C-588-PROG-ST

AIR TRAINING COMMAND

COMPUTER SYSTEMS DEPARTMENT

 STUDENT TEXT

OZR0123
OZR0123-1

PROGRAM CODING

13 June 1966

RESPONSIBLE AGENCY OF ATC

Keesler Technical Training Center
' Keesler AFB, Mississippi

DESIGNED FOR ATC COURSE USE ONLY

Computer Systems Department

Keesler Technical Training Center

Courses OZR0123 and OZR0123-1

CHAPTER
1

;.2

10
11
12

13

-APPENDIX
I
I

oI

PROGRAM CODING
CONTENTS
TITLE

Introduction
Operation éf'thevCentral Computer System
Basic Programming
The Assembly Process
Simp‘le Store Class Instructions
Branch Class Instructions

Indexing and Table Construction

‘Table and Item Manipulations

Scaling and Further Arithmetic Manipulations
Compare and Tesfc 'Bits Instructions |
MACRO and COMAND Compilers

Miscellaneous Instructions and Computer Information

Translator’s Correction Capabilities and Other
COSEAL Programs

Program SAMPLE Using General Illustrative Coding

Sample Printout of a COSEAL Translation - Errors
and Examples

Duplex Maintenancé Console

Map of NORAD Divisions and Sectors

Student Text

C-588-PROG-ST

13 June 1966

PAGE

19
36
43
53
57
67
S
87
102
107

117

131

145

148
160

164

CHAPTER 1
EVOLUTION OF THE SAGE SYSTEM
The Air Defense Problem

The problem of air defense is the protection of population, industrial areas, natural
resources and retailatory forces from hostile air attack. To accomplish this, it is
necessary to determine what means are available or should be developed to provide
maximum security under the greatest possible threat.

Former Air Defense System and Its Limitations

Formerly, the task of defending the United States against hostile air attack was
performed by a manual ground environment system, and the functions of detection, evalua-
tion, and interception were completely dependent on human operation. However, due to
the increased speed capabilities of aircraft since World War II and the rapid progress
in the field of missile development, the manual system of air defense was recognized
as being completely inadequate to cope with such formidable means of attack. Recogniz-
ing the potentialities of these weapons during the early stages of their development
the authorities responsible for continental air defense sawthe need for a rapid, accurate,
automatic system of air defense.

Developing a New Air Defense System

The Air Force, in late 195@, enlisted the cooperation of various civilian organiza-.
tions in its efforts to improve the capabilities of the United States air defense network.,
The overall program was known as the Continental Air Defense System (CADS) Project,
under which civilian organizations ‘helped to bring the national air defense system
up to the best possible operating condition and made recommendations to ensure the
system’s continued effective operation. The air defense system was greatly improved
by the CADS Project, but fell short of the Air Defense Command requirements for a
vastly improved air defense system.,

Simultaneously, studies were made on the combined use of digital computers and
radar-data transmission equipment for application to air defense. The testing of a high-
speed digital computer was recommended to the Air Force to provide information on
the capabilities of such equipment to solve the ever-growing problem of air defense.
The fundings of this program led to many new concepts for solving the problem and
resulted in the establishment of an experimental project which gave rise to the SAGE
System. This project was developed in three major phases: the 1953 Cape Cod System,
the 1954 Cape Cod System, and the experimental SAGE subsector.

1953 Cape Cod System

The 1953 Cape Cod System was composed of a computer known as Whirlwind I
(WWI) and a Direction Center, along with associated radar equipment. The purpose of
this arrangement was to gather preliminary test data which would substantiate the
concepts of the SAGE System then being planned. Emphasis was directed toward singling
out obvious problem areas and attempting to correct whatever difficulties were encounter-
ed, rather than toward gathering complete statistical data on system operation. Conse-
quently, there was very little modification of equipment.

1954 Cape Cod System

The 1954 Cape Cod System was the same as the 1953 system except that radar
network and mapping facilities were increased. Several minor improvements were
incorporated in the operating. positions withinthe Direction Center. The primary objective
was to supply statistical results on system capacity and accuracy.

Experimental Sage Subsector XD-1

The experimental SAGE- Subsector, located in Lexington, Massachussetts was
completed in 1955. It is equipped with a prototype AN/FSQ-7 Combat Direction Central
known as XD-1. A radar system provides a variety of inputs similar in number and type
to those used in the SAGE System. An Air Force ground-to-air data link is connected to
the output for experiments with data-link- equipped aircraft.

The experimental SAGE Subsector provides experimental data on electronic relia-
bility, computer programs, and operating procedures. It is organized to support the
regular functions of a Direction Center and is used to obtain operational approval and to
determine required equipment modifications.

Organizational Considerations

To ensure adequate air defense for continental United States, air defense activities
were established at various echelons of command and responsibility. The overall
function was delegated by the Joint Chiefs of Staff to the Continental Air Defense Com-
mand (CONAD). The primary concern of CONAD is the protection of retaliatory forces,
population, natural resources, and industrial potential during initial or sustained attacks
by hostile forces, This defense must ensure successful counter-attack by this country
and must also ensure the eventual successful conclusion of hostilities.

To carry out its assigned tasks, CONAD delegated certain portions of the air
defense mission to subordinate echelons. This delegation has geographical as well as
operational applications.

The Continental Air Defense Command is presently organized into three Defense
Forces, and this structure is reflected in the SAGE System. Each Air Defense Force
“is composed of a number of Air Defense Divisions. The Air Defense Division is relieved
of direct supervision of groups and squadrons. However, its area of responsibility is
large, making mandatory the minimizing of administrative and logistic responsibilities
at this level. These responsibilities are delegated to the Air Defense Wing.

The area for which an Air Defense Division is responsible is normally composed
of three or more sectors. The headquarters for the division is the Combat Control
Center. The Air Defense Division exercises operational control of units designated for

air defense operations within the division and is the level at which co-ordination with
adjacent divisions is achieved.

The Air Defense Wing, with headquarters at the Combat Direction Center, has
subordinate units that are primarily weapons and radars. The area of responsibility

of the Air Defense Wing is called a sector. To perform the functions of air surveillance,
identification, and weapons control, detailed information on all defense elements is
continually maintained.

Description of the Sage System

General

The SAGE System is the portion of the air defense system of continental United
States that provides the means for semi-automatic processing of data and weapons control.
The SAGE System consists of the following (See Figure 1-1):

a, The facilities required to process and transmit air surveillance data from
data-gathering sources to Combat Direction Centers.

b. Combat Direction Centers, where air surveillance data is processed, evaluated,
and developed into air situations at a sector level from which threat evaluation, weapons
assignment, and appropriate weapons guidance orders are generated.

c¢. The facilities required to transmit situation data from Combat Direction Centers
to Combat Control Centers and other Combat Direction Centers.

d. Combat Control Centers, where situation datafrom the Combat Direction Centers
is processed, and from which the utilization of weapons resources can be monitored
and directed.

e. The facilities required to transmit instructions from Control Centers to Direc-

tion Centers and to forward divisional situation data to other Control Centers and higher
echelons of command,

Direction Center

The Combat Direction Center is an installation which contains all the equipment
(including the AN/FSQ-7) needed to execute the functions of air surveillance, identifica-
tion, and weapons control.

The function of the Direction Center is to receive, process, and develop air
surveillance data at the sector level. On the basis of the sector air situation, the threat
is evaluated, weapons are assigned, and orders are given. Information of importance to
an adjacent Direction Center is communicated (crosstold) to that Direction Center auto-
matically via ground-to-ground data links. A summary of the sector air situation is
passed (forwardtold) from the D1rect1on Center to the Control Center which has juris-
diction over its activities.

Three specific operations are included in the overall function of the Direction
Center in solving the air defense problem. These operations consist of detecting the
approaching aircraft, 1dent1fy1ng the aircraft, and exercising operational control.of
defense weapons.

*T-T 9andrq

waysh§ asusyeq TV 9y} 03 AHVS o diysuoryeray

AIRBASE

NORAD

COMBAT OPERATIONS CENTER

Forward Told Data

SAGE
COMBAT CENTER

AN/FSQ-8

3

ADJACENT SAGE K

DIRECTION CENTER I
Y &

o)

8

AN/FSQ-7 8

)

MANUAL .
ACW CONTROL : SAGE
CENTER MANUAL INPUT AND OVERLAP DIRECEION
TOLD DATA CENTER
?,e‘oa‘” AN/FS0-7
B3
-AaDCP | |

8

o

A

P

o

o

o

-4

NIKE MISSILES

LONG RANGE RADAR SITE

Radar D2i2

GAP FILLER SITE

INSTSIEAY, -
s

GROUND TO AIR
TRANSMITTER SITE

GROUND RELAY
STATION

0 AIRBORNE RADAR
PLATFORM

FAA

AMIS

~
~~
. —
— —
BOMARC MISSILE

AIRBORNE EARLY
WARNING AIRCRAFT

Weather

Figure 1-2. Typical SAGE Direction Center

(1) DETECTION

The detection of all aircraft approaching the United States is performed by
a variety of units. Off-shore units, suchas AEW aircraft, give early warning of approach-
ing aircraft. Long-range radars and gap-filler radars spot and track all aircraft within
or close to the United States., Reports of aircraft detected by the DEW lines in the
northern parts of the continent are forwarded to the Combat Operations Center (COC)
for dissemination to subordinate units of the SAGE System.

An important characteristic of the SAGE System is its flexibility to accept
improvements in radar techniques and equipment as they evolve. The AN/FSQ-7 and
the radar-data transmission equipments greatly reduce the time delays inherent in data
processing and permit more effective use of data from many radars. Therefore, a large
number of gap-filler radars can be used to provide an integrated, overall air picture.

Each Direction Center controls, and is connected with, all air defense
radars that are geographically located within the sector. These radars provide adequate
radar coverage. The air situation picture for the entire United States, therefore, is
continuously maintained by both a perimeter radar screen and a radar umbrella, Any
aircraft entering or originating in the United States can be detected and tracked con-
tinuously. :

(2) IDENTIFICATION

‘ . There are three main forms of aircraft identification: Mark X (IFF/ SIF)
signals, the Multiple Corridor Identification System (MCIS), and the flight plan (military
or commercial).

Aircraft equipped with Mark X equipinent identify themselves automatically
and do not require further action for identification by components of the SAGE System.

; The MCIS requires all aircraft entering the coastalareas of the United States

to identify themselves by means of prearranged check words and check maneuvers, as
well as to use only predesignated corridors in approaching the Air Defense Identification
zone (ADIZ). ‘

Flight plans are required of all military and commercial flights. These flight
plans are inserted into the AN/FSQ-7 computers and are matched with radar returns,
continuously and automatically, to aid in identifying the spotted aircraft. Computer pro-
‘grams record the ‘number of times an aircraft deviates from its assigned course and

notify appropriate personnel each time a deviation occurs.

(3) WEAPONS CONTROL

The SAGE System is designed to utilize not only existing forms of weapons
but also new and improved equipment as it becomes available. Interceptors, anti-aircraft
~ units, and guided missiles are presently the basic weapons used by the Direction Center
in defense activities.

The air bases under the control of a Direction Center keep the center
informed of their operational status, and computer programming indicates the number
of weapons committed during any action. In this fashion, personnel at the center are kept
up to date on the status of weapons available for assignment to targets.

Scrambled interceptors are given mid-course guidance by the computer
and are aided in their return to base by computer-generated directions. Provisions are
made for both data links and voice channels to control interceptors,

Point-defense weapons form the system of weapons that supply concentrated
fire-power to protect small areas containing important targets or large, industrial,
and heavily populated areas. The present, basic point-defense Weapons are antiaircraft
units and Nike missiles. As other types of weapons become operationally available,
they may be incorporated into the SAGE System with only minor changes required in the
- programming of the Direction Centers.

CENTRAL ‘COMPUTER SYSTEM

The Central Computer System (Figure 1-3) is made up primarily of a general-
purpose, high-speed single-address, binary digital, stored-program computer with
associated input-output (I/0) devices. The Central Computer is designed to accept large
amounts of military tactical data and to process the data quickly. Generally speaking,
the purpose of the Central Computer is to correlate and process data and to transfer
the results to other systems of the Central,

The Central Computer is capable of adding, subtracting, multiplying, and dividing.
More complicated operations such as extracting square roots and evaluating complex
variables can be performed by combining the basic arithmetic operations, The computer
is designed to respond to simple stereotype instructions, each of which causes the
computer to perform a single arithmetic operation. An extended sequence of such
instructions, resulting in the solution to a problem is called a program.

The AN/FSQ-7 Central Computer is composed of the following elements:

Instruction Control Element
Selection Control Element
Program Control Element
‘Arithmetic Element
Internal Storage Devices

Instruction Control Element

The instruction control element furnishes command pulses to the computer in
correct sequence, enabling the computer to carry out the programmed instructions
stored in the computer memory element. Functionally, the instruction control element
decodes each instruction and generates the commands needed to carry out the processes
indicated by the instruction. Physically, the instruction control element is divided into
three sections: the instruction decoder, the pulse generator and control, and the command
generators,

MOTA TIeI2A0 WesAS zandwmo) Terjud)d “g-1 aanJrd

DUPLEX

MAINTENANCE

CONSOLE
TAPE COMPUTER A

UNIT
COMPUTER A

LINE
PRINTER
COMPUTER A

DUPLEX SWITCHING

LINE PRINTER
COMPUTER B

TAPE UNIT
COMPUTER B

TWO CARD READERS
TWO CARD PUNCHES

SIMPLEX
MAINTENANCE
CONSOLE

DUPLEX MAINTENANCE
CONSOLE
COMPUTER . B

Selection Control Element

The selection control element is divided into four sections: the index interval
register, the Operate-Select-Sense (PERSE LBSN) matrix, the break command generators,
and the control circuits.

The selection control element synchronizes, controls, and directs data being trans-
ferred between the computer memory element and the several 1I/0 units, including the
Drum System. Prepared instructions, setting up control circuits in the selection control
element, must be performed in advance of the actual transfer of information. This
enables the information transfer to be properly initiated and processed.

The selection control element also incorporates circuits which permit the Central
Computer, directed by a specific program, to perform certain operations affecting the
electromechanical units allied with the I/0 units and the several other electromechanical
units in the system. In addition, the selection control element determines existing con-
ditions in the Central and directs the operations of the computer accordingly.

Program Control Element

The program control element, in order to procure specific instructions, controls
the selection of internal storage devices and such information as may be required by an
instruction. In addition, the program element sequences the transfer of each instruction
stepped out of the internal storage devices at the proper moment.

In guiding the processing of information, the program element co~-operates with
other elements of the computer, The instruction control and program elements together
sequence and control the internal information-processing operations. The program and
selection control elements together co-ordinate and effect the external transfer of infor-
mation between the computer and other systems of the Central. The program element,
therefore, contains circuits associated both with the internal control operations of the
instruction control element and with the external control operations of the selection
control element.

Arithmetic Element

The arithmetic element contains circuits and registers which perform mathematical
computations on numerical data. The element is divided into two separate portions which
are composed of identical groups of circuits and registers and are known as the left
arithmetic unit and the right arithmetic unit.

Primarily, the arithmetic element employs the four basic arithmetic operations
(addition, subtraction, multiplication, division) in the performance of its functions.
Operands for the calculating processes are obtained from the computer memory element.
The setting up of arithmetic operations is governed by add-class and multiply-class
instructions which provide command pulses from the instruction control element. The
result of the calculations is either retained in the arithmetic element for further pro-
cessing or transferred to the memory element for storage until required by a subsequent
program,

Internal Storage Devices

Three separate storage devices are contained within the computer: the core
memory, the test memory, and the real-time clock. The core memory and the test
memory furnish storage space for and permit quick access to instruction and infor-
mation words. The real-time clock generates real-time information in the form of pulses.

In the AN/FSQ-1, the physical core memory units are referred to as memory 1 and
memory 2. Memory 1, which is called BIG MEMORY contains 65,5361¢ or 2¢¢,¢¢¢8

storage registers. Memory 2, which is called LIL MEMORY contains 4,(?5961¢ or 1¢,¢¢¢8

storage registers. The core memories are nonvolatile, meaning that they retain the
information which is stored in them, even when power is not applied to the units. We
consider the memories to have random access, meaning that any memory location may
be selected and read out in the same amount of time. This time is referred to as random
access time (or memory cycle) and is 6 microseconds in the AN/FSQ-"7. Thus, a mini-
mum of 6 usec must elapse between successive word transfers. One more important
point to consider is that readout from core memory is nondestructive. If we transfer
the contents of location 1{2}(68 to the arithmetic element, the word is automatically re-

written into memory location 1¢¢8 and can be used again. Howéver, when we write a

word into core memory, the contents of the selected register are destroyed, and replaced
by the new word.

In addition to the core memories described previously, the AN/FSQ-17 contains
another storage device referred to as TEST MEMORY. Test Memory consists of 16
plugboard registers, two toggle switch registers located on the duplex maintenance con-
sole, and a flip-flop register located in the arithmetic element. Thus, there are 19 test
memory registers that may be used. However, only 16 addresses have been reserved for
test memory, so 16 is the maximum number of test memory registers that can be used
at any one time. The main purpose of test memory is to allow information to be entered
directly into the memory element without resorting to punched cards, etc. Naturally,
since only a limited number of addresses are available, most information entered in
this manner is for maintenance purposes. The Central Computer System can read infor-
mation out of any of the test memory registers at the normal rate of 6 usec. When writing
into test memory, the flip-flop register, commonly called the ‘‘live register’’, is always
selected, regardless of which of the 16 available addresses is specified.

Although it is not actually used as a storage register, the clock register is con-
sidered an active memory device. It is located in the right arithmetic element and
consists of 16 flip-flops which form a counting circuit. The clock register is pulsed
every 1/32 of a second, and thus maintains accurate track of real time, The contents
of this register are used when it is desired to use real time increments in various
calculations.

INPUT-OUTPUT DEVICES

The 1/0 devices of the Central Computer System are composed of card machines,
magnetic tape units, and the 1/0 register. In order to eliminate confusion brought about
by similarity in terminology, a distinction between the Input and Output Systems and 1/0
devices should be made.

«

10

C

,0\ «‘wum\é

it

@&

;%@»ﬁ.

%@N@

Figure 1-4. BIG MEMORY

11

12

Figure 1-5. Duplex Maintenance Console -

Primary Indicators and Controls

An input device associated with the computer may be defined as a unit which trans-
mits data directly into the computer. An output device is a unit which receives data
directly from the computer. Certain units, because of the nature of their functions, may
be considered as being both input and output devices. The Input System and the Output
System do not deal directly with the computer, as the data for these Systems must first
pass through the Drum System.

Card Machines/Line Printers

The 713 Card Reader allows the insertion of information from punched cards
directly into the computer system. The card reader reads a card one row at a time
within a cycle of 4¢¢ milliseconds with a maximum reading rate of 15¢ cards per minute.

The 718 Line Printer provides the means for the computer to prepare information
in printed alpha-numeric form.

The 723 Card Punch allows the computer to present processed information in
punched card form. The punch has an operating cycle of 6¢¢ milliseconds duration,
allowing a maximum punching rate of 160 cards per minute,

Magnetic Tapes

The 728 Magnetic Tape Drive units which are used with the AN/FSQ-7 provide a
long-term, slow-access information storage. Unlike the card reader, card punch, and
line pi'inter, the tape units can participate in both reading and writing operations with
the Central Computer System. The method of recording on tape is nondestructive, so
that once binary information is recorded it may be used indefinitely without re-recording.

The tape is fed through the reading and writing heads at a rate of 75 inches a
second. With a normal tape length of approximately 2,400 feet, this means that one entire
reel of tape can be written on or read from in about six minutes. The amount of informa-
tion that can be recorded on the tape reel is approximately the same as that which could
be contained in 20,000 standard IBM 8¢-column punched cards. Thus, it can be seen that
storage on magnetic tape provides not only faster access than do punched cards but also
requires much less space to store an equivalent amount of information.

Manual Controls and Computer Indicators

The manual controls and indicators of the computer are situated on the duplex
maintenance console and on the duplex switching console, as are the controls and indicators
for the other systems of the Central. These controls and indicators supply maintenance
personnel at the Center with a means of manual control for loading initial operating
programs, loading certain reliability and diagnostic test programs, and monitoring the
operations of the major registers and circuits in the associated equipment.

'The duplex maintenance console contains the majority of the controls and indicators
for the manual operation of the Central Computer System. The alarms and neon indicators
on the console show the status of the computer, and virtually all manual program and
checking operations are affected by means of the console controls.

13

The duplex switching console is used by maintenance personnel to establish the
status, active or standby, of the separate sets of duplex equipment. Each computer
transfers status data to the duplex switching console. This data activates indicators and
alarms, permitting maintenance personnel to determine the operating condition of each
‘computer and to make quick decisions pertaining to duplex switching operations.

Display System

Information processed by the computer is sent via the dispiay drum fields to the
Display System where it is converted as required and presented on cathodg-ray tube
(CRT) displays to the operators of the Center.

The equipment contained in the Display System, for purposes.of this discussion,
is divided into the following major groups: the digital displays, the situation displays,
and associated equipment. The digital and situation displays are made up of consoles
housing CRT’s which present a picture of the air situation to an observer. The associated
equipment is made up primarily of various components connected with the operational
functions of the displays.

The Display System provides the means by which the air situation of the area
supervised by the Center is visually presented to human observers. This is accomplished
by means of special CRT’s mounted in specially constructed and equipped consoles.

Data is first accepted by the Input System and is subsequently transferred to the
Display System via the Drum and Central Computer Systems. The tracks and raids
representing the air situation are consolidated and converted into larger common co-
ordinates for display at the consoles. Since all such data is received from the computer
in binary form, the Display System converts the data from the binary form to a system
of letters, numerals, vectors, and symbols. This conversion permits the presentation
of a display which is more readily viewed and interpreted by the observer.

The console operator observing the air situation messages presented on the CRT
may act on the information in several ways. The operator may communicate with the
computer by requesting information from the computer, or by feeding back information
in answer to a request from the computer. He may instruct the equipment to transfer a
message to the console of another operator. These operations are possible through the
use of manual-intervention switches and light guns located on the consoles. Telephone
facilities located at the console are also available to the operator for communication
with other personnel within the Center. He may also communicate beyond the area
of the Center by wire and radio telephone circuits. '

The Display System employs two basic types of CRT displays for presenting the
‘visualized air situation to the human observer. They are the digital displays and the
situation displays. The CRT’s for these displays are mounted in various types of display
consoles located at selected operating positions in the Center. Typical consoles are
equipped with a situation display (SD) scope, a digital display (DD) scope, and various
manual-intervention (MI) switches, alarms, and warning lights. Many consoles are also
equipped with a light gun and telephone facilities.

. In addition to the display consoles, the equipment of the Display System encompasses
various types of associated equipment, including auxiliary consoles, which aid the Display
System in the performance of its functions.

14

ST

a10su0) Aerdsiq 1eord4A] °g-1 aangr,

16

Figure 1-

7. Computer-Constructed Picture of New England

Digital Displays

The DD scope is a 5-inch CRT mounted in the upper right portion of the display
console. Supplementary data that is either too voluminous or too slow- changing to warrant
its presentation on the larger pictorial SD screen is presented on the DD screen, The
information appears as a tabular array of characters and symbols and, unlike the situation
display, changes only when the computer orders a change due to, for example, the
presentation of new information, Barring receipt of instructions from the computer to
the contrary, the digital display remains indefinitely.

Digital display data is processed by the computer and transferred in binary form
via the Drum System to the Display System. Since data in binary form is difficult for an
observer to interpret, the binary information is converted to analog voltages which, in
turn, are converted to the visual display presented on the face of the DD CRT.

Situation Displays

The situation display scope is a 19-inch CRT mounted in the center portion of the
display console. A current plan-position map of the rapidly changing air situation which
shows correct geographical relations between fixed points and moving targets is pre-
sented on this scope, Supplementary descriptive data in the form of vectors and special
symbols is positioned next to specific points and targets for identification purposes.
(See Figure 1-8),

The 19-inch CRT used for the situation display is not a conventional-type tube.
It is a large, special-purpose tube which is capable of generating complete individual
characters, drawing vectors, assembling the characters and vectors. into message
patterns, and positioning the entire message pattern in the proper place on the screen
of the tube. The result viewed by the observer is an orderly arrangement of message
patterns, each message consisting either of a single character or of a group of characters.

All SD messages are rewritten on the face of the CRT at short, regular intervals.
If the basic data has not changed or been superseded, the display is continually repeated
in the same position. If, on the other hand, the information has changed, the display is
corrected. In this way, the console operator is presented with air-situation changes
within an extremely short time after they occur.

17

18

CRT FACEPLATE

\. A

QUEZ
ABR
vM

/

/

R
x
o
AT\

N
-

-

1 v \“
FAD
169
. N

HOI2
20

» P BOX (O
CAA ,{.\J\'
346 a
-z
/ > N
: ML®D
- P R 34NY
L ,\,7 2375
CA
Fox] ATTS
A [Pl

Figure 1-8. Typical Situation Display

’}_—
* A .
‘ L] ” ‘ rléls\(k o /EZ(K)

L

HQI2

&

x

x

LK X W

CHAPTER 2
OPERATION OF THE CENTRAL COMPUTER SYSTEM
GENERAL

This Chapter presents in greater detail some of the concepts and element descrip-
tions mentioned in the previous chapters, including machine language, machine timing,
and the interactions of the memory, arithmetic, program control, instruction control,
magnetic tape and card machine, and selection-control elements.

MACHINE LANGUAGE

The methods by which the circuits of the Central Computer accomplish their
data-processing tasks is entirely compatible with the methods that a human being would
use to perform the same task in binary arithmetic. For this reason, the Central Com-
puter System language (Machine Language) is ' designated as binary, All operations
performed by the Central Computer System, including computer word transfers, are
based upon the two-stage nature of the binary digit, and relate directly to the binary
number system, .

Computer Words

The basic unit of Central Computer System intelligence is the thirty-two bit
computer word, stored primarily in the memory element. Both instructions and data
are stored in the memory element as thirty-two bit computer words. Instructions are
known as instruction words, data as data words. The Central Computer System dis-
tinguishes between instruction and data words only as a function of timing,

Data Words

Due to the dual arithmetic characteristic of “the Central Computer System, a data
word is expressive of two distinct operands, used in an identical manner, on a simul-
taneous basis. These two operands exist in each of the two half-words of a computer
word. Since two different configurations of half-words in a computer word are possible,
a separate discussion of each follows. The discussion includes the relationship of non-
quantative or logical data to data words (See Figure 2-1),

a. SIXTEEN BIT HALF-WORD CONFIGURATION. By dividing a thirty-two bit
computer word into two sixteen bit half-words, each half-word can express a discrete
value ranging from -32,767 to +32,767, The leftmost bit in each half-word represents
the sign of the binary quantity expressed in the remaining 15 bits of the same half-word.
The leftmost bit is called the sign bit; the remaining 15 bits are magnitude bits, Since
there are 15 magnitude bit positions, each capable of containing the two binary digits, it

is evident that there are 215 possible variations in bit. position content, or, a range of

15

from @ through 2 -1, that is, 327671¢, in the magnitudes that they can éxpress. The

Central 'Computer System recognizes the sign bit as constant, that is, a @ (zero) in the
sign bit indicates that the expression is positive, and the quantity expressed in the
magnitude bits are precisely expressed in binary, Whenthe sign bit is 1 (one) the quantity

19

expressed, in the remaining 15 bit positions is not only defined to the Central Computer
System as negative in sign, but also as expressed in the complement form. In the
complement form, the value of each binary digit is reversed, so that all one bits in
the magnitude become zeros, and all @'s in the magnitude become 1’s. For example,
a binary quantity written 069 101 1f1 @11 P1¢ will appear in a half-word as 1 111 010
f1¢ 16¢ 161, In notating binary expressions, the sign bit position of a half-word is
separated from the magnitude bit position by a triangle placed between the first (sign)
and second bits of the expression (for example, @,000 101 101 611 01¢). A computer
word may, of course, contain half-words opposite in sign.

b. FIFTEEN AND SEVENTEEN BIT HALF-WORD CONFIGURATIONS. Division of
a thirty-two bit computer word into a fifteenand a seventeen bit half-word is accomplished
by using the leftmost bit and the rightmost sixteen bits as the right half~word, and the
remaining fifteen bits as the left half-word. The sign bit position of the right half-word
is the leftmost of all right half-word bit positions, and is also the leftmost bit position
of the computer word. In the seventeen bit right half-word, it is possible to express

values ranging from -65,535 through +65,535, since there are 216 possible variations of
bit position content. The fifteen bit left half-word has no sign bit; it bas only 15 magnitude

bits. Thus, a value from @ through 32,767 can be expressed in the left half-word. Dual
arithmetic operations using the left half-word have results that are unsigned.

l¢——e————————LEFT HALF-WORD < RIGHT HALF-WORD —

plislur |L2lusfLa|is|Le|L7|L8fLe Liglui {uiz|us|Lisfuis]rs | RE JR2I RS R4 | RS |R6 |R7 |RB | RO |RIB Ril [R12 |RI3 |RI14 |RIS '

Figure 2-1, Computer Word Layout

¢. LOGICAL CONFIGURATION. A computer word may express logical, rather
than quantitiative, information. Any one, any number, or all of the bits in the computer
word may be set to a binary value as a means of identification rather than quantitization.
The identification is established by the person or program creating the computer word,
and by the program or person interpreting their values into the logical terms they
represent. Thus, if a given bit position in-a word is set to ¢¢1’?, it might indicate the
existence of a condition within a Central Computer System. If the same bit position is
set at @’’, it might indicate the absence of this same condition. The data word is divided
into as many Dbit-position groups as may be required to cope with an equal number of
logical settings.

Instruction Words

Computer words expressive of instructions are similar to a data word having
fifteen- and seventeen-bit left and right half-words, except that the left half-word of an
instruction word designates the operation to be performed, and the right half-word
designates a specific register in the memory element the contents of which are required
'in order to perform the operation. Although variations do exist, the fundamental instruc-
tion-word interpretation is based on the fifteen and seventeen bit configuration. (No
consideration will be given to the variations in instruction word configuration at this

point),

20

MACHINE TIMING

Central Computer System operations are logically consistent, and are effected in a
consistent and orderly fashion by means of a basic timing scheme. Since the Central
Computer System is designed to handle real-time problem solutions, and consequently,
must be as time-saving as possible, the basic time unit used is significant. This unit
is determined by the length of time required for the slowest functioning element the use
of which is essential to Central Computer System operations. The memory element of
the Central Computer System establishes the time base, which is six microseconds
(six millionths of a second). During the execution of a program, memory-element
operation is required for each instruction. Subsequent demands for memory-element
operations as a function of a particular instruction may be one or two in number or may
not exist at all, Each memory-element operation is referred to as a memory cycle. The
memory cycle controls, in part, the timing of the balance of the Central Computer
System’s operations, referred to as machine cycles. Operations of the Central Computer
System fall into two basic categories-~that is, internal operations, and input/ output (I/0)
operations. All information transfers in internal operations are accomplished within
five of the Central Computer System elements, and exclude information transfers between
these five elements and the magnetic-tape and card-machine element, 1/0 operations
are exclusively concerned with information transfers between five of the Central Computer
- System elements and other systems of the SAGE Computer, and/or transfers between
the five elements and the magnetic-tape and card-machine element.

Internal Operation Timitzg

Included in internal operations of the Central Computer System are the acquisition
of instructions and data from the memory element, performance of arithmetic and logical
data-processing operations, and the return of data~processing results to the memory
element. Also included in internal operations are Central Computer Systems operations
involving the issuance of control impulses to other SAGE Computer Systems, and to the
magnetic-tape and card-machine element, and the sensing of circuit conditions within
them. Uninterrupted internal operation takes place with the issuance of control impulses
and sensing of circuit conditions, since no information transfers are made.

Program Time (PT)

Instructions executed during internal operations that required only six microseconds
(one memory cycle) to complete, are accomplished in a program time (PT) cycle.
Within this cycle, the instruction word is brought from the memory element, decoded, and
completely executed. The following cycle is also a PT cycle, and applies to the next
instruction, which is brought from the memory element and executed. A PT cycle is
therefore one in which an instruction word is brought from the memory element in order
to be executed.

Operate Time (OT)

Instructions executed during internal operations that require 12 microseconds’
(2 memory cycles) to complete placement or recovery of a computer word from the
memory element are accomplished in an Operate Time (OT) cycle. The OT cycle is
further defined into an OTA and an OTB cycle. In an OTA cycle the computer word is

21

obtained from the memory element; in an OTB cycle the computer word is placed in
the memory element. The determination of the OTA or OTB cycle is a function of the
instruction obtained from the memory element during the preceding PT cycle.

Those instructions requiring 18 microseconds (3 memory cycles) for execution,
require the use of both an OTA and an OTB cycle. In these instructions, a word is
obtained from the memory element, used (and perhaps changed), and placed back in the
memory element. This OT cycle requires 12 microseconds; the time required to obtain
the instruction itself is 6 microseconds. Immediately following the execution of the last
memory cycle of either a 12- or 18-microsecond instruction, the PT cycle of the next
jnstruction to be executed begins.

Some instructions require a longer time for their execution than a single PT cycle.
In these cases, an instruction’s execution will use an OTA cycle to ensure adequate
time for the completion of the instruction pefore entering the PT cycle of the next
instruction. The word obtained from the memory element during the OTA cycle is held
in the memory-buffer register, where the word willbe destroyed during the next instruc-
tion sequence.

Arithmetic Pause

Instructions, the execution of which involves the accomplishment of some repetitious
process in the arithmetic element of the Central Computer System, generally interrupt
the consecutiveness of memory cycles, and intiate an arithmetic pause. Such a pause
occurs only between memory cycles and lasts as long as necessary for completing the
performance of the repetitious process. When the process is completed, the arithmetic
pause is discontinued and the next PT cycle begins.

1/0 Operation Timing

The Central Computer System operations involved in the transfer of information
to or from the magnetic-tape and card-machine element and/or the other systems of
the SAGE Computer are referred to as 1/0 (Input-Output) operations. These operations
‘are usually accomplished within the Central Computer System in the following sequence:

1. Designation of an address inthe memory element of the first location the contents
of which are involved in the transfer;

2. Designation of a magnetic-tape and card-machine element unit or a unit in one
of the other systems of the SAGE Computer to or from which the information is to be
transferred.

3. Initiation of the transfer of a given number of computer words to or from the
designated unit. :

Since the memory element is far more rapid than most of the 1/0 units, to avoid
delay time in its operation during I/O operation, I/0 transfers are accomplished by
the Central Computer so that internal operations can be continued between transfers
of consecutive words. This permits the time that would otherwise be lost in waiting for
the I/O device to accept or transmit another word to be used for internal operations.

22

Whenever a word in the set of words being transferred can be routed to or from
the memory element, the internal operations are interrupted long enough to make the
transfer. The interruption takes place at the end of a memory cycle, except when an
arithmetic pause is in effect, in which case the transfer is immediate. During an arith~-
metic pause, no interruption is required, since both this internal operation and the
I/O operation can take place simultaneously. If, however, the arithmetic pause should
terminate during a transfer to or from an I/O device, subsequent internal operations
are delayed until the transfer is completed.

The Central Computer System is informed that the 1/0 device is prepared to handle
a word by a break request fromthe I/0 device. On receipt of a break request, the Central
Computer System signals internal operations to cease at the end of the current machine
cycle; and, at the end of the machine cycle, initiates a break cycle. The break cycle
begins immediately when an arithmetic pause is taking place. A break cycle may be
either a break-in cycle, or break-out cycle, depending upon the direction of transfer.

Break-In Cycle

When an I/O device is prepared to transmit one of the set of computer words it
has been instructed to transmit, it sends a break request to the Central Computer
System. The Central System initiates a break-in cycle as soon as internal operations
permit it to do so. The break-in cycle results in the word being placed in a location
within the memory element (memory cycle); the break-in cycle has a duration of six
microseconds.

Break-Qut Cycle

When an I/0 device is prepared to receive one of the set of computer words it has
been instructed to receive, it sends a break request to the Central Computer System.
The Central Computer System initiates a break-out cycle as soon as internal operations
permit it to do so. The break-out cycle results in the word being routed from the
memory element to a register in the storage media of the I/0 device. A memory cycle
is required; this defines the duration of the break-out cycle as six microseconds.

1/0 Pause

The actions preceding and including initiation of an I/0 transfer of information
are part of the internal operations, since the execution of the instructions do not usually
transfer information when they are being executed. However, the instructions cannot be
executed until any I/0 transfer in progress has been terminated. This may cause a delay
in internal operations while awaiting the completion of one I/0 transfer before initiating
another. Such a delay is called an 1/0 pause.

Timing Summary

The basic rate of operation (machine cycle) of the Central Computer System is the
same as the basic rate of operation of its memory element (memory cycle)--six micro-
seconds per cycle. During internal operations, a PT cycle is required to obtain each
instruction from a specific location in the memory element. A given instruction will
require (1) no further machine cycles; (2) an OTA cycle if a computer word must be

23

brought from the memory element, or if additional time is required to complete the
‘instruction; (3) an OTB cycle if a computer word must be placed in the memory element;
(4) both an OTA and an OTB cycle if both types of operations are required, When an
instruction requires repetitious operations to be performed in the arithmetic element,
an arithmetic pause is initiated, The arithmetic pause interrupts the machine cycles
long enough to complete the operations required by the instruction,

1/0 operations occur when an I/O transfer has been initiated and a word can be
transferred between the memory element of the Central Computer System and an 1/0
unit in either some other system of the SAGE Computer, or in the magnetic-tape and
card-machine element of the Central Computer System. Prior to the 1/0 operation,
the designated I/O device sends a break requestto the Central Computer System, indicat-
ing readiness for transfer. Subsequently, between machine cycles involving internal
operations, or during an arithmetic pause, the Central Computer System initiates a break-
in or break-out cycle that lasts six microseconds. A break-in cycle allows a word to
be transmitted by the I/O device and to be stored in the memory element. A break-out
cycle allows a word to leave the memory element and to be stored in the I/0 device.
Initiation of I/O transfers are a part of internal operation. The instructions initiating
I1/0 transfers can also initiate an I/O pause, thereby delaying their execution until
the I/0 transfer in progréss is terminated.

THE MEMORY ELEMENT

The responsibilities of the memory element of the Central Computer System are:

1. To provide a media whereby each of a large number of computer words may be
stored and recovered with equal facility;

2, To provide a means for designating a given register for content-transferral
action;

3. To provide a time-measuring device by means of an accessible register the
contents of which normally reflect continual incrementation;

4, To provide a means by which computer word transfers between the memory-
element and external-storage devices are checked for transmission inaccuracies or are
prepared for subsequent checking.

Components Of The Memory Element

The information upon which the Central Computer System operates, and the
instructions that direct these operations (from the program and instruction control
elements) are stored as computer words in the memory element, The memory element
consists of:

1. Two magnetic core memory units., One unit has a storage capacity of 65,536
computer words. The other unit has a storage capacity of 4,096 computer words, in
addition to a test memory unit where 19 computer words can be stored.

24

2. Three registers, each related to one of the memory units which permit reference
to a given register within a given unit.

3. One register, the contents. of which are accessible, and reflect, due to con-
sistent incrementation, the passage of time,

4. A buffer-type register through which all computer words entering the memory
element for storage, and all computer words being transferred out of the memory element
must pass.

Memory Timing

The speed of the Central Computer System is largely determined by the speed of
operation of the memory element. Successive words can be obtained from core memory
at intervals of six microseconds. Therefore, core memory operates in cycles of six
microseconds. Two types of cycles--read or write--are possible. ’

Read Cycle

During a read cycle, a word is read from core memory and placed into the buffer-
type register (memory buffer register). From the memory buffer register, the word
can be made available to other registers in the SAGE Computer., Within the same read
cycle, the word is written back into the memory-element storage register from which it
came, thus restoring the original contents to that register. Reading from a memory-
element storage register is considered non-destructive reading.

Write Cycle

During a write cycle, a core memory register is cleared, and a word previOusly
placed in the memory-buffer register is written into the cleared core memory register.

Memory Addressing

Every memory register has an address (optional for test memory registers). This
means that each word contained in a memory-element storage register is referred to
by a number relating directly to its location in the memory element. A memory-register
address is always used when a computer word is to be taken out of storage or when a
computer word is sent to that memory register for storage. Since core memory has a
storage capacity of 69,632 computer words, there are a total of 69,632 registers, and an
equal number of different addresses. Since binary expressions do not lend themselves to
clear and concise notation, the octal number system is used for addresses, although
addresses within the computer are expressed in binary. The first register in core
memory has been arbitrarily specified as having address zero. Succeeding registers
have octal addresses of 1, 2, 3, 4, 5,6, 7,10, 11, 12, etc. The last register in core
memory (the 65,536th) has an address of 2¢'7,7778 which, in the computer, is expressed

in binary as 10,000,111,111,111,111, Including the address zero, there are 210),@%8
registers (the next number from 2Q7,7778). Accordingly, 21(5,@%8 is equal to 69,63219’,

exactly the number of registers in core memory.

25

There are sixteen addresses associated with the nineteen test-memory storage
registers. These addresses range in value from 377,76¢8 to 377,7778. Sixteen of the

nineteen registers are contained in a plugboard locatedin and removable from the Duplex
Maintenance Console (Figure 2-2), Each bit position of these registers consists of two
holes on the plugboard. By connecting these two holes with a small conductive device
known as a jackplug, a circuit is established, which defines this bit position’s content
of one to the memory element. An unplugged set of holes defines that bit position’s
contents as zero. There are thirty-two bit positions within each register, each capable
of being set to one or zero, depending on whether the corresponding holes are plugged
or unplugged. '

Each of the test-memory plugboard registers have associated with it four additional
two-hole sets, labelled ‘“A’’, ‘B’’, ¢“L’’, or ‘‘P"’, Only when the associated two-hole set
labelled “P’’ is plugged with a jackplug are the plugged contents of that register addres-
sable by the appropriate test-memory address. Even though a test-memory plugboard
register may have jackplugs in the bit position holes (hubs), the accessable contents
of that register will be zero in all bit positions, unless the associated twohole set
labelled ‘‘P’’ is plugged. Whenall sixteen registers on the plugboard have their associated
««p’-hubs connected by a jackplug, the plugged contents of the first register on the
plugboard would be addressable by the first test memory address, 37'7,76!38, the content

of the second register by the next higher address, etc. Thus, the contents of all sixteen
of these registers are available through designation of the appropriate test-memory
addresses. The only means by which the contents of a test-memory plugboard register
may be altered is through manual alteration of the jackplugged connections on the
plugboard. Any attempt to program a changetothe contents of a register by an instruction
that stores a computer word into a memory-element storage register, and that designates
a test-memory address, results in placement, in the test register, of the word that is
to be stored. '

Figure 2-2. Test Memory Plugboard Installed In Duplex Maintenance Console

26

The test register is a thirty-two bit flip-flop register. Its contents can be obtained
only by addressing a test-memory plugboard register the hubs of which are plugged in
the ‘‘I’’ position only. Any or all of the plugboard registers may be plugged in the ‘L’
position only. Therefore, the test register’s contents may be made accessible through
designation of a number of test-memory addresses. However, when only the ‘“L’’ hubs,
of a given register are plugged, the plugged contents of that register are ignored when
the register is addressed; only the test register’s contents are available at that address.

Two banks of two-position toggle switches are mounted on the Duplex Maintenance
Console. Each bank has 32 switches. One bank of switches is referred to as Test memory
switch register ‘‘A’’; the other is test memory switch register ‘‘B’’, The contents of
either register are established and/or altered by manual action only. The contents
of test-memory switch register ‘“A’’ are made available by means of addressing a test
memory plugboard register. The register must have only its associated ‘‘A’’ hub
plugged. Any bit-position jackplugging in the plugboard register is ignored, since the
associated ‘‘P”’ hub is not jackplugged. Test-memory switch register “B’’ is made
available by means of a test-memory plugboard register plugged in its associated ‘“B’’
hubs only. An attempt to store a computer word into a test-memory plugboard plugged in
the ““A’’ of ¢“‘B’’ hub position only, results in the word being placed in the test register,
even though the associated ‘“L’’ hubs are not plugged.

NOTE: Should a given register be plugged in two or more of
the associated ‘‘A’’, <“B’’, ¢“1’’ or ‘“P”’ hubs, the computer word
obtained as a result of addressing that register is the logical sum
of the contents of the registers designated by the plugging of
these hubs.

A two-~position, control~type toggle switch labelled, in its two positions, Test
Memory ASSIGNED, and Test Memory UNASSIGNED, is located on the Duplex Maintenance
Console. All statements previously made in the description of test memory operation
are true only when this switch is inthe Test Memory UNASSIGNED position. If the switch
is in the Test Memory ASSIGNED position, the following differences exist:

1. Referral to address 377,7608 will effect action as though the first test memory
plugboard register were plugged in the ‘‘A’’ position only,

2. Referral to address 377,761 8 will effect action as though the second test memory
plugboard register were plugged in the ‘“B’’ position only.

3. Referral to address 377,7_'778 will effect action as though the last test memory
plugboard register were plugged in the ‘‘L’’ position only,

All other test-memory plugboard-register plugging in the ‘“A’’, ¢<“B?’, <‘L’’, and
““P’’ hubs effects actions in the same wayas discussed when the Test Memory - ASSIGN-
ED/UNASSIGNED switch is in the UNASSIGNED position. Any attempt to store a computer
word into a tesf-memory storage register other than the test register, results in that
word’s being placed into the test register regardless of the plugging of that register, and
regardless of the position of the Test Memory - ASSIGNED/UNASSIGNED switch on the
Maintenance Console,

27

The addressing scheme may be stated as follows:

Addresses of core-memory registers range from ¢¢¢,¢¢¢8 to 207,7778.
Addresses of test-memory registers range from 37‘7,760)8 to 3'77,'7'778.

The memory-address register relating to each memory unit enables the memory
element to find the location within itself of the particular register the computer-word
contents of which are currently needed, and to effect access to the contents of that
register.

Random Access

The ability of the memory element to refer to the location of any given register
at any time is called random access. This means that any core-memory address can
be designated at random, and the memory element will locate the address directly,
without having to search through all core-memory locations until the associated register
is found. For example, if we call for the information contained in core-memory location
T 8 (the 4,@96th register) the memory element will not search through 4,096 registers

to find the information requested. It will locate the register directly within six micro-
seconds. Random access provides the Central Computer System with the speed of opera-
tion needed for real-time data processing.

The Clock Register

The arithmetic element contains a register, having sixteen bits, that provides a
means of real-time determination. Once every one-thirty-second of a second, this
register’s contents are increased by one. By requesting the contents of this register,
a program can, during its execution, determine precisely the amount of time elapsed
since the previous operation in which the clock register contents were obtained and
stored. The contents of the clock register are, like the contents of any other memory
register, routed through the memory-buffer register,

Arithmetic Element

The arithmetic element (Figure 2-3) consists of one special circuit and three
flip-flop registers that enable it to handle all arithmetic and logical data-processing
operations performed by the Central Computer System and the SAGE Computer. The
three registers are: the A-register, the accumulator, and the B-register. The special
circuit is the adder circuit and is associated with the A-register and the accumulator.

The A-Register

The A-register is a simple flip-flop register that serves primarily as a temporary
storage register for computer words entering the arithmetic element from the memory
element, When so instructed, it will receive the computer-word contents of the memory-
buffer register and retain them untiltheiruse in the arithmetic or logical data-processing
operation in process is required. A second and very important function of the A-register
is to contain, during an arithmetic or logical operation, one of the two operands involved
and to supply this operand as often as is necessary during the operation.

28

The Accumulator

The accumulator register performs the function of containing the second of two
operands during the execution of logical or arithmetical operations, supplying the operand
for use during the operation, and finally, containing in part or in whole, the results
of the operation. The results may be stored ina memory register as a function of
instruction execution, but this type of transfer will not destroy the accumulator’s
contents. The contents of the accumulator remain unaltered until cleared through
the execution of a subsequent instruction that requires an empty accumulator for its
execution, The rightmost sixteen-bit positions of the accumulator (right accumulator)
are logically shared with and constitute a register in the program-control element.

The B-Register

The B-register is an auxiliary register that augments certain arithmetical and
logical operations by either extending the capacity of the accumulator or by serving as
an intermediate storage center for quantities obtained and/or used during the course
of the operation. In those logical operations requiring three operands, the B-register
serves as the storage register for the third operand, the first operand being stored in the
A-register, and the second in the accumulator. :

' The Adder Circuitry

The adder circuitry links the accumulator and the A-register when the contents
of the registers are used jointly in an arithmetical or logical operation, and places
the results of this operation in the accumulator. The B-register in certain arithmetical
and logical operations, when used as an extension of the accumulator, also receives
results of these operations from the adder circuitry.

Word Configuration in the Arithmetic Element

The selection of a half-word configuration to be used with computer-word operands
is exclusively a function of the instruction using the computer words as operands. For
instance, if two computer words, to be arithmetically or logically used as operands, are
present in the arithmetic element, the instruction specifying the operation determines
whether a balanced (sixteen-bit left and right half-word) or an unbalanced (fifteen-bit
left half-word and seventeen-bit right half-word) configuration is to be used in the
following dual-arithmetic operation. The instruction uses the adder circuitry to obtain
the appropriate half-word bit positions from each computer word and to produce results
corresponding to the selected configuration of each half-word. The dual arithmetic
performed in the arithmetic element can be directed to use either computer-word
configuration.

THE PROGRAM CONTROL ELEMENT
The program-control element is responsible for the control of four important

aspects of Central Computer System operation.

29

0¢

Jonduwio) 1edjua) 9y} Ul MO[J UOT}eWIONU] [[BI9A0 °E-C sangig

ey MEMORY
ADDRESS
REGISTER

INTERNAL
MEMORY

\

LEFT AND RIGHT
MEMORY BUFFERS

.]

I A

Ly

|
|
|

LEFT A REG.

RIGHT A REG.

LEFT ADDERS

RIGHT ADDERS

LEFT ACC. REG.

RIGHT ACC. REG.

LEFT B REG.

RIGHT B REG.

-———————-_———.—_—_——.—_——_—l

I ARITHMETIC ELEMENT

10 ELEMENT

L = = == =

PROGRAM _
| COUNTER I I—— e —__l |— —_—— —I
| | - -
I | ADDRESS I OPERATIONS INDEX INTERVAL
REGISTER | REGISTER | | REGISTER l
| 4 | l | l |
INDEX REG. | I
NO. 1 INSTRUCTION REGISTER
| DECODING DECODING v
| L INDEX REG. | | | |
NO. 2 I OPERATE
l TIME PULSE l CIRCUITS I
NDEX RES. I | GENERATOR |
| NO. 4 l I | SENSE l
I I CIRCUITS
Le! comMmaND
INDEX _ REG. — GENERATORS l I I
| NO. 5 | SELECT
I | CIRCUITS I
| | I INSTRUCTION
CONTROL I | SELECTION I
PROGRAM ELEMENT ELEMENT ELEMENT
l____ ___l L'T—___j L L1
COMMANDS TO g
ALL ELEMENTS
CONTROL

)

I0 DEVICES {‘

INSTRUCTIONS & DATA

1. All information (addresses) routed to the memory-address registers of the
.memory element;

2. The counting aspects of arithmetic and logical operations in which a given number
of repetitious operations are involved;

3. The number of computer words transferred between the memory element of the
Central Computer System and the Selection Control Element of the Central Computer
System; '

4. The acceptance-determination ard/or routing of information to the selection~
control element and subsequently to the memory element. To fulfill these responsibilities
the program-control element has one special circuit and twelve registers. The special
circuit is called an index adder. One of the twelve registers is shared in logical function
with the arithmetic element (the sixteen bit right accumulator). The twelve registers
are:

1. The Program Counter

2. The Address Register

3. The Index .Registers (four)
4, The Right Accumulator

5. The Step Counter

6. The I/O Address counter

7. The I/0 Word counter
: Considered with input/output programming

8. The Drum Control Register

9. The I/O Buffer Register.

The Program Counter

The program counter controls the sequence of instruction execution. At the initiation
of an instruction, one of the first actions in the instruction’s executions, is to increase
the contents of the program counter by one. Further changes of the program-counter
register may take place, again, as a result of the actions of the instruction. The contents
of the program counter immediately following the completion of an instruction will
always express the address of the location (register) in the memory element in which
the computer word containing the next instruction is to be found. Most instructions that
change the program-counter content, in addition to the initial increase by one, do so
only if some given condition of the SAGE Computer is present. In fact, these instructions
afford a decision-making capability within the computer programs where their execution
is accomplished. Programs are stored in the memory element, with the first instruction

31

to be executed placed in a given register, the next instruction to be executed in the next
higher memory register, etc. The only exception to this is when an instruction that
changes the program-counter contents other than by adding one to the initial count,
appears in the program. In this case, the next instruction to be executed may or may not
be located in the next higher addressed register, depending on whether the execution of
the decision-making instructions changes the program counter.

When a given instruction has been completed, the memory-address register to which
the current contents of the program counter refer, receives the contents, and subse~
quently makes the computer word, designated . as the next instruction, available for
processing, '

The Address Register

The seventeen-bit right half-word of an instruction word is sometimes concerned
with expressing the address of a register in the memory element the contents of which
are pertinent to that instruction’s execution. At other times, these seventeen bits are
used for different purposes. Regardless of the purpose, these instruction-word bit
positions are routed to the address register at the initiation of an instruction. When
the instruction requires a computer word operand or result to be obtained from or placed
into some register of the memory element, the contents of the address register are
routed to the appropriate memory-address register, initiating the transfer. In a decision-
making instruction, the seventeen-bit right half-word is used to express the address of
the register containing the next instruction to be executed. If a decision-making condition
is present in the SAGE Computer, the right half-word is routed to the program counter.
Otherwise no such transfer is made. The transfer of address-register contents to other
registers within the Central Computer System is described with the appropriate register.

The Index Registers and the Right Accumulator

The four index registers in the program-control element of the Central Computer
System provide on request the value stored within them to be added to the contents of
the address register. An instruction word that addresses one of the four index registers,
adds the contents of the designated index register to its own right half-word. The result
of this addition is placed into the address register, destroying the existing contents (the
instruction right half-word). The addition is performed earlyin the instruction’s execution
so that the sum obtained, rather than the instruction right half-word, is used during the
remaining instruction time. Not all instructions are capable of using index-register
contents in this manner; instructions that do use index registers are indexable; those
that do not are non-indexable., The contents of the index registers are established by
means of specific instructions. In one of these instructions the value at which the index
register is to be set is expressed in the instruction word, along with the address of a
particular index register. One particular decision-making instruction is capable of
reducing a given index register. (This instruction also bases its decision on the amount
expressed within the index register.)

The program-control element can be instructed to use the contents of the right
accumulator as though the accumulator were a standard index register. Thus, the
right accumulator can be spoken of as sharing in logical function with both the program
control and the arithmetic elements. Use of the right accumulator’s contents to increase

32

the address register count is the same in all respects.as an index register. The instrue-
tions that establish values in the standard index registers, however, cannot be used to
establish a value in the right accumulator; this is strictly a function of the arithmetic
element’s operations. The instruction, mentioned previously, that reduces index register
contents cannot be used to change the contents of the right accumulator. Only the content
of the right accumulator may be used within the program-control element operations.

The Index Adder Circuitry

The index-adder circuitry is used in the addition of the index register or right-
accumulator contents with the contents of the address register, reduction of index-
register contents, and the establishment of index-register contents.

The Step Counter

Certain instructions require that a repetitious operation be initiated within the
arithmetic element. The number of times this operation is to be performed is either
specifically designated in the right half-word of the instruction word, or is always auto-
matically the same for a given instruction, and is made available regardless of the con-
text of the instruction word. Ineither case, the step counter is, at the start of the instruc-
tion, made to contain the quantity expressive of the number of repetitions involved. As
the operation is repeated, the step counter is correspondingly reduced by one, until the
step counter indicates that the number of operations performed in adequate. At this
point, the step counter signals the completion of these operations.

THE INSTRUCTION CONTROL ELEMENT

The prime responsibility of the instruction-control element is that of translating
the binary expression found in the fifteen bit left half-word of an instruction word into
appropriate SAGE Computer actions. (The seventeen bit right half~word of the instruction
word is handled by the program-control element.) The instruction-control element
consists of two registers--the operation register and the index interval register; four
decoding matrices, and one special circuit--the command generator circuit. Several
other miscellaneous circuits each contributing to the element’s control functions are
also present in this element.

The Operation Register
The operation register in the instruction-control element is responsible for receiv-
ing those bit positions in the left half of the instruction word that express the following:
1. The class of instructions to which a particular instruction belongs ;

2. The variation within the class which sets apart the instruction from all other
instructions within the same class;

3. The index register the contents of which are to be associated with the execution
of the instruction if such association is valid for the instruction.

On receipt of these bits, the operation register makes its contents available to three of
the four decoding matrices. The functions of the decoding matrices are described
separately.

33

The Index Interval Register

The index-interval register receives those bit positions in the left half of the
instruction word the contents of which may augment the actions caused by execution of
the instruction by designating. equipment or optional actions, or by specifying values
necessary in obtaining all of the computer actions desired. On receipt of these bits, the
index-interval register makes its contents available to one of the four decoding matrices.

Decoding Matrices

The functions of the four decoding matrices of the Instruction Control Element of
the Central Computer System is translating a binary expression into SAGE Computer
actions are described below:

Class Matrix

The class matrix is responsible for decoding the bit configuration of that portion
of the operation-register content indicating the class in which the instruction to be
executed belongs, and for transmitting this decoded informationto the command generator.

Variation Matrix

The variation matrix is responsible for decoding the bit configuration of that portion

of the operation-register content expressive of the variation within an instruction class

“that sets apart the instructions to be executed from the other instructions within the same
class. The decoded information is routed to the command generator.

Index Interval (PERSELBSN) Matrix

The PERSELBSN Matrix can, as a function of the execution of certain instructions,
decode the content of the index-interval register and route the decoded information to the
selection-control element for translation into SAGE Computer actions. Index~interval
register contents not routed to the PERSELBSN matrix for decoding are either not used
or are decoded by other elements of the Central Computer System.

Index (Register) Selection Matrix

The index-selection matrix receives information from those bit positions in the
operation register the contents of which designate an index register for use in the
following operation. The output from this matrix is routed to the command generator.

The Command Generator

The Command Generator, on receipt of information from the class, variation, and
index selection decoding matrices issues timed-control impulses to the various circuits
throughout the Central Computer System. The timed control impulses effect the co-
ordinated functioning of the various circuits in performing the actions required to ac-~
complish the instruction being executed. Certain of these timed control impulses result
from information received from the class decoder matrix. Once these have been deter-
mined, the information from the variation decoder matrix causes the additional timed

34

control impulses necessary to effect computer actions pertinent to the particular
variation of an instruction class that defines the instruction being executed. The infor-
mation from the index selection matrix is, if required by the instruction, used to generate
timed control impulses to use a given index register in the program control element.
When all of the timed impulses have been sent from the command generator, the instruc-
tion’s execution has been accomplished, L

Miscellaneous Circuits

The instruction-control element has various circuits that serve to control the
cycle timing operations of the Central Computer System. These circuits are controlled
by the command generator and include the following:

The PT-OT Flip-Flop. In one stable state; the circuit defines the current (or next)
machine cycle as a program time cycle. In its other stable state, the circuit defines the
current (or next) machine cycle as an operate time cycle.

The A-B Flip-Flop. The A-B flip-flop operates in conjunction with the OT setting
of the PT-OT. flip-flop to further define the operate time as OTA (in one stable state)
or OTB (in the other stable state),

The I/O Interlock Flip-Flop. In one stable state, the 1/0 interlock flip-flop defines
an I/O operation as being in process ; in the other, no I/0 operation is currently being
performed,

35

CHAPTER 3
BASIC PROGRAMMING
INTRODUCTION

As previously stated, a program is a series of instructions which control the
operations of a computer. Each instruction is used to cause some action which is a
part of the overall task we wish to perform. Therefore, we say that an instruction is
the basic building block of a computer program,

An efficient program makes full use of the instructions which are available to
accomplish the task in the shortest possible time and uses the least number of instruc-
tions. In most cases, one criterion, either time or the number of instructions, has to be
chosen over the other, and the program is developed along this line, I time is important,
we try to write a program which uses instructions of short duration but may use quite a
few memory locations for storage. On the other hand, if time is relatively unimportant, -
but only a few restricted locations are available, we must then choose instructions
which do a number of things or will cause the computer program to run through the
same routine more than once. Later, we shall see how two different programs can be
written to perform the same task, one being fast in execution time but the other requiring
less memory space.

From the above discussion, it is apparent that to write a satisfactory program it
is necessary to have a thorough knowledge of the instructions we can use. This includes
execution time, the overall purpose of the instruction, when the instruction may be used,
and the state of the computer after the instruction has been carried out. In addition, we
should know whether the instruction can be indexed and what internal conditions must
be satisfied before it can be executed.

Simultaneous with our considerationofthe AN/FSQ-"7 instruction repertoire will be
a presentation of the coding for these instructions. It will be very important to maintain
a clear distinction between rules and limitations imposed by the operation of the computer
and those imposed by coding conventions.

ADD CLASS INSTRUCTIONS

The ten instructions grouped within this class involve adding the contents of a
specified memory location or register to the contents of the accumulator. Because
subtraction in the Central Computer System is accomplished by the addition of com-
plements, those instructions which involve subtractions are also included in the add
class. All the instructions in this class require 2 PT and an OT cycle for execution. The
indexing control circuits are conditioned during the execution of any add class instruction.
However, not all add class instructions are indexable. Similarly, only five of the ten
instructions can cause ‘‘overflow’’. The add class includes six relatively simple instruc-
tions. At this time, only these six instructions--CAD, ADD, TAD, CSU, SUB, and TSU--
will be described. Although not in the add class, the ‘‘halt’’ instruction, by necessity,
will be included in this discussion.

36

CAD Instruction

The ‘“clear and add’’ (CAD) instruction will clear the accumulators (L/acc, R/acc)
and transfer the contents of the memory location specified by the director portion of
the instruction word into the accumulators. The contents of the specified memory location
and the B registers remain unchanged. The following table is a summary of the affected
registers before and after the execution of the CAD instruction. ,

BEFORE OPERATION : AFTER OPERATION
word in memory 1._.vacg Racc ! L acc ace
!
#.12345 ¢.12345 | 1.23671 g.41211 : g.12345 #.12345
1.54321 1,54321 | 1.77777 177777 |, 1.54321 1.54321
1.77777 §.990@p | anything anything, 1.77777 9.8000d

The CAD instruction is used to enter some quantity (X) into the accumulators.
To generate the sum, S = X + Y, the first step would be to enter ‘X’’ into the accumula-
tors by programming the instruction CAD the memory location containing “X’’,

The CAD instruction obviously cannot generate an overflow. The octal operation

v code for CAD is .01000, and the instruction may be indexed. These three pieces of infor-

mation can be obtained for any Q-7 instruction from the Programmer’s Coding Card.
A copy of this card is appended to this text.

From the above, the instruction CAD 1¢@g will be seen to have the following action:
a. The accumulators will be cleared (set to +8, +§).

b. A copy of the contents of core memory location 1@@@ will be brought into the
accumulators.

c. The B registers and core memory will remain unchanged.
Coding for the CAD instruction

When the instruction CAD is desired, it would be inconvenient to have to write on a
coding sheet the actual binary number which willbe in core when the program is operated:

Left Half Word (LHW) Right Half Word (RHW)
Binary 0. ¢pp 901 000 ggo op B. 980 #P1 ooy pg m
. (Operational
Code for CAD) -
" Octal - g. g L p @ ¢ p. £ 1 6 9 4

Even the ‘‘octal equivalent’” expression is unwieldy, but it deserves consideration.
The first digit in front of the binary point in each half-word is a binary zero. Then there
follows in each half-word five octal digits. It is in this way that we represent the 16
binary bits of each half-word. Bits L1 through L15 inclusive represent the operation-
specifying portion of the instruction. Within these 15 bits, the central 9 actually specify

- the instruction CAD, Its octal code is 160, as the programmers card shows. This value
has been placed into the middle three octal positions of the LHW,

37

The Director of the instruction (bits LS and RS through R15) represent the octal
address 1000.

Binary: ¢i--- - --7. gog odL gow dop 99p

or Py f, | pdp gg1 opd dod dod
or , | 8 5’3 1g ¢8 ¢8 ﬁs
or Octal: fpiepe,

The following'are other sample conversions from augmented 17 bit configuration
to octal: :

CAD 12345 g.91900 ¢.12345
CAD 1647732 #.91000 1.97732
CAD 177777 9.9109 177771
CAD 20¢¢g0 1.01000 p.Apgeg
CAD 207771 1.91009 p.97771
CAD 377717 1.91009 1.777177

(17 bit director portion of the instruction is underlined).

ASSEMBLING AN INSTRUCTION

Though the assembly process will be considered in detail at a later point, the
symbolic coding for each instruction will be stressed from the beginning. Below is shown
the instruction CAD 1¢¢¢8 coded in COSEAL assembly format:

' oP
LOCATION |&|~opg |AUx | RC WORD | ADDRESS |+ yca.

s RN

1819|2021} 222324125 |26]27| 28|29 .30 31} 32| 33134] 35] 3637} 38} 39}40] 41§42143 (44145

clA[D ~ 1p/9'¢9

Notice that the symbolic mnemonic for the ‘‘Clear and Add” instruction, that is CAD,
has been coded in the ‘“Op Code” columns, 25, 26, and 27. The octal address 10@@ has
been put into the address field, columns 36 through 41, right justified.

Throughout our discussion of the Q—"? instructions, we will first show the action

of the instruction, and this will be followed by an explanation of the pertinent coding
rules. . '

38

ADD Instruction

The ADD instruction is similar to the CAD instruction except that it does not
provide for clearing the accumulators before the addition process begins. Thus, the
ADD instruction will generate the sum of the word contained in the specified memory
address and anything that may be in the accumulators. This sum is placed in the ac-
cumulators. The octal code for this instruction is 1@4. It should be noted that the ADD
instruction can cause an overflow if the numbers added together are sufficiently large.
" I this happens, the result in the accumulator is meaningless. Because the arithmetic
elements are dual, an overflow may occur inone accumulator and not the other; however,
overflow in both accumulators may occur as a result of the same ADD instruction. Later
on, we shall see how this condition (overflow) can be dealt with by a computer program.

The arithmetic capacity of the AN/FSQ-7 is limited to those numbers ranging
.between +1; consequently, the execution of the ADD instruction could cause an overflow.
Overflow can occur only when either two positive numbers or two negative numbers are
added. It can never occur, however, asthe result of adding a positive number to a negative
number. Two examples of an overflow condition are given below:

ADD ‘
9.717176 Notice that the addition of two positive
+_0. 2 quantities has generated a sum which is
1.00000 the most negative number the computer
can handle. ‘
ADD
1.9900¢ Notice that the addition of two negative
+ l.gﬂﬁgl numbers (-.77777 and -,77776 has resulted in
) . 1 a positive sum +.960@2).
carry 1
f.00002

Whenever the sum of two quantities is logically greater than +77177, an overflow
is generated, and the result istherefore meaningless. Circuits are built into the computer
which note the fact that an overflow has occurred. Furthermore, the programmer, by
program action, can check for an overflow; and if an overflow occurs, he can include
appropriate program instructions to remedy the situation.

/

Z LOCATION fa C(())FE;E Aux.[RC WORD [ADDRESS [+ oo

17018 19] 20121{ 22} 23{ 24 |25 {26 | 27 28] 29 V30 31{ 32} 3313413503637 38!39 40141142143 144145

i ClAD ‘5

4D|D 6
ADD 7 ‘;
A{DID 1g] |
HIL|T ! !

39

The preceding program will first clear the accumulators (set them to +¢, +#),
then obtain the sum of the contents of memory registers 5, 6, 7 and 1f. (Remember that
these are octal addresses.) Note that another instruction has been added. ~

HLT (Halt) Instruction

The Halt (HLT) instruction causes the computer to stop executing instructions
under program control. However, any operation which is in progress at the time the .
HLT instruction is decoded will be completed first. For example, if we are reading
information into memory from a deck of 15¢ punched cards, all 158 cards will be read
before the computer halts, even though the HLT instruction may have been issued just .
- after the reading operation began. This instruction requires 12 usec to execute and is
designated by an octal code of @@§ (bits L4-L1#). The address portion of the HLT .
instruction is not used; therefore, indexing is not possible. When the computer is halted.
by this instruction, the program counter contains the address of the instruction im-
mediately following, so that restarting the computer will cause this next instruction to be
executed.

Notice that in the coding for the instruction HL.T, we put no address in the ‘‘address’’
field on the coding sheet. If the field is left blank, the COSEAL assembler will auto-
matically insert +@ in the right half word.

TAD Instruction

The “twin and add’’ (TAD) instruction causes the left half portion of the contents
of the specified memory register to be added to both the left and right accumulators.
The right half of the data word is not used at all, Otherwise, the TAD instruction is
similar in execution to the ADD instruction. The following table is a summary of the
affected registers before and after the execution of a TAD instruction:

BEFORE OPERATION AFTER OPERATION

word in memory L acc R acc L acc R acc
111111 1,22222 ¢.90000 6.00080 « 1.11111 1.11111
98004 848825

|
!
1
1
1
)
I
|

9.0ppp1 1.23456 £.89093 4.90924

The octal operation code for the TAD instruction is .011¢9. Since the same value
is added to the contents of both accumulators, overflow may occur in either or both
accumulators, depending on their original contents.

LAD Instruction

The “left add’’ (LAD) instruction causes the left half portion of the contents of
the specified register to be added to the contents of the left accumulator. The right
half of the memory register and the right accumulator are not used, Otherwise, the
LAD instruction is similar in execution to the ADD instruction. The following Table is a
summary of the affected registers before and after the execution of a LAD instruction.

40

BEFORE OPERATION AFTER OPERATION

-— e | - .

'WOrd in memdrv L ace R ace L acc R ace
1.76432 @.41356 £.13124 1.46532 yl 11557 1.46532
g.9de3s 1.42171 1.17631 $.41522 | 1.20466 #.41522

, The octal operation code for the LAD instruction is J12@f. Overflow is possible
in the left accumulator only.

' CSU Instruction

The ‘‘clear and subtract’” (CSU) instruction is used to enter a quantity into the
accumulators in complemented form. This is accomplished in much the same manner
as the CAD instruction. The accumulators are first cleared to positive zero, and then
the complement of the contents of the register specified in the address port1on of the
instruction are transferred to the accumulators. The contents of the memory location
specified and the B registers remain unchanged., The CSU instruction will not cause a
computer overflow. An octal operation code of .ﬂ_l__!igﬂ designates the CSU instruction,
The following table illustrates the conditions of the accumulators prior to and following
the execution of a CSU instruction,

BEFORE OPERATION | AFTER OPERATION

word in memory L ace R ace : L acc R acc
§.12367 1.325¢4| anything anything | 1.6541 #.45273
1.06g08 @177 177777 L7777 9.7 1.9¢p00

SUB Instruction

A ‘‘subtract’”’ (SUB) instruction is used to subtract the contents of the selected
memory register from the accumulators. The accumulators are not cleared. Consequently,
the result which appears in the accumulators will be the difference between the original
contents of the accumulators and the contents of the specified memory location. The
contents of the memory location and the B registers remain unchanged. The octal
operation code to identify the SUB instruction is .g1346, and it should be noted that the
instruction may cause an overflow. The following table summarizes the action of an SUB
instruction:

BEFORE OPERATION : AFTER OPERATION
word in memory L acc R acc ; L ace R acc
|
$.12345 §.76542 §.12345 g.76542 | 1,77777 1.77777
¢.63152 £.32105 #.76543 £.54321 | #1331 #.22214
g.64162 §.76543 #.53214 £.62431 | 1.67165 1.63665

41

TSU Instruction

The ‘‘twin and subtract’” (TSU) instruction is used to subtract the left half portion
of the specified memory register’s contents from both the left and right accumulators.
This instruction is similar in execution to the SUB instruction--the difference, as usual,
appears in the accumulators. The contents of boththe memory location and the B registers
remain unchanged., Overflow, as a result of using the TSU instruction, may appear in
either or both accumulators. The octal operation code that designates a TSU instruction

is g1446.

Other ADD Class Instructions
The remaining add class instructions--ADB, CAM, DIM, and CAC--are more

complex. Consequently, they will be described after you have become proficient in the
-use of the six simpler instructions.

42

CHAPTER 4
THE ASSEMBLY PROCESS
GENERAL

In the preceding chapter we coded the instructions on COSEAL coding sheets
without giving clearcut reasons. In this chapter we will discuss what is done with these
sheets and how an instruction gets from them into the computer.

_ Each line of the coding sheet corresponds to one EAM punched card, columns 1
through 8@. The Q-7 cannot read columns 1 through 16, so on any card to be fed into the
computer, these columns may contain any information desired by the programmer
(e.g., his name). Symbolic coding information is punched by the programmer in columns
17 through 8f. Coding for these columns becomes the primary emphasis in learning
machine language programming.

There exists a utility system for the Q-7 known as COSEAL (COMPASS System
Extensively Altered). This is a system of programs which perform various functions
for programmers which are constantly required. This includes programs for tape
handling, giving quick dumps of core or drums, and for constructing basic tables of
data required by other programs. There are programs to perform massive data reduction,
-and libraries of subroutines to do everyday jobs, subroutines that a programmer can
incorporate into a program of his own.

- The primary program in the COSEAL utility system is the assembler, called
‘‘Translator’’, It is this program which takes symbolic cards (coded by the programmer),
reads them in, decodes them, and translates them into binary instructions. This binary
program is then put out onto binary tapes or cards. These binary cards or tapes can
then be put back into core memory and run. They are the final program as written by
the programmer. This two step operation is called the assembly process. To review:

1, Symbolié cards are read in by ‘“Translator’’, a program in the COSEAL Utility
System., '

2. Symbolic coding is translated to binary instructions by ‘Translator’’,

3. A binary program is put out onto binary tapes or cards by ‘‘Translator’’.

4. The binary program is read back into core memory from tape or cards.

5. The binary program is operated.

CODING

On the 8@ column coding sheet, columns 1 through 16 are not interrogated by
the computer, as stated above. Therefore, we will concern ourselves with columns 17
through 8@, In normal COSEAL assemblies, columns 17 and columns 72 through 88 are

not used. Columns 46 through 71 are used for programmer comments and may contain
anything that the programmer wishes. (It should be noted from the outset that the more

43

comments the programmer uses, the easier will be the subsequent debugging.) Our
primary concern, however, will be columns with 18 through 45.

oP

g - T
18119120 {21] 221230 24|25 |26 1 27] 28] 29] 301 31] 32§ 33|34| 35] 36|37} 38} 39140} 41] 42143 44745

\ | | "~ ~

In the accompanying drawing of a Q-7 coding sheet, you will observe the major
breakdown of columns 18 through 45: ‘ ’

Columns 18 - 23 Symbolic names to be given to a particular location within
a program. These names may be from one to five alpha-
numeric symbols long in columns 18 to 22. The only
restriction on the names to be used is that they must
contain at least one letter.

Examples:

START
DONE
- COUNT
g1A
7736X
END

Columns 24 - 29 These columns delineate the left half word of the memory
location. They will usually contain the mnemonic code
for an instruction in columns 25 - 27, When this is the
case, column 24 would specify an index register, and
columns 28, 29 would give certain other pertinent infor-
mation relevant to the particular instruction specified.

Columns 3@ - 35 Columns 3@ through 45 are often used in their entirety
to specify an ‘“RC word.’”’ These words will be considered
at a later point.

44

Columns 36 - 41

Columns 42 - 45

These columns specify an address. It may be an octal
address; e.g., 1008, 8, 207777, 377777, etc. It might be
a symbolic address which was originally defined elsewhere
in your program in columns 18 - 22, Numeric addresses
are right justified, symbolic are left justified. Although
one need not refer to all addresses he defines, one must
define all addresses to which he refers.

Examples:
ADDRESS

36|37 38539 40541
ARIT
gl1x :

w
-3

0 5
1171713 &

7
6

Certain types of tags are used for naming common types
of entities: '

Item names - LLLL (Letter-lettei'-letter-letter)
Table names - LLLD (Letter-letter-letter-digit)

Air Defense Programs - LLL (Letter-letter -letter)

These columns, known as the ‘‘increment’’ field always
modify the address, symbolic or nunieric, in cols, 36-41.
A plus or minus sign is coded in column 42, and a decimal -
increment, right justified, in columns 43-45. Typical
would be:

+ 2
+304
~999
- 38

Such increments imply that the address in columns 36-41
is not the address actually desired, but rather, the pro-
grammer wants that address plus or minus the incre-
ment in cols. 43-45,

e.g., CAD f1a - 4
SUB START + 55
TSU 177345-9gg

45

If the programmer wanted to add the contents of the tenth
register of table TPY@ to whatever was already in the
accumulators, he would, code

ADD TPYP + 9

(The 9’ is not a mistake; the first register of table
TPY@ is obviously TPY@+@, or, more simply, TPYJ itself,)

°

Other Forms of Addressing

Another useful symbol which ‘‘Translator’’ can recognize is the ‘‘self-reference’”
symbol, a dollar sign in column 36. Without bothering to figure out where an instruction
will eventually be in core, the programmer may wish to refer to an instruction or data
in a core memory register five past where the present instruction is located. This may
be accomplished by coding:

ADD $ + 5

which can be interpreted as, ‘‘add the contents of ‘self’ plus five’’. When this program is
eventually operated, and if the above ADD instruction happened to be at location 1¢f1, for
example, the contents of location 1f@6 (that is, 1§@1 + 5) would be added to whatever was
already in the accumulators. '

The letter ““T”’ in column 41 is interpreted by Translator as a request for the first
register in Test Memory. A positive decimal increment of from 1 to 15 in columns 42
through 45 will address any other Test Memory register,

Examples: T.......isequivalentto. 377760
T+1..... ¢ 2 e e e e .. 377761
T+T7e.0¢.. “ S Y]
T+1p. ... “ P e e e e s 3TTTT2
T+15.... ¢ - ¥

PSEUDO INSTRUCTIONS

The programmer may use certain instructions that appear, on the coding sheet,
similar to a AN/FSQ-7 instruction, but for which there is no equivalent instruction
on the Q-7 Programmer’s Coding Card. Such instructions are known as pseudo instruc-
tions. These instructions are of two types:

1. Generative Pseudo Instruction - This type of pseudo instruction generates a
binary output which will appear, in the register for which it was coded, within the pro-
grammer’s binary output program,

2. Non-Generative Pseudo Instructions - Such instructions generate no binary
output but are, however, recognizable to the Translator Assembler Program.

46

The three non-generative pseudo instructions will be discussed here. Once again,
these are instructions which will yield no binary output but are, however, instructions
to the program Translator, giving certain information to that program--that is, telling
it how to assemble your program.

IDT Instruction

- The first instruction is the Program Identification Instruction, or more simply
IDT. The letters IDT would be coded in columns 25 through 27, inclusive, and a Director
would be coded in columns 36 through 41. This Director can be any combination of
alphanumeric characters including blanks and may consist, indeed, of all numbers. It
is this Director, in columns 36 through 41, which will become the name of the program,
The name is arbitrary, and may be anything meaningful to the programmer. If this is to
be a program used in Air Defense, the IDT should begin with the numeral ¢*5’’ in column
36. Inasmuch as your student programs are not to be a part of the Air Defense program,
this is the one thing which you, as a student programmer, should avoid. Coding a five in
column 36 would make your program compool-dependent. Another way to achieve compool
dependency is coding the letters COMPOL in columns 3@ through 35. Both of these
methods of invoking the Compool should be avoided in your student programs. If your
program requests that the binary output program be punched onto cards rather than be
put onto a binary output tape, the binary cards will contain this IDENT in columns 1
through 6. This would merely be to identify your deck, inasmuch as the Q-7 would not
interrogate these columns when the binary program is read back into the computer., In
short, therefore, you need only think of the IDT card as a ‘‘Program Namer,”’ Its
primary significance in your program will be to tell the ‘“Translator’”’ program that
here is where your card deck begins; here is where assembly beglns. -

LOC Instruction

The next pseudo instruction, likewise non-generative ,isthe LOC pseudo instruction,
This instruction tells the program Translator where in core memory that your program
is to be finally located. LOC is coded in columns 25 through 27, and an octal number is
coded, right justified, in columns 36 through 41. This octal number defines the address
of the first actual binary output constant or instruction. LOC itself yields no binary
output, A program assembled without a LOC card is automatically begun at octal location
3¢@. Unless there are overriding reasons to the contrary, therefore, you, the student
programmer, need not include a LOC card with your program under most situations.

END Instruction

The third pseudo instruction, likewise non-generative, is the END card. The
primary purpose of this pseudo instruction is to tell the program Translator that this
is the end of your deck of cards, and at this point assembly may begin. There is one
other function for the END card, of which you may wish to avail yourself, You may, in
columns 36 through 41, include an octal or symbolic address. This address will be for
the purpose of telling the program Translator where you wish the program to begin.
If you do not specify an address on the END card, program Translator will automatically
assume that you wish to start your program at the first generated binary output constant
or instruction, at the top of the program. There are occasions where the programmer
would like to start his program at some other location, possibly down in the middle of

47

the program. The END card provides the programmer with the means to accomplish this
objective. The symbolic or octal location of the starting place of his program could be
inserted on the END card. .

All programs which the student programmer submits must include an IDT and an
END card, minimally. Without these cards, program Translator has no way of knowing
where your deck begins and ends. The choice of a name for your program is entirely
arbitrary. It is very helpful to include the programmer’s name in full in the comment
field of the IDT card. It would be well for you to follow this practice,

RC WORDS

One of the most useful and common Directors is the ‘“RC Word”’. ‘‘RC’’ means
¢‘Register Containing’’, Suppose that you wanted to increasethe left half of the accumulator
by one. This would require an instruction of the form ADD X, and a register, location
X, with the contents §.¢ggg1, @.@g¢¢@. For the convenience of the programmer, the
Translator will allow an RC Word Director. Instead of some address X, the programmer
£ills in the desired word in columns 3@ through 41, The Translator will reserve a register -
at the end of the program, after the END card, to contain this number. It will supply
the number in the register, and fill in the address of the register in the instruction. The
instruction to add one to the left half of the accumulator would look like:
ADD §¢gp@100@pgg, where the first zeroappears in column 3@, the last zero in column 41,
Note that the machine point is omitted on the card, and that there is no space between
the left and right half of the RC Word. All of the zeros coded above are not really
necessary. The instruction could have been coded as follows: ADD 1 f, with ADD in
columns 25-27, 1 in column 35, and @ in column 41, In the above example, leading zeros
have been omitted, but program Translator will automatically insert them.

ASSEMBLY DLO OUTPUT

In addition to a binary output program, the program Translator will produce a
symbolic listing on tape for the programmer. This tape may be taken from the computer
to an off-line facility located outside the computer room, and printed out on a printer
located there. The student programmer must become familiar with the meaning of this
DLO listing, Certain errors can only be detected by analyzing the binary output which
will be listed on the DLO output. Several sample listings have been appended to this
study guide, and should be studied by the student with care, and in detail. One example
program however, will be considered in detail at this point. A sample coding sheet,
Figure 4-1, has been prepared. This program was then punched on symbolic cards in
columns 17 through 8@ and assembled by program Translator. The DL.O listing appears |
as Figure 4-2, .

Let us give a careful analysis of the program together with its DLO listing. As
you can seée, the first punched card in the program was an IDT. The name ‘‘JOE@1”’
was given to the program. You will see that program Translator adopted the name JOE -
for this program, and inserted it in the heading at the top of the DLO page. The “gl?
in columns 4¢ and 41 was adopted as the MOD, or model, of the program. The next
card in the program was a LOC card. Program Translator was told to start assembling
this program for octal location 1@#@. The next instruction, the Clear and Add, was
indeed assembled and inserted at location 1@@. Note that there is no binary output
generated for the IDT and LOC cards. The next instruction (Clear and Add) shows us the

48

8 -
3 s
[2 w o
| 3|
" 3E D=\
- S|]
m z |6 R B0
s |29 oW
= L5]O B o|Uar]
S [Fla ¥3Z
2ol T TSl i
= 3J
| 7] o Mwo _
BN S
ERES LET
I < L E
(210 | [D
e e AL T
Y Z O30
BEEGEEI T
LI
=L L I T L)
@ I
+ 119 + 4)
TSNS QW —.H
n |1:19eS -« u
8 Bl e
T [N [
a |LBlo]l hn <«
< |3 1 +a
o |5 ®
x = Lad
O I
= S
Q =
x Is 4
» 5
2 = _ N
EmTCDBDDUDT
a3 [clooEDaanE a2
O s - IQUeTieEl=_1|| |w
-1} M
Z [=
S |-
T ~N
< 8 |
(&) > S
QE <

Figure 4-1. Program Illustrating Various Forms of Addressing

49

0¢

1-p 2InS1q Jo SurisT] (0'1@) mdmo pe&e[aq *2~p 9anStd

01A

DT
LocC
CAD
suB
ADD
ADD
Tsu
LAD
HLT
20
END

JOE 01
1000
50000

PROGRAM JOE MOD

0010600
001001
001002
001003
001004
001005
001006
001007

001010
001011

001000
001343
001043
001043
001403
101203
000000
000020

000077
000010

01

050000
001007
001010
001011
001007
177761
000000
000012

000000
177755

coMPOOL 04D 00
JOSEPH Qe PROGRAMMER
COMMENTS

OCTAL RC WORD

DECtMAL RC WORD
SELF-REFERENCE SYMBOL
TEST MEMORY ADDRESS

PAGE

1

0000,01*T00
0000,02*%T01
0001+00%T02
0002+00*T03
0003+00*T04
0004,00%T05
0005400%T06
0006+00*T07
0007+00%T08
0008+ 00*+00
0008,01%T01

first full line of DLO. Note to the left the contents of the symbolic coding sheet, from
columns 18 through 45, have been relisted on the DLO, The next three columns are
fields of six octal numbers each. The first column, whose first entry is 10@@, indicates
the octal address for which that instruction was assembled. Indeed, we had requested
that the program be assembled for location 1@, and program Translator put the first
instruction at that location. The next two columns are the left and right half words,
respectively, which will occupy the indicated core location. In the left half word we see
an octal 1¢@@. This is the octal code, 18, for Clear and Add, inserted in the left half-
word, in bit positions L4-L12. In the right half-word, we see the octal address 50004,
which was the director requested by the programmer. The next field, moving rightward,
on the DLO output, is a reproduction of the comments originally coded by the programmer.
Next comes a series of numbers supplied by program Translator indicating card numbers.
In our work, we may largely ignore these numbers. On the extreme right of the DLO
listing appears error printouts produced by program Translator during the assembly
process. You will note that there is only one entry in this field, that of ‘“Ill Use RC’’.
The meaning of this phrase will be brought out below,

Returning to the Clear and Add instruction, we find the next instruction in line is
Subtract. Here a symbolic address has been used, that of @1A. You will note that g1A
appears farther down in the program, and indeed, during assembly it was determined
that #1A would fall at octal address 1610, When assembling, program Translator inserted
this octal address in the right half-word of the Subtract instruction. During the last
phase of program development (actual program run) the contents of P1A, that is 1010,
will be subtracted from whatever is in the accumulators. The next instruction specifies
an RC Word. Specifically, the programmer has requestedthat at this point in the program,
the contents of a register which contains ‘“77”’ in the left half word and ‘@’ in the right
half-word be added to whatever is already in the accumulators. These are, of course,
octal constants. Inasmuch as these constants are to be added into the accumulators,
the programmer did not really care where they appeared in core. He therefore availed
himself of the RC word capability of program Translator. You will note that program
Translator created such a constant and inserted it at the first available memory location
after the END card. This turned out to be location 111 @)’ A register was created with

those contents and the address of that register inserted as the director of the Add
instruction. Note that 1@11 appears as the right half-word of the Add instruction, in the
binary output. '

The next instruction, Add +8 and -18, illustrates the use of decimal constants,
When a plus or a minus sign is inserted in columns 3¢ or 36, whatever number fills
the remaining five registers of that particular field will be interpreted as a decimal
number. Note the use of 8, and 18, which are certainly not octal numbers. Again, program
Translator has created an RC word at the end of the program, which contains the
requested constants, translated into octal. It is also worth noting that should the same
- RC word be requested twice in one program, Translator will only create one such
register and use it whenever needed. :

The next instruction, the Twin and Subtract, illustrates the use of the self-reference
Symbol. In this case the instruction says ‘‘Twin and Subtract register self plus three’’,

51

Inasmuch as it worked out that the Twin and Subtract instruction occurs at location
1¢@4, a ‘“1¢g7’ has been inserted as the Ddirector of the Twin and Subtract instruction.
(That is, 1¢¢7(8) plus 3(8)') ‘

Moving on, we find the next instruction to be a Left Add. Use has been made of
the Test Memory addressing capability of program Translator. A ¢“T’’ has been inserted
in column 41 and an increment in columns 42 through 45 has been utilized. Since the
programmer has requested address T + 1, program Translator has inserted address
377761,

The next instruction, the Clear and Add, has been used to illustrate a typical
error printout from program Translator. An RC word was requested, but you will note
that none has been created to correspond with the zero and nine. This is because the
nine is obviously a decimalinteger, but without a plus or minus sign preceding it, program
Translator attempts to decode it as an octal number. In so doing, an obvious error
situation exists. Therefore program Translator flags this location as ‘Il Use RC”’.

The next instruction is a Halt instruction and has been assembled as ««@’ in the
left half word. You will note that the programmer inserted nothing in columns 36 through
41, and program Translator therefore automatically inserted a zero. This capability
of automatically assuming zero, should the programmer code nothing, is built into the
assembly program. The next location, tagged @1A, contains a constant inserted in the
left and right half words respectively. Inthe left half-word the programmer has requested
an octal 20, and in the right half-word he has requested a +1§, namely a decimal number.
You will note that program Translator inserted such a constant at that point in the
program performing translation where called upon to convert the decimal 14 to an octal
12,

We next encounter the END card. Note thatthe programmer has inserted a symbolic
address in columns 36 through 45 inclusive. Address @1A -3 has been requested, which
is the address of the Left Add instruction. For some reason the programmer wished for
his program to actually begin operating with the Left Add instruction. Had he not inserted
any address in columns 36 through 45, symbolic or octal, the program would have auto-
matically begun operation, when finally in binary form, with the Clear and Add 5¢6@@
instruction.

It is obvious that the assembled program is little more than nonsense coding. How-
ever, it does illustrate many important principles and capabilities of program Translator.
Throughout your further progress in this study guide, you should make frequent reference
to the example programs, which we have mentioned were appended to this study guide.
Examples of almost all coding situations which are referenced in this block of instruction
will be found in the Appendices. Although specific reference may not be made to all such
programs in the back of this book, nonetheless the student should avail himself of the
opportunity to study sample DLO listings. Coding sheets for these programs have not
been shown; however, the contents of the original coding sheet can be reconstructed
from the DLO listing of columns 18 through 45 and the comment fields in columns 46
through 71, inclusive. '

52

CHAPTER 5
SIMPLE STORE CLASS INSTRUCTIONS
INSTRUCTION DEFINITIONS

In this chapter we will discuss five simple Store Class instructions in the AN/
FSQ-7 repertoire, and go into some further capabilities of program Translator. As
you encounter these instructions you should consult your Programmer’s Coding Card,
S0 as to discover certain pertinent facts listed there. Things to note would be the octal
code for the instruction, its indexability, and whether it can cause overflow. It should
be noted that only one of the instructions that we will discuss in this chapter is capable -
of causing overflow,

FST Instruction

The Full Store instruction takes a copy of the contents of the accumulators and
stores them into the specified memory location, destroying any previous contents of
that memory register. The contents of the accumulators and other arithmetic registers
are unchanged. This is our first instruction offering us the capability of taking results
we have obtained in the accumulators, and storing those results into memory for later
reference. A sample Store Class program is shown in Figure 5-1.

| |op

42143144145

+ 3

- i
18119]2021| 22 (23] 24 {25 |26 27 281290 30] 31132} 33 (34| 35]36(37]38! 39|40

IDT S
CRAD

AD AL
FST | |BET

HLT [| 1
END

Figure 5-1. Simple Store Class Program

You will note that it contains an IDT card and an END card to define the limits
of the program. The first instruction in this program is a Clear and Add § + 3. This
instruction will bring the contents of the Halt instruction into the accumulators, Since
the octal code for Halt is i, and nothing has been coded in the right half-word, there-
fore the net effect of the Clear and Add instruction will be to initially clear the accumula-~
- tors. Next, the contents of location ALPHA have been twinned and added into the accum-
ulators. This will have the effect of taking the left half-word of location ALPHA and
placing it into both the left and right accumulators. Next, the results of this twinning and

53

adding have been stored into location BETA, This program, therefore, has the effect
of storing a copy of the left half word of location ALPHA into both the left and right
half words of location BETA.

Another way of indicating the contents of a given memory or arithmetic register
is to use the following notation:

C(ALPHA).

Indicated by the above notation are the «Contents of Location ALPHA’’. This is a useful
way to refer to the contents of a memory register and/or an arithmetic register, and
will be frequently employed throughout this text.

Left Store Instruction (LST)

The Left Store instruction places a copy of the contents of the left accumulator into
the left half~word of the memory location specified by the instruction director. The
original left half-word of the memory location specified is thereby destroyed. The original
contents of the right half-word of the memory location specified, and all arithmetic
registers, are unchanged. -

Right Store Instruction (RST)

The action of the Right Store Instruction is similar to that of the Left Store. A
copy of the contents of the right acéumulator is stored into the right half-word of the
specified memory location. The previous contents of the right half-word of the specified
~ memory location are thereby destroyed. The original contents of the left half-word
of the specified memory location, and the contents of both accumulators, are left un-
changed.

Both the Left Store and Right Store Instructions, similar in action, enable us to
have greater control over the data we store in memory. They perform actions similar
to the Full Store Instruction, but enable us to gain control over half-words.

Store Zeros Instruction

The STZ (Store Zeros) Instruction sets the memory location specified by the
instruction director to Positive Zero. Both left and right half-words will be fully cleared.
Referring to your Programmer’s Card, you will note that this instruction is one of the
¢¢jllegal’’ instructions. Further explanation of the illegal instruction concept will be made
at a later point in this volume, so that at this point you may consider such instructions
to be normally available and entirely legal within Q-7 programming. The Store Zeros
Instruction enables the programmer to clear out selected memory locations prior to
using such locations for the storage of data. '

Add One Right Instruction
The AOR (Add One Right) instruction enables the programmer to increment the

contents of the right half-word of a memory location by one. Specifically, the instruction
brings a copy of the contents of the right half-word of the specified memory location

54

into the right accumulator, erasing any prior contents of the RHW of that register. ‘‘One”’
is then added to the right accumulator. The results of this addition are then stored back
into the right half-word of the specified memory location. The programmer should view
this instruction in its primary purpose. This is to add one to the right half-word of the
specified memory location. However, he should not lose sight of the fact that since the
addition is accomplished in the right accumulator, the previous contents of the right
accumulator will be destroyed, It is this effect, which in hurried programming is often
forgotten, which causes endless problems in debugging. Might a word to the wise be
sufficient?

The AOR Instruction finds frequent use in two primary areas. The first is keepiing
track of the count of certain characteristics of data. The following program offers an
example of such a use: _ :

STZ CNTR
“aor owtR
"aorCNIR
- SUTSERRRREER

Early in the program location CNTR (counter) is cleared with an STZ instruction.
This will initialize our counter. Later on in the program, after certain characteristics
of our data have been ascertained, we determined that a certain piece of data has indeed
the characteristic for which we have been searching. We wish to add one to the counter
to note this fact. The Add One Right instruction is employed at this point. If we later
encounter another piece of data with the desired characteristic, we again will add one
to the counter. At the conclusion of the program, the counter will contain the numerical
count of the number of pieces of data which contain the desired characteristic. It is
notable that the Halt instruction itself has been used as the counter. This use of the Halt
instruction is made possible for two reasons. Firstly, the Add One Right instruction
does not affect the left half-word of the specified memory location. Therefore, the
instruction operation code in L1 through L15 of the Halt instruction will not be changed
by adding one right to the right half-word of the halt instruction. Secondly, an HL.T
instruction does not need its right half-word. When the computer detects that Left 1
through Left 15 contains zeros, it knows, without any reference to the right half-word,
that it should halt. Therefore, the right half-word may be used, at the discretion of the
programmer, for any purposes he might wish.

Another use of the Add One Right instruction, commonly found in operational
programming, is instruction modification. Since such a usage will require the branch
class of instructions, we will defer illustration of this aspect of the Add One Right
instruction until a later chapter,

PRE-STORING OF CONSTANTS
. Throughout your programming, it will be necessary to employ the use of constants.
Such - constants may be employed as RC Words, as shown in the preceding chapter,

. or they may be found directly in the main body of your program. We will here discuss
/ three types of constants, and the ways they may be specified in the body of your program.

55

Octal Constants

Columns 24 through 29 inclusive and columns 36 through 41 inclusive are used to
specify the octal contents of the left and right half-words, respectively, of the memory
location within your program where the octal constant will fall, For example, the sign
bit would appear in column 24, be it one or zero, and the remaining five octal digits
would be specified in columns 25 through 29 inclusive. A similar use of columns 36
through 41 would be employed. Location #1A in Figure 4-1, provides us an example of
such an octal constant in the left half-word. We see that an octal 2¢ was requested,
and in Figure 4-2 we see that program Translator indeed inserted such an octal constant
in the specified memory location. '

Decimal Constants

Decimal constants may be inserted in your program in one of two forms, both
integer and fractional.)

Interger Decimal Constants, Columns 24 through 29 and 36 through 41 may again
be employed for the storing of decimal constants. An example would be as follows:
+2¢/48. The plus sign would be encoded in column 24 and the 2048 would be coded, right
justified, in columns 25 through 29. The plus sign indicates to program Translator that
this is indeed a decimal constant, rather thanoctal. A minus sign could be used to indicate
the same. You must remember, therefore, that to indicate decimal constants a plus
or minus sign is necessary. This will be true of decimal fractional constants as well.
The plus or minus sign is program Translator’s only way of knowing that this constant
is not to be octal,

Decimal Fractional Constant. These constantsare verysimilar in form to decimal
integral constants. The only difference is that immediately following the plus or minus
sign, a decimal point must be coded. This would be in columns 25 or 37. Program
Translator will automatically convert the four digit decimal fractional constant which
follows into its appropriate binary form.

The three types of constants describedabove may be intermixed as the programmer
likes. The left half~word of a given memory location could contain an octal constant,
while the right half contains a decimal fractional constant. It should further be noted
that the same types of constants may be used to specify RC Words. Therefore, although
all above references were to columns 24 through 29 and 36 through 41, the same type of
coding could be used in the six columns-from 3¢ through 35 inclusive, It is also worth
noting that these constants must never be greater than octal 177777. Were you to request
a constant in octal greater than this number, or were your decimal constant to convert
to a number larger than that, it would not fit in the half-word provided. Such overflow -
would create an error condition within the assembly process.

Exchange Instruction (ECH) code ,03500

The ECH instruction exchanges the contents of the specified memory location with
the contents of the accumulators.

56

CHAPTER 6
BRANCH CLASS INSTRUCTIONS
INTRODUCTION

Thus far in our programming we have been dealing with programs that are known
as ‘strictly straight-line’”’. That is, all of our programs have executed instructions
from consecutively higher numbered locations in memory. We have had no facility
for skipping instructions or branching back to prior ones. The Branch Class of instruc-
tions will offer us this capability, and thereby greatly expand the class of programming
problems with which we may deal.

BRANCH INSTRUCTIONS

In this chapter we will explore five of the simpler Branch Class instructions,
In the most general sense, they are divided into two types: conditional and unconditional.
An unconditional branch instruction will always alter the path of program flow. A
conditional branch instruction, on the other hand, may or may not alter the path of
program flow, depending upon conditions it finds within the computer. It may make its
decision to branch or not to branchonthe basis of the contents of certain index registers,
or it may choose the condition of the data in the accumulators to be the factor which
will determine whether or not it will branch,

Unconditional BPX Instruction

The Unconditional BPX instruction will always branch to the location specified
in its 17-bit director, that is, LS and RS through R15. On your coding sheets, the 17-bit
director may be specified in columns 36 through 41, in either a decimal or octal form,
or as a symbolic location tag. If it is coded as a symbolic location tag, it must of course
be coded in columns 36 through 4f, in the same relative position as it appears in the
five columns 18 through 22,

BFZ Instruction

The BFZ (Branch Full Zero) instruction will branch to the location specified
by its director if, and only if, both accumulators contain zero. This may be any form
of zero, i.e., the left accumulator may have negative zero and the right accumulator
positive zero, or both accumulators contain a negative zero, et cetera. As you can see,
the BFZ instruction makes its decision as to whether or not to branch on the basis of
the data which is currently in the accumulators. We may there alter the course of our
program flow depending on the conditions we find in the data tables.

BFM Instruction

The BFM (Branch Full Minus) instruction will branch to the location specified
by its director if, and only if, both accumulators contain a negative number.

BLM Instruction
The BLM (Branch Left Minus) instruction branches if the left accumulator contains

a negative number.

57

BRM Instruction

The BRM (Branch Right Minus) instruction will branch if, and only if, the right
accumulator contains a negative number. It is obviously similar in function and purpose
to the Branch Left Minus instruction,

The above five Branch instructions offer us the facility to alter the course of
program flow depending on data. In Figure 6-1, we see illustrated the principle of data
dependency in our program. Program ‘LARGER’’ compares the algebraic quantities
stored in the right half-words of location 22B and location 33B. The program is designed
to find the larger number and store it in the right half-word in location 44B.

LOCATION | C%PDE aux[RC WORD [ADDRESS [+ \cq
18]19]20]21) 2223424 23'26127 28129 \30 31| 32] 33]34{ 3s)36 |37 38'}39 40'541 42143 4-4§4S
IDT] , \.H‘Rg R
ciAp eeB | -
Su8 | 338 | 3
= S
D 2e8 || |
RIST HYyB | |
HIL !
CRD 338
FIST 448
HLT
[END

Figure 6-1. Simple Branching Program

Let us analyze this program insome detail, The first instruction brings-the contents
of location 22B into the accumulators, having first cleared this register. Next, the con-
tents of location 33B are subtracted from the previous contents of the accumulators,
Thus, in the accumulators we have the difference of the contents of the two locations in
question. If the content of 33B is the larger, we will branch to location SELF+4~-that is,
we will branch to the Clear and Add instruction four steps beyond. This would be called
a ‘‘successful branch’’, If the content of 22B is the larger, the subtraction will leave
a positive number in the accumulators. We will therefore not find a negative number in
the right accumulator, and we will therefore not branch to the specified location. We
will indeed ¢‘fall through’’ the branch instruction. When we fall through, the accumulators
will be cleared, a fresh copy of the contents of 22B will be brought in, and this value
will be stored into location 44B, The program will then halt. If we branch, the accumula-
tors would be cleared, the contents of 33B would be brought in and stored in location
44B. Thus, it is obvious that we are not necessarily-sure, when our program is operated,
where we will halt. It may be at either one of the two halts that are located within the
program. The data will determine the course of program flow,

58

CLOSED SUBROUTINES

If in a program there are several branches to location @1A, it is not necessarily
certain when the program arrives at that location and how it got there. If the program
must take alternative actions at a point after @1A, depending on the route the program
took to get to ¢1A, it will be necessary at that location to determine from whence the
program came. After each successful branch in the AN/ FSQ-7, the address of the
instruction immediately following the branch instruction will be left in the right A
register. That is, had the branch not occurred, the program would have moved on in
a straight line fashion to the next consecutively higher numbered address. It is this
address which will be left in the right A register. More particularly, the program
counter always contains the address of the instruction which immediately follows the
one currently being executed. For example, if there is a Clear and Add instruction
stored at location 3@l currently being executed, the program counter will contain
address 3@2 during the execution of that Clear and Add. Therefore, during the operation
of a branch class instruction located at address 6@3, for example, the program counter
contains octal 6@4. If the branch occurs to another location in core, that address, i.e.,
604, will be put into the right A register, The new address to which we will branch will
then be put into the program counter. If we ‘“fall through’’ a branch class instruction,
the right A register is not affected. We may therefore say that if indeed we do branch,
the address of the instruction which would have been executed had we not branched,
will be left in the right A register.

If in the preceding mentioned example, the case of a successful branch to location
@1A, we need to determine when we arrive there, where we have come from, we can
interrogate the right A register. Access tothe right A register can be obtained by using
the STA instruction. -

STA Instruction

The STA (Store A) instruction stores the contents of the right A register into the
right half-word of the specified memory location. The previous contents of the right
half-word of the specified location are erased, and the left half-word remains unchanged.
Therefore, at 1A we could have an STA instruction if we wished to determine where
we came from. The address of the instruction which would have been executed had we
not branched will have been left in the right A register. The STA instruction can store
this address into memory for later reference. One cannot wait until a later point in the
program to exercise the STA instruction, for almost all instructions in the Q-7 reper-
‘toire destroy the preceding contents of the right A register. It is therefore imperative
to save the contents of this register as soon as information is placed there, i.e., im-
mediately after a branch,

Figure 6-2 illustrates the typical usage of an STA instruction, which provides
us with the means to perform closed subroutines outside the main body of our program.
Four instructions are shown in the body of the main program - two branches and two
instructions from the Add class. Also shown are the first and last instructions of a
closed subroutine located underneath the main body of the program, Let us analyze
the operation of the illustrated portions of this program in some detail.

The first instruction shown in the program is a BRM. If the BRM is successful,
it will branch to location SBR, the first location in our closed subroutine. If the branch

59

09

WeISoad & Ul SUNNOJIYNS Pasold ® JO Juawade[d Jo ordwrexd °Z-9 2an31 g

LOCATION |a C%'BE Aux.| RC WORD |ADDRESS [+ ycq COMMENTS
181192021 2212342425 26;27 28129 -30 31328 3313413503637 38?39 401 4134214314445 46{47 48 49?50 ;SIESZ 53; 54555 56 37 58i 59{60}61]62

'é&p" SBR | "[PlORTION O[F

CRD olole g f MARIN PROGRRM

Ld * L * * i 5)

BlPlX SR | RNOT HER PRART OF

slu/® Qe | mntm’yaoaanﬁf

NNNNND T ARANER
SBR SR EX|IT |CLOSED SUBRIOVTIINE [E

ARNANE ng} OF

LR SUBROVTINE | | [|
X\ 8P C/U0/SED _SuBRONVTINE EXIT

is successful, the addiress of the CAD instruction will be left in the right A register.
Immediately upon our arrival at SBR, that address is stored out of the right A register
to the right half-word of location EXIT. Next follow several instructions which would
constitute the body of the closed subroutine, At location EXIT, there is a BPX, apparently
to nowhere. Recall, however, that an address has been put into the director portion of
the BPX instruction. Specifically, the address of the CAD instruction was put into the
right half-word of the BPX. Therefore, when we arrive at the branch, we will uncon-
ditionally go back to the CAD instruction. The program will then proceed down to the

BPX to SBR. Again we go to the closed subroutine, this time unconditionally. The -

address of the SUB instruction will be left in the right A register. Immediately upon
our arrival at location SBR, this address will be stored into the right half-word of
location SBR, this address will be stored into the right half-word of location EXIT,
erasing any previous addresses stored there. The subroutine will then be executed and
we will finally arrive at location EXIT, At that point we will be BPX to the SUB instruc-
tion, for the BPX instruction now has the address of the SUB instruction as its director.
Thus we can see that the closed subroutine linkages shown above offer a method for con-
tinual branches down to the subroutine. Every time we will be transferred back to the
instruction immediately following the branch instruction which took us to that routine.
It is this method of operation which classifies the routine shown as a ‘‘closed subroutine’’.
Although the above example may at first appear to be circuitous, if you will pay careful
attention to the path of program flow, the uses and methods employed in constructing a
closed subroutine will become apparent. ‘

From the above, we can deduce that-all that is necessary to construct a closed
subroutine is to write a short program which will accomplish the intended purpose,
and then to surround that routine with anSTA and a BPX instruction. The STA instruction
will be the first instruction within the closed subroutine and its director will be the
address of the BPX instruction. Closed subroutines offer us an example of the principle
of ‘“‘Instruction Modification’’, When the program is initially assembled, the BPX does
not have a director. Inasmuch as it is customarily left blank on a coding sheet, program
Translator will insert a director of @. It is obvious that we do not actually wish to branch
to location zero when our program is operateéd. The program itself will insert a director
into the right half-word of the BPX instruction when we finally utilize the closed sub-
routine. Indeed, the STA instruction will place this director into the right half-word
of the BPX. It can be said that the STA instruction, therefore, performs ‘‘instruction
modification’’ upon the BPX instruction.

Figure 6-3 illustrates the concept of a closed subroutine, further capabilities of
program Translator, and the instruction modification capabilities of the Add One Right
instruction. It is obvious, therefore, that it deserves your careful attention. The STA
instruction at location CLEAR, and the BPX instruction at location EXIT, are the two
instructions which make this program a closed subroutine. Between these instruction,
is a list of instructions designed to accomplish the task of clearing Little Memory.
Since this is a closed subroutine, an IDT and END card have not been shown, inasmuch
as this routine would be appended to a larger program. Whenever the larger program
wished - to clear Little Memory, it could branch to location CLEAR. This subroutine
would accomplish that job, and then return control to the location immediately following
the branch instruction which took the main program down to location CLEAR,

61

¢9

LOCATION |a C%;E AUX| RC WORD |ADDRESS |+ . ' COMMENTS
181192021} 22123124235 26;27 28129 ‘30 31] 32| 33134 35 36]37 38139 40141142143 (4445 46¥s47{48 49?50?51 SZ! 53! 54;255 56 57{58 59160} 61]62 63r64 63
CLUERR | [STR ﬂﬂﬂf, STORE RETURN RDDE%ES
STZ 200009 CLERR FIRST LIOCR Q%N
RAOR| - $ =] T 4/moDITEY [CLIR Fog%Bi EX
U8 ol 7777 I IARE W€ FINISRE
R T IcERR [*[| 4] | INo J
cAb | | STE [2giee s HON SEREEPT
F ICUERR ¥ B [l Bl
EXT arPX | 111 ETIURN [Tol MAIN [PRO&GRRA

AxowaW STNI'T JIID 0} aunnd.:qns pesor) °g-9 aanSrd

Analyzing the closed subroutine itself, we see that the first instruction clears location
200@@@, the first location in Little Memory. The next instruction adds ““1’’ to the right
half-word of the Store Zeros Instruction itself. This means that the instruction at loca-
tion CLEAR+1 is no longer an STZ 2@#@g§ instruction. Rather, it is now an STZ 20@@gg1
instruction. If the subroutine branches back to location CLEAR+1 , the second location
in Little Memory will now be cleared. It must also be remembered that the Add One
Right instruction leaves the new right half-word of location CLEAR+1 in the accumula-
tors. You will recall that the addition performed during the Add One Right instruction
is performed in the accumulators, Therefore, the new address will be left in the right
accumulators. More specifically, the right half-word of location CLEAR+1 will be left
there. Now, location CLEAR+1 contained the address 2@@@@@ initially. This would consist
of a one in Left Sign and all zeros in the right half-word. The one in Left Sign will
remain in memory undisturbed, and will not be brought into the accumulators. There-
fore, at the conclusion of the AOR instruction, a one will be left in the right accumulator.
It is this result left in the right accumulator, which the program will use to determine
how many times it should loop, soasto consecutively clear increasingly higher numbered
locations in Little Memory.

Immediately following the AOR instruction is a Subtract instruction. Specifically,
it says that the program is to subtract a register containing a zero in the left half-word
and octal 7777 in the right half-word. This is the highest numbered address in Little
Memory, with the one in Left Sign deleted. It is this subtraction which will determine
how many times the program is toloop. Since there was a ‘‘1”’ left in the right accumula-~-
tor at the conclusion of the AOR instruction, when we subtract an octal 77717, we will
obtain a negative result. The next instruction says that if the right accumulator is negative,
as we just determined it will be, we are to branch to location CLEAR+1, the STZ
instruction, However, the STZ instruction now contains a director of 20@@@1. Thus the
second location in Little Memory will now be cleared. Again, we Add One Right to location
CLEAR+1 thereby leaving an instruction in that location of STZ 26@@2. When we again
subtract octal 7777 from the 2 which will be left in the right accumulator, we will come
up with a negative result, We will therefore again branch to location CLEAR+1, and now
clear the third location in Little Memory.

It is apparent that we will continue to loop until we have cleared all of the locations
in Little Memory. Each time we subtract an octal 7777 from the results of the latest
AOR instruction, we will come up with a negative result, and we will again loop back to
the newly incremented STZ instruction. When we have cleared the last location in Little
Memory, we will have in location CLEAR+l an STZ 2@7777 instruction. We will then
add one right to this instruction, and leave an ocfal 1§@@@ in the right accumulator.
When we subtract octal 7777 from this number we will now come up with a positive
result. We will fall through the Branch Right Minus instruction and thereby come out
of our cycling loop. At this point, the program requests that the accumulators be cleared
and a register which contains aninstruction STZ 200@@¢ be brought into the accumulators.
We note here a new capability of program Translator, specifically that RC Words may’
be of the form of the instructions. You will note that the STZ is coded in columns 31
through 33. Whenever an instruction is coded in columns Sﬂ%through 35, the operational
code and all auxiliary information is coded within those six columns in the same relative

-positions as it would be coded in columns 24 through 29. We have now brought a fresh,
clean copy of the STZ 2@f@g@ instruction into the accumulators. This fresh copy is now

63

stored into location CLEAR+l. The Add One Right instruction has continuously altered
the director of the STZ instruction. Therefore, we no longer have a fresh version of
this instruction at location CLEAR+l. Should this subroutine be used again, it would
result in immediate error because the instructions are not now as they appear on your
coding sheet. The closed subroutine must modify itself so that the next time it is used
it will again appear as it does now in Figure 6-3. This is the reason for the two instruc-
tions at locations EXIT-1 and -2, which are noted as ‘‘housekeeping’’ instructions in the
comments field.

While it might be said that Figure 6-3 was used to illustrate too many things at
once, a careful perusal of this program will be invaluable to you.

SUDOR AND WECO SUBROUTINE LIBRARIES

There are two tapes of subroutine libraries designed for use with the COSEAL
program Translator. These tapes both contain an index followed by many closed sub-
routines. The subroutines are in unassembled, ‘‘prestored’’, format, They have been
designed to do most of the ‘‘busywork’’ programming that is commonly encountered.
There are subroutines to handle tapes (e.g., rewinding, setting prepared, positioning),
save important arithmetic registers and restore same prior to the operation of other
subroutines, etc. Many of the subroutines on the SUDOR tape are particularly designed
to do much of the work needed in SAGE-oriented programming: determining distances
from sector-center, calculating stereographic projections within the sector’s geographic
bounds, etc. ‘

The WECO (Western Electric Company) Tape contains all of the routines on the
SUDOR tape plus many others that accomplish general mathematical functions: table
averaging and median computation, 3@-bit dual precision arithmetic, simulated floating~-
point arithmetic, pseudo-random number generation, etc. One can call these subroutines
using calling sequences defined in the COSEAL manual for the SUDOR tape and the WECO
library manual for their tape.

One codes for these subroutines by using the pseudo instruction SBR in columns
25 through 27 and the name of the subroutine left- justified in columns 36 and following.
Upon encountering an SBR (subroutine) instruction, COSEAL will generate an uncondi-
tional BPX at that point in the program to the location of the subroutine. Translator
will search the subroutine library tape, finding the subroutine requested and any other
subsidiary routines needed by it, and place these subroutines at the end of your program
just before the end card. It is this location which will be used as the director of the BPX
instruction which is inserted in your program at the location of the SBR pseudo instruc-
tion. All of the subroutines on the library tape have been written as closed subroutines
with a STAA and a BPX at the end, and the programmer may use them as such,

17-BIT OPTION

Suppose you as the programmer were writing a program to be located in Little
Memory. If this program were to have subroutines attached, the addresses in the
main program to which the subroutines should branch back would require 17 bits.
All address of 200@@g or greater require that many bits. The right A register is actually

64

a 17-bit register. Therefore, the return address would be in the right A register in its
entirety. However, an STA instruction would not save all 17 bits. Only the 16 bits of the
right half-word would be stored into the specified memory location. It is obvious, that
the 17th bit must be saved., The logical place for this would be Left Sign of the specified
memory location. It is for this reason that ‘“17-bit option’’ has been built into the Q-17.
Several instructions offer this 17-bit option. One of these is the STA instruction. When
you wish to use the 17-bit option of a particular instruction, you request this option by
coding an ‘“A’’ in column 28 beside the Op Code.

STAA Instruction

The STAA instruction performs essentiallythe same functionas the STA instruction.
It stores the 17 bits in the right A register into Left Sign and Right Sign through Right 15
of the specified memory location. In almost all programming applications where the STA
instruction is used, the extra A isusuallyadded in column 28, thus invoking 17-bit option,
When program Translator encounteres a call for 17-bit option, it will adjust the octal
code of the binary output program accordingly. This is accomplished by adding a one
in Left 12 of the specified instruction. A one in Left 12 of an instruction converts to an
octal ten when viewed in the entire left half-word. It is for this reason that many docu-
ments relating ‘to the Q-7 often refer to 17-bit option as, for example, STA1#. In all
symbolic coding using COSEAL’s Translator, however, an A in column 28 will suffice.
With the 17-bit option, we see that it is now possible to save all 17 bits of any memory
address. It will be for the purposes of Address Modification, that 17-bit option is usually
used. Of the instructions we have encountered so far, four others have a possibility
for 17-Dbit option. '

AORA Instruction

The Add One Right A instruction is somewhat different in its operation from the
ordinary AOR., When executed, the following actions are taken:

1. Both accumulators are cleared,

2. The 17-bit director of the specified memory location is brought into the accumula~-
tors. That is, specifically, Left Sign and Right Sign through Right 15. Bits L1 through L15
are not brought into the accumulator.

3. ‘“One’’ is added tothe right accumulator. Should overflow in the right accumulator
occur, an end-around carry will not be generated. Rather, the carry will go into Left
Sign and end-around carry out of Left Sign will be carried through Right 15, We thus see
that we have created a 17-bit adder in the accumulators, and the Q-7 is wired for this
possibility.

4, The 17-bit director in the accumulators is stored into the specified memory
location in Left Sign and Right Sign through Right 15. Left 1 through Left 15 of the
specified memory location are undisturbed throughout the operation of the AORA instruc-
tion.

It is important to note thatthe Add One Right A instruction leaves both accumulators
changed from their preceding contents. This is a fact often times easy to overlook in

65

actual programming. The AORA instruction should be used whenever the programmer
is manipulating addresses which either are already in the Little Memory or Test
Memory range, or through additive processes are likely to get into those areas.

RSTA Instruction

The RSTA instruction stores Left Sign and Right Sign through Right 15, from the
accumulators, into the corresponding bits of the specified memory location. Bits L1
through L15 of the specified memory location remain unchanged, and the accumulators
are undisturbed. The RSTA instruction enables us to store an address into the director
portion of an instruction. The address may range from @ to 377777,

ADDA Instruction

The ADDA instruction enables us toaddiwo addresses together in the accumulators,
notwithstanding that they may be 17-bit addresses. Bits Left Sign and Right Sign through
Right 15 of the specified memory location are added to the corresponding bits in the
accumulator with a 17-bit addition, and a 15-bit addition occurs between Left 1 and Left
15 of the specified memory location and the corresponding accumulator bits. The specified
memory location is left unchanged, and the results of the addition are left in the ac-
cumulators., We thus have a 17-bit and a 15-bit adder, rather than the normal configura-
tion of two 16-bit adders in the accumulators. Should a carry occur out of Right Sign
it will be added into Left Sign. Should end-around carry occur out of Left Sign, it will
be added into Right 15. End-carry out of L1 in the left addition will be lost. It should
be apparent that the results of the additionin Left 1 through Left 15 are therefore invalid.
This is no impediment, however, because we are usually interested in the two 17-bit
- addresses which are being added together, and not Bits Left 1 through Left 15.

SUBA Instruction

_The SUBA instruction performs exactly the same job as the ADDA instruction, with
the exception that a subtraction is performed rather than an addition. The contents of the
memory location are subtracted from the contents of the accumulators, with a 17-bit

- and a 15-bit subtraction occurring.

As we have seen, the above five instructions offer us the capability for a full
handling of 17-bit addresses within the Q-7. We will, in fact, discover other instructions
which enable us to handle these 17-bit addresses. Though these instructions may at
first appear unwieldy, a careful study of them on the part of the student programmer
will show them to be essentially simple extensions of the basic instructions from which
they have been constructed.

66

CHAPTER 7
INDEXING AND TABLE CONSTRUCTION
INDEX REGISTERS

The Q-7 Computer contains four physical Index Registers numbered 1, 2, 4, and
5. These are 17-bit flip-flop registers, consisting of one control bit and sixteen magnitude
bits. The usual use of these index registers is in the modification of addressing with
the indexable instructions, noted by an asterisk on the AN/FSQ-"7 Programmer’s Card.
Figure 7-1 illustrates the use of Index Register 1 with the Clear and Add instruction,
which is indexable. The instruction basically requests that the accumulators be cleared
and the contents of location 3@¢ be brought in., However, should the current contents
of Index Register 1beanoctal1ff, the instruction shown will actually clear the accumula-
tors and bring in the contents of octal address 4f@. Thus we see that the index register
specified in column 24 modifies the address portion of the currently operating instruc-
tion. The instruction’s director is added to the current contents of the index register,
giving a new net effective address when the instruction is actually operated. Similarly,
the next instruction, Subtract 6@@, requests that the contents of location 6@@ be subtracted
from the current contents of the accumulators. When the program is operated, however,
it will not be the contents of location 6¢¢, but rather the contents of that location whose
address is 6@@ plus the current contents of Index Register 4, the specified index register.
We will in time discover other uses for these index registers, but the above examples
show the most typieal functions,

oP
LOCATION e copg |AUx|RC WORD | ADDRESS [+ yco
18119120 {21] 2212324 25[26,327 28129 .30 31132} 33134} 35[3637 38?39 40241 42143 44%45
1CRD i 3D f
SV Bl 0@ L

Figure 7-1. Examples of Index Register Address Modification

There is also an Index Register 3 in the Q-7. Index Register 3 actually consists
" of the right accumulator in the arithmetic element. If we specify Index Register 3, the
current contents of the right accumulator will be used as if they were in a physical
index register. However, the programmer should be aware that if the instruction being
indexed alters the contents of the accumulator, then Index Register 3 will no longer
contain the same value. We will likewise see later and fuller explanations of the usage
and operation of Index Register 3. '

| Index Registers in the Q-7 havean unusual cleared state. When the index register

is cleared, the control bit contains a 1, and all 16 magnitude bits must necessarily be
zeros. There is no facility in the Q-7 for having a negative value in an index register.

67

It is electrically impossible for any of the magnitude bits to be other than zero and yet
the control bit be a one. If there be any magnitude bits set to a one, the control bit will
always be a zero. It is possible to have all 16 magnitude bits of the index register be
zero and the control bit be zero. This is equivalent to having the index register set to
zero, but not in the ‘“cleared” condition. The ‘‘cleared” condition only occurs when
the control bit is negative, and the magnitude bits necessarily zero.

RESET INSTRUCTIONS

The Reset Class of instructions offers facilities for loading index registers and
accessing their contents. Although these instructions are listed on your Programmer’s
Card as ‘‘Non-Indexable,”’ nonetheless you must specify an index register in column 24,
Since these instructions manipulate index registers, they must be told which index .
register they are to alter or access.

XIN Instruction

The XIN instruction offers the facility to the programmer of loading his index
registers. Specifically, the instruction loads the index register specified in column 24
with the value in the decimal director in columns 36 through 41. It is not necessary to
have a plus sign in column 36, although the director is necessarily decimal, Since
the Index Register will have 16 magnitude bits, you cannot load it with an octal number
greater than 177777, This translates to a decimal value of 65535, Should the XIN in-
struction have a 1 in Left Sign, it will always clear the specified index register, no
matter what the value in its right half-word. In Q-7 programs, therefore, you will
often see the XIN instruction used with a T in column 41, specifying a Test Memory
Address. The programmer is not attempting to load the specified index register with
a Test Memory address. Rather he is using the T in column 41 in order to place a one
into Left Sign of the XIN instruction. He would therefore know that this XIN instruction
would clear the specified index register, and a T in column 41 is the most expeditious
way of coding this desired effect. The XIN instruction can only be used with Index
Registers 1, 2, 4, and 5. -

XAC Instruction

- The XAC instruction takes the contents of the right accumulator and puts it into
the index register specified in column 24, This instruction has a 17-bit option, If the
programmer specifies an XACA instruction, the index register will be loaded if, and
only if, the Left Sign in theaccumulatorsis a zero. Should LS be a one, the index register
will be cleared. Note that this is the above mentioned ‘‘cleared’’ state, that is, a one
in the control bit and all magnitude bits set to zero. The address portion of the XAC
instruction, that is Left Sign and the entire right half-word, is not examined by the
computer during the operation of the instruction. Since this is the case, the XAC Dir-
ector could be used for temporary storage by the programmer, The XAC instruction
may only be used with Index Registers 1, 2,4, and 5. If the index register specified
is @, 3, 6, or 7, the instruction will perform no operation,

68

ADX Instruction

The ADX instruction adds the 17 bits of its own director to the 16 magnitude bits
of the specified index register and stores the 17-bit result into the Right A Register.
This instruction offers our only means of accessing the contents of an index register,
when those contents are unknown at that point in the program. Note, however, that
only the magnitude bits of the index register are brought out by the ADX instruction,
Should those magnitude bits have a value of anything other than a zero, we know that
the control bit itself must be a zero. There is therefore no ambiguity. However, should
the magnitude brought out of the index register be a zero, it is not necessarily sure
whether or not the index control bit containsa zero or a one. One might have a ‘‘cleared’’
index register, in which case the control bit is a one and all the magnitude bits are Zero;
or one might have an index register set to zero, that is, all magnitude bits and the con-
«trol bit set to zero. We will learn later a way to “‘get around’’ this possible source of
difficulty. Once the ADX instruction has placed the contents of the index register plus its
own director into the Right A Register,the STA instruction is usually used to put the con-
tents of the Right A Register into a known location in memory. Almost invariably you
will see this dual combination, ADX and STA, because the Right A Registers will soon be
destroyed by the operation of any other instruction. It is therefore imperative to save the
contents of the Right A Registersas soonas the ADX instruction puts something meaning-
ful in them. Director of ADX is either unsigned decimal or symbolic tag.

Figure 7-2 offers several examples of the usage of the Reset Class of Instructions.
The first instruction loads Index Register 1 with the value of Q(M). The second instruc-

tion loads Index Register 4 with a decimal 4f@@. The next instruction brings a value
of 5 and 27, octal, into the left and right accumulators. We see then a 2XAC instruction.
- This will load Index Register 2 with octal 27, That is, the right accumulator, which
contains an octal value of 27, will be loaded into Index Register 2. At this point, we do
not know the contents of Index Register 5. A 5ADX instruction is used to access this
Index Register. Specifically, the ADX instruction will take the 16 magnitude bits of
Index Register 5, add its own director (+§) to it, and leave the total in the Right A
Register, Since nothing was added to the contents of the Index Register, the contents
of Index Register 5 are therefore in the Right A Register. The contents of this register |
are then stored into location @1A by the action of the STA 1nstruct1on.

NOP Instruction

The NOP, ‘“No Operation’’, instruction perfarms exactly what it says, no operation.
For six m1croseconds the computer does nothing. This at first might appear to be a
useless instruction, but we will see later usage of this facility. The instruction is
mentioned at this point inasmuch as it is a part of the Reset Class of Instructions.

‘ The Reset Class of Instructions cannot be used with index Register 3, the right

accumulator, Reasons for this will be more apparent if you think to yourself what
effects such instructions would possibly have. The XIN instruction is used to load index
registers, but do we not have a more simple method of loading index register 3? Would
it not be simpler to use a Clear and Add instruction to load Index Register 3? The XAC
instruction loads the specified index register with the contents of the right accumulator.

69

0L

SUOTIONIISUl SSB[D 1959y 9y} Jo sordwrexy °Z-. 9In3rd

[i
LOCATION |a c%gs aux| RC WORD |ADDRESS [+ ycq COMMENTS
1811912021} 22|23 24 25126127128} 29 ‘30 31321 331341 35036137 38§r39 40! 41842143 44?45 46{47%48{49?50251&52 535 S4555$56 571 58! 59160161 62[63‘64165
AXIN 9 "[LoR® Xq WITNA DECTMRAL
YX[1N o qgg L3WD.MQ!NﬂTH‘5FCIﬁﬁ}
CRD : "|PUT_OCTRAL] 27 [IN RITIGH
2)X[RC % | Tumﬁc%“i%ro HEERE
SAD i ; ccxfﬁui JINTo| RITIGWT]
STR [g4R [MAENCE INTO Z4iR

It is therefore facetious to talk about ‘‘loading Index Register 3 with the contents of
_the right accumulator’’, The ADX instruction offers us the facility of accessing the
'specified index register. It is obvious that we have many methods of accessing the

contents of the right accumulator. We see, therefore, that the Reset Class of instructions

not only cannot be used withthe right accumulator, Index Register 3, but, moreover, there
is no real point in using these instructions with that index register.

CONDITIONAL BRANCHING

Instructions which enable the programmer to load or access the contents of
index registers are almost worthless unless they are used in conjunction with instruc-
tions which will reduce the registers’ contents, so that different operands may be
obtained by using the same index registers. The instruction which will provide this
. facility is a second form of the BPX instruction of the Branch Class. Therefore, the
last step in a given iterative loop will be a conditional type of BPX instruction which
- will sense the contents of the index register and possibly decrement same,

Conditional BPX Instruction

The Conditional BPX (Branch on Positive Index) instructions checks the control
bit of the index register specified in column 24 (bits L1 through L3 of the instruction),
If the control bit is a 1, that is, the index register is cleared, the instruction performs
no further operation and we ¢‘fall through’ the branch, If the control bit is not set, the
index register is not cleared, that is, the index register specified will be decremented
by'\ the quantity specified in columns 28 and 29, and a branch will occur to a location
specified in columns 36 through 41, Columns 28 and 29 are coded in decimal and may
range in value from @ to 63 inclusive. This corresponds to an octal coding, in bits L1§
through L15, of 77. There are several important things to note concerning the BPX
instruction. First, index registers in the Q-7 can only be decremented, and then only
by a value from @ to 63 decimally, inclusive. Secondly, when one is decrementing by
/17, and a value of 1 resides inthe index register, the index register will be decremented
not to positive zero, but rather to the special ‘‘cleared’’ state. Thirdly, when a cleared
index register is used for address modifications, it adds zero, not octal 20¢@g#. Fourthly,
ndte especially that the decrementing is done after the index register is checked, not
before. You will note from your previous experience in flow charting that this is crucial,
This will imply that, in general, the Index Register is set to one less than the number of
passes to be made through the program.

As an example, suppose we are given Table BOB@, with 1§@ decimal entries
numbered § to 99, and we are to clear this table. That is, every register in this table
is to be set to positive zero. ' '

, Figure 7-3 illustrates a flow chart of the proposed solution to this problem,
Note that the flow chart has been drawn in such a way as to be easily transformed into
a COSEAL problem. That is, the index register used has been decremented rather than
incremented, and the testing was done prior to any decrementing, It is something of an
art to flow chart your problems such that the solution will be easily coded in COSEAL,
There are no strict rules for these procedures and only time and practice will show
you this technique. ' ~

71

Figure 7-4 shows a typical solution to the problem given above, Program ERASE
first loads Index Register 1 with a value of decimal 99. A register in BOBY is then
cleared, specifically, Register BOB@ +99. The conditional BPX then checks to see
whether or not Index Register 1 is cleared. Determining that it is not, (it contains a 99),
the BPX then determines that it will branch. Before branching, it decrements the specified
index register by one (note cols. 28 and 29). A branch then occurs back to location
AA, where BOBf +98 is cleared.

I=1I1

CLEAR
1=99 — BOBE(I)

Figure 7-3. Program to Clear Table BOBf

LOCATION |« c%gr-: aux| RC WORD | ADDRESS [+ ycq.
18119} 20| 21| 22{23]24 |25 26%27 28129 30] 31] 32} 33|34 35 36]37 38'}39 40:241 42143 44?45
oY RASE [
B AXIIN B RS
RA 1SV BOB®
1BPX@11 AR f
HLT[| |
END L1 |

Figure 7-4. Flow Chart in Figure 7-3 Translated to COSEAL Coding

72

B

This will continue until Index Register 1 contains a value of 1. At this point,
at location AA,BOB# +1 is cleared. The conditional BPX again examines Index Register
1. It notes that it is not cleared and a decision is made to branch, Just before branching,
Index Register 1 will be decremented by a value of 1. However, when decrementing, it
will actually clear that index register. We thenbranch back to location AA where register
BOBf is cleared. The conditional BPX, on this pass, now determines that Index Register
1 is cleared. We therefore fall through the BPX instruction to the HLT instruction.
This program illustrates a typical iterative loop, and a detailed analysis of this program

should be made by the student,

TABLE AND ITEM DECLARATIONS IN COSEAL

In operational SAGE programming, tables and items used are listed in what is
known as the Compool. This is nothing more than a reference guide listing the tables,
items and programs in the SAGE System. It gives such information as scaling, length
of tables, bit positions of items, and core locations. During assembly, program Trans-
lator has access to this information. Therefore, one may speak symbolically of one
particular table, and program Translator will automatically search the Compool and
insert core locations, etc. In your student programming, you will usually have little

- contact with a real Compool; rather, you will override the Compool with TCPO, ICPO,

and TSKP Cards; also such facilities as the DIT card will be discussed. All of the above,
and others which we will discover, are pseudo instructions.

, You will recall that in SAGE programming, all tables, items, and programs have
names of a specific format, Tables are given names with three letters and a digit, items
are given names of four letters, and programs are three letters. You should further note
that in SAGE, all tables are of parallel structure consisting of one or more blocks. All

" blocks would be of equal length. Since student programming will not invoke the Compool,

we shall use CPO (Compool Override) cards. Several pseudo instructions will be used.
Compool Override Cards

There are two varieties of Compool Override Cards: one for defining tables and

- the other for items. We shall see illustrations and definitions for both types of cards.

TCPO Cards. By coding a TCPO in columns 24 through 27, one notifies program
Translator that one is defining a table. Should the name happen to agree with the name
of a table currently in the Compool, the definition in the Compool will be overridden, The

.name of the table should be coded in columns 18 through 21. Columns 28-29 equal the

number of blocks in decimal (maximum 10), The starting address of the table would go in
columns 36 through 41 in octal, Columns 32 through 35 will contain the decimal length of
the block, If one is defining a table not to be used in a DCA program, any table ndme may
be used in columns 18 through 22, left justified.,

ICPO Cards. ICPO Cards are used to define items. In a fashion similar to the
TCPO Cards, they override any definition in the Compool with an identical item name.
The item name is coded in columns 18 through 21, This would be the case where one is
using a 4-letter item name, as is customary in SAGE programming. One may, however,
define item names of up to 5 letters, left justified, in columns 18 through 22, An ¢“ICPO’’

_is ‘coded in columns 24 through 27, In columns 36 through 40, the name of the table

which will contain the item is coded, left justified. One inserts the most significant bit

73

position in decimal in columns 34 and 35, and in columns 28 and 29 would go the decimal
number of bits. The decimal bit locations correspond to the 32 bits of the Q-7 Computer
Word, numbered from @ to 31. '

TCPO and ICPO Cards do not actually reserve that location in memory for the
data. Merely defining a table does not clear out the area and prepare it for data, nor
does it perform any data insertion action. These cards merely note to the program
Translator where the tables and items will be located.

As was noted, Translator will now have the information available to it concerning
table and item names, core locations, bit positions, et cetera. The uses to which program
Translator will put this information are many and varied. One may say, for instance,
CAD TABL. If TABL is a TCPO-defined table, COSEAL will insert the octal address
of TABL. Item names may be used in a similar fashion, e.g., SUB ITEM. We will see
other uses which program Translator can make of the information contained in TCPO
Cards in a later chapter,

SKP Instruction

The SKP (Skip) instruction instructs program Translator to skip the decimal
number of registers in the director field, columns 36 through 41, As with CPO cards,
an SKP Card is a non-generative pseudo instruction. That is, when the program is being
- assembled, program Translator will leave an empty space between the two instruc-
tions surrounding the Skip instruction. However, nothing will be put into these locations.
A location tag may be coded in columns 18 through 21, so that one may make symbolic
reference to the first location which will be skipped. Should ten registers be skipped,
one could therefore refer to @P1A + 6. This would be the seventh register which was
skipped, assuming that the Skip Card itself was given the location of @1A, The SKP
instruction offers us a useful capability to reserve areas within our program for later
data manipulation,

If, in the SKP pseudo instruction, one codes a T in column 24, the name given to
the skipped register in columns 18 through 22 will become a table name, Items may
then be defined within this table and it will acquire to itself all the normal characteristics
of a table.

DIT Instruction

The DIT (Ditto) Instruction is a generative pseudo instruction which will reproduce
the binary output of the last generated binary register the number of times specified
in the decimal Director in columns 36 through 41, A location tag may be assigned to the
first reproduced location by coding a name in columns 18 through 22, There is no
«¢PDIT” instruction, and the programmer should not attempt to use name. One need not
concern oneself with the possibility of endless registers appearing on the listing.
Referring to the sample programs listed in the Appendix, you will see that when a large
number of registers is either skipped or dittoed, program Translator shows only one
of the skipped or reproduced registers.

TSYN Instruction)

The TSYN (Synonymous) Instruction causes the symbolic table tag in the location
field, column 18 through 21, to have the same octal address as the symbolic table tag

74

in the director field, columns 36 through 41, plus or minus the decimal value in the
increment field, ’

All of the above instructions are designed to create data areas for later insertion
of data which might be read into the computer or created by the program itself. These
facilities enable us to create tables and items within them, and to make symbolic reference
to such tables and items at a later point in our program, All reference to tables and
items so defined must come after the definition of the particular table or item in ques-
tion. Many of the advantages which will be offered by program Translator when we have
so defined our tables and items will become apparent in later chapters.

Figure 7-5 gives an example of the instructions which we have just outlined, It
shows their usage to reserve areas of core storage for various data. The program is
not supposed to make any sense, sodon’t look for logic. It is merely shown as an example
of the way in which the program Translator will assemble the references shown, It
might also be noted that one reason this program will not work is that the programmer
has not taken care to branch around his data areas. The programmer must be careful that
his program does not march right into the data. Remember, the computer cannot dis-
tinguish between a data word and an instruction word. We note that after the first
two operative instructions, the CAD and the SUB, the next ten locations have been reserved
for data, However, this program will march right into that data area, and it will begin
to use the data therein as instructions. Obviously, this will lead to program error.

75

9L

suorjIuIza eaxv eyed jo sordwrexd °G-) 9In3Ld

PROGRAM TABL MOD ES comMPOOL 04D 00 PAGE 1

0T TABLES TH!S PROGRAM |LLUSTRATES 0000,01*T00

INFO TCPO 50000 TABLE AND ITEM DEFINITIONOOOO.02%T00
NEWS tCPOOS5 0 INFO ’ AND A FEW OF THE USES 0000+03%¥T00
LocC 1000 WH1CH TRANSLATOR CAN MAKEOOO00.04*T01

CAD INFO 001000 001000 050000 OF SUCH DEFINITIONS. 0001.00%+01

‘ suB NEWS - 4 001001 001343 047774 0002.00%+02
01A SKP 10 001002 0012.00%*T0O0
CAD 01A + 1 001014 001000 001003 0013.00%+01

BOBO TSKP 9 001015 0013.01%700
BumMs 1CPOO7 13 BOBO _ 0013402%T00
FST BOBO + 2 001026 003240 001017 0014400%+01

: ADD _ BUMS 001027 001043 001015 0015.00%+02
. 018 DIT 3 001032 001043 001015 0018,00%+00
RST - 01B * +# 1 001033 003340 001031 0019+00%+01

WASH TSYN INFO + 20 050024 0019.01*T00
SO0AP 1CPO21 3 WASH 0019.02%T00
BFZ WASH =~ 1 001034 005400 050023 0020+00%+01

HLT SOAP 001035 000000 050024 0021+00%+02

END 0021.01%703

CHAPTER 8
TABLE AND ITEM MANIPULATIONS

In the preceding chapter we discussed methods of defining and reserving data
areas. No discussion was made of the methods of putting data into these areas, nor
was any mention made of the methods of accessing or manipulating such data. In this
chapter we shall discuss some Q-7 instructions, some COSEAL pseudo instructions,
and some capabilities of program Translator, all designed for item manipulation.

ITEM-ORIENTED PSEUDO INSTRUCTIONS

Two generative pseudo instructions have been incorporated into the vocabulary
of program Translator specifically for the purposes of item manipulation. Although
they are rarely used, they will make easier the understanding of several capabilities
of program Translator to be explained at a later point in this chapter.

MSK Pseudo Instruction

The MSK (Mask) pseudo instruction generates a mask at the location where the
MSK instruction appears in the program. The mask will contain 1 bits in the relative
bit positions of the item specified in the director field, columns 36 through 4¢. The item
should be left justified in this field. Figure 8-1, which will be referred to extensively
in the early portion of this chapter, illustrates two MSK instructions, and the generated
binary output.

" CON Instruction

The CON (Constant) pseudo instruction creates a register, at the point in the pro- -
gram where the CON instruction appears, with the value specified in the director portion
of the instruction (columns 36-41), positioned to the bit positions of the item specified
in the RC Word fields (columns 3@-34). The value specified in the address field may be
a decimal or octal constant, and if a value greater than the item can hold is specified,
garbage will be produced. Dual items, i.e., items of 32-bit length, can be loaded with this
instruction. Once again, you should refer to Figure 8-1 where examples of the CON
bseudo instruction are shown. In the middle of program ITEMS, shown in Figure 8-1,
is a short four-step program for adding 2 to the current value in item TEST, and leaving
the result in the accumulator, This program extends from location 1§A to 1B, inclusive,
~.The program initially clears the accumulators and brings in the register which contains,
among other things, item TEST. The program then adds into the accumulators a register
which contains 2 in the bit positions of item TEST. Having accomplished the desired end,
the program then halts. :

\ As was noted above, the CON pseudo instruction is rarely used. However, it

illustrates the principle which will be used in the following area. Program Translator
has the ability to accept RC Words of a form similar to those shown with the CON
pseudo instruction. Note, for instance, the two instructions in Figure 8-1 at location
2¢B. The first instruction can be interpreted as follows: Clear the accumulators and
add in a register which contains a decimal 30 in the bit positions of item WORK. The

77

TBLO
TEST
WORK

10A

108

30A

40A

408

next instruction could be read: Subtract from the current contents of the accumulators
a register which contains an octal 77 in the bit positions of TEST, This usage, similar
to a CON instruction, is used widely in COSEAL programming. The student should
become very familiar with the wording by which one can interpret such instructions, and

IDT
TCPO
1CPOOT
1CPO16

MSK
. MSK
\V
coN
cON
CON

CON

CAD
ADD
HLT
CON

CAD
SuUB

LDB
2L0D8
LDR
LDB
LDB

ADB

CAD
ETR
S/ ETR

<\ ETR

END

100

16"

TEST
TEST
WORK
WORK

TEST

WORK
TEST

77
MSK

54626
57003
MSK

I TEMS
25000
TBLO
TBLO

TEST
WORK

10
+ 1000
1000

TEST -
108 -

2

+ 30
77

10A]

1.
400 M

77
TEST

TEST

176301
0

WORK
WORK

000300
000301

000302
000303
000304
0onn305

000306
000307
000310
000311

000312 .

000313

NoN314
non315
000316
000317
000320

000321
000322
000323
000324
000325

000326

- N00327

000330
000331
000332
000333
000334

177000
000000

912900
oIN000
no0000n
N00ono

001000
001043
000000
002000

001000
001343

000300
020200
000300
000300
000300

001143

001000
000040
000040
000040

000000
077000
000077
177000
054626
057003
000000

Figure 8-1. Examples of Item-Oriented Instructions

you should note as well the RC Words which were generated.

78

000000
177777

000000
000000
001750
001000

025000
000311
000000

000000

000326
000327

000306
000400 .
000330 -
000331--
000331

000000
000332

000333
000334

000334 -

000036
000000
000077
000000
176301
000000
177777

B REGISTER INSTRUCTIONS

Two instructions deal exclusively with the B Registers, and we will find them
of considerable use in item manipulation. :

LDB Instruction

The LDB (Load B) instruction clears the B Registers and then places the contents
of the specified memory location into the B Registers. The LDB instruction operates
-in a manner similar to that of the CAD instruction. Several examples of the LDB instruc-
tion and coding for same are shown in Figure 8-1, At location 3@A, we see an instruction
which tells the computer to clear the B Registers and then place therein the contents
of location 1@A, Next is an instruction which says load the B Registers with the contents
of location 4@@ as indexed by Index Register 2. The next instruction requests that the
B Registers be loaded with the contents of a register which contains an octal 77 in both
half-words. Next, we see an instruction which requests that the B Registers be loaded
with a Mask for item TEST, That is, a data word will be loaded into the B Registers which
contains ones in the bit positions of item TEST, and zeros elsewhere. The next line of
coding illustrates a coding convention peculiar to only two instructions in the entire
repertoire available to the Q-7 programmer. When one codes an item name in columns
36 through 4}0/ with the LDB instruction, there is an implied MSK in columns 31 through
33. Thus, we see that the RC Word used as the director of both LDB instructions is the
same. One may code the MSK in columns 31 through 33, although this is not necessary.
The reasons for this coding convention will become apparent at a later point in this
chapter,

ADB Instruction

The ADB (Add B) instruction adds the contents of the B Registers to the contents
of the accumulators. The results are left in the accumulators, and the B registers are
unchanged. This instruction has a 17-bit option, rarely used. The right half-word of the
instruction is not examined by the computer during the operation of the ADB instruction.
Therefore, the right half-word may be used by the programmer for temporary storage.

LOGICAL INSTRUCTIONS

Several instructions in the Q-7 repertoire may be classified as strictly logical
‘operations. We will concern ourselves with two of these instructions at this point.

ETR Instruction

The ETR (Extract) instruction performs a logical multiplication between the contents
of the specified memory location and the accumulator; results in the accumulator,
memory unchanged. Another way-of saying this is: where the specified memory location
has a zero, clear that accumulator bit, Where the specified memory location has a one,
leave that accumulator bit unchanged. As an example of the instruction ETR, note the
instructions at location 4fA in the program in Figure 8~1. The actions of this program
are shown as follows:

79

C (accumulator) f.161 1g¢ 11g g1 11§ 1.111 116 11 #gg gp1
C (f.89209) g.111 111 ¢g9 699 611 A.000 000 0P8 BP9 P08
Final Result #.101 109 ¢¢¢ ggp d16 9.00¢0 ogg 000 P09 peg

We see that after the action of the listed instructions, the accumulators would contain
54002,00008 octal. If one considers the contents of memory during the operation of an
ETR instruction as a Mask, it can be shown that the Mask operates as a ‘‘garbage
clearer’’; that is, in the bit positions of the Mask, the accumulators will be unchanged,
elsewhere, the accumulators will be cleared. At location 40B, we see the use of an ETR
instruction with a Mask for item WORK, Whenthe program was operated, the bit positions
in the accumulator corresponding to the relative bit positions of item WORK would
remain unchanged; all other bit positions in the accumulator would be cleared. Were
one to execute the instruction CAD WORK, the entire register which contained item WORK
would be brought into the accumulators. If there are other items in this register, these
would likewise appear in the accumulators. If we wish to operate upon item WORK, the
other items in that register can be considered garbage, at that point in the program. We
therefore extract the accumulators with a mask for item WORK. This will clear the
accumulators in all of those bit positions which are not a part of item WORK. Note
carefully that the actual memory register which contains item WORK has been unchanged,
and likewise the mask with which we extract will also be unchanged. Only the accumula-
tors are altered during the operation of an ETR instruction.

One should also note that the ETR instruction has the same coding peculiarity as
does the LDB instruction; that is, if an item is specified left justified in columns 36
through 4¢, there will be an implied MSK in columns 31 through 33, Although the use of
this peculiarity with the LDB instruction is notat this point apparent, it should be evident
that, for the extraction of items in the accumulator, this becomes a very useful facility
with the ETR instruction. If we first CAD an item, and then we ETR the same item, we
will be left with the value of that item, as it appears in memory, less any other items
which might also be in that register. We may say, therefore, that we have brought the
item into the accumulators and ‘‘gotten rid of the garbage”.

At this point in a program, we could now do manipulation upon the value which is
contained in the item being manipulated. When we have arrived at a_result, we would
usually wish to place this result back into that item. If however, we used an ordinary
Store Class instruction, the entire contents of that memory register (or, at least, one
of the half-words thereof) would be altered. This would most likely destroy the value .
currently within other items in that register. We need an instruction that puts the contents
of the accumulators into only specified bit positions of a given memory register. The
DEP instruction offers this facility. :

DEP Instruction

The DEP (Deposit) instruction performs a selected load into Memory. Specifically,
where the B registers contain a 1, it puts the corresponding accumulator bits into the
specified memory location, Where the B registers contain a zero, memory is unchanged.
The accumulators are then changed so that theyappear exactly like the specified memory
_ location. Throughout, the B registers are unchanged.

80

N Another way to say all this is, the accumulators are put into memory in the
masked bit positions, elsewhere memory is brought into the accumulators.

As noted above, the primary use of the DEP instruction is to provide for storage
of less than one half-word in any bit position or combination of positions without destroy-
ing the remaining bits. This capability is especially useful when it is desired to update
items within a word when only part of the word requires changing, and all the other bit
positions are still valuable. As a simplified example of this use, let us consider the
following situation: Assume that location 1¢@ contains 1.36625 in the LHW, and 1.76543
in the RHW, Bits L4 through L9 of this word are set aside for track identity. However,
Bits L4 through L9 of location 2@ contain, among other items, a more recent identifi-
cation. The problem is to update the item at 1@@ without altering thé remainder of the
word, because the other bits indicate such things as track velocity, track number, etc.
The program to update the information at location 1@@ is shown in Figure 8-2,

The CAD instruction will bring the new identity into the accumulators:

Clacc) = 1.601 101 g1 ggf 106 1.18p 919 ogp g1 191

The LDB instruction will place into the B registers a mask for saving bits L4
through 1.9:

C(B reg) - g.gpp 111 111 ¢pg dgp g.000 dgd geo pop pug

The DEP instruction will cause the masked bits to be deposited in the core memory:

Old C(§.¢p19¢) = 1.611 118 119 g14 141 1.111 114 161 198 11
New C(0.00100) = 1.g11 1#1 01¢ 01f 161 1,111 11f 181 1898 g11

Notice that by varying the masks, the LDB and DEP instructions can be used to
change any combination of stored bits without destroying the remaining bits,

LOCATION |a C%EE Aux.| RC WORD | ADDRESS |+ ycq.
181192021 2212324 25'26‘27 28129 -30 31] 32 33134 35)36]37 38?39 40§4l 4214314445
ID AANGE
Qg Ko qggo] (]
TIDY | [Tic/Po@le HITRKS |
CAD | g |
LD®B TIDY| !
DEP 198
AL |
LoC 135
136625 176543
1k6h 3 14225?
EN%FI ERRE

Figure 8-2. Program To Update Track Identity

81

SHIFT INSTRUCTIONS

There are within the Q-7 repertoire, eight Shift Class instructions. Each of the
instructions involves shifting the contents of one or both accumulators and sometimes
also the B registers. In the binary instruction word, the number of shifts would be
indicated to the computer in bits R1@ through R15. This means that shifts are limited
to an octal 77. On a coding sheet, the number of shifts is always indicated as a decimal
director in columns 4f and 41, This decimal number should always range from f to 63
inclusive. Broadly speaking, there are two types of Shift instructions: Cycles and Shifts. -
The distinction is that in a Cycle, no bits are gained or lost. In a Shift, certain bits
will be lost in the affected registers, and duplicated sign bits will be filled in to take
up their place. Figure 8-3 gives a diagrammatic representation of the action of each
Shift Class instruction. The name of the instruction and its octal code appears in the
middle of each diagram. The mnemonics for each instruction stand for the following
names:

Dual Shift Left Left Shift Right
Dual Shift Right Right Shift Right
Accumulators Shift Left Dual Cycle Left
A_cc/umulators _S;hift _E_ight Full Cycle Left

Following the maxim that a picture tells a thousand words, we will attempt to
explain how to read the diagram rather than explain in words the action of each instruc-
tion. Consider first, the two cycle instructions depicted at the bottom of the illustration. -
As noted above, in a cycle instruction, no bits are gained or lost. Therefore what comes
out of a register will go in the end of another register. The bits are cycled the number
of times specified on the coding sheet in the decimal director. The Full Cycle Left
instruction involves the accumulators only, and the Dual Cycle Left instruction involves
both the accumulators and B registers. ‘

Consider next the action of the ASR instruction further up the illustration. Con~-
sidering just the right accumulator, you will note that the number of bits specified in
the decimal director will be lost out of the least significant bit position of the accumula-
tor. This will create vacancies in the most significant bit positions. In every diagram
where there is an S, the S stands for ‘‘sign bit’’. In all shift instructions, as in opposition
to cycle instructions, these sign bits are never moved, merely duplicated. It is these
duplicated sign bits which fill up the vacated bit positions, as bits are lost out of the
other end of the register. We will see in the next chapter the justification for duplicated
sign bits. Suffice it to say at this point that they fill a definite programming need.

Shifting Pseudo Instructions

Program Translator has the capability of recognizing two pseudo instructions
which will generate cycles in the binary program. These two instructions are POS and
RES, standing for Position and Restore, respectively. Each of these pseudo instructions
has two configurations: with one and with two item tags.

82

LEFT . LEFT B RIGHT RIGHT B
ACCUMULATOR REGISTER ACCUMULATOR REGISTER

LT JomLuir I

LOST L.OST

02— R0 R —

LosT

LoST LOST

g S O

LosT

RSR 444 lil_’ H h
! LosT

I e

FCL 470

Figure 8-3. Shift Class Instructions

POS With One Item Tag. This pseudo instruction generates the appropriate Full
Cycle Left such that the accumulators will be cycled so that the item specified in the
director field will have its least significant bit moved to the bit position specified in -
the decimally-coded AUX columns. ’ :

POS With Two Item Tags. This pseudo instruction generates the appropriate
Full Cycle Left such that the accumulators will be cycled as to bring the least significant
bit of the item in the RC field to the least significant bit position of the item in the
Address field.

RES With One Item Tag. This pseudo instruction generates the appropriate Full
Cycle Left such that the accumulators will be cycled to move the bit position specified
in the decimally-coded AUX columns to the least significant bit position of the item
specified in the Address field, '

83

RES With Two Item Tags. This pseudo instruction generates the appropriate Full
Cycle Left such that the accumulators will be cycled so as to move the most significant
bit position of the item specified in the RC field to the most significant bit positions
of the item specified in the Address field.

Figure 8-4 illustrates the effects of various POS and RES instructions. In the case.
of each pseudo instruction, the appropriate Full Cycle Left will be generated such that
the indicated actions will occur. At location AA, 2 Full Cycle Left will be generated
such that the least significant bit position of item NAME will be cycled to bit position
31. This action would require a FCL 9. At location BB, the least significant bit position
of item NAME would be cycled to the least significant bit position of item DATE. This
action would require a FCL 14. At location CC, the accumulators would be cycled
such that bit 15 will be restored to bit position 26, the least significant bit position
of item DATE. An FCL21 would be generated. At location DD, the appropriate Full
Cycle Left would be generated such that the most significant bit position of item NAME
would be restored to the most significant bit position of item DATE. This would require
a FCL 18,

A careful study of the above examples and the rules for generating such pseudo
instructions should be made by the student. All of the work so far in this chapter has
been leading up to a type of coding which will now be illustrated.

Compool Independency

Consider the instructions in the incomplete program in Figure 8-5. At AA, the
entire register which contains, among other things, item DOGS is brought into the
accumulators. In order that we may work only on the bit positions of item DOGS, we
next extract the accumulators with a register containing a mask for DOGS. Thus the
garbage will be removed from all bit positions surrounding DOGS. Next, at CC, the
information in the bit positions of DOGS will be cycled such that the least significant
bit will now be in the accumulator bit 31. Some arithmetic manipulation is now made
on the accumulators. At the conclusion of these operations, the results will be restored
from bit position 31 to item DOGS. The B Registers are then loaded with a mask for
DOGS, and the accumulators will be deposited, in the masked bit positions, into the
register which contains DOGS. No other items in that register in memory will be
disturbed, because of the method by which the DEP instruction operates.

This sequence of six instructions is one of the most basic and fundamental in SAGE
programming. It illustrates what System Development Corporation calls ¢‘Compool
Independency’’. This is not the meaning mentioned earlier in our discussion of the IDT -
Card. There, we meant by this term that the program would not invoke the Compool. In
the present context, we imply by Compool Independency that the program would work no
matter where item DOGS is located in memory. Further, it does not matter where item
DOGS is within that particular memory register. Therefore, as Compool versions come
and go, and item DOGS is moved around in memory, this program need only be re-
assembled using the new Compool. The instructions which deal with item DOGS will still
perform the desired operations. .

84

oP

LOCATION |x|cope [4x [RC WORD [ADDRESS [+

1819 20|21 22| 23] 24 | 25 |26 27} 28} 20] 30| 31 32] 33|34} 3503637138} 39740 41] 42{43]44 45

D C | -
TiclPlo 1 29 LIl NRMel | || []]][PATEs],

c
qQ
GQ

YICIL
‘.C{Po¢ Slms ¢ Ll 1 L i1 L1
LIClP S|GI¢

RIZ|=)
D¢

m=10)
m™

0 2 1§lm | 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 20 22 23 24 25 26 27 28 25 30 31

< ﬁ w
TN TN RN IR 1K
I I

a
o
(=)
(2]
O
&

L1 11
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

i 00 01 02 03 04 05 06 07 08 03 10 11 12 13 14 15

IR

| :fff:&k%&%% | | !Illliz%}iJJ_L
B® Plols AME| | DIATIE; ' I N 7777777 I

000102030‘050607080910111213141516171819202122232425262728293031

SHY pue SOd JO S3095Jd ‘-8 9anJrd

i |

S
cic E[SH AT[E HENEENEERENEN AN]!

1 L1 4 1 | 1 | I S T | L1 1 | Il

90 01 02 03 04 05 06 07.08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 30 31

> |

a8

—
SRR AN RN
P SND T TE H-PRITE — B

00 01 07 03 P4 05 0K AT AR NG 1N 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LOCATION | C%EE aux| RC WORD | ADDRESS [+ jycg.
1811920421 222324 |25 26527 28129 30| 31| 32| 33{34| 35} 36|37 38539 40141142143 44145
CRD DOGS !
B ET Po qﬁ | |
iIcC P0S31 D0GS
ARIMANET T MANTPULATION
P RRRARL 5§S
E LDB DOIGS|
FF DEP DIOGS

Figure 8-5. Compool Independent Item Manipulatibn

As student programmers, it has already been noted that you will likely not be
using a Compool. Nonetheless, this method of handling items would be most useful
in your programming. Once you have defined your items initially at the beginning of
your program with ICPO Cards, you need never again concern yourself with bit positions
and/or memory addresses. Program Translator will take care of all such busy work.
Your coding can become extremely symbolic and not hamstrung by a rigorous and
laborious concern with bit positions, et cetera. :

86

CHAPTER 9
SCALING AND FURTHER ARITHMETIC OPERATIONS
- BASIC PRINCIPLES; ADDITION AND SUBTRACTION

A number, as such, is of very little use, and must be related in some way to the
physical world to be meaningful. In other words, it must represent units of some kind,
such as miles, pounds, degrees (these need not be simple units; each integral increment
can represent such things as 3/4 of a mile, 1/256 of a revolution, 2.4 pounds) etc., and
must contain a radix point, to indicate which parts of the number are integral and which
are fractional. The radix point in the decimal system is known as the decimal point, in
the octal system as the octal point, and in the binary system as the binary point.

No automatic digital computer keeps track of the units represented by numbers
within the machine; this is always up to the programmer. Some computers do keep a
record of the position of the radix point within the machine; and since this point may
move, according to the operation performed, these are called floating point computers.
The AN/FSQ-7 however, keeps no record of the radix point, and treats all numbers as
fractions; it is therefore called a fixed point computer.

It is possible to program by converting all numbers to fractional form before
inserting them into the computer (by multiplying by a constant), and then when they
have been processed, re-converting them to their original form. However, keeping
track of the conversion factor is easiest if we think of the computer as actually containing
a radix or real point; then we can put numbers into the machine in normal form and
simply keep track of the real point. The technique of doing this is called ‘‘scaling’’.

In a fixed point computer, as the name implies, there is one immovable point
recognized by the computer as a separator. This is known as the machine point, and is
between the sign bit and the most significant magnitude bit position, in each half word.
As explained qa‘ﬁvﬁjm%\me#&%_”zw real point, and also of an
item point, which is immediately to the right e 1 ignifjcant bit position in an
item; both of these points are imaginary. Thus we can keep track of the position of

the real point by noting its relationship to either the machine point, or to the item point
(of which the relationship to the machine point must be known),

A complete half word item, in the AN/FSQ-7, will have 15 bit positions between
the machine point and the item point, Therefore, in this case, the relationship of these
two points need not be explicitly noted, and the position of the real point can be related
independently to either.

SCALING NOTATION

It cannot be emphasized too strongly that any method we use for denoting scaling
should be used only to speed up the solving of scaling problems, and to facilitate com~
munication on the subject between programmers. To use a method without understanding
what is actually happening to theeffective position of the real point within the machine
~ is most unwise.

87

The binary number @11¢,1¢¢ is equivalent to 6-1/2 decimal. If this number were
to appear in a computer (one with a 7 bit half word, of which the first bit is the sign),
the machine point would be between the sign b1t and the next bit to the rlght thus:

§.11¢16d. If you were to multiply the number as it appears in the computer by 93 (1406
in binary), you would get the actual value of the number as it appeared originally:

g.11p19¢

x__1ppp
1191999 ,55 (6-1/2 decimal)

Thus, this number, with the real point in the position originally shown, is said to be
scaled 23 in relation to the machine point, or 23xm, where the number itself is repre-
sented by ¢‘x’’., Thus, x = 23x . Note that the number of integral bit positions (not
counting 51gn) in the item is 3; th1s same relationship always exists between the scaling
exponent and the number of 1ntegral bit posmons in an item,

The real point scaling can also be noted in reference to the item po1nt The above
number, usmg the item point as the reference, would appear as ﬁlmlﬂﬂ., if we multiply
this by 2~ (.¢¢1 binary), we get the correct value: ‘

g11p100
x @01

gi10.190 (6-1/2 decimal)

Therefore the item is said to be scaled 2-3 in relation to the item point. This may
be written as either 2~ x or 2 3x6. The subscript number in this case indicates the

number of bit positions between the machine point and the 1tem point. If a number
appears as a subscript, it will indicate item point scaling, and not machine point. Note
that the item point scaling exponent is equal in magnitude to the number of fractional
places in the number, and that item point scaling is easily converted to machine pomt
by adding the subscript number and the scaling exponent. In this case: 6 + (-3) =

s0 2 3x6 = 23xm. Thus, in the AN/FSQ-7, with its 15 magnitude bit half word, a full

half word item scaled 2~ 5i would also be scaled 21¢m.

In SAGE programming, the real point is almost never considered to be outside
the word 1tself 80 that negatwe scahng exponents 1nd1cate1tem point scaling, and

so desired. e DCA Compool Ifeni lis ng,'the numbers that appear mthe scahng
column are the scaling exponents of 2 that apply to each particular item. These are
usually in relation to the item point, except those thare are +,G¢, which are to the
machine point., Whether you work with machine point or item point scaling depends on
which is easier for a particular problem; in most cases, you will probably want to
convert item point to machine point before using it.

88

The above forms of notation will be used within this document. Another form that

1¢

is sometimes used is x = 2 5':, which is equivalent to x = 21ﬂ xm; item point scaling

in this system is shown in the same way, i.e., 2 °% is equivalent to 2-5xi. A third
system is to show the number of integral places in an item by using B (before the real
point), so that xBlﬁ is effectively equivalent o 21ﬂ X in a half word item. The number
of fractional places is shown by A (after the real point), so that xA5 is equivalent to
2" 5xi. * :

MAXIMUM PRECISION; INTRODUCTION TO SHIFTING

Once you know the length of an item, and the position of the real point within it,
you can easily compute the range of values that can be expressed within the item. The

5

item RPOS, in the DCA Compool, for instance, is scaled 2 i (21}6 m)’ and each integral

unit represents one nautical mile. Thus the largest number that can be represented is

1111111111.11111, or 1623 31/32 nautical miles. Note that 2mactually equals 1/524, so
this is a convenient method of determining the size of an item that can be contained in a
given number of bit positions.

This also works in reverse; you can determine the precision of an item from its
scaling. The computer clock, for instance, is scaled 2~ 51 5 and each integral unit

represents 1 second. 2-5 actually equals 1/32 (and 5 fractional places can contain a
number precise to 1/32); therefore you knowthatthe clock is precise to 1/32 of a second.
(In this particular case, there is no sign bit; the clock contains 11 integral magnitude
bits. Therefore you can think of the machine point scaling as being 211m. 211= 2048,
so that the largest number that can be contained in the clock is 2047 31/32 seconds, or
34.14 minutes).

Setting an item to maximum precision simply means determining how large an item
can be, then placing it in the word scaled so that the least significant bit will represent
the smallest possible quantity, without losing any of the most significant bits. For a
single item, this would mean that the most significant bit position would contain a 1;
for a group of items, it would mean that the largest item would have a 1 in the most
significant bit position.

The placing of the real point in the computer may be done by shifting (other uses
of shifting are discussed later in this document). We may think of the real point as
being moved along with the item, so that it stays between the same two bits during the
shift. However, since we are moving the item, the real point will not be between the
same two bit positions in the register at the end of the shift. For example, if we take
the binary number g@p1f@.10, with the real point in the position shown, and shift it left
two (assuming we are dealing with an 8 bit register), we will have #1¢0.14@¢, which is
still the same number, although it is now in a different position.

89

Thus, we can see that if we have a number in the accumulator scaled Zlﬁ m’ and
we want it to be scaled 212m’ we could shift right (either ASR or DSR, depending on

our purpose) two and get what we wanted. If we want to change the scaling of an item,
then, this is probably how we will do it.

ADDITION AND SUBTRACTION OF SCALED ITEMS

Since both addition and subtraction are accomplished in the computer by adding,
the scaling problems are the same for both operations.

In adding two or more numbers on paper, you must first line up the radix points
with each other; the same usually applies when adding in the computer (exceptions
are discussed later in this document), You must shift, if necessary, one or more of the
numbers to be added, so that all are scaled the same (e.g., have the radix point in
the same place) before adding.

One additional restriction applies when adding in the computer; you must make
sure there is room in the accumulator for the largest magnitude possible in the result.
Therefore, you must determine how large your answer can be, figure out how many
places are needed to contain this answer, then scale all the numbers so that their real
points are in the same place as you want the real point to be in the answer.

Example:
Given: A= 2;'4A15, stored in register 199
‘B=2 5B1 5 stored in register 1091

C-= 2-6015, stored in register 192
All of the above numbers are already scaled to maximum precision.

Required: Add the above three numbers and store them in register 193 in maximum
precision,

Solution: CAD 199
ASR 1
DCL 16
CAD T 1
ASR 2

ADB

DCL 16

CAD 12

ASR 3

ADB

FST 143

HLT

90

Explanation: First you should convert the numbers to machine point scaling, and

determine the possible size of the result., This) is 211A

m (maximum value just under
2p48); 21 Bm (maximum value just under 1¢24)__;""and 2gcm (maximum value just under
512). Adding the maximum values, we get a maxi:'rnum value for our answer of just under
3584, which can be 'contained in 12 bit positions, and must therefore be scaled 212
Thus before adding, A must be shifted one position to the right to change its scaling
11 12m;- B must be shifted two to the right (21'“ m o 912

from 2 m to 2

be shifted three to the right. The shift instructions in the program accomplish this
(the cycle instructions are not used to affect the scaling; they simply utilize the B
register for temporary storage).

m); and C must

MULTIPLY CLASS AND ASSOCIATED INSTRUCTIONS

Multiplication in the binary system is accomplished exactly as it is in the decimal
system. Since the only.digits that can be used in the binary system are ‘‘1’’ and “g,
all numbers used as operands or operators can be only combinations of ‘‘1?’ and “‘@#’.
A binary multiplication table showing all possible products is as follows: '

Multiplier X Multiplicand = Product

1 X 1 = 1
1 X g = g
¢ x 1 =
g x g = 4

As an example, consider multiplication of the numbers ﬂ.llﬂlﬂlz and ﬂ.lﬂﬁlﬂﬂz.
$.1106161

g.1p9199
"~ PPPPAB 1st partial product
gogege 2nd partial product
119191 3rd partial product
gdudog 4th partial product
gogdee 5th partial product

114101 6th partial product
J111011101 ¢2 final product
The method shown is direct binary multiplication, and though it is not exactly how
the AN/FSQ-7 performs multiplication, the method will serve as the basis for an under-
standing. of the machine method. Notice that all the partial products are “ﬁ’s” except

when a “1” bit is encountered in the multiplier, in which case the partial product is
identical to the multiplicand, In the above example, there were two ‘“1’’ bits in the

91

multiplier; therefore, the multiplicand appeared twice as a partial product (partial

products 3 and 6). The partial products are added together to obtain the final product.

Thus, multiplication becomes a function of addition,

Since multiplication of two 6-bit numbers will result in an 11- or 12-bit product,
it is necessary to join two registers ofthe arithmetic element together during multiplica-
tion. These registers are the accumulator (where addition is normally performed) and
the B register, which is an auxiliary register. '

The instructions which involve division are also included in the multiply class.
Division is accomplished by repetitive subtraction. : ‘ :

All four instructions in the multiply class are indexable. No instruction in the
multiply class is capable of causing an overflow.

INSTRUCTIONS FOR MULTIPLICATION
MUL Instruction ‘

The ‘““multiply” (MUL) instruction (octal operation code .¢25ﬂg> is used to obtain
the product of the contents of the accumulators and the contents of the ‘specified memory
location. The number previously placed in the accumulator acts as the multiplier, and
the number from core memory specified by the address portion of the MUL instruction
is the multiplicand. Execution of the instruction leaves a 3¢ bit product in the combined
accumulator and B register. The least significant bits of the product appear in the B
register. The least significant bit of the B register (bit 15) is identical to the sign of the
multiplier (original contents of the accumulator) and is not considered a part of the
product. '

As you know, the AN/FSQ-7 computer treats all numbers as fractions, and when’

two fractions are multiplied, the product is always smaller than either of the two original
factors. For instance, .1 X .1 = .ﬂl, a product smaller than either factor. Thus, the
possibility of an overflow is eliminated. :

Notice that the number of places in the answer is equal to the sum of the places
in the multiplier and the multiplicand. Therefore, if two fractions are multiplied, the
product will appear in the correct position, but if two whole numbers (treated as fractions)
are multiplied, the product will not appear in the correct position. Generally, the product
in the AN/FSQ-7 must be rounded off to a fraction of 15 significant bits before it (the
product) is further manipulated by the computer. The ««round-off’’ operation is ac-
complished by the SLR instruction, which will be described later. The rounding off
process may affect the precision of the computation.

«“Accuracy’’ and ‘‘precision’’ are terms that have distinct meanings and application
in relation to numerical data. ‘“Accuracy’’ refers to the correctness of the expression,
whereas ‘‘precision’’ is the degree of correctness. For instance, a person is sometimes
described as being over 35 years old. This may be accurate, but it is not precise--the
person may be precisely 35 years, 4 months, 12 days, 16 hours, 13 minutes, and 28
seconds of age. Similarly, ‘‘pi”’ may be expressed as 3.14;thisisa representation
of the value of ¢pi’’ accurate to three places, but it is not precise. Precision would
require that the value be expressed to some greater number of decimal places.

92

-

SLR Instruction

The ‘‘shift left and round’’ instruction provides the means of manipulating a number
- Within the arithmetic element and rounding off that number to 15 significant bits. You will
recall that the result of a multiplication leaves a 31-bit product (including sign bit) in the
combined accumulators and B registers. This 31-bit word is not compatible with the
word length of the AN/FSQ-7--the computer deals withhalf words of 16 bits each, but the
multiplication product is almost twice that length. Consequently, some method must be
found to reduce these numbers to 15 significant bits and yet preserve the greatest pre-
cision possible. This is the function of the SLR instruction.

The SLR instruction shifts the data inthe combined accumulators and B registers to
the left by the number of places specified by the right half portion of the instruction and
then rounds off the accumulator contents to 15 significant bits. Thus, a shift of two places
to the left will transfer the contents of bits 1 and 2 out of the register, with bit 3 moving
into the bit 1 position, bit 4 moving into the bit 2 position, and so forth through the entire
register, except for the accumulator sign bit, which remains unchanged. The computer
performs round-off in much the same manner as we perform round-off with pencil and
paper. For instance, the decimal number ‘96,5’ is rounded to “97’, whereas the decimal
number ‘‘94.4’’ is rounded to ‘“96’’, In binary arithmetic, we are concerned only with
‘¢1’s’” and ““@’s”, In the machine, the sign bit of the B register is sensed--that is, if it is
a “1’’, the contents of the accumulator are increased by “1’’; if it is a “@”, the ac-
cumulator contents are left unchanged. (Remember that the sign bit of the B register
does not indicate the sign of the contents of the B register when it is used with multiplica-
tion or division instructions. Rather, it is a magnitude bit.)

The SLR instruction is used after a multiply or a divide instruction when it is
desired to round off the left and right half words to 15 most significant bits plus a sign
bit. Each accumulator and its respective B register is formed into a 31 bit shifting
register, with connections established so that the sign bit of each B register is connected
* to bit 15 of the corresponding accumulator register. As each shift is performed, the
contents of accumulator bits L1 and R1 are lost, and the contents of B register bits L15
and R15 are replaced with the associated accumulator sign bit. The contents of the ac-
cumulator sign bits are not altered by the shift operation. The shift left operation is
followed by the round-off operation (if required). For the round-off operation, the contents
of the combined registers are first put into positive form, and then a ¢“1”’ is added to
the contents of the accumulator if the associated B register’s sign bit contains a <17/,
The sign of the accumulator is then restored, and, finally, both B registers are cleared
at the completion of the instruction.

Execution of the SLR instruction can cause an overflow. The instruction, which
- is actually in the miscellaneous class, is designated by an octal operation code of

pg249.
TMU Instruction

The ‘“Twin and Multiply’”’ (TMU) instruction multiplies the left half word contained
in the specified memory location by the contents of the left and right accumulators.

Thus, the TMU instruction causes the left half word obtained from the memory to be
used as the multiplicand in both arithmetic elements. Execution of the instruction leaves

93

a 3¢-bit product plus a sign bit in each combined accumulator and B register. The
least significant bits of the products appear in the B register, but the least significant
bit of the B register (bit 15) is identical to the sign of the multiplier, and it is not
considered a part of the product. The sign of each product is determined by the usual
rule of algebraic signs.

INSTRUCTIONS FOR DIVISION -
DVD Instruction

The ¢divide’’ (DVD) instruction is used to divide the nun’l/ber in the combined
accumulator and B register by the number in the core memory location specified by
the address portion of the DVD instruction. The left and right half words are divided
into the contents of the 32-bit combined left accumulator and B register and the 32-bit
combined right accumulator and B register, respectively. The sign bit of each quotient
appears in the sign bit portion of the associated accumulator register, However, the
two unsigned 16-bit quotients appear in the associated B registers, and the remainders
appear in bits 1 through 15 of the associated accumulators. Generally, after each
division is executed, the SLR 15 instruction is used to move the quotient from the B
registers into the accumulators and to round off the result to 15 significant places
plus a sign bit (the maximum half-word length we can store in memory). The instruction
is indexable and is specified by an octal operation code of ¢_2_§_22

Up to this point, the problem of division in the AN/FSQ-17 has been described only
from the standpoint of actual execution of the instruction. However, you will recall that
the computer has been designed to handle only those numbers that fall between the limits
of +1 and -1. In multiplication, no difficulty was encountered because the product of two
fractional numbers is always another fractional number. But in division, the quotient of
two fractions may be a number larger in magnitude than the computer can handle, For
instance, the division of ‘‘.6”” by ‘‘.2"’ yields a quotient of ‘3", a number that exceeds
the -1 to +1 limits. Therefore, the programmer must make sure that the operator to
be used as a divisor is larger in magnitude than the dividend. (This arrangement will
" always ensure a fractional answer). If this precaution is not taken prior to a division
instruction, the results in the combined accumulator and B register may be meaningless.
Furthermore, division by zero is obviously as undesirable in computer operations as
it is in mathematics in general. The methods for scaling shown later will take care
of all this automatically.

TDV Instruction

The ‘‘twin and divide”” (TDV) instruction, which operates like all twin instructions,
uses the left half word contained in the specified memory location as the divisor for both
the left and right arithmetic elements. Execution of the instruction leaves an unsigned
- quotient of 16 significant bits in each of the B registers and the remainder and sign bit
of the quotient in each of the accumulators. Generally, the quotient must be brought into
the accumulator and rounded off to 15 significant bits before it is further manipulated
by the computer. This shifting and rounding operation is usually accomplished by a SLR
15 instruction,

94

The restrictions applicable to the DVD instruction also apply to the TDV instruc-
tion--dividing by zero is prohibited, and the divisor must always be greater in absolute
magnitude than the dividend. Consequently, both .the upper boundary of the dividend and
the lower boundary of the divisor must be known by the programmer. The TDV instruc-
tion is designated by an octal operation code of .§264f and is indexable.

MULTIPLICATION AND DIVISION
ADDITIONAL CONSIDERATIONS
Multiplication

In multiplying in the computer, you never have to worry about having room for
your answer, as you always multiply two 15 magnitude-bit half-words by two other 15
magnitude bit half words, and you have two 3¢ magnitude bit half words to contain your
answer (accumulator and B register combined). So the only problem is in getting the
real point of the answer in the place you want it.

When you multiply two numbers on paper, you count the number of fractional
(usually decimal) places in each of the two numbers, add these together, and mark off
this number of fractional places in your answer. The computer works in much the

same way, in effect - if you are multiplying two numbers, each scaled 21‘¢ m (5 fractional

places each) together, your answer will have 1¢ fractional places, which are marked
off from the right end of the B register, not counting the rightmost bit as a position,
because this is a sign bit. Therefore, your answer will consist of 26 whole number
places and 1¢ fractional places, or the real point will be 5 places to the right of the

left end of the B register. Therefore, if you want your answer to be scaled 21/5 m also,

you must SLR 1¢, to bring the real point back into the accumulator, 5 places to the left
of the right end. (Here you must be careful to make sure that your answer can be
contained in 1¢ whole number places - not when you multiply, but when you shift left -
after multiplying,)

Because the computer always contains leading zeros, you can also count the
number - of integral places in each number being multiplied, add these, and have the
number of whole number places in the answer. And because the number of integral
places is equal to the scaling exponent, in relation to the machine point, you can simply
add exponents and détermine the scaling of your answer. In the above case: 21 m X Zm =
22¢ m’ SO that immediately after multiplying, your answer is scaled 22¢ m (the real point
is 5 places inside the B register, as above). Therefore, if this time you want the answer

scaled 215m, you would have to SLR 5.
Example:

Given: A= 28

A < 25, stored in register 1¢g

95

B= 21¢Bm <_ 24, stored in register 1f1

Required: Multiply A x B and store the answer in register 102,
in maximum precision.
Solution: CAD 1¢¢
MUL 141
SLR 5
FST 1¢2
HLT

Explanation: Since we know the maximum of both numbers, we can multiply these
together and get the maximum for the answer, Doing this, we get: 25}! x24 = Gﬂﬂﬁo
We can contain 6@@f in 13 integral bit positions, so our final answer must be scaled

213m. Since in multiplying we can add scaling exponents to get the scaling of the result,

the multiplication becomes:

8 1

2°A x21¢B =28AB
m m m

-

18 m’ Ve must SLR 5.

To change 2 mtoz

13

Division

This also works much the same in the computer as it does on paper, as far as
scaling problems go. When you are dividing, you first count the number of fractional
places in the divisor, and then move the radix point that same number of places to
the right in the dividend, before dividing. The computer also does this, in effect; there-

fore, if you were dividing a number scaled 215m by one scaled 25m (1§ fractional places),

the computer would (in effect - remember that the computer does not recognize the
existence of the real point) move the real point lﬂ places to the right of its original
position ~ in this case, to 1¢ places inside the B register. This can be thought of graphi~
cally as follows (using a different example, and 8 bit registers):

[11p.p0000
[_ng_@,cl_mln [dgg11p11, | ggg godep|

Memory Reg. Accumulator B - Reg.

(There is of course only one B register: it is shown above to indicate its change
of function during division: first it contains part of the dividend; then the quotient).

Note that during the course of the division, the computer has effectively moved
the real point 3 places to the right of its original position in the accumulator, because
the divisor has three fractional places. Note also that the dividend originally had 7
integral magnitude bits (the 8th bit is the sign), whereas the divisor had 4. The quotient

96

has 3 integral magnitude bits (there is no sign bit in the B register after a division),
which is equal to the difference between 7 and 4. Since the number of integral magnitude
bits is equivalent to the scaling exponent, we find we can subtract scaling exponents
in division to determine the scaling of the quotient. Thus:

3
2'x = 2 x/ym

The above example also serves to point out the chief difficulty involved in scaling
numbers for division within the computer; the quotient must be able to fit within the B
register. In the above case, for instance, if the number in the accumulator happened to be
placed one bit position to the left of its present position before division, there would not
be room in the B register for the most significant bit of the quotient, and the answer
would be anvalid. (In this connection, note that in addition, subtraction, or multiplication,
if you do not allow sufficient room for your answer, you will merely lose the most
significant bits; whereas in division, because of the manner in which the computer
works, you will not actually lose any bits, but your answer will be completely invalid),

Therefore, before dividing in the computer, you must always determine the largest
possible size of your result, and if necessary shift the dividend (or in some cases, the
divisor) before dividing so that the quotient will fit within the B register. For instance,

if you divide a number scaled 21¢ m by another also scaled 21 m’ without shifting first,
your answer will be scaled Zﬂ m (in the B register; e.g., the real point will be at the

extreme left end of the B register, immediately after dividing). Therefore, unless you
knew the largest possible answer was less than 1, the results would be invalid. In this

case, if you knew your answer would require 1}6 integral bit positions (2m m) you would
have to shift the dividend right 1 ,6 before dividing,

In shifting before dividing, it isa good idea, unless you have just finished a multipli-
cation operation, and therefore know what is in the B register, to DSR 16, then DSL x
(x = 16 - the number you would normally DSR) before dividing, to make sure that the
unused portion of the B register contains sign bits. In the above example, this would
be DSR 16, then DSL 6 (which puts the real point in the same place that a DSR 1}1 would),

Because the quotient, after dividing, is contained wholly in the B register (and is

scaled in relation to it), you will normally SLR 15 at the end of the operation to put it
wholly in the accumulator.

Example:
Given: A< 1f= 24Am, stored in register 1gg

1 << B << 20 = 25Bm, stored in register 1¢1
c << 3p= 260m, stored in register 1§2

1< D<<4f- 27Dm, stored in register 143

97

Required: Compute A

B x C
D , and store it in register 1§4 in

maximum precision.

Solution: CAD 10¢
DSR 16
DSL 11
DVD 141
SLR 15
MUL 192
DSR 6
DVD 1¢3
SLR 15
FST 194
HLT

Explanation: The largest possible magnitude of A/B is 1§, which must be scaled
24m. A straight division would give an answer scaled Z_Im (4 - 5=-1),s0 before
dividing we must shift right 5 (DSR 16, then DSL 11); now the answer will be scaled
24m. We then bring the quotient back into the accumulator with a SLR 15. When we
multiply this result by C, scaled 26m, the answer will be scaled 21" m (4+6= 1}6).
Since the largest magnitude we could have is 3¢¢ (3¢ x 1¢), we could scale it ng.

However, it would do us no good, because we would have to immediately shift it right
again for the next division; therefore, for the time being, we leave it where it is, scaled

Zwm. The largest number we can get from dividing this result by D is 3¢¢, which

needs 9 whole number places, If we divided without shifting, the answer would have only
3 whole number places (195 - 7); therefore, we must first DSR 6, to insure that the
answer can be contained within the B register. Note that this time it is unnecessary to
DSR 16 and then DSL 1@, because we know what is in the B register, and in fact want to
use part of it,

I you want to set up scaling equations for division, a good way is first to set them
up as an inequality and then see what must be done to the dividend to make the inequality
equal (or in occasional cases, to the divisor); because to start with you know the scaling
of both the dividend and the divisor, and must also know or compute the necessary
scaling of the quotient. The first division in the above problem, then, could be set up as
follows:

24Am 4
— ¢ 2°A/B_,
2°B

m

We can see that to make this an equality, we will have to change the scaling of A to

29Am, which may be done by a shift right of 5.

98

RELATIONSHIP BETWEEN ITEM, MACHINE, AND REAL POINTS

Of the three reference points in the AN/FSQ- 7, only the machine point is always
in the same place; both the item point and the real point may be moved by the program-
mer. The machine point is also the only actual point; both the others are imaginary and
exist only in the mind of the programmer (and in his notes).

. The real point, then, can be moved at will by the programmer (in an item he has
control over) if he merely decides it is now in a different place, and changes his concept
of the scaling and magnitude of the item accordingly. For instance; assume that the
binary number @111@111 is in an 8 bit (1st bit = sign) register in a computer, and is

scaled 24m. The real point is therefore as shown: ﬁlllﬂ.l 11, and the number represents
14,875 decimal. If you were to move the real point one place to the left, you would have
P111.¢111, which is now scaled 23m, and represents 7.4375 decimal, even though the

actual bits within the computer remain unchanged. Note that by moving the real point one
position to the left, we effectively divided the number by 2 (and changed the scaling).
(This change in magnitude is the reason we did not move the real point this way up to
now,) :

The item point, because it is always just to the right of the rightmost bit in an
item, is a little less flexible. We can move it, but to do so we must either shorten or
lengthen the item, or shift the actual binary bits of the item within the computer, This
is best covered in the next section.

Shifting

So far, we have been using shifting only as a means of changing the machine point
scaling, and have not thought about whether we were changing the position of a whole
item along with that of the real point, or whether we were only shifting the bits of an
item (and the real point) within the limits of the item. Actually, to change machine
point scaling, we can do either of these; however, it is important to recognize the
~ distinction.

Let us consider the case of a 5 bit item at the right end of the accumulator, scaled

2415 (real point and item point in the same place): g@gggegdddp _ If we shift
this left two, we can think of it as keeping the item (and item point) in the same place,

and moving the bits and the real point, so we have now: #gggggdgssg [1gg.99 | , which

-2
is scaled 2 15°

Another way to think of this same shift is that it changes the position of the item
point, real point, binary bits, and the position of the item within the register all at once,

so.that our result is ggddgdgpp [9919@.] @@. The scaling started as 2-" 15.2nd is
- s
now 2 132 SO that the scaling of the item within itself (to the item point) has not changed.

99

It is important to realize that the choice of what this shift actually does is completely
up to us, because the computer doesn’t even know there is a real point or an item
point within it.

Thus, we see two uses of shifting: to change the scaling of an item, or to simply
move the item from one place to another. There is one more major use: to multiply
the item by a power of two, without changing the scaling or position of the item.

Using the same item and the same shift asv above,v we this time think of it as
keeping the item and real points stationary, sothe word becomes: podpapseHty 18888, 1
We have effectively multiplied the number by 22 (a shift left of threé would multiply
it by 23; a shift right of three would multiply it by 2-3, ete.). Originally we had x = 2 X5
we have multiplied both sides of this equation by 22, giving us 22X= Z-ﬁ X15° (before
shifting); we then change the right hand side of this by shifting left two, which gives us
2% = 2~¢x - S0 the number has been multiplied by 4.

15’
Example:
Given: A = 28Am, in bit positions 1 - 14 in the accumulator
Required: Generate one shift instruction that will multiply A by 4,
move it into bit positions 2 - 15, and change the scaling
to 211A .
m
Solution: ASR 1

Explanation: The real point in this item is between bit positions 8 and 9, as given
in the scaling notation. We can multiply the item by 4 simply by moving the real point
2 places to the right, so it is now between bits 1¢ and 11. To move the item into positions
9 - 15 we must ASR 1, moving the real and item points at the same time, so as not
to alter the magnitude of the item. The real point is now between bit positions 11 and 12,

which is where we want it, because this represents a scaling of 211Am. This could be

shown in scaling notation as follows:

Originally: A= 2‘6A1 .
Multiply by 4: sa=2",
Change position (ASR 1): 4A = 2"4A15

We could have also multiplied by 4 by shifting the item left two, keeping the real
and item points stationary. However, by so doing we would have lost 2 bits out of the
left end of the accumulator, and would still have had to shift right 3 to change the
scaling to the desired value.

100

Adding Items with Different Scaling

It is possible to add items that are not scaled the same directly, without shifting,
However, since the real points must still be lined up, we would have to move the real
point in one or both of the items first, thus changing the magnitude of the items. For
example, 21«’Am + 28Bm could equal either 21¢ (A +4B)m, 28(A/4 + B)m, or even

29(A/ 2 + 2B). This may sometimes prove useful.

SUMMARY

There are many different valid concepts of scaling; we have presented only one
or two of them. It is expected that once you become familiar with the subject, you will
develop your own methods. However, whatever method you use, you should make sure
that you understand exactly what happens to the effective position of the real point during
each computer operation; otherwise the subject will never be completely clear to you,

101

CHAPTER 10
COMPARE AND TEST BITS INSTRUCTIONS

Many operations in programming depend upon logical comparisons. This chapter
will present the aid instructions of the compare class, and two test bits instructions.
With these instructions, the programmer will be enabled to make logical comparisons
and thereby alter the course of program flow.

TEST BITS INSTRUCTIONS

The following two instructions ascertain the contents of one or two particular bits
in memory. For these instructions, the contents of the accumulators and the B registers
are irrelevant, and these registers are not altered. :

TOB Instructions

The TOB (Test One Bit) instruction tests the memory word specified in the director
portion of the instruction. It tests the particular bit specified in the aux columns, which
are coded in decimal. The aux columns will therefore contain a number between @ and
311¢. If the bit tested is a zero, the instruction takes no special action. If, on the other

hand, it is a one, the next instruction will be skipped (i.e., an extra ‘‘one’” will be added
to the program counter). As noted above, neither the accumulators nor the B registers
are tested or altered.

The TOB instruction has a special coding provision should the director specified
on the coding sheet be an item. In this case, the bit specified in decimal in the aux
columns will be the relative bit position within the item. Bit numbering within an item
starts with @ as does the numbering of the bit positions within the entire computer word.

TTB Instruction

The TTB (Test Two Bits) instruction tests two bits within the memory word
specified in the director portion of the instruction. It checks the bit specified in the aux
columns, which are coded in decimal, and the bit to its left. Depending upon the binary
contents of the bits tested, an equivalent number of instructions will be skipped. For
example, if the bits tested contain 112, three instructions will be skipped. Should the

bits tested contain ¢¢2, no instructions will be skipped.
If the bits specified in the aux columns happen to be @g or 16 (that is, LS or RS)

only the bit specified will be tested. The instruction will then have the action of a TOB
instruction.

There are also special coding provisions for the TTB instruction. Should the

director specified on the coding sheet be an item, the bits tested will be that relative
bit position within the item specified in the aux columns and the bit to its right.

102

Assembling the Test Bits Instructions

You will note on your Programmer’s Card that the octal codes for the test bits
instructions are listed differently from those of any other instructions in the repertoire
of the AN/FSQ-7. Specifically, the TOB (Test One Bit) instruction is shown as having
octal codes ranging from ‘‘§5@@ to #537”’. This means that the instruction’s octal code
is actually of the form @5, similar to that of the BPX instruction. Bits L16 through
L15 of the instruction, which correspond to the two least significant octal digits of the
LHW, are used to specify the bit which will be tested in the memory word. Obviously,
the ¢¢8 through 37, correspond to the ﬂﬂm through 311¢ by which the programmer

specifies, in the aux columns, the bit to be tested.

The TTB (Test Two Bits) instruction is shown on the Programming Card as having
octal codes ranging from “@54f to @#577"’. The least significant two octal digits again
specify the bit to be tested. Of course, this instruction will actually test two bits, the bit
specified and the bit to its left. Again, a correspondence exists between 4¢8 through ’778

and ¢¢1¢ and 311¢. If one were manually assembling a COSEAL-coded program which

employed a TTB instruction with an item director, several translation processes
would have to be made. The aux columns would have been coded in decimal, and the bit
specified would have been the leftmost of the two bits. ’

S

Examples of Test Bits Usage

Refer to Figure 10-1, where you will find program TEST. The first instruction
in this program will bring a +.87, -428 into the accumulators. For tracing the course
of subsequent program flow, this fact is irrelevant. The next instruction tests bit 151 g

of memory location @1A, Depending upon the contents of that bit, the program may or
may not skip the first of the subsequent two HLT’s. We see that the left half word of
location @1A contains an octal positive zero. Therefore, the bit tested will be a zero, and
the next instruction will not be skipped. This means that the program will come to a halt
at the first of the two HLT instructions. Since the program does not contain a LOC card,
it has been assembled for location 3@, and therefore the HLT instruction at which the
program halts will be at location 3@2. The program counter will thus contain 3@3 when
the program halts.

LOCATION fa c(())gs AUX|RC WORD |ADDRESS [+ ycp.
1819120 21 22|23 24 (25 |26 27] 28] 29 -30 31132] 331341 35)36 (37 38?39 40{41 42143 44?45
IDT | |- TSYBIT| |
CAD| | |+.8/7] | |- | 428 | '
TI0B(1[S gap | [[
HLT| | ; ’
HLT !
4R @ 21]
l END| | | | :’

Figure 10-1, Example of TOB Instruction

103

Figure 10-2 contains an example of the action of a TTB instruction. The instruc-
tion has been coded using an item director, and therefore the bits tested will be the rela-
tive bit position specified within the item and the bit to its right. Specifically, we are
testing bit ¢41¢ of item MESS in location MESS +1. Since MESS is in table TRY#,

location MESS + 1 will be memory address 1¢¢18. Figure 10-3 shows an expanded

view of the left half word of that memory location, and the bit positions of item MESS
have been specifically noted. We see that the bits tested contain a ¢12, and therefore

one instruction after the TTB instruction will be skipped. The program will therefore
branch to location BB and halt. Since location BB will be assembled for memory address
3017, the program counter will contain 31¢ when the program halts.

LOCATION |a C%EE aux.| RC WORD |ADDRESS [+ ycq
18119] 2021 2212324 25‘26]27 28]29 ‘30 31} 32] 33(34| 3543637 38}r39 40%41 42143 44345
T TST2eT | |
TRY® | |[TIC 2l | 104dd
ElSS | IC P07 8(TIRY®
CRD ImElSIS|
ES T T8y ImEls'S| | [+ | 4
1BPX AR 3
B ' BB
ﬁL e |
0
BB HiL
ciC RLT
Lio¢ 1000
6%331 -]
giS|5Is|HH 15|72
END

Figure 10-2. Program Showing Example Actions of TTB Instruction

oomterte ot ooy gl 515 | 515 [4
wss + 1 bery |glalglal1]gfa[a]@[11/@/@1i0'8

Relative Bit Posi- 21234856

tions of item MESS
§1 92 83 B4 95 S6 A7 B8 £9 10 11| 12 13} 14 15

Bits
Tested

Figure 10-3. Expanded View of Left Half Word of Register MESS + 1

104

COMPARE INSTRUCTIONS

The eight instructions known as the ‘‘compare’’ instructions enable us to check
various numbers of bits in the accumulators against the corresponding bit positions
of the specified memory location. If the bit or bits checked in the accumulator do(not
compare exactly with those in memory, these instructions take no special action.
Otherwise, should an exact comparison exist, the next instruction will be skipped.

CMF Instruction

The CMF (Compare Magnitude Full) instruction compares the entire contents
of both- accumulators with the contents of the entire specified memory location. As
noted above, if a comparison is made, no special action is taken; otherwise, the next
instruction will be skipped.

CML Instruction

The CML (Compare Magnitude Left) instruction performs a comparison on the
left accumulator and the left half word of the specified memory location only. Right
half words are not examined.

CMR Instruction

The CMR (Compare Magnitude Right) instruction compares the contents of the
right accumulator with the right half word of the specified memory location.

These three compare instructions perform a comparison and do not alter the
contents of either the accumulators or the specified memory location. The next three
instructions not only perform comparisons but also execute a subtraction as well,

Compare and Difference Instructions

As stated previously, the actions of these instructions are twofold. First, the
three compare and difference instructions perform a comparison of exactly the same
sort as do the corresponding compare magnitude instructions. That is, for example, the
 CDR instruction first compares the contents of the right accumulator with the contents
of the right half word of the specified memory location. If a comparison is made, no
special action will be taken at the conclusion of the operation of the CDR instruction.
If a comparison is not made, at the conclusion of the operation of this instruction the
next - instruction will be skipped. Another way of stating this is: if no comparison is
made, a ‘‘one’’ will be added to the contents of the program counter. As with the execu-
tion of any instruction, the program counter already contains the address of the next
sequential instruction. By adding a one to the program counter, the computer ensures
that the next instruction will be skipped.

After the appropriate comparison is made, whether it be a CDF, CDL or CDR
instruction, a subtraction will next be performed. The contents of both accumulators will
be subtracted from the contents of both half words of the specified memory location.

A ccomnaloton /«M 77%%7

105

Even if, for example, only the right half words were compared, as in the action of a
CDR instruction, nonetheless the subsequent subtraction will be made in both accumula-
tors. The results of the subtraction are left in the accumulators, and the specified
memory location is left unchanged. It is very important to note that the subtractions
made by the compare and difference instructions are a reversal of the normal action
of subtraction in the Q-7. Normally, the contents of memory are subtracted from the
contents of the accumulator. You will note from the above that this is not true in the
case of the compare and difference instructions. '

Maskable Compare Instructions

The CMM (compare masked magnitude bits) instruction permits us to perform
comparisons on selected bit positions. By the action of a prior instruction (probably
an LDB), the programmer will have loaded a mask into the B registers. The actions
of a subsequent CMM instruction are as follows:

(1) The masked bit positions of the accumulators (that is, the bit positions where
the equivalent B register bits contain a ‘“1’’) will compare with the equivalent
bit positions of the specified memory location. If a comparison is made, no
special actions will be taken. If no comparison exists, the next instruction
will be skipped.

(2) After the comparison is performed, the accumulator’s unmasked bit positions
will be filled with ‘“one’’ bits.

(3) The specified memory location and the B registers are not altered by the CMM
instruction,

CDM Instruction

The CDM (compare and difference masked magnitude bits) instruction initially
performs the actions of a CMM instruction. It then attempts to perform a subtraction
in the masked bit positions. However, because end carry circuits have only been built
into LS and RS, the actions of this instruction are usually not useful to the programmer.
Under special circumstances, this instruction could indeed be used; but when one
considers the amount of time necessary to predict the actions of this instruction, it
would seem wiser to use more straightforward programming methods. For the reader
who enjoys trivia and would like to spend a considerable amount of time poring over
Q-7 circuit diagrams, it can be shown that it would have actually required extra wiring
for the Q-7 not to have this rather useless instruction in its repertoire.

106

CHAPTER 11
MACRO AND COMAND COMPILERS

COSEAL’s program Translator contains two relatively advanced capabilities not
often found in assembly programs. These are the MACRO and COMAND compilers.
By invoking the use of these compilers during the assembly process, the usual assembly
rule of one line of coding yielding one instruction output may be broken. MACRO com-~
piler enables the programmer to get a repetition whenever and wherever in his program
he may wish of any frequently used set of instructions. COMAND compiler enables
the programmer to avoid entirely the busy-work coding involved in many frequently
found operations.

MACRO COMPILER

Frequently, a programmer uses the same set of instructions many times in a
program such as:

ADX Loc1l
STA Loc 2

varying only the parameters (loc 1, loc 2 in this example) with each use. Any such
sequence may be defined by the programmer as macrocoding. To form a macro defini-
tion of the above example, one would do the following:

TOP TAG1,TAG2$ (macro definition)
ADX TAG1

STAA TAG2

BOT

This macro definition consists of the following:
1. 1st Line
Cols. 18-22 - Name of Macro containing up to 5 alphanumeric characters.
Cols, 25-27 - TOP
Cols. 3¢-69 - TAG indication of 1st Col. where parameters are to be inserted.
2. 2nd Line - Next to Last Line (skeletal portion of macro definition)
Cols. 18-45 -~ Use regular symbolic coding, Wherever the programmer desires

to have the coding variable he should place a parameter tag in
the 1st col. to be altered.

3. Last Line

Cols. 25-27 - BOT - Not a part of the skeletal portion of a macro definition.
Just serves as a termination indicator. Non-generative, yielding
no assembly output,

107

Rules for the Naming of Macros

They must be one to five alphanumeric characters and must begin in column 18.
They may not consist of all numbers. Macro names are kept in a special table. They
will not conflict with internal program tags, compool overrides or compool tags. Macro
names should not have as their first three letters any Q-7 instruction or COSEAL
assembly instruction. (i.e., IDT, LOC, SKP, CAD.)

Rules for Parameter Tags

They may be one to five alphanumeric characters. They may not contain spaces
or special characters such as dollar signs, commas, ete. If the parameter tag is only
one character long, which we will see later on is a good policy to follow, it may not
be A,B,C,D, E, 1, 2, 3, 4, or 5.

On the 1st line of a macro definition:

(a) 1st parameter tag must begin in Column 30

(b) a comma must separate parameter tags.

(c) Parameter tags must be terminated by a $ - very important, if not terminated
by a § program won’t be assembled properly.

(d) Parameters must be terminated by Column 69, They can’t begin again in
Column 3@ of the next line.

Within the Skeleton:

(a) Must agree with a tag in Columns 3@-69 of 1st line of macro definition.
(b) Must fall completely within one of the following fields:

(1) Cols. 18-22
(2) Cols. 25-29
(3) Cols. 38-35
(4) Cols, 36-41
(5) Cols, 42-45

In the event Columns 25-29 do not agree with a parameter tag in Columns 3}6—69
of 1st line of definition, this field is broken up further: '

(a) Cols. 25-27

(b) Cols. 28-29

In the event Columns 42-45 do not agree with a parameter tag in Colums 3@-69

of 1st line of definition, this field is broken up further:

(a) Cols. 42
(b) Cols. 43-45

108

(An example of the importance of the above -- if you have 31, as a parameter
tag in Columns 3@-69,and as a skeletal instruction you have a POS31,then this 31 will
be considered as a parameter tag -- Translator will assume that this is what is desired.)

All macro definitions should appear at the top of the program, but in any event
they must appear before any call is made on them, the definition of the macro is itself
non-generative. :

Macro Calling Instructions

Now if the name ADXS in columns 18 through 22 of our initial example were placed
in columns 25 through 29:

ADXS 1004A,100B$ as a macro calling instruction -~ would cause the
following coding to be generated in its place:

ADX 106A * ADXS 100A,100R$
STAA 199 *

An asterisk will appear in Column 46 of the listing to indicate generated coding.
(This asterisk also appears in Column 46 for COMAND type pseudo instructions.) The
original macro calling instruction will appear in the comments Columns of the listing.
‘The programmer’s own comments will also appear in the listing, although it may be
~ necessary to place part of the comments on a 2nd line of generated listing. To be safe,
the programmer should put any comments in a skeleton on the 3rd line. (These com-
ments should be started in Column 47. Don’t use Column 46.)

Rules for Substituted Values

Substituted values may be one to thirty characters in length. They may be larger
than the parameter tags they replace, but they cannot be smaller. The first value must
begin in column 3¢, and the last value must be terminated by column 69, They may not
begin again on the next line. The values must be separated by commas and terminated
with a dollar sign. You don’t have to consider the size of the values supplied the last
time a particular macro was called. One always receives a fresh copy of the particular
macro skeleton being called. If you don’t furnish a value large enough to cover a para-
meter tag, that portion of the tag not covered will remain and will in most cases cause
an error.

All calling macro instructions with any parameter values supplied will appear
in the comments columns in the final listing. The programmer’s comments will not be
lost. In the final listing the programmer will have the original definition, his macro
calling instruction, and the altered skeleton (in symbolic -~ and octal),

109

Examples of MACRO Usage

MACSX TOP F,G,X,G$
CAD F
SUB G
X H SUBTRACTION
BOT

If the above macro definition had been included with macro definitions following the
IDT card, then the following macro calling instruction:

MACSX 1¢A,3D,BPX,180BC$ SUB THEN GO TO END

would cause these instructions to be generated.

CAD 16A * MACSX10A,3D,BPX,100BC$ SUB
SUB 3D * THEN GO TO END
BPX - 199BC * SUBTRACTION

Another example of a macro definition:

TT TOP ITEM,LYY,F,G,H,X,J$
ITTBYY ITEM
BPX
BPX
BPX
X
BOT

o Qo

This combination of instructions was used 30 times in one DCA program,. If this pro-
grammer defined macro had been placed after the IDT card, then its sketetal portion
(symbolic coding between TOP and BOT) could be called forth with but a single macro
calling instruction each time it was necessary to use this set of instructions,

TT CMOD,3,02,40G,40G,44A,BPX,40B$ (macro calling instruction) would cause to
be generated:

3TTB@2 - CMOD * TT CMOD,3,02,40G,40G,44A
BPX 460G * BPX,40B$

BPX 40G *

BPX 44A *

BPX 40B *

s

TT TPOS,1,31,37G,37K,37N,FST,10B$
(referring to same macro definition)

would cause to be generated:

110

1TTB31 TPOS * TT TPOS,1,31,37G,37K,37N
BPX 317G * FST,10B$
BPX 37K *
BPX 37N *
FST 10B *

TT ¢¢¢5¢¢,2Bpx,¢1,37G,37K,37N,HLT,¢¢¢$

would cause to be generated:

2BPX#1 pe650d * TT @@g508,2BPX,01,37G,37K,37N,
BPX 37G * HLT,d00$
BPX 37K *
BPX 37N *
HLT gog *

Now to show some errors with the same macro definitions,
TT 1fA,1 ,2,37G, 37N,HLT,0gd$

would cause to be generated:

1 TB2Y 1AM * TT 16A,1 ,2,37G, S37N,HLT,0p0$
BPX 37G '

BPX 3N

BPX HLT

gog

The errors in the above example are as follows:

Number 1. The first parameter value supplied didn’t have enough characters
to cover its parameter tag. (Inthis case ““ITEM’’). If the parameter tag is four characters
in length, then the value supplied must be at least four characters long so that it will
cover it, (It is unlikely that the programmer expected to come up with the tag 1AM,)

Number 2. The second parameter value supplied was followed with a space (‘“1’),
This space erased the initial ¢“T”’ of the TTB instruction.

Number 3. The third parameter value supplied (““2”’) didn’t have enough characters
to cover its parameter tag (‘‘YY”’). :

Number 4. The fourth parameter value for parameter tag G was left out, As a
result Translator considered that:

37N - was the parameter value for 5th tag (G)

HLT- was the parameter value for 6th tag (H)

gp@ - was the parameter value for 7th tag (X)
No parameter value given for 8th tag (J). Translator would insert columns after the
$ (in this case, spaces).

111

COMAND COMPILER

A COMAND pseudo instruction generates a sequence of COSEAL-format Q-7
instructions which will:

1. SET (set) expression 1 to the value specified by expression 2,

2. TST (test) expression 1 for the value specified by expression 2, and if found
branch to the location specified by expression 3. Expression 3 must be a DDL (digit,
digit, letter) location tag.

3. SCH (search) expression 1 for the value specified by expression 2 and if found
branch to the location specified by expression 3. Expression 3 must be a DDL (digit,
digit, letter) location tag. Expression 1 must be indexed, and the search instruction
will generate a conditional BPX to search through expression 1 on the basis of the cited
index register. The programmer must have previously loaded the cited index register.
Remarks Format

1. Op Code Cols, 25-27

The requested fuhction (SET-TST-SCH) will occupy Columns 25-27. This is
in accordance with COSEAL format.

2. Parameter Cols. 3¢-80

a) Expression length is variable, and will occupy from 1 column minimum
through 16 columns maximum.

b) Each expression must be separated by one or more blank columns.
¢) The first expression (Expression 1) must begin in Column-30.

d) A period or $ must immediately follow the final expression (Expression 2)
for a SET function -- Expression 3 for a TST-SCH function,

The Five Expression Types
Expressions 1 and 2 may be of one of the following 5 varieties:

Constant (K)

A decimal value is specified by a + or - sign, followed immediately by 1 (min.)
decimal digit through 5 (max.) decimal digits.

e.g., 1) +0
2) -
3) =249
4) +5896
5) =32767

112

An octal_,ﬁ value is specified by 1 (min.) octal digit through 6 (max.) octal digits.

eg.,, 1) #
2) 1777
3) 5246
4) 37
5) 431

NOTE: A constant (K) expression must not be indexed and/or incremented, nor
may it designate any bit positions. If the K value is in error such as a (9)
in an ‘octal value the director will be left as () without an error mes-
sage bringing this to your attention.

Item (I)
The item specified may be indexed and/or incremented. (Don’t refer to bit positions):

If indexed, a digit followed by a comma (the index register specified) must im-
mediately precede the item.,

If incremented, the item is immediately followed by a + or - sign and 1 (min.)
decimal digit through 3 (max.) decimal digits (no leading zeros are necessary), '

Do not refer to bit positions within an item.

eg., 1) 2,TIDYH4
2) 5,TPOS+999

3) 4,MVEL-8
4) NAUK+29
5) NACJ

" 6) 1,TVEL

Location (L) in Expressions 1 or 2

The location specified may be indexed and/or incremented. It may also designate
first and last bit positions (if the other expressicn, 1 or 2, is an item then one can’t
designate first and last bit positions of a smaller size than the item):

If indexed, a digit followed by é comma (the index register specified) must im-
mediately precede the location, '

If incremented, the location is immediately followed by a + or - sign and 1 (min.)
decimal digit through 3 (max.) decimal digits (no leading zeros are necessary).

If first and last bit positions are designated, a comma immediately follows the
location - or the final increment digit, if incremented. If the other expression, 1 or 2,
is an item then bit positions can’t be designated which are smaller than the item size.

Immediately following the comma, that part of the expression which designates
bit positions may take one of two forms:

113

a. It may be composed of 4 letters which represent a legal compool item or,

b. It may be composed of 1 or 2 decimal digits (first bit position) followed im-
mediately by a slash (/) which is immediately followed by 1 or 2 decimal digits
(last bit position). No leading zeros are necessary. The location, itself, may
be a tag (internal, table, or program) or in absolute form (octal or decimal).
An absolute location cannot be distinguished from a constant; therefore:

The expression must be indexed, and/or,

The expression must designate bit positions.

No deviation from these requirements is permitted; however, (a) and (b) above do
not apply to a branchpoint (Expression 3).

e.g., 1) 1,10A,0/4
2) 1,10A,TIDY
3) TBL@+19,16/31
4) TBL@+19,NNML
5) 5,TPY@+128,0/15
6) 5,TPY@+128,STTN
7) SCX
8) 2,1500,15/19
9) +512,SCAL
10) +512,22/31
11) 1,10809
12) 1#p@g,8/15
13) 1¢¢@P,KUHK
14) 1,+125

Accumulator (A)

The accumulator is specified by the letter ¢“A’’, and occupies 1 column, unless it
designates bit positions,

If first and last bit positions are designated, a comma immediately follows the
¢«pA”, If the other expression, 1 or 2, is an item then one can’t use bit positions of
smaller than the item size.

Immediately following the comma, that part of the expression which designates bit
positions may take one of two forms:

a) It may be composed of 4 letters which represent a legal Compool item, or,
b) It may be composed of 1 or 2 decimal digits (first bit position) followed by a

slash (/) which is immediately followed by 1 or 2 decimal digits (last bit position).
No leading zeros are necessary.

114

e.g.,

Index Register (X)

1) A
2) AQ/9

3) A,HSAK
4) A,19/31
5) A,TRCL

6) A,8/5

7) A,FSFL
8) A,18/18

An index register is specified by the letter ‘‘X’’ followed immediately by a digit
designating which index register is required.

This expression always occupies 2 columns.

e.g.,

General Remarks

1) x1
2) X2
3) X3
4) X4
5) X5

COMAND does not check for size of a value. If Item 1 is to be set with Item 2,
Translator will obtain Item 2 and fit as many bits as will go into Item 1. If Item 2 is to
be set into bit positions of a location the overall size of Item 2 will be used:

TST I K L§

SET I, I, §

TST X2 K L§
TST 10A6/4 L L $
TSTIL L §

TST L A,5/9 L §

If the constant (K) is too large for the Item (1) then just
those bits within the Item size are tested.

If 12 is larger than 11, only those bits which can be placed

within I will be deposited. A good rule of thumb here is
that the 2nd expression is cycled to the position of the first
expression and deposited using mask of 1st expression.

_ JNK@ register is used to store contents of index registers

in your program.

First expression here is cycled to position 31. (X, L, and
A are considered as being positioned at bit 31).

Cycles the 2nd expression to the position of the 1st ex-
pression and uses most of the item,

The 2nd expression is cycled to position 31 of the first
expression and most of the 1st expression is used (g-31)
therefore results will be a CMF instruction without any
extraction.

115

General Rule 2nd expression will be cycled to position of the 1st ex-
pression. Mask of 1st expression will be used (unless
1st expression is not an item and 2nd expression is - then
mask of item will be used). ~

TSTIX L $ Position X to I and use UNKS to store index register.
In testing an item if the value K fills the item a (CSUf)
will result in order to save an RC word.
A location tag can be used with a COMAND pseudo instruction..
Example: 1fA SET 2,TSTS -§ $
It is also possible to use comments following COMAND expressions. (Up to Col. 67),
Example: 1PA SET 2,TSTS -9 $ TSTS NOT FINISHED.
Translator will move the COMAND pseudo instruction, COMAND expressions, and
programmer comments into the comments field on final listing. If there isn’t enough

room on one line part of the comments will be placed on the next line (in comments
field). ,

116

CHAPTER 12
MISCELLANEOUS INSTRUCTIONS AND COMPUTER INSTRUCTIONS
MISCELLANEOUS PSEUDO INSTRUCTIONS

"HOL Instruction

The HOL (Hollerith) instruction generates inverted six bit Hollerith data words
at the point in the program where the HOL pseudo instruction appears. The five alpha-
numeric characters appearing in columns 36 through 4@ will be translated into inverted
six bit Hollerith, Only six special characters may be used: the dollar sign, the plus sign,
the minus sign, the comma, the asterisk and the period.

If one coded HOL ABCDE, then COSEAL would generate a register at that point in
the program which contained 153514, 1713@4 for the left and right half-words respec-
tively. If one looks up the inverted six bit Hollerith for ABCDE, inserts the code for

‘“E’ in bits @ through 5 of the computer word, the code for ““D”’ in bits 6 through 11, etc.,
one will arrive at the above octal contents for that memory location in the program,

PGM Instruction

The PGM (program) pseudo instruction will generate, in the register in which the
PGM instruction appears, the 6-bit inverted Hollerith ident of the program as it appears
in the IDT card. The format will not be the same as that of the HOL instruction, but will
separate the program ident from the program mod. The format is as follows:

Bits 0-17 will contain the 6-bit (inverted) Hollerith coding for the three charac-
ter ident (reading right to left).

Bits 18-29 will contain the 6~bit (inverted) Hollerith coding for the two charac
ter mod (reading from right to left), _ :

For example, if the IDT card of the program was punched:
DT ABC DE
the PGM instruction would generate the Hollerith code in this order:
CBAED bits 30 and 31 will contain 00.

PGM cannot be used in or with an RC word,

WRD Instruction

: The WRD (word) pseudo instruction is used with two symbolic location tags. The
address of the tag in the RC field is placed in the left half word and the address of the
tag in the director field is placed in the right half word of the program location at
which WRD appeared. Only 16 bit addresses will be handed correctly.

117

MISCELLANEOUS Q-7 INSTRUCTIONS
Absolute Value Instructions

The CAM (Clear and Add Magnitude) instruction replaces the current contents of
the accumulators with the absolute value of the contents of the specified memory loca-
tion. Memory and the B registers are unchanged.

DIM Instruction
The DIM (Difference in Magnitude) instruction performs two primary actions:

(1) A copy of the contents of the accumulators replaces the current contents
of the B registers.

(2) The absolute value of the contents of the specified memory location is sub-
tracted from the absolute value of the contents of the accumulators. Results
are left in the accumulators, and the content of memory is unchanged.

The actions of the above two instructions are indicative of one of the ways in which
the Q-7 shows itself to be other than a general purpose computer., Because air defense
is intimately concerned with coordinate manipulations, and because the programmer
is often concerned with differences in length between coordinates regardless of resultant
direction, these instructions were built into the repertoire of the Q-7. It is obvious,
however, that there are many instances in general mathematical manipulation where
these instructions could be utilized. ‘ ’ ‘

CAC Instruction

The CAC (Clear and Add the Clock) instructions is one of only two instructions
by which one can access or affect the real time clock register. The other instruction,
PERI14, is used for specialized test purposes and will not be considered.

First, we will discuss the configuration of the clock register itself, Essentially,
it is a 16 bit binary adder. It is pulsed 32 times per second, each time the computer
adding ‘‘one’’ to its least significant bit. Note, that all of the bits in the clock register
are magnitude bits; there is no initial sign bit. Since the least significant bit position
receives a ‘‘carry one’’ pulse 32 times per second, we may say th~t the scaling of the

clock register is 2-5, in units of seconds.

The CAC instruction initially clears both accumulators. It then brings into the
" right accumulator a copy of the current contents of the clock register. It should be
noted that the most significant bit position of the clock register will be brought into
RS of the accumulator. Manipulations upon this data word now in the right accumulator
must be made carefully since most Q-7 instructions will manipulate the right accumu-
lator’s most significant bit as a sign bit.

From the above discussion, one can deduce that the contents of the clock register
bear no necessary relationship with time in the outside world, However, if the com-
puter is told, at any one particular time, what time it is on an external clock, it can

118

then measure differences in elapsed time between that time and any future time. That
is, if the computer . operator indicates to the Q-7, by external switch action, that the
time is now @9f@ hours ZULU, the computer would then take a reading of its clock
register. If forty minutes later the program needed to ascertain what time it is in the
outside world, it could again interrogate its clock register. By programmed action it
could determine that forty minutes had elapsed since the last clock register reading.
By adding this to the time initially given it by the computer operator, it would then
know that the time in the outside world was $94@ hours ZULU.

The director of the CAC instruction, while conveying no really essential informa-
tion to the computer during the instruction’s execution, is not totally meaningless. The
director must contain a test memory address, for parity-check suppression. This test
memory address may be obtained by coding a ““T’’ in column 41, If, however, you mis-
takenly code anything that would yield other than a test memory address, program
Translator will graciously change it to ““T+1 51 ﬂ”.

PER Instruction

The PER (operate) instruction is used to effect many and varied actions, primarily
on input/output peripheral equipment. When coding the PER instruction, the programmer
inserts the appropriate octal code for the action desired into the aux columns. A list
of these octal codes, and the actions they produce, is to be found on your programmer’s
card. In this volume we will draw attention to only four of the available PER codes.

There are on the face of the computer console four neons known as the condition
lights, These lights have no intrinsic meaning to the operation of the computer itself,
and only acquire such meaning as the programmer may ascribe to them. You will note
that the PER codes for these lights are listed as @1 through @4, and that the action of
the relevant PER is to turn the associated light on. For example, PER #3 will turn on
condition light number 3. The programmer may use these lights as Boolean items,
indications of various happenings meaningful to the computer operator, or in any other
way that he might desire.

During the execution of the PER instruction, the computer does not interrogate
its director. Therefore, the right half word may be said to be ‘‘meaningless,’”’ and
may be used for any purposes the programmer might desire.

BSN Instruction

The BSN (Branch on Sense) instruction tests for various conditions to be true of
input/output equipment. The octal codes for the various conditions to be tested are
listed on your programmer’s card, and these octal codes may be inserted directly into
the aux columns, I, during program execution, the computer finds the indicated condi~
tion to be true, a branch will be effected to the location specified by the director portion
of the instruction. As with the case of the PER instruction, we will consider only a few
of the many BSN codes in this volume,

BSN codes @1 through @4 test the associated condition light and effect a program
branch to the specified memory location if the light is on. You will note that if the light

119

happens to be on, the asterisk on the programmer’s card beside the octal code ndicates
that this is one of the many BSN instructions which turns the associated piece of equip-
ment off, in this case the tested condition light. If the light to be tested is dlready off,
it will remain off and we will ¢‘fall through’’ the BSN instruction. /d

In addition to the above-noted condition lights, there are on the face/ of the duplex
maintenance console four toggle switches known as the ‘‘sense switches.”” Once again,
these switches have no meaning in and of themselves to the operation’of the computer;
they only acquire such meaning as the programmer may give to them. They are custo-
marily used as a means by which the computer operator may effect changes in program
action. BSN codes 21 through 24 sense the setting of these swit/ches. If the associated
switch is on (that is, depressed), a branch will be made to the specified memory loca~
tion. Otherwise, we will ‘‘fall through’’ the branch instruction. You will note that there
is no asterisk beside the octal codes for these BSN’s, It should be obvious that the com-
puter cannot reach out of itself and raise the switch to ax} ff position,

/

TEST MEMORY

Test Memory provides storage for a relatively small number of words for various
special purposes. (The primary use made of test memory is in testing and loading coré;-
memory programs.) These words have addresses, as do words in core memory. Test
Memory addresses range from 3.7776@ to 3.77777 (a total of 161¢ addresses). Access

time to words at these addresses is the same as core-memory access time - that is,
6 microseconds.

There are three types of test-memory registers that can be assigned to a given
test-memory address. In order to understand the assignment of a specific type of test-
memory register to a specific test memory address, it is important to distinguish be-
tween the various types of registers.

Test-Memory Registers

As you recall, test memory is made up of two toggle-Switch registers, 16 plugboard
registers, and one flip~flop register. Their characteristics are described below,

a. The two-toggle-switch registers are referred to as the A and B switches.
There are 32 toggle switches for each register, and all are located on the Maintenance
Console. The switches are in two horizontal rows, and the rows themselves are divided
into equal halves. The block diagram in Figure 12-1 illustrates the layout of the switch
registers on the Maintenance Console.

Left Test-Memory Switch Register A Right Test-Memory Switch Register A
(16 switches) (16 switches)

Left Test-Memory Switch Register B Right Test-Memory Switch Register B
(16 switches) ; . (16 switches)

Figure 12-1. Block Diagram of Test-Memory Toggle-Switch Registers

120

Each switch corresponds to a bit-position in a binary word. Thus, the switches
in each register can represent Left Sign through 1.15 and Right Sign through R15 of a
computer word. When a toggle switch has been pressed down, a binary 1 has been
placed in that bit-position of the test-memory switch register; when a toggle switch
is up, a binary @ is in that bit-position. The switches can be manually positioned by an
operator at the Maintenance Console,

b. The contents of the 16 plugboard registers are set by inserting plug connections
into a portable plugboard. By placing these plugs in appropriate holes (called “hubs’’)
in the plugboard, binary 1’s can be placed into the 32 bit-positions of each of the 16
plugboard registers. Once set up, the plugboard is inserted in the receptacle provided
for it in the computer. When it is necessary to change the contents of test memory, the
plugboard can be removed and another plugboard inserted in its place, The removed
plugboard can be stored for future use without disturbing the plugged connections on it,
Thus, with a number of plugboards, the contents of the plugboard registers of test
memory can be changed rapidly and conveniently. .

¢. The Test-Memory flip-flop register is called the test register, or the live
register, or register L. It is the only register in test memory that is functionally simi-
lar to a core-memory register, being the only register in test memory that can be
written (stored into) as well as read. The live register is represented by a row of 32
lights on the Maintenance Console. :

Test Memory Addressing

The assignment of a specific test-memory register to a specific address is con-
trolled by two interrelated factors:

a. The positions of plugs in hubs in the test~-memory plugboard,

b. The position of the test-memory UNASSIGN-ASSIGN switch on the Maintenance
Console,

Four additional hubs are to the left of each of the 16 registers on the test~memory
plugboard. These extra hubs are labeled:

A to designate switch register A

B to designate switch register B

L to designate the live register

P to designate a plugboard register

The 16 test-memory plugboard registers are numbered in octal from f to 17.
Thus, the entire plugboard can be functionally diagrammed in Figure 12-2,

Each A, B, L, or P hub corresponds to the number aligned with it on the left, If
a plug is inserted into any A hub, the contents of switch register A are assigned to the
address specified by the number on the left. For example, assume the darkened holes
in Figure 12-2 represent plugs. Since there is a plug in the A hub in line 6, the contents
of switch register A have been assigned to test-memory register 6 (or address 3.77766).
If a CAD 3.77766 instruction is now executed, the accumulators will receive the 32-bit
binary number that is represented by the up-and-down switch positions of switch regis-
ter A,

121

down, then

d to test-memory ad-

77772, I an ADD 3.77772
s, then the value 1.77777,

they must be changed

nd not into 3.77765. The
in test-memory cannot

’

. Referring to Figure 12-2,

tal number 1.77777, 1.77777 from the

‘the live register is assigned the address

he left of that particular hub. Referring to
the storage portion of the operation

the contents of switch register B are assigned

bit number in the live register will be added to the ac-
the execution of an FST 3.77765 instruction would

. If all of the switches in switch register B are

the address of the live register is 3

in a particular line,

this 32-bit number consists of all 1’

+uw¥o olo olo olo o|o ojo o]lo o]o ofo ofo o]o ojo o]o oo ojo ojo o
it o olo olo olo ojo o &9l 6lo oo slo olo ofo 66 6jo 6fo © oo
,..n..,Teo.m‘memmio.m(m.m{ooooo,Ol..o‘o.mm..m;oooooooooooo
“Tals o[6 oo 6]o 56 60 6f6 6] oo o]o oo ofo ojo ojo ojo ojo o
).Mﬂuoﬂon,v.o,.o,oio\‘m‘,oAmumu‘o.moo.omo‘.w.o.‘oo.oOoooooo.o
i olo oleolo oo 6lo o6 5fo ofo oo 6l olo ojo oo ojo ojo ojo o
Yo sl6 6l 6]6 6|6 ofo 6jo 6lo ofo ojo o|o o]o o]0 ojo o]0 o]0 O
5~ T6"5lo 6l6 6|5 6f6 ojo 6]o o|o oo ojo ofo ojo 0}jo 0j0 OjO ojo O
~= o o[5]6 86 o6 6o 86 6|6 6f6 olo olo ojo ojo oo 0jo ojo O
) o ol6 816 8]0 6]6 5|5 6o ojo ofo 6]o ojo ojo 6[o oo ojo ojo o
Yo sloslo ol 66 6]66l6 6|6 60 ojo o[o ofo ofjo ojo ojo ojo o
4 "J5 6|0 o]o olda 6lo ojo © o olo 6lo 6jo olo 6o 66 6]o ©|o o|c o
T faslso[e 8]e6]8 oo o[8 8[o 516 6fo o}c 6} 6]6 olo ol ol O
& Jo olo ojo oo olo ofo ojo ofo ofjo ojo ojo ojo 010 010 0,0 019 ©
"2 Vo olo 6]o ofo olo olc ofo oo o|o oo o]o ojo o]o ojo ojo ojo o
“SF ool olo olo élo olo olo6le 6] o o olo ole6lo o0lo olo olo o
E.u;Soowymwﬁﬁomb.m‘m%xmxofwoooooooooooooooooo
<i3}o o]0 oo o] olo oo oo ojo ofoc ofo ofo olo ojo o]o oo 0jo o
| 135 0lo o)o ofo ofo ofo ofo ofo olo ofo ofo olo ofo ojo ojo olo ©
i odo olo olo olo olo olo olo o]o ofo olo ofo o]o ojo ojo ojo ojo o
"o olo olo olo ojo oo ofo ofo oo ofo oo olo olo olo ojo oj0 o
rin_Oooooooo.ooooooooooooomooomooooooo
o o ofo ofo olo o]o_ofo o]o olo olo olo ofo ojo ojo ojo ojo olo ©
"= To oloofo olo 6lo oo o[o o]c ojo ofo ofo o 0 6]6 0lo olo olo o
~+= 15 o]0 ofo o]o ofo ojo ofo o]o olo oo ojo ojc o]o ojo olo ojo O
5" Vo oo 8loolo 6l6 | o]o olo olo olo ofo o]o ojo ofo ojo ojo ©
“ix Jo ofc oo o|o ol o[o]o o]0 ofo o]e olo oo o]o oo ojc olo o
+ Yo'o]o ojo olo olo ola ofo oo ofo olo olo ojo oo ojo olo ojo ©
....... 6 olo olo olo olo ofo ole olo olo o]o ojo ofc oje ofo ojo ojo o
"o lo olo olo.olo olo o]o olo olo olo olo o]o ojo olo olo olo ojo o
~ Lo olo olo olo olo_olo oo olo o]c olo oo olo olo o]o ojo ojo ©
o Vo olo olo olo olo olo olo o]lo olo olo olo olo olo olo 0jo olo O
o, |e-slee|ow|o oje—e e—e/o oje—e|ce|eelo 0]lealo Ojeojeolee
= Yool 5lo o[olo ol olo olo ojo o]o ole—e]o o]0 olo o|o ojo o
= 1o olo ojo oje—e]o olo olo oJo ojo olo ofo o]o ofo ojo ojo olo o
“W. S olo ol 6o ojo oo oje-e|o ofc ojo o]o o|o ojo ojo o]o ojo o
a

w¢123h567mumuwﬁmﬂ

Figure 12-2, Function Diagram of Test-Memory Plugboard
NOTE: If any Test Memory address is in the address half of

will be performed on the live register

full store a word into the live register a

contents of switch or plugboard registers

be changed by any computer instruction
manually, by the use of the toggle switches or plugs.

any store class instruction,
for example,

If a plug is inserted into any B hub,
to the address specified by the number to t

Figure 12-2,
.dress 3 (or address 3.77763)

the contents of switch register B have been assigne

a SUB 3.77763 instruction will subtract the oc

contents of the accumulator.

By plugging the L hub
of that line, In Figure 12-2,

1.77'777 will be added to the accumulator’s contents.

instruction is executed, the 32-

cumulator’s contents; if

122

Each P hub corresponds to the number aligned with it on the left. Each P hub
also corresponds to the plugboard register aligned with it on the right. By plugging a
P hub in a particular line, the plugboard register in that line is assigned the address
of that line. In Figure 12-2, for example, the P hub is plugged in line ﬂ; test-memory
address ¢ (or 3.7776¢) is therefore assigned to this plugboard register. Further, if
this plugboard register is plugged in the leftmost 16 pluggable positions, and not plugged
in the rightmost 16 pluggable positions, then an ADD 3.7776@ instruction will add the
octal number 1.77777, §.0Pp9P to the accumulator.

In Figure 12-2, there are P plugs in other lines besides the 0 line. Wherever there
is a P plug, the plugboard register in that line is assigned the address of that line.

If a Test Memory address is not assigned (i.e., if there is no A, B, L or P plug in
a line), then referral to that address is as though a register containing +f+§ were
being referenced.

In Figure 12-2, for example, address 14 is not aSsigned. If a BPX 3.77774 instruc-
tion is executed, the computer will halt because of the ¢’s obtained by referencing loca-
tion 3.77774 (the octal code for HLT is @@4).

By plugging two or more of the A, B, L, P hubs relative to a given address, any
reference to that address will actually be a reference to all registers which are thus
associated with that address. The resulting word transferred to the memory-buffer
register is the logical sum of the contents of all the registers associated with this
address. There will be a 1 in the bit positions where a 1 appears in any of the words,
and ¢ where all words contain a @. Using two octal half words to illustrate this, if the
half words are $.01¢1p and @.9f119, the resulting half word in the memory-buffer
register is @.@1119. When using one address for two or more registers, the operator
must be aware that these registers will be effective at all times.

However, it is correct to assign two or more addresses for the selection of one
register. For example, plugs may be inserted into the A hubs in test- memory addresses
6 and 7. A CAD 3.77766 instruction would then have the same effect as CAD 3.77767
and vice-versa; the contents of switch register A being placed in the accumulator by
either instruction, Similarly, two or more B hubs or two or more L hubs may be plugged
at two or more different addresses. '

All of the above statements hold true only when the test- memory assignment
switch is in the UNASSIGN position. ‘ '

When the test-memory assignment switch is in the ASSIGN position, there are
the three following important exceptions:

Address 3.7776¢ is assigned to switch register A,
Address 3.77761 is assigned to switch register B,
Address 3.77777 is assigned to the live register.

(The A, B, L and P plugging corresponding to these three addresses is overridden.)

123

Addresses 3.77762 through 3.77776 remained assigned as plugged, (A, B, L or P).
Start From Test Memory Pushbutton

When the Central Computer System is halted, pushing the START FROM TEST
MEMORY pushbutton starts the computer with the instruction located at the first test-
memory register (address 3.7776¢). Thus, a program contained in test memory may be
executed. This short program may direct the loading of a program from some other
source. Or, the 16-word test-memory program may be used to test a computer program.

The START FROM TEST MEMORY pushbutton can also be used to enter another
program at a selected point. For example, if a program has halted because of a pro-
gramming error, and the operator wants tobranch elsewhere in the program, the following
procedure may be used:

a. Put the UNASSIGN-ASSIGN switch in the ASSIGN position.,

b. .Press the toggle switches of switch register A so that the left half-word of the
register contains a BPX instruction, and the seventeen bit right half-word contains the
address to be branched to.

¢. Press the START FROM TEST MEMORY pushbutton.

This will cause the execution of the BPX instruction, and the desired branch will
be accomplished.

OVERFLOW AND INTERRUPT PROGRAMMING

When overflow occurs in either accumulator, there are various things which can
happen. Many of these occurrences depend upon the setting of bits L13 through L.15 of the
instruction which caused the overflow. In the Q-7 there are twelve instructions which
can cause overflow, They are: '

SLR CDF LAD
CDM ADD SUB
CDR TAD TSU
CDL ADB AOR

Overflow is one of the serious error conditions which can occur in the Q—7 and
for which the computer can take very substantive remedial action through the use of
interrupt programming methods. These actions are of two sorts:

(1) If bit L13 of the instruction causing the overflow is set to a zero, one or
both of the two overflow indicators attached to each accumulator will be set.
If, for instance, the execution of an ADD instruction induces overflow in the
right accumulator, and if bit L13 of the instruction has been set to zero, the
Right Overflow flip-flop will be set. This flip-flop could be sensed by a sub-
sequent BSN13 instruction ay any later point in the program. Indeed, the flip-
flop will remain on until it is so sensed. The flip-flop will remain on even if
later additions are made, whether or not they produce overflow, until the BSN13
instruction is executed. In addition to setting the associated sensible flip-flop

124

(S), the computer will also sound an audible alarm which closely resembles a
very loud foghorn. Needless to say, the computer will gain the operator’s atten-
_ tion. This alarm will only be sounded if bit L13 is a zero.

(2) The computer can also effect an automatic machine-initiated branch to an error
recovery routine. Such actions will only be taken, however, if many conditions
are true. In order to understand these conditions, we will have to discuss three
other parts of the Q-7 hardware.

Bits L14 and L15

Any branches to error recovery routines or program stops caused by
accumulator overflow are controlled by these bits. If any of the sub-
sequently detailed actions are to occur, one or both of these bits must
be set. L14 is for the left accumulator and L15 is for the right. If over-
flow occurs in the right accumulator and the programmer wishes the
below-detailed actions to occur, bit L15 of the instruction causing the
overflow must be set to a ¢“1’’, The same holds true for bit 1.14.

Auto-Branch Control Flip-Flop

No alarm branches or halts will occur unless this flip-flop is set. When
the computer operator initiates a program, he usually first depresses
the ‘“MASTER RESET”’ or ‘‘RESET FLIP-FLOPS” push buttons. These
switches set this flip-flop. One can change the setting of this flip~flop
with the PER15 and PER16 instructions. Clearing this flip-flop by pro-
grammed action will prevent all alarm branches or halts from any cause
whatsoever. Many of the other possible causes of interrupt program
action will be detailed in other volumes. '

Overflow Control Switch

There is a row of switches on thefront of the duplex maintenance console,
each one of which relates to one of the several conditions which are
important enough to necessitate machine-initiated error recovery. One
of these switches is known as the ‘‘overflow’’ switch and, if it is on, the
computer will then be sensitive to conditions of overflow.

Let us now take an example of the actions which the computer will perform in the
event of overflow: ,

(1) ¥ L13 is set to zero and overflow occurs in the right accumulator, the right
overflow flip-flop will be set and the audible alarm will be sounded. That
flip-flop could, as we have noted above, be tested by a subsequent BSN13.

(2) If L15 is set to one, and if

(3) the auto-branch control flip-flop is set, and if

125

(4) the overflow control switch is active (that is, depressed),

(5) the computer will now interrogate another switch on the front of the duplex
maintenance console,

This is the ‘‘STOP-BRANCH’’ action. If it is in the stop position, the
computer will immediately halt. If it is in the branch position, and
immediate branch to location 377770 will occur. The address of the
instruction which would have been next executed is left in the right A
registers. At the above-referenced test memory location, the programmer
would probably have plugged an STA instruction to save the return
address and then a branch instruction to take the program to an srror
recovery routine,

At the time when the Q-7 was initially designed, interrupt programming was practi-
cally unknown. As you can see from the above discussion, a relatively sophisticated
system has been built into the Q-7 to accomplish automatic error recovery.

Coding for Overflow Control

In the coding for those instructions which can cause overflow, we have not thus far
utilized column 29. This column may be coded as follows for these instructions.

(1) Blank: assembled as an octal 3 in bits L13 through L15. Action will be to set
the ‘“BSNable’’ indicators, and allow branching and audible alarm sounding.

(2) “1.”’: assembled as octal 1; set indicatbrs, suppress left alarm and branching.
(3) “R’’: assembled as octal 2; setindicators, suppress right alarm and branching.
(4)' ‘B’’: assembled as octal ¢ ; set indicators, suppress both alarm and branching.

(5) ““E’’: assembled as octal 4; suppress all overflow alarms and indications; the
“E’’ essentially stands for ‘‘everything’’.

“ILLEGAL INSTRUCTIONS’’

Any instruction which is not a legal code (in L4 through L10) for the Q-7 may
nonetheless, through a fluke, be decoded as an instruction. If the programmer committed
an error and branched into the data area, this possibility is quite likely. An illegal
instruction code in any given class (14 through L6) will act exactly like any other illegal
instruction in that class. Some of the illegal instructions have been found to do useful
jobs and have been given names (LAD, STZ and NOP). An octal code has been arbitrarily
chosen for these instructions from among the illegals available in-that class. This is
so that COSEAL will know what to put into the binary output.

126

¢ -- Misc. Class

1 -- Add Class

2 == Mult, Class

3 -- Store Class

4 -- shift Class
5 -- Branch Class

6 -- I/O Class

7 -- Reset Class

No operation.
Adds the contents of the LHW of the specified memory
location to the contents of the Left Accumulator. Given the

location to the contents of the Left Accumulator. Given
the name LAD (120 chosen arbitrarily),

Will cause the computer to ‘‘hang-up’’. (Infinite arith-
metic pause.)

Clears the specified memory location. Given the name
STZ (300 chosen arbitrarily),

No operation for a period between 6.f and 35.5 usecs. .
Clears the A registers.

Performs no operation, but will wait until the I/O
interlock is cleared before going to the next instruction.

No operation. Given the name NOP (7@ chosen arbi-
trarily).

MISCELLANEOUS COSEAL INFORMATION

Program Operating Time

The amount of Q-7 computer time that is required to assemble a program is

dependent, to a significant exte

nt, upon what input and output options are requested. A

permutation of the options possible, with corresponding operating times, is beyond the

scope of this document, Listed
A basic assembly time of 5@
determine total operating time.

1. Input

Combined Tags

below are approximate times required for input-output.
cards/sec. should be added to the times given below to

20¢ cards/sec.

Prestore 5@ cards/sec.

Card 15¢ cards/min.

Symbolic Corrector Cards 15¢ cards/min.
2. OQutput

Combined Tape

Binary Tape

Binary Cards

DLO (Symbolic listing)
Direct (Symbolic listing)

200 cards/sec.
3¢¢p cards/sec.
1¢¢ cards/min.
50 cards/sec.
75 cards/min.

127

Error Printouts

Errors not causing the program to halt. Errors detected in the assembled program.
All error lines of the listings are logged direct whatever the form of symbolic output
requested.

1.

10.

11,

12.

Errors
1,

128

«INDETR LHW’’: Indeterminate left-hand word is generally caused by either
a special symbol in the instruction left-half word field, or a decimal integer
such as 8 or 9 in an octal constant, or an op code punched in the wrong columns
of the instruction left-half word field.

«INDETR RHW’’: Indeterminate right-half word is generally caused by a spe’cial
symbol as an asterisk in the director field.

¢“UNDEFINED’’: This appears when Program Translator cannot find the symbolic
tag contained in the director fieldineither the tag table, or the compool override
table, and for Compool dependent programs, cannotfind it in the Compool either.

«DUPL TAG’’: Duplicate tag appears on the line which contains the duplicate
in the director. The address of the first duplicate is used for all the others.

«JLL USE RC’: Illegal use of the RC word. This is caused by the use of an
RC word with an instruction left-half word which does not take an RC word or
an illegal instruction in the left half RC word field, such as DIT or CPO.

“INDETR RC’: Indeterminate RC. This is caused by the same sort of error
mentioned under indeterminate left-half word except the error would appear
in the left-half word in the RC field.

«EXCESS RC”: Execessive number of RC words. At present this will be caused
by a program having more than 758 different RC words in it.

«EXCESSIVE CPO CARD’”’: This is logged when the number of CPO cards
exceeds 3¢@. Assembly continues but all subsequent CPO card information is
lost. ~

(XXXXX ILLEG TAG”: Generally caused by an illegal symbol in the tag field
of the instruction card. The X’s will contain the illegal card.

«pLI ERROR - CCA COMPOOL NOT USED”’: The compool used was not as-
sembled using the appropriate system control indicator. The ‘“PLI’’ record

will not be produced,

««pLI ERROR - TABLE NOT IN COMPOOL’’: The compool used does not contain
the table PLIL The “PLI’’ record will not be produced. '

«PLI ERROR - PROG NOT IN COMPOOL’’: The program being assembled is
not defined in the compool used. The ¢PLI”’ record will not be produced.

causing the program to halt. All error lines of listings are logged direct.

“NO IDT CARD’’: If symbolic input is from cards, attach IDT card to deck, put
deck in card reader, and press (CONTINUE” . If input is from tape, nothing can
be done.

2. “READY I/O UNIT @1’’: Cardreader not ready. Ready card reader and continue,
This error printout also means there may not be an END card on the deck being
assembled in the card reader. In this case, add the remainder of the deck with
END card and press ‘‘continue’’, Ifthereisno END card on the tape, no recovery
is possible.

3. “READY I/O UNIT 1X”’: Tape X not ready. Ready tape X and press program
continue.

4. “READY I/O UNIT §2’’: Punch not ready. Ready card punch and press program
continue.

5. “TOO MANY TAGS”: This occurs if the program being assembled has over
5@@¢d tags. No recovery possible.

6. “LOAD SUBR LIB ON 11°’: If the COSEAL master is on unit 11 when the sub-
routine library tape is needed, load subroutine library on 11, and continue,

Information Printouts
1. For all program assemblies, every IDT, LOC, DRM, and END card is logged.

2. For DCA program assemblies, every CPO card, inaddition to those listed above,
is also logged.

3. For DCA programs, the number of spare registers computed from COMPOOL
information, is converted to a signed decimal integer, and logged as follows:

“+.4¢44ee....EQNUMBER OF SPARES”

The number of spares will not be logged if the program’s core location in the
COMPOOL is overriden by a LOC card.

4. If assembly is from tape and the symbolic output requested is not Direct, the
number of cards prestored will be logged. If in addition, Sense Switch #1 is down the
card numbers will be sequence checked. A card numbered less than or equal to the one
immediately preceding it will be logged:

““CARD NO. XXXXXX OUT OF SEQUENCE”’

The card sequence check can be discontinued at any time by raising Sense Switch

#1. Once stopped the check cannot be reinitiated. If the sequence check is carried

to completion, the following message is logged.

“SEQ CHECK COMPLETE”

5. If a program to be assembled for drums has no drum field assigned via either
the COMPOOL or a DRM card, the Translator will log:

‘“NO DRUM ASSIGNED. ASSEMBLY WILL BE FOR CORE”’

129

If the ALL feature has been used, assembly of any program following the one in
question will be for drums.

Limits of COSEAL’s Translator
1, Input Cards: Unlimited
2. CPO Cards: Maximum, 3¢g
3. Location Tags: Maximum, 5@gp

4, If a program is assembled fbr location @, a DDL (digit, digit, letter) location
tag at the first binary instruction will be labeled undefined.

5. The total number of all cards in macro definitions may not exceed 5¢¢.

130

CHAPTER 13
TRANSLATOR’S CORRECTION CAPABILITIES AND OTHER COSEAL PROGRAMS
SYMBOLIC CORRECTIONS WITHIN PROGRAM TRANSLATOR
A program being assembled from a combined or prestored tape has the option of

being updated with ‘“‘Symbolic Correction Cards’’ of the same format as that used for
Symbolic Correction Program during DCA cycling.

This function of Translator makes it possible to change or delet_e cards contained
on the Combined or Prestored tape, also to insert new cards as needed. An additional
feature allows for changing the comment field only of a card.

Explanation of Terminology

The following definitions apply to ‘‘Symbolic Corrections Cards’’ which compriSe
an update deck:

Update Code - The symbol entered in Col.17 (C, I, or D) of a ‘‘Symbolic Correction
Card” which specifies the particular update action to be performed.

Update Identifier - The Symbolic Tag (five characters or less) entered in Cols.
72-76 which references the region in the program, on the combined or prestored tape,
where the update action is to be performed.

Identifier Symbol - The symbol (‘‘A’’, ¢‘B’’, ‘‘T’’ or ‘‘+’’) entered in Col. 77 of a
‘/Symbolic Correction Card” which specifies the method of counting from the ‘¢Update
Identifier’’ in the program on the Combined or Prestored tape.

Identifier Increment - The decimal number n (f<<n << 99) entered in Cols. 78-179,
which together with the ‘‘Identifier Symbol”’ specifies the number of counts, from the
‘‘Update Identifier’’, that the update action is to be performed. ‘

Card Packet - A group of Symbolic Corrector Cards (one or more) which are
associated with one Update Code, Update Identifier, Identifier Symbol, and Identifier
Increment,

Card Block - A grdup of Card Packets totaling 30@ cards or less, which represent
the number of update cards that are read and operated on at one time.

Update Deck - The group of Card Blocks which comprise all ‘‘Symbolic Correction
Cards’’ for one program (NO limit),

Preparation of Card Packet
The first Symbolic Corrector Card in a Card Packet contains control information

which applies to all cards in the Packet. Following is a description of the control
information in this first card,

131

Col. 17 (Update Code)

1I-

Insertion before or after the instfuction whose location is defined in Cols.
79-79. All cards in the Packet will be inserted in sequence, following this
same location,

Change card whose location is defined in Cols. 72-79. Subsequent cards
within the packet will cause sequential cards in the program to be changed.

Delete the card whose location is defined in Cols. 72-79. If more than one
consecutive card is to be deleted one of the two procedures described below
may be followed: v

a. Enter the total number (decimal) of cards in Cols. 18-2¢ (right adjusted).

Comment insertion. May be used to insert one or more Comment Cards
(instruction field, columns 18-45, blank). R Cards may be used as part of a
normal insertion or change packet, or may be used alone. The normal rules
for Col. 72-79 control apply. The R must appear on each and every comment
insertion card used, whether there is Control Information in 72-79 or not.

A provision is provided to delete a block of cards by specifying the beginning
and ending locations symbolically. I it is elected to use this provision,
the delete card format is as described below.

Col. 17 D
Cols. 18-2¢ ““TAG"

Cols. 36-45 Symbolic location tag, with position increment if needed,
which defines the end of the block of deletions. NOTE:
The card whose location is defined in these cols. WILL
NOT be deleted.

Cols. 72-19 Update Identifier Symbol and Identifier Increment as pre-
viously described. NOTE: The card whose locationis defined
in these Cols, will be the first deletion.

The location tag and increment in Cols. 36-45 should be coded as per usual
COSEAL coding.

Cols. 72-76 (Update Identifier)

Symbolic location tag which specifies the program region where the update
action is to occur.

Col. 77 (Identifier Symbol)

132

B - Insertion if BEFORE the specified instruction. Interpreted as ‘‘+”’
with an Update Code of ‘‘C’’ “‘D’’.,

A - Insertion is AFTER the specified instruction. Interpreted as ‘<4’
with an Update Code of ‘‘C’’ <‘D’’,

T - With all Update codes, used to count all cards, not just which produce
a binary instruction. Must be used to change assembly cards such as
IDT, DRM, LOC, CPO, etc., if the card does not have a symbolic
location tag.

‘¢‘4? Use with update code ‘‘C’’ and ‘D'’ to increment the tagged location.

Cols. 78-79 (Identifier Increment)

A decimal increment (always positive) used in conjunction with the Update
Identifier and Identifier Symbol to indicate the proper location within the
program where the update action is to be performed.,

Final Address Insertions

If the Identifier Increment is equal to the letters FA, the Card Packetis inserted
immediately preceding the END card of the program. Card Packets for Final Address
insertion may occur at any place within the Update Deck. A maximum of 300 Final
Address Cards may be contained in an Update Deck.

Update of Comment Field Only

It is possible to change the Comment Field of an instruction card (Cols. 46-171)
without changing the instruction field (Cols. 18-45). A change of this type must constitute
a separate Card Packet. The first card of the Packet is coded as follows:

Col, 17 - Update code must be “C”’
Cols, (25-27) - “4CMT”
Cols. (46-171) - New Comment to be Inserted

Coded as for a normal CHANGE card.

Cols. (72-79)

The second and subsequent cards in a packet need only contain the comment in Cols.
(46-71),

Preparation of Card Block

Since the Card Block is only an arbitrary unit of 3¢¢ cards, used by the Translator
program, special concern need not be given to it by the programmer except when the
update deck exceeds 3{)¢ cards. Listed below are general rules which govern the pre-
paration of the Card Block. '

In determining what portion of an update deck constitutes a Block, consider the
first 3¢¢ cards as Card Block 1, the second 3¢9 cards as Card Block 2, ete.

(NOTE: FA cards, which may be placed anywhere in the update deck, should not
be included in these counts.)

133

Within a Card Block (3¢¢ cards group) Card Packets need NOT be arranged in the
order of occurrence of the Update Identifiers in the program. However, all Update
Identifiers contained in Card Block 1 MUST occur in the program prior to all Update
Identifiers contained in Card Block 2, etc.

A Card Packet may be broken between two Card Blocks if the requirement above
is satisfied.

Preparation of Update Deck

Card Packets are assembled into Card Blocks which in turn form the Update Deck.
Preceding the first Card Block of the Update Deck MUST be an ‘‘IDT Card” .containing
the Ident. of the program to be updated..

Following the last Card Block of the Update Deck MUST be an “END Card’’. Below
are the card formats:

IDT Card

Cols. 25-27 - <“IDT”

Cols. 36-39 - Program Identification exactly as it appears on the Combined or Pre-
stored Tape. The program Mod is optional and may be entered in
Cols. 4¢-41.

END Card

Col, 17 - «F” if this is the last Update Deck which follows one OPTION Card;
otherwise, blank. '

Cols, 25-27 - ¢‘END”

Sample Progi‘am Corrections
Figures 13-1, 13-2 and 13-3 illustrate symbolic corrections utilizing program
Translator. The first of these figures shows a sample deck which has been assembled

as shown. The second figure shows the corrector deck, and the last figure shows the
updated program.

Error Printouts

Below are comments which are logged direct, along with the first card of a Card
Packet, when an error is encountered while processing an Update Deck.

Symbolic Corrector Card - Error 1

More than one Card Packet which changes the program “IDT’’ card was encountered
in the Update deck. The second and succeeding such Card Packets are skipped.

134

GET

"T-g7 oanSri

pajsxxo) ag o] werafoxg ordures

10A
108
10C
10D

10F
T8L1

DT
Loc
STAA
IXIN
1CAD
1FST
BPX
HLT

DIT
TSKP
1CAD

BPX

.CPO

END

333301
100
10F
2
10D
10C
10F
1
2
3
10G
0
20000

PROGRAM 3333 MOD

000100
000101
000102
000103
000104
000105
000106
000110
000111
000114
000115

003410
017540
011000
013240
005100
000000
000004
000004

011000
005100

01

000115
000002
000111
000106
000115
000000
000001
000001

000000
000000

COMPOOL 04D OO

PAGE

1

0000401%T00
0000,02%T01
0001+00%T02
0002.00%T03
0003.00%+00
0004400%+01
0005+ 00%+02
0006¢00%+00
0007400%+00
0009+00*+02
0009.01%T00
0010+00%+01
0011.00%+00
0011.01%TO0
0011.02%T01

+ 15 EQ NUMBER OF CARDS

UNDEF INED

9eT

*g-¢1 9an3rg

1-¢1 9anB1d ul wexdold J04 SPABD J0}09II0D

DT
LocC
1XIN
FCL

HLT
HLT
TCPO
END

CORRECTOR CARDS FOR PROGRAM

333302
20

1

16

1
2
1000

TO1l

TO3
10A +01
108

FA

TBLL T

PAGE

1

‘€-81 9an3rd

g-€1 oanSrd JO SUOMDBXIOD JIOPV ‘I-gT oanSri ul

umoys Arreur8ii0 welSold po1oado)

LET

PROGRAM 3333 MOD 02 COMPOOL 04D 00 PAGE 1

IDT 333302 0000.01%T00

Loc 20 0000.02%701

STAA : 10F 000020 003410 000035 0001400*%T02

1XIN 1 000021 017540 000001 0002400%T03

10A 1CAD 10D 000022 011000 000031 - 0003.00%+00
FCL 16 000023 004700 000020 0004400%*+01

1FST 10C 000024 013240 000026 0005400%+02

BPX 10F 000025 005100 000035 00064 00%+03

10C 4 1 000026 000004 000001 0007.00%+00
DIT 2 000030 000004 000001 0009.00%+02

10D TSKP 3 000031 000901%*T00
1caD 106G 000034 011000 001000 0010.00%+01

10F EPX 000035 005100 000000 . 0011.00%+00
106 TCPO 1000 0011.01%700
HLT 1 000036 000000 000001 0011.02%+01

HLT 2 000037 000000 000002 0012+00%+02

END 20000 , 0013400%T03

+ 15 EQ NUMBER OF CARDS

Symbolic Corrector Card - Error 2

On the first card of a Cardbpacket, Column 17 is illegal (Not ¢‘C”’, «“D”’, or ‘‘I"’),
The Card Packet is skipped. :
Symbolic Corrector Card - Error 3

The Identifier Increment (Columns 78-79) is too large; the increment counts past
the next location tag in the program. The Card Packet is skipped.
Symbolic Corrector Card - Error 4

The Update Identifier was not found on tape. The Card Packet is skipped. This
comment is logged when the program END Card is reached.

Symbolic Corrector Card - Error §

This comment is logged after Error 4 above occurs in one block of a multiple
Card Block Corrector Deck, and the ‘“END’’ card for the Corrector Deck has not been
read. The first card of each remaining Card Block is logged. All Corrector Cards,
except FA insertions, (beginning with the first one logged as an Error 5) remaining
in the Update deck are skipped.

Symbolic Corrector Card - Error 6

The Update Identifier together with Identifier Increment specify a location in the’
program which has been altered (changed or deleted) by a previous update action, The
card packet is skipped.

Symbolic Corrector Card - Error 7
Corrector Card(s) without control information punched in Columns 72-79 follow a
change ““IDT”’ card packet or a Delete Card packet. The first such Corrector Card in a

group is logged and all cards, until the next one with control information in Columns
72-79 is encountered, are skipped.

EXCESS FA Cards

More than 3¢¢ Final Address Cards are in the Update deck. All FA cards over
3p9 are skipped.

Special Points

When preparing symbolic corrector decks, the following special points should be
considered:

138

()

(b)

(c)

(d)

(e)

(f)

(e)

()

Only one ‘IDT”’ card is needed for a program, regardless of how many
changes are made. A Card Packet is needed for each non-consecutive loca-
tion affected, or for each change of control. For example, if it is desired to
change five consecutive cards beginning at 10A, only one ‘“C’’ card would
be needed. The ‘‘C’’ card would contain the tag, 1fA punched in Columns
72-79, and the first of the five new instructions coded in Columns 18-71, This
would be followed immediately by the remaining four instruction cards.
However, if a card is to be inserted before 1@A + 5, another control card
with an “I’’ in Column 17 and Columns 72-79 coded as previously described
is needed.

To change an ‘“IDT’’ card, the following cards are necessary.

1) An “IDT” card like the one on tape. This must be the first card of any
corrector deck.

2) A card with ¢“C”’ in Column 16, ‘““IDT’’ in Columns 25-217, the new Ident
in Columns 36-41, and Columns 72-79 left blank with the exception
of Column 77 = T, This new ‘‘IDT”’ card must always constitute a separate
card packet.

In the same way, cards may be inserted, deleted, or changed before the first
location tag by leaving columns 72-76 blank on the control card, but putting
an increment in columns 78-79 and ‘‘T”’ in Column 77, The increment in this
instance, is the number of cards from the ““IDT’’ card.

To change a program ‘‘END’’ card the Identifier Symbol must change to ‘T,
The Update Identifier and Identifier Increment are coded as previously
described.

If a T is used in Column 77, to compute the increment for Coiumns 78-79
every card after the tag must be counted. This included any “ASSEMBLY”’
or “COMMENT’’ cards that may be in the region being updated.

If a T is not used in Column 77, to compute the increment for Columns 78-79,
only count those cards which produce a binary instruction upon assembly.

The last Correction Deck to be processed should have the letter ‘F’’ punched
in Column 17 of its Hollerith END card. This tells the Translator that all
corrections are now finished.

As a general rule, the letter ¢‘T’’ should be used, where possible, as an
‘“Identifier Symbol’’ when incrementing from a tag in the program on tape.
The rules for determining the ‘‘Identifier Increment’’ are simpler, in that
all-cards are counter, thereby reducing the change for programmer error.

Special care should be taken when using the option of deleting cards from
one symbolic location to another. If an error is made in specifying the ending
location (Columns 36-45) this could cause all cards in the program from the
initial location (Columns 72-79) to the “END’’ card to be deleted.

139

OTHER COSEAL PROGRAMS

There exist in the COSEAL Utility system three programs designed as diagnostic
aids during program assembly add execution. We will give below brief explanations of
the actions of these programs and show illustrative listings.

TAREF/FLOA Program

A TAREF (tag reference) listing or FLOA (flow analysis) may be obtained at time
of program assembly. If TAREF is requested, a symbolic listing (direct or DLO) will
be produced showing all tags used by a program along with all references made to each
tag within the program. This will be followed by an alphabetic listing of all of the tags:
used by the program together with their card numbers, provided the deck is sequenced,

If FLOA is requested, a symbolic listing (direct or DLO) will be produced showing
all instructions within an object program together with all references made to each
instruction. An alphabetic tag listing will be produced as with TAREF, The primary
difference between TAREF and FLOA is that a flow analysis is made on the program
listing itself as will later be illustrated by the appended examples.

References to all instructions, whether TAREF or FLOA, will be indicated by MB
(modified by) for store class instructions, EF (entered from) for branch class instructions,
and USED for miscellaneous instructions.

A careful perusal of Figure 13-4 will illustrate an assembly of a sample program
and its TAREF and FLOA listings.

Memory Print Program
High speed memory print enables programmers or computer operators to dump

Q-7 storage (core, drums or tape), at high speed. The program will dump storage
media in octal-constant or instruction format, either direct or DLO. ‘

Figure 13-5 shows an area of core dumped in instruction format, and Figure 13-6
shows the same area dumped in octal-constant format.

Interpretive Trap and Trace Program

This program is designed to execute any other program’s instructions and print
out the contents of selected machine registers after each instruction. Contiguous areas
of core memory may also be dumped at specified points during the interpretive execution

of the program being checked.

Figure 13-7 illustrates a typical interpretive execution and shows the machine
registers which are always dumped.

140

PROGRAM XYZ MOD

COMPOOL 04D 00

T XYz
TDRO TCPO 90 100
TPOS 1CPOO4 9 TDRO
02A cAD P0S 000300 001000 000100
P0S31 TPOS 000301 004700 000015
RST . 10A 000302 003340 000310
01A AOR 024 000303 003443 000300
CMR 0 TPOS + 20 000304 000420 000311
BPX 1000 000305 005100 001000
AOR 02A - + 2 000306 003443 000302
BPX 02A 000307 005100 000300
10A 000310 000000 000600
END v
000311 000000 000124
E 2 2] % L2 2.3 #% % x¥n E X 23 X% 2 2 2 2 %% % 2 2] LAST PAGE E 2 23 E2 L3 2 2.3 % W
TAREF 0T xvz
TAG TABLE REFERENCE LISTING
ARD NO. TAG-INCRs MODIFIED BY ENTERED FROM TAG=INCRe CARD NO.
001400 02A M8 01A 0004400
+002 M8 01A +003 0007400
EF 01A +004 0008400
0004400 01A
0009,00 10A B 02A +002 0003400
TPOS Us 02A 0001400 US 02A 4001 0002400
TPOS +020 US O01A +001 0005,00
ALPHABET 1ZED TAG LISTING
01A 0004400
02A 0001,00
104 0009400
FLOA 107 xXyz
TORO TCPO 90 100
TPOS 1CPOO4 9 TDRO ,
01A +004 024 CAD TPOS MB 01A MB 01A +003
POS31 TPOS
RST 10A
01A AOR 024
CMR 0 TPOS + 20
BPX 1000
AOR 02A + 2
BPX 024
10A MB 02A +002
END
P0S us 024 0001400 US 02A +001 000200
TPOS 4020 US O01A +001 0005400

ALPHABET I ZED TAG LISTING

01A 0004,00
02A 0001400
10A

0009.,00

Figure 13-4,

Program XYZ with its TAREF and FLOA Listings

PAGE

1

60004 01%T00
0000.02%T00
0000+03*%T00
0001400%+00
0002400%+01
0003+00%+02
0004.00%+00
000500%+01
00064+ 00%+02
0007.00%+03
0008+ 00*+04
0009+ 00*+00
0009.01%T01

HHE RIE RN

141

(44

*g-¢T 8an3rd

yewrxod uoronIjsul ul dumg axod

CORE 0317000 TO 017501

017000
017060
017070
017100
017110
017120
017130
017140
017150
017160
017170
017200
017210
017220
017230
017240
0172590
017260
017270
017300
017310
017320
017330
017340
017350
017360
017370
017400
017410
017420
017430
017440
017450
017460
017470
017500

STAA 017111
HLT 000000
STAA 017740
STAA 017742
BPX 017737
STAA 017736
BFZ 017144
FST 017734
ETR 017755
ETR 017757
FCL 000010
CAD 017726
BPX 017110
007140=017276
007500-017457
pVD 017762
BPX 017510
BFZ 017267
BPX 017254
CAD 017055
CAD 017733
SEL10 000000
SELO3 000000
SELO& 000000
1ADD 017643
BFZ 017110
BFZ 017400
SELO4 000000
CAD 017730
CAD 017756
FCL 0C0036
FCL 000036
SELD2 000000
CAD 017755
BPX 017673
BPX 017531

DUMP COMPLETE.

INSTRUCT 1ONS

STAA 017143
HLT 000000
1BPX 017073
48PX 017103
CAD 015240
CAD 017726
1BPX01 017124
BPX 017110
FCL 000020
RST 017176
suB 017756
BPX 017745
CAD 017064

007100-017307
007600~017477

1FST 017056
BPX 017232
BPX 017254
CAD 017245
BFZ 017305
BPX 017531
LDC 017003
LonC 017643
LDC 017643

18PX01 017350

1XIN 000027
ADD 017765
LDC 017003
sus 017766
RST 017417
FST 017732

1XIN 000004
Lnc 017643
BPX 017673
CAD 017733

BPX 017064
HLT 000000
DEP 017740
DEP 017742
FST 017732
BFZ 017211
CAD 017734
BPX 017737
RST 017730
suB 017756
FST 017727
FCL 000036
RSTA 017726
007200-017314
STA 017243
1B8PX01 017237
CAD 017056
BPX 017673
RSTA 017252
BPX = 017673
CAD 017252
WRT 000030
WRT 000030
RDS 000030
BFZ 017357
1CAD 017033
1XAC 000000
RDS ~ 000030
BRM 017417
CAD 017731
BPX 017673
2BPX01 017431
WRT 000030
CAM 017733
DSL 000004

CONes LIGHTS ON

HLT 000000
HLT 200000
2ADX 000000
SADX 000000
Lb8 017753
1XIN 000013
BLM 017142
BPX 015240
ADD 017756
RST 017175
BFZ 017214
ETR 017732
BPX 017123
007240-017324
IXIN 000004
BPX 017252
BFZ 017262
AORA 017252
BPX 017110
CAD 017056
BPX 017256
BPX 017110
1IXIN 000067
CAD 017063
SEL03 000000
1FST 017003
1BPX01 017374
BPX 017110
FST 017732
2XAC 000000
CAD 017732
BPX 017551
BSNO3 017455
1XIN 000003
1BPX01 017464

eeee SENSE
HLT 000000
FST 017735
STAA 017741
STAA 017743
DEP 017116
CAD 017732
AORA 017143
FST 017734
RST 017202
FCL 000020
CAD 017063
FST 017733
STz 017727
007340-017366
CAM 017733
CAD 017712
BPX 017673
BPX 017745
BPX 017520
BPX = 017260
CAD 017730
CAD 017736
CAD 017764
FST 017642
LDC 017643
1BPX01 017362
CAD 017761
STA 017443
AOR 017417
CAD 017726
FCL 000032
cAD 017736
BPX 017357
MUL 017767
BPX 017110

SWITCHES ON eeee

HLT
CAD
2BPX
SBPX
CAD
ETR
AORA
1CAD
AORA
RST
LSR
AORA
B8PX
NOP
BFZ
1FST
AORA
BLM
BPX
CAD ~
FCL
BFZ
RSTA
28PX01
WRT
BPX
BPX
CAD
CAD
BPX
1BPX01
BFZ
PERT3
FST
CAD

000000
017752
017077
017107
017735
017754
017143
017216
017143
017731
177776
017143
017174
017404
017244
017056
017252
017271
017251
017712
000020
017327
017614
017626
000030
017110
017673
017730
017732
017745
017442
017447
000000
017733
017712

HLT 000000
LpB 017752
DEP 017741
DEP 017743
ADX 000000
1DIM 017216
RSTA 01711l

RSTA ™ 017207

BPX 017745
CAD 017732
FCL 000000
RSTA 017111
NOP 017250
007300-017444
bcL 000020
CAD 017761
BPX 017745
BPX 017252
" CAD 017733
8PX "~ 017302
LDB 017763
BPX 017542
CAD 017561
IXiN 000027
PER51 000040
“CAD 017731
1BPX01 017374
ADD 017756
B8PX 017411
1BPX01 017427

AORA 017726

BPX 017542
BPX 017357
ASR 000013
BPX 017470

HLT 000000
1ADX ‘000000
4ADX 000000

STZ" 017734

STAA 017726

RSR 000020

CAD 017063

CAD " 017732

FST 017732

ETR 017760

FST 017732

BPX 017324

007040~017274
007440~017460

CAD 017761
1BPX01 017236
BLM 017271
CAD 017712
BPX 017531
BPX 017520
DEP 017320
BPX 017552
RSTA 017637
CAD 017761
CAD 017736
SUB T 017765
BPX 017110
RST 017430
1XIN 000001
2BPX01 017430
BPX 017745
BPX = 017552
BPX 017510
BFZ 017475
CAD 017733

€71

Jewxod yuelsuo) uf dumn(axo) °*9-g1 9inSid

CORE 017000 TO 017501

n17000
017060
017070
017100
017110
017120
017130
017140
017159
017160
017170
017200
017210
017220
017230
017240
n17259
017260
a17270
017300
ni731n
n17320
n17330
N17340
017350
017360
017370
017400
017410
017420
017430
017440
n17450
n1746n0
n17470
017500

nn03410~n17111
nonNNON=-nHnfinng
003410~-017740
003410-017742
005100-017737
003410~017736
005400~017144
003240-017734
nonn4o-0l17755
000040~017757
004700=-0000C10
001000-017726
005100-N017110
N07140~017276
007500-017457
002600~-017762
005100-017510
005400-017267
005100-017254
001000~017055
001000-017733
nNo6210=-n0n0no
0062n3=-000000
NN6204=-0CNNNN
011043-017643
005400~017110
005400-017400
006204=-0000N0
001000~017730
001000=017756
004700-000036
004700-00N036
006202=000000
N010NN=N17755
N05100=n017673
005100-~017531

DUMP COMPLETE.

CONSTANTS

003410-017143
00nONN=NNNNND
015100-017073
045100-017103
001000-015240
001060~017726
015101-017124
005100-017110
004700~000020
003340-017176
001343-017756
no5100-017745
001000~017064
007100~017307
007600-017477
013240-017056
005100~017232
005100-017254
001000~017245
005400-017305
005100-017531
006000-017003
nNo600N=-N17643
00600N-017643
015101-017350
017540-000027
001043-017765
006000-017003
001343~-017766
003340-017417
003240-017732
017540~000004
N0600n=-017643
n05100-017673
001000-017733

005100~017064%
nANeNNN=-annane
003600-017740
003600~017742
003240-017732
005400~017211
001000-017734
005100-017737
N03340-017730
001343~017756
003240-017727
004700~000036
003350-017726
007200-017314
003400-017243
015101~017237
001000~017056
005100~017673
003350-017252
005100~017673
001000-017252
006740-000030
NN6T&40=N00030
006700~000030
005400-017357
N11000-017033
017640-000000
006700~000030
005540~017417
001000~-017731
005100-017673
025101~017431
nN6740-000030
nNn1600-017733
N004000-000004

CONe.

00000N~000000
180080=a00000
027700=000000
057700~000000
000200-017753
017540-000013
005500-017142

005100~015240"

n01043-017756
003340-017175
0n5400=-017214
000040-017732
n05100-017123
007240<017324
017540-000004
005100~017252
005400~017262
003453=-017252
005100-017110
001000-017056
005100-017256
605100-017110
N17540-000067
001000=-017063
006203-000000
013240-01700%
015101-017374
005100-017110
003240-017732
027640-000000

001000~017732
005100-017551

005203-17455
017540-000003
015101-017464

LIGHTS ON esose

SENSE SWITCHES ON eeee

000000000000 HO0NO0- 000000 000000-000000 000000000000

003240-017735 001000~017752 000300~017752 017760~600000

003410~017741 025100-017077 003600~-017741 047700000000
003410-017743 055100~017107 003600~0177%3 (G03000~01773%
003600-017116 001000-017735 007700-000000 003410~017726
001000-017732 000040-017754 011640~-017216 004440-000020
003453-017143 003453-017143 003350-017111 001000-017063

003240017734 0T1000-017216 603350=017207 001000=017732"

003340-017202 003453-017143 005100017745 003240—-017732
004700-000020 003340-017731 001000~017732 6660%0-017760

-001000~017063 004400-177776 004700~006000 003240~-017732

003240-017733 003453-017143 503350~017111 005100~01737%
003000-017727 005100017174 007000—017250 007040—01727#

007340-017366 007400-017404 007300~

001600~017733 005400~017244 004600-000020 001000017761
001000-017712 013240~017056 0601000<017761 0I5101~017236
005100~017673 003453-017252 005100-017745 005500-017271
005100-017745 005560-017271 005166017252 601600-01T7IZ
005100-017520 005100-017251 001000-017733 005100~017531
005100-017260 0010060-017712 005100-017302 005100-017520
001000-017730 004700-000020 000300~017763 003600-017320
001000~017764 0033?0:91]614 001000-017561 003350-017637
003240-017642 025101-017626 017546000027 001000~017T61
006000-017643 006740~000030 000151-000040 001000-017736

T0I5101-017382 005100-01I7TI0 O = =

001000-017761 005100-017673 015101-017374 09510@—017110
003400-017443 00l000-017730 001l043~017756 0033%0-017530
003443-017417 001000-017732 005100~-017411 017540~000001
001000~017726 005100-017745 018161~017427 025101-017%30
004700-000032 015101-017442 003453~017726 005100-017745
001000~017736 005400-017447 005100-017542 005100~017552
005100-017357 0600173~000000 005100-017357 005100~017510
002500=017767 003240-017733 004240-000013 005400~017475
005100-017110 001000—-017712 005100017470 0010060-017733

44"

ndnO 99ex], pue dex], sanexdraju] 1ed1dAL °L-€1 aan3r g

1.0Ce

016126
016711
016712
016713
016714
016715
015717
016720
01672
016722
016724
016725
016727
Hrere0
016721
01€722
016724
016120
016121
016122
016122
016124
0161128
016136
016127
016141
016142

016741

INSTe

BPX
STAA
CAD.
LDB
1ADX
STAA
DEP
2ADX
STAA
DEP
LADYX
STAA
DEP
SADX
STAA
DEP
BpPX
CAD
ADDA
RSTA
CAD
FSY
LDB
DEP
LSR
ADX
STAA
CAD

Dire

?6711
016734
016763
016763
(o lelalale]
016736
0167256

000000 -

016737
016737
[Jalalale]
016740
016740
~eo0nNo
016741
016781
016127
Nr6122
016262
016146

000233

036247
016743
016141
000020
018152
016426
016247

MEMDRY CONTS.

005100 016127

017540 000000

027540 000000

047540 000000

057540 000000

000000 000001

003240 015152

LAC

000000
000000
100000
100000
100000
100000
117540
117540
117540
177540
127540
127540
147540
147540
147540
157540
157540
001000
001000
001000
005202
005202
005202
007700
000000
000000
000000
005202

RAC

000000
000000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
000333
000334
000334
015152
015152
015152
015152
015152
015152
015152
015152

LBR

) 000000

000000
000000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
070000
070000
007700
007700
007700
007700

RBR

000000
000000
000000
100000
100000

100000

100000
100000
100000
100000
100000
100000

100000

160000
100000
100000
100000
100000
100000
100000
100000
100000
177777
177777
177777
177777
177777
177777

IX 1

200000

200000

200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
500000
200000
200000
200000
200000
200000
200000
200000

1200000

200000
200000
200000
200000
200000
200000

X 2

200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
560000
200000
200000
200000
200000
200000
200000
200000
200000
200000
206000
200000
200000
200000
200000

tX 4

200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000

200000

200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000

X 5

200000

1200000

200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000
200000

200000
200000
200000
200000
200000

7200000

200000
200000
200000
200000
200000
200000

Appendix I

Program Sample Using General Illustrative Coding

145

154

173
173
173
173
173

173
173
173

173
173
173
173

173
173
173
173

173
173
173

173

173
173
173
173

1111
1112

1113
1114
1115

1116

1117
1120

1121
1122
1123
1124

1125
1126
1127
1130

1131
1132
1133

1134

1135
1136
1137
1140

INFO
WORD

MA

10
AA

BB
cC

C

A

01A
01A

DT
TCPO
1CPOO0S5

ToP
1XiIN

LoB

BOT

Loc

DRM73

CAD

RSTA

MAC
IXIN

LDB

P0OS31

SKP

ETR

~

suB
SUBA
€UB L
SUBAL
SET
1CAD
FCL
LDB
2DEP
TsT
FCL
2CMF
BPX
TST
NOP
SCH
LDB
2CMM
BPX
2BPX01

PROGRAM SAMP MOD LE

COMPOOL 04D 00 PAGE. 1

_ SAMPLE COMMENTS IN COLS. 46 TO 716000.01%*700
90 1000 - TCLUSTRATIVE 0000.,02¥T00
6 INFO ODDBALL CODING 0000¢03%T60
FsGGS MACRO DEFINITION WITH COMMENTS TO 71 . 0600,04*T00
F e) 0001+00%TO1
GG) 0002.00%702
S 0003400%T03
140000 o 0003.01%10%
4YY11 AUX DRUM 73 0003+02%T05
AA : 140000 001000 140001 T 00044 00%+00
+ 9 + 9 140001 003350 000000 STORE CLASS DOESNT TAKE RCO005.00%+00
100,1700001700008 MACRO CAkL WITH COMMENTS 06005, 01%T00
100 140002 017540 000144 * MAC 100,17008017000 0006.00
170000 170000 140003 000300 140054 ¥ 0% MACRO CALL WITH COMO0O07.60
WORD 140004 004700 000013 00084 00%+03
INFO MUST HAVE DECTMAL DIRECTOROC09.00¥%TF02
WORD 140005 000040 140055 |MPLFED MSK [N COLSe 31-338010.00%+04
140006 000000 000000 LOCATION TAG WITH COMMENTS0011.00%+060
140007 000000 000000 0012+ 00%*+00
“COMMENTS ORLY TOLTZ+0I*TUT
001202%T702
01A 140010 001343 140002 COLSe. 28529 UNADCRKNED 0013.00%F01
177777 140011 001353 177777 . 17 BIT OPTIONOO14¢00%+02
$ +999 140012 001341 141761 "OVERFLOW 0015, 00%+03
140013 001351 000000 BOTH 00164 00%+04
25 INFO+237sWORD 1sTRF0=343316727% COMMENTS : : e
INFO =343 140014 011000 000251 * SET 2sINFO+237sWORD 151001700
S & 4 140015 004700 000021 % 3,16/27% COMMENTS 0018400
001740 000000 140016 000300 140055 * 001900
INFO +237 140017 023600 001355 * 002000
AsO/7 2++37 10AS$ READ AS LOC 45, {|NDEXED 0020.01%T08
8 140020 004700 000010 ¥ T0ZI.00
+ 37 140021 020460 000045 * . LOC 45, INDEXED 0022400
10A 140022 005100 140000 *) 002300
25As0/7 37 10A$ ACCUM INDEXED — NO GOOD 002301%T09
140023 007000 000000 * 00244060 ’
2sWORD A,WORD 10AS FIND ITEM EQ TO ACC BIT 0024.01%T10
001740 000000 140024 000300 140055 * 0025+00
WORD 140025 020400 001000 * TEM EQ TO ACC BIT 002600
10A 140026 005100 140000 * 002700
$ -~ 2 140027 025101 140025 * 0028400

i USE RC

“INDETR RAW

“TRCR.. GR &%

vl

PROGRAM SAMP MOD LE) COMPOOL 04D 00 PAGE 2

173 1141 SBR) su123 140030 005100 140036 LIBRARY SUBROUTINE CALL. 0029.00%+17
173 1142 CAD WORD + 9 140031 001000 140058 +9 N 81T POSTTIONS OF WD.0030.00%+18
173 1143 HOL ABCDE 140032 153514 171304 , 0031+ 00%+19
173 1144 7 103333 140033 000007 103333 OCTAL CONSTANTS 00324 00%+20
173 1145 + 9 - 2 140034 000011 177775 DECIMAL CONSTANTSs INTEGER 0033400%+21
173 1146 +e5 ~+0625 140035 040000 173777 FRACT IONOO 344 00%+22
‘) - . LIBRARY TAPE ROUTINES
173 1147 SU123 STA 2AM 140036 003300 140042 SUIZ3 READ ONE CARD DTREDO35.00%F00
173 1150 STA 4AM 140037 003400 140051 SU123 SET EXIT 0036400%+01
173 1151 AOR 4AM 140040 003443 140051 SU123 00374 00%+02
173 1152 1AM SELO1 - 0 140041 006201 177777 SU123 CARD READER 00384 00%+00
173 1153 2AM CAD 140042 001000 000000 SU123 +/- s LOC OF TMAGO39.00%+06
173 1154 3L.DC e 140043 036000 000000 SU123 SET LOC OF IMAGE 0040.00%+01
173 1155 BSN11 5AM 140044 005271 140052 SUIZ3 TEST READY CORDITTO04T+00%+02
173 1156) RDS 2& 140045 006700 000030 SU123 004200%+03
173 1157 ELM 3AM 140046 005500 140050 SU123 TEST FOR 1/0 DELAY0043,00%+04
173 1160 LDC 140047 006000 000000 SU123 WAIT FOR 1/0 00444 00%+05
173 1161 3AM CAD + 0 + 0 140050 001000 140057 SU123 CARD READ OK 0045+ 00%+00
173 1162 4AM BPX 140051 005100 000000 SU123 EXIT 0046+ 00%+00
173 1163 5AM CAD 1AM 140052 001000 140041 3SUIZ3 170 URTT NOT READYOO47.,00%+00
173 1164 BPX 4AM 140053 005100 140051 SU123 LAST CARD 0048.00%+01
END AA PROGRAM STARTING ADDRESS ~0049.00%T02
173 1165 140054 170000 170000 i
173 1166 140055 001740 000000
173 1167 140056 000440 000000
173 1170 140057 000000 000000

HEX REE EEE EEL EEE BRE ERFE O REE EXE EEF | AST PAGFE #EX H¥% #X¥ XXX XX EEE FER FEE REN ERE RN

Appendix II
Sample Printout Of A COSEAL Translation

Errors And Examples

148

6%1

000 0000 10A

1T
LocC

CAD
CAD
CAD
CAD
CAD
CAD
CAD
2CAD
CAD
ADD
CAD
ADD

ADD.

RST
CAD
CAD
CAD
CML
ML

COMPOL

TIDY
TIDY
TIDY
TIRY
TIibY
TPOS

b+t

ot

VO LUV NeN

WAKER
10100

N TN

+

+9

15
15
15
17
1000

6+002

PRCGRAM WAKE MOD R

010100
010101
010102
010103
010104
010105
010106
0101067
0101190
010111
010112
010113
010114
010115
010116
010117
010120
010121
010122

001000
001000
001000
001000
001000
001000
001000
021000
001000
001043
001000
001043
001043
003340
001000
001000
001000
000440
000440

010100
010613
010614
010615
010616
010617
010620
010621
010622
010623
000000
010624
000000
000000
000000
010625
000000
000000
010626

COMPUOL 02R 00 PAGE 1
0000.01=T00
0000.02+T01

THE FOLLOWING IS A COMPEND000O0.03=T02

IUM OF INCORRECT AND 0000.042T03

ODDBALL CODING, WITH A FEW0000.05%T04

CORRECT EXAMPLES FUR. COMP-0000.06%T05

ARISON. 0000.07+Y06

0000.08+7T07
. 0000.09=708

TIDY IS AN ITEM OCCUPYING 0000.10#T09

BITS 5 THROUGH 8 OF TDRO. 0000.11#T10

TPOS TA An ITEM OCCUPYING 0000.122T11

BITS 0 THRUUGH 31 OF TDR1.0000.13%T12

SAFO IS A TABLE STARTING 0000.14+=T13

IN CORE LOCATION 100062 0000.15=T14

TDRO IS A TABLE STARTING 0000.16#T15

IN CORE LUOCATION 116017 0000.17#T16
0000.18*T17
0000.19%T18
0000.20%T19

RC WORDS 0000.21#T20
0000.22%T21
0001.00%+00

INSERTS DECIMAL 15 0002.00%+01

INSERTS OCTAL 15 0003.00%+02

INSERTS NONSENSE 0004 .00%+03

+77 IN TIUY + BITS BEFORE 0005.00%+04

0006 .00#+05

0007 .00=+06
INDEXED RC WORD 0008.00%+07
INCREMENTED RC WORD 0009 .00%+08
MIXED RC WORD ALL RIGHT 0010.00%+09
LETTER 0§ USED FOR NUMBER 0011.00%+10

0012.00%+11
OCTAL 9 IN DIRECTOR 0013.00%+12
DOES NOT TAKE RC WORD 0014.00%+13
SIGNS IN WRONG COLUMNS 0015.00%+14
NUMBERS IN WRONG COULUMNS 0016.00%+15

DOES NOT WORK WITH A TABLE0OO17.00%+16
NUTHING TO COMPARE WITH 0018.00%+17
INTERPRETS 7 AS A CONSTANTO019.00%+18

UNDEFINED
INDETR RC
ILL USE RC
INDETR RC

INDETR RC

0st

CML
oML
CML
CAD
CAD
cAD

ADD
ADDA
ADD R
ADDR
ADD A
ADD C
CADA
CAD R
RST
FST
RSTA
FSTA

POsO7

POS38 -

POS30
POS30
POS30
P0OS30
RES
RES15
RES
RES
PUS31
HOL
HOL

CAD
107
SKP

TIDY
TIDY
TICY
SAFO

10A

2222

10A
10A
104
10A
10A
10A
10A
10A
10A
10A

‘10A

10A

TIDY
TIDY
TIDY
TIDY
TIDY
10A
TPOS
TPUS
SAFO
TIDY
SAFO
ABCDE
ABCDEF

+002

PROGRAM WAKE MOD

010123
010124
010125
010126
010127
010130

010131
010132

010133 -

010134
010135
010136
010137
010140
010141
010142
010143
010144

010145
010146
010147
010150
010151
010152
010153
010154
010155
010156
010157
010160
010161

000440
000440
000440
001000
001000
001000

001043
001053
001042
001053
001042
001041
001000
001000
003340
003240
003350
003240

004700
004700
004700
004700
004700
004700
004700
004700
004700
004700
004700
153514
153514

R

000007
177770
010627

‘000000

060000
060000

010100
010100
010100
010100
010100
010100
0101090
010100
010100
010100
010100
010100

000002
000003
000013
000015
010630
010100
000006
000006
100062
000000
100062
171304
171304

COMPOOL 02R GG PAGE 2,
INTERPRETS 7 AS AN ADDRESS0020.00%+19
0021.00#+20
COMPLETE CONSTANT 0022 .00%+21
0023.00%+22

IDT, END, DIT NOT ALLCWED 0024.00%+23
NUR ARE SKP, LOC, DRM, CP00025.00%+24
0025.01%725
0025.02=T26
0025.03=T27
0025.04=T728
0025.05#T29
0026 .00%+25
SETS A OPTION 0027.00#426
SETS OVERFLOW INDICATION 0028.00=+27
SETS A OPTION INSTEAD 0029.00=+28
A IN WRONG COLUMN 0030.00%+29
1LLEGAL OVERFLOW INDICATOUORO031.00#+30
CAD DOUES NOT HAVE A OPTION0OO32.00%+31

A OPTION AND OVERFLOW

CAD CANNDT OVERFLOCW 0033.00%#+32
0034 .00%+433
0035.00++34

GIVES A OPTION 0036 .00#435

DCES NOT HAVE A OPTION 0037 .00%+36

0037.01%T42
0037.02%T43

0037.03#T44

PSEUDO INSTRUCTIONS 0037 .04%T45
0037.05%T46

0038.00%+37

POS 1S MOD 31 0039.00%+38
INSERTS CORRECT FCL 0040 .00#+39
INCREMENTED ITEM 0041.00#+40
0042.00%+41

DIRECTOR IS A TAG 0043 .00=2+42
USE OF TWO ITEMS 0044 .00%+43
IGNORES THE 15 0045 .00%+44

INSERTS SAFO TABLE ADDRESS0046.00#+45

0047 .00%+46
INSERTS SAFO TABLE ADDRESS0048.00*+47
HOL USES THESE 5 POSITIONS0049.00=+48
HOL TAKES ONLY FIRST 5 0050 .00%+49

INDETR RC
INDETR RC
INDETR R

INDETR RC

Igr1

4HOL
HOL
HOL
CHR
CHR
TOB31
T0BO2Z2
TOR34
T0B0O6
T0BOO6
CON
CCN
CON
CON
CON
CON
CON
CON
CON
CON
MSK
MSK

28PX 1
TOR3
TOB 3
CAD
CAD
ETR
ETR
CAD

BPX

ABCDE

TiDY
TIiDY
TIDY
TiDY
TIiDY
TIDY
TiDY
TPOS
SAFO
AAAA
TIiDY

+ 3

177777
177777

ABCDE
ABCDE +001

VHWXYZ
VWXY$
10A

TIDY

10A

10A

10A

+ 3

10A + 5
0

1 A

+300

PROGRAM WAKE MOD

010162
010163
010164
010165
010166
010167
010170
010171
010172
010173
010174
010175
010176
010177
010200
010201
010202
010203
010204
010205
010206
010207

010210
010211
010212
010213
010214
010215
010216
010217

010220

153514
153514
000000
043613
043610
000537
000502
000502
000514
000506
001500
001700
176000
000000
002000
015200
015200
000000
000000
000000
000000
001700

025101
000536
000503
001000
001000
000040
000040
001000

005100

R

171304
171304
000000
000337
000330
010100

010100

010100
116017
131205
000000
000000
000077
000000
000000
000001
000000
000000
000000
000000
000000
000000

010100
010100
010100
010631
010105
010632
010632

.000000

000454

COMPOOL 02R GO PAGE

LETTERS IN WRONG POSITIONS

NO SPECIAL SYMBOLS .FOR CHR

TOB IS MOD 31
TIDY IS A 4 BIT ITEM

INSERTS OCTAL 15
INSERTS DECIMAL 15
INSERTS NONSENSE

NO AMOUNT GIVEN
LARGER THAN CAPACITY

SIGN IN WRONG COLUMN

TPOS IS MURE THAN 16 BITS
SAFO IS A TABLE

NOT IN COMPOOL

TIDY IN WRONG COLUMNS
GENERATES MASK FOR TIDY

"MISSING ZEROES

0 MISSING IN COLUMN 28
TRAILING ZERD MISSING
LEADING ZERO MISSING

WORKS WITH NO TRAILING 0'S
NO LEADING ZEROS IN INCR
TRAILING ZEROES MISSING
LEADING ZEROES MISSING

0 OF 10A MISSING

BRANCH AND CYCLE

ADDRESS IN THE INCREMEMNT

3

0051.00%+50
0052.00#%+51
0053.00%+52
0054 .00%+53
0055.00+#+54
0056 .00%+55
0057 .00#+456
0058 .00#+57
0059.00%+58
0060.00%+59
0061 .00%+560
0062 .00=+61
0063 .00%+62
0064 .00=+63
0065 .00=+64
0066.00#+65
0067 .00%+466
0068.00%+67
0069.002+68
0070 .00%+69
0071.00#+70
0072.00=2+71

0072.01+782

0072.02%783
0072 .03=784
0072.04%785
0072 .05+#786
0073 .00#+72
0074.00=+73
0075 .00%+74
0076 .00#+75
0077.00%+76
0078 .00#+77
0079.00%+78
0080.00%+79
0080.01%#T9S
0080.02=796
0080.03%T97
0080.04%798
0080.05%799
0081 .00=+480

INDETR RHW

ILL VALUE

ILL VALUE
ILL VALUE
UNDEFINED
ILL ITEM

INDETR RC
INDETR RC
UNDEF INED

INCR. GR ¢4

UNDEFINED

INCR. GR 4

2st

8PX
18PX63

1BPX64 .

3BPX01

68PX01

98PX01
FCL
FCL
FCL11
FCL
FCL
FCL

CAD
CAD
ADD
CAD
CAD
CAD
CAD
CAD
CAD
CcAD

1XIN
1XIN
3XIN
Xi
1XIN
1XIN
1XIN
1XIN
1XIN

- 300

+ 11
11

177777
44
- 3

AAAA
10A
10A
11A
10A
10A
10A
10A
10A
10A

NV O

100000
177777
200000
300000
400000

PROGRAM WAKE MOD

010221
010222
010223
010224
010225
010226
010227
010230
010231
010232
010233
010234

010235
010236
010237
010240
010241
010242
010243
010244
010245
010246

010247
010250
010251
010252
010253
010254
010255
010256
‘010257

005100
015177
015100
035101
065101
015101
004700
004700
004700
004700
004700
004700

001000
001000
001043
001000
001000
001000
001000
001000
001000

001000

017540
017540
037540
007540

017540

017540
117540
117540
017540

R

177323
010100
010100
010100
010100
010100
000013
000013
000000
133161
000054
177774

000000

010100
010100
010236
010100
010100
010100
010100
010100
010100

177776
177777
000005
000007
103240
133161
000000
100000
000000

COMPOOL O2R 00

64 1S ABOVE CAPACITY
CANNOT DECREMENT ACC
NO INDEX 6
NO INDEX 9

PAGE

11 IS IN WRONG POSITIONS

TAGS

UNDEFINED TAG
DUPLICATE TAG

IS ILLEGAL IN TAG

LEGAL
LEGAL
LEGAL
LEGAL
LEGAL

INDEX REGISTERS

PUTS VERY LARGE NO.

TAG
TAG
TAG
TAG
TAG

4

0082.00%+81
0083 .00#+82
0084 .00=+83
0085 .00%t84
0086 .00%+85
0087.00%+86
0088.00=+87
0089.00=+88
0090 .00=+89

0091.00#+90°

0092 .00x%+91
0093.00%+92
0093 .01%
0093.02=
0093 .03 =»
0093 .04
0093.05+
0094 .00%+93
0095.00%+400
0096 .00=#+00
0097.00%+01
0098 .00#+00
0099 .00%+00
0100.00%+00
0101.00%+400
0102 .00=+00
0103.00%400
0103.01%7T01
0103.02#70¢
0103.03=70Z
0103 .04*T04
0103.05=T0%

IN IX 0104.00%+01

PUTS LARGEST NO IN INDEX 10105.00%+02
ASSEMBLES, BUT ACTS AS NOP0106.00#+03

NO INDEX GIVEN

SETS BRANCH BIT
ALSO SETS BRANCH BIT

0107 .00%+04
0108.00%+05
0109.00%+06
0110.00%+407
0111.00%+08
0112.00%+09

UNDEFINED

DUPL TAG

UNDEFINED

2X1IN
1XIN
IXIN
1XIN
1ADX
1 ADX
1 XAC
1 XAC

TST
LDB
CMM
BPX
TST
LDB
CMM
BPX
TST
NOP
TST
NOP
TST
NOP
TST
NGP
TST
NOP
TST
NOP
TST
CMF
BPX
TST
FCL
CMF
BPX
TST

€sl

PRGGRAM WAKE MOD R
7 010260 000000 000000
65536 010261 017540 000001
1,000 010262 017540 000000
TIDY 010263 017540 116017
SAFO Cl0264 017700 100062
TiDYy 010265 017700 116017
010266 017640 000000
5 010267 017640 000005
Ay0/7 37 10A$ CORRECT FORMAT
177400 000000 010270 000300 010633
017400 000000 010271 000400 010634
10A 010272 005100 010100
Ay0/7 37 10A. ALSO CURRECT FORMAT
177400 000000 010273 000300 010633
017400 0000600 010274 000400 010634
10A 010275 005100 010100
A,0/7 37 10A $SPACE BEFORE $
010276 007000 000000
Ay0/7 37 10A SPACE BEFURE PERIOD
010277 007000 000000
As0/7-37% NO THIRD EXPRESSION
010300 007000 000000
Ay 0/7 37 10A3$ SPACE AFTER COMMA
010301 007000 000000
Ay7/0 37 10A$ BIT POSITIONS REVERSED
010302 007000 000000
Ay 37 10A3 NO BIT POSITIONS GIVEN AFTER CD
010303 007000 000000
A 37 10A$ TESTS FULL ACCUMATOR
000000 000037 010304 000460 010635
10A 010305 005100 010100
A,0/7 37,0/31 10A$ TESTS CONTENTS OF LOC 3
8 010306 004700 000010
37 010307 000460 000037
10A 010310 005100 010100

4,0/7 37+0 10A$ CONSTANT INCREMENT ILLEGAL

COMPUUL 02R 0O

PAGE

5

USE NUMBER 1 FOR LETTER I 0113.00#+10
CAPACITY IS 65535
NO COMMAS ALLOWED

SAFO IS A TABLE
TIDY IS AN ITEM

0114.00=+11
0115.00%+12
0116 .00%+13
0117.00++14
0118.00#%+15
0119.00=+16
0120.00#+17
0120.01=%723
0120.02=T724
0120.03+725

COMAND PSEUDO INSTRUCTIONSO0120.04%T26

*

*
*

* N

*

*

"

x

0120.05=727
0120.06%728

TST A,0/7 37 10A$ CORRE0121.00

MAT

TST A,0/7 37 10A.
T FORMAT

ST
MATOR

CONTENTS OF LOC 3

ALSO

0122 .00
0123.00
0123 .01%729
0124.00
0125.00
0126.00
0126.01%T30
0127.00
0127.01+7T31
0128.00
0128.01#T32
0129.00
0129.01+T33
0130.00
0130.01%73%
0131.00
0131.01%735
0132.00
0132.01%T36

A 37 10As TESTS FULO133.00

0134.00
0134.01=7T37
0135.00
0136.00
0137.00
0137.012738

INDETR LHW

UNDEFINED

1271

NGP
187
FCL
2CMF
BPX
TST
FCL
2CMF
BPX
TS57T
LDB
CMM
BPX
7587
NOP
TST
NOP
TST
NOP
TST
LDB
CMM
BPX
TS7
NOP

SET

" 1CAD
LDB
2DEP
SET
1CAD
FCL
LD8
2DEP

SET
CAD
LD8
DEP

PROGRAM WAKE MOD R

010311 007000 000000
A,0/7 2,37 10A$ READ AS LOC. 37, INDEXED
8 010312 004700 000010

37 010313 020460 000037
10A 010314 005100 010100
A,0/7 2,437 10A$ READ AS LOC 45, INDEXED
: 8 010315 004700 000C10
+ 37 010316 020460 000045
10A ©10317 005100 010100

A,0/7 39 10A$% ILLEGAL OCTAL COUNSTANT
177400 000000 010320 000300 010633
000000 000000 010321 000400 010636
10A 010322 005100 010100

A 1000000 10A$ 1000000 TOO LARGE

010323 007000 000000
TIDY+1000 37 10A$ INCREMEMNT OVER 999 ILLE

010324 007000 000000
TIDY,0/1 37 10A%$ NO BIT POSITION IN ITEM A

010325 007000 000C0OO0
A,0/7 37 1000% EXPRESSION 3 MUST BE DDL
177400 000000 010326 000300 010633

017400 0006000 010327 000400 010634
z 010330 005100 020000

2+A,0/7 37 10A$ ACCUM INDEXED
010331 007000 000000

2,TIDY 1,TIDY$ BOTH EXPRESSIONS INDEXED

TIiDY 010332 011000 116017
001700 000000 010333 000300 010613
TIDY 010334 023600 116017

2+ TDRO+999,0/7 1,TDRO+998,16/22% EACH

TDRO +998 010335 011000 133153
15 010336 004700 000017
17¥400 0000600 010337 000300 010633
TDRO +999 010340 023600 133154

TIDY +49% 1 7O 16 CHARACTERS
000100 000000 © 010341 001000 010637
0017006 000600 010342 000300 010613
TiDy 010343 003600 116017

%

L]

*

TST

COMPOOL ©O2R 00

0OC 37, INDEXED

LOC 45, INDEXED

AL CONSTANT

PAGE

SET EXPRESSION ONE EQUAL

TO EXPRESSION TWO

"ok K

*
*
%
#®
E

= SET

*
*

SET

XPRESSION MAY HAVE

HARACTERS

TIDY +49%

17

6

0138.00
0138.01+%7139
0139.00
0140.00
0141.00
0141 .01=#T40
0142.00
0143.00
0144.00
0144.01%741

TST A,0/7 39 10A$ ILLEGO145.00

0146.00
0147 .00
0147.01%T4z
0148 .00
0148.01%T43
0149.00
0149.012T44
0150.00 A
0150.01%T45

A,0/7 37 1000$% EXPRO151.00
3 MUST BE DDL

0152 .00
0153.00
0153.012T46
0154 .00
0154 .01%T47
0154.02%T48
0154 .03%T49

SET 2,TIDY 1,TIDY$ BOTO0155.00
ESSIONS INDEXED

0156 .00
0157.00
0157.01=7T50

2+ TDR0O+999,0/7 1,TD0158.00
+16/722% EACH

0159.00
0160.00
0161 .00
0161.01%751
0161.02%752
0162 .00
0163.00
0164 .00

SET
CAD
LDB
DEP
SET
CAD
LDB
DEP
SET
CAD
LDB
2DEP
SET
CAD
LDB
DEP
SET
CAD
LDB
DEP
SET
CAD

SET
1XIN

SET
CAD

108
108

SET
CAD
L8
1DEP

SCH
CAD
LDB
w» 2CMM

ST

TIDY 1é6$
001600 000000
001700 000000
TIiDY
TIDY 99%
000000 000000
001700 000000
TiDY
2.TIDY+4 10%$

001000 000000

001700 000000
TIDY +

10A,5/8 5%

001200 000000

003600 000000
10A

10A,TIDY 5%
000500 000000
001700 000000

10A
A,TIDY 5%
000500 000000
X1 +99%

000143
A,5/8 5%
001200 000000
1,TIDY 5%
000500 000000
001700 000000

TIDY
2,TIDY +10 10A$%
001200 000000
001700 000000

TIDY

PROGRAM WAKE MOD

OCTAL VALUE
010344 001000
010345 000300
010346 003600

ERROR NOT FLAGGED
010347 001000
¢10350 000300
010351 003600

INDEXED AND

010640
010613

116017

010636
010613
116017

INCREMENTED

COMPOOL '02R 0O

SET

TIDY 168
* UE :

SET TIDY 99%
= FLAGGED

010352
010353
4 010354

LOCATION AND BIT POSITIONS

001000-010641
000300 010613
023600 116023

SET 2,TIDY+4 10$%
ND INCREMENTED

SET 10A,5/8 5%
AND BIT POSITIONS

010355 001000 010642
010356 000300 010643
- 010357 003600 010100
LOCATION AND ITEM
010360 001000 010644
010361 000300 010613
010362 003600 010100
ACCUMULATOR AND ITEM
010363 001000 010644

SET XR1 EQUAL TO 99

010364 017540

000217

" ACCUMULATOR AND BITS

= SET 10A,TIDY 5%
= AND ITEM

*

* SET A,TIDY 5%
#SETOR AND 'ITEM

* SET X1 +99%
*SETQUAL TO 99

* SET A,5/8 5%
®#SETOR AND BITS

*= SET 1,TIDY 5%
* TAG LEGAL
#

SEARCH WITH SPECIFIED XR
THE TABLE FOR THE VALUE
SPECIFIED IN THE ITEM OR
BIT POSITIONS SPECIFIED

010365 001000 010642
INTERNAL TAG LEGAL
010366 001000 010644
010367 000300 010613
010370 013600 116017
WITH XR2 FIND TIDY EQ 10
010371 001000 010642
010372 000300 010613
010373 020400 116017

PAGE 7

0164.01*T53
0CT0165.00
0166 .00
0167.00
0167.01%T54
ERRO168.00
0169.00
0170.00
0170.01%T55
INDO171.00
0172 .00
0173.00
0173.01%T56
LOCO174.00
0175.00
0176 .00
0176.01%T57

" LOCO177.00

0178.00
0179.00
0179.01#T58
ACC0180.00
ACC00180.01
0180.02%T59
SET0181.00
SET00181.01
0181.02#760
ACCO182.00
ACC00182.01
0182.02+T00
INT0183.00
0184.00
0185.00
0185.01*T01
0185.02%702
0185.03%T03
0185.04+T04
0185.05%T05

SCH 2,TIDY +10 10A$ WIT0186.00

® .

*

FIND TIDY EQ 10

0187.00
0188.060

961

BPX
2BPX01
SCH
CAD
LDB
2CMM
BPX
2BPX01
SCH
FCL
LDB
2CMM
BPX
2BPX01
SCH
LDB
2CMM
BPX
2BPX01
Lec

SDR18
LOC
RDS
SER
LbC
ROS
SDR
1DC
RDS
SDR10
LDC
RDSO03
BPX
BPX
SPI
CAD

002400
003600

2,TIDY A,5/8 104%

001700

001700

PROGRAM WAKE MOD
10A 010374 005100
$ * 2 010375 025101

2,TDR0,5/8 +10 10A$ SAME WITH BITS
000000 010376 001000
000000 010377 000300
TDRO 010400 020400
10A 010401 005100
$ ' 2 010402 025101
FIND TIDY EG TO
31 010403 004700
000000 010404 000300
TIDY 010405 020400
10A 010406 005100
3 * 2 010407 025101
2,TIDY A,TIDY 10A% SAME WITH ITEM
000000 010410 000300
TIDY 010411 020400
10A 010412 005100
S ' 2 010413 025101
10500 ;
010500 000000
- 1 010501 006000
- 1 010502 006700
KIN 1010503 006100
KIN 010504 006000
KIN 010505 006700
TIDY 010506 006100
TIDY 010507 006000
TIDY 010510 006700
‘ 010511 006110
100 010512 006000
50 010513 006703
G1 010514 005100
16050 010515 005100
10A 010516 007000
10A 010517 000000

R

010100
010373

010645
‘010643
131205
010100
010400
ACC BIT
000037
010613
116017
010100
010405

010613
116017
010100
010411

000000
010646
000000
000000
000000
000000
000000
116017
001046
000000
000100
000062
000000
016050
010100
0000006

* % ¥ %k

COMPDOOL 02R 00

#®

SCH
WITH BITS

ok ok %

IDY EQ TO ACC BIT

% % %k X K

ITH 17eM

CALLING SEQUENCE

ILLEGAL DRUM

READS PROGRAM

KIN FROM

DRUM TO CURE

WILL NOT WORK WITH ITEM

MEANINGLESS INTERLEAVE
DOES NOT ASSEMBLE
WILL BRANCH TO GI

SHOULD BE SECOND WORD OF

PAGE

8

0189.00
0190.00
0190.01+T06

2, TDRO,5/8 +10 10A$0191.00

0192.00
0193.00
0194 .00
0195 .00
0195.01*T07
0196 .00
0197.00
0198.00
0199.00
0200 .00
0200.01+T08
0201 .00
0202.00
0203.00
0204 .00
0204.01%T09
0204 .02*T10
0204.03%T11
0204 .04%T12
0204.05%T13
0204 .06%T14
0205 .00 *+23
0206 .00%+24
0207.00%+25
0208.00%+26
0209 .00#%+27
0210.00%+28
0211.00%+29
0212.00#+30
0213.00%+31
0214.00%+32
0215.00%+33
0216 .00%+34
0217 .00%#4+35
0218.00%+36
0219.00%+37
0220.00%+38

INDETR LHW

ILL USE RC

UNDEFINED

UNDEFINED
UNDEFINED

UNDEFINED’

INDETR LHW

BPX
SDF85
140 16

CAD
CAD
CAD
CAD
Ccap
CAD
CAD
CAD
CAD
CAD
100
100
CAD
CAD
CAD
CAD
BSN14
BSN
PERT5
PER99
PER
PER42
DIT
CAD
DIT
CAD
OIT
SKP
ETR
SKP
ETR
SKp

+ 0

TPOS

TPOS

211117

000000

PRUGRAM WAKE MOD

GO 010520 005100
ACC 010521 007525
010522 106020
010523 001000
SAFO 010524 001000
SAF0O 4005 010525 001000
SAFO +010 010526 001000
1000 010527 001000
1000 010530 001000
10A 010531 001000
1000+001 010532 001000
+ 1060 010533 001000
. +001 010534 001000
10A 010535 010000
10A 010536 001000
10A + 010537 001000
10A 005 010540 001000
377777 010541 001000
377177 010542 101000
10A ~ 010543 005214
10A 010544 005200
010545 000175
010546 000000
75 010547 000100
010550 000142
- 3 010553 000142
+ 1.5 010554 001000
i 3 010557. 001000
+ 10 010560 001000
+ 3 010563 001000
3
000000 010567 000040
- 3
2771717 010573 000040
+ 3

000000
000000
000000

000000
100062
100067
100074
001000
100000
000000
001001
001750
000001
010100
010100
010100
010100
010647
177777

010100’

010100
000000
000000
000075
000000
000000
000000

000000

010650
010650

010651

010652

COMPUOL O2R 00 PAGE 9
CALLING SEQUENCE 0220.01=731
0221 .00%+39
LEAST SIG BIT IS MOD 32 0222 .00%+40
CHAR POSITION IS MOD 128 0223 .00%+41
0223.01=735
0223 .02+T36
0223.03+T37
MISCELLANEQUS ERRORS 0223.04+738
0223.05%739
NU DIRECTUR 0224 .00%+42

SAFO IS A TABLE AT 10005640225.00*+43

WITHIN TABLE 0226 .00*+44
BEYOND SAFO TABLE 0227 .00=+45
CORE LOCATION 1000 0228.00++46
1000 MISPLACED 0229.00%+47
10A MISPLACED 0230.00%+48

INCREMENT WITH ABS ADDRESS0231 .00#+49
NOT LOC 1000,1/2 RC WORD 0232.00%+50
INCREMENT ONLY DIRECTOR 0233.00=+51
100 IS OCTAL CODE FOR CAD 0234.00%+52
BUT IT MUST BE IN 26 TD 280235.00#+53
NO VALUE IN INCREMENT 0236 .00%+54
IGNORES UNSIGNED INCREMENT0237.00#+55
GIVES 16 BIT RHW IN RC WD.0238.00%+56

GIVES 17 BIT ADDRESS 0239.00#+57
0240.00%+58
NO SENSE CODE 0241.00%459
0242.00%+60
PER TAKES OCTAL NUMBERS 0243.00%+61
75 IN WRONG COLUMNS 0244 .00%+62
MEANINGLESS INSTRUCTION 0245.00%+63
0248.00%+66
0249.00%+67
0252 .00%+70
0253.00%+71
0256.002+74
0259.00%T67
2 1S IGNBRED 0260 .00 *#+77
NEGATIVE DIRECTOR 0263.002T69
2 IS IGNORED 0264.00%+80
POSITIVE DIRECTOR 0267.00%T71

UNDEFINED

UNDEFINED

INDETR LHW

UNDEFINED

8¢l

ETR
SKP
ETR
Skp
ABC
1SKP
CAD
SKP
LGC
DRMO2
CAD
Loc
DRMS5S
CAD
END

177777

TIDY
+

3

PROGRAM WAKE MOD

010577
010600
010604

010610

010611

010612

010613
010614
010615
010616
010617
010620
010621
010622
010623
010624
010625
010626
010627
010630
010631
010632
010633
010634
010635
010636
010637
010640
010641
010642
010643
010644

000040
000040
000000

101000

001000

001000

001700
001500
176000

-011500

014400
000000
000002
000006
000014
000011
057620
000007
000007
000000
000454
177777
177400
017400
000000
000000
000100
001600
001000
001200
003600
000500

R

010632
010644
000000

177760

000000

000001

000000
000000
000077
000000
000000
177760
000002
000010
000012
000011
057620
000000
000007
116017
000454
000000
000000
000000
000037
000000
000000
000000
000000
000000
000000
000000

COMPOOL 0O2R 0O

PAGE

10

RIGHT HALF OF MASK MISSING0268.00#+83

ITEM IN DIRECTOR

USED AS RC WORD
ILLEGAL INSTRUCTION
INDEXED

T PUNCHED CORRECTLY
DIRECTOR IN INCREMENT

T SHOULD BE IN COL 41

BEYOND TEST MEMORY
UNDEF INED TAG

0269.00=T73
0270.00#+84
0273.00=T75
0274 .00x%+87
0277.00=777
0278.00%+30
0278 .01 %779
0278.02=T80
0278 .03%781
0279.00#491
0279.01#783
0279.02=784
0280.00#+92
0280.01#786

INDETR RHW

INDETR LHW

INDETR RHW

UNDEF INED
INDETR RHW

INCR. GR 4

6S1

3% #

LE 2

* %%

3 3% 3

* i %

* 3 %

3 3 3

PROGRAM WAKE MOD

3 3% 3%

010645
010646
010647
010650
010651
010652

* %%

002400
177773
000000
000000
077777
000000

#x% LAST

R COMPOOL 02R 00 PAGE i1l

000000
177776
177777
000012
000000
077777

PAGE wER L2 23 *Hn E XT3 L2 23 X 2] EER EER (2 X #EE HER

Appendix I

‘Duplex Maintenance Console

160

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160

