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PART 1
INTRODUCTION

1.1 THE NEED FOR COMPUTERS

The collective character of modern civilization has
created the need for recording and processing enormous amounts
of information., A man may carry in his wallet a driver's
license, a car registration, a social security card, a draft
card, a union card, club membership cards, a hospitalization
card., At home he may have several insurance policies, a num-
ber of unpaid bills, cancelled checks, time payment éoupon
books, a birth certificate for each member of his family, some
kind of record of his earnings, a dog license and a marriage
license. Each year he may have to fill out renewal forms for
several of his licenses and he will certainly have to file an
‘income tax return., While this last chore may place a consid-
erable burden upon the individual, his data processing and
computational problems are trivial compared to those of
government and 1ndustry. Each document that the individual
holds implies the existence of vast files in some government
or busineés office. The individual's social security card,
for example, would be meaningless if the federal govermment
did not keep complex records concerning the soclal security
status of more than sixty million citizens.,

Not only has the quantity of information requiring
processing increased as civilization has become more complex,

- but also new reasons for speed in handling that information
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have arisen. The warrior of old aiming an arrow at a slow-
moving adversary had no particular calculations to perform.

On the other hand, in order to shoot down one of today's

fast moving aircraft it is necessary to solve a complex problem
in trigonometry involving the aircraft's range, course and
speed as well as wind velocity and ballistic data. Moreover,
this is what 1s called a "real-time" problem which means that
its solution must be obtained quickly enough to be used to
control a process, which in this case 1s the process of aiming
the gun., The gun must be aimed while the aircraft is still
within range which 1s a matter of seconds. Otherwise, the
result of the calculation 1is useless., Clearly, a human with
pencil and paper is not going to be able to handle this type
of calculation satisfactorily.

As a matter of fact, for problems having any consliderable
number of stops, a man provided only with pencil and paper 1is
not a successful computer for several reasons, Not only is
man an inherently slow calculator, but also he tends to make
mistakes. He becomes bored or fatigued.

When a process 1s mechanized it can be repeated any number
of times and the same results obtained. Everyone is famillar
with the repeatability of machine processes. In some flelds
handmade products are highly prized Jjust because each unit is
different from every other unit while machine‘made products
are scorned Jjust because every unit 1s identical to every
other unit. But this is certainly not true in the fleld of

information handling. It is desirable to place card A in
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front of card B every time it 1s returned to file. It is
equally desirable that 2 x 2 should always yield 4%, It has
.been estimated that an experienced clerk makes one error for
every hundred operations he performs. Par for present day
computers, on the other hand, is on the order of one error
for every 10,000,000 operations, And where the expense can
be Jjustified even greater reliability can be built 1nto.
machines. As to speed, there is no comparison between men
and machines. Today's computers can multiply two six digit
numbers at speeds as high as 70,000 multiplications per second.
1.2 THE NEEDS OF COMPUTERS/

While men are slow and not very accurate they are extreme-
ly versatile. On the other hand, it 1is very expenslive to
bulld versatility into machines. Therefore, when a process
is to be mechanized, the first task of the machine designer
is to reduce that process to a series of slmple operations,
Thgse should be as few in number and as strailghtforward as
possible. It is obvious that the libraries and files to be
consulted by machines will have to be different then those
used by men. It is perhaps not so obvious that the methods
of computation employed by humans are not readily adaptable
to mechanization. Yet this turns out to be the case. Not
only are the routines used by humans 1in performing arithmetic
operations unsuitable for mechanization, but, in addition,
even the language of,human calculation turns out to be some-
what inconvenient for use in high speed computing devices,

- This language, which 1s the decimal number system, requires
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the use of the ten Arabic numerals 0,1,2,3,4,5,6,7,8,9 for
1ts'representation. It is possible to represent any number
using only the two digits O and 1. This representation 1s
known as binary notation. It is much easler to represent
numbers in a machine if only two digits are required because
there are any number of devices which can assume either one
of two states. For example, a switch can be open or closed
or a voltage can be positive or negative. The open switch
can then represent 1 while the closed switch represents O or
the positive voltage can represent 1 while the negative volt-
age represents O.

Since large scale digital computers are employed in the
solution of any problem largely to save time, it 1is reasonable
that they should be built using those components which afford
the greatest advantages in speed of operation, Such compon-
ents are always electronic or electro-magnetic. Thus today
the term high speed computer 1s synonomous with electronic
computer,

1.3 PURPOSE AND PLAN OF THIS BOOK

The purpose of this book is to familiarize the reader with
‘the general theory of digital computers prior to his detailed
study of a specific computing system,

In order to understand the large scale digital computing
systems of today, it 1s important to be familiar with the
binary system, for this is the number language upon which
most computer operations are based. Part 2 of this book,

accordingly deals with arithmetic. The decimal number system
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is reviewed in this part with the emphasis placed'on calling
attention to the significance behind some of the operational
routines which the average person learns early in childhood
and performs automatically thereafter, Various schemes for
performing the four arithmetic operations, by means thch

are more adaptable to mechanization than are pencil and

paper methods, are developed in terms of the decimal system.
Arithmetic operations in the binary system are then dilscussed.
Pencil and paper methods are compared with those of the
decimal system in order to give the reader some familiarity
with the new notation, 1In addition, various schemes for per-
forming the binary operations by means which can readily be
mechanized are introduced. There follows a discussion of

the octonary number system which is important in computer work
because of the relationship which it bears to the binary
system. A chapter on radix‘conversation explains the means
for converting numbers from one system of notation to another.
Finally, there is a chapter on precision and scaling.

Since high-speed computing components are always elec-
tronic or eléctro-magnetic, it 1s necessary to have a thorough
understanding of basic electrical, electro-magnetlc and
electronic theory. The reader is assumed to have some train-
ing in this fleld; however baslc principles are presented
for review and reference purposes in Part 3 of this book.

Part 4 introduces the types of devices which are used
as computer componehts. There is, of course, a chapter deal-

ing specifically with the circuits which perform the arithmetic
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operations and another dealing with storage devices. 1In
addition there 1is a chapter in which the many non-computing
circuits required to maintain voltage and power levels and
generate and shape pulses are discussed.

In Part 5; the manner in which the components of Part
4 are organized to form a computing system is discussed.
Organization of a computer depends to a very large extent
upon the type of problem it is intended to solve. The com-
puter developed in Part 5 1s assumed to have a mission
simllar to that of the AN/FSQ-7 Combat Direction Central
Computer.
| While any detalled exposition of digital computer theory
requires knowledge of the arithmetic techniques developed in
Part 2; the electrical, magnetic and electronic theory de-
veloped in Part 3; and the component theory developed in Part
b; 1t 1s still poésible to gainyinsight into the nature of
COmputers in general terms of information flow without ahy
- specialized knowledge. Moreover, such insight 1is useful in
approaching the specialized information presented in this
book. For this reason, a very’general block level discussion
of a digital computing system follows.
‘1.4 COMPUTING SYSTEMS

Computers are classified as either analogue or digital
depending upon‘whether their operation is based upon measure-
ment or upon counting. The/slide rule, for example, 1is a

simple analogue computer on which lengths are proportional
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to various functions. Multiplication using this device 1s
performed by adding lengths which are proportional to the
logarithms of numbers.. The adding machine, on the other
hand, is a simple digital computer. This device is used to
perform arithmetic operations by means of a mechanization of
the counting process.

This book 1s concerned with the study’of digital comput-
ers, not‘simple ones like the adding machine, but still
-machines whose usefﬁlness is based upon a capacity to perform
arithmetic operations. | |

Any computation can’be defined as a sequence of 1nd1vidua1
operations and can be stated in the form of a set of in-
structioné or program. It 1s fundamental to computer theory
that machines can be made to follow instructions. For example,
when two numbers are entered on an adding machine, the machine
1s capable of executing either one of the two instructions,
add or subtract. However, 1t 1s important to appreciate the
fact that machilnes réspond to the form rather than to the con-
tent of instructions. Thus there 1s only one way to tell an
adding machine to add and that is to depress the correct key.
Once a set of instructions or program has been loaded’into the
large scale digital computer of today, a long computation in-
| volving‘enumerable Instructions may be carried out without any
human intervention whatsoever. If the program is cyclic, that is
if the last instruction commands the computeb to'repeat the

sequence, then computations can continue indefinitely without
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human intervention.‘ But 1t is still true that all the machine
is doing is responding to the form of a set of specific in-
&ructions which it was designed to execute.
| As a further example of the difference between human and
machine response, consider the instruction, "Turn out the
1ight." The meaning of this sentence 1s interpreted to apply
to a particular 1ight in accordance to the circumstances in
which the remark is made. Perhaps there is only one 1ight in
the room or perhaps the individual issuing the command~nods
toward a particular light when he speaks.. The human whokre-
sponds to the command, locates a switch on the wall or on the
lamp itself and finally turns it around or pushes it up or
| down depending upon the type of switch it 1s. Or perhaps he
| merely replies, "Turn it off yourself " By contrast, the
change of the switch position in the instruction which is
issued to the light circuit ‘and the circuilt must respond to
this instruction by extinguishing a particular lamp because
the form that the instruction takes is to break the circuit
of that 1amp. k

In order to clarify the use of a program of instructions
in operating upon numerical data an example will be given.
First however it 1is worthwhile to classify the various functions
which must be performed in order to complete any computation.
These functions are here considered in terms of their imple-
mentation in a manual computing system employing a desk calcu-
lating machine and a human operator. The relationship of such

a manual <ystem t- an automatic computing machine is 1llustrated
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in Figure 1-1,
1.4,1 Arithmetic Function

Since a digital computer'hés been defined az a device
which performs the arithmetic operations, it might be ex-
pected that every computer would respond to the four explicit
commands; add, subtract, multiply and divide. However, this
18 not the case. The adding machine, for example, has no
facilities for inserting explicit multiply and divide commands.
Moreovers®some quite large general purpose electronic com-
puters do not have facilities for inserting explicit division
commands. |

The fact that a particular machine is not designed to
respond to a command*associated explicitly with some parti-
cular arithmetic operation does not necessarily mean that
the machine cannot be used to perform that operation. For
example, an adding machine can be used guite efficiently as
a multiplier; however multiplication has to be performed by
means of a routine that makes use of the add command. This
concept of performing complex operations in terms of routines
involving more simple operations is what makes computers the
powerful computational tools that they are.

- The arithmetic element of the manual computing system
1llustrated in Figure 1-1 1s a desk calculator. This device
can be used in fairly straightforward fashion to add, sub-
tract, multiply and divide.
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1.4.,2 Storage Functlon

The concept of storage is implied by any computation
‘which cannot be completed instantaneously. Pencil and paper
and the human memory  are storage devices used during a hand
‘calculation. The fingers are used as a primitive storage de-
vice in counting. The desk calculator stores the numbers
that are set into it and stores the result until it 1s clear-
ed. The adding machine stores all operands, intermedlate
results and flnal totals on a strip of paper.

If the manual computing system of Flgure 1-1 18 to be
used in the solution of some problem having a number of
steps, it 1s reasonable that the instructions defining each
of these steps together with the data to be operated upon
should be recorded on some storage medium. Assume, for thé
purposes of discussion that eachseparate instruction and each
item of data is entered on a separate index card. Assume
further that the instruction cards are numbered in the order
that the instructions are to be~perfofmed and that the data
cards are numbered arbitrarily but successively starting with
the smallest numbher which is not used for an instruction
card. This numbering of the cards formalizes the process of
referring to both instructions and dafa. Instructions can
simply be refefred to in;the order specified by the card
numbers, while data to be operated upon can be specifled by
the number of the card on which it 1is written. The set of

cards comprises a storage device. Since any instruction or
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any 1tem of data can be specified by the number of the card
upon which it 1is written, the card number 1is properly calléd
the address or location of that instruction or item of data
in storage. ,

1.4.3 Control Function‘

The human operator 1is the control element 1n the manual
computing system employing the desk calculator. The function
of the operator is to enter the data and instructions con-
éained,on the cards onto the calculating machine and to re-
cord the results of the arithmetic operations performed by
the machine on other cards. This entails inspecting the cards
in order and referring to specified cards to obtain items of
data. It then entalls transfer of instructions and data from
the cards to the keys of the calculating machine.» Finally,
1t entalls transfer of results from the machine carriage
register to numbered cards assigned to hold those results.

Before the human operator can be replaced by machine
components, the instructions must be reduced to a code which
can be represented by a set ofkmechanical or electrical
states, as for example by the open or closed condition of a
number of switches 1n a complex SW1tch1ng network. The
cards must be replaced by some medium whose state can be
~8ensed elther mechanically or electrically such as punch tape
or’relays or magnetic drums. Transfer paths by means of
which the conditions representing instructions or data can
be made to establish comparable conditions 1in other parts of the

computer must be provided. These paths must be such that they can
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be completed or 1nterrupted in accordance with the program
of instructions. |
1.4.4 Input Output Function

In the manual computing system employing the desk calcu-
lator, the input output function is trivial. " The only re-
quirement 18 that the necessary information be delivered to
‘the operator (input) and that the results (output) be collect-
ed from him. However, when the machine takes over the éentrol
functions from the human operator, then the input output
function 1ncludes.communication between man and machine. Here,
then, is where instructions and data are converted into the
forms that the computer recognizes. For example,'a:human
operator using a conventional typewriter keyboard may type
'1nformation'ihto a machine which converts that information
into a pattern of holes pﬁnched in a card. Here, also is
where computer results are cdnverted into a form that can be
interpreted by humans. An output device may conﬁert patterns
of holes in a card into typewritten information juSt reversing
the translation performed by the input device previously \
mentioned.

When a computer 1is used to provide continuous solutions
of real time problems‘then the burden on the input devices
' 1s:great1y increased. Input data 1is constantly changing and
so must be constantly renewed as the solution continues.
Control and guidance information must continually be delivered

" to output equipment.
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1.4.5 Demonstration Problem
- In order to demonstrate how specific instructions are
used to perform a computation, the familiar data processing
problem of completing an income tax return is considered.
Here the program is the tax form itself but, before it can
be processed by a computer, it must be coded in terms of the
instructions which the particular computer 1s designed to
execute. For the purpose of this demonstration problem, an
autématic computer capable of executing the 1natruct16ns
listed in Table 1-1 is assumed. |
; TABLE 1-1
INSTRUCTIONS EXECUTED BY’DEMONSTRATION MACHINE
Code Action

CAD 00 Clears the accumulator which is
‘ the chief operational unit of the
arithmetic element and sets in the
number stored in the address indi-
cated by the address part of the
instruction, (in this case 00).

ADD 00 : - Adds the number stored in the loca-
tion specified by the address part
of the instruction (in this case
00) to the contents of the accumu-
lator.

FST 00 - Transfers the contents of the accu-
mulator to the storage location
specified in the address part of
the instruction (in this case 00).

SUB 00 Subtracts the number stored in the
location specified by the address
part of the instruction (in this
case 00) from the contents of the
accumulator.

MUL 0O Multiplies the number stored in the
location specified by the address
part of the instruction (in this
case 00) by the contents of the
accumulator.
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TABLE 1-1 (Continued)
Code . Action
HLT 00 _ , Stops the machine. Here the

address part of the 1nstruction
is meaningless

Items of initlal data required for the solution of the
problem, i.e. the completion of the form, almelistedAin Table
1-2 while intermediate and final results to be calculated are

listed in Table 1-3.

TABLE 1-2
INITIAL DATA REQUIRED FOR DEMONSTRATION PROBLEM
B ' Storage

Code Item Location
a salary 21

b : additional 1income 22
e 'va - medical and dental deductions 23

d - contributions to deduct - 24

e | miscellaneous deductions 25

f - exemption per dependent 26
g. number‘of dependents 27
h tax rate 28
k

amount withheld 29

| TABLE 1-3
INTERMEDIATE AND FINAL CALCULATED RESULTS
DEMONSTRATION PROBLEM

Code o o | Item
a’'A o - ‘ ad justed gross income
c AdAe ' total deductions
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TABLE 1-3 (Continued)

Code Item
(a +b) = (c +4d +e) net income
(@ +b) - (c +d +e) - fg ' taxable income
(a2 +b) = (¢ +d + e) - fg)h tax
((a +b)- (c +4d +e) - fg)h - k payment to government

The program for the solution of the problem i1s presented in
Table 1-4. It is assumed that the instructions have already
been loaded into the storage locations indicated in Table 1-4
and that the initial data has been loaded into the storage loca-
tions indicated in Table 1-2. It is further assumed that the
control element ofvthe computer examines each of the storage
locations in order, interprets the condition found in each lo-
cation as an'onder and attempts to execute the order. This makes
the/stop instruction HLT a necesSity. Otherwise, the control
elément' hovingvexhausted the supply of instructions, would
continue to examine succeeding storage 1ocations and would

attempt to interpret data found in those locations as instructions.
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| TABLE 1-4
PROGRAM FOR DEMONSTRATION PROBLEM

Storage ‘Result of Executing

Location Contents - Instruction
1 CAD 26 f in accumulator
2 - MUL 27 , fg in accumulator ;
3 FST 30 fg in storage locatlion 30
-y CAD 23 " ¢ in accumulator
5 ADD 24 ¢ + d in accumulator
6 ADD 25 ¢ +d + e in accumulator
T FST 31 ¢c +d + e in storage location 31
8 CAD 21 “a in accumulator
9 CAD 22 a + b in accumulator
10 SUB 31 (a2 +Db) - (c +d +e)in
' accumulator
11 8UB 30 ~(a +b) - (c+d +e) - fgin
accumulator
12 MUL 28 ((a +b) - (c +d +e) - fg)h in
accumulator
13 SUB 29 ((a +b) - (c +d +e) - fghk
y in accumulator
14

HLT Computer stops

It}shéuld be undersﬁood that all déta‘represenﬁéd here
by lower case ietters‘of the alphébet are specific numbers;
that 1s, the computer doeé arithmetic rathef than algebra. The
letters are used here merely to simplify the discuSsién. N

The first instruction executed by the computer (1.e. the
inatruction in storage locatlon 1) calls for clearing the
accumulator (making it contain zero) and then adding~1n€o the
accumulator the data contained in storage location 26 (the

number f£). This instruction is coded in the form; CAD 26.
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The second instruction executed by the computer (i.e. the
instruction in storage location 2) calls for multiplying the
‘number in storage'lécation'27 (the number g) to the number in
the accumulator (the number f). This instruction is coded in
the form; MUL 27.

The third instruction executed by the computer (i.e. the
instruction in storage location 3) calls for storing the con-
tents of the accumulator (the product fg) in storage location
30. This instruction is coded in the form; FST 30.

The program continues in this manner, each instruction
being executed in the order of 1its storage location number.
The sum, ¢ + d + e 1s formed by execution of instructions y, 5
and 6, and 1s placed in storage ldcation 31 by the execution
of instruction 7. The sum, a + b is formed by the execution
of instructidns 8 and 9. The difference, (a + b) - (¢ +d + e)
is formed by the execution of instruction 10. The difference,
(a +b) - (¢c +d +e) - fg 18 formed by the execution of in-
struction 11. The product, (Ia +b) -c +d +e) - fé)h is
formed by the execution of instruction 12. Finally, the difference,
((a +b) - (c +d +e) - fé)h - k 1s formed by the execution
of instruction 13. The computer is then stopped by the execu-
“tion of instruction 14. At this time, the solution of the
problem; that is, the amount of tax to be paid or (if the
solution is a negative number) the refund to be claimed, 1s

contained in the accumulator.
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- This demonstration problem has indicated the’steps
by which data would be processed 1in response té a |
particular coding of a program. Of course, other 1hf
structions would be required in order to insert in-
structions data in the machine, in order to store inter-
mediate results (which are destroyed in the course of
the program outlined above), and in order to read but
intermediate and final results.

1.4.6 Summary

The demonstration machine of paragraph 1l.4.5 sdlves
the problem of the tax return by means of its ability to
execute six explicit instructions. Much longer and more
complex problems could be solved by other pfogra&s eﬁ-
ploying only these six‘explicit instructions. However,
the versatility of the machine would certainly be’in-
creased if its design allowed 1t to execute a greater
number of explicit instructions. Just one example will
serve to 11lustrate this point.

The versatility of the computer considered in the
demonstration problem is limited by the fact that 1t must

execute the Instructions in the order of thelr storage location
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numbers. Suppose that the machine were capable of carrying
out one routine of instructions in response to one contin-
gency and an entirely different routine in response to an
alternative contingency. Then the computer would be able
to handle problems which can be stated as follows: "If
condition A exists, and if condition B exists, and if con-
dition C exists, ......, and 1if condition N exlsts, then a
particular action P will be taken."

It happens that this contingent type of response can
be built into a computer without sacrificing the condition
that, 1n general, instructions should be examined according
to a pre-ordered sequence (determined by the numbers of
their storage locations). This is done by adding what is
called a conditional branch instruction to the set of in-
structions which the computer can execute. Such an instruc-
tion works in the following manner: Supposg that storage
location 34 contains a conditional branch instruction specify-
ing that storage location 45 be consulted next if the contents
of the accumulator is negative. Notice that this implies a
means for sensing the sign of the number in the accumulator.
When thils sensing operation has been performed, if the con-
Bnts of the accumulator is found to be negative, then the
computer will examine the instruction contained in storage
location 45. When the instruction in location 45 has been
executed, the computer will next examine the instruction in
location 46 (unless 45 contained a second branch instruction).

On the other hand, if the contents of the accumulator is found
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" to be positive then the computer will continue its normal
sequence by examining the contents of storage location 35.

An ability to respond to a greater number of instructions
usually implies more complexity of equipment. For this
reason, any particular computer is designed to respond only
- to those instructions which are required for the solution of
the particular type of problem 1t 1s expected to handle. A
machine capable of responding to forty or fifty instructions

1s an extremely flexible computing tool.
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'PART 2
CHAPTER 1

INTRODUCTION

1.1 NUMBER SYSTEMS
Number words differ from language to language. Where the
American says four, the Frenchman says quatre and the German
says vier. However, the symbol 4 means the same thing to all
three. In fact, so universal is the use of‘the'familiar deci-
mal number system employing the successive digits 0,1,2,3,4,
5,6,7,8,9 that it comes as something of a surprise to learn
that 1t is just one of the many possible systems of number re-
preséntation. However, the evidence indicates that man develop-
ed the decimal system, rather than one of many dther‘possible
systems, chiefly because of his habit of counting on hisnfingers.
When finger ¢ounting is compared to counting by means of
the decimal system, there appears to be the following rather
basic difference: in finger counting, a person can count from
zero(closed hands) through ten(ten raised fingers) before he
must begin again; in counting by means of the decimal system,
1t is possible only to count from zero(0) through(9) and then
it 1is necessary to begin again. However, thiskdifference is |
more apparent than real, since both finger counting and deci-
mal counting are essentially methods of counting by ten'é)as
will be seen. o
In decimal counting, 1t is necessary to begin again

after the digits O through 9 have been used. However the
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decimal system affords an ingenious scheme for keeping track
of the number of compiete counts (Othroﬁgh 9) that have been
made. This may be compared to a finger counting scheme involv-
ing a team of counters in which the first member of the team
counts units, the second member counts tens, the third wmember
counts hundreds and so on.The scheme works as follows: each |
time that the units counter raises his tenth finéér( that 1is,
each time he has completed a count of ten units) the tens
counter ralses a finger. Simultaneously, the units counter
closes his hands to indicate zero. Since tén,raised fingers
merely act as the signal for a transfer of a complete count to
the tens counter and since the completeléount is indicated by
a raised finger belonging to the tens counter, ten raised fin-
gers may be interpreted as a second representation‘of zero(the )
other being closed hands). Each time that the tens counter
raises his tenth finger (that is each time that he completes a
count of ten groups of ten), the hundreds counter raises a fin-
ger. Simultaneously the tens counter closes both hands to in-
dicate zero. The size of the group'of counters can be extended
indefinitely so that any number can be counted off in this man-
ner.
If a number n is multiplied by itself p times, the re-

sulting humber is said to be a power of n. Thus 100 is the
second power of 10 since it results from multiplying 10 x 10,
and 1000 is the third power of 10 since it results from multi-
plying 10 x 10 x 10, Exponential notation 1is a convenient short-
hand for indicating powers of numbers. For example,np indicates

that n has been mutiplied by itself p times. In the same way 10
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HUNDREDS (10%) TENS (10) UNITS (10%)

8 X102 = 800 7X10' = 70 4 X10°= 4

874

Figure 2-1



indicates IO'X 10 X 10, that is the th1rd power of 10. A spe-
cial case is noywhigh,is always equal to 1 regardless of the
value of n. | ‘ ;

In the expression nP, n 1s called the base and p is
called the exponent. In order to multiply two exponential ex-
pressions which have the same base, it is merely necessary to
add the expohents.,,Thus: ‘ | |

203X 10% = (10 X 10 X 10) (10 X 10) = 105
Moreover, in order to divide one exponential expression by a
second having the same base, 1t is necessary to subtract the

exponent of the second from the exponent of the first. Thus:

10 X 10 X 10 _ .1 _ .

The activity of the finger counting team introduced above can

103 2 102 =

now be restated as follows: Each member of the team counts by
a part;cular power of ten. Thus the units counter 1s counting
by 10°, that is he is counting by ones. The second counter is
counting by 101, that 1s he is counting by tens. The third
counter 1s counting by 102, that 1s he 1s counting by hundreds.
This 1s 1llustrated in Figure 2-1, 1n'which the count repre-
sented by the extended (counted) fingers is 8T4.

With a pencll and paper, one person can keép track of
many powers of ten by taking advantage of the positional
character of decimal notation. The digits O through 9 can be
used to represent ten distinct values. Then, it is necessary
to start over again. In this case, the new start is made in a
- second column or place. The value shown in this place is in-

creased by 1l each time a new start is made in the first
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column. Thus the second column serves the same function as
the second member of the finger counting team. This anﬁlogy
between columné énd members of the counting team can be con-
tinued indefinitely. It can be generalized by stating that
there is a column assoclated with every power of ten. Thus
the significance of any of the digits O through 9 depends upon.
the column in which it is found. For examble, the digit 5 1s
more significant in the number 571 than it is in the number!w
751, for in the first number it appears in the 102 column and
so represents five hundred while in the second number it ap-
pears in the 10} column and so repfesents fifty.

Thus far the discussion has involved integers, that 1is
numbers which can be represented using only columns to the
left of the familiar decimal point. Each column to the right
of the decimal point 18 associated with the reciprocal of a
power of ten. In the first column to the right of the point,
ioths are counted. Thus .3 =.3/10 . In the second column,

hundreths are counted. Thus .03 = 3/100. In exponential nota-

tion: ;lp = n"P, Thus the column to the right of the decimal
n

point is the 10~1 column, the second column is the 1072 column
and so on.

Any decimal number represents a sum of products, where
each product 1s a digit multiplied by a'power of ten. For
example, the number 253 represents the sum: 2 X 102 +5X 10l
+ 3 X 10°. Here, the digit by which each power of ten is multi-
plied is called the coefficient of that power of ten. Any deci-

mal number, n, is thus of the form:
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;\'(\: Cr‘. 'O -+ Cr\—i\c +““'+CO|C(‘)+C-E{0 Foeees (‘J
) .

%

where each of the coefficients; C Ch-1, ..,Co, C_, se9>

n,
can assume any of the values O through 9.

For example, the number 24 ,350.42 represents

4 1

2 X 100 + 4 X107 +3X 10° + 5 X 10
(J) + & x10-1 + 2 x 1072

+0X 10°

Because a decimal number is a group of digits each of
which is 1ntgrpreted és a coefficient of some power of ten,
ten is said to be the radix of the decimal number system. In
- general 1if the radix of & number system 1s R, then a number
1s represented in that system by a group of digits which are
interpreted as coefficients of powers of R. Thus the general
expression for a number, N, represehted in'a system of radix R
is as follows:

N = CoRM+ G R s 4 CR() « C R (2)

where each of the coefficlents; Cph,Cp<1, «¢..,C C eeesCaN

o’ "-1
assume any of the values O through R-1l.

Notice that equation (1) is that special case of equation
(2) for which R 10.

As has already been stated, the development of the decimal
number system was probably related to man's habit of counting
on his fingers. There 1s no inherent reason why positional no-
tation must imply counting by tens. An éight«fingered race of

men would naturally have counted by eignts. The result, in

terms of pencil and paper notation, would have been the octo-
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NUMBER WORDS
FOR COLUMN
SIGNIFICANCE

FIVE HUNDRED
AND TWELVES

SIXTY-FOURS

EIGHTS

OCTONARY POINT

UNITS * EIGHTHS

SIXTY-FOURTHS

FIVE HUNDRED
AND TWELFTHS

FOUR THOUSAND
NINETY-SIXTHS

DECIMAL EQUIVALENT
FOR COLUMN
SIGNIFICANCE

-2

-3

OCTONARY
NOTATION FOR
COLUMN

SAMPLE
NUMBER

X 10°

2 X 10°

3% 10

10~

1234 42576

Figure 2-2

6X 1077




DECIMAL

0.015625
0.031250
0.046875
0.062500
0.078125
0.093750
0.109375
0.125000
0.140625
0.156250
0.1718%5
0.187500
0.203125
0.218750
- 0.234375
0.250000

0.265625

0.281250
0.296875
0.312500
0.328125
0.343750
0.359375
0.375000
0.390625
0.406250
0.421875
0.437500
0.453125
0.468750
0.484375
0.500000
0.515625
0.531250
0.546875
0.562500
0.578125

0.593750
0.609375

0.625000
0.640625
0.656250
0.671875
0.687500
0.703125
0.718750
0.734375
0.750000
0.7566 25
0.781¢50
0.796875

o¥oNeYoNooYoToYoYoNeYoXoToXo o oNoYaRoYoYoRoYoXoYolo foJoRoRo Yo Yo Xo Yo Xo X o)

OCTONARY
0.01

e JoNoloJolaJoRolo ol Yo
® & 6 & s o ° s ° 0 o o

il e e = O QOO0 QDOD

U W = O 0w\ =W N

o
[
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* L]
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O
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Figure 2-3, Sheet 1



DE

0.
0.

OWOJOMWNFHFWNNHOOOOOOOOOOCO

CIMAL

812500
828125

343750
.859375
.87500
.890625
.90625
.921875
.953125
.96875
.984375

OCTONARY

0.64
0.65
0.66

o
NN
L O FW N - O

O FWNOHOOOO0OO0ODO0O0O0

Figure 2-3, Sheet 2



DECIMAL OCTONARY

38 46
39 47
40 50
41 51
42 52
43 53
4y 54
45 55
46 56
47 57
48 60
4g ; 651
50 62

Figure 2-3, Sheet 3



nary number system which is obtained by substituting the
value R = 8 into the géneral expression for any number, N

Gequation (2)) . Thus:

N
ANV

H . Y . e | -y .7.)/- r -l
N’:k\- Cng *Ch"g ;'”"'*- CO‘:‘ \'>+L—§g )4"0»;
i

Moreover, each of the coefficients; Cp,Cph-1l,...,C0,C 1,0
can assume any of the values O through (8-1) = O through 7.
For example, 253 can be interpreted as an octonary number as

follows:

" 2 - - .
253(8>=2x5} +5X G - 3 XY = 18V,

- Here, the subscript(g) indicates octonary notation while the
subacript(lo) indicates decimal notation.

A somewhat longer example of a number represented in
the octonary system 18 given in Figure 2-2. A comparison
table of decimal and octonary numbers is presented in Figure
2-3.

Aside from its relationship to finger counting, the de-
cimal system has nothing particular to recommend it-except of
. cource its familiarity. This alone 1is probably sufficlient
to guarantee its continued use in hand calculatlons. Howéver,
from the point of view of the design of high speed computers,
the decimal system has the very serious disadvantage of requir-
ing the use of too‘many distinct symbols.

If ten symbols are inconveniently many from the point of
view of the designer, then the question which naturally arises
is, how many distinct symbols can be represented conveniently

in a high speed computing device? The answer to this question
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NUMBER WORDS
FOR GOLUMN
SIGNIFICANGE

EIGHTS

FOURS

TWOS

BINARY POINT
UNITS * HALVES

FOURTHS

EIGHTHS

SIXTEENTHS

DECIMAL EQUIVALENT
FOR COLUMN
SIGNIFIGANGE

BINARY NOTATION
FOR COLUMN
SIGNIFICANCE

10

10

10 ’ 10

2
10

10

10

SAMPLE
NUMBER

1x10°

0x 102

0X10'

1X10° ox10”"

1001 @0I110

110”2

1X10" >

Figure 2-4

oxi0 ?




DECIMAL
0.015625

0.031250

0.046875
0.062500
0.078125
0.093750
0.109375
0.125000
0.140625
0.156250
0.171875
0.187500
0.203125
0.218750
0.234375
0.250000
0.265625
0.281250
0.296875
0.312500
0.328125
0.343750
0.359375
0.375000

0.390625

0.406250
0.421875

0.437500
0.453125
0.468750

0.484375

0.500000
0.515625

0.531250
0.546875
0.562500
0.578125
0.593750
0.609375

0.625000

0.640625
0.656250
0.671875
0.687500

0.718750

0.724375
0.750000
0.765625
0.781250

0.796875

BINARY

0.000001
0.000010
0.000011
0.000100
0.000101

0.000110

0.000111
0.001000
0.001001

0.,001010

0.001011
0.001100
0.001101
0.001110
0.001111
0.010000
0.010001
0.010010
0.010011
0.010100
0.010101
0.010110
0.010111

- 0.011000

0.011001
0.011010
0.011011
0.011100

10.011101

0.011110
0.011111
0.100000
0.100001
0.100010
0,.,100011
0.100100
0.100101
0.100110
0.100111

'0.101000

0.101001
0.101010
0.101011
0.101100
0.101101
0.101110

- 0.101111

0.110000
0.110001
0.110010
0.110011

Figure 2-5, Sheet 1



DECIMAL

0.812500
0.828125
0.843750
0.859375
0.87500
0.890625
0.90625
0.921875
0.93750

BINARY

0.110100
0.110101
0.110110
0.110111
0.111000
0.111001
0.111010
0.111011
0.111100
0.111101
0.111110
0.111111
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
100000
100001
100010
100011
100100
100101
100110
100111

Figure 2-5, Sheet 2



DECIMAL BINARY

40 101000
n 101001
k2 101010
43 101011
by 101100
ks 101101
46 101110
47 101111
48 110000
kg 110001
50 110010

Figure 2-5, Sheet 3



turns out to be two. This 1s because so many devices can be
made to assume two states. A lamp, for example, may be lighted
or extinguished. A switch may be open or closed.

It is the binary system, that i1s the system with radix two,
then, that is used most commonly in the operational portion
of digital computers. The form of a binary number i1s given by
substituting the value R* 2 into the general expression for

any number, N (equation 2). Thus;
N2) = Ca2"+ Cnoy 27 et s + G2 ()4 C27h i ()

where each of the coefficients; Cn, Cn ++s Can assume any of

-1
the values O through(2 - 1) = O through i. For example, 110
can be interpreted as a binary number as follows:

11015y = 'x 22 + 1 x ol v 0 x 20, 6(10) ,
Where the subscript (2) indicates binary notation and the sub-"
script (10) indicates decimal notation as before.

A somewhat longer example of a number represented in the
binary system 1is given in Figure 2-4, A comparison table of
decimal and binary numbers 1s presented in Figure 2-5.

Representation of any given number in the binary system
requires many more columnskor places than are necessary in the
declmal system because only the two values O and 1 can be
displayed in eact. column. For example decimal 1535 = bilnary
41000000000,

The interpretation of any unfamiliar representation of
numbers is difficult for humans. In the case of binary numbers
this difficulty 1s compounded by the length of the numbers

and the repetition of the two symbols O and 1. It follows
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that humans will continue to operate upon decimal representa-
tions of numbers while machines will operate upon binary num-
bers. But this does not mean that the humans who will be
concerned with a computing machine can forget about the binary
system. On the contrary, in order to understand the machine,
1t will be necessary not only to understand binary notation but
also to understand the performance of the arithmetic opera-
tions upon blnary numbers.

Before considering the performance of arithmetic processes
in the unfamiliar binary system, 1t is worthwhile to analyze
their performance in the famlliar decimal system. For the
fact i1s that the arithmetic operations are performed automatically
in accordance with rules learned early in childhood. Moreover,
the nature of these rules 1s such that they tend to obscure
the significance behind the operations. For this reason the
next chapter 1s devoted to a discussionof decimal arithmetic.
1.2 SHIFTING

Everyone is familiar with the fact that 1in tne decimal
number system multiplication of any number by teﬁ%s accomplished
by shifting each of the digits of that number one place to
the left, while division by ten is accomplished by shifting
each of the digits of the number one place to the right.

Thus:

125 X 10 1250

125 4 10 = 12.5

This follows from the fact that ten is the radix of the

decimal system. Thus:
DC1.TGR.1.8



125 = 1 X 102 + 2 X 10} + 5 x 10°

1 1

+5x 10° x 10
0

125 x 10 = 1 X 102 X 10} + 2 x 10! x 10

=1x103 +2x10° +5x 10! +0x 10
where the righthand term, O X 100, indicates that O must be

entered in the lOO

place when the number 1s written in terms of
coefficlents as 1250,

Multiplication or division of a decimal number by ten is a
speclal case, then, because ten 1is the radix of the decimal num-
kber system. This can be generalized as follows: multiplication
or division of any number in any number system by the radix of
‘that system can be accomplished by a shift to the left (in the
case of multiplication) or a shift to the right (in the case
of division). 1In terms of the general expression for a number
(equation (2)):

KN =CaR"R + Go R7R 400 s + CoRIRE)+ CRT'R w1

- N S P ~
T R G R e GRS LR e

and
, - - -}
N H Cn.l’\ - C‘.“;**IRh e 4 CoRo G)_,_ C—uR +
l« ’_,\ “"‘"‘R"T R f;i PRI TS
iy - -l - e
:Ch F\‘ ""‘c'ﬂ-i Rn ""000.(’)+C°R,‘+ C..'K‘ "f' LIRS

As an example, cansider the binary number 11(2)=3(10). A
shift left yields”llo(e): 6(10), A shift right, on the other
hand, ylelds 1.1(2): 1.5(10). Thus, a shift to the left is
a multiplication by two (i.e. by the radix of the system) while
a shift right 1s a division by two.
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PART 2

CHAPTER 2
DECIMAL ARITHMETIC

2.1 ADDITION

Counting must be performed upon the units of a group in
successlon. One unit must be associated with the number 1,
another unit with the number 2, still another unit with the
number 3 and so on. If the number of elements in two col-
lectlons A and B are known and if‘A and B are combined to form
a new collection S, then there are two ways of dlscovering
the number of members belonging to S. The first way 1s to
count the members of S. By this method individual numbers
are re-ordered to form a néw group. The. second way is to add
the number of members of A to the number of members of B.
Addition is thus a method which avoids counting.

Addition 1s performed in accordance with a table which
establishes correspondences between pairs of collections on
the one hand and single collections on the other hand. This
table is, of course, the familiar addition table which 1is
memorized early in life by most literéte people and is, there-
after used automatically. With every possible combination
of two numbers from O to 9, the addition table associates a
number which is their sum. Thus the process of adding two
numbers less than or equal to nine consists of referring to

1nformation which 1s stored in the memory of the operator.
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Since the addition table assoclates sums only with pairs of

numbers from O through 9,

quires a second opération;

the performance of addition re-

thaf 1s,the process of carrying from

one column to the next. This operation requires only an

understanding of the positional significance of decimal nota-

tion. Thus, if 48 is added to 34, reference to memory first

produces the sum 12. But

12 is composed of the component

2 in the units (100) column and the component 1 which belongs

in the tens (101) column,
~carried to the 101 column
the 10l column components
tion table only specifies

this places no limitation

The component 1 18 accordingly
where it is added to the sum of
of the original numbers., The addi-
sums for pairs of numbers. But

on the process of addition, for

any group of numbers can be added by first adding two, then

adding a third to the sum

of these two, then adding a fourth

to the sum of these three and so on. In adding a column of

figures using pencll and paper these successlve additions

are usually carried out on one column at a time. The sum

being accumulated, as a column is added, is simply retained

in the memory of the operator until the successive additlons

of all digits in that column have been completed. The

component belonging to that column is then entered below

the column and other components are carriedand added to the

respective next left columns where the process 1s repeated.

This places no particular burden upon the human memory when
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the group of numbers to be added is not too large,and 1is,
therefore,a very convenient method for pencil and paper
addition.

Notice the storage roll played by the sheet of paper.
Throughout the operation,a record of the original numbers
remains before the operator and as the addition 1in each
column is completed the component belonging to that column
18 entered below it. It turns out that this ability to
store a group of more than two numbers and operate upon them
column by column cannot conveniently be duplicated by com-
puting machines. Thus in a machine, addition of two numbers
is completed before a third is brought forward to be operated
upon. '

Addition of ény two numbers is possible no matter how
large they are. This follows from the fact that there is no
largest number. However, when a machine 1is used to perform
additioﬁ; a limitation 1is placed upon the size of the sum,
because if the sum exceeds the capacity of the machine a part
of 1t 1s lost. If a decimal machine provides facilities for

representing a number having 5 places, thénji;can represent
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100,000 distinct numbers, as, for example, O through 99,999.

In this case 100,000 1s sald to be the modulus of the machine
and the machine is sald to perform modulé 100,000 arithmetic.
The significance of this is that i1f an addition produces a sum
which equals or exceeds the modulus of the machine, then a part
of that sum equal to the modulus of the machine is lost.

An example of this is furnished by the odometer which
records the mileage traveled by an automoblle. Generally these
devices perform modulo 99,999.9 arithmetic. Thus if the car
travels 100,000.0 miies the odometer resets to 00000.0; that
is, an amount equal to the modulus is lost.

In an automatic computing machine it is generally neces-
sary to provide some sort of warning device which is actuated
when the modulus of the machine is exceeded.

Addition is what is called a commutative process, that is
adding 6 to 5 produces the same result as adding 5 to 6. How-
ever, 1t 1s convenient to have different names for the two
numbers 1nvoived in an aﬁdition, particularly when discueaing
' a mechanization of the addition process. The number to which
a second number is added is the augend. The number which 1s
added to the augend 15 the addend. The result is the éum.

Before ending the examination of decimal addition it is
worthwhile to considgr very briefly some particular mechaniza-
tion of the decimal addition process. The most straightforward
scheme involves the use of a counter similar to the automobile
odometer mentioned above. Here the digits O through 9 are
displayed about the periphery of a set of counter wheels which
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represent sué?ssive powers of ten. The wheels are viewed from
a vantage polnt such that only one digit on each wheel 1is
visible at any one time. Since the ten digits are spaced even-
ly about the 360 degrees of each wheel, an angular motion of
the wheel through 36 degrees 1s necessary to pass from one
digit to another, All the wheels are initially set to read
zero., In order to set a number into the machline each wheel
1s rotated 36xd degrees, where d is the digit which belongs
to the order associated with that whéel. To add a second
number, the wheels are rotated through further angles deter-
mined by the digits of that second number. At this point
a carry ay occur in any of the orders, that is the sum de-
veloped in that order may exceed 9. For this reason facilities
for carrying must be provided. Howeverjthis problem 1s easily
solved by arranging to have each wheel turn the wheel at its
left through 36 degrees as it passes from 9 to O. Thus as the
unit wheel passes from 9 to O, the digit displayed on the tens
wheel 1s increased by 1.

Such a device 1is properly called a counter because as
the magnitude of any number is increased the various wheels
pass through each successive position between the initial value
and the final value. This mechanization of the addition oper-
ation makes no use of the addition table but depends instead
on the more fundamental process of counting. Thus to add a
group of numbers, each number/in turn is counted into the
machine and the machine accumulates the total count or sum.
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7 <@——MINUEND
3 <&— SUBTRAHEND

4 ««—DIFFERENCE

Figure 2-6



2.2 SUBTRACTION
Subtraction is the inverse of addition; that isgit is
a method of determining what remains of group A after group
B has been removed from it. Such a problem can be solved by
counting down, that is counting in the direction of decreas-
ing magnitude, The subtraction process avoids the necessity
for counting by substitutingJinsteaq,aﬁ}nverse reading of the
addition table. 'The solution of the problem of subtracting 3
from 7, for example may be restated as follows: What number
must be added to 3 in order to form 7? Since the addition
table assoclates the sum 7 with the pair of numbers 3,4, 1t
contains the answer to that question.
Subtraction unlike addition is not a commutative process,
that 1is sﬁbtracting 3 from 7 does not yield the same result
as subtracting 7 from 3. Therefore, even more than in the
case of addition it 1s convenient to have names for the two
numbers involved in a subtraction operation. Accordingly,
the number which i1s subtracted is the subtrahend while the number
from which the subtrahend is removed is the minuend. The result
18 the difference. These relationships are illustrated in Figure 2-6.
Like additionlsubtraction involves another process be-
sides reference to memory. In this case, the other process is
that of borrowing from the cdlumn to the left when a minuend
digit 1s smaller than a subtrahend digit. Since each succes-
: pive column to the left represents a higher power of ten, a
borrow of one from the column to the left increases the value

of the minuena digit by ten. For example, in subtracting 7
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from 82, a 1 must be borrowed from the tens digit of the
minuend in order to perform the subtraction in the units
column, Thus the digit in the tens column is reduced by 13
that 1is, from 8 to 7. At the same time, the units digit is
increased by 10 so that it becomes 12. Next, 7 1s subtracted
from 12, that 1is reference is made to the addition table to
find the answer to the question, "What number must be added
to 7 in order to obtain 12?" The partial difference,5>1s
entered beneath the units column. The tens digit of the sub-
trahend 18 then subtracted from the diminished tens digit of
the minuend and the result)3,is entered beneath the tens
column. In performing the borrow operation automatically
many people add 1 to the tens digit of the subtrahend rather
than subtracting 1 from the tens digit of the mlnuend. This,
of course, 1s a completely equivalent operation but it tends
to obscure the logic on which the process-is based.

The concept of negative number allows any number to be
subtracted from any other number. Just as there is no largest
number, so also there is no least ( or most negative) number.
This creates the same difficulty with respect to the mechan-
1zat16n of subtraction that it did with respect to the
mechanization of addition; that is,a subtraction operation
may produce a difference which is a more negative number
than a given computing machine is capable of representing.

_An even more fundamental problem than this 1s encountered
in mechanizing subtraction.In order to appreciate this problem
it 1is necessary to consider how the human operator approaches
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a subtraction problem in which the minuend is smaller than
the subtrahend. The rule which covers this case appears sim-
ple enough. A human operator, recognizing that the subtra-
hend is larger than the minuend, merely turns the process
around; that is,subtracts the minuend from the subtrahend.
The difference 1s then assigned a minus sign to indicate that 1t
is less then zero. Thus, given 5 as a minuend and 7 as a
subtrahend, 5 is subtracted from 7 and a minus sign is attached
to the result, yielding -2, The negative number -2 is the
answer to the subtraction question, what number must be added
to 7 in order to obtain 5? Notice that this implies
equivalence between the subtraction of a positive number and
the addition of a negative number. Viewed in this light, the
operagion of subtraction is a special case of addition; that
1is, 1t 1s the addition of a negative number to a positive number,.
While the special case of subtraction which arises when

the minuend is smaller than the subtrahend offers no particular
difficulty for the human operator, it should be recognized that
the manner in which he handles it 1mp11es the following special
operatioﬁs: |

a. Comparison - Since the special case 1s to be handled by
a special routine, every minuend and subtrahend must be com-
pared to discover which is larger, before any routine can be
initiated.

b. Reversal of the roles of the minuend and subtrahend and
. performance of subtraction routine.
¢c. Tagging of resultant difference with a minus sign.
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Such a routine can only be mechanized by increasing the
complexity of the machine which 1s to handle 1t or by intro-
ducing addition steps which will slow down 1ts performance.

It turns out there is a better scheme for mechanizing the sub-
tfaction operation. Interestingly enough thils scheme converts

a limitation of machine into an advantage. It has been mention-
ed that either the addition or the subtrac’tion operation yields
an answer other than that anticipated if the modulus of the
machine 1s exceeded. It 1s thils fact which 1s made use of in
the subtraction scheme used in most automatic computing machines.

Before introducing the subtraction scheme Jjust referred to,
it 1s necessary to define the term, complement. A geometric
interpretation of complement 1is shown in Figure 2-7. Referring
to the figure notice that the square n is contained in the
square M. The complement of the square n with respect to the
square M 18 defined to be all the area of the square M which
remains if n is removed. Thus the area of M is the sum of the
areas of n and the complement of n, But the concept of com-
plement 1is by no means limited to geometry. Consider a com-
puting machine of modulus M and consider any number n which can
be represented by that machine. Then the complement of n with
respect to M 1is defined to be all of M that remains after n
has been removed. Since M and n are, in this case numbers,
the complement of n éan be stated in terms of arithmetic to be
the difference regulting from the subtraction of n from‘M.
| The scheme for mechanizing subtraction using com-
plements can now be stated as follows: Let any negative number
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be represented in the machine by the complement with respect

to the machine modulus of the corresponding posltive number.

Let subtraction be performed as a speclal case of addition. _
Since the complement of any number n with respect to modulus M
is equal to M-n, the subtraction of n from p iIn accordance wilth
this scheme 1s performed by adding (M-n) to p. The resultant

of such an operation 1s the sum M + p - n. But as stated earlier
when a sum equals or exceeds the modulus of the machine, then

an amount equal to the modulus 18 lost. Thus the part of the
sum M + p - n which is retained by the machine is p - n so

that the subtraction of n from p has been successfully performe&.

An example of subtraction by means of complementing the
subtrahend and adding it to the minuend 1s 1llustrated in
Figure 2-8. Here, the minuend is 49. the subtrahend is 32 and
the machine modulus 1s 1000. Thus, the complement of the
subtrahend with respect to the modulus is 1000 - 32 = 968. This
complement 15 added to the true form of the minuend yielding
1017. However, as shown in the illustration, the modulus (in
this case 1000) is automatically subtracted by the machine
(by virtue of the fact that the machine is not equipped to re-
present 103 order digits, so that the carry which oé¢curs from
the 102 order is lost. Thus, what is retained by the machine
1s 017 which is the true form of the difference resulting from
the subtraction of 32 from 49.

The principle reason for adopting this special sub-
traction routine i1s to enable the machine to handle subtractlon
in the same way regardless of the relative magnitudes of the min-
uend and subtrahend. For’this reason, it 1s worthwhile to |
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consider a second example in which the subtrahend 1s larger
than the minuend. Such an example is afforded by Figure 2-9.
Here, the minuend is 32, the subtrahend is 49 and the machine
modulus is 1000, Thus, the complement of the subtrahend with
respect to the modulus is 951. This complement is added to
the true form of the minuend yielding 983. Since 983 is the
complement with respect to the machine modulus of 17 (i.e. 983 =
1000 - 17) it can be interpreted as - 17.

Comparing the results obtained in the examples of Figures
2-8 and 2-9 reveals that, when subtraction is performed by
complementing the subtrahend and adding it to the minuend, the
difference appears in true form when the minuend is larger
than the subtrahend, while the difference appears in complement
form when the minuend 1s less than the subtrahend., This corres-
ponds to the fact that the difference in the first case 1is a
positive number and in the second case is a negative number.
Thus, in a machine which performs subtraction by this method,
negative numbers are represented in complement form. With this
convention in mind, the operation of subtraction can be
generalized to cover the addition of positive and negative
numbers. The examples of Figures 2-8 and 2-9 can then be thought
of as cases of addition of a negative number to a positive number
(where the negative number is represented in complement form).
There 1s nothing particularly surprising about this, since the
addition of - x to + y 1is equivalent to the subtraction of
4+ x from + y. However, when the special operation 1s thought of

In terms of the addition of signed numbers, then it seems
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natural to expect it to satisfy the case of the addition of two
negative numbers,which in fact 1t does. An example of such an
addition is shown in Figure 2-10. Here, the absolute value bars
shown around x and y indicate that the complements are taken
with respect to absolute values. (The absolute value of any
positive number,\]p! = DPe. The absolute value of any negative
number, ‘n‘ = - n.)‘ The sum of any two negative numbers is also
a negative number. Thus, thevsum obtained in the addition of
Figure 2-10 appears in complement form. Specifically, the sum 1is
919 which is the complement with respect to the machine modulus
of 81. Thus, the sum i1s - 81, which can be checked by perform-
ing the addition in the ordinary manner.

The question that naturally arises 1is, given any number
withrthe machine range; as for example‘983, i1s that number to
be interpreted as a complement and hence a representation of
a negative number or is 1t to be interpreted directly as a
positive number? Thils question must be settled in advance of
any computation in terms of the modulus of the machline. It has
been seen that the modulus defines the number of distinct
numbers which can be represented by the machine. Thus,1f every
number is to have a unilque representation, the ability to
represent 100 negative numbers can only be obtained by sac-

rificing 100 positive numbers from the range of the machine.
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For example, assume that it 18 necessary to handle negative
numbers in the range of -1 to -100 on the machine of modulus
1000. Then,using the complement representation, numbers 999
through 900 will be interpreted as complements. Thus the posi-
tive range of the machine will be from O through 899,

An apparent contr@diction which arises in connection with
complementation is as follows: Complements are introduced in
order to avold explicit performances of the subtractlion prossss.
Yet in order to obtain the complement of any number, a subtrac-
- tion operation 1is necessary.

There are several answers to this objection. The first
answer 1s that this special case of subtraction is much less ob-
Jectionable than the general case. As already explained a
difficulty in handling subtraction aises from the possibility
of encountering a subtrahend which 1s larger then the minuend.
Since any number n which can appear in a computing machine
must, by definition of modulus, be smaller than the modulus
M, 1t is impossible to encounter an n larger than M when per-
forming the subtraction M - n which is required to obtain the
complement of n., Thus one difficulty is removed. Further,the
subtraction routine can be specialized by virtue of the fact
that the modulus of a decimal machine is always a power of ten,
that 1is it always takes the form of a 1 followed by a number of
O's. For this reason the subtraction of any number within the
range of the machine from the modulus will result in a borrow
from each order to the left of the order where the first non-
zero digit of the subtrahend appears. For example, in the
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subtraction of 320 from 1000, a borrow from the hundred column
is necessary since the subtrahend digit 2 is larger than the
minuend digit O, This in turn entails a borrow from the
thousands column, since the minuend digit in the hundreds
column is also zero., Thus the thousands order digit 1s re-
duced to zero and the hundreds order digit 1s first replaced
by 10 as a result of the borrow from the thousands order and
then reduced to 9 as a result of the borrow from the tens
order,

The rontine which has been performed in this example can
be re-stated in a form which applies to the formation of a com-
plement with respect to any power of 10 (that is any decimal
modulus). This form is as follows: Subtract the first non-
zero digit of the subtrahend from ten., Subtract all succeed-
ing digits of the subtrahend from 9. This rule anticipates
the borrow from the most significant place of the modulus
which reduces the 1 in that place to 0 and produces 9's in all
less significant places (by virtue of a borrow from the right)
~until the place corresponding to the first non-zero digit of
the subtrahend is reached. Here there 1is no borrow from the
right and so the full ten borrowed from the column to the left
remains. Applying the rule to a particular example, the com-
plément with respect to 100,000 of 2430 1is obtained as follows:

9999(10)

00243
99757

The correctness of this result can easlly be verified by per-
forming the subtraction according to the usual pencil and
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paper methods,

It should be noted that in performing the subtraction
indicated by the rule given above, there is no possibility of
the need for a borrow occurring (since this need has been
anticipated and satisfied in advance.

To summarize, complements with respect to a decimal modulus
(often called 10's complements because any decimal modulus is
a power of 10) can be formed by means of a subtraction routine
which is much more simple than that required to handle the
general use of subtraction.

One difficulty still exists in this routine and that 1s
that the first non-zero digit of the number to be complemented
is handled differently from the digits to the left. This im-
plies, first, some means of examining the number which locates
the first non-zero digit and second, two different subtraction
routines, one for that digit and another for the digits to the
left.

This difficulty can be avoided by forming complements,
not with respect to the modulus M, but with respect to M - 1.
Since M for a decimal machine 1s always composed of a 1
followed by a number of O's, M - 1 1s always a succession of
9's, Thus if M is 10,000, M - 1 is 9,999. Thus complements
with respect to M - 1 (called g's complements) can be formed
by subtracting each digit of the number being complemented from
9. For example, the complement with respect to 9999 of 320 |
is 9679.

The next question to be considered 1s as follows: Does
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the use of 9's complements instead of 10's complements to
represent negative numbers raise any new problems? The ansher
is that it does, but that they can all be solved in a fairly
stralghtforward manner.

It has been shown that if a + b = ¢, then the addition
of the 10's complement of a to the 10's complement of b ylelds
the 10's complement of c¢. However, it is not true that the
addition of the 9's complement of a to the 9's complement of Db
yields the 9's complement of c. Operation upon 10's comple-
ments is compared with operation upon 9's complements in Fig-
ure 2-11. Here, the machine modulus 1s 100, a is - 2 and b is
- 3. Both 10's complements and 9's complements are taken with
respect to absolute values. Each of the addition operations
is worked out both as a problem in algebra and as a problem
in arithmetic. Referring to (a) of the figure, which shows
the 10's complement operation, notice that the algebralc result is
M - a - b which 1s, by definition, the 10's complement of
+ a + b. This checks with the numerical answer, 95, which 1s
the 10's complement of 5. On the other hand, referring to (b)
of the Figuré, notice that operation upon 9's complements
does not yield the 9's complement of the sum . A look at the
algebraic result obtained reveals that - 2 appears where,
by definition of 9's complement, there should be - 1l. For
this reason, it is necessary to add a corrective 1 after the
addition operation. This checks with the numerical result
which is, after the correction has been added, 94 (1.e. the 9's

complement of 5).
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Consider the effect of using 9's complements on the
scheme of subtracting by complementing the subtrahend and
adding. Here, there are essentially four cases to be
studied as shown in Figure 2-12, The results obtained can be
summarized as follows:

a. If both minuend and subtrahend are positive and the
minuend is larger than the subtrahend, then the result obtained
i1s 1 less than the difference in true form.

b. If both minuend and subtrahend are positive and are
equal, then the result obtained is the 9's complement of zero.

c. If minuend and subtrahend are both positive and the
minuend is less than the subtrahend, then the result obtained 1is
the difference in 9's complement form.

d. If the minuend is negative and the subtrahend is positive,
then the result obtained is 1 less than the difference in 9's
complement form.

Notice that in cases (a) and (d) where a correction is
required, a carry occurs to the non-existent order, while in
case (c¢c) where no correction is required no carry occurs.

In case (b), O occurs in 9's complement form and no carry occurs.
In general, 1f 1t is acceptable to have O represented in 9's
complement form, then when a carry occurs a correction 1is re-
quired and when no carry occurs no correction 1s required.

This suggests the method by which the correction is usually

made in a machine which operates upon 9's complements. The
carry to the non-existent order 1is applied to the units order

of the machine. This so-called end-around carry automatically

introduces a corrective 1 when 1t is required.
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2.3 DECIMAL MULTIPLICATION

Multiplication can be defined as the process of repeating
a quantity a specified number of times. Thus the notation 25
x 4 indicates that 25 is to be repeated 4 times. This 18
equivalent to the speclal repetitive addition operation: 25 + 25
+ 25 + 25.

Like addition, multiplication 1s a commutative operation.
Thus 4 x 25, which indicates that 4 is to be repeated 25 times,
will produce the same result as 25 x 4. The number whose
repetition is specified is called the multiplicand. The other
" number which specifies how many times the multiplicand is to be
repeated is called the multiplier. The result of a multiplica-
tion is called the product.

The pencil and paper methods of multiplication is based
upon memorization of tables. Just as in the case of addition,
the multiplication table which is commonly committed to memory
1ists products for all possible pairs that can be formed using
the numbers O through 9.

The pencil and paper multiplication routine includes refer-
ence to the memorized tables, carry from column to column, shift
of partial products and summation of partial products.

Before considering this particular multiplication, a gen-
eral comment should be made about multiplication by 10. As
has previously been explained, decimal positional notation
associates each column or place with a power of 10. Thus the

1 +1x10% &

number 271 may also be written 2 x 10° + 7 x 10
consequence of this is that multiplication of any decimal number
by ten simply has the effect of shifting each digit of the
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number 1 éolumn to the left. For example 271 x 10 = 2710 =
2 x103 +7x 102 +1 x 108 + 010°,

Referring now to Figure 2-13, the first partial product is
produced as the diglts of the multiplicand are successively
operated upon by the first digit of the multiplier. The prin-
ciple of carry 1s employed Jjust as in the case of addition when
the result of a digit multiplication exceeds 9. Thus, for
example, in forming the first partial product, the multiplica-
tion of 1 x 5 produces no carry while the succeeding multiplica-
tion of 7 x 5 produces the carry 3'which i1s added to the product
of 2 x 5.

The second partial product 1s formed in the same manner, as
the digits of the multiplicand are successively operated upon
by the second digit of the multipller. This second partial pro-
duct 1is shifted one column to the left to correspond to the
fact that the second digit of the multiplier belongs to the
10! column so that 1t has the significance of #0. Thus the
second partial product is really 271 x 40 - 10,840. It is
customary not to show the final O but slince the digits are each
shifted to the left this makes no difference in the filnal re-
sult. No new principle is involved in the generation or no-
tation of the third partial product. The summation of the
partial products follows the rules of addition. Multiplication
by this method is certainly not a difficult process, but as}
in the case of arithmetic operations studied earlier it turns
out to be inconvenient for use in computing machines since it
would require the multiplication table to be built into the

machine. Since multiplication 1s essentially a speclal case of
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additlon, it can be handled by various addition routines. This
wlll of course involve more steps, for the whole purpose of
using the multiplication table is to avoild the performance of the
successive additions which are indicated by the multiplication
sign. But where humans can save time by performing a more com-
plex routine and thus avoiding additional steps, a computing
machine can generally perform a more simple routine faster
even if it involves more steps.

The most obvious routine for mechanizing the multiplication
operation, then, is simply to perform all the addition operations
indicated. For example, the multiplication of 271 by 345 is
performed simply by adding 271 to O, then adding 271 to this sum
or 271, then adding 271 to this sum or 542, then adding 271 to
this sum or 813 and so on until 271 has entered into the addi-
tion process 345 times as indicated by the value of the
multiplier. This process is known as over and over addition and
is used in some calculating machinery.

Another multiplication scheme, often referred to as the
add and shift method is a compromise between the pencil and
paper method of multiplication and the over and over addition
method. The multiplication of 271 by 345 proceeds in the fol-
lowing manner when the scheme 1is used: First 271 is entered
- into the addition process 5 times (in the manner of the over and
over addition method) in accordance with the value of the rikht-
hand multiplier digit. Next,271 is shifted one column to the
left corresponding to a multiplication by ten. The resulting
2710 1s entered into the additiyn process 4 times,as specified
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by the tens digit of the multiplier. In effect this substi-
tutes the multiplication of 4 x 2710 for that of 40 x 271.
However, each of these expressions is equivalent to & x 101 X
271 so that the result is the same. When this second set of
additions has been completed the sum which has been accumulated
is the sum of the first two partial products. The multiplica-
tion is completed by shifting 2710 to the left to obtain 27100
and then entering this number into the addition process 3 times
as specified by the hundreds digit of the multiplier. This com-
plete routine is shown in Figure 2-14. The additions and shifts
are shown in the column labeled product accumulation. The cor-
respondence between the values of the multiplier digits and the
number of additions is ;evealed by comparing this column with
the column labeled “"Multiplier Digits", Incidentally, in an
actual machine routine, the multiplier digits are successively
decreased as each addition is performed and successive additions
are performed until each digit in turn assumes the value O,
When this method of keeping track of the process i1s used, the
first shift left 1s actuated when the right-hand multiplier
digit has been decreased to O, the second shift when the second
digit has been reduced to 0 and so on.

It has been seen that the representation of negative num-
bers in complement form i3 useful for purposes of subtraction.

A natural question then 1s as follows: How will this representa-
tion of negative numbers affect the operation of multiplication?
Since multiplication is a special case of addition it
seems reasonable that correct results should be obtained when
numbers in complement form are entered into the multiplication
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process,and this turns out to be so. Two such multiplications
are shown in Figure 2-15. In the first of these a negative
number is multiplied by a positive number pfoducing a negative
result. Notice that when the negative number is represented
in complement form, the negative product also appears in com-
plement form. In the second of the multipiications shown in
the figure, both multiplicand and multiplier are negative and
the result appears in true form which is as it should be, since
the multiplication of two hegative numbers produces a poslitive
product. The digits in parenthesis do not appear in the
machine since, by definition of modulus, the machine 1is assumed
to have no facilities for representing these orders.

The routine involved in multiplying when numbers are
represented by 9's complements is not so straightforward.
Here a correction must be added to the résults obtained as in
the case of subtraction by adding the 9's complement of the
subtrahend. Suffice i1t to say here that the necessary cor-
rections can be developed without too much difficulty if other
considerations justify the use of 9's complements.

Representation of numbers in complement form has one dis-
tinct disadvantage which is apparent from a glance at the
problem of Figure 2-15. It results in longer multiplication
routines. This follows from the fact that the block of num-
bers which are interpreted as complements are always larger
than the block which are interpreted as true values. For this
reason, it is advantageous to transform negative numbers into

true form before they are entered into the multiplication
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operation. This implies that the sign of the product must be
determined on the basis of a comparison of the slgns of the
multiplier and multiplicand prior to the multiplication opera-
tion. It also implies that if the sign or the product 1s found
to bé negative, the result obtained in the multipliéation opera-
tion must be complemented, in order to conform to the con-
vention that negati?e numbers are represented in complement form.

Multiplication of any two numbers is possible. As in the
case of addition and subtraction, this implies that the multi-
plication operation may produce a result which exceeds the
capacity of the machine. It is therefore necessary to provide
some sort of device for sensing such an overflow.

2.4 DECIMAL DIVISION

Division is the inverse of multiplication, just as sub-
traction 1s the inverse of addition. Thus, dividing 12 by 3
answers the following question: if 3 is the multiplicand and 12
is the product, then what is the multiplier? Since 3 x 4y - 12,
4 18 the multiplier. In the terminology of division, 3 1s the
divisor, 12 is the dividend and 4 is the quotlent.

Since multiplication is that special case of addition in
which one number (the multiplicand) is entered into the addi-
tion operation a number of times specified by a second number
(the multiplier), the division question just asked can be re-
phrased as follows: how many times must 3 be entered into the
addition operation to obtain 12? This is the kind of question
which must be answered by a subtraction operation. Thus, sub-

traction is fundamental in any division routine.
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The most straightforward method of performing division
is by means of over-and-over subtraction. A sample division
performed by this method is shown in Figure 2-16 - (a). Here
the dividend is 1716 and the devisor is 132. The first step
of the routiné is to subtract the devisor from the dividend;
the second step is to subtract the devisor from the difference
obtained in the first step; the third step is to subtract the
divisor from the difference obtained in the second step. The
process is continued until the dividend has been dimlnished to
a difference (or remainder) which is less than the divisor.
The number of subtractions performed up to this point corresponds
to the integral portion of quotient. Since, in the example of
Figure 2-16-(a), the dividend is an integral multiple of the
divisor, a remainder of 000 1s obtained as shown. The multipli-
cation of the divisor by the quotient (by over-and-over addition)
is shown in (b) of Figure 2-16.in order to clarify the relation-
ship between multiplication and divislon.

It has been shown, that for the case of multiplication,
an add-and-shift routine generally requires fewer steps than an
over-and-over addition routine. In the same way, it can be
shown that for the case of division, a subtract-and-shift
routine requires fewer steps than an over-and-over subtraction
routine. This is illustrated in Figure 2-17-(a). Here the
dividend and the divisor are the same as in Figure 2-16(a).
However, the routine is started with the divisof lined up left
withlthe dividend so that, in the first step, ten times the
divisor 18 subtracted from the dividend as indicated. Since
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the remainder obtained as & result of this step is less than
ten times the divisor, the divisor is now shifted to the right
one place. Thus, the next three subtractlons are subtractions
of the divisor from the diminishing remainder. In this ex-
ample, nine steps have been saved by lining up the divisor to the
left in the first step. In a case where the dividend is more
than one hundred times as large as the divisor, the saving

18 on the order of one hundred steps. The multiplication of
the divisor by the quotient (by means of an add-and shift
routine) is shown in (b) of Figure 2-17 in order to clarify the
relationship between multiplication and division.

Division by means of the subtract-and-shift routine of
Figure 2-17-(a) is very similar tothe pencil and paper method
of long division. The latter method, however, employs one
additional device for minimizing the number of subtraction steps
required. This 1s the device of trial multiplication which is
1llustrated in the pencil and paper routine of Figure 2-18. 1In
this example, as in the two preceding ones, the dividend 1is
1716 and the divisor i1s 132. The human operator begins the
routine by comparing the size of the dividend and divisor. The
divisor is seen to be about one-tenth the size of the dividend
(1.e. 1t 1is seen that the divisor can be lined up under the
three left-hand digltes of the dividend and subtracted from it
in this position without producing a negative remainder). The
subtraction is performed and a 1 entered in the 101 order of
the quotient (indicating that ten times the divisor has been

subtracted from the dividend). The current remainder
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(1.e. 396) 18 now inspected and found to be smaller than ten
times the divisor. Accordingly, the divisor must be shifted
right before the next subtraction. At the same time 1t can be
seen that some integral multiple of the divisor larger than

1 X the divisor can be subtracted from the current remainder
without producing a negative result. Thus, the next step 1is
to find by trial multipiication the largest such multiple. In
the case of the example under consideration this is 3 x 132 = 396.
Accordingly, this 1s subtracted from the current remainder and
a 3 is entered in the 100 order of the quotient, to indicate
that 3 x 132 has 5een subtracted by this stép. Notice that
the last three subtraction steps of the'subtract and shift
routine have been replaced by a trial multiplication operation
and a single subtraction operation.

The division which has been considered thus far has been
the very simple case of a dividend which 1s an integral
multiple'of the quotient. In general, however, there is no
reason to expect such a simple solution. It is more apt to
happen that an infinite number of digits are required to
represent a quotient of two numbers. In this case.it is
obvious that the division process must stop short of a com-
plete solution. This 18 1llustrated by the 1ong division ex-
ample of Figure 2-19. Referring to the Figure, notice that
aftef the division has been carried out to eight dectmal places
the remainder repeats. Thus, if the division 1s carried on,
the entire sequence which is shown between the first and

second occurrences of the repeating remainder will be repeated)
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and thls process can be continued indefinitely. Although it
cannot be written down because it contains an infinite number
of digits, the complete solution is known. It is a number in
which the sequence 230769 is repeated indefinitely. A machine
with facilities for handling a quotient of eight decimal
places would have been required to discover the repeating se-
quence in the case of this particular division. Moreover,
the number of places required depends upon the length of the
repeating sequence and this vdries from problem to problem.
For example the division indicated by 345 + 87 must be carried
out to 27 decimal places before a remainder repeats. Thus in
a machine division operation, the capacity of the machine is
usually exhausted before the character of the quotient is com-
pletely known. However, the significance of all the unknown
digits can only change the value of the result by an amount
equal to a change of 1 in the value of the least significant
known digit. Thus the correct solution can be approximated to
a known degree of preéision (See Chapter 7).

Division 1is the most difficult of the four arithmetic
operations to mechanize. The most troublesome feature of
division from the point of view of mechanization is the com-
parison of the relative magnitudes of dividend and divisor,
on the basis of which they are lined up for the initial sub-
traction operation. So difficult is this problem, that per-
missible machine division is usually limited to some range of
relative magnitudes such that the initial line-up of dividend
and divisor is always the same. Even with this limitation
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placed on division, the pencil and paper routine for division
cannot readily be mechanized. Instead, machihe division 1s
usually based upon a subtract-and-shift routine. The problem
of sensing when a shift right 1s necessary; that 1s, when
another subtraction carried out in the current position will
generate a negative remainder, 1s most easlily handled on a
machine by simply continuing to subtract successively until

a negative remainder is obtained. At this point the subtraction
which generated the negative remainder can be cancelled by
performing an addition. Such a subtract-and-shift routine is
11lustrated in Figure 2-20 (Routine #1). Here, it is pre-
sumed that the range 6f permissible division 1s such that the
operation can start with the divisor lined up left with the
dividend. However, subtraction in this position ylelds a
negative remainder. Since this indicates that 100 x 78 is larger
than the dividend, & O 1s entered in the 10° order of the
quotient. At the same time the subtraction is cancelled by
addition of the divisor in the same position. The divisor is
now shifted one place to the right and is subtracted 5
successive times in this position. However, since the 5th
subtraction generates a negative remainder, it is cancelled

| by an addition. At the same time, a 4 is entered in the 10t
position of the quotient to indlcate that 4 successful sub-
tractions of 78 x 101 from the dividend have been completed.
fhe divisor is now shifted to the right a second time and 1s
again subtracted successively until a negative remainder 1is

obtained. Again, the final subtraction is cancelled by an
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addition. Again the count of the uncancelled or successful
subtractions (which happens to be 4) is entered in the quotient,
this time in the 10° order to indicate that 4 successful sub-
tractions of 78 x 100 have been completed.

Routine #1 of Figure 2-20 is called a restoring division
routine because, each time that a negative remainder is
obtained, an addition is performed and the positive balance is
restored before a shift to the right is made. Routine #2, an
the other hand, is a non-restoring routine (i.e. each time
that a negative remainder is obtained a shift right is per-
formed without any restoring addition). Referring to the figure,
Routine #2 begins with the subtraction of 102 x 78 from 3450
Just as does the restoring routine. However, when this sub-
traction 1is seen to be unsuccessful (that i1s when the negative
sign of the remainder is sensed) a shift right is immediately
executed. Successive additions of 10l x 78 are performed un-
t1l the remainder again becomes positive. In the exémple, six
such additions are required. At this point 100 x 78 has been
removed from the dividend (leaving a negative remainder) and
6 x I0 x 78 has been replaced. Thus the net quantity removed
1s % x 10 x 78. Accordingly, a 4 is entered in the 10! order
of the quotient. Notice that this result (i.e. 4) 1is the
Complement with respect to 10 of the count of additions per-
formed (i.e. 6). Thus, a means is available for generating
the quotient bit on the basis of the number of additions re-
quired to generate a positive balance. When the positive

balance 1s obtained, another shift right 1s executed and
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successive subtractions are performed until the remainder again
becomes negative. The successful subtraétions are counted;

the final subtraction which»prddudes the negative remainder is
not. The count}of successful subtractions is entered directly
in the appropriate order of the quotient just as in the case of
Routine #1. The process of shifting and subtracting, then shift-
ing and adding, then shifting and subtracting continues until the

division has been carried out to the desired number of places.
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PART 2
CHAPTER 3
BINARY ARITHMETIC

3.1 BINARY ADDITION

Binary numbers can be added by a method of involving re-
ference to a memorized addition table and carry from column to
column which 1s similar to the normal method of adding decimal
numbers.

Because the binary system employs only the two bits 1 and
0, the binary addition table (shown in Figure 2-21) is trivially
simple. It can, in fact, be summarized as follows:

0O + Ok: 0

l1+0¢=1

0>+ 1

1

1 +1=10

While the brevity of the addition table may certainly be
regarded as an advantage, the use of only two symbols to re-
present numbers has another consequence which 1s not so fortu-
nate from the point of view of the human operator. This 1s
that the representation of any given whole number, with the
exception of 1, requires more places in the binary system than
in the decimal system. Thus the human operator in adding two
binary numbers must operate upon more individual symbols than
would be necessary if he were performing the same operation

upon the equivalent decimal numbers.
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The addition of two binary numbers is illustrated in Fig-
ure 2-22. For purposes of comparison, the addition of the
equivalent decimal numbers is also shown. The binary addition
proceeds as follows: First the 20 order is coﬁsidered. Here,
both the augend and addend bits are 1. By the blnary table,
Figure 2-21, 1 + 1 = 10, Thus, a O is entered in the 20 order
and a carry 1s entered in the 2l order. Next, the 2l order is
considered. Here, both addend and augend bits are O. By the
binary addition table, 0 + O = O, However, there is the carry
from the 20 order to be added to the sum of the augend and
addend. By the binary addition table, O + 1 = 1. Thus, a 1l
1s entered in the 21 order of the sum. Next, the 22 opder 1is
considered. Here, as in the first order, both the augend and
addend blts are 1. Thus, a O 1s entered in the 02 order of the
sum and a carry is entered in the 23 order. Next, the 23 order
is considered. First, the addend is added to the augend, yleld-
ing 1l; then this sum 1s added to the carry, ylelding 10. Thus,
a O 18 entered in the 23 order of the sum and a carry is entered
in the 24 order. Next, the 24 order is considered. The addi-
tion of augend to addend yields 10. The addition of the carry
to this sum ylelds 11. Thus, a 1 is entered in the 24 order of
the sum and a carry is entered in the 25 order. The addition in
the 2° order yilelds 10. Thus, a'O i1s entered in the 22 order of
the sum and a carry 1s entered in the 26 order. Since there are
no augend or addend bits in the 26 order, the carry is brought

down into the 26 order of the sum.
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While the length of binary numbers together with their
unfamiliar aspect makes binary addition difficult for the
human operator, the advantages of the binary system far out-
weigh its dlsadvantages when machine computations are con-
sldered.

The machline, which can be designed to perform essentially
repetitive operations very rapidly, is not slowed down much by
the fact that binary addition requires operation upon mobe
individual symbols. On the other hand, the brevity of the
addition table which offers, from the point of view of the
human operator, only the temporary advantage that its memo-
rilzation is easier, offers, from the point of view of mecha-
nizatlion, striking advantages.

Assume that the addition of two numbers is to be per-
formed by a set of mechanized adders each one of which is to
be assoclated with the addition in a particular column or

order. Then each adder must be capable of generating the sum

- of any palr of symbols which can be formed from the set of

symbols used in the number system in which the addition is
being performed. Thus, a decimal adder must be éapable of
accepting as inputs any of the one-hundred pairs that can be
formed from the ten digits 0,1,2,3,4,5,6,7,8,9; and must be
capable of generating each of the nineteen distinct sums that
can result from the addition of these pairs. In sharp con-
trast, a binary adder must accept only the four possible com=-
binatlions of the two binary digits O and 1 (1.e. 0,0;0,1;
1,0; or 1,1) and must be capable of generating only the three
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sums; 0,1 and 10. Moreover, the last sum (10) does not belong
entirely to the order with which the adder is associated, so
that 1t may be considered as a sum of O and a carry of 1.
Accepting thils definition, the results possible from the addi-
tion of two bits x and y can be described as follows:

'If both x AND y are 1, then the carry 1s 1 and the sum
is O.

If it does NOT happen that x AND y are 1, AND if either
X OR y 1s 1, then the sum is 1.

If it does NOT happen that either x OR y 1s 1 then the
sum 1is O and the carry is O.

Here AND, NOT and OR are capitalized because it turns
out that they are "logical operations”" which can be mecha-
nized. It is not, in general, the function of this Part to
introduce actual devices for doing arithmetic. That is done
in Part 4 after the fundamentals of electrical and electronic
theory have been reviewed in Part 3. However, since the con-
cept of a "logical operation" may be new to the reader, a
rather trivial example is given in Figure 2-23 for purposes
of clarification. In the "1light bulb logic" of the figure,
X and y are represented by switches. A lighted bulb 1s inter-
preted as a 1 and an unlighted bulb as a 0. In parts (a) and
(b) of the figure, a closed switch is interpreted as a 1 and
an open switch as a 0. Referring to part (a) of the figure,
if the bulb is lighted (indicating a 1) then either the x
switch is closed (indicating that x is 1) or the y switch is
closed (indicating that y 1s 1) or both switches are closed

DCI.TC .2.304



(indicating that both x and y are 1). Thus, the bulb and the
switches constitute an OR circult. |

Referring to part (b) of the figure, 1f the bulb 1is
lighted (indicating a 1), then both the x switch and the y
switch must be closed (indicating that both x AND y are 1).
Thus, the bulb and the switches constitute an AND circﬁit.

In part (c) of the figure, the convention about the
switch has been reversed, so that a closed switch 1s inter-
preted as a O and an open switch as a 1. The lighted bulb
1s st1ll interpreted as a 1 and the unlighted bulb as a O.
Thus, referring to part (c) of the figure, if the bulb 1s
lighted (indicating a 1), then the switch must be closed (in-
dicating that x 1s 0).

Applying this "light bulb logic" to the binary addition
problem: if both the AND circuit énd OR circuit bulbs are
lighted, then the carry is 1. This corresponds to closed x
and y switches in both circults; 1.e. X AND y both 1. If the
OR circuit bulb is lighted but the AND circuit bulb 1is NOT
lighted, then there i1s a sum but no carry; i.e. either x OR
y is 1 but NOT both. If neither the AND circuit nor the OR
circuit buld 1# lighted, then there is no sum and no carry;
j.e. 1t does NOT happen that either x OR y 1is 1. Notice that
the NOT bulb wasn't used. However, the statement that a sum
existed depended as much upon the fact that the AND bulb was
NOT lighted as it did upon the fact that the OR bulb was
lighted.
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Figure 2-24 shows, in block form, a more generalized de-
vice for adding two bits x and y. Such a device is called a
half adder. Here, the outputs of each "logical" block are
assumed to be of such a form that they are usable as inputs
to other blocks. The NOT block is represented by the symbol
I.

That the half adder satisfles the binary addition table
can be seen by considering its response to the various com-
binations of inputs that can be applied to it. Supposé, for
example, that x and y are both 0. Then x AND y is O, so that
the output of the first AND block is O. Thus, the carry is
O. The output of the NOT block, on the other hand, is 1
(since NOT O is 1). The output of the OR block is O (since
i1t does NOT happen that either x OR y is 1). Thus, the in-
puts to AND block #2 are a 1 (from the NOT block) and a O
(from the OR block) so that the output of the block, which
is the sum, is O (since it does NOT happen that both the in-
put from the inverter AND the input from the OR circult are
1). The configuration thus satisfies the binary addition
table with respect to the entry; 0 + 0 = 0.

Consider a second combination of inputs to the configura-
tion of Figure 2-2%; for example, x = 1, y = O. For this
case, the output of AND block #1 1s still O (since it does
NOT happen that both x AND y are 1). Thus, the carry is O
and the output of the NOT block is 1 for the same reason as
before. This time, however, the output of the OR block is 1
(since i1t does happen that x OR y 1s 1; f.e. x = 1). Thus,
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both inputs to AND block #2 are 1, so that the cutput of AND
block #2, which is the sum, is 1. Again, the binary addi-
tion table has been satisfied; this time with respect to the
entry; 1 + 0 2 1 (1.e. a carry of 0 and a sum of 1 are gen-
erated). In the same way, the two other possible pairs of
inputs can be shown to generate outputs which satisfy the
binary addition table.

In order to understand why the configuration of Figure
2-24 1s called a half adder, consider again the general prob-
lem of adding two numbers. Assuming that each of the numbers
has more than one bit, the operaticn involves performing the
addition in each bit position and handling carries that arise
in these additions. The half adder provides for the genera-
tion of carrles to the next higher order, but does not pro-
vide for the acceptance of carries from the next lower order.
It 1s, therefore, adequate for performing the addition in the
least significant bit position (where no carry from a lower
order can be encountered), Howevef, in any of the higher bit
positions, an adder which can handle a carry lnput as well as
the x and y 1inputs 1s required. 3Such a device is called a
full adder.

The possible combinations that can be encountered in the

addition of three bits (x, y and carry) are as follows:
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O+0+0=0 (1)
0 +0+1=1 (2)
0 +0+1=10 (3)
1+1+1=11 (1)
O+1+0=1 | (5)
1+0+0z=1 (6)
1 +0+1=1C (1)
1+1+0=z10 | | (8)

Figure 2-25 shows how a full adder can be formed employ~-
ing two of the half adders of Figure 2-24 and an extra OR
block. The X, y and carry combinations that can appear at the
inputs of this adder and theyresulting outputs from'the vari-
ous "loglcal" blocks are tabulated in Figure 2-26.

As noted above, there are four distinct sums that can
be obtained by adding possiblé combinations of three bits.
The first of these, which arises from the addition of three
O's appears as entry 1 of the table of Figure 2-26. The sec-
ond is represented by entries 2,3,4%; the third by entries
5,6,8 and the fourth by entry 8. In each case, the outputs
from the full adder satisfy the binary addition table. The
first sum which 1s 0, appears as a O sum (Sp) and a O carry
(Cy). The second sum, which 1s. I, appears as a sum of 1 and
" a carry of 0. The third sum, which 1s 10, appears as a sum
of 0 and a carry of 1. The fourth sum which 1is 11, appears
as a sum of 1 and a carry of 1. Notice that outputs result-
ing from any particular combination of 1's and O's are the

‘same regardless of where the indivlidual bits are applied to
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the adder. For example, entries 2, 3 and 4 produce the same
outputs although in 2 the 1 1s applied to the x input, in 3
the 1 1s applied to the y input and in 4 the 1 is applied to
the C1 input. This corresponds to the arithmetical fact that
the sum of any particular bits i1s the same no matter in what
order they are added,

As has already been stated, the full adder of Figure 2-
25 1s formed from two half adders such as are 11lustrated in
Figure 2-24 and an extra OR block. Since it does not make
use of any new "1ogical“ operations in order to satisfy the
addition table, its operation can be understood on the basis
of an understanding of the half adder of Figure 2-24, As an
illustration, it 1s worthwhlile to check the operation of the
full adder a;énst one of the entries in the table of Figure
2-26, Consider, for example, entry #6._ In this case, x is
1 and y is O. Thus, the sum output of half adder #1 (Sq) is
1 while the carry output (02) 1s 0. The inputs to half adder
#2 (S1 and Cl) are both 1. Thus, 1ts sum output (S;) 1is O
while its carry output (03) is 1. The inputs to the OR block
(Co and C3) are 0 and 1 (respectively). Thus its output is
1. These results are precisely the set of outputs shown
against entry #6 of the table of Figure 2-26. It is a good
exercise for the reader to check the operation of the full
adder of Figure 2-25 against the remainder of the entries of
the table of Figure 2-26.

What has Just been demonstrated is that "logical" blocks

can be comblned in such a way as to satisfy the bilnary addi-
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tion table. It is demonstrated in Part 4 that these blocks
can be successfully mechanized. The important thing to under-
stand here 1s that this mechanization of the bilnary addition
table is something quite different from the mechanization of
the decimal counting process which was discussed in the
preceding chapter.

One of the important differences between "logical" addi-
tion and addition by counting is that the former implies simul-
taneous action; i.e. when certain inputs are received certain
outputs are generated. Remove the 1lnputs,and the outputs
disappear. Compare thils torcounting which 1s a successive
- process and thus implies the storage of the accumulating sum.
In a sense, the full adder "stores" the binary addition table.
In the same sense, the counter "remembers" how to count. But
in addition to this kind of "memory", the counter must store
the accumulating count as it proceed&@rom step to step.

The mechanlization of the binary ;ddition table is prac-
tical because the table is so brief; i.e. the possible ¢om-
binations of bits are so few. Notice that the "loglc" of this
mechanlzation is essentially binary in nature; that is, the
outputs of each one of the blocks is either a 1 or a O.

The brevity of the binary additlon table 1is just one as-
pect of the simplicity, from the point of view of mechaniza-
tion, offered by the binary number system. The task of mecha-
nizing the representation of numbers, which of course must
precede the task of mechanizing operations, is greatly simpli-
fied by the fact that the binary system employs only the two

symbols O and 1. DC1.TC.2.3.10
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3.2 BINARY SUBTRACTION

Binary subtraction can be performed by a method involv=-
ing reference to a memorized table and borrow from column to
column which 1s similar to the normal method of decimal sub-
traction. An example of the pencill and paper blnary subtrac-
tion process 1s 1llustrated in Figure 2-27. The operation 1is
shown in three steps for purposes of clarification. In the
first step, the minuend and the subtrahend have been set down.
To perform the subtraction in the 20 order a borrow from the
21 order 1s necessary. However, since the 21 order bit of the
minuend is 0O, this 1in turn entails a borrow from the 22 order.,
These borrows and the subsequent subtractions in the first two
orders are shown in step 2. A borrow from the 22 order causes
the 22 order bit to be diminished from 1 to O. The borrow
initially appears as a 10 in the 21 order. However, a 1 1is
then borrowed for the 20 order diminishing the 10 to 1. The
1 that 1s borrowed from the 21 order appears as a 10 in the
20 order., The fact that a 1 borrowed from the nth order ap-
pears as a 10 in the (n - 1)th order 1s common to all number
systems. The 10 always has the value of the radix of the sys-
tem 1n use. Thus when a 1 18 borrowed from the nth order in
the decimal subtraction, it has the value of ten in the
(n - 1)th order. However, when a 1 is borrowed from the nth

order 1n binary subtraction, it has the value of two in the

(n - 1)th order.
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When the subtraction of Figure 2-27 has proceeded to the
point shown in step 2, another borrow situation 1s encountered,
Since the 22 pit of the minuend has been reduced to O by the
earlier borrow, a borrow must be made from the 23 order., How-
ever, since the 23 order bit of the minuend is 0, a borrow

must first be made from the 2“

order. These two borrows and
the remainder of the subtractions are shown in step 3. Thils
subtraction, like any other, can be checked by adding the sub-
trahend and the difference. If the subtraction has been cor-
rectly performed, the check addition will yleld the minuend
(since subtraction answers the question, "ﬁhat number must be
added to the subtrahend in order to obtain the minuend?").
Since the table that is consulted in performing binary
subtraction is the binary addition table, it follows that
binary subtraction should offer the same advantages from the
point of view of mechanizatlon that are offered by bilnary
addition. In fact, this proves to be the case. A half sub-
tractor similar to the half adder of Figure 2-24 can be formed
by combining logical blocks. Moreover, a full subtractor sim-
jlar to the full adder of Figure 2-25 can be formed by com-
bining two half subtractors together with some extra AND and
OR blocks. However, subtraction can be approached in a slight-
ly different manner. As explained in Chapter 2 of this Part,
complementing the subtrahend and adding 1s the equivalent of
subtracting. Thus, if the complement of the subtrahend can
be made available, the full adder of Figure 2-25 can be used
to perform subtraction, so that no explicit subtraction de-
vice 1s necessary. |
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Subtraction in the decimal system can be performed by
using either 10's complements or 9's’comp1ements‘as explalned
in Chapter 2. 1In the binary number system 2's complements or
1's complements are used. Complements in the binary number
system are defined exactly as are complements in the decimal
system; 1.e. they are defined with respect to the machine
modulus. (As was stated in Chapter 2, the modulus of any ma-
chine 18 the number of distinct numbers it can represent,) If
a2 binary machine has modulus M, then the 2's complement of any
number x with respect to that modulus is M - X. For the same
machine, the 1's complement of x is (M - 1) - x. The 2's and
1's complements of binary numbers are thus analogous to the
10's and 9's complements of decimal numbers.

The modulus of a binary machine is of the same form as
the modulus of a decimal machine, l.e. 1t 1s a 1 followed by
& sequence of O's. When 1 is subtracted from this modulus,
the result 1s a sequence of 1's. This is comparable to the
modulus minus 1 for a decimal machine which 1s a sequence of
9's. The rules for forming 2's complements and 1's comple-
ments are thus analogous tc the rules for forming 10's com-
plements and 9's complements. That i1s, the 2's complement
of a number, n, can be formed by subtracting the least signif-
icant non-zero bit of that number from 10 (decimal 2) and sub-
tracting all more sifnificant bits from 1. In the same way,
the 1's complement of n can be formed by subtracting each bit
of n from 1, Moreover, if a bit, x, 1s subtracted from 1,

only two results are possible. If x is 1, then 1 - x is O,
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On the other hand, if x 1s 0; the 1 - x is 1. Thus, the 1's
| complement of a binary number can be formed by the simple
process of changing all the 1's of that number to O's and
changing all the O's of that number to 1l's. This 1s an ex-
tremely important simplification when considered from the
point of view of mechanlzation of the complementation process.
Moreover, since the 2's complement of a number n 1s always 1
more than the 1's complement, 2's complements can be formed
by first taking l's complements and then adding 1.

Figure 2-28 shows how the 2's complement of the subtra-
nend can be formed by performing the subtraction indicated by
its definition. Figure 2-29 shows that the same result 1s ob-
tained by applying the two rules mentioned above:

a. To form the 1l's complement of a binary number n, change
all the 1's of the number to O's and all the O's to 1's.

b. To form the 2's complement of a binary number, form the
1l's complement and then add 1 to it.

Notice that in forming the 1l's complement of a number,
the O's to the left of the most significant non-zero bit (and
within the range of the machine) must be changed to 1l's.

The solution of the subtraction problem of Figure 2-27
by the technique of adding the 2's complement of the subtra-
hend to the minuend is shown in Figure 2-30. Step 1 shows
both numbers in true form. Step 2 shows the subtrahend 1n
complement form and shows the true form of the difference,
which 1s obtained by addition. Here, the machine modulus is

assumed to be 26; i.e. the machine is capable of holding the
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numbers 000000 through 111111, This capacity requires six
orders, that is 20 through 25. Thus, there is no 26 order
and the carry which arises during the addition is lost. It
is this phenomenon, of course, upon which the whole scheme
of subtraction by means of complementation and addition depends.
Use of 1's complements rather than 2's complements for sub-
| traction has the same consequences that are encountered in dec-
imal arithmetic when 9's complements are used instead of 10's
complements; that is,corrections are required in certain cases.
As is the situation in thé case of 9's complements, these cor-
rectlons can be taken care of by end-around carry. This can
be seen from Figure 2-31 which compares the result of adding
the 1's complement of the subtrahend to the minuend with the
result of ordinary subtraction in four different cases. In
the first case, there is a carry from the highest order, Here,
the difference 1s a positive number in true form and a correc-
tive addition 1s required. In the second case, the difference
is O which appears in 1's complement form. There is no carry
from the highest order and no correction is required. 1In the
third case, the difference 1is a negative number which appears
in 1's complement form when 1's complements are used. There
1s no carry from the highest order and no correction is re-
quired. In the fourth case, the difference is a negative num-
ber which appears in 1's complements form when compiéments are
used, There isicarry from the highest order and a correction
18 required (since 011 rather than 010 is the 1's complement
of 100 which 1s the solution obtained by the ordinary method

of subtraction). In general, whenever a corrective addition
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is required, there is a carry from the highest order and when-
ever there 1s no correction required, there 1s no carry from
the highest order. Thus, in all cases, the correct solution
is obtained by adding the carry (if any) from the highest
order into the least significant bit position. This is called
end-around carry.

At this point it 1s natural to raise the question éf how
negative numbers in complement form can be distinguished from
positive numbers in true form. It turns out that in this re-
gard, also, binary numbers offer an advantage with regard to
. representation. The sign of a number is binary in nature, that
is a number is either positive or negative, with the exception
of 0 which can be arbitrarily assigned a sign. Thus, a bit
representing sign can be used 1n addition to the bits repre-
senting magnitude. A O in the sign bit position can be inter-
preted to mean that the nﬁmber is positive and in true form
while a 1 in the sign bit position can be interpreted to mean
that the number is negative and in complement form. If the
sign bits are assigned to the most significant bit position
and are treated as a part of the number in the addition opera-
tion, then the resultant sign bit will be a true indication
of the sign of the result. In order to see how this works,
four cases must be consldered as follows:

a. If two positive numbers are added, thelr sign bits are
0. Unless the capacity of the machine is exceeded, thére is
no carry from the highest magnitude bit order. Thus the sign
bit position of the result is O corresponding to the fact that
the result 1s a positive number.
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b. If a negaiive number is added to a smaller positive num-
ber; there 1is no carry from the highest magnitude bit position
(see case 3, Figure 2-31), Thus, the resultantksign bit is
the sum of the sign bits of the augend and addend)or l. This
corresponds to the fact that the result is a negative number.

c. If a negative number is added to a larger positive number,
there is a carry from the hlghest magnitude bit position (see
case 1, Figure 2-31). This carry added to the sign bit of the
‘negative number yilelds a sum of O in the sign bit position
(corresponding to the fact that the result 1s a positive num-
ber) and a carry from the sign bit order (which can be used for
the end-around carry correction).

d. If a negative number is added to another negative number,
both sign bits are 1, However, i1f the numbersare within the
capaclty of the machine, there isya»carry from the highest mag-
nitude position in such an addition. Thus the addition yields
a sum of 1 in the sign bit position (corresponding to the fact
‘that the result is a negative number) and a carry from the sign
bit order (whichvcan be used for the end-around carry correction).

| The subtractions (by complementation and addition) of Fig-
gure 2-31 are’repeated in Figure 2-32 with sign‘bits added, in
order to verify the results of operating upon sign bits in this
manner, In Figure 2-32, as in Figure 2- 31 the end-around carry
corrections have been made.

3 3 BINARY MULTIPLICATION
Binary multiplication can be performed by the ordinary pen-
cil and paper method involving reference to a memorized multiplica-
tion table, shift and entry of partial products and final summation
of partial products. An example of such a multiplication is 1llus-
DC1.TC.2.3.17



MULTIPLICAND

MULTIPLIER

FIRST PARTIAL PRODUCT

SECOND PARTIAL PRODUCT
THIRD PARTIAL PRODUCT

FOURTH PARTIAL PRODUCT

TOTAL PRODUCT

YYVYY VY Y

000O00O

Figure 2-33



trated 1n Figure 2-33, However, the binary multiplication
table is more trivial even than the binary addition table.

It can be stated as follows:

0X0=0
0X1=0
1X0=0
1X1=1

Thus there 1s no problem of carrieskarising in the multi-
plication of two blts and there are only two possible products,
O and 1. In a multiplication such as that of Figure 2-33, then,
the partial products'can be generated in accordance with a very
simple rule which satisfles the binary multiplication table.
This rule 1s as follows: For each multiplier bit that is 1,
enter the multiplicand with its least significant bit lined up
with that multiplier bit. For each multiplier bit which is O,
make no entry. Referring to Figure 2-33, 1t can be seen that
the multiplicand (1010) has been entered once for each 1 in the
multiplier as specified by the rule just given. The second par-
tial product (0000) is the equivalent of no entry, corresponding

to the O in the 271

order of the multiplier.

The only troublesome part of a binary multiplication is
the summatlon of partial products. When hand methods are re-
placed by a machine routine, this summation is performed on
a stép-by-step basis. Thus the first partlal product is‘gen—
erated; then the second partial product is generated and added
to the first; then the third partial product is generated and

added to the sum of the first two; and so on. The machine
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routine for multiplication where the multiplier has n bits
is a sequence of n steps. For each 1 bit of the multiplier
the step comprises a shift and an addition, For each O bit
of the multiplier, the step comprises only & shift. The ma-
chine routine for the multiplication of Figure 2-23 is
1llustrated in Figure 2-3%,

Binary multiplication can be performed by means of
simultaneous or "loglcal" configurations which satisfy the
trivially simple binary multiplication table., The set of
"logical" operations introduced for implementing the binary
addition table suffice for the performance of binary multiplica-
tion. A "logical" configuration employing two of the half
adders of Figure 2-24 and four AND circuits, and capable of
generating the product of any two two-bit numbers is 11lus-
trated in Figure 2-15, Here, xj and ¥, 2re the units order
bits of the two numbers while xp and yo are the 2! order bits.
Py through Py are the 20 through 23 order bits respectively
of the product. The operation of the multiplier of Figure 2-26
can easlly be checked against the binary multiplication table
in terms of the half-add and AND operations which were eaplained
in Section 3.1, above., For example, assume XpXx; = 10 and Vay, =
11. Then the output of the first AND block is (since X3 AND y;
are NOT both 1) that P; is O. The output of the second AND
block 18 O (since x; AND y, are NOT both 1) but the output of
the third AND block is 1 (since X AND y; are both 1). Thus,
the first half adder recelves a single input of 1. Thus its
sum output (P2) is 1 while 1its carry output is 0. The output
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of the fourth AND circuit is 1 (since x, AND yp are both 1).
Thus the second half adder receives a single 1lnput of 1. Thus
its sum output (P3) is 1 while its carry output (Py) 1s O.
Summarizing these results, P4P3P2Pl = 0110. Since this is the
true product of 10 and 11, the binary multiplicatlion table is
satisfied.

As noted above, and 1llustrated in Figure 2-34, binary
multiplication can be performed as a shift and add routine.
A configuration which satisfies the binary addition table has
already been introduced and it has been stated that this con-
figuration can be successfully mechanized. Thus 1f the shift
operatlion can be mechanized, and it can, multiplication can
be performed by a routine employing a shifting device and an
adding device.
3.4 BINARY DIVISION

The pencll and paper method of performing binary division
is more simple in one important respect than the pencil and
paper method of decimal divlision. The decimal divlision process
starts with an lnspection of the dividend and divisor to deter-
mine how the divisor can be lined up under the dividend so that
it 1s at least as small as the dividend. This 1s actually a
determination of how many times the divisor can be multiplied
by ten without becoming larger than the dividend. When this
first determination has been completed, a second investigation
must be undertaken to discover the largest multiple of the

shifted divisor which is smaller than or equal to the dividend.
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Thus, for example, 7 goes into 420 a total of 60 times. In
performing this divislon, the first step is to establish that
7 can be multlplied by 10 once and still remain smaller than
or equal to the dividend 420. The second step 1s to determilne
that 70 can be multiplled by 6 and still remain smaller than
or equal to 420. 1In the case of binary division, this second
step is unnecessary. This follows from the fact that the
binary number system only allows for multlplication by O, 1
ani powers of two. Thus in binary division, trial multiplica-
tlons are eliminated. The division process thus reduces to the
determination of where the divisor should be entered under

the dividend before each subtraction, together with the actual
performance of the subtractlons and the entry of the quotient
blts. For each position of the least significant divisor bit
that corresponds to a successful subtractlon of the divisor
from the dividend or from a current remainder, a 1 is entered
in the quotient. For each position where no such successful
subtraction can be performed a 0 is entered.

A binary long division example is i1llustrated in Figure
2-36. In this case, the dividend is an integral multiple of
the divisor so that a remainder of O is obtained as a result
of the second subtraction. In general, of courge, binary
division does not produce O remainders any more than deci-
mal division does. The division process 1s thus, in gen-
eral, left unfinished after having been carried out to an

arbltrary and predetermined number of orders.
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When it comes to translating the pencil and paper method
of long division into a machine routine, the inspection func-
tion which 1s so readily performed by a human operator proves
extremely difficult to mechanize., For this reason, division
by a machine is sometimes limited to favorable cases where the
complications are fewer. For example, division may be per-
missible ohly if the relative magnitudes of dividend and
divisor are such that no error arises if the division routine
1s begun by lining up the most significant bits of dividend
and divisor. Two division routines which begin in thils manner
are shown in Figures 2-37 and 2-38, These routines are analo-
goud to the two decimal routines shown in Figure 2-20. The
difference is that in the binary routines, it is only necessary
to subtract the divisor from the dividend or remalnder once for
eéch shift. This corresponds to the fact already noted that
operating in the bilnary system eliminates the need for trial
multiplications.

In the so-called restoring routine of Flgure 2-37, an
unsuccessful subtraction, that 1s one which produces a negatlve
remainder 1s cancelled out by an addition before a shift right
is executed. Referring to the figure, the routine begins with
the divisor (1110) lined up left with the dividend. 1In this
position the value of the divisor is multiplied by 2% as noted
in the figure. When the divisor in this position 1s subtracted
from the dividend, a negative'remainder is obtained. Accord-

n

ingly, a O is entered in the 27 order of the quotient (indi-

cating that 1110(2) b ¢ 24 cannot be subtracted from 10001100(2)).
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At the same time the divisor, still lined up in the same posi-
tion, 1s added to the divlidend restoring it to its original
magnitude. A shift right is now executed, and then the divi-
sor 1s again subtracted from the dividend. The subtraction in
this new position 1s successful (i.e. a positive remainder is
obtalined)., Thus, a 1 is entered in the 23 order of the quotient
(corresponding to the fact that 1110(2) X 23 has Just been
subtracted from the dividend). The divisor 1is shifted right
again and another subtraction 1s performed. This subtractiocn
is unsuccessful; thus, a 0 is entered in the 22 order of the
quotient and a restoring addition 1s performed., Another shift
right 1s executed and another subtraction operation 1s per-
formed. This operation is successful; thus, a 1 is entered
in the 21 order of the quotient. A final shift and subtrac-
tion follows. This one is unsuccessful; thus, a 0 is entered
in the 20 order of the quotient. A final restoring addition
1s performed to transform the remainder from a negative to a
positive or a zero (as in the case of the example) balance,
The non-restoring routine of Figure 2-38 begins in the
same way as the restoring roﬁtine‘of Figure 2-37; that 1s, the
divisor is lined up left with the dividend and subtracted from‘
it and a 0 is entered in the 24 order of the quotient to indi-
cate that the subtraction is unsuccessful. However, at this
point a right shift of the divisor is executed. The divisor
1s then added to the dividend. Since a right shift is equiv-
alent to division by two, exactly half of what was removed by
the subtractlon is restored by the addition. Since, the cur-
rent remalinder 1s positive after the addition, 23 times the
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divisor has successfully been subtracted from the dividend

(by first subtracting o% times the divisor and then adding

53 times the divisor). Thus, a 1 is entered in the 23 order
of the quotient. The divisor 1s then shifted right again and
subtracted from the current remainder. Since a negative re-
mainder is obtained, a O 1s entered in the 22 order of the
quotient. Another shift right of the divisor 1s executed and
then another addition is performed. Since the current remain-
der 1is positive after this addition, a 1 is entered in the 21
order of the quotlent indicating that 21 times the divisor has
successfully been subtracted from the current remainder (by
first subtracting 22 times the divisor and then adding 21 times
the divisor). A final shift and a final subtraction are per-
formed. Since this subtraction is unsuccessful, a O is entered
in the 20 order of the quotient. Also, after this final un-
successfu1 subtraction a restoring addition is performed. This
is done so that the final remainder will be positive or zero
(as in the case of the example).

In the example of Figure 2-38, the steps alternate between
shift-and-add and shift-and-subtract; however, this 1s only be-
cause thé quotient bits happen to alternate between 0 and 1.
The rule}is that a shift-and-add step follows when the current
remainder 1s negative while a shift-and-subtract step follows
when the current remainder 1s positive.

As discussed in Section 3.2 of this chapter, subtraction
is often performed by complementation and addition. In this

case, negative remainders appear 1n complement form. The
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routine of Figure 2-38 i1s repeated in Figure 2-39 with the
subtractions handled by complementation and addition. Since
the quotient 1in this problem 1s assumed to be an eight bit
number while the divisor is only a four bit number some con-
fusion may arise as to the modulus of the machine. In this
regard, it should be noted that only five places are involved
in each addition. Thus, in this routine modulo 22 addition

is performed so that the carries shown in brackets are lost.
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Part 2
CHAPTER 4
| OCTONARY ARITHMETIC

4,1 GENERAL

The octonary number system is of interest in connection
with computer work chiefly because of the relationship it bears
o the binary system. This relationship can be stated as follpws:
S8ince eight 1s the third power of two, three places in binary
notatlion correspond to one place in octonary notation. Thus .111,
which 1s the largest number that can be represented by three
binary places, corresponds to 7, which is the largest number
that can be represented by one octonary place,

The relationshipvbetween binary and »ctonary notation
makes conversions between the two extrenely simple. When
conversion from octonary notation to binary novation is requlred,
each octonary digit is replaced by the three bits which represent
the equal value in binary notation. When conversion is from
binary notation to octonary notation, the bits are considered in
groups of three and each group is replaced by the octonary digit
which represents the equivalent value. For example, 010101110
(binary) is separated into 010 101 and 110. Each of these
groups 1s then replaced by the equivalent octonary digit to form
256 (octonary). The decimal representation of this result (174)
cannot be generated by any such straightforward procedure.

Octonary numbers are much easier for human operators
to work with than are binary numbers. For one thing, any given
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whole octonary number has less places than the equivalent
binary number., For another thing, the use of eight symbols
(0,1,2,3,4,5,6,7) rather than Just two (0,1) makes for a number
language which 1s easier to read and wrlte, and thus decreases
the probability of error. These comparative advantages of
the octonary number system coupled with simplicity of the conversion
between octonary and binary notation, make the octonary system
a good working notation for human operators who are preparing
sets of numbers which eventually must be entered into a computer.
For example, as is explained in Part 5, a computer solves problems
by executing a sequence of instruction steps which must be entered
into it in an essentially numerical form. The preparation of
such a set of steps, called a program, is a task which might very
well be performed by pfogrammers using the octonary-system.

If the octonary system is to be used to perform tasks such as
the one Jjust mentioned, it is convenient to be able to perform
the four arithmetic operations upon octonary numbers. For this
reason, a discussion of octonary arithmetic is presented in the
sections which follow. It will be noted that this discussion
varies from the ones involving decimal arithmetic and binary
arithmetic, which appear in earlier chapters, in that it 1s
concerned only with hand calculation techniques. This corresponds
to the use of the octonary number system, in-so-far as computer
work is concerned, as a working system for human operators.
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4,2 OCTONARY ADDITION

There are several ways of accomplishing the addition of
a column of octonary numbers.

One method of adding a column of octonary numbers is
to form the decimal sum in each order, divide this sum by
eight, enter the quotient as the carry in the next higher
order and enter the remainder as the sum digit in the order
being operated upon. This amounts to operating in fhe declmal
system and then converting to the octonary system on an
order by order basis. An example may serve to clarify this
method. Figure 2-40 compares the addition of a column of
octonary numbers with the addition of the column of equiva-
lent decimal numbers. If the method just described 1s applied
to the addition of the octonary numbers, the operation pro:
ceeds as follows: Adding the digits in the units order,
a decimal sum of nineteen 1s obtained. When this 1s divided
by elght, a quotient of 2 and a remainder of 3 are obtained.
Accordingly, 2 is entered as a carry above the 8l column
and 3 is entered below the units column. The digits of the gl
column (including the carry) are now added and the decimal
sum of twenty-four 1s obtained. This 1s divided by eight
yielding a quotient of 3 and a remainder of O.
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Accordingly, 3 1s entered as a carry above the 82 column and O

1s entered below the 8% column. The digits of the 82 column (including
the carry) are now added and the decimal sum of twenty is obtalned.
This is divided by eight, ylelding a quotient of 2 and a remainder

of 4, Accordingly, 2 is carried to the 83 column and 4 is entered
below the 8° column. Finally, the 2 carried to the 83 column is
brought down as the sum digit of that column.

A second v:thod of adding a column of octonary numbers involves
reference to an octonary addition table. The most straightforward
method of using this addition table, which is 1llustrated in Figure
2-41 1s to imitate the machine method of adding a column of numbers;
that is to add the second number to the first, then add th2 third
number to the sum of the first two and so on. This techhique 1is
illustrated in Figure 2-42 which shows the addition of the same
set of numbers that appeared in Figure 2-40. The operation proceeds
as follows: The addition of the first two numbers begins by consulting
the table (Figure 2-41) to find the sum of 2 and 7 which is 11.

The units digit of this sum 1s entered below the units column and

the 8% digit 1s entered as a carry above the 8% column. This

carry is then added to the 5 in the 8! column (in accordance with

the table) and the resulting 6 is added to the 6 already in the column
This addition of the tho 6's is handled by reference to the table
which 1lists the sum 14, The units digit of this sum 1s entered

below the 8l column and the 81 digit 1s entered as a carry above

the 82 column. | |
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This carry is added to the two digits in the 82 column (still by
reference to the table) producing the sum digit 6. The third
number is then added to the sum of the first two that has Jjust
been formed, and so on until the entire column has been totalled.
Notice that all sums less than or equal to 7 are already known
by the human operator since they are identical to the sums
found in the decimal addition table, This fact considerably
reduces the difficulty of working with this new table.

A second method of using the octonary addition table is
shown in Figure 2-43, Here the entire column is added on an
order by order basis., Whenever an addition produces a two-digit
sum, the 8l digit of that sum is entered as a carry in the next
higher column. For example, starting at the bottom, the 8O order
addition in Figure 2-43 proceeds as follows: Reference to the table
reveals that the sum of 2 and 7 18 11. The 8l digit of this result
is entered as a carry in the 8l order, The 8O diglt of the result,
on the other hand, is added to the next digit in the 8° order (1)
producing the sum 2. This sum is added to the next digit (2)
producing the sum 4. This sum is added to the next digit (7)
producing the sum 13 of which the 1 1s carried to the 8l column
and the 3 1s entered below the 8° column.
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4,3 OCTONARY SUBTRACTION

Octonary subtraction presents few problems to the human
operator. If a minuend digit which 18 smaller than the corresponding
subtrahend digit is encountered eight is added to it (rather than
ten as in the case of the decimal system) and the subtrahend digit
1s subtracted from the result. At the same time the minuend digit
in the next higher order is decreased by 1. The required addition
of eight and the subsequent subtraction are performed by reference
to the decimal addition table although no decimal notation need
be written down during the process. A sample subtraction 1is
shown in Figure 2-44., For clarification the borrows are shown
in this case and, since the borrow part of the operation is
performed in the decimal system, they are shown in decimal notation,
The subtraction proceeds as follows: The units (80) order is
inspected and the minuend digit is seen to be smaller than the
subtrahend digit. Aecordingly, eight is borrowed from the 81
order diminishing the minuend digit in this order foom 5 to 4.
The borrowed 8 is now added to the 6 in the minuend order
(by decimal addition)and 7 is subtracted from the result
(oy decimal subtraction). The subtraction through each succeedlng
order proceeds in the same manner. In summary, the only difference
between this routine and a decimal subtraction is that a 1 borrowed
from the nth order has the value of eight (rather than ten) in
the (n-1)th order. If the borrowed eights were shown in octonary
notation they would appear, as does the radix in any number system,
as 10's. In this case, the subtraction could be performed by

referring to the octonary addition table to see what digit would
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have to be added to the subtrahend digit in order to form 10 +
the minuend digit. However, such an approach probably only in-
creases the change of error.
4,4 OCTONARY MULTIPLICATION

The multiplication of octonary numbers can be performed by
an application of any of the three basic approaches which are
discussed in Section 3.2 above with respect to additlon; i.e.
numbers can be converted to the decimal system and multiplication
performed in that system, digit multiplications can be performed
in the decimal system and digit products mentally converted to
the octonary system through division by eight, or the entire
operation can be performed by reference to an octonary multiplica-
tion table.’ The last of these methods is probably the most
stralghtforward. However, the second method may conveniently be
used to obtain a second solutlon as a check against the first.
Eilther of the second two methods would appear, on paper, as shown
in Figure 2-45,

If the seCCnd method were used, the reasoning of the operator
would be somewhat as follows: Four times five 1s twenty, which is
two elghts plus four. Thus, enter eight and carry two. Four times
seven 1s twenty-eight which 1s three eights plus four. Thus, add
four to the previous carry of two and enter the resulting six.
Carry three. Four times four is sixteen which 1s two eights plus
zero. Enter the previous carry of three and enter two in the
next higher order.

If, on the other hand, the third method were used, the sums and
carries resulting from each digit multiplication would be ob-

talned directly from the octonary multiplication table.
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This table is given for reference in Figure 2-46.
4.5 OCTONARY DIVISION

Like decimal division and unlike binary division, octonary
division involves trial multiplications. The easiest way to
perform these is by reference to the octonary multiplication
table of Figure 2-46, The octonary long division setup looks very much
like the decimal setup as can be seen by referring to the sample
division of Figure 2-47, The only difference lies in the way
the trial multiplications and the subtractions are performed.
As has been stated, the multiplications are most easily performed
by reference to the octonary table, Thé Subtractions can be

performed as explained in Section 3.3 above,
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PART 2
CHAPTER 5
RADIX CONVERSION

5.1 GENERAL

The decimal number system, because of its familiarity,
is likely to remain as the principle number language of the human
operator, At the same time, by virtue of the simplifications
it offers from the point of view of mechanization, the binary
number system is likely to continue as the most generally used
number language of machines. The octonary system, which does
not offer too many difficulties from the point of view of
manipulation by the human operator and which bears such a
close relationship to the binary system that conversions
between the two are simple, 1s likely to find increasing use
as a middle ground between the other two systems, Since
decimal, binary}and octonary systems each have their uses
in computer work, the question of conversions between them
is of primary interest.

The conversions between binary and octonary notation,
which are extremely simple, are discussed in Section 4-1
of this Part., However, for convenience the information is
repeated here as follows:

a. To convert any binary number to its octonary equivalent,
first write the number in terms of groups of three bits,
proceeding left from the binary point for the integral portion
of the number and right from the binary point for the fractional
portion of the number.
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POWER OF VALUE IN POWER OF VALUE 1IN

2 | DECIMAL NOTATION 2 DECIMAL NOTATION
20 T 1048575 | 5 32

19 524288 4 16

18 262144 3 8
17 131072 2 4

16 65536 1 2

15 32768 0 1

14 16384 4 .5
13 8192 -2 .25

12 4096 | -3 .125

11 2048 -4 .0625

10 1024 -5 .03125

9 512 -6 .015625

8 256 -7 .0078125

7 128 -8 .00390625

6 o4 | -9 .001953125

-10 0009765625

Figure 2- 48 Decimal representation of
powers of 2

Figure 2-48



Replace each group of three bits by the octonary digit of
equivalent value, For example, to convert 1001101101010.1101
to octonary form handle it in the following groupings;
001 001 101 101 010, 110 100
Now replace each of these groupings by its octonary equivalent
as follows: 11552,64,
b. To convert any octonary number to its binary equivalent,
replace each octonary digit by the grouping of three binary
bits having equivalent value. For example, re-write 56473,246
as follows:
101 110 100 111 0O11. O©O10 100 110
Here the groupings are separated just to call attention
to the equivalences, In actual practice there is no reason why
the binary number cannot be written directly with no
spacing between gruupings unless 1t is desired to retain groupings
to facilitate checking.
The simplicity of the conversion between octonary and
binary numbers results from the fact that eight is the third
power of two. The other conversions that are of interest, that is
those between decimal and binary notation and those between decimal
and octonary notation are not as easily performed. These are
explained in the following sections.
5.2 CONVERSIONS BETWEEN DECIMAL AND BINARY NOTATION
5.2.1 Decimal to Blnary Conversion
The most straightforward method of converting decimal
numbers into binary form involves making use of a table of
powers of two (in decimal notation) such as is illustrated in

Figure 2-48.
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A conversion performed making use of the table of Figure 248
is shown in Figure 2-49., The decimal number being converted in
this example is 3028.359375. The equivalent binary number
appears at the top of the figure, below the sequence of powers
of two. The conversion proceeds as follows:

a. The integral portion of the decimal number 1s considered
first., The table of Figure 2-48 1s examined in order to find
the largest power of two which 1s smaller than or equal to
the 1ntegral portion of the decimal number, In this case
that power is 211 which in decimal notation is 2048. A
sequence of decreasing powers of two, starting with 211 ang
ending with 20 is written at the top of the page. A 1 is
entered under 2ll corresponding to the fact that 211l 15 the
‘largest power of two which is smaller than or equal to the
integral portion of the decimal number,

b, The decimal form of 2'! (1.e. 2048) is subtracted from
3028 yielding a difference of 980, The table of Figure 2-43
i1s now inspected a second time to find the largest power of two
which is smaller than or equal to 980. This is 29 (i.e. 512).
Accordingly, a 1 1s entered under 29 and 512 is subtracted
from 980. This subtraction ylelds 468, The table of Figure
2-48 1is now inspected a third time to find the largest power
of two smaller than or equal to 468, This is 28 (1.e. 256).
Accordingly, a 1 is entered under 28
from 468, | |

and 256 is subtracted
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C. The conversion process continues in the same manner until
a difference of 1 or O is obtained, This difference is then
entered under the 20. At this point, O's can be entered
beneath the powers of two which did not enter into the conversion
process. For example, 210 did not qualify as the largest power
of two smaller than or equal to the difference at any step of the
process and therefore a O 1s entered beneath it. It may be
preferable to enter these O's as the process develops. Thus,
as soon as it 1s seen that 29 is the largest pdwer of two smaller
than or equal to 980, a O may be entered under 210,

d. The table of Figure 2-48 is now examined to find the
largest negative power of two which is smaller than or equal
to the fractional portion of the decimal number (.359375).
This is 27° (L.e. 25). Accordingly, a 1 is entered in the
272 order and .25 1s subtracted from .359375 yielding .109375.
The table 1s examined again to find the largest negative power
of two which is smaller than or equal to ,109375. This is
o~ (1.e. 0625), Accordingly, a 1 is entered in the 2~%4
order and .0625 is subtracted from .109375., The process continues
in the same manner until a O difference is obtained (which is the
case in the example of Figure 2-45) or the required number of
- significant bits have been generated, |

The conversion process that has just been described can

be summarized as follows: The decimal number is separated into
components which are powers of two. The sum of these powers of

two 18 then written in binary notation.
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INTEGRAL PORTION DEGIMAL PORTION
.359375

'BINARY NUMBER 2
0000 | O=w—.7 18750
00O | 0 2
‘000 2 1 | *+—.,4 3 7500
0005 | 2
- 00 | | | O<€—,875000
0023 | 2
00 4 7 0 | «=—,7500 00
00 94 ! 2
01 89 0 | «—,50 0000
0378 | 2
0757 0 | «— .000 000
|1 51 4 0 |
2 3028/

Figui‘e 2-50



Step d. of the above conversion procedure reveals a
complication which is, in general, encountered in converting
fractional numbers from one system to another; i.e. a fractional
number which can be represented by a finite number of digits
in one number systed cannot, necessarily, be represented by
a finite number of digits in a second number system, In fact,
any fraction whose denominator contains a prime factor which is
not a factor of the radix of a given number system cannot be
represented by a finite number of digits in that number system
(except of course by the use of a fraction bar), Thus, the conversion
process, which is essentislly a division process, cannot always
be finished. However, since 'any conversion can be carried out to
the required number of places, this is not too serious a difficulty.

A second method of converting from decimal to binary notation,
which does not require any reference to a table of powers, is
shown 1n Figure 2-50, for the same decimal number as before, 1In
this method, the integral portion of the decimal number 1s
repeatedly divided by 2 until it has been exhausted. For each
division in which a remainder arises, a 1 is entered as a bit
of the equivalent binary number, For each division in which
no remainder arises a O is entered., The first division generates

the 20

bit, the second generates the 21 pit and so on, Thus
the integral portion of the binary number is read in an order
opposite to that in which it is generated. In Figure 2-50,
for example, the bits are written starting at the bottom of
the sheet and proceeding upward., However, the number reads

(in order of deércasing magnitude)Afrom top to bottom,
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The method of Figure 2-50 can be Justified as follows:

If a number is odd (i.e. if there is a remainder when 1t is
divided by two) then its binary representation must contain a

1 in the 20 order. Moreover, half of any binary number, n,

can be obtained by shifting each bit of n one order to the
right. Thus if n/2 is odd, the binary representation of n must
contain a 1 in the 2! order ( for otherwise there will not be a
1 in the 2O order after a shift to the right). By the same
reasoning, if n/4 is odd, then there must be a 1 in the 22 order
of n and so on. Thus the repeated division process 1s merely

a test to discover first if n is odd, then if n/2 1s odd, then
if n/4 18 odd and so on.

The conversion of the fractional portion of the number has
to be handled in a different manner, The fraction 1s repeatedly
multirlied by two. Each time that the multiplication generates
a product having an integral portion, a 1 is entered as a bit
of the equivalent binary fraction. Each time that the product
has no integral portion a O is entered. This process is
continued until the required number of binary blts have been
generated or until a product which is entirely integral 1s
generated (as in Figure 2-50) in which case an exact converslon
has been obtained. In this fractional part of the conversion
process, the digits are generated in order of decreasing
significance,
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Notice that at each step, the integral portion of the product,
if any, is discarded.

The Justification of the handling of the fractional portion
of the conversion is very similar to the Justification of the
handling of the integral portion. Multiplication of a number by
two; causes each blt of its binary representation to be shifted
1l place to the left. Thus, if some binary fraction, n, has
an integral portion, then n must have a 1 in its 2 1 order. By
a continuation of the same reasoning, if twice the fractional
portion of 2n has an integral portion then the 2'2 order of n
must contain a 1, and so on.

5.2,2 Binary to Decimal Conversion

Binary numbers can be converted into decimal form by
means of the table of powers of two of Figure 2-48. The procedure
for this method of conversion is illustrated in Figure 2-51,

Here, the bihary’number 1s entered at the left of the page from top
to bottom in order of decreasing significance., The power of two
associatedeith each bit of the number is then entered next to it

in order to facilitate reference to the table of Figure 2-48, For
each binary bit which 1s a 1, the decihal value of the corresponding
power of 2, as obtained from the table, 1s entered as a component

of the decimal form of the number. When these components have all
been entered, they are summed to obtain the complete decimal form.
(In Figure 2-51, the integral and decimal,portions are shown

Separately so as to clarify the procedure, )
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INTEGRAL PORTION

BINARY NO. ADD MULTIPLY BY 2
o | 2
0 2 4
| 5 | 0
| o 2 2
| 2 3 4 6
1 4 7 9 4
0 9 4 | 8 8
| 18 9 378
0 378 | 756
| 757 | 51 4
| 5 1 4 3028
3028

FRACTIONAL PORTION
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A second method of conversion from binary to decimal notation,
which does not require the use of a table of powers, is shown in
Figure 2-52. The procédure followed in this method is as follows:

The integral portion of the binary number is entered at
the left of the page frbm top to bottom in order of decreasing
significance. The moét significant bit is multiplied by two
and the decimal notation of the product is entered in the righthand
column. This result is then added to the second most significant
bit of the binary number (which in the example is 0) and the
sum is entered in the center column, This sum 1s then multiplied
by two and the product is entered in the righthand column, This
second product is entered in the righthand column. This second
product is added to the third most significant bit of the binary
number and the resulting sum is multiplied by two, the product
being entered in the righthand column., This process continues
in the same manner until the 20 pit of the binary number has
been added to the product of the preceding step. This sum 1s
the integral portion of the equivalent decimal number. The
process 1is just an ingenious method of generating the sum of
the powers of two represented by the 1's of the binary number,
5.3. CONVERSIONS BETWEEN DECIMAL AND OCTONARY NOTATION

5.3.1. Decimal to octonary conversion

Decimal numbers can be converted into octonary notation by
a method which makes use of the table of powers of eight
(in decimal notation) illustrated in Figure 2-53, A conversion by
this method i1s shown in Figure 2-54. This conversion is similar

to the decimal to binary conversion shown in Figure 2-49,
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Thus the conversion begins by examining the table of powers
of eight for the largest power which is smaller than or equal
to the integral portion of the decimal number. However, the
next step of the decimal to octonary conversion has no counter-
part in the decimal to binary conversion. This step involves
multiplying the selected power of eight by the largest integral
factor which producesva product smaller than or equal to the
integral portion of the decimal number. 1In the example of
Figure 2-54 the largest power of eight which 1s smaller than
or equal to the integral portion of the decimal number is 83
(1.e. 512). The largest multiple of 512 which is smaller than
or equal to the integral portion of the decimal numbervis 5X512= 2560,
Accordingly, a 5 is entered below 83 (in a sequence of powers
of eight which 1s noted down at the top of the page) and 2560
is subtracted from 3028. The process continues in a manner
analogous to fhat of the decimal to binary conversion of Figure
2-U4g exceptiﬁhat at each step the extra operation of finding
(the largest multiple of the selected power of eight must be
performed. Incidentally, the decimal number in the cdnversion
example of Figure 2-54 is the same as in Figure 2-L49 It is
an interesting exercise for the reader to convert the octonary
number obtained in Figure 2-54 into the binary number obtainedv
in Figure 2-49, This is accomplished by the method‘described
in Section 5.1 of this chapter.

A second method of decimal to octonary conversion,
illustrated in Figure 2-55 1s analogous to the second method of

decimal to binary conversion shown in Figure 2-50.
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The integral portion of the decimal number is repeatedly divided
by elght until it is exhausted, and the remainderé at each 8tep
are used as the digits of the 6ctonary number., The fractional
portion of the decimal number is repeatedly multiplied by eight
until a product having no fractlional part is obtained or until
the regquired number of octonary digits have been generated.
Integral portions of each product are used as the digits of the
octonary number., This method can be Justified in terms of the
relationship between shifts and multiplication by the radix,
by reasoning similar to that used to justify the analogous
decimal to binary conversion process (See Section 5.2.1 above).

5.3.2 Octonary to Decimal Conversion

An octonary number can be converted to a decimal number by

‘a method which makes use of the table of powers of eight presented
in Figure 2-53., An example of such a conversion is shown in
Figure 2-56., The conversion of the example proceeds as follows:

a. The octonary number is entered at the left-hand side of
the page 1n order of decreasing significance from top to bottom.
The decimal form of each power of eight associated with a'ncn-zero
digit of the octonary number is obtalned from the table of Figure
2-53 and 1s entered to the right of that digit. Each such
power of eight is multiplied by the diglit of the corresponding
power and the resulting products are entered in the righthand
column, This column is added, ylelding the decimal equivalent of

the octonary number.
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INTEGRAL PORTION

OCTONARY NO. ADD MULTIPLY BY 8
5 4 0O
7 4 7 37 6
2 3 7 8 3 024
4 3028

FRACTIONAL PORTION

ADD -DIVIDE BY 8
7 e 87 5
2 2 « 8 75 e 359 375

Figure 2-57



For example, in Figure 2-56, the first non-zero digit of the
octonary number is a 5 which is found in the 83 order of the
number. Thus this 5 is multiplied by the decimal representation
of 83 (i.e. 512) and the product (2560) is entered in the right-
hand column,

A second method of converting an octonary number to decimal
form is analogous to the second method of converting a binary
number to decimal form which is shown in Figure 2-52. 1In this
method, an example of which 1is shown in Figure 2-57, the integral
portion of the octonary number is entered in order of decreasing
magnitude at the lefthand side of the page. The most significant
digit is then multiplied by eight. The resulting product 1s
added to the second most significant digit. The sum of this
addition is then multiplied by eight and tﬁat product is added
to the third most significant digit. This process continues
until the 80 order digit 1s added to the product of the preceding
step. The resultant sum 1s the decimal representation of the
integral portion of the octonary number,

The digits of the fractional portion of the octonary
number are now listed in order of increasing significance. The
most significant fractional digit is divided by eight and the
resulting quotient is added to the next most significant fractional
digit. This sum is then divided by eight and the resulting
quotient is added to the next most significant digit. This process
continues until the least significant digit of the octonary
number has been added and the resulting sum has been divided by
eight., The quotlient that results from this division is the
decimal representation of the fractional portion of the octonary

number,
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PART 2
CHAPTER 6
PRECISION AND ACCURACY

6.1 GENERAL

Precision and accuracy are words that are often used
interchangeably by the layman. However, when used.as technical
terms they have entirely different meanings. It 1s more
convenient to define precision and accuracy in terms of their
opposites than directly. If information 1s not pfecise, 1t
is not very exact but it is not necessarily incorrect. For
example, if the time is 10:07, and someone says that 1t 1s
about 10 o'clock he is no: being very precise. However, he
is being perfectly accurate; for inaccuracy implies mislead-
ing information and there 1s nothing misleading about saying
that 1t 1is about 10 o'clock if 1t is 10:07. However, the
statement that 1t 1s 10:06, while it 1s more precise, is in-
accurate (if it is actually 10:07). In terms of an item of
data which 1is specified numerically, precision 1s defined by
the number of digits or bits used. For example, 567 1is more
precise than 560. Accuracy on the other hand is defined
in terms of the correctness of the digits which are used. A
quantity which is representgd by four decimal diglits is said
to be specified to a precislon of 1 part in 10,000. This
corresponds to the fact that 10,000 distinct numbers (0000
through 9999) can be represented by‘four decimal digits.
If an accuracy to within *.01% is specified in connection with
a precision of 1 part in 10,000, this indicates that the units
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digit of the number may be incorrect by 1 unit. Thus the
number 4047 would imply a Quantity lying somewhere between
4048 and 4046.

A quantity specified to a precision of 1 part in 10,000 by
a decimal number can also be sald to be speaified to four
significant places. In this connection, it 1is important to
understand the concept of significance. Throughout this Part
the term signiflicance has been used freely to designate the
relation between individual diglts or bits of a number. In
this sense, if digit x 1s to the left of digit y, 1t 1s more
significant than diglt y. In addition to this concept of
relative significance, there 1s a concept of absolute signl-
ficance. In terms of thls second concept, a digit in a part-
icular number 1s said to be elther significant or not
significant. In order to qualify as being significant in
this sense, a digit must add to the precision with which a
quantity is specified. For example, 1n the statement, "He 1s
about 50 years old," the O is not siginificant since 1its
purpose 1s merely to indicate that the 5 is to be assoclated
with the 10! rather than 10° order. A somewhat different
case of insignificance arises in the multipllcation of two
four place numbers which are accurate to *.01%. Here, the
units digits of both numbers may be off by as much as 1 unit
in either direction. For example, if 5031 is multiplied by
1722 a product of 8663382 is generated. However, the specified
accuracy 1is such that the correét values of multiplier and

multiplicand may be as small as 5030 and 1721 or may be as
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large as 5032 and 1723. Thus the correct value of the pro-
duct may lie anywhere in the range between 8656630 (i.e.
5030 x 1721) and 8670136 (i.e. 5032 x 1723). For this reason
the right-hand four digits of the product are not significant.
The fifth digit from the right, on the other hand, is sig-
nificant since 1t specifies the approximate center of the
range which contains the correct product. After a calculation
of this sort 1s completed the result must be rounded off;
i.e. those digits which seem to add something to the precision
of the result but actually are meaningless must be removed.
For purpose of round off, the digit to the right of the least
significant place does have some value, for if it is 5 or more
the least significant diglt should be raised 1 unit. In-
cidentally, when binary notation 1s used, a 1 in the bit
position to the right of the least significant place has a
value which 1is equivalent to the value of a 5 to the right of
the least significant place in decimal notation. Thus in
rounding oféibinary number, a 1 1s added into the least sig-
nificant bit position if the position to the right dontains
a 1 but not if the position to the right contains a O.
6.2 SCALING

The problem of scaling the varlables which are to be
operated upon in a digital computer solution 1is closely related
to the concept of precision. Assume that a computer has a
decimal modulus of 10,000. Then if a variable can be scaled

so that its range falls exactly within the capacity of the
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machine, it can be represented to a precision of 1 part in
10,000. If, on the other hand, it is scaled so that its max--
imum value is represented by just three orders of the machine,
3then‘1t is only being represented to a'precision of 1 part in
1000. In other words, there are two obJects to keep in mind
when scaling variables for a computer solution. One 1s to
scale the varlables so that they do not eiceed thefcapacity of
the machine, for 1f this happens‘meaningless_resulfs'wilr be

obtained. However, the other is to scale the varlables so as

. to use as much of the capacity of the machine as 1s possible

in order to obtain the maximum preclsion. The extent to which
the full capacity of the machine can be used to represent a
particular variable, depends upon the exactitude with which
the range of the varilable is known.

Suppodse that wind veloclity 1s to be scaled for representa-
tion in a computer and it is known that no velocity as large
as 40 knots will be encouﬁtered in a particular problem. Then
'40 knots can be made exactly equal to the largest number
_which the machine can represent. If the machine represents
only fractions, then 40 knots can be equated to 1 machine unit
of wind. Thus a velocity of 20 knots will appear in the

machine as .5.
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