
AIR TRAINING COMMAND

COMPUTER SYSTEMS DEPARTMENT

STUDENT TEXT

ABR30533-l

CENTRAL COMPUTER CONTROL

17 January 1966

C690-416L-ST ,

RESPONSIBLE AGENCY OF ATC

Keesler Technical Training Center
Keesler AFB, Mississippi

DESIGNED FOR ATC COURSE USE ONLY

Computer Systems Department
KTTC, Mississippi

CONTENTS

This student Text consists of three parts, divided into fifteen chapters.

CHAPTER TITLE

PART ONE - COMPUTER TIMING AND CONTROL

1 Basic Center Operation and Equipment

2 Basic Programs

3 Maintenance Programming

4 The Computer Word

5 Central Computer System

6 Coding of Logic Book

7 Machine Timing

PART TWO - COMPUTER INSTRUCTIONS

8 Basic Computer Instructions

9 Basic Branch Instructions

10 ADD ONE mGHT Instruction

11 Indexing

12 Advanced Computer Instructions

PART THREE - PUSH-BUTTONS AND ALARMS

13 Manual Control

14 Alarms

15 Parity

Student Text
ABR30533-1

17 January 1966

PAGE

1

4

9

16

23

33

34

39

48

60

67

84

116

129

132

CHAPTER 1 - BASIC CENTER OPERATION AND EQUIPMENT

DUPLEXING

The Air Defense of the United States is the primary concern of the SAGE system.
Because Air Defense is effective only if it can be maintained with the least amount of
interruption, it is of the utmost importance that the FSQ-7 be able to run continually.
To enable this continuous operation, the FSQ-7 was developed in the duplex concept.
Within the Direction Center, the equipment is duplicated, in whole or in part, to attain
the greatest possible reliability. This "Duplex" equipment is contained in two groups
designated Computer A and Computer B (see Figure 1-1). Computer A and Computer
B each contain an entire Central Computer System, Drum System, Output System,
and those elements of the other three systems whose failure would render all systems
useless if not replaced or repaired. For example, since the failure of a generator ele­
ment in the Display System would render the entire Display System inoperative and
limit the usefulness of the entire equipment, the generator elements are duplexed,
(duplicated in Computer A and Computer B). On the other hand, the failure of one display
console will not render the entire Display System inoperative. Therefore, display
consoles are not duplex, instead; spare display consoles are available as substitutes
in case of failure of a console. Non-duplexed units are known as "Simplex" equipment
and are not shown in Figure 1-1.

It should be noted that only one set of duplex equipment is processing raw air
defense data at any one time. This set, called the active computer, may be either
Computer A or Computer B. The nonactive computer, called the standby computer,
may be undergoing maintenance or, if operative, may be performing supplementary
data-processing operations. The intercommunication (IC) fields of the two Drum Sys­
tems allow for interchange of information between· the active and the standby com­
puters.

SAGE CENTER

As previously stated the overall problem assigned to the SAGE System is the Air
Defense of North America. This problem is three-fold; detection, identification, and if
necessary, destruction. In order to solve Air Defense problems, special physical com­
ponents were developed. Detailed specifications were prepared covering the physical
components: radars, computers, weapons, etc., and how they were to interact. The
purpose of the sophisticated equipment that was developed is to supply information,
process this data, present a visual observation of the data that is processed, and present
an option of type of weapons to be used. This sophisticated equipment does not make
the decision, this is the function of m!ln in the SAGE system.

The In~uts Equipment of the AN/FSQ-7 receives information from several
agencies. Some of the agencies which send inputs to the AN/FSQ-7 are:

1. Long Range Radar (LRI): LRI sites present the azimuth and height of the
detected object. It also supplies the Mark X IFF information if available. pevices
used to provide this information are the land based radar squadrons, airborne early
warning aircraft and picket ships.

2. Other AN/FSQ-7's (XTEL): provide information concerning the Air Defense
s'huation in adjacent sectors.

1

Act. Comp.

DCA & FIX

* 4

BLAN

f2
DCS

f I
DCA~
i-.1

Maintenance Program Control

DCS Operation

Alarm Lines

lC lines

Figure 1-1

Stby. Comp.

DCS

T.M.
Plug­
Board

I
DCA /lC/J

3. Air Route Traffic Control Centers (ARTCC): provide data concerning the flow
scheduled air traffic in the area, i.e.; commercial airlines, military flights, etc.

4. Manual Inputs, Weather (WX), Bomarcs: present current picture of status of
weapons systems, personnel, etc.

The information provided by these various agencies is transformed into digital
data which can be used by other portions Of the computer. This information is pro­
cessed, analyzed, and is presented in visual form to the controllers by the Central
Computer System.

The Display System provides for visual observation Of the data processed by the
Central Computer System. Situation Display handles air movements information, which

2

requires the display to change as the information changes. Digital Display handles
statistical information or information summaries that need not be changed as rapidly
as situation displays.

The Outputs Syst~m provides information to various agencies which require
this information to perform their part of the Air Defense mission. Some of the agencies
which receive this information are:

1. Airborne interceptors through the Ground-to-Air Output System.

2. Other Direction Centers, Control Centers, etc., through the Ground-to-Ground
Output System.

3. Manual Direction Centers, Airbases, etc., through the Teletype Output System.

3

CHAPTER 2 - BASIC PROGRAMS

INTRODUCTION

For proper operation, a digital computer must be able to solve a problem or
series of problems in strict accordance with a known method of solution. Obviously,
the computer cannot devise its own method of solution, therefore, all computer opera­
tions must be controlled. This is done with a series of instructions to the computer.
This series of instructions is referred to as a program or computer program. This
part of the text deals with some of the_ basic programs associated with the AN/FSQ-7
and AN/FSQ-8 computers.

DIRECTION CENTRAL ACTIVE (DCA)

The program which enables the AN/FSQ-7 to perform the function of Air Defense
is the Direction Center Active (DCA) program. This program uses a total number of
90,000 memory locations. These are broken down into several dozen subprograms
and approximately 200 tables. The exact number of instructions, programs, and tables
varies as new versions, or "Models", of the DCA program appear.

How the computer is being used in relation to Air Defense can be determined
by the use of four terms: Active, Standby, Simplex, and Duplex. At an operational
site, the Active Computer will operate the Master ·Air Defense Program (DCA). When
one computer is active, the other computer will be the Standby Computer. If the Standby
Computer is cycling a program that is requesting transfer of certain information from
the Active to the Standby Computer, the computers are in the Duplex Mode. The in­
formation that is transferred is to enable the Standby Computer to assume Air Defense
if it becomes necessary with minimum lost time. If the computers cannot communi­
cate with each other for any reason, they become Simplex.

The only function of the Active Computer is the operation of the DCA Air Defense
Program. The Standby Computer has other duties in addition to "Standby", to take
over the Air Defense function. These other duties involve preventative maintenance
and data reduction programs which keep the computer reliable and determine the va­
lidity of the Air Defense previously performed.

Mention should be made here of an important little program, part of the DCA
complex, called FIX. FIX senses parity errors, evaluates their impact on DCA per­
formance, and if necessary or possible, "fixes" them. The variable impact of parity
errors can be illustrated by considering on the one hand a parity error in an input
radar data word, and on the other, a parity error in an instruction word. The radar
data word can probably be discarded without any harm. If that word was a return on a
track, the computer program will "dead-reckon" the track along its last known velocity
and wait for the next return. If there is a parity error in an instruction word, the
meaning of that instruction may be profoundly altered and the results would be catas­
trophic if the erroneous instruction were allowed to remain in the program. FIX would
do something about this. First, it will set the alarm and print out the error. Then, it
will attempt another read in. If the second read-in is correct, the computer will then
continue with its program, but if it is incorrect, Parity Alarm will be generated and the
computer will changeover to the Standby Computer.

4

FIX is one example of the "Fail Safe" principle, which is an important feature of
any automated system. The premise is that no matter how reliable the physical com­
ponents are, there is always the possibility of breakdown of one or more of these com­
ponents; or that the system will be confronted with some situation that was not antici­
pated in the design. The more automatic a system is, the greater the risk that some
malfunction will go undetected, doing serious and perhaps irreparable damage before a
human monitor realizes it or has a chance to act. Built-in automatic error checks,
such as parity circuitry or a program such as FIX, are of great value. The ability of a
system to handle any situation must include the ability to recognize a situation which is
beyond its own capability. When this situation occurs, the system should be able to
alert maintenance and/or changeover to a standby system.

DIRECTION CENTRAL STANDBY (DCS}

A program which is to be run in the Standby Computer must be a program that
will most efficiently and economically utilize its allotted time to diagnose and main­
tain a high reliability in the Standby Computer, and periodically analyze the Active
Computer's performance. In addition, this Standby Program must monitor the Active
Computer's alarms and be ready to assume operational Air Defense responsibilities
should a malfunction occur in the Active Computer.

In order to coordinate this type of function, and implement the system by per­
forming common operations, a control program is necessary. Thus, under normal
operating conditions at a SAGE Sector, all standby maintenance programs will be
governed by a Master Control Program. This program will be called DCS, and use as
its medium of communications the Utility Control Console in the maintenance console
area. All standby maintenance programs must be compatible with the Control Program.

DCS and all standby maintenance and utility programs are stored on tape and .
file protected. This tape will be located on tape drive Nr. 2.

To initiate standby operation, a single card is read into memory. This one-card
program will check-load DCS into core memory and give it control. The Control
Program (DCS) will then search the DCA Master Tape for the DCA Program, if in
Duplex Mode.

4¥ fields. The Control Program also determines from t e A Master Tape which
fields are allocated for tables and used for temporary storage. It is the Standby Com­
puters responsibility to maintain a valid DCA Program storage in the Standby Com­
puter.

Completing the initial set up, the Control Program will then display appropriate
information resulting from operator requests on the Utility Control Console (UCC),
set up the safe data transfer and standby timing restrictions, and read the Standby
Program from tape, if requested.

Stby Program
From End of Last Pass of -

J

Standby Program
lst Pass

DCS

Control
__..

Stby Program
frog ram -

I .. Pass -
--

- Stby Program

Pass

- Stby Program !
I

Last Pass _ _]

Figure 2-1. Maintenance Program Control

The Standby Program will run a complete "pass" of its program and branch
back to DCS. A time check will be made to see if a safe data transfer is to be made.
Whenever a safe data transfer is made, new time restrictions are set up. Refer to
Figure 2-1.

Certain alarm conditions occurring in the Active Computer will cause an Alarm 1
condition in the Standby Computer and cause it to automatically b:,anch into an emer­
gency switchover condition, waiting for the duplex switch to be made active. When
the Standby Computer is made active at the Duplex Switching console, the DCA start­
over portion of the Air Defense Program (which is stored on drums) is read into core
memory and given control.

The program communicates with the operator in three different ways:

1. Sense operator requests for switchover action, change in standby program
selection, change in safe track data transfer frequency, etc., at.the utility console.

2. Sense manual interventions for standby programs through the sense or A-B
switches.

3. Prepare digital displays which will advise the status of operations and which
signal required manual interventions by the operator and allow him to make logical
decisions relating to the operation in progress.

6

SWITCHOVER

Switchover may be defined as the switching of the DCA Program operations from
the Active Computer to the Standby, a function that makes the former Standby Computer,
Active. Since the output of the DCA Program is a result of interaction between the
program and simplexed computer I/O equipment, switchover involves a simultaneous
switching of program and equipments.

There are only ~ types of switchover which DCS prepares for:
·l}Vo

1. Emergency Switchover is initiated in the standby Computer by a malfunction
in the Active Computer.

2. Scheduled Switchover is initiated in the Standby Computer by a pushbutton
insertion on the Utility Control Console. Usually scheduled in advance, and accom­
plished when both computers are operating properly, scheduled switchover will transfer
all tables and display drum fields from the Active Computer to the standby Computer.
The actual physical switching of the two computers is a manual operation performed
at the Duplex Switching Console.

~- Alarm Nr. 1. An alarm generated by the Active Computer due to:

a. Memory parity.

b. Inactivity.

c. Per 37

~~
s..,~

d. DCA being unable to startover, action will be the same as Emergency
Switchover.

In order to maintain a close back-up of the Active Computer, DCS must accom­
plish the following:

1. Read in the DCA Program from Tape Drive Nr. 1 and store the programs on
their assigned drum fields.

2. Periodically che~k the DCA Program drum fields for correctness.

3. At certain time intervals, as the Active Computer for a specified amount of
information on. the Air Defense situation and store this information.

NOTE: DCS will not try to perform an IC (intercommunications) transfer
when an emergency switchover is requested. It is assumed that
DCA is incapable of operating.

SAFE DATA TRANSFERS

There are four different types of IC transfers possible during the overall opera­
tion of DCS and switchover. The types of transfers are:

7

1. SAF.d transfer via IC Drum. This is a maximum of 30,000 words of data which
is normally considered to be a minimum acceptable- amount of active data that the
standby Computer needs to be prepared for switchover. Made automatically whenever
DCB is operating in one of the Duplex Modes.

2. Table Transfer.

3. Display Fields Data (TD and DD).

4. Display Fields Data (RD).

Transfer of Table data, and Display Fields data occurs only when a scheduled
switchover is requested by DCB. This is a maximum of 100,0008 words of data.

The frequency that safe data transfers are made also differ according to the
different modes the computers are in. The three different modes and the frequency
of transfers are as follows:

1. Alert Mode-every 30 seconds.

2. Normal Mode-every 2 1/2 minutes.

3. Simplex Mode-none.

8

CHAPTER 3 - MAINTENANCE PROO.RAMMING

INTRODUCTION

A Maintenance Program is any program designed to indicate whether or not the
computer is able to correctly perform its intended design function. If improper opera­
tion occurs the program should be able to specify the equipment responsible for the
errors.

Many programs such as DCA or UWity programs may give some indication that
an error is present, but provide little or no aid to the maintenance effort. The primary
function of any maintenance program is to maintain computer reliability, i.e., to locate
any existent or impending failures during scheduled maintenance periods, so that no
machine failures occur during operating time.

To adequately perform this function the Maintenance Program must attempt to
treat all circuits in a manner w~ch approximates the ultimate applications of the
computer, and to treat these circuits as strenuously as they will be treated by any
other program. This criteria can only be met by treating the computer circuits as
strenuously as possible.

A maintenance program should be used as a tool; much as an oscilloscope or
screwdriver is used. Therefore it is necessary to know the capabilities and limitations
of programs, not the step-by-step construction of a program • . 1 BABIC REQUIREMENTS OF A MAINTENANCE PROGRAM)

1. Validity -- A program is valid to the extent that it checks the equipment it is
designed to check, and to the extent th3.t it can accurately locate and specify to mainte­
nance personnel a malfunction in the equipment area.

2. .Reliability -- A program is reliable to the extent that it consistently locates
and specifies malfunctions.

3. The third characteristic of a maintenance program is equally important but
more difficult to define. This characteristic results from the computers being ex­
tremely fast, very reliable, but incredibly stupid. They perform exactly as ordered,
which may not always be exactly as intended, i.e., they do what you tell them to do;
not what you mean them to do.

The program used to maintain a computer will only be as logical, accurate, and
comprehensive as is the programmer who creates the program. It may be valid and
reliable, yet have little value as a maintenance tool because it is not sufficiently rigor­
ous and thorough to completely test the equipment.

To be 100% comprehensive, the program must be capable of locating any and
all failures regardless of the type, nature, frequency, location, etc., of the failure.
Since many types of failures are first encountered after the computer has been in
operation for some time, it is impossible to be 100% comprehensive at the time a

9

program is designed. The program at the time it is designed will thus be as compre­
hensive as is permitted by the training and experience of the programmer.

TYPES OF FAILURES

Definition of failures: Any -improper behaviour of a circuit not inherent in the
equipment design.

1. Catastrophic -- This is a steady-state, continuously present, failure.

2. Intermittent -- This is a failure which is not continuously present, but occurs
only once or at random intervals. Intermittent failures are extremely difficult to locate
and frustrating, because they appear and disappear at random. They can manifest them­
selves as an inconsistent set of symptoms which make them nearly impossible to
locate.

3. Machine state -- These are failures present only under certain conditions.

a. After a certain sequence of instructions.

b. After a particular instruction followed by a specific delay in time.

c. At a particular machine duty cycle, or pulse repetition rate, etc.

FAIL URE DETECTION

If a program runs once successfully, this does not necessarily lead to a firm
conclusion since several alternate possibilities exist.

1. Possible conclusions if a program operates successfully:

a. All the circuits checked are O.K.

b. A circuit error exists, but did not occur during the instant of time in which
this circuit was checked.

c. An error occurred, but this particular type of error was not checked for
by the program.

d. A circuit error exists, but the program did not follow the peculiar sequence
of events necessary to show up the error.

e. The error indication utilized by the program failed, leading the program
to believe that no error occurred.

10

f. An error exists but the section of the program which checks this type of
failure did not operate for reasons unknown.

2. Because of the alternate possibilities that exist, it is necessary to:

a. Use multiple error indications.

b. Use controls and indicators to insure that all sections of the program
operated.

c. Perform every possible check conceivable on this circuit.

d. Check for every possible type of circuit error in every test relating to the
specified circuit.

e. Perform every test many times.

PROGRAMMING TECHNIQUES

There are many possible programming techniques which may be utilized to locate
a malfunction. Five of the major techniques will be discussed here with their corre­
sponding assumptions and limitations.

1. start Small

This involves an initial check of as small an amount of ~ircuitry as is possible.
If this circuitry is operating properly' it is use.d in testing another circuit, etc. This
process continues until a check has been performed on all circuitry for which a pro­
grammed check is possible. The assumptions and limitations are:

a. The minimum amount of circuitry required by a programmed check is not a
small amount.

b. If a failure occurs during the first check, diagnosis is not easy, for other
checks cannot be accomplished, since they depend upon the initial circuitry being in
operation order.

c. An intermittent error may not occur during the time a circuit is being
checked. If this error does appear when the circuit is being used to test other circuits,
the test's validity is questionable.

d. The error may not be the result of a circuit component but be caused by
interaction between circuits during a specific sequence of operations. This is beyond
the scope of this type of program since it wolild require that every conceivable check
be performed. This generally is not possible without using a great deal of circuitry.

2. start Big

In this approach the entire system may be used to check a particular circuit
or portion of the computer at a time.

11

The assumptions and limitations are:

a. If some basic error exists, it may be impossible for the program to main­
tain control and operate.

b. This type of program is very large and requires a great deal of time to
construct and debug.

c. It is impossible to adequately check those portions of the computer required
by the program to maintain control since so much circuitry is required for this pur­
pose.

d. An intermittent error may disrupt program operation but yield no clues as
to the identity of the error.

3. Multiple Clue Approach

Once an error is detected, the program attempts to obtain the same error
using varying sequences of instructions. If the failure can be detected in a multiplicity
of ways, it is only necessary to locate the common conditions, etc., to locate the failure.
The assumptions and limitations are:

a. Hard to accomplish because it involves exhaustive research and program­
ming sequences.

b. If an error can only be detected by one sequence of instructions, the pro­
gram is at a loss for a common factor smaller than the computer itself.

c. An intermittent error may cause the program to lose control without giving
any indications as to the nature of the error.

4. Process of Elimination

Certain types of failure cannot be directly analyzed. However, it is possible to
employ routines to vindicate one area after another, and by a process of elimination,
infer the error to be in the remaining area. The assumptions and limitations are:

a. All areas may check O.K. when individually checked because the error
results from circuit interaction or timing conditions.

b. We assume the error to be in the remaining area. It may not be, parti­
cularly if the error is of an intermittent nature.

5. Program Assumptions

A maintenance program must assume the following:

a. That only a single failure, or unrelated multiple failures are present.

b. Control circuitry is operating correctly.

12

c. Errors can be isolated.

d. The failure is the result of a circuit error; not a design error.

TYPES OF MAINTENANCE PROGRAMS

1. The older maintenance programs were classed in two categories; Reliability
and Diagnostic. The Reliability type checked only to see if an error existed. The
Diagnostic type was used after the Reliability program to localize the trouble.

The disadvantages of these programs were:

a. The Reliability program indicated a failure existed but the Diagnostics
could find no errors.

b. Reliability programs were not comprehensive enough and missed many
errors.

c. Too many programs had to be run to isolate an error.

2. The more recent programs combine reliability and diagnostic functions in a
single program, trying to eliminate these disadvantages. No consideration is extended
toward making the program routines specifically reliability or diagnostic in nature.
Rather, the program is concerned with attempting to locate every error which could
occur, then tracing any error detected to smaller and smaller areas until the error
locations can be specified. The four specific types of programs are as follows:

80verall Programs

Major application of this program type is the Drum, Inputs and Outputs
areas. They start Big using the entire area under test, and then use the "Multiple
Clue" and "Elimination Techniques" for error detection. An overall program con­
sists of the reliability, diagnostic and marginal checking routines necessary to check
an equipment area. The advantages are:

(1) Only one program necessary for a given equipment area.

(2) Only one card deck to load and write-up to refer to.

(3) More reliable error detection and error analysis is afforded.

(4) No indecision by the operator about which program to run.

8 Margin Line Routines (MLRs)

MLRs are a special type of program, each consisting of these sections.

(1) The Setup and Clear Routine -- Operates before margins are applied
and insures that computer registers are properly set up for the test to be made.

13

(2) The Marginal Workout Routine -- operates with margins applied to one
MC line and tests the circuitry on that MC line, then stores the results. This is a
diagnostic type routine.

(3) The Check Routine -- after excursion is removed, the Check Routine
interprets the results stored by the workout routine and prints the necessary data,
indicating success or the nature of the failure.

The advantages of MLRs are:

(1) There is no question as to which program should check a particular
circuit and how thorough a check should be made.

(2) Since margins are applied to a single line, the workout routine can
usually be written such that failures in the equipment under test will not affect the
validity of the results.

(3) MLRs have been written which run to completion and afford accurate
error detection even when circuits fail under margins, and MLRs are giving accurate
indications at excursions of 50 and 60 volts where earlier programs were often unable
to isolate failure above 25 or 30 volts. This factor enables the MLRs to locate inter­
mittent or unusual circuit malfunctions not detected at the lower excursion levels.

Automatic Diagnostic of System (ADIOS

This system o agnostic programs uses "Start Small" and "Multiple Clue"
techniques. ADIOS will be a series of diagnostic prog~ams wliich will test all of Central
Computer, Card Machines and Drums. The technique here is to start very small,
assuming that none of the circuits are working properly. This has been designed spe­
cifically for trouble shooting after an unscheduled switchover. Takes about 3 minutes
to run.

9 Analysis Under Operational Conditions (AUOC)

This is a series of maintenance programs which really "~", using
the entire computer system for sequence checks of different equipment area. These
programs operate under a master control and timing program in the same manner as the
DCA system.

(1) The primary advantage of the AUOC system is that it permits all of the
specified equipment areas to be checked or repaired simultaneously, thereby increasing
the amount of maintenance which may be performed during a given period.

(2) A second advantage is that operation of AUOC after maintenance periods
will enable a quick check of all equipment areas before releasing the computer to a
customer.

(3) A third advantage is that AUOC, by utilizing the entire system, may be
able to detect miscellaneous system (machine state) failures usually found by DCA
but not located by maintenance programs.

14

MARGINAL CHECKING

1. Marginal checking is a testing technique in which components are artificially
aged by voltage variations on the circuits.

2. This will assist in locating circuit changes before they progress to a point
where normal machine operation is impaired.

3. The voltage variations themselves find no failures. It is the program routine
that finds the failures, using voltage variations as a tool.

4. The types of margins are as follows:

a. Prescribed -- In this method, specified variations are made, with the
expectation that the associated circuits should tolerate these excursions without failing
during the program run.

NOTE: Running with prescribed margins requires only a single
program pass at the specified variation; however it fur­
nishes no information concerning the following:

(1) Is the circuit deteriorating?

(2) What is the present quality of this circuit?

(3) How good is it now compared to when it was new?

(4) How fast is the circuit deteriorating?

We actually know only one thing; i.e., the circuit did not fail in a manner
the program could detect during the interval of time it was checked by the program.

b. Failure -- Voltage is varied to a point where the circuit fails.

NOTE: In this approach, each voltage is varied to the point which
causes a failure GREAT ENOUGH TO BE DETECTED BY
THE PROGRAM operating while the excursion is applied.
Types of failures not checked for by the program may
occur at variations lower than that at which an error is
detected. This will be determined by the validity and
comprehensiveness of the program.

This type of margin will require at least two program
passes as an absolute minimum. To locate the specific
failure point, the program must have one successful pass
and one pass with a failure.

15

5. Specific Considerations

There are some circuits which may not be marginally checked, simply because
. no provisions have been made for voltage variation in these circuits. Margins may
be of little or no assistance in locating failures in these circuits.

The voltage variation is applied to aggravate circuit changes which could
cause a failure. However, an unusual effect of this variation is that certain kinds of
errors, existent when voltages are normal, may be corrected for the duration of the
excursion by changes in circuit parameters resulting from the voltage variations.
Thus, the program should run a reliability pass before excursions are applied to deter­
mine if any failures exist at normal operating voltages. As added insurance, apply
both positive and negative excursions to all lines; if a positive excursion conceals
the defect, it should be aggravated by a negative excursion and vice versa.

DESIRED CHARACTERISTICS OF MAINTENANCE PROGRAMS

Those programs which are easily understood and easy to operate are more often
used with confidence by maintenance personnel. In order to make better programs,
these items are taken into account:

1. Speed and simplicity in operation.

2. Protection against operator errors.

3. Test or routine identification.

4. Error data -- give operator everything possible about the error.

5. Add options or special features.

6. Reloading Provisions - Drum storage of program.

7. Completeness - A thorough program checks the operator, the machine and
itself, by covering for operator errors, providing manual routines, printouts, program
flexibility, control options, etc.

16

CHAPTER 4 - THE COMPUTER WORD

COMPUTER WORD DESCRIPTION

A digital computer must be able to recognize the instructions it receives. There­
fore, these instructions must be presented in a combination of digits, since this is the
only "language" the computer can interpret. The AN/FSQ-7 and AN/FSQ-8 utilize a
system of pure binary numbers for all operations; therefore, it is mandatory that com­
puter instructions are coded in binary. Data must also be in binary form. To allow air
defense data and instructions to be processed by the same circuits, a standard form of
layout is necessary for both types of numerical information. This layout is referred
to as a computer "word" and is composed of 32 bits in the AN/FSQ-7 and AN/FSQ-8.
The computer word is divided into two half-words, simply referred to as the "left
half-word" and the "right half-word". The reason for this division is that the Central
Computer System has dual arithmetic elements, allowing two operations to take place
simultaneously. The arithmetic elements are also designated as left and right, with
the left arithmetic element processing the left half word of a computer word and the
right arithmetic element processing the right half. Figure 4-1 shows the word layout
for the AN/FSQ-7 and AN/FSQ-8. Each half-word consists of 15 magnitude bits, plus
one bit for sign. In addition, an extra bit is included. at the extreme left of the word.
The bit is generated by the Central Computer and is used to check the information
transfer to and from the Central Computer. This bit, called the parity bit, is not used
in arithmetic computations and does not have to be assigned a position for instructions
or data. It is included to show that a word stored in core memory actually consists of
33 bits - the two half-words plus the parity bit. Often, it is necessary to refer to single
bits within a computer word; for this reason, the letter L or R is placed before the
bit position to designate the proper half-word. For instance, a reference to L9 means
that we are concerned with the ninth magnitUde bit of the left-half word.

Left Half-Word Right Half-Word

P LS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Computer Word Layout

Table 4-1

1. INSTRUCTION WORDS

As previously mentioned, the Computer cannot function by itself, but must
be controlled by programs. The instructions within the program direct the computer
to add, subtract, print results of computations, accept more input data, and perform
various other operations. The instruction word is composed of several parts, each of
which gives part of the information regarding the overall function of the instruction.

LEFT HALF WORD

The left half word is commonly referred to as the operation portion of the in­
struction word because this half-word tells what operation is to be performed. The word
breakdown follows:

17

1. Class Code

a. Bits L/ 4-6

b. Designates one of eight Instruction Classes.

2. Variation Code

a. Bits L/7-12

b. Designates specific instruction of the class, Programming Card shows
Instruction class and variation octal code.

3. Index Selection Code

a. Bits L/1-3

b. Designates Index Register to be:

(1) Loaded in (XIN) instruction

(2) Sensed and reduced in (1 BPX)

(3) Used for address control in (1 ADD) (1 MUL) etc.

(4) Note: Programmers Card indicates when indexing can be used.

4. Special Option Bit Codes

a. L/15=1

Allows pulse to check right overflow.

b. L/14=1

Allows pulse to check left overflow.

c. L/13=1

Suppress overflow alarms (D.C. Site). Needed to stop false overflow alarms
in address modification.

d. L/12=1

(1) D.C. Site only.

(2) Provides 17 bit operation in ~ome instructions. Note: This bit will be
included in the operation code.

18

5. Index Interval Bits

a. Bits L/10-15: these bits can be used since they are necessary in the BPX,
BSN, SDR, SEL, and PER instruction codes. Note: The dash(-) in their instruction
code on the Programming Card.

b. With instructions TOB and TTB LlO is not part of the index interval code.

RIGHT HALF WORD

The right half word is referred to as the Director or Address Portion of the word.
It specifies the Memory Unit, and Memory Address Selection for the different sites.
In a DC the Selection would be done thus:

~Its L/S & R/S-15 specified memory unit.

a. (0.00000)8 through (1.77777)8 ----Memory Unit Nr. 1 (256)2•

Memory Nr. 1 is selected if LS=O.

b. (2.00000)8 through (2.07777)8 -----Memory Unit Nr. 2 (64)2•

Memory Nr." 2 is selected if LS=l and RS-Rll contains at least one zero.

c. (3. 77760)8 through (3. 77777)8 ----- Test Memory Unit. Test Memory is

selected if LS=l and RS-R11 contain all "l's".

2. Memory Address

a. Bits R/S-15 specifies particular address of Memory Nr. 1.

b. Bits R4-15 specifies particular address of Memory Nr. 2.

c. Bits R/12-15 specifies particular address of Test Memory.

In a CC site however this same address selection does not o

The memory selection there would be:

(. ~000-0, ~ eJ t> 11
right half of the instruction word also has other functions. Some of these are:

a. Used to specify the number of words to be transferred during an I/O operation
(RDS, WRT).

19

N
0

~
~
(I)

ll:oo
I

i
[
~
0
::s

~
11
Q.

I
I'll

"'""i:iiiii·!lALLY CGltl"ECTEO

r~BL-

TllANSFERllEll

OlllflNA TES INOO: lllEG I STEii

(IF ANY) TO IE USEO WITH

flUS INstilUCTION

cl
fl!~
!4 ~
!5-
z i

DESIGNATES TH[CLASS II' INSTRUCTION

CALLED FOR' MISC, ADD, MULT, STORE,
SHIFT. BRANCH, ro. OR RESET

~t
~ii
"'

.. _, -

- l
1 ;;!~~
I ~~!5

C:~!!
l:ncn
~i. """ -cm%

0 .. Ci I:'.:)
~g .. ~~
~ ~ ~~:D
ffi::! ~=i
~~ :;:~"' <>::!

~· -l-
Ll~l!js ~i~

~::i
:J._:C_

INDEX INTERVAL BITS USED FOR
CQNTROL WITH INSTRUCTIONS:
BPX, BSN, PER. SEL, SDR,
TOI, OR TTB

... .. ,..
- ,..

..
•

..
....

•
•
0

=
;;

G

•
Iii
- ..
..
• ..
..
....

• ..
0

=
;;

..
•
ii

llF A COllNllE INSTRUCTION IS
SELECTED, llT LIO, Lii, AND UZ SPECIFY
WHICH 0N£" OF EIGHT COMPARE
INSTRUCTIONS IS TO IE EXECUTED)

Ww~rtf a':fi'e~s :f! ~'fs~M":i xac.-.llST.
USED TO SU-SS OVlRFLOW ALARM ARISING FROM
ARITttMETIC MODIFICATION OF ADDRESSES
FOR CONTROL OF USED TO DETERMINE IF ANY ACTION
LEFT OVERFLOW IS TO IE TAKEN AS RESULT OF
FOii CONTllOL 01F OVERFLOW ON INSTRUCTIONS THAT
RIGHT OVERFLOW CAN CAUSE OVERFLOW
LOGICALLY PART OF THE RIGHT HALF-WORD FOR
ADDRESSING PUllPOSES

,..
"'
" .. ,.. ...
'
~
iJ

..
§! ..
" .. ,.. ...
'
~
~

N

l'Zj
~
~
ii:a.
I

N

p

.J.- RIGHT HALF WORD LEFT HALF WORD
~1-

LS LI L2 L3 L4 L5 L6 L7 LS L9 LIO Lii Ll2 U3 Ll4 IL15 RS RI R2 R3 R4 !Rs R6 R7 !Re IR9 IRIC Rll

COMPUTER WORD LAYOUT

.... LEFT HALF WORD RIGHT HALF WORD

LS LI L2 L3 L4 L5 L6 L7 LS L9 LIO 1L11 LI~ Ll3 IL14 L15 RS RI R2 R3 R4 R!5 R6 R7 R8 R9 IR!q ~II

. - .
RI. •

ADDRESS
AUXILIARY _,. ~-~;~·B:TOFADOR~S r-

INSTRUCTION WORD LAYOUT

I
Rl2 1R13 IR14 1R1s

Rl2 Rl3 Rl4 1R1s

~

b. Loaded into specified index register during an XIN instruction.

c. Added to the specified index register during an ADX instruction.

d. R/5-15 loaded into the Drum Control Register during an SDR or SEL instruction.

e. R/10-15 Loaded into the Step Counter every PT-7

(1) Only significant if a shift class or SLR instruction is programmed.

(2) Designates the number of shifts to be performed.

2. DATA WORDS

Just as with instruction words, a data word consists of two half-words which
are processed simultaneously by the dual arithmetic elements of the Central Computer
System. Data received from various sources will have various forms, so the most
general layout of a data word is what we shall consider. This layout conforms with the
word layout down in Figure 4-2. The sign bit of a data word actually indicates, if the
quantity is positive or negative, whereas it serves only as a code in an instruction
word. Therefore, we have two half-words of 15 magnitude bit and a sign-bit. All num­
bers in the AN/FSQ-7 and AN/FSQ-8 are treated as fractions. This restriction is
placed on data primarily so that the multiplication of two numbers will always result
in a product smaller than either of the numbers, thus positively avoiding overflow.
Another consideration is that the results of a multiplication may be stored from one
register without a loss of bit significance. As a result of this restriction, all numerical
data within the AN/FSQ-7 and AN/FSQ-8 lies somewhere between the limits of +1
and -1. Data which has an actual magnitude of more than unity must therefore be scaled
(factored) so that it appears in fractional form.

22

CHAPTER 5 ..; CENTRAL COMPUTER SYSTEM

The function of the Central Computer System is to process algebraically and
logically the military tactical data supplied to it by the Input System via the Drum
System; transferring the results back to the Drum System for subsequent distribution
to the Display and Output Systems.

In addition to processing data, the Central Computer System operates as the
main control for the Central. As data is being processed the Central Computer gener­
ates signals, as instructed, and sends them to the Drum System for utilization by the
Input, Disp:tay, and Output Systems. These signals control the flow of data between
systems, initiate operational cycles, set up control circuits for the coming operations,
and in gener31, synchronize the actions of each system with those of the Central Com­
puter System.

Functio~y, the Central Computer System is divided into seven groups; Figure
5-1:

1. Instruction Control element

2. Selection control element

3. Program control element

4. Arithmetic Element

5. I/O Element

6. Memory Element

7. Manual controls and computer indicators

The instruction, selection, and program control elements sequence, coordinate,
and control all processes in or allied with the operation of the computer. The entire
instruction control element and a part of the program control element govern internal
computer operations, while the selection control element and the remaining part of the
program control element govern external computer operations primarily connected
with IO devices.

The arithmetic element performs arithmetic processes using numerical data as
instructed by the program. The associated IO units are commercial IBM machines
modified for use with the computer and are not to be confused with the Input and Output
Systems of the Central. The manual control facilities enable personnel to start, operate,
shut down, and service the computer.

1. INSTRUCTION CONTROL ELEMENT, Figure 5-2.

The instruction control element accepts a portion of the instruction word from the
memory element and decodes it. The decoder is capable of recognizing each of the
various binary codes that indicate what operation is to be performed. More specifically,

23

~ r-------- ---.------------------. -,
1
l -...,. llUl:TIOll

CKTS

I I II 1•11MTMt-
I I
I J

• :::=:=M4' ~ I I

I
I
I
I
I
I I I~---~ I I '-----------.111 LEFT a llUIHT

_j MEMORY ELEMENT .. _ llDIOllY .,,Ell AH

L---------~~· ' . OTA Oft OT I CYCLES __ _J

~
~
C1I
I

-N811Q.Z

--··
-----..i - N8110.I

I
I
I
I
I
I
I
I
I

l,"9-IUS

r---
1 ______.__

I
I
I
I
I
I
I
I -

1..1-LIS r---
1111~
I I

TEST•llT Cl<TS

STl!P -CD.WT••

I I
I I
I I
1 · I

~~ I I
~,,

Lt:"
AUXILIAllY

CKTS

L.UT-llS

lltGHT
AUXILIARY

CKTS

<r;;;,. E;;!J _J
--· -=---=----

I :..~"1 I I LEFT I llEG I

•LECT GA~ I l =~~
~~-=-~~ -=· J --=---, --.c=:-__::=--=:.--r--

'--------------4 IO - --------------. K~
L/~~-

10 I
ELEMENT I

f~
1------i fP ~ ,,_.. J

~· ~~·~
'MT""-• A I

I AMICONTllOL I ,WA• ,+ __ J
L--+~------. --~ ---

IO-CIUITlll

10.~,s··

~

nuu.
l:LIMUITS

-1

IMHT AODlllS

lllGHTIMG

I
I
I
I
I
I
I
I
I

__ _J

.~· .. -·

bits Ll-L12 of the instruction word are transferred to a register, known as the operation
register, which determines the class of instruction and the variation to be executed.
The output of the operations register and its associated circuitry constitutes control
signals which are sent to all the other elements of the Central Computer at specific
times (depending on the instruction) and cause the instruction to be executed. The
instruction control element is divided into three sections: The instruction decoder, the
pulse generator and control, and the command generators.

The pulses generated by the instruction control element originate in a 2-mc
crystal-controlled oscillator. The sine-wave output of the oscillator is clipped and
shaped into positive pulses ranging from 20V to 40V above ground level in amplitude,
0.1 usec wide at the base and having a 0.5 usec repetition time. The pulses are dis­
tributed among a number of circuits, in which they perform many functions.

The following units are used for instruction decoding:

1. Operations register (0.3.1) bits Ll-L12.

2. Cycle Control (0.3.1).

3. Class-Cycle matrix (0.3.1).

4. Variation Matrix (0.3.1).

5. Index selector matrix (0.3.1).

6. Instruction Matrices (0.3.2).

The six units in the above list receive their information from the left niemory
buffer register during the PT cycle of the instruction and select the class and specific
variation.

1. Operations register

Bits Ll through L12 of an instruction word are transferred from the left memory
buffer to the operations register during the PT cycle.

2. Cycle Control

The Cycle control employs six flip-flops to carry out four functions. The six
flip-flops are:

a. PT-OT flip-flop

b. A-B flip-flop

c. Branch flip-flop

d. IO Interlock

25

e. CSW Control flip-flop

f. CSW Gate flip-flop

3. Class Cycle Matrix

The Class Cycle Matrix combines the information contained in the class­
selection portion (bits L4, L5, and L6) Of the operations register with the outputs of
the PT-01' flip-flop and the A-B flip-flop to provide 17 combinations of class and cycle
output levels.

4. Variation Matrix

The variation matrix decodes bits L7 through L12 of the instruction word to
condition one output line specifying which variation of the selected class of instruc­
tions is desired. Output of the variation matrix and the index selector matrix are com­
bined in the AND circuits of the appropriate instruction matrices; the output are d-c
levels that condition command generators.

5. Index Selector Matrix

This central computer system contains four index registers (no.'s 1, 2, 4, 5),
which may be used in the process of instruction indexing. In addition, the right accumu­
lator register of the arithmetic element is also used as an index register, under certain
circumstances, and functions as index register 3.

Instruction indexing is a process which automatically modifies the address part of
an instruction without changing the basic instruction as it is stored in the core memory.
Not all instructions are indexable. If the indexing process is to be used, the address
portion of the selected instruction is modified immediately after the instruction is
decoded.

The index selector matrix may select an index register for any one of the three
purposes: the contents of the index register may be added to the address register
during the execution of an indexable instruction. The index register may be reset to a
new number during reset-class instructions; or the contents of the index register may
be inspected and possibly modified during the execution of a BPX instruction.

Selection Of an index register is effected by the output of the index selector matrix.
There are six .possible outputs: IXO through IX5. When no index register is specified
for the instruction in progress, IXO is selected.

6. Instruction Matrices

The output of the class-cycle, variation, and index selector matrices are fed
to the instruction matrix where they are combined to produce the levels needed to
execute the selected instruction. These levels are applied to the necessary command
generators. When the conditioned command generators are sensed by pulses from the
time pulse distributor, they allow the pulses to emerge as commands. The commands
are issued in proper sequence and at the proper time to accomplish the objective of

26

the selected instruction. The same process is followed for all 63 instructions which the
Central Computer is capable of performing,

In many cases, several different instructions require the same command at
exactly the same pulse time. In this case, one command generator fed by an OR circuit
is provided. The several d-c instruction lines are connected to the OR circuit so that
any one of the lines can condition the selected command generator.

7. Command Generators

The functional arrangement of the instruction control element circuit is shown
in Figure 5-3. The instruction decoder receives coded instruction pulses from. the
memory element by way of the memory buffer register. As a result of decoding by the
various control and instruction matrices, a +lOV level is applied to the suppressor
grids of the command generators required for the execution of the instruction, and a
-30V level to the suppressor grid of the remaining command generators. A command
generator to which the +lOV level has been applied is said to be conditioned; one to
which the -30V level has been applied is called de-conditioned. Simultaneously with
the generation and routing of these levels the pulse generation and control section pro­
duces three types of repetitive timing pulses of 0.1 usec duration.

Specific timing pulses are applied to the control grids of individual command
generators. If a command generator is conditioned when it is strobed by a timing
pulse, a command pulse is generated.

The commands issued by the command generator tubes either activate other
parts of the instruction control element or are distributed among the other elements
of the Central Computer System. The majority of the commands are transmitted to
the Arithmetic element, where they initiate and control arithmetic operations.

Other commands are:

a. Applied to the program element to coordinate the overall operation of the
Central Computer System.

b. Routed to the IO element to set up control which govern the transfer of
information into or out of the IO devices.

c. Applied to memory element to initiate the transfer of information between
Memory and the Central Computer.

Commands which are generated during every machine cycle are called common
Commands. A complete list of all commands is shown in the Logic Index Appendix A
Section 2.

2. SELECTION CONTROL ELEMENT

The selection elements are composed of various groups of logical circuits which
enable us to perform a number of operations on all the systems in the AN/FSQ-7 and
AN/FSQ-8. For instance, we can start an input test pattern generator or cause the

27

28

CYCLE
CONTROL.

(0.3.11

COM!AND
PULSES

D-C LEVELS TO COMMAND GENERATORS

1
INSTRUCTION MATRICES

(MISCELLANEOUS, ADD, MULTIPY, STORE, SHIFT,
BRANCH, INPUT-OUTPUT, AND RESET!

t (t

t

CLASS- INDEX VARIATION
CYCLE SELECTION MATRIX
MATRIX MATRIX (0.3.ll
(0.3.1) (0.3.1)

~
BITS 4 BITS I BITS 7
THROUGH& THROUGH 3 THROUGH 12

OPERATIONS REGISTER-81TS LI THROUGH Ll2 OF INSTRUCTION WORD
(0.3.1)

f
CODED INSTRUCTION FROM LEFT
MEMORY BUFFER REGISTER CO.I.II

Figure 5-2. Instruction Decoder, Simplified mock Diagram

SELECTION CONTROL
ELEMENT

TIME ULSES

PULSE GENERATION
AND CONTROL

2-MC
PULSES,.

COMMANDS GATED
PULSES)

TIME COMMAND IENERATORS
PULSES (GATE TUIESI
CTPI OR

INSTRUCTION
PULSES CJPI

CODED INSTRUCTIONS f'ltOM
MEMORY BUFFER REGISTER

D-C LEVELS (GATING
SIGNALS)

INSTRUCTION DECODER
11>-C LEVEL GENERATION)

J

Figure 5-3. Instruction Control Element, Simplified mock Diagram

tape units to rewind. These are primarily unconditioned commands; in each case, we
are directing (or "operating") the computer to take some definite action. However,
there are occasions when we wish to examine the status of various parts of the computer
and take some action, depending on the status. For example, if we want to print some­
thing with the printer, we must first check to see if the printer is ready for use. This
is known as "sensing" the status of the printer. If the printer is not ready, we can take
corrective action depending on what options we have made available to the computer
through the program. The third operation that the selection element performs is to
determine whether an IO unit has been selected for operation and, if such is the case,
to condition the IO element. ·

The selection control element is divided into four sections: the index interval
register, the Operate-Select-Sense (PERSELBSN) matrix, the break command genera­
tors, and the control circuits.

The selection control element synchronizes, controls, and directs data being
transferred between the computer memory element and the several IO units, including
the drum system. Prepared instructions, setting up control circuits in the selection
control element, must be performed in advance of the actual transfer of information.
This enables the information transfer to be properly initiated and processed.

The s.election control element also incorporates circuits which permit the Central
Computer, directed by a specific program, to perform certain operations affecting the
electromechanical units allied with the IO units and the several other electromechanical
units in the system. In addition, the selection control element determines existing con­
ditions in the Central and directs the operations of the computer accordingly.

3. PROGRAM CONTROL ELEMENTS

a. The overall purpose of the program element is to supply the correct memory
address to the memory address register, so that the proper location in core memory
may be selected. The program element is composed of the program counter, the ad­
dress register, and four index registers.

b. Program Counter

The Program Counter is a flip-flop register which is responsible for keeping
track of th~ location of instructions within a program. During normal operation of a
program, the program counter will contain the address of the next instruction to be
executed.

c. Address Register

The Address Register accepts the right-half instruction word and does the
necessary decoding to provide the memory address register with signals. In the case
of memory 1 for the AN/FSQ-7, the LS bit is also transferred to the address register.

29

d. Index Registers

The Central Computer System can perform many routine functions such as
sorting, tabulating, table makeup, etc., by the use of programs which will repeat a
certain number of instructions as often as necessary. When a program such as this,
calied an interative program requires data stored in sequential locations, the data
can be obtained through the use of a single instruction and an associated Index Register.
Each time the instruction is executed, the amount remaining in the Index Register is
added to the contents of the Address Register, causing an address modification. The
AN/FSQ-7 and AN/FSQ-8 each contain four index registers, plus the right accumulator
of the arithmetic element which is something used as a type of index register.

4. THE ARITHMETIC ELEMENT

a. General

The actual computations which are specified by the instructions within a pro­
gram are carried out by the arithmetic element. The arithmetic element in the AN/
FSQ-7 and AN/FSQ-8 is a dual element, and the circuitry in each is identical. The
left arithmetic element, and the circuitry in each is identical. The left arithmetic
element handles the left-half data word. The right arithmetic element handles the
right-half word. When an instruction is executed, the same action occurs in the two
elements~ enabling data processing to proceed at a higher rate of speed. It should
be noted, also that the arithmetic element will perform arithmetic operations or in­
struction words as well as data. If a memory register containing an instruction is to
be added to a number already in the arithmetic element, the addition will take place in
the normal manner, because the arithmetic element cannot distinguish between types of
words. The main units in the arithmetic element are the A registers, adders, accumu­
lators, and B registers.

b. A Registers

The A registers contain one of the operands used during arithmetic operation.
The memory buffer register contents are transferred to the A register, and then the
arithmetic process actually begins. Since all operations consist basically of addition,
the A registers condition the adders.

c. Adders

Basically, the adders consist of various logical circuits which are capable of
producing a sum and a carry for each bit added. The accumulator register supplies one
of the bits to be added for each position; the A register supplies the other. The sum
produced by each adder is transferred to the corresponding flip-flop of the accumulator
registers.

d. Accumulators

As mentioned above, the accumulator registers contain the result of operations
performed by the adders. Thus, the accumulators may contain a number which repre­
sents a sum of an addition, the difference after a subtraction, the most significant

30

bits of a product or the remainder after a division. The accumulators may also be
used in the execution of several instructions that shift numbers already in the arith­
metic element I (such as rounding off a product).

e. B Registers

The B registers act as extensions of the accumulators during execution of
instructions such as multiplication and division. These registers are made up of fiip­
fiop circuits, just as the accumulators are; however, they are not associated with any
adder circuitry. In addition to containing the least significant bits of a product or the
magnitude of a quotient, the B registers can also perform shifting operations on their
contents.

5. IO ELEMENT

Once this element receives a signal from the selection element indicating that we
wish to read or write using an IO unit, the element takes over the task of performing
this operation. Several of the functions of this element are as follows:

a. Controlling the amount of information that is transferred.

b. Determining where in memory we read or write the information.

c. Determining what IO unit is to be involved.

d. Acting as a 'buffer storage device between the IO unit and internal memory.

6. MEMORY ELEMENT

In the AN/FSQ-7, the physical core memory units are referred to as memory one
and memory two. Memory one, which is called BIG MEMORY, contains 65,53610 or

200,0008 storage registers; memory two, which is called LITTLE MEMORY, contains

4,09610 or 10,0008 storage registers. In the AN/FSQ-8 both memory one and memory

two contain 4,09610 registers. The core memories are non-volatile, meaning that they

retain the information which is stored in them even when the power is not applied to
the units. We also consider the memories to have random access, meaning that any
memory location may be selected and read out in the same amount of time. This time
is referred to as access time (or memory cycle) and is six microseconds in the AN/
FSQ-7 and AN/FSQ-8. Thus, a minimum of six microseconds must elapse between
successive word transfers. One more important point to consider is that readout from
core memory is destructive; if we transfer the contents of location 1008 to the arith-

metic element, the word is automatically rewritten into memory location 1008 and can

be used again. However; when we write a word into core memory, the contents of the
selected register are destroyed, and replaced by a new word.

In addition to the core memories described previously, the AN/FSQ-7 and AN/
FSQ-8 each contain another storage device referred to as test memory. Test memory

31

consists of 16 plugboard registers and two toggle switch registers located on the duplex
maintenance console, and a flip-flop register located in the arithmetic element. Thus,
there are 19 test memory registers that may be used. However; only 16 addresses have
been reserved for test memory, so 16 is the maximum of registers that can be used
at any one time. The main purpose of test memory is to allow information to be entered
directly into the memory element without resorting to punched cards, etc. Naturally,
since only a limited number of addresses are available, most information entered in
this manner is for maintenance purposes. The Central Computer can read out any of
the addresses in test memory at a normal rate of six microseconds. When into test
memory, the flip-flop register, commonly called the "live test register," is always
selected, regardless of which of the 16 available addresses is specified.

Although it is not actually used as a storage register, the clock register is con­
sidered an active memory device. It is located in the right arithmetic element and
consists of 16 flip-flops which form a counting circuit. The clock register is pulsed
every 1/32 of a second, and thus maintains accurate track of real time. The contents
of this register are used when it is desired to use real time increments in various
calculations.

7. MANUAL CONTROLS AND COMPUTER INDICATORS

The manual controls and indicators of the computer are situated on the duplex
maintenance console and on the duplex switching console, as are the controls and
indicators for the other systems of the Central Computer. These controls and indicators
supply maintenance personnel at the Center with a means of manual control for loading
initial operating programs, loading certain reliability and diagnostic test programs,
and monitoring the operations of the major registers and circuits in the associated
equipment. The duplex maintenance console contains the majority of the controls and in­
dicators for the manual operation of the Central Computer System. The alarms and
neon indicators on the console show the status of the computer, and virtually all manual
program and checking operations are affected by means of the console controls.

OVERALL SYSTEM INFORMATION FLOW

The main transfer paths for both data and instructions within the Central Com­
puter System are shown in Figure 5-1. Not all the paths have been shown; however,
those which connect the registers and circuitry primarily responsible for decoding
and the execution of instructions are indicated. The IO element has not been broken
down to show any of its operational registers because it is not involved in the operation
of the Central Computer to be discussed at this time. The IO element will be discussed
more fully when IO programming and IO instructions are discussed.

32

CHAPTER 6

CODING OF LOGIC BOOK - reference logic index and CC Logic Vol. n index page.

1. First Digit designates "System"

O. Central Computer

1. Drums

2. Inputs

3. Outputs

4. Display

5. Power

6. Warning Lights

7. Maintenance Console

8. None

9. Test Equipment

2. Second Digit Designates "Logical Function".

3. Third Digit Designates "Section of Function".

4. Fourth Digit Designates "further breakdown if necessary".

5. Breakdown of "Logic Function" used in the Central Computer are a:s follows:

a. (0.1) Core Memory

b. (0.2) Timing and Distribution Controls

c. (0.3) Operations

d. (0.4) Addressing

e. (0.5) Arithmetic

f. (0.6) Index Interval Decoding

g. (0.7) J/O, Sense, Operate, Misc.

h. (0.8) Magnetic Tapes

33

MACHINE TIMING

In order to generate the individual commands that execute a computer instruction,
a system has been devised using 2 me (.5 usec apart) pulses.

They are distributed by the TPD (Time Pulse Distributer) on 12 lines as TP 0
through TP 11. This is basic machine timing. Every 6 usec a TP-0 is produced, and so
on through TP-11. These are the same pulses that are used to control nearly all opera­
tions in the central computer. There are 5 (five) different types of Machine cycles.
They are:

eJ Program Time

During Program Time the TPD ring develops TP pulses which handle the transfer
from memory to the instruction control element of instruction words. PT pulses are
used to decode instruction words also.

t® Operate Time A

OTA pulses handle the transfer from memory to the arithmetic element of oper­
ands and data words. They also control most of the arithmetic processes.

• @ Operate Time B

OT-B pulses are used to control the transfer of new data from the arithmetic
element to core memory.

@Break In

~
Break In pulses will be generated when an external device, acting under instruc­

tions previously received from the computer, has a word ready for transfer into core
memory.

~Break Out

Break Out pulses will be generated when an external device, acting under instruc­
tions previously received from the computer, is ready to accept a word from the core
memory.

@.None of these times can exist at the same time.

All instructions require PT and therefore require at least 6 usec to operate.
Most instructions require PT and OT-A and therefore require 12 usec. to operate.
Some require PT-OTA-OTB, (ta usec.). Some require PT-OTB, 12 usec., and some
repetitive instructions require additional time. During this time the pulses used are
generally straight 2 me pulses. This time' is referred to as an arithmetic pause. All
of these combinations referred~ above are known as instruction cycles.

34

I 1 o s c

' ~ 4• l'I

•
,.,, I P

ti"- 0 T,._.

.kLT

PT - 2

~ T (PB)

~·-... ·~
~~LOAD

----- -- ---=-- -

' I

~ ,,._ . .,.,._ i· ,·~ ,,._, .,.

t '). "=' rt&
,~,,,

'J

ca

,,._7

->
i . J,,, ,, I I

I

J ..!.. I
.. ,~ rt•'rtJ17. ~~

•• T"-7 l"-11 T .. - 11

~
I

I:'-
Q)
s..
~

rz..

ID
C")

36

TP 0 TP 1 TP 2 TP 3 TP 4 TP 5 TP 6 TP 7 TP 8 TP 9 TP 10 TP 11 TP 0

I I I I I I I I I I I I
I •

A. Machine Cycle

6 usec.

I :e~ect Mem• or Register Read Write

8. Memory Cycle

Figure 7-2. Relationship of Machine Cycle to Memory Cycle

PT7 PTO PT6

I I ____ J
A. 1-Cycle Instruction

PT 7 OTA 0 OTB 0 PT 0 PT 6

I ____ .. __ .L ___ ~l ___ ..___I _]

PT 7

I

PT 7

OTA 0

I

8. 3-Cycle Instruction

c.

PT 0
1----2 MC Pulses ---1

Pause I
2-Cycle Instruction with Pause

PTO •
1---- 2 MC Pulses----! PT 6

17 Pause z--·-··----1 ==1
'

D. 1-Cycle Instruction with Pause

Figure 7-3. Various Cycle Configurations for AN/FSQ-7 and AN/FSQ-8

MACHINE CYCLE

I MEMORY CYCLE
INSTRUCTION

2 MEMORY CYCLE
INSTRUCTION

:S MEMORY CYCLE
INSTRUCTION

PROGRAM TIME OPERATE TIME A OPERATE TIME I

l~I
IP 7 IP 6

W7 W6

14---PT "'14 OTA .. 14 OTB ""'~ PT --.j ,_
W7 W&

14--- PT .,14 OTA -..i.. PAUSE .. ,.. PT ~

2 MEMORY CYCLE + PAUSE
INSTRUCTION -

BASIC
MEMORY
CYCLE

16 USEC I

OPERATE
TIME OR
OPERATE
TIMEA

· Figure 7-4. Machine and Instruction Cycles

TIME PULSES--0 I i -t:S+4 51 +16 7
SELECT

:~f~ RrD

rt I I I H SELECT MEMORY ADDRESS AND
TRANSFER OPERAND TO CEl'ITRAL

1. COMrTER 1

1 1 1 ~ OE CODE
INSTRUCTION

INOEXING
1-(IF sP7c1FIEDI

Figure 7-5. Comparison of Core Memory Cycle and Internal Machine Cycles

37

INSTRUCTION CYCLE

An instruction cycle always begins at PT-7. Therefore a one memory cycle in­
struction occurs from PT-7 to PT-6. A two memory cycle instruction occurs from
PT-7 to PT-11, OT-0 to OT-11, and PT-0 to PT-6.

Why would an instruction. cycle begin at PT-7? Because the instruction word is
not available from memory before PT-7 and therefore the PT-0 to PT-6 time can be
used by the prior instruction and is a part of its instruction cycle.

PAUSE

A pause is a time delay for an Operation to Complete before continuing. There
are two types of Pauses (I/0 Pause and Arithmetic Pause): I/O Pause occurs every
time the computer tries to start a 2nd I/O operation while one is still in progress or
if you try to halt the computer while in an I/O Operation. The I/O interlock is used in
conjunction with this type pause. No instructions are operated during an I/0 pause.

Arithmetic Pause is used for instructions with repetitive operations such as SHIFT,
MULT, and SLR. 2 m.c. operation pulses are used at this time. Breaks can occur
during Arithmetic Pauses. While in a Pause, the TPD ring is stopped after TP-11 at
TL-0. When a break occurs during a pause, the TPD ring is started, and stops when
the break cycle is complete.

38

CHAPTER 8 - BASIC COMPUTER INSTRUCTIONS

GENERAL

A program is a series of instructions which control the operations of a computer.
Each instruction is used to" cause some action which is a part of the overall task we
wish to perform. Therefore, we say that an instruction is the basic building block of a
computer program.

An efficient program makes full use of the instructions which are available to
accomplish the task in the shortest possible time and uses the least number of in­
structions. In most cases, one criterion, either time or the number of instructions,
has to be chosen over the other, and the program is developed along this line. If time
is important, we try to write a program which uses instructions of short duration but
may use quite a few memory locations for storage. On the other hand, if time is rela­
tively unimportant, but only a few restricted locations are available, we must then
choose instructions which do a number of things or will cause the computer program
to run through the same routine more than once. Later, we shall see how two different
programs can be written to perform the same task, one being fast in execution time but
the other requiring less memory space.

From the above discussion, it is apparent that to write a satisfactory program it
is necessary to have a thorough knowledge of the instructions we can use. This .includes
execution time, the overall purpose of the instruction, when the instruction may be
used, and the state of the computer after the instruction has been carried out. In addi­
tion, we should know whether the instruction can be indexed and what internal conditions
must be satisfied before it can be executed. The following text describes 17 basic in­
structions that are used in the AN/FSQ-7. Each description contains the information
listed above, and program examples of the instructions are given. Since most problems
have several possible solutions, the program given for a particular problem may not
represent the most efficient way of arriving at an answer. Rather, the programs are
designed to show the application of individual instructions within a program.

HALT INSTRUCTION

The HALT (HLT) instruction causes the computer to stop executing instructions
under program control. However, any IO operation which is in progress at the time the
HLT instruction is decoded will be completed first. For example, if we are reading
information into m·emory from a deck of 150 punched cards, all 150 cards will be
read before the computer halts, even though the HLT instruction may have been issued
just after the reading operation began. This instruction requires 12 usec to execute
and is designated by an octal code of 000 (Bits lA-LlO). The address portion of the
HLT instruction is not used; therefore, indexing is not possible. When the computer is
halted by this instruction, the program counter contains the address of the instruction
immediately following, so that restarting the computer will cause the next instruction
to be executed.

39

CLEAR AND ADD INSTRUCTION

The CLEAR and ADD (CAD) instruction is used to enter a quantity into the accu­
mulators from memory without changing the sign or magnitude of the words. This
instruction is usually used when it is desired to begin a type of addition problem. The
accumulators are first cleared, and then the location specified by the address portion
of the CAD instruction is transferred to the A registers. Then an actual addition between
the A registers and the accumulators is started; however, since the accumulators are
cleared to +O, this addition has the overall effect of transferring the word from memory
into the accumulators unchanged. The memory location used is unchanged, and the A
registers are cleared to +0 after execution of the CAD instruction. An octal code of
100 is used to designate a CAD instruction, and it may be indexed. Execution time
for this instruction is 12 usec.

ADD INST RUCTION

The operation of this instruction is similar to that of the CAD instruction except
that it does not provide for clearing the accumulators before the addition process
begins. Thus, the ADD instruction will generate the sum of the word contained in the
specified memory address and any value that may be in the accumulators. The sum is
placed in the accumulators, and the A registers are cleared to +O. The ADD instruction
requires 12 usec for execution and may be indexed. The octal code for this instruction
is 104. It should be noted that the ADD instruction can cause an overflow if the numbers
added together are sufficiently large. If this happens, the result in the accumulator is
meaningless. Because the arithmetic elements are dual, an overflow may occur in one
accumulator and not the other; however, overflow !n both accumulators may occur as a
result of the same ADD instruction. Later on, we shall see how this condition (overflow)
can be dealt with by a computer program.

LEFT ADD INST RUCTION

The LEFT ADD (LAD) instruction is used to add the left half-word of the memory
location specified to the contents of the left accumulator. This instruction is similar to
the ADD instruction except that nothing is done to the right accumulator. The A regis­
ters are cleared to +O, then the left half word of the specified memory location is
transferred to the left accumulator. The sum of the LHW of the memory location and the
left accumulator appear in the left accumulator, the right accumulator remains un­
changed. The octal operation code for the LAD instruction is 120 and may be indexed.
Since addition only takes place in the left arithmetic element, overflow may occur in
the left accumulator only. The LAD instruction requires 12 usec to operate.

FULL STORE INSTRUCTION

The FULL STORE (FST) instruction is used to transfer words from the accumu­
lators into a memory location specified by the address portion of the instruction. The
left accumulator is stored in the left half-word and the right accumulator is stored in
the right half-word. Thus, this instruction enables us to place the results of any opera­
tion performed by the arithmetic element into memory for future use. The contents
of .the specified register are first cleared, and then the contents of the accumulators
are stored in via the memory buffers. However, the accumulators remain unchanged

40

by this instruction. Execution time for this instruction is 12 usec, and it may be in­
dexed. The FST instruction is designated by an octal code of 324.

SAMPLE PROGRAMS INVOLVING ADDITION

Now that we have learned enough instructions (HLT, CAD, ADD, and FST) to solve
a basic and simple problem involving addition only. However, the programming pre­
sented in this problem are the same as those outlined previously; i.e., to choose the
proper instruction and place it in the proper place in our program. Assume that the
problem is to add several sets of quantities together and store the results for future
use. Before we write a program, we must know where in memory those quantities are
stored initially; we must also know where to place their sum. In addition, we must
have memory locations available for storage of the computer program itself. For ease
of explanation, assume that memory locations 08-108 are available for the program;

locations 1008-2008 are available for data, including the result. Further assume that

the quantities we wish to add are contained in memory locations 1008, 1258, and 1358.

Let the quantities be designated A, B, c, D, E, and F, where A=l, B=2, C=3, D=4, E=5,
and F=6, and have them located as follows:

a. Memory location 1008 contains A in the left half-word and B in the right half-
word.

b. Memory location 1258 contains c in the left half-word and D in the right half-
word.

c. Memory location 1358 contains E in the left half-word and F in the right half-
word.

Now we are ready to solve the problem. The program used is given below.

Table 8-1

BASIC ADDITION PROGRAM

LOCATION OPERATION ADDRESS

0.00000 CAD 0.00100

0.00001 ADD 0.00125

0.00002 ADD 0.00135

0.00003 FST 0.00150

0.00004 HLT 0.00000

Notice that the octal notation is used when referring to memory locations; this method
simplifies the reading of the program, as previously explained. Now let us take the
first instruction in the program and see what it does. ·

41

The instruction itself is located in memory location O. 00000, and it says to CAD
location 0.00100. This will cause the accumulators to be cleared to positive zero and
the contents of 0.00100 to be added in. Since we specified that 0.00100 contains A, B,
the left accumulator will contain A (1) and the right accumulator will contain B (2)
after execution of the CAD instruction. It should now be obvious that the CAD instruction
is the best instruction with which to start our program, since our problem is to add
numbers together, and the ADD instruction would not suffice since it is possible (and
probable) that the accumulators would not be cleared at the start of the program. Thus,
using an ADD instruction might lead to a result we do not want. The next instruction,
which is located in 0.00001, tells us to ADD 0.00125. After execution of this instruction,
the left accumulator contai~ A+C (4) and the right accumulator contains B+D (6).
Remember that simultaneous addition is carried on in both arithmetic elements. The
third instruction, ADD 0.00135, will add in E (5) and F (6) so that the left accumulator
contains A+C+E (11) and the right accumulator contains B+D+F (14). Now the result we
wish to obtain is in the accumulators. However, to be of any real value, the result
must be stored in memory, so the fourth instruction tells the computer to FST these
sums in 0.00150. Now location 0.00150 contains A+C+E (11) in the left half-word and
B+D+F (14) in the right half-word, regardless of what quantity may have been there
previously. Of course, these sums are still contained in the accumulators. The last
instruction in our program is HLT, which causes the computer to stop operation.

This problem has been simple, and no doubt the solution was obvious from the
beginning. However, most problems do not offer such straight forward methods of
solution. In some cases, it is advantageous to add one quantity before another, although
in the above example it made no difference which quantities were initially placed in
the accumulators, since the end result would have been the same. In addition, the choice
of memory location 0.00150 for the result was arbitrary, the only restriction being
that it had to be somewhere between locations 0.00100-0.00200, as mentioned before.
In many cases, however, the results of computation have to be in a particular location or
locations because another program may refer to that location on the assumption that
the proper quantities have been placed there. The following example shows how a pro­
gram may refer to a location that has just been used for storage. Assume that we wish
to obtain the sums 2A + 2C, 2B + 2D, using the same data locations as those given in
the first program. The program to obtain these sums is given below.

Table 8-2. MEMORY REFERENCE PROGRAM

LOCATION OPERATION ADDRESS

0.00000 CAD 0.00100

0.00001 ADD 0.00125

0.00002 FST 0.00150

0.00003 ADD 0.00150

0.00004 FST 0.00150

0.00005 HLT 0.00000

42

Of course, this is not the only method of solution, merely one of the possible ones.
However, it does show how one memory location may be used several times in the
same program. The first instruction places A, B in the accumulator. The second in­
struction, ADD, will leave the sum A + C, B +Din the accumulators. Now we FST
these sums. in 0.00150, with the result that A+ c, B +Dis now in both the accumu­
lators and the specified memory location. The fourth instruction adds the sums we
have just stored, leaving the desired result 2A + 2C, 2 B + 2D in the accumulators.
Then we FST in 0.00150 again and HLT.

CLEAR AND SUBTRACT INSTRUCTION

The CLEAR AND SUBTRACT (CSU) instruction is used to enter a quantity into
the accumulators in complemented form. This is accomplished in much the same
manner as the CAD instruction. The accumulators are cleared to +O, and the contents
of the memory location specified in the address portion of the instruction is trans­
ferred to the A registers. However, the A registers are then complemented, which
results in having the original contents of the selected memory register in its comple­
ment form. Then a normal addition takes place between the A registers and the accu­
mulators, placing the complemented number in the accumulators. The CSU instruction
requires 12 usec to execute and will not cause a computer overflow. An octal code of
130 designates the CSU instruction, which may be indexed.

SUBTRACT INSTRUCTION

A SUBTRACT (SUB) instruction is used to subtract the contents of the selected
memory register from the contents of the accumulators. Again, we employ the normal
addition process between the A registers and the accumulators after first complement­
ing the A registers, which contain the contents of the specified register. The accumu­
lators are not cleared, however, so that the result will be the difference between the
number in the accumulators and the number in the A registers. Execution time of the
SUB instruction is 12 usec, and it may be indexed. The octal operation code is 134,
and it should be noted that the SUB instruction may cause a computer overflow.

TWIN AND ADD INSTRUCTION

The TWIN AND ADD (TAD) instruction causes the left half word of the specified
memory register to be added to both the left and right accumulators. The right half
of the data word is not used at all, otherwise this instruction is identical in execution
to the ADD instruction. The octal operation code for the TAD instruction is 110, and it
may be indexed. Since the same value is added to both accumulators, overflow may occur
in either or both accumulators, depending on their original contents. The TAD instruc­
tion requires 12 usec to execute.

TWIN AND SUBTRACT INSTRUCTION

The TWIN AND SUBTRACT (TSU) instruction is employed to subtract the left
half word of the specified memory register from both the left and the right accumu­
lators. This instruction is similar in execution to the SUB instruction. The left half
word is transferred to both A registers where it is complemented and then added to
the accumulators. The difference appears in the accumulators, and just as with the

43

TAD instruction, overflow may occur in either or both accumulators as a result of the
TSU instruction. The octal operation code that designates a TSU instruction is 140,
and requires 12 usec to execute. This instruction may also be indexed.

SAMPLE PROGRAMS INVOLVING SUBTRACTION AND TWINNING

Now that we have learned enough instructions to cover two of the four basic
arithmetic processes, it is possible to write programs which will solve problems that
are more complex-than those given previously. In the follo.wing examples, the locations
of data are listed at the end of the tables containing the program. Assume that our
programs will always start at location 0.00000 and that we have up to 0.00050 available
for the instructions. The first problem is to compute two sets of values; namely, A-C+
2E, B-D+E+F and A-C+2E, 2A-B-2C+D+3E-F. The program is executed as shown
in the table below.

Table 8-3. SAMPLE SUBTRACTION PROGRAM

LOCATION OPERATION ADDRESS

0.00000 CSU 0.00151

0.00001 ADD 0.00150

0.00002 ADD 0.00152

0.00003 TAD 0.00152

0.00004 FST 0.00200

0.00005 CSU 0.00200

0.00006 FST 0.00250

0.00007 TAD 0.00200

0.00010 TSU 0.00250

0.00011 FST 0.00250

0.00012 BLT 0.00000

0.00150 A B

0.00151 c D Data

0.00152 E F

0.00200 First result

0.00250 Second result

44

LEFT STORE INSTRUCTION

The LEFT STORE (LST) instruction will place the contents of the left accumulator
into the left half portion of the specified memory register. The right half portion of this
register is not changed, nor are the accumulators. The octal operation code of the LST
instruction is 330, and it may be indexed. Execution time is 18 usec. At this point,
the student may wonder why the LST instruction should require 18 usec for completion
when the FST instruction only requires 12 usec. The reason is simply this: During
execution of an FST instruction, it is not necessary to preserve any part of the register
involved, so only one OT cycle is required to read the contents out and place the new
contents into memory. An LST instruction must preserve the right half-word of these­
lected register, so two OT cycles are required, one to read out the contents of the
selected register, another to replace the left half portion and the original contents of
the right half-word back into memory. This is accomplished by reading the original
contents of the memory register into the A registers during the OTA cycle. The left
accumulator is transferred to the left memory buffer register, and the right A register
is transferred to the right memory buffer register, so that during the OTB cycle, these
quantities are stored in memory.

RIGHT STORE INSTRUCTION

The RIGHT STORE (RST) instruction is similar to the LST instruction except
that it involves the opposite half of the dual arithmetic element. Its function is to re­
place the right half of the specified memory location with the contents of the right
accumulator. This is accomplished in the same manner as the LST instruction just
described. An octal code of 334 is used to designate an RST instruction, and it may be
indexed. The execution time for the RST instruction is 18 usec.

SAMPLE PROGRAMS INVOLVING HALF-WORD STORAGE

The use of the LST and RST instructions can best be illustrated through the use
of some program samples. Remember that the solutions given for a particular problem
do not represent the only method of solution, but merely one of the. possible ones. Our
first problem is to compute the following: A-C+E, B-C+E+2F, 3E-C, E-C+2F, 6E-2C,
E-C+2F. The program to compute these values is given below.

Table 8-4. SAMPLE PROGRAM USING HALF-WORD STORE INSTRUCTIONS

LOCATION OPERATION ADDRESS

0.00000 CAD 0.00075

0.00001 ADD 0.00077

0.00002 TSU 0.00076

0.00003 LST 0.00430

0.00004 TAD 0.00077

45

0.00005 ADD 0.00077

0.00006 RST 0.00430

0.00007 SUB 0.00075

0.00010 FST 0.00440

0.00011 RST 0.00450

0.00012 ADD 0.00440

0.00013 LST 0.00450

0.00014 HLT 0.00000

0.00075 A B

0.00076 c D Constants

0.00077 E F

0.00430 First Result

0.00440 Second Result

0.00450 Third Result

Here, we can see the advantage of using the LST and RST instructions. For in­
stance, at program step 0.00003, we used the LST instruction to store the value A-C+E.
However, this in no way affected the contents of the accumulators, so we were able to
proceed to step 0.00006 where the proper value for the right half-word was arrived at
and stored. The last two results called for the same value in their right half-words,
so after an FST instruction at 0.00010, an .RST instruction was given to place the de­
sired value in another location. Notice that the third result required a value in the
left half-word that was exactly twice the value of the left half-word in the second result.
This could have been computed by a series of ADD and SUB instructions; it was much
more convenient to merely add the second result to itself, which was done at step
0.00012. This is a valid procedure and in no way affects the second result; we are
merely using it as another constant in this case. The sum in the right accumulator is
of no importance either, since the proper value for the right half-word is already
stored; all that is necessary is the LST instruction given in program step 0.00013.

Another example involving the use of LST and .RST instructions is given below.
We wish to compute the following values: -A, C-B+D and +O, 2D. The program to
compute these values is given in the table below. Notice that in program step 0.00005
we. used a CAD instruction, giving the address of the HLT instruction as the desired
memory location. Since we know that the octal code of a HLT instruction is 000, this
means that the left half portion of the HLT instruction is +O. Therefore, we can use
the HLT instruction as a constant of O, as has been done here. It is a valid programming

46

technique to perform arithmetic operations on instructions since. they are read out of
memory during an OT cycle, in this case, and are not decoded, but treated as straight
binary numbers. As a rule, it is not necessary to use instructions in this manner; how­
ever, it should be remembered that they are simply numbers in internal memory and
do not have any significance to the Central Computer unless they are decoded during a
PT cycle.

Table 8-5. ADDITIONAL EXAMPLE OF HALF-WORD STORAGE

LOCATION OPERATION ADDRESS

0.00000 CSU 0.10000

0.00001 LST 0.22050

0.00002 ADD 0.20000

0.00003 TAD 0.20000

0.00004 RST 0.22050

0.00005 CAD 0.00012

0.00006 LST 0.22051

0.00007 CAD 0.20000

0.00010 ADD 0.20000

0.00011 RST 0.22051

0.00012 HLT 0.00000

0.10000 A B
Constants

0.20000 c D

0.22051 First result

0.22050 Second result

47

CHAPTER 9 - BASIC BRANCH INSTRUCTIONS

GENERAL

Up to this point we have discussed only those instructions which specify that
definite action is to take place, such as ADD, FST, HLT, etc. However, if we limited
the AN/FST-7 and AN/FST-8 to execution of this type of instruction only, it would
seriously limit the capabilities of the machine. What we need are instructions that
can examine the computer and decide what to do, depending on the condition we are
looking for. These instructions are known as Branch instructions, and the first ones
we will study involve checking the accumulators for one condition for another. Branching
simply involves transferring the program control to the address specified in the right
half-word of the Branch instruction if the condition we are checking for is met. Branch
instructions constitute some of the most powerful instructions that can be placed in a
computer program, and they allow us to put a great deal of flexibility into various com­
puter programs.

BRANCH ON LEFT MINUS INSTRUCTION

The BRANCH ON LEFT MINUS (BLM) instruction examines the sign bit of the left
accumulator and branches to the location specified in the address portion of the in­
struction if the sign bit contains a 1 bit. When the branching condition is met, the
program counter, which has already been stepped, is transferred to the right A register,
and the address register is transferred to the program counter. Thus, at the comple­
tion of a BLM instruction (assuming the branch condition is met), the program counter
will contain the location of the next instruction we desire to execute. If the sign bit
of the left accumulator is positive, the branch condition has not been met, and the next
instruction executed will be the one immediately following the BLM instruction.

The accumulators are not affected by the execution of this instruction. Execution
time of the BLM instruction is 6 usec., and it cannot be indexed. The octal operation
code for the instruction is 550. ,

BRANCH ON RIGHT MINUS INSTRUCTION

The BRANCH ON RIGHT MINUS (BRM) instruction checks the sign bit of the right
accumulator and branches to the memory location designated by the address portion
of the instruction if the right sign bit is negative. As with the BLM instruction, the pro­
gram counter is transferred to the right A register, the address register is trans­
ferred to the program counter, and the accumulators are left unchanged. If the sign
of the right accumulator is positive, the program executes the next sequential instruc­
tion. An octal code of 554 designates a BRM instruction which requires 6 usec to exe­
cute. This instruction cannot be indexed.

TABLE CONSTRUCTION PROGRAM

Following is a program which illustrates the use of the BLM and BRM instruc­
tions. Assume that the problem is to examine both half words of a data word stored in
memory and to construct a table of all negative values, using right half words, beginning
at location 0.00100. We do not know the values of the left and right portions of the data

48

NO

MOVE RIGHT WORD

UP IN TABLE

YES

START------,

NO

NO

STORE RIGHT
ACCUMULATOR

HALT

YES

YES

PLACE LEFT
WORD IN RIGHT
ACCUMULATOR

STORE RIGHT
ACCUMULATOR

REPLACE DATA
WORO IN

ACCUMULATOR

Figure 9-1. Preliminary Flow Chart, Table Construction Program

49

word. The solution to this problem may be rather simple; however, when writing pro­
grams of the type that involves a number of decisions, it is useful to construct a pro­
gram flow chart. This chart is actually a graphic representation of what is desired and
depicts a method of arriving at a solution. The technique is to separate the problem
into a number of blocks, each of which contributes to the solution. Then the actual
programmed instructions that can be used to perform the function of each block are
determined, and the end result is the finished program. The problem given above will
be laid out using the flow chart method. It should be noted that flow charting is not
always necessary in the solution of a problem, but will ease the task of the actual
coding.

PRELIMINARY FLOW CHART

The problem stated that we are to examine a data word for negative quantities
and construct a table from these quantities, if any are present. In addition, we know
that this table is to start at location 0.00100 and that we must use the right half-word
for storage. With this much information, we can lay out a preliminary flow chart. This
chart should resemble the one shown in Figure 9-1.

FINAL FLOW CHART

From the examination of Figure 9-1, it should now be obvious that we can use
the BLM and BRM instructions to arrive at a solution to this program. There are
four possible arrangements of the signs within a data word, and this flow chart will
handle all of them. Now we can proceed to fill in each of the blocks as done in Figure
9-2. For ease of explanation, assume that the data word we are interested in is located
at address 0.00050 and that it contains the quantities X and Yin the left and right­
half words, respectively. A listing of this program is also given below.

Table 9-1

LOCATION OPERATION ADDRESS

0.01000 CAD 0.00050

0.01001 BLM 0.01004

0.01002 BRM 0.01011

0.01003 HLT 0.00000

0.01004 CAD 0.01003

0.01005 TAD 0.00050

0.01006 RST 0.00100

0.01007 CAD 0.00050

0.01010 BLM 0.01002

50

0.01011 RST 0.00101

0.01012 CAD 0.00100

0.01013 BRM 0.01003

0.01014 CAD 0.00101

0.01015 RST 0.00100

0.01016 BRM 0.01003

0.00050 x y

0.00100 First value

0.00101 Second value

Note that Figure 9-2 specifies that we are checking X and Y to see if they are
smaller than +O. This is necessary because -0 will contain a sign bit of 1 and will
satisfy the branching conditions. Therefore, it is possible that one or both of the values
could be -0 and not actually numbers with an absolute magnitude of less than zero.
Later, we shall see how another branching instruction can be used to determine whether
the quantities being tested are really negative numbers.

NUMBER SORTING PROGRAM

As another problem involving the use of branching instructions, let us consider
three numbers of unknown magnitude. We will assume that the numbers are all positive
integers and that they are stored in the left half portions of the data words concerned.
We want to write a program which will sort through these three numbers, select the
largest, and store it in a specified location. Here, again, the best solution to this pro­
blem is to use the flow chart method previously illustrated.

PRELIMINARY FLOW CHART

We know that our problem is to sort through three numbers and select the largest.
Since we do not know the magnitude of the numbers, it is necessary to compare all
three numbers against each other. This involves making two comparisons, determining
which number is larger at each comparison, and finally storing the correct value. The
flow which graphs this solution is shown in Figure 9-3.

FINAL FLOW CHART

The final flow chart for this program is shown in Figure 9-4. It can be seen
that the use of the BLM instruction has enabled us to determine quite rapidly what is
the largest number and to store it. Notice that there are two separate ways in which
the third number compared can be found to be the largest number. Since this is the
case, we can use one group of instructions to place this number in the desired memory
location, and allow entry to this group from two separate points. For purposes of

51

START

j

-x.>+O 1000 CAO 50 -x.<+O
1001 BLM 1004

1004 CAO 1003
1005 TAO 50

~

r>+O
1002 BRM 1011

r<+O 1006 RST 100

1007 CAO 50

1010 BLM 1002

'
1011 RST IOI

-x. NOT IN. TABLE 1012 CAO 100 "X. IN TABLE

1013 BRM 1003

1014 CAO IOI
1015 RST 100
1016 BRM 1003

- 1003 HLT, +O --

Figure 9-2. Final Flow Chart, Table Construction Program

explanation, we have assumed that the numbers to be compared are A, B, and C and
that they are in memory locations 0.00100, 0.00101, and 0.00102, respectively. Location
0.00150 is used to store the result of the comparison. This program is listed in Table
9-2.

52

Table 9-2

LOCATION OPERATION ADDRESS

0.00000 CAD 0.00100

0.00001 SUB 0.00101

0.00002 BLM 0.00011

0.00003 CAD 0.00100

0.00004 SUB 0.00102

0.00005 BLM 0.00017

0.00006 CAD 0.00100

0.00007 FST 0.00150

0.00010 HLT 0.00000

0.00011 CAD 0.00101

0.00012 SUB 0.00102

0.00013 BLM 0.00017

0.00014 CAD 0.00101

0.00015 FST 0.00150

0.00016 HLT 0.00000

0.00017 CAD . 0.00102

0.00020 FST 0.00150

0.00021 HLT 0.00000

0.00100 A

0.00101 B Data

0.00102 c

0.00150 Result

53

54

STORE
FIRST NO.
AND HALT

YES

START

NO

OBTAIN
FIRST

NUMBER

STORE
THIRD NO.
AND HALT

YES

NO

STORE
SECOND NO.

AND HALT

Figure 9-3. Preliminary Flow Chart, Number-Sorting Program

START

0 CAD 100

A> B I SUB 101 B>A
2 BLM II

I

A> C 3 CAD 100 C>A C> B II CAD IOI B>C
4 SUB 102 -- 12 SUB 102
5 BLM 17 13 BLM 17

' • ' 6 CAD 100 17 CAD 102 14 CAO 101
7 FST 150 20 FST 150 15 FST 150
10 HLT - 21 HLT - 16 HLT -

Figure 9-4. Final Flow Chart, Number-Sorting Program

BRANCH ON FULL MINUS INSTRUCTION

The BRANCH ON FULL MINUS (BFM) instruction checks the signs of both the
left and right accumulator and branches to the memory location specified by the ad­
dress of the instruction if both accumulators are negative. Thus, it can be seen that
this instruction is a combination of the BLM and BRM instructions. As with these other
instructions, only the sign bits of the accumulators are checked, and if they both contain
a 1, the branching condition is met. When this is the case, the contents of the program
counter are transferred to the right A register, and the address portion of the BFM
instruction is. transferred to the program counter. If the branching condition is not met,
the program counter will select the next instruction in sequence. Execution time of the
BFM instruction is 6 usec, and it is not indexable. This instruction is designated by an
octal operation code of 544.

BRANCH ON FULL ZERO INSTRUCTION

The BRANCH ON FULL ZERO (BF Z) instruction checks the contents of both
accumulators to see if they are O. Since the AN/FSQ-7 and AN/FSQ-8 utilize both a
positive and a negative zero, there are four combinations of positive and negative zero
branching conditions. These combinations are given below.

LEFT ACCUMULATOR RIGHT ACCUMULATOR

0.00000 0.00000

1. 77777 1. 77777

0.00000 1.77777

1.77777 0.00000

The execution of this instruction is carried out in the following manner. First,
the contents of both accumulators are made positive if they are not already so. Then
the accumulators are complemented and made negative. A 1 is added to both accumu­
lators by initiating a carry of 1 at bit 15, and the carry-out of the most significant bit
is disregarded. If the accumulators contained either positive or negative zero, com­
plementing and then adding 1 without the end carry would have rippled through the
accumulator bits and cleared them to o. At this point, the accumulators are comple­
mented again, and the sign bits are checked. If the sign bits contain 1 bits, we know
that the original values were either positive or negative zeros, and the branching
condition has been satisfied. As with all branching instructions that find their conditions
satisfied, the BFZ instruction will transfer the program counter to the right A register
and the address portion of the instruction itself to the program counter if both sign
bits are 1. Due to the number of operations involved, an OT cycle is required for the
BFZ instruction steps described thus far. After the test of the sign bits has been made,
the "carry 1" line is again pulsed, and the accumulators may be complemented, to
restore them to their original values. Execution time for this instruction is 12 usec;
the instruction is designated by a code of 5:40. The BF Z instruction cannot be indexed.
The table below shows the various steps encountered during the execution of a BFZ

55

instruction. In this case, we have assumed that both accumulators are zero but have
different algebraic signs.

Table 9-3. EXECUTION OF BRANCH ON FULL ZERO (BFZ) INSTRUCTION

LEFT ACCUMULATOR RIGHT ACCUMULATOR ACTION

1.77777 0.00000 Initial starting point

*0.00000 *0.00000 Make accumulators
positive

1. 77777 1. 77777 Complement
accumulators

0.00000 0.00000 Add "1", no end
carry

1.77777 1.77777 Complement
accumulators

1.77777 1.77777 Test, branch condi-
tions met

0.00000 0.00000 Add ''1", no end
carry

*1.77777 *0.00000 Restore accumula-
tors.

*These steps conditional, depending on sign of accumulator.

By performing the above steps on a number not positive or negative zero, you
may easily see that the sign of the accumulator is always positive at the time of test.
Therefore, we can always be sure of the contents of the accumulators with respect to
zero by the BFZ instruction.

SAMPLE PROGRAM USING BFM AND BFZ INSTRUCTIONS

The following example illustrates how the BFM and BFZ instructions can be
used to aid in the solution of a problem. Suppose we wish to sort a group of three data
words and malce up a table of those that have both half-words equal to or greater than
zero. Because -0 and +O both give the same results when used in arithmetic com­
putation, it is necessary for us to make provisions in our program to check for -0.
The preliminary flow chart for this problem is shown in Figure 9-5. Here the diamond­
shaped "decision" blocks clearly indicate the use of the BFM instruction when checking
for positive values. However, the possibility of a -0 satisfying the branching conditions
of the BFM instruction has to be dealt with by a second check on the word, this time
using the BFZ instruction. If the check discloses that the word is not -0, we know
definitely that it is a true negative number and proceed to the next word. This program

56

START ----------~

OBTAIN WORD ONE

YES NO

YES
STORE WORD ONE

NO

OBTAIN WORD TWO

YES NO

YES NO
STORE WORD TWO

'--------.a.IOBTAIN WORD THREE 14-------------------__J

YES NO

YES NO
STORE WORD THREE

HALT HALT

Figure 9-5. Preliminary Flow Chart Using Full Branch Instructions

57

WORD ONE POS.
I BFM 12

WORD ONE NEG.

WORD ONE • ZERO
12 BFZ 2

WORD ONE .. ZERO

3 CAD 1001

WORD TWO POS. WORD TWO NEG.
4 BFM 14

WORD TWO• ZERO
14 BFZ !I

WORD TWO .. ZERO

6 CAD 1002

WORD THREE POS.
7 BFM 16

WORD THREE NEG.

WORD THREE • ZERO
16 BFZ 10

WORD THREE .. ZERO

11 HLT 17 HLT

Figure 9-6. Final Flow Chart Using Full Branch Instructions

is also a logical program, since the data is left unchanged. We will assume that the
program starts at location 0.00000 and the data is stored at 0.01000 through 0.01002.
The table is to start at location 0.67770 and run in sequence. A finalized form of this
program is shown in Figure 9-6 and listed in Table 9-4.

58

LOCATION OPERATION ADDRESS

0.00000 CAD 0.01000

0.00001 BFM 0.00012

0.00002 FST 0.67770

0.00003 CAD 0.01001

0.00004 BFM 0.00014

0.00005 FST 0.67771

0.00006 CAD 0.01002

0.00007 BFM 0.01016

0.00010 FST 0.67772

0.00011 HLT 0.00000

0.00012 BFZ 0.00002

0.00013 BFM 0.00003

0.00014 BFZ 0.00005

0.00015 BFM 0.00006

0.00016 BFZ 0.00010

0.00017 HLT 0.00000

0.01000 Word one/

0.01001 Wordtwo $ Data

0.01002 Word three

0.67770 Storage

0.67771 storage

0.67772 Storage

Table 9-4

59

CHAPTER 10 - ADD ONE RIGHT INSTRUCTION

' ' The ADD ONE RIGHT (AOR) instruction is used to add one to bit Rl5 of the mem-
ory location spJcified by the address portion of the instruction. The execution of the
AOR instruction takes place in the following manner. The right accumulator is cleared,
and the contents of the selected memory register are transferred to the A registers.
Then the carry 1 line into the bit Rl5 adder is pulsed, thus adding 1 to the address
portion 01· the word. It should be remembered that the AN/FSQ-7 can have an address of
17 bits; therefore, if 17-bit operation is specified the LS bit is also used in the addition
process. Also, an AOR instruction can cause computer overflow. After the address
modification has taken place, the right accumulator is transferred to the right memory
buffer (and bit LS of the left accumulator is transferred to the left memory buffer sign
during 17 bit operation). The entire word (including the left half portion which has been
stored in the left A register) is then replaced in its original memory location. The
AOR instruction is similar to the FST instruction in that it takes an entire word from
memory and replaces the same register with a different word. Because of this, an
OT A and an OTB cycle are required in addition to the PT cycle, making execution
time of the AOR instruction 18 usec. The octal operation code for this instruction, which
is indexable, is 344.

USES OF THE AOR INSTRUCTION

The AOR instruction has two primary uses in most programs written for the AN/
FSQ-7 and AN/FSQ-8. One use involves modifying the address portion of an instruction
so that the same instruction can be used more than one time but with a different ad­
dress portion. This technique is called indexing and can be performed in other ways that
are more efficient than using the AOR instruction; however, the general purpose of
indexing can be shown by the use of this instruction.

The second use for the AOR instruction is to step (increase) the value of a register
by one each time a desired action has taken place, thus keeping the count of the number
of occurrences. Such an occurrence might be the successful completion of a program
which ·is written to continuously repeat itself. If we use an AOR instruction to specify
the same register each time the program was completed, that register would contain
the number of successful completions (or "passes") through the program. A register
used in this manner is commonly referred to as a "pass counter."

ADDRESS MODIFICATION USING THE AOR INSTRUCTION

Assume that we have 11 numbers which are located in memory location 0.01100
through 0.01112. It is desired to find the sum of these numbers and store it in location
0.00150, using the least number of instructions possible. Of course, it is possible to
use a series of ADD instructions, but this is quite lengthy. By use of the AOR instruc­
tion, we can use the same ADD instruction as many times as we need it. However, it

60

HALT

START----~

YES

OBTAIN PARTIAL SUM

ADD NEXT NUMBER

STORE PARTIAL SUM

MODIFY ADDRESS
OF ADDEND

SUBTRACT CONSTANT

(A)

START

0 CAD 150

I ADD 1100

2 FST 150

3 AOR I

4 SUB 6

6 HLT, 1112

(Bl

Figure 10-1. Address Modification Using AOR Instructions

61

is also necessary to have some sort of a control that tells us when we have added all
11 numbers. For this, we can use a constant which represents the last address we wish
to use, and compare it against the address we are using. When the two match, we know
we are using the last address we are interested in. We will assume that the sum of
the 11 numbers will not cause an overflow and that the memory location 0.00150, which
is to be used for final result storage, is cleared at the start of the program. The
preliminary flow chart for this program is shown in Figure 10-1, part (A); the final
flow chart is shown in part (B) of the same figure.

It can be seen from Figure 10-1 that we are modifying the address of the in­
struction in location 0.00001 by use of the AOR instruction at program step 3. Then
the HLT instruction is subtracted from the new memory address which is left in the
right accumulator after execution of the AOR instruction. The right half of the HLT
instruction is being used as a constant; it contains the address of the last number to
be added. Each time the address in the address in the accumulator is smaller than
the final address, we will get a negative result. The BRM condition will be satisfied
and will cause the program to select the partial sum and add another number to it.
When the address being used reaches 0.00012, the AOR instruction will step it to 0.00013.
The subtraction will leave 0.00001 in the right accumulator; the branch condition will
not be met, and the program will fall through to the HLT instruction.

The .program described above is listed below. Following that a straight-line
program that achieves the same result without modification is listed for comparison.

Table 10-1

LOCATION OPERATION ADDRESS

0.00000 CAD 0.00150

0.00001 ADD 0.01100

0.00002 FST 0.00150

0.00003 AOR 0.00001

0.00004 SUB 0.00006

0.00005 BRM 0.00000

0.00006 HLT 0.01112

0.01110 - 0.01112 Data

62

Table 10-2

LOCATION OPERATION ADDRESS

0.00000 CAD 0.01100

0.00001 ADD 0.01101

0.00002 ADD 0.01102

0.00003 ADD 0.01103

0.00004 ADD 0.01104

0.00005 ADD 0.01105

0.00006 ADD 0.01106

0.00007 ADD 0.01107

0.00010 ADD 0.01110

0.00011 ADD 0.01111

0.00012 ADD 0.01112

0.00013 FST 0.00150

0.00014 HLT 0.00000

Notice that while the program using the AOR instruction requires only seven
memory locations as opposed to the 13 needed for the straight line program, the straight
line program is considerably faster. The straight line program requires a total of 27
machine cycles, or 162 usec. On the other hand, the indexed program requires 13
machine cycles for each number added, or a total of 145 cycles (11x13 plus two cycles
for the HLT instruction}. This means 870 usec are needed to complete this program.
Thus, we have two programs which arrive at the same result, one being shorter and
the other being faster. As mentioned previously, onti of these criteria will have to be
sacrificed, depending on the situation.

COUNTING BY USE OF THE AOR INSTRUCTION

Now let us take an example of the other common use of the AOR instruction,
that of stepping a pass counter. In a certain table, some words have both halves nega­
tive; several have only the right half negative; some have only the left half negative;
and others have both halves positive. We wish to know the total number of each type
of word. The table is located at memory location 0.01000 through 0.01500, and locations

63

STEP

PASS COl.t<ITER

SET UP
CONDITIONS

ANO BRANCH

HALT

YES

YES

START

OBTAIN
DATA WORD

YES

STEP

PASS COUNTER

SET UP

CONDITIONS

ANO BRANCH

MODIFY

DATA ADDRESS

NO

YES

STEP

PASS COUNTER

SET UP

CONDITIONS

ANO BRANCH

NO

NO

STEP

PASS COUNTER

Figure 10-2. Counting by Use of the AOR Instruction, Preliminary Flow Chart

64

BOTH HALF
WORDS NEGATIVE

II AOR 2000

12 sue 10
13 BRM 5

10 HLT, 1500

START

I BFM II
BOTH HALF WORDS
NOT NEGATIVE

RIGHT HALF
WORD NEGATIVE

14 AOR 2001

15 sue 10
16 BRM 5

5 AOR 0

2 BRM 14

RIGHT HALF WORD
NOT NEGATIVE

LEFT HALF
WORD NEGATIVE 3 BLM 17

20 sue 10

21 BRM 5

NEITHER HALF
WORD NEGATIVE

4 AOR 2003

Figure 10-3. Counting by Use of the AOR Instruction, Final Flow Chart

0.02000 - 0.02003 will be used to store the number of full negative, right negative,
left negative, and full positive words, respectively. The preliminary fl.ow chart for
this program is shown in Figure 10-2.

In this type of program, we can make good use of the various branching instruc­
tions to test for the conditions we are interested in. The final flow chart is shown in
Figure 10-3. Notice that after the four possible combinations of half words have been
checked, we step one of the four pass counters and branch (of fall through) to the data
address modification which uses an AOR instruction in exactly the same manner as the
program discussed earlier. The program using the pass counters is listed in Table
10-3.

65

Table 10-3

LOCATION OPERATION ADDRESS

0.00000 CAD 0.01000

0.00001 BFM 0.00011

0.00002 BRM 0.00014

0.00003 BLM 0.00017

0.00004 AOR 0.02003

0.00005 AOR 0.00000

0.00006 SUB 0.00010

0.00007 BRM 0.00000

0.00010 HLT 0.00000

0.00011 AOR 0.02000

0.00012 SUB 0.00010

0.00013 BRM 0.00005

0.00014 AOR 0.02001

0.00015 SUB 0.00010

0.00016 BRM 0.00005

0.00017 AOR 0.02002

0.00020 SUB 0.00010

0.00021 BRM 0.00005

0.01000 - 0.01500 Data

0.02000 Pass counter

0.02001 Pass counter

0.02002 Pass counter

0.02003 Pass counter

66

CHAPTER 11 - INDEXING

GENERAL

As previously explained, indexing is the process whereby the address portion
of the instruction word is modified so that the same instruction may be used repeatedly
but with a different operand each time it is executed. An example of this was given
in the previous problems using the AOR instruction, where the AOR Instruction was
used to modify the address portion of the instruction. While this method is certainly
valid, it leaves several things to be desired. For instance, each time we wish to modify
the address portion of the instrt1ction, it is necessary to read the word out of memory,
perform the addition, and then write the word back into memory. This is time-con­
suming and would make a program requiring several hundred modifications excessively
long. In addition, notice that we can add only one to the address portion of the instruc­
tion word. If we wished to select every other register from a table of operands, two
AOR instructions would be required to increase the address portion of the instruction
by. two, or else a constant of two would have to be used to perform the address modi­
fication. Finally, since the modification of the address takes place in the arithmetic
element, overflow may be encountered when a true overflow condition does not exist.

From the above discussion, it can be seen that indexing by this method is un­
satisfactory for our purposes. Therefore, the AN/FSQ-7 and AN/FSQ-8 makes use
of four index registers to perform address modjfications. These registers may be

16 loaded with a value of up to 2 (177777) and then added to the address portion of the
instruction word. The index register actually contains 17 bits; however, the sign bit
is used strictly as a control bit and does not affect the amount by which an address is
changed. It is also possible to reduce the contents of the index register at any time by
a separate instruction, causing the next address selected to be lower than the one
previously selected by the instruction concerned. Index registers are especially valuable
when we are writing computer programs because the address modification of an in­
struction does not require any additional time over and above the normal execution
time of the instruction. Thus, when we wish to modify the address portion of an ADD
instruction, we can do so and still execute the instruction in 12 usec, using the modified
data address.

By referring to a block diagram of the Central Computer System, it can be seen
that index registers designated 1, 2, 4, and 5 are transferred to the address register.
The right accumulator is sometimes used as an index register and is designated as
index register 3. It also may be transferred to the address register. Actually, only
one of these five registers is selected at one time and its contents transferred to a
portion of the address register, known as the index adder, during PT 7-11. Of course,
the instruction from memory is also transferred out during this time, with the address
portion of the word going to the address register. The original data address and the
contents of the selected index register are added in the index adder, and the modified
address is transferred to the memory address register. All of this occurs during
PT 7-11, and therefore does not lengthen execution time of the instruction.

67

RESET INDEX REGISTER INSTRUCTION

The RESET INDEX REGISTER (XIN) instruction provides us with the capability
of loading a value into index registers 1, 2, 4, or 5. No provision is made for loading
the right accumulator with the instruction because it may be loaded in a variety of
ways through the use of other instructions (such as CAD, etc). The address portion of
this instruction does not refer to a memory address but contains the value which we
wish to place in the specified index register. The index register which is to be loaded
is designated by the first three bits in the left half-word of the XIN instruction. Only
one index register may be loaded with one XIN instruction. Thus, if we wish to load
index register 4 with a value of 10010, we would write the instruction as 4 XIN 144

(10010 = 1448). The ·octal operation code for the XIN instruction is 754, and it requires

6 usec to execute. Because it is used to load an index register, this instruction cannot
be indexed by another index register.

BRANCH ON POSITIVE INDEX INSTRUCTION

Now that we have an instruction which enableE! us to load an index register, we
need an instruction which will reduce its contents, so that different operands may be
obtained by using the same instruction and index register. The instruction that does
this is called the BRANCH ON POSITIVE INDEX (BPX) instruction. In addition to
reducing the specified index register, the BPX instruction will transfer program control
to the location specified in the address portion of the BPX instruction if the branching
condition is met. This condition is that the index register contain a positive value;
hence, the name of the instruction. If the branching condition is not satisfied, the pro­
gram falls through to the next sequential instruction. The index register to be reduced
is specified by bits Ll-L3 of the instruction, and the amount this register is to be
reduced is specified by auxiliary bits Ll0-L15. Previously, it was stated that bit LlO
of the instruction word had a dual function; i.e., it served as a class variation bit and
as an auxiliary bit. When it is necessary to utilize the auxiliary bits, the final class
variation bit is not needed. This is the case with the BPX instruction; its octal opera­
tion code is simply 51, leaving bits L10-Ll5 to specify the amount the index register
is to be reduced. A typical BPX instruction is written as 1 BPX (01) 500, and it means
to branch to location 0.00500 if index register 1 is positive and to reduce the contents
of this register by one.

The BPX instruction is executed in the following manner. The sign bit of the
selected index register is sensed, and, if it is positive, the program counter, which
contains an address . one greater than the BPX instruction itself, is transferred to the
right A register. Then the address register, which contains the memory location we
wish to branch to, is transferred to the program counter and then to the memory ad­
dress register. The address register is then cleared and loaded with the complement
of bits Ll0-1L15. The specified index .register and the complemented number are then
added in the index adder, and the resultant difference, if positive, is placed back in
the proper index register. Because no operand is required from memory, the BPX
instruction is executed in 6 usec. In addition, the BPX instruction cannot be indexed by
another index register.

68

It is important to remember that the sign of the index register is sensed before
its contents are reduced, since this fact determines the amount with which the index
register is loaded originally. For example, if we wish to select five sequential data
addresses by use of an index register, we will load the index register with a value of
3. Some justification for this may appear necessary, but if we examine a sample pro­
gram, the reason will become apparent. Assume that we wish to take the sum of the
data located in addresses 0.01000 - 0.01004. The program is listed below:

Table 11-1

LOCATION OPERATION ADDRESS

0.00000 1 XIN 0.00003

0.00001 CAD 0.01000

0.00002 1 ADD 0.01001

0.00003 1 BPX(Ol} 0.00002

0.00004 FST 0.10000

0.00005 HLT 0.00000

Notice that step 0.00001 placed the contents of location 0.01000 in the accumulator
without the use of an indexed instruction, leaving us with only four numbers to be
added. Step 0.00002 will select address 0.01004 during the first pass (address 0.01001
plus contents of index register one}. At step 0.00003, we check the index register, find
it positive, branch back to step 0.00002, and reduce the contents of the index register.
On successive passes through the program, data addresses 0.01003 and 0.01002 will
be selected. When data address 0.01002 is selected, the contents of index register 1
contains one. The branch condition is satisfied, and the program returns to step 0.00002.
However, the index register has been reduced by one which clears the 16 significant
bit positions and sets the sign bit to a 1. This is a modified form of -0 but is treated
in the same manner as a true -0. The important thing to keep in mind is that the sign
bit acts as a control, and when it is set to 1, indicating that the index register has be­
come negative, the branch condition will no longer be satisfied. The sign bit of the
index register is not added to the address register;·therefore, adding the index register
contents (2.00000} to the address portion of the ADD instruction will not modify this
address, and the original address (0.01001} will be selected. The check of the index
register will show its sign bit to be negative, and the program will fall through to the
FST instruction.

In general, the rule to remember when loading an index register is to set it to
one less than the number of passes to be made. In the above program, five numbers
were to be added, but the first one was placed in the accumulator without using an
index register. Four numbers remained to be added, which required four passes through
the program. Therefore, the index register was loaded with three. Once again, it

69

should be noted that this not a rigid rule, but depends on how the program is written,
particularly where the BPX instruction is placed in relation to the instruction being
modified.

·APPLICATIONS OF THE BPX INSTRUCTION

The following examples show how the BPX instruction may be used in various
programs. Assume that we wish to sort through a table that is stored in data locations
0.02500 through 0.03000. We want to place all numbers with both half-words negative
into a table starting at location 0.00500 and the rest of the numbers into a table starting
at location 0.04000. The sample flow chart for this program is shown in Figure 11-1
(Part A). We have no way of knowing how many, if any, of these numbers are negative
in both half-words; therefore, it is wise to provide a halt after each table address
modification in the event that all numbers were placed in one table or the other. Part B
of Figure 11-1 gives the final flow chart for this problem. The program is also listed
below.

Table 11-2

LOCATION OPERATION ADDRESS

0.00000 lXIN 0.00300

0.00001 2XIN 0.00300

0.00002 4XIN 0.00300

0.00003 lCAD 0.02500

0.00004 BFM 0.00010

0.00005 2FST 0.04000

0.00006 2BPX(Ol) 0.00013

0.00007 HLT 0.00000

0.00010 4FST 0.00500

0.00011 4BPX(Ol) 0.00013

0.00012 HLT 0.00000

0.00013 lBPX(Ol) 0.00003

0.00014 HLT 0.00000

As another example of the uses of the BPX instruction, assume that we wish to
program a delay of 120 usec in to the Central Computer System. There are various

70

YES

YES

HALT

START

(A)

NO

NO

MODIFY DATA
ADDRESS, BRANCH

BOTH
HALVES MINUS

114 BPX(OI) 13
12 HLT -

14 HLT-

START

300
300
300

4 BFM 10

131 BPX(OI) 3

(Bl

Figure 11-1. Table Sorting by Using the BPX Instruction

BOTH HALVES
NOT MINUS

5 2 FST4000

6 2 BPX(Olll3
1 HLT-

71

ways in which this could be done, but using the BPX instruction to branch back to
itself is probably the one method which uses the least space. A sample program showing
the delay is listed below.

Table 11-3

LOCATION OPERATION ADDRESS

0.00000 CAD 0.01000

0.00001 ADD 0.01050

0.00002 5XIN 0.00022

0.00003 5BPX(Ol) 0.00003

0.00004 FST 0.02250

0.00005 HLT 0.00000

Step 0.00002 will load index register· 5 with a value of 228 or 1810• This step

consumes 6 usec. The next step causes the index register to be stepped down by a
decrement of one and to branch to the same instruction. What we are doing, in effect,
is continually sensing the sign of index register 5, waiting for it to go negative. The
sign bit. will be positive 1810 times; however, the branch condition will have been met

before the index register is stepped from 0.00001 to 2.00000, so the BPX instruction
will be executed 1910 times or a total of 114 usec. Adding the 6 usec for the execution

of the instruction will give the required 120 usec delay.

USING THE BPX INSTRUCTION AS AN UNCONDITIONAL BRANCH

There is one important feature of the BPX instruction which we have not dis­
cussed. Although the name of the instruction implies the use of an index register, it is
also possible to use this instruction as an unconditional branch. This is accomplished
by omitting a number from index indicator bits Ll-L3. When this is done, the BPX
instruction will automatically transfer program control to the address specified in the
right half portion of the BPX instruction. The execution time remains at 6 usec, and
the octal operation code is simply 510. When the BPX instruction is used in this man­
ner, it can often save several steps in a routine.

For instance, let us consider the number-sorting routine which was presented in
Figure 9-3. This program sorted three numbers, found the largest and stored it in a
specified location. The BLM instruction was used in this program and 1810 steps were

required. Now let us solve the same program using the BPX instruction as an uncon­
ditional branch. The three numbers were A, B, and C, and were stored in the left half
portions of locations 0.00100, 0.00101, and 0.00102, respectively. The largest number
was to be stored in location 0.00150. The preliminary flow chart for this program is
shown in Figure 11-2. Notice that this flow chart arrives at the same place from two

72

NO

OBTAIN B

NO

HALT

START

STORE LARGER
OFAANDB

YES

YES

HALT

Figure 11-2. Number-Sorting Using Unconditional
Branch, Preliminary Flow Chart

B>A

A OR B>C

II HLT-

START

I SUB IOI
2 BLM 5

A ORB

6 FST 150

7 SUB 102
10 BLM 12

A>B

3CAD 100
4 BPX 6

C>A ORB

14 HLT -

Figure 11-3. Number-Sorting Using Unconditional
Branch, Final Flow Chart

73

different outcomes; since the computer proceeds sequentially, some provision must
be made to allow us to do this. The BPX instruction is what is used, and the final flow
chart is listed in Figure 11-3. The program is written in 1310 steps, a saving of five

memory locations over the former program. This program is listed below. This is
just one example of the use of an unconditional branch, but it serves to show the im­
portance of this instruction. It is also used widely when entering and leaving program
subroutines and with various other programming techniques. The BPX instruction as
an unconditional branch is more fully explained on the following pages.

Table 11-4

LOCATION OPERATION ADDRESS

0.00000 CAD 0.00100

0.00001 SUB 0.00101

0.00002 BLM 0.00005

0.00003 CAD 0.00100

0.00004 BPX 0.00006

0.00005 CAD 0.00101

0.00006 FST 0.00150

0.00007 SUB 0.00102

0.00010 BLM 0.00012

0.00011 HLT --
0.00012 CAD 0.00102

0.00013 FST 0.00150

0.00014 HLT

0.00100

0.00101 Data

0.00102 c

0.00150 Result

74

INDEXING TECHNIQUES

GENERAL

Indexing is essentially a technique whereby address modification of an instruction
may be made without increasing the time required to execute the instruction. We have
discussed problems, which could be solved by the use of index registers, to reduce the
storage space required for a program and to cause delays in internal operations. How­
ever, aside from the obvious uses of indexing instructions, there are many applications
which have not yet been discussed This chapter will show some of the additional uses
to which indexing may be applied and two instructions and their variations which can be
used in obtaining even greater program flexibility.

ADDITIONAL USES OF THE BPX INSTRUCTION

The BPX instruction is used primarily for two purposes: either to reduce the
contents of a selected index register and transfer program control back to the start
of a routine or to act as an unconditional branch. However, this instruction may also be
used to cause a 6 usec delay in internal operations. This takes place if either index
register 6 or 7 (which are nonexistent) is specified. This variation of the BPX instruc­
tion is useful when a mistake has been made in a prqgram and it is desired to delete
an instruction from the sequential listing without reshuffling the instruction locations.
A 6 BPX or 7 BPX is put in the same address as the deleted instruction, and when the
program reaches this point, no action will take place for 6 usec, the time normally
required to execute the BPX instruction. The program will then fall through to the next
sequential instruction.

In some cases, we wish to examine the contents of an index register and take
some action, depending on what we find, without disturbing the contents of the specified
index register. This may be done by using an index interval of 0. For instance, if we
wished to check the contents of index register 4 and branch to some location if it were
positive, we would write the instruction as 4 BPX (00). This instruction will be executed
in the same manner as a normal BPX. However, the index register will not be reduced
because the complement of bits L10-L15 equals -0, and adding this to the index register
results in no change in the register contents.

The table following shows all the possible combinations that may be used with the
BPX instruction and the corresponding action that will take place. The instruction layout
shows an index interval of one in each case where the index interval is applicable;
however, it should be remembered that the index interval may be loaded with any num-
ber through 77 8 (capacity limit of bits L10-L15). ·

Table 11-5. BPX Instruction Configurations

INSTRUCTION

0 BPX (-)

3 BPX (-)

ACTION

Unconditional branch

Unconditional branch

75

1 BPX(Ol)

2 BPX(Ol)

4 -BPX(Ol)

5 BPX(Ol)

1 BPX(OO)

2 BPX(OO)

4 BPX(OO)

5 BPX(OO)

6 BPX(-)

7 BPX(-)

Branch if index register 1 is positive and re­
duce its contents by one

Branch if index register 2 is positive and re­
duce its contents by one

Branch if index register 4 is positive and re­
duce its contents by one

Branch if index register 5 is positive and re­
duce its contents by one

Branch if index register 1 is positive

Branch if index register 2 is positive

Branch if index register 4 is positive

Branch if index register 5 is positive

No operation for 6 usec

No operation for 6 usec

RESET INDEX REGISTER FROM RIGHT ACCUMULATOR INSTRUCTION

The RESET INDEX REGISTER FROM RIGHT ACCUMULATOR (XAC) instruction is
used to load the specified index register with the contents of the right accumulator.
The instruction is executed by first clearing the address register and then transferring
the contents of the right accumulator into the address register. The address register·
then transfers its contents to the selected index register, which has also been cleared.
The octal operation code for the XAC instruction is 764, and it requires 6 usec to
execute. This instruction does not utilize the address portion, since the index indicator
bits determine where the contents of the right accumulator are to be placed. For this
reason, the XAC instruction is not indexable.

As an example of the use of the XAC instruction, let us assume that we are going
to process some tactical data on the AN/FSQ-7 or AN/FSQ-8. We are interested only
in data that has been received after midnight, but we do not know how much data has
been received. We shall assume that the data we are concerned with is the status of
various missiles at various sites and that all status reports transmitted to the AN/FSQ
-7 or AN/FSQ-8 after midnight will have a 1 in the LS bit position. Memory locations
0.00300 through 0.00550 are reserved as a block for unsorted missile status reports,
and locations 0.06000 through 0.06250 are reserved as a block for those reports re­
ceived after midnight. Once the reports have been sorted, we wish to arrange them in a
form in which they may be further processed. Our problem here is not quite as simple
as some we have dealt with in earlier examples, because more than one operation is
involved. First, we must determine what data we are going to process, then temporarily
store it, and, at the same time, record the amount of data that we will be processing.
It is obvious that index registers will be used in this operation to obtain the raw data.

76

Recording the amount of usable data can be done by stepping a cleared location. The
flow chart for this problem is shown in Figure 11-4, and the program is listed below.

Wherever possible, preliminary and final flow charts will be consolidated in one
figure (as has been done in Figure 11-4) throughout the remainder .of this chapter.

Table 11-6

LOCATION OPERATION ADDRESS

0.00000 lXIN 0.00250

0.00001 CAD 0.05771

0.00002 FST 0.05770

0.00003 lCAD 0.00300

0.00004 BLM 0.00012

0~00005 lBPX(Ol) 0.00003

0.00006 CAD 0.05770

0.00007 4XAC 0.00000

0.00010 4BPX(Ol) 0.00011

0.00011 BPX 0.00030

0.00012 FST 0.06000

0.00013 AOR 0.05770

0.00014 AOR 0.00012

0.00015 BPX 0.00005

0.00300 - 0.00550 Initial data storage

0.06000 - 0.06250 Sorted data storage

0.05770 Report counter

0.05771 Constant of +O

It can be seen that this performs several operations with relatively few instruc­
tions. Besides performing the preliminary sorting necessary, the program will set an
index register so that further processing may be done on the reports stored in location
0.06000 - 0.06250. It is necessary to reduce the contents of the index register after

77

78

RECORD AND STORE RESULT

12 FST 6000
13 AOR 5770

MODIFY ADDRESS
AND BRANCH

14
15

AOR 12
BPX 5

YES

START

SET UP INDEX REGISTER

0 I XIN 250

CLEAR REGISTER

I CAD 5771
2 FST 5770

OBTAIN REPORT

3 I CAD 300

NO

YES

OBTAIN NUMBER OF REPORTS

6 CAD 5770

LOAD INDEX REGISTER

7 4 XAC

SUBTRACT ONE

IO 4BPX(OI) 11

BRANCH

II BPX 30

Figure 11-4. Data Sorting and Counting Program Flow Chart

it is loaded so that the proper number of loops will be executed. Another instruction
then branches to a routine which will then do the final processing on the status reports.

The XAC instruction may also be used when a certain number of results are known
to be possible from a particular arithmetic or logical operation. When one of these
results occurs, it is possible to test for it and then branch to a corresponding place in
a table of constants and load the index register with a constant by use of the XAC
instruction. Thus, the contents of the right accumulator may not contain the number
desired to be placed in the index register but can direct the program to select the pro­
per number. As an example of this, assume that we know that the outcome of a certain
logical operation will be either 0.00004, 0.00010, or 0.00020 in the right accumulator.
We will assume that the left accumulator contains +O. If the outcome is 0.00004, we
wish to go to a routine which will loop three times; if it is 0.00010, we want to loop
four times; and if it is 0.00020, we want to loop five times. The program to accomplish
this is listed below.

LOCATION

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00010

0.01420

0.00060

0.00061

0.00062

0.13350

0.13351

0.13552

Table 11-7

OPERATION

lXIN

CAD

lSUB

BFZ

lBPX(Ol)

HLT

lCAD

2XAC

BPX

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

ADDRESS

0.00002

0.01420

0.00060

0.00006

0.00001

0.00000

0.13350

0.00000

(To desired routine)

Result of previous
program

0.00004

0.00010

0.00020

0.00002

0.00003

0.00004

79

Here, it can be seen that while we are dealing with the values 48, 108, or 208, we

wish to load an index register with corresponding values of 38, 48, or 58• In addition,

this program contains one more feature that we have not discussed yet, but which is
very useful in programming. This is the HLT instruction in location 0.00005. We are
assuming that the previous program has placed one of the three allowable results in
the right accumulator. If this is the case, the program will always branch around the
HLT instruction, even on the last pass through it. However, if, for some reason, an
incorrect value was stored in location 0.01420, the program would make three unsuc­
cessful attempts to compare and then fall through to the HLT instruction. This is
known as an "error halt" because, under normal circumstances, we would not halt
but branch to the desired routine after setting index register 2. Therefore, if the pro­
gram does halt at this location, we know the result of the previous program was in­
correct.

The XAC instruction also has a configuration that enables it to be used for more
than its stated purpose. The various configurations are listed below.

Table 11-8

INSTRUCTION ACTION

OXAC No operation for 6 usec

1 XAC Reset index register 1 from right accumulator

2XAC Reset index register 2 from right accumulator

3 XAC No operation for 6 usec

4XAC Reset index register 4 from right accumulator

5 XAC Reset index register 5 from right accumulator

6XAC No operation for 6 usec

7 XAC No operation for 6 usec

STORE "A" REGISTER INSTRUCTION

The STORE "A" REGISTER (STA) instruction is used to replce the right half
portion of the specified memory location with the contents of the right A register.
The right A register is used as the modifying register in this instruction because
many other registers utilize it during their execution, and its contents are often valu­
able. One example is the entire class of branching instructions which automatically
transfer the contents of the program counter to the right A register during their exe­
cution. An application of this is shown below. The STA instruction is executed in much
the same manner as the RST instruction except that the right A register is used to
supply the new address portion of the memory location rather than the right accumulator.

80

The STA instruction requires 18 usec to execute and may be indexed. It has an octal
operation code of 340.

ADD INDEX REGISTER INSTRUCTION

The ADD INDEX REGISTER (ADX) instruction is used to add the contents of the
specified index register to the address of the ADX instruction. The execution of this
instruction is similar to any address modification specified by an index register. The
address portion of the ADX instruction and the selected index register are added in
the index adders of the address register. However, the modified address is then trans­
ferred to the right A register, where it may be dealt with by a STA instruction. The
execution time of the ADX instruction is 6 usec and is designated by an octal operation
code of 770.

The ADX instruction is used primarily when it is desired to preserve the contents
of an index register for a particular reason. Up to this time, we have had no way of
obtaining the contents of an index register once it has been loaded. However, with the
ADX instruction, we can specify an address portion of O. 00000 and thus obtain the value
of the specified index register which will be transferred to the right A register. Then a
STA instruction may put the number in a desired location.

PROGRAMMED USE OF THE ADX AND STA INSTRUCTIONS

The main reason for preserving the contents of an index register is to set up
control for some other program or because the index register is required midway
through the execution of a program for loop control of another program. This occurs
frequently in various programs run on the AN/FSQ-7 and AN/FSQ-8 because there
may be several routines or subprograms that require indexing control and there are
only four index registers. If we are executing an indexed program which is being con­
trolled by index register 1, and a more important program requests the use of the
same index register, it is necessary to preserve the original contents of the index
register so that the program in progress at the time of interruption may continue from
the point of interruption once the intervening program is completed. This can best be
shown by an example of just such an occurrence. Assume that we have a program which
is contained in locations 0.00150 through 0.00156. The function of the program is to add
several numbers together with the use of an index register. If, at some point in the
addition, a large negative number is encountered which causes the right accumulator
sum to go negative, we wish to branch to a number-sorting program using the same
index register, which is contained in locations 0.01625 through 0.01634. After this
program is completed, we wish to return to our original program and complete it from
its point of interruption. The student should not be concerned with the actual function
of these two programs; the illustration is to show the transfer of control back and forth
between these routines, one of which has priority over the other. The fact that priority
exists has been established by the fact that a control word containing a large negative
value may have been placed in the table of operands used by the first program. Thus,
even a third program enters into the picture. However, this fact is beyond the scope of
the example at this time. Assume that this condition may occur and that the program
must be written to include this occurrence. The flow chart for this program (or pro­
grams) is shown in Figure 11-5.

81

co
~

PROGRAM NO. I

YES

START

LOAD INDEX
REGISTER NO.I

150 I XIN 67

OBTAIN DATA

151 CAD 2000

ADD DATA

152 I ADD 2001

NO

STORE AND HALT

155
156

FST 4440
HLT

PROGRAM NO. 2

YES

STORE IN TABLE

LOAD INDEX
REGISTER NO. I

1625 I XIN 31

OBTAIN DATA

1626 I CAD 1400

1630 I FST 1500

NO

BRANCH TO
SUBROUTINE

1632 BPX 2105

NO

STORE IN TABLE

1450

BRANCH

1634 BPX 1631

SUB,.OUTINES

SAVE LOCATION OF
PROGRAM NO. I

2077 STA 2110

RESTORE SUM OF
PROGRAM NO. I AND

SAVE
2100
2101

SUB
FST

2001
2000

OBTAIN CONTENTS
OF INDEX REGISTER

NO. I AND SAVE
2102 ADX 0
2103 STA 5000

BRANCH TO PROGRAM
NO. 2

2104 BPX 1625

RESTORE INDEX
REGISTER NO. I FOR

PROGRAM NO. I
2105 CAD 5000
2106 I XAC

RESTORE SUM FOR
PROGRAM NO. I

2107 CAD 2000

BRANCH TO
PROGRAM NO. I

2110 BPX 154

Figure 11-5. Flow Chart Showing One Index Register Used in Two Programs

The analysis of this flow chart will show that program 1 may run to completion
and halt at location 0.00156. This is true if the sum, which is checked after each addi­
tion ·by the BRM instruction at location 0.00153, remains positive.,As soon as the sum
goes negative, a branch directly into a subroutine takes place, which stores the contents
of the program counter (location branched from plus one). If we had only one program
such as program 1, this first step in the subroutine would not be necessary since we
would always know where the branch took place. On the other hand, if we had 10 pro­
grams which performed the same function as program 1 and had the same provisions
for branching, this step would be necessary to assure us that we returned to the correct
memory location in the correct program. Then the sum of program 1 is returned to
the value it contained before the branch, and the contents of index register 1 are pre­
served. Here again, we must assume that some action may take place in a third pro- ·
gram which will clear the large negative value out of the table of operands used by
program 1. If this was not done, we would continually branch to the subroutine. After
program 2, the priority program, has been executed to completion, index register 1 is
restored to the value it contained at the time the branch from 1 took place. The sum is
also restored and we branch back to our prog-ram at the point of interruption. The
index register is reduced just as if the operand which has contained the negative control
word had been positive; however, the sum will show only the sum of the numbers up
to the point the control word was encountered. Therefore, we may conclude that while
this program is interested in obtaining an arithmetic sum of some operands, it also is
"searching" for a signal that enough data is available for a program with a higher
priority to be processed.

83

CHAPTER 12 - ADVANCED COMPUTER INSTRUCTIONS

CLEAR AND ADD MAGNITUDE INSTRUCTION

The CLEAR AND ADD MAGNITUDE (CAM) instruction is used to place in the
accumulators the positive absolute magnitude of the contents of the memory location
specified by the right half portion of the instruction. For an operand that is already
positive, the CAM instruction is equivalent to a CAD instruction; for a negative operand,
the CAM instruction is equivalent to a CSU instruction. Thus, the value contained in
the accumulators after the execution of this instruction is always positive, regardless
of its original sign. The reason for this is to ensure a known starting condition for an
operation which deals with magnitudes only. The CAM instruction requires 12 usec to
e:x:ecute and may be indexed. It is specified by an octal operation code of 160.

DIFFERENCE MAGNITUDE INSTRUCTION

The DIFFERENCE MAGNITUDE (DIM) instruction is used to generate the dif­
ference in absolute magnitudes between a number in the accumulator and the operand
contained in the memory location specified by the right half portion of the DIM in­
struction. Since the number in the accumulator may not be positive, it is necessary to
make the contents of the accumulator positive for proper execution of the DIM instruc­
tion. However, the original contents of the accumulator may need to be preserved for
some other operation; therefore, the accumulators are first transferred to the B re­
gisters. It was stated during the discussion on binary arithmetic that the B registers
serve as extensions of the accumulators; the DIM instruction makes use of this facility.
After the accumulator contents are duplicated in the B registers, the accumulators are
made positive, if necessary; the operand to be used is placed in the A registers, made
positive, if necessary, and then complemented. Thus, the effect of adding these two
positive numbers together will be to subtract the contents of the A register from the
accumulator. If the accumulator contents are still positive after the execution of this
instruction, we know that the absolute magnitude of the operand from memory was
smaller than the absolute magnitude of the accumulator contents. On the other hand,
if the accumulator is negative, we know that its contents were larger in absolute magni­
tude than the operand from memory. The DIM instruction can be executed in 12 usec,
and it may be indexed. It is designated by an octal operation code of 164.

ADD B REGISTERS INSTRUCTION

The ADD B REGISTERS (ADB) instruction is used to add the contents of the B
registers to the accumulators. The address part of this instruction is not needed because
no operand is required from core memory. However, the contents of the B registers
are treated just as if they were contained in a core memory location. The contents
are transferred to the A registers and then added to the accumulators in the normal
manner. Overflow may occur with the execution of this instruction. The ADB instruc­
tion, which is not indexable, requires 12 usec to execute. It has an octal operation
code of 114.

84

MULTIPLY INSTRUCTION

The MULTIPLY (MUL) instruction is used to obtain the product of the contents
of the accumulator and the contents of the specified memory location. Execution of
this instruction leaves a 30-bit product in the combined accumulator and B register.
The least significant bit of the B register (B15) is identical to the sign of the multiplier
(original contents of the accumulator) and is not considered part of the product. The
actual process involved in multiplication of two binary numbers is by addition and
shifting. The MUL instruction is executed in the AN/FSQ-7 and -8 in the following
manner. The accumulator contents are first made positive and then transferred to the
B registers. Then the addition and shifting is performed in accordance with the contents
of bit 15 of the B register. These shifts are controlled by 2-mc pulses from the time
pulse generator. However, some of these pulses are not associated with a particular
machine cycle; therefore, most of the shifting part of the MUL instruction takes place
during an arithmetic pause. The product generated by a MUL instruction is always posi­
tive at the completion of the shift; then the true sign, which has been determined alge­
braically, is restored to the product. Execution time of the MUL instruction is 16.5
usec, plus or minus 1/2 usec. This variance allows for delay in synchronization of the
2-mc pulses. The MUL instruction is designated by an octal code of 250 and may be
indexed.

TWIN AND MULTIPLY INSTRUCTION

The TWIN AND MULTIPLY (TMU) instruction multiplies the left half-word con­
tained in the specified memory location by the contents of the left and right accumu­
lator. Thus, the TMU instruction causes the left half-word to be used as the multiplier
and in both the left and right arithmetic elements. Aside from this difference, the
TMU instruction is executed in the same manner as the MUL instruction. The execution
time of the TMU instruction is 16.5 usec, plus or minus 1/2 usec, and is an indexable
instruction. It is designated by an octal operation code of 254.

DIVIDE INSTRUCTION

Execution of the DIVIDE (DVD) instruction produces the quotient of the contents·
of the specified memory address (divisor) and the contents of the combined accumu­
lators and B registers (dividend). The execution of this instruction leaves an unsigned
quotient of 16 significant bits in the B register and the remainder and sign of the quo­
tient in the accumulators. The Central Computer System carries out the process of
trial subtractions and shifting with the use of 2-mc pulses from the time pulse genera­
tor, as with the MUL instruction. However, a trial subtraction cannot be performed
with one pulse, so the pulses are separated into groups of five pulses each, called
divide time pulses (DVTP). Each DVTP cycle, whose pulses are numbered DVTP
0-DVTP 4, causes the execution of one trial subtraction. Sixteen trial subtractions
are required, yielding an arithmetic pause time of 39.0 usec plus or minus 1/2 usec.
The addition of the normal PT-OT cycles brings total execution time of the DVD in­
struction to 51.0 usec plus or minus 1/2 usec. The DVD instruction is indexable and is
specified by an octal operation code of 260.

85

TWIN AND DIVIDE INSTRUCTION

The TWIN AND DIVIDE (TDV) instruction, which operates like all twin instructions,
uses the left half-word contained in the specified memory location as the divisor for
both the left and right arithmetic elements. The TDV instruction is executed in the same
manner as the DVD instruction. Execution time of the TDV instruction is 51.0 usec plus
or minus 1/2 usec; this instruction is indexable. The octal operation code for this in­
struction is 264.

SHIFT LEFT AND ROUND INSTRUCTION

The SHIFT LEFT AND ROUND (SLR) instruction provides the means for manipu­
lating a number within the arithmetic element and rounding off that number to 15 signi­
ficant bits. You will recall that the result of a multiplication leaves a 31-bit product
(including sign) in the combined accumulators and B registers, and the result of a divi­
sion leaves a 16-bit unsigned quotient plus the remainder in the combined accumulators
and B registers. Neither of these results is compatible with the word length of the
AN/FSQ-7 or AN/FSQ-8, since we deal with half-words of 16 bits, and these numbers
are almost twice as long as the maximum length we can handle. Therefore, some
method must be found to reduce these numbers to 15 significant bits and yet preserve
the most accuracy it is possible to give to the magnitude of the number. This is accom­
plished by the SLR instruction, whose execution is explained below.

The SLR instruction shifts the number in the combined accumulators and B re­
gisters left the number of places specified by the right half portion of the instruction
and rounds off the accumulator contents to 15 sigi:Uficant bits. "Shifting" in the AN/
FSQ-7 or AN/FSQ-8 refers to displacing the contents of a bit position to the left or
right within the same register; in the SLR instruction, the bits are shifted left only.
The basic shift operation transfers the contents of one flip-flop to the adjoining flip­
flop; this operation may be repeated as many times as specified. Thus, a shift to the
left of two places will transfer the contents of bits 1 and 2 out of the register, with
bit 3 moving into the bit 1 position, bit 4 moving into the bit 2 position, etc., through
the entire register, except for the sign bit position which remains unchanged. Roundoff
in the AN/FSQ-7 and AN/FSQ-8 is performed in much the same manner as we perform
roundoff with a number on paper. In the machine, the sign bit of the B register is sensed,
and if it is a 1, the contents of the accumulator are increased by 1. If the sign bit of
the B register is a O, the accumulator contents are left unchanged. Remember that the
sign of the B register does not indicate polarity of its contents when used with multi­
plication and division instructions, rather is a significant bit. Actual execution of the
SLR instruction is done by first shifting the combined accumulators and B registers to
the left the number of places indicated by the right half-word of the instruction. These
shifts are controlled by the 2-mc pulses from the time pulse generator, with each pulse
causing a shift of one place to the left. After the shifting operation has been completed,
the combined registers are complemented, if negative, and the carry 1 line to the
accumulator is pulsed· if the sign bit of the B register is a 1. Then the sign of the
accumulator contents is restored, if necessary. Assuming that the sign bit of the B
register is a 1, rounding off a positive number will increase its magnitude by 1 and
rounding off a negative number will decrease its magnitude by 1. The SLR instruction
may be executed in 6 usec if no shifts are called for; if shifting is specified, the execu­
tion time depends on the number of shifts involved. If an SLR 1 instruction specified,

86

the execution time is 6.5 usec; SLR 2 requires 7.5 usec execution time. This execution

time for shifts of three or more can be determined by the formula: t=6.0+ N;l, where N

equals the number of decimal shifts that are called for. For example SLR 5 would
require 6.0+2.0 or 8.0 usec to execute. Since no memory location is referred to, this
instruction may not be indexed. Overflow may occur as a result of the SLR instruction,
which is designated by an octal operation code of 024.

SHIFT INSTRUCTIONS

The shift instructions are used to position words within the combined accumulator
and B register or within the accumulator alone. The principle of the shift instructions is
the same as that of the SLR instruction: bits are simultaneously transferred to their
adjacent positions, with the number of shifts determined by the contents of the right
half-word. The SLR instruction does not fall into the general shift instruction classi­
fication since it may specify only a shift left of the combined accumulators and B
registers and also performs a rounding-off operation. All of the other shift class in­
structions merely position the word to the left or right the number of specified places
and do not round off. When the contents of the accumulator are shifted to the right,
the sign of the accumulator remains unchanged but is shifted into each position vacated
by the shift. In addition, bits shifted out of bit 15 of the accumulator (or bit 15 of the B
register if the two are combined) are lost. When a shift to the left occurs, the sign bit
remains unchanged but is shifted into each position of the accumulator (or B register)
that is vacated. Bits shifted out of accumulator bit 1 are lost.

The placing of the sign bit into the high or low order· bits is, in effect, placing
O's in those positions. If the number is positive, 0 bits will be shifted into each bit
position vacated. If the number is negative, l's are placed in each vacated position.
However, a 1 bit in a negative number represents a magnitude of 0 since the number is
in complement form.

Shift instructions are used for two general purposes. In logical or nonarithmetic
operations, the bits may be positioned in order to conduct a test of certain bits or bit
combinations. In arithmetic operations, numbers are shifted to increase or decrease
their magnitudes; this process is known as scaling.

Because shift instructions do not refer to a core memory location, they :may not
be indexed. In addition, overflow will not occur upon the execution of a shift instruction
since. the sign bits are not changed during the execution.

The time required for the execution of the shift instructions depends on the number
of shifts involved. If six or less shifts are specified the instruction may be executed in
6 usec. If more than six shifts are required, the Central Computer System uses aIJ.
arithmetic pause to complete the operation. Execution time for shifts of six or more can

be determined by the formula: t = 7; N , where N equals the number of decimal shifts

that are called for. For example, DSR 10 would require 7; 8 = 15/2 or 7.5 usec to

execute. It should be noted that only bits RlO through R15 are decoded to determine the
number of shifts; therefore, the maximum number of shifts that may take place during

87

any one instruction is 6310 or 77 8• If more than 77 8 shifts are called for, only the

value represented in bits RlO and R15 will actually be performed. For instance, if
we try to shift 1058 positions, only 58 shifts will be executed. A description of the

various shiftiQg imtructions used in the AN/FSQ-7 and AN/FSQ-8 is presented below.

DUAL SIDFT LEFT INSTRUCTION

The DUAL SHIFT LEFT (DSL) instruction combines the accumulator and B regis­
te1' of both arithmetic elements into two 32 bit registers which may be shifted only to
the left. The sign bits of both accumulators are duplicated in bit 15 of the B registers as
the shifting operation begins, and bits shifted out of accumulator bit 1 positions are
lost. The DSL instruction is designated by the octal operation code of 400.

LEFT
ACCUMULATOR

I·

LEFT B
REGIJT::;R

RIGHT
ACCUMULATOR

RIGHT B
REGIJTER

HJ Y~1R,J 114------l• IRl 5~
'---~~~ ~~.~~~ ~~~~~

LOST

• REMAINS UNCHANGED

Figure 12-1. Dual Shift Left (DSL)

DUAL SIDFT mGHT INSTRUCTION

The DUAL SIDFT mGHT (DSR) instruction combines the accumulator and B
register of both arithmetic elements into two 32 bit registers for the purpose of shifting
numbers to the right. The sign bits of both accumulators are duplicated in accumulator
bit 1 positions, and bits shifted· out of B register bit 15 positions are lost. An octal
operation code of 404 is used to specify a DSR instruction.

UFT LEFT B RIGHT RIGHT B
ACCUMULATOR REGISTER ACCUMULATOR REGI.:JT!!;R

1~~ ·! IL!+-LOST I:~ ·I IRl5~LOST

• RE.MAINS UNCHANGED

Figure 12-2. Dual Shift Right (DSR)

88

LEFT ELEMENT SHIFT RIGHT INSTRUCTION

The LEFT ELEMENT SHIFT RIGHT (LSR) instruction combines the left accumu­
lator and left B register into a 32 bit shifting register. The right accumulator and
right B _register are not affected by the execution of this instruction. The sign of the
left accumulator is duplicated in the Ll bit position, and all bits shifted out of bit 15
of the B register are lost. The LSR instruction is designated by an octal operation
code of 440.

LEFT L:£FT B RIGHT RIGHT B
ACCUMULATOR REGlSThR ACCUMULATOR REGI3TER

NOT AFFECTED

I:~ ~! ILIS~LOST !Risi

* '.tLMA~N3 UNCHANGED

Figure 12-3. Left Element Shift Right (LSR)

RIGHT ELEMENT SHIFT RIGHT

This instruction is similar to the LSR instruction except that it deals with the
right arithmetic element only. Thus, the right accumulator and right B register are
combined into a 32 bit shifting register whereas the left arithmetic element is not
affected. The RIGHT ELEMENT SHIFT RIGHT (RSR) instruction duplicates the sign
bit of the right accumulator in the Rl bit position, and all bits shifted out of bit position
15 of the right B register are lost. The RSR instruction has an octal operation code of
444.

L~T LEFT B RIGHT RIGHT B
ACCW1ULATOR REGl.JT:i!.R ACCm1ULATOR REGlST..iR

NOT AFFECTE 0 r----- J I lusl I:~ ~1 IRlt-LOST

Figure 12-4. Right Element Shift Right (RSR)

89

ACCUMULATORS SHIFT LEFT INSTRUCTION

The ACCUMULATORS SIDFT LEFT (ASL) instruction shifts both accumulators
to the left the number of places specified by the right half-word. The execution of this
instruction does not affect the contents of the B registers. The sign bits are duplicated
in bit position 15 of the accumulators, and all bits shifted out of positions Ll and Rl

. are lost. Because this instruction does not combine the accumulators and B registers,
only the 15 magnitude bits of the accumulators may be shifted. Thus, an ASL 17 8 (or

greater) will duplicate the contents of the sign bits in all positions of the accumulators.
The ASL instruction is specified by an octal operation code of 420.

LEFT
ACCUMULATOR

LEFT B
REGISTER

RIGHT
ACCUMULATOR

RIGHT B
REGBTER

• REMA.INS UNCHANGhD

Figure 12-5. Accumulators Shift Left (ASL)

ACCUMULATORS SHIFT RIGHT INSTRUCTION

This instruction shifts the contents of both accumulators to the right without dis­
turbing the contents of the B registers. The sign bit is duplicated in bit positions Ll
and Rl of the accumulators, and bits shifted out of bit positions L15 and R15 are lost.
As with the ASL instruction, a shift of 17 8 or greater will make all bit positions in both

accumulators identical with their respective sign bits. The ACCUMULATORS SHIFT
RIGHT (ASR) instruction is designated with an octal operation code of 424.

90

Ll:FT
ACCUMULATOR

LEFT B
REGI3TE.R

:-uGHT
ACCUMULATOR

RIGHT B
REGI3TER

• ~IN3 Ul\CHANGEt

Figure 12-6. Accumulators Shift Right (ASR)

-
CYCLE INSTRUCTIONS

There are two instructions which are similar in operation to the shift instructions,
except that the sign bit. is shifted in the same manner as the magnitude bits. In addition,
no bits are lost by the shifting process but are re-entered into the low order position
of the registers involved. The shifting of bits within the registers is accomplished in
the same manner as with the shift instructions.

Cycle instructions do not .refer to. a memory location and therefore cannot be
indexed. Their principal use is to exchange the contents of the left and right accumu­
lators and to exchange the contents of an accumulator and its associated B register.
As with the shift instructions, the cycle instructions have a variable execution time,
depending on the number of shifts involved.

DUAL CYCLE LEFT INSTRUCTION

The DUAL CYCLE LEFT (DCL) instruction combines the accumulators and B
register of each arithmetic element into a 32 bit cycling register. Bits shifted out of
the accumulator sign bit positions are re-entered into the bit 15 position of the B
registers. Bits shifted out of the sign bit position of the B registers are shifted into
bit 15 of the accumulators. When more than 408 shifts are specified, the final result

will be the number specified in the right half-word minus 408• For instance, when

DCL 508 is specified, 508 shifts will take place, but will have the same effect as a DCL

108 instruction. The DCL instruction will not cause an overflow and may be executed

in 6 usec if six shifts or less are called for. If more than six shifts are specified,
execution time is variable. The DCL instruction is designated by an octal operation
code of 460.

LEFT LEFT B RIGHT RIGHT B
ACCUMULATOR REG I.STER ACCUMULATOR REGISTER

~+I H ~ r+1 H ~
Figure 12-7. Dual Cycle Left (DCL)

FULL CYCLE LEFT INSTRUCTION

The FULL CYCLE LEFT (FCL) instruction is used to interchange bit positions
of the left and right half-words in the arithmetic element. Thus, the two accumulators
are combined as shown following. The contents of the B registers are not affected by
the execution of the FCL instruction. Bits leaving the LS bit position are re-entered

91

into the R15 bit position, and bits leaving the RS bit position are entered into the L15
bit position. If 408 shifts are called for, the FCL instruction, specifying 408 shifts,

will bring the bit positions into their original places and will be equivalent to no shifting
action. When more than 408 shifts are called for, the effect is the same as it is for the

DCL instruction. Execution time of the FCL instruction can be 6 usec if six shifts or
less are needed; otherwise it is variable. The FCL instruction, which will not cause an
overflow, is designated by an octal operation code of 470.

LEFT
ACCUI>IULA TOR

RIGHT
ACCUKULATOR

Figure 12-8. Full Cycle Left (FCL)

PROGRAM EXAMPLES OF SHIFT CLASS INST RUCTIONS

Let us assume that we wish to find out how many numbers stored in memory
locations 0.01000 - 0.01031 are larger in absolute magnitude than a particular constant.
We can do this by placing the constant in the accumulators and then using a DIM in­
struction to compare magnitudes. However, the .action of the DIM instruction is such
that the original contents of the accumulators are first duplicated in the B registers.
Therefore, after testing to see if the number meets our condition, we can DCL and
restore the number to the · accumulators without going into memory again. The flow
chart to accomplish this is shown in Figure 12-9.

As another example of the use of shift instructions, let us examine a table that
contains information in the right half-word only. The left half-word contains +O. The
right half-words have marker bits (l's) placed at one particular position within a half­
word, but the bit position used does not have 'to be the same in each word. What we want
to do is make up another table telling us in what bit position the marker bit is located in
each half-word. The program will search locations 0.34040 through 0.34047 and store
the results in locations 0.00050 through 0.00057. A constant of 208 is stored in the

right half-word of memory location 0.00300. The program flow chart for this example is
shown in Figure 12-10.

After obtaining the location, we check to make sure that it contains an operand
by use of the BFZ instruction at step 0.00002. If the branch condition is not satisfied,
we know that the right half-word is not 0 and contains a marker bit. Then we shift the
right accumulator one bit position to the right and step an indicator register. If the
next check for 0 reveals that the right half-word has been shifted so that the marker
bit is no longer in the word, the position of this marker can be determined by obtaining a
constant of 208 and subtracting the contents of the indicator register from it. Thus, if

the marker bit for a particular word was located in bit position R9, seven shifts would 1

92

START ------------------,

SET INDEX REGISTER
(0) I XIN 31

OBTAIN CONSTANT
(I) CAD 5440

OBTAIN DIFFERENCE
(2) I DIM 1000

~ ftS
~--------< '>----------..,

RESTORE CONSTANT
TO ACCUMULATOR

(4) DCL 20

NO

STEP INDICATOR REGISTER
!IOI AOR 62

BRANCH
(II) BPX 4

YES

END OF PROGRAM
(6) HLT -

Figure 12-9. Magnitude Sorting Program

YES

be required to remove this bit from the right half-word. Subbacting seven from our
constant of 208 wotild leave 118 (or 910) in the accumulator. The marker location is

then stored, the indicator register is cleared, and the next operand selected if the
program is not complete.

As a final example of the use of shift class instructions in programming, assume
that we have operands A, B "located in memory location 0.00500, and operands C, D
located in memory location 0.00501. We wish to obtain and store the quantity 4(A+C),
(B+D)/2 in memory address 0.00700, which is cleared at the start of the program.
The program that will perform this ~s listed in Table 12-1.

93

START-------~

NO

SET INDEX REG
D 4 XIN 7

OBTAIN OPERAND
4 CAD 34040

OBTAIN CONSTANT

7 CAD 300

SUBTRACT INDICATOR REG
10 4 SUB 50

STORE MARKER LOCATION

II 4 RST 50

YES

YES

SHIFT WORD RIGHT
3 RSR I

STEP INDICATOR REG

4 4 AOR 50

CLEAR INDICATOR REG
12 CAD 15
13 RST 50

Figure 12-10. Marker Bit Identification Program

94

6

BRANCH

BPX 3

ENn OF PROGRAM
15 HLT -

Table 12-1

LOCATION OPERATION ADDRESS

0.00120 CAD 0.00500

0.00121 ADD 0.00501

0.00122 RSR 0.00001

0.00123 RST 0.00700

0.00124 ASL 0.00003

0.00125 LST 0.00700

0.00126 HLT 0.00000

0.00500 A B

0.00501 c D

0.00700 Final result

LOGICAL INSTRUCTIONS

Some instructions can be executed with the Central Computer System of the
AN/FSQ-7 and AN/FSQ-8 that have a purely logical function. In other words, although
they may use arithmetic to arrive at a certain result, that result is usually not inter­
preted as an arithmetic answer. The branch instructions and shift instructions could be
thought of as logical instruction; however, they do not employ arithmetic processes
during their execution. The instructions we are going to discuss involve binary arith­
metic to modify or leave unchanged certain bits within a specified word. The arithmetic
employed is not pure binary but a type referred to as logical arithmetic. In logical
arithmetic, the rules of binary arithmetic apply except that no consideration is given to
carries from one bit position to the next. Thus, the logical sum of a "one" and a "one"
is still a "one", with no carry. Because each bit position is treated independently,
cert~n portions of a word within the Central Computer System may be dealt with
without affecting the rest of the word. We have already mentioned the logical addition
process, but the one that is used most widely is logical multiplication. Logical multi­
plication involves multiplying one bit position by another and finding the product in
accordance with the rules of binary arithemetic but without shifting the product. For
instance, the logical product of 0.00101 and 1.10011 is 0.00001. The contents of the two
least significant bits were 1; therefore the product in that position is a 1. All other
positions contain a 0 because at least one of the factors in each of those products con­
tained · .. a O. The significance of logical multiplication will be seen more clearly during
explanation of the various instructions.

95

EXTRACT INSTRUCTION

The EXTRACT (ETR) instruction is used to obtain the product of a logical multi­
plication between the contents of the accumulator and a control word contained in the
memory location specified by the right half of the instruction. Each bit position in the
control word which contains a 0 will clear the corresponding bit position in the accu­
mulator, since multiplying anything by O will give a result of O. Each bit position in
the control word which contains a 1 will leave the corresponding accumulator bit un­
changed. If the accumulator bit was a o, multiplying by 1 will still yield a O, and if the
accumulator bit was 1, the result will still be a 1. Execution of the ETR instruction
takes place in the following manner. The control word is read out of memory into the
A registers. The A registers are then logically multiplied by the accumulators, with
the results left in the accumulators. The ETR instruction, which may be indexed, re­
qUires 12. usec to execute. It is designated by an octal operation code of 004.

PROGRAM EXAMPLE OF THE EXTRACT INSTRUCTION

Suppose that we wish to sort through a block of numbers stored in memory and
place all those that are even in one table and all those that are odd in another table.
Assume that the numbers are contained in the right half-words of the memory locations
and that the left half-:words are cleared. We can determine whether a number is odd or
even by examining the contents of the least significant bit. If the bit is a 1 we know it is
odd; if it is a O we know the number is even. We can use the ETR instruction to examine
the contents of the least significant bit of the number by the method shown below.

Table 12-2

LOCATION OPERATION ADDRESS

0.00760 lXIN 0.00400

0.00761 2XIN 0.00400

0.00762 5XIN 0.00400

0.00763 lCAD 0.25000

0.00764 ETR 0.00500

0.00765 BFZ 0.00772

0.00766 lCAD 0.25000

0.00767 2RST 0.40000

0.00770 2BPX(Ol) 0.00775

0.00771 HLT 0.00000

0.00772 lCAD 0.25000

96

0.00773 5RST 0.70000

0.00774 5BPX(Ol) 0.00775

0.00775 lBPX(Ol) 0.00763

0.00776 HLT 0.00000

0.00500 0.00000 0.00001 (Control .
word)

0.25000 - 0.31000 Data storage

0.40000 - 0.40400 Storage for odd
numbers

o. 70000 - o. 70400 Storage for even
numbers

Notice that the control word contains all O's except for the least significant bit
position of the right half-word. This position, which contains a 1, will leave bit 15 of
the half-word unchanged during execution of an ETR instruction. After the ETR in­
struction has been executed, the accumulators will be cleared by the control word
with the exception of bit 15. If bit 15 originally contained a 1, it will still_ contain a 1,
and the BFZ condition immediately following the ETR instruction will not be satisfied.
If this is the case, the program will fall through to the routine for storing the number
in the odd table. If the bit was 0 originally, it will still be a O, and the program will
branch to location 0.00772, where the number will be stored in the even table.

The control word used in executing the ETR instruction is commonly referred to
as a "mask". In effect, it masks out those bits which are not to be utilized during the
execution of the instruction and leaves unchanged the active bits, or those that are
used.

LOAD B REGISTERS INSTRUCTION

The LOAD B REGISTERS (LDB) instruction is used to load the B registers with
the contents of the memory location specified by the right half portion of the instruction.
The LDB instruction could be used when it is desired to place a word in the B registers
prior to execution of a program. The main use of the LDB instruction is to place a
control word Ol' mask into the B registers in preparation for the execution of another lo­
gical instruction, called Deposit, which is explained below. The LDB instruction is
indexable and requires 12 usec to execute. It is designated by an octal operation code
of 030.

DEPOSIT INSTRUCTION

The DEPOSIT (DEP) instruction allows the replacement of part of a word in core
memory with a corresponding part of the accumulator· contents on a bit-by-bit basis
rather than by a full word or a half-word. The DEP instruction refers to a mask in

97

the B register (usually placed there by an LOB instruction) to determine which bits
from the accumulator will be stored. If the bit in the B register contains a 1, the corre­
sponding bit in the accumulator will be stored in the memory word; if the mask con­
tains a o, the corresponding bit in the memory location will be unchanged. The memory
location to be modified is specified by the right half portion of the DEP instruction.
Execution of the DEP instruction talces place in the following manner. The accumulator
contents are first complemented; then the mask from the B register is transferred to
the A register. A logical multiplication talces place between the accumulators and A
register, with the result that the accumulators will be cleared except for those bits in
the mask which contained a 1. In effect, this first logical multiplication erases those
bits which are not active. The accumulator contents are then complemented again, and
the specified memory location is transferred to the A registers. It should be noted that
this transfer is not a normal one, since the A registers are not cleared before the
transfer from the memory buffers, as is usually the case. This step is equivalent to a
logical addition, since the mask was already in the A registers, and will cause each
position of the memory location contents to be changed to a 1wherevera1 exists in
the mask. Another logical multiplication talces place between the A registers and accu­
mulators, leaving the results in the accumulators. The DEP instruction execution is
completed with the storing of the accumulator contents back into the specified location.

The DEP instruction may be indexed and requires a total of 18 usec to execute
due to the fact that the word is obtained from memory, modified, and then returned to
memory. An octal operation code of 360 is used to designate a DEP instruction. Because
the execution of this instruction is rather difficult to follow, a typical example using a
half-word is shown in the table below when the B register contains a mask of 0.111
000 000 111.

Table 12-3. Deposit Instruction Execution

ACTION ACCUMULATOR A REGISTER MEMORY
LOCATION

start 0.010 101 111 000 011 o.ooo 000 000 000 000 0.000100 011111101

Complement 1.101 010 000 111 100 o.ooo 000 000 000 000 0.000100011111101

Transfer 1.101 010 000 111 100 0.111 000 000 000 111 0.000100011111101

Logical Multiply 0.101 000 000 000 100 - - 0.111 000 000 000 111 0.000100011111101

Complement 1.010 111 111 111 011 0.111 000 000 000 111 0.000100011111101

Logical Add 1.010 111 111 111 011 0.111 100 011 111 111 0.000100011111101

Logical Multiply 0.010 100 011 111 011 0.111 100 011 111 111 0.000100011111101 -
store 0.010 100 011 111 011 0.111 100 011 111 111 0.101100011111011 - -

98

EXCHANGE INSTRUCTION

The EXCHANGE (ECH) instruction is used to interchange the contents of the
accumulators with the contents of the memory location specified by the right half
portion of the instruction. Execution of this instruction takes place in the following
manner. The word from core memory is first transferred to the A registers, then the
accumulator contents are transferred to the memory buffer registers, and on into the
location just read. Finally, the A registers are added to the cleared accumulators, end­
ing the execution. Because a memory cycle is required to read the word out and another
one is needed to store the accumulator contents, the ECH instruction is a 3-cycle in­
struction and thus requires 18 usec execution time. This instruction, which may be
indexed, is designated by an octal operation code of 350.

USE OF EXCHANGE INSTRUCTION

As an example of the ECH instruction, let us consider two tables that are stored
in core memory. We wish to exchange the locations of these tables without disturbing
their arrangement. The tables are originally located in 0.13470 through 0.13600 and
0.30000 through 0.30110. The program to exchange the two tables is given in the table
below.

LOCATION

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

COMPARE INSTRUCTIONS

Table 12-4. Relocation Program

OPERATION

1 XIN

1 CAD

1 ECH

1 FST

1 BPX (01)

HLT

4DDRESS

0.00110

0.13470

0.30000

0.13470

0.00001

GENERAL - The compare instruction8 are a group of eight instructions which
perform basically the same operations with various parts of a word. Comparison takes
place between the contents of the accumulators and the contents of the memory location
specified by the right half portion of the instruction. If a satisfactory comparison is
made, the program counter is stepped once, as in normal practice. However, if a
satisfactory comparison is not made, the program counter is stepped an additional
time, thereby causing the program to skip the instruction immediately following the
compare instruction. Four of the compare instructions involve one additional step
after the comparison, in which the difference (if any) between the accumulator contents
and the specified operand is obtained. The difference may then be tested to determine

99

which operand was the larger. A description of each of the compare instructions is
given below.

COMPARE LEFT HALF-WORDS INSTRUCTION

The COMPARE LEFT HALF-WORDS (CML) instruction is used to compare the
contents of the left accumulator with the contents of the left half-word contained in the
specified memory location. The execution of this instruction is started by comple­
menting the accumulators and clearing the A registers. The specified memory location
is then transferred to the A registers. A comparison is made between the contents of
the Left A register and the Left Accumulator, and if satisfactory, the program counter
is stepped once, and the next sequential instruction is selected for execution. If the
contents of the two registers do not compare, the program counter will be stepped
twice, causing the instruction immediately following the CML instruction to be skipped.
Regardless of the result of the comparison, the accumulators are recomplemented
so that its final contents will be identical with the original contents. Execution time of
the CML instruction is 12 usec, and it may be indexed. An Octal operation code of 044
is used to designate this instruction.

COMPARE .RIGHT HALF-WORDS INSTRUCTION

The COMPARE .RIGHT HALF-WORDS (CMR) instruction is used to compare the
contents of the right accumulator and the contents of the right half word specified by
the address part of the instruction. The accumulators are complemented, and the A
registers are cleared. Then the contents of the .specified memory location is trans­
ferred to the A registers where a comparison between the Right "A" register and the
right accumulator is made. If the comparison is successful, the next instruction is
selected for execution. If the comparison shows that the two half-words were not identi­
cal, the instruction immediately following the CMR instruction is skipped. This in­
struction is terminated when the accumulators are again complemented to restore the
contents to their original value. The CMR instruction may be indexed and requires 12
usec to execute. It is specified by an octal operation code of 042.

COMPARE FULL WORDS INSTRUCTION

This instruction is used to compare a full word from memory with the contents of
the accumulators. The COMPARE FULL WORDS (CMF) instruction is executed in
much the same manner as the CML and CMR instructions. The accumulator contents
are complemented and the A registers are cleared. Then the word from memory is
transferred to the A registers and a comparison is made. A successful comparison will
cause the next instruction in sequence to be executed; a no compare indication will
cause the program to skip the instruction immediately following the CMF instruction.
It should be remembered that the entire word must compare in order to cause a success­
ful indication; if one half-word compares and the other does not, the result is still a
no-compare indication. The CMF instruction is executed in 12 usec and may be indexed.
It is designated by an octal operation code of 046.

100

COMPARE MASKED BITS INSTRUCTION

The COMPARE MASKED BITS (CMM) instruction is used to compare any com­
bination of bits within a full word. These bits are specified by a mask which is loaded
into the B registers. If a bit position in the B register mask contains a 1, the corre­
sponding bit position in the associated accumulator will be compared with the same bit
position of the memory word; if the mask contains a O, the bit is not active as far as
the compare circuitry is concerned. However, it should be noted that all bits within the
B registers, accumulators, and specified memory location are dealt with during the
execution of the CMM instruction. Those bits which are not active are automatically
made to compare. The execution of the CMM instruction takes place in the following
manner. The accumulators are complemented and the A registers are cleared. The
mask from the B registers is then transferred to the A registers. A logical multipli­
cation takes place between the accumulators and A registers, with the result being con­
tained in the accumulators. The A registers are then complemented and the contents
of the specified memory location are logically added to the A registers. Comparison
between the contents of the A registers now takes place, and if the comparison is suc­
cessful, the instruction immediately following the CMM instruction is skipped. The
accumulator is then complemented, terminating the instruction. In this case, comple­
menting the accumulator will not necessarily restore it to its original contents. Only
those· bits which were specified in the B register masks as being active are returned
to their original values; the remaining bits will all contain 1 's regardless of their
original contents. The automatic comparison of the inactive bits is forced by the com­
binations of logical addition and multiplication in the A registers. An octal code of 040
is used to designate the CMM instruction, which is indexable. Twelve usec are re­
quired for the execution of this instruction, which is shown in the table below.

TABLE 12-5. Compare Masked Bits Instruction Execution

ACTION ACCUMULATOR A REGISTER MEMORY LOCATION

Start 0.101 101 001 110 010 o.ooo 000 000 000 000 0.100 101 001 000 010 -- - -- - --
Complement 1.010 010 110 001 101 o.ooo 000 000 000 000 0.100 101 001 000 010 -- -- --
Clear 1.010 010 110 001 101 o.ooo 000 000 000 000 0.100 101 001 000 010 -- -- --
Transfer 1.010 010 110 001 101 o.ooo 111 111 000 111 0.100 101 001 000 010 -- -- --
Logical o.ooo 010 110 000 101 0.000 111 111 000 111 0.100 101 001 000 010 -- --Multiply
Complement 0.000 010 110 000 101 1.111 000 000 111 000 0.100 101 001 000 010 -- -- --
Logical Add o.ooo 010 110 000 101 1.111 101 001 111 010 0.100 101 001 000 010 -- - -- --
Compare 0.000 010 110 000 101 1.111 101 001 111 010 0.100 101 001 000 010 -- -- --
Complement 1.111 101 001 111 010 1.111 101 001 111 010 0.100 101 001 000 010 -- - --
Compare Difference Instruction

101

This table illustrates the execution on a half-word only; however, the full word is
processed in the same manner. We will assume that the B register is loaded with a mask
of 0.000 111 111 000 111.

In this particular example, the bits selected compared with each other, so the
next instruction executed by the progr~m would be the one immediately following the
CMM instruction. Notice that although the bits are checked to see if they contain the
same value ill each active position, the actual comparison is made by taking the com­
plement of the bits to be checked. Thus, if a bit position in the accumulator contains its
complement in the A register when the comparison is made, the original value of the two
bits is the same. Notice also that the inactive bits in the accumulator are cleared to
O's regardless· of their original value, and the corresponding bit positions in the A
register are set to l's thus forcing an automatic compare of the nonactive bits.

PROGRAM EXAMPLES USING COMPARE INSTRUCTIONS

Suppose we are stepping two indicator registers by two different programs. We
want to go through a definite sequence of programs when the contents of the two regis­
ters reach the same value, otherwise we will continue to execute the programs which
are stepping the indicator registers. We can cause our program control to branch to a
short subroutine which will test the equality of the two indicator registers at specific
intervals. Assuming that the indicator registers are contained in the right half-words
of the memory locations, the subroutine which will test the contents of the registers is
given below.

Table 12-6

LOCATION OPERATION ADDRESS

0.00001 CAD 0.00075

0.00002 CMR 0.00076

0.00003 BPX To new program

0.00004 BPX Return to register-
stepping programs

0.00075 Indicator Register one

0.00076 Indicator Register two

As another example of the compare instructions, assume that we are reading
in various programs from a reel of magnetic tape. This tape contains various mainte­
nance programs, and each program has a program number. We have a control word in
memory which tells us that we are searching. for the first program number that starts
with the digits 568• The programs are read in one at a time, with the program number

always being stored in the same location. Ourproblem is to compare each program num­
ber read in with a control word of 568 in the proper bit positions (Ll-L6) until we reach

102

the first program starting with these digits. When we. have determined that we have the
proper program, we wish to execute it. The program to compare these numbers is
given below.

Table 12-7

LOCATION OPERATION ADDRESS

0.00410 CAD 0.06250

0.00411 LDB 0.03341

0.00412 CMM 0.03325

0.00414 BPX Execute this program

0.00414 BPX Read in next program

0.06250 0.56000 0.00000 (Control word)

0.03341 0.77000 o. 00000 (Mask of
0.111 111 000 000 000)

0.03325 Current program number

COMPARE DIFFERENCE LEFT HALF-WORDS INSTRUCTION

The COMPARE DIFFERENCE LEFT HALF-WORDS (CDL) instruction tests the
left half portion of the memory location specified in the instruction to see if it is equal
to the contents of the left accumulator. If the contents compare favorably, the next se­
quential instruction is executed. On the other hand, if the contents of the left half-words
are not identical, the instruction immediately following the CDL instruction is skipped.
After the comparison check is made, the entire word in the accumulator is subtracted
from the contents of the specified memory location. Thus, the difference between the
full words will be generated, although only the left half portions were compared. If the
final contents of the accumulators are in negative form, the original value in the accumu­
lator was equal to or greater than the operand. A positive remainder in the accumulator
indicates that the operand was larger than the original contents of the accumulators.

Execution of the CDL instruction takes place in the following manner. The ac­
cumulator contents are complemented, and the A registers are cleared. Then the
word from the specified memory location is transferred to the cleared A registers.
A comparison is made between the left A register and left accumulator to see if they
contain the complement of each other, and the program counter is stepped accordingly.
This instruction is then terminated by pulsing the carry 0 line in the address, thus
adding the contents to the full word from the A registers to the accumulators. However,
since the accumulators are in complement form, this process is in effect subtracting
the accumulator contents from the A registers (Operand from core memory). The
CDL instruction requires 12 usec to execute and may be indexed. It is specified by an
octal operation code of 045.

103

COMPARE. DIFFERENCE RIGHT HALF-WORDS INSTRUCTIONS

The purpose of the COMPARE DIFFERENCE RIGHT HALF WO.RDS (CDR) instruc­
tion is to test the equality of the right accumulator contents and the operand contained
in the right half of the memory location specified by the instructions. As with all com-

. pare instructions, the instruction immediately following the CDR instruction will either
be executed or skipped, depending on the outcome of the comparison. Execution of the
CDR instruction is started by complementing the accumulators and clearing the A
registers. The specified memory location contents are then transferred to the A regis­
ters, and right A register and right accumulator are compared. Following this, both A
registers are added to the complemented accumulators, thereby generating the dif­
ference between the numbers. If the final contents of the accumulators are still in
complement form, we know that their original contents were equal to or larger than
the operand; if the final accumulator contents are positive, it means that the operand
was larger than the original value in the accumUlators. Twelve usec are required to
execute the CDR instruction, which is indexable and is designated by an octal operation
code of 043.

COMPARE DIFFERENCE FULL WORDS INSTRUCTION

This instruction is used to compare both the left and right accumulators with the
contents of the memory location specified by the instruction. The execution of the
COMPARE DIFFERENCE FULL WORDS (CDF) instruction is similar to the execution
of all the compare instructions. The accumulator contents are complemented, the A
registers are cleared, and the contents of the specified operand are transferred to the
A registers. Then both half half-words of the accumulators are compared with both A
registers. If a no-compare is generated from either or both halves, the instruction
immediately following the CDF instruction will be skipped. Otherwise (both halves
compare), the next sequential instruction will be executed. Finally, the A registers
are added to the complemented accumulators, thereby generating the difference between
each half-word of the accumulator and the corresponding half-word from memory.
The final accumulator contents will be in a negative form if they were originally larger;
they will be in positive form if the operand was larger. The CDF instruction is specified
by an octal operation code of 047. It may be indexed and requires 12 usec to execute.

COMPARE DIFFERENCE MASKED BITS INSTRUCTIONS

The COMPARE DIFFERENCE MASKED BITS (CDM) instruction tests the equality
of specified bits in the accumulators with the corresponding bits of the operand con­
tained in the designated memory location. The bits that are to be tested are determined
by the -mask which is contained in the B registers. For each bit position that is to be
compared, the corresponding bit position in the B register mask must contain a 1. Bits
not involved in the comparison are designated by O's in the mask. After the designated
bits are compared, and the program counter has been stepped in accordance with the
results, the difference between the masked bits of the accumulators and the operand
from memory is obtained.

Execution of the CDM instruction takes place in the following manner. The ac­
cumulator contents are complemented, and the A register is cleared. Then the mask
from the B register is transferred to the cleared B registers. A logical multiplication

104

takes place between the A register and the accumulators, leaving the results in the
accumulators. The A registers are then complemented and the word from memory is
logically added to them. This combination of logical multiplication and addition will
cause an automatic compare of the unmasked bits, just as with the CMM instruction.
After the comparison takes place, the A registers are added to the complemented accu­
mulators, thus generating the difference between the original contents of the specified
bits of the accumulators and the corresponding bits of the operand. The final contents
of the accumulators will be in negative form if the original bit contents of the accu­
mulators were equal to or larger than the· bit contents of the operand. If the operand
bits were larger, the result in the accumulators will be positive. The final results of
the accumulators for this instruction indicate the relative magnitude of the bits com­
pared only if the sign bit is not included in the mask (inactive). When the sign bit is
active, the final contents of the accumulator are variable, depending on such things as
end-carry overflow, etc., that may occur when the A register is added to the comple­
mented accumulator. The CDM instruction requires 12 usec to execute and may be
indexed. An octal operation code of 041 is used to indicate a CDM instruction. An
example of the execution of this instruction is given below. Only a half-word is shown,
but the entire word is compared in the same manner. In this example, the B register
has been loaded with a mask of 0.110 110 110 000 001.

In this case, the bits did not compare, but the final accumulator contents are
positive because the value contained in the memory location was larger than the ori­
ginal contents of the accumulator. We know this statement is true because the sign
bit was not involved in the comparison.

Table 12-8

ACTION ACCUMULATOR A REGISTER MEMORY LOCATION

start 1.010 111 100 011 111 0.000 000 000 000 000 0.100 001 101 010 000 --- - --- ---
Complement 0.101 000 011 100 000 0.000 000 000 000 000 0.100 001 101 010 000 - - - - - - - - - -
Clear 0.101 000 011 100 000 o.ooo 000 000 000 000 0.100 001 101 010 000 - - - - - - - - - - -
Transfer 0.101 000 011 100 000 0.110 110 110 000 001 0.100 001 101 010 000 - -· - - - - - - -
Logical 0.100 000 010 000 000 0.110 110 110 000 001 0.100 001 101 010 000 - - - - - - - - -_Multiply
Complement 0.100 000 010 000 000 1.001 001 001 111 110 0.100 001 101 010 000 - - - - - - - - - -
Logical Add 0.100 000 010 000 00.Q. 1.101 001 101 111 110 0.100 001 101 010 000 - - - - - -
Compare 0.100 000 010 000 000 1.101 OQl 101 111 110 0.100 001 101 010 000 - - - - - - - - -
Obtain 0.001 001 111 111 111 1.101 001 101 111 110 0.100 001 101 010 000 - - - - - - - - - -Difference

105

PROGRAM EXAMPLES USING COMPARE-DIFFERENCE INSTRUCTIONS

We are going to test the contents of two specified memory locations. We want to
branch to one of five subroutines, depending on the results of our test. The five possible
outcomes from a comparison of two full words are comparison, no-compare with both
accumulators negative, no-compare with the left accumulator negative, no-compare
with the right accumulator negative, and no-compare with both accumulators positive.
A program which will provide for branching to the correct subroutine, depending on
the result, is given below.

Table 12-9

LOCATION OPERATION ADDRESS

0.62500 CAD 0.07300

0.62501 CDF 0.07301

0.62502 BPX To subroutine A

0.62503 BFM To subroutine B

0.62504 BLM To subroutine C

0.62505 BRM To subroutine D

0.62506 BPX To subroutine E

0.07300 0.74044 0.65032

0.07301 0.74044 0.65032

In this example the registers compare; therefore, the program counter will be
stepped normally, and we will execute the branch immediately following the CDF in­
struction to subroutine A. If the numbers did not compare, however, the BPX instruc­
tion at location 0.62502 would be skipped. We would then branch to subroutine B if both
accumulators were negative, to subroutine C if the left accumulator was negative, to
subroutine D if the right accumulator was negative, and finally, to subroutine E if both
accumulators were postive. We 1vould probably store the difference between the registers
compared as the first step in subroutines B, C, D, and E. This would not be necessary
in the case of subroutine A because we know the register contents are equal.

As an example of the use of the COM instruction, let us check the equality of bit
positions RlO - R15 of two registers. We wish to execute a certain subroutine if the
contents· are equal and another one if the contents are unequal and the number placed
in the accumulator is higher in magnitude than the number it is being compared with.
This program is listed in Table 12-10.

106

Table 12-10

LOCATION OPERATION ADDRESS

0.00001 CAD 0.03314

0.00002 LOB 0.06000

0.00003 COM 0.03315

0.00004 BPX To subroutine A

0.00005 BRM To subroutine B

0.00006 HLT 0.00000

0.03314 0.00650 0.02540

0.03315 0.43120 0.01630

0.06000 0.00000 0.00077

The numbers selected will yield a no-compare, and the program control will
skip the BPX instruction at location 0.00004. Since the number placed in the accumulator
was larger than the number compared with it, and the sign bit was not part of the mask,
the final contents of the right accumulator will be negative, and the BRM instruction will
be executed. Notice that no provision has been made for a no-compare condition, since
this was not one of the stipulations of the problem.

TEST BITS INSTRUCTION

TEST ONE BIT INSTRUCTION

The TEST ONE BIT (TOE) instruction is used to test a particular bit within the
operand specified by the right half portion of the instruction. The test consists of adding
the bit content to the least significant bit position of the program counter. Thus, if
the bit being tested contains a 1, it will be added to the program counter, causing it
to skip the instruction immediately following the TOE instruction. If the bit being
tested ·contains a O, the program counter will not be stepped an additional time, and
the next sequential instruction following the TOE instruction will be executed. The bit
to be tested is determined by decoding the contents of auxiliary bits Ll1 through L15.
A maximum of 37 8 or 3110 can. be specified by these bits, which is enough to select

any one of the 32 bits within an operand (00 also indicates a bit selection). The TOE
instruction is designated by an octal operation code of 050. The last octal 0 simply
indicates that bit LlO of the instruction word contains a 0 but has no significance as
far as selection of the bit to be tested is concerned. Execution of the TOE instruction
requires 12 usec, and it may be indexed.

107

TEST TWO BITS INSTRUCTION

The Test Two Bits (TTB) instruction is used to test two particular bits of the
operand specified by the right half portion of the instruction. The test consists of
adding the bit contents to the least significant bits of the program counter. With two
bits, four combinations are possible and ·can cause the program counter to be stepped
in any of the following ways with the following results:

a. Bits contains 00. Program counter will be stepped in the normal manner,
causing the instruction immediately following the TTB instruction to be executed.

b. Bits contain 01. Program counter will be stepped one additional time, causing
the instruction immediately following the TTB instruction to be skipped.

c. Bits contain 10. Program counter will be stepped two additional times, causing
the two instructions immediately following the- TTB instruction to be skipped.

d. Bits contain 11. Program counter will be stepped three additional times, caus­
ing the three instructions immediately following the TT B instruction to be skipped.

The bits to be tested are determined by decoding the contents of auxiliary bits
Lll through L15 of the instruction word. As with the TOB instruction, these bits may
specify only one of the 32-bit positions within the operand; however, in the case of the
TTB instruction, the second bit to be tested is automatically determined to be the bit
adjacent to and to the left of the selected bit. For example, if bit R12 was designated
by 'the auxiliary bits, the bit combination to be tested is Rl l and R12. This does not
apply to the selection of either the left or right sign bits; therefore, it is not possible
to specify a TTB instruction using the sign bit position as the bit to be tested. However,
the sign bits may be tested by a TOB instruction. The octal four indicates that bit Ll 0
of the instruction word is a 1 but has no bearing on the bit combination selected for
testing. Thus, the TTB instruction is simply a variation of the TOB instruction; bit
LlO of the instruction word determines whether the test will be performed on one bit
(LlO=O) or the selected bit and the one adjacent to and to the left of it (bit LlO=l). The
TTB instruction requires 12 usec to execute and may be indexed.

BIT SELECTION FOR TOB AND TTB INSTRUCTIONS

As stated previously, the contents of bits Lll through L15 determine what bit
of the 32-bit position is selected, and bit LlO determines whether that bit only is tested
or whether it and its adjacent bit are tested. The table below lists the various octal
codes that can be represented in positions Lll through Ll5 and the bit(s) they will
select.

It should be noted that the contents of bit LlO must be added to the octal notations
listed above when given the octal word layout of either the TOB or TTB instruction.
For example, if we wish to use a TTB instruction (code 054) on bit R5 (code 25), the
resulting code is 0565. Adding an octal 0 in front of these four digits for the index
indicator bits gives us a word layout of 00565. Similarly, if we wish to test L12 (code 14)
to get 00514.

108

Table 12-11. TOB and TTB Bit Selection

Lll-L15 BIT(S) SELECTED

TOB TTB

00 LS LS*

01 Ll Ls,Ll

02 L2 Ll,L2

03 L3 L2,L3

04 IA L3,1A

05 L5 IA,L5

06 L6 L5,L6

07 L7 L6,L7

10 LS L7,L8

11 L9 L8,L9

12 LlO L9,L10

0 13 LU LlO,Lll

14 L12 Lll,l.12 ,,
15 Ll3 L12,L13

16 L14 Ll3,L14

_._J
17 Ll5 Ll4,Ll5

------- :c::::=- :::: - =::::;; 20 ---=-- as RS* ,, -- 21 Rl RS,Rl

-..
.__}

22 R2 Rl,R2

23 R3 R2,R3

24 R4 R3,R4

25 R5 R4,R5

26 R6 R5,R6
--~

0~/T; ei;V 11:z G
109

PROGRAM EXAMPLES OF TOB AND TTB INSTRUCTIONS

Previously, we illustrated several programs which required that a test be made on
one specific bit to determine a course of action. There are several ways we can get a
bit into position for testing. One way is to cycle it into a sign bit position and then use
a branch instruction. Another way is· to use the ETR instruction and set all the inactive
bits in the word to be tested to O's except the particular bit we are interested in, and
then execute a BFZ instruction. Now, with the addition of the TOB and TTB instructions,
we can test any bit we desire without shifting or masking. For instance, assume that
we wish to check a certain program which had been read into memory to make sure
that 17-bit operation had been specified for all instructions within the program. We can
do this. very simply because we know that the presence of a 1 bit in Ll2 of an instruction
word which does not ordinarily make use of the auxiliary bits indicates that 17-bit
operation is desired. (We will assume that the program we are to test contains only O's
in all bit positions except where 17-bit operation is desired.) The program which will
perform this check is given below.

Table 12-12

LOCATION OPERATION ADDRESS

0.00501 lXIN 0.00123

0.00502 1TOB(14) 0.01340

0.00503 BPX 0.00506

0.00504 lBPX(Ol) 0.00502

0.00505 HLT 0.00000

0.00506 lADX 0.01340

0.00507 STA 0.03000

0.00510 HLT 0.00000

0.01340 - 0.01463 Location of program

As long as the instruction being tested contains a 1 bit in the Ll2 position, the
program will continue to cycle. However, when a 0 bit is encountered, the program
counter will not be stepped an additional time but will select the BPX at location 0.00503.
This instruction will branch to a routine which adds the index register contents at the
time to the starting address of the program, thus obtaining the address of the instruction
that did not contain a 1 bit in the Ll2 position. This address is then stored in location
0.03000, and the program halts. We can now manually correct the instruction whose
address is stored in location 0.03000 and return to the program.

As an example of the TTB instruction application, let us assume that after we
have performed the program discussed above, we again want to run through it and

110

store the address of every instruction which specifies the right accumulator (3) as its
index register. Since the index indicator contains three bits (Ll through L3), we can
use a combination of TOB and TTB instructions to accomplish this job. The program
to perform this check is given below.

Table 12-13

LOCATION OPERATION ADDRESS

0.00510 lXIN 0.00123

0.00511 2XIN 0.00123

0.00512 lTOB(Ol) 0.01340

0.00513 1TTB(03) 0.01340

0.00514 BPX 0.00522

0.00515 BPX 0.00522

0.00516 BPX 0.00522

0.00517 lADX 0.01340

0.00520 2STA 0.00500

0.00521 2BPX(Ol) 0.00522

0.00522 lBPX(Ol) 0.00512

0.00523 HLT 0.00000

This program will examine the contents of Ll with the TOB instruction. If Ll
is a 1, indicating index registers 4, 5, 6, or 7, the program counter will be stepped
an additional time, skipping to the BPX in location 0.00514. This will cause the com­
puter to branch to the end of the program where the next memory location will be
selected. If Ll is a O, indicating index register O, 1, 2 or 3, the program ·will execute
the TTB instruction in location 0.00515. This TTB instruction will check bits L2 and L3
for a bit combination of 11. If any other bit combination (OO, 01, or 10) is found, the
program immediately branches to a step which reduces the index register by one and
selects a new instruction in the program for testing. If a bit combination of 11 is found,
the address of the instruction it is found in is stored, starting at location 0.00623, and
the next instruction is selected for testing. Notice that we use two different index regis­
ters in this program, one to control the memory locations selected for testing and the
other to control the storage of applicable addresses. We could have used the same index
register to store the addresses; however, the chances are that the index register con­
trolling the address selection will be stepped several times for each time that we store
an address (which contains an instruction using index register 3). Therefore, our

111

table of addresses would not be in sequential order. To achieve sequential order, a
separate index register was employed.

Table 12-14

27 R7 R6, R7

30 RB R7, RB

31 R9 RB, R9

32 RlO R9, RlO

33 RU RlO, RU

34 R12 RU, R12

35 R13 R12, R13

36 R14 R13, R14

37 R15 R14, R15

*The sign bits may not be selected in conjunction with the TTB instruction.
If specified, they will be executed as a TOB instruction.

CLEAR AND ADD CLOCK INSTRUCTION

EXECUTION

The CLEAR AND ADD CLOCK (CAC) instruction is used to transfer the contents
of the clock register to the right accumulator. This instruction is similar in execution
to a CAD instruction except that no operand is required from memory. Instead, the
accumulators are cleared, and the clock register contents are transferred to the right
memory buffer register. From this point, the action that occurs is identical with that
of a CAD instruction. Execution of the CAC instruction requires 12 usec, and it is
designate~ by an octal operation code of 170. Indexing is not applicable to this instruc­
tion, since only one clock register may be selected.

Although the CAC instruction does not refer to a memory location to obtain its
operand, the address portion of the instruction is still used. Before this instruction
was available for the AN/FSQ-7 or AN/FSQ-B, the clock register could be obtained
by using any instruction (usually a CAD) and an address of O. 60000. Now that a de­
finite instruction is available, the address of 0.60000 is no longer necessary. However,
an address of 3. 77777 is used as the right half portion of the CAC instruction. It should
be noted that this address has no significance as concerns the selection of the clock,
but is used to inhibit parity checks and logical addition in the memory buffer registers.
Address 3. 77777 is the highest address in test memory (for the AN/FSQ-7) and will
prevent either the larger or small memory from being accidentally selected. To select
the clock register in the AN/FSQ-7, a CAC 3. 77777 instruction must be given.

U2

OPERA TE INSTRUCTION

The OPERATE (PER) instruction is used to initiate a wide varity of actions
within the AN/FSQ-7 and AN/FSQ-8, such as starting a test pattern generator or re­
winding a magnetic tape reel. The PER instruction variation which is to be performed
is designated by bits L10-Ll5 of the instruction word (auxiliary bits). The execution of
the PER instruction depends chiefly on a decoding matrix, which allows for the trans- ·
mission of a pulse to a unit specified by the auxiliary bits. As previously mentioned,
this pulse can cause several actions to take place, depending on what unit is receiving
the pulse. Execution time of the PER instruction requires 12 usec. Because the address
portion of this instruction is meaningless, it may not be indexed. An octal operation
code of .dl- is used to specify a PER instruction. These bits are placed in IA-L9 of the
instruction word, leaving all the auxiliary bits free to specify what action is to take
place.

OPERATE UNIT

Condition lights 1-4

Intercommunication
indicators 1-4

Test Clock

Area discriminator
(spare)

Area discriminat-:>r

Marginal Checking

I/O Interlock

SD Camera

Reserved for SD
Cameras 3 and 4

Table 12-15

ACTION

Turn on

Turn on in other Computer

Complements FF controlling
the stepping of the clock. Clock
may now be stepped by BPX in­
structions.

Turn on for cycle beginning
with radar data.

Start excursion·
stop duplex excursion
Stop simplex excursion

Clear

start mode 1
start mode 2

INDEX INTERVAL
CODE

01-04

10-13

14

17

20

21
22
23

27

31
32

33, 34

113

OPERATE UNIT

Digital Display

Print operate hubs
1-10

Input System
testing

Selected tape unit

Card Punch

I/O Address counter

Scan counter

ACTION

Start at slot o, 1st section
Start at slot 107, 2nd section.
(Not used at present)

Energize

Start Lm and XTL pattern
generator and start GFI
continuous pattern generator.
Switch GFI pattern generator
type I. Has to be in Mode II.
Set GFI azimuth FF.
Set GFI target FF.

Set prepared
Backspace
Rewind
Write end-of-file

Punch what normally goes into
columns 17-32 in columns 1-16
on card.
Gang punch 1-16

Lock at current address until
I/O interlock is cleared.

Set to 0
Step by 1

BRANCH ON SENSE INSTRUCTION

INDEX INTERVAL
CODE

35

51, 62

63

64
65
66

67
70
71
72

73
74

75

76
77

The BRANCH ON SENSE (BSN) instruction provides for a branch of program
control to the address specified in the right half portion of the instruction if a designated
condition exists. This condition is determined by decoding the auxiliary bits (L10-L15)
of the instruction word. We can sense for such things as overflow in either or both
accumulators, checking a tape drive unit to see if it is ready to be used, and various
other conditions. The execution of the BSN instruction takes place in the following
manner. The auxiliary bits are decoded in the same matrix used by the PER instruction.
These bits will partially condition one unit selected by the bits. If the unit being sensed
is active, it completes the conditioning necessary for a positive indication. The BSN
instruction then strobes all the sense units in parallel and causes a branch of program
control if a unit is on. Only one unit may. be on at the time the check for branch takes
place. If a unit is found to be active, the contents of the program counter are trans­
ferred to the right A register and the right A register and the contents of the address
register are transferred to the program counter. (This is the same action which results

114

when a condition is satisfied for any of the other branch instructions such as BRM
and BPX). If the unit being sensed was not active, the branch will not be executed, and
the next sequential instruction will be selected. Execution of the BSN instruction re­
quires 12 usec, and it is not indexable. The BSN instruction is designated by octal
operation code of 52- in bit positions L4-L9. Bits Ll0-L15 are thus made available
to specify what unit is to be sensed.

Table 12-16

Sense Unit Condition Index Interval BSNTurns
For Branch Code Unit Off

Condition lights 1-4 On 01-04 Yes

Inactivity On On 05 Yes

Tapes not prepared Not Prepared 10 No

1/0 Unit Not Ready Not Ready 11 No

Left Overflow On On 12 Yes

Right Overflow On On 13 Yes

1/0 Interlock On On 14 No

Memory Parity Error On 15 Yes

Drum parity error On 16 Yes
(addressable)

Tape parity error On 17 Yes

Duplex Marginal On 20 No
Chg. exc. on

Sense Switches 1-4 On 21-24 No
(Active)

Drum Parity (Status) On 25 Yes

Simplex MC Exec. on On 27 No

Duplex Switch Active 30 No

Printer sense 1, 2 Energized 31, 32 No

Output alarm on On 33 Yes

115

Sense Unit Condition Index Interval BSNTurns
For Branch Code Unit Off

GFI range signal On 34 Yes
LRI & XTL timing on

SD Camera on Taking picture 35 No

Display System Displaying Track 37 No
(On for data coming
from TD Drums)

Other Com. alarms 1,2 On 41, 42 Yes

Other computer On 43-46 Yes
intercom. 1-4

GFI North Azimuth on On 47 Yes

Nonsearch Alarm on On 50 Yes

OB Drum Parity On 51 Yes

Illegal Address or On 52 Yes
Section on

Output Message Parity On 53-60 Yes

116

CHAPTER 13 - MANUAL CONTROLS

DUPLEX MAINTENANCE CONSOLES

The two DUPLEX MAINTENANCE CONSOLES (DMC) of the AN/FSQ-7 equipment
are identical. Each console contains the controls and indicators for starting, loading,
monitoring, testing, and stopping the computer with which it is associated. The extent
to which the operation of a computer can be controlled from its DUPLEX MAINTE­
NANCE CONSOLE depends upon the basic operating status of the computer. Computer
status is controlled by the TEST-OPERATE switch.

When the TEST-OPERATE switch is in the OPERATE position, the computer is
said to be in OPERATE status. The OPERATE status is normally used when running
the operational program. DCA (Direction Center Active) is another name for the opera­
tional program. While the computer is in operate it can:

1. give alarm indications
2. be started and stopped
3. provide indications of register contents
4. generally provide a means of controlling computer functions.

In the TEST status (with TEST-OPERA TE switch in the TEST position) the pri­
mary use of the computer is to perform maintenance. While the computer is in TEST,
it can:

1. give alarm indications
2. be started and stopped
3. provide indications of register contents
4. provide means for stepping or cycling through program steps
5. allow marginal checking
6. allow the maintenance man, through use of the controls and indications, to

isolate troubles.

Most of the controls on the DMC are Interlocked. In other words, certain condi­
tions must be met before these controls can be used. There are four basic Interlocking
Levels and several variations of these four. Thefour basic Interlocking Levels are:

1. COMPUTE, which is present when the computer is computing (Continue FF set)

2. NON-COMPUTE, which is present when the computer is not computing, (Con­
tinue FF clear)

3. TEST, which is present when the TEST-OPERATE switch is in the TEST
position.

4. TEST NON-COMPUTE, which is present when the TEST-OPERATE switch
is in the TEST position and the computer is not computing (Continue FF clear).

The variations of these Interlocking Levels are found on the following chart,
together with their associated controls.

117

Name of Control

(!)TEST-OPERATE Sw

I;) Program Continue P. B.

QProgram stop P.B.

E)mstruction step

t!J' Memory cycle

6. Rest FF

7. Clear Memory

8. Ready I/O Units

9. Master Reset a Load from Card Reader

Load from A.M. Drums

Start from Test Memory

Single Pulse

17. T .M. Assign-Unassign

18. T .M. Plugboard

19. Clear Alarms

omplement

Three-Two-Three Auto

C.P.C. Rotary

118

Table 13-1

_}nterlocki~~ <;onditi~ ~
l~,o:;:&~~
~n smnaoy·-

Logic Page

7.1. 7.
(can be overridden)

Non-Compute Ground 0.2.1.

-48 Compute 0.2.1.

-48 Test Non-Compute 0.2.1.

-48 Test Non-Compute 0.2.1.

-48 TEST 0.2.1.

-48 TEST 0.2.1.

None 7.1.13.

-48 TEST 0.2.1.

-48 Non-Compute 0.2.1.

-48 Non-Compute 0.2.1.

~
-48 Non-Compute "''/" .X 0.2.1.

TEST Non-Compute Ground 0.2.2.

None 0.7.4.

-48 TEST 0.2.1.

-48 TEST 0.4.1.

None 7.1.5.

None 7.1.5.

Nono 0.2.1.

None 7.1.14.

Ground TEST Non-Compute 0.2.4.

+10 Test Non-Compute 0.2.4.

+10 Test Non-Compute 0.2.5.

4. Delay-Off-No-Delay 1
.&hl@ M CBIK1 M

25. Memory, Drum, Tape
Parity alarm

26. Stop-Branch

27. Overflow Alarm

Interlocking Condition

+10 Test

None

None

None

Figure 13-1. Duplex Maintenance Console (Unit 1)

IMEMORY NORMAL-REVERSE SWITCH)

Logic Page

0.2.5.

0.7.5.

0.2.7.

0.7.5.

The function of the NORMAL-REVERSE Switch (Logic 0.4.1.) is to swap the ad­
dresses of "Big" and "Little" memories. The reason this switch exists is because of
the way programs are normally loaded into the computer. The programs are usually
loaded sequentially into memory, starting at location 0.00000. This means that if MEM I
is inoperative it is impossible to load a maintenance program to diagnose the problem.
By changing the addresses around, the program may be loaded into MEM II to check
MEMI.

Table 13-2

NORMAL ADDRESSES REVERSE ADDRESSES

MEM I 0.00000 to 1. 77777 MEM I 2.00000 to 3. 77757

MEM II 2.00000 to 3. 77757 MEM II 0.00000 to 1. 77777

TEST MEM 3. 77760 to 3. 77777 TEST MEM 3. 77760 to 3. 77777

119

DRUMS

120

CARD MACH I NES AR I THME TIC
.---.1.ulO"'LO•~

0·"0 0 0 O~· O
~O<VIO(COJllrl(CT~tLOO<ll(GWXK"[GCAl!O

SOE•55 0 0 0 5.:()T"
SP.I.fl[.-~V ST!r.t~~ --SPA"[--,

0'" 0 0 0 .0"'0
PUllH P•lltTl -- r'IE~• O•VIOL ll--o .. :"(f' o 6 6.,,6
.---· - SP.1.11[-

0· ··0 0 0
MEM ORY I

.---LEFT INHl81T!;ATE----. ,.--wll11£ - ---. ooo 6 ... :a· 0··0

.--lllGl<T INl<l81T GU~---. I.A

000 0· 1~0l
..-- llEAO- ----.

0 .. ,,(j)
---SP.UtE----

Om•O 0 .. .,0 0·"0

0""0
' 6·: .~o

A L AR MS

Om·O On•O
o::::a··, .. 0:.:.6

T PD AN D CYCLE CONTROL

6..,6 6
6 .. ,(() 6

6 6·"6
6 6.,.6
0 ~a~:11 6E
ST~llT TPO 0 COO·~NOVE

TPO cn•rnl!OL lll [lll OJIT IN$TllUCTIO N 2,,.C ~[T (0

5: ,5 OE 6 5c. :~:5~
.---CO'iTINU[----. SINGLE INSTllUCTIO!'I SRlllE LO.l.tl . 0•11:5s•"'co/ sOY"c Qm3 Q

•:;.••..__ ,...,°''WJSECLE .t. 'I :~ E •ll . so:~~:o/'

Cl IC PR~RAM COUNTER co 111 PuT£11 surus I

e. . e .. ,.I. t;»
' '

0 6 0 6

' '

;B.
o~•

II" """" t::::_••H

CAlllE ll.1. II Sf>AllE Jl SP.I.RE
~OOE2 Jl

•••!.=

Ill.I.STEii
11£SET

Figure 13-2. Duplex Maintenance Console, Module G

11 o"o ooo ooo s••ooo ooo ORUM CONTROL REGISTER J
~ 000 000 000 000 oco,

LEFT 10 BUFFER REGISTER

000 000 000 000 0€01
RIGHT 10 BUFFER REGISTER J 000 000 000 000 OSOi ...

~

P LEFT 10 REGISTER RIGHT 10 REGISTER

C·O 000 000 000 000 0€0 000 000 000 000 OSOi,
/ 10 WORD COUNlER

!OS 000 OOO·OCX> 000 oao
10 ADDRESS COUNTER

OS 000 000 000 000 OSOi
LEFT TEST REGISTER

ocro ooo ooo ooo oso I. RIGHT TEST REGISTER

1:: 000 000 000 000 oaoJ
, LEFT MEMORY BUFFER

I c·o ooo ooo ooo ooo oeo
RIGHT MEMORY BUFFER _)

I 1:i' 000 000 000 000 OSOi "oJ'

LEFT A REGISTER RIGHT A REGISTER

ooo ooo ooo ooo oao oe 000 000 000 000 OSOJI
L.EFT ACC REGISTE"R " RIGHT ACC REGISTER

000 000 000 000 030 100 000 000 000 000 OSOi
r. " LEFT B •EGISTE• _l

II G·O ooo ooo ooo ooo oeo " RIGHT B REGISTER

IGO 000 000 000 000 OeO'I

11

OPERATION REGISTER

o~o ooo ooo eoo
ADDRESS REGISTER

I oo 000 000 000 000 oaol
r. LIO STOR.t.Gf.: INDEX INTERVAL

11. 0 000 000
MEMORY ADDRESS REGISTER I - 000 000 000 000 oeo ··2• -r. PROGRAM COUNTER TM AOll lt[G ME~Y WD•ESS ill!filR 2

ILOe ooo ooo ooo ooo oeo - 000 000 000 000 060 Jilt ...,
INDEX REGISTER I

oe 00'0 000 000 000 060
• STEP COUNTER I

oeo c;.00•1 0 0 0
r. INDEX REGISTER 2

oa 000 000 000 000 oeo 000 OSOi
INDEX REGIS TE A 4

oe 000 000 000 000 060 1174 000 000 Q oeo
INDEX REGtSTE R 5 SPARE

i[OG 000 000 000 000 oeo 000 000 000 000

~ -r11_ Sl'th I- A ~
LEFT '!!_ST MEMORY SWITCH REG~T(1[A

SIGlll I 5 4 S t 1 I I 10 11 II 1) 1• IS S1G" 2 S 4 , 6 7 I • 10 11 I! IJ 14 •S

] JR
lni Ul ~uu~ Ut u UK UH

[J ~~

IU

S 2 SSI 530 SH SZI H1' SH SU S 4 SU Sl!l UI J!O Sii S•• SIP

. =
,,.... I , .. s • ' • • •O 11 12 ,, ... IS I Sllll Z S 4 S • ? I I 10 II I! II 14 IS

~gure 13-3. Duplex Maintenance Console, Module F

121

The way this change of address is brought about is to use the pulse which nor­
mally starts MEM I to start MEM II in the Reverse position, and vice versa.

tROGRAM CONTINUE PUSH BUTTON (PB) I
This PB is used to continue the execution of a program that has been interrupted.

It is operative whenever the computer is halted in the course of a program, regardless
of computer status. If the Continue PB is depressed the TPD ring is started up and
computer operation resumes from the point at which the program was interrupted.
When tracing Logic 0.2.1., note that the Continue P.B. when depressed, gives you a
Clear Alarms function as well as a Continue function. This function will be discussed
later when the Clear Alarms PB is covered.

EROGIIAJll. STOP p:J
The PROGRAM STOP PB is used to interrupt the computer program without

removing power or losing stored information. It is operative whenever the computer
is running, regardless of computer status.

When this pushbutton is depressed, the computer completes the instruction it is
currently executing and executes a simulated HLT instruction. If the IO Interlock is
on, all IO transfers are completed before the HLT instruction is executed.

When the computer is stopped by the switch, the address of the succeeding in­
struction in the interrupted program is retained in the program counter and the coded
instruction is contained in the memory buffer register.

The operation may be fully understood by tracing Logic 0.2.1. twice; once with
the IO Interlock on, and then with it off.

~SINGLE-PULSE PB 1
The SINGLE PULSE pushbutton (Logic 0.2.2.) is used to advance the program

one timing pulse at a time. It is normally used only in diagnostic testing after an error
stop in a reliability program. It can be used to advance the entire program up to the
point of error, Timing pulse by Timing pulse; as a rule, however, it is used only after
the source of trouble has been isolated to a single instruction step or memory cycle.

ZMEMORY CYCLE PB I (:~ j:/ 1

- ,Ji I~>"'~.
t'' .·I \.

The MEMORY CYCLE PB (Logic 0.2.1.) is used to advance the computer program
one memory cycle at a time. Since each memory cycle is synchronized with a machine
cycle (i.e., a PT or an OT cycle), this switch can be used to break an instruction into
its component parts. An instruction of the store class, for example, requires a PT
cycle and two OT cycles (OTA and OTB) for its execution. If the computer is halted
at such an instruction, only the PT cycle is performed the first time the MEMORY
CYCLE PB is depressed; the instruction is transferred from memory to the operation
and address registers, and the computer halts. When the switch is depressed again,
the OTA cycle is performed (an operand is brought from memory) and again the com­
puter halts. The third time the switch is depressed, the OTB cycle is performed (the

122

data is stored in core memory) and the computer halts for the third time. At each
halt, the operator can check the neon indicators on the Duplex Maintenance Console
and perform any tests and troubleshooting operations required. If an even finer analysis
is required, the program may be advanced a time pulse· at a time by means of the
SINGLE PULSE PB.

The MEMORY CYCLE PB is electrically interlocked so that it is operative only
when the computer is halted and in test status. It is normally used only in diagnostic
testing after an error stop in a reliability program. It can be used to advance the
program, memory cycle by memory cycle, to the point of error; a.S a rule, however,
it is used oi:il.y after trouble has been localized to a single instruction requiring several
machine cycles for its execution.

(INSTRUCTION STEP PB l
The INSTRUCTION STEP PB (Logic 0.2.1.) is used to advance the computer through

one complete instruction, including all PT and OT cycles requires for its execution.
The computer halts automatically when the instruction has been executed so that the
operator can observe the neon indicators on the Duplex Maintenance Console and per­
form any tests and troubleshooting operations. A single instruction may involve several
machine cycles. If finer analysis is required, an instruc~ion may be advanced through
its component machine cycles by means of the MEMORY CYCLE PB.or through its
individual time pulses by means of the SINGLE PULSE PB.

This switch is electrically interlocked like the MEMORY CLCLE PB so that it
is operative only when the computer is halted and in test status. It is normally used
only in diagnostic testing after an error stop in a reliability program. It can be used
to advance the program, instruction step by instruction step, to the point of error. As a
rule, however, it is used only after trouble has been localized in a small portion of the
program. ·

:!ESET FLIP-FLOPS PB)

The RESET FLIP-FLOPS pushbutton (Logic 0.2.1.) is used to clear the control
flip-flops and registers, which are not ordinarily cleared in normal operational or
test programs and which must be cleared to prevent the introduction of unwanted in­
formation into a new program or into a complementing operation. The switch is elec­
trically interlocked so that it is operative only when the computer is in test status.
This switch i.s usually used before loading a new program and before testing the com­
puter flip-flops by means of the COMPLEMENT switches.

The RESET FLIP-FLOPS PB, when depressed, activates a relay cycle that initiates
the following control cycle:

1. Stop the generation of time pulses and instruction pulses by clearing the TPD­
control flip-flop.

2. Clear the IO word counter, the IO register, the IO address counter, the IO
buffer register, the program counter, and most of the flip-flops in the selection control
and instruction control units.

123

3. Clear most fiip-fiops in the right and left arithmetic units. Refer to Logic
0.2.4. to find exactly what FFs and registers are cleared.

(cLEAR MEMORY PBJ

The CLEAR MEMORY pushbutton (Logic 0.2.1.) is used to clear the live test
register ~he ~·_!7J_~ l?~at~ons in core me~ory when.the co~puter. is halted in test

-J.l!~tw!: The effect prodUced manually by this switch is identical with that produced
by the simulated execution of the following instructions: _,,, .

:--. I _,I 1 -- r.

SEL(04) Selects IO Register : ,>- '/>11-:·:~ "~. ~,p ...
M 1.-t'J h~ ·" , .;,·~--
it--· • y

LDC 0.00000 Clears IO Address Counter ti,;-_- ef'/ \ ,,;---
'1/1t'· ~/v

./ . .., .. (·I.

RDS 3. 77761 Actually sets the IO Word Counter to the complement of 3. 77760
but will read 3.77761 times from the cleared IO Register because

BLT the simulated RDS instruction makes no provision for Command

----------........ 290.
GADY IO UNITS PBJ

This control (Logic 7.1.8.) merely puts the IO units under the control of the com­
puter, enabling the computer to read from the Card Reader, write on the Card Recorder
(Punch) or the Line Printer, or read or write Tapes. In other words, make the ,IO units
ready for use by the computer. ·

l MASTER RESET !!
The MASTER RESET pushbutton (Logic 0.2.1.) is used to prepare the IO units,

the memory element and the Central Computer System for the loading of a new program.
It combines the operations of the following pushbuttons, which are discussed separately:

1. RESET FLIP:.FLOPS

2 .• CLEAR MEMORY -.... . 1~.ony.t-<-' !;<---'• CC"-:;;:..-• .-<:
3. READY IO UNITS~'~T- Yl ""-'~ t-.,,.ct~'"' .
The MASTER RESET pushbutton is operative when the computer is in test status)

whether it is running or halted. ·

t SELECT T= MEMORY P1
The SELECT TEST MEMORY pushbutton (Logic 0.2.1.) makes it unnecessary

for the operator to perform more than one manual operation to clear all the control
fiip-fiops and registers affected by the RESET FLIP-FLOPS PB and to reset the pro­
gram counter to 3.77760, which is the first address in test memory. In other words,
this control clears all previous program data, (except memory) and selects the first
address in test memory as the point from which computer operation may resume.
Since an operator can write directly into the first address of test memory by setti~

124

the switches in toggle switch register A, this pushbutton permits him to manually
clear the computer and to set up whatever control he requires. This switch is operative
when the computer is in the test status.

-- F ±ART, ROMJ&I MRMOitW

The START FROM TEST MEMORY (Logic 0.2.1.) pushbutton sets up the computer
controls to initiate the execution of the program contained in test memory (toggle
switch registers and/ or test memory plugboard}. This program may consist of a single
instruction used to branch program control to a test program already stored in memory,
or it may include all the instructions required to perform a specific function(e.g., to
set up controls to transfer additional information into core memory from an IO device}.
This PB is operative only when the computer is halted. Sim ated, this PB simulates
a BPX to 3. 77760.

The LOAD FROM CARD READER PB pushbutton (Logic 0.2.1.) is used to introduce
a loading or control program into the first 24 core memory registers by setting up the
computer controls to transfer the information contained on a single IBM binary-punche
card. To do this the following program is simulated:

6yr-A~ ~ 1< .o
7 -;-115

The second SEL(Ol} and the BPX are done by skipping from TL-6 to TL-8 which simu­

lates a HLT instruction. This simulated HLT checks the IO Interlock taking care of the
SEL(Ol}' The BPX is taken care of by inhibiting Command 270 of the HLT instruction.

This allows the computer to advance past PT6 of the HLT and since the Program Coun­
ter hasn't been stepped by this simulated program, Location 0.00000 is brought out and
operated. Since this loading program can direct the computer to read additional infor­
mation from any input source, this switch provides a convenient means Qf introducing
the desired operating program into the computer. //o ~ ~ · .z..--. I C<lf. 'J cA......... ... I. c. ?n;ltA.

The operation of the LOAD FROM AM DRUMS PB (Logic 0.2.1.) is almost the
same as the LOAD FROM CARD READER PB. The difference is that the first 24 regis­
ters of the first field of the AM-A drum are loaded sequentially into core memory
starting at location 0.00000. The simulated program is as follows:

125

SDR(02)

LDC
RDS

SDR{02)

BPX

The four SENSE SWITCHES (Nr. 1,2,3,4)(Logic 0.7.4.) rovide the operator with
a flexible means of controlling the execution of a prog~, if this control feature is
written into the program. During the execution of such a program, the sense switches

. are sensed by appropriate BSN instructions to determine what action is desired by the
maintenance o rator; i.e., whether the program should continue sequentially or branch
to the addres ·ned in the right half-word of the BSN instruction. Each switch is
associated espondingly coded BSN ·
SWITCH · 6'1lnactive (up) position

ter ~N (21) instruction lias

the ACTIVE position, however, the program branches directly to the address contained
in the right half-word of the BSN(

2
l) instruction, instead of executing the next instruction

t eclfied the program counter. The operation of the other three
"t y e associated with three other BSN ins~

- -

The COMPLEMENT PB is for complementing of the Central Computer FFs if the
COMPLEMENT SWITCH is in the Three or Two position. ---t CYCLIC PROGRAM COUNTER {CPC) '

The computer can be set up to run automatically through a program and stop at a
predetermined point in the program. This capability is very helpful in finding the cause
of machine state failures.

The CPC (Logic 0.2.5.) itself is a 9 stage counter whose setting is controlled by
the three CPC switches. These are 8 position rotary switches which are controlled by
the CPC DELAY-OFF-NO DELAY SWITCH. To operate the CPC:

126

..

a. Calculate number of pulses desired and set CPC counter switches.

b. HLT machine.

c. Place in the A switches a BPX to portion of program that is to be checked.

d. Set CPC lever switch to Delay or No Delay.

To stop operation, place CPC lever switch in the OFF position.

The CPC Control switch controls whether the CPC is on or-off and also the amount
of delay between successive passes through the portion of pnfgr~m bejng checked •

,.,.. ·~ ·~ ... ": i . • ' .· .-.;., . ""
. I~ ·the ·No'· D~ay· pgsi:ttdn recycling is starte& by 2 lV¢ pul-s~~ and there is only

about 3 msec between successive passes. This position would be used when scoping for a
trouble.

The DELAY position is used when you want to troubleshoot by observing the neons
and in this position, c·pc recycling is controlled by 1/32 sec clock pulseS': Note that

w..b~e clock pulses only control the starting of the CPC. Once started, it is stepped by
· "'.:"'. ~C TPD on pulses as in the NO-DELAY position. I,he time between passes is about
...S16 sec in thetDELAY position. Consider the following example: •

t :;., 3.77760 • BPX 400 ~2.~~· ,,,,. 400 lXIN 0
!

-a-.~T~~ ..
.I> ·t . 4~~-- SEL(04)

3 d
"· 'I

402 LDC 1000

403 RDS 10

404 lBPX(Ol) 404

405 HLT

CPC would be set to what number to determine if:

ANSWERS L.

a. Index Register Nr. 1 was being cleared properly. 32(8)

b. PT/OT FF was being set properly. 41(8)

127

c. PT/OT FF was being cleared properly. 55(8)

d. IO address counter was being cleared properly 7\8)

e. Branch FF was being set properly. 7 (8)

f. Branch FF was being cleared properly. 20(8)

-r-A1 /,·) : /' / ASSIGN-UNASSIGN SWITCH j t - ('" _,..{,kf.,.-r:-o.AL

Test Memory consists of a plugboard, 2 row~/ of 32 toggle switches called "A"
and "B" switches and the Live Test Register (LTR) which is a flip-flop register. Test
Memory addresses go from 3.77760 - 3.77777.

The plugboard has. room for 20(8) computer words on it. Since Test Memory has

only 20(8) addresses, it"is obvious that all locations on the board, the A and B switches

and the LTR cannot be used at the same time. To control which will be used we have
the ASSIGN-UNASSIGN SWITCH {Logic 7.1.5.), and control plugs (hubs) on the Test
Memory plugboard. There are four of these hubs for each address on the board; A.,
B., L., and P. @ stands for the A Switches,(!> for the B Switches, 0 for the
Live Test Register and '(!J' for the Plugboard. · · ,.,,.•

In the UNASSIGNED position all TM addresses are controlled by the plugs; A.,, ..
B., L., and P. If a T.M. address is selected and the switch is in UNASSR:.iN, the control
hubs are checked and the appropriate location brought out to the Memory Buffers.
For example, let's assume address 3. 77773 is selected and the A hub ls plugged. The
contents of the A SWitch register will be brought out. If the plug was taken out of A_.ani
put in B, the B Switches would be brought out. Care must be taken to insure that onl~ne
control hub is plugged for each address. If more than one is plugged a9~ogical add will
take place in the Memory Buffers.

When the ASSIGN-UNASSIGN SWITCH is in the ASSIGNED position, address j;tJl60 is the A switch~s, 3. 77761 is the B switches, 3. 77762-3. 77776 are controlled
e plugs and a. 77777 is the LTft. ZL §A: E , --

LEAR ALARMS PBj ~""J~ A.:.~~~·,...,_.,,r:;;: !.'·" M-t..y --- . - ·" /

This pushbutton (Logic 0.2.1.) clears all Central Computer Alarm Indicator FFs
(Logic 0,2.7.) and clears all Central Computer Alarm Sensable FFs except Alarm I
and Alarm II (Logic O. 7 .4.)

The indicator FFs do nothing more than light a neon on the DMC to show the
operator what alarm has occurred and sound off the Audible Alarm, which is a buzzer.

rLEAR AUDIBLE ALARM PB)

The AUDIBLE ALARM (Logic 7.1.14.) is turned off by this PB.

128

SUMMARY QUESTIONS

1. What are the two basic statuses of the computer?

2. The Compute level is +lOv when:

3. The Non-Compute level is +lOv when:

4. When in reverse the Normal/ Reverse Memory Switch allows usual memory
Nr. 1 addresses to select:

5. Will the Normal/Reverse Memory switch change Test Memory Addresses?

6. The Continue PB sets the-------- FF first.

7. When the IO Interlock is on and the Program Stop PB is depressed, what hap­
pens?

8. The Instruction Step FF allows one entire instruction to be operated and then:

9. The memory cycle PB lets the TPD Ring step once from:

10. The Single Pulse PB allows one TP pulse at a time to step the:

11. The Reset FFs PB is only operative when in what status?

12. Clear Memory PB loads memory from the:

13. Master Reset PB Resets FFs, Clears Memory, and:

14. Start from TM sets the Program Counter to:

15. List the program that is simulated by the Load from Card Reader PB.

16. In "Three Auto" position of the complement switch, the computer FFs will
be complemented at what rate?

129

CHAPTER 14 - ALARMS

GENERAL

This section describes the alarm indicators and alarm control circuits that are
actuated by alarm conditions during the operation ofthe Central Computer System.

The Central Computer operating alarm conditions provide the operator with an
indication (by means of neons and the alarm buzzer) that the sequential execution of
the program is not progressing normally and/or that faulty operation has been detected.
In addition to sounding the audible alarm buzzer and lighting the appropriate indicator·
lamp, the error-detecting signal will also interrogate the setting of appropriate duplex
maintenance console switches to determine what program action, if any, should be exe­
cuted. These switch settings determine whether the error alarm is to be ignored or
whether the computer is to stop or branch control to test memory.

The alarms that we will cover are Memory Parity, Tape Parity, Drum Parity,
Alarm I, Alarm II, and Inactivities. With the exception of Alarm II all of these alarms
have associated switches. If an alarm occurs and its switch is inactive (off) an indicator
will be set and the audible alarm sounded. If the appropriate alarm switch is active (on)
the indicator is set, alarm is sounded and the alarm goes on to check another switch
called the Branch/Stop Switch. If this switch is in the Stop position the alarm will cause
the computer to halt. If in the Branch position the program control will be branched to
the middle of Test Memory, address 3. 77770.

MEMORY PAmTY ALARM OPERATION

Assume that we have a memory parity with these conditions:

1. Memory Parity Switch active.
2. Branch/Stop Switch in Branch position.
3. Inhibit Auto-Branch FF set (this is a FF to give some program control to the

Branch/Stop operation).

Tracing these conditions through logic (0. 2. 7.) and paying close attention to timing,
we will find that the computer finishes any OTA or OTB cycles and doesn't go into the
Alarm Branch operation until it comes to a PT-5&Tracing logic with the Branch/stop
Switch in the stop position should nqw show that the computer will stop at a TL-0.

aJf-- ~ ~-;i . .vw'.; ~ ~ ;(~r< -{;;:.£}-;,-'-/.

IO PAmTY ALARM OPERATION

An IO Parity Alarm can occur from a bad word on tapes or drums. When tracing
in logic (0.2. 7.) notice that the bad word is not sent to the L. T .R. and that the timing is
different. Trace for the following sets of conditions:

l):7f- e, I - 1 £l4,. ,,.,. yr ·
~~-1 Drum Parity SwitCh Active and Branch/Stop Switch to Branch.
~T~. Drum Parity Switch Active and Branch/Stop Switch to Stop.

3. 91lParity Switch Active and Branch/Stop Switch to Branch.

tV+P'l---.S~oi;.' ~.L ~fr

130

INACTIVITY ALARMS

Inactivity Alarms, TPD or Loop, are generated if the DCA program is not pro­
gressing properly. In normal operation (Logic 0.2.7.) throughout DCA we have PER(05)

and PER(Oa) instructions which start and stop, respectively, the operation of a circuit

called the Inactivity Counter. If DCA isn't progressing properly either too many or too
few PER(05) instructions will occur causing Loop inactivities. TPD inactivities occur

when no TPll's happen for a certain period of time. Following a PER(05) to start it,

the inactivity counter will generate a Loop Inactivity Alarm for the following sets of
conditions:

~Two consecutive 8 second clock pulses with no intervening PER(05) with the
Inacbfi"ty Switch active and the Branch/Stop Switch to Branch.

(!)Two consecutive 8 second clock pulses with no intervening PER(05) with the

Inactivity Switch Active and the Branch/Stop Switch to Stop. (Computer will not stop.)
·---.:.::...

{i)rrhree consecutive PER(05)'s with no intervening 8 second clock pulse, with the

Inactivity Switch Active and the Branch/Stop Switch to Branch.

4. Three consecutive PER(05)'s with no intervening 8 second clock pulse; with the

Inactivity Switch active and the Branch/Stop Switch to Stop. (Computer will not stop.)

A TPD inactivity will be generated by two consecutive 1/32 second clock pulses
with no intervening TP-11 if the Inactivity Switch is Active and the Branch/jto:P Switch
is in the Branch position.

~arm I ~c 0.2. 7.) alarm Is used by the Active Computer to tell the
Standby Computer to pPpare ibf L. switchover. The Alarm I may be generated by:

Qrwo Memory .Parities without an intervening PER(40)' if the Inhibit Auto Branch

Fis set, Memory Parity Switch Active and the Branch/Stop Switch in Branch.

ATwo inactivities with no intervening PER(40) if the Inactivity Switch is Active
and tll'Branch/stop Switch is in Branch.

QAlarm Branch restart failure if the Alarm I Control FF is set, Branch/Stop
Switcli to Branch and no TP-ll's for 4 to 8 seconds after attempting a Memory Parity
or Loop Inactivity Alarm Branch or no TP-ll's for from 1/32 of a second to 4 seconds
after attempting a TPD Inactivity Alarm Branch.

QA PER(37) in the Active Computer will generate an Alarm I in the other com­

puter. The Alarm I Switch must be active to generate an Alarm I.

131

(ALAijj)

Alarm ll informs you that the SAF,0 (Safe Data Zero) transfer from DCA to DCS
is not correct and it is not safe to switch computers. This alarm may be generated
(Logic 0.2.7.) by:

1. An SDR(26) (IC own) APC (Angular Position Counter) error from the active

to the standby computer.

2. An SDR(la) (IC other) APC error generates an Alarm ll in own computer.

OVERFLOW ALARM OPERATION

Overflow is a condition that exists when two numbers result in a quantity which
exceeds the capacity of the machine (accumulators).

Assume that the special option bits are set to allow unsuppressed overflow, the
Overflow Alarm Switch Active, Inhibit Auto Branch FF set and the Branch/Stop Switch
to branch or stop (Logic 0.2.7.) The operation is the same as a normal alarm branch
or alarm stop operation exceot tl_l~t one more i11struction will be operated before the
~~~11_1 branch or alarm stop action is initiated. 

SUMMARY QUESTIONS 

1. What is the purpose of the alarm indicators and alarm control circuits? 

2. At what PT time does the computer go into the alarm branch for a Memory 
Parity error? 

3. What can cause an IO Parity Alarm? 

4. An Inactivity Alarm because of the absence of what instruction? 

5. What conditions will generate a Loop inactivity alarm? 

6. What alarm sets up a switchover of computers? 

7. When will an Overflow Alarm occur? 

132 



CHAPTER 15 - PARITY 

GENERAL 

The basic definition of parity is equality with respect to an established quantity 
or standard. More applicably, parity may be defined as uniformity in either the oddness 
or evenness of number. The latter concept, in a slightly modified version, is used in 
the AN/FSQ-7 equipment for detecting errors incurred during the transfer or storage of 
binary information. Although parity is sometimes employed to verify the results of 
computations, it does not serve this particular function in the AN/FSQ-7 Central Com­
puter System. 

In an error detection scheme based on the more appropriate definition of parity, 
all words entering, leaving, or circulating within a system must have uniform parity; 
that is, every binary word either naturally exhibits or must be made to exhibit a parity 
in common with that of all other words in the system. Before elaborating on this prin­
ciple, a further clarification of parity is necessary from the standpoint of its application 
in the Central Computer System. First, the established parity for all words is odd. 
Second the parity does not hinge on the absolute numerical value of a word of informa­
tio17 rather, it is based on the number of binary l's contained in a word, be it an in­
struction word or a data word. Since the established ·parity is odd, each word in the 
Central Computer (which has parity) must have an odd number of l's. Obviously, the 
parity of many words will naturally be odd. Those words having an even parity are given 
odd parity. This is accomplished, without changing the information contained in the 
normal 32-bit word, by prefixing to it a parity bit. When the natural parity of a word is 
even, the parity bit is made a l; it is left at 0 when the original parity is odd. Having 
assigned an odd parity to all words, every word can then be checked for conformance 
with this characteristic. If, upon subsequent examination, a word found to have even 
parity, it can rightfully be assumed that an error was generated either in storing or in 
transferring the word from a particular source to a specific destination. For purposes 
other than checking the accuracy with which information is transferred, the parity bit 
is meaningless and is discarded before a data word is entered into calculation or before 
an instruction word is decoded. 

As a result, a practical application of parity requires circuits that are capable of 
(1) determining whether the number of binary l's in a word of information is odd or 
even, (2) assigning a uniform parity to all words, (3) checking the parity of words to 
which parity has been assigned, and (4) generating a signal when a word with incorrect 
parity is detected. The first requirement is integral to both parity assigning and check­
ing. 

MEMORY PARITY cmCUIT 

The memory parity circuit performs a dual function: it assigns a uniform parity to 
all words originating within and without the Central Computer to which no parity has 
been previously assigned, and it checks the parity of words to which parity has been 
assigned. The latter function constitutes the test on the accuracy with which data is 
transmitted from the core memory array to the memory buffer register (MBR), and 
from several of the input sources to the MBR. Since the MBR is situated at the cross­
roads of all 'information paths in the Central Computer System, both parity assigning 
and checking take place at the MBR. 

133 



Of the several sources of words which are transferred through the MBR, only 
tapes and specific drum fields have a parity bit assigned. Therefore, words from these 
sources need only be checked for correct parity; all other input sources require that 
the parity circuits assign a parity bit. All words read out from memory, of course, 
have parity bits and require only parity checking. 

It was mentioned earlier that the parity operations performed at the MBR are 
assign arid check. An assign operation may be considered to consist of a parity count 
followed by the writing of a 1 or 0 in the parity bit flip-flop. The checking operation 
also begins With a count but is followed by a parity check. It Will be noted that the 
counting procedure is common to both parity assign and check. For convenience, the 
counting operation Will be treated first and will be followed by the overall operation of 
the parity control circuits. 

PAmTY COUNTING 

The counting operation (Logic 0.1.2.) neither counts nor totals the number of l's 
in a binary word but only ascertains whether the total is odd or even. A count is begun 
with the application of a pulse to the two gates associated With the R15 flip-flop in the 
MBR. (A register flip-flop and its associated gates and OR circuits Will be termed a 
stage). One of the gates is conditioned by the 0 side of the flip-flop, the other by the 1 
side. If R15 happens to be a 1, the counting pulse will pass through the gate conditioned 
by the 1 side and will emerge on the odd line. Conversely, if R15 is O, the count pulse 
will pass through the gate conditioned by the 0 side and will exit on the even line. Al-

. though . ~~~ r.emaining stages in the register are each complicated by the inclusion of 
·-. . ,.1 . . ,.· 

two additlo~; ·gateir,. the operation at each stage is identical with that described for 
R16 ·ar.d:'. its·· ·li.ssoclated : gates. The additional gates are necessary because the count 

. .. . ...... :.·· . . .. 
plilse Jl'lay ai'rive :'.at 8.Ii1 subsequent stage on either an odd or even line, whereas at 
the first stage only ii siiigle input line was encountered • 

•.• i' • • • 

. ·Upon. leavihg the· first stage, the count pulse successively samples the gates at 
each.of tlie ·reinatnfog stages. The line on which it enters a particular stage is dependent 
Ul)(>n · tll'e parity ·count at the preceding stage. The line on which it leaves that stage 
depends. on . the content of the associated flip-flop. Since the flip-flop may be set at 
eitbei- 1 or 0, and since the count pulse may arrive on either of two lines, the combi­
na~an of these collSlderations gives rise to four possible conditions. The four conditions 
and ·.the resultant. output line (parity count) produced by each are listed below and are 
applicable to all but the first stage. 

Table 15-1 

~tJ! ·LINE (PARITY) CONTENT OF MBR FF OUTPUT LINE (PARITY) 

ODD 0 ODD 

ODD 1 EVEN 

EVEN 0 EVEN 

£VEN 1 ODD 

134 



It will be noted that a pulse sampling the gates of a flip-flop containing a 0 leaves 
the stage on the same line it entered on. A count pulse arriving on either an odd line 
or an even line, upon sampling a 1, exits on a line opposite to that on which it entered a 
stage. In all cases, the action is equivalent to a progressive determination of the parity 
at each and every stage. 

In summary, a parity count pulse determines the overall parity of a word by tra­
versing the entire MBR and sampling the bit at every stage to sense the parity of the 
word up to and including that stage. The final parity is obtained when the pulse samples 
and leaves the last stage in the MBR. 

PARITY ASSIGNING AND CHECKING 

The parity assigning and checking operations differ (Logic 0.1.1, 0.1.2 and Timing 
Chart) depending on the type of word transfer: 

1. All words being read out of core memory during PT, OT A, or BO cycle. 

2. Words from the arithmetic element being read into core memory during OTB 
cycle. Computer words are transferred from either the accumulators or the A registers 
into memory through the MBR. Since no parity bit exists in these words, it is necessary 
to assign parity. Such a transfer always takes place during an OTB cycle. 

3. Words from IO devices being transferred into core memory with (a) parity or 
(b) no parity. The devices that have parity assigned to their words before they are 
transferred to Central Computer are tapes, aux drums, and main drums except fields 
22, 23, 32, 33, 47, and 60 thru 70. Words transferred from any other IO device to Cen­
tral Computer must have parity assigned in the MBR. 

PT CYCLES 

PT-0 delayed 

PT-7 

PT-10 

OTA CYCLES 

OTA-0 Delayed 

OTA-7 

OTA-10 delayed 

Table 15-2. BASIC TIMING CHARTS 

@ Clear Parity Check FF and Parity Write FF with 
Command 41. 

Set Parity Check FF and start P.C. (Parity Count) 

Check Parity with Command 55 . •"' 

Same as PT-0 delayed 

Same as PT-7 

Same as PT-10 delayed 

135 



BO CYCLES 

B0-.0 delayed 

B0-7 

B0-10 

OTB CYCLES 

OTB-0 delayed 

OTB-2 

OTB-3 

OTB-7 

OTB-10 delayed 

Same as PT-0 delayed 

Same as PT-7 

Same as PT-1 O delayed 

~' Clear Parity Check FF and Parity Write FF with 
Command 41. 

Set the Parity Write FF 

Parity Count (to assign parity). The Parity Check FF is 
set but will not be checked yet. 

Parity Count, Set Parity Check FF and Clear Parity 
Write FF. 

Check parity. This is a check on the Parity assignment 
circuitry. 

BI CYCLES (IO devices with Parity, Parity Check Control FF set) 

BI-0 delayed 

BI-2 

BI-3 

BI-3 delayed 

BI-7 

lsMl Clear Parity Write FF and Parity Check FF with 
Yo~mand 41. 

Set Parity Write FF -' 

Clear Parity Write FF 

Parity Count, Set Parity Check FF 

Check Parity for IO Parity error 

BI CYCLES (IO deytce without Parity, Parity Check Control FF clear) -BI-0 delayed 

BI-2 

BI-3 delayed 

BI-7 

BI-10 delayed 

136 

~' Clear Parity Write FF and Parity Check FF with 
Command 41. 

Set Parity Write FF 

Parity Count, Set Parity Write FF and write good parity in 
new word. 

Parity Count, Set Parity Parity Check FF again 

Check Parity, this is a check on the parity assignment 
circuitry. 



SUMMARY QUESTIONS 

1. Give the parity bit for each of the following words: 

a. 1.000 101 111 101 011, 1.001 010 011 100 111 

b. 0.111 011 010 001 100, 1.111 110 101 011 000 

c. 1.43571, 0.45632 

d. 0.21307' 1.53214 

2. In Central Computer, parity is assigned in what register? 

3. A parity count must be performed when it is or when it is --------- -~~--

4. During what 2 types of machine cycles is parity assigned? 

5. Why is parity checked immediately after it is assigned? 

6. What drums don't have parity? 

7. Will a parity error be detected if no word is transferred to the memory buffers 
during PT? 

8. Will a parity error be detected if two 1 bits are lost from a memory word? 

9. Will a parity error be detected if a zero is lost? 

10. When reading a word from an IO device with parity, the parity count for check­
ing occurs at what time? 

11. When reading a word from an IO device without parity, the parity count for 
checking occurs at what time? 

137 



NOTES 



NOTES 



NOTES 



NOTES 



SAVE A LIFE 

If you observe an accident involving electrical shock, 
DON'T JUST STAND THERE·- DO SOMETfilNGf 

RESCUE OF SHOCK VICTIM , • 
The victim of electrical shock is dependent·upon you to give him prompt first aid. 

Observe these precautions: 
1. Shutoff the high voltage. 
2. If the high voltage canl}ot be turned off without delay, free the victim from the 

live conductor. REMEMBE'R: · 
a. Protect yourself with dry insulating material. 
b. Use a dry board, your belt, dry clothing, or other non-condi,icting material to 

Jr.~~ the victim. When possible PUSH - DO Nor PULL the. victim free ·of 
.-.. ·· '"n)e"high voltage source. ·,,, ·~' 

c. DO NOT. touch the victim with your bare hands untU the high voltage ~rcuit 
· is broken. " .,_ .. 

n~~ . ~ ~ 

Tha:two most likely results of electrical shock are: bodily injury from falling, and 
cessation of breathing. While doctors and pulmotors are beiiig sent for, DO THESE 
TfilNGS: 

1. Control bleeding by use oLpressure or a tourniquet. 
2. Begin IMMEDIATELY to use artifici~l :J.:espiration if the victim i&.not breathing 

or is breathing poorly: ·1 

a. Turn the victim on his back. ,; 

b. Clean the mouth, nose, and throat. (If they appear clean, start artificial 
respiration immediately. If foreign matter is present, wipe it away quickly 
with a cloth or ·your fingers). . 

c. Place the victim's head· in the "sword-swallowing" 
position. (Place the head as far back as possible so 
th~t the front of the neck is stretched). 

d. Hold the lower jaw up. (Insert your thumb between the: 
victim's teeth at the midline - pull 'the lo\ver jaw force­
fully outward so that the lower teeth arefurther forward 
than the upper teeth. Hold the jaw in this position .as 
long as the victim is unconscious). · 

e. Close. the victim's nose. (Compress the nose between 
your thumb and forefinger). · 

f. Blow air into the victim's lungs. (Take a deep breath 
and cover the victim's open mouth with your open 
mouth, making the contact air-tight. Blow until the 
chest rises.) If the chest does not rise when you-blow, 
improve the position of the victim's air passageway, 
and blow mor.e forcefully. Blow forcefully into adults, 
and gently .into children. · 

g. Let air out of the victim's lungs. (After the chest rises, quickly.separate lip 
contact with the victim allowing him to exhale)." · ·· · · · . . 

h. Repeat steps f. and g. at the rate of 12 to 20 times per mimite •. Continue 
rhythmically without interruption until the victim starts oreathing',~r is 
pronounced deadl (A smooth rhythm is desirable, but split-seeond tim1itg, is 
not a:Ssential). · · 

DON'T JUST STAND THERE - DO soiiETHING ! 


	Contents
	PART ONE - COMPUTER TIMING AND CONTROL
	Chapter 1 - Basic Center Operation and Equipment
	Chapter 2 - Basic Programs
	Chapter 3 - Maintenance Programming
	Chapter 4 - The Computer Word
	Chapter 5 - Central Computer System
	Chapter 6 - Coding of Logic Book
	Chapter 7 - Machine Timing

	PART TWO - COMPUTER INSTRUCTIONS 
	Chapter 8 - Basic Computer Instructions
	Chapter 9 - Basic Branch Instructions
	Chapter 10 - ADD ONE RIGHT Instruction
	Chapter 11 - Indexing
	Chapter 12 - Advanced Computer Instructions

	PART THREE - PUSH-BUTTONS AND ALARMS
	Chapter 13 - Manual Controls
	Chapter 14 - Alarms
	Chapter 15 - Parity


