. 

The Harvard Mark I was highly successful, but 
relay operation was undesirably slow. The first all­
electronic digital computer was the ENIAC, built by 
the University of Pennsylvania in 1946. This used 18,000 
vacuum tubes and could add two 10-digit decimal num­
bers in 200 microseconds, or multiply them together 
in 2 to 3 milliseconds. 

Most of the refinements in recent years, as exem­
plified by the IBM model 700 series (the first mass­
produced digital computers) and the AN/FSQ-7, have 
been concerned with increasing the amount of informa­
tion which can be stored in the machines and increasing 
the speed at which the machines operate. The relative 
slowness of relays, which are used in the Mark I (and 
Mark II), cannot be tolerated when processing data 
for the air-defense system. It is necessary to use special 
high-speed electronic circuits, which operate very much 
faster than relays. In addition, it is necessary to use 
special methods of data storage, that permit extremely 
high-speed insertion and extraction of data. 
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CHAPTER 3 
ELEMENTS AND COMPONENTS REQUIRED BY DIGITAL COMPUTERS 

3.1 THE LANGUAGE USED BY DIGITAL 
COMPUTERS 

The task of a digital computer is to process data, 
expressed in the form of digits, by performing certain 
predetermined arithmetic and control operations on 
the data. These operations are predetermined by a set 
of instructions called the pro gram, which has been pre­
viously made up by the operator. 

In some computers, the instructions may be in the 
form of special wiring (i.e., of control circuits of the 
machine). Such a computer would use a control panel 
somewhat similar to a telephone switchboard to direct 
operations. This is called a control panel program. In 
stored program computers, however, the instructions 
are expressed in the form of digits. That is, each in­
struction is identified by a code number. The program, a 
list of code numbers, is fed to and stored in the computer 
in a manner similar to the input and storage of data. 
Then, by a process of decoding, the computer can direct 
itself in the solution of the problem for which the 
program was written. 

A computer does not "understand" digits from a 
numerical point of view. It merely responds to speci­
fic physical conditions created in the components of 
the computer. These physical conditions-voltages, cur­
rents, etc., represent the digits. The physical conditions 
interact to produce a set of conditions that represent 
digits expressing the solution to a problem. Thus, the 
"language" used by computers consists ultimately of 
specific physical conditions in its components. Conse­
quently, all data and instructions fed to a computer 
must be represented by specific physical conditions in 
the computer. For example, if the digits 0, 1, 2, 3, and 4 
are to be presented to a digital computer, they must be 
presented as five separate physical conditions that can 
be set up in the components of the computer. 

One type of physical condition that can represent 
a digit is a voltage on a voltage input line. To present 
five different digits to a computer, therefore, five dif­
ferent voltage input lines could be used. Similarly, volt­
ages on output lines, obtained by processing the input 
data, could represent the digits in a desired manner. 
Then, if a voltage were applied to the line representing 
the digit 1 and another voltage were applied to the 
line representing the digit 2, along with the order to 
add the two digits, the response of the computer would 
be a voltage on the output line that corresponds to the 

digit obtained by adding 1 and 2; this would be the 
output line representing the digit 3. 

The order for the computer to add the input digits 
-or any other order that the computer can carry out 
-would also be presented to it in the form of groups 
of digits. Digits representing instructions to the com­
puter for operating on input data could be fed into a 
special set of control lines reserved for instructions 
only. With such an arrangement, the digits represent­
ing data and the digits representing orders would not 
be confused by the computer. If the order "add" were 
assigned the digit group 23, this order could be pre­
sented to the computer by voltages on the control lines 
representing digit 2 and the digit 3. Figure 1-5 illus­
trates how such an arrangement would lead to addition 
of the digits 1 and 2. 

The preceding description is extremely simplified 
and not necessarily based on any system in common 
use. It does illustrate, however, the type of "language" 
that a digital computer "understands." Figure 1-5 gives 
an idea of the fundamental nature of information rep­
resentation in a digital computer. To represent a 3, the 
3-line must have a pulse on it; if no 3 is present, no 
pulse is present on the 3 line. In other words, an on 
or off condition represents the presence or absence of 
a digit, respectively. 

The decimal system of numbers can be represented 
this way, but a far simpler number system, made up 
entirely of the digits 0 and 1, can be more easily used. 
This binary number system can represent any number 
by a series of l's and O's. For instance, a binary number 
equivalent to decimal 25 is 11001 (see Part 2). Because 
binary numbers can be used to represent any quantity, 
they can be used in digital computers. A 1 can be repre­
sented by the energized condition of a relay and 0 by 
the de-energized relay condition. 

3.2 DIGITAL-COMPUTER ELEMENTS 

3.2.1 Data Processing 

3.2.1.1 General 

Should we wish to know a single number that is 
equal to 24 times 512, we would multiply the two num­
bers together, thus: 

24 x 512 = 12,288 

Both sides of the equation are equal-we did. 
not gain any information by multiplying (processing) 
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Figure J -5. Numbers and Control Instructions Represented in the Form of Voltages 

the data, although it is admittedly in a form more suit­
able for such purposes as comparison with other num­
bers, adding to other numbers, etc. It should always be 
kept in mind that data processing machines generate, 
no new information even though their processing re­
sults in much greater usability of the existing data. It 
should also be remembered that the operator or pro­
grammer instructs the machine to perform every re­
quired step. The machine does not think-all of its op­
erations and decisions must be built or programed into 
it by human effort. 

3.2.1.2 Examples of Simple Data Processing 

A man who processes data does so by following 
an exact set of rules, although he may not always be 
conscious of the fact. In making up a payroll, for ex­
ample, a paymaster performs a series of predetermined 
operations which may be written down in a check-list 
which he must follow. The operations governed by 
the check-list and their sequence may be as follows: 

1. Receive and store (write down) necessary data 
such as: 

a. Number of hours worked by each employee 

b. Pay rates for each employee 

c. Deductions from gross pay for each employee 

2. On data stored for each employee, perform 
arithmetic operations such as: 

a. Multiply hours by hourly pay rate, write 
down partial products, and add partial prod­
ucts for complete product 

b. Multiply the sum obtained in operation a 
by a tax rate 

c. Subtract the product obtained in operation b 
from the product obtained in operation a 

3. Make available, in a useful form, the results 
( output) of the preceding operations (1 and 2). 

Throughout the task of making up a payroll, an 
efficient paymaster would perform only those operations 
required by the rules of the task. He would not, for 
example, add up the ages of all the employees, even 
if this data appeared on the original documents re­
ceived. On the other hand, the paymaster would oper­
ate on all the data necessary for the task, and he would 
perform all necessary operations, as determined by the 
rules of the task. 

Hence, to perform his work properly a paymaster 
must have some means of storing the required data 
and the appropriate instructions (such as paper, charts, 
tables, etc.). Morever, he must be able to extract data 
as needed and perform arithmetic operations in proper 
sequence. Finally, he must have means of making avail­
able in useful form the results of the operations-for 
example, a means of making out pay checks. 

3.2.1.3 Machine Requirement for Data 
Processing 

If the paymaster were making out the payroll on 
a computing machine, the machine would require facil­
ities for: 

a. Receiving necessary data 

b. Storing the data 

c. Controlling, by the rules of the task, the selec­
tion of data to be operated on and the proper 
sequence of operations 

d. Performing required arithmetic operations 

e. Making available in useful form the results of 
the operations 
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In other words, the computer would need an input ele­
ment, a storage element, a control element, an arith­
metic element, and an output element. 

The operational elements listed above are the ele­
ments required by typical digital computers. The follow­
ing paragraphs describe these elements and explain the 
tasks performed by each. Notice the similarity between 
corresponding computer operations and human oper­
ations, and remember that all steps originate with the 
human operator (programmer). 

3.2.2 Input Element 

The first operation that a digital computer must 
perform in a data-processing task is to accept the data 
pertinent to the task, and the instructions (program) 
for performing it. As explained in section 3.1, all data 
and instructions must be presented to a stored program 
computer in the form of digits, and these digits must 
be such that they can be represented by physical condi­
tions in the computer components. 

If each computer component has only two possible 
conditions-e.g., the open and the closed positions of a 
relay-all data must be presented as combinations of 
only two digits-e.g., 0 and l. 

Obviously, there must be an element that can ac­
cept the digits as they are presented by the operator, 
and this element should set up representative physical 
conditions in the computer. This input unit is called 
the input element: it provides one-way communication 
from the outside world to the computer. Data and in­
structions are fed to a computer through an input ele­
ment; but an input element returns nothing to the out­
side world. 

Items of data presented to the input element are 
not necessarily in the exact form that the rest of the 
computer elements can use. For example, in figure 1-6, 
a typewriter input might be used with which the oper­
ator would type out the data and instructions in a 
decimal code. The typewriter would have switches con­
nected to each key which would convert the hitting of a 
key into an electrical impulse. The electrical impulse 

INPUT DATA IN 

VARIOUS TYPICAL 

FORMS 

/" TYPEWRITER INPUT 

rC1~ 

might then be converted to a binary code so that the 
computer could work with it. The input element usually 
performs this function of translating terms understand­
able to the outside world to those usable by the com­
puter. Other input devices, such as card and tape read­
ers, as well as various automatic input devices, are pos­
sible means of input. Nevertheless, the purpose of the 
input system is always the same-to translate the sym­
bols of the outside world to those of the computer. 

3.2.3 Output Element 

The results of a digital computer's operations must 
be delivered to the user of the machine in an appropri­
ate form. The element that accomplishes the transfer is 
the output element. The results of a computer's oper­
ations, however, are not necessarily in the form best 
suited for use outside the machine. Hence, an output 
element may include facilities for converting the results 
of the computer's operations into the form of output 
data best suited to the user of the machine. Thus, the 
answer to the problem might enter the output element 
in the form of binary electrical pulses. The output ele­
ment may then convert these pulses to voltages that 
operate an electrically operated typewriter or a print­
ing machine to print the final answer. (See figure 1-7.) 

The output element, like the input element, is a 
one-way unit. It receives information from the other 
elements of the computer and transfers the information 
to the final user, but it does not return any information 
to the computer. 

3.2.4 Arithmetic Element 

Since the purpose of a digital computer requires 
that the machine perform arithmetic operations on the 
input data, a digital computer must obviously contain 
an element that can accomplish these operations. This 
is the arithmetic element. All data to be operated on 
arithmetically must enter this part of the computer. Like­
wise, most instructions determining what computations 
are to be performed must control the arithmetic ele­
ment. (See fig. 1-8.) 
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Figure J -6. Input Element - This Element Receives Information and Converts it into Usable Form 
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Figure I -8. Arithmetic Element - Data Enters and Is Processed by this Element 

Theoretically, it would be possible to build an 
arithmetic element which could perform most mathe­
matical operations directly, just as a man performs 
them. This however, would require a very large and 
complicated arithmetic device and, consequently, is 
never done. Instead, the arithmetic element is usually 
designed to perform only a few basic operations such 
as addition, subtraction, multiplication, and division. 
(Three of these four operations are usually only an 
adaptation of either addition or subtraction.) If an 
arithmetic device can perform either addition or sub­
traction, and a few other simple operations, it can be 
made to perform almost any other mathematical oper­
ation by simply breaking the operation down into its 
fundamental operations. This is the way in which the 
arithmetic element is made to do the more complex 
mathematical operations that are often required. 

The arithmetic operations in a high-speed machine 
such as AN/FSQ-7 and AN/FSQ-8 must be accomplis~ed 
very quickly. Entire series of operations must be com; 
pleted in a few microseconds (usec). This speed 
cannot be attained by mechanical or electro-mechanical 
devices (such as relays) but can be attained by electronic 
circuits. Electronic circuits for performing arithmetic 
operations are described in Part 3. 

3.2.5 Storage Element 

As stated in paragraph 2.3.2, operations in a digital 
computer are carried out in step-by-step fashion. For 
this reason, some of the information fed into a com­
puter must be stored for indefinite periods prior to 
actual usage. The facilities required for storing informa­
tion in a computer are included in the storage element. 

Information fed into a computer is of three kinds: 

a. Particular items of data to be processed 

b. Instructions for performing the particular data­
processing operations required (the program) 

c. Reference data 

Reference data-(c) above-must sometimes be 
stored for indefinite periods. For example, if the com­
puter is used in the air-defense system, the reference 
data will include ballistic tables and Hight plans of 
friendly aircraft. Such data are used over and over for 
successive problems. It would be impractical to feed 
this same information into the computer all over again 
for each new problem. If the storage element of the 
computer can retain such data indefinitely and quickly 
select individual items each· time they are needed, prob­
lems can be solved much faster. Indeed, without fast, 
automatic, and reliable insertion and extraction of data 

12 UNCLASSIFIED 



PART 1 
CH 3 

UNCLASSIFIED 
T.O. 31P2-2FSQ7-2 

Control Element 
3.2.5-3.2.6 

into and out of storage, working with a computer 
would be little more efficient than working with hand­
operated calculators and reference tables. 

Another type of information that can be stored is 
the pro gram, or the set of instructions for performing 
a particular data-processing task. With a common pro­
gram and common reference data stored in advance, the 
only additional input data required for a series of simi­
lar problems are those items that vary in value from 
problem to problem; that is, the actual numbers to be 
operated upon. Thus, the time required for insertion of 
input data for each new problem is accordingly reduced. 

The basic characteristic of an information storage 
medium is that it has at least 2 stable states. For in­
stance a light switch may be considered to be a memory 
element. It "remembers" whether the light is on or off, 
once it is set. In a computer the memory is capable of 
"remembering" a great many numbers which at any 
time must be almost instantaneously available to the 
rest of the computer. To accomplish this, many types of 
storage media can be used. One medium used is mag­
netic tape which uses recorders and readers very similar 
to home tape recorders. Another medium is magnetic 
drums. This device is similar to a tape recorder with 
very wide tape and a large number of parallel reading 
and recording heads. Actually the wide "tape" is a 
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Figure 1-9. Storage Element - Possible Address 
and Contents Correlation 
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rotating drum coated with a magnetic material. There 
are also other storage devices, such as magnetic cores 
and cathode-ray tubes (see Part 3). 

All storage elements have some basic characteris­
tics that are similar. They always contain a number of 
storage locations, in each of which a single piece of 
data may be stored. Each of these locations is assigned 
a specific number called an address so that it may be 
selected by the computer either for insertion or extrac­
tion of data. For instance, in the diagram of the 8-loca­
tion memory shown in figure 1-9, the addresses are 
shown on the left, opposite their actual contents. To 
refer to the number 10,121 the computer would refer 
to the location whose address is 003. 

3.2.6 Control Element 

There must be a definite sequence for the flow of 
data during processing by a digital computer. Data 
must be inserted into particular storage locations and 
then used in correct sequence at the appropriate times. 
The arithmetic element must also be "told" what oper­
ations to perform on the data and in what order to 
perform them. For all desired processing operations, 
moreover, the results of the arithmetic operations must 
be routed to the appropriate storage or output loca­
tions. Also, the transfer of all output data to the out­
put element and, finally, to the user must be properly 
controlled to ensure the required sequence of informa­
tion. 

The entire sequence of operations by the computer 
is predetermined by the program (and the construction 
of the computer) for the data-processing task. The pro­
gram, coded in the digital language used by the com­
puter, is inserted through the input element, to be stored 
at specific addresses in the storage element. The element 
for interpreting and carrying out instructions contained 
in the program is the control element (see fig. 1-10). 

By its interpretation of the program, the control 
element governs the flow of data and the sequence of 
operations performed by the computer. In a high-speed 
machine such as the AN /FSQ-7, special electrical cir­
cuits provide the required control. These circuits re­
spond to electrical signals representing the digits that 
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make up the control instructions or program, produc­
ing appropriate control signals. The control signals 
cause arithmetic operations to take place and effect the 
transfer of data from one element of the machine to 
another. For instance, in figure 1-11 the .action of the 
control element on the other element is shown. In this 
figure, information transfer is shown in heavy lines 
while control lines are light. 

Control circuits are similar in some ways to arith­
metic circuits. They operate in close association with 
all the circuits that carry out arithmetic or other pro­
cessing operations (see Part 3). 

3.2.7 General Organization 
Figure 1-11 shows the general organization of the 

computer elements in a typical computer. Along with 
the various elements, information and control lines are 
shown which indicate the flow of information and con­
trol impulses through the computer. The heavy lines are 
information transfer lines; these lines will transfer both 
data and instructions between the input and the mem­
ory. Between the storage element and the output and 
between the storage element and the arithmetic ele­
ment, data is transferred on these lines. From the stor­
age to the control elements, only instructions are trans­
ferred on the heavy line. The light lines from the con­
trol element represent the control voltages which the 
control element sends to all elements. 

3.2.8 General Operation 
Both the computing section and the input-output 

elements operate under control of the program. A short 
computing operation will be explained; it will be as­
sumed that the program and data are already in the 
memory when the computer starts. 

The general operation of the computer in follow­
ing a set of instructions can be illustrated by analogy. 
Assume that the paymaster (par. 3.2.1) is following a 

set of instructions in sequence, and he has just found 
the number of hours worked by a man. The next in­
struction he reads says: "Multiply the number of hours 
by the hourly pay rate." The paymaster would then 
obtain the hourly pay rate from wherever it was written 
down (stored) and multiply the hours by the pay rate. 
It can be seen that the instruction specified two things: 
the operation and the operand to be used in the oper­
ation. 

The instructions in a computer program have some­
what the same form. They specify the operation to be 
performed and the address of the location in memory 
where the operand is kept. For instance a program may 
have an instruction in it which says: 

"Clear the arithmetic element and add the 
number which is in memory location 020." 

To execute such an instruction, the control element 
would first cause the arithmetic element to be cleared 
of any numbers it might contain. Next the control ele­
ment would cause the number in memory location 020 
to be transferred from the memory, to be added into 
the arithmetic element. 

Therefore, the execution of a series of instructions 
would be quite a simple matter. The instructions would 
be stored in memory in proper order. The data would 
be stored in the locations which correspond to the ad­
dresses of the pertinent instructions. After this was 
done, the control element would be made to pick out 
the first instruction and execute it, pick out the next 
instruction and execute it, and so on until an instruc­
tion told the computer to stop. 

As an example: 
Suppose that it is desired to add the numbers 512 

and 608 together and to store the sum in memory location 
012. Possible instructions are given in table 1-1 and 
it is assumed that the computer could execute the in-

TABLE 1-1. SOME POSSIBLE INSTRUCTIONS 

ABBREVIATION 

CAD x: 

ADD x: 

FST x: 

HLT: 

14 

MEANING 

Clear the arithmetic element and 'add in the number in memory location x. The 
completion of this instruction will cause the arithmetic element to contain the 
number which is in memory location x, where x is the address of the memory 
location specified. 

Add to the number which is in the arithmetic element the number in memory loca­
tion x. The completion of this instruction will cause the arithmetic element to 
contain the sum of the contents of the arithmetic element and the number in 
memory location x. 

Store the contents of the arithmetic element in memory location x. The comple­
tion of this instruction would cause the number in the arithmetic element to be 
transferred to memory location x. 

Stop the computer. 
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structions in table 1-1. To solve the problem, a pro­
gram such as that shown in the symbolic memory of 
figure 1-12 would be required. 

The control element executes the program by auto­
matically picking out and executing instructions one 
after another, starting with location 000. The oper­
ation, therefore, would go somewhat as follows: 

1. The operator presses the computer START push­
button. 

2. The control element obtains from memory lo­
cation 000 the instruction CAD 005. 

3. The control element first clears the arithmetic 
element and then transfers from memory loca­
tion 005 to the arithmetic element the data word 
(number) 512. 

4. The control element obtains from memory loca­
tion 001 the instruction ADD 007. 

Address 

000 

001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 

Contents of Location 

CAD 005 

ADD 007 

FST 011 

HLT 

512 

608 

1120 

Figure J - J 2. Contents of Memory for Solution of 
the Problem: 5 J 2 + 608 == ? 

5. The control element causes the data word (num­
ber) 608 at memory location 007 to be added 
to the number in the arithmetic element to 
leave a sum, 1120, in the arithmetic element. 

6. The control element obtains from memory loca­
tion 002 the instruction FST 011. 

7. The control element causes the data word 1120 

in the arithmetic element to be stored at loca­
tion 011 in the memory. 

8. The control element obtains from memory loca­
tion 003 the instruction HLT. 

9. The control element stops the computer. 

3.2.9 Summary 

The sequence of events in carrying out a complete 
computation on a computer is as follows: 

1. A program is prepared by a programmer. 

2. Through the input devices, the computer oper­
ator loads the program and data into the com­
puter memory (data storage section). 

3. The computer is started and the control ele­
ment automatically follows the program, trans­
ferring data from the memory to arithmetic ele­
ment, (which performs the arithmetic opera­
tions called for in the program), and transfer­
ring intermediate results from the arithmetic 
element to the memory. 

4. The final results are transferred from the mem­
ory to an output unit (still under control of the 
program). 

5. The output unit translates the results to a form 
that can be read, heard, or seen by the operators. 

6. The control element reaches a halt instruction, 
and the computer stops operation. 
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PART 2 
COMPUTER ARITHMETIC 

CHAPTER 1 
INTRODUCTION 

1.1 COMPUTERS AND INFORMATION 

A digital computer processes information by the 
use of devices whose physical or electrical states corre­
spond to definite, previously agreed upon meanings. 
These meanings may be represented in the form of 
numbers. Such a representation is a type of code in 
which the state of certain computer components is re­
lated to the numbers. These numbers, in turn, may be 
related to both numerical and non-numerical informa­
tion, on the basis that certain combinations of numbers 
always represent a specific meaning. A number system 
is the medium by which information is prepared for com­
puter processing. 

1.2 POSSIBLE NUMBER SYSTEMS 

Since a digital computer processes information 
which is expressed as numbers, a brief investigation of 
some available number systems is in order. The decimal 
system is the number system most universally known. 
This system derives its name from the total number of 
symbols used in notation-decem is the Latin word for 
ten. The decimal system of numbers uses the arabic no­
tations 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, alone or in com­
bination to express quantity or identity. Other number 
systems are possible and are available. The Mayan In­
dians used a vicenary system of very unusual-looking 
symbols. The Romans used the marks I, V, X, C, D, L, 
and M. Some mathematical tables have been computed 
in accordance with the duodecimal system; the eleventh 
and twelfth marks being X and E respectively. 

Some of these number systems are the results of 
historical development peculiar to a culture-for exam­
ple, the "twenty" system of the Mayans. Other systems 
are useful for certain functions and owe their existence 
to such specific usefulness. A number system is identi­
fied by the kind and the total number of symbols used 
to express the idea of quantity. 

At present, the Arabic symbols are of major inter­
est in the computer field. The variation in total number 

of symbols may be a new concept. The decimal system 
uses ten symbols; the binary system, two; and the oc­
tonary system, eight. All three systems use Arabic sym­
bols to express numbers. 

1.3 WHICH NUMBER SYSTEM IS BEST 

The usefulness of the decimal system is evident 
from its universal acceptance as a mode of counting 
in science, in business, and in everyday life. The proce­
dures for arithmetic operations in the decimal system 
are familiar and the symbols have been traditional for 
many centuries. No one would suggest a departure 
from the decimal system as far as noncomputer oper­
ations are concerned.. 

But in selecting a number system for use with a 
digital computer, primary consideration must be given 
to that system which is most advantageous for the com­
puter. It is possible, and in some cases preferable to 
use the decimal system, but such a system is not usually 
convenient. A computer consists of physical devices 
which are bistable: a hole is either present or absent in 
a card; a relay is either opened or closed; a vacuum 
tube is either conducting or nonconducting; a magnetic 
material is magnetized in one direction or in the oppo­
site; a crystal diode conducts very well in one direction 
but becomes a high resistance to current in the opposite 
direction. A computer, then, is inherently binary; there­
fore, the natural counting scheme for computer circuits 
is the binary system. 

The binary system uses two symbols, 0 and 1, and bi­
stable devices have two states; this is one advantage of 
this system. Another advantage of the binary system is 
the simplicity of arithmetic operations. Only two pro­
cedures are necessary: addition and. subtraction. The 
rules to perform these procedures are very simple and 
lend themselves to automatic operation. But the binary 
system has the disad.vantage of being difficult for a per­
son to read or express quickly in words. This is because 
the expression of a number in binary requires a number 

UNCLASSIFIED 17 



Number Systems 
1.3 

UNCLASSIFIED 
T.O. 31P2-2FSQ7-2 

PART 2 
CH 1 

with approximately 3-V2 times as many digits as the 
same number expressed in decimal notatiO'n. For in­
stance decimal 9 expressed in binary is 1001. 

It is evident that the decimal system is suitable for 
noncomputer operation and that the binary system is 
more useful in digital computers. The octal system is a 
convenient method for expressing the information that 

is being presented as inputs to' the computer. The octal 
system uses the Arabic symbols 0, 1, 2, 3, 4, 5, 6, and 7. 
There is a natural relationship between binary and octal 
numbers and one octal number may represent three binary 
numbers. If input-output information is expressed in 
octal numbers, there is a reduction in notation and, 
therefore, easier reading for the operator. 
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CHAPTER 2 
NUMBER SYSTEMS 

2.1 DECIMAL NUMBERS 

2.1.1 General 

The 10 Arabic symbols, which are the familiar no­
tations 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 used in the 
decimal system, owe their form to traditional accept­
ance. By definition, each symbol is termed a digit and 
represents quantity or identity-$990.00 represents a 
quantity of dollars whereas 900 Ninth Avenue may 
identify a building. 

2.1.2 Positional Notation 

The idea of number expressed by these symbols de­
pends on another important characteristic of the deci­
mal system: the value of a digit depends on its posi­
tion; for instance, the digit 7 expresses different values 
in the expressions 70, 700, and 7,000. To determine the 
position of a digit, some point of reference must be 
known; in decimal notation, it is called the decimal 
point. The position of the digit to the right or left of 
this point indicates the value of the digit. 

2.1.3 Radix 

The base or radix of the decimal system is 10; 
that is, counting in the decimal system is accomplished 
by counting from 0 through 9 over and over again 
until the count is finished. The base (radix) of any 
numbering system always equals the total number of 
different symbols used for the digits of the system. 

2.1.4 Counting 

The decimal number system uses 10 symbols and 
an unlimited number of positions to express value. Each 
position to the left of the decimal point represents a 
positive power of 10, with the power increasing from 
each position to the next left position. Positions to the 
right of the decimal point represent negative powers of 
10, with the power increasing in a negative direction 
from each position to the next right position. (The posi­
tive power of a number is the number of times the 
number is multiplied by itself, while the negative power 
of a number is the number of times the reciprocal of 
the number is multiplied by itself.) 

A true number system consists of a collection of 
symbols with a systematic means of progression from 
one number to a higher or lower number. Counting is 
the progression from one number to a higher or lower 
number. Since numbers are expressed by symbols, a 
method of symbol combination is necessary once all the 

original symbols have been used. For example, a count 
to nine uses all the original symbols; in order to count 
past nine, combinations using two symbols are used 
up to 99. The combinations are selected in an orderly 
way as follows: 

Progressing from 9 to 10: 

1. Advance the symbol in the right position (9) 
back to the first symbol (0); 

2. Move left to the next position and advance the 
symbol (an implied 0) to the next symbol in 
the system (1). 

Progressing from 10 to 11 and on to 99. 

1. Advance the symbol in the right position (0) to 
the next symbol in the system (1). 

2. Continue advancing the symbol in this position 
until the last symbol (9) is reached. 

3. Change the 9 to a 0, then advance to the left 
position and add a one to the symbol occupying 
that position. 

4. Continue in this manner until the number 99 is 
expressed. 

Progressing from 99 to 100 and on to 999. 

1. After the last symbol is used in the right posi­
tion, follow the procedures given in example 2, 
advancing to the left one position at a time. 

2. This method of counting is used not only in the 
decimal system but also in the binary and octal 
systems. 

2.1.5 Expression of a Decimal Number 

The base of the decimal system is 10; any number 
may be expressed as a sum of the powers of 10, each 
power being multiplied by the coefficient of the term. 
For example, examine 2145.401 as a decimal number: 

a. Note the reference point, the decimal point. 
Powers of 10 to left of the decimals point are 
positive, to the right are negative. 

b. The expression is equivalent to: 

2000 + 100 + 40 -t- 5 + 4/10 + 0/100 + 1/1000 

or 2(1000) + 1(100) + 4(10) + 5(1) + 4(.1) 
+ 0(0.1) + 1(.001) 

or 2 x 103 + 1 x 10~ + 4 X 101 + 5 x 10 + 4 X 10- 1 

+ ~ X 10-2 + 1 x 10-.... 
Coefficient Power of base 
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Usually, only the coefficients are expressed, and 
the part of the expression concerned with the power 
of the base is understood because of the notational 
position. 

2.2 THE GENERAL EXPRESSION FOR A NUMBER 

Any number may be expressed by the formula for 
the general expression for a number. The formula de­
fines any number as follows: 

N = CnRn + Cn_ 1Rn-1 + ... CoRo + C_1R-1 
+ C_ 2R-2 - ... 

where: 
Cn is the coefficient of the nth term; 

R is the radix 

The number to be expressed is N. 

The highest power to which the radix is raised is n. 

For example, the polynominal 212.75 can be ex-
pressed as: 

212.75 = 2 x 102 + 1 X 101 + 2 x 10° + 7 X 10-1 

+ 5 X 10-2 

or as; 

N = CnRn + Cn_1Rn-1 + CoRo + C_1R-1 
+ C_ 2R-2 ... -. 

The number 212.75 is a mixed number; i.e., it is an 
integer and a fraction. An integer is a whole number and 
the integral portion is 212; the fraction is .75. The deci­
mal point is always the reference point, the numbers to 
the left are integers, and those to the right are fractions. 

R = 10 because the base of the decimal system is 10. 

Cn = 2 because the coefficient of the nth term is 2. 
The nth term is always the leftmost number. 

Cn -1 = 1 because the coefficient of the term one position 
to the right of the leftmost term is 1. 

Co = 2 because the rightmost coefficient in the integral 
position of an expression is always Co. 

C-1 = 7, ,the first number after the decimal point. 

C_ 2 =5 

Substituting the values in the equation, 

212.75(10) = 2 x 102 + 1 X 101 + 2 x 100 + 7 X 10-1 

+ 7 X 10-2 

212.75(10) = 2 x 100 + 1 x 10 + 2 x 1 + 7 x.l + 5 x .01 
= 200 + 10 + 2 +.7 + .05. 

212.75(10) = 212.75 

Thus it becomes obvious that a number expressed in 
the usual arabic symbols is merely a statement of the 
coefficients of the general formula. The expression for 

any number in any number system can be defined by 
the above formula. Take, for example, a number in the 
octal system-with a radix of 8. The octal number 
245.32(8) can be expressed in decimal as: 

245.32(8) = 2 x 8(120) + 4 x 8do) + 5 x 8(~0) 

+ 3 x 8(1~) + 2 x 8(1;) 

The subscript (8) means that the number is ex­
pressed in octal notation and subscript (10) means 
decimal notation. 

To complete the operations indicated in the right­
hand side of the above expression would result in the 
decimal equivalent for 245.32(8)' R is expressed as 
eight, which is a decimal number since seven is the 
largest symbol available to express a single digit in 
the octal system. 

To express the number completely in octal terms, 
some octal expression whose value equals decimal 8 must 
be substituted for the radix. In the octal system, the 
symbol 10 (octal 10) is equal to' decimal 8. The com­
plete octal expression for the octal number 245.32 (8) 
would read: 

245.32(8) = 2 x 10 2 + 4 x 10 1 + 5 X 10(08) 
(8) (8) 

+ 3 x 10 ~~ + 2 x 10 (8~ 

2.3 BINARY NUMBERS 

2.3.1 General 
From actual experience, it is known that the 

amount of equipment required for a digital computer 
depends on the base of the number system utilized. 
Most modern computers are designed to' use the binary 
system (base 2) because this system is the most efficient 
with present day components, which are binary in na­
ture. The binary number system, with a base (udix) 
O'f 2, utilizes combinatiO'ns O'f twO' digits to represent 
any number. A binary number will be made up of the 
binary digits 0 and 1 and will appear in a manner 
similar to' this: 1101011. The term binary digit has been 
shortened sO' that in cQmputer terminQlogya binary 
digit is called a bit. The binary numbers can be repre­
sented in electrQnic terms in a manner similar to' the 
fQllQwing examples: 

(1) Relay 

(2) Vacuum tube 

2.3.2 Binary Counting 

open = 0 

clO'sed == 1 

cO'nducting == 0 

nonconducting == 1 

CQunting is started in the binary system in the 
same way as in the decimal system with the symbol 0 
for the number zero in the right PQsition and with 1 
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for one as the next progression. But at two in the 
binary system there are no more symbols available. To 
progress from one to two in the binary system, a carry 
operation similar to that used to progress from 9 to 10 

in decimal is required. This move is to replace the 1 

with a 0 and add a 1 to the next position to the left. 
The following is a listing of some numbers of equivalent 
value in the binary and decimal systems. 

BINARY (BASE 2) DECIMAL (BASE 10) 

0 0 

1 1 

10 2 

11 3 

100 4 

101 5 

110 6 

111 7 

1000 8 

1001 9 

1010 10 

1011 11 

In the binary system, the value of the digit is de­
termined by its position in relation to the binary point 
(similar to a decimal point). 

2.3.3 General Meaning of a Binary Number 

An examination of the above list will show that a 
binary number is also expressed according to the gen­
eral expression for a number. In the case of binary 
numbers, however, there are only the two digits 0 and 1; 

hence, the radix of the system is two. The last number 
in the list, then, is actually an expression of the follow­
ing equation with the radix expression dropped. 

1011 == 1 x 2(130) + 0 x 2(120) + 1 x 2(1~) 

+ 1 X 2(1~) 

When the expression on the right is evaluated in deci­
mal numbers, it will be found to equal decimal 11. 

The meaning of a fractional binary number is also 
easily expressed in the general formula. Again, the 
powers of the radix to the right of the reference point 
(binary point) are negative powers. The expression 
. 1101 in binary can be expressed as follows: 

. 1101 == 1 x 2-1 + 1 X 2-2 + 0 X 2- 3 + 1 X 2- 4 

In decimal this equals: 

1 1 0 1 13 
"2+4+'8+"16==16 

or 
.5 + .250 + .0625 == .8125 

2.3.4 Generating Binary Numbers 

Binary numbers can be made up and checked for 
the equivalent decimal value without using a decimal­
to-binary conversion table. The problem of represent­
ing a decimal number in binary form requires the cal­
culation of the correct binary arrangement of l's and 
O's. There is a fast and simple method for solving such 
a problem and for checking the result. For example: 

express 62.375 (10) in N (2) 

The first step in this procedure is to write in sequence 
the decimal values of the power of two: 

64 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32 

Since 62 is less than 64, place a 1 under those values 
(highest) which when added together equal 62; place a 
o under the other values of the base 2. Place a 0 under 
the decimal values which are not included in the sum. 
Thus, the integral portion of the binary number has 
been generated. The fraction .375 equalso/s which is 
the sum of l~ plus VB. Place l's under 14 and VB and a 
o under V2' 
Decimal 64 32 16 8 4 2 1 1/2 1/4 1/8 

Binary 0 1 1 1 1 1 O. 0 1 1 

To check the result, add all decimal values which have 
a binary weight of 1. 

32 

16 

8 

4 

+ 2 

62 

1/4 

+1/8 

3/8 or .375 

The binary number for any decimal expression can be 
generated by this method. 

2.4 OCTAL NUMBERS 

2.4.1 General 

The octal number system is similar to the decimal 
and binary systems. The only difference between the 
three systems is caused by the differences in radix. 
The radix of the octal system is 8. Therefore, the only 
symbols allowed in an octal number will be the digits 0 .. 

1, 2, 3, 4, 5, 6, and 7 . 

2.4.2 Octal Counting 

Octal counting proceeds from 0 to 7 just as in 
decimal. However, at 7 in the octal system there are 
no more symbols available. To progress from 7 to 8 in 
the octal system, a carry operation similar to that used 

UNCLASSIFIED 21 



Octal Numbers 
2.4.2-2.4.4 

UNCLASSIFIED 
T.O. 31P2-2FSQ7-2 

PART 2 
eH 2 

t.o pr.ogress fr.om 9 t.o 10 in decimal is required. The 
f.oll.owing is a listing .of s.ome octal numbers and their 
decimal equivalents: 

OCTAL (BASE 8) DECIMAL (BASE 10) 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

10 8 

11 9 

12 10 

13 11 

14 12 

15 13 

16 14 

17 15 

20 16 

In the .octal system, the value .of a digit is determined 
by its P.ositiQn relative tD .octal PQint. 

2.4.3 General Meaning of an Octal Number 

An examinatiDn .of the abQve list will shQW that 
.octal numbers are alsQ expressed accQrding tD the gen­
eral expressiDn fDr a number. 

210.8(8) == 2 X 82 + 1 X 81 + 0 x 80 + 2 X 8- 1 

The evaluati.on .of the fDrmula shQWS that the .octal 
number 210.2(8) is equal tQ the decimal number 
136.25(10)' 

2.4.4 Use of Octal Numbers 

The .octal number system is useful in cQnnectiQn 
with digital cQmputers as a fQrm .of shDrthand f.or 
binary nDtatiQn. The relatiDnship between the tWD sys­
tems can be stated as fDllQws: since eight is the third 
PQwer .of tWD, three places in binary nQtatiQn CDrre­
sponds tD .one place in QctDnary nQtatiQn. Each .octal 
digit can be represented in binary by three digits (bits), 
and, cQnversely, every cQmbinatiQn .of three bits has a 
cQrresPQnding .octal digit. The cQrrespDndence can be 
summarized as fDllDWS: 

OCTAL BINARY 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 

247 010 100 111 

526 101 010 110 

5647 101 110 100 111 

The use .of eight symbQls (QctDnary), rather than tWD 
(binary), provides a number language which is easier 
tQ read and write, and thus decreases the pr.obability 
.of errQr. The advantages .of the .octal number system, 
cQupled with simplicity .of the cQnversiQn between .octal 
and binary nQtatiQn, make the .octal system a gQQd 
wQrking nQtation fDr .operators whQ are preparing sets 
.of numbers which eventually must be entered intQ a 
cQmputer. 

PrQgrammers use the DctQnary system tQ express 
infDrmatiQn because .octal nQtatiQn is shQrter than bi­
nary and because cDnversiDn frQm the .octal tD the bi­
nary system can be perfQrmed by inspectiQn. 
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CHAPTER 3 
RADIX CONVERSION 

3.1 INTRODUCTION 

The preparation of information for digital com­
puters and the processing of this information within 
the computer involves the use of the decimal, octal, and 
binary number systems. Conversion from one number 
system to another is sometimes necessary, and several 
methods are possible. In this chapter a general method 
based on the general expression for a number will be 
given. In some cases this general method involves more 
work than necessary, particularly when the method re­
quires that arithmetic be performed in other than the 
decimal system. In such cases alternate methods have 
also been given. 

3.2 GENERAL METHOD 

The general method of radix conversion is based 
upon the formula: 

N = CnRn + Cn_1Rn-l ... CoRo + C_ 1R-l 
+ C_ 2R-2 ... -. 

The rules to follow when converting by the gen­
eral method are: 

1. Write the number in the form of the general 
expression for a number. R is the radix of the 
number system from which the number is to be 
converted, but when Rand C are written in the 
formula they are both expressed in the symbols 
of the number system to which the number is 
to be converted. 

2. Add the various terms of the formula, using the 
the rules of arithmetic of the number system to 
which the number is being converted. The sum 
of terms is then the converted number. 

Examples of the use of these rules are given in each of 
the types of conversion explained below. 

3.3 BINARY TO DECIMAL CONVERSION 

The conversion of an expression in binary form to 
its decimal equivalent is performed by using the general 
formula and rules that follow. For example, convert 
10110.111 (2) to its decimal equivalent. 

10110.111 (2) = a mixed binary number; the integral por­
tion is to the left of the binary point, the fraction to 
the right. 

R = 2 because the conversion is being made from the 
binary system. R is the base of the system from 
which the conversion is being made; 

C and R are both expressed decimally; i.e., in the num­
ber system to which the number is being converted. 

Cn = 1 because 1 is the coefficient of the leftmost posi­
tion. 

Rn = 24 because the base is raised to the fourth power; 
n equals the total number of integral positions less 
one. 

Cn- h Cn- 2, Cn- 3 = the binary coefficients following in 
sequence from left to right. 

Co = 0 because 0 is the rightmost binary bit in the integ­
ral position. 

C_ 1 = 1 because 1 is the first binary cofficient after the 
binary point. 

C- 2, -3 = the binary coefficients following in sequence 
to the right of C_1. 

N = CnRn + Cn_1Rn-l + Cn_ 2Rn-2 + Cn_ 3RD_3 
+ CoRo + C_ 1R-l + C_ 2R-2 + C_ 3R-3 

10110.111(2) = (lx24) + (Ox33 ) + (lx22) + (lx21) 
+ (Ox20 ) + (1 x2-1) + (1 x2-2) + (1 X 2-3) 

10110.111(2) = 1 x 16 + 0 x 8 + 1 x 4 + 1 x 2 + 0 xl 
+ 1 x 1/2 + 1 x 1/4 + 1 x 1/8 

10110.111(2) = 16 + 0 + 4 + 2 + 0 + 1/2 + 1/4 
+ 1/8 

10110.111(2) = 22.875(1(l) 

Notice that arithmetic was performed entirely in the 
decimal system, the system to which the number is 
being converted. 

3.4 DECIMAL TO BINARY CONVERSIONS 

Three methods of decimal to binary conversion 
are given below. The first is the general method already 
explained, and the other two are somewhat easier 
methods which avoid use of binary arithmetic. 

3.4.1 General Method 

The general rule may be used to convert a decimal 
number to a binary number. As an example, convert 
the decimal number 22.851(10) to its binary equivalent. 

22.875(10) = 10 x (1010)1 + 10 x (1010)0 
+ 1000(1010)-1 + 111(1010)-2 + 101(1010)-3 
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1000 111 
22.875(10) = 10100 + 10 +-- + ------

1010 (1010) (1010) 

101 

+ (1010) (1010) (1010) 

1100100000 + 1000110 
22.875 (10) = 10110 + -----

(1010)3 (1010)3 

+ 101 
(1010)3 

1101101011 
22.875(10) = 10110 +----­

(1010)3 

22.875(10) = 1.0110.111(2) 

In the terms of the formula: 

a. R = 10, which is the base of the system from 
which the number is being converted. 

b. Rand C are both expressed in binary, which is 
the system to which the number is being con­
verted. 

c. The multiplication of the powers by their co­
efficients and summing of the terms to get the 
final binary number is performed in binary 
arithmetic. 

3.4.2 Radix Subtraction Method 

In general, the method is to determine what power 
of 2 is the l~rgest that is smaller than the decimal; 
this power is subtracted from the decimal number. 
Then an attempt is made to subtract the next lower 
power of 2 from the remainder. If this is not possi­
ble (results in a negative number), the next lower 
power of 2 is subtracted, and so on. For each success­
ful subtraction, a 1 is generated for the binary number. 
For each unsuccessful subtraction a 0 is generated. For 
example, convert the decimal number 123(10) to its bi­
nary equivalent. 

The first step is to determine from table 2-1 the 
highest power of 2 which is equal to or less than 
123(10); this is 26. The next step is to express in de­
creasing sequence the powers of 2, starting with 26. 

26 25 24 23 22 21 20 

The formula for the general expression for a number 
states that the number is the sum of the coefficients 
multiplied by the base raised to the required powers. 
Therefore, the third step involves the determination of 
the coefficients of the above sequence of powers of 2. 
These coefficients will be expressed as the binary 1 or 
o. This third step is accomplished by subtracting 26 

from 123 and examining the remainder. 

123 

-64 

59 Remainder 

TABLE 2-1. POSITIVE AND NEGATIVE POWERS 
OF 2 

POSITIVE 
POWERS NEGATIVE POWERS 

20 1 

21 2 2-1 1/2 0.5 

22 4 2-2 1/4 0.25 

23 8 2- 3 1/8 0.125 

24 16 2-4 1/16 0.0625 

25 32 2-5 1/32 0.03125 

26 64 2- 6 1/64 0.015625 

27 128 2- 7 1/128 0.007813 

28 256 2- 8 1/256 0.003906 

29 512 2- 9 1/512 0.001953 

210 = 1,024 2- 10 1/1024 0.000977 

211 = 2,048 2- 11 1/2048 0.000488 

212 = 4,096 2- 12 1/4096 0.000244 

213 = 8,192 2- 13 1/8192 0.000122 

214 = 16,384 2- 14 1/16,384 0.000061 

215 = 32,768 2- 15 1/32,768 0.000031 

Note: Decimal fraction values have been rounded off to 
the nearest millionth place. 

If there is a power of 2 that is equal to or less than 
59, another subtraction is performed using that value. 
Table 2-1 shows that 25 is less than 59. Thus, 

59 

-32 

27 Remainder 

Continue subtracting powers of 2 until a remainder of 
o is obtained. Thus: 
Thus: 

27 

-16 

11 Remainder 

- 8 

3 Remainder 

-2 

1 Remainder 

- 1 

o Remainder 
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Radix Subtraction 
3.4.2-3.4.3 

It is now possible to write the coefficients in the for­
mula; the coefficient of those powers of 2 which were 
subtracted is 1; the coefficient of those powers which 
were not subtracted from the remainders is o. Thus: 

N(2) = 1 x 26 + 1 X 25 + 1 X 24 + 1 X 23 + 0 X 22 
+ 1 X 21 + 1 x 20 

Since only the coefficients are normally written, the 
binary equivalent is 123(10) is 1111011. 

Conversion of a mixed decimal expression to its 
binary equivalent is performed in the same manner. 
This is the basic rule for performing the operation on 
the conversion of a mixed number: (1) the integral part 
of the binary number is equal to the integral part of the 
decimal number, and (2) the fractional part of the 
binary number is equal to the fractional part of the 
decimal number. 

Advantage is taken of this rule in converting a mixed 
number. The integer part of the conversion is per­
formed independently of the fraction conversion. For 
example, convert 3028.359375 to N 2. First, find in 
table 2-1 the highest power of 2 which is equal to or 
less than 3028 - also find the highest negative power 
of 2 lower than .359375. Subtract these values 211 and 
2-2 from the given decimal expression. Continue to sub­
tract from the remainders, values of the powers of 2 
which are equal to or less than these remainders until 
a remainder of 0 is obtained. 

INTEGRAL PORTION FRACTIONAL PORTION 

3028 0.359375 

211 -2048 -0.25 2-2 

980 0.109375 

29 512 -0.0625 2- 4 

468 0.046875 

28 256 -0.03125 2- 5 

212 0.015625 

27 128 -0.015625 2- 6 

84 0 

26 64 

20 

24 16 

4 

22 4 

0 

Write in decreasing sequence the powers of 2, starting 
at 211. 

211 210 29 28 27 26 25 24 23 22 21 20. 2-1 2-2 2-3 2-4 

2-:32- 6 

For each power of 2 that was subtracted from the re­
mainders, write 1 as a coefficient of the power; for each 
power which was too high for the subtraction opera­
tion, write a 0 as a coefficient of that power. Thus, for 
the integral portion the expression is: 

1 x 11 + 0 X 210 + 1 X 29 + 1 X 28 + 1 X 27 + 1 X 26 

+ 0 X 25 + 1 X 24 + 0 X 23 + 1 X 22 + 0 X 21 + 0 x 20 

Note that the decreasing sequence of powers must be 
carried down to 20 and when the remainder is 0 at 
22, the coefficient must be 0 for 21 and 2°. 

Write the coefficients as the binary equivalent, 

3028.10 = 101111010100'2 

The binary fraction is expressed as the coefficient of 
the negative powers of 2. The negative powers of 2 
continue in increasing sequence from 2-1 to the highest 
negative power that is subtracted from the remainder. 
In the example, 2-1 equals .5 which is larger than .3; 
thus, it is necessary to subtract 2-2 , which is the highest 
power less than .359375. A coefficient of 1 is written 
for the term whose power can be subtracted; a 0 is 
written as a coefficient of a power which cannot be 
subtracted. Thus, for the fractional portion of the 
number, the binary expression is the sum: 

Ox2-1 + 1 x2-2 + Ox2-3 

+ 1 X 2-4 + 1 X 2-5 + 1 X 2- 6 

The actual binary fraction is: 

.35937510 = .010111 2, 

The binary equivalents for the mixed decimal expres­
sion are then united as a single binary expression: 

3028.35937510 = 101111010100.0101112 

3.4.3 Division - Multiplication Method 
A third method of converting from decimal to 

binary is done in two parts. First, the integral portion 
of the decimal number is converted, and this will equal 
the integral portion of the binary number. Then, the 
fractional portion of the decimal number is converted 
to the fractional portion of the binary number. 

To convert the integral portion of the number, the 
integral portion is divided by 2; then, the quotient 
generated is again divided by 2 and so on. The binary 
coefficients are indicated by a 1 each time the division 
results in a remainder and by a 0 each time no re­
mainder is obtained. The first binary bit generated is 
the least significant bit (LSB) of the binary expression; 
the last bit generated is the most significant bit (MSB). 
For example, convert 123(10) to N (2): 

UNCLASSIFIED 25 



Division-Multiplication Method 
3.4.3-3.5 

UNCLASSIFIED 
T.O. 31P2-2FSQ7-2 

PART 2 
CH 3 

Since 123(10) is an integral expression, the division pro­
cedure can be used. 

DECIMAL 
NUMBER QUOTIENT REMAINDER 

123 + 2 61 1 LSB 

61 + 2 30 1 

30 + 2 15 0 

15 + 2 7 

7+2 3 1 

3+2 1 1 

1 + 2 0 IMSB 

12310 = 1111011 

To convert a fraction expressed in decimal form to 
its binary equivalent, the following method may be 
used. The fraction is repeatedly multiplied by 2. Each 
time that the multiplication generates a product having 
an integral portion, a 1 is entered as a coefficient of the 
equivalent binary expression. (The integer is then 
dropped.) Each time the product of the multiplication 
is a fraction, a 0 is entered into the binary sequence 
of coefficients. This process is continued until the re­
quired number of binary bits has been generated or 
until a product which is entirely integral is generated, 
in which case an exact conversion has been obtained. 
The binary fractional numbers are expressed in order 
of generation in relation to the binary point. For ex­
ample, convert 0.875 (HI) to the equivalent binary number: 

DECIMAL 
CALCULATION 

.875 x 2 = 1.75 

.75 x 2 = 1.5 

.5 x 2 = 1.0 

.0 x2 = 0 

BINARY 
REPRESENTATION 

.1 

.11 

.111 

.1110 

0.875(10) = .1110(2) 

Sometimes the decimal fractions do not have an 
exact binary equivalent. In such a case the number of 
bits to be generated is determined by the precision of 
conversion required. Each bit generated makes the con­
version more nearly exact. The conversion of a decimal 
mixed number (i.e., has whole and fractional portions) 
to the equivalent binary expression is performed using 
both procedures illustrated above. Separate the expres­
sion into the integral portion and the fractional por­
tion, and convert each in accordance with the outlined 
procedure. 

For example convert 130.359375 to N 2 : 

INTEGRAL PORTION 

DECIMAL QUOTIENT REMAINDER 

130 + 2 65 o LSB 

65 + 2 32 1 

32 + 2 16 0 

16 + 2 8 0 

8+2 4 0 

4+2 2 0 

2+2 1 0 

1+2 0 1MSB 

13010 = 100000102 

FRACTIONAL PORTION 

MULTIPLY x 2 

.359375 x 2 = .718750 

.718750 x 2 = 1.437500 

.437500 x 2 = .875000 

.875000 x 2 = 1.750000 

.750000 x 2 = 1.50000 

BINARY RESULT 

.50000 x 2 = 1.0000 

.35937510 = .010111 2 

.0 

.01 

.010 

.0101 

.01011 

.010111 

Combining both operations, the mixed binary equiva­
lent is: 

130.35937510 = 10000010.010111 2 

3.5 OCTAL TO DECIMAL CONVERSION 

Octal to decimal conversion is usually accom­
plished by use of the general rules given in paragraph 
2.2. As an example of this type of conversion by use 
of the general rules, convert the octal number 227.42(8) 
into a decimal number: 

227.42(8) = 2 x 82 + 2 X 81 + 7 x 80 + 4 X 8-1 

+ 2 X 8- 2 

= 2 x 64 + 2 x 8 + 7 x 1 + 4 x .125 + 2 x .015625 

= 128 + 16 + 7 + .5 + .031250 

227.42(8) = 151.53125(10) 

Notice that in the terms of the formula: (1) R= 8 is 
the base of the system from which the number is being 
converted; (2) Rand C are expressed in the decimal 
system, the system to which the number is being con­
verted; and (3) the addition of terms to get the final 
decimal number is done in decimal arithmetic. 
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3.6 DECIMAL TO OCTAL CONVERSION 

Three methods of decimal to octal conversion are 
given below. The first is the general method of para­
graph 2.2; the other two are somewhat easier methods 
which avoid use of octal arithmetic. 

3.6.1 General Method 

A conversion of a decimal number to its octal 
equivalent is possible using the general rules. As an 
example, convert the decimal number 151.53125(10) to 
its octal equivalent: 

151.53125(}0) = 1 x (12)2 + 5(12)] + 1(12)° 
+ 5(12)-1 + 3(12)-2 + 1(12)-3 + 2(12)-4 

+ 5(12)-5 

151.53125(10) = 1 x 144 + 5 x 12 + 1 x 1 

+ _5_ + _3_ + _1_ + _2_ + _5_ 
12 122 123 124 125 

5(12)4 + 3(12)3 
151.53125 (10 ) = 144 + 62 + 1 + 

125 12;:; 

151.53125(10) = 227.42(8) 

In this conversion operation: (1) R = 10 is the radix 
of the number system from which the number is being 
converted; (2) Rand C are both expressed in octal­
the number system to which the number is being 
converted; and (3) the multiplication of the powers 
by their coefficients and the final summing of the terms 
is accomplished in octal arithmetic (see Ch. 5). 

3.6.2 Radix Subtraction Method 

8 1 

8 1 

8 1 

8 1 

8° 

8° 

8° 

8° 

80 

512 

573 

512 

61 

8 

53 

8 

45 

8 

37 

8 

29 

8 

21 

8 

13 

8 

5 

1 

4 

1 

3 

1 

2 

1 

1 

1 

0 

Decimal to Octal Conversion 
3.6-3.6.2 

-.125 8- 1 

0 

The same basic principles are used in converting 
by the radix subtraction method from decimal to octal 
as were used in the decimal to binary conversion. The 
subtraction operation is performed in order to produce 
the coefficient of the powers, and the powers are in­
dicated by the sequential arrangement as in the binary 
conversion operation. For example, convert the decimal 
number 1597.25(]() to its octal equivalent. 

TABLE 2-2. POSITIVE AND NEGATIVE 
?OWERS OF 8 

The first step in the conversion is to separate the 
integral portion of the decimal expression from the 
fractional portion and to operate on each separately. 
From table 2-2, find the highest power of 8 that can 
be subtracted. Continue the subtraction until the re­
mainder is o. Thus: 

INTEGRAL PORTION FRACflONAL PORTION 

1597 

- 512 

1085 

.250 

-.125 

.125 

8- 1 

gO = 
81 = 
82 = 
83 = 
84 = 
85 = 

UNCLASSI FlED 

POSITIVE 
POWERS 

1 

8 

64 

512 

4,096 

32,768 

NEGATIVE 
POWERS 

8° = 1 

8- 1 = 1/8 

8- 2 = 1/64 

8- 3 = 1/512 

8- 4 = 1/4,096 

8- 5 = 1/32,768 

=1 

= .125 

= .015625 

= .001953 

= .000244 

= .000031 
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The next step in this conversion procedure is to 
write in sequence the powers of the octal base, starting 
at the highest power that was subtracted from the in­
tegral expression. Thus, 

83 82 81 8°. 

The coefficients of the terms are expressed as the num­
ber of times the power was subtracted from the decimal 
expression or any remainder. In the case of 83, the 
coefficient is 3 because 512 was subtracted three times 
from the expression that was being converted to the 
octal equivalent. The coefficients are 3x83 + Ox82 + 
7x81 + 5x8°. Writing the octal equivalent in terms of 
the integral coefficients, N8 == 3075(8). The fractional 
portion of the octal expression is written as the negative 
power of the base times a coefficient. The coefficient is 
the number of times the power was subtracted from the 
expression to be converted. In the example, 8-1 was sub­
tracted twice and the coefficient is 2. Writing the frac­
tional equivalent of .2510, N8 == 2X8-1 or .2. Combin­
ing both operations, the result is expressed: 

1597.25(10) == 3075.2(8)' 

3.6.3 Multiplication - Division Method 
This method of conversion is accomplished in two 

parts. The integral and fractional portion of the num­
ber are converted differently. The integral portion is 
converted by a dividing process; the fractional por­
tion by a multiplying process. To convert the integral 
portion of the decimal number to octal, divide the in­
tegral portion by 8, then divide the quotient by 8 and 
so on until the quotient is o. The remainders obtained 
in the division will be the coefficient of the octal num­
ber with the least significant digit (LSD) generated 
first and the most significant digit (MSD) generated 
last. As an example, convert the decimal number 3844(10) 
to its octal equivalent: 

DECIMAL 
NUMBER QUOTIENT REMAINOl:R 

3844 + 8 480 4 LSD 

480+ 8 60 0 

60+8 7 4 

7+8 0 7 MSD 

3844(10) == 7404(8) 

To convert the fractional portion of a decimal 
number to octal, multiply the fraction by 8. The. in­
tegral portion of the product thus obtained is the first 
digit of the octal fraction. The fractional portion of 
the product should be multiplied by 8. This time, the 
integral part of the product obtained is the second 
digit of the octal fraction. This process continues until 
the fraction of the product is 0, or until enough octal 

digits have been generated. For example, convert the 
decimal number 0.384(10) to its octal equipment. 

DECIMAL INTEGRAL 
NUMBER PRODUCT PORTION 

0.384 X 8 3.072 3 MSD 

0.072 X 8 0.576 0 

0.576 X 8 4.608 4 

0.608 X 8 4.864 4 LSD 

0.384(10) == 0.3044 ... (8) 

A mixed number is converted by means of these 
operations performed upon the integral and fractional 
portion of the number, separately. For example, con­
vert the decimal number 204.53125(10) to its octal equi­
valent. First convert the integral portion: 

DECIMAL NO. 
+ RADIX QUOTIENT REMAINDER 

204 + 8 25 4 LSD 

25 + 8 3 1 

3+8 0 3 MSD 

Therefore, the integral conversion is 204(10) == 314(8)' 
Now convert the fractional portion of the decimal 
number. 

DECIMAL NO. 
X RADIX 

.53125 X 8 

.25 X 8 

PRODUCT OCTAL DIGIT 

4.25000 4 MSD 

2.00 2 LSD 

Therefore, the fractional conversion is .53125(10) == 
.42(HI and the full conversion is 204.53125(10) == 
314.42(8)' 

3.7 OCTAL TO BINARY CONVERSION 

Two methods of octal to binary conversion are 
given below. One is by use of the general rules of 2.2. 
The other, which is the recommended method, is by 
inspection. 

3.7.1 General Method 
The general rules may be used to convert an octal 

number to a binary number. As an example, convert 
the octal number 26.7(8) to its binary equivalent. 

26.7(8) == 10 X (1000)1 + 110(1000)° + 111(1000)-1 

111 
26.7(8) == 10000 + 110 + --

1000 

26.7 (8) == 10110.111 (2) 
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Notice that in the operations: 

a. R = 8 is the radix of the number system from 
which the number is being converted. 

b. Rand C are both expressed in binary, the num­
ber system to which the number is being con­
verted. 

c. The multiplication of the powers by their co­
efficient and the final summing of the terms are 
accomplished in binary arithmetic. 

3.7.2 Inspection Method 

The recommended method of octal to binary con­
version is by inspection, as there is a natural relation­
ship between octonary and binary numbers. The base 
of the octal system is 8; the base of the binary system 
is 2; and 23 equals 8. The simple relationship is that 
one octal digit may be expressed by three binary bits. 

OCTAL - BINARY 

0= 000 

1 = 001 

2 = 010 

3 = 011 

OCT Ai - BINARY 

4 = 100 

5 = 101 

6 = 110 

7 = 111 

The conversion from the octonary number to its 
binary equivalent can be accomplished by direct sub­
stitution. To convert any octonary number to its binary 
equivalent, replace each octonary digit by the grouping 
of three binary bits having equivalent value. For ex­
ample, rewrite 56473.246(8) as follows: 

101 110 100 111 011 010 100 110 

Here the groupings are separated just to call attention 
to the equivalences; in actual practice, there is no rea­
son why the binary' number cannot be written directly, 
with no spacing between groupings unless it is desired 
to retain groupings to facilitate checking. 

3.8 BINARY TO OCTAL CONVERSION 

Two methods of binary to octal conversion are 
given below. One is by means of the general rules 

given in 2.2. The other, which is the recommended 
method is by inspection. 

3.8.1 General Method 

A conversion from a binary to an octal number 
may be accomplished using the general formula. As an 
example of the operation, convert 10110.111 to an 
octal number. 

10110.111(:!) = 1 X 24 + 0 X 23 + 1 X 22 + 1 X 21 + 

o X 2° + 1 X 2- 1 + 1 X 2-2 + 1 X 2-3 

10110.111(2) = 20 + 0 + 4 + 2 +0 +.4 +.2 +.1 

10110.111(2) = 26.7(8) 

Notice that in the terms of the formula: 

a. R = 2 is the base of the system from which the 
number is being converted. 

b. Rand C are expressed in the octal system, the 
number system to which the number is being 
converted. (Note particularly the fractional 
equivalencies. ) 

c. The addition of terms to get the final octal 
number is done in octal arithmetic. 

3.8.2 Inspection Method 

The recommended method of conversion from bi­
nary to octal is by substitution of the octal equivalents 
for the binary groups. To make this conversion, ar­
range the binary bits in groups of three, beginning at 
the binary point proceeding to the left and to the 
right. Fill out the extreme left or right group with O's 
if necessary. Then directly substitute for each binary 
group its octal digit equivalent. 

For example, convert 11100.1112 to Ns 

11100.1112 = 011 100· 1112 

001 100. 1112 

~ ~ ~ 
3 4. 7 

11100.111 2 = 34.710 
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CHAPTER 4 
BINARY ARITHMETIC 

4.1 ADDITION 

4.1.1 General Rules 

Binary additiO'n is simple. Its rules are as fO'llO'ws: 

0+0=0 

1+0=1 

0+1=1 

1 + 1 = 0 + 1 to' carry 

These rules O'perate in all cases O'f additiO'n and apply 
to' bO'th additiO'n O'f integers and O'f fractiO'ns. Binary 
numbers are added frO'm right to' left, and the carry is 
added to' the adjacent bit O'n the left. The fO'llO'wing 
examples illustrate the rules fO'r binary additiO'n. NO'te 
that the carry is placed in the cO'lumn, to' which it 
will be added, in parentheses. 

o 

1 

1 

+1 

10 

10 

11 

(11) (1) 

11 100 101 

100 101 110 

The technical terms in additiO'n are defined as the 
augend, addend, and the sum. The augend is the term 
that is to' be increased; the addend is the term to' be 
added to' the augend; the sum is the result O'f the 
O'peratiO'n. FO'r example: 

101 Augend 

+011 Addend 

1000 Sum 

4.1.2 Addition of Binary Numbers 

In adding mO're than O'ne number, the additiO'n O'f 
the first set O'f numbers is perfO'rmed and, to' the sum, 
is added the third number. TO' the sum O'f the succeed­
ing additiO'ns, add the next number until all the num­
bers have been to'taled. FO'r example, add: 

a. 011 

111 

AdditiO'n O'f the first set O'f 
numbers 

First sum 

AdditiO'n O'f the third number 

Final sum 

b. 1101 

1001 

0010 

+1111 

AdditiO'n O'f the first set O'f 
numbers 

First sum 

AdditiO'n O'f the third number to' 

the first sum 

SecO'nd sum 

AdditiO'n O'f the fO'urth number to' 
the secO'nd sum 

Final sum 

BINARY DECIMAL 

011 

+111 

1010 

+110 

10000 

BINARY 

1101 

1001 

10110 

0010 

11000 

1111 

100111 

3 

+7 
10 

+6 
16 

DECIMAL 

13 

9 

22 

+2 

24 

+15 

39 

Binary fractiO'ns are added in accO'rdance with the 
rule that gO'verns whO'le numbers. The binary point is 
fixed as in the decimal system. The carry frO'm the 
additiO'n O'f the binary fractiO'ns in the first PO'sitiO'n to' 
the right of the binary PO'int is an integer. FO'r example, 
in the additiO'n O'f the fO'llO'wing fractiO'ns: 

a. DECIMAL 

1/8 

3/8 

4/8 O'r.5 

BINARY 

.001 

.011 

.100 
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b. 

c. 

4/8 

+6/8 

10/8 or 1.25 

5 3/8 

6 7/8 

12 2/8 or 12.25 

4.2 BINARY SUBTRACTION 

4.2.1 General 

.10 

.11 

1.01 

101.011 

110.111 

1100.010 

The rules for binary subtraction are as follows: 

0-0=0 

0- 1 = 1 (borrow 1 and make 0 = 10) 

1-0=1 

1-1=0 

The technical definitions of the terms used in sub­
traction 'are minuend, subtrahend, and difference. The 
minuend is the number to be decreased; the subtrahend 
is the quantity of the decrease; the difference is the 
result of the operation. Thus: 

0110 Minuend 

100 Subtrahend 

010 Difference 

The similarity which exists between decimal and binary 
arithmetic when a carry is involved is analogous to the 
similarity which exists when a borrow is invovled. 
When subtracting a 1 from a 0, a 1 must be borrowed 
from the next higher order, diminishing that order 
by 1. 

4.2.2 Direct Subtraction 
The following examples illustrate the rules for 

binary subtraction and the method of borrowing from 
the next higher order. 

1101 

a. -0100 

1001 

1110 

b. -0101 

1001 

1100 

c. -1001 

0011 

In example a, above, the subtraction of 0 from 1, 
o from 0, and 1 from 1 produces the difference. In 
example b, a 1 must be borrowed from the second 
order when attempting to subtract the 1 of the first 
order from o. The 1 in the second order then dim­
inishes to O. In example c, a slightly different borrow 
situation arises. The 1 to be borrowed must come from 
the third order of the minuend. That 1 then diminishes 
to O. The 1 of the first order of the minuend can then 
be borrowed from the 10 which appears in the second 
order. Borrowing the 1 from 10 leaves a 1 in the sec­
ond order of the minuend. Applying the rules of binary 
subtraction then produces the difference shown. 

Fractions are subtracted according to the rules 
and procedures for integral expressions. The proce­
dures are the same as the ones for decimal subtraction; 
the rules are the binary rules for subtraction. For ex­
ample, subtract: 

DECIMAL BINARY 

a. 21/32 .10101 

-16/32 .10000 

5/32 or .156 .000101 

b. 4 3/4 100.11 

-2 1/2 10.10 

2 1/4 or 2.25 10.01 

4.2.3 Complementing Method in Binary 
Subtraction 

4.2.3.1 General 

The examples that have been used to illustrate 
subtraction are methods of direct subtraction. The com­
plement method of subtraction is a means of subtrac­
tion by addition. Computer design requirements do not 
allow for borrowing, so the complement method of 
subtraction fits in with computer design and capabilities. 

A disadvantage of direct binary subtraction is tn-at 
the direct subtraction of a number from a smaller num­
ber yields an incorrect result unless the subtraction is 
done by subtracting the smaller from the larger and 
then changing the sign of the difference. Such a proce­
dure would be difficult in a computer. For example: 

5/16 

-9/16 

-4/16 

0.0101 

-0.1001 

? 

The difficulty encountered with negative results and the 
problem of providing for borrowing in computer de­
sign are eliminated by converting the subtraction to an 
addition of negative numbers by means of the comple­
ment process. 

4.2.3.2 Modulus 

The complement system of subtraction is possible 
because it is possible to limit the number of significant 
digits to be used in anyone problem or machine. The 
problem is then said to have a modulus, which is the 
count of the maximum number of numbers it would be 
possible to represent in this problem. For instance, sup­
pose that a binary machine has facilities for handling 
only 4 places - the machine could represent 16 differ­
ent numbers from 0 to 1111(2)' Such a machine has a 
modulus of 16 and is said to perform modulo 16 arith­
metic. 
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The significance of the modulus of the machine is 
that each time an addition results in a number equal to 
or greater than the modulus of the machine, an integral 
multiple of the modulus is lost. An example of this ac­
tion in everyday life is furnished by the automobile 
odometer. When it reaches 100,000 miles, it resets to 
zero and starts over. The odometer has lost 100,000 by 
resetting to O. This property of machine-counting meth­
ods is important in the use of complements for sub­
traction by addition. 

4.2.3.3 Derivation of Complement Method 
of Subtraction 

The complement method of subtraction may be de­
rived from the following identity: 

P - M + (M - N) == P - N 

where: 

P == Minuend 

N == Subtrahend 

M == Modulus of the machine 

P - N == difference sought. 

To derive the complement system of subtraction, let 
(M - N) equal a number called the complement of N. 
Let C stand for this complement so M - N == C. Now 
substitute C in the identity: 

P-M+C==P-N 
or 

(P + C) - M == P - N. 

If M is moved to the other side of the identity, it be­
comes: 

It now is evident that the minuend plus the comple­
ment of the subtrahend is equal to the difference of the 
minuend and subtrahend plus the modulus. It should 
now be recalled that when two numbers are added to 
obtain a sum greater than the modulus, the modulus is 
lost. Therefore: 

in any system witn a fixed modulus, provided only that 
the sum P + C is greater than the modulus of the num­
ber system used. 

The above is a derivation of what, in binary arith­
metic, is called the 2's complement system. A similar 
derivation of a l's complement system may be derived 
using (M - 1) in place of M. In this case, however, the 
final equation will be: 

P + C1 - 1 == P - N 

which implies that the difference sought will be found 

by adding 1 to the P + C1• Note that C1 is equal, in this 
case, to (M - 1) - N. 

4.2.3.4 Generation of l's Complement 

Every computer has a modulus which is one larger 
than the largest number the computer can register. For 
example, a 6-place binary counter could express all the 
numbers from 0 to 1p111(2)' The modulus of such a 
computer is 1,000,000(2)' 

To obtain the l's complement of a number, it was 
shown in the derivation above that the number must be 
subtracted from (M - 1). Therefore, to obtain the l's 
complement of a number in a 6-place machine, the num­
ber is subtracted from (1000000 - 1)(2); that is, from 
111111(2)' As an example, find the l's complement of the 
binary numbers 101001(2) and 01101(2): 

a. 

b. 

111111 Modulus - 1 

101001 Number 

010110 l's complement of number 

111111 Modulus - 1 

001101 Number 

110010 l's complement of number 

A close examination of the numbers and their l's 
complements will show that the l's complement in bi­
nary arithmetic is nothing more than the original num­
ber with bits reversed. That is, the original number's O's 
are l's in the complement while the l's are O's. The way 
to get the l's complement, then, is by inspection; just 
exchange O's for l's and l's for O's. For example: 

100101 number 

0110010 complement. 

4.2.3.5 l's Complement Subtraction 

To perform subtraction by the l's complement 
method, proceed in the following manner: 

1. Find the complement of the subtrahend with re­
spect to l' s. 

2. Add the complement to the minuend. 

3. Perform "end-around carry" if there is a carry 
out of the highest position of the difference. 
(This is explained below.) 

The result is the difference in complement form if it is 
negative and in true form if it is positive. (Zero is con­
sidered negative.) 

There are four possibilities, as shown by the exam­
ples below. All except the last will be treated exactly 
the same. The last will require the extra step of end­
around carry. This is a carry from the highest order 
around to the lowest order which is required because of 
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the cyclical nature of the number system. The only time 
it is required is when the minuend is larger than the 
subtrahend, that is, when the answer will come out a 

true positive answer. Fortunately, whenever it is re­
quired, there is a carry from the left-most position, 
which serves as a reminder. 

EXAMPLES DIRECT SUBTRACT COMPLEMENT SUBTRACT 

a. Minuend is +011011 Minuend 011011 Minuend 

smaller than -101010 Subtrahend 010101 Subtrahend l's complement 

subtrahend -001111 Difference 110000 Complement of difference 

b. Minuend is +011011 Minuend 011011 Minuend 

equal to -011011 Subtrahend 100100 Subtrahend l's complement 

subtrahend 000000 Difference 111111 Complement of difference 

c. Minuend is -011011 Minuend 100100 Complement of minuend 

more negative -(-)010011 Subtrahend 010011 Subtrahend 

than subtrahend -001000 Difference 110111 Complement of difference 

and both are 

negative 

d. Minuend 

is larger 

than subtrahend 

011011 Minuend 

-010101 Subtrahend 

+000110 Difference (1) 

-i 

011011 Minuend 

101010 Subtrahend l's complement 

000101 True difference less 1 

4.2.3.6 Generation of 2'5 Complements 

In the derivation of the complement system, it was 
shown that a 2's complement of a number is equal to 
th'e modulus minus the number, (M - N). Therefore, 
to obtain a 2's complement in a 6-place machine, the 
number is subtracted from the modulus, 1,000,000. As 
an example, find the 2's complement of the binary num­
bers 101001(2) and 001101(2): 

a. 1000 000 Modulus 

101 001 Number 

010 1112's complement of number 

b. 1000 000 Modulus 

001 101 Number 

110 011 2's complement of number 

A close examination of the numbers and their com­
plements will show that the 2' s complement of a num­
ber is the same as the l's complement with a 1 added to 

End carry ---~) (1) 

000110 True difference 

it. The 2's complement, therefore, may be formed by 
forming the l's complement and adding a 1 to it. As an 
example, form the 2's complement of 001101(2): 

001101 Number 

110010 l's complement of number 

110011 2's complement of number 

4.2.3.7 2'5 Complement Subtraction 

To perform subtraction by the 2's complement 
method: 

1. Find the 2's complement of the subtrahend. 

2. Add this complement to the minuend. 

The result is the difference in complement form if it is 
negative and in true form if it is positive. (Zero is con­
sidered positive.) 

In the 2's complement system, there is no need to 
end-around carry. The results will always be correct 
without it. For example, solve examples band d of 
4.2.3.5 by the 2's complement system: 
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EXAMPLE DIRECT SUBTRACT COMPLEMENT SUBTRACT 

b. Minuend is 011011 Minuend 011011 Minuend 

equal to 

subtrahend 

-011011 Subtrahend 

000000 Difference ( 1 ) 

101011 2's complement of subtrahend 

000000 Difference 

t 
Discard 
Carry 

d. Minuend is 011011 Minuend 011011 Minuend 

larger than 

subtrahend 

-010101 Subtrahend 101011 2's complement of subtrahend 

000110 True difference +000110 Difference (1) 

t 

4.2.3.8 Binary Sign Conventions 
At this point, it is natural to raise the question of 

how negative numbers in complement form can be dis­
tinguished from positive numbers in true form. It turns 
out that in this regard, also, binary numbers offer an 
advantage with regard to representation. The sign of a 
number is binary in nature, that is, a number is either 
positive or negative with the exception of 0, which can 
be arbitrarily assigned a sign. Thus, a bit representing 
the sign can be used in addition to the bits representing 
magnitude. A 0 in the sign bit position can be inter­
preted to mean that the number is positive and in true 
form; a 1 in the sign bit position can be interpreted to 
mean that the number is negative and in complement 
form. If the sign bits are assigned to the most signifi­
cant bit position and are treated as a part of the num­
ber in the addition operation, the resultant sign bit will 
be a true indication of the sign of the result. This sign 
operation is legitimate in both the l's and 2's comple­
ment systems. In order to see how this works, four cases 
may be considered. The examples of subtractions listed 
in 4.2.3.5 are repeated below, with the sign bits added 
to illustrate the results of operating on sign bits in this 
manner. The sign bits are on the left, separated from 
the magnitude bits by a point (.). This is the usual 
practice. 

Example: 

a. Complement Subtraction 
0.011011 Minuend 
1.010101 l's complement of subtrahend 

1.110000 l's complement of difference 

b. 0.011011 Minuend 
1.100100 l's complement of subtrahend 

1.111111 l's complement of difference (this 
is often called negative zero) 

Discard 
Carry 

c. 1.100100 l's complement of minuend 

0.010011 Subtrahend 

1.110111 l's complenment of difference 

d. 0.011011 Minuend 

1.101010 l's complement of subtrahend 

(1) 0.000101 

~ 
End 
Carry~l 

0.000110 

From the examples, it can be seen that a sign bit 
may be used in subtraction as though it were a magni­
tude bit. It will then always indicate the sign. As a mat­
ter of fact, the sign bit increases the capacity of the ma­
chine twofold. This is because it allows the same num­
ber of magnitude bits to signify both positive and nega­
tive numbers. 

4.2.3.9 Comparison of 1'5 and 2'5 
Complement Subtraction 

A study of the examples of 4.2.3.5 and 4.2.3.7 will 
show some of the advantages and disadvantages of the 
two systems. The chief advantage of the l's complement 
system is the ease with which the complement is formed~ 
Its chief disadvantage are the end-around carry opera­
tions, sometimes necessary, and the fact that negtive 
zero must be provided for. It would appear that the l's 
complement system would be most suited to operations 
where the complementation process itself is a major 
part of the operation. The 2's complement process, on 
the other hand, would be advantageous in operations 
where the addition process is most important. 
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4.3 BINARY MULTIPLICATION 

4.3.1 General Method 

The rules for binary multiplication are similar to 
those of decimal multiplication. The rules for multiply­
ing two single digits are the same in both systems. These 
rules are: 

OX 0=0 

°X1=0 

The general procedure when multiplying two· multiple 
digit binary numbers is the same as that in decimal 
arithmetic. That is, the multiplicand is multiplied by a 
digit of the multiplier, and the partial product obtained 
is placed so that the least significant digit is under the 
multiplier digit. When all the partial products have 
been found, they are added together to find the final 
product. The only difference between decimal and bi­
nary multiplication, therefore, is in the summing of the 
partial products. In binary, the binary addition table is 
used while in decimal the decimal table is used. 

As can be seen from the following examples, the 
method of obtaining partial products and then adding 
these to' obtain the product is identical to that of deci­
mal arithmetic. 

Multiplicand 1010 10.11 1111 

Multiplier 1101 100.1 1111 

First Partial Product 1010 1011 1111 

Second Partial Product 0000 0000 1111 

Third Partial Product 1010 0000 0000 

Fourth Partial Product 1010 1011 1111 

Total Product 10000010 1100.011 11100001 

Note the placement of the binary point in the second 
example. The same rules hold for its placement as hold 
for placement of the decimal point in arithmetic. 

The third example also brings olIt an interesting 
point. This is the multiplication of the two largest pos­
sible 4-bit numbers. The product is 8 bits long. In other 
words, the largest product that can result frO'm the mul­
tiplication of two numbers will be no longer than the 
sum of the number of bits in the multiplier and multi­
plicand. 

4.3.2 Add and Shift Multiplication 

If a number is multiplied by the radix of the num­
ber system, this multiplication has the effect of shifting 
the number one place to the left with respect to the 
radix point. This is true in any number system. For ex­
ample, multiply 12.51(10) by 10 (the radix of the decimal 
system) and multiply the number 10.11(2) by 2(2) (the 
radix of the binary system). 

Number 

Number Times Radix 

DECIMAL 

12.51 

125.1 

BINARY 

10.11 

101.1 

Note that binary multiplication is nothing more than a 
series of add and shift operations. 

4.3.3 Multiplication (or Division) of Negative 
Numbers 

Two ways of multiplying (or dividing) negative 
numbers are possible. One way, which is seldom used 
because of its complications, is the multiplication (or 
division) of complements. This is possible if new rules 
of arithmetic to take care of the sign are used. The sec­
ond way of multiplying (and dividing) negative num­
bers is to change the signs of both multiplier and multi­
plicand (divisor and dividend) so that they are both 
positive. Then when the multiplication (division) is fin­
ished, the sign of the product (or quotient) is changed 
according to algebraic rules of multiplication (or divi­
sion). 

4.4 BINARY DIVISION 

4.4.1 General 

Binary division is the process of counting the num­
ber of times that the divisor will go into the dividend. 
The count of the number of times the divisor may be 
subtracted from the dividend before a negative remain­
der results is called the quotient. 

4.4.2 Direct Division 

Direct binary division is performed by a series of 
subtractions of the divisor (actually a multiple of the 
divisor), just as it is in the decimal system. For example, 
divide 100011100(2) by 1110(2): 

bd 
1010.001 

a. 1110/10001110.000 

a 1110 

c 1111 

1110 

10000 

1110 

10 

1 

b. 1110/10001110.000 
1110000000 

In example a, above, the first step in the process is 
to place the divisor below the dividend in a position 
which is as far to the left as possible but which will 
still allow a positive difference to result when the divi­
sor is subtracted from the dividend. Since the divisor 
will go into this many bits of the dividend once, a 1 is 
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placed in the· quotient at b in the same column as the 
lowest order digit of the divisor. The divisor is then 
multiplied by the quotient digit, and the resulting prod­
uct (which, in this case, is the divisor) is subtracted 
from the dividend to produce the positive difference 
(line c) called the current remainder. The next digit in 
the dividend is brought down to the difference obtained 
on line c. Now, two procedures are possible. On the 
one hand, if the new number on line c is larger than the 
divisor, a 1 is placed in the next empty quotient bit po­
sition. The divisor is multiplied by this digit, and the 
resulting product is then placed under the partial re­
mainder. Then the subtraction process can be repeated 
to obtain a new current remainder. On the other hand, 
if the number on line c is less than the divisor, as in the 
example, a 0 is placed in the quotient bit position, col­
umn d. The next digit of the dividend is then brought 
down to the difference, and a subtraction is performed. 
The process is continued until a quotient of required 
length is completed. As shown in the example, the bi­
nary radix point is treated the same as the decimal point 
would be in decimal division. 

In b, above, only the first digit of the quotient is 
shown. When this digit is used to multiply the divisor 
(to get the number below the dividend) actually, multi­
plication by 1000(2), (1 x 23 ), is being performed. In 
other words, the actual subtraction from the dividend 
is of a number 1000(2) times the divisor. From this, it 
can be seen that the amount subtracted from the divi­
dend is the quotient bit times the power of the quotient 
bit times the divisor. 

Since the quotient bit is always either 0 or 1, the 
division process could be reduced to a series of subtrac­
tions of the divisor, multiplied by the power of the 
quotient bit being sought from the dividend. Each time 
a subtraction resulted in a positive current remainder, a 
1 would be placed in the corresponding quotient bit 
position, and the process could be immediately repeated 
for the next quotient bit. Each time the subtraction re­
sulted in a negative remainder, a 0 would ·be placed in 
the corresponding quotient bit. In this case, the current 
remainder would have to be restored to a positive num­
ber by adding the divisor back to it. Following this, the 
next quotient bit could be obtained by the subtraction 
of the divisor multiplied by the power of the next quo­
tient bit. 

Since the quotient bits are generated from left to 
right, the power of each quotient bit is one smaller than 
that of the last bit generated. This means that as the 
divisor is successively subtracted from the dividend (or 

current remainder), the diviso" ;~ shifted to the right in 
relation to the binary point. In other words, the divi­
sion process can be reduced to a process of successive 
subtract and shift steps. 

4.4.3 Division by Subtraction and Shift 
Methods 

4.4.3.1 General 
When division is mechanized, either of two sub­

tract and shift methods is generally used. The restoring 
subtract and shift method is one which, after each un­
successful trial subtraction, adds the divisor back to the 
remainder. The nonrestoring technique does not do 
this; consequently, it is somewhat faster. 

Division will always be built into a machine so the 
quotient bits will start to generate in the correct place. 
One method of doing this is to make the rule that the 
first quotient bit will be in the position corresponding 
to or just above the least significant figure of the divi­
sor when the most significant digits of the dividend and 
the divisor are lined up for the first trial subtraction. 
(Note that this first quotient bit could be a 0.) 

4.4.3.2 Restoring Method 

The restoring division process is as follows: 

a. The dividend and divisor are lined up at the left 
so that their most significant digits are in line. 
This is the equivalent of multiplying the divisor 
by the power of the first quotient bit and then 
lining up the radix points of the dividend and 
the divisor. The radix points of the divisor, divi­
dend, and quotient are now properly oriented. 

b. An attempt is made to subtract the divisor times 
the power of the first quotient bit from the divi­
dend. If the attempt is successful (result is posi­
tive or zero), a 1 is entered in the quotient posi­
tion corresponding to the power used to multi­
ply the divisor in step a, above. If the subtrac­
tion results in a negative answer, a 0 is entered 
in the quotient, and the divisor is added back to 
the dividend (the dividend is restored). 

c. The divisor is then shifted right one place and, 
again, a trial subtraction is attempted this time 
from the current remainder or restored divi­
dend, as the case may be. A 1 is entered in the 
next most significant quotient bit if the sub­
traction is successful, a 0 if it is unsuccessful. 
This process goes on until the required number 
of quotient bits has been generated. 

An example should clarify this operation. The example 
below illustrates the division of the number 10001100(2) 

by 1110(2)' 
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OPERAND 

NUMBER NAME 

10001100. Dividend 

11100000. Divisor x 24 

-01010100. Negative remainder 

11100000. Divisor X24 

10001100. Dividend 

1110000. Divisor x23 

+00011100. Positive remainder 

111000. Divisor X22 

011100. Negative remainder 

111000. Divisor x 22 

+ 11100. Positive remainder 

11100. Divisor x 21 

+ 00000. Zero remainder (+) 

1110. Divisor 

1110. Negative remainder 

1110. Divisor 

0000. Final remainder 

In the example, the dividend is written down and 
the divisor is written below it with the left-most digits 
in line. To accomplish this alignment while maintain­
ing alignment of the binary points, it would be neces­
sary to multiply the divisor by 10000(2) or 24. This indi­
cates that the first subtraction will determine the quo­
tient bit whose power is 24. When the subtraction is 
carried out, it results in a negative current remainder. 
Therefore, the quotient bit in the 24 bit position will be 
o. It is now necessary to restore the current remainder 
to a positive number. This is done by adding the divisor 
times 24 back to the current remainder. To determine 
the next digit of the quotient, the divisor is shifted one 
place to the right, and the resulting number is sub­
tracted from the restored current remainder. This time, 
the subtraction results in a positive current remainder, 
indicating that the divisor times 23 will go into the divi­
dend once. The bit in the 23 position of the quotient, 
therefore, will be 1. Since the current remainder is posi­
tive, no restoring add will be required. The next bit of 
the quotient will simply be determined by shifting the 
divisor one place to the right and subtracting. This 
process continues until a sufficient number of quot~ent 
bits have been generated or, in this example, until a re­
mainder of 0 has been obtained. 

4.4.3.3 Nonrestoring Method 

The nonrestoring method of division is as follows: 

OPERATION QUOTIENT 

BIT ORDER 

Subtract 

o 
Restoring Addition 

Shift and Subtract 

1 

Shift and Subtract 

o 
Restoring Addition 

Shift and Subtract 

1 

Shift and Subtract 

o 2° 

Restoring Addition 

Final Quotient 01010 

a. The dividend and divisor are lined up left so 
that their most significant digits are in line. This 
is the equivalent of multiplying the divisor by 
the power of the first quotient digit and then 
lining up the radix points of the dividend and 
divisor. The radix points of the dividend, quo­
tient, and divisor will then be in corresponding 
places. 

b. A trial subtraction is made. If it is successful, a 1 
is put into the quotient position corresponding 
to the power used in step a. If it is unsuccessful, 
a 0 is put in the quotient bit position. 

c. Without restoring the dividend, a shift-right of 
the divisor is made. If the previous trial sub­
traction resulted in a negative remainder, the 
divisor -will now be added to this remainder. If 
the previous trial subtraction resulted in a posi­
tive remainder, the divisor will be subtracted 
from the remainder. If the results of this addi­
tion or subtraction, as the case may be, are posi­
tive, a 1 is inserted in the quotient; if they are 
negative, a 0 is inserted. 

d. The same routine is repeated until all required 
bits are generated. 

e. The last current remainder may be a positive or 
a negative number. If it is a negative number, it 
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must- be restored. This is done by adding the 
divisor back to the current remainder. As an ex-

OPERAND 

NUMBER NAME 

10001100. Dividend 

11100000. Divisor x 24 

-01010100. Negative remainder 

1110000. Divisor x 23 

+ 0011100. Positive remainder 

111000. Divisor x 22 

011100. Negative remainder 

11100. Divisor x 21 

+ 00000. Positive remainder 

1110. Divisor x 2° 

1110. Negative remainder 

1110. Restoring add 

0000. Final remainder 

In the example, the dividend and the divisor are 
lined up on the left. To do this while maintaining ori­
entation of the binary points of dividend and divisor, 
the divisor would have to be multiplied by 24. There­
fore, the content of the 24 quotient bit position will be 
the first determined. Subtraction of the divisor from the 
dividend results in a negative current remainder. This 
indicates that the bit in the 24 position of the quotient 
will be o. The next step is to shift the divisor to the 
right one place and add it to the current remainder. 
The combination of the first subtraction of 24 times the 
divisor from the dividend and the addition of 23 times 
the divisor is the equivalent of subtracting 23 times the 
divisor. Since this operation results in a positive current 
remainder, a 1 is placed in the 23 bit position. The next 
step is to shift the divisor to the right one place and, 
because the current remainder is positive, to subtract 
the divisor. This subtraction results in a negative num­
ber, so a 0 is placed in the 22 bit position of the quotient. 
Again, a shift-right of the divisor is made. This time, 
because the current remainder is a negative number, the 
divisor is added to the current remainder. Since the re­
sulting new current remainder is a positive number, a 1 

is placed in the 21 bit position of the quotient. Once 
more, a shift right of the divisor is made, and this time 
the divisor is subtracted from the current remainder. 
This last subtraction results in a negative number, so a 
o is placed in the 2° bit position of the quotient. Since 
the final current remainder is a negative number, a re­
storing addition is necessary. The divisor is added back 

ample of this method, the division of 4.4.3.2 is repeated 
by this method. 

OPERATION QUOTIENT 

BIT ORDER 

Subtract 

0 24 

Shift and add 

1 23 

Shift and subtract 

0 22 

Shift and add 

1 21 

Shift and subtract 

0 2° 

Final Quotient = 1010 

to the current remainder to give the final remainder 
of o. 

4.4.4 Nonrestoring Division Using Complement 
Subtraction 

As previously stated, subtraction is usually per­
formed in a machine by means of addition of comple­
ments. When this is done in division, the actual division 
process does not change except that the negative cur­
rent remainders will appear in complement form. The 
quotient bit generated will still be a 1 if the current 
remainder is a positive number and will be 0 if the cur­
rent remainder is a negative (complement) number. 

An example of the nonrestoring process is given 
below. The same numbers are used as were used in 
4.4.3.3. Two things should be noted about the opera­
tion in the example. First, the 2's complement system is 
used. This is done primarily so that no provision for 
the end-carry operation will have to be made. The sec­
ond point to notice is that when the current remainder 
is shifted to the right, the bit positions seemingly va­
cated on the left actually are having O's shifted into 
them. If it is recalled that 1 is the complement of 0, it 
will become obvious that when a complemented num­
ber is shifted to the right the left-hand bits will be filled 
with l's. This fits in with the convention of using a 1 in 
the sign bit to indicate a complement number and 0 to 
indicate a true number. When this convention is used 
and a shift-right occurs, the bits on the left of the cur­
rent remainder will be filled with the same bit con­
tained in the sign bit position. The sign bits themselves, 
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however, are not changed by the right-shift. The gen­
eral procedure for the nonrestoring division by comple­
ment is as follows: 

1. Write down the dividend and the 2's comple­
ment of the divisor so that their most significant 
bits are in line. This is the equivalent of multi­
plying the 2's complement of the divisor by the 
power of the first quotient bit. 

2. Add the two numbers. If a true current remain­
der results, place a 1 in the quotient bit position 
corresponding to the power used in step 1. If a 
complement current remainder results, place a 0 
in the quotient bit position. 

3. The divisor is now shifted right. If the current 
remainder is a true number, complement the 

SIGN MAGNITUDE 
BITS BITS NAME 

0 10001100 Dividend 

divisor and add it to the current remainder. If 
the current remainder is a negative number, add 
the true divisor to it. 

4. If the results of this second addition are posi­
tive, insert a 1 in the next quotient position; if 
they are negative, insert a O. 

5. Repeat this process until all required bits of the 
quotient are generated. 

6. The last current remainder may be a positive or 
a negative number. If it is a negative number, it 
must be restored. Do this by adding the true 
value of the divisor back to the current remain­
der. 

The example of the process follows. The number 
10001100(2) is divided by 1110(2)' 

OPERATION QUOTIENT 
BIT-ORDER 

1 00100000 2's complement of divisor X24 Add 

1 10101100 Current remainder (negative) 0 24 

0 01110000 True divisor shifted right Add 

0 00011100 Current remainder (positive) 1 23 

1 11001000 2's complement of divisor shifted right Add 

1 11100100 Current remainder (negative) 0 22 

0 00011100 True divisor shifted right Add 

0 00000000 Current remainder (positive) 1 21 

1 11110010 2's complement of divisor shifted right Add 

1 11110010 Current remainder (negative) 0 2° 

0 00001110 True divisor 

0 00000000 Final remainder 

In this example, the dividend and complement of 
the divisor are lined up on the left. Since this is the 
equivalent of multiplying the complemented divisor by 

24, the first quotient bit generated will be inserted in the 

24 order of the quotient. Addition of the two numbers 

results in a negative current remainder; so a 0 is en­

tered in the 24 position of the quotient. Since the cur­

rent remainder is a negative number, the true divisor 

Add 

Final Quotient 1010 

will be shifted right and added to the current remain­
der. This addition results in a positive number; so a 1 
will be inserted in the next quotient bit. Because the 
last current remainder was a positive number, the next 
operation will be to add the complement of the shifted 
divisor to the current remainder. This process continues 
until the four bits of the quotient have been generated. 
At this time, the remainder is negative, so a final restor­
ing add is required. 
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CHAPTER 5 
OCTAL ARITHMETIC OPERATIONS 

5.1 GENERAL 

The arithmetic operations, addition, subtraction, 
multiplication, and division, are performed in the octal 
system in a manner similar to the decimal operations, 
although octal counting is difficult. Table 2-3, for 
octal addition and subtraction, and table 2-4, for use 
in octal multiplication, should be used to check exam­
ples. Octal arithmetic may also be performed in a 
roundabout fashion by converting to decimal, perform­
ing the required operation, and then converting back to 
octal. In the following paragraphs, only the table meth­
ods will be shown; conversion methods are given in 
Chapter 3. 

5.2 OCTAL ADDITION 

Octal addition is performed in much the same way 
as decimal addition. A sum and carry technique is used 
in which the sum and carry are determined by reference 
to an addition table. Addition and subtraction are given 
in table 2-3. The sum of two digits is found where the 

column containing the addend digit and the row con­
taining the augend digit intersect. For example, the sum 
of 7 and 6 is 15. The difference of two digits is found in 
the difference column. Find the minuend which is in the 
same column as the subtrahend digit. The row which 
contains this minuend also contains the difference. For 
instance, 12 - 6 == 4. Examples in the use of this table 
for addition are given below. Other than the difference 
in addition tables used, the addition processes used in 
octal and decimal are exactly the same. The carries are 
shown in parentheses. 

(1) (1) (112) carries 

271.1 254.5 262.3 

314.3 311.3 351.7 

605.4 566.0 434.7 

1271.1 

TABLE 2-3. OCTAL ADDITION - SUBTRACTION 

(SUBTRAHEND) 

(DIFFERENCE) (SUBTRAHEND) ADDEND 

AUGEND ADDEND 0 2 3 4 5 6 7 10 

0 0 0 1 2 3 4 5 6 7 10 

1 1 1 2 3 4 5 6 7 10 11 

2 2 2 3 4 5 6 7 10 11 12 

3 (Difference) 3 3 4 5 6 7 10 11 12 13 

4 Augend 4 4 5 6 7 10 11 12 13 14 

5 5 5 6 7 10 11 12 13 14 15 

6 6 6 7 10 11 12 13 14 15 16 

7 7 7 10 11 12 13 14 15 16 17 

10 10 10 11 12 13 14 15 16 17 20 

(Minuend) 

Sum 
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5.3 OCTAL SUBTRACTION 

Octal subtraction may be performed directly, as in 
decimal arithmetic, by a subtract and borrow routine. 
In this case, the subtract portion of table 2-3 is used. 
When the minuend is smaller than the subtrahend, a 1 
must be borrowed from t1).e next column to the left. 
This is indicated in the table by the two digit minuend 
numbers. In these numbers, the 1 stands for a carry 
whereas the other digit stands for the minuend. Exam­
ples of the use of this table and the general methods of 
subtraction are given below. The borrows are shown in 
parentheses above the column they were borrowed 
from. 

7254.3 

6132.2 

1122.1 

(11) borrows 

7356.3 

7266.6 

0067.5 

5.4 OCTAL MULTIPLICATION 

(111) borrows 

5432.3 

4567.0 

0643.3 

The operations used in octal multiplication are 
similar to the operations used in decimal arithmetic. 
The multiplicand is multiplied by one digit of the multi­
plier at a time to form a series of partial products that 
must be added to obtain the desired result. The digit-

by-digit multiplications are performed using the prod­
ucts given in the octonary multiplication table, and the 
sums are obtained using the octal addition table. The 
position of the octonary point in the product, if either 
or both of the original numbers are fractional, is deter­
mined exactly as in decimal multiplication; that is, if 
there are two digits to the right of the octonary point 
in the multiplier and four digits to the right of the 
octonary point in the multiplicand, the point is posi­
tioned six places to the left of the least significant digit 
in the product. 

Table 2-4 is a combination multiplication and 
division table. To use it for multiplication, read the 
numbers corresponding to the labels not in parenthe­
ses. To use it as a division table, read the numbers 
corresponding to labels in the parentheses. 

In multiplication, the product is found at the inter­
section of the column containing the multiplicand digit 
and the row containing the multiplier digit. For in­
stance, 6 x 7 == 52. In division, the quotient digit is 
found by searching the column which contains the divi­
sion digit for the corresponding dividend digit (or 
digits). Then the row which contains this dividend 
digit intersects the quotient column where the proper 
quotient digit is located. For instance, 43 -;- 7 == 5. As 
an example, using the table, multiply 462(8) by 35(8)' 

TABLE 2-4. OCTAL MULTIPLICATION - DIVISION 

MULTIPLICAND 
(DIVISION) 

0 2 3 4 5 6 7 10 11 12 

0 0 0 0 0 0 0 0 0 0 0 0 

0 1 2 3 4 5 6 7 10 11 12 

2 0 2 4 6 10 12 14 16 20 22 24 

Multiplier 3 0 3 6 11 14 17 22 25 30 33 36 

(Quotient) 4 0 4 10 14 20 24 30 34 40 44 50 

5 0 6 12 17 24 31 36 43 50 55 62 

6 0 6 14 22 30 36 44 52 50 66 74 

7 0 7 16 25 34 43 52 61 70 77 106 

10 0 10 20 30 40 50 60 70 100 110 120 

11 0 11 22 33 44 55 66 77 110 121 132 

12 0 12 24 36 50 62 74 106 120 132 144 

Product 
(Dividend) 
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462 

35 

2772 

1626 

21252 

The multiplicand is multiplied by each digit of the 
multiplicand, and the carry is added to the product 
of each individual multiplication. From the table, 
5 x 2 = 12, write 2 and carry 1; from the table 5 x 6 
= 36 + 1 (carry) = 37, write 7 and carry 3; from the 
table 5 x 4 = 24 + 3 = 27, write both digits. The same 
procedure is followed in the multiplication by 3. After 
the partial products are found, they are added accord­
ing to the octal addition table. 

5.5 OCTAL DIVISION 

Octal division is performed like decimal division 
except that the octal division and subtraction tables are 
used instead of decimal. As an example of octal divi­

sion, divide 21252(8) by 35(8)' 

4628 

358/212528 

164 

265 

256 

72 

72 

o 

30610 

2910/887410 

87 

174 

174 

o 

The most significant number in the quotient is gener­
ated by examining the division of 212 by 35 and decid­
ing, on a trial basis, the largest number that 35 can be 
multiplied by, resulting in a product less than 212. The 
number selected is 4; this is because 5 x 358 = 221 8, The 
multiplication of 4 x 35 is performed using the octonary 
multiplication table. The subtraction of the product 
from 212 is performed by direct octal subtraction. The 
process is continued as in decimal long division until 
the required number of octal digits have been gener­
ated. Note that the divisors, dividends, and quotients 
agree in magnitude, but that the intermediate steps are 
different. 
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CHAPTER 6 
NUMBER REPRESENTATION IN A COMPUTER 

6.1 INTRODUCTION 

In the discussion in Chapter 1, computer informa­
tion was related to numbers in binary form. The ques­
tion of how this information is arranged for presenta­
tion to the computer may be puzzling. It is kno'wn that 
information in the form of arranged patterns of O's 
and l's is coded for use in the computer. The unit of 
information arrangement and presentation is the com­
puter word. This word may be data which is to be 
operated on or instructions which detail the operations 
and the order of operations to be performed; no matter 
what it means, however, it is numerical in form. 

6.2 WORD SIZE 

A computer word is of d.efinite size; i.e., it con­
sists of an exact number of binary symbols, each of 
which is termed a bit (in a binary machine). Each com­
puter has its own word size which is of fixed length 
and arrangement. Some computers have been designed 
to handle computer words of 40 bits; others may use 
words of 30 bits or less. The number of bits in a 
computer word is expressed as its length. The length 
or size of the computer word makes available a definite 
number of positions for coding information in binary 
form. All positions are used whether or not all the bit 
positions are needed to represent the information. This 
is necessary because the computer handles information 
in a pulse-no-pulse cod.e. A no-pulse has meaning, and 
unused positions in a word would be handled by the 
computer as a no-pulse indication. 

The structure of a typical computer word is illus­
trated in figure 2-1. The word illustrated in figure 
2-1 has 32 bit positions and is divided into left and 
right half-words. Each half word has 16 bit positions, 
1 sign-bit position, and 15 positions for information. 

SIGN BIT 

+ 
BIT 

POSITIONS 

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

LEFT HALF WORD 

The next question to be considered is what deter­
mines word size. The choice of word size is not arbitrary. 
There is an optimum word size for any digital computer 
which is related to the "average" problem to be solved 
by the computer, the number of digits in the instruc­
tion code, and by the degree of accuracy in computation. 
In general, the longer the word the more precise a com­
putation will be (more places available). 

6.3 FIXED AND FLOATING POINT COMPUTERS 

Since arithmetic operations involving fractions are 
performed by digital computers, the position of the 
binary point is an important consideration. Two design 
techniques are used in digital computers for position­
ing the binary point. The fixed point system locates 
the binary point in the same position in any register. 
The floating point system produces the effect of in­
dicating the binary point by expressing all numbers as 
products and in two parts. The first part of the ex­
pression is the coefficient, and the seco'nd part is the 
exponent to which the base has been raised. In the 
floating point system, 0.0008076 would be expressed 
as 0.8076 x 10-3• Multiplication or division of two 
fractions involves the appropriate operation by the 
coefficients and the addition o'r subtraction of the ex­
ponents. Thus, to multiply .0012 by .0012 

.12 x .12 == .0144 since .0012 == .12 x 10-2 

10-2 X 10-2 == 10-4 

.12 X 10-2 x .12 X 10-2 == .0144 X 10- 6 == 0.00000144. 

The answer would be expressed as 0.144 x 10-5• 

It is possible to program (using special techniques) 
a fixed point computer so that cO'mputations are per­
formed in a floating point manner. Otherwise, the 

SIGN BIT , BIT 
POSITIONS 

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RIGHT HALF WORD 

Figure 2-1. Computer Word 
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prO'grammer must scale the prO'blem as he prO' grams 
it. (Scaling is briefly explained in Section 6.6.) 

6.4 PRECISION AND ACCURACY 

PrecisiQn and accuracy are terms that have distinct 
meanings and applicatiQn in relatiQn to' numerical data. 
Accuracy refers to' the CQrrectness Qf the expressiQn; 
precisiQn is the degree of CQrrectness. For example, the 
symbol rr may be expressed as 3.14. This is a representa­
tiQn Qf the value Qf rr accurate to' three places, but it 
is nQt precise. PrecisiQn WQuid require that the value 
Qf rr be expressed to' SQme greater number Qf decimal 
places, say 3.14159. Even with the value Qf rr expressed 
to' the fifth decimal PQsitiQn, the degree Qf precisiQn is 
nO't absQlute. The IQwer Qrder digits have been rQunded 
O'ff. HQwever, the 5-place precisiQn may be the degree 
required fO'r a given O'peratiO"n and WO'uld be suitable. 
AnO'ther example may be illustrated from everyday ex­
perience; a persO'n is SQmetimes described as Qver 35 
years O'f age. This may be accurate, but it is nO't precise, 
because that persQn may be precisely 35 years, 2 mQnths, 
1 day, 2 hQurs, 4 minutes, and 10 secQnds in age. 
Even this detailed expressiQn eQuId be carried O'ut to' 
greater precisiQn. 

A quantity which is represented by fQur digits to' 
the left Qf the decimal PO'int is said to' be specified 
to' a precision Qf 1 part in 10,000 because 10,000 distinct 
numbers (0000 thrQugh 9999) can be represented by fQur 
such decimal numbers. If an accuracy to' within ±010/0 
is specified (in connectiQn with a precisiO'n Qf 1 part in 
10,000), it indicates that the unit digit Qf the number 
may be incQrrect by 1 unit. The number 4047 ± 0.010/0 
WQuid imply a value sQmewhere between 4046.5 and 
4047.5. 

6.5 POSITIONAL AND ABSOLUTE SIGNIFICANCE 

A quantity specified by a decimal number to' a 
precisiQn Qf 1 part in 10,000 can be said to' be specified 
to' fQur significant places. In numbers, it is important 
to' understand the cQncept Qf PO'sitiQnal significance. 
ThrQughQut this part, the term "significance" has been 
used freely to' designate the positiO'nal relatiQn between 
individual digits of a number. In this sense, if digit x 
is to' the left Qf digit y, it is mO're significant (has 
mQre value) than digit y. In additiQn to' this cO'ncept 
Qf relative positiQn significance, there is a cO'ncept Qf 
absO'lute significance. In terms Qf this secQnd cQncept, a 
digit in a particular number is said to' be either signi­
ficant Qr nQt. In O'rder to' qualify as being significant 
in this absQlute sense, a digit must cO'ntribute to' .the 
precisiQn required. FO'r example, in the fQllQwing state­
ment, "He is abQut 50 years Qld," the 0 is not signifi­
cant. But a sQmewhat different case Qf significance 
arises in the multiplicatiQn of twO' 4-digit numbers, 
each Qf which is accurate to' ±O.Ol%. Here, the unit 

digits O'f both numbers may be off by as much as 
0.9999 in either direction. FO'r example, if 9001 is 
multiplied by 8001, the prO' duct is 72,017,001. However, 
the specified accuracy is such that the CQrrect values 
O'f multiplier and multiplicand may be as small as 
9000 and 8000 O'r may be as large as 9002 and 8002 
( to' the clO'set unit). Thus, the CQrrect value O'f the 
prO' duct may lie anywhere in the range between 
72,000,000, (i.e., 9000 x 8000) and 72,034,004, (i.e., 
9002 x 8002). FO'r this reaSQn, the right-hand fQur 
digits O'f the prQduct are nQt significant. On the O'ther 
hand, the fifth digit frQm the right is significant, since 
it specifies the apprQximate center Qf the range O'f 
values (72,000,000 and 72,030,000) which bracket the 
CQrrect prO' duct. After a calculatiQn Qf this SQrt is CQm­
pleted, the result must be "rQunded O'ff;" i.e., thQse 
digits which seem to' cQntribute something to' the ac­
curacy Qf the result, but actually dO' nQt, must be re­
mO'ved. FQr purpQse Qf "rQund Qff" in the illustrative 
prQblem, the digit to' the right Qf the least significant 
place does have SQme value; fQr if it is 5 O'r more the 
least significant digit shQuld be increased by Qne unit. 
The abQve example shQuld be rQunded O'ff to' 72,020,000. 
(When binary nQtatiQn is used, a 1 in the bit positiQn 
to' the right Qf the least significant place has a value 
which is equivalent to' the value of a 5 to' the right Qf 
the least significant place in decimal nQtatiO'n. Thus, 
in rO'unding Qff a binary number, a 1 is added intO' the 
least significant bit PQsitiQn if the PO'sitiQn to' the right 
cQntains a 1 but nQt if the positiO'n to the right CQn­
tains a 0). 

6.6 SCALING 

Scaling the variables (the numerical values) which 
are to' be Qperated uPQn in a digital cO'mputer sO'lutiQn 
is clQsely related to' the concept Qf precisiQn. Assume 
that a cQmputer has a decimal mQdulus (4.2.3.2) Qf 
10,000. Then, if a variable can be scaled so that its 
range falls exactly within the capacity Qf the machine, 
it can be represented to' a precisiQn Qf 1 part in 10,000. 
If, Qn the Qther hand, it is scaled SO' that its maximum 
value is represented (handled) by just three O'rders Qf 
the machine, it is Qnly being represented to' a precisiQn 
O'f 1 part in 1000. In Qther wQrds, there are twO' O'b­
jectives to' keep in mind when scaling variables fQr a 
cQmputer sQlution. One is to' scale the variables sO' that 
they dO' nQt exceed the capacity Qf the machine (if this 
happens, meangingless results will be Qbtained); the 
O'ther is to' scale the variables so as to' use as much O'f 
the capacity Qf the machine as possible in Qrder to' 
O'btain the maximum precisiQn. The extent to' which the 
full capacity Qf the machine can be used to' represent a 
particular variable depends uPQn the exactitude with 
which the range O'f the variable is knQwn. 

Suppose that wind velQcity is to' be scaled fQr 
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representation in a computer and it is known that no 
velocity as large as 40 knots will be encountered in a 
particular problem. Then, 40 knots can be made equal 
to the largest number which the machine can handle 

or represent. On the other hand, if the machine handles 
only fractions (or decimals), 40 knots can be equaled 
to one machine unit, and a velocity of 20 knots will 
appear in the machine as 0.5. 
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PART 3 
COMPUTER CIRCUITS AND DEVICES 

CHAPTER 1 
INTRODUCTION 

The building blocks of a digital computer are its 
individual circuits, hundreds, often thousands of them, 
interconnected to accomplish the operations of trans­
ferring and processing data. Actually, however, there 
are not this many different circuits but a few basic types 
that are used again and again in different combinations. 
Before discussing in detail these basic computer cir­
cuits and other devices, certain fundamentals must be 
examined here, such as the types of electrical signals 
commonly used and the nature of the simple logic 
operations performed by the circuits. 

1.1 INFORMATION SIGNALS 

The transfer and processing of information in a 
digital computer is done by switching and storing in­
formation signals; that is, electrical signals represent­
ing numbers. Many or most of the common electronic 
parts (relays, vacuum tubes, crystal diodes, etc. ) per­
form excellently in bistable (2-state or on-off) opera­
tion. Because of this, it is usually easiest to make com­
puters work internally in the binary number system, 
and, in this case, the information signals must repre­
sent the binary digits, 1 and o. (Some computers are 
built to work in decimal, using 2-state signals in a 

code to represent the 10 decimal digits, but this type 
will not be considered here.) 

There are several possible ways of representing 
the binary l's and O's electrically. For example, two 
signal lines might be used, a voltage on one representing 
a 1, a voltage on the other indicating o. This, however 
useful, would require more circuitry than is needed if 
used throughout the computer. When it is necessary to 
transfer numbers over a single signal line between cir­
cuits, as shown at (a) of figure 3-1, the easiest method 
is to place a d-c voltage on the line to represent a 
binary 1 but no voltage to represent a o. The polarity 
of the voltage might be either positive or negative; the 
important point is that the presence of the voltage 
represents 1, the absence represents O. (Circuits A and 
B are shown grounded to indicate the return circuit, or 
common; although the return is always necessary, it is 
usually taken for granted and omitted from block 
diagrams of computer circuitry.) 

1.1.1 Voltage Level Representation 

An alternative to this voltage-or-no-voltage 
method, perhaps somewhat better suited to vacuum­
tube circuitry, uses a steady-state, positive d-c voltage 

(oj S--;NALLEAD~ 

o 
~ UP LEVEL 

IbJ U - -- -11- -TIME - -~ 
DOWN LEVEL 

o o 

(c) 

Figure 3-1. Common Number Signals 
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fDr a 1 and a negative vDltage fDr a o. Any reasDnable 
vDltage amplitudes may be used fDr the tWD d-c levels 
tD meet circuit requirements. Actually, the negative 
vDltage ('Often called the down level) may be negative 
'Only in relati'On tD the mDre pDsitive, Dr up level, 
vDltage. This methDd 'Of representing num~ers with d-c 
levels is shDwn at (b) 'Of figure 3-1. Circuit A in­
dicates a 0 tD circuit B by h'Olding the signal line at 
the dDwn level, a negative pDtential. When it is desired 
tD signal a 1, the level is brDught up tD a positive 
potential and held there as lDngas necessary. As lDng 
as the level is up, a 1 is present at the input tD circuit 
B; when it is dDwn, the input is o. It is pDssible tD 
reverse this methDd 'Of representation and call the 
down level a 1 and the up level a o. In practice, this 
matter of polarity and number representation can be­
come a headache tD the designer, especially in vacuum­
tube circuits where signal inversiDn takes place between 
grid and plate in each tube stage. To simplify circuitry, 
the method of representatiDn chosen fDr the cDmputer 
may be reversed in SDme grDups of circuits. There is 
n'O 'Objection tD this, as long as the 'Operation remains 
lDgical and consistent. The Central Computer 'Of the 
AN /FSQ-7 and -8 uses this voltage level method 'Of 

representing numbers (and another methDd, described 
below). The standard levels in this machine are - 30 
vDltS for the dDwn level (Dr binary 0), and +10 volts 
fDr the up level (or binary 1). 

1.1.2 Pulse Representation 
One characteristic of the voltage level infDrmatiDn 

signal is that it can be held up Dr dDwn as IDng as 
necessary. In many cases, hDwever, all that is needed 
is a I-signal 'Of very brief duration to trigger the fol­
lowing circuit, SD a pulse can be used tD represent a 1, 

as in ( c) 'Of figure 3-1. (This is a perfect, square 
pulse; in practical circuitry, it would tend tD be rDund­
shouldered.) If a pulse (pDsitive or negative) repre­
sents a 1, it fDllDW that the absence 'Of a pulse IDgically 
represents a o. 

Using the methDd 'Of pulse signals, the 'Output line 
frDm circuit A remains at SDme reference level (usually 
ground potential) until a 1 must be transmitted tD cir­
cuit B, whereupDn a single pulse is generated by A and 
is placed on the line. The pulse appears at the input 
'Of circuit B, signalling at 1, and quickly dies 'Out, but 
it must have sufficient amplitude and duration tD prD­
duce the desired triggering 'Of circuit B. When the 
qui'ckly passing (transient) pulse has disappeared after 
triggering circuit B, the signal line returns tD the zerD 
reference level, again indicating 0 at the circuit B input. 
NDt until anDther 1 must be indicated is anDther pulse 
sent. The AN/FSQ-7 and -8 cDmputer uses pulse signals, 
as well as levels, tD represent numbers. The pulse 
representing I's are pDsitive, 20 tD 40 vDltS in ampli­
tude and 0.1 micrDsecDnd (usec) in duratiDn. 

1.1.3 Transmission Methods 

The levels and pulse signals are the twD basic 
types (but nDt the only pDssible ones) used tD represent 
numbers and, therefore, infDrmatiDn, in digital CDm­

puters. But a single level Dr pulse represents 'Only 'One 
binary bit, yet the computer must work with IDng 
binary numbers (many bits), Dr words. HDW are these 
cDmputer words transmitted frDm one part 'Of the 
machine tD anDther? 

1 .1 .3.1 Parallel 

If 'One signal line between twD circuits can, at a 
given moment, transmit a 1 Dr a 0, it is reasDnable 
tD conclude that a cDmplete, 5-bit word, fDr example, 
requires five lines in parallel (plus 'One commDn signal 
return). This is -called parallel transmission. A parallel 
circuit capable of handling a sample 5-bit word, using 
relays with normally 'Open contacts as cDmbined switch­
ing and storage devices, appears at (a) of figure 3-2. 
Assuming that the five relays can be 'Operated and held 
operated in any desired combination, any 5-bit binary 
number from 00000 through 11111 (decimal 31) can 
be transmitted tD the five circuits labelled 24 thrDugh 2°. 

With all five relays unoperated, all cDntacts are 
open, and nDne 'Of the lines are cDnnected tD the battery. 
Each signal line, therefore, is at the dDwn level, and 
the input tD each circuit is o. Reading acrDSS all five 
inputs at (a), the result is 00000. If relay 0 alDne is 
operated, only the input tD circuit 20 is up (cDnnected 
to battery). Now, reading across the five inputs at (b) 
'Of figure 3-2, the lines are: 

24 23 22 21 2° 

dDwn down dDwn dDwn up 

representing 

0 0 0 0 1 

Dr decimal 1. 

As anDther example, simultaneDusly 'Operating re­
lays 4, 1, and 0 brings up the three cDrrespDnding lines, 
as shDwn at (c): 

up dDwn dDwn up up 

representing 

1 o o 1 1 

Dr decimal 19. 

Changing the level 'On any signal line, in this case 
by 'Operating or dropping the cDrresponding relay, 
changes the transmitted computer (binary) word. And, 
although it has been assumed that the 'Operated relays 
are held 'Operated tD prDvide levels, pulse-type signals 
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Figure 3-2. Parallel Transmission of Numbers 

could be sent just as easily by simultaneously pulsing 
the desired combination of relays. To use the previous 
example, if the coils of relays 4, 1, and 0 are pulsed 
at the same time, their contacts close briefly and then 
open again. As shown at (d) of figure 3-2, this places 
a single pulse on each of the signal lines to circuits 
24, 2\ and 2°, but there are no pulses on the inputs to 
circuits 23 and 22. So the number transmitted is again 
10011, but this time it is sent by means of pulse signals 
rather than by voltage levels. Finally, remember that 
relays are shown in the circuit of figure 3-2 only as 
examples of devices providing the switching or storage 
functions. Each relay can be replaced by any type of 
circuit or device capable of performing the necessary 
(bistable) function and of delivering the proper in­
formation signals. 

1.1.3.2 Serial 

There is one other basic way of transmitting num­
ber signals, in addition to the parallel (or side-by-side) 
method just described. This second method also uses 
either levels or pulses, but sends the bits of the number, 
one after another, down a single line. Thus, the bits 
are sent in sequence, or serially, so this is called serial 
transmission. In the serial method, it is usual to send 
the least significant bit of the number first, followed by 
the other bits in order of increasing significance. This 

makes sense when it is remembered that addition, sub­
traction, etc., are performed bit by bit in this same 
order. The binary number previously used as an ex­
ample, 10011, is shown in figure 3-3 as it would be 
sent in serial form, with pulse-type signals. The num­
ber is sent from circuit A to circuit B as a train of 
pulses and no-pulses. The first bit transmitted and, 
therefore, the first bit received by circuit B, is the least 
significant, or 2°, bit, and the more significant bits 
follow in order. There must be spacing between suc­
cessive pulses, otherwise they could not be distinguished 
by the receiving circuit. 

1 • 1 .3.3 Comparison of Methods 
The principal differences between the parallel and 

serial methods of transmission show up in a compari­
son of figures 3-2 and 3-3. In the parallel method 
of figure 3-2, five sending and five receiving circuits 
are involved to handle a 5-bit number. In the serial 
method (fig. 3-3), only two circuits are needed: one 
sending, the other receiving. On the other hand, all 

o o 

Figure 3-3. Serial Transmission of Numbers 
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bits are sent simultaneously in the parallel method, so 
the entire number is transmitted in the time it takes to 
send only one bit. In the serial method, the entire 
number is not known until all five bits have been sent, 
one after the other; so it takes five times as long to 
send the same complete number. 

Thus, it becomes apparent that, in general, the 
parallel method offers much faster transmission of 
numbers than the serial, but requires more circuitry. In 
the AN/FSQ-7, -8 computer, in which each word is 32 
bits long, use of the parallel method makes number 
transmission 32 times faster than if the serial method 
were employed. This is achieved at the cost of more 
equipment, justified, of course, by the importance oJ 
operating speed in this air defense computer. And 
while speed of number transmission is only one factor 
in determining the final operating speed, it is an im­
portant one. 

1.1.4 Timing 

Another matter of importance in transmitting num­
bers is timing. 

1.1.4.1 Parallel Transmission 

Consideration of the parallel method shown in 
figure 3-2 indicates that simultaneous operation of the 
relays signalling a given number is a must if circuits 
2° through 24 are going to operate upon the number as 
soon as it is received. If the number signals were volt­
age levels, for example, and relays 4 and 0 were oper­
ated together, followed a moment later by relay 1, the 
receiving circuits would first get the number 10001, 

which would then change to 10011. With pulse-type 
signals of short duration, the same operation of the 
relays would send 10001 and then 00010. Either of these 
occurrences, resulting in incorrect numbers getting in, 
could cause errors in an arithmetic machine. It is im­
portant, therefore, in many or most uses of parallel 

BIT - TIMES 

T5 T4 T3 

0 0 
w n 0 
=> PULSES ~+ 
...J 
0..0---
:!:-
<X 

T5 T4 T3 

transtpission, to time all the bits of a number to arrive 
simultaneously at their destinations. 

1.1.4.2 Serial Transmission 

Timing is equally vital in serial transmlSSlOn, as 
examination of figure 3-3 will indicate. Since the bit 
signals are sent down a single line, one after another, 
some rigid timing system is a necessity, especially with 
pulse-type signals. If the signals were sent at varying 
intervals, for example, the receiving circuit would have 
no way of telling whether a long space between pulses 
was a 0 or merely spacing. And if voltage level signals 
were used, the receiving circuit could not distinguish 
between a 1 and two consecutive l's or between a 0 
and two consecutive O's. So the timing of serial trans­
mission must be controlled, also. This is done by estab­
lishing the period of time necessary to send one bit, 
which is the smallest piece of information handled in 
the computer. If a pulse system is used, each pulse must 
last long enough to trigger the receiving circuit, and 
the space between pulses must allow sufficient recovery 
time to prepare the circuit for the receipt of another 
pulse. With serial voltage levels, each level must be 
held long enough to include both triggering and re­
covery times. 

Once the time period for transmission of a single 
bit ( called one bit-time) has been determined, the 
problem of serial timing is handled by rigidly control­
ling the length and spacing of the bit signals in every 
number (computer word) transmission. Figure 3-4 
shows the timing of both the pulse-type and level-type 
signals making up the number 10011. The bit-times, 
measured from the start of the first signal in the 
number, are shown running from right to left across 
the top of the figure (the least significant bit, which 
appears first, is at the right). Notice that each bit­
pulse in the pulse system appears at the start of the 
corresponding bit-time, lasts for a fixed period, and 

T2 TI 

n IL 
T2 TI 

Figure 3-4. Timing of Serial Numbers 
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disappears, to be followed by a space four times the 
length of the pulse. When the bit to be represented is 
a 0, no pulse is sent during that bit-time, of course. 
The relative durations of pulses and spaces vary from 
one computer to the next. In some, for example, the 
space is the same width (in time duration) as the pulse. 
In the voltage level system, the line potential rises to 
the up level when a 1 is being transmitted and remains 
there during the entire bit-time. If the next bit is also 
a 1 (as it is in fig. 3-4), the level does not drop, even 
momentarily, but remains up for the next bit-time, also. 
Only when successive bits are different - changing 
from 1 to 0 or 0 to 1 - does the level change. 

In many computers, the basic source of timing or 
synchronizing signals is the clock, usually a pulse gen­
erator which, controlled by an accurate oscillator, puts 
out a continuous string of rigidly timed pulses. The 
clock pulses are generated one per bit-time and are sent 
to all parts of the computer to control the transmission 
of numbers and the timing of operations. Thus, in a 
computer using a 1-usec bit-time, the clock must gen­
erate one million pulses per second, at exact 1-usec in­
tervals, from the time the computer is turned on until 
it is shut down. 

1.1.5 No-Signal Condition 

One further point must be mentioned. Whenever 
quickly passing (short duration) signals are used (either 
pulse-type signals in serial or parallel number trans­
mission or voltage levels in serial transmission) all 
signal lines are normally held at the 0 level when no 
numbers are being sent. This means, in effect, that O's 
are kept in all circuits where no other numbers are 
being processed. (It is entirely possible to use a system 
of number signals in which this would not be true, 
such as positive pulses for l's and negative pulses for 
O's, with the line returning to ground potential between 
pulses, for example. However, such a system is com­
plex and requires much equipment.) 

On the other hand, voltage level signals used in 
parallel circuitry are not usually short-duration signals. 
In many types of parallel circuitry, the 2-line trans­
mission method described in 1.1 is used, a signal 
(usually an up level) on one line representing 0, a 
signal on the other representing 1. As in all cases, O's 
are kept in all circuits that are temporarily idle, but in 
this case the O's are represented by up level voltages 
on the 0 lines. The levels, whether indicating O's or 
l's, are held on the lines as long as required. When 
certain numbers are no longer needed, they are re­
moved from the circuitry holding them by means of 
control signals sent to return all circuits to the 0 state. 

1.2 SWITCHING LOGIC 

The preceding text has shown the basic types of 
signals used to represent information in digital com-

puters and the basic methods of moving the informa­
tion from one part of a computer to another. It has 
been mentioned that all the arithmetic and other oper­
ations performed in a digital computer are done by 
switching and storing information (in the form of 
numbers) in the proper combinations and sequences. 

The operations carried out by the digital computer 
are operations of logic. Arithmetic - all mathematics, 
in fact - is rigidly based on logic; in other words, 
arithmetic is a systematic process of manipulating num­
bers involving simple operations carried out according 
to precise rules. If numbers are to be represented by 
voltage levels and pulses, as stated above, some system 
of manipulating these voltages according to the logical 
rules of arithmetic must be found. Circuits which ac­
complish this function in a computer are called logic 
circuits. 

1.2.1 Logic Operations 

How does switching enter into operations of logic? 
This can best be understood by looking first at the 
type of logic operation that can easily be performed by 
a switching circuit. The actual circuitry will be con­
sidered later. 

1.2.1.1 OR Logic 

One of the common logic operations is the alterna­
tive or choice, called the OR function. This comes into 
play whenever anyone of two or more alternate possi­
bilities can bring about a specified result. For example, 
"We'll go to the movies if George, Pete, or Joe shows 
up." In this case, the arrival of George OR Pete OR 
Joe leads to the result, movies. This can be written in 
shorthand form: 

George OR Peter OR Joe == Movies 

The situation can also be symbolized in diagram form, 
as shown in figure 3-5. The label in the block indicates 

GEORGE .. 
PETE OR 

MOVIES .. 
JOE 

-'" -
Figure 3-5. OR Situation Symbolized 

that OR is the relationship between its "inputs," which 
are, of course, the arrival of George, Peter, or Joe. 
Another way of thinking of it - more accurate when 
dealing with equipment - is that the block applies the 
OR function to its inputs. The block produces an 
"output" - movies - only when the inputs meet the 
OR requirements: in other words, when at least one of 
the inputs appears. This diagram can be altered, as in 
figure 3-6, to illustrate the general case, any OR situa­
tion. Three inputs are shown, although any number 
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A OR B OR C" 0 

Figure 3-6. OR Function 

except one is possible (one condition offers no alterna­
tive, hence no OR). The OR function produces a 
specified result, D, when anyone of its input condi­
tions, A OR B OR C, is satisfied. Notice that if any 
two, or even all three, of the inputs appear together, 
the output is still produced because no restriction is 
stated. The OR in this case includes all combinations, 
as well as one-at-a-time inputs, so it is called an in­
clusive OR. In digital computer logic circuits, the OR 
function is always inclusive unless otherwise specified. 

The opposite OR situation is called the exclusive 
OR. It requires that anyone, but no more than one, of 
two or more inputs produce a specified output. "We'll 
play golf if Harry or Jim comes, but not if they both 
arrive." Harry OR Jim result in golf, but it is definitely 
stated that Harry AND Jim does not. 

1.2.1.2 AND Logic 

That last statement indicates that the AND (com­
bination) must be another logic function, which it is. 
The AND function requires that all of two or more 
possible conditions (inputs) be present at the same 
time to bring about a specified result (output). For 
instance, "You need inductance and capacitance and 
resistance to build a bandpass filter." All three are 
required - and all at the same time - to produce the 
result, a filter. If anyone is missing, or if the three 
are present only at different times, the specified result 
is not produced. The logic can be written: 

LAND C AND R = Filter 

Figure 3-7 illustrates the AND function in dia­
gram form. Again, any number of inputs except one is 
possible. The AND function produces a specified result, 
D, when all its input conditions, A AND BAND C, are 
fulfilled at the same time. 

1.2.1.3 NOT Logic 

Another logic operation of importance is the NOT 
function, called inversion. Inversion means a turning 

:~:I AND I _0 

A AN 0 BAND C " 0 

Figure 3-7. AND Function 

upsi,Je down or a reversing of relationships. In working 
with 2-valued logic, this means changing every quantity 
to its opposite. Every "yes," when inverted, becomes a 
"NOT yes," which is the same as a "no." Similarly, a 
"no," inverted, becomes a "yes." Figure 3-8 shows 

I .---I-~ NOT A 

A ----... NOT A 

NOT A ---. A 

Figure 3-B. NOT Function (Inversion) 

the symbol for the NOT function. The letter I, in the 
block, stands for "inverter," the commonly used name 
for the NOT block. The inverter can have only one 
input; if more than one quantity is to be inverted, a 
separate inverter is required for each. When input A 
is applied to the inverter, as shown in the figure, the 
output is NOT A. It is also possible to feed NOT A to 
the input and obtain A as the output. 

The NOT function most often becomes necessary 
in conjunction with the OR or the AND. For example, 
someone might say "I'll go if Tom does, but not if it 
rains." Examination shows that this involves an AND 
function and a NOT. 

Tom Goes AND (NOT Rain) = I Go 

This can be diagrammed with an AND block and an 
inverter, as shown in figure 3-9; the combined func-

TOM GOES I I 
RAIN ---El1------4:~ AND .----1 ... I GO 

Figure 3-9. AND NOT Diagrammed 

tions are often called the AND NOT. (An OR NOT 
arrangement can be put together in similar fashion 
from an OR and an inverter.) Notice that if the in­
verter input (rain, in this case) is present, it prevents 
the AND from producing an output. (The presence of 
an inverter input means no inverter output; hence, a 
missing input to the AND. The AND cannot operate 
unless all its inputs are present simultaneously.) This 
prevention of the AND operation is called inhibiting 
which, used this way, means about the same thing as 
prohibiting. 

The inhibit function by itself is drawn as shown 
in figure 3-10. The semi-circular "button" indicates 
the inhibit input; the other inputs are usually arranged 
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:3 INH I ., D 

AND INPUTS: BAND C AND (NOT A) = D 

OR INPUTS: B OR C AND (NOT A) = D 

figure 3- 10. Inhibit function 

to fulfill the AND function, although they can be made 
to operate as OR inputs, if desired. Operating in AND 
fashion, the inhibitor produces an output, D, when in­
puts BAND C AND (NOT A) are present. The 
presence of input A, however, inhibits (stops) the out­
put, even if all other conditions are satisfied. There 
may be any number of AND or OR inputs (one or 
more), and the same is true of the inhibit inputs. 

1.2.2 Circuit Logic 
Now that the basic logic functions used in digital 

computer circuitry have been examined in terms of in­
formation only, it is time to see how physical circuits 
operate according to the rules of these functions. The 
inputs are now going to be electrical signals represent­
ing the facts or events that must be logically connected. 
The logic blocks previously used to diagram the func­
tions are henceforth actual physical circuits. And, fin­
ally, each output is an electrical signal representing the 
specific result of applying the rules of a particular logic 
function to a particular set of inputs. To put it an­
other way, each output is a logical conclusion. 

To see how a switching circuit performs a logic 
function, consider the case of a home owner who wants 
to be warned when someone comes to either his front 
or back door. This involves the OR function, and the 
logic of this situation can be diagrammed as shown in 
figure 3-11, using the simple OR block. The ordinary 

SOMEONE AT 

:1 I FRONT 
OR • WARNING 

SOMEONE AT 
BACK 

figure 3-11. Logic of Doorbell Situation 

manner of "solving" this, of course, is to install a door­
bell circuit, with a pushbutton switch at the front door 
and another at the back and a bell inside the house. A 
battery can be used to power the bell, as shown in 
figure 3-12. 

The pushbuttons are not parts of the logic circuit, 
but are simply devices to translate physical facts or 
events into electrical signals. They put the information 
into the circuit. The fact, "somebody at the front door," 

FRONT 
DOOR 

BACK 

~DDD. 

OR 

-=- 6 V 

1: 
Figure 3-12. Doorbell Circuit, Showing Logic 

is translated to a voltage of 6 volts when that "some­
body" presses the front-door button. The voltage, 
which can also be considered as a binary 1, is applied 
to one input of the OR circuit. According to the OR 
function rule, an output is produced when one input 
OR the other is present. So a binary 1 at the front-door 
input results in an OR circuit output that rings the 
doorbell. Following this reasoning, a binary 1 at either 
OR circuit input represents "somebody present," so a 
binary 0 (no voltage, or 0 volts) must represent "some­
body not present." 

1 = Somebody present 

o = Somebody not present 

Thus, electrical signals can be made to represent the 
binary numbers which, in turn, are made to represent 
specific items of information. The 6 volts can be 
thought of as the up level voltage, in which case 0 

volts is the down level voltage. 
Now, the OR circuit itself, inside the block in 

figure 3-12, must be constructed to operate in accord­
ance with the rules (logic) of the OR function; in 
other words, it must be built to produce an output 
when a binary 1 (up level voltage) appears at one in­
put OR the other. What must the output be? Well, the 
bell must ring when somebody is present (at either 
door); binary 1 represents "somebody present," so 
the output must be a binary 1 or an up level of 6 
volts. The current that flows as a result of applying 
this up level is capable of ringing the bell, so the 
choice of output is logically and electrically satisfactory. 
The bell can be considered as a device to transfer the 
information, "somebody present," to the homeowner. 

When there is nobody present at either the front 
or back door, a binary 0 (down level) is present at 
each OR circuit input. In this case, the output must 
also be a binary 0, or down level, representing "some­
body not present." The down level cannot cause the 
bell to ring. The conditions of this situation are so 
simple it is apparent that the OR circuit itself need be 
nothing more than a parallel connection of wires from 
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Figure 3-J 3. Complete Doorbell OR Circuit 

the pushbutton switches, as shown in figure 3-13. 
Notice that, however simple it may be, this is the only 
part of the circuit that fulfills, by itself, the require­
ments of the OR function. It is the parallel method of 
connection that offers alternate input possibilities, mak­
ing this an OR circuit. It is important to understand 
this distinction, although in practice it is common to 
speak of the entire parallel circuit, including the 
switches, as the OR circuit. 

This doorbell OR circuit provides a simple illustra­
tion of the manner in which a logic operation is carried 

out by an electrical or electronic circuit. Regardless of 
the type of logic circuit, 2-valued information is repre­
sented by binary numbers 0 and 1, which, in turn, are 
represented by electrical signals. Means or devices are 
provided to get these signals into the circuit at the 
proper place and time. By building the circuit to oper­
ate upon the electrical signals according to the rules 
of the desired logic operation, the resulting output 
signals represent logical decisions or conclusions 
reached in accordance with the built-in rules. To be 
useful, these outputs are transmitted or transferred 
either to some other circuit or out of the computer. 

So the computer logic circuits cannot "think" and 
do not know what information their inputs or outputs 
represent. There is nothing miraculous about them. 
They simply accept electrical input signals and operate 
with them in accordance with the circuit design, just as 
ordinary radio or TV circuits must do. All the thinking 
is done by the designers who build the rules of logic 
into the circuits and the programmers who direct the 
operation of the computer. The advantage of the com­
plete computer is that it can perform a long sequence 
of these simple logic operations, at extremely high 
speed, by sending signals through a chain of logic 
circuits. By performing the proper sequence of opera­
tions, the computer does arithmetic. 
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CHAPTER 2 
SWITCHING AND SMALL-SCALE STORAGE CIRCUITS 

2.1 COMPUTER LOGIC CIRCUITS 

What switching devices are commonly used in logic 
. ., T cIrcuIts. he answer, today, is relays, semiconductor 

( c~stal) diodes, vacuum tubes, transistors, and mag­
netic cores. Tomorrow's answer may be different, for 
research is constantly seeking smaller, faster, more effi­
c~ent: and more reliable switching devices. Today's logic 
cIrcuIts are shown, briefly, below. The actual circuit 
coverage is brief because, except in relay computers 
(those composed principally of relays), a good working 
knowledge of a digital computer rarely requires know­
ing exactly what is inside a logic circuit. 

All the AND circuits in a given computer, for ex­
ample, are usually identical and individually packaged. 
The machine is ordinarily serviced by locating and pull­
ing out a defective package and replacing it with a 
spare, so the technician works down to the logic circuit 
level but not inside the circuit. His schematics are "logic 
block diagrams," showing each circuit as a block la­
belled for the type of logic operation it performs, like 
the blocks in figures 3-5 through 3-12. (Figure 3-9 
is a miniature logic block diagram, showing logic cir­
cuits interconnected.) The technician must know the 
types of electrical signals used and the inputs, outputs, 
and "rules" of each type of logic circuit. In other words, 
to understand and troubleshoot the computer, it is nec­
essary to know the logic but not the individual circuits. 
For a complete understanding of the computer, it is 
necessary to know how logic circuits are made up, using 
the various switching devices mentioned earlier. 

2.1 • 1 Relay Logic Circuits 

The doorbell OR circuit shown in figure 3-13 is 

PRIORITY 
TARGET 

HIGH SPEED 

FROM -=- -=- FROM 
RANGE 

COMPUTER 
SPEED 

COMPUTER 

Figure 3-J 4. Relay OR Circuit 

hardly the sort of thing one would expect to find in a 
digital computer. Yet, consider how closely it resembles 
the OR circuit from a relay type of computer, shown in 
figure 3-14. The relay OR circuit must, of course, pro­
duce an output of 1 when a 1 appears at any of its in­
puts. The manner in which such a circuit can be put to 
practical use in making a built-in "logical decision" can 
be seen from this example. 

Figure 3-14 shows a priority circuit in an air de­
fense computer. If an enemy aircraft is within fairly 
close range, or is traveling at very high speed, it must 
be dealt with before an aircraft that is further away or 
approaching more slowly. To remember that this air­
craft, or target, has special priority, the relay computer 
uses the OR circuit, shown in figure 3-14, to operate 
the PRIORITY TARGET relay. 

Binary 1 signals from small analog range and 
speed computers operate either the IN RANGE or the 
HIGH SPEED relays (or both) if the aircraft being 
tracked by radar is within a certain range or approach­
ing faster than a certain speed. Operating either relay 
closes its normally-open contacts and applies an up 
level voltage, a binary 1, through the parallel connec­
tion to the relay coil. Thus, the PRIORITY TARGET 
relay is operated when the target is in range OR flying 
at high speed. The contacts of the PRIORITY T AR­
GET relay are located in other circuits, so this relay is 
not only a memory but also a device to transfer the 
binary 1, produced by this OR circuit, into other cir­
cuits. An OR circuit like this can be given any reason­
able number of inputs simply by placing more sets of 
normally-open contacts in parallel. 

This relay computer OR circuit, then, is almost ex­
actly similar to the simple doorbell OR circuit. Com­
puters composed principally of relays are not often 
built today, due to the comparatively slow operate and 
release times of the relays, but the relay logic circuits 
are nevertheless still important. The automatic dial tele­
phone exchanges, for example, the world's largest dig­
ital data-processing machines, or computers, use thou­
sand.s of relays. And some relay circuitry is often used 
in electronic computers, especially in the input and out­
put elements. 

A relay circuit to handle the AND operation must 
produce an output of 1 only when l's are on all its in­
puts. As an example, suppose the bridge of a battleship 
must be alerted whenever an aircraft identified as hos-
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FROM FROM 
RANGE IDENTIFICATION 

COMPUTER CIRCUIT 

Figure 3-15. Relay AND Circuit 

tile flies within 20,000 yards of the ship. The relay com­
puter AND circuit shown in figure 3-15 automatically 
sounds the alert. The coil of the HOSTILE relay is con­
nected to an identification circuit that operates this re­
lay whenever a hostile aircraft is detected. Operating 
this relay, in effect, signals that there is a binary 1 at 
this input. The hostile aircraft is automatically tracked 
and a range computer operates the IN RANGE relay if 
the aircraft comes within 20,000 yards of the ship. This 
signals a binary 1 on the second input. The normally­
open contacts of the two relays are connected in series 
in the alarm circuit; thus, when a hostile aircraft is de­
tected AND its range is less than 20,000 yards, both sets 
of contacts are closed and a d-c level is applied to the 
alarm device to sound the alert. Putting it in general 
terms, when binary l's are on both inputs, the circuit 
produces an output of 1. The 100gic is: 

In Range AND Hostile == Alarm 

The circuit is not limited to two inputs, of course. More 
sets of normally-open contacts can be added in the 
series path. 

A very important requirement is that, regardless of 
the number of inputs, all must be signaling l' s at the 
same time to produce an output 1. In the AND circuit 
of figure 3-15, if only one set of contacts closed, or if 
one set closed and then opened again before the second 
set closed, the alarm device could not operate. In this 
example, it is likely that an aircraft would be identified 
as hostile before it came within the specified range. 

FROM 
RANGE 

COMPUTER 

FROM 
IDENTIFICATION 

CIRCUIT 

Therefore, the HOSTILE relay would be O'perated first. 
The AND circuit cannot produce an output, however, 
unless both input conditions are satisfied simultane­
ously, so no alert could be sounded (no output pro­
duced) until the IN RANGE relay also operated. 

Inversion - the NOT operation - is easily accom­
plished with relays by using a normally-closed set of 
contacts. The above discussions have indicated that a 
binary 1 is inserted into a circuit by closing a pair of 
normally-open contacts. This is done by operating the 
relay on which the contacts are mounted. In other 
words, a binary 1 operates a relay, and the 1 is trans­
ferred intO' another circuit by the closing of the relay's 
normally-open contacts in that circuit. Now, consider 
the relay that has normally-closed contacts. When this 
relay is not operated, its contacts are placing a binary 1 

in some other circuit, so the relay is receiving binary 0 
(at its coil) and its contacts are indicating NOT 0, or 1. 
When a binary 1 operates the relay, its contacts open, 
indicating o. Thus, using normally-closed contacts ac­
complishes the NOT operatiO'n. Either OR NOT or 
AND NOT circuits can be built. The AND NOT oper­
ation can be illustrated by making a change in the ex­
ample of figure 3-15. The HOSTILE relay is simply 
replaced by a FRIENDL Y relay with a set of normally­
closed contacts connected in series with the normally­
open contacts of the IN RANGE relay, as shown in 
figure 3-16. 

It must be assumed that the identification circuit 
operates the FRIENDLY relay only if an aircraft is 

l 

Figure 3-16. Relay AND NOT Circuit 
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identified as friendly. When the FRIENDLY relay is 
operated~ its contacts open. If the aircraft comes within 
20,000 yards, the contacts of the IN RANGE relay 
close, but no alarm is given because the alarm circuit is 
broken by the open contacts of the FRIENDLY relay. 
However, if the incoming aircraft is hostile, the 
FRIENDLY relay is not operated, and its contacts re­
main closed. When the RANGE relay now operates, the 
alarm circuit is completed, and the alert is given. Be­
cause of the series connection, the network is still an 
AND circuit, but the normally-closed contacts introduce 
inversion. The logic of the circuit is now: 

In Range AND (NOT Friendly) = Alarm 

An OR NOT circuit is constructed like an OR, but 
using a normally-closed set of contacts in one (or 
more) of the parallel paths. 

Many different combinations of logic operations 
are possible in relay contact networks, of course, using 
various arrangements of series-parallel paths. A rela­
tively simple example is shown in figure 3-17, with the 
logic written below the circuit. The relay coils are not 
shown, which is the normal practice in relay work. In 
the logic of figure 3-17, note that there are two paral­
lel OR connections and three parts to the principal 
series AND connection. For experience in recognizing 
and working with logic, the reader might try drawing 
the logic block diagram of this circuit, using logic 
blocks like those of figure 3-5 through 3-12. Use as 
few blocks as possible to do the job correctly, just as a 
designer would attempt to reduce the number of logic 
circuits in a computer. 

2.1.2 Diode Logic Circuits 

Many computers use what is called diode logic, 
performing most or all of the logic operations in cir­
cuits made up of semiconductor diodes, and using vac­
uum tube or transistor circuits primarily for building up 
attenuated pulses or levels, where necessary. The basic 
diode OR circuit appears in figure 3-18. The crystal 
diode, of course, is like the vacuum tube diode. It has 
an anode and a cathode, identified as shown, and offers 

A D 

OUTPUT 

(A OR B) AND C AND [DOR(E ANDNOTF~=OUTPUT 

Figure 3-17. Sample Relay Logic Combination 
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Figure 3-J,8. Diode OR Circuit 

practically no forward resistance to the flow of elec­
trons from cathode to anode; in other words, it con­
ducts easily when the anode is made more positive than 
the cathode. However, when the cathode is more posi­
tive than the anode, the diode offers a very high back 
resistance, and practically no current can flow. 

The input lines to the diode OR are connected in 
parallel, each through a separate diode, to the output. 
(Only two inputs are shown, but it is possible to add 
more.) As in the doorbell and relay circuits, it is the 
parallel connection itself that makes it an OR circuit. 
The diodes are required to isolate the inputs from each 
other to prevent interaction between the circuits sup­
plying the input signals. The junction is tied through 
resistor R to a source of voltage more negative than the 
level used to represent binary o. Therefore, when 0' s 
are on both input lines, both diodes conduct because 
the anodes are more positive than the cathodes. Since 
the diodes offer practically no resistance to current flow 
in this direction, nearly all the voltage drop in the cir­
cuit is across the relatively large resistance of R. Thus, 
the output, tied to the more positive end of R, is at 
approximately the same voltage level as the input lines, 
indicating binary o. When a positive-going voltage 
level, representing a binary 1, appears on either input 
line, there is a greater difference of potential between 
the negative source and that input. Again, nearly all 
the increased voltage drop appears across R, so the volt­
age at the output end of R rises to approximately the 
binary 1 level. The same effect occurs if l' s appear 
simultaneously on both inputs. 
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In this manner, the circuit carries out the OR op­
eration by putting out a 1 when there is a 1 on either 
input (or both). The circuit shown in figure 3-18 is 
basic and could be made to work with either pulse or 
voltage level signals but, because of the d-c bias, oper­
ates somewhat better with-levels. For pulse signals, load 
resistor R is often connected to ground instead of a 
negative voltage source, and a peaking inductance may 
be placed in series with the resistor. The circuit opera­
tion is the same as that described above, except that the 
diodes do not conduct when O's are on the input lines 
and the output line is then at ground potential. 

Note that this diode OR circuit of figure 3-18 can 
be substituted for the relay OR circuit, shown in figure 
3-14, by connecting the range computer to one input 
and the speed computer to the other. The PRIORITY 
TARGET relay would most likely be replaced by some 
other type of memory and information-transfer device 
because of loading and other electrical problems. The 
important point is that the problem of registering a 
priority target can be solved just as well by the diode 
OR as by the relay OR circuit. 

The diode AND circuit, shown in figure 3-19, 
also depends for its operation upon the voltage drop 
across load resistor R, which, in this case, is connected 
to a source of positive bias voltage. The diode connec­
tions are the reverse of those in the OR circuit, and 
positive-going binary 1's are applied to the cathodes. 
(More AND inputs can be added, although only two 
are shown in this figure.) 

When relatively negative binary O's are on both in­
puts, both diodes conduct because the anodes are more 
positive than the cathodes. The forward resistance of 
the diodes under these circumstances is only a few 
ohms, so practically all the voltage drop is across the 
load resistor, placing the output line at approximately 
the binary 0 level. As long as there is still a 0 at one in­
put, the diode in that line continues conducting, and 
the voltage drop across resistor R keeps the output line 
at the 0 level. Therefore, the anode of the other diode 
is held at the 0 level, and a more positive 1 appearing 
at its cathode cuts it off but does not affect the output 
level. 

reA 
INPUTS ~ 

POSITIVE 

VOLTAGE 

SOURCE 

R 

..---0 A AND ~ OUTPUT 

Figure 3-79. Diode AND Circuit 

When 1's appear simultaneously at both input 
lines, the total voltage drop across the circuit is de­
creased by an amount equal to the amplitude of the 1 
signal. Both diodes conduct, and nearly all the de­
creased voltage drop is across resistor R, so the voltage 
at the output end of R rises to approximately the level 
of the input lines, or binary 1. (When pulse signals are 
used, the output is a pulse; applying the simultaneous 
input pulses and getting the pulse output is sometimes 
called firing the AND.) 

As soon as the signal at any input drops back to 
the binary 0 level, the total voltage drop across the cir­
cuit to that input increases. Since this drop is chiefly 
across R, the output line returns to the 0 level, and the 
diodes in the other lines are again cut off. Thus, the 
diode AND produces an output of 1 only when all its 
inputs are 1's. This diode AND, therefore, can easily 
substitute for the relay AND circuit of figure 3-15. 

When the AND circuit (diode or any other type) 
is used with pulse signals, it immediately becomes ap­
parent that timing is vitally important, since all the 1 
inputs to the AND must appear at the same instant. It 
is possible that these pulses may come from different 
parts of the computer, some even from outside, and, 
therefore, they may become available at slightly differ­
ent times. For this reason, it is often necessary to intro­
duce devices that delay some of the pulse signals by 
differing amounts of time. For example, if the signal 
coming to input A of the AND circuit in figure 3-19 
is available at bit-time T1, while the 1 signal for input 
B appears at T 4, the A signal must be delayed three bit­
times to make the two ap'pear simultaneously at the 
AND circuit. As shown in figure 3-20, a three bit-time 

(Til ~ (T4l 
A 0-0 -----I.~~ 

e 0 (T4l 

Figure 3-20. Use of Compensating Delay 

delay circuit is placed in the lead to input A. The pulse 
enters this circuit at T1 and spends the next three bit­
times getting through it. When the signal comes out, at 
T4, the second signal is just arriving on input B of the 
AND, so the two are made to arrive together by means 
of the compensating delay. 

One other important matter must be mentioned. 
Notice that both the diode OR and AND circuits oper­
ate as described only when the binary 1 signals are more 
positive than the binary 0 signals. If the signal polar­
ities are reversed - that is, if binary 1 is represented by 
a negative-going pulse or level - the OR circuit of fig­
ure 3-18 performs the AND operation, while the 
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Figure 3-21. Diode Inhibit Circuit for Pulse Signfds 

AND circuit of figure 3-19 performs the OR opera­
tion. Thus, reversing the signal polarities interchanges 
the diode circuit functions. In practice, a circuit is 
named for the logic it performs (which does not 
change) at the spot where it is used. The NOT opera­
tion is more difficult to accomplish with diodes, al­
though it can be done easily for pulse-type signals by 
using a polarity-inverting transformer and a source of 
continuous pulses (l's), either from the clock or from 
a pulse generator. The basic arrangement, shown in 
figure 3-21, is actually an inhibit (AND NOT) cir­
cuit. 

The AND leg of the circuit includes resistor R2 
and diode CR1, connected from a negative voltage 
source to the output line and common load resistor R 1, 
which is tied to a positive source. The values and volt­
ages are selected to place the output line at ground 
potential (binary 0) when there is a binary 0 on input 
A. The inhibiting branch of the circuit contains CR2, 
which conducts at all times, and the secondary of polar­
ity-inverting transformer Tl. There is a sizable induct­
ance but practically no resistance in this branch. 

When a positive-going pulse, representing a binary 
1, appears at input A (with a 0 at input B), the differ­
ence in potential from the cathode of CR1 to the posi­
tive source is decreased, and the voltage on the output 
line rises to approximately the binary 1 value. The in­
ductance of the transformer secondary opposes any sud­
den change in current, so there is little change in cur­
rent flow and no clamping action by CR2 during the 
brief time that the pulse lasts. Thus, the pulse on input 
A is reproduced at the output. If, however, a positive­
going pulse appears at input B at the same time as the 
pulse at input A, the secondary of the polarity-inverting 
transformer drives the cathode of CR2 more negative. 
This causes CR2 to conduct heavily and act as a clamp, 
preventing a pulse from rising at the output line. 
Therefore, the circuit produces an output of 1 only if a 

1 is present at A AND (NOT B). (If a 1 appeared only 
at input B, a negative-going pulse would be formed at 
the output, but the output line can easily be clamped to 
prevent this.) 

To use this inhibit circuit as an inverter, it is only 
necessary to connect a source of continuous positive 
pulses (one pulse each bit-time) to input A and connect 
the signal line on which the inversion is desired to in­
put B. Now, the input to A is always 1, so if the signal 
on input B is 0, the output is 1; if the signal on B is 1, 

however, the output is o. If this circuit is to be used for 
inhibition rather than straight inversion, more AND 
inputs and more inhibit inputs can be added in parallel 
with those shown in figure 3-21. The basic OR circuit 
can be modified in a fashion similar to this to develop 
an inhibiting OR. 

All three types of diode logic are used in a digital 
computer by interconnecting them in various combina­
tions and sequences to perform the proper logic opera­
tions on input signals at the proper times. (This is true 
of logic circuits using any kind of components, of 
course.) For example, consider a case with six inputs, 
which can be designated by the letters A through F. 
These are available as pulse-type signals on six lines. 
Not all are l's at the same instant, or bit-time; instead, 
they appear as varying combinations of l's and O's. The 
designer knows this and must put together or arrange 
a group of logic circuits to produce an output pulse 
(binary 1) only when certain input combinations ap­
pear. One desired combination, for instance, is l's on 
inputs A, C, and D and O's or l's (no matter which) on 
inputs B, E, and F. Putting together all the desired 
combinations, the designer finds that his circuit ar­
rangement must produce an output of 1 when the fol­
lowing logical conditions are met: 

(A OR B) AND C AND [D OR (E AND NOT F)] == 1 

where each letter represents the presence of a 1 at that 
input. 

Once reduced to this form, the rest is easy. The 
designer is using diode logic circuits, each of which de­
lays any pulse passing through it by an amount equal 
to one-quarter of a bit-time, usually written as 1;4. D. 
(The delay is actually due to pulse-timing and reshap­
ing circuits following the diodes.) Inputs A and B must 
be fed into an OR circuit, while E and F must go into an 
AND NOT or inhibit circuit, as shown at (a) of figure 
3-22. Input D and the output of the inhibit go into 
another OR circuit. Now, the outputs of the two OR's, 
along with input C, are fed to an AND. The output of 
the AND circuit should be the desired result. But is it? 
Remember that each circuit causes a delay of 1;4. D, and 
it immediately becomes obvious that this circuit ar­
rangement at (a) of figure 3-22 will not work as de­
sired for pulse signals. The logic is right, but the timing 
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Figure 3-22. Sample Logic Circuit Combination 

is not. (This arrangement at (a), incidentally, is the 
correct answer to the problem of drawing the logic of 
fig. 3-17.) A pulse appearing on input E, if it gets 
through the inhibit circuit, reaches the input to the 
AND one-half bit-time later than a pulse entering at 
the same instant on input C and encountering no de­
lays. Pulses arriving on A, B, or D are each delayed one­
quarter bit-time before reaching the AND. To make it 
possible for the desired input combinations to produce 
an output from the AND circuit, the designer must de­
lay all the input signals by equal amounts. This is 
done by adding delay circuits in the proper places, as 
shown at (b) of figure 3-22. Now, the pulses of any 
of the desired combin~tions appearing at the input ter­
minals reach the AND at the same instant and fire it, 
producing the binary 1 output pulse. 

This illustrates the manner in which logic circuits 
are put together to perform the desired combinations 
or sequences of logic operations in a digital computer. 

2.1.3 Vacuum Tube Logic Circuits 
Vacuum tubes are excellent switching devices, of­

fering the advantage of high speed and the possibility 
of amplifying signals as they are switched. They nave 
comparatively large space, power, and cooling require­
ments, however, and these disadvantages indicate that 
the vacuum tube will see less and less use in the future, 
as newer devices are perfected. 

One of the basic vacuum tube lcircuits is the NOT, 
or inverter, shown in figure 3-23. This is a simple 
triode amplifier in which driving the grid more posi­
tive makes the plate more negative. Thus, feeding the 
grid with a relatively positive signal representing bi­
nary 1 produces a less positive (relatively negative) 
plate voltage representing binary O. In other terms, an 
input of A produces an output of NOT A. It is also 
true that an input of 0, or NOT A, yields an output of 
1, or A. Although the NOT circuit is quite straight­
forward, there are many possible variations of the OR 
and AND circuits. One type of vacuum tube OR circuit 
appears in figure 3-24. A twin-triode tube is used, and 
the output is taken from the common cathodes which 

+ 

INPUT r 0----+ 

_---0 NOT A ] OUTPUT 

Figure 3-23. Vacuum Tube NOT Circuit 
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Figure 3-24. Vacuum Tube OR Circuit 

are returned to a negative voltage source through a load 
resistor, R. (Signal inversion is avoided in this circuit 
by taking the output from the cathode circuit.) 

When binary O's (pulses or voltage levels) are on 
both inputs, A and B, both grids are held at a relatively 
negative potential, and the common cathodes are main­
tained at approximately this level, indicating binary o. 
When positive-going 1 is placed on one of the input 
lines, the corresponding tube section conducts, and the 
increased current flow through resistor R causes a volt­
age rise on the output line, indicating a binary 1. If a 1 

now appears on the second input line also, conduction 
increases in the other tube section, but the current flow 
through resistor R remains practically unchanged be­
cause the circuit values and arrangement cause the cur­
rent to be divided between the two halves of the tube. 
In other words, when both tube sections are conducting 
at the same time, the two together draw approximately 
the same total current as either section conducting sep­
aretly. This arrangement is necessary because the output 
1 must have the same amplitude whether one or both 
inputs are l's. Thus, the circuit performs the OR oper­
ation. If more than two inputs must be taken care of, 
additional twin-triode stages must be used. With this 
type of circuit, two twin-triodes can handle four OR in­
puts; the cathodes of the seco'nd tube are simply tied 
to the output line shown in figure 3-24, and one cath­
ode resistor serves both tubes. 

In some types of circuitry, however, it is not pos­
sible to tie two circuits together in this fashion. For 
electronic reasons of circuit operation, loading, etc., the 
two stages must be kept separate, each feeding its own 
output line. In a case like this, a third OR stage becomes 
necessary to combine the output lines from the first two. 
Thus, three 2-input OR stages are required to combine 
four OR inputs, and either of the two arrangements 
shown in figure 3-25 is possible. 

The circuit arrangement at (a) of the figure is un­
desirable for many uses because the input signals do 
not all pass through the same number of stages. Input 
C and D, for example, must each pass through three 
stages, or "levels of logic," while B passes through two 
and A through one. In some cases, this could cause timing 

INPUTS 

[ OUTPUT 

(a) 

A 

B 

INPUTS j OUTPUT 

c 

D 

(b) 

figure 3-25. Multiple-Input OR Arrangements 

difficulties of the type illustrated in figure 3-22. From 
the timing standpoint, the symmetrical arrangement at 
(b) of figure 3-25 is better. Here, the four input 
signals are delayed equally, and all pass through the 
same number of logic levels. (If the first two OR stages 
are vacuum tube circuits, it is entirely possible that the 
final OR stage might be nothing more than a parallel 
connection of their outputs, most likely through block­
ing diodes that prevent circuit interaction. This parallel 
connection is, nevertheless, a stage of diode OR logic.) 
This arrangement, at (b), is a basic "many-to-one" set 
up, sometimes called a converging switch because many 
inputs are brought together and switched down to one 
(or a few) outputs. If the inputs must have the AND 
relationship, AND circuits are used in place of OR's. 
The 10'gic circuits themselves may be made up of switch­
ing devices of any practical type. Another common ar­
rangement (not shown) is a "one-to-many," or diverg­
ing switch, which feeds the output of one logic circuit 
to several others in parallel, thus branching a single 
signal to several different paths. 

One possible vacuum tube AND circuit appears in 
figure 3-26. The circuit consists of two inverters, VI 
and V2, feedingan inverting AND, V3. This is the 
fundamental circuit, of course, like all circuits shown 
in this chapter. For satisfactory electrical operation, vari­
ous refinements must be added. 

The operation of vacuum tube inverters has been 
described; that of V3 can best be understood in terms 
of relatively positive and negative signals at its grids 
and plate, summarized in the small table included in 
the illustration. The electronic operation of V3 is iden­
tical to that of the twin-triode in the OR circuit in that 
one section alone draws approximately the same amount 
of current as both sections operating together. 
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Figure 3-26. Vacuum Tube AND Circuit 

When positive (1) signals are applied to both grids 
of V3, both tube sections conduct heavily, and the out­
put, taken from the plate circuit, is relatively negative 
at the binary 0 level. To place l's on both grids of V3, 
O's must be applied to the inverter inputs (VI and V2). 
In other words, with 0' s at inputs A and B, the AND 
circuit output is O. Since either tube section alone can 
handle the full current load, it foUows that the circuit 
output is 0 as long as there is a 0 at either input because 
the corresponding inverter places a 1 at one grid or the 
other of V3. Thus, one tube section conducts heavily, 
and the output is a O. 

When l's appear simultaneously at both inverter 
inputs, however, the inverters apply O's to the grids of 
V3. These relatively negative voltages cut conduction 
through both halves of the twin-triode, and the plate 
voltage swings positive, to the binary 1 level. So the 
vacuum tube AND circuit provides an output of 1 only 
when both inputs are l's. If pulse-type signals are used, 
VI and V2 can be replaced by polarity-inverting trans­
formers. 

Notice that the logic of these vacuum tube OR and 
AND circuits is reversed, like that of the diode cir­
cuits, if l's are represented by negative voltage levels or 
pulses instead of positive signals, as described here. That 
is, with negative signals, the OR of figure 3-24 becomes 
an AND and the AND of figure 3-26 becomes an OR. 

At first glance, it seems easy to use a multigrid 
tube to perform the AND operation, applying differ­
ent signals to different grids, so plate current can flow 
only when all signals are present at the same time. This 
seldom works out in practice, however, because differ-

ent grids tend to have different characteristics and vary­
ing effects on the plate current. The design of special 
tubes brings in problems of expense and reliability, al­
though a few with two control grids are in use. One 
special form of AND circuit using a multigrid tube is 
the gate circuit, or gate tube, abbreviated GT. A gate is 
a circuit that passes a signal only when another, control­
ling signal is present; actually, it is a 2-input AND. In 
this special form, however, the input to be gated is 
always a pulse, while the control signal may be either a 
voltage level or another pulse. Only when the GT is 
made ready, or conditioned, by the presence of the con­
trol signal can the input pulse be gated through. 

Since the output is always a pulse (the tube can 
conduct only when positive signals are on both grids), 
a transformer can be placed in the plate circuit to cor­
rect the polarity inversion. Thus, the output pulse 
has the same polarity as the input pulse. The circuit is 
shown in figure 3-27, using an ordinary pentode. 
Usually, the signal to be gated is applied to the control 
grid and the control signal is fed to the suppressor. If 
both signals are pulses, the control signal is generally 
made to last longer and is applied a little ahead of the 
input pulse to prepare the tube to respond to the fast­
rising input pulse. 

2.1.4 Transistor Logic Circuits 
Although transistors are frequently thought of as 

replacements for vacuum tubes and can often be used 
in similar logic circuits, some newer types are well­
suited to straightforward use as switches. This type of 
circuitry, in fact, has been called direct-coupled tran­
sistor logic. Transistors offer several advantages for 
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Figure 3-28. Basic Transistor Switch 
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Figure 3-29. Transistor OR Circuit 

digital computer use. They are small and well-suited to 
miniaturized circuits, require little power, and do not 
dissipate much heat. As switches, they are as fast as 
vacuum tubes; hence, they can be used in high-speed 
computers, and they have excellent reliability. 

The emitter is grounded, and the collector is normally 
biased at about - 3 volts. With no signal on the base, 
that is, with the base at approximately ground potential 
the transistor is cut off. The input, which must be a 
negative-going signal, supplies current to the base, 
switching on the transistor and driving it immediately 
to saturation. When this happens, the collector swings 
from its normal bias of - 3 volts almost to ground 
potential, placing a positive-going level or signal on the 
output line. Therefore, this is an inverter, or NOT 
switch, which means that if a negative signal at the 
input is considered to be a binary 1, the positive output 
signal must be a binary o. This reversal of polarity 
through each circuit might, at first, seem to complicate 
the logic of the machine, but actually does not because 
it occurs in a regular and consistent fashion, just as it 
does in most vacuum-tube circuits. 

The transistor OR circuit, shown in figure 3-29, 
uses two or more transistor switches in parallel. A 
given transistor is turned on when a negative signal 
appears at the corresponding input, thus producing a 
positive signal at the output line. (If two or all tran­
sistors are turned on, the output is still the positive 
signal.) Although this is actually an inverting OR (an 
OR NOT), it is rarely called this. In practical circuitry, 
it may be followed by an inverter, if necessary. 

The transistor AND circuit appears in figure 3-30. 
This is nothing more than a pair of switches in series, 
and there can be no conduction until both are turned 
on at the same time. When this occurs, the output 
swings positive. (Again, this is really an AND NOT 
and may be followed by an inverter.) More AND in­
puts can be placed in the series arrangement, but there 
is a limit to the number because the voltage drops 
across the transistors, small as they are, are added to­
gether and reduce the voltage swing of the output. 

The manner in which direct-coupled transistor cir­
cuits are tied together is extremely simple. A sample is 

(NOT) ] 
_----0 A AND B OUTPUT 

INPUTS 

[ 
B

A 

The basic transistor switch is shown in figure 3-28. Figure 3-30. Transistor AND Circuit 
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(A OR B) AND C AND (NOT D) = OUTPUT 

Figure 3-3 J. Sample Transistor Circuit 
Arrangement 

OUTPUT 

shown in figure 3-31. This a straightforward connec­
tion of switches to perform the lo'gic operations shown 
below the drawing, based on the assumptions that the 
input signals are negative and a positive output signal 
is wanted when the desired input requirements are satis­
fied. (Under certain conditions, the circuit could be 
further simplified.) All important voltage changes occur 
at the load resistors, one of which must be connected to 
each collector or collector-base junction. Accordingly, 
the point where each resistor is connected is called a 
node, and the operation is most easily followed by con­
sidering the voltage changes at these nodes. 

In figure 3-31, transistors Ql and Q2 form an 
OR circuit; thus, when either A or B appears (as a neg­
ative signal), the corresponding transistor is turned on 
and node 1 goes from -3 volts to approximately 
ground potential. Until this occurs, the base of Q3 is 
biased negative by node 1, and Q3 conducts, holding 
node 2 at ground and keeping Q4 cut off. When A or B 
appears, however, node 1 goes to ground and shuts off 
Q3, whereupon node 2 becomes negative and turns on 
Q4. Input C, also a negative signal, turns on Q5 di­
rectly. Input D is NOT input, so Q7 must be turned on 
only when D is not present. The inverter, Q6, accom­
plishes this. When D is absent, Q6 is shut off, and 
negative bias from no'de 4 turns on Q7. When D appears, 
however, Q6 turns on, and node 4 goes to ground, 
cutting off Q7. 

Thus, 4, Q5, and Q7 in the AND circuit are on 
only when the desired logic conditions are satisfied. 
When these three transistors are conducting, node 3 is 
at ground potential, placing the desired positive (rela­
tively positive) signal on the output line. In a manner 
similar to this, any desired combination of logic oper­
ations can be carried out with transistors. 

2.1.5 Magnetic Core Logic Circuits 

Magnetic cores, originally developed and now 
widely used as storage devices, appear to have definite 
possibilities for use as switching or logic devices as 
well. The theory of cores is emphasized here because, 
currently, they are used so extensively for storage and 
may find equally extensive use for logic in the near 
future. The cores, shaped like tiny doughnuts, are made 
of a material with magnetic properties giving it a hys­
teresis loop ( the characteristic curve of its magnetic 
properties) that is nearly rectangular. Some metals and 
certain ceramic materials called ferrites possess the de­
sired characteristics and are used to make cores that are 
good switching devices. The ferrite cores, small in size, 
are used almost exclusively for storage at the date of 
this writing. The cores made of metal-usually molyb­
denum permalloy, sometimes a 50-percent nickel-iron 
alloy-are called tape cores because they are formed by 
wrapping turns of a thin tape made of the metal around 
a small bobbin. Thus, the small core is built up of a 
number of turns or laminations, as indicated in figure 
3-32. This laminated structure holds eddy currents to 
a minimum and thereby reduces power losses, increas­
ing efficiency. 

At least three small coils are ordinarily wound on 
each tape core. Two of these are obviously for input 
and output of information; the third is needed for 
sensing, to extract, or read out, the information (1 or 0) 
stored in the core. To use the core for logic operations, 
instead of or in addition to storage, it must have two 
or more input coils. The basic, three-winding core is 

Figure 3-32. Tape Core Construction 
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Figure 3-33. Magnetic Core and Hysteresis Loop 

shown schematically in figure 3-33, along with the 
closed-curve hysteresis loop of its magnetic character­
istics. Since the core is made of a magnetic material, it 
is really a small magnet with the direction of flux (mag­
netic lines of force) running either clockwise or counter­
clockwise inside the metal ring. This direction of mag­
netization can be quickly reversed by applying a cur­
rent pulse of the proper polarity and amplitude to a 
coil wound on the core. Thus, by deciding that one 
direction of flux represents a 1, the other a 0, a pulse 
on the input coil can be made to insert a 1 which the 
core then stores because its direction of magnetization 
can be changed only from outside. Inserting information 
into a core can be called writing a 1 or a 0 into the 
core, or setting the core to 1 or o. Taking out the stored 
binary bit is called reading out, or simply readout. 

How are these operations performed? This can 
best be seen by use of the hysteresis loop of figure 
3-33, which shows the effect of an external magnetiz­
ing force, H, on the density and direction of the mag­
netic flux, B, in the core. The signs indicate magnetic 
polarity, or flux direction. The magnetizing force is 
applied, of course, by sending a pulse through a coil 
wound on the core, making the dotted terminal (fig. 
3-33) negative. (Dots at the terminals of all input 
coils and the readout coil indicate the terminals that 
must be made negative to apply a magnetizing force in 
the desired direction. The output coil dot indicates the 
terminal that becomes negative when a 1 is read out.) 

When no pulse is applied and there is no current 

in the coil, the external magneuzmg force (H) is at 
zero, and the density of the lines of force remaining 
in the magnetic core (called the remanent flux density) 
is shown by the point at which the loop intersects the 
B axis. Since the remanent flux may be aligned in either 
direction (clockwise or counterclockwise, looking at the 
core in figure 3-33), there are two possible points of 
intersection, labeled 1 and 2. 

For the sake of illustration, it can be assumed that 
flux in the direction -B represents binary 0, the direc­
tion +B represents binary 1, and that the core has been 
left in the 0 state, with the remanent flux density at 
point 2. If a pulse is now applied to the input coil, a 
magnetic field begins rapidly building about the coil, 
and this external magnetizing force, acting in the direc­
tion +H, opposes the remanent flux in the core. As 
H increases, the total flux density decreases from point 
2 toward point 3 on the curve. When the external field 
reaches half-strength (+H/2), the flux density is at 
point 3. As H continues to increase, a point is reached 
(the bend or knee of the curve, beyond point 3) whe~e 
the external field overcomes the permanent field of the 
core. The flux in the core swiftly drops through zero 
and reverses direction. The flux density then increases 
very rapidly toward point 4 on the curve as H rises to 
its maximum value. At point 4, the core is saturated 
(cannot hold any more lines of force). As the pulse in 
the input coil dies away, H returns to zero, and the 
flux density decreases from point 4 to point 1, where it 
remains until some other external force is applied. Thus, 
the core has been switched and is now storing a 1. The 
switching takes place in a few microseconds at the most. 
If another 1 is applied to the input coil, the external 
field this time strengthens, rather than opposes, the 
flux in the core, so the flux density simply goes from 
point 1 to saturation at point 4, then back to point 1 

again. Since input pulses are always the same polarity, 
the input coils are used only to set the core to 1. 

To read information out of a core, a pulse is ap­
plied to the readout winding in a polarity (dotted ter­
minal negative) that sets up a field in the -H direction. 
In other words, the readout pulse acts to set the core to 
O. The readout winding may be called by various other 
names, such as reset, shift, or clear winding. If the 
core is at 0 already (has not been set to 1) the remanent 
flux density is at point 2 on the hysteresis loop, and 
the application of the magnetizing force -H merely 
moves the flux density to point 6 (saturation in the 0 

direction). When the force is removed, the flux density 
returns to point 2. This small change in flux density 
induces only a very small voltage in the output coil. 

However, if the core is in the 1 state when the 
readout pulse is applied, the remanent flux density is at 
point 1. The force -H is sufficient to pull the flux 
density past the knee of the curve at point 5 and down 
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to saturation in the 0 direction at point 6, thus switch­
ing the core back to o. When -H disappears, the 
remanent flux density returns to point 2. The large 
change in flux density from +B to -B induces a large 
voltage in the output coil. (The dotted output terminal 
goes negative.) This voltage, of course, can be used to 
set other cores or drive other logic circuits. (Notice 
that there must also be an induced output voltage when 
the core is set to 1 because of the flux change from -B 
to +B. This voltage is opposite in polarity to the de­
sired output voltage, however, and can be blocked by 
simply connecting the anode of a crystal diode to the 
un dotted output terminal.) 

Before leaving the hysteresis loop and the theory of 
magnetic core operation, one other important matter 
must be mentioned for future use. This is the fact that 
a magnetizing force of half-strength (H12, positive or 
negative) is not capable of switching the core from one 
state to the other. Therefore, a pulse of half the normal 
input or readout current amplitude cannot switch the 
core, since the strength of a magnetic field is directly 
proportional to the amplitude of the current used to 
set it up. This is not particularly important in dealing 
with cores used as logic devices, but becomes significant 
in using arrays of cores for large-scale storage, which 
is discussed in Chapter 4. 

A magnetic core OR circuit, shown in figure 3-34, 

A 

INPUTS 

B 

A OR B ] OUTPUT 

'1-/----0 

READOUT 

Figure 3-34. Magnetic Core OR Arrangement 

is easily made by winding a core with two or more input 
coils, each of which can set the core to 1, independently 
of the others, when a pulse input signal is received. (It 
should by now be apparent that pulse-type signals are 
used in most core applications.) When one of the OR 
inputs is pulsed, the core is switched and stores the 1 

until a readout pulse is applied. As explained above, 
the readout signal resets the core to 0 and, in the 
process, reads out the stored 1 as a pulse on the out­
put line. The device is then ready to perform the OR 
operation again. Notice particularly that if more than 
one input pulse appears before the readout pulse, this 
arrangement does not produce an output for each of 
them. In the usual circuits, however, all readout wind­
ings are pulsed at regular intervals, ordinarily every 

bit-time. Thus, if a core is set to 1 by a pulse (or simul­
taneous pulses) appearing during a given bit-time, the 
core is almost immediately set back to 0 by the next 
readout pulse, so an output is produced for each input 
or combination of inputs, when desired. 

An output pulse (if any) is produced almost at 
the instant the readout pulse is applied. This output 
may be sent to the input of another core which gets its 
readout pulse from the same readout line as the first 
core. This means that the second core could receive an 
input pulse and a readout pulse at the same time. 
Whether this core would be read and set properly or 
not would depend on the split-microsecond timing of 
the two pulses, and such chances cannot be taken in 
computer circuitry. The problem is easily solved by 
delaying the output pulse from each core long enough 
to be certain that the readout pulse has passed before 
the output pulse reaches the next input. The delay is 
introduced by inserting a resistance-capacitance, or re­
sistance-capacitance-inductance, network in series with 
each output, as shown in figure 3-35. 

The inhibit operation is easily performed by a mag­
netic core. As shown in figure 3-36, the core has one 
or more OR input windings and an inhibit winding that 
is larger than and opposite in polarity to the others. 
When a pulse is present on the inhibit input, the 
resulting magnetic field opposes or bucks the field set 
up by one or more OR inputs and thus prevents the 
core from being set to 1. The inhibit winding must, 
therefore, be large enough to cancel the effect of sim­
ul,taneous pulses on all the OR inputs. Two or more 

Figure 3-35. Interconnection of Magnetic Cores 
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Figure 3-36. Magnetic Core Inhibit Arrangement 
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inhibit windings can be placed on a single core, space 
permitting. In this case, a pulse on either inhibit wind­
ing (or both) prevents the core from being set to 1 by 
an OR input. 

In practical computer logic circuitry, the AND op­
eration is difficult to perform reliably using a single 
core. It seems a relatively simple matter to wind two 
or more AND input coils in such manner that all must 
be energized simultaneously to provide enough mag­
netizing force to switch the core, and it is true that this 
can be done under controlled conditions, such as in the 
main memory element. In actual logic circuits, however, 
the amplitudes of the information pulses cannot be 
rigidly controlled because the diodes and delay net­
works attenuate them, often by differing amounts, and 
any two cores may produce output pulses of somewhat 
different amplitudes. For OR and inhibit cores, all that 
is necessary is to insure that every pulse has at least 
sufficient amplitude to switch or inhibit a core; oversize 
pulses are no problem. For a core with AND input 
windings, however, oversize pulses on two out of three 
inputs might set the core to 1, while undersize pulses 
on all three might not. Also, the hysteresis loops may 
vary somewhat from core to core, further complicating 
the problem. One reliable means of performing the 
AND operation requires three inhibit cores and three 
simple pulse generators. A pulse-generating core can 
be made to put out a continuous stream of pulses (l's) 
by placing a steady d-c voltage level on the input wind­
ing and applying a readout pulse each bit-time. The 
readout winding must be large enough to switch the 
core back to 0, each time a readout pulse appears, 
against the opposition of the field set up by the input 
voltage level. As soon as the readout pulse passes, the 
input level sets the core to 1 again. 

Performing the AND operation by using cores with 
other functions depends on two facts. The first is that 
a quantity inverted twice is returned to its original 
state. When a 1 is inverted, for example, it becomes a O. 

Invert it a second time and it becomes a 1 again. In 
logic terms: 

NOT (NOT A) = A 

The second useful fact is that two inhibit inputs to a 
single circuit bear an AND relationship to each other. 
To get an output from such a circuit, as diagrammed 
at (a) of figure 3-37, the normal input, C, must be 
present, and both the inhibit inputs, A and B, must be 
simultaneously absent. If a pulse generator 1S connected 
to input C, l's are always present on C, and the circuit 
produces an output only when the inputs are (NOT A) 
AND (NOT B). 

Because of the relationship between the two inhibit 
inputs, this arrangement is the same as that shown at 
(b) of figure 3-37, two inverters feeding an AND cir­
cuit (sometimes called a NEITHER . . . NOR circuit). 

~ ==3 INH -I---i·· OUTPUT 

C AND (NOT A) AND (NOT B) OUTPUT 

(a) 

NOT A ----<~ 

A AND B 

NOT B 

(b) 

Figure 3-37. Effect of Two Inhibit Inputs 

The output is A AND B, as required, but the inhibit 
circuit (core) must be fed with NOT A and NOT B. 
This means that A and B, which are represented in the 
magnetic core circuitry by pulses, must be inverted be­
fore being sent to this 2-inhibit-input core. This can 
be done for each signal by an inhibit core and pulse 
generator combination, by connecting the signal line 
to the inhibit winding. The complete arrangement for 
performing the AND operation in this manner is dia­
grammed in figure 3-38. The inhibit cores are repre­
sented by the blocks labeled INH, the pulse generator 
cores by the encircled l's. When either A or B is not 
present (no pulse), the corresponding inhibit core puts 
out l's (inserted by the pulse generator core) to one 
of the inhibit windings of INH 4. With a 1 at either of 
its two inhibit windings, INH 4 cannot produce an 
output 1. When A and B are present at the same instant, 
however, no output pulses are produced by INH 2 and 
3. No pulses appear at the twin inhibit windings, and 
INH 4, therefore, puts out a pulse representing A 
AND B. The AND operation is thus achieved through 
the use of six magnetic cores. Once the three simplest 
logic functions can be handled, as shown here, complex 

A AND B 

Figure 3-38. Magnetic Core AND Circuit 
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Figure 3-39. Diode Matrix 

chains of core logic circuitry can be built up by com­
bining them. 

2.1.6 Matrices 
The logic circuits and circuit arrangements con­

sidered thus far have been types producing a single 

A 

E 

F 

INPUTS G 

OR 
H 

K 

B 

output, usually from two or more inputs. Another type 
of importance is the multiple-output switching network, 
especially the category called matrices. A multiple-output 
network produces a different output for each different 
input or combination of inputs. The matrix performs 
the same job but gets its name from the manner in 
which it is drawn schematically (and often built), with 
components and connections arranged in rows and col­
umns. A very simple, but typical, matrix of diodes is 
shown in figure 3-39. This matrix is capable of trans­
lating any of 10 positive input signals representing the 
10 decimal digits into parallel binary tetrads (groups 
of four bits). At first glance, it appears that the diodes 
are unnecessary, but actually some sort of isolating, 
I-way device is needed at the interconnection points 
to prevent the signal on one line from backing up on 
others. In operation, a level or pulse appearing on in­
put 5, for example, puts signals on the 2° and 22 out­
put lines. The resulting output is 0101, the binary 
tetrad representing decimal 5. 

In the example of figure 3-39, a signal on one 
input results in a particular combination of output 
signals. Figure 3-40 shows a small matrix, using logic 
circuits, in which each desired combination of inputs 
produces a separate output. In this array (which means 
regular or symmetrical arrangement), the input signals 
go through intermediate OR circuits before being com­
bined in the matrix proper (the six AND circuits). This 
is only one of many possible matrices. Diode matrices 
of several varieties and matrices constructed of OR and 
AND circuits are especially common, but they can be 

INPUTS 

c D 

Figure 3-40. Matrix of Logic Circuits 
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made up of nearly any type of switching device or 
logic circuit. 

2.2 SMALL-SCALE STORAGE CIRUITS 

The fact that all arithmetic and data-processing 
operations in a digital computer are accomplished by 
switching and storing electrical signals has been men­
tioned several times. Now, the switching circuits that 
perform the logic operations have been examined in 
detail, alone and in simple combinations satisfying va­
rious conditions. It is easy to see that if signals repre­
senting l's and O's must be combined in certain logic 
circuits and if a signal available now is needed a little 
later, some means of storing this signal must be found 
to hold it until it can be used. This necessity was pointed 
out back in the discussion of figure 3-22, in showing 
how logic circuits are put together. Each of the delay 
circuits in (b) of that figure can be thought of as a 
temporary storage circuit, capable of storing or hold­
ing one pulse-type signal for one-quarter or one-half of 
a bit-time. 

This type of storage device (usually some form of 
electromagnetic delay line) works nicely for pulse sig­
nals and for brief storage periods of a few bit-times. 
But what if voltage levels are used and what if the 
storage period must be 50 bit-times, or 10,000, or in­
definite? It is certainly impractical to send signals from 
all parts of the computer to the main memory or storage 
element. The resulting circuitry would be an impossible 
maze, for one thing, and the memory would have to be 
adapted 1'0 handle single bits as well as words. What is 
needed is small-scale, on-the-spot storage for use dur­
ing operations. 

A little thought indicates that the answer is a bi­
stable device or circuit that can be set to 1 or 0 by the 
signal it receives and that will then remain in that 
state, after the input signal disappears, until it is re­
set. It must, of course, be able to indicate its 1 or 0 state 
to other circuits by means of one or more outputs. This 
indication may be continuous or it may be supplied 
only when demanded, as in the case of a magnetic core 
which indicates the bit stored only when a readout 

~ 

~ OR 2 I 2 SET -.. 

CLEAR [

AS INPUTS 

-

pulse is applied. With such a device or circuit, it be­
comes an easy matter to store a single bit until it is 
needed. And in parallel transmission, it is equally easy 
to store a complete word (number) simply by providing 
storage places in parallel for each bit of the word. A 
group of devices or circuits for storing a complete word 
is called a register. 

Where serial transmission is used, a somewhat dif­
ferent storage method is needed because, obviously, a 
series or train of bits fed to a single storage device 
would set and reset it and only the last bit would 
actually be stored. One possible solution would be to' 

switch the serial word into parallel form to store it, 
but, except for certain special purposes, this is clumsy 
and requires extra circuitry. Another, more commonly 
used, method will be described. 

2.2.1 Bistable Circuits 

With the possible exception of semiconductor di­
odes, all the switching devices used in logic circuits can 
be easily adapted to circuits for bit storage. Magnetic 
cores were originally developed for this purpose, and 
their use in logic circuits came later. The idea of using 
switching devices to create storage circuits may seem a 
little strange, but consider figure 3-41. This is a bi­
stable storage circuit made up of switching circuits and 
a feedback loop. 

When O's are on both inputs, the 0 at the input of 
inverter 12 produces a 1 at its output. The 1 passes 
through OR 3 to the input of 13 which produces 0 at 
the circuit output. This 0 is also fed back around the 
loop through OR 2 to the input of 12, so with O's at 
output and input the circuit is stable and remains in 
this state. The circuitry leading to inputs A and B is so 
arranged that l's never appear on both lines at the 
same time. If a 1 now appears temporarily on input A, 
which is labeled as the set input, it goes through OR 2 to 
12 and causes 12 to put out o. This 0 goes to 13 which 
then places 1 on the output line. Since this 1 also is fed 
back to the input at OR 2 and 12, the circuit is again 
stable. Thus, a 1 on the set input switches the circuit 
to the 1 state where it remains after the input has 

.~ 

I .. J I OR3 I 3 .. .. 
I --I I - ) OUTPUT 

Figure 3-41. Basic Bistable Storage Circuit 
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Figure 3-43. Flip-Flop Circuit Symbols 

disappeared. A 1 appearing on input B, called the 
clear or reset input, causes 13 to produce a 0, switching 
the circuit back to the 0 state. 

An arrangement of this sort is called a flip-flop 
(abbreviated FF), and various types are widely used in 
digital computers for bit storage. The inputs are nor­
mally pulses, although it is possible to use levels; the 
outputs are voltage levels. 

The flip-flop output shown in figure 3-41 is al­
ways called the 1 output, whether it is indicating 1 or o. 
Notice that a second output from the circuit can be 
taken from 12 and that this is opposite in state to the 
1 output. In other words, when the 1 output carries a 
down level (indicating that the flip-flop contains 0), 
the output from 12 is up, and vice versa. This output 
from 12 is called the 0 output. In this manner, ·it is 
possible to indicate not only the state of the flip-flop 
but its complement (opposite) as well, which is often 
useful. 

The use of only one output line (either one) is 
called single line transfer; using both is double line 

transfer. It is also possible-and common practice-to 
add a third input, so arranged that a pulse on this 
input switches the flip-flop, regardless of its state. This 
complement input can be added as shown in figure 
3-42. The extra circuits, the AND and the INH, are 
used to switch the complement input to the proper OR 
circuit to either set or clear the flip-flop, depending upon 
its state at the time the pulse is received. (It is assumed 
that there is sufficient delay in the logic circuits to pre­
vent switching 12 before the input pulse has dis­
appeared.) For some purposes, flip-flops do not require 
separate set and clear inputs and, therefore, have only 
the complement input. 

Flip-flops have their own circuit symbols, which 
may resemble any of the three shown in figure 3-43. 
The designation, FF, is often omitted, but the 0 and 1 

output sides are always shown. The input leads are not 
usually labeled. Intead, for ease of understanding, the 
set input is always drawn on the same side of the block 
as the 1 output, the clear input on the same side as the 
o output. Thus, a pulse entering on the 1 side sets the 
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PT 

IR 1 1 HS 

- -
Figure 3-44. Relay Storage Arrangement 

flip-flop to 1. The complement input enters at the cen­
ter of the block. 

Constructing a flip-flop of logic circuits is instruc­
tive but not very practical, of course, since bistable 
storage circuit such a multivibrators can be made di­
rectly from vacuum tubes, transist'Ors, etc. 

2.2.1.1 Relay Storage 

Even the lowly relay can be made to remain in the 
operated (1) state after the passing of the operating 
signal. One of the simplest methods of accomplishing 
this (there are several) is shown in figure 3-44. This 
is essentially the same circuit as that in figure 3-14, 
but with the addition of a hold path to make the PT 
relay act as a storage device. The PT relay operates 
when either the IR or the HS relay is operated, closing 
the corresponding set of contacts and completing the 
circuit to the PT coil. As s'Oon as PT operates, however, 
one pair of its own contacts closes the hold path to 
ground through the normally-dosed contacts of RL. If 
IR or HS now releases, removing the original operating 

SETo-----e-------~ 

INPUTS COMPo 0---. 

signal, relay PT nevertheless remains operated through 
its hold path. When the time comes to release PT 
(return it to the unoperated state), relay RL is oper­
ated and its contacts open the h'Old path of PT. By 
this means or others, relays used in logic circuitry can 
be made to store information indefinitely. 

2.2.1.2 Vacuum Tube Flip-Flops 
The basic bistable multivibrator circuit appears in 

figure 3-45. Actually, this circuit is bistable only if the 
component arrangement and values are correct; this, 
however, is a design problem. In operation, the cross­
coupling between either plate and the opposite grid 
means that one triode at a time can c'Onduct, but not 
both. The decrease in plate potential that occurs when 
one tube conducts is coupled to the grid of the opposite 
tube, driving it to cutoff. With VI conducting and V2 
cut off, for example, the circuit is in one of its two stable 
states. The plate potential of VI is relatively low, placing 
a down level voltage on the 1 output. The plate potential 
of V2 is high because the tube is not conducting, so an 
up level voltage is on the 0 output and the circuit is said 
to contain a O. 

To change the state, a positive pulse is applied 
to TI through the set input. This pulse is inverted 
through the transformer action, and a negative pulse is 
placed on the grid of V1. This drives the tube toward 
cutoff; the plate potential rises as conduction decreases; 
and the rising potential is coupled to the grid of V2. 
As V2 begins conducting, the decrease of voltage at its 
plate is coupled to the grid of VI, helping the initial 
pulse to cut off VI completely. With VI cut off, its 
plate potential is high, so an up level voltage is now 
on the 1 output, while conduction through V2 places a 
down level on the 0 output. 

+ 

.--_II_~ ..... -----------0 ~ J OUTPUTS 

CLEARo-----~----------------------------------------------------------------~ 

Figure 3-45. 8as;c Vacuum Tube Flip-Flop 
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Figure 3-46. Transistor Flip-Flop 

The circuit is now in its second stable state, indi­
cating a I on the I output line. If a second pulse is re­
ceived on the set input, nothing happens because VI 
is already cut off. To dear the circuit and return it to 
the 0 state, it is necessary to apply a pulse on the dear 
input. This cuts off V2 and starts VI conducting again. 

A pulse on the complement input changes the 
state of the circuit regardless of whether it contains 0 

or 1. This puts pulses on both inputs simultaneously. 
The one reaching the grid of the cutoff tube has no 
effect, but the other causes the switching action to take 
place by cutting off the conducting tube. The diodes are 
necessary to prevent pulses on the set or dear inputs 
from reaching both grids and complementing. 

The vacuum tube flip-flop is comparatively simple 
and stable and can be made quite fast in its switching 
action. 

2.2.1.3 Transistor Flip-Flops 
Transistors can be used to replace vacuum tubes 

in multivibrator circuits similar to that shown in figure 

3-45, resulting in savings in power and space. As in 
the logic circuits, however, they may also be used 
in the form of the grounded-emitter switch. The result­
ing direct-coupled transistor flip-flop appears at (a) 
of figure 3-46. Here, again, either transistor conducts 
if its base is driven negative. When a transistor is 
turned on, its collector swings in a positive direction 
almost to ground potential. If Q2 is turned on, for ex­
ample, node 2 is almost at ground, and this relatively 
positive voltage on the base of QI keeps QI shut off. 
At the same time, node I is about 3 volts negative, 
supplying the currents to keep Q2 conducting. This can 
be called the 0 state of the circuit, Q I off and Q2 on. 
To switch the flip-flop to the o'pposite state, it is neces­
sary to drive more positive the base of the transistor 
that is turned on, Q2. As Q2 shuts off, its collector 
goes negative, turning on Q1. This causes node I to 
swing up toward ground, keeping Q2 shut off. Now, 
with QI on and Q2 off, the flip-flop is in the second of 
its stable states, the I state. To return it to the 0 state 
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again, the base of QI must be driven up toward 
ground. 

The manner in which the transistor flip-flop is used 
in direct-coupled circuitry is shown in skeleton form at 
(b) of figure 3-46. The inputs, typically, are supplied 
by transistors whose collectors are connected to the 
flip-flop nodes, while the outputs drive the bases of one 
or more transistors associated with other nodes. Again, 
it may be assumed that the flip ... flop is in the 0 state, 
with Ql off and Q2 on. The potential of the 0 output 
line is near ground; that of the 1 output is about - 3 
volts. To switch the flip-flop to the 1 state, the transistor 
connected to the set input line is turned on. Its col­
lector (and node I) swings up toward ground, shutting 
off Q2 by applying a positive-going voltage to its base. 
Node 2 returns to about -3 volts when Q2 is turned 
off, switching on Ql and holding node 1 almost at 
ground potential. The flip-flop is now in its 1 state, Ql 
on and Q2 off. The 1 output is near ground and the 0 

output is at -3 volts. Even if the transistor (or logic 
circuit) supplying the set input line is turned off, the 
circuit remains in the 1 state. Notice that this transistor 
can be turned on again without any effect, since Q2 is 
already turned off.) To clear the flip-flop, or return it 
to the 0 state, QI must be turned off by driving its base 
more positive. This is done, of course, by turning on 
the transistor in the clear input line. 

This direct-coupled transistor flip-flop provides an 
extremely small, reliable storage circuit. 

2.2.1.4 Dynamic Flip-Flops 

Tlie so-called dynamic flip-flop is not really a flip­
flop at all, but it serves the same purpose - that of 
storage - in circuitry that uses pulse-type signals ex­
clusively. When set to the 1 state, the dynamic flip-flop, 
puts out a continuous stream of pulses, one each bit­
time, until it is reset, or cleared, to the 0 state again. 
In the 0 state, it produces nothing. Thus, it somewhat 
resembles a pulse generator that can be turned on or 
off, as required, and is sometimes referred to as a pulse 
generator (PG) or circulating memory (MEM) circuit. 
The flip-flop is simple, consisting of an inhibit circuit 
with OR inputs plus a delay circuit located in a loop 
that feeds the INH output back to one of the inputs, 
as shown in figure 3-47. The total delay in the loop 
- that of the delay circuit plus that of the INH - is 
made to equal one bit-time. When a pulse is applied to 
the set input (and there is no-pulse on the clear input 
at that instant), the INH circuit produces a pulse on 
the output line. This pulse is fed back through the 
delay circuit to the other OR input. Since the total 
delay around the loop equals one bit-time, a second out­
put pulse appears exactly one bit-time after the first. 
The pulse continues circulating in the loop (and pro­
ducing I's at the output) until a clear pulse is applied 

( SET 

INPUTS lCLEAR 

I I r----t 0 1-

~ 

- }OR 
INH -

==-jDFFI • 
SYMBOL 

Figure 3-47. Dynamic Flip-Flop 

) OUTPUT 

to inhibit it, whereupon die dynamic flip-flop returns 
to the 0 state and puts out nothing. 

Diodes or other suitable switching devices can be 
used in the INH circuit, but the circulating pulse will 
be attenuated and eventually drop below limits unless 
some sort of amplifying and reshaping circuit is in­
cluded in the loop. 

The dynamic flip-flop is used to store a 1 bit for 
longer periods than is practicable with delay circuits, 
which must be lined up in series usually with amplifi­
cation between) to obtain longer delay times. If, for 
example, a certain pair of pulses must fire an AND cir­
cuit, but one pulse appears 42 bit-times later than the 
other, the use of delay circuits is not practical. Since it 
is difficult to achieve a delay of more than about S bit­
times (SD) in a single circuit, a string of at least 9 
delay circuits and several amplifier-reshapers would be 
required to hold up or store one pulse until the other 
showed up. 

The problem may be solved instead, as shown in 
figure 3-48, by feeding the first pulse to the set input 
of a dynamic flip-flop which has its output connected to 
one AND input. The other pulse is fed directly to the 
other AND input. Now, when the first pulse appears, 

EARLY 
PULSE 

INPUTS 

LATE 
) 

PULSE OUTPUT 

Figure 3-48. Use of Dynamic flip-Flop 
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Figure 3-49. Basic Delay Line Section 

it sets the flip-flop to putting out l' s. These have no 
effect until 42 bit-times later, when the other pulse 
comes along. Since this pulse appears at the same in­
stant as the 42nd pulse from the flip-flop (ignoring 
fractional delays), the AND is fired. Once this is ac­
complished, another pulse can be sent to clear the flip­
flop; in fact, the output pulse from the AND circuit 
could easily be fed back for this purpose, as shown. It 
is possible, of course, to drive the inputs of a number of 
other circuits from the output of a single dynamic flip­
flop. 

2.2.2 Delay Circuits 
The need for delay circuits to compensate for 

small differences in the arrival times of pulses has been 
brought out in connection with other matters, and the 
manner of using the delay circuits has been shown. All 
that remains is to show the makeup of these temporary 
storage circuits. 

One basic delay circuit (fig. 3-35), suitable for 
briefly delaying the output pulse from a magnetic core, 
has been shown. Most delay circuits - or delay lines, 
as they are commonly called - are patterned on the 
arrangement shown in figure 3-49, which is electri­
cally similar to a long piece of transmission line. 

A pulse travelling through a I·mile length of 
transmission line might require 5 usec to complete its 
trip. Obviously, it is not practical to coil up a mile or 
two of transmssion line between two circuits in a 
computer, hut the artificial transmission line of figure 
3-49 offers similar characteristics lumped conveniently 
in the form of coils, capacitors, and resistors. A single 
section such as this offers only a very short delay, but 
by using special techniques of coil construction' and 
connecting several line sections in series, delays of up 
to 4 or 5 usec can be obtained. 

2.2.3 Word-Length Registers 
A register, as mentioned earlier, is a group of stor­

age devices or circuits used f'Or storing a complete word. 

Since information is usually moved about and operated 
upon in the computer word-by-word, rather than bit­
by-bit, a number of registers will be needed. (Don't un­
derstand this word-by-word idea; the circuits have to 
handle each individual bit, but the computer is so ar­
ranged that groups of circuits usually handle a word at 
a time in response to an instruction or a command.) 
Since the two principal methods of information­
transmission are parallel and serial, some registers are 
designed to take words in parallel form, some to take 
serial words. A third type, sometimes useful, is the 
serial-parallel register, which accepts a number (word) 
in parallel form and feeds it out in serial form, or vice 
versa. 

Registers have uses aside from simple word storage 
and are frequently built for such specific jobs as count­
ing or shifting. Counting properly belongs under the 
heading of arithmetic and is covered in Chapter 3. The 
present discussion is restricted to storage and shifting 
registers. 

2.2.3.1 Storage Registers 

The simplest registers are those used solely for 
word storage. One type of parallel flip-Bop registers 
appears at (a) of figure 3-50. This is nothing more 
than a set of flip-flops with no connections between 
them, one for each bit in the word. Since five stages are 
shown, this register could handle only 5-bit words, each 
flip-flop representing a different bit position. 

There are two methods of writing words into this 
register. The first, and least likely to be used, is to 
place a pulse on the set input of each flip-flop that must 
store a 1 and a pulse on the clear input of each flip-flop 
that must store a o. (This is essentially double line 
transfer.) Thus, to store the word 11001, pulses would 
appear on the following inputs, left to right in the il­
lustration: 

1 1 o o 
2° (Bit Position) 

1 (Input Word) 

Set Set Clear Clear Set (Inputs Pulsed) 

The drawback to this method lies in the fact that for 
each bit position containing a 0, a pulse must be gener­
ated and switched to the clear input line. This, of 
course, means added circuitry. The second, and easier, 
method begins by placing a pulse on each clear input 
before the word to be stored arrives. This clears aU 
the flip-flops in the register to the 0 state, wiping out 
any word that may have been stored previously. Then 
the word to be stored is applied in parallel form to the 
set inputs. (This is single line transfer.) The pulse in 
each bit position where there is a 1 sets the correspond­
ing flip-flop to 1. No pulses appear in the bit positions 
where there are O's, so the flip-flops in these positions 
remain at 0, and the correct word is stored. 
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figure 3-50. Parallel flip-flop Storage Register 
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Figure, 3-51. Parallel Core Register 

Instead of generating a separate pulse to clear each 
flip-flop before storing a new word in the register, the 
practical thing to do is use a single pulse, as shown at 
(b) of figure 3-50. By connecting all the clear inputs 
in parallel, a single pulse can be made to clear the 
whole register just before the new word to be stored is 
due to arrive. A parallel storage register of magnetic 
cores can be built up in a manner similar to this. Such 
a register appears in figure 3-51. Each bit of the in­
put word is applied to the input winding of a separate 
core. The readout windings, connected either in series 
or in parallel, serve a dual purpose. When a readout 

pulse is applied, it not only reads out (in parallel form) 
all the bits stored in the individual cores, but it also 
clears the register by resetting all cores to o. The regis­
ter is then ready to store a new word. When cores are 
used for parallel word storage, like this, the readout 
pulse does not appear each bit-time but is more in the 
nature of a control pulse generated only when the 
stored information is needed. 

These are -the basic parallel storage registers. What 
about storage of words in serial form? 

This appears rather difficult, at first thought, but, 
actually, it is quite simple. A clue to one often-used 
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method lies in the dynamic flip-flop, or circulating mem­
ory, shown in figure 3-47. There, a feedback loop with 
a total delay of one bit-time keeps a single pulse circu­
lating until it is desired to stop it. Why not extend this 
idea and keep a whole word circulating until the time 
comes to take it out of the loop? All that is needed to 
do this is a total delay in the loop equal to the number 
of bits in the word to be stored, plus the means of 
switching the words into and out of the loop, when 
necessary. The arrangement is shown in figure 3-52. 
The loop itself consists of the OR circuit and the long 
delay line (which must include an amplification and re­
shaping circuit). If 5-bit serial words, for example, 
"~re to be stored, the total delay here must be 5 bit-times. 
This might be divided as l;iD in the OR and 4-% D in 
the delay line. The two AND circuits are used as gates 
to switch the words into and out of storage (gate tubes 
could be used just as well). 

The word to be stored arrives as a train of five 
bits at the input of AND 2. To gate it into the storage 
loop, a train of five control pulses (often called write 
pulses) is generated and timed so that the first write 
pulse reaches the AND at the same instant as the first 
(least significant) bit of the input word. If this bit is 
a pulse, or 1, the AND fires and puts a 1 into the loop; 
if the bit is a 0, the AND cannot fire so a 0 is put into 
the loop. In this manner, as shown in the small chart 
on figure 3-52, the five write pulses gate the five bits 
of the word through AND 2. 

Once through the OR circuit, the first bit of the 
stored word cannot get through AND 3 because no 
readout pulses are yet applied to this circuit, which is 
the output gate. Therefore, the bit follows the feedback 
path and enters the delay line. The second bit of the 
word enters the delay line one bit-time later, and the 
others follow in sequence. The first bit emerges from 

rl LONG DELAY 

WORD IN 

WORD IN 

WRITE PULSES 

AND OUTPUT 

~ 
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PULSES 

AND 2 

I 0 0 

I 0 0 I 

C 5D 

-• - I 
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the delay line 4-% bit-times after it entered. It requires 
another l;i bit-time to pass through the OR circuit 
again, so it is back at the beginning of the feedback 
loop exactly 5 bit-times after it was last there. The 
other four bits of the words are spaced at I-bit intervals 
behind it. By thus providing a closed loop with a delay 
exactly equal in time to the length of the word, it is 
apparent that the word will continue to circulate and, 
therefore, will be stored as long as desired. To take the 
word out of storage, it is only necessary to wait until 
the first or least significant bit emerges from the OR 
circuit, then apply the first of a train of five readout 
pulses to the second input of AND 3. The readout 
pulses then gate the stored word out of the loop in the 
same fashion as the write pulses gate it in. 

Notice, however, that reading the word out of the 
circulating register does not clear the latter, since a 
pulse at the input of AND 3 is also sent back over the 
feedback path whether it is gated through the AND 
or not. So the word still remains in the loop, even 
after it has been read out to other circuits. This, inci­
dentally, is called nondestructive readout because the 
information is not lost from the storage circuit through 
the reading process. Destructive readout is the type oc­
curring in magnetic cores, where the readout process 
clears the cores. 

To be able to store a new word in the register, 
the old information must be cleared out; otherwise, for 
example, a pulse (1) in the old word that was left in 
the register might take the place of a blank (0) in the 
new word being fed in. The register can be cleared 
easily if an inhibit circuit is used in place of the OR cir­
cuit. Simply placing a string of five clearing pulses on 
the inhibit input stops each of the circulating pulses, 
and the loop then contains O's. 

l_ 
I 

) 

The circulating register is practical and widely 
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Figure 3-52. Circulating Register for Serial Words 
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Figure 3-53. Core Register for Serial Words 
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Figure 3-54. Core Shifting Register 

used in serial m.ode c.omputers. An.other useful type .of 
register f.or serial w.ords can be made with magnetic 
c.ores, as sh.own in figure 3-53. T.o follow the .opera­
tion .of this register, consider the effect .of applying a 
single pulse (1) to the input c.oil .of the c.ore at the 
left and then applying a series .of readout pulses, 
.one each bit-time. The input pulse sets the first c.ore t.o 
1. The first read.out pulse immediately resets this c.ore 
t.o 0, pr.oducing an .output pulse which is applied t.o the 
input .of the next c.ore. The delay circuit between c.ores 
(which includes the necessary di.ode t.o c.ontr.ol p.olarity) 
prevents the pulse fr.om setting the second c.ore t.o 1 un­
til the read.out pulse has died away. So, the applicati.on 
.of .one read.out pulse shifts the 1 fr.om the first c.ore t.o 
the sec.ond. The next read.out pulse resets the sec.ond 
c.ore t.o 0 and shifts the 1 t.o the third c.ore. This effect 
c.ontinues with the third and f.ourth read.out pulses, 
shifting the 1 finally t.o the c.ore .on the right. If the 
read.out pulses (which may in this use be called shift 
pulses) are stopped at this point, the 1 remains st.ored 
in the right-hand c.ore. With a c.omplete, 5-bit w.ord 
fed into the register, instead .of a single bit, the same 
shifting acti.on takes place up.on applicati.on .of the 
read.out .or shift pulses. The shift pulses are applied at 
intervals .of .one bit-time s.o the first bit that enters the 
left-hand c.ore is shifted .out in time to clear it f.or the 
sec.ond bit .of the input w.ord, etc. When it is desired t.o 

read the w.ord .out .of the c.ore register, all that is nec­
essary is t.o apply a string .of five shift pulses, at I-bit 
intervals. This shifts the bits .of the w.ord t.o the .output 
line in the pr.oper relati.onship. The principles .of shift­
ing in c.ore registers can be seen clearly in this example. 
Shifting is simply a matter .of m.oving all the bits .of a 
w.ord in step, .one .or m.ore places t.o the left .or right. 
The register .of figure 3-53 w.ould seem t.o qualify as a 
shifting register, but actually d.oes n.ot. It perf.orms the 
shifting .operati.on .only as a means .of getting serial 
w.ords into' and .out .of it; its functi.on is simple st.orage. 

2.2.3.2 Shifting Registers 

A shifting register is built with the intenti.on .of 
shifting any numbers st.ored in it f.or a purp.ose .other 
than that .of .ordinary st.orage. The purp.ose may be t.o 
c.onvert w.ords fr.om serial t.o parallel f.orm, fr.om paral­
lel t.o serial, .or it may be t.o multiply .or divide the num­
bers by s.ome p.ower .of 2. (Remember fr.om Part 2 that 
shifting a binary number .one place t.o the left multiplies 
it by the radix, 2; .one place t.o the right divides it 
by 2, etc.) 

One means .of changing the register .of figure 3-53 
t.o a true shifting register is t.o add a sec.ond input c.oil 
t.o each c.ore, as sh.own in figure 3-54. If a w.ord in 
parallel f.orm is applied t.o these inputs, the c.ores are 
set acc.ording t.o the pattern .of l's in the w.ord. Then, 
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applying a string of five shift pulses shifts the bits of 
the word to the output line in serial form. 

By taking outputs in parallel off the capacitors in 
the delay networks between cores (plus that in the out­
put line), a serial word can be written into the register 
and then taken out in parallel form upon the applica­
tion of a single readout pulse. With parallel outputs 
available, the use of shifting for arithmetic purposes 
can easily be shown. The serial input and output can be 
ignored for the moment (consider them disconnected). 
A word is written into the regiser on the parallel 
inputs and stored momentarily. The word might be, for 
example: 

0.1110 

(which equals decimal 14/16). 
If a single shift pulse is now applied, each bit of 

the word is shifted one core to the right. The bit in the 
right-hand core, however, has no place to go, with the 
serial output line disconnected, and thus is lost. The 
left-hand core shifts the bit it contained to the core on 
its right, but there is no incoming bit to replace it, so 
this core is reset to 0 by the shift pulse and remains 
in the 0 state. Therefore, the register now contains: 

0.0111 

(which equals decimal 7/16). 
The shift of one place to the right has thus divided 

the number in the register by 2. Notice that during 
the shift the original number appeared on the parallel 
output lines taken from the delay networks. The core 
switching can be so arranged, however, that these out­
puts can be ignored at this time. They will be used only 
when it is desired to take the shifted number out of the 
register, by applying one more readout or shift pulse. 
Notice, also, that any remainder left by the division is 
lost because the right-hand (least significant) bit is 
lost. If the sample number shown above is shifted once 
more, the number left in the register is: 

0.0011 

(which equals 3/16), instead of 0.00111, the exact an­
swer. Since the lost remainder in division by shifting 
is always smaller than the least significant bit, however, 
dropping it has only a minor effect on the accuracy of 
computations. 

Multiplication by shifting requires a shift to the 
left, instead of the right. To accomplish this, the series-

Figure 3-55. Flip-Flop Shifting Register 
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connected input and output coils of the cores in figure 
3-54 must be reversed so that the output of each core 
goes to the one on its left. Now, the most significant bit 
of the shifted number is lost, and the least significant 
bit is replaced by o. 

Although it is perhaps easiest at first to follow 
the operation of a shifting register in terms of num­
bers written in and read out in parallel form, the same 
operations can be performed on serial words. A serial 
word is written into the register, the input and output 
lines are opened or switched off, the shifting operation 
is performed, and then the shifted word is read out. 

When shifting registers are made up of flip-flops 
and logic circuits, there are many possible arrange­
ments. Which one will be used in a given case depends 
upon the exact operations to be handled, plus such fac­
tors as the requirements of associated circuitry. 

One of the simplest of such shifting registers ap­
pears in figure 3-55. Only three stages are shown, for 
darity, and the connections are arranged for a shift to 
the right. Each flip-flop is set to either 0 or 1 when a 
word is written into the register, and each flip-flop out­
put then conditions the corresponding gate tube. When 
the time comes to shift the word in the register, a single 
pulse is applied on the shift line. This pulse can be 
passed only by the one gate of each pair that is condi­
tioned by the flip-flop. The pulse, therefore, is gated to 
the transfer line corresponding to the state of the flip­
flop and sets the next flip-flop at the right to that state. 
The delay circuits are needed to prevent the possibility 
that the state of a flip-flop might be changed before it 
had sent an adequate signal to the next one. 

By connecting the transfer lines from each flip­
flop to the one at its left, instead of the one at its right, 
the register could be made to shift numbers to the left. 
In some applications, it is desirable to be able to shift 
in either direction. A register to handle this can be made 
by using two sets of gate tubes and transfer lines, one 
set leading to the right, the other to the left, each set 
having its own shift pulse line. A pulse on one line 
would provide a shift to the right; a pulse on the 
other would result in a shift to the left. 

The shifting registers of figures 3-54 and 3-55 
both provide what is called broadside shift, ot: simulta­
neous shift; i.e., all bits of the word in the register are 
shifted at the same instant because the shift pulse hits 
all conditioned gates at the same time. It is also pos­
sible to shift one bit at a time, in rapid succession, a 
process called ripple shift. Starting at the right-hand 
end of the register if the shift is toward the right (at 
the left end for a shift left), the output of each flip-flop 
is gated in turn. As shown in figure 3-56, this is done 
by switching the shift pulse through the conditioned 
gate tubes in series instead of applying it to all of them 
in parallel. When the shift pulse enters, it gates the 

output of the 21 flip-flop to the corresponding input of 
the 2° flip-flop. (The bit originally in the 2° flip-flop 
is lost, as mentioned earlier, in a shift to the right, un­
less special provisions are made to save it, outside the 
register.) The gated pulse passes through the OR cir­
cuit and is applied as the shift pulse to the next set of 
gates, shifting the 22 bit into the 21 flip-flop, etc. In this 
manner, the bits shift one after the other in a wave or 
ripple down the register. Although the ripple shift is 
not as fast as the simultaneous shift, it can often save 
operation time. In an arithmetic operation involving 
carries, for example, a ripple shift can be started while 
carries are still being transmitted from stage to stage 
down the register. A simultaneous shift, on the other 
hand, can be made only when all other activity has 
ceased and any transients have been given time to die 
out. 

Numerous other circuit arrangements can be used 
in constructing shifting registers but they differ little 
from the basic types described here. 

2.3 ELECTRICAL CONSIDERATIONS AND 
NONLOGIC CIRCUITS 

The information signals that have been illustrated 
thus far in this part (figs. 3-1, 3-3, and 3-4) have 
stood tall and square - as, in theory, they should. In 
actual circuitry, however, as mentioned earlier, there are 
many factors that act to attenuate or knock down the 
amplitudes of the signals and to make them round­
shouldered instead of square. Pulses are more subject 
to these difficulties because they appear and die out 
quickly - usually in less than a microsecond - but lev­
els also lose amplitude and their leading edges become 
rounded. As a result, the typical pulse taken from a 
digital computer and displayed on an oscilloscope 
might look almost as good as those in figure 3-4, but 
is far more likely to have the appearance of that in 
figure 3-57. In this figure, the actual pulse is seen to 
have an amplitude considerably smaller than that of 
the ideal pulse and to last somewhat longer. The ac­
tual pulse also rises more slowly and overshoots the 
baseline on its return to zero (the ideal rise time is 
instantaneous and therefore impossible). 

None of these seeming drawbacks of the actual 
pulse may be severe enough to make it an unusable one. 
Although the ideal pulse for a given machine might be, 
for example, 30 volts in amplitude and 0.1 usec in dura­
tion, it is necessary in practice to set limits for the 
actual pulses. Thus, the circuits in this example might 
be designed to be definitely triggered by any pulse be­
tween 20 and 40 volts in amplitude and 0.08 and 0.12 
usec in duration. If the pulse shown in figure 3-57 
were between these limits, it would be a good, usable 
pulse. In some types of computer circuitry, a limit is set 
on rise time. That is, a pulse must rise to a certain am-
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Figure 3-56. Register Using Ripple Shift 

plitude within a certain time. There may also be a limit 
on the amount of overshoot permitted. 

Whenever a pulse or a level must travel through a 
number of circuits or devices without amplification, loss 
of amplitude must be expected. Such attenuation oc­
curs in diode logic circuitry, for example. Circuits or 
signal paths with poor high-frequency response 
lengthen the rise times of pulses or levels, rounding 
the leading edges. Excessive capacitance in signal lines 
or circuits causes attenuation, distorts pulses, and may 

IDEAL PULL 
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I 
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Figure 3-57. Typical Pulse in Computer Circuitry 

upset timing because of undesired phase shifts. And im­
pedance mismatches are particularly serious and diffi­
cult to locate. They may result in misshapen pulses, 
severe attenuation or complete loss of signals, or phase 
shifts affecting signal timing. Mismatches of this sort 
can be caused by improper resistive values terminating 
coaxial signal lines (setting up reflections or standing 
waves on the lines); changing values of circuit compo­
nents, often due to aging; leakage or partial shorts, 
and other factors. These are some of the electrical or 
electronic problems encountered in digital computers 
by both designers and maintenance technicians. The de­
signer must include circuits to amplify and reshape 
pulses or reset levels wherever it appears possible that 
the pulses or levels may be forced outside limits. He 
may also have to provide impedance-matching and 
power-amplifying circuits to drive loads too large for 
the ordinary logic circuit to handle. Circuits such as 
these, included because of electrical necessity but not 
performing operations necessary to the logic of the com­
puter, are called nonlogic circuits. Examples are cathode 
followers for both impedance-matching and power 
amplification, pulse amplifiers, level setters, register 

82 UNCLASSIFIED 



PART 3 
CH 2 

UNCLASSIFIED 
T.O. 31P2-2FSQ7-2 

Circuit Packaging 
2.3-2.4 

drivers, etc. Pulse generators may produce an output of 
one pulse or a series of pulses and may be used either 
for reshaping or for logic. 

Nonlogic circuits of a particular type are usually 
identical throughout a given computer; therefore, they 
can be drawn as circuit blocks on the machine sche­
matics, like logic circuits. Since they contribute nothing 
to the logic operations, they are normally omitted from 
the simplified or "pure" logic block diagrams used to 
describe the theory of operation, but must be included, 
of course, in the complete diagrams of the equipment. 

2.4 CIRCUIT PACKAGING 

It has been mentioned that digital computer cir­
cuits are usually packaged, either individually or in 
small groups. The circuit connections are made by some 
sort of plug-in arrangement, so once a trouble has been 
localized to a given circuit, replacement is a simple 
matter of pulling out the defective circuit package and 
plugging in a good one from a supply of spares. The 
computer is then ready to run again, much sooner than 
it would have been if the circuit had to be repaired in 
the machine. Business expense or military necessity 
makes it important to keep almost every computer 
(commercial or military) running and solving prob­
lems as continuously as possible. Thus, the mainte­
nance time saved by using pluggable packaged circuits 
is important. 

It would not be practicable to attempt to describe 
all of the many different packaging methods used. 
Among the principal aims in all designs are making the 

circuit packages as small as possible while maintalmng 
efficient cooling for reliable operation, making wiring 
simple and uniform, and simplifying repair (except in 
types designed to be thrown away if they fail). Printed 
circuits and miniaturized circuit components are widely 
used. 

In the AN/FSQ-7, -8 computer, for example, circuits 
are constructed in rectangular metal forms of uniform 
size, illustrated in figure 3-58. These pluggable units, 
as they are called, are designed to be plugged into rack 
assemblies, one above the other, like drawers in a bu­
reau. The circuit components are mounted on etched 
cards, one or more to a circuit, which are then inserted 
in vertical slots in the pluggable unit. The vacuum tubes 
are mounted horizontally on the front of the unit, and 
standard wiring is used to connect the cards and the 
tube socket pins. When all the units are in place in a 
stack, conditioned air is blown up from the base and 
escapes through openings around. the tube sockets in 
each unit, cooling the cards and the tubes. 

These pluggable units are fairly sizable, but conve­
nient for one man to handle. By way of contrast, one 
transistorized digital computer for airborne use has its 
circuits individually packaged in small plastic cubes, 
each less than half the size of a cigarette package. The 
circuit packages are interconnected by printed wiring 
on the cards upon which groups of circuits are 
mounted, and the cards, in turn, are plugged into air­
conditioned cabinets. The entire computer occupies less 
space than the average office desk. 
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CHAPTER 3 
ARITHMETIC AND CONTROL 

The previous chapter has described the basic types 
of logic and storage circuits, their operation, and some 
of the ways in which they can be arranged to perform 
combinations or sequences of logic operations. The dig­
ital computer is built by assembling networks of these 
basic circuits to perform the operations of arithmetic, 
to handle the input and output of information, and to 
control the internal working of the machine. 

This chapter will examine some of the networks 
that can be used to accomplish the functions of arithme­
tic and internal control in computers working with the 
binary system. These networks will be shown by means 
of logic block diagrams because it is the logic of opera­
tion, rather than the electrical theory, that is most im­
portant to a clear understanding. For this reason, non­
logic circuits will not appear, although it is known that 
they are often needed for amplification, level setting, etc. 

Some types of the basic circuits described in 
Chapter 1 could be used to construct these networks 
without change, but others, for electrical reasons, would 
require modifications of the networks to make them 
work. This, however, would not change the overall 
principles of operation. It can be assumed, for most of 
the networks to be described, that either voltage level 
or pulse signals, or both, could be used in different parts 
of the network. 

There are usually several different network ar­
rangements that will perform a given arithmetic opera­
tion and it is not possible or practical to treat all of 
them here. What is intended is to give a clear picture of 
the basic ways in which logic and storage circuits are 
put together to accomplish the various jobs that must 
be done in the computer. Remember, therefore, that 
the approaches to be shown here are not by any means 
the only ones possible. 

3.1 COUNTING 

The cyclic nature of the counting process makes 
it easy to design networks or circuit arrangements that 
can count input signals. Such circuits, called counters, 
are used for various purposes, such as counting steps 
in the program as they are executed. In any of these 
uses, a signal - usually a pulse - is generated each 
time the event to be counted occurs. The counter then 
counts these signals. For instance, a signal is gener­
ated and sent to the program counter each time a 
step of the program is completed. In this manner, the 

counter keeps track of the progress of the program 
by counting the individual signals. 

The cycling of the bits in a binary number can be 
seen by examining a simple count: 
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o 
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o 

Note that the bit in each binary place (order) 
changes state from 0 to 1 and back to 0 again as the 
count progresses. Each time the bit in a given place 
changes back to 0, the bit in the next more significant 
place (to the left) also changes state. 

3.1.1 Binary Counters 

This cycling count suggests that a group of flip­
flops might be arranged as a counter, using one flip-flop 
to represent each binary place, as shown in figure 3-59. 
When a signal is applied to the complement input, a 
flip-flop switches from one of its stable states to the 
other. Since each flip-flop is driven by the 0 output of 
the one in the next lower place, each changes state only 
when the bit in that place goes from ,I to O. (The ca­
pacitor in each output line represents a differentiating 
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Figure 3-59. Basic: Flip-Flop Counter 

circuit that changes the voltage level rise into the nec­
essary pulse when the 0 output level goes up.) 

The pulses to be counted are fed to the flip-flop in 
the least significant place. The first pulse (assuming 
the counter has been cleared to 0000) sets the 2° 
flip-flop to 1, and the counter output is 0001. The second 
input pulse resets the 2° flip-flop to 0 and the differen­
tiated voltage level rise on its 0 output line sets the 21 
flip-flop to 1, so the output is now 0010. The third in­
put pulse sets the 2° flip-flop to 1 a second time, but 
this has no effect on the 21 flip-flop. The counter output 
is 0011. When the fourth input pulse arrives, the first 
two flip-flops are reset to 0 and the 0 output from the 
21 flip-flop sets the 22 flip-flop to 1, producing an output 
from the counter of 0100. 

Counting continues in this manner until the 15th 
input pulse has produced an output of 1111. The 16th 

pulse then resets the counter to 0000 and it is ready to 
begin the counting process again. It is possible to clear 
this counter at any time by applying a pulse to all t~e 
flip-flop clear inputs, which can be connected in paral1el 
f'Or this purp'Ose. N 'Otice that the input pulses d'O not 
have to appear at regular intervals. This group of flip­
flops is storing a number, between input pulses, so it 
also may be called a counting register. 

The counter of figure 3-59 has one drawback­
the input pulse often has to switch a number of stages 
in series, so the counter may be slow to respond. This 
is especially true where a count to 12 or 16 or more 
places may be required. An arrangement providing faster 
operation, but requiring more switching equipment, is 
shown in figure 3-60. In this counting register, the input 
pulses are applied almost simultaneously to the flip-flops 
of all places to be switched. 

When the counter is cleared to 0000 and the first 
input pulse arrives, it sets the 2° flip-fl'OP t'O 1 but cann'Ot 
get through GT 2 because the gate has not been condi­
ti'Oned. (The delay circuit is needed to prevent the flip­
fl'OP fr'Om changing state and conditi'Oning the gate tube 
before the pulse ends.) After the first pulse disappears, 
the counter is at 0001, and the 1 output of the 2° flip-flop 
is conditioning GT 2. The second input pulse passes 
through GT 2 and sets the 21 flip-flop to 1, at the same 
time resetting the 2° flip-flop to 0 and removing the con­
ditioning voltage from GT 2. Now the counter output is 
0010 and GT 3 is conditioned but GT 2 is not. The third 
pulse, therefore, can only set the 2° flip-flop to 1 again, 
making the output of the counter 0011. When the f'Ourth 
input pulse appears, it now finds both GT 2 and GT 3 
c'Onditi'Oned, S'O it changes the state of the first three flip­
fl'Ops and the counter 'Output bec'Omes 0100. 

OUTPUT NUMBER 

Figure 3-60. Higher Speed Counting Register 
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In this manner, the count continues to 1111, where­
upon the next pulse received resets the counter to 0000. 
It can, of course, be cleared at any time by pulsing the 
clear inputs of all flip-flops. 

Again, the input pulses do not have to appear at 
regular intervals. If they do, however, the arrange­
ment can also be used as a frequency divider. Consider, 
for example, an input of 1000 pulses per second (pps). 
Then, since only one pulse in two gets through GT 2, 
the output of GT 2 is 500 pps, a frequency division of 
2: 1. Similarly, the output of GT 3 is 250 pps, or 4: 1, 
that of GT 4 is 125 pps, 8:1, etc. In other words, each 
additional stage provides an additional division by 2 
of the input frequency. 

3.1.2 Ring Counters 
The two counters described thus far are both 

binary counters - that is, their outputs are parallel 
binary numbers. Often, however, all that is needed is 
some definite indication of the progress of the count, 
such as one output line at a time energized (called a 
one-hot indication). 

In such a case as this, it is apparent that only one 
stage of the counter at a time need be in the 1 state. 
This state is passed along from one stage to the next on 
the receipt of each new input pulse to be counted. 

Counters of this type are called ring counters and 
they are often in the form of' closed rings, with the last 
stage connected to the first in such fashion that the count 
automatically starts over. In some cases the ring is not 
closed and there is some separate means of turning on 
(to the 1 state) the first stage. 

There are a great many possible circuits for ring 
counters, as there are for the other types. Four stages 
of one such circuit are shown in figure 3-61. 

4 

-
:;:::::: 10 I I I FF 4 

, I 

o 

If FF 2 is on, or in the 1 state, the other stages off, 
only output 1 is hot, carrying an up level voltage. 
The next pulse arriving on the input line clears FF 2 but 
cannot affect the other flip-flops since they already 
contain O's. As FF 2 changes stage, the voltage level rise 
on its 0 output line is differentiated in the circuit repre­
sented by the capacitor symbol, yielding a pulse that 
sets FF 3 to 1. Again, the delay circuit is here to allow 
the input pulse to die out before FF 3 is turned on. 

In this manner, each input pulse turns off the one 
flip-flop that is on and this change in state is used to 
turn on the next stage. One output after another be­
comes hot in turn as input pulses "step" the on stage 
around the ring. Thus, as input pulses continue to come 
in, the outputs are: 

0001 

0010 

0100 

1000 

Etc. 

It is common practice to use two or more ring 
counters together, with the last stage of one supplying 
an input pulse to the next counter, as shown in figure 
3-62. The tandem setup shown here has five stages 
feeding three - other combinations can be used, of 
course, and the second counter can feed a third, etc. 

In this arrangement, five input pulses must be re­
ceived by the first counter to produce one input pulse 
to the second. The 3-stage counter, then, counts by 5's 
(the number of stages in the first counter), so the com­
plete tandem counter can count to 15, although it has a 
total of only 8 stages. A 16th input pulse starts the 
count over again. 

2 

, 

o o 

-

INPUT 
PULSES 

figure 3-6 J. Ring Counter Stages 
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Figure 3-62. Using Ring Counters in ,andem 

There is always one hot output from each counter. 
Assuming that the first pulse received turns on the left­
hand stage of each counter, the output indications 
~ha?ge. as shown in table 3-1. To produce a signal 
IndicatIng that a certain-numbered input pulse has 
been received, therefore, it is only necessary to bring 
together in an AND circuit the two output lines that 
are made hot by that pulse. 

If it is desired to obtain an output after the eighth 
input pulse, for example, table 3-1 shows that the 
center output from each counter is hot, so these two 
lines are combined in an AND. In fact, a three-by-five 
matrix of AND circuits, similar to that shown in figure 
3-40 (but without the OR's), can be used to give a 
separate output for each of the 15 input pulses on the 
common line. Thus, outputs can be obtained for any or 
all of the pulses to he counted. 

TABL.E 3-1. OUTPUT CHANGES OF TANDEM 
RING COUNTERS 

INPUT PULSE OUTPUT INDICATIONS 

1 10000 100 

2 01000 100 

3 00100 100 

4 00010 100 

5 00001 100 

6 10000 010 

7 01000 010 

8 00100 010 

9 00010 010 

10 00001 010 

11 10000 001 

12 01000 001 

13 00100 001 

14 00010 001 

15 00001 001 

1 10000 100 

3.2 ADDITION 

Simple arithmetic addition is nothing more than a 
short-cut method of counting up from smaller numbers 
to larger ones. Since the only binary digits are 0 and I! 
binary addition is just a matter of counting in columns 
and properly handling the carries between columns. 

Although it is common practice in pencil-and-paper 
work, decimal or binary, to add a whole column of 
figures at one time, this has not been found practical 
in digital computers. Instead, a computer adds the first 
two numbers, then separately adds the third to the sum 
of the first two, then the fourth to the sum of the first 
three, etc., always taking the numbers two at a time. 

3.2.1 Adders 

The circuit requirements for binary addition can 
be calculated by examining the rules for addition of any 
two bits. There are only four possible combinations of 
two bits: 

o 1 

o 1 

o 1 

1 

Augend Bit 

Addend Bit 

Sum Bit 

(0) (0) (0) (1) Carry Bit 
(The carries will henceforth be placed in paren­

theses to avoid confusion with the sum bits.) 
So what is needed is a logic circuit arrangement 

that will take any two bits and produce the proper sum 
output and carry output for each of the input combina­
tions shown above. 

The easiest starting method is to consider sep­
arately the requirements for the sum bit and the carry 
bit. If the augend bit is called A and the addend bit B 
then the sum bit is 1 when: ' 

(A OR B) AND NOT (A AND B) 

The carry bit is (1) when: 

(A AND B) = (1) (Carry) 

1 (Sum) 

Since the requirement for the carry bit is the same 
as one term of that for the sum bit, it should he possi-
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figure 3-63. Half Adder 

ble to use only one AND circuit for (A AND B), tak­
ing the carry output directly from it. An inverter and a 
second AND will take care of the AND NOT (or an 
inhibit circuit, if pulse transmission is used), and an 
OR circuit handles the (A OR B). The arrangement is 
shown at (a) of figure 3-63. 

This arrangement for adding two binary bits and 
producing the proper sum anI carry bits is called a half 
adder. The common circuit symbol appears at (b) of 
figure 3-63, and it should be remembered that the 
symbol may represent any of several possible circuit ar­
rangements, as well as the one at (a). 

In operation, if only one input, A or B, is 1, the 
output 1 from the OR circuit is applied to one input 
of the following AND. The first AND circuit cannot 
produce an output with only one input present, so the 
carry is (0). This carry is inverted to 1 and applied to 
the other input of the second AND circuit, resulting in 
a sum bit of 1. If A and B are both l's, the input AND 
circuit produces a carry of (1), which is inverted to 0 
and applied to one input of the second AND circuit. 
With a 0 on one input, this AND cannot provide an 
output, even though a 1 comes from the OR circuit, so 
the sum bit is o. Finally, if A and Bare O's, both the 
sum and carry bits are O's. 

An arrangement of this type is called a half adder 
because it cannot by itself add two binary numbers, al­
though it can add two bits. The reason can be seen by 
performing a sample binary addition, showing the car­
ries from one column to the next: 

o. 

o. 

O. 

(1) 

o 

o 

1 

(1) 

1 

o 

o 

(1) 

1 

1 

1 

1 

o 

Column Carry 

Augend 

Addend 

Sum 

Although only two numbers are being added~ some 

columns require that three bits be summed because of 
the carries from the previous columns. A single half 
adder cannot do this, but some means must be found. 

First of all, it is necessary to establish a fixed and 
definite pattern that will cover all possible addition 
problems. The example above used 5-bit words, but in 
an actual computer the words might be of any length 
and carries could occur in any column. (When the l's 
complement system is used to represent negative num­
bers, remember that the end carry, if it occurs, must be 
taken around and entered into the least significant col­
umn.) To make the addition pattern regular, the prac­
tical thing to do is consider that there will always be 
a carry into each column, but the carry may be (1) or 
(0). Thus, the example above becomes: 

(0) 

O. 

O. 

O. 

(1) 

o 

o 

1 

(1) 

1 

o 

o 

(1) 

1 

1 

1 

(0) 

1 

1 

o 

Column Carry 

Augend 

Addend 

Sum 

The carry in the least significant column is always 
(0) at the beginning of an addition, although an end 
carry may have to be entered there later. Unlike the 
column carries, the end carry (not shown) is usually 
ignored unless it is a (1). Therefore, it is commonly 
said that there is no end carry unless it is a (1). 

Now, there are three bits to be added in every 
column. One half adder will add two of them, but a 
second half adder must be used to add the third bit to 
the sum of the first two. And, since there will be a 
carry of (0) or (1) from each half adder, some addi­
tional logic circuitry is needed to handle the carry to 
the next column. 

Probably the most common method, shown at (a) of 
figure 3-64, is to add the augend and addend bits (A 
and B) in the first half adder, producing a temporary 
sum bit and a first carry. 

1 Augend Bit 

1 Addend Bit 

0 Temporary Sum Bit 

(1) First Carry 

Then, in the second half adder, the carry from the 
column to the right is added to the temporary sum bit, 
producing the column sum bit and a second carry. 

0 Temporary Sum Bit 

(1) Column Carry 

1 Sum Bit 

(0) Second Carry 
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Figure 3-64. Full Adder 

COLUMN 
CARRY FROM 
NEXT LOWER 
COLUMN 

If either the first O'r the second carry is ( 1 ), this 
must be the cO'lumn carry, since any carry resulting frO'm 
additiO'n in a given cO'lumn must be sent to' the next. 
NO'tice, hO'wever, that bO'th carries cannO't be l's- if 
the first is a (1), as in the example abO've, the secO'nd 
can O'nly be (0). SO' all that is necessary to' prO'duce the 
cO'lumn carry is to' feed bO'th first and second carries to' 
an OR circuit, as shO'wn at (a) in figure 3-64. 

The arrangement in this figure 3-64 is a full adder, 
sO' called because it can prO'perly handle the carries be­
tween cO'lumns. It is O'nly O'ne O'f a number O'f PO'ssi­
ble arrangements. The usual symbol is shO'wn at (b) O'f 
figure 3-64. 

CO'nsider nO'w the previO'usly-given additiO'n O'f twO' 
binary numbers, 0.0111 + 0.0011, as it WO'uld be per­
fO'rmed by five O'f these full adders in parallel, shO'wn 
in figure 3-65. 

o o 
o o o 

(0) 

o o 

NO'tice that the cO'lumn carries must travel (O'r 
"prO'pagate") through all the stages in sequence, frO'm 
the least to' the mO'st significant. That is, the additiO'n 
in the secO'nd cO'lumn frO'm the right cannO't be com­
pleted until the carry frO'm the first cO'lumn is received, 
the additiO'n in the third cO'lumn depends uPO'n the 
carry frO'm the secO'nd, etc. The time required for this 
carry proptlgation definitely slO'WS dO'wn the additiO'n 
process, especially if the cO'mputer wO'rd cO'ntains many 
bits. A number O'f methO'ds have 'been devised to' speed 
up carry prO'pagatiO'n, but it remains a prO'blem. 

The cO'mplete picture O'f the additiO'n prO'blem rep­
resented in figure 3-65 can be seen by examining what 
happens inside the adders. 

First, the augend and addend bits are brO'ught 
frO'm registers where they have been stO'red intO' the 
first half adders. 

o. 

o. 

o 

o 

1 

o 

1 

1 

1 

1 

Augend Bits 

Addend Bits 

O. 0 1 0 0 TempO'rary Sum Bits 

(0) (0) (0) (1) (1) First Carries 

Next, beginning in the least significant cO'lumn, the 
tempO'rary sum bit is added to' the cO'lumn carry frO'm 
the next IO'wer cO'lumn. Remember that this actiO'n takes 
place in sequence frO'm right to' left, althO'ugh it ap­
pears belO'w as if simultaneO'us. In the least significant 
cO'lumn, the carry is autO'matically made (0). The secO'nd 
half adders prO'duce the sum bits and the secO'nd car­
ries, which are cO'mbined with the first carries in the 
OR circuits. 

0 0 1 0 0 TempO'rary Sum Bits 

(0) (1) (1) (1) (0) CO'lumn Carries 

0 1 0 1 0 Sum Bits 

(0) (0) (1) (0) (0) SecO'nd Carries 

Thus, the sum is 0.1010, taking the adder O'utputs 
in parallel. Of cO'urse the binary PO'ints dO' not appear 
in the machine words. 

AUGEND 

ADDEND 

(0) g~~~~N 

F 
c S 

o SUM 

Figure 3-65. P·arallel Adders 
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figure 3-66. full Adder for Serial Operation 

In this manner a digital computer can perform 
addition of numbers in parallel form. What about the 
addition of numbers transmitted serially? 

The principles underlying the two methods are the 
same, so a switch to addition of serial binary numbers is 
a matter of adapting the circuitry to the requirements 
of serial transmission. Half adders and full adders will 
still be necessary. Assuming that the numbers are trains 
of pulses and blanks, transmitted least significant bit 
first, notice that the columns to be added are separated 
in time instead of space ("space" meaning the separate 
wires of the parallel system). This means that only one 
full adder is needed to add two serial binary numbers 
of any length, instead of one adder per column. 

The basic half adder of figure 3-63 is satisfactory 
for serial use, except that the inverter and second AND 
circuit would probably be replaced by an inhibit cir­
cuit, which is better suited for pulse work. 

The full adder arrangement is changed to that 
shown in figure 3-66. Although the adder of figure 
3-64 could be made to work for serial numbers, the 
handling of carries would become involved with longer 
delays. 

The operation of the serial full adder is almost 
identical to that of a single parallel full adder, except 
that the addend bit and the column carry are added 
first, then the augend bit is added to the temporary sum 
bit that results. Assuming that each successive pair of 
bits of the augend and addend arrive at the same in­
stant, the bits of the augend must be delayed to arrive 
at the second half adder at the same time as the cor­
responding temporary sum bits. In other words, the aug­
end delay must be equal to that in the first half adder. 
Correspondingly, the first carry must be delayed to ar­
rive at the OR circuit at the same instant as the second 
carry. 

The timing of the entire arrangement must be such 

that the column carry gets back to the input of the first 
half adder just as the next addend bit arrives. 

With these details arranged satisfactorily, the se­
rial adder accepts any two binary numbers, adds them, 
and feeds out the sum in serial form, least significant 
bit first. The total delay in the adder is usually one bit­
time, so the time required for addition of computer 
words containing N bits is N + 1 bit-times. Two S-bit 
words, for example, are added in 6 bit-times. 

Bit-time 6 5 4 3 2 1 

Augend 0 0 1 1 1 

Inputs 

Addend 0 0 0 1 1 

Output Sum 0 1 0 1 0 

The parallel method of addition is normally much 
faster than this, even allowing for carry propagation, 
but on the other hand the serial method requires much 
less circuitry. 

3.2.2 Accumulators 

The adders that have been described above simply 
add two numbers and send out their sum. The usual 
practice is to feed this sum to a register for temporary 
storage. If another number is to be added to it, the sum 
must be removed from the register and sent with the 
other number to the inputs of the adders, after which 
the new sum is stored in the register. 

An accumulator is defined as a device that stores a 
number, adds to it any new number received, and then 
stores the sum. The number previously held in the accu­
mulator is wiped out in the process. Thus, for example, 
if an accumulator is cleared and eight numbers are fed 
into it, one after another, the number stored at the 
end of the process is the sum of the eight. 

It is entirely possible to combine a register with 
the parallel adders previousy shown to form an accu­
mulator. And in the case of the serial full adder, it is 

r---i LONG DELAY t+-

Il 

NUMBERS 
j S 

F 
SUM 

figure 3-67. Serial Accumulator 
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extremely simple. All that is necessary is to' make a 
wQrd-Iength IQQP frQm the sum Qutput line back to' 
either the augend Qr addend input line, as shQwn in 
figure 3-67. 

The wQrd length IQQP thrQugh Qne Qr both half 
adders acts as a circulating register. When a number is 
fed in, it begins circulating in the IQop (a gate in the 
Qutput line is kept clQsed until it is desired to' read Qut a 
sum). Each time thrQugh the adder, the number is 
added to' zerO' and thus remains unchanged until a new 
input number is applied. Timing is very important, as 
in all serial circuits, and the arrival Qf each input num­
ber must be timed SO' that the least significant bit is 
added to' the least significant bit Qf the circulating num­
ber. When this is prQperly dQne, the new number is 
added to' the stQred number and the sum remains in 
the IQQP. The number Qriginally stored is wiped out 
in the additiQn process. In this manner, the accumula­
tor stores the sum Qf all numbers fed to it. 

Parallel accumulators using 1lip-flQPs to add by a 
counting action in each column are found in many digi­
tal cQmputers. There are a large number Qf' different 
circuits for these, but the chief differences are in the 
methods Qf handling carries. 

-

-

One Qf the simpler arrangements appears in figure 
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3-68, which shQWS fQur stages Qf a parallel accumu­
latQr. The bits Qf the number (the addend) to' be added 
to' that in the accumulatQr may be stQred in a flip-flop 
register (nQt shQwn). The 1 Qutputs from the register 
are applied to' the gate tubes as inputs to' the accumu­
latQr. Thus, the Qnly gate tubes cQnditiQned are thQse 
receiving the l's in the input number. (It WQuld be PQS­
sible, as always, to' use AND circuits in place Qf the gate 
tubes.) 

When the addend has been IQaded intO' the stQrage 
register and the gate tubes are cQnditiQned, the add 
pulse is applied. Pulses are gated thrQugh the cQndi­
tioned GT's and applied, thrQugh the OR circuits, to 

the cQmplement inputs Qf the corresPQnding flip-flQPs. 
These flip-flQPs change state, "cQunting up" by 1 in each 
cQlumn that receives an addend 1. 

When the 1lip-flQP in any cQlumn changes to' the 0 

state, a carry pulse is sent to' the next higher cQlumn 
(delayed until the input pulse dies out). It is possible, 
of CQurse, that SQme Qf these carries may cause Qther 
carry pulses frQm the stages receiving them. Thus the 
carries travel automatically through all the columns. At 
the cQmpletiQn Qf the carry propagatiQn prQcess, the 
number left in the accumulatQr is the sum Qf the 
number previQusly stQred there and the input number. 

OUTPUT SUM 
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Figure 3-68. Parallel Accumulator 
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Figure 3-69. Stage of Accumulator With Faster Carry Propagation 

This sum can be read at any time on the output lines 
shown. The entire accumulator can be cleared by pulsing 
the clear inputs of all the flip-flops. 

Although the carry propagation in this accumula­
tor is automatic, it is quite slow because the carry delays 
act in series. In other, faster methods, carries are 
switched to the proper columns without passing 
through each flip-flop; in some cases they are generated 
by sampling the addend and augend bits before addi­
tion begins, or even added simultaneously, although the 
latter method requires so much switching it is seldom 
practical for more than three or four stages. 

One stage of a fairly common type of parallel ac­
cumulator appears in figure 3-69. Again the bits of 
the addend are assumed to be stored in a flip-flop reg­
ister. If the addend bit applied to a given stage is a 1, 
GT 2 of that stage is conditioned and the add pulse 
is gated to OR 2 to switch the flip-flop. 

As soon as the flip-flops have been switched, the 
logic circuits are prepared for the carry-handling proc­
ess, which cannot occur, however, until a carry pulse is 
applied to the AND circuits of all stages. After the ad­
dition of the addend, if the flip-flop is in the 0 state and 
the addend bit is a 1, then the addition in this column 
must have been 1 + 1 = 0 and a carry of (1) has to be 
developed. This is done by the AND circuit when the 

carry pulse arrives. The pulse passes through OR 3 to 
the stage representing the next higher column. 

If, on the other hand, the flip-flop is in the 1 state, 
any carry from lower columns must switch it to 0 and 
develop a new carry. To save propagation time, how­
ever, GT 3 is conditioned by the 1 side of the flip-flop 
and a carry pulse arriving under this condition is gated 
without delay through GT 3 and OR 3 to the next 
higher column. In this manner, a carry pulse can 
quickly be switched through several consecutive columns 
(stages) indicating l' s. This is called "ripple-through" 
carrying. 

In each stage where a carry is received (or passed 
through), it is delayed and then fed through OR 2 

to switch the flip-flop. The delay allows the pulse on 
the carry line to die out before the flip-flop changes 
state, preventing the development of a false carry 
through the AND circuit O'r GT 3. 

With accumulators operating along lines similar to 
these, carry-handling is considerably faster than in the 
first type shown. 

3.3 SUBTRACTION 

The rules of binary subtraction can be tabulated 
like those of addition. The four possible cases are: 
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0 1 0 1 Minuend Bit 

-0 -0 -1 -1 Subtrahend Bit 

0 1 1 0 Difference Bit 

(0) (0) (1) (0) Borrow Bit 

It is possible to build a half subtracter that will 
accept any two bits and produce a difference bit and a 
borrow bit according to these rules. A full subtracter 
can be made with two half subtracters and an OR cir­
cuit. 

In practice, however, subtracters are almost never 
used. Compare the above table to the table for addition 
and it becomes apparent that the difference bits are 
exactly the same as the sum bits for the same cases. The 
only change is that the two right-hand borrow bits are 
the opposites of the corresponding carry bits. 

In addition: 

o 1 

(0) (1) Carry Bits 

But in subtraction: 

o 1 

-1 -1 

1 0 

(1) (0) Borrow Bits 

Since these are the only differences between addi­
tion and. subtraction, it is comparatively easy to modify 
an adder into an adder-subtracter, a device that can 
either add or subtract in response to the control sig­
nals sent to it. An accumulator can be modified for the 
same purpose. In the adder, it is only necessary to sup­
press one possible carry and generate one borrow when 
the command to subtract is received. Two inhibit cir­
cuits with AND inputs accomplish this. In an accumula­
tor, a borrow should be produced when a Hip-flop 
changes to the 1 state (and the subtrahend bit is 1) and 
borrows should be passed through any stages that are 
in the 0 state. For subtraction, therefore, switching is 
added to interchange the 0 and 1 output lines from 
each accumulator flip-flop. 

Probably the most common subtraction method of 
all, however, is to add the complement of ~the subtra­
hend to the minuend. Straightforward adders or accu­
mulators are used and the only extra switching required 
is to complement the numbers. If the subtrahend is fed 
to the accumulator from a flip-flop register, addition or 
subtraction can be handled very easily by inserting gates 
in all the 1 and 0 output lines from the register flip-

flops, as shown in figure 3-70. If addition is to be per­
formed, the 1 gates are pulsed and the number in its 
true form is sent to the accumulator or adders. For sub­
traction, the 0 gates are pulsed, feeding out the l's 
complement of the number in the register. 

Another common practice is to complement the 
subtrahend right in the register and then add. Only the 
normal set of gates is required. 

The 2's complement is more difficult to obtain di­
rectly. The effect of using it can be accomplished by 
generating the l's complement, as above, but adding 1 

as the carry to the least significant place in the accu­
mulator and allowing any resulting carries to propa­
gate. 

In many computers, negative numbers are kept in 
complement form at all times and are even stored in 
memory in this form. This makes addition and subtrac­
tion very easy, although there are some pitfalls. For 
example, when a positive number is subtracted directly 
(not by complementing and adding) from another 
smaller than itself, the subtraction circuitry always gives 
the negative difference as the 2's complement of the 
true answer. This is due to the cyclic nature of the 
numbering system. The 2's complement can be changed 
to the l's complement by bringing around and subtract­
ing the end carry. It is often easiest to keep such a neg­
ative number in complement form and, by so doing, 
the problem of keeping track of changing signs is han­
dled automatically. 

The comparative advantages of the l's complement 
against the 2's complement are difficult to evaluate 
and the choice of one or the other for use depends 
upon the overall requirements of the computer. 

With the l's complement system, complementing is 
easy, but end carries must be handled (requiring extra 
propagation time) and there are two values for zero, as 
explained in Part 2. The positive zero value, 00000, 
never occurs as a result of addition or subtraction; in­
stead, it is always negative zero, 111111, that appears 
in these cases. This can be awkward since it is often 
desirable to have zero appear as a positive number. In a 
computer using serial transmission, the end carry can 
be handled only by passing the sum through the adder 
a second time, which makes addition or subtraction com­
paratively slow. 

The end carry does not occur with the 2's comple­
ment system and zero is always positive, 00000, so de­
spite the greater difficulty of forming complements, this 
system offers certain definite advantages, especially for 
serial operation. 

3.4 MULTIPLICATION 

The binary multiplication table consists of only 
the first two places of the decimal table, and hence is 
very simple. 
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Figure 3-70. Arrangement for Transfer of True or l'S Complement Number 

o 1 Multiplicand Bit 

o o o 

1 o 1 

Multiplication 
3.4 

I GATES 

TRUE 
(ADD) 

From an example, it can be seen that the whole 
process is relatively uncomplicated: 

Each partial product, in binary as in decimal mul­
tiplication, is the product of the multiplicand and one 
bit of the multiplier. Since the binary bits can only be 
o or 1, each partial product must therefore be either 
zero or the multiplicand. The only arithmetic process 
actually involved, therefore, is addition, so it should 
be possible to perform multiplication with adders or, 
better, with an accumulator. Note, however, that each 
partial product must be shifted a number of places equal 
to the position of the multiplier bit. 

DECIMAL 

11 

14 

44 

11 

154 

BINARY 

01011 Multiplicand 

01110 Multiplier 

00000 

01011 Partial 

01011 

01011 Products 

00000 

010011010 Product 

The zero partial products in the binary example 
seem to be unnecessary, but a shift must occur for every 
multiplier bit, even if nothing is added to the partial 
products. This becomes especially important when it is 
recalled that the arithmetic circuitry cannot add a col­
umn of numbers such as these partial products simul­
taneously, but instead must add them two at a time. 

One problem that complicates the picture is the 
fact that the maximum length of the product equals the 
length of the multiplicand plus the length of the multi­
plier. Most computers are built to handle words of 
some fixed length, so for a word length of N bits, the 
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product must contain 2N bits. The example given previ­
ously showed a product of 2N-1 bits, but only because 
the multiplicand and multiplier were small in compari­
son to the largest possible 5-bit number, which is 11111. 
When larger whole numbers are multiplied, a carry 
occurs from the last place on the left, making the 
product 2N bits long. For example: 

10110 Multiplicand 

11001 Multiplier 

10110 

00000 Partial 

00000 

10110 

10110 

Products 

1000100110 Product 

A great many computers, however, use fractional 
binary numbers and carry negative numbers in comple­
ment form. In this case, the most significant bit is the 
sign bit and the binary point always appears immedi­
ately to the right of it. Again using 5-bit numbers as an 
example, the largest possible positive nUmber is 0.1111 
and the largest negative number is either 1.0001 (2's 
complement) or 1.0000 (l's complement). 

The location of the binary point in the product is 
determined in the same manner as in decimal multiplica­
tion-by counting off the number of fractional binary 
places in the multiplicand plus the number of fractional 
places in the multiplier. For words of N bits (including 
sign), since each contains N-1 fractional binary places, 
the product must contain 2N-2 places to the right of 
the decimal point. Adding one bit in the most signi­
cant place to indicate the sign, the total length of the 
product becomes 2N-1 bits when fractional numbers 
are used. 

0.1011 Multiplicand (N) 

0.1110 Multiplier (N) 

00000 

01011 Partial 

01011 

01011 Products 

00000 

0.10011010 Product (2N -1) 

As long as both multiplicand and multiplier are 
positive numbers, no carry beyond the most significant 
place can occur. This brings up the question of how to 
handle negative numbers in complement form, which 

obviously cannot be multiplied according to the rules 
for positive numbers since, for one thing, these rules 
do not allow for filling out partial products with chang­
ing signs. For example: 

-0.1111 Negative Multiplicand 

0.1001 Positive Multiplier 

-0.0000 1111 1st Partial Product 

The first partial product is negative, according to 
the rule of signs which states that a negative times a 
positive yields a negative. The 2's complement of this 
first partial product is 1.11110001. But, following the 
regular rules of multiplication and using the 2's com­
plement of the multiplicand: 

1.0001 Negative Multiplicand 

0.1001 Positive Mutiplier 

0.00010001 1st Partial Product 

So, this partial product is incorrect because it is not 
the 2' s complement of the true value. One solution is to 
devise new multiplication rules, which can be done 
quite easily for the 2's complement system but is some­
what more complicated when the l's complements are 
used. 

Actually the easiest method, and probably the most 
commonly used, is to put all numbers in true (positive) 
form before multiplying. This can be done by testing 
the sign bits of the multiplicand and multiplier, com­
plementing either or both of these numbers to make 
them positive, and then complementing the product 
after the multiplication, if it should be negative. 

The sign of the product of any multiplication is 
determined as follows: 

MULTIPLICAND & MULTIPLIER PRODUCT 

Both positive Positive 

One negative 

Both negative 

Negative 

Positive 

In the arithmetic circuitry, this is easy to handle. A 
sign flip-Hop is cleared before the signs of the multipli­
cand and multiplier are sensed (tested for value). If 
either number is found to be negative, the Hip-Hop is 
complemented at the same time as the number. Thus, 
after the process, the Hip-Hop indicates 0 if both num­
bers were positive or if both were negative (in the lat­
ter case, it is complemented twice). It indicates 1 if one 
number was negative, the other positive. The output of 
the Hip-Hop, therefore, can be used to indicate whether 
or not the product must be complemented. 

Another problem is introduced by the fact that the 
product of a multiplication is nearly twice the fixed 
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word length that can be handled by the computer cir­
cuits. With the sample 5-bit words given previously, 
for example, the products are 9 bits long if the numbers 
are fractional. 

An obvious answer in the case of fractional num­
bers is simply to chop the product to length, retaining 
the proper number of most significant bits. Thus, in 
the last full-length example, the product, 0.10011010, 
would be chopped down to 0.1001. Actually, however, 
this is not very accurate because the part being thrown 
away makes this product closer in actual value to 0.1010 
than it is to the retained value of 0.1001. What is needed 
to avoid sizable errors, then, is a method of rounding 
o fJ to the nearest value. 

This is done exactly as in the decimal system, ex­
cept that it is somewhat easier. A decimal number such 
as 33.X is rounded off to the nearest whole number 
value by observing whether O.X is more or less than 
half the corresponding power of the radix. If less than 
half (0.0 to 0.4), the actual value is nearest 33.0; if 
half or more (0.5 to 0.9), the nearest whole number is 
34.0. This can be done mechanically, without thinking, 
by adding half the corresponding power of the radix 
in the most significant place to be dropped, then chop­
ping. 

For example: 

33.X 33.2 

+ .5 round off 

33.7 

33 chop 

33.X 33.6 

+ .5 round off 

34.1 

34 chop 

In the binary system, half a given power of the 
radix is a 1 in that place. To round off the binary 
product shown above, therefore, a 1 is added to the 
most significant place to be thrown away, which is the 
fifth place to the right of the decimal point: 

0.10011010 product 

+ 1 round off 

0.10100010 

0.1010 chop 

The round-off of whole numbers becomes involved 
with the question of significance of digits, and round­
off methods are usually suited to the particular applica­
tion, with variations too great to be covered here. 

The foregoing are some of the major problems en-

countered in preparing to "mechanize" binary multipli­
cation; that is, to design circuitry capable of perform­
ing it. 

3.4.1 Parallel Methods 
Certainly the most common approach to multipli­

cation in computers handling numbers in parallel form 
is the repeated addition of the multiplicand, with appro­
priate shifts, in a set of adders or an accumulator. The 
multiplier is stored separately and its bits are used in 
sequence to determine whether the multiplicand or zero 
is added to the accumulated sum of the partial products. 

(It is possible to build a "simultaneous multiplier" 
that accepts the multiplier and multiplicand simulta­
neously and produces signals representing the product, 
but this requires so much equipment that it is seldom 
practical for numbers of useful length.) 

The problem of shifting can be attacked in either 
of two ways. That is, the multiplicand can be shifted 
to the left between entries into the accumulator, or the 
accumulated sum of the partial products can be shifted 
to the right after each addition. 

Since the multiplicand is usually held in a register 
and gated into the accumulator, one solution is to use 
a shifting register of extra length. In multiplying two 
numbers, each N bits long, N-l shifts must be made, 
so the register must contain N + (N-l) = 2N-l 
places. There must be a gate for each place, so the 
"gate string" is the same length as the register. 

At the start of the multiplication problem, the 
multiplicand is loaded into the N places at the right 
of the register and shifted one place left after each 
entry into the accumulator. This type of arrangement, 
using 5-bit numbers as an example, appears in figure 
3-71. 

The gating of the multiplicand into the accumulator 
is done by the multiplier bits, stored in another register 
and fed into the accumulator one at a time, least signi­
ficant bit first. When the multiplier bit is a 0, the gates 
are not opened and nothing (a zero partial product) 
is added to the accumulator contents. The multiplier 
bit (inverted if it is a 0) is delayed long enough to 
allow proper gating and then applied to shift the con­
tents of the shifting register one place to the left. (The 
diode prevents an inverter output from getting back to 
act as a false gate signal.) 

The accumulator itself must also be increased in 
length - to 2 N places if the computer uses whole num­
bers, 2 N -1 places if fractional numbers are used. If 
the extra place on the left (not shown in fig. 3-71) is 
needed, its only input is a possible carry from the most 
significant place shown here. 

The rounded-off product is taken from the N most 
significant places of the accumulator. The rounding-off 
is accomplished by adding a 1 in the place shown after 
the product has been formed (or at any convenient time 
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Figure 3-71. Shifting Register Feeding Accumulator for Multiplication 

during the summing of the partial products). 
In operation, the register and accumulator are both 

cleared and the multiplicand is loaded into the shifting 
register while the multiplier is placed in a register of its 
own. (If necessary, each is complemented to put it in 
positive form and a sign Hip-Hop is set.) Assuming the 
multiplicand and multiplier to be 0.1011 and 0.1110, 

respectively, the shifting register and accumulator at 
this point contain: 

01011 Reg 

000000000 Acc 

(The unfilled spaces in the register contain O's; 
they are omitted so the position of the multiplicand can 
be clearly seen.) Now, the least significant bit of the 
multiplier, 0, is brought in. It cannot fire the gates, but 
it does cause a shift after a short delay. The result of 
this "add zero and shift" is: 

01011 Reg 

000000000 Acc 

The next multiplier bit is a 1, which has the effect 
of a command to "add multiplicand and shift." This 
gates the multiplicand down into the accumulator before 
another shift is made. F oUowing this first 1: 

01011 Reg 

000010110 Acc 

The next two multiplier bits are also l's, each of 
which also adds the multiplicand into the corresponding 
places of the accumulator and then shifts the multi­
plicand. The effects are: 

01011 Reg 

001000010 Acc 

01011 Reg 

010011010 Acc 

The last multiplier bit is a o. Furthermore, it must 
always be a 0, because these fractional numbers are al­
ways placed in positive form before multiplying. There­
fore, the multiplier sign bit can have no effect on the 
product, which is already in the accumulator. To save 
multiplication time, the sign bit can be suppressed or 
dropped out of the circuitry and the time that would 
otherwise be spent in uselessly shifting the multiplicand 
again Qln be used to round off. If the multiplier sign 
bit is dropped, the most significant place in the shifting 
register and gate string can be eliminated. 

The round-off process is: 

010011010 Acc 

1 Add 1 to round off 

01010 Rounded product 
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Figure 3-72. Gating and Shifting by Switching 

This is the basis of one common approach to par­
allel multiplication. There are, of course, a number of 
different ways to accomplish the same results. One fault 
of the arrangement shown in figure 3-71 is that it uses 
a considerable amount of extra circuitry, since the shift­
ing register, gate string, and accumulator must all be 
extra-length. 

One possible modification would be to use a word­
length storage register for the multiplicand and to use 
switching networks to accomplish both gating and shift­
ing at the same time. An arrangement of this sort, ca­
pable of shifting two bits in parallel to any of three 
places on receipt of a signal on the 1, 2, or 3 line, is 
shown in figure 3-72. A control signal on the 2 line, 
for example, causes a shift of two places to the left. The 
number of AND circuits alone, however, amounts to the 
product of bits and shifts, so the method is not practical 
for large numbers. 

An alternative, mentioned earlier, is to shift the 
accumulated sum instead of the partial products them­
selves. To do this requires a shifting accumulator, which 
IS easily made by adding shifting lines and gates to the 
usual accumulator. 

The shift must be to the right, to line up the accu­
mulated sums properly with the multiplicand, so the 
accumulator must be extended to the right. The multi­
plicand can be held in a simple, word-length storage 
register since it is not shifted. This means that the 

multiplicand is always entered into the same places of 
the accumulator; hence the accumulator extension to the 
right need only be a shifting register, since no addition 
is performed there. 

The arrangement is shown in figure 3-73. If the 
computer uses whole numbers instead of fractional num­
bers, one additional accumulator place on the left must 
be provided to take care of possible carries out of the 
most significant place. These do not occur with positive 
fractional numbers. If the product is to be rounded off, 
the place where the round-off 1 is added must also be an 
accumulating place to handle the addition. 

Since the accumulator and shifting register are 
cleared at the beginning of the multiplication opera­
tion, there is no reason why the multiplier cannot be 
stored in the shifting register. It is true that one bit of 
the multiplier is lost after each shift, but only after it 
has been used to determine whether zero or the multi­
plicand should be entered, so the loss makes no differ­
ence. 

The shift can be made to occur automatically after 
each addition or, if the multiplier bit is a 0, after it is 
determined that zero is to be added. 

The operation from this point on is illustrated be­
be followed by observing the contents of the combined 
accumulator-shifting register, since the multiplicand 
does not shift. The multiplier and multiplicand are com­
plemented to positive form, if necessary, before the 
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Figure 3-73. Shifting Accumulator Used for Multiplication 

multiplication begins. This may be done before they 
arrive in the arithmetic circuitry, or after they are in 
the registers. The sign flip-flop is set during this process 
to indicate the sign of the product. 

The operation from this point on is illustrated be­
low by multiplying the same two numbers as in the 
previous example, 0.1011 and 0.1110. The multiplier 
bits are enclosed in parentheses to make it easier to 
keep track of them in the shifts. 

o. 1 0 1 1 Multiplicand 

0 0 0 0 0(0. 1 1 1 0) 

0 0 0 0 0(0. 1 1 1 0) 

0 0 0 0 0 0(0. 1 1 1) 

0 1 0 1 1 0(0. 1 1 1) 

0 0 1 0 1 1 0(0. 1 1) 

1 0 0 0 0 1 0(0. 1 1) 

0 1 0 0 0 0 1 o (0. 1) 

1 0 0 1 1 0 1 o (0. 1) 

0 1 0 0 1 1 0 1 0 (0) 

1 

O. 1 0 1 0 

Accumulator 

Add zero 

Shift 

Add multiplicand 

Shift 

Add multiplicand 

Shift 

Add multiplicand 

Shift 

Round off 

Product 

Again, the sign bit of the multiplier can be sup­
pressed and an unnecessary shift eliminated. Had either 
the multiplier or the multiplicand (but not both) been 
negative, the sign flip-flop would have been set to 1 

and this would be used as a signal to complement the 
product. 

The use of a shifting accumulator to perform 
multiplication in this manner is very common. There 
are a number of possible variations in circuitry, of 
course, but the basic approach is the same. 

3.4.2 Serial Methods 
Although the principles remain the same, the mul­

tiplication of numbers transmitted serially involves dif­
ferent methods and, again, timing is very important. 

It is apparent that the repeated additions can be 
performed only by passing the multiplicand and accu­
mulated partial products through an adder the proper 
number of times, shifting each time. Thus, the serial 
methods are slower than the parallel. 

A serial number can be shifted to the left simply 
by delaying it, as shown in figure 3-74. This is purely 
a matter of relative timing, of course, and the shift is 
not noticeable or important except in comparison with 
an unshifted number or control signal. In the figure, 
a number is shown being fed directly to one input of a 
full adder and, in a branch circuit, being delayed one 
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Figure 3-74. Shifting by Delay of Serial Number 
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Figure 3-75. Shifting With Circulating Registers 

bit-time before being applied to the other input. On the 
direct line, the least significant bit reaches the adder at 
a bit-time that can be called Tl. In the branch, however, 
the I-bit delay holds up the least significant bit until T2. 
All the following bits are also delayed in this branch, 
so the I-bit delay shifts the number 1 place to the left 
in comparison to the undelayed number. 

A shift to the right would mean advancing a num­
ber in time, which is impossible. This is unimportant, 
actually, since any shift must always be relative to some 
other number and shifting one to the left has the same 
effect as shifting the other to the right. This suggests 

the use of circulating registers of different lengths to 
obtain regular shifts, such as those required in multi­
plcation. Figure 3-75 shows two registers with delays 
of Nand N + 1 bit-times, respectively, where N equals 
the computer word length. 

If words A and B are inserted in the registers 
simultaneously, word A makes a circuit of the register 
in N bit-times, while word B requires one extra bit-time 
to make a complete circuit. Therefore, if they start at 
the same instant and are of the same length, word B 
shifts one place to the left relative to word A for each 
circuit of the registers. Using 3-bit words as an illus­
tration, the results are shown in table 3-2. The bit 
positions are numbered in order of significance and 
time reads from right to left to show more clearly the 
manner in which the words shift. 

Only two shifts are possible with 3-bit numbers, of 
course, but only N-I shifts are required in any mul­
tiplication, so this arrangement can provide the neces­
sary number. Since word B shifts to the left, this must 
represent the multiplicand and word A must represent 
the accumulated sum of the partial products. (The bits 
of word B, therefore, do not change, but the A bits may 
change after each addition; remember that AI, A2, etc., 
show bit positions, not the actual bits occupying them.) 
To obtain the accumulated sums, the N register has to 
be looped through a serial full adder, as shown in sim­
plified form in figure 3-76. The N + 1 register, con­
taining the multiplicand, must feed the other adder 
input. A gate controlled by the multiplier stored (else­
where) lets through the multiplicand or zero, depend­
ing upon the multiplier bit. 

TABLE 3-2. WORD SHIFTS IN CIRCULATING REGISTERS 

BIT-TIME 

N Reg 

N + 1 Reg 

12 

A3 

o 

MULTIPLIER -

11 

A2 

B3 

~ 

GATE 

10 

Al 

B2 

I 

-

9 

A3 

BI 

N 

8 

A2 

o 

DELAY 

S 

-1 F 

MULTI PLiCAND 

I N+I 

l DELAY 

7 

Al 

B3 

• I-

• I 
I 

6 

A3 

B2 

I 
GATE 

CONtROL 

5 

A2 

BI 

J-. 

4 

Al 

o 

PRODUCT 

Figure 3-76. Basic Arrangement for Serial Multiplication 
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The N register must be cleared at the start of the 
multiplication process. Although the delay itself is 
marked N, this actually must be the total delay around 
the loop, including the full adder and the gate. The 
multiplicand, complemented if necessary t.o place it in 
positive form, is loaded into the N + 1 register. The 
multiplier, also in positive form, is stored in a register 
from which it can control the multiplicand gate. 

The first time through the adder, the multiplicand 
is added to the zero in the cleared N register, resulting 
in the first partial product. The next time around, the 
multiplicand is shifted and added to this, giving the ac­
cumulated sum of the first and second partial products. 
After each addition, the least significant bit of the accu­
mulated sum is actually a product bit because the multi­
plicand will be shifted before being entered again. This 
product bit is taken out and stored elsewhere, since the 
N register will hold only N bits. An example will show 
this more clearly. 

MACHINE PENCIL AND PAPER 

000 101 

+101 Multiplicand 111 

101 A 101 A 

+101 Multiplicand 101 B 

111(1) A + B 101 C 

+101 Multiplicand 100011 

1000(11) A + B + C 

This is done in the arrangement of figure 3-76 
by first adding the multiplicand to zero in the cleared N 
register. Table 3-3 shows the complete timing of this 
serial multiplication. 

A3 

B3 

(A4)A3 

A2 

B2 

A2 

Al 

Bl 

Al 

000 NReg 

101 Multiplicand 

(0) 101 1st Partial Product 

The least significant bit in the Al position of this 
first partial product (which is the first accumulated 
sum) is the least significant bit of the final product. It is 
not involved in any further additions and therefore is 

gated by a control pulse out of the N register to a 
separate register that stores the product bits. This oc­
curs immediately after the Al bit is formed (bit-time 1 
in table 3-3). The bits in places A2 and A3, plus the 
carry (in the place left vacant by the removal of the Al 
bit), are sent through the N register. The bit in the A2 
place reaches the adder input again at bit-time 5, along 
with bit Bl of the shifted multiplicand, making its sec­
ond pass. 

(A4) 

B3 

(A5) A4 

A3 

B2 

A3 

A2 

Bl 

A2 

(0)10 

1 01 Multiplicand 

(0) 1 11 Acc Sum 

This time, the new bit in the A2 place is gated to 
the product register and the new carry (A5) is returned 
at bit-time 8 to fi11 out the accumulated sum to N bits. 
On the last pass of the multiplicand: 

(AS) A4 A3 (0)11 

B3 B2 Bl 1 01 Multiplicand 
-------

(A6) AS A4 A3 (1) 0 00 Acc Sum 

These are the final product bits and all are gated 
out to the register, the exact method depending upon 
the control circuitry. Rounding off and chopping the 
product to length can be done in the adder and gate, if 
desired. Notice that bit (A6) occurs at bit-time 12 as a 
carry but is actually the most significant bit of the 
product. It is treated as a normal product bit, of course. 

This is the basic approach to serial multiplication. 
Many variations are possible, as in all the arithmetic 
methods, but all are comparatively slow due to the need 
for passing the multiplicand repeatedly through the 
adder. Since the multiplicand plus shift is N + 1 bit­
times in duration, and it must go through the adder N 
times, the minimum time required for serial multiplica­
tions is N (N + 1) bit-times. If fractional numbers in 
true (positive) form are used and multiplication by the 
sign bit is suppressed, N2 bit-times are required, so the 
saving is minor in comparison to the speed of parallel 
methods. 

Obviously, the multiplication could be speeded up 
enormously if a method could be found that required 
only one passage of the serial multiplicand. It is equally 

TABLE 3-3. TIMING OF SERIAL MULTIPLICATION 

BIT-TIME 12 11 10 9 8 7 6 5 4 3 2 

NReg (A6) AS A4 A3 (AS) A4 A3 A2 (A4) A3 A2 Al 

N + 1 Reg 0 B3 B2 Bl 0 B3 B2 Bl 0 B3 B2 Bl 

Product A6 AS A4 A3 A2 Al 
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Figure 3-77. Serial-Parallel Multiplication 

obvious that this cannot be done with a single adder, 
but adders are comparatively cheap and speed is very 
important in many or most computers. 

The clue to such a method, often called serial­
parallel multiplication although it is basically a serial 
method, appeared in figure 3-74. This figure illustrates 
the possibility of shifting a number and adding it to 
itself, which is what must be done many times over in 
multiplication. 

Consider that the delay in a serial full adder is 
usually (or can easily be made) one bit-time, and it 
becomes apparent that the sum shown in figure 3-74 
has been shifted one place to the left in comparison 
with the input number. This must be the case, since the 
first bit of the input word reaches the adder input at 
bit-time 1 on the direct line, but the first sum bit does 
not emerge until bit-time 2 because of the delay through 
the adder. 

BIT-TIME 7 6 5 4 3 2 1 

Number 1 o 1 o 1 

Delayed 1 o 1 o 1 

Sum 1 1 1 1 1 1 

This immediately suggests that the input number 
might be fed simultaneously at bit-time (1) to one input 
of a second adder and the shifted sum to the other in­
put, to produce a second shift and addition. Figure 
3-77 shows two adders used in this fashion to multiply 
the same pair of 3-bit numbers shown in the serial 
method. Through gates controlled by the bits of the 
multiplier, held in a serial-parallel register, all the par­
tial products are entered simultaneously. The 3rd par­
tial product is shifted by the I-bit delay circuit and 
added to the 2nd. The sum of these two is shifted by 
the delay in the first adder and added to the 1st partial 
product. 

To multiply numbers N bits long, N-l adders are 

required and the necessary N-l shifts are obtained in 
the series adder string. The only delay in producing the 
final product is that introduced by the last adder, one 
bit-time, so the product begins emerging at bit-time 2. 
Since the longest possible product is 2N bits, the maxi­
mum time required for this serial-parallel multiplica­
tion method is 2N + 1 bit-times. 

3.5 DIVISION 

Division is a process of repeated subtractions. It 
appears, at first glance, to be the direct opposite of 
multiplication, but there are important differences, in­
cluding the factor of trial and error. 

The division operation consists of repeated attempts 
to subtract the divisor, first from the dividend and then, 
with appropriate shifts, from the successive remainders. 
The element of trial and error occurs because the di­
visor either "goes" or "does not go" into any given 
remainder, depending upon whether the remainder is 
larger than the divisor. 

In pencil-and-paper work (binary), if the divisor 
"goes," a 1 is recorded in the quotient and the sub­
traction is performed, leaving a positive balance as the 
new remainder. If the divisor "does not go," a 0 is re­
corded in the quotient since the divisor is larger than 
the remainder and, if the subtraction were performed, 
the balance would be negative (in 2's complement form). 
Actually, a variety of subtraction is done mentally in 
comparing the sizes of the remainder and divisor. When 
the divisor does not go, the previous remainder must 
be restored, the divisor shifted one place to the right, 
and a new trial made. The necessity for backing up to 
the previous remainder gives this process its name, the 
restoring method. 

This method is satisfactory for pencil-and-paper 
division because the remainder and divisor can be in­
spected and no subtraction is made if the divisor is 
larger. In computer circuitry, it would be possible to 
compare the two numbers before subtracting, but this is 
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time-consuming and would make division even slower 
than is otherwise necessary. It turns out to be just as 
practical to go ahead and subtract. If the balance is 
positive, a 1 is placed in the quotient, and the balance 
becomes the new remainder from which the shifted 
divisor is subtracted in the next step. 

If, however, the balance after subtraction is nega­
tive, a 0 goes in the quotient and the previous remainder 
must be restored for the subtraction in the next step. 
The simplest way to restore the remainder is to add the 
divisor back in. For example: 

0110011 Remainder 

01110 

(-)1111011 

01110 

0110011 

01110 

(+)0010111 

Etc. 

Subtract Divisor 

Balance (Quotient Bit 0) 

Add Divisor 

Previous Remainder 

Shift and Subtract 

Balance (Quotient Bit 1) 

This process can be performed, of course, in a set 
of parallel adders, in a shifting accumulator, or in a 
serial adder with circulating registers. In short, by add­
ing the proper control circuitry, it can be done in any 
of the arrangements shown for multiplication, except 
the serial-parallel. The necessary shifts can be accom­
plished by shifting the divisor to the right or the re­
mainder to the left, whichever is most convenient. The 
usual practice is to shift the remainder. 

The restoring method of division is slow because 
of the extra time required to add the divisor back in 
each time a negative balance occurs. Analysis of the 
process shown in the above example indicates that the 
divisor is added to the negative remainder, then shifted 
one place to the right (which divides it by 2), and 
subtracted to obtain the next balance. Adding the di­
visor and then subtracting half of it has the same effect 
as adding half the divisor, which could be done in one 
step instead of two. 

Thus, the restoring process can be eliminated and 
the same result obtained by shifting and adding the 
divisor when the balance from the previous subtraction 
is negative. Since there is no need to back up to the 
previous remainder, this is a non-restoring method of 
division. Using the same example as before, it works 
like this: 

0110011 Remainder 

01110 

(-)1111011 

01110 

(+ )0010111 

Subtract Divisor 

Remainder (Quotient Bit 0) 

Shift and Add 

Remainder (Quotient Bi.t 1) 

This is considerably faster for machine computing 
than the restoring method. 

In the case of computers using fractional binary 
numbers, a special restriction is placed upon division. 
Since a machine of this type cannot hold (without error) 
a number as large as + 1, the dividend must not be 
equal to or larger than the divisor, for the quotient 
would then be +1 or greater. The computer would 
perform such a division but the answer would be com­
pletely misleading, due to the nature of the numbering 
system. It is therefore up to the programmer to make 
certain that such a situation does not occur. Because of 
this restriction on fractional numbers, there are two 
possible approaches to starting the division process with 
these numbers. 

The first step in some computers is to line up the 
binary points in the divisor and dividend and subtract. 
If the balance is negative, this is proof that the dividend 
is smaller than the divisor and the quotient will fit the 
machine. A positive balance from this first subtraction, 
however, indicates the impossible situation. The sign 
of this balance can be used to' stop the division process 
or warn the operator or, in some cases where an approx­
imation will serve, write the largest positive or negative 
quotient the machine will hold. 

Other computers have no built-in protection against 
an incorrect division. In these cases, division may start 
with an initial shift since it is assumed that the subtrac­
tion of the lined-up divisor and dividend would always 
yield a negative balance. 

The easiest way to obtain a clear picture of the 
mechanization of division is to follow a problem as it 
is handled by a typical machine. Figure 3-78 shows, 
in simplified form, a parallel arrangement for division 
using a shifting accumulator. 

In this case, the accumulator and shifting register 
connected to it are set up to shift to the left, since the 
dividend (and therefore all succeeding remainders) will 
be held and operated upon in the accumulator. There is 
no actual need for a connection between the least signi­
ficant place of the accumulator and the most significant 
of the shifting register, since no information need be 
transferred from the register to the accumulator. On 
the other hand, it is easier to shift both with one control 
signal and no harm is done to the division process by 
the connection. 

As in multiplication, if either number involved in 
the division is negative, it is complemented to put it in 
true or positive form before division and the sign of 
the quotient is corrected afterward (that is, the quotient 
is complemented). If, however, subtraction is performed 
by adding the complement (as is most often the case in 
an accumulator), the divisor may have to be in true 
form for one step, complement form for the next. For 
this reason, the divisor in this arrangement is placed in 
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true form in the storage register and a string of comple­
menting gates is used to obtain either form when needed. 

Since the method of nonrestoring division calls for 
subtraction when the remainder is positive, a sign bit 
of 0 from the most significant place of the accumulator 
is used to gate the complement of the divisor, after a 
delay to allow time for shifting. As an alternative, it is 
possible to complement the divisor right in its register 
and then gate whatever the register contains. Both the 
complementing gates and the easiest method of register 
complementing (a pulse on the complement inputs of 
all flip-flops) produce the l's complement of the di­
visor, which means extra time for propagation of an 
end carry. To save this time, a carry of 1 is added into 
the least significant place of the accumulator whenever 
the complement of the divisor is used, converting to the 
2's complement form. 

The sample problem to be solved in the circuitry 
of figure 3-78 is 0.0101 divided by 0.0110. Using the 
nonrestoring, pencil-and-paper method, the solution 
looks like this: 

0.1101 

0.0110/0.0101 

STORAGE 
REGISTER 

COMPLEMENTING 

GATES 

ACCUMULATOR 
AND SHIFTING 
REGISTER 

DIVISOR 

/ 

~~----------------------~/ 
DIVIDEND 

-00110 

00100 A 

-00110 

00010 B 

-00110 

11110 C 

+00110 

00010 D 

On the assumption that the dividend will always be 
kept smaller than the divisor, making the sign bit of the 
quotient at 0, the first step is a shift of one place and a 
subtraction. Direct subtraction is used here, although 
in the arrangement of figure 3-78 it will be done by 
complementing and adding. Remainder A, the result of 
this first subtraction, is positive, calling for subtraction 
after another shift. The complement of its sign bit is 
the first quotient bit to the right of the binary point. 
Note that in additions or subtractions, carries beyond 
the most significant place of the shifted divisor do not 
affect the results and hence can be ignored. 

QUOTIENT 

Figure 3-78. Shifting Accumulator Used for Division 
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In this manner the division process continues-on 
paper-until a sufficient number of places in the quo­
tient have been filled. The quotient is normally required 
to have the same length as all other computer words, 
so in this 5-bit example division is carried to 5 places. 
The quotient here is 0.1101, but there is- also a final 
remainder of 0.00000010 (remainder D). This is simply 
another way of saying that the division does not come 
out even at this number of places and that the final 
remainder is the amount left over. Proving it by multi­
plying the 5-place quotient, 0.1101, by the divisor, 0.0110, 

does not equal exactly the dividend. 

0.1101 5-place Quotient 

X 0.0110 Divisor 

0.01001110 Product 

+0.00000010 Final Remainder 

0.01010000 Dividend 

The final remainder is ordinarily just discarded, 
unless there is need for great accuracy in the results of 
division. In this case, it is possible to store the final 
remainder separately. When it is thrown away, the quo­
tient may be rounded off by the method described under 
multiplication, but this requires that the division be 
carried out to one extra quotient place, and it also 
means that the quotient must be sent to the accumulator 
so that the addition can be performed. Other round-off 
methods, such as forcing or "stuffing" a 1 into the least 
significant place whether the actual quotient bit there 
is 1 or 0, do not require arithmetic operations but are 
less accurate. 

Now, to the mechanization of this division problem 
in the circuitry of figure 3-78. To begin the process, the 
dividend and divisor are put in positive form, if neces­
sary, by complementing, and a sign flip-flop is set, as 
in multiplication, to determine whether the quotient 
must be complemented after it is formed. The accumu­
lator and registers are cleared and the dividend is 
placed in the accumulator (often by gating it in through 
the divisor register). The divisor is then entered into its 
register. 

Again assuming that the dividend will always be 
smaller, there is no need to subtract the divisor from 
it, so the accumulator and shifting register contents are 
immediately shifted one place to the left. The sign bit 
of the dividend is pushed out of the most significant 
place in this shift, but it is not complemented and sent 
to the quotient register, since the sign of the quotient 
is known to be a O. The complementing gate (labeled 
COMP.) prevents this from happening. The least sig­
nificant place of the accumulator picks up a 0 from the 

shifting register, so the accumulator after the shift con­
tains: 

01010 

The dividend sign bit, although not sent to the 
quotient register, is used to start the first subtraction 
after the shift by gating the complement of the divisor 
into the accumulator. 

01010 Accumulator 

11001 Divisor l's Comp 

1 Carry for 2's Comp 

00100 Remainder in Ace 

The resulting number in the accumulator is re­
mainder A (compare with the pencil-and-paper exam­
ple shown earlier). As soon as the subtraction is com­
pleted, another shift occurs. The 0 from the most signi­
ficant place of the accumulator is spilled out, comple­
mented to a 1, and sent to the least significant place of 
the quotient register, which now contains 00001. This 
most significant 0 is also used to start the next sub­
traction: 

01000 Shifted Acc 

11001 Divisor l's Comp 

1 Carry for 2's Comp 

000 1 0 Remainder B 

Again the shift is made. The quotient bit in the 
least significant place of the shifting register is moved 
one place to the left, so room is made for the new 
quotient bit shoved out of the accumulator and comple­
mented. After a short delay to allow any transients to 
settle, the next subtraction begins when the comple­
ment gates are opened. 

00100 Shifted Acc 

11001 Divisor l's Comp 

1 Carry for 2's Comp 

11110 Remainder C 

The shift this time pushes the most significant 1 

out of the accumulator. This becomes a 0 in the quotient, 
and the 1 is used to open the normal gates, bringing 
the divisor in true form into the accumulator for ad­
dition. 

11100 Shifted Acc 

00110 Divisor 

00010 Remainder D 

A final shift complements the 0 in the most signi­
ficant place and sends it around to the quotient register. 
The bit this time is prevented from gating either the 
divisor or its complement, however, so the division 
process ends here. 
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The entire process can be seen in capsule form by 
observing the contents of the accumulator and quotient 
register after each step. The remainders are lettered, as 
above. 

Accumulator Q Register 

00101 00000 Start 

01010 00000 Shift 

A 00100 00000 Subtract 

01000 00001 Shift 

B 00010 00001 Subtract 

00100 00011 Shift 

C 11110 00011 Subtract 

11100 00110 Shift 

D 00010 00110 Add 

00100 01101 Shift 

End 

The correct quotient is now in the quotient regis­
ter. If this were supposed to be a negative number, the 
sign flip-flop would be set to complement it, either in 
the register or when it is removed. 

The mechanization of division in a serial arrange­
ment similar to that shown for multiplication in figure 
3-76 follows along the same basic approach as the 
parallel method described here, with appropriate modi­
fications for the serial requirements. 

3.6 CONTROL CIRCUITRY 

In all of the arithmetic arrangements, the need is 
clear for control pulses and signals fed to the proper 
places at the proper times to open or close gates, to 
start and stop operations, to transfer numbers from 
one place to another, etc. 

The circuitry that generates, times, and distributes 
these control signals-usually called commands-may be 
as complex as the actual arithmetic circuitry, especially 
in a large computer. The generating, timing and ma­
jor distributing circuits, taken together, are most often 
called the control element. This element must provide 
commands not only to the arithmetic portion of the 
computer, but to the main storage, input, and output 
parts as well. 

For a complete understanding of the role played 
by the control element, it is necessary to recall some of 
what was said in Part 1 about the manner in which the 
program govern the operation of the entire computer. 
The program, of course, is a set of instructions, coded 
in the form of numbers (words) that are stored in the 
main storage element or memory in stored-program com­
puters along with the numbers representing informa­
tion or data. 

Regardless of where the program is kept, each in­
struction word is taken in a separate step (in the proper 
sequence) by the control element and decoded to see 
what major operation must be performed next. The con­
trol circuitry then develops the complete set of com­
mands or control signals that enable all the small parts 
of that operation to be carried out by the other elements 
of the machine. 

An instruction, for example, gives the order, 
"Add." (Usually it also gives the storage address of the 
number to be added to the contents of the accumulator.) 
The control element must then put out a series of com­
mands which may be single pulses, levels, pulse series, 
or combinations. There are as many possible variations 
in a set of commands to perform the addition operation 
as there are variations in adder-accumulator circuitry. 
A sample set, for example, might be a sequence of single 
pulses meaning: 

"Clear addend register" 

"Accept number from storage" 

"Gate addend into accumulator." 

The first would be a pulse on the clear inputs of all 
flip-flops in the addend storage register, the second a 
pulse to a set of AND switches to take the number into 
the register, and the third a pulse to the set of gates 
between the register and the accumulator. Properly 
timed and applied, these commands make the circuitry 
carry out the addition process, using the number at the 
storage location specified by the address portion of the 
instruction. 

The operation portion of an instruction may, of 
course, call for any of a number of jobs to be done in 
the computer, instead of an arithmetic operation. The 
variety of operations depends upon the capabilities of 
the machine. One major job in nearly every computer is 
transferring numbers from place to place, another is 
control of input-output devices, etc. 

3.6.1 Program Control 

When one instruction (one program step) has been 
carried out, the control element must obtain the next 
from storage. But how does it know the location of the 
next instruction? Although there are several possible 
solutions to this, one of the easiest is to set aside a 
block of memory addresses in which the program is 
always kept and use an instruction or program counter 
(usually a binary counter) to keep track of the progress 
of the program and the instruction addresses. An ar­
rangement of this type appears in figure 3-79. 

In this (or any other) arrangement, the memory 
or main storage element must be capable of storing 
many numbers, including the input information with 
which the computer is to work, partial results to be 
held for later use, final results, and-in stored-program 
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computers-the program itself. There are several types 
of storage devices (described in Ch 3) but it is easiest 
to think of the memory as a large bank of pigeonholes 
or mailboxes, numbered 0, 1, 2, 3, 4, etc., and each 
capable of holding one computer-length word. The 
number of each is its address. There must also be selec­
tion circuitry to translate a binary address into an actual 
electrical connection to the correct pigeonhole so that 
a number can be put in or taken out. 

Ordinarily, a block of the lowest-numbered ad­
dresses is set aside for the program. Assuming, for ex~ 
ample, that addresses 0 through 99 were reserved for 
this purpose, any program would be stored with its 
first instruction in address 0, its second in address 1, its 
third in address 2, etc. Thus, a 67 -step program would 
be stored in sequence in addresses 0-66. 

The instruction counter shown in figure 3-79 is 
cleared before the program begins. Its indication of 
000 . . . 000 is sent to the storage selection circuits 
which quickly make a connection to address o. The first 
instruction is taken out and sent to the control element 
through switching circuits operated by commands issued 
for that purpose. The time spent in this process of 
obtaining the instruction is sometimes called a program 
cycle, or an instruction cycle. 

Once in the control element, the instruction is 
placed in a temporary storage register called either the 
instruction register or the operation-address register. 
The control circuits issue commands to carry out the 
operation called for by this first instruction during what 
is called the execution or operation cycle. The address 
part of the instruction goes to the memory selection 

circuits to obtain the number representing the data to 
be operated upon. (Or the address may call for a con­
nection to one of the input or output devices to obtain 
or send out information.) 

Toward the end of the operation being performed, 
a pulse is sent from the control circuits to advance the 
instruction counter by 1. When the operation cycle ends, 
control is turned over again to the instruction counter 
and a new instruction cycle begins. The counter now 
sends 000 ... 001 to the storage selection circuits, the 
second instruction of the program is taken from ad­
dress 1 to be sent to the operation-address register, 
and this instruction is then executed. 

The process of bringing each instruction in se­
quence from the memory, executing it, and stepping the 
instruction counter by 1 continues in this manner until 
the entire program has been performed or until a 
Branch instruction is encountered. This type of instruc­
tion (sometimes called Transfer or Jump) makes it pos­
sible to change a program or repeat parts of it, either 
unconditionally or under control of the results that 
have been computed. For example, a branch may be 
ordered only if the number left in the accumulator is 
negative. If sensing (checking its state) shows it to be 
positive, the branch is not made. 

When a branch is to be made, the address part of 
the instruction is taken from the address register and 
loaded directly into the instruction counter, replacing 
whatever number was previously there. Therefore, the 
next instruction taken from memory is not from the 
next address in the sequence that was being followed, 
but from the address given by the Branch instruction. 

ADDRESS 
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From this point on, the instruction counter is again 
pulsed once for each instruction carried out, so a fresh 
numerical sequence of instructions is followed until an­
other branch is ordered. A branch can be made to either 
a higher or lower numbered step of the program. 

In other types of computers-that is, those not stor· 
ing the program instructions in the memory element­
different methods of instruction control may be used. 
These depend to a great extent, of course, upon the na­
ture of the device or arrangement used to hold the 
program. Usually, the instructions are made available 
in sequence and, when each operation is completed, the 
control element senses the next instruction. This proce­
dure is somewhat similar to the one described for stored­
program computers, except that such useful program­
ming techniques as branching are difficult and expensive. 

3.6.2 Operation Control 
The commands necessary to carry out an instruc­

tion have been described as a set of pulses (sometimes 
other types of signals) sent to the proper places at the 
proper times. Different sets are needed, of course, to 
carry out different operations, although certain individ­
ual commands may well be used in a number of oper­
ations. 

There are two basic approaches to the problem of 
handling operations in sequence. First, it is possible to 
use a timing arrangement of some sort and rigidly time 
each separate operation, issuing each command at the 
proper instant. The timing arrangement is called the 
clock and, because all operations performed in the com­
puter are synchronized by the clock, this is a synchro­
nous control method. 

In the second method of control, called asynchro­
nous, no clock is used for timing operations (although 
there may r.~ a clock for other purposes). As soon as 
one operation is finished, a signal is provided to start 
the next. The timing of commands is done by starting a 
pulse through a long delay line (when each operation 
begins) and tapping it off as commands at the proper 
intervals. 

Some computers use one system, some the other, 
and quite a number of computers use combinations of 
the two, with synchronous control for short operations 
but asynchronous handling to speed up the longer ones. 
Although it is true that operations can often be per­
formed faster under asynchronous control because no 
fixed time intervals (cycles of the clock device) are 
used, this type of circuitry is generally more complex 
than the synchronous. 

3.6.2.1 Synchronous Control 
The first item of interest in this system is the clock 

and the method of timing. There are certain time inter­
vals of importance in any computer, of which one is 
the period required to transmit a single bit of informa-

tion and to allow the circuits to recover from transients. 
This period, of course, is one bit-time. 

In a serial-mode computer, the bits of a word fol­
low each other on a single wire, and exact timing is so 
essential (at the inputs to an AND circuit, for example) 
that a clock must be used to set the basic pulse repeti­
tion frequency or bit-time interval. If pulse-type signals 
are used, clock pulses at bit-time intervals must be dis­
tributed throughout the circuitry to provide the fre­
quent reshaping and retiming of information pulses 
that is necessary. This holds true even if the control 
element itself is asynchronous in operation and does not 
depend upon the clock. 

In parallel-mode machines, the bit-time interval is 
usually less vital to successful operation, so the clock 
pulses need not occur every bit-time. They may instead 
be produced at some longer or shorter interval more 
useful in synchronizing the operations of the computer. 
It is not often that a different interval is selected, how­
ever, since the bit-time is the basic measure of the speed 
with which numbers can follow one another in the cir­
cuitry and therefore is one controlling factor in obtain­
ing the fastest possible operation. 

Whatever the basic interval selected, the clock pulse 
intervals, of course, bear some relationship to real time 
-that is, time in the outside world. Many types of 
problems solved by computers involve keeping track of 
real time. Military weapon-control computers, for in­
stance, must solve time-speed-distance problems against 
an incoming enemy, while computers operating various 
types of machines must often time the operations. So, it 
is frequently valuable to select a clock pulse interval 
that can be easily converted to real time. A fairly 
common clock rate, for example, is 1 megacycle, which 
means pulses at 1 microsecond intervals. Using decimal 
counters or other circuits for frequency division, it is 
possible to obtain pulses at I-second intervals for useful 
time-measurement in the computer. 

The device which produces the clock pulses is an 
accurate oscillator of some sort, generally crystal-con­
trolled, followed by amplifying and pulse-shaping cir­
cuits. 

It becomes apparent, however, that the continuous 
stream of clock pulses thus produced must still be 
counted or somehow kept track of. How many clock 
intervals are required to perform addition or division, 
for example? How many for an instruction cycle, for 
transferring a number? It is obviously impractical to 
run a continuous count of the clock pulses-in 10 sec­
onds of operation, the count would be between 5 and 
20 million for most computers. 

A cycling count, on the other hand, proves emi­
nently practical. By counting a given number of clock 
pulses and then beginning the count over again, the 
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passage of time in the computer is divided into intervals 
of useful length that can be called clock cycles, or 
machine cycles. A simple ring counter can do this and 
provide a different one-hot output for each step of the 
count. 

The number of clock pulses to be counted in the 
clock cycle may depend upon several factors. In a serial­
mode computer, the word length is quite closely related 
to the speed of operation since a 20-bit word, for ex­
ample, requires one word-time, or 20 bit-times, to be 
transferred past a given point in the circuitry. Thus, one 
word-time might be chosen as a useful length for the 
clock cycle-or it might be 2, 6, or 10 word-times if one 
of these lengths were more convenient. A word-time is 
of no importance in a parallel-mode computer, since it 
is the same as a bit-time. 

A factor that must be considered in all machines, 
parallel or serial, is the time required to transfer num­
bers into or out of memory, called access time. This is 
the principal limitation on the speed of operation be­
cause each number to be used in computation and each 
result must go through this transfer. 

The access time in most computers is somewhat 
longer than the time needed for the shorter operations 
such as addition, subtraction, shifting, etc. By making 
the length of the clock cycle equal to the access time, 
the all-important transfers of numbers and the shorter 
operations can be performed in one clock cycle each. 
When one of the longer operations such as multiplica­
tion or division must be done, the required number of 
complete clock cycles is allowed for it. 

Using an arrangement of this sort, illustrated in 
figure 3-80, two complete clock cycles are the mini­
mum required to carry out any instruction. The first 
must be a program or instruction cycle, to get the in­
struction out of memory and load it into the operation­
address register. The -one-hot signals from the various 
stages of the clock ring counter are gated or otherwise 
switched to provide commands controlling the address 
selection circuits, etc., to obtain the instruction. 

When this instruction cycle is nearly done, a com­
mand sets a flip-flop or switch to make the next an 
operation cycle. Now, the circuits gating the clock ring 
outputs come under control of the signal representing 
the operation called for and the result is the set of com­
mands necessary to perform that operation. The com­
mands must be timed to allow the maximum time for 
each part of an operation to be completed, plus a safety 
factor. In binary addition, for example, time must be 
allotted for the propagation of a possible carry from 
each place, even though no carries at all may occur in 
some problems. If more than one operation cycle is re­
quired, a simple counter keeps track of them and 
changes the gating for each cycle. 

When the operation is almost completed, the 
switching is reset for another instruction cycle and the 
instruction counter is advanced one step, to take the 
next instruction from memory. In this arrangement, all 
program or instruction cycles are identical, but the op­
eration cycles depend upon the operation to be per­
formed. All commands are provided by the timed pulses 
from the clock ring, switched through the gating cir­
cuitry under control of either the operation signal or 
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various miscellaneous signals, such as the one that de­
termines whether an instruction or an operation cycle 
is required. The operation signal is translated (usually 
in a matrix) from the operation portion of the instruc­
tion, placed in the operation-address register (fig. 
3-79). 

3.6.2.2 Asynchronous Control 

There are a number of possible variations of the 
asynchronous control method. The basic approach ap­
pears in figure 3-81, showing how the timing of com­
mands is accomplished through the use of a long delay 
line, instead of a clock. 

The delay line consists of a number of long series 
paths of delay circuits (and switching circuits where 
necessary). Commands are tapped off between circuits 
at the required intervals. 

An operation requiring 24 bit-times for its oper­
ation cycle, for example, could be handled by a string 
of delays totaling 24 bit-times. Commands might be 
taken off at the end of 1, 9-14, 16, 20-1/2, 21, 22-%, 
and 24 bit-times, as shown at (a) of figure 3-82. 

A pulse is inserted in the delay line when the 
operation signal appears. One bit-time later, it emerges 
from the first delay circuit, goes out on the first com­
mand line, and also enters the next delay section. Per­
haps this first command might clear a storage register 
and start the address selection circuitry through the pro­
cess of taking a number out of memory. The pulse 
emerges from the second delay section 9-14 bit-times 
after the operation was started, and is sent out on 
another command line to perform some other control 
function. In this fashion the pulse travels through the 
entire length of the delay line and is tapped off at 
intervals to form the commands. From the end of the 
line the pulse goes to an OR circuit at which all lines 
meet and emerges from that as a command calling for 
the next instruction. 

Although it might seem necessary to have one delay 
line for the process of obtaining instructions and one 
for each different operation, this would require an un­
necessary amount of circuitry. Actually, many opera­
tions are quite similar and the parts of longer ones are 
often repeated, so it is possible to use what amounts 
to one long delay line with switching circuits, alternate 
paths, and feedback loops to produce commands for 
all operations. 

One small portion of such a line is shown at (b) 
of figure 3-82. The heavy, downward-pointing arrows 
are commands and the input leads labeled X are con­
trolled by the operations called for. Some, but not all, 
of the X leads are energized when a given operation is 
to be performed. The operation of the circuitry is 
straightforward and should be clear enough, except pos­
sibly for the feedback loop involving the counter. If a 
pulse enters this loop through the OR circuit and finds 
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that operation signal X2 is present, the feedback loop 
through the INH is opened and the pulse goes out 
without additional delay through the AND circuit. If 
X2 is not present, however, the pulse cannot get 
through the AND but must enter the loop through the 
INH and circulate, being delayed by the amount of 
time needed to travel the loop. Each time the pulse re­
turns to the OR circuit, it also steps the counter. When 
a predetermined count is reached-meaning the pulse 
has circulated and been delayed this many times-the 
counter output opens the loop and enables the pulse to 
exit through the AND circuit. 

Thus, one long delay line with many possible paths 
and loops enables the commands for any operation to 
be produced. A common path at the beginning of the 
delay line produces the commands necessary for procur­
ing each instruction. The timing of each operation is 
exactly what it requires, not a number of fixed-length 
cycles (with the possibility of wasted time if the actual 
operation ends before the end of the last cycle). 

This idea of asynchronous control can be extended 
in some types of circuitry by letting the control pulse 
run through the circuits themselves as the operation is 
being performed. An asynchronous adder, for example, 
can be built to allow the control pulse to run with the 
carries. As soon as carry propagation is completed, the 
control pulse is returned to the control element as a 
"next instruction" command. Multiplication can be han­
dled in similar fashion. In this type of arrangement, 
the control element tells the arithmetic element, "Start," 
and then waits for a signal to come back saying, 
"Finished." 
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CHAPTER 4 
LARGE-SCALE STORAGE AND MEMORY 

4.1 REQUIREMENTS OF MEMORY ELEMENT 

The simple description in Chapter 3 of the memory 
or main storage element of the digital computer re­
ferred to it as a bank of pigeonholes or mailboxes, each 
with its own, separate address and each capable of 
storing one computer-length word. 

Without a memory such as this, the automatically 
sequenced computer could not perform a long string of 
arithmetic computations and logical decisions without 
stopping. It must have some place to keep all the input 
information it has to work with, the intermediate re­
sults that will be used in later computations, and the 
final results that have to be fed out when the program 
calls for outputs. In a stored-program computer, the 
principal type under consideration here, the memory 
must also provide enough pigeonholes (actually word­
length storage registers) to hold all the instructions of 
the program. 

The first requirement of the memory element, then, 
is size. It must contain enough storage registers to hold 
all the data and all the instructions of the program. In a 
very large computer, this may not be feasible and aux­
iliary storage space may be provided outside the main 
memory element. In this case, the memory must be suf­
ficiently large to hold information and instructions 
enough to keep the computer running for a reasonable 
length of time. 

While it would be entirely possible to build a mem­
ory of flip-flop registers, like those used elsewhere in 
the computer for temporary storage purposes, this 
brings up the question of physical size, especially if 
vacuum tube flip-flops were to be used. From a few 
hundred to many thousand registers may be needed in 
the memory, and the sheer bulk of many flip-flops, plus 
the power required to operate them, makes their use 
impractical. Some early computers did use this type of 
storage, but newer devices require far less space and 
power for the same amount of storage. 

Another important requirement of the memory ele­
ment is the speed with which numbers can be put in or 
taken out. As mentioned in Chapter 3 this access time 
largely controls the speed of operation since many op­
erations can be performed faster than the numbers can 
be obtained to work with. So, a fast-access memory is 
required and, once obtained, another reason for storing 
the program instructiens in memory becomes apparent. 
For maximum operating speed, the instructions must be 

made available just as fast as the numbers to be operated 
upon, so the logical place to keep them is with the 
data numbers. 

Part of the access time (sometimes called the mem­
ory cycle) must be used to translate the address (also 
in number form) and set up electrical connections to 
the desired storage register, in order to write in or read 
out a number. Writing or storing is the process of put­
tmg a number into a storage location; reading is the 
process of taking it out. 

Translating the address in the address selection 
circuits rarely takes long, but actually reaching the 
proper ,storage register, when some types of storage 
devices t are used, may require much time. The effect is 
as if the registers were seats on a merry-go-round or 
cars on a roller coaster and it were necessary to wait for 
the desired one to come by. Thus, the computer may be 
forced to wait for the information it is to work with. 
Certain techniques in preparing programs can be used 
to cut this access time to a minimum, but these tech­
niques often make the problem of writing the program 
very complex. 

A better solution is to use fast-access storage de­
vices for the main memory and use the slower devices 
as auxiliary storage facilities outside the computer prop­
er, reached through input-output circuits. ("Memory" 
usually means the main storage element inside the com­
puter.) Then, large groups of numbers at a time can be 
sent back and forth, as required, and stored in con­
secutive storage registers. Sometimes the computer can 
continue its computations during the transfer. Instead 
of having to locate individual registers in the auxiliary 
storage, the access is made to large blocks of registers. 

Only the main memory is used for all operations 
going on inside the computer. When the memory fills 
up with intermediate results, instructions send a large 
block of them out to the auxiliary storage and may 
bring back in some fresh data or even additional pro­
gram instructions, as required. 

Four types of storage devices are in most common 
use today: magnetic (ferrite) cores, magnetic tapes, 
magnetic drums, and electrostatic storage tubes. Others, 
such as the acoustic delay line, have been used in some 
machines and will be described briefly, along with 
punched paper cards and tapes. 

The internal organization of a computer is affected 
to some degree by the type of storage device (or de-
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vices) used, not only because of the physical differences 
between devices but because of the access problems. 

Of the magnetic storage devices (cores, tapes, and 
drums), the cores offer the easiest and by far the fastest 
access to any storage location. In fact, ferrite cores and 
electrostatic storage tubes are probably the most satis­
factory of present storage devices for use in the inter­
nal computer memory, since all registers are equally ac­
cessible. The other types of storage devices generally 
require the computer to wait for the transfer of infor­
mation, but they offer such other advantages as low 
cost, fast serial operation, or easy changing of the 
stored information by an operator. 

4.2 MAGNETIC STORAGE 

Magnetic storage takes two principal forms: one 
stores the individual bits in separate cores, as described 
in 2.1.5 and figure 3-33 of Chapter 2; the other stores 
each bit by magnetizing a separate, tiny spot of a mag­
netic material coated on the surface of a plastic tape or 
a metal drum. In both forms of storage, the magnetic 
field that is left (remanent flux) after writing the in­
formation indicates by its direction (polarity) whether 
a 1 or a 0 is stored. 

The magnetic material coated on the surfaces of 
tapes or drums must, like the core materials, have a 
nearly rectangular hysteresis loop so that it will retain 
most of the flux impressed upon it after the magnetizing 
force has been removed. Thus, the magnetized portion 
of the material acts like a permanent magnet, the direc­
tion of whose field can be reversed by applying a sec­
ond magnetizing force of sufficient strength. This ex­
ternal force is usually a temporary magnetic field about 
a coil through which a pulse of current is passed. The 
magnetic coating for tapes is normally one of several 
iron oxides, finely powdered and mixed with a binder or 

MAGNETIZED SPOT 

COIL 

adhesive that is dried under controlled conditions to 
hold the oxide particles in a thin, even film or coat. 
The drum surface is usually a plating of a metallic 
alloy, such as nickel-cobalt. 

A coating of such a material on a surface that is 
relatively flat does not form a closed magnetic circuit 
for small fields (as the closed ring of a core does), so 
separate areas of the surface can be magnetized in oppo­
site polarities without interfering with each other, as 
long as there is sufficient distance between them. If the 
applied magnetizing force is kept in a very small field, 
only a correspondingly small spot of the tape or drum 
coating is magnetized and more bits can be stored on a 
surface of given size. To magnetize different spots, either 
the coil providing the magnetizing force or the coated 
surface could be moved, but in practice the surface is 
always moved past the stationary coil at a constant 
speed, and writing and reading are done with the sur­
face in motion. Long lengths of magnetic tape are 
wound on compact reels and pulled past the coils used 
for reading and writing (called magnetic heads). A 
magnetic drum revolves on its axis, passing its coated 
cylindrical surface under fixed heads. 

The problem of holding the applied magnetizing 
force or field to a very small area is solved in the follow­
ing manner. It is known that if a coil is wound on one 
side of a rectangular or ring-shaped core of magnetic 
material, as in figure 3-83, the core forms a closed 
magnetic circuit. When the coil is energized, the field 
set up finds it much easier to complete its circuit through 
the core material than through the surrounding air; 
hence virtually all the lines of force remain in the core. 
If the core is cut through at one point, forming a gap, 
the flux lines jump across the gap to complete their 
circuit. 

MOVING MAGNETIC SURFACE 

.. CORE 

Figure 3-83. Magnetic Head 
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As shown in figure 3-83, not all the flux lines 
jump straight across the gap. Instead, because the air 
offers greater reluctance (magnetic resistance) than the 
core, the field tends to spread out, or expand in cross­
section, through the gap. The portion of the field that 
arcs out beyond [he core area is called the fringing 
flux. Now if a magnetic surface is pulled past the gap, 
very close to it, the fringing flux produced by a pulse 
of current in the coil magnetizes a very small spot of the 
surface. When the short-duration pulse disappears, the 
motion of the surface pulls the spot away and then 
another current pulse can magnetize another spot, etc. 

The magnetic head is made in this manner. The gap 
is usually about o.OOl-inch wide, so the fringing flux is 
held to a very small area and, in practice, up to about 
100 bits can be stored as magnetized spots in an inch­
length of surface. 

When the small magnetized spots representing 
stored bits of information are passed again under the 
head, each tiny magnetic field enters and travels quickly 
around the magnetic circuit of the core, inducing a 
voltage pulse cycle into the head coil. The bit is identi­
fied (by reading circuits) as a 1 or a 0, depending upon 
whether the negative or the positive peak appears first. 
The magnetized spots are unchanged by reading, so this 
is nondestructive readout; i.e., the stored information 
remains on the tape or drum. 

Any stored bit can be changed from 1 to 0 or from 
o to 1 simply by writing over it. If a 0 is stored by 
passing a negative current pulse through the head, it is 
changed to a 1 by applying a positive current pulse the 
next time this spot passes under the head. The resulting 
applied field, opposite in direction to that of the spot, 
switches the remanent flux in the spot just as a core is 
switched, leaving a 1 stored where the 0 had been. 

It is also possible to remove all stored informa­
tion from a tape or drum surface by erasing, leaving a 
blank, unmagnetized surface. This is done by applying 
to the surface an a-c field strong enough to produce 
saturation, then reducing the field strength gradually 
to zero. At saturation, the field overcomes all previously 
written magnetized spots and fills the entire surface 
under its influence with flux, switching the flux direc­
tion rapidly as the field reverses in polarity. As the 
field strength is reduced, it applies less flux to the sur­
face on each reversal-enough to switch the remanent 
flux but less than the amount previously applied. The 
result is less remanent flux retained in the surface after 
each polarity reversal, until both the applied field and 
the remanent flux in the magnetic surface are reduced 
to zero. 

Erasing of drums is not usually necessary to change 
the stored information, which can be simply written 
over (if it can be located easily), but is used to rid the 
surface of noise caused by stray magnetic flux picked 

up over a period of time. On tapes, where a single 
word or bit is difficult to locate, erasing is used to 
wipe out old information, a complete block at a time, 
to make way for new data. 

4.2.1 Magnetic Tapes 

The oxide-coated plastic tapes used in computer 
work may be the standard quarter-inch widths used in 
home recording and other applications, or they may be 
special types up to about an inch in width. 

In any case, there must be a tape transport or drive 
mechanism to hold the full and empty reels and to pull 
the tape past the head (or heads) used for reading 
and writing. This mechanism must be capable of moving 
the tape at a rigidly controlled speed for writing or 
reading operations, which generally require careful tim­
ing. It must also be capable of very fast starts and 
stops and of high-speed forward and backward wind­
ing to locate a block of stored information or a blank 
space into which new information is to be written. All 
of this must be accomplished with minimum danger of 
damage to the thin tape. 

There must be control circuitry to make the tape 
drive mechanism perform the desired operations when 
called for by the computer. A few manual controls are 
generally necessary, as well, since the operator must be 
able to take control for changing tapes and other oper­
ations. 

In addition to the mechanical operations, there 
must be circuitry for the electrical functions of writing 
and reading, synchronizing, etc. One basic arrangement 
of a tape storage element appears in figure 3-84. 

Magnetic tape is excellent for storing large amounts 
of information whenever rapid access is not required. If 
the information desired is at the opposite end of the 
tape from that under the heads, it is generally a matter 
of seconds before it is reached, during which time the 
average computer could perform thousands of opera­
tions. For this reason, access is usually programmed 
and blocks of information may be stored in such man­
ner that they can be counted to locate a given one. 

Ordinarily, neither reading nor writing is done 
continuously, so the tape movement is stopped after 
each operation to avoid wasting long lengths of tape. 
Accordingly, spaces of blank (unrecorded) tape are left 
between blocks of information to allow for starting and 
stopping times, since the drive mechanism cannot react 
instantaneously to start or stop commands. 

When information recorded on the tape has to be 
changed, the common method is to erase and rewrite 
the complete block of information in which changes 
must be made, because of the difficulty of locating in­
dividual bits or words. 

Since tape reels can easily be changed by an oper­
ator, the tape element is often used as an input device. 
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Arithmetic programs and data, programs for checking 
the operation of parts of the computer, lengthy mathe­
matical tables, and other input information can be made 
available to the computer in this manner. 

4.2.2 Magnetic Drums 
Though tapes are valuable for storing large 

amounts of information, when it is essential to write 
and read information at frequent intervals and in ran­
dom order, magnetic drums offer much faster access 
times, commonly ranging from 10 to 40 milliseconds. 
Because the information is stored on the surface of a 
cylinder revolving under fixed magnetic heads, the drum 
provides a form of cyclic storage (once written, a word 
comes back under the heads on every revolution). 

As the drum rotates, the area in which a single 
fixed head can write or read is only a very narrow 
strip-called a track or channel-running around the 
circumference of the drum. Information can be stored 
in serial form simply by sending serial words to the 
single head while the drum revolves (translating O's and 
l's to current pulses of the proper polarities). The bits 
of each word are then stored as a sequence of mag­
netized spots along the single channel running around 
the drum. 

Another common storage method is parallel stor­
age, shown in figure 3-85. To store a 5-bit word by 
this process, five heads are lined up side by side, each 
writing in a separate channel. The translated current 
pulses representing the bits of the word are sent in 
parallel form to the heads and the bits are written 
simultaneously. Now, the bits are stored as a row of 
magnetized spots in ad jacent channels. So, in this 
method, the registers are strips of drum surface run­
ning toward the ends of the drum and including as 
many channels as there are bits in the computer word. 

READ-WRITE 

CIRCUITRY 

In the example of figure 3-85, a register stretches 
across five channels. The band of registers extending 
completely around the drum is called a field. 

Typical drums used with the AN/FSQ-7, -8 meas­
ure 10.7 inches in diameter and 12.5 inches long. Using 
33-bit words, one of these drums holds six fields of 
2,048 registers each, for a total storage capacity of 
12,288 words. 

Locating a given register or group of registers on 
the rotating drum to read or write information requires 
some means of keeping track of the drum position. 
One common method uses a special timing channel in 
which is written either a series of l's or a regularly 
repeated combination of l's and O's. These bits are 
read by the timing channel head and used to synchro­
nize the access circuitry with the drum rotation and to 
locate registers by a cycling count. A special combina­
tion of l's and O's at one point on the track can be 
used as an index mark to tell the circuits that a new 
revolution of the drum is beginning. 

In this method, each register in a field has its 
own address, and a given register is located by first 
selecting the proper field (by switching connections to 
the heads), then selecting the register by address. The 
method, sometimes called address selection, requires a 
circuit arrangement similar to that shown in figure 
3-86. 

It is entirely possible, of course, to write informa­
tion on the drum with one set of heads and to read it 
with another set positioned over the same field. One 
reason for doing this may be to use the drum as a time 
buffer, or isolating device, between the fast-operating 
computer and much slower input or output devices. 

With this method, writing is a matter of looking 
for a register in which to put new information and 

CONTROL 

CIRCUITRY 

MANUAL 

CONTROL 

DATA 

INSTRUCTIONS J 
TO 
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Figure 3-84. Basic Tape Storage Arrangement 
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figure 3-85. Storage on Magnetic Drum 
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figure 3-86. Address Selection of Drum Registers 

reading is concerned only with taking out information 
that has not been read before. Each set of circuitry, 
therefore, is interested in the status (state or condition) 
of each register in the field. Furthermore, each side is 
able to tell the other what it needs to know. This 
can be done by using two extra drum channels for con­
trol, a write channel and a read channel (fig. 3-87). 

When the writing side has information to store, it 
must locate one or more registers that are empty; that 
is, contain information that can be written over because 
is has already been read. To indicate the latter, the 
reading side inserts a 1 in the write channel each time 
its reads a register. Thus, when the writing side finds a 
1 in the write channel, it is free to write fresh informa­
tion into the corresponding register. As it does this, it 
inserts a 1 in the read channel, telling the reading side 
that this register now contains information that has 
not been read. A 0 in either channel tells the circuits 

that the corresponding register should not be written 
in or read. 

This process is called writing or reading by status. 
Timing is necessary, as shown in figure 3-87, but in 
this case only to synchronize the access circuits to the 
drum. Writing and reading are not done continuously. 
When input information is available, the writing side 
finds empty registers and writes it into them. When the 
computer wants more input information, the reading 
side locates registers containing it and reads it out to 
the computer. In output operations, of course, the com­
puter side does the writing and the output side the 
reading. 

Status and address are two of the principal meth­
ods of reading and writing on drums, using them either 
as the main memory or as auxiliary storage. There are a 
great many possible variations in the details, using 
either method. 
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Figure 3-87. Writing and Reading by Status 

4.2.3 Magnetic Cores 
Ferrite cores are probably the best present-day de­

vices for use in comparatively large, fast-access memory 
elements. No other device offers faster access time and 
the core registers can all be reached with equal speed 
and ease. 

The theory of operation of cores has been covered 
in Chapter 1, including the description of core regis­
ters. These discussions were concerned primarily with 
tape cores, but all the principles apply equally well to 
the ferrite cores used in the memory element. The two 
types differ physically in that the ferrite core is a 
ceramic-like material, rather than a metal, and can be 
made very small for memory use. The required coil can 
be replaced by a single wire threaded through the open 
center of the core. 

When a number of core registers are grouped to­
gether, as must be done in the memory element, the 
problem of reaching the individual cores of a given 
register to insert or remove a word becomes a little 
more difficult than in a single register. The principle 
emphasized in Chapter 1 is used to solve this-the prin­
ciple that a magnetizing force of H is more than enough 
to be certain of switching a core, while a force of H/2 
definitely will not switch it. These forces must be closely 
controlled, which can be done by controlling the cur­
rents used to set up the fields. If a current, I, sets up a 
field of force H about a conductor, then a current of 
1/2 will set up a field of H/2. 

Using this principle, four registers grouped side 
by side in a 2-dimensional array (sometimes called a 
memory plane) are shown in figure 3-88. This is called 
a 4-by-4 array because there are four cores on a side. 

Yz 

\..~--+T- ADDRESS I 

Xz ADDRESS 2 

.... .....,::r-.--- ADDRESS 3 

ADDRESS 4 

Figure 3-88. Core Memory Plane 

Each horizontal row of cores is a separate, 4-bit regis­
ter. The leads labeled X and Yare the wires that make 
up the core windings. The X windings of all cores in a 
single register are in series, while the Y windings of the 
cores in each vertical column are series-connected. Each 
X line, therefore, selects a particular register, and each 
Y line selects a certain bit position in all registers. 

To write the word 0001 in the register at address 3, 
for example, a current pulse of 1/2 is placed on the Xa 
line to select the desired register (all registers are as-
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sumed to be cleared). At the same time, the word is 
applied in parallel form to the Y lines, using current 
pulses of 1/2 to represent 1 's, blanks to represent O's. 
The word 0001, therefore, is entered as a single half­
current pulse on the Y 4 line. 

Now, both the X and Y windings of core 12, at 
the intersection of X3 and Y 4, receive half-current 
pulses, setting up a field about each winding of force 
H/2. The windings are so arranged that these fields 
add, producing a total magnetizing force of H, which 
switches core 12 to the 1 state. Notice that cores 9, 10, 

and 11 on the X3 line each received a half-current pulse 
in its X winding, but none in its Y winding; hence 
these cores were not switched. Cores 4, 8, and 16 had 
their X windings energized but not their Y windings, 
so these were not switched either. Since the write oper­
ation was being performed, a half-current pulse on any 
line can be called a half-write pulse. In reading, it is 
called a half-read pulse. 

To read a word out of a register, one additional 
winding is needed in each core. This is the output or 
sense winding. (For the sake of clarity, it is not shown 
in fig. 3-88.) Since only one register at a time is read, 
all sense windings from a given bit position can be 
connected in parallel to a single output terminal. That 
is, the sense windings from cores 4, 8, 12, and 16 on the 
Y 4 line, for example, are paralleled, so that the least 
significant bit from any register being read appears at 
this output terminal (Y4 ). Similarly, the sense windings 
from all cores on the Y 3 line are brought to a separate 
output terminal, those on the Y 2 line to another, etc. 

For the reading process, the desired register is se­
lected by a half-read pulse placed on the proper X 
line, and half-read pulses are applied to all the Y lines. 
These half-read pulses are opposite in polarity to the 
half-write pulses. In other words, the magnetic fields 
set up by the half-read pulses tend to set the cores to 
the 0 state. 

Again using the register at address 3 as an exam­
ple, to read out the word previously written in, half­
read pulses are sent to the X3 line and to all the Y 
lines. Each core in register 3, therefore, receives a half­
read pulse in both its X and its Y winding. The result­
ing fields add in a direction that sets the core to o. The 
word stored in register 3 is 0001, so cores 9, 10, and 11 

are already in the 0 state and are not switched. Core 12, 

however, is storing a 1 and the combined half-read 
pulses switch this core to the 0 state, producing a pulse 
on the output line from the Y4 bit position. Thus, the 
word 0001 that was in register 3 appears at the ouput 
terminals as a single pulse in the least significant place. 
The register itself is cleared (all cores reset to 0). 

The cores in registers 1, 2, and 4 are all half­
selected by the half-read pulses on the Y lines, but since 
no pulses are sent through their X windings, they are 

not switched. Notice that the process of writing also 
must produce pulses in the sense windings of any cores 
that are switched to 1. These pulses, however, are oppo­
site in polarity to those produced in the reading process 
and can be either blocked or ignored at the output 
terminals. 

The fact that a register is cleared by the process 
of reading a word out of it is not good. This is de­
structive readout, as it is usually desirable to continue 
storing the word in the register after readout, since 
anyone piece of information might be needed a number 
of times in the course of a program. The solution is to 
write each word back into the register from which it 
came immediately after reading it out. At the same time, 
of course, it is also sent to the arithmetic element or 
wherever it is needed. The necessity for rewriting each 
time a word is read out slows the access time since the 
memory circuits cannot handle another operation until 
rewriting is completed. Nevertheless, the total access 
time using ferrite cores is usually 10 microseconds or 
less. 

An arrangement like the single memory plane 
shown in figure 3-88 is sometimes used in other parts 
of the computer to store a group of words and read 
them out in sequence, on demand, to some slower­
acting circuitry or output device. This can easily be 
done by connecting the outputs of a ring counter to 
the X lines. The ring counter is designed to produce 
half-current pulses as its outputs. Another circuit is 
arranged to distribute half-read pulses to all Y lines 
each time the one-hot output of the ring counter is 
shifted during reading. In writing, these are suppressed 
(inhibited) . 

Using this arrangement, the computer (or other 
circuitry) loads the memory plane by pulsing the ring 
counter once as each word to be stored is sent to the 
Y lines. Each time the ring counter is pulsed, it applies 
a half-current pulse to the X line of a different regis­
ter, so words are written into one register after another 
until the plane is filled. The ring counter serves to se­
lect the registers in sequence. During this writing pro­
cess, the half-read pulses are suppressed. 

When the memory plane is loaded and the output 
device or other slow circuitry is ready to receive the 
first stored word, it sends a control pulse to the ring 
counter. (Since the pulse is sent to obtain data, it is 
often called a "demand pulse.") The counter output 
shifts back to the first register in the plane and half­
read pulses are gated to all the Y lines, so the word in 
the first register is read out. When this word has been 
processed in whatever manner is necessary, another de­
mand pulse is sent to the ring counter and the word in 
the second register is read out. The memory plane, 
used in this fashion, can accept words at the fast rate 
dictated by the computer and give them to other cir-
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cui try at a much slower rate. Tape cores can be used 
instead of ferrite cores. 

Returning to the main memory, the fact that words 
must be rewritten because of the destructive readout 
does lead to one advantage, which is that each memory 
operation, reading or writing, can consist of the same 
sequence of events with minor variations, somewhat 
simplifying the access and control circuitry. 

For a reading operation, the desired register is 
read and the output word is sent where it is needed and 
also written back into the same register. On a writing 
operation, when a new word is to be placed in a regis­
ter, the desired register is read to clear it but the word it 
contained is discarded and the new word is written in­
to it instead. (Of course, a register is not selected to re­
ceive new information unless the programmer knows 
that the word in it is no longer needed, or it is empty.) 
During each memory cycle, therefore, the selected regis­
ter is read and then written into, whether the opera­
tion called for is reading or writing. 

The single memory plane under discussion thus far 
is not large enough to provide the amount of storage 
space needed in a big computer, although-depending 
upon word. length - a large number of registers can be 
wired into a plane of reasonable size. To provide the 
required storage space in a compact arrangement, mem­
ory planes are stacked in a 3-dimensional array, as 
shown in figure 3-89. 

Now, there are two possible ways of arranging the 
registers. If each memory plane contains a group of reg­
isters, as previously described, each address must specify 
the number of the X line and the number of the plane. 
This method, however, is likely to lead to complicated 
wiring within the plane itself. The alternative method is 
the one shown in figure 3-89. Here, each bit position 
of a register is in a different plane. 

SELECTED 
X-CO-ORDINATE 
WINDINGS - X3 

SELECTED 
Y-CO-ORDINATE 
WINDINGS - Y 4 

PLANE 4 

Figure 3-89. Stacked Memory Planes 

To see this clearly, consider core 12 in figure 3-88, 
which is selected by half-current pulses on lines X:{ and. 
y 4' Stack up four planes identical to this one and con­
nect the X3 lines of all planes in series, then do the 
same with the Y 4 lines, as illustrated in figure 3-89. 
Placing half-current pulses on the X3 and Y4 lines now 
selects core 12 in each of the four planes, so the four 
core 12's can be used as a single register. 

The drawback to this is immediately apparent. It 
is fine for reading, when all cores in the selected regis­
ter are set to 1, but how are words written in? Obvi­
ously, each bit of a word in parallel form must be 
applied to a different plane, to the core of the selected 
register in that plane. Since selection (in the writing 
process) sets all the cores to 1, the logical way to write 
a word is to inhibit those cores that must represent O's 
in the word. This can easily be done by adding an 
inhibit winding (not shown) to every core. 

Then, to write a word into storage, half-write 
pulses are placed on the proper X and Y leads, selecting 
the register and tending to write l's into all the cores 
in it. At the same time, a half-current inhibit pulse is 
developed for each 0 in the input word and applied to 
the inhibit winding of the core in the corresponding 
bit position. The inhibit pulse and winding are so ar­
ranged that the resulting magnetic field cancels the 
field set up by one of the write pulses, so the core 
cannot be switched to 1. 

Since only one core in a given memory plane be­
longs to the selected register, the inhibit windings of 
all cores in the plane can be connected in series. An 
inhibit pulse on this lead can affect only the core that 
is fully selected. Similarly, in the reading operation, 
only one core in the -plane is selected and can produce 
an output pulse, so this means that the sense windings 
(not shown) of all cores in the plane can also be series­
connected. Neither the inhibit pulse nor the output 
pulse can have any important effect on unselected or 
half-selected cores in the plane. 

In the reading operation, of course, the half-read 
pulses are of a polarity that sets all cores of the selected 
register to o. The cores that were storing O's are un­
affected, those that were storing l's are switched, pro­
ducing output pulses that are taken off in parallel form 
from the sense windings of the separate memory planes. 
The word is thus read out as a parallel set of pulses 
and blanks. As described earlier, it is then rewritten 
into the register from which it was taken. 

The address selection circuitry used with such a 
core memory is usually simple in nature. The address 
received from the operation-address register in the con­
trol element must be decoded or translated into a pair 
of one-hot signals, one to select the X line, the other 
the Y line. This decoding is commonly done in a matrix 
of some sort. If a new word is to be written into stor-
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age, it is held temporarily in a register (often a comple­
menting register) in which an inhibit pulse is developed 
from each bit position containing a O. 

For either reading or writing, a half-read pulse is 
first gated to the selected X and Y lines. This clears the 
desired register and reads out the word (if any) pre­
viously stored there. For the writing process, this word 
is discarded since a new one will be stored. In reading, 
the word is sent to the circuits needing it and also 
gated into the register that develops the inhibit pulses. 
In either case, this register now contains the word to 
be written into the core register. Half-write pulses are 
now gated to the proper X and Y tines and, at the 
same time, inhibit pulses are gated to the inhibit wind­
ings of the bit positions containing O's, thus writing or 
rewriting the word into the selected core register. All 
control circuitry is then cleared in preparation for an­
other memory operation, completing the memory cycle. 

In this manner the ferrite core memory array han­
dles the storage requirements of the computer quickly 
and efficiently. 

4.3 ELECTROSTATIC STORAGE 

Electrostatic storage is accomplished by storing l's 
as positive charges and O's as negative charges on tiny 
separate areas of a dielectric plate in a device similar to 
a cathode-ray tube. The dielectric plate structure is 
mounted behind what would be the face of an ordinary 
CRT and consists of a screen grid on the cathode side 
(the dielectric plate) and a conducting plate of metal 
on the tube-face side. The electron gun and deflection 
plates are practically the same as those in any CRT. 

Although there are several possible methods of 
control, the effect is similar to that of storing a charge 
in a capacitor. It is achieved by changing the potential 
of the conducting plate to make the dielectric area 
temporarily positive or negative with respect to the 
screen grid as the electron beam strikes a small spot on 
the dielectric. If the dielectric area is more positive than 
the screen grid at this instant, there is practically no 
secondary emission and the spot soaks up a surplus of 
electrons, thus holding a negative charge when the 
beam is removed and the potential of the nearby con­
ducting plate returns to normal. 

If, on the other hand, the dielectric area is more 
negatively charged than the screen, the electron beam 
knocks out a large number of electrons from the di­
electric (secondary emission) and these are picked up 
by the screen. The beam actually knocks out more elec­
trons than it puts in, so the spot is left lacking in elec­
trons and hence is positively charged. 

Since the dielectric is a nonconductor, these small 
areas of charge are held after the beam is removed and 
they can be placed close together. By using selected de­
flection voltages, the beam can be moved to any spot on 

the plate. The address of a register, however, is a binary 
number representing the location of the whole register, 
so it must be decoded in such manner as to develop a 
set of deflection voltages in steps that will select all the 
bit locations of the register, one after the other. This is 
often done by deciding the address to an analog cur­
rent, then passing the current through a precision volt­
age divider to develop the deflection voltages. 

Reading a bit out of the electrostatic storage tube 
is done by aiming the electron beam at a selected bit 
location and making the potential of the conducting 
plate somewhat negative. If the bit location is positive, 
its potential is slightly negative with respect to that of 
the screen and there is a sudden increase in secondary 
emission that can be detected as an increase in screen 
current to the tube. If the beam is striking a negative bit 
location, however, secondary emission is already high 
and there is no momentary change when the conducting 
plate swings negative. Both writing and reading must 
be done in serial form, since the beam can strike only 
one bit location at a time. 

Electrostatic storage is fast of access, but not as 
fast as magnetic cores. The principal reason lies in the 
need for accuracy in the deflection voltages to aim the 
electron beam at the selected bit location and because it 
takes time to develop these voltages properly. 

Reading information out of the electrostatic stor­
age tube destroys the information. With these tubes, 
however, high resistance on the dielectric plate tends to 
discharge the bit locations gradually and it is therefore 
necessary to rewrite all the stored information at regu­
lar intervals, whether it is read out or not. The time 
used in rewriting the information is lost to the computer 
as far as normal reading and writing operations are 
concerned. 

4.4 ACOUSTIC DELAY LINE STORAGE 

Information is stored in acoustic (or sonic) delay 
lines in the form of mechanical vibrations traveling 
along a length of some solid or liquid material, ordi­
narily a column of mercury. (Actually, despite the name, 
the vibrations are far above the frequencies of sound.) 
Since the computer signals are electrical, there must be, 
at each end of the delay line, a transducer, a device that 
converts energy from one form to another. Blocks of 
quartz crystal are used to convert between the electrical 
pulses and the mechanical vibrations. 

The acoustic delay line is used in the closed-loop 
type of storage arrangement, as shown in figure 3-90. 
This means the words to be stored must be in serial 
form. The mercury tank is capable of holding several 
hundred bits, so a sequence of pulse-type serial words is 
stored. 

When a serial word is written into the loop as a 
train of pulses and blanks, each pulse in turn hits the 
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Figure 3-90. Acoustic Delay Line 

quartz crystal transducer at the input end of the mer­
cury column. Through the piezoelectric effect, the im­
pact of the electrical signal is translated into a me­
chanical vibration of the crystal that is sent into the 
mercury column. After traveling the length of the col­
umn at a comparatively slow speed-which introduces 
the delay - the wave (vibration) shocks the crystal at 
the output end into producing an electrical pulse corre­
sponding to the one that was put in. 

Due to attenuation and reflections in the tank, the 
output pulses must be amplified and reshaped after 
they emerge into the external loop. Or they may simply 
be used to gate new, fullsized pulses (usually clock 
pulses) into the loop to take their places. 

The problem of reading a desired word out of the 
loop is one of timing, just as in a word-length circulat­
ing register, except that the desired word is delayed 
much longer in getting through the acoustic delay line 
to a point in the loop where it is available for reading. 
The total delay around the loop is known, so this time 
becomes the length of one memory cycle. That is, if a 
pulse entered in the loop emerges 400 bit-times later, 
for instance, then 400 bit-times is one memory cycle. 

During operation, then, a continuous cycling count 
from 0 to 399 is made (using the above example). If 
the least significant bit of a new word being written 
into storage enters the loop at bit-time 50 of a memory 
cycle, it will emerge from the delay line and become 
available for reading at bit-time 50 of every memory 
cycle thereafter, until it is finally erased from the loop. 
Thus, 50 is the address of this word. 

Several methods can be used to locate and read 
out this (or any) stored word. One of the easiest is to 
place the address 50 in a counter and then, at the start 

of the next memory cycle, use clock pulses to count 
down toward zero. When the counter reaches zero, the 
read gate is opened for one word-time and the desired 
word is read out. Where more than one delay line is 
used, each address must also identify the proper line. 

Notice that this is nondestructive readout; that is, 
the word continues to circulate in the loop even after it 
is read out. To remove words, another gate or an in­
hibit circuit can be placed in the main loop. This can 
be closed for one word-time or for one memory cycle 
to remove a single word or all stored information. 

Although the computer must wait for a desired 
word to be read out, the pulse repetition rate can be 
very high (up in the megacycles) in these acoustic delay 
lines, so they have been found practical for use in 
serial mode computers. One drawback is that the line 
must be temperature-controlled because the velocity of 
mechanical vibrations in mercury, like the velocity of 
sound in air, varies with temperature. The longer the 
line, the more accurate the control must be to avoid 
serious timing difficulties. 

4.5 MECHANICAL STORAGE 

4.5.1 Punched Hole Storage 

The idea of storing information by punching or 
not punching holes in specified locations on tough pa­
per cards or tape has been in existence a long time. By 
arranging regular rows or columns on a card or along 
the length of a tape, binary numbers can be permanently 
stored by the punch (I)-no punch (0) system. 

When a card or tape is properly aligned and drawn 
between a metal plate and a set of metal wipers or 
fingers, a brief electrical contact is made through each 
hole. None is made where there is no punch. Thus, 
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punch-no punch is translated to pulse-no pulse, which 
is understood by the computer. 

A newer and faster method of reading punched in­
formation is to draw the card or tape between a light 
source and a set of photocells (one per row or column). 
Each punched hole lets through a flash of light to the 
corresponding photocell, which produces an electrical 
pulse, so again the informamtion is translated to com­
puter language. 

Punched cards and tape are not well suited for use 
as either main or auxiliary storage mediums in modern 
computers, because of the necessity for frequent han­
dling by an operator as well as because of the slowness 
of access. For this reason, punched card and tape ma­
chines are most often used as input-output devices and, 
as such, are described in Chapter 4. 

4.5.2 Control Panel Storage 
A telephone switchboard might be considered to be 

a type of memory device. Each time the operator plugs 
in one of the patch wires, she sets up a connection that 
will "remember" which circuits are connected. In com­
puter usage, a similar storage device is the control panel, 
often called a plugboard. A device of this type, some­
times used to store programs and data by means of 
plug-wires, is shown in figure 3-91. Information is 
stored in it by connecting certain hubs (holes) together 
with pluggable wires. 

Two general types of control panel storage are 
used. In some machines, the control panel is used purely 
for storage of control information (the program). In 
this case, the control panel usually consists of two types 
of hubs: exit hubs and entry hubs. In general, the exit 

Figure 3-91. Control Panel 
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hubs are hubs which emit pulses. Entry hubs are con­
nected to circuits controlling various machine functions. 
Therefore, when they are pulsed, the functions they 
control are initiated. During each machine cycle, the 
various exit hubs are pulsed in certain sequences by 
the machine. If one of these exit hubs is .wired to an 
entry hub controlling a particular function, the pulse, 
when it appears, initiates this function. For instance, 
a exit hub might be wired to the entry hub which 
initiates the addition function. Then, when the machine 
pulses this exit hub, it will cause the machine to add. 

Another type of control panel storage is more like 
the register storage which has been mentioned before. 
In this case, the control panel is divided into registers, 
and each bit position of each register consists of a pair 
of hubs. In such a system, a 1 is usually represented by 
a wire connecting the two hubs of a pair, a 0 by no 
connection between the two hubs. A 5-bit register, for 
example, has five pairs of hubs. If the first, third, and 
fifth pairs were connected together and the second and 
fourth left unconnected, the register would contain 
10101. 
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CHAPTER 5 
INPUT-OUTPUT EQUIPMENT 

5.1 EQUIPMENT, GENERAL 

5.1.1 Introduction 

This chapter discusses in general common types of 
input-output (10) equipment and covers in detail how 
10 devices are used in digital computing systems. 

Many types of 10 devices are available and there 
are also devices which could be adapted for preparing 
and receiving information for digital computer opera­
tion. This chapter will consider those devices which are 
actually used. 

5.1.2 Definition of Input-Output Devices 

The equipment that introduces input information 
into the computer and receives output information from 
the computer may be the same device. The function of 
this device may vary between its input and output util­
ization. For example, a tape unit may be used as a mem­
ory storage, as an input source, or as an output device. 
However, the general characteristics and capabilities of 
the tape unit are fixed and do not vary with its func­
tion. 

An input or output device may be defined as equip­
ment for communication between the computer and the 
external sources or destinations of information and 
data; devices may be classified as input-output equip­
ment if they can translate external information into 
computer information or vice versa. 

5.2 DESCRIPTION OF INPUT-OUTPUT EQUIPMENT 

5.2.1 General 

Information transfer between a computer and a 
person is generally through magnetic or paper tapes, 
card machines, typewriters, visual displays, and line 
printers. The automatic inputs of the AN jFSQ-7 are 
all-electronic equipments which translate information 
from the form in which it appears in the telephone 
line receiver (serial pulses) to the form used in the com­
puter (parallel pulses). 

5.2.2 Tapes and Tape-Handling Equipment 

5.2.2.1 General 

There are two types of tapes available for use with 
digital computer systems, paper and magnetic. Both 
types can be used for either input or output functions. 
Each type of tape has its own distinctive processing 
equipment and the tapes are not interchangeable. A 
paper tape must be used with a paper punch and 

reader, and magnetic tape must be used with equipment 
designed for magnetic tape preparation and processing. 

5.2.2.2 Paper Tape Equipment 

Paper tape is usually used as an 10 device, although 
it has been used for memory storage, and is similar to 
teletype tape. Information is coded on the basis of a 
hole-no-hole code. In a typical system, the holes are 
punched on the tape by a manual keyboard and paper­
tape punch procedure or by the computer and paper 
punch arrangement. Normally a computer-prepared tape 
is an output procedure and a keyboard prepared tape is 
an input procedure. Paper tape with the associated 
paper-tape punch and reader is shown in figure 3-92. 

The paper-tape reader converts the punched paper­
tape code into electric impulses by means of a photo­
electric system or by sensing the pattern of hole-no 
hole with brushes. 

The paper-tape reader interprets the punched tape 
and can be linked to a printout device as well as to the 
input phase; it can also be used to verify the correctness 
of a keyboard-prepared tape before the tape is pro­
cessed as input information. In the input phase, tape is 
sensed by the reader and the information, expressed in 
electrical pulse form, is fed into the computer. 

A paper-tape system is a relatively slow process of 
information processing (although it is less expensive 
than a magnetic tape system) and is generally used 
with a special purpose computer solving scientific prob­
lems of a fixed type. 

5.2.2.3 Magnetic Tape and Tape-Handling 
Equipment 

Magnetic tape usually is a coated plastic tape about 
liz-inch wide similar to the tape used in home style tape 
recorders. The coating varies with the commercial pro­
cesses used to manufacture tape. The coating has mag­
netic properties, that enable the tape to be magnetized 
in discrete units (very small magnetized spots). 

Information is represented in the form of a pattern 
of magnetic bits. In one form of tape recording, a mag­
netized spot or bit may represent a binary one; a non­
magnetized spot on the tape may represent a binary 
zero. A more common system of writing on tape requires 
that both l's and O's be expressed as magnetized bits. 
This is accomplished by recording l's with one north­
south magnetic alignment and O's with south-north 
alignment. A large amount of information can be stored 
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Figure 3-92. Paper Tape with Associated Reader and Punch 

on a length of tape. A typical tape is about 2,000 feet in 
length and has a word density of 41 computer words 
per inch. 

Information may be transferred to a magnetic tape 
by means of special typewriters, by card-to-tape con­
verters, by card machines, from magnetic drum, or di­
rectly from a computer. 

Tape-handling equipment consists of a tape drive 
with associated electronic reading and writing circuitry. 
A typical tape drive is shown in figure 3-93. 

If a program has been coded and is ready for 
translation into a form of information usable in a com­
puter, the first step in the procedure is "to write" the 
program on the tape using the equipment available in a 
given system. This equipment may be a computer or 
card machine. When the information is on the tape, the 
reel of tape is placed in a tape drive unit. Then, the 
information can be read by the read-write head of this 
'mit and the pulse pattern transferred to the computer. 

Ttapes and tape-handling equipment may also be 
used to receive and record outputs from the compwter. 
The outputs are operationally processed from the com­
puter to the tape unit. Generally the information is left 
on the magnetic tape in its magnetic form since it will 
probably be used again by the computer and there is no 
need for human monitoring (no printout is necessary). 

Sometimes a common program is stored on tape so that 
when it is needed again it will be very easy to insert. 
When human monitoring of the output is necessary it is 
often advantageous to record the output on tape and 
then use an auxiliary device (entirely separate from the 
computer) to print the results from the tape. This sys­
tem permits a very high speed tape output which can be 
monitored. 

Tapes and the associated equipment are generally 
used as large-capacity slow-access memory storage. They 
may be considered 10 equipments since they are used to 
initially load information into the computer. As storage 
unit, tapes are memory type equipments, slow in rela­
tion to the other memory units. 

5.2.3 Card-Handling Equipment 

5.2.3.1 General 

The term card machines includes all units of a card 
handling system that uses the holes punched in paper 
cards to represent information. Such a system must be 
capable of punching information on cards and reading 
the information from the punched cards and printing 
it in a form that can be directly read without further 
decoding. A card-handling system implies at least three 
units; a card punch, a card reader, and a printer. 

There are many possibilities of coding information 
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figure 3-93. Magneflc Tape Drive Unit 

on cards using numeric or alphanumeric codes. Among 
the more important codes are the binary and the Hol­
lerith. 

5.2.3.2 Cards and 'Card-Punch Equipment 

A typical card (fig 3-94) is of fixed dimensions 
and is made of a specified quality of paper. A card may 
be of varying format in accordance with the best tech­
niques for translating information from the card to the 
computer of any given computer system. The card 
punched in Hollerith code is of one definite format 
which, despite disadvantages, is suited for use with 
mechanical computing equipment. Another similar card, 
arranged in other format, is the binary card; this is suited 
to electronic computing equipment. 

The equipment used to manually transfer informa­
tion onto a card is a card punch. A manual card punch 
is an electromechanical device which punches informa-

tion on cards and prints out the information on the 
top of the cards. The punching operation is performed 
at a keyboard, similar to a standard typewriter key­
board, by an operator. A typical example of a manual 
card punch is illustrated in figure 3-95. This particu­
lar card punch also performs the additional function of 
reading the punched cards and converting the informa­
tion expressed into a pulse-no pulse pattern for direct 
computer input. This type of punch is called a com­
puter-entry punch. First, the card is punched; then the 
card is automatically sent to the reading station. At the 
reading station mechanical feelers sense the hole-no­
hole pattern and generate voltages corresponding to 
this pattern, which in turn are fed to the computer. 
Such a system allows the operator to check the card 
punches before the information is actually entered in 
the computer. 

A card punch for transferring outputs from the 
computer to cards is illustrated in figure 3-96. This 
card punch is operated by the computer through the 
memory. The computer generates voltages which oper­
ate punch-selecting electromagnets. When the punches 
operate, they punch out a card-hole pattern correspond­
ing to the computer output information. No manual 
operation is possible. The computer-operated card punch 
is faster than the manual operated punch; the output 
punch can process about 100 cards per minute while 
the manual-operated punch is limited to the skill of the 
operator. A processing of about 3 cards per minute is 
within normal operator capabilities. 

In most computers it is possible to punch informa­
tion on cards in any of several codes. This may be a 
built-in feature or, if not, it may usually be accom­
plished by special programming techniques. 

5.2.3.3 Card Reader 

The card reader shown in figure 3-97 is used to 
transfer information from punched cards into the Cen­
tral Computer. The card reader is directly linked to the 
computer. Cards may be read at the rate of about 250 
cards per minute. Reading is accomplished by contact 
with brushes which sense holes in the card and com­
plete an electrical contact; holes in the cards become 
pulses and the intact area becomes the no-pulse in the 
binary code arrangement. The reader can be used to 
process information from cards directly to the memory 
unit of the computer. This information is available for 
use in the computer operation or for transfer to mag­
netic tape for storage. 

5.2.3.4 Line Printer 

A line printer records output information, usually 
in alphanumeric form (fig. 3-98). The term line desig­
nates that the printer is capable of printing a line of 
characters at a time. 

Printers vary in speed of the printout from about 
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Figure 3-94. Card Arranged in Hollerith Code Format 

100 lines per minute to over 1,000 lines. The number 
of characters per line also varies. The printer in the 
figure above can print out 150 lines per minute, 64 
characters per line. 

The exact technique of how the printing is accom­
plished is not within the scope of this manual. In gen­
eral the computer generates a pattern of voltages which 
are used to energize electromagnets. These electromag­
nets than select the proper letter or number on a type­
wheel and the printer prints. The printer illustrated in 
figure 3-98 prints one line at a time by the simultane­
ous positioning of the type wheels (120 in number). 
Each typewheel is not positioned in every line of print­
out-only those 64 typewheels which can be selected 
within the cycle of line printout are used. 

5.2.4 Typewriter 

In some systems, typewriters are available for trans­
ferring input and output data into and out of the mem­
ory element of the Central Computer. These typewriters 
have an alphanumeric keyboard and may be manually 
and computer operated. When typing inputs, typewriters 
are manually operated and transmit one character at a 
time to the Input System. The keyboard character is 
translated into coded electrical pulses for entry into the 
memory by means of contacts on each key. Manual op­
eration is a relatively slow input method and is usually 
restricted to inputs of a local nature in a computer 
system with a fixed program. Outputs are typed out one 
character at a time under computer control and selec­
tion. The outputs also are transmitted from the memory. 

During output operation the 10 typewriter is oper­
ated by a series of electromagnets and solenoids mount-

ed beneath the keyboard. The magnets and solenoids 
automatically actuate keyboard functions of the type­
writers, including carriage return, spacing, tabulation, 
ribbon color control, and others. When used as input 
devices, electrical impulses are transmitted from the 
typewriter by depressing a key. These electrical impulses 
may be generated in a coded pulse-no-pulse pattern by 
a preset action of the key in relation to a group of 
switches. 

5.2.5 Visual Displays 

Information may be transmitted from a digital com­
puter and displayed visually in a direct-read form. The 
equipment used to display such output information is 
generally known as visual displays. A typical example 
of a visual display equipment is shown in figure 3-99. 
Some display a picture similar in physical appearance 
to a television picture of printed or pictorial informa­
tion. Other display outputs may be merely graphical, 
such as might be seen on the usual cathode-ray oscil­
loscope. 

The main component of a display equipment is a 
cathode-ray tube (figure 3-99). The special purpose 
tubes such as those used in the AN/FSQ-7 have pro­
visions for writing actual alphabetic characters. Figure 
3-100 shows a simplified diagram of a typicial display 
tube. Writing on the viewing screen is accomplished by 
forming a character and positioning the character on 
the tube face. Characters may be generated by a stencil­
ing process; that is, the electron beam is directed 
through a selected aperture in a character-forming ma­
trix and directed by electrostatic deflection plates to a 
selected position on the tube face. The face of the tube 
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Figure 3-95. Computer Entry Punch 

is phosphor-coated. The phosphor emits a blue flash 
when illuminated by a writing beam, followed by a 
yellowish afterglow which persists long enough for 
human perception. In some display systems, it is pos­
sible to retain the character on the tube face by using 
another beam of electrons. 

Information in binary-coded pulse form is trans­
mitted from the storage element of the computer or 
from the Input System to the display equipment. There, 
it is converted to analog deflection voltages which gen­
erate the desired visual displays. Since the information 
on the tube face does not persist for a long period of 
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Figure 3-96. Computer-Operated Card Punch 

time, it is sometimes desirable to record this informa­
tion in a more permanent form. Camera systems are 
available which automatically photograph the display 
tube face and process the film to provide a positive 
transparency. When required, the transparency can be 
projected on a screen and the information is visually 
available for as long as required. Other information 
recording systems photograph the information on the 
display tube face and project the images on sensitized 
paper where the information is reproduced. 

5.2.6 Other Input-Output Equipment 

The 10 equipments discussed in the preceding para­
graphs are commonly identified with general purpose 
digital computers. Possible types of 10 devices associ­
ated with special purpose computers are limited only 
by the capability of any device to transmit or to receive 
information in a form that can be converte4 for use in 
a digital computer. 

Input information can be transmitted from teletype 
machines, telemetering devices, analog computers, and 
even by human voice. In some way, this information 
must be converted to a pulse no-pulse binary number 

Figure 3-97. Card Reader 

code, after which it is compatible for transmitting into 
the computer system as data in a specific problem. 

The results of computer computation can be trans­
lated into a form that can be transmitted to guided 
missiles, control systems, and wide-spread inventory and 
business offices. The devices used to transmit computer 
results are teletype systems, telephone lines, radio, and 
so forth. These devices may be directly linked to the 
computer system and the outputs require no additional 
processing by human operators. A dramatic type of 
output is the speech output from the computer. This 
technique is termed speech communication with the 
computer and has been used in diagnostic troubleshoot­
ing for locating causes of failure. 

The choice of 10 devices for special purpose com­
puters depends on the sources of information for the 
solution of specific problems. These sources are some­
times termed data-links. The digital computers are not 
restricted to accepting information only from the tradi­
tional tapes, card-machines, and keyboards. They will 
use data from any source as long as the data is trans­
lated into the binary code of pulse no-pulse. 
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PART 4 
COMPUTER ORGANIZATION 

CHAPTER 1 
INTRODUCTION 

1.1 GENERAL 

Up to this point, this manual has attempted to 
show only a very general picture of computer organ­
ization, along with the specific circuits and arithmetic 
techniques which make such organization possible. This 
part gives a more specific picture of computer organiza­
tion. In particular, the interaction of the various ele­
ments working within a complete computing system 
will be shown. A typical computer, which uses many of 
the techniques and components developed in previous 
parts, will be described. 

The computer to be described is non-existent but is 
patterned after a simplified version of the AN/FSQ-7. 
It will be obvious later that theoretically this computer 
could be refined and expanded to meet the needs of the 
SAGE function. 

1.2 SAMPLE COMPUTER DESCRIPTION 

1.2.1 Requirements 

Despite the fact that some data processing machines 
are said to be general purpose computers, some con­
sideration of the use to which they will be put is neces­
sary if an efficient system is to be designed. It would for 
instance, be foolish to build a large data processing 
system to compute the payroll of a company employ­
ing only 10 men. Consider the requirements of an air­
craft-control computer. Such a computer obtains infor­
mation on aircraft position and movement over a wide 
area from several radar sets. This information is auto­
matically entered into the computer for processing. The 
processing consists of calculations of the planes' vel­
ocity, position, and so forth. The processing also in­
cludes a means of presenting this information to human 
operators, so that they can decide what ground control 
action (shooting down, redirecting, etc. ) is necessary. 
Of course, there must be a means of taking the result­
ing ground control action into consideration by the 
computer. There must also be a means of furnishing 
computer information to users other than the actual 
operators of the computer; i.e., weapons bases or other 
ground control stations. A consideration of the re-

quirements of such a computer brings out at least the 
following: 

a. The problem is a real-time-control problem. That 
is, the computer controls a process which is con­
tinuously changing while the computer calcu­
lates. While the computer is computing, the po­
sition of an airplane is moving. This implies the 
need for high-speed computation if the results 
of the computer's work are to be useful in, for 
instance, shooting down the plane. 

b. In the control of an air battle spread out over a 
wide area, it must be possible to determine air­
craft positions quite accurately. The hypothetical 
computer, then, should have high accuracy as 
well as considerable precision. 

c. The use to which the computer is put requires 
the ability to solve a great variety of prob­
lems. This seems fairly obvious when all the dif­
ferent types of situations possible in an air bat­
tle are considered. 

d. The fact that the problem is to obtain real-time 
control also requires that a considerable data be 
continuously entering and leaving the machine. 

e. As is usually the case, the input and output de­
vices of the computer will be slow compared to 
the computing section. Therefore, the input-out­
put system requires as much refinement as possi­
ble to get the best speed with the devices avail­
able. 

1.2.2 General Description 

Before going into the specific details of the com­
puter to be developed, it is necessary to consider some 
basic concepts. It is necessary to determine those gen­
eral characteristics which affect the design of the com­
plete computer. 

1.2.2.1 Analog or Digital 

First, what general type of computer is required, 
analog or digital? In the requirements given for the 
hypothetical computer, it has been stated that high de-
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Figure 4- J. Elements of the Sample Computer 

grees of accuracy and precision were required. This 
implies the use of a digital rather than an analog com­
puter. 

An analog device can be made quite accurate, but 
its precision is limited by fundamental obstacles which 
cannot be completely overcome. For instance, since the 
data in an analog device may be represented by the 
position of a mechanical shaft rotation about its axis, 
the slop of the gears and the difficulty of making precise 
angular measurements limit the precision possible. E'ur­
thermore, if voltages are used to represent data, any 
power supply changes may have a definite effect on ac­
curacy of results. Such considerations limit the accuracy 
and precision possible to a few decimal places. 

On the other hand the precision of a digital device 

is limited only by the length of the word which the de­
vice can handle. If the device can handle three decimal 
digits the precision possible will be to two decimal 
places. If it can handle 1u decimal digits the precision 
can be held to nine decimal places. The accuracy is 
theoretically almost infinite. It can, therefore, be as­
sumed that a digital computer must be used if the prob­
lems to be solved demand high degrees of accuracy 
and precision. 

1.2.2.2 Fundamental Elements 

The nature of digital computing dictates several 
more general characteristics. In figure 4-1 the basic 
elements of a digital computing system, as well as con­
trol and information transfer lines, are shown. The thin 
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lines symbolize control functions, the heavy lines, in­
formation transfer. Any digital computing system must 
comprise at least five elements: memory, arithmetic, con­
trol, input, and output. This is true whether the sys­
tem consists of a man using pencil, paper, and an add­
ing machine or is a complex electronic computer. The 
other elements shown, the buffers, are refinements nec­
essary to attain the high-speed system required. 

In the main-adding-machine example mentioned in 
the previous paragraph, the operator's memory and the 
paper serve as information storage media. Memory is 
necessary to store the data to be operated upon as the 
results of the operations. In digital computing this in­
formation storage is required because the step-by-step 
operation makes it necessary to store some numbers 
while they await their turn to be operated upon. For 
instance, when adding three numbers together with an 
adding machine, two numbers are first added, while the 
third is retained in the memory. The final result is 
found by adding the number in the memory to the sum 
of the first two. 

Sometimes, memory is used for a second very im­
portant function, that is, to store the program. Just as a 
man operating an adding machine must know when to 
push what buttons for the solution of a problem, 
so the computer must know the proper sequencing of 
its operations. In some computers (control-panel­
programmed), this proper sequencing is accomplished 
by means of actually changing the wiring of the com­
puter. In a stored-program computer, however, the in­
structions are actually retained in the memory. There, 
the computer can automatically refer to them and can 
then perform them in sequence. This type of memory, 
in which both data and program are stored in mem­
ory, allows great versatility. 

If one thinks again of the computing system com­
prising a man using an adding machine, he realizes that 
it is in the adding-machine element that the actual ma­
nipulation of the data takes place. It is here that any 
calculations are performed. The adding machine is the 
switching mechanism through which transfers of data 
are made and, consequently, by which the actual changes 
to the data are made. Just as this system needs an arith­
metic unit of some kind, so an actual computer needs 
an arithmetic element. It has been stated that the com­
puting process consists of nothing more than a con­
trolled manipulation and transfer of data between stor­
age devices. In a standard computer the arithmetic ele­
ment is the channel of transfer during the actual com­
puting. I t is the device which actually performs the 
work of changing the data during transfer. 

The function of the control element is to direct the 
operation of the other elements of the computer. In a 
man-adding-machine computing system, the man acts 
as the control element. He directs the transfer and ma-

nipulation of any data. The control element in a com­
puter does the same thing. (Of course, it must be 
originally programmed by the operator.) It initiates 
transfers, and it directs the arithmetic element in its ma­
nipulations upon the data transferred, and the memory 
element in its data storage functions. The control ele­
ment also controls the input and output elements. It 
tells what data will be entered from the computer in­
put devices or readout to the output devices. In other 
words, the control element controls the overall opera­
tion of the whole system; it co-ordinates all elements 
of the system. 

A device for entering information into the system 
is necessary. Somehow, the information as it is under­
stood by the operator of the computer must be entered 
into the machine in such a form that it can be used by 
the computer. That is, there must be a method of con­
verting the numbers understood by man into their elec­
trical equivalent (pulses, levels, etc.) used in the com­
puting system. In the man-adding-machine example the 
operator performs this function; in a computer an in­
put element is provided to do it. The input element 
furnishes the transfer path from the outside world to 
the computer, and the means of translating the data 
from the language of the external world to that of the 
computer. 

Consider again the man-adding-machine example. 
All the calculations would be of little use if the results 
could not be made available to the outside world. To 
make the results available, an output device such as a 
paper-tape printer (on the adding machine) must be 
furnished. Similarly, any other computing system needs 
an output device or system. Analysis of an Output Sys­
tem shows that it has two important functions: it fur­
nishes an output data path; and it translates the results 
from computer language to the language of the human 
being or other user. At first thought, it appears 
that a printer to print results for human operators 
would be all that is necessary. For computers where 
only human beings use the results, this is true, but in 
others it is not. For instance it may be necessary to 
connect the output to control a machine, a guided mis­
sile, for instance. In this case the output device would 
translate from the language of the computer to the con­
trol pulses of the missile guidance system. Such an Out­
put System would still be performing its fundamental 
purposes, transfer from computer to outside world 
and translation of data from one language to the other. 

The Input and Output Systems have one important 
consideration in common; they both transfer informa­
tion between a computer and an outside device. This 
has a very important effect upon the speed and capacity 
of the computer. If the computer is to be able to accept 
information from the outside world, it must be con­
trolled to do so. The control pulses for accomplishing 
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this may come only at predetermined times. On the 
other hand, there is no way of predetermining the 
availability of information from the outside world. 
There is, then, little chance that the demand of the 
computer for information will coincide with the avail­
bility of that information from the outside world. 
Therefore, some sort of storage must be provided be­
tween the input-output (10) devices and the computer. 
In the case of inputs, this device must be capable of 
storing input information at any time, regardless of 
what is going on in the rest of the computer. It must 
also be capable of transferring the information to the 
computer immediately upon demand of the computer. 
This is the purpose of the memory buffers between 
the 10 system and the computer. 

The input buffer will operate somewhat as follows: 

a. It always is attempting to read from the input. 

b. It collects all data from the inputs and stores 
this for quick transfer to the computer. 

c. It transfers this data to the computer upon de­
mand. 

What has been said for the input buffer memory 
also can be applied to the output; the computer can 
read into the buffer at its own pace, and devices can 
read from the buffer at their own pace. In either buf­
fers the amount of information going in should not ex­
ceed that coming out, or information will be lost; i.e., a 
new message might be written over an old message not 
yet read. A buffer's main purpose is to match transfer 
times of the many slow, intermittent devices (input 
and output) to the transfer times of the one rapid de­
vice (the computer). 

1.2.2.3 Program Control 
It is possible to classify program control according 

to the medium used to store the program. Based upon 
such a classification, three general types of computer 
program are available: external, control panel, and 
stored program. Each has its advantages and disadvan­
tages. All three accomplish the same function: they tell 
the machine what to do. However, the method of pro­
gram storage has a great effect upon the usefulness of 
each in the solution of a given type of problem. 

A computer which executes individual instructions 
as soon as they are received from an input device is said 
to be externally programmed. In this case, the program 
is stored externally to the computer, usually on cards 
or tapes. The advantages of this. type of program stor­
age are its low cost and its simplicity. However, exter­
nal programming presents two major difficulties: the 
speed of program execution depends on the speed of 
the input device (particularly during repetitive opera­
tions), and externally stored programs are not easily 
changed by the computer during the course of a pro­
gram. The ability to execute repetitive programs and to 

change a program while it is in progress are extremely 
important characteristics of the modern digital com­
puter. 

A higher-speed and more versatile computer must 
be used to satisfy the requirements set forth at the be­
ginning of the chapter. The control-panel-program 
computer might be used. In this type of control, a con­
trol panel somewhat similar to a telephone switch­
board is used to control the computer. Wires may be 
inserted between different control points on the panel 
to initiate the various functions of the machine. 

In control panel program storage, all steps of the 
program are stored within the computer at the same 
time (when the control panel is inserted). Therefore, 
the program control is not limited in speed by any 
input device as was true in the externally programmed 
computer. The fact that all steps of the program are 
available to the computer also makes repetitive pro­
gramming much simpler. However, there is a practical 
limitation to the size of the program which could be 
stored on the control panel. As more and more steps 
are required (more plug wires required) the board be­
comes too large and complicated to be practical. 

Because there are to be long programs and a wide 
variety of problems, the best type of program control 
to use is the stored program. In this kind of storage, 
the program is stored in the machine's internal memory 
in the form of "numbers." These numbers can be de­
coded by the machine to direct its operations. 

The stored program is the most versatile and high­
est-speed program control yet devised. The program is 
loaded into internal memory; this means that the speed 
of operation does not depend upon the input device 
once the program is in operation. Since all the steps of 
the program are available to the computer at any same 
time, it is very simple to accomplish repetitive opera­
tions. Another important advantage of this type of con­
trol is that the instructions are stored in the same mem­
ory (usually) and in the same form as regular data. 
Consequently the computer can operate upon the in­
structions of the program just as easily as it can on the 
data of the problem. In other words, the computer can 
change its own program as it goes along. There are two 
main reasons, then, for using this type of control in the 
sample computer, high speed and great versatility. 

1.2.2.4 Single Address or Multiple Address 
In Part 3 it was pointed out that the instruction 

word always consists of at least two parts, the operation 
part and the address part (fig. 4-2). The operation 
part of the instruction is a coded number which stands 
for the operation to be performed; e.g., ADD. The ad­
dress part of the instruction indicates the location 
where the number to be added is stored. A single­
address machine is one in which each instruction word 
specifies the address of just one item of data. By con-
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trast, a multiple-address machine is one in which each 
instruction word can specify more than one address. 

In a single-address machine the addition of a num­
ber, a, to a second number, b, and the storage of the 
sum, a+b, might be indicated as follows: 

OPERATION 

CAD 

ADD 

FST 

ADDRESS 

13 

14 

15 

where: a is stored at address 13; b is stored at address 
14; and address 15 is assigned for storage of the sum, 
a+b. The Clear and Add instruction (CAD 13) would 
cause a to be transferred from storage location 13 to 
the previously cleared accumulator. The Add instruc­
tion (ADD) would then cause b to be transferred from 
storage location 14 and to be added to the number in 
the accumulator; and, finally, the Store instruction 
(FST 15) would cause the sum, a+b, to be transferred 
from the accumulator to storage location 15. 

The same addition could be specified in a multiple­
address machine by the simple instruction: 

OPERATION 

ADD 

ADDRESS 

13 14 15 

where it is the convention that the first two numbers 
following the instruction code are the addresses of the 
operands, and the last number is the address of the lo­
cation in memory where the result is to be stored. 

It would appear from the example that exactly 

three times as many instructions are required to exe­
cute any routine using the single-address system as 
are required using the three-address system. However, 
this is not the case. Suppose, for example, that the addi­
tion a + b + c + n is to be performed. The single­
address machine requires one instruction for each num­
ber involved and a final instruction to store the total. 
The three address machine requires one instruction to 
add a to b, a second to add (a + b) to c, a third to add 
(a + b + c) to d and so on. Since the last of these 
instructions can also specify a storage location for the 
total, two instructions are saved in adding a sequence, 
regardless of its length. If the computer is to be used in 
long operations made up of long sequences this saving 
is hardly substantial enough to justify the longer word 
which is required to specify three addresses instead of 
one. If, however, the operations of the computer tend 
to be made up of many short disconnected sequences, 
the three address system might be used. 

In deciding which addressing scheme to use, the 
following advantages and disadvantages should be 
taken into account. In some programs, the single­
address scheme is slightly slower than the multiple­
address scheme. However, because the single-address 
scheme is divided into more basic operations, it is con­
sidered to be a more versatile system. It also has the 
advantage of using a shorter instruction word, espe­
cially when a large number of addresses must be dif­
ferentiated. For instance, a 4-address scheme requires 
four times as many address bits in each instruction as 
does a single-address scheme. This, in turn, implies sim­
pler circuitry in the single-address machine. The single­
address scheme, therefore, will be used in the sample 
being developed. 
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1.2.2.5 Word Length 
The length of the computer word is determined 

upon by consideration of two general requirements, 
those of the data word and those of the instruction 
word. The length of the data word directly affects the 
precision of computing. The longer the word, the more 
precise the calculations may be. The length of the in­
struction word is fixed by the number of separate in­
structions the computer will be required to perform and 
by the number of memory locations that will be con­
tained in the total computer memory. In the sample 
computer the length of either word will be 15 bits plus 
a sign bit. Figure 4-2 shows the makeup of instruction 
and data words. 

1.2.2.6 Arithmetic 

Another requirement to be considered in the design 
of a computer is the type of arithmetic section desired. 
To a great extent this requirement determines the 
complexity of circuitry. The binary system, in gen­
eral, requires the least complicated and most flexible cir­
cuitry in the computing and storage sections of the com­
puter, but this system usually requires complicated in­
put-output translation equipment (the equipment to 
change the decimal numbers to the binary numbers of 
the computer). 

Consider the requirements of the sample system 
again. At the beginning of the chapter, it was stated 
that some input information would be from a decimal 
system manual device; however, the majority of the in­
put information would be from telephone lines. It was 
also stated that output information will go to tele­
phone lines and to a cathode-ray-tube display. Digital 
information sent on telephone lines may be sent in bi­
nary form. It is also generally true that comparatively 
simple circuitry can be used to translate binary infor­
mation into analog information, which can be used for 
the deflection voltages of a cathode-ray-tube display. 
Any other number system may require more complicated 
circuitry. 

If the binary system is used internally, the only 
place complex translation is required is in the manual 
inputs section. Since there is comparatively little infor­
mation entered manually, it is practical to do the deci­
mal to binary conversion required, within the computer 
by means of an easily prepared program. If this is done, 

the binary system appears to be the best system to use. 
It is economical, simple, flexible and reliable; it is the 
system used in the sample machine to be described. 

1.2.2.7 Type of Logic 
One more requirement related to the arithmetic 

system to be used is the type of logic. Shall the machine 
be of the parallel or the serial transfer type? As has 
already been explained in Part 3, serial logic is gen­
erally less expensive in equipment and perhaps more 
reliable than parallel logic. However, since the com­
puter to be described will be used in real-time control 
applications, the high speed possible with parallel 
logic will be a great advantage. The system to be con­
sidered, therefore, uses parallel logic. 

1.2.2.8 Input-Output System 
It has been stated in the requirements that the com­

puter requires a high-capacity input and output facility. 
To provide this the inputs of the system consist of direct 
telephone line input and a manual input. The direct 
input continuously enters data such as radar range and 
azimuth which comes in over telephone lines in binary 
form. The manual input allows the computer operators 
to enter information at the computer site. This is a form 
of typewriter input. 

The outputs consist of a direct telephone line output 
and a cathode-ray tube display. The automatic phone 
line output transmits data in binary form to the user 
(perhaps a remote weapons base). The display equip­
ment will display such things as plane positions on a 
cathode-ray tube. 

1.2.2.9 Summary of General Considerations 
A review of the general characteristics of the com­

puter required shows that the more accurate and versa­
tile digital type must be used, not the analog type. The 
fact that a digital computer is to be used automatically 
implies the need for the five elements: storage, arith­
metic, control, input, and output. Buffer storage is also 
provided to increase the speed and efficiency of the 
whole system. To provide the high speed and versatility 
the stored-program, single-address control will be used. 
Requirements for simplicity and for high circuit speed 
will be met by use of binary arithmetic in parallel transfer 
logic. High data input and output requirements demand 
the use of direct telephone line inputs and outputs, as 
well as a manual input and a display output. 
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CHAPTER 2 
SAMPLE SYSTEM STORAGE 

2.1 INTRODUCTION 

The general system specifications having been 
stated, it is possible to go into the individual elements 
of the system. The memory is described in this chapter 
with particular emphasis upon its interaction with 
other elements of the computing system. 

2.2 GENERAL REQUIREMENTS OF A STORAGE 
SYSTEM 

A computing system must have one, and may have 
all, of these types of storage. Regardless of the type 
of storage used, the storage device has certain basic re­
quirements. Briefly, these are: 

a. The device must be able to retain information. 
Since the information to be stored is digital, 
the ability to store information implies that the 
device must be able to assume at least two stable 
states. 

b. There must be a way of inducing these states 
under outside control; that is, there must be a 
way of writing the information into the device 
and there must be a way of reading the informa­
tion from the device. When the storage element 
is made up of more than one register, it must be 
possible for an outside control element to select 
a particular register from many. It should also 
be possible to read and write at such speed that 
the rest of the computing system is not delayed 
by a reference to storage. 

c. The storage device should store information in 
the radix which is used in the internal comput­
ing section) except in systems where external 
storage is used). Otherwise it is necessary to 
provide a radix translating device (such as the 
Input System in some external storage sys­
tems). 

2.3 TYPES OF STORAGE 

There are three general types of storage in a com­
puting system. The first is some high-speed storage de­
vice such as a magnetic core memory or an electrostatic 
memory. This storage device stores information to which 
the computer must have direct access; that is, it stores 
the data as it is being processed. A second type aux­
iliary storage, consists of some intermediate-speed 
storage device such as a magnetic drum. This type of 
storage is for information which is used fairly often, 

but not continuously, by the computer; e.g., some tables 
or portions of the program infrequently used might be 
stored in auxiliary memory. Finally, there is the exter­
nal storage, consisting of the magnetic tapes, punched 
cards, and so forth; these are only available to the 
computer through an input device. In general, this type 
storage is for seldom used information. 

2.4 TYPES OF STORAGE IN SAMPLE SYSTEM 

The requirements stated in Chapter 1 of this part 
(calling for very high speed, great versatility, and a 
large capacity) forces the use of a very large direct­
access, high-speed memory or a medium-size, direct­
access, high-speed memory working in con junction with 
a large, intermediate-speed auxiliary memory. These 
two types of memory can be made almost equal in speed. 
Therefore, since it is generally true that the slo~er 
storage media are a good deal cheaper to build than 
the faster media, the system chosen is a compromise be­
tween requirements of high speed and economy. A com­
bination of direct-access and auxiliary memory is used. 

Figure 4-3 shows the relationship of the two in­
ternal memories and external storage to each other and 
to the rest of the computing element. From this figure 
it can be seen that the auxiliary memory and external 
storage are not accessible to the computer except 
through the direct access memory. From there it will be 
processed like other information in direct access mem­
ory. External storage will be furnished. Since this may 
be in the form of cards, written records, or even oper­
ator's memories, there is little point in discussing exter­
nal storage further here. Just remember that externally 
stored information enters the computer from an input 
device and that it usually has some manual operation 
(such as typing of the information on the computer 
entry typewriter), connected with it. 

2.5 GENERAL REQUIREMENTS OF SAMPLE 
COMPUTER DIRECT ACCESS MEMORY 

2.5.1 Access 

A digital computer operates in step-by-step 
fashion; that is, it executes one complete instruction at 
a time, and the instruction execution is done in steps. 
All instructions are stored in the memory, and the ex­
ecution of most instructions involves the use of data 
which is stored in memory. The step-by-step nature of 
computer operation always requires at least one refer-
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ence to memory during the execution of any instruc­
tion, and usually requires two references. The first ref­
erence obtains the instruction and the second, data. 
The operating speed of the computer, therefore, de­
pends as much upon the access time (the time required 
to withdraw a number from memory) as it does upon 
the speed of the arithmetic elements. 

"Access" can be d.efined as the method that the 
computer must use to select a word stored in memory. 
Access will significantly affect the speed of the memory 
operation (access time) and, consequently, the speed of 
the computer. 

A computer is said to have a random-access mem­
ory when the access times to all registers are equal. This 
means that it takes exactly the same time -to select a 
memory location with a large address as it does to se­
lect one with a small address. Random access is possi­
ble when the computer can always "see" all registers 
of the memory equally well. A core memory and a 
cathod.e-ray-tube memory are examples of random access 
memories. 

Some computers have a memory which must be 
continuously scanned if information is to be withdrawn. 
That is, when the computer requires a word from mem­
ory, it must examine each address in sequence until it 
finds the proper location and can withdraw the word 

required. This is called non-random, cyclic access, or 
block-access. The addressable drums of AN/FSQ-7 fur­
nish an example of this type of access. In these drums, 
the computer can select a particular memory location 
only by reading each address as it passes under the read 
head. 

The random-access memory is much faster than 
the non-random type built with circuitry of compara­
ble speed. This is because the computer does not have 
to wait for the memory searching process each time a 
reference is made to memory. 

2.5.2 Size 

The overall speed of computation also depends to 
a great extent upon the size of the direct-access mem­
ory. If the direct-access memory is small and the pro­
gram large, parts of the program which should be di­
rectly accessible have to be held (for instance, in aux­
iliary memory). Consequently, computing begins to de­
pend heavily upon the comparatively slow auxiliary 
memory. 

When time is a factor, the versatility of the com­
puter also depends on both the speed and size of the 
internal memory (direct-access and auxiliary combina­
tion). The speed, particularly that of direct-access mem­
ory, determines whether a problem of a very great 
number of steps can be done within a practical time. 
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The size of the internal memory must be large enough 
to store all the instructions and data to be used in any 
problem. If it is not, the speed of execution of the pro­
gram (part of which requires external storage space) 
depends to a great extent upon speed of input-output 
equipment. 

2.5.3 Storage Medium 
The storage medium affects both the speed and 

organization of the computer. There are two different 
classifications of storage medium, volatile and perma­
nent (non-volatile). A volatile storage device is one 
whose stable states are not truly permanent but de­
pend upon some force to keep them in a particular 
state. For instance, information may he stored in the 
form of a charged spot on a cathode-ray tube. If the 
information is to be preserved, this spot must be con­
stantly renewed or the charge will leak off and be de­
stroyed. Long term storage using a volatile medium can 
be accomplished as long as some form of automatic re­
writing is supplied. However, such storage requires a 
good deal of extra circuitry in the computer and also 
uses time which could be used in computing. Another 
disadvantage of the volatile type of storage medium is 
the fact that when power is shut off, or when the 
rewrite process stops for any reason, the information is 
lost. This can not be tolerated in any system that must 
be highly reliable. 

Some outside force, such as an electric current, is 
required to set a permanent storage medium in one of 
its stable states, but once the medium is set, it changes 
state only if a new force, such as a current of opposite 
polarity, is applied. An example of a permanent storage 
medium is the magnetic core used in the AN/FSQ-7 
memory; it is set to one state by magnetizing it in one 
direction. It then retains that state until it is forcibly 
magnetized in the opposite direction. There are many 
advantages to such a system. It saves computing time 
since no regeneration is necessary. It saves circuitry for 
the same reason. Finally, the fact that information is 
not lost during a power failure allows high reliability. 

2.5.4 Memory Controls 

The control of the various functions of the mem­
ory can be centered within the memory unit itself or 
within the control element of the computer. Where 
large memories are used, it is usual to accomplish this 
control within the memory unit. All that is then re­
quired of the computer control element, when memory 
mus t be referenced, is a pulse to tell the memory ot 
start the read operation. Once this start pulse is re­
ceived at the beginning of a transfer, the memory cir­
cuits control the rest of the operation. Such a control 
system allows the computer to carry out some of its 
functions while the memory is in the process of trans­
ferring information, increasing the speed of the com-

puter. Autonomous memory control is, therefore, the 
most usual type of memory control in large-scale mem­
ory systems. 

2.5.5 Summary of Requirements 

The sample computer is to be very large, fast, ver­
satile, and reliable. A review of the points stated for 
memory indicate what points to seek in selecting a suit­
able memory system. 

To get a large, fast memory at a reasonable cost, a 
combination of medium-speed and high-speed memory 
should be used. It is easiest to obtain the small access 
time required if a random-access memory is used for pri­
mary storage. Furthermore, speed and versatility re­
quire a large primary memory; i.e., it must hold as 
much of the program and data at one time as possible. 
Both the speed and reliability of the primary memory 
are best if a permanent storage medium is used. A 
greater computer system speed can be had if the mem­
ory operates under autonomous control. 

All of these requirements suggest that the mag­
netic core memory discussed in Part 3 should be used 
for primary storage. A random-access memory using 
magnetic cores has been constructed with a 6-microsec­
ond access time. Moreover, this same memory is suf­
ficiently large and reliable to perform the primary mem­
ory job for the AN/FSQ-7. A similar memory is to be 
used in the sample computer. 

The sample memory to be described has the follow­
ing general characteristics: 

a. It will store 1,024, 16-bit words in a core array. 

b. It will be a random-access memory with a 6-mi­
crosecond access time. 

2.6 MAGNETIC CORE STORAGE 

2.6.1 Operation of Array 

In order to understand the requirements for logi­
cal circuitry to implement the transfer of information 
into and out of the core memory, it is necessary to 
specify the following: 

a. The form in which information is stored in the 
cores 

b. The mechanism by which information is written 
into the cores 

c. The mechanism by which information stored in 
the cores is sensed during the readout process 

d. The organization of the core array into individ­
ual storage locations 

In the discussion which follows, a core array like 
the one described in Part 3, 4.2.3, is assumed. A review 
of the operation of this array follows. 

Information is stored in the cores in binary form. 
Magnetization in one direction is interpreted as a 1; 
magnetization in the other direction is interpreted as 
a 0. 
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Figure 4-4. 4-Location 3-Bit Register Core Array 

Figure 4-4 illustrates the basic selection principles 
of a 4-location, 3-bit-register core array. In order to 
write l's into all the cores of a particular memory lo­
cation, so-called half-write pulses are applied to two 
coils (designated as X and Y co-ordinate windings) 
wired as shown in the figure. If the half pulses are 
applied to winding A and winding C, the cores where 
the two windings meet have two half-write pulses ap­
plied at the same time. In these cores the fluxes induced 
by the currents add up to a full-write pulse, which 
is enough to switch the core from a 0 to a 1. There­
fore, a core on each plane, located where the A and C 
windings cross, will have a 1 written into it. The state of 
the other cores on the X and Y windings is not changed 
since they only received half-write pulses. The core on 
each plane which received a full-write pulse constitutes 
a single-bit position of the location selected by the A 
and C line combinations. 

In general, of course, a word of information con­
tains O's as well as l's. If all the cores of a storage loca­
tion are cleared (i.e., driven to 0) prior to the writing 
of a word into that location, the 0' s of the word may be 
produced simply by inhibiting the writing of l's on 
those cores where 0' s are to be stored. This can be 
done by applying an inhibit-current pulse to a third 
coil (inhibit plane winding) associated with each of the 

cores where a 0 is to be stored, just at the instant when 
the half-write currents are applied.. The polarity of the 
flux caused by the inhibit current must be opposite to 
that of the write current fluxes so that the cancellation 
inhibits the writing of a 1. For instance, to write 101 

in location A-C of figure 4-4, the location is first 
cleared to all O's. The A and C lines are pulsed with 
half-write pulses in an attempt to write l's into all 
positions. At the same time, an inhibiting pulse is ap­
plied to the inhibit winding of plane 2. This prevents 
the writing of a 1 on the selected core of plane 2. The 
stored number would then be 101. An important point 
to understand is that this system implies that all the 
cores in a location must be set to 0 before a word 
consisting of l' sand 0' s may be written. 

In ord.er to sense a word stored in a particular 
storage location, so-called half-read-current pulses are 
applied to the X and Y lines associated with the cores 
of that location. The half-read currents are equal in 
magnitude but opposite in polarity to the half-write 
currents mentioned earlier. The effect of the simultane­
ous reception of two half-read pulses is, therefore, to 
drive a core into the magnetic state representing o. If 
a 0 is stored in the core, there is no change of magnetic 
state. If, on the other hand, a 1 is stored in the core, it 
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reverses the core's magnetic state. This polarity reversal 
induces a voltage pulse in the sense winding associated 
with the plane of cores. The readout process, therefore, 
causes pulses to appear on the output lines associated 
with each of the cores in the selected location that 
contains a 1. Notice that all the cores are left in the 0 

state. In other words, the l' s were all destroyed in the 
read process. This is called destructive readout. 

The half-read pulses, like the half-write pulses, 
perform a selection function. The form of the word 
read out is, on the other hand, established by the sig­
nals appearing on the sense windings. 

In summary, four coils are associated with each 
core: the X and Y (selection) windings, the inhibit 
winding which forms the pattern of the word being 
written, and the sense winding which senses the outputs 
of the cores on readout. The selection scheme involving 
X and Y windings is based upon the organization of 
the core array into a number of X groups and a number 
of Y groups. The coils of anyone X group or any ~ne 
Y group are connected in series. A set of cores which 
belongs to a certain X group and a certain Y group 
comprises a storage location. Thus, to select a storage 
location for reading or writing it is merely necessary to 
apply half-read or half-write current pulses to two in­
put terminals, namely the input terminals of the partic­
ular X and Y groups which specify the particular stor­
age location. It should be understood that cores of 
many locations belong to each X group and each Y 
group. However, when a core is supplied with only one 
half-write or half-read current its magnetic state is not 
affected. For this reason it is said to be only half-se­
lected. 

Since information is transferred into or out of only 
one location in the array at anyone time, groups of 
sense windings or groups of inhibit windings can be 
series connected on a bit basis. For example, the cores 
which store the first or most significant bit in each of 
the locations of the array can have their sense (or out­
put) windings connected in series. They can ~lso h~ve 
their inhibit (or input) windings connected m serIes. 
The same thing is true of the cores which store the sec­
ond bit, and the third, and so on. This means that the 
same set of output lines can be used to sense the bits of 
every location in the array. Also, one set of input lines 
may be used to perform the inhibit function for every 
location in the array. 

Now that the organization of the array has been 
reviewed, it is worthwhile to return to two characteris­
tics of the read-write scheme which were mentioned 
earlier: 

a. A memory location must be cleared of l's prior 
to the writing of information on it. 

b. Readout from the core memory is destructive. 

Since readout is destructive, a read cycle can be 
used to clear a location prior to the performance of a 
write operation. Also, since it is usually desirable to re­
tain in a memory location a "copy" of the word read 
out of it, a write cycle normally follows the destructive 
read operation. These two facts can be restated as fol­
lows: Regardless of whether the purpose of an opera­
tion is the transfer of information out of the core mem­
ory or the transfer of information into the core mem­
ory, the same basic cycle must be performed; i.e., a read 
operation followed by a write operation. 

2.6.2 Sample Computer Memory Element 
Operation 

Figure 4-5 illustrates the operation of the mem­
ory during both read (solid lines) and write (dotted 
lines) cycles of a word transfer operation. The core ar­
ray is assumed to be a typical ferrite core array capable 
of storing 1,024 16-bit words. The timing and control 
section shown is a delay line control such as that de­
scribed in Part 3, Chapter 3, paragraph 3.6.2.2. The se­
quence of memory-control pulses generated by this con­
trol device is initiated by a read-operation or write-op­
eration pulse from the computer control. The selection 
section is composed of diode matrix decoders. These 
matrices decode the address information which specifies 
the location to which, or from which, a word is to be 
transferred. The sense section consists of amplifiers and 
gates which can sense the output of the core array. The 
memory buffer is a flip-flop register which is actually 
under control of the computer control rather than the 
memory timing and control section. Finally, the inhibit 
section is a series of gates conditioned by the zero sides 
of the memory buffer and pulsed by the timing and con­
trol section. 

The operations of the memory are similar whether 
a transfer out of memory or a transfer into memory is 
called for. In both cases, dual cycles will be required, 
one cycle to read from the array, the other to write into 
the array. Since the transfer operations are very similar 
whether information is entering or leaving memory 
figure 4-5 may be used to show both operations. In 
this figure, the operations accomplished during a read 
cycle of any transfer operation are shown in solid lines. 
The operation which occurs during a write cycle is 
shown in dotted lines. 

When the purpose of the cycle is to transfer a word 
out of the core memory, the memory control circuits 
transfer the word from the array to the memory buffer 
register. The process is as follows: The cycle is s~ar~ed 
by the computer control element. One clears the tlmmg 
and control section and the memory buffer so that they 
are ready to start the memory cycle. Two control pulses 
are sent to the memory element. The other, the read­
operation pulse, starts the memory and specifies the 
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Figure 4-5. Read and Write Operation of Memory 

purpose (read) of the operation. At the same time the 
computer control element sends the address of the word 
to he selected to the selection section of the memory. 
From then on, the completion of the transfer operation 
depends upon the internal controls of the memory it­
self. 

Half-read-current pulses are supplied to the X and 
Y coils of the specified storage location, causing all 
those cores containing l's to be driven to the 0 state. 
The pO'larity reversal of these cores is sensed and is 
caused to condition the previously cleared buffer regis­
ter, which now stores the information temporarily. (It 
is now apparent that the buffer register had to be 
cleared prior to receiving the sense pulses for, other­
wise, it might contain some l's which did not originate 
in the core location.) The read cycle of the operation is 
followed by a rewrite cycle. During this cycle, the O's 
of the number temporarily stored in the memory buffer 
register are gated through the inhibit section to furnish 
inhibit pulses to the location which is again fully se­
lected, this time by X and Y half-write pulses. (In fig. 
4-5, the operations in this rewrite cycle are indicated 
by dotted lines.) The result is that the word removed 
from storage is rewritten in the same location. How-

ever, a copy of it remains in the buffer register ready 
for transfer to some other part of the computer. 

When the purpose of the cycle is to transfer a word 
into the core memory, the memory control circuits trans­
fer the word from the memory buffer register to the ar­
ray. The process begins with the control element caus­
ing the word to be transferred into the memory buffer 
register from the source (e.g., the arithmetic element). 
This time the operation is started by a write-operation 
pulse from the computer control element. The memory, 
therefore, knows that the transfer is to be into the mem­
ory. As in the transfer from memory, the control ele­
ment also sends address information to the selection 
section of the memory. From then on the operation de­
pends on the memory control circuits for completion. 

The storage location is first fully selected by X and 
Y half-read currents from the selection section just as 
in the previous case. However, in this operation, the 
voltage pulses induced in the sense windings by the 
cores containing l's are of no interest, because the op­
eration is performed merely to clear the location for the 
receipt of the new word. Moreover, since the buffer 
register is temporarily storing the word to be read into 
the storage location, the contents of the buffer register 
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must nDt be destrDyed. CDnsequently, the Dutput Df the 
sense windings must be prevented frDm cDnditiDning 
the buffer register. This is dDne by cDnditiDning the in­
hibit sense line. By referring again to' the dDtted lines 
of figure 4-5, it can be seen that, after the storage 10'­
catiDn has been cleared by the half-read pulses, it is 
fully selected again, this time by means Df X and Y half­
write pulses. SimultaneDusly, the O's Df the wDrd in the 
memory buffer, which is to be entered into stDrage, are 
used to' generate inhibit pulses. Thus, the new word is 
written intO' the selected IDcatiDn just as in the write 
cycle Df the read DperatiDn. 

In summary, it can be seen that, because readDut Df 

a CDre memDry is destructive and because writing re­
quires a clearing Df the memDry IDcation, it is CDn­
venient to' make the read and write DperatiO'ns as nearly 
alike as pDssible. A read cycle and a write cycle are 
provided regardless Df whether the Dperation is a trans­
fer intO' Dr Dut Df memory. The difference between the 
twO' types Df transfer lies in the Dperation of the mem­
Dry buffer and the sense sectiDn. Table 4-1 summarizes 
the difference. 

2.6.3 Operation of Memory in Computing 
System 

The operatiDn Df memDry in a stDred prDgram CDm­

puting system is based upDn the fact that both instruc­
tion and data wO'rds are stored. The two types of in­
fDrmatiDn are used for quite different purposes: One is 
used to' tell the computer what DperatiDn to' perfDrm; 
the Dther gives the cDmputer the data that the Dpera­
tiDn is to' be perfO'rmed upon. 

Despite the difference in the use Df the twO' types Df 

wDrds, they are indistinguishable in fDrm. That is, they 
are bDth binary numbers and, in most cases, are Df equal 
lengths. The cDmputer distinguishes between the twO' by 
keeping track Df where the twO' types of infDrmatiDn are 
stored. In a single-address cDmputer distinguishing is 
usually dDne by stDring the instructiDns in sequence in 
the first addresses Df memory while the data wDrds are 

stDred tDward the end Df the memDry addresses. FO'r 
instance, the first 300 IDcatiDns of a 1,024 IDcatiDn mem­
Dry may cDntain the instructiDns sequence 0, 1 thrDugh 
299 Df the prO' gram while the data is kept in the last 
724 IDcatiDns. With such a system, the cDmputer can be 
built to' automatically read Dut the instructiDns in se­
quence. The data address is Dbtained simply by refer­
ence to' the address part Df each instruction wDrd. 

CDnsequently, the executiDn Df an instructiDn re­
quires Dbtaining data frDm memO'ry, at least twO' mem­
Dry references must be made. The first is the reference 
to' obtain the instructiDn frDm the prDgram sequence; 
the secDnd is to' Dbtain data frDm the locatiDn in mem­
Dry specified by the address part Df the instructiO'n. 

In figure 4-6, the cDntents Df 16 IDcations in mem­
Dry are shDwn. The CDntents consist Df a simple 4-step 
prDgram in IDcatiDns 000 thrDugh 003 and the data 
which the prDgram is to' Dperate upDn in IDcatiDns 
013, 014, and 015. At the end Df the programs execu­
tiDn, IDcatiDn 015 will CDntain the result Df the program 
(1600). The prDblem can be stated 1000 + 600 = 1600. 
The executiDn Df the prDgram wDuld prDceed as fDl­
IDWS: 

a. When the computer is started, the cDmputer CDn­

trDI autDmatically calls fDr the infDrmatiDn in 
100catiDn 000 to' be transferred frDm memDry to' 

the cDntrDI element. 

b. The cDntrDI element decDdes the instruction 
thus Dbtained. Since a reference to' memDry is 
required, the cDntrDI element sends address in­
fDrmatiDn assDciatd with the instructiDn (IDca­
tiDn 013) back to' the memDry selection circuits 
and calls fDr a memDry read DperatiDn. 

c. The read DperatiDn transfers the data in IDca­
tiDn 013 (1000) to' the accumulatDr Df the arith­
metic element. 

d. At the cDmpletiDn Df this instructiDn, the CDm­

puter autO'matically refers to' the next IDcatiDn 
in the sequence Df instructiDn (lDcatiDn 001). 

TABLE 4-1. SUMMARY OF DIFFERENCES BETWEEN READ AND WRITE 
CYCLES OF A READ OPERATION AND A WRITE OPERATION 

CYCLE 

Read 

Write 

TRANSFER INTO MEMORY 

1. Started by write-DperatiDn cDmmand. 

2. Clearing DperatiDn. 

3. CDntents Df memDry IDcatiDn are nDt sensed. 

4. CDntents Df memory buffer are not changed. 

1. Rewrite former contents of memory 10catiDn 
back intO' memory 10catiDn. 

UNCLASSIFIED 

TRANSFER OUT OF MEMORY 

1. Started by read-operation cDmmand. 

2. Transfer operatiDn. 

3. Contents of memory location are sensed. 
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Figure 4-6. Contents of Memory During 
Execution of Program 

e. The instruction in this location is transferred to 
the control element, where it is decoded. 

f. Again, the computer control ascertains that a 
reference to memory is required. Therefore, ad­
dress information (location 014) is sent to the 
memory selection circuits and another memory 
operation started. The word in location 014 
( 600), is transferred to the arithmetic element 
and added to the contents of the accumulator. 
(As a result the accumulator contains 1600.) 

g. The computer then automatically refers to the 
next address in the program sequence (at loca­
tion 002). The information in this location is 
transferred to the control element to be de­
coded. 

h. The control element determines that the refer­
ence to memory is a storing operation. Tliere­
fore, the control element sends the address in­
formation associated with the instruction (loca­
tion 015) to the selection circuits of memory, 
together with a store operation control. The in­
formation in the accumulator is then transferred 

into location 15 of memory via the memory buf­
fer register. 

i. When the Store instruction is completed, the 
computer automatically refers to the next loca­
tion in the program sequence. This instruction 
is a Halt instruction which stops the computer 
so that no more memory locations will be re­
ferred to, either automatically or by instruction. 

This last instruction, it will be noted, distinguishes 
the instruction words from the data words in the mem­
ory. If no Halt or similar instruction were given, the 
computer would automatically continue reading succes­
sive memory locations until the machine was shut off. 
This means that eventually (steps 13 and those follow­
ing) the computer would try to use the data words as 
instructions. 

2.7 AUXUIARY MEMORY 

2.7.1 General 

It has been stated that the internal memory of the 
sample computer consists of primary memory and aux­
iliary memory. It may be recalled that the primary and 
auxiliary memory combination is designed to provide a 
very large memory, almost as fast as a single, large, 
high-speed memory would be. This system has the de­
sired characteristics if two provisions are fulfilled: 

a. The two storage systems are compatible in speed 
and operating characteristics. 

b. The information to be stored is organized so as 
to take advantage of the total memory system. 

2.7.2 Choice of Auxiliary Memory Medium 

In the example computer, core memory is used as 
direct-access memory. Choice of the auxiliary memory 
medium must, therefore, be limited to one which is com­
patible with the core memory. The auxiliary memory 
must also be one which has a potentially large storage 
capacity. It must also be as reliable as possible since the 
computer can only be as accurate as the data entered 
into it. Drum storage can be made to fit all of these re­
quirements and so is used as auxiliary memory in the 
sample computer. 

2.7.3 Operation of Sample Computer 
Auxiliary Memory 

2.7.3.1 General 

Figure 4-7 shows a typical drum and indicates the 
configuration of bits stored. On the right is a timing 
track of bits permanently recorded around the drum. 
This timing track, as the name implies, is used to time 
the reading and writing operations of the drums. The 
head, which reads the bits of the timing track, puts out 
a pulse which initiates the read or write operation at 
each register location around the drum. It can be 'seen, 
then, that the timing track determines the position of 
each register around the drum. 
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Figure 4-7. Auxiliary Memory Drum 

When the ttmtng track is originally put on the 
drum (during manufacture), it is recorded as evenly 
spaced bits around the drum. However, one bit is left 
out to indicate a beginning and end of the drum field. 
This is called the index point of the drum. Because the 
beginning of the field is indicated, it is possible to ad­
dress the different registers of the drum with a counter. 
The address of a register is a count of the number of 
registers (timing track bits) between the index point 
and the register. 

Figure 4-7 shows a drum designed for parallel 
read and write operation. When a single word is to be 
read out, all the read heads of the field are conditioned 
to read simultaneously. Then, as the magnetized spots 
of the register to be read pass under the heads, they 
are read out simultaneously. 

2.7.3.2 System Operation 
Figure 4-8 shows the drum system in more detail. 

The drum with its timing track and its read and write 
heads is the same as that just described. The read cir­
cuit consists of amplifiers and gates which transfer a 
word being read from the read heads to its first destina­
tion, the drum read-and-write register. The write cir­
cuits perform the same function in reverse for words 
to be read into the drum. The drum read-and-write 
register is a temporary storage register for words wait­
ing to read into the drum from core memory or into 
core memory from the drum. 

The timing and control section is a long delay line 
control. In this device the timing cycle is started by a 
pulse from the timing-track head. This pulse is routed 
through a line of delay units and gates to properly se­
quence the control function required. The control 
(gates) of the timing and control section are condi-

tioned for a write or read operation according to the 
type of start pulse received (start-read or start-write). 

The angular position counter and the compare sec­
tion are the selection circuits of the storage system. 
The angular position counter counts timing track bits 
after being reset to zero by the timing track index 
point. The count of timing track bits indicates the 
drum register address. The compare section compares 
the angular position counter contents (drum register 
address) with the register address specified by the com­
puter instruction. When these addresses compare cor­
rectly, the compare section initiates the transfer opera­
tion required. 

A read operation begins with the instruction Read 
Auxiliary Memory Address 10 (RAM1 0) which is de­
coded by the computer control section. It sends the ad­
dress information (10) to the drum compare section 
and then sends a read-from-drum pulse to the drum 
timing and control section. The timing and control 
is conditioned to cause a read operation to start. The 
timing and control section then allows the compare 
section to compare the address specified by the pro­
gram with the contents of the angular position counter 
(the address of the register under the read heads). 
When the location addresses compare, the sought for 
register is about to come under the read heads. The 
compare section, therefore, conditions the read circuits 
to transfer the word read to the drum read-write 
register. Here, it is held until the program directs it to 
be read into memory. When the compare section con­
ditions the read circuits, it also sends a transfer-com­
plete pulse to the computer. This pulse notifies the 
computer control element that the word is in the drum 
read-write register, ready for transfer to core memory. 
The program, which was automatically stopped by the 
RAM instruction, can then proceed to the next in­
struction. 

The write process operates in the same· way except 
that the transfer is from core memory into the drum 
read-write register and then into the drum by way of 
the write circuits. The write operation is started by a 
write-on-drum pulse. In figure 4-8 the dotted lines 
indicate write operations which differ from the corre­
sponding read operations. 

2.7.3.3 Program Operation 
Auxiliary memory information is accessible to the 

computer only through direct-access memory. The par­
ticular (much simplified) system of transferring infor­
mation from the computer auxiliary memory to the 
primary memory requires two instructions. One in­
struction (RAM drum address X) specifies the reading 
of a word from a specified auxiliary memory register 
into the drum read-write Register. A second instruc­
tion, (SAM memory address X) must then be given to 
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cause the word in the drum read-write register to be 
stored in a specified core memory register. 

When it is desired to transfer the word in auxiliary 
memory register 21 into core memory register 77, the 
program appears as follows: 

RAM 21 - word in drum register 21 to drum read-write 
register 

SAM 77 - word to memory location 77 

One thing should be pointed out about the RAM 
instruction. Most instructions take a specified length 
of time to complete. This instruction may require a few 
microseconds or several milliseconds, depending upon 
the position of the specified drum register when the 
instruction is given. To take care of this condition, 
this instruction automatically puts the computer into a 
pause condition (stops progression of program) until 
the transfer to the drum read-write register is complete. 
When the transfer is complete, the SAM instruction 
will be executed, but not before. 

One more thing should be noted about this trans­
fer operation. Normally information is transferred in 
blocks (several words at a time) by means of a repeti­
tive program whose principles are discussed in Part 5. 

When it is required to transfer a word from direct­
access memory to auxiliary memory, two instructions 
are again required. One instruction (WAM core mem­
ory address X) specifies the writing of the word at 
core memory address X into the drum read-write reg­
ister. The other instruction (T AM drum address Y) 
specifies the transfer of the word from the drum read­
write register to drum register Y. The same type of 
program is used to accomplish this operation as in the 
previous example. 

2.7.3.4 Operation of Direct Access and 
Auxiliary Memory 

The direct-access memory stores any data or pro­
gram which is in immediate use by the computer. Data 
processing is essentially a process of transferring in­
formation between two storage devices through a 
switching mechanism. The direct-access memory serves 
as the eventual source and destination in this process. 
In other words, direct-access memory is actually a part 
of the processing machinery. It is the only major stor­
age system to which the computer has direct access. 

The auxiliary memory is used to store information 
which is not of immediate use to the computer. How­
ever, when any is needed, a great deal is required at 
high speed. For instance, auxiliary memory is often used 
to store tables of data which are needed in certain 
computations. A table of friendly aircraft identifica­
tions could be stored in auxiliary memory. Such a table 
probably would be used only occasionally. However, 
when it was used in an identification, it would be nec­
essary to use the whole table, consisting of, perhaps, 

identity information for 50 airplanes. Auxiliary mem­
ory is also used to store parts of the program. Suppose, 
for instance, the program is too large to fit completely 
in direct-access memory. In this case, part of the pro­
gram would be stored in direct-access memory and part 
in auxiliary memory. Such a program might be executed 
in three phases. First the part stored in direct-access 
memory would be completed, next, the part stored in 
auxiliary memory would be completely read into direct­
access memory, and, finally, the new part in direct­
access memory would be completed. 

The speed and practicality of the memory system 
which consists of a combination of high-speed, direct­
access memory and intermediate-speed auxiliary mem­
ory are directly dependent upon the type of informa­
tion stored. Information in auxiliary memory should be 
of the type which is useful in blocks. Another require­
ment of the information is that it should be of the 
type used in repetitive operations, that is, it should be 
information which is used many times, once it is called 
in from auxiliary storage. If it is not, the proportion 
of time spent loading the information into direct-access 
memory could become so great that it would be more 
practical to use a single, fairly high-speed, very large, 
direct-access memory in place of the combination. As 
an example, consider a table of four numbers which 
is stored in auxiliary memory. Assume a 6-microsecond 
access time for direct-access memory and a 24-micro­
second transfer time for auxiliary-memory-to-direct­
memory transfers. Forget the time required to find the 
first drum register. The total transfer time for the four 
words of the table would then be approximately 18 
(3 transfer initiating instructions x 6 microseconds) 
+ 96 (4 transferred words x 24 microseconds), or 114 
microseconds. Now, if the reference to the table, once 
it was in direct-access memory, took three instructions 
(18 microseconds), the total time for reference to the 
table would be about 132 microseconds. This is also the 
average access time to the table. On the other hand, if 
the table were to be referred 100 times in some repeti­
tive program the average access time would be much 
less. If this were the case, the time of loading the four 
numbers would be the same, 114 microseconds. The 
total time consumed in reading the table 100 times 
after it was loaded would be 1,800 microseconds. The 

1,914 
average access time to the table would then be-----

100 
microseconds or about 19.1 microseconds per table 
reference. 

In summary, it can be said that a combination of 
auxiliary and direct-access memory is used to provide 
a high-speed, large capacity memory at reasonable cost. 
The speed and practicality of the system depends di­
rectly upon the type of information stored and upon 
its organization. 
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CHAPTER 3 
CONTROL 

3.1 BASIC CONTROL ASSUMPTION 

3. 1.1 Sequential Operation 

A digital computer functions step by step. The 
operation, therefore, depends upon a sequential control 
of various functions performed by the computer. To 
provide this sequential control, a control element is 
included. This element is primarily used to control the 
interaction of the operations performed by each of the 
other elements so that together they can operate as a 
system. In some cases, the control element can also be 
used to control the operation within an element. In any 
case, however, the control device performs a similar 
function; it determines the sequence in which the vari­
ous parts of the computer operate. 

3. 1.2 Types of Control 

In general, three types of control are possible: 
synchronous, asynchronous, and a combination of these. 

3.1 .2.1 Synchronous Operation 

In synchronous operation the beginning and end 
of each operation performed and the timing of that 
operation are determined by some central source. This 
means that each operation is done in a cycle or in an 
integral number of cycles, usually all of equal length 
so that it takes the same time to complete two opera­
tions no matter how long one operation is or how short 
the other is, if both can be done in the same number 
of cycles. 

The synchronous mode of operation requires a 
central timing source to determine the length of a cycle 
and the number of cycles to be used throughout the 
computer. Without a central timing source, the various 
parts of the computer could not be synchronized. Usu­
ally, this timing source is in the form of a pulse-output 
oscillator of fixed pulse repetition frequency (PRF), 
together with a time pulse distributor. The oscillator 
furnishes the basic timing pulses to the machine. The 
time pulse distributor separates these time pulses into 
cycles of equal length and distributes them where they 
are needed. For instance, it might split the time pulses 
into consecutive trains of 15 pulses each to make suc­
cessive cycles 15 pulse-times long. These pulse cycles 
can then be sent to the control element to furnish the 
time-sequencing necessary to execute the instructions. 

3. 1.2.2 Asynchronous Operation 

Asynchronous operation is that in which the be-

ginning time of each new operation is determined by 
the ending time of the previous operation. In other 
words each operation may have a final pulse which is 
used to start the next operation. In this case, there is 
no set cycle time. Those operations whose execution 
require very few different operations do not take as 
long to do as those which require many operations. 
An example of an asynchronous operation is the oper­
ation of the auxiliary memory drum mentioned in the 
previous chapter. When an instruction is given to trans­
fer a word from the drum, the program progression 
stops until the transfer is complete, at which time the 
drum controls restart the program progression. 

Theoretically, in a completely asynchronous paral­
lel machine no timing other than that furnished by 
the delays inherent in each operation would be re­
quired. Usually, however, some source of central timing 
is required to furnish time pulses. 

3.1.2.3 Synchronous-Asynchronous 
Combinations 

Synchronous operation is generally somewhat 
slower than asynchronous operation. However, the fact 
that a synchronous system is easier to design and main­
tain than an asynchronous system makes it more suit­
able for computing circuits where the difference in com­
parative speeds is small. Computing circuits are usually 
designed to operate synchronously. However, where 
the possible time saving is great such as when a com­
puter is transferring information into or out of me­
chanical equipment, asynchronous operation is often 
used. In this case, the two systems might operate 
synchronously within themselves, but their operation 
together would be asynchronous. That is, the computer 
would arrive at its results using synchronous opera­
tion. The transfer of the results to the output would 
be on demand, or an asynchronous operation. 

Actually there is little difference in a control func­
tion whether it be accomplished synchronously or 
asynchronously. The function is always to make sure 
that the various computer operations occur in proper 
sequence. Therefore, since the synchronous system is 
much easier to understand, the following explanation 
of control deals almost exclusively with synchronous 
control. 

3.1.3 Coding 

The ability to follow a list of instructions, such as 
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a computer program, requires first of all, a method of 
communicating the instructions in the list to the com­
puter. This is done by means of a special operation or 
instruction code, which each computer is designed to 
follow. This operation code may be in any of several 
forms. It may be for instance, that the entire program 
is built into the machine; this is the case in special 
purpose computers meant to do only one specific job. 
It also may be that the code will be in the form of 
numbers or instruction words, which can be put into 
the machine just like data. Such a machine may be able 
to execute 50 different instructions. If this is so, 50 
numbers will be assigned to stand for these instruc­
tions, and the control element will be built to respond 
to these numbers. This last is the case with which this 
manual is concerned. This is called a stored program 
computer. 

When the operation code consists of a series of 
numbers, each of the numbers (instructions) has the 
same basic format. In general, instructions will consist 
of two parts as illustrated in figure 4-2. One part, 
called the operation part, specifies the operation to be 
performed. The other, -called the address part, specifies 
the location in memory where the operand to be oper­
ated upon may be found. There are some exceptions 
to this general rule, however. Sometimes there is an 
instruction for which no operand must be specified. 
For instance, the instruction may tell the computer to 

stop computing. In this case the address portion of the 
instruction is automatically ignored. 

3.1.4 Basic Control Element Functions 

Two fundamental abilities are necessary if the con­
trol element is to be able to follow a list of instruc­
tions made up of code numbers as described above: 
The control element must be able to pick out the cor­
rect instruction to perform at all times; the control 
element must be able to interpret each instruction and 
to command the action from the other elements which 
will execute the instruction. 

3.1.5 Program Time: Operate Time 

Each instruction execution may be divided into 
two phases. During the first, which is commonly called 
"program time," the control element receives the in­
struction and decodes it. During the second phase, 
commonly called operate-time, the other elements are 
caused to perform the indicated operation. 

During program time, the computer generally does 
three things. It selects the instruction to be executed; 
it will cause this instruction to be read into the control 
element; and, finally, it decodes the instruction. This 
decoding includes conditioning the circuits in other 
elements to perform the operation called for, as well 
as selecting the memory location of the operand. 

During operate time two things generally occur: 

The selected operand is read out of memory (or in 
some instructions read into memory), and the opera­
tion is performed. 

In any computer control function, two elements 
are used to perform the control. One element is the 
logic of the circuits. The other is the timing of the 
circuits. For instance, a 2-way AND circuit may have 
an output only if both inputs are up at the same time. 
If the inputs go up and down at different times, no 
outputs are produced. In the sample computer, this 
principle of timing is used to differentiate between 
program-time operations and operate-time operations 
by using diffrent timing devices for the two types of 
cycles. During program time, time pulses come from 
the program-time pulse distributor; during operate 
cycles they come from the operate-time pulse distri­
butor. These two time-pulse distributors never distri­
bute their pulses simultaneously. (See fig. 4-9.) A 
time pulse distributor is a circuit which distributes 
pulses entering it on a single line into cycles of pulses 
leaving it on several lines. 

3.2 OPERATION OF SAMPLE COMPUTER 
CONTROL 

3.2.1 General 

Both instructions and operands are stored in mem­
ory. Most instructions require two memory cycles for 
execution. One memory cycle is required to obtain the 
instruction from memory; another is required to obtain 
the operand 'from memory. This is in accordance with 
the idea of program time and operate time mentioned in 
the previous section. 

3.2.2 Program Time 

3.2.2.1 Program Sequencing 

The method of determining the sequence of in­
structions during execution of a program is based upon 
the method of storing the instructions. The instructions 
are always stored in the proper sequence in consecutive 
memory locations. Usually the instructions are located 
at the beginning of the memory addresses (lower 
numbered addresses). For instance, the first instruc­
tion might be stored at location 000, the second at 
location 001, the third at location 002, and so forth. 
With such a system of program storage, it is simple 
to keep track of the location of the instruction to be 
executed. This is done by the program counter, which 
counts the number of instructions executed. Since the 
counter starts at 0 and the address of the first instruc­
tion is 0, the contents of the counter always equal the 
address of the instruction to be executed. Whenever 
an instruction is to be read from memory, the contents 
of the counter are transferred to the memory-selection 
circuits to indicate the address of the instruction to be 
selected. 
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Figure 4-9. Program Time: Operate Time, Pulse Distributor Operation 

Once the instruction has been selected, it is read 
into the decoding register where it is temporarily stored 
while the decoding is accomplished. 

Figure 4-10 shows the process; the contents of 
memory is to be four instructions at addresses 0000 
through 0003 and two data words in locations 0004 

and 0005. At the beginning of the program, the pro­
gram counter is set to zero. At the beginning of the 
first program time, the contents of the program counter 
are gated into the memory-slection circuits. The mem­
ory-selection circuits, therefore, are conditioned to se­
lect address 0000, the contents of the program counter, 
and also the location of the first instruction. A memory 
read operation is started, and the instructions are read 
into the memory buffer register. From here, the instruc­
tion word is gated into the instruction register by gates 
which are conditioned during program time only. 

At the end of program time, the program counter 
is stepped by 1 so that it contains the address of the 
next instruction to be executed (0001 in this case). 
When the next program time occurs, the contents of 
the program counter can again be used to select the 
proper instruction address. It can be seen, then, that 
the instruction sequencing is an automatic function of 
the control element. In Part 5, 3.3, a method of altering 
this sequence by programming is illustrated. 

In figure 4-10 the memory location immediately 
following the last instructio:l (Halt) is a data word. 

Since data and instruction words are both in the same 
form (binary numbers), it is conceivable that a data 
word could be mistaken for an instruction word. If the 
program should continue beyond program step 4 (in­
struction in location 0003), this mistake would occur. 
To prevent it, the Halt instruction is put between the 
block of instructions and the data. This instruction 
stops the computer before it can mistake data for in­
structions. The only means of the computer's distin­
guishing between data and instruction words is by its 
determining where the word is stored and separating 
the two storage areas. 

3.2.2.2 Instruction Decoding 

As soon as the instruction is transferred - from 
memory to the operation and address registers, decod­
ing of the instructions can start. The decoding process 
depends upon the fact that all instructions words have 
fundamentally the same format. 

An instruction word, in general, specifies an opera­
tion and the address of an operand. Therefore, part 
of the word is decoded to carry out the operation and 
another part is decoded to select the proper word from 
storage for transfer to the arthmetic element. This 
2-part decoding implies that the two parts of the word 
must be decoded by separate matrices. In order to 
facilitate separate handling, an instruction word is split 
into two parts when it is transferred from storage to 
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Figure 4-10. Instruction Selection, Readout, and Decoding (Program Time) 

the control element. One part is entered into an opera­
tion register and the other into an address register. 

The general method for decoding the instruction 
and selecting the operand is shown in figure 4-10. 

The binary number which forms the operation part 
of the instruction is decoded in a decoding matrix 
(operation decoder). This decoder conditions a separ­
ate output line (or set of lines) for each instruction. 
This line (or lines) condition (s) circuits in the rest of 
the control element (such as the transfer address gate 
in the figure) so that they will be ready to perform 

the operation specified when the operand becomes 
available or when the proper time comes. 

Once the operation part of the instruction has 
been decoded, the address part may be transferred to 
the memory selection circuits. This is accomplished later, 
during operate time. 

In summary, then, the control element accom­
plishes two things during program time: It selects the 
instruction from memory; it decodes the operation 
part of the instruction to prepare for execution of the 
instruction. 
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figure 4- J J. Instruction Decoding (Operate Time) 

3.2.3 Operate Time 

As soon as the control element has obtained and 
decoded the instruction, the computer starts an operate 
cycle. During this cycle, the operand is transferred to 
or from memory, and the pulses necessary to accomplish 
the operation specified are generated. In other words, 

the control circuits which were set up or conditioned 
during program time will be used during operate time 

to control the actual execution of the instruction. 
Figure 4-11 illustrates how this is done for a Clear 

and Add instruction. It shows the operate-time pulse 
distributor feeding into gates which have been pre­
viously conditioned by the instruction decoder outputs. 
Since the operate-time pulse distributor produces an 
output during the operate cycle, the control pulses are 
transmitted to the arithmetic and memory elements as 
shown, only during operate time. 
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3.3 CONTROL ELEMENT OPERATION 

As an example of the operation of the control 
element when executing an instruction, assume that the 
instruction ADD 36 occurs in a program. This instruc­
tion means that the number in memory location 36 
should be added to the number which is already in the 
accumulator as a result of previous arithmetic opera­
tions. Assume also that this instruction occurs on step 

20 (instruction at address 19) of the program. At the 
time considered, step 19 has just been finished. The 
following listing is a summary of what happens in the 
execution of the instruction. Reference should be made 
to figure 4-12. 
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a. At the completion of the previous instruction, 
the computer automatically went into program 
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time. Therefore, the program-time pulse dis­
tributor is active. 

b. Since 19 instructions have been executed, the 
contents of the program counter is 019, which 
is the address of the 20th instruction. The con­
tents of the counter have been transferred to 
the memory selection circuits. 

c. A memory operation is commanded, and the 
instruction register gates are pulsed to transfer 
the instruction word from memory to the oper­
ation and address registers. 

d. The instruction word is then decoded. The 
operation part conditions the command gen­
erator gates. 

e. Program counter is stepped by 1 so that it con­
tains the address of the next instruction to be 
executed. 

£. Computer goes into operate-time so that oper­
ate-time pulse distributor will be active. The 
address part is transferred to the memory selec­
tion circuits to select the proper operand. 

g. A memory read operation causes the operand 
to be read into the arithmetic element. 

h. Command lines, to cause the arithmetic element 
to add, are pulsed in their turn. 

1. The computer goes back into program time In 

order to start execution of next instruction In 

program. 

3.4 VARIATION OF PROGRAM BY CONTROL 
ELEMENT 

3.4. 1 Changing Program Sequence 

3.4.1.1 General 

The control element described so far is capable of 
executing a program which has only one possible se­
quence once it is entered into the computer; that is, 
once a program is stored in memory, there is no way 
to change it except by replacing it with another or part 
of another program. Since this is true, it would be 
difficult for the computer to make logical decisions; for 
instance, "If the number in the accumulator is negative 
add a constant to it, but if the number is zero or posi­
tive subtract the constant from it." 

The ability to make logical decisions is very im­
portant in a mathematical process. This ability must, 
therefore, be included in any computer which is to 
solve problems other than the most simple kind. 

What is required in the execution of the logical 
issue posed above? The results of a previous calcula­
tion must be studied. (Is the answer positive or nega­
tive?) If one result was obtained one process will be 
executed; but, if the other result was obtained, a differ­
ent process will be executed. In other words, the se-

quence of operations depends upon the results of a 
previous operation. This, in general, is the way that a 
computer accomplishes a logical choice. When the pro­
gram requires a logical choice to be made, a special 
instruction is inserted which allows the program se­
quence to be changed according to the results of a 
previous calculation. 

3.4.1.2 Conditional Branch 

The special instruction used is called a Conditional 
Brancb. It specifies from what location in memory the 
next instruction in the program will be taken if the 
condition is met. The operation part of the Brancb 
instruction gives the conditions of the branch of con­
trol; e.g., it could specify that a branch occur if the 
accumulator is negative. The address part of the in­
struction specifies the location of the next instruction 
to be executed. If the conditions of the branch are not 
met, no change of program sequence will be made; 
consequently, the next instruction executed will be the 
one which follows the Brancb instruction in the normal 
sequence. 

A brief illustration may help to make this clear. 
Assume that the fifth instruction (in location 004) in 
a program is, "branch, if the accumulator is minus, to 
location 020." At the time of the instruction, if the 
accumulator is minus, the next instruction executed 
will be that in memory location 20. If, on the other 
hand, the accumulator sign is positive, the branch oper­
ation is ignored and the next instruction is obtained 
in the usual way from location 005. 

The execution of the Brancb on Accumulator 
Minus instruction is done by examining (electrically 
sensing) the sign of the accumulator and transferring 
the contents of the address register into the program 
counter if the sign is minus. 

Figure 4-13 illustrates. the execution of the 
Bram-b on Full Minus instruction. During program 
time, the instruction is transferred to the operation and 
address register just as in any other instruction. The 
program counter is stepped, and the command circuits 
are set up. During operate time, the sign bit of the 
accumulator is examined. If this sign is negative, the 
contents of the address register are transferred to the 
program counter. Otherwise, nothing happens to the 
program counter; in which case, the next instruction 
is selected as it would be during normal sequential 
operation. (Remember that the program counter has 
already been stepped.) 

3.4.1.3 Unconditional Branch 

Another feature which is included to make the 
computer more flexible is the Unconditional Branch. 
This instruction directs the control element to take its 
next instruction from the location specified in the ad­
dress part of the branch instruction. 
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Figure 4-13. Conditional Branch Instruction Execution (Branch on Full Minus) 

The Unconditional Branch instruction is accom­
plished by transferring the contents of the address 
register into the program counter. The only difference 
between the execution of this and of the Conditional 
Branch is that there is no sign bit-sensing required. 

3.4.2 Alteration of Instructions 

3.4.2.1 General 
A very common feature of computer programs is 

their repetitive nature; for example a program to add 
20 numbers together would contain a Clear and Add 
instruction, 19 add instructions, and a Halt instruction. 
Such a program would require about 41 memory loca­
tions to hold the 21 instructions and 20 operands. But, 
in this program, the 19 Add instructions are all the 
same except in their address parts. This implies that a 

single Add instruction (stored in one memory loca­
tion) might be used to accomplish what 19 Add in­
structions do in this program. This can be done by 
changing the computer program sequence so that the 
same program step is repeated 19 times. However, each 
time the step is repeated the address specified will be 
modified by circuits in the control element. The 19 
modifications to the address of the instruction will 
make the repetitive operation equivalent to a program 
where 19 different add instructions are used. A pro­
gram to add 20 numbers together using an address 
modification scheme would have the following sequence 
of events, assuming the 20 numbers are stored in mem­
ory locations 60 to 79: 

1. Clear the accumulator and add in the number 
contained in location 60. 
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2. Add the number in location 61 to the contents 
of the accumulator. 

3. Repeat step two 18 times. Just prior to each 
execution, add a one to the address portion of 
the instruction of step 2. 

4. Stop computing after the 18th repetition IS 

completed. 

In general, there are two ways to accomplish the 
address modification required in this type of program. 
One method is by a special programming trick ex­
plained in Part 5, 3.4. Another way is by means of 
special program control circuitry called index registers. 

3.4.2.2 Index Registers 

In a repetitive routine an index register is used to 
modify the addresses in the routine, as well as to count 
the number of repetitions. The address is changed by 
adding the contents of the index register to the address 
of the instruction being executed just prior to selection 
of the operand (see fig. 4-14). The process, therefore, 
results in the selection of an operand whose location 
address is the sum of the original address specified by 
the instructions and the contents of the index registers. 

A repetitive program is accomplished with the 
indexing feature as follows: 

PROGRAM 
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a. The index register is loaded with the number 
of repetitions which are required. 

b. During each repetition, any instruction which 
requires address modification specifies so as a 
part of the instruction. (This is done when the 
program is written.) In this case, the contents 
of the index register are added to the contents 
of the address register between the time when 
the address specified by the instruction enters 
the address register and the time the (modified) 
address is sent to the memory selection circuits. 
(See fig. 4-14.) 

c. Each time a new repetition is specified, the con­
tents of the index register are automatically 
decreased by 1. (1 is called the index interval.) 

d. A new repetition is specified by a Branch and 
Index instruction, which branches the control 
back to the first instruction in the repetitive 
routine. 

e. The Branch and Index instruction is a condi­
tional branch. The branch occurs only as long 
as the index register is positive. When the index 
register becomes negative the iterations are over 
and the non-repetitive portion of the program 
continues. 
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Figure 4-14. Address Modification by Index Register 
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To provide this repetitive program facility in the 
computer, the following new circuits must be added to 
the control element: an index register and adder, 
which can add the contents (positive) of the index 
register to the contents of the address register; con­
trols to initiate this addition at the proper time; and 
circuitry for an extra bit in the instruction word to 
indicate that indexing is necessary. Also, there must be 
a way of clearing from, and reading into, the index 
register through programming. And finally, there must 
be a way of stepping the index register down one on 
the Branch and Index instruction. 

Figure 4-14 shows the operation of the index 
register when an ADD instruction, with indexing speci­
fied, is given. The instruction is read out of memory 
in the usual way during the first part of program time. 
The operation part of the instruction is decoded to 
give an add-decode output level as in a normal ADD 
instruction. The decoder also puts out an index-decode 
level which conditions the indexing command genera­
tor (GT 1). Just before the transfer of the address to 

the memory selection circuits, the contents of the index 

register are added to those of the address register. 

160 UNCLASSIFIED 



PART 4 
CH 4 

UNCLASSIFIED 
T.O. 31P2-2FSQ7-2 

Arithmetic Element Requirements 
4.1-4.3 

CHAPTER 4 
ARITHMETIC ELEMENT 

4.1 GENERAL 

Data processing is accomplished in a computer by 
a controlled transfer of information between storage 
devices. The transfer is made through a data-manipu­
lating or -switching device. It is this device which does 
the actual changing of data which is necessary in the 
process. The switching device changes the data by per­
forming simple arithmetic operations upon it. For this 
reason the device is called the arithmetic element. 

4.2 ARITHMETIC ELEMENT PURPOSE 

The arithmetic element of a computer has two 
main functions: It operates on data, and it operates 
on program instructions. The data operated upon com­
prises the actual numbers of the problem to be solved. 
The arithmetic element does the addition, subtraction, 
etc., for solution of the problem. As stated in 3.4, it 
is often necessary to change the instructions of a pro­
gram as the solution is carried out. Because the instruc­
tions is by programming. In this case, the arithmetic 
element can be used to change them while the program 
is in progress. 

Operations on the program are accomplished in 
two general ways. Sometimes the arithmetic element is 
used as a part of the control element circuitry; for 
instance, the accumulator of the arithmetic element 
might be used as an index register. A more obvious 
way of using the arithmetic element to change instruc­
tions is by programming. In this case, the arithmetic 
element is used merely as an arithmetic device. The 
instructions to be changed are taken as operands in an 
instruction-changing subprogram. Such a program 
changes an instruction by calling it out of its location 
in memory, adding or subtracting a previously stored 
constant to the instruction, and, then, restoring the 
(modified) instruction to its original location in mem­
ory. 

4.3 REQUIREMENTS OF AN ARITHMETIC ELEMENT 

It would be possible to perform arithmetic by using 
a purely logical network in combination with the mem­
ory of the computer. It would also be possible to per­
form arithmetic purely by means of counting registers 
and the memory of the computer. A much more efficient 
system for doing arithmetic, however, is to use an 
arithmetic element containing both logic and limited, 
short-term storage facilities which work together with 
a large computer memory and a central control element. 

In Chapter 2 of Part 3 it is shown that all arith­
metic operations in such an arithmetic element are a 
combination of a few simple operations, which the 
arithmetic element registers and logic must be able to 
do. These are: 

a. Read in a number. There must be a means of 
reading the operand into the arithmetic element 
in one or more ways. 

b. Read out a number. There must be a means of 
reading the results out of the element. 

c. Clear. There must be a way of clearing the ele­
ment. 

d. Add. There must be some means of adding two 
numbers together. 

e. Complement. There must be some means of sub­
tracting a number. Usually, this implies a means 
of complementing a number. 

f. Sense. There must be a means of sensing the 
contents of one or all bit positions of a register. 

g. Shift. Finally, there must be a means of shifting 
a number either right or left with respect to the 
radix point. 

In order to perform arithmetic by a combination of 
all of these functions, the arithmetic element must have 
not only registers and switching circuits but also a 
sequence-controlling device. This device must control 
the sequence of the various functions so that the proper 
mathematical operation is carried out; for instance, to 
clear the accumulator and add a number, a sequence 
such as the following is necessary: 

1. Clear the accumulator. 
2. Read the number into the accumulator. 

This operation would be unsuccessful if the wrong 
basic operations were called for or if the correct opera­
tions were called out in reverse order. Therefore, an 
arithmetic control and timing section must be provided. 

Not only must the internal functions be properly 
sequenced, but also the interaction of the arithmetic 
element with the other elements of the system must 
be sychronized. This synchronizing function is per­
formed by the control element of the computer. The 
internal functions of the arithmetic element could be 
controlled by an autonomous control and timing device 
such as that used in the memory. However, in most 
computers both the internal and external operations of 
the arithmetic element are controlled by a single, cen­
tralized control element (Ch. 3). 
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4.4 OPERATION OF SAMPLE SYSTEM 
ARITHMETIC ELEMENT 

4.4. 1 Introduction 

Now that the general properties of an arithmetic 
element have been reviewed, an element designed for 
operation with the direct-access memory and control 
elements already described will be developed. 

4.4.2 Arithmetic Element Description 

4.4.2.1 General 

In Chapter 1 it was stated that the arithmetic ele­
ment of the sample computer would be of the parallel 
binary type. The computer uses a word length of 15 
magnitude bits plus a sign bit. This, of course, corre­
s ponds to the word length used in the other elements 
of the computer. However, in 3.4.2.4 examples of mul­
tiplication are worked out using a word of four magni­
tude bits plus a sign bit. The smaller number of bits 
is used to simplify the description of the process. 

The arithmetic element operates on numbers by 
performing the four fundamental arithmetic opera­
tions: addition, subtraction, multiplication, and divi­
sion. An arithmetic element capable of performing all 
four of the arithmetic operations while satisfying the 
need for high-speed operation can be built with three 
flip-flop registers, together with a logical network that 
is essentially a set of full adders. Each of these regis­
ters and adders will contain 15 bits plus a sign bit. 

The general layout of the registers and adders of 
such a system is shown in figure 4-15. In this arith­
metic element, all arithmetic is performed by an addi­
tion process. Addition itself is an add process. Sub­
traction is accomplished by addition of a complement 
number. Multiplication and division are, respectively, 
repetitive add and subtract processes. The basic func­
tion of each of the units in the figure can be explained 
in terms of these fundamental operations. The A regis­
ter, accumulator, adders, and carry-accumulator gates 
perform the addition and subtraction. 

When numbers are contained in the A register and 
the accumulator, addition is initiated by conditioning 
the adder gates. The B register is an auxiliary register 
which is used in combination with the accumulator in 
the multiply and divide processes. The other gates 
shown are included to allow information transfers from 
or to the memory buffer. The read-in gates determine 
where a word from the memory buffer enters the arith­
metic element. The readout gates determine when the 
accumulator contents are read to the memory buffer. 

Figure 4-15 indicates that it is possible to read 
from the memory buffer directly into the A register or 
into the accumulator. It is also possible to read informa­
tion into the accumulator from memory via the A regis­
ter and adders. To insert information in the B register, 
it must be first inserted in the accumulator and then 

shifted into the B register. Although this is relatively 
slow, it saves equipment and decreases the number of 
instructions the computer must execute. The only way 
to get information from the arithmetic element to the 
memory buffer (and then to memory) is to read it out 
of the accumulator via the accumulator readout gates. 

4.4.2.2 Addition 

Addition can be performed by an element which 
consists only of two flip-flop registers and a set of full 
adders. The routine in the element of figure 4-15 is as 
f'Ollows: 

a. The augend is entered into the accumulator and 
the addend is read out of memory and into the 
A-register. 

b. Outputs of the two flip-flop registers are fed to 
the full adders. 

c. The sum developed by the adders is gated to the 
accumulator register where it replaces the 
augend. The carry-accumulator gates propagate 
the carry and gate the sum into the accumulator 
register. 

In a single-address machine, an instruction to add 
means add a number to the number which is already in 
the accumulator. If it is assumed that the augend is al­
ready in the accumulator, the following is a summary 
of the controls to cause addition in the arithmetic ele­
ment (fig. 4-15) when used in conjunction with the 
core memory and control elements discussed in the pre­
vious chapters. 

1. Read from memory location specified in the in­
struction. (This gets addend into memory buf­
fer.) 

2. Read into the A register. (This transfers in­
formation from memory buffer to A register.) 

3. Pulse the carry-accumulator gates. (This causes 
. the sum to enter the accumulator register.) 

From this summary it can be seen that the only 
controls needed will be one to start the readout of the 
specified memory location, one to condition the A reg­
ister read-in gates, and one to condition the carry-ac­
cumulator gates. Circuits of the control element ex­
plained in Chapter 3 will be used to accomplish the re­
quired functions. 

The operation of the control element during oper­
ate time (execution time) to accomplish this addition 
process is shown in figure 4-16. It should be recalled 
that during program time (not shown) the operation 
and address parts of the instruction word have been 
decod.ed.. The operation decoder output in this case is a 
single level (add decoded) which remains conditioned 
until the end of operate time. This add-decoded level 
conditions certain gates of the control element. At the 
proper time, then, the control element gates (command 
generators) pass pulses, which control the action of the 
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Figure 4-15. Arithmetic Element Information Flow 

arithmetic registers and gates, to perform the required 
addition. 

The sequences of the commands to the arithmetic 
element are determined by the operate time pulse dis­
tributor. The control element, therefore, controls the 
sequence of the fundamental operations of which the 
arithmetic is capable. It also controls the start and stop 

of the arithmetic element, along with the start of the 
memory element. Notice the time lag between the start 
of the memory read cycle (when the operand is to be 
read from memory) and the actual start of the addition 
process. This time lag is necessary because it takes the 
memory several time pulse intervals to transfer a word 
from a memory location to the memory buffer. 
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Figure 4-16. Add Instruction Arithmetic Control (Operate Time) 

4.4.2.3 Subtraction 
Subtraction can be performed using the same com­

ponents and by almost the same routine as addition. 
The only additional requirement is that the A register 
be able to form the complement of the number it holds. 
The l's complements can be obtained readily in a flip­
flop register by pulsing all the complement inputs si­
multaneously. In this element, the subtraction routine 
consists of entering the minuend in the accumulator, 
entering the subtrahend in the A register, complement­
ing the subtrahend, and performing the addition opera­
tion. That this is equivalent to subtraction by the usual 
pencil and paper metho·d is shown in 4.2 of Part 2. 

In a single-address machine, the sequence of opera­
tions in the subtraction routine is based upon the as­
sumption that the minuend is already in the accumula­
tor when the instruction is started. The subtrahend must 
be obtained from memory just before the start of the 
actual subtraction process. Actually, as explained' in 
Chapter 3, it is obtained as a part of the subtract in­
struction just as it was in the add instruction. Knowing 
the whereabouts of the subtrahend and minuend, the 
following summary of operation can be written for the 
subtraction process: 

1. Start memory readout operation. 

2. Read into the A register. 

3. Complement A register. 

4. Pulse carry-accumulator gates. 

As in the add instruction execution, the process, thus, 
can be broken down into a series of simple sequential 
processes. The control element described in Chapter 3 
can be used to control the action of the arithmetic ele­
ment. 

Figure 4-17 shows the operation of the control 
element during operate time of a subtract instruction. 
Notice that the only difference between this and the add 
instruction decoder previously described is a new out­
put level from the decoder and a new A register com­
plement pulse gate. Since the figure sho~s only operate 
time of the instruction cycle, it can be assumed that the 
instruction has already been decoded. This time the de­
coder has two output lines. One of these lines is used to 
condition the same add command generators as were 
conditioned for the add instruction. The other line con­
ditions a command generator which complements the A 
register just prior to the start of the actual addition. 
Thus, the add operation is converted to a subtract op­
eration by a difference in decoder outputs. 
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Figure 4- J 7. Subtract Instruction Arithmetic Control (Operate Time) 

As in the addition process, the operation of the 
memory is synchronized with the arithmetic element by 
proper timing of the start of the operation of the two 
elements. After the memory readout operation is 
started, sufficient time is allowed for the word to get 
into the memory buffer. Once in the buffer, the word is 
available to the arithmetic element, and the arithmetic 
process is started. 

4.4.2.4 Multiplication 

High-speed multiplication can be performed by an 
add and shift routine, which employs a third flip-flop 
register (called the B register in addition to the ac­
cumulator, the A register, and the adders. The multi­
plication process is more complicated than are the add 
and subtract processes. Nevertheless, the example given 
below as a brief review of the process (which is thor­
oughly explained in 4.3.2 of Part 2 and 3.4 of Part 3) 
shows that the operation can be reduced to a series of 
simply controlled basic operations, just as the add and 
subtract processes were. 

The example is illustrated in figure 4-18. The 
numbers held in the three registers after each step of a 
multiplication routine are shown. The multiplicand is 

assumed to be .1010 (decimal .625) and the multiplier 
is assumed to be .1101 (decimal .8125). 

The multiplication is always performed on positive 
numbers. This means that, if any negative number is to 
be multiplied, it must first be made positive. Further­
more, the sign of the product must be determined be­
fore multiplication is started. 

In the illustration, as in the arithmetic element, a 
sign bit is included as a bit position of each register. 
The accumulator and A register sign bits are used when 
predetermining the sign of the product. In the actual 
multiplication process the accumulator sign bit position 
is used not as a sign indicator but as an extra place to 
temporarily hold carries. (See step 5.) During multi­
plication the sign bits of the A and B registers are both 
unused. Notice therefore, that the shift right from the 
accumulator to the B register shifts the right most bit 
of the accumulator into the left most bit excluding the 
sign bit of the B register. 

The details of the multiplication process are as fol­
lows: 

a. The multiplicand (.1010) is placed in. the A reg­
ister and the multiplier (.1101) in the accumula­
tor. If necessary, both numbers are made posi-
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tive and the predicted sign of the product is 
stored (in a special sign storage flip-flop). The 
first step of multiplication is to shift the multi­
plicand out of the accumulator into the B regis­
ter. 

b. The least significant bit of the multiplier is ex­
amined. If this bit is 1, an operation is initiated, 
placing the multiplicand in the accumulator 
(without clearing it from the A register). If the 
least significant bit is 0, no addition is initiated 
and the accumulator remains cleared. In either 
case, multiplication by the least significant bit of 
the multiplier has been carried out, and the ac­
cumulator contains the first partial product. 

c. The contents of the accumulator-B-register, 
treated as a single register, is now shifted one 
place to the right. This moves the least signifi­
cant bit of the first partial product from the ac­
cumulator to first data bit of the B register. At 
the same time, the least significant bit of the 
multiplier is lost. However, this is of no conse· 
quence because the bit has already completed its 
part in the multiplication routine. (In example 
of fig. 4-18, the product bit which is moved 
from the accumulator to the B register is 0, and 
the multiplier bit which is dropped is 1.) 

d. The second least significant bit of the multiplier 
is now examined. If this bit is 1, the multipli­
cand is added to the shifted first partial product 
in the accumulator. If the bit is 0 (as in example 
of fig. 4-18), no addition is initiated. In either 
case, the number occupying the accumulator and 
the first bit position of the B register is now the 
sum of the first and second partial products. 

e. The contents of the accumulator-B-register, 
treated as a single register, are now shifted right 
a second time, preparatory to the addition of the 
third partial product. After this shift, two bits 
of the sum of the partial products occupy flip­
flops of the B register, and the second least 
significant bit of the multiplier has been 
dropped. 

f. The routine continues in the same way, provid­
ing a step for each multiplier bit. At each step, 
the multiplier bit is examined. If it is 1, an add 
command is generated; if the multiplier bit is 0, 

no add command is generated. For each step, 
there is a shift right of the partial product in 
the accumulator-B-register combination until, 
after the final step, the product has completely 
replaced the multiplier and occupies the entire 
combined register. 

g. The final step is to correct the sign of the ac­
cumulator, if necessary. The correction has been 

determined by the sign storage flip-flop which 
counted the number of complement operations 
that were necessary to make both the A and B 
registers positive at the beginning of the rou­
tine. If the number of complement operations 
was even, the result is a product of two negative 
numbers and is, therefore, positive. In this case 
no sign correction will be necessary. If the num­
ber of complement operations was odd, the re­
sult is a product of a negative and a positive 
number, and, therefore, the sign of the product 
should be negative. In this case, a complement 
of the product would be necessary. In the exam­
ple no complement operation is necessary. 

A summary of the routine is given below. This 
summary is made under the assumption that a previous 
set of instructions has put the multiplier into the ac­
cumulator. 

1. Start memory read operation. 

2. Read into the A register. 

3. Sense sign of A register and make positive. 

4. Sense sign of accumulator and make positive. 

5. Shift accumulator-B-register 5 places right. 

6. Sense least significant bit of B register. 

a. If this bit is a 1, pulse the carry-accumulator 
gate. (Add.) 

b. If this bit is a zero, do not pulse the carry­
accumulator gates. (Do not add.) 

7. Shift contents of accumulator- and B-register 
one place to the right. 

8. Repeat 6 and 7 until as many add-and-shift steps 
have been accomplished as there are bits in the 
B register (multiplier). In a 15-bit-word ma­
chine, a total of 15 add-and-shift steps will be 
required. 

9. Correct sign of accumulator (product). 

10. Use a round-off instruction to correct the prod­
uct. 

It can be seen that the process can be reduced to a 
set routine. This same routine gives correct results in 
the multiplication of any two numbers up to the capac­
ity of the machine. Without going into the details, the 
reader should be able to see that the control element 
described previously could be made to perform the se­
quencing of the operations. The general operation of 
the element is similar to that for addition and subtrac­
tion. The first part of the instruction is devoted to ob­
taining the multiplicand from memory. The second 
phase of the execution process is devoted to the actual 
multiplication process described. The only new kind of 
equipment required in the control element is a counter 
to keep track of the number of repetitions of the partial 
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product steps. This counter is a common feature of 
computers called a "step-counter." 

Of course, the multiplication routine is more com­
plicated than either the addition or subtraction rou­
tines. Therefore, it takes a longer time to perform. This 
time is made available; the multiply instruction auto­
matically stops the progression of the program until 
completion of the instruction. This is called a "pause". 

4.4.2.5 Division 
A brief review of a division process (explained in 

4.4.3.3 of Part 2 and 3.5 of Part 3) will show that it is 
easily mechanized with the arithmetic element registers 
shown in figure 4-15. The usual method of dividing 
is by a repetitive subtraction process. The number of 
times that the divisor can be subtracted from the divi­
dend is counted to determine the quotient. What is left 
of the dividend after all the subtractions have been 
completed is the remainder. 

No new components are required to perform divi­
sion by a subtract and shift routine. The divisor is en­
tered in the A register. As in multiplication, the ac­
cumulator and B register are used to form a single reg­
ister of double capacity. At the outset of the routine, as 
the result of previous program instructions, the divi­
dend is placed in this combination register. As the rou­
tine pn)gresses, the dividend is shifted left, making 
room for Auotient bits in the B register and dropping 
remainder (dividend) bits as one step follows another. 
At the end of the routine, the quotient is in the B regis­
ter and the remainder occupies the accumulator. 

Figure 4-19 illustrates the general process of divi­
sion. The process shown is a non-restoring subtract and 
shift routine. The divisor is plus .1110 (decimal .875) 
and the dividend is plus .1000 1100 (decimal .546875). 
The quotient is, therefore, four bits excluding the sign 
bit. 

Division is only performed upon positive numbers. 
As in multiplication, therefore, the signs of the divi­
dend and divisor must be corrected if either is negative 
when the process starts. 

In division the sign bit position of both the A reg­
ister and the accumulator are used as sign indications 
throughout the process. The sign bit of the B register 
is used as a sign indicator only at the end of the process, 
when the signs of the remainder and quotient are finally 
corrected to their predetermined value. During the ac­
tual division process, the B register sign bit position is 
used as an extra position to store one bit of the divi­
dend. 

If it is assumed that the dividend, which can be a 
double length word, is contained in the accumulator­
B-register as a result of previous instructions, the divi­
sion routine (fig. 4-19) proceeds as follows: 

a. The divisor is read out of memory into the A 
register. 

b. The signs of the dividend and the divisor are 
examined. If either is negative, it is comple­
mented to its positive form. (In the example, 
both numbers are positive as indicated by O's 
in the sign bit positions of the A register and 
accumulator. Thus, no conversion is necessary.) 
The number of conversions necessary is 
counted; the result of the count, which indi­
cates the sign to be given the quotient, is stored 
in the sign storage flip-flop. 

c. The divisor is now complemented and added to 
the portion of the dividend in the accumulator; 
i.e., the divisor is lined up left with the dividend 
and is subtracted from it. The remainder ob­
tained is negative; consequently, a "0" is inserted 
in the least significant position of the B register, 
and the combined accumulator- and B-register is 
shifted one place to the left. 
This "0" will eventually be contained in the B 
register sign-bit position. However, it has no 
meaning in this process. The step to generate the 
zero is merely included to make all the subtract 
and shift routines as much alike as possible. The 
zero obtained is called a dummy sign bit in the 
text below. When the dividend is shifted left, by 
shifting the contents of the combined accumula­
tor-B-register, the dividend sign bit is lost, and 
the most significant magnitude bit of the re­
mainder occupies the sign bit position of the ac­
cumulator. 

d. The divisor, in true form, is now added to the 
contents of the accumulator. Notice that the 
sign bit of the divisor (which is 0) is lined up 
with the most significant magnitude bit of the 
remainder as a result of the shift operation. If 
the result of the addition is a positive current 
remainder, half the divisor has been successfully 
subtracted from the full dividend; that is, in the 
first step, the full divisor has been subtracted 
from the dividend leaving a negative remainder, 
while, in the second step, half of the divisor has 
been replaced. Thus, the net amount removed is 
one-half the divisor. Therefore, a 1 can be 
placed in the quotient position that is now the 
least significant position of the B register. After 
this 1 is inserted another shift left occurs. Now, 
a dummy sign bit of the quotient and a one bit 
of the quotient have been generated by two sub­
tract-and-shift operations. Note that a 0 was 
generated whenever the addition resulted in a 
negative remainder and that a 1 was generated 
whenever the addition resulted in a positive re­
mainder. It should also be recalled that in this 
non-restoring division method, the true form of 
the division is added to the negative remainder, 
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while the complement of the divisor is added 
when the remainder is positive. 

The routine continues in this same way, providing 
one subtract and shift step for each quotient data bit 
(excluding dummy sign bit) that is generated. In this 
case, four subtract-and-shift steps are required. In the 
case of a IS-bit-word machine, 15 subtract-and-shift 
steps are required. 

If the last quotient bit is a 0, then an extra compen­
sating addition must be performed so that the final re­
mainder will be positive. This is the case in the illustra­
tion. However, the final remainder turns out to be zero. 

At the end of the routine, the quotient is contained 
in the last four bits of the B register; the final remain­
der is contained in the last four bits of the accumula­
tor; and the signs of both quotient and remainder are 
positive. At this time, the signs of the accumulator and 
the B register are converted to the sign which was pre­
dicted when the signs of the dividend and divisor were 
made positive. (In this case, no conversion is required.) 

A summary of the division routine is given below. 
It is assumed that the dividend is already contained in 
the combined accumulator-B-register when the divide 
instruction is given. Again, it should be noted that the 
routine below does not include the program-time oper­
ati<1ns of the control elment. Only the actions required 
in execution of the decoded instruction are listed. 

1. Start memory read operation. 
2. Read divisor into A register from memory. 
3. Sense sign of A register complement, if nega­

tive. 
4. Sense sign of accumulator, complement, if nega­

tive. 
5. Sense sign of accumulator. 

a. If positive, complement A register and add 
to accumulator. 

b. If negative, add true A register contents to 
accumulator. 

6. Sense sign of accumulator. 
a. If negative, insert 0 in least significant posi­

tion of B register. 
b. If positive, insert 1 in least significant posi­

tion of B register. 
7. Shift combined accumulator-B-register one place 

to left. 
s. Repeat steps 5, 6, and 7 until one add-and-shift 

routine has been completed for each bit of the 
quotient to be generated, excluding the dummy 
sign bit. In the illustration a total of four add­
and-shift steps are required. If a IS-bit-plus­
sign-bit word were to be generated (as in the 
example machine) 15 add-and-shift steps would 
be required. 

9. Take one extra step 4 and 5. 

10. Sense the sign of the accumulator. 

a. If negative, add true form of A register to ac­
cumulator (compensate add). 

b. If positive, do not compensate add. 
11. Correct signs of accumulator and B register. 
The example shows that the division process may 

also be divided into a set routine. This same routine 
gives correct results in the division of any two numbers 
if the dividend is smaller than the divisor. Without go­
ing into the details of mechanization, the reader should 
be able to see, therefore, that it is possible to incorpo­
rate the controls necessary to perform division in the 
control element described in the previous chapter. As 
in the multiplication routine, the control element re­
quires a step counter to keep track of the number of 
repetitions made. 

4.4.2.6 Shifting 

Some instructions which the arithmetic element is 
called upon to perform do not require a reference to 
memory during execution time. In other words, the in­
struction calls for an operation to be performed upon a 
number which is already in the arithmetic element. An 
example of such an instruction is one to shift the com­
bination accumulator-B-register contents left five places. 

This instruction comes from memory to the com­
puter control element in the usual instruction word 
form, with an operation part and an address part. The 
operation part of the instruction has the usual signifi­
cance. It specifies the operation to be performed (shift 
accumulator-B-register left). The address part of the 
instruction (5) does not have the usual meaning. In 
this instruction the address part specifies the number of 
places the registers are to be shifted. Thus, the instruc­
tion itself contains all the information necessary to per­
form the operation; no further reference to memory is 
required. 

The operation is carried out as follows: 

a. The shift left is ordered, and the number starts 
to shift. 

b. The number of single shifts is counted by the 
control element (step counter). 

c. When the number of shifts is equal to the ad­
dress part of the instruction, the shifting is 
stopped. 

The control element devised to control the other arith­
metic operations could be made to sequence the arith­
metic element during a shift operation. All that would 
be necessary would be a shift-demand level and a step 
counter to count the number of shifts. The step counter 
is the same counter as that used to count the number of 
add-and-shift operations in the -multiplication process 
or the subtract-and-shift operations of the divide pro­
cess. 
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INPUTS AND OUTPUTS 

5.1 GENERAL 

The computing section of the computer has been 
discussed in the last three chapters. This chapter dis­
cusses the way results obtained from the computing sec­
tion are entered into, and extracted from, the com­
puter; that is, the Input and Output Systems. 

In general, the input-output facilities (10) provide 
means of communication between the computer and its 
environment. This communication is characterized by 
translation between the symbols used in the environ­
ment (which could include both men and other ma­
chines) and those used within the computer. For in­
stance, man uses a set of written decimal symbols to 
convey numerical information. In a binary computer 
whose input information originates from a human op­
erator, the Input System translates from the written 
decimal to the binary expressed in electrical terms. 

Usually there is a great difference between the sym­
bols used by the computer and those used by its envi­
ronment, and between the comparative speeds of writ­
ing and reading the symbols. If the computer demands 
information from an input device and then has to wait 
until the input device can deliver it, the computer also 
has to wait. Since the input device is invariably much 
slower than the computer, this is not a desirable condi­
tion. The Input System, therefore, includes a buffer de­
vice which greatly decreases the time required to effect 
the transfer of information between input and com­
puter. The input buffer is a storage device which can be 
written upon by the input device at the pace of the in­
put device and can be read from by the computer at the 
computer's pace. The output buffer performs the same 
function in reverse between the output devices and the 
computer. It matches the high speed of the computer to 
the slow speed of the output device. 

The 10 equipment of a computer determines its 
speed, capacity and versatility to a great extent. The 
speed and capacity of the computer is affected by the 
10 speed in three general ways. If individual transfers 
to or from the computer are slow, the computer is de­
layed during these transfers. If, on the other hand, in­
dividual transfers are fast but not frequent enough, the 
computing section may be delayed for lack of data to 
work on. The effect of the 10 system upon computer 
speed is also determined by the amount of translation 
which is accomplished within the 10. If the 10 system 

does not do a complete job of translation from the sym­
bols of the outside world to those of the computer, the 
computing section wastes program time on this func­
tion. For instance, information is often entered into the 
Input System of a binary computer in decimal symbols. 
The Input System may convert these decimal symbols to 

electrical impulses in binary form, or it may convert 
them to electrical impulses in a decimally coded form. 
The first method requires more equipment in the Input 
System, but the second method requires that the com­
puting section do part of the translation by program­
ming. If much decimal to binary conversion is necessary, 
the computer can compute at a higher speed if all the 
conversion is done by the 10 system. On the other hand, 
if very little decimal-to-binary conversion were re­
quired, the average computing speed would not be 
greatly affected by the extra time required to do this 
conversion within the computing section. In the sample 
computer, all necessary translation is performed in the 
10 equipment. 

The versatility of the computer is also greatly af­
fected by the 10 system. The 10 system (particularly 
input) more nearly defines the use to which a computer 
can be put than does any other element. 

Computing machine uses can be divided into two 
general classes. A computer may be used in data proc­
essing to process a great deal of data at a time, or it can 
be used, in the solution of mathematical problems, to 
process a little data by a great many operations. In gen­
eral, the data processing machine requires a high-capac­
ity 10 system; a computer used in mathematics re­
quires only a small capacity 10 system. 

Computing machines are sometimes used for real­
time control systems. Unless the 10 system properly 
matches the computer to the control process, this use is 
not possible. In the SAGE computer the data comes in 
to the computer site from the various radar and other 
sources via telephone line. If the necessary speed of 
operation is to be obtained, the 10 system must be able 
to enter this information directly from the phone lines 
to the computer without human intervention. Commu­
nication from operator to computer is limited to low­
volume information transfer, except during program 
loading. In this case, a low capacity manual input may 
be efficiently used. The air defense control process re­
quires that the output of the computer present a great 
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deal of information to the operator in a form which 
can be quickly assimilated. A display output makes this 
possible. 

A computer which is to be used for business pur­
poses requires still different types of 10 devices. The 
input and output should be compatible with the data 
reduction system used in the outside world. For instance 
some offices use punched cards for their data processing. 
A computer in such an office should certainly be 
equipped with punched card 10 equipment. 

5.2 SAMPLE SYSTEM CONSIDERATIONS 

The requirements for the sample system were 
stated in Chapter 1. It was stated that the system would 
need an automatic input and output to transfer binary 
information to and from remote machines. It was also 
stated that the system would require a manual input for 
such functions as program insertion, and a display Out­
put System which would present the entire air situation. 
The comparative speeds of the 10 devices and the com­
puter also require that each device feed into, or be fed 
from, a buffer device. This is a temporary storage device 
which allows the asynchronous transfer of large 
amounts of information between the 10 equipment and 
the computer. Drums which are accessible to both the 
computer and the 10 equipment are used for this pur­
pose. 

5.3 10 BUFFER DRUM 

5.3.1 Purpose 
The purpose of an 10 buffer drum is to match the 

speed of the computer to that of the 10 devices. It uses 
an asynchronous demand system of reading and writ­
ing. This means that the device writing into it or read­
ing from it governs the speed of writing or reading. 
The drums also serves as an assembly memory where 
information to be read or to be written can be assem­
bled into blocks of information, thus allowing the com­
puter to read or to write a large number of words at 
once whenever an input or output operation is required. 

5.3.2 Drum Operation 

5.3.2.1 General 
All of the buffer drums are used to transfer infor­

mation only one way; that is, the input drums always 
transmit their information from the input device to the 
computer. Similarly, the output drums only transfer in­
formation from the computer to the output device. Con­
sequently, each drum must have a set of reading heads 
connected to, and controlled by, the reading element 
and a set of writing heads connected to, and controlled 
by, the writing element. This arrangement allows both 
reading and writing elements to transfer information at 
their own pace. 

Figure 4-20 illustrates the general operation of 

the drum in either an output or an input system. If the 
system described is an output device, the writer repre­
sents the computer and the reader represents the out­
put. If, the system described is an input device, the 
writer of the illustration is the input while the reader 
is the computer. The general operation is for the writer 
to write a word on the drum when an empty drum regis­
ter (does not contain useful information) is found. The 
reader then reads all words which are in full registers 
(contain useful information) as soon as it can; i.e., 
when the word comes under the read heads and at the 
same time the reader has someplace to put the word. 
This method of controlling the drum is known as status 
control operation. The operation of the drum is con­
trolled by an outside device (reader or writer) accord­
ing to the full or empty status of the drum register. 

5.3.2.2 Status Control Operation 

When a drum is controlled by status it must have 
two extra status control channels (fig. 4-20). These 
channels have bits recorded in them to correspond with 
each register in the drum. These bits may be read or 
written by the writer- and reader-control circuits to in­
dicate the status of each corresponding register; that 
is, to indicate whether the information in the register 
has been read before (register empty) or is yet to be 
read (register full). The bits in the write status control 
channel cause a write operation if the register under the 
heads is empty (has been previously read) and if a 
word is available. The bits in the read status control 
channel cause a read operation if the register under the 
heads is full (has not been previously read) and if a 
word is demanded. 

The status of a register is indicated by the bits of 
the status control channel which controls the particular 
operation being determined. If a read operation is be­
ing determined, a 1 bit in the read control channel indi­
cates that the register is full; a 0 bit here indicates that 
the register is empty. If a write operation is being de­
termined, a 0 bit in the write control channel indicates 
that the register is empty and that it can be written 
upon; a 1 bit here indicates a previously filled register. 

The operation of the status-control circuit, then, is 
as shown in figure 4-20. When the writer writes a 
word on the drum, it also writes a 1 bit in the read con­
trol channel. This channel is then monitored by the 
reader-control circuit. The 1 bit being read by these 
read control circuits indicates that the corresponding 
drum register is full and, so, may be read. If the reader 
needs the information, it can read this full register. As 
the reader reads the register it also causes a 0 to be 
written in the write control channel. When this register 
arrives back at the write heads, the 0 indicates to the 
write-control circuits that the register is again empty. 
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figure 4-20. Status Control of Drum 

Now consider the alternate operations from the 
writer's point of view. If the writer reads a 0 in the 
write control channel but for some reason cannot write 
a word (no word to write), it will write a 0 in the read 
control channel. When this register gets to the read 
heads, the 0 indicates that the drum status is empty and, 
therefore, the register will not be read. If the write con­
trol channel contains a 1 bit, a 1 bit automatically is 
rewritten into the read control channel. 

If the alternate operations are considered from the 
reader's point of view, the operation is very similar to 
the operation above. If the reader reads a 1 in the read 
control channel but is unable to read the word at that 
time, the reader-status-control circuits write a 1 in the 
write control channel. This 1 protects the information 
in the register when the register gets to the write heads. 
If the reader reads a 0 in the read control channel, a 0 is 
written into the write control channel. 

5.3.2.3 Program Operation 

The sample computer reads an input word as the 

result of a single instruction. The operation part of the 
instruction specifies the read operation and which input 
to select. The address part of the instruction specifies 
where in memory the word is to be stored. The drum­
control circuits themselves specify which words are to 
be read from the drum. They specify that the first 
word which comes along after an instruction and which 
has not been read before is to be read. 

This system requires a special type of instruction 
which is typical of all drum operations in the sample 
computer. When the instruction is first given, it may be 
some time before the first full register comes along. 
During execution of the usual (not drum) instruction, 
the program control comes to the instruction and at­
tempts to execute it whether the operand is available 
or not. It then goes right on to the next instruction 
in the program. Some provision must be made, there­
fore, to stop the progression of the program until the 
drum operation has been completed. Such a provision 
in this computer is included in all drum-reading and 
-writing instructions. These 10 instructions cause the 
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Figure 4-21. Input System 

computer to go into a pause (stop program progres­
sion) until the 10 operation is finished. 

5.4 AUTOMATIC INPUTS 

5.4.1 General 
The input information comes over telephone lines 

in a continuous stream of serial, binary words. Each of 
the words has the same format and contains the same 
type of information. The job of the input device is 
merely to take in each serial word, translate it to 
parallel, and put it on the input buffer drum. Once the 
word is on the input buffer drum, it is accessible to 
the computer. 

5.4.2 Operation 
Figure 4-21 illustrates the operation of the auto­

matic input system. Serial information from the tele­
phone lines is shifted into the core shift register a bit 
at a time. This core shift register is provided with a 
serial input and a parallel output. (See 2.2.3.2 of 
Part 3.) As soon as the core shift register contains a 
full word, it is transferred to the core matrix storage. 
This is a 16-word matrix storage used to store the in­
put words until an empty drum register becomes avail­
able. When the write status control indicates that an 

empty drum register is under the write heads, this core 
matrix storage is examined. If data is available, the 
status control causes the oldest word in core matrix 
storage to be written on the drum. 

The drum serves as an assembly point to collect 
information from the Input System. The computer pro­
gram is set up sO' that it only asks fO'r an input reading 
operation at intervals. These intervals are of sufficient 
length so that the drum nearly fills up before a Read 
instruction is given. Then, a Read instruction causes 
the drum to read out a large block of information. 
(In this computer, this can be accomplished by an 
indexed repetitive prO'gram). 

When the computer is instructed to read a word 
from the input, a pulse is sent to the drum selection 
controls. These controls conditiO'n the read-status-cO'n­
trol circuits. When a full register is found by the status 
circuits, a wO'rd is transferred from the drum to the 
computer. When this transfer is complete, a pulse is 
sent to the computer to indicate that the transfer is 
complete. This pulse is used to' conditiO'n the cO'mputer 
contrO'I so that it may continue with the prO'gram. 

5.5 TYPEWRITER INPUT 

The operator communicates with the computer by 
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means of a modified typewriter. Since this typewriter can 
only type octal numbers, the operator must code any 
information he wishes to insert in the computer into 
an octal number code before it is entered. This is com­
mon practice in all programming work. 

The typewriter has a converter which converts 
each octal number to binary as it is typed. This binary 
input from the typewriter enters the machine in serial 
form and is treated in exactly the same manner as was 
th input information entered in the automatic inputs. 

Figure 4-22 illustrates the manual input system 
described. The output of the typewriter in octal-coded 
characters is fed into the octal-to-binary converter. The 
output of this converter (binary) is shifted into the 
input system core shift register. From there it reaches 
the computer via a status-controlled drum, as in the 
automatic input system. 

5.6 AUTOMATIC OUTPUTS 

5.6.1 General 

The use of the computer in a real-time control 
process such as air defense requires on-line automatic 
outputs. These outputs feed binary information serially 
to telephone line transmitter. This output can then be 

transferred to remote users (such as missile directors) 
on telephone lines. 

The information on telephone lines is a series of 
serial, binary words. Each word has the same format 
and length. The job of the output system, therefore, 
is to obtain the word from the computer, translate it 
from parallel to serial and then transfer it to a modula­
tor which will transmit it over telephone lines. 

5.6.2 Operation 

5.6.2.1 Program Operation 

When it is necessary to read a word from the 
computer, the instruction Write Automatic Output from 
memory address X is given. This instruction stops fur­
ther computing and causes the word in memory loca­
tion X to be translated into the output buffer register. 
It remains there until the first empty drum register 
comes under the write heads. At this time, the status 
control circuits cause the word to be transferred. When 
the transfer is complete, the drum control circuits pro­
duce a pulse which allows the computer to start on the 
next instruction. Again, this type of operation is em­
ployed to allow for drum-search time necessary during 
the transfer operation. Normally, the outputs are read 
out of the computer a drum at a time by a series of 
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repeated W,rite instructiO'ns. When this is dO'ne the 
drum will start O'ff empty sO' that the search time IO'st 
is nO't great. 

5.6.2.2 System Operation 
Figure 4-23 illustrates hO'W a wO'rd is read O'ut O'f 

the cO'mputer by autO'matic O'utputs. When the instruc­
tiO'n is given, the wO'rd is transferred frO'm memO'ry 
to' the drum buffer. FrO'm there the status cO'ntrO'I cir­
cuits cause it to' transfer to' the drum and, eventually, 
to' the cO're matrix stO'rage. FrO'm the cO're matrix stO'r­
age it gO'es intO' a cO're shift register where it is trans­
lated intO' a serial fO'rm. In serial fO'rm it is fed O'ut O'f 
the cO'mputer and intO' a telephO'ne line mO'dulatO'r, 
which sends it O'ut. 

5.7 DISPLAY OUTPUT 

5.7.1 General 

One O'f the best ways to' present a great deal O'f 
infO'rmatiO'n to' a persO'n in a easily assimilated fO'rm 
is by means O'f a picture. This is the purpose O'f the 
cathO'de-ray-tube display O'utput. The infO'rmatiO'n is 
prO'cessed in the cO'mputer SO' that the variO'us binary­
number results are prO'PO'rtiO'nal to' the defiectiO'n VO'lt­
ages necessary to' generate a picture O'utput. The infO'r­
matiO'n is read O'ut O'f the cO'mputer intO' the display 

system where the binary infO'rmation is cO'nverted intO' 
analO'g vO'ltages prO'PO'rtiO'nal to' the quantity expressed 
by the binary numbers. These analO'g vO'ltages are then 
used as the X and Y directiO'n deflectiO'n vO'ltages O'f a 
cathode-ray-tube. Thus, the picture desired is fO'rmed. 

5.7.2 Program Operation 

Th prO'gram O'peratiO'n is the same as that O'f the 
autO'matic O'utput, except that the instructiO'n used is 
Write Display address X. First, the data is pr~pared 
in memO'ry SO' that a blO'ck O'f infO'rmatiO'n gives the 
desired picture; then, this blO'ck O'f infO'rmatiO'n is 
transferred to' the display system. 

5.7.3 System Operation 

The system O'peratiO'n O'f the display is, as shO'wn 
in figure 4-24, similar to' that O'f the autO'matic O'ut­
puts, except in the translatiO'n and O'utput device sec­
tiO'ns. The infO'rmatiO'n is transferred thrO'ugh the drum 
by status. When it gets to' the O'utput read heads, the 
reading is under cO'ntrO'I O'f the display cO'ntrO'ls and 
the drum status cO'ntrO'ls. The display cO'ntrO'ls call 
periO'dically fO'r a transfer O'f all informatiO'n O'n the 
drum. This infO'rmatiO'n is cO'nverted to' analO'g deflec­
tiO'n voltages by the cO'nverter, and the O'utput appears 
as a picture O'n the cathO'de-ray tube. 
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CHAPTER 6 
OPERATION OF THE SAMPLE SYSTEM 

6.1 GENERAL 

The sample computer was developed to be able to 
process data for an air defense control activity. The 
description below is given with this purpose in mind. 
It should be remembered that the computer could easily 
be used for different purposes, particularly if the inputs 
and outputs were adapted to a different use. For in­
stance, if the inputs and outputs were changed from 
automatic to card machines, the computer could easily 
be used as a business data processor. 

The operation of this or any other computer can 
be considered as consisting of four phases. The pro­
gram must be entered first because all operation de­
pends upon it. Next, the data is entered under the 
control of the program. Once enough data has entered 
the machine, the actual processing starts. Finally, of 
course, the output must be presented to the user. 

Once the program is finished one of two things 
may be done. In some cases the computer stops and a 
new program and data must be inserted for solution 
of a new problem; in a real-time application, however, 
the computer repeats the same program over and over 
again, each time using a new block of input informa­
tion. 

6.2 PROGRAM LOADING 

The method of loading the program depends upon 
the complexity of the program storage requirements. 
In this sample computer, a manually operated control 
is furnished which causes the computer to read words 
from the input drum into sequential addresses of the 
memory, starting with address 000. This control is 
operated. Then, the coded instructions are inserted via 
the typewriter input. This system works well when 
there is no complication in the program's storage re­
quirements. However, when a complicated storage pat­
tern exists (e.g., some of the program being stored in 
auxiliary memory), a loading program must be used. 

A loading program is one used to control the load­
ing of the operational program. When the loading 
program is used, it is inserted first under manual con­
trol. Then, the operational program is stored according 
to the instructions of the loading program. After the 
operational program is stored, the computer is prepared 
to start computing. This it does according to the last 
instruction of the loading program, which is a branch 
to the first instruction of the operational program. 

6.3 LOADING AND PROCESSING DATA 

The first step of the operational program is to 
store the data to be used. This data is constantly enter­
ing the machine from the automatic input. It is changed 
into standard computer words by the input system and 
then stored on the input buffer drum. At certain in­
tervals of time, when enough information is on the 
drum, the computer calls for a block transfer of the 
input information from the input drum to the com­
puter memory. It may be recalled that this transfer 
is accomplished by means of a small, repetitive pro­
gram. 

Enough data is now in the memory so that the 
computer can process it. In general, the processing can 
be split into three phases: The information is prepared 
for the operator's use; the operator sees the processed 
information and decides what action can be taken. The 
action decided upon is inserted in the machine and the 
machine further processes the information to produce 
outputs. 

The air defense problem requires the compilation 
of information from input sources, processing this in­
formation into an easily used form and then presenting 
this information to operating personnel to enable them 
to take the appropriate action on the basis of the in­
formation. The operations involved in the air defense 
problem and in most other data processing applications 
can be classified as data simplification operations; that 
is, the .operations tend to reduce a large number of 
discrete items of information into a smaller, more com­
prehensible body of information. The simplified data 
is presented to the operator in the form of a display. 

The main purpose for including the operator in 
the system is in the type of decisions he is required 
to make. He must make decisions based upon the best 
information the computer can give; but his decisions 
are also based upon information which is not in the 
computer. For instance, his decisions as to the disposi­
tion of a supposedly hostile aircraft will depend not 
only upon the fact that the plane is not identified but 
upon whether it is likely that a war has started. In 
other words the decisions are based upon an overall 
picture of the strategy to be followed at the moment. 
This is the type of decision which requires the imagina­
tion, intuition, and judgment which only a man posseses. 

The human operator obtains the essential informa-
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tion in its condensed and easily assimilated form from 
the display. He combines this information with what 
he knows and decides what, if anything, should be 
done. He then notifies the computer of his decision by 
way of the manual input. 

The computer then takes the new information and 
processes it further. It is combined with the originally 

processed information to be shown to the operator on 
the display (if needed). The computer also processes 
the results of the whole operation into the form of 
an automatic output message. This message then is sent 
to the output drum and, eventually, is converted to the 
proper form for transmission to the eventual users 
(e.g., the weapons bases). 
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PART 5 
PRINCIPLES OF PROGRAMMING 

CHAPTER 1 
INTRODUCTION 

1.1 GENERAL 

This part presents the information necessary for 
an understanding of the principles of programming. 
In Chapter 2, the basic techniques involved in pro­
gramming the computer will be explained and will in­
clude the knowledge required of a programmer, prob­
lems encountered in program preparation, and aids 
available to a programmer. Several sample problems 
will be analyzed utilizing standard techniques. Chapter 
3 presents a summary of the capabilities and limitations 
of a computer. Various methods for extending the use­
fulness of large-scale computers will also be discussed. 

1.2 PROGRAM DEFINITION 

A program may be defined as a series of instruc­
ions, coded in a form recognized by the digital com­
puter, calling for the operations to be performed by 
the digital computer in the order necessary to solve a 
given problem. For example, even the solution of a 

simple arithmetic problem requires a program, whether 
solved by a digital computer or by a man with pencil 
and paper. Although the man can recognize the neces­
sary steps in a program, the digital computer must be 
given step-by-step directions for the solution of any 
problem. 

1.3 NECESSITY FOR PROGRAMMING 

Without this series of instructions the computer 
would not be capable of performing any type of opera­
tion. The necessity for programming becomes apparent; 
it must be used to initiate and exercise control over 
the operations of the computer. This control may be 
predetermined through the use of a specific instruction, 
or it may depend on the value of the numbers being 
manipulated at any particular point. In addition to 
controlling arithmetical operations in the computer, 
programs are used for various other functions, such as 
maintenance routines, monitoring, etc. The different 
types of programs will be discussed in Chapter 4. 
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CHAPTER 2 
TECHNIQUES OF PROGRAMMING 

2.1 GENERAL 

The program is designed after obtaining a state­
ment of the problem to be analyzed. With this initial 
requirement satisfied, four subsequent phases listed be­
low are required to produce a finished program. 

a. Problem analysis 

b. Program organization 

c. Program coding 

d. Program testing 

In general practice, the first phase, problem analy­
sis, is handled by mathematicians, and the last three 
phases are handled by programmers. However, problem 
analysis often determines the organization of the pro­
gram; therefore, problem analysis is usually done either 
by a mathematician-programmer or by a mathematician 
and a programmer working as a team. 

2.2 PROGRAM PREPARATION 

2.2. 1 Problem Analysis 

After a statement of the problem is obtained, all 
of the factors that may be encountered have to be ex­
amined and arranged in a mathematical expression. 
This expression must represent the problem expressed 
as simply as possible. It is usually quite complex at 
this point and must be reduced to even simpler terms 
(addition, subtraction, etc.) by a mathematical techni­
que known as numerical analysis. 

Numerical analysis, involves the reduction of com­
plex mathematical operations to arithmetic operations 
within the capabilities of the computer being pro­
grammed. The most common reductions are: calculus 
operations to simpler arithmetic operations such as 
changing integration to an approximate summation 
operation, and changing differentiation to an approxi­
mate difference-quotient operation. These changes re­
sult in approximations to the more complex methods, 
but approximations which can be made as exact as de­
sired. Given a method of approximation by the mathe· 
matician, the programmer must then determine the 
program to obtain the result. 

2.2.2 Organization 

When the programmer receives a problem and its 
numerical analysis, the first step is that of organizing a 
program to solve the problem using the arithmetic 
methods outlined in the numerical analysis. Program 

OBTAI N SUM OF 

X AND h 

OBTAIN PRODUCT OF 

( X'" h) TI M ES p 

r 

SUBTRACT PRODUCT 

p(X+ h) FROM C AND 

STORE ANSWER 

PROGRAM HALT 

Figure 5-1. Flow Chart for Straight-Line Program 

organization involves the sequencing of the operations 
to be performed into an order which will simplify 
coding, minimize execution time, and, if possible, mini­
mize the number of storage registers required. At this 
point, a flow chart which is a pictorial representation 
of the structure of the program (see fig. 5-1) is useful, 
both to keep the entire program in view and to develop 
the sequence of operations into the proper order. Very 
few programmers can take a complex problem and 
draw a flow chart which exactly fits the problem on 
the first try. Therefore, the flow chart will start out in 
rough form and become finalized only after some 
thought and some reworking has gone into it. 

2.2.3 Coding 

Once a tentative flow chart has been prepared, the 
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program can be coded. The coding operation can be 
performed block by block from the flow chart. Con­
sideration must be given to the data provided by the 
preceding block and the data required by the follow­
ing block of the program. While the coding is being 
done, the techniques of selecting library routines (uni­
versal routines already written and catalogued for use), 
of determining the precision required, and of scaling 
are brought into play. The product of the coding phase 
is a mnemonically coded program, ready for testing. 

2.2.4 Testing 

Once a program has been completely coded, it 

must be tested to insure its proper operation in solving 
the given problem. This program testing period is 
similar to the shakedown period for a new piece of 
equipment; the logical design of the program is tested 
and revised until it correctly performs its intended 
function. In the course of program testing, modifica­
tions of both the program organization and the coding 
may be required to get the program into proper opera­
tion. Program organization and program coding should 
be done with utmost care to avoid having program 
testing become excessively time-consuming and diffi­
cult. 
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CHAPTER 3 
PROGRAM EXAMPLES 

3.1 GENERAL 

This chapter consists primarily of sample pro­
grams together with their respective flow diagrams and 
explanations. Each program is considered to be de­
signed for use with the machine described in Part 4. 
As the examples become increasingly complex, new in­
structions and techniques used in preparation of pro­
grams will be introduced. 

3.2 STRAIGHT-LINE PROGRAM 

3.2.1 General 

A straight-line program is a series of instructions 
which fall into numerical order. In this type of pro­
gram, step 1 is always followed by step 2, step 2 is 
always followed by step 3, etc. This is the easiest type 
of program to understand from the operator's point 
of view. However, it is not necessarily the easiest type 
of program for the computer to execute because of the 
time required and the space in core memory that is 
needed for data storage. 

3.2.2 Statement of Problem 
In the following case, the problem is to evaluate 

the imaginary expression for the amount of fuel re­
maining in the tank of a jet interceptor. The factors 

necessary for the derivation of such an expression are: 

C == capacity of tank 

p == pounds consumed per mile at average 
speed of aircraft 

x == distance flown 

h == altitude factor 

The computer instructions which are available to 
the programmer for the solution of this problem are 
given in table 5-1. The first column lists the instruc­
tion name, and the last column gives the operation per­
formed. The CODE column gives the mnenonic code 
for the instruction. The capital letters represent the 
operation part of the instruction, and the lower case 
x represents the address of the register in core memory 
from which the operand is to be obtained. For instance, 
CAD 10 means to clear the accumulator and place the 
contents of memory register 10 in the accumulator. 

3.2.3 Problem Analysis 
It is apparent that the resultant expression will be 

the capacity of the tank less some combinations of the 
other factors. To find the fuel consumed, all that is 
necessary is to multiply the miles-per-pound factor by 
the distance traveled plus the altitude factor. The alti-

TABLE 5-1. BASIC COMPUTER INSTRUCTIONS 

INSTRUCTION NAME MNENONIC CODE 

C lear and Add CAD x 

Add ADD x 

Subtract SUBx 

Multiply MULx 

Full Store FST 

Program Stop (or Halt) HLT 

OPERATION PERFORMED 

Clears the accumulator of any value remaining from another 
operation, then places contents of x in accumulator. 

Adds contents of x to the contents of the accumulator. At the 
end of the operation, the contents of location x are unchanged. 

Subtract contents of x from the contents of the accumulator. At 
the end of the operation, the contents of location x are un­
changed. 

Multiplies contents of x by the contents of the accumulator. At 
the end of the operation, the contents of location x are un­
changed. 

Places the contents of the accumulator into memory location x. 
Contents of the accumulator also remain there. 

Stops computer operation (address portion of this instruction is 
meaningless) . 
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tude factor must be added to the distance traveled 
since the height above sea level at which a jet aircraft 
Bies determines the rate of fuel consumption. This may 
be expressed as C - p(x+h). 

No actual numerical analysis is required on this 
expression since it does not contain any higher mathe­
matics, only addition, subtraction, and multiplication. 
All of these may be handled by the computer; there­
fore, the expression is in its simplest form as it now 
stands. 

3.2.4 Organization 

Because this problem involves straight-line pro­
gramming, the sequence of instructions will be fairly 
simple. At this point, the general structure of the pro­
gram may be formed by utilizing a Bow chart. Looking 
at the expression C - p(x + h), one can see that x and 
h must be added, the resultant sum multiplied by p, 
and, finally, the product subtracted from C. The BoW' 
chart in figure 5-1 shows what the program is going 
to do, and in what sequence, but does not actually list 
the steps involved. 

3.2.5 Coding 

The blocks in the flow chart may now be broken 

DATA STORAGE 

100 C 

101 

102 

103 

700 

p 

X 

h 

RESULT 

I 

2 

3 

4 

5 

6 

7 

8 

CAD 102 

ADD 103 

• 
MUL 101 

FST 700 

CAD 100 

SUB 700 

FST 700 

I 

HLT -

Figure 5-2. Flow Chart, Coded Straight-Line 
Program 

down into individual instructions with the appropriate 
operation and address parts specified for each instruc­
tion. The memory locations for the data are arbitrarily 
selected by the programmer and do not affect the pro­
gram in any way. Once the coded instructions have 
been selected they are numbered sequentially, and the 
program is now completed and ready for testing. (Re­
fer to table 5-1 for an explanation of the instruction 
codes.) In the coded program shown in figure 5-2, 
the number to the left of the mnenonic code for each 
instruction is the address of the memory location con­
taining the instruction. An explanation of the coded 
program showing the results of each operation is given 
in table 5-2. In this table, as well as in figure 5-2, 
locations 1 through 8 refer to the location of the in­
struction words which must be in numerical sequence. 
No testing is involved in this program because of its 
simplicity, but in actual practice the testing phase is 
the next logical step of program preparation since 
many programs contain several thousand instructions. 

3.3 LOGICAL PROGRAM 

3.3.1 General 

A logical program is one in which the steps in­
volved constitute some type of operation where the 
final result will be logical rather than arithmetical. A 
human being can use the logical process for such things 
as sorting numbers, comparing sizes, etc., but the com­
puter cannot think for itself; consequently, any type of 
operation that is considered logical must first be de­
signed by a programmer to fall within the capabilities 
of the computer, which are strictly arithmetical. This 
type of program does not find the value of an arith­
metic expression, as did the straight-line program in 
the first example given, but merely uses arithmetic func­
tions to arrive at some sort of logical decision. 

3.3.2 Statement of Problem 

The logical operation involved in this program is 
to determine the largest of 3 numbers. The numbers 
represent three flights of enemy planes, with the largest 
number posing the greatest threat. Only the three 
numbers, Nb N 2, and N 3, are given. 

All the instructions listed in table 5-1 are avail­
able, plus two new instructions given in table 5-3. 

3.3.3 Problem Analysis 

The problem, in the case cited, is to select the 
largest of three numbers, rather than to set up an 
arithmetical expression. The analysis may begin by com­
paring any two numbers since the program is not con­
fined to any specific starting point. However, it is 
known that to find the largest of three numbers, two 
comparisons must be made regardless of which number 
is selected first. 
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TABLE 5-2. STRAIGHT-LINE PROGRAM 

Tables 5-2 & 5-3 

INSTRUCTION CONTENTS OF 
LOCATION OPERATION ADDRESS COMMENTS ACCUMULATOR 

1 CAD 102 Places x in accumulator. x 

2 ADD 103 Adds h to x (x + h) 

3 MUL 101 Multiplies (x + h) by p. P (x + h) 

4 FST 700 Places p (x + h) in location 700. p (x + h) 

5 CAD 100 Places C in accumulator. C 

6 SUB 700 Subtracts p (x + h) from C. C-p (x + h) 

7 FST 700 Places desired result in location 700. C-p (x + h) 

8 HLT Stops computer operation. C-p (x + h) 

Data Storage 
Location Contents Comments 

100 C Capacity of fuel tank 

101 p Consumption rate 

102 x Distance flown 

103 h Altitude factor 

700 Initial and final result storage 

3.3.4 Organiaztion 
At this point, a flow chart, with arbitrary selection 

of numbers, can be started. As shown in figure 5-3, 
the first two numbers compared are Nl and N 2• Since 
there are two possible alternatives after this comparison 
a decision block must be included in the flow chart. 
This block is shown with the two possible paths lead­
ing away from two of the points. A decision block 
must follow each comparison, because the value of the 
numbers being compared is not known at any com­
parison point. When completed, the chart will enable 
the programmer to design a program which will cover 

all the possible selections and still determine the largest 
number by the process of elimination. Notice that in 
the actual execution of the selection, only one path 
will be followed depending upon which number is 
largest. 

3.3.5 Coding 

A straight transfer from flow chart to the coded 
layout is shown in figure 5-4. The BFM instruction 
determines the path the program takes. This program 
is correct in every respect and will find the largest 
number, if used as shown. However, as shown in figure 

INSTRUCTION NAME 

Unconditional Branch 

Branch on Full Minus 

TABLE 5-3. BRANCHING INSTRUCTIONS 

MNEMONIC CODE 

(0) BPX x 

BFMx 

OPERATION PERFORMED 

This instruction changes the sequence of instructions fol­
lowed in a program. The next instruction executed will be 
obtained from location x. The zero (0) specifies that the 
branch is unconditional; that is, it does not depend on any 
special circuit polarities. 

The contents of the accumulator are examined, and if nega­
tive, the next instruction executed will be obtained from lo­
cation x. If the contents of the accumulator are positive, 
the next sequential step in the program is taken. 
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Figure 5-3. Flow Chart for Logical Program 
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58 

CAD 32 

FST 58 

I 

H LT -

STORAGE 
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N2 

N3 
RESUL T 

N3 > NI 
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2 SUB 

I 

3 BFM 

N1> N2 
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, 
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10 CAD 
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12 BFM 
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13 CAD 

14 FST 
7 CAD 30 

8 FST 58 
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15 HLT 
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31 

32 
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31 

58 

-

Figure 5-4. Flow Chart, Coded Logical Program, Preliminary Layout 
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Figure 5-5. Flow Chart, Coded Logical Program, Final Layout 
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Table 5-4 

5-5, the program could be written using fewer in­
structions and, consequently, using fewer memory loca­
tions. Upon close examination, it can be seen that the 
last two steps (storing the number found to be the 
largest and halting the computer) in each of the four 
paths are the same. Also, in two cases, Na has been 
found to be the largest; so a (0) BPX instructions 
can be used to combine the last 3 steps of the two 
cases into one 3-step sequence. When this is done, 
there remain 3 paths which have two identical, final 
instructions. Therefore, by use of a (0) BPX instruc­
tion the final two instructions of the 3 remaining paths 

can also be combined into a single 2-step sequence. If 
N 1 is the largest number, the store process directly 
follows the comparison of N land N a. If N2 or Ns are 
larger a (0) BPX will direct these numbers to the FST 
instruction. Thus, the program can be reduced from 
21 steps to 16 by the use of the (0) BPX instruction. 
The (0) BPX instruction is extremely useful in com­
puter operations since it reduces the amount of space 
required for storage of the program and gives the 
computer added versatility. A full explanation of the 
finalized program is given in table 5-4. Again, no 
testing phase will be discussed. 

LOCATION 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Data Storage 
Location 

1-16 

30 

31 

32 

58 

TABLE 5-4. LOGICAL PROGRAM 

INSTRUCTION 
OPERATION ADDRESS 

(0) 

(0) 

CAD 30 

SUB 31 

BFM 

CAD 

SUB 

BFM 

CAD 

FST 

HLT 

CAD 

SUB 

BFM 

CAD 

BPX 

CAD 

BPX 

10 

30 

32 

15 

30 

58 

31 

32 

15 

31 

8 

32 

8 

COMMENTS 

Places N1 in accumulator. 

Subtracts N 2 from N l' 

Examines contents of accumulator; if nega­
tive, branches program to location 10; if 
positive, go on to instruction 4. 

Places Nl in accumulator. 

Subtracts Na from Nl 

Examines contents of accumulator; if nega­
tive, branches program to location 15; if 
positive, go on to instruction 7. 

Places Nt in accumulator. 

Stores largest number in location 58. 

Stops computer operation. 

Places N2 in accumulator. 

Subtracts Na from N2 

Examines contents of accumulator; if nega­
tive, branches program to location 15; if 
positive, go on the instruction 13. 

Places N 2 in accumulator. 

Branches program to location 8. 

Places Na in accumulator. 

Branches program to location 8. 

CONTENTS OF 
ACCUMULATOR 

Nl 

Nl 

Nl 

N2 

N2 -Na 

N2 -N3 

Contents Comments 

Storage for largest number 
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An iterative program is one in which the same 
group of instructions is used several times by modifying 
the address portion of the instruction. Such a repeti­
tion of instructions is called an iterative loop and is 
employed frequently in computer operations. 

3.4.2 Statement of Problem 
In this example, the problem is to find the total 

number of guided missiles available at a particular 
time, for air defense of a sector which has 20 guided 
missile bases in the area. The number of missiles avail­
able at each of the 20 bases is known, but the grand 
total is not. The number of missiles at anyone base is 
stored in one memory location, and the twenty memory 
locations storing the missile quantities are in a block 
of sequential addresses reserved for missile status re­
ports. 

All the instructions listed in table 5-1 and table 
5-3 are available for the solution of this problem. 

3.4.3 Problem Analysis 

No actual analysis of this problem is needed. This 
example is intended primarily to show how twenty 
numbers can be added employing an iterative program 
without the use of index registers and not merely how 
to add 20 numbers. The general operation will be to 
add the 20 numbers using the same instruction over and 
over again with an address which is modified to specify 
new data each time the instruction is repeated. 

3.4.4 Organization 
In this type of problem there must be at least two 

branch instructions, one to get into the iterative loop 
and another one to leave it. It will be shown that, if 
there were no provision for leaving the loop, the pro­
gram would become hung up and could not complete 
the problem. However, there must be some provision 
for telling the computer when to stop making passes 
through the loop. This is done by comparing the re­
sults of a step with a constant, and branching back for 
another run through the loop if the result is negative. 
The flow chart for this problem is shown in figure 
5-6. The general flow of the program is to add one 
of the numbers to the accumulated total, modify the 
address, determine if the required number of iterations 
have been completed, and, if they have, not to repeat 
the process. The branch in step 2 is necessary to pre­
vent adding the contents of memory location 150, prior 
to the start of the program, into the total b~ing 

sought (see table 5-5). 

3.4.5 Coding 

NO 

PLACE FIRST 

NUMBER INTO 

ACCUMULATOR 

UNCONDITIONAL 

BRANCH TO 

NEXT NUMBER 

ADD AND 

STORE RESULT 

MODI FY 

ADDRESS OF 

INSTRUCTION BY 

ADDING CONSTANT 

ITERATIONS 

COM PLETED? 

YES 

HALT 

PART 5 
CH 3 

The flow chart may now be replaced by the coded 
program which is shown in figure 5-7. By examina­
tion, it can be seen that this type of program has a Figure 5-6. Flow Chart for Iterative Program 
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figure 5-7. Coded Iterative Program 
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distinct advantage over the straight-line addition of 
twenty numbers, because much less memory space is 
required for the storage of the program. A full explana­
tion of the program is given in table 5-5. 

used in 3.4, the flow chart can be drawn immediately. 

3.5.3 Organization 

The first thing to be done in the organization of 
a program of this type is to determine what value 
should be placed in the index register. In this problem, 
twenty numbers are to be added together, so the index 
register is loaded with the value IS. The justification 
of this lies in the fact that 19 repetitions (numbered 
o through IS) are to be made, because the first run 
through the program is not a repetition. The index 
register will modify an address as long as the value 
contained in it is positive. Therefore, on the next to 
last pass through the program, the index register con­
tains 1. On the last pass, the index register contains 
positive zero, so the instruction is not modified (zero 
added to it) and the original address is selected. Then 
the register steps negative, and the computer stores 
the sum of the 20 numbers. The flow chart for this 
program is shown in figure 5-S. 

3.5 INDEXED ITERATIVE PROGRAM 

3.5.1 General 
An indexed iterative program is basically the same 

as the nonindexed type, the only difference being that 
the indexed type has a specific index register which 
modifies the instruction. The Branch and Index in­
struction (Unconditional Branch), together with the 
one which loads the index register, is explained in 
table 5-6. The index registers change the address por­
tion of an instruction by adding the contents of the 
register to it. However, the original address specified 
in the instruction is not destroyed; it is only modified 
for that one particular step. 

3.5.2 Statement of Problem 
Since the problem to be analyzed is the same one 

LOCATION 

1 

2 

3 

4 

5 

6 

7 

S 

9 

10 

11 

LOCATION 

1-11 

12-30 

30 

SO 

150 

194 

TABLE 5-5. ITERATIVE PROGRAM 

INSTRUCTION 
OPERATION ADDRESS 

CAD 12 

(0) BPX 4 

CAD 150 

ADD 13 

FIT 150 

CAD 4 

ADD 35 

FST 4 

SUB SO 

BFM 3 

HLT 

COMMENTS 

Places first number in accumulator. 

Unconditionally branches to first addition; this prevents the con­
tents of location 150 from being added to the sum in place of 
the first number. 

Places last partial sum in accumulator. 

Adds next number to partial sum (or first number). 

Places partial sum (or last addition) into storage. 

Places instruction in location 4 in accumulator. 

Modifies address of instruction 4 by 1. 

Places modified instruction in location 4. 

Subtracts value of last address to be added. 

Examines accumulator for polarity, if negative branch'!s to step 3. 

Stops computer operation. 

Location of program 

Locatjon of data 

Constant of 1. 

CONTENTS 

Temporary and final result storage. 

Constant of 30 (value of last address to be added). 
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Figure 5-8. Flow Chart for Indexed Iterative Program 
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TABLE 5-6. INDEXING INSTRUCTIONS 

INSTRUCTION NAME MNEMONIC CODE 

Branch if Positive y BPX (01) x 
Index 

Load Index Register 

Indexed ADD 

3.5.4 Coding 

yXIN (x) 

yADDx 

After the flow chart for this problem is blocked 
out, the transition to a coded program is made (fig. 
5-9). The only instruction which may require clarifi­

cation is the one in memory location 3. The 1 before 
the ADD step merely indicates to the computer that 

indexing is specified and which index register is to be 
combined with the memory location in the. address 

portion of the instruction. Thus, the first number added 
to the value in memory location 11 would be the value 

in memory location 30 (12 + 18). The second number 
added (during the next repetition) would be 29 (12 + 
17) and so on until the index register becomes negative 
and no more repetitions are performed. 

OPERATION PERFORMED 

Steps the content of index register y down by the amount 
1 then, if the contents of the index register is positive, 
the computer branches to instruction at location x; if 
contents are negative, go on to next instruction. 

Loads index register y with the value x. 

The contents of index register yare added to the address 
of the instruction x (in the control elements), then the 
operand at the modified location is added into the ac­
cumulator. 

It is worth noting that this type of program is 
even more efficient than the iterative program since 
the number of instructions required to perform the 
addition is less. Also, if there were additional data in 
memory locations 31 through 50, the only change nec­
essary in the indexed iterative program would be to set 
the index register to a value of 38. However, the 
straight-line addition program would require an addi­
tional 20 instructions, one ADD instruction for each 
number. The indexed iterative program is employed 
to great advantage in computers because of its great 
flexibility, as shown in the case of adding 40 numbers 
with a program which was originally written for 20 
numbers. An explanation of the given problem, using 
the indexed iterative method is given in table 5-7. 

TABLE 5-7. INDEXED ITERATIVE PROGRAM 

LOCATION 

1 

2 

3 

4 

5 

6 

196 

INSTRUCTION 
OPERATION ADDRESS 

1 XIN 18 

CAD 

1 ADD 

1 BPX (01) 

FST 

HLT 

11 

12 

3 

150 

COMMENT 

Loads index register 1 with decimal value 18. 

Places operand in location 11 into accumulator. 

On first iterative step, adds operand in location 30 (12 + 18, 
original address plus contents of index register) into accumu­
lator. On second iteration adds operand in location 29 into 
accumulator and so on. 

Branches back to location 3 if register is positive, steps index 
register down by 1. 

Stores final sum. 

Stops computer operation. 
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Program Examples 
4.1-4.2.3.2 

CHAPTER 4 
TYPES OF PROGRAMS 

4.1 GENERAL 

In this section the different kinds of programs 
which are handled by computers will be discussed 
briefly. Some computers can perform more programs 
than those mentioned. 

4.2 EXAMPLES 

4.2.1 Master Program 

A large program may be made up of several 
smaller programs, each performing a portion of the 
overall function of the large one. In some cases, the 
large program, which does not properly contain these 
smaller programs, selects each smaller program in the 
proper order to perform necessary data processing 
without performing any data processing itself. A pro­
gram of this type, which controls other programs with­
out itself doing any processing, is called a master pro­
gram, an executive routine, or a sequence-selection 
program. In effect, a master program can do no 
processing except through the use of other programs 
which, in turn, cannot perform the entire processing 
task without having the master program to control the 
sequence in which they are performed. 

The smaller processing programs may themselves 
contain blocks of instructions which can be called 
subprograms or subroutines. For example, if a given 
program requires the performance of a particular oper­
ation, a routine may be written to perform that opera­
tion and placed in core memory with the processing 
program. The processing program may then be written 
to refer to the routine whenever the operation is to 
be performed. 

4.2.2 Subroutines 

A subroutine is a group of instructions which per­
form a distinct function and may be written in one of 
two ways, called open or closed subroutines. 

An open routine is designed as a group of instruc­
tions which are incorporated into the main body of the 
program. These instructions do a specific job at the 
particular point of the program where they are inserted. 
The routine is open with respect to the rest of the 
program; i.e., it falls into a logical order. 

A closed subroutine also performs a certain func­
tion; however, this function may need to be repeated 
several times in one program. A Brancb instruction is 

usually required to get into a closed subroutine, and 
another type of Branch is required to leave it. There­
fore, this routine is closed with respect to the main 
program and requires specific instructions to utilize the 
result of its operation. 

4.2.3 Utility Programs 

4.2.3.1 General 

Utility programs, sometimes called auxiliary pro­
grams, perform nonchecking functions such as loading 
programs, assembly programs, tracing programs, and 
simulation programs. Loading programs take program­
med information from punched cards, tapes, or drums 
and transfer them into the core memory element. As­
sembly programs are used to prepare other programs 
for transfer to punch cards. Tracing programs provide 
printed records of registers to aid in the following of 
program operations. Simulation programs are used to 
pretest programs on other computers known to be 
operating without error. Simulation programs thus pro­
vide a means of detecting program errors (errors which 
are not due to equipment failure but are mistakes in 
programmed routines). 

Utility programs can also be used to generate a par­
ticular pattern which is used to calibrate portions of the 
equipment and to exercise (operate) a particular group 
of circuits so that normal waveforms can be observed or 
design data obtained. 

4.2.3.2 Symbolic Program 

This type of program is utilized when a long over­
all program is being drawn up. The final addresses of 
the instructions may not be known until the program is 
completed, so some sort of symbols (such as a series 
starting with 00.00.00) are used to designate memory 
locations. Although not strictly necessary, consecutive 
instructions are usually assigned consecutive symbolic 
locations to simplify sorting of the address steps into 
their proper order. Symbolic addresses need be assigned 
only to the location of the first instruction in a sequence 
and to those instructions whose locations are referred 
to in the address halves of other instructions. Further, 
not all addresses within the program need be indicated 
in symbolic form. If an actual address is known for a 
particular operand or operation, it can be written into 
the program and is usually indicated by enclosing the 
actual address in parentheses. Similarly, those ins truc-
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tions whose address halves should contain numerical 
constants can be written with the absolute value (indi­
cated as absolute by their inclusion in parentheses) in 
octonary form. 

4.2.3.3 Assembly Programs 

Once a program is written in symbolic form, the 
task of translating it into absolute form can be per­
formed under control of a utility program called an as­
sembly program. The assembly program accepts a sym­
bolic program presented on instruction cards. An abso­
lute location is assigned to each instruction in the same 
order in which the instructions of the program are pre­
sented. The assembly program then makes another pass 
through the program being assembled to complete the 
assignment of absolute equivalents for all symbolic ad­
dresses and to translate all information in the program 
itself into binary form. (Since symbolic addresses are 
not translated, they can be written decimally without 
introducing any difficulties. The assembly program sim­
ply provides a one-to-one correspondence of symbolic 
address to absolute address.) The assembly program 
will also punch a deck of binary cards from which the 
assembled program may be inserted and executed, to­
gether with a printout of the program, listing all com­
ments, symbolic locations, constants, assigned storage 
locations and their contents in octonary form, and the 
initial and final drum storage locations, if any. 

4.2.4 Operational Program 

When speaking of programs, the operational type 
is the one most usually discussed. It is the overall pro­
gram for the computer and is written to suit a particu­
lar need, whether it be inventory, business accounting, 
or air defense. There are many things to be considered 
when writing an operational program, and its suitabil­
ity is determined to a large extent by the programmer 
designing it. Good operational programs use the mini­
mum amount of storage space to obtain the best result 
in the shortest possible time. However, it is almost im­
possible to achieve the optimum values for these three 
things in one program, and something must be sacri­
ficed. Operational programs mayor may not contain 

subroutines, but as a rule they do. The program exam­
ples given in Chapter 3 could be called operational pro­
grams, but it must be remembered they are extremely 
short when compared to actual useful operational pro­
grams. 

4.2.5 Maintenance Programs 

4.2.5.1 Reliability Programs 
Reliability programs are used to check the opera­

tion of specific portions of the computer equipment. 
Performance of these checks enables errors caused 

by circuit failure to be detected rapidly. Included in 
the error detection performed by reliability programs is 
the discovery of failures that may occur only under par­
ticular operating conditions, such as failures that ap­
pear at specific repetition rates and for certain combina­
tions of bits. In order to discover these and other types 
of errors, reliability programs check logical operation, 
paths of information flow, timing, ability of equipment 
to function in all states, execution of instructions, etc. 
Because of their ability to perform these varied checks, 
equipment reliability programs can be used for both 
preventive and corrective maintenance. 

4.2.5.2 Diagnostic Programs 

Diagnostic programs are corrective maintenance 
programs which localize malfunctions to small area of 
the computer. They isolate errors to a specific pluggable 
unit or a small number of pluggable units. In general, 
diagnostic programs are designed to isolate known 
failures, unlike reliability programs which are designed 
to discover these failures. However, there is no clearly 
defined distinction between the two maintenance pro­
gram types. Reliability programs can provide indica­
tions of the nature and location of the failure and may 
actually be used as diagnostic programs. By the same 
token, diagnostic programs may indicate that a given 
portion of the equipment is operating reliably. The 
characteristics of reliability and diagnostic programs 
fall somewhere between the two extremes of overall 
check without failure localization and diagnosis. with 
failure isolation. 

200 UNCLASSIFIED 



PART 5 
CH 5 

UNCLASSIFIED 
T.O. 31P2-2FSQ7-2 

Problem·Solving Capability 
5.1-5.3 

CHAPTER 5 
CAPABILITIES AND LIMITATIONS OF COMPUTER 

This chapter discusses some of the capabilities and 
limitations of digital computers, explaining how their 
performance is affected by different characteristics of 
their construction and organization, and by the proce­
dures employed for operation and maintenance. 

Different types of problems impose wid.ely differ­
ent requirements for computer performance. For exam­
ple; a computer controlling a process in real time needs 
faster 10 equipment and may need faster computing 
speeds than the ordinary scientific or business computer. 
A computer processing business data often needs a larger 
external memory capacity than a scientific computer. A 
computer used for real-time control of military oper­
ations needs a high degree of reliability. And, finally, 
there are innumerable problems for which present day 
computers are unsuitable or where they cannot handle 
the problem at all. 

5.1 PROBLEM-SOLVING CAPABILITY 

What sort of problems can a computer solve, and 
what is it that determines whether one computer is 
better than another? 

If a digital computer is capable of executing only a 
few instructions, then the only things that limit the 
problem solving ability of the computer are the size of 
its memory and the allowable time for solution. Suppose 
that a sequentially programmed digital computer of the 
internally stored program type is capable of perform­
ing only the operations, Add, Branch if Minus, Clear 
and Add, Halt, Multiply, Read, Shift, Store, Subtract, 
and Write. It has been proven by the English mathe­
matician Turing that such a computer can be pro­
grammed to solve any problem that any other computer 
can solve if its memory capacity is large enough and 
if enough time is available. 

In practical applications, however, other character­
istics in addition to memory capacity affect the problem 
solving ability. Practical limitations on the problem 
solving capability of a digital computer include: (1) 
the speed of the computer, (2) its ease of programming 
and operation, (3) its reliability, (4) the nature of the 
10 equipment, and (5) the ability of the programmers. 
For scientific problem solving, the most important of 
these limitations are usually memory capacity, speed, 
ease of programming, and ability of the programmers. 
For business data processing, the most important lim­
itations are usually memory capacity and speed. And 

for most real time process control applications, the im­
portant limitations are speed, reliability, ease of oper­
ation, and the type of 10 equipment. 

5.2 SPEED 

The development of computers has been a con­
tinuous quest for faster methods of computing. In the 
last decade comparatively few new mathematical tech­
niques have been discovered. Yet, a great number of 
problems formerly thought to be insoluble have been 
solved through the use of digital computer techniques. 
These problems have been solved because for the first 
time the speed of the computer has made old methods 
of solution practical. Before the advent of computers, 
the methods of solving the equations used in the design 
of aircraft wings were known; however, such equations 
require so much calculation to solve that it used to be 
impractical to do so. The wings were, therefore, de­
signed by crude mathematical approximation and ex­
periments. The speed of the digital computer is now 
great enough to make mathematical solutions practical. 

The solution of some problems requires even 
greater speed than can be provided by present day com­
puters. For instance, there are problems that occur in 
physics, which it is estimated would require six months 
to solve with the fastest of present day computers. It 
appears, therefore, that the speed of a computer is its 
major capability and an increase in speed the area in 
which the greatest improvement can be expected on 
future computers. 

S.3 EASE OF PROGRAMMING AND OPERATION 

The ease with which a computer can be pro­
grammed is one of the most important characteristics 
determining its practical usefulness. In a typical appli­
cation, a group of men may spend two months writing 
out a program, two weeks checking and correcting it, 
and then the computer will take an hour to perform 
the computations. It can be seen, then, that a computer 
which is easy to program will generally be much more 
useful than one which is difficult to program, because a 
problem which cannot be programmed economically 
cannot be solved economically on a computer. 

Another characteristic which helps to make a com­
puter more useful is the ease of operation by personnel 
when, in some applications, human intervention is nec­
essary. Often, in the SAGE computers for example, this 
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intervention must be accomplished rapidly if it is to be 
useful, and the ease of entering information determines 
whether the particular operation required can be per­
formed or not. For instance, a Display System was 
used in the sample computer of Part 4 because it is the 
only method yet found to present a mass of data to the 
operator in an understandable form and at high speed. 

5.4 RELIABILITY 

Reliability is a special problem in digital computers 
because of the complexity of their design and oper­
ation. A large digital computer may have thousands of 
vacuum tubes, and a breakdown in any of them may 
cause an error in any single step which may throw off a 
scientific computation involving 10 million steps. 

One way to improve reliability is to use selected 
components in very conservatively designed circuits 
with controlled temperatures and carefully regulated 
supply voltages. Tube types are chosen that have low 
failure rates, and then the particular tubes to be used 
are individually tested. Capacitors are operated at far 
below the working voltages recommended by their man­
ufacturers. Forced air cooling is provided, and usually a 
large computer is operated in an air conditioned en­
closure. 

In addition, to further reduce component failures, 
a preventive maintenance routine is employed at regu­
larly scheduled intervals. One procedure in preventive 
maintenance is marginal checking which involves the 
varying of operating voltages on a few circuits at a 
time, in order that any circuits close to failure level will 
show their defects at this time. Another procedure in 
preventive maintenance is to have the computer check 
itself by means of reliability and diagnostic programs 
(Ch 4). 

No matter how much is done in the way of compo­
nent selection, careful design, and preventive mainte­
nance; errors are still likely to occur from time to time. 
Therefore, many computers are designed with special 
provisions for automatic detection of errors. One 
method often employed is to include in a computer 
word one or two extra bits for error checking. For 
example, in the 33-bit words used in the AN/FSQ-7, 
32 bits are for data or instructions, and the 33rd bit is 
for parity check. The total number of 1 bits in an 
AN/FSQ-7 control computer word is always supposed 
to be an odd number. Therefore if the 32 information 
bits have an odd number of l's, a 0 is used as the 33rd, 
or parity bit; but if the number is even, then, at the 
time the word is originated, the computer writes a r in 
the parity position. Several parts of the Central Com­
puter System contain parity checking circuits which 
count the number of 1 bits in a word and give an alarm 
if . a wrong number is found. 

A parity check is a useful safeguard because most 

errors due to malfunction of a component or circuit 
will affect only a single bit position, and errors ar.e so 
infrequent that it is unlikely that two will occur at the 
same time. A single error will change the total number 
of 1 bits from an odd to an even number. This system 
will not detect an even number of bit-change errors. 

Even at best, when full use is made of all the re­
sources that have been described for increasing reliabil­
ity, no large computer has yet been developed which 
can operate without error more than about 95 to 990/0 
of the time. Therefore, in a system such as SAGE where 
it may be disastrous for a computer to be out of oper­
ation for even a few minutes, it is necessary to increase 
reliability by duplexing many parts of the computer, so 
that if one part is out of order or is shut down for pre­
ventive maintenance, the duplicate part can take over. 

5.5 CONCLUSION 

Digital computers do many types of work exceed­
ingly well, but there are many other types of problems 
at which they are quite slow and incompetent in com­
parison with man. For almost any type of numerical 
calculation, a high speed computer is roughly ten thou­
sand to a hundred thousand times faster and far more 
accurate than the average experienced human calculator 
equipped with a desk calculating machine. On the other 
hand, a competent human translator is incomparably 
superior to the best digital computer in translating from 
one language to another. 

Computers are better than human beings at nu­
merical calculations because of their greater speed and 
accuracy, and because most numerical calculations do 
not require tremendously complex programs or vast 
amounts of data storage. On the other hand, an expert 
translator or chess player draws upon years of expe­
rience involving tens or hundreds of millions of bits of 
memory. In fact, any man during a few minut~s of 
reasoning, will whether he realizes it or not, ordinarily 
make use of much of what he has learned throughout 
his life. In other words, a man can make use of a tre­
mendous memory capacity to solve very complex prob­
lems. 

But man has one other advantage which so far has 
not been built into a computer. He has the ability to 
think creatively. The average man can look at a complex 
situation and arrive at a conclusion which may never 
have been thought of before. A computer on the other 
hand can only do what it is told to do; i.e., it can only 
come to conclusions which are built into a specific writ­
ten program. 

The way in which computers and operating per­
sonnel are employed in the SAGE System makes excel­
lent use of the different abilities of man and machines. 
Thus the routine mathematical calculations are per­
formed swiftly and accurately by the computers, while 
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the difficult and critical decisions are made by men. If 
at some time in the future, an AN/FSQ-7 computer -dis­
plays a group of unidentified planes approaching the 
United States in a suspicious way, then a man must 
within a few seconds decide whether to attack immedi­
ately or wait for additional information. Within those 

few seconds he must make use of what he knows about 
planes and attack strategy, the effects of nuclear weap­
ons, the efJectiveness of the air defense system, possible 
intentions of likely enemies, and so forth, involving 
thousands of times as much information as is stored in 
the AN/FSQ-7's memory. 
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