
--- ------ ----- ---- - ---- - - ----------_ .-

GA34-0021-1

File No. S1-01

IBM Series/1

Model 5 4955 Processor

and Processor Features

Description

11'111'

o []

"""""""""""'""'""'""'11'""'11

o []) 1.0 []

1111111111111111111 ~
o

~ 11111111111111111111111111101111111111111111111 V
~ m

j"-U':

Series/1

--- ------ ----- ---- - ---- - - ----------_.-

GA34-0021-1

o

File No. S1-01

IBM Series/1

Model 5 4955 Processor

and Processor Features

Description

Series/1

Second Edition (March 1977)

This is a major revision of, and obsoletes GA34-0021-0. Significant changes in this new edition include
(1) rearrangement of. the chapters to provide a more logical flow of information and (2) removal of
certain information (four chapters) that is now included in other publications.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters. Before using this publication in connection with the
operation of IBM systems, have your IBM representative confirm editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or the IBM
branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, send your comments to IBM Corporation, Systems Publications, Department 27T,
P.O. Box 1328, Boca Raton, Florida 33432. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1976, 1977

ii GA34-0021

o

o

o

0 ,1
,";'.

o

Preface vii
Summary of Publication vii
Related Publications viii

Chapter 1. Introduction 1-1
IBM 4955 Processor 1-1

Processor Optional Features/Storage Addition 1-1
Processor Description 1-1
Input/Output Units and Features 1-5
Communications Features 1-5
Sensor Input/Output Options 1-5
Packaging and Power Options 1-5
Other Options 1-5

Chapter 2. Processing Unit Description 2-1
Main Storage 2-1

Addressing Main Storage 2-1
Arithmetic and Logic Unit (ALU) 2-3
Numbering Representation 2-3
Registers 2-4

Per-system Registers 2-4
Per-level Registers 2-5

Indicator Bits 2-5
Even, Negative, and Zero Result Indicators 2-6
Even, Carry, and Overflow Indicators - Condition Code for

Input/Output Operations 2-6
Carry and Overflow Indicators - Add and Subtract

Opera tions 2-6
Carry and Overflow Indicators - Shift Operations 2-7
Indicators - Compare Operations 2-7
Indicators - Multiple Word Operands 2-8
Testing Indicators with Conditional Branch and Jump

Instructions 2-8
Supervisor State Bit 2-10
In-process Bit 2-10
Trace Bit 2-10
Summary Mask Bit 2-10
Program Execution 2-10

Instruction Formats 2-10
Effective Address Generation 2-12
Processor State Control 2-19
Initial Program Load (IPL) 2-22
Sequential Instruction Execution 2-22
Jumping and Branching 2-23
Level Switching and Interrupts 2-23
Stack Operations 2-23

Chapter 3. Interrupts and Level Switching 3-1
Introduction 3-1
Interrupt Scheme 3-1
Automatic Interrupt Branching 3-2
I/O Interrupts 3-3

Prepare I/O Device for Interrupt 3-3
Present and Accept I/O Interrupt 3-3

Class Interrupts 3-5
Priority of Class Interrupts 3-5
Present and Accept Class Interrupt 3-6
Summary of Class Interrupts 3-9

Contents

Recovery from Error Conditions 3-9
Program Check 3-9
Storage Parity Check 3-10
CPU Control Check 3-10
I/O Check 3-10
Soft Exception Trap 3-10

Processor Status Word 3-10
Program Controlled Level Switching 3-12

Selected Level Lower Than Current Level and In-process
Flag On 3-13

Selected Level Equal to Current Level and In-process
Flag On 3-13

Selected Level Higher Than Current Level and In-process
Flag On 3-13

Selected Level Lower Than Current Level and In-process
Flag Off 3-14

Selected Level Equal to Current level and In-process
Flag Off 3-14

Selected Level Higher Than Current Level and In-process
Flag Off 3-14

Interrupt Masking Facilities 3-15
Summary Mask 3-15
Interrupt Level Mask Register 3-15
Device Mask (I-bit) 3-15

Chapter 4. Input/Output Operations 4-1
Operate I/O Instruction 4-2

Immediate Device Control Block (lDCB) 4-3
Device Control Block (DCB) 4-5
I/O Commands 4-6

DPC Operation 4-8
Cycle Steal 4-10

S tart Operation 4-10
Start Cycle Steal Status Operation 4-12

Cycle-Steal Device Options 4-13
Burst Mode 4-13
Chaining 4-13
Programmed Controlled Interrupt (PCI) 4-13
Suppress Exception (SE) 4-14

Cycle-Steal Termination Conditions 4-15
I/O Condition Codes and Status Information 4-15

10 Instruction Condition Codes 4-19
I nterrupt Condition Codes 4-19
I/O Status Information 4-20

Chapter 5. Storage Protection 5-1
Storage Protection During Initial Program Load 5-3
Storage Protection in Supervisor State 5-3
Address Space Management 5-3

Active Address Key 5-3
Equate Operand Spaces (EOS) 5-3
Address Space 5-4
Address Key Values After Interrupts 5-5

Chapter 6. Storage Address Relocation Translator Feature 6-1
Transla tor Description 6-1

Storage Mapping 6-2
Relocation Addressing 6-4

Contents iii

Storage Protection When Using the Relocation Translator 6-5
I/O Storage Access Using the Relocation Translator 6-5
Compatibility Between the Relocation Translator and the

Storage Protection Mechanism 6-5
Characteristics That Are Similar 6-6
Characteristics That Are Dissimilar 6-6

Error Recovery Considerations 6-6
Invalid Storage Address 6-6
Protect Check 6-6

Status of Translator After Power Transitions and Resets 6-6
Instruction Execution Time When Using the Translator 6-7

Chapter 7. Console 7-1
Basic Console 7-2

Keys and Switches 7-2
Indicators 7-2

Programmer Console 7-3
Console Display 7-3
Indicators 7-4
Combination Keys/Indicators 7-5
Keys and Switches 7-7
Displaying Main Storage Locations 7-10
Storing Into Main Storage 7-10
Displaying Registers 7 -11
Storing Into Registers 7-11

Chapter 8. Instructions 8-1
Exception Conditions 8-1

Program Check Conditions 8-1
Soft Exception Tnip Conditions 8-1

Instruction Termination or Suppression 8-2

Instruction Descriptions 8-2
Add Byte (AB) 8-2
Add Byte Immediate (ABI) 8-3
Add Carry Register (ACY) 8-3
Add Doubleword (AD) 8-4

Register/Storage Format 8-4
Storage/Storage Format 8-4

Add Word (A W) 8-5
Register/Register Format 8-5
Register/Storage Format 8-5
Storage to Register Long Format 8-6
Storage/Storage Format 8-6

Add Word With Carry (AWCY) 8-7
Add Word Immediate (AWl) 8-7

Register Immediate Long Format 8-7
Storage Immediate Format 8-8

Branch Unconditional (B) 8-9
Branch and Link (BAL) 8-10
Branch and Link Short (BALS) 8-10
Branch on Condition (BC) 8-11
Branch on Condition Code (BCC) 8-12
Branch on Not Condition (BNC) 8-13
Branch on Not Condition Code (BNCC) 8-14
Branch on Not Overflow (BNOV) 8-15
Branch on Overflow (BOV) 8-15
Branch Indexed Short (BXS) 8-16
Compare Byte (CB) 8-17

Register/Storage Format 8-17
Storage/Storage Format 8-17

Compare Byte Immediate (CBI) 8-18
Compare Double Word (CD) 8-19

Register/Storage Format 8-19
Storage/Storage Format 8-19

Compare Byte Field Equal and Decrement (CFED) 8-20
Compare Byte Field Equal and Increment (CFEN) 8-20

iv GA34-0021

Compare Byte Field Not Equal and Decrement (CFNED)
Compare Byte Field Not Equal and Increment (CFNEN)
Complement Register (CMR) 8-22
Copy Address Key Register (CPAKR) 8-23

System Register/Storage Format 8-23
System Register/Register Format 8-23

Copy Current Level (CPCL) 8-24
COP,Y Console Data Buffer (CPCON) 8-24
Copy Interrupt Mask Register (CPIMR) 8-25
Copy In-process Flags (CPIPF) 8-25
Copy Level Block (CPLB) 8-26
Copy Level Status Register (CPLSR) 8-26
Copy Processor Status and Reset (CPPSR) 8-27
Copy Storage Key (CPSK) 8-27
Copy Segmentation Register (CPSR) 8-28
Compare Word (CW) 8-29

Register/Register Format 8-29
Register/Storage Format 8-29
Storage/Storage Format 8-29

Compare Word Immediate (CWI) 8-30
Register Immediate Long Format 8-30
Storage Immediate Format 8-30

Divide Byte (DB) 8-31
Divide Doubleword (DD) 8-32
Diagnose (DIAG) 8-33
Disable (DIS) 8-34
Divide Word (DW) 8-35
Enable (EN) 8-36
Fill Byte Field and Decrement (FFD) 8-37
Fill Byte Field and Increment (FFN) 8-37
Operate I/O (10) 8-38
Interchange Operand Keys (lOPK) 8-38
Interchange Registers (lR) 8-39
Jump Unconditional (J) 8-39
Jump and Link (JAL) 8-40
Jump on Condition (JC) 8-41
Jump on Count (JCT) 8-42
Jump on Not Condition (JNC) 8-43
Level Exit (LEX) 8-44
Load Multiple and Branch (LMB) 8-44
Multiply Byte (MB) 8-45
Multiply Doubleword (MD) 8-46
Move Address (MV A) 8-47

Storage Address to Register Format 8-47
Storage Immediate Format 8-47

Move Byte (MVB) 8-48
Register/Storage Format 8-48
Storage/Storage Format 8-48

Move Byte Immediate (MVBI) 8-49
Move Byte and Zero (MVBZ) 8-49
Move Doubleword (MVD) 8-50

Register/Storage Format 8-50
Storage/Storage Format 8-50

Move Doubleword and Zero (MVDZ) 8-51
Move Byte Field and Decrement (MVFD) 8-52
Move Byte Field and Increment (MVFN) 8-52
Move Word (MVW) 8-53

Register/Register Format 8-53
Register/Storage Format 8-53
Register to Storage Long Format 8-53
Storage to Register Long Format 8-54
Storage/Storage Format 8-54

Move Word Immediate (MVWI) 8-55
Storage to Register Format 8-55
Storage Immediate Format 8-55

Move Word Short (MVWS) 8-56

8-21
8-21 o

o

o

c

o

Register to Storage Format 8-56
Storage to Register Format 8-56

Move Word and Zero (MVWZ) 8-57
Multiply Word (MW) 8-58
No Operation (NOP) 8-59
AND Word Immediate (NWI) 8-59
OR Byte (OB) 8-60

Register/Storage Format 8-60
Storage/Storage Format 8-60

OR Double Word (OD) 8-61
Register/Storage Format 8-61
Storage/Storage Format 8-61

OR Word (OW) 8-62
Register/Register Format 8-62
Register/Storage Format 8-62
Storage to Register Long Format 8-63
Storage/Storage Format 8-63

OR Word Immediate (OWl) 8-64
Register Immediate Format 8-64
Storage Immediate Format 8-64

Pop Byte (PB) 8-65
Pop Doubleword (PD) 8-65
Push Byte (PSB) 8-66
Push poubleword (PSD) 8-66
Push Word (PSW) 8-67
Pop Word (PW) 8-67
Reset Bits Byte (RBTB) 8-68

Register/Storage Format 8-68
Storage/Storage Format 8-68

Reset Bits Doubleword (RBTD) 8-69
Register/Storage Format 8-69
Storage/Storage Format 8-69

Reset Bits Word (RBTW) 8-70
Register/Register Format 8-70
Register/Storage Format 8-70
Storage to Register Long Format 8-71
Storage/Storage Format 8-71

Reset Bits Word Immediate (RBTWI) 8-72
Register Immediate Long Format 8-72
Storage Immediate Format 8-72

Subtract Byte (SB) 8-73
Subtract Carry Indicator (SCY) 8-73
Subtract Doubleword (SD) 8-74

Register/Storage Format 8-74
Storage/Storage Format 8-74

Set Address Key Register (SEAKR) 8-75
System Register/Storage Format 8-75
System Register/Register Format 8-75

Set Console Data Lights (SECON) 8-76
Set Interrupt Mask Register (SEIMR) 8-76
Set Indicators (SEIND) 8-77
Set Level Block (SELB) 8-78
Set Storage Key (SESK) 8-79
Set Segmentation Register (SESR) 8-80
Scan Byte Field Equal and Decrement (SFED) 8-81
Scan Byte Field Equal and Increment (SFEN) 8-81
Scan Byte Field Not Equal and Decrement (SFNED)
Scan Byte Field Not Equal and Increment (SFNEN)
Shift Left Circular (SLC) 8-83

Immediate Count Format 8-83
Count in Register Format 8-83

Shift Left Circular Double (SLCD) 8-84
Immediate Count Format _ 8-84
Count in Register Format 8-85

Shift Left Logical (SLL) 8-86
Immediate Count Format 8-86
Count in Register Format 8-86

8-82
8-82

Shift Left Logical Double (SLLD) 8-87
Immediate Count Format 8-87
Count in Register Format 8-87

Shift Left and Test (SLT) 8-88
Shift Left and Test Double (SLTD) 8-88
Shift Right Arithmetic (SRA) 8-89

Immediate Count Format 8-89
Cgunt in Register Format 8-89

Shift Right Arithmetic Double (SRAD) 8-90
Immediate Count Format 8-90
Count in Register Format 8-90

Shift Right Logical (SRL) 8-91
Immediate Count Format 8-91
Count in Register Format 8-91

Shift Right Logical Double (SRLD) 8-92
Immediate Count Format 8-92
Count in Register Format 8-92

Store Multiple (STM) 8-93
Stop (STOP) 8-94
Supervisor Call (SVC) 8-94
Subtract Word (SW) 8-95

Register/Register Format 8-95
Register/Storage Format 8-95
Storage to Register Long Format 8-96
Storage/Storage Format 8-96

Subtract Word With Carry (SWCY) 8-97
Subtract Word Immediate (SWI) 8-98

Register Immediate Long Format 8-98
Storage Immediate Format 8-98

Test Bit (TBT) 8-99
Test Bit and Reset (TBTR) 8-99
Test Bit and Set (TBTS) 8-100
Test Bit and Invert (TBTV) 8-100
Test Word Immediate (TWI) 8-101

Register Immediate Long Format 8-101
Storage Immediate Format 8-101

Invert Register (VR) 8-102
Exclusive OR Byte (XB) 8-102
Exclusive OR Doub1eword (XD) 8-103
Exclusive OR Word (XW) 8-104

Register/Register Format 8-104
Register/Storage Format 8-104
Storage to Register Long Format 8-105

Exclusive OR Word Immediate (XWI) 8-105

Chapter 9. Floating-Point Feature 9-1
Data Format 9-1
Number Representation 9-1

Floating-Point Numbers 9-1
Binary Integers in Main Storage 9-2

Normalization 9-2
Programming Considerations 9-2

Floating-Point Feature Not Installed 9-2
Floating-Point Registers 9-2
Arithmetic Indicators 9-2
Floating-Point Exceptions 9-2
Level Control 9-3
Instruction Termination or Suppression 9-3

Floating-Point Instructions 9-3
Instruction Formats 9-4

Exception Conditions 9-4
Program Check Conditions 9-4
Soft Exception Trap Conditions 9-5

Instruction Descriptions 9-6
Copy Floating Level Block (CPFLB) 9-6
Floating Add (FA) 9-7

Contents v

General Description (Short Precision) 9-7
Storage/Register Format 9-7
Register to Register Format 9-7

Floating Add Double (FAD) 9-8
General Description (Double Precision) 9-8
Storage/Register Format 9-8
Register to Register Format 9-8

Floating Compare (FC) 9-9
Floating Compare Double (FCD) 9-9
Floating Divide (FD) 9-10

Storage/Register Format 9-10
Register to Register Format 9-10

Floating Divide Double (FDD) 9-11
Storage/Register Format 9-11
Register to Register Format 9-11

Floating Multiply (FM) 9-12
General Description (Short Precision) 9-12
Storage/Register Format 9-12
Register to Register Format 9-12

Floating Multiply Double (FMD) 9-13
General Description (Double Precision) 9-13
Storage/Register Format 9-13
Register to Register Format 9-13

Floating Move (FMV) 9-14
Storage to Register Format 9-14
Register to Storage Format 9-14
Register to Register Format 9-14

Floating Move and Convert (FMVC) 9-15
Storage to Register Format 9-15
Register to Storage Format 9-15

Floating Move and Convert Double (FMVCD) 9-16
Storage to Register Format 9-16
Register to Storage Format 9-16

Floating Move Double (FMVD) 9-17
Storage to Register Format 9-17
Register to Storage Format 9-17
Register to Register Format 9-17

Floating Subtract (FS) 9-18
General Description (Short Precision) 9-18
Storage/Register Format 9-18
Register to Register Format 9-18

Floating Subtract Double (FSD) 9-19
General Description (Double Precision) 9-19
Storage/Register Format 9-19
Register to Register Format 9-19

Set Floating Level Block (SEFLB) 9-20

vi GA34-0021

Appendix A. Instruction Execution Times A-I
Table 1. Instruction Times - Relocation Translator Not Installed

or Disabled A-4
Table 2. Instruction Times - Relocation Translator Enabled A-14

Appendix B. Instruction Formats B-1

Appendix C. Assembler Syntax C-l
Coding Notes C-l

Legend for Machine Instruction Operands C-l

Appendix D. Numbering Systems and Conversion Tables D-l

Binary and Hexadecimal Number Notations D-I
Binary Number Notation D-l
Hexadecimal Number System D-l

Hexadecimal - Decimal Conversion Tables D-2

Appendix E. Character Codes E-l

Appendix F. Carry and Overflow Indicators F-l
Signed Numbers F-l
Unsigned Numbers F-2
Carry Indicator Setting F-3

Add Operation Examples F-3
Subtract Operation Examples F-4

Overflow Indicator Setting F-4
Examples F-S

Appendix G. Reference Information G-l
Address Key Register (AKR) G-l
Condition Codes G-l

I/O Instruction Condition Codes G-l
Interrupt Condition Codes G-l

General Registers G-I
Interrupt Status Byte (lSB) G-I

DPC Devices G-l
Cycle Steal Devices G-2

Level Status Register (LSR) G-2
Processor Status Word (PSW) G-2

Index X-I

Index of Instructions by Format X-12

Index of Instructions by Name X-IS

o

o

0'

This publication describes the functional characteristics of
the IBM 4955 Processor and the processor optional features.
It assumes that the reader understands data processing
terminology and is familiar with binary and hexadecimal
numbering systems. The publication is intended
primarily as a reference manual for experienced program­
mers who require machine code information to plan, correct,
and modify programs written in the assembler language.

Summary of Publication

• Chapter 1. Introduction is an introduction to the
system architecture. It contains a general description of
the processor, storage, features, and a list of attachable
I/O devices.

• Chapter 2. Processing Unit Description contains a
description of the processor hardware including'
registers and indicators.

Main storage data formats and addressing are
presented in this chapter.

A section titled "Program Execution" is included and
covers:
- Basic instruction formats
- Effective address generation
- Processor state control
- Initial program load (IPL)
- Jumping and branching
- Level switching and interrupts
-' Stack operations

• Chapter 3. Interrupts and Level Switching describes the
priority interrupt levels and the interrupt processing for
(1) I/O devices, and (2) class interrupts. Related topics
are:

Program controlled level switching
Interrupt masking facilities
Recovery from error conditions

Preface

• Chapter 4. Input/Output Operations describes the I/O
commands and control words that are used to operate
the I/O devices. Condition codes and status information
relative to the I/O operation are also explained. Specific
command and status-word bit structures are contained
in the I/O device description books.

• Chapter 5. Storage Protection describes the operation of
the storage protection mechanism.

• Chapter 6. Storage Address Relocation Translator
Feature describes the optional relocation translator
feature including:

Relocation addressing
- Effects on storage protection mechanism
- Error recovery considerations

• Chapter 7. Console describes the keys, switches, and
indicators for the basic console and the optional
programmer console. Typical manual operations such as
storing into and displaying main storage are presented.

• Chapter 8. Instructions describes the basic instruction
set, including indicator settings and possible exception
conditions. Individual instruction word formats are
included and contain bit combinations for the operation
code and function fields. The instructions are arranged
in alphabetical sequence based on assembler mnemonics.

• Chapter 9. Floating-Point Feature describes the optional
floating-point feature including the floating-point
instruction set.

• Appendixes:
Instruction execution times
Instruction formats
Assembler syntax
Numbering systems and conversion tables
Character codes
Carry and overflow indicators
Reference information

Preface vii

Related Publications
• IBM Series/1 System Summary, GA34-0035

• IBM Series/1 Installation Manual- Physical Planning,
GA34-0029

• IBM Seriesll 4962 Disk Storage Unit and 4964 Diskette
Unit Description, GA34-0024

• IBM Series/1 4973 Line Printer Description, GA34·Q044
• IBM Series/1 4974 Printer Description, GA34-0025
• IBM Series/1 4979 Display Station Description,

GA34-0026
• IBM Series/1 4982 Sensor Input/Output Unit Description,

GA34-0027
• IBM Series/1 Communications Features Description,

GA34-0028
• IBM Series/1 Attachment Features Description, GA34-0031
• IBM Series/1 Battery Backup Unit Description, GA34·0032
• IBM Series/1 User's Attachment Manual, GA34·0033

viii GA34-0021

o

('-{---"',

~,_;)l

o

o

o

The IBM 4955 Processqr is a compact, general purpose
computer and has the following general characteristics:

• Four priority interrupt levels - independent registers
and status indicators for each level. Automatic and
program controlled level switching.

• Four processor models are available:
- Model A: 16K bytes basic storage. Additional

storage in 16K byte increments up to 64K bytes
maximum.
Model B: 16K bytes basic storage. Additional
storage in 16K byte increments up to 128K bytes
maximum.

- Model C: 32K bytes basic storage. Additional
storage in 32K * byte increments up to 64K bytes
maximum.
Model D: 32K bytes basic storage. Additional
storage in 32K * byte increments up to 128K bytes
maximum.

• FET (field effect transistor) main storage. Read or
write time is 300 nanoseconds (660 nanoseconds
required between two storage access cycles). Odd
parity by byte is maintained throughout storage.

• TTL (tranSistor-transistor logic) processor technology.
• Microprogram control - microcycle time: 220 nano­

seconds.
• Instruction set that includes: stacking and linking

facilities, multiply and divide, variable field-length byte
operations, and a variety of arithmetic and branching
instructions.

• Supervisor and problem states.
• Packaged in a 19-inch rack mountable unit - full width.
• Basic console standard in processor unit. Programmer

console optional.

• Channel capability.
- Asynchronous, multidropped channel.
- 256 I/O (input/output) devices can be addressed.
- Direct program control and cycle steal operations.
- Maximum burst data rate is 1.8 megabytes per

second for storage input cycles, and 1.5 megabytes
per second for storage output cycles. When multiple
cycle stealing devices are interleaved, the maximum
aggregate data rate is 1.65 megabytes per second.

*Models C and D may have one 16K byte storage card installed as
the last storage card.

Chapter 1. Introduction

The processor unit contains power and space for addi­
tional features and storage. The IBM 4959 Input/Output
Expansion Unit is available for additional features.

The processor unit is described in the following sections
of this chapter.

mM 4955 Processor

Processor Optional Features/Storage Addition
• Storage Address Relocation Translator (permits

addressing of main storage larger than 64K bytes).
• Storage Addition - 16,384 bytes.

- provides storage in 16K byte increments for all
processor models.

- Model A has a limit of four 16K cards (64K bytes
total).

- Model B has a limit of eight 16K cards (128K bytes
total).

- Models C and D have a limit of one 16K card and it
must be installed as the last storage card. That is:
any 32K cards would be installed between the 16K
card and the processor cards.

• Storage Addition - 32,768 bytes.
- provides storage in 32K byte increments for processor

Models C and D.
- Model C has a limit of two 32K cards (64K bytes

total).
- Model D has a limit of four 32K cards (128K bytes

total).
• Programmer Console.
• Floating-Point.

Processor Description
The basic IBM 4955 Processor includes the processor,
basic storage, and a basic console. These items are
packaged in a unit, called the processor unit. Figure 1-1
shows a block diagram of an IBM 4955 Processor and an
IBM 4959 Input/Output Expansion Unit.

Introduction 1-1

IBM 4955 Processor

Optional
Storage Relocation

Translator

I J
I II

Processor Channel

I I
I I

Optional I/O

Console
Floating Attachment
Point Feature

I/O Device

IBM 4959 I/O Expansion Unit

J Ii
Channel I/O 13-maximum I/O
Rep ower
Feature

V
To additional I/O
expansion units

Attachment
Feature

I/O Device

--------- Attachment
Feature

I/O Device

Figure 1-1. Block diagram of an IBM 4955 Processor and an IBM
4959 Input/Output Expansion Unit

The processor is microprogram controlled, utilizing a
220 nanosecond microcycle. Circuit technology is TTL
(transistor-transistor logic).

Four priority interrupt levels are implemented in the
processor. Each level has an independent set of machine
registers. Level switching can occur in two ways: (1) by
program control, or (2) automatically upon acceptance of
an I/O interrupt request. The interrupt mechanism
provides 256 unique entry points for I/O devices.

1-2 GA34-0021

The processor instruction set contains a variety of
instruction types. These include: shift, register to
register, register immediate, register to (or from) storage,
bit manipulation, multiple register to storage, variable
byte field, and storage to storage. Supervisor and problem
states are implemented, with appropriate privileged
instructions for the supervisor.

A floating-point feature is available that supplements
the standard instruction set. The floating-point instructions
include single and double precision types for: add,
subtract, multiply, divide, compare, and move.

o

o

o

The basic console is intended for dedicated systems
that are used in a basically unattended environment. Only
minimal controls are provided. A programmer console can
be added as a feature; this console provides a variety of
indicators and controls for operator-oriented systems.

Main storage technology is FET (field-effect transistor).
Basic storage supplied is model dependent. Two storage
additions provide additional storage in 16K or 32K byte
increments. The maximum total storage is model
dependent. Beyond 64K bytes the storage address
relocation translator feature is required. This feature
increases the addressing capability beyond 64K bytes and
allows a maximum total storage of 128K bytes. The
read/write access time for main storage is 300 nanoseconds.
However, the minimum duration of time between successive
storage cycles is 660 nanoseconds. Storage protection is
standard. It protects against (1) access (reading and
writing) to defined blocks of storage by software or by an
I/O operation, and (2) writing in an undesired location
within a defined block by software.

I/O devices are attached to the processor through the
processor I/O channel. The channel directs the flow of
information between the I/O devices, the processQr, and
main storage. This channel accommodates a maximum of
256 addressable devices.

The channel supports:

• Direct program control operations. Each Operate I/O
instruction transfers a byte or word of data between
main storage and the device. The operation mayor may
not terminate in an interrupt.

• Cycle Steal operations. Each Operate I/O instruction
initiates multiple data transfers between main storage
and the device (65,535 bytes maximum). Cycle steal
operations are overlapped with processing operations
and always terminate in an interrupt.

• Interrupt Servicing. Interrupt requests from the devices,
along with cycle steal requests, are presented and
polled concurrently with data transfers.

The processor is packaged in a standard 48.3 cm (19 in)
rack-mountable unit, called the processor unit. All
processor units contain an integral power supply, fans,
and the basic console. Refer to the Series/l Installation
Manual - Physical Planning, GA34-0029, for environ­
mental characteristics. Four processor models are
available. Figure 1-2 shows the IBM 4955 Processor models
and the card plugging assignments.

IBM 4955 Processor Models

Model
Storage capacity (bytes)*
I/O feature cards**

ABC D
64K 128K 64K 128K
8 3 10 7

* The relocation translator feature is required when the total
storage exceeds 64K bytes.

** The floating-point feature can be substituted for one of the I/O
feature cards and must be installed adjacent to the processor.

Introduction 1-3

/III /tIlIIlIIlIl/Il/Il/I 11//11.

ABC D EF G H J K L M N P Q

~L P;:::;or ~cards
Cards 64 KB Maximum

I/O or
Floating Point

4955 Model A Card Plugging Assignments

ABCDE FGHJj(LMNPQ

! t '-v--' "-IJO Processor

I/O or
Floating Point

Storage Cards t
Relocation Translator
(Required after 64 KB.
is exceeded.)

4955 Model B Card Plugging A~signments

ABCDE FGHJK LMNPQ

I/O

I/O or

4955 Model C Card Plugging Assignments

ABCDE FGHJK LMNPQ

Storage
Cards

~t '-v--' '-v--" t I/O Processor Storage
Cards

I/O or Relocation Translator
Floating Point (Required after 64 KB

is exceeded.)

4955 Model D Card Plugging Assignments

The A position for all models is reserved for the I/O cables or (due
to voltage limitations) one of the following I/O feature cards:

• Teletypewriter Adapter Feature using TTL voltage levels
• Teletypewriter Adapter Feature using isolated current loop

where customer supplies external ±12V power
• Timer Feature
• Customer Direct Program Control Adapter Feature
• 4982 Sensor Input/Output Unit Attachment Feature
• Integrated Digital Input/Output Non-Isolated Feature
• Channel Repower Feature

Figure 1-2. IBM 4955 Processor with a Programmer Console

1-4 GA34-0021

,"--''>p\

~'''~J)

o

Input/Output Units and Features
• IBM 4962 Disk Storage Unit {4 models)

- Requires 4962 Disk Storage Unit Attachment Feature
• IBM 4964 Diskette Unit

- Requires 4964 Diskette Unit Attachment Feature
• IBM 4979 Display Station

- Requires 4979 Display Station Attachment Feature
• IBM 4973 Line Printer (2 models)

- Requires 4973 Printer Attachment Feature
• IBM 4974 Printer

- Requires 4974 Printer Attachment Feature
• Timers Feature (2 timers)
• Teletypewriter Adapter Feature
• Customer Direct Program Control Adapter Feature

The feature cards for attaching the I/O units can be
housed in either the processor unit or the I/O expansion
unit.

Information about these units and features can be
found in separate publications. The order numbers for
these publications are listed in the preface of this manual.

Communications Features
• Asynchronous Communications Single Line Control
• Asynchronous Communications 8 Line Control
• Asynchronous Communications 4 Line Adapter

• Binary Synchronous Communications Single Line
Control

• Binary Synchronous Communications Single Line
Control/High Speed

• Synchronous Data Link Control Single Line Control
• Binary Synchronous Communications 8 Line Control
• Binary Synchronous Communications 4 Line Adapter
• Communications Power Feature
• Communications Indicator Panel

Refer to the publication, IBM Series/l, Communications
Features Description, GA34-0028, for a description of
these features.

Sensor Input/Output Options

• Integrated Digital Input/Output Non-Isolated Feature
• 4982 Sensor Input/Output Unit Attachment Feature

The integrated digital input/output non-isolated feature
provides digital sensor I/O and simple attachment for non­
IBM 'equipment. The feature card can be housed in either
the processor unit or the I/O expansion unit. Refer to
the publication, IBM Series/l Attachment Features
Description, GA34-0031, for a description of this feature.

The 4982 sensor input/output attachment unit feature
card is housed in either the processor or the I/O
expansion unit. Refer to the publication, IBM Series/l ,
4982 Sensor Input/Output Unit Description, GA34-0027,
for a description of the 4982 and associated features.

Packaging and Power Options

• IBM 4959 Input/Output Expansion Unit
• IBM 4999 Battery Backup Unit
• IBM 4997 Rack Enclosure (1 metre) - 2 models
• IBM 4997 Rack Enclosure (1.8 metre) - 2 models

The IBM 4959 Input/Output Expansion Unit is
available for adding I/O feature cards beyond the capacity
of the processor unit. I/O cables (for the I/O channel) are
used to attach this unit to the processor. The capacity
of the I/O expansion unit is either (1) fourteen I/O
feature cards, or (2) thirteen I/O feature cards plus a
channel repower card. A channel repower card is
required to power each additional I/O expansion unit.

The IBM 4999 Battery Backup Unit permits the processor
unit (excluding external devices) to operate from a user­
supplied battery when a loss or dip in line power occurs.
The battery backup unit is explained in a separate
publication. Refer to the preface of this manual for the
order number.

Other Options
Additional options such as communications cables,
customer access panel, and a channel socket adapter are
also available. For a list and description of system units
and features, refer to the IBM Series/l System Summary,
GA34-0035.

Introduction 1-5

o
1-6 GA34-0021

C~I

o

Figure 2-1 shows the general data flow for the IBM 4955
Processor. The major functional units shown in the data
flow are discussed in the following sections.

Main Storage
Main storage holds data and instructions for applications
to be processed on the system. The data and instructions
are stored in units of information called a byte. Each byte
consists of eight binary data bits. Associated with each
byte is a parity bit. Odd parity'by byte is maintained
throughout storage; even parity causes a machine check
error. Formats shown in this manual exclude the parity
bit(s) because they are not a part of the data flow
manipulated by the instructions.

The bits within a byte are numbered consecutively, left
to right, 0 through 7. When a format consists of multiple
bytes, the numbering scheme is continued; for example, the
bits in the second byte would be numbered 8 through 15.
Leftmost bits are sometimes referred to as high-order bits
and rightmost bits as low-order bits.

Bytes can be handled separately or grouped together. A
word is a group of two consecutive bytes, beginning on an
even address boundary, and is the basic building block of
instructions. A doubleword is a group of four consecutive
bytes beginning on an even address boundary.

Byte

10 0 o 0 0 0 0 11
0 7

Word

10 0 00000 010 o 0 0 0 0 1
0 7 8

Doubleword

10 000 0 o 0 010 00000 0
0 7 8

01
15

Chapter 2. Processing Unit Description

Addressing Main Storage
Each byte location in main storage is directly addressable.
Byte locations in storage are numbered consecutively,
starting with location zero; each number is considered the
address of the corresponding byte. Storage addresses are
16-bit unsigned binary numbers. This permits a direct
addressing range of 65,536 bytes:

Address Range
J6-bit binary address
0000 0000 0000 0000

to
1111 1111 1111 1111

Hexadecimal

0000
to
FFFF

Decimal

o
to
65,535

Note. Addresses that overflow or underflow the addressing
range address wrap modulo 65,536.

When the Storage Address Relocation Translator Feature
is installed, the 16-bit address is used as a logical address to
generate a 24-bit physical address.

Instruction and Operand Address Boundaries

As previously stated, all storage addressing is defined by
byte location. Instructions can refer to bits, bytes, byte
strings, words, or doublewords as data operands. All word
and doubleword operand addresses must be on even byte
boundaries. All word and doubleword operand addresses
point to the most significant (leftmost) byte in the
operand. Bit addresses are specified by a byte address and
a bit displacement.

010 0 o 0 0 0 0 010 0 000 1 0 01
15 16 2324 31

Processing Unit Description 2-1

Processor bus (16 bits)

Local
storage

Level IAR
o AKR

LSR
RegisterslO-7 ..,.-Ctr

Error or j ~
status

L:~

Level IAR
1 AKR

LSR ---=---...... ~
Registers 0-

Level ~AR
2 k\KR

LSR
RegistersO-r

Level IAR
3 AKR

LSR
RegistersiO-i'7

I/O bus
(16 bits +
2 parity bits)

Z
.. reg

I/O address bus (16 bits) ~

Legend:

- Address key register

to console
.....-.. data display

AKR
ALU
CIAR
CS
Ctr
IAR
LSR
Mask
Op
Proc
PSW
SAR
SDR
WA

- Arithmetic and logic unit
- Current instruction address register
- Cycle steal
- Counter
- Instruction address register
- Level status register
- Interrupt level mask register
- Operation register
- Processor
- Processor status word
- Storage address register
- Storage data register
- Work/shift register

Y - Work/shift register
Z - Console data

2-2 GA34-002l

r---
'-- Proc t------t

SAR

Storage
bus out

~L;:~_;- or---
4~

WA
'h' ~in r' \. SDRr-"'''- reg il

storage ~ ~I Ll)-
~~~ ~ r--- ~ 

reg 

~ i 
f I-

r-- ~ ALU 

CS r-­
~SAR 

'---

~SDR ~r-V" 
Storage 
b us in """--

.-----, 
I Read-only I 
I storage I 
I (ROS) 
I Micro- I 
I program I 
L ___ .J 

Figure 2-1. Data flow for the IBM 4955 Processor 

..... 
31 

I/O bus 
(16 bits + 

Y 
reg 

---

2 parity bits) ..-.. 

I/O address bus (16 bits) ........... 

/---~i 
I _/ \,,--, 

o 



o 

o 

To provide maximum addressing range, some instructions 
refer to a word displacement that is added to the contents 
of a register. In these cases, the operand is a word and the 
register must contain an even byte address for valid results. 
Effective address generation is described in a subsequent 
section of this chapter. 

All instructions must be on an even byte boundary. This 
implies that the effective address for all branch type 
instructions must be on an even byte boundary to be valid. 

If any of the aforementioned rules are violated, a 
program check interrupt occurs with specification check 
set in the processor status word (PSW). The instruction is 
suppressed. 

Arithmetic and Logic Unit (ALU) 
The arithmetic and logic unit (ALU) contains the hardware 
circuits that perform: addition; subtraction; and logical 
operations such as AND, OR, and exclusive OR. The ALU 
performs address arithmetic as well as the operations 
required to process the instruction operands. Operands 
may be regarded as signed or unsigned by the programmer. 
However; the ALU does not distinguish between them. 
Numbering representation is discussed in a subsequent 
section of this chapter. For many instructions, indicators 
are set to reflect the result of the ALU operation. The 
indicators are discussed in a subsequent section of this 
chapter. 

Numbering Representation 
Operands may be signed or unsigned depending on how they 
are used by the programmer. An unsigned number is a 
binary integer in which all bits contribute to the magnitude. 
A storage address is an example of an unsigned number. A 
signed number is one where the high-order bit is used to 
indicate the sign, and the remaining bits define the 
magnitude. Signed positive numbers are represented in 
true binary notation with the sign bit (high-order bit) set to 
zero. Signed negative numbers are represented in two's 
complement notation with the sign bit (high-order bit) set 
to one. The two's complement of a number is obtained 
by inverting each bit of the number and adding a one to 
the low-order bit position. Two's complement notation 
does not include a negative zero. The maximum positive 
number consists of an all-one integer field with a sign bit of 
zero; whereas, the maximum negative number (the negative 
number with the greatest absolute value) consists of an 
all-zero integer field with a one-bit for the sign. 

The following examples show: (1) an unsigned 16-bit 
number, (2) a signed 16-bit positive number, and (3) a 
signed 16-bit negative number. 

Example of an unsigned 16-bit number: 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 Binary number 
o 15 Bit position 

Decimal value 
Hexadecimal value 

65535 
FFFF 

(The largest unsigned number 

representable in 16 bits.) 

Example of a signed 16-bit positive number: 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 

11 Binary number 
15 Bit position 

L Sign (+) 

Decimal value 
Hexadecimal value 

+ 32767 (The largest positive signed 

7FFF number representable in 16 bits.) 

When the number is positive, all bits to the left of the 
most significant bit of the number, including the sign bit, 
are zero: 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 Binary number 
o 15 Bit position 

L sign (+) 

Decimal value + 1 

Hexadecimal value 0001 

Example of a signed 16-bit negative number: 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 Binary number 
o 15 Bit position 

L Signl-) 

Decimal value 
Hexadecimal value 

-32768 (The largest negative signed 
8000 number representable in 16 bits.) 

Note. This form of representation yields a negative range 
of one more than the positive range. 

Processing Unit Description 2-3 



When the number is negative, all bits to the left of the 
most significant bit of the number, including the sign bit, 
are set to one: 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 I Binary number 
o 15 Bit position 

Ls;gn (-) 
Decimal value -2 
Hexadecimal value FFFE 

When a signed-number operand must be extended with 
high-order bits, the expansion is achieved by prefixing a 
field with each bit set equal to the high-order bit of the 
operand. 

Example of an 8-bit field extended to a 16-bit field: 

I ... 1~1 __ I_I_I_I_o_I....J1 Binary number 
o 7 Bit position 

L Sign (-) 

Decimal value -3 

Hexadecimal value FD 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
o 

11 Binary number 
15 Bit position 

L Sign (-) 

Decimal value 

Hexadecimal value 

-3 
FFFD 

It must be emphasized that when performing the add 
and subtract operations, the machine does not regard the 
number as either signed or unsigned, but performs the 
designated operation on the values presented. Whether a 
given add or subtract operation is to be regarded as a 
signed operation or an unsigned operation is determined 
by the programmer's view of the values being presented as 
operands. The carry indicator and the overflow indicator 
of the LSR are changed on various operations to reflect the 
result of that operation. This allows the programmer to 
make result tests for the number representation involved. 
The carry and overflow indicator settings are explained in a 
subsequent section. 

2-4 GA34-0021 

Registers 
Registers in the processor are provided in two categories: 

1. Per-system register (the register is provided only once 
and is used by all priority interrupt levels) 

2. Per-level register (the register is duplicated for each 
priority interrupt level) 

Information that must be saved when a level is 
preempted is retained in registers supplied for a specific 
level. Information that pertains only to the current 
process is kept in registers common to all levels. The 
registers in each category are listed in this section. 
Descriptions for each of the registers appear in subsequent 
sections. Only registers accessible to the program or the 
operator (via console operations) are discussed. 

Registers supplied on a per-system basis: 

• Console address key register 
• Console data buffer 
• Current-instruction address register (CIAR) 
• Mask register (interrupt level) 
• Processor status word (PSW) 
• Segmentation registers (optional) see Chapter 6, 

Storage Address Relocation Translator Feature. 
• Storage address register (SAR) 

Registers supplied on a per-level basis: 

• Address key register (AKR) 
• Floating-point registers (optional) see Chapter 9, 

Floating-Point Feature. 
• General registers (8 per level) 
• Instruction address register (IAR) 
• Level status register (LSR) 

Note. For a specific level, the contents of the AKR, IAR, 
LSR, and the general registers are known as a level status 
block (LSB). The LSB is a 22 byte entity used by hardware 
and software for task control and task switching. 

Per-system Registers 

Console Address Key Register 

The Console AKR is not addressable by software. When 
the programmer console is installed, this register is used 
for certain console operations. Refer to Programmer 
Console in Chapter 7. 

Console Data Buffer 

The console data buffer is a 16-bit register associated with 
the programmer console feature. Details of how the 
buffer is used are explained in the programmer console 
section of Chapter 7. The contents of the console data 
buffer can be loaded into a specified general register by 
using the Copy Console Data Buffer (CPCON) instruction 
(see Chapter 8). 

G 

o 



o 

o 

Current-Instruction Address Register (CIAR) 

When the processor enters the stop state, the current­
instruction address register (CIAR) contains the address 
of the last instruction that was executed. The CIAR is not 
addressable by software. It may be displayed from the 
optional programmer console. Refer to Stop State in this 
chapter for methods of entering stop state. 

Mask Register 

The mask register is a 4-bit register used for control of 
interrupts. Bit ° controls level 0, bit I controls level 1 , 
and so on. 

A one bit enables interrupts on a level, while a zero bit 
disables interrupts. For example if bit 3 is set to a one, 
interrupts are enabled on level 3. 

Processor Status Word (PSW) 

The processor status word (PSW) is a 16-bit register used 
to (1) record error or exception conditions that may 
prevent further processing, and (2) hold certain flags that 
aid in error recovery. Error or exception conditions 
recorded in the PSW result in a class interrupt. Each bit 
in the PSW is described in detail in Chapter 3. The PSW 
can be accessed by using the Copy Processor Status and 
Reset (CPPSR) instruction (see Chapter 8). 

Storage Address Register (SAR) 

The storage address register (SAR) is a 16-bit register 
that contains the main-storage address for the last 
attempted processor storage cycle. This register is 
addressable by the Diagnose instruction and may be 
altered or displayed from the optional programmer console. 

Per-level Registers 

Address Key Register (AKR) 

The address key register (AKR) is a 16-bit register that 
contains three address keys and an address-key contro~ bit. 
This register is associated with the storage protection ' 
mechanism. Separate 3-bit fields contain an address key 
for (1) instruction address space, (2) operand-1 address 
space, and (3) operand-2 address space. Refer to Storage 
Protection and Address Space Management in Chapter 5 
for further information. 

General Registers 

Subsequently referred to simply as registers, the general 
registers are 16-bit registers available to the program for 
general purposes. Eight registers are provided for each 
level. The Rand RB fields in the instructions control the 
selection of these registers. 

Instruction Address Register (IAR) 

The instruction address register (IAR) is a 16-bit register 
that holds the main storage address used to fetch an 
instruction. After an instruction has been fetched, the 
IAR is updated to point to the next instruction to be 
fetched. 

Note. These registers are sometimes referred to as IARO, 
IAR1, IAR2, and IAR3. The numbers represent the 
priority level associated with the register. 

Level Status Register (LSR) 

The level status register (LSR) is a 16-bit register that holds: 

• Indicator bits 
- Set as a result of arithmetic, logical, or I/O operations 

• A supervisor state bit 
• An in-process bit 
• A trace bit 
• A summary mask bit 

These bits are further discussed in the following sections. 
Seven other bits in the LSR are not used and are always 
set to zero. 

fudicator Bits 
The indicators are located in bits 0-4 of the level status 
register (LSR). Figure 2-2 shows the indicators and how 
they are set for arithmetic operations. The indicator bits 
are changed or not changed depending on the instruction 
being executed. Some instructions do not affect the 
indicators, other instructions change all of the indicators, 
and still other instructions change only specific indicators. 
Refer to the individual instruction descriptions in Chapter 
8 for the indicators changed by each instruction. 

Processing Unit Description 2-5 



Level status register (LSR) 

o 1 234 

LZ«O 
Negative 

J 
- Set to 1 if result is all zeros; 

otherwise, set to O. 

- Set to 1 if bit-O of result is 1; 
otherwise, set to O. 

"""'----Overflow - Set to 1 if result of arithmetic 
operation (with the operands 
regarded as signed numbers) 
cannot be represented as a signed 
number in the operand size 
specified; otherwise set to O. 

"""'----- Carry - Set to 1 if the result of add or 
subtract operations (with the 
operands regarded as unsigned 
numbers) cannot be represented 
as an unsigned number in the 
operand size specified; otherwise, 
set to O. 

~---- Even - Set to I if the low-order bit of the 
result is 0; otherwise, set to O. 

Figure 2-2. How indicators are set for signed and unsigned (logical) 
operations 

The indicators are changed in a specialized manner for 
certain operations. These operations are described 
briefly. Additional information is provided in subsequent 
sections for those operations where more detail is 
required. 

• Add, subtract, or logical operations. The even, negative, 
and zero indicators are result indicators. For add and 
subtract operations, the carry and overflow indicators 
are changed to provide information for both signed and 
unsigned number representations. 

• Multiply and divide operations. Signed number operands 
are always assumed for these operations. The carry 
indicator is used to provide a divide by zero indication 
for the divide instruction. The overflow indicator 
defines an unrepresentable product for multiply 
operations. Refer to the individual instruction descrip­
tions in Chapter 8. 

• Priority interrupts and input/output operations. The 
even, carry and overflow indicators are used to form a 
three-bit condition code that is set as a binary value. 

• Compare operations. The indicators are set in the same 
manner as a subtract operation. 

• Shift operations. The carry and overflow indicators 
have a special meaning for shift left logical operations. 

• Complement operations. The overflow indicator is set 
if an attempt is made to complement the maximum 
negative number. This number is not representable. 

2-6 GA34-0021 

• Set Indicators (SEIND) and Set Level Block (SELB) 
instructions. All indicators are changed by the data 
associated with these instructions. 

• Floating-point operations. The optional floating-point 
instructions set the indicators as described in Chapter 
9, Floating-Point Feature. 

Even, Negative, and Zero Result Indicators 
The even, negative, and zero indicators are called the 
result indicators. A positive result is indicated when the 
zero and negative indicators are both off (set to zero). 
These indicators are set to reflect the result of the last 
arithmetic, or logical operation performed. A logical 
operation in this sense includes data movement instruc­
tions. See the individual instruction descriptions in 
Chapter 8 for the indicators changed for specific instructions. 

Even, Carry, and Overflow Indicators - Condition 
Code for Input/Output Operations 
The even, carry, and overflow indicators contain the I/O 
condition code: (1) following the execution of an 
Operate I/O instruction and (2) following an I/O 
interrupt. 

These indicators are used to form a 3-bit binary number 
that results in a condition code value. For additional 
information about condition codes, refer to: 

1 . Branch on Condition Code (BCC) and Branch on Not 
Condition Code (BNCC) instructions in Chapter 8. 

2. Condition codes in Chapter 4. 

Carry and Overflow Indicators - Add and 
Subtract Operations 
A common set of add and subtract integer operations 
performs both signed and unsigned arithmetic. Whether a 
given add or subtract operation is to be regarded as a 
signed operation or an unsigned operation is determined 
by the programmer's view of the values being presented as 
operands. The carry and overflow indicators are set to 
reflect the result for both cases. 

Carry Indicator Setting 

The carry indicator is used to signal overflow of the result 
when operands are presented as unsigned numbers. 

Overflow Indicator Setting 

The overflow indicator is used to signal overflow of the 
result when the operands are presented as signed numbers. 

Note. Appendix F explains the meaning of these indicators 
for signed and unsigned numbers. The appendix also 
provides examples for setting the carry indicator and for 
setting the overflow indicator. 

(,--'." ./ 

() 

o 



c 

c) 

o 

Carry and Overflow Indicators - Shift Operations 
The carry and overflow indicators are changed for shift 
left logical operations and shift left and test operations. 
These operations affect the indicators as follows: 

1. The carry indicator is set to reflect the value of the 
last bit shifted out of the target register (register where 
bits are being shifted). 

2. The overflow indicator is set to one if bit-O of the 
target register was changed during the shift. Otherwise 
it is set to zero. 

Indicators - Compare Operations 
A compare operation sets the indicators in the same 
manner as a subtract operation. The even, negative, and 
zero indicators reflect the result. The carry and overflow 
indicators are set as described previously. 

Compare instructions provide a test between two oper­
ands (without altering either operand) so that conditional 
branch and jump instructions may be used to control the 
programming logic flow. The conditions specified in 
branch and jump instructions are named such that, when 
the condition of the "subtracted from" operand relative 
to the other operand is true the jump or branch occurs. 
Otherwise, the next sequential instruction is executed. 
This is illustrated in the following example. 

• Compare operation example 

Instruction 
name 

Compare word 

Operation code 
o 1 1 1 0 

Assembler 
mnemonic 

CW 

Operands 

R3, R4 

Function 
001 0 

o 4 5 7 8 10 11 15 --R3 R4 

In this example, the contents of register 3 are subtracted 
from register 4: 

R4 contents 0000000000000010 

Decimal 
Unsigned Signed 

2 +2 

R3 contents 1111 1111 11111011 65531 
Subtract result -65529 

-5 
+7 

Machine operation: 

Minuend 0000000000000010 

Subtrahend 0000000000000100 one's complement 

Constant for two's complement 
Result 0000 0000 0000 0111 

Indicator Settings: 

E 

o 
c o N z 

000 

I I L Remit is not zero. 

~ Result is positive. 

Result fits operand size as a 
signed number. 

~ ________ A negative result for an un­

signed number. 

'--__________ Result is not even (low-orde,r 

bit = 1). 

If the programmer is comparing unsigned numbers, slllcb 
as storage addresses, he should use the logical conditional 
tests (refer to Figure 2-3). In this example, assuming 
unsigned number representation, R4 is logically less than 
R3 and unequal to R3. Therefore, the following branch 
instructions would cause a transfer to symbolic location A 
(assuming register values shown in the example). 

CW R3,R4 
BLLT A 

or 
CW R3,R4 
BNE A 

The complementary tests (BLGT and BE) would not cause 
a transfer in this case. 

If the programmer is comparing signed numbers, he 
should use the arithmetic conditional tests (refer to 
Figure 2-3). In the previous compare word example, 
assuming signed number representation, R4 is greater 
than R3 and unequal to R3. The following branch 
instructions would cause a transfer to symbolic location A. 

CW R3,R4 
BGT A 

or 
CW R3,R4 
BNE A 

The complementary tests (BLT and BE) would not cause a 
transfer. 

Note. Jump instructions are also available for the logical 
and arithmetic conditional tests. 

It must be emphasized again that the machine does not 
regard the numbers as either signed or unsigned. The 
compare word instruction results in a subtract operation 
being performed on the values presented. The programmer 
must then choose the correct conditional test (logical or 
arithmetic) for the number representation involved. 

Processing Unit Description 2-7 



Indicators - Multiple Word Operands 
A programmer may desire to work with numbers that 
cannot be represented in one word or in a doubleword. It 
may take three or more words to represent the number. 

Certain register to register instructions allow the 
programmer to add or subtract these multi-word operands 
and then have the indicators reflect the multi-word result. 
These instructions are: 

Add Carry Register (ACY) 
Add Word With Carry (AWCY) 
Subtract Carry Register (SCY) 
Subtract Word With Carry (SWCY) 

The following two examples show how the add instructions 
are used. A subtract operation would be similar. See 
Chapter 8 for details of the individual instructions. 

Example 1. (Equal length operands) 

Rl R2 

R4 R5 

R3 

R6 

Operand 1/ 
Result 

Operand 2 

Program steps: 

AW 
AWCY 
AWCY 

R6,R3 
R5,R2 
R4,Rl 

Explanation: 

Step 1: 
Step 2: 

Step 3: 

The contents of R6 are added to the contents of R3. 
The contents of R5 are added to the contents of R2 
plus any carry from the previous operation. 
The contents of R4 are added to the contents of Rl 
plus any carry from the previous operation. 

Example 2. (Unequal length operands) 

Rl R2 

R5 

R3 

R6 

Operand 1/ 
Result 

Operand 2 

Note. In this example, operand 2 must be an unsigned number or 
must be positive. 

2-8 GA34-0021 

Program Steps: 

AW R6,R3 
AWCY R5,R2 
ACY Rl 

Explanation: 

Step 1: 
Step 2: ' 

Step 3: 

The contents of R6 are added to the contents of R3. 
The contents of R5 are added to the contents of R2 
plus any carry from the previous operation. 
Any carry from the previous operation is added to the 
contents of Rl. 

Note. In both examples the final indicator settings reflect the 
status of the 3-word result. 

Even Set on if the result low-order bit of R3 is zero. 

Carry Set on if the result cannot be represented as an unsigned 
3-word number. 

Overflow Set on if the result cannot be represented as a signed 
3-word number. 

Negative Set on if the result high-order bit of Rl is one. 
Zero Set on if all three result registers contain zeros. 

Testing Indicators with Conditional Branch and 
Jump Instructions 
The indicators are tested according to a selected condition 
when a conditional branch or a conditional jump instruc­
tion is executed. The conditions and the indicators 
tested for each condition are shown in Figure 2-3. 

The conditional instructions are: 

• Branch on Condition (BC) 
• Branch on Not Condition (BNC) 
• Jump on Condition (JC) 
• Jump on Not Condition (JNC) 

The assembler also provides extended mnemonics for the 
conditions shown in Figure 2-3. Refer to the individual 
instructions in Chapter 8. 

o 

o 



Indicators 

o tested 
Condition tested by Assembler 0 1 2 3 4 
conditional branch or extended 
jump instruction mnemonics E C 0 N Z 

Zero or equal BE, BZ, JE"JZ 1 

Not zero or unequal BNE, BNZ, JNE, JNZ 0 

Positive and not zero BP,JP 0 0 

Not positive BNP,JNP 1 
1 

Negative BN,JN 1 

Not negative BNN,JNN 0 

Even BEV,JEV 1 

Not even BNEV,JNEV 0 

Arithmetically less than BLT,JLT 0 1 
1 0 

Arithmetically less than BLE, JLE 0 1 
or equal 1 0 

1 

Arithmetically greater than BGE, JGE 1 1 
or equal 0 0 

Arithmetically greater than BGT, JGT 1 1 0 
0 0 0 

Logically less than or equal BLLE, JLLE 1 
1 

Logically less than (carry) BLLT,JLLT 1 

Logically greater than BLGT,JLGT 0 0 

Logically greater than or BLGE, JLGE 0 
equal (no carry) 

Legend: LSR bit Indicator 

0 E - Even 
1 C - Carry 
2 0- Overflow 
3 N - Negative 
4 Z - Zero 

Figure 2-3. Indicators tested by conditional branch and jump instructions 

o 
Processing Unit Description 2-9 



Supervisor State Bit 
LSR bit 8, when set to one, indicates that the processor is 
in the supervisor state. This state allows privileged 
instructions to be executed. It is set by any of the follow­
ing: 

1. Class interrupt 
a. Machine check condition 
b. Program check condition 
c. Power/thermal warning 
d. Supervisor Call (SVC) instruction 
e. Soft exception trap condition 
f. Trace 
g. Console interrupt 

2. I/O interrupt 
3. Initial program load (IPL) 

When LSR bit 8 is set to zero, the processor is in problem 
state. For a selected priority level, the supervisor can alter 
the supervisor state bit by using a Set Level Block (SELB) 
instruction. For additional information, refer to Processor 
State Control in this chapter. 

Class interrupts and I/O interrupts are described in Chap­
ter 3. IPL is discussed in a subsequent section of this 
chapter. 

In-process Bit 
LSR bit 9, when set to one, indicates that a priority level 
is currently active or was preempted by a higher priority 
level before completing its task. Bit 9 is turned off by a 
Level Exit (LEX) instruction. Bit 9 can also be turned on 
or off by a Set Level Block (SELB) instruction. The in­
process bit also affects level switching under program 
control. Refer to Chapter 3. Interrupts and Level 
Switching. 

Trace Bit 
LSR bit 10, when set to one, causes a trace class interrupt 
at the beginning of each instruction. The bit can be 
turned on or off with the Set Level Block (SELB) 
instruction. The trace bit aids in debugging programs. See 
Class Interrupts in Chapter 3. 

2-10 GA34~0021 

Summary Mask Bit 
LSR bit 11, when set to zero (disabled), inhibits all 
priority interrupts on all levels. When this bit is set to one 
(enabled), normal interrupt processing is allowed. Refer 
to Summary Mask in Chapter 3 for details relating to 
control of the summary mask. 

Program Execution 

Instruction Formats 
The processor instruction formats are designed for efficient 
use of bit combinations to specify the operation to be 
performed (operation code) and the operands that 
participate. Some formats also include (1) an immediate 
data field or word, (2) an address displacement or address 
word, and (3) a function field that further modifies the 
operation code. Various combinations of these fields are 
used by the individual instructions. Some typical instruc­
tion formats are presented in this section. All formats are 
shown in the section Instruction Formats in Appendix B. 

One Word Instructions 

The basic instruction length is one word (16 bits). The 
operation code field (bits 0-4) is the only common field 
for all formats. This field, unless modified by a function 
field, specifies the operation to be performed. For a 
format without a function field, bits 5 -15 specify the 
location of operands or data associated with an operand: 

Example: 

Instruction 
name 

Add Byte Immediate 

I Operation code I 
00000 
045 

R 

Assembler 
mnemonic 

ABI 

Syntax 

byte,reg 

Immediate 

7 8 15 

Bits 0-4 Operation code (specifies ABI instruction). 

Bits 5-7 General register (0-7). 
This register contains data for the second operand. 

Bits 8-15 Immediate data for the first operand. 

In some cases the operation code is the same for a group 
of instructions. The format for this group includes a 
function field. The bit combinations in the function field 
then determine the specific operation to be performed. 

() 



C 

o 

o 

Example: 

Instruction Assembler 
name mnemonic Syntax 

Add Word AW reg, reg 

Operation code Function 
0 1 1 1 0 0 1 0 0 0 
0 4 5 7 8 10 11 15 

Bits 0-4 Operation code for a group of instructions. 

Bits 5-7 General register (0-7). 
This register contains data for the first operand. 

Bits 8-10 General register (0-7). 
This register contains data for the second operand. 

Bits 11-15 Function field. 
Modifies the operation code to specify the Add 
Word instruction. 

Note. For other instruction groups, the function:field may vary as 
to location within the format, and also the number of bits used. 

Two Word Instructions 

The first word of this format is identical to the one-word 
format. The second word (bits 16-31) contains either 
immediate data, an address, or a displacement. This word 
is used to (1) provide data for an operand, or (2) provide 
a main storage address or displacement for effective address 
generation (see Effective Address Generation in this 
chapter). 

Example: 

Instruction 
name 

Branch and Link 

Operation code 
o 1 101 
o 4 

Assembler 
mnemonic 

BAL 

Address or displacement 

16 

Operation code. 

Syntax 

longaddr ,reg 

31 

Bits 0-4 

Bits 5-7 

Bits 8-10 

General register (0-7) for the second operand. 

General register (0-7) for the first operand. 

Bit 11 Indirect addressing bit. 

Bits 12-15 Function field. 

Bits 16-31 A main storage address used for the first operand. 

Note. In this example, the register designated Rl is associated 
with the second operand in assembler syntax. 

Variable Length Instructions 

Some instructions use a selectable encoded technique for 
generating effective addresses. This method is referred to 
as an address argument technique in subsequent sections. 
These instruction formats contain a base register (RB) 
field and an address mode (AM) field. If both operands 
are USing this technique, the format contains an RB and 
associated AM field for each. These fields are in the first 
instruction word. The AM field consists of two bits and is 
referred to in binary notation (AM=OO, 01, 10, or 11). 
If AM is equal to 1 ° or 11 an additional word is appended 
to the normal instruction word. For a format that 
contains two AM fields, two additional words may be 
appended. See Effective Address Generation in this 
chapter for a description of the appended words and how 
they are used. 

For instructions with a single storage address argument, 
the RB field consists of two bits. An RB field of two bits 
with its associated AM field of two bits are referred to 
as a 4-bit address argument or addr4 in assembler syntax. 

Example: 

Instruction 
name 

Compare byte 

Operation code 
1 1 000 
o 

Assembler 
mnemonic 

CB 

Syntax 

addr4, reg 

Appended word, AM=10 or 11 

16 

Operation code. 

31 

Bits 0-4 

Bits 5-7 

Bits 8-9 

Bits 10-11 

General register (0-7) for the second operand. 

Base register (0-3). 

Address mode. 

Bits 12-15 Function. 

Bits 16-31 Appended word for the first operand. 

Note. The register specified by the RB field is a general register 
that is used as a base register for effective address generation. 

Processing Unit Description 2-11 



Some instruction formats have. two storage address 
arguments. In this case, the first operand has a 3-bit RB 
field giving a 5-bit address argument (addr5 in assembler 
syntax) and the second operand has a 4-bit address 
argument. 

Example: 

Instruction 
name 

Add Word 

Operation code 

1 0 1 0 1 

Assembler 
men monic 

AW 

Syntax 

addr5,addr4 

o 4 5 7 8 9 10 11 12 13 14 15 

16 

32 

Bits 0-4 

Bits 5-7 

Bits 8-9 

Appended word for operand 1 

31 

Appended word for operand 2 

47 

Operation code. 

Base register (0-7) for the first operand. 

Base register (0-3) for the second operand. 

Bits 10-11 Address mode for the first operand. 

Bits 12-13 Address mode for the second operand. 

Bits 14-15 Function. 

Bits 16-31 Appended word for the first operand. 

Bits 32-47 Appended word for the second operand. 

Notes. 
1. If there is no appended word for the first operand 

(AMl=OO or 01), the second operand word is appended 
to the instruction word in bits 16-31. 

2. Registers specified by the RB fields are general registers. 

Names of Instruction Formats 

Names have been established for several categories of 
instructions. Each category has the same basic instruction 
format, therefore, the name is related to the format. In 
most cases, the name indicates the location of the operands 
or the type of instruction. 

2-12 GA34-0021 

Examples: 

• Register/Register Instructions. 
General registers are used by both operands. 

• Storage/Storage Instructions. 
Both operands reside in main storage. 

• Register/Storage Instructions. 
One operand uses a general register. The other 
operand resides in main storage. 

• Register Immediate Instructions. 
One operand uses a general register. The other operand 
uses an immediate data field. The immediate data field 
is the low order byte of a one-word format or the second 
word of a two-word (long) format. 

• Shift Instructions with Immediate Count. 
This is a shift instruction with the count field contained 
within the instruction word. 

• Storage Immediate Instructions. 
One operand is in main storage. The other operand uses 
an immediate data field. The immediate data field is 
the second word of a two-word format. 

• Parametric Instructions. 
For this instruction format, a parameter field (bits 
8-15) is contained within the instruction word. 

Effective Address Generation 
For purposes of storage efficiency, certain instructions 
formulate storage operand addresses in a specialized 
manner. These instructions have self-contained fields that 
are used when generating effective addresses. Standard 
methods for deriving effective addresses are included in 
this section. Other methods such as bit displacements, are 
explained in the individual instruction descriptions in 
Chapter 8. 

Programming note: For certain instructions, the effective 
address points to a control block rather than an operand. 
These instructions are: 

• Copy Floating Level Block (CPFLB) (optional 
floating-point feature) 

• Copy Level Block (CPLB) 
• Load Multiple and Branch (LMB) 
• Pop Byte (PB) 
• Pop Doubleword (PD) 
• Push Byte (PSB) 
• Push Doubleword (PSD) 
• Push Word (PSW) 
• Pop Word (PW) 
• Set Floating Level Block (SEFLB) (optional floating 

point feature) 
• Set Level Status Block (SELB) 
• Store Multiple (STM) 

o 



o 

o 

Base Register Word Displacement Short 

Instruction format 

I Operation code I 
o 4 8 9 

.-..-

Base register --------' 

00 Register 0 
01 Register 1 
10 Register 2 
11 Register 3 

WD 

11 15 
~ 

Word displacement ---------' 
Range 0 to 31 (decimal) 

The five-bit unsigned integer (WD) is doubled in magnitude 
to form a byte displacement then added to the contents of 
the specified base register to form the effective address. 
The contents of the base register must be even. 

Example: 

I Operation codel 

o 4 8 9 11 15 

Contents of register 1 (RB) 

Word displacement (WD) 
doubled 

Hex Dec 

0000 0000 0110 0000 0060 0096 

+ 01000 8 8 -----
Effective address 0000000001101000 0068 0104 

Base Register Word Displacement 

Instruction format 

o 4 5 78 15 
--~ 

Base register --.J 
000 Register 0 
001 Register 1 
01 0 Register 2 
011 Register 3 
100 Register 4 
101 Register 5 
110 Register 6 
111 Register 7 

Word displacement _____ .--J 

Range +127 to -128 (decimal) 

The eight-bit signed integer (WD) is doubled in magnitude 
to form a byte displacement then added to the contents of 
the specified base register to form the effective address. 
The contents of the base register must be even. 

The word displacement can be either positive or 
negative; bit 8 of the instruction word is the sign bit for the 
displacement value. If this high-order bit of the displacement 
field is a 0, the displacement is positive with a maximum 
value of +127 (decimal). If the high-order bit of the 
displacement field is aI, the displacement is negative with 
a maximum value of -128. The negative nurr.ber is repre­
sented in two's complement form. 

Example: 

WD 

1 1 0 1 0 
o 4 5 78 15 

Note. This example uses a negative word displacement (-17 hex) 
shown in two's complement. Hex Dec 

Contents of register 6 (RB) 
Word displacement (WD) 

doubled 

(sign bit is propagated left) 

Effective address 

Four-Bit Address Argument 

Instruction format 

I Operation code I 
o 4 

Base register 

00 Register 0 
(AM=OO or 01) 

00 No register 
(AM=10 or 11) 

01 Register 1 
10 Register 2 
11 Register 3 

RB 

8 9 

T 

00000000 10000110 0086 0134 

+111111111101 0010 - 2£ - 46 ----
000000000101 1000 0058 0088 

AM 

10 11 --...-.- 15 

Address mode -------~ 

Processing Unit Description 2-13 



The Address Mode (AM) has the following significance: 

AM=OO. The contents of the selected base register form 
the effective address. 

AM=Ol. The contents of the selected base register form 
the effective address. After use, the base register contents 
are incremented by the number of bytes in the operand. 
For some instructions, the effective address points to a 
control block rather than an operand. When the effective 
address points to a control block, the base register 
contents are incremented by two. 

Example: 

loperation code I 
o 4 

Effective address 
(contents of register 1) 

Contents of register 1 
after instruction execution 

Byte operand 
Word operand 
Double word operand 

Notes. 

8 9 1011 15 

Hex Dec 

0000 0000 1000 0000 0080 0128 

00000000 10000001 0081 0129 
0000000010000010 0082 0130 
00000000 10000100 0084 0132 

1. For register to storage instructions, if the specified 
register is the same for both operands, then the register 
is incremented prior to using it as an operand. 

2. Certain instructions (storage to storage) have two 
address arguments. Operand 1 has a 3-bit RB field with 
its associated AM field. Operand 2 has a 2-bit RB field 
with its associated AM field. If both RB fields specify 
the same register and both AM fields are equal to 01, 
the base register contents are incremented prior to 
fetching operand 2 and again after fetching operand 2. 
Assuming the same conditions but with the operand 2 
AM field not equal to 01, the base register contents 
are incremented prior to calculating the effective 
address for operand 2. 

3. If the effective address points to a control block rather 
than an operand, the base register contents are incre­
mented by two. 

2-14 GA34-0021 

o 



c 

o 

AM=lO. An additional word is appended to the instruction. 
The word has the following format. 

Address or displacement 

16 31 

• If RB is zero, the appended word contains the effective 
address. 

• If RB is non-zero, the contents of the selected base 
register and the contents of the appended word (dis­
?lacement) are added to form the effective address. 

Example: 

Operation code Address 

o 0 0 000 0 1 0 0 0 0 0 0 0 0 
o 4 8 9 101112 15 16 

Hex Dec 

Contents of register 3 0000 100000000000 0800 2048 
Contents of appended word +00000001 00000000 0100 0256 
Effective address 0000 1001 00000000 0900 2304 

AM=ll. An additional word is appended to the instruction . 

• If RB is zero, the appended word has the format: 

16 

Indirect address 

31 

This address points to a main storage location, on an 
even byte boundary, that contains the effective address. 

Example: 

Operation code 

31 

Indirect address 

000 0 000 001 0 1 0 0 0 0 
o 4 89101112 15 16 

Hex Dec 

Contents of appended word 000000000101 0000 0050 0080 

Effective address equals 
contents of storage 
at address 0080 (decimal) 0000010000000000 0400 1024 

• If RB is non-zero, the appended word has the format: 

Displacement 1 Displacement 2 

16 2324 31 

The two displacements are unsigned eight-bit integers. 
Displacement 2 is added to the contents of the selected 
base register to generate a main storage address. The 
contents of this storage location are added to 
Displacement 1 resulting in the effective address. 

31 

Processing Unit Description 2-15 



Example: 

Operation code 

o 4 89101112 15 16 2324 

Contents of register 2 
Displacement 2 

Storage address 

Contents of storage 
at address 1399 (decimal) 
Displacement 1 
Effective address 

Hex Dec 

00000101 0011 0101 0535 1333 
+ 01000010 42 66 ----000001010111 0111 0577 1399 

000001000001 0000 0410 1040 
+ 00100101 25 37 -------- -----

000001000011 0101 0435 1077 

Note. This example is invalid for other than a byte operand. 

Programming Note. This addressing mode (AM=11 , RB is 
non-zero) is useful for the directorized data concept. For 
the addr4 or addr5 assembler syntax, the programmer 
codes the form displacement 1 (register, displacement 2)*. 
For addr4, the specified register is 1-3. For addrS, the 
specified register is 1-7. The asterisk denotes indirect 
addressing. 

Register Directory 

l Address of l Address of 
directory J ., 

data set A 
I 
I Address of 

displacement 2 
data set B I 

I 
Address of , 
data set C 

~ 
A 
I 
I 

A 

B 

C 

displacement 1 
I 

I 

t 

2-16 GA34-0021 

Data sets 

31 

Data 

;(--'~, 

~_-,' 

() 



o 

C': 

c 

Five-Bit Address Argument 

Instruction format 

o 4 5 7 --
Base register~ 
000 Register 0 

(AM=OO or 01) 
000 No register 

(AM=10 or 11) 
001 Register 1 
01 0 Register 2 
011 Register 3 
100 Register 4 
101 Register 5 
11 0 Register 6 
111 Register 7 

1011 --

Address mode ---------' 

• 

15 

Operation of this mode is identical to the four-bit argu­
ment, but provides additional base registers. 

Base Register Storage Address 

Instruction format 
Operation code Address/displacement 

0 4 8 101112 15 16 31 
~ 

I --------~ ~-----------------Base register 

000 No register 
001 Register 1 
010 Register 2 
011 Register 3 
100 Register 4 
101 Register 5 
110 Register 6 
111 Register 7 

j 0 = direct address 11 = indirect address 

• If RB is zero, the address field contains the effective 
address . 

• If RB is non-zero, the contents of the selected base 
register and the contents of the address field are added 
together to form the effective address. 

Note. Bit 11, if a one, specifies that the effective 
addressing is indirect. 

Address field 

Processing Unit Description 2-17 



Example: Indirect address • 

Operation code Address 

00000 1 0 0 000 1 0 0 0 0 
o 4 

Contents of register 4 
Address field 

Storage address 

Effective address 
Contents of storage at 
address 1296 (decimal) 

8 1011 12 15 16 

Hex Dec 

0000 0001 0000 0000 0100 0256 
+000001000001 0000 0410 1040 

00000101 0001 0000 0510 1296 

0000011001000000 0640 1600 

Instruction Length Variations for Address Arguments 

• One-word instructions that contain a single AM field 
become two words in length if AM is equal to 10 or 11. 
The AM appended word follows the instruction word. 

Example: 

AM=OO or 01 I Instruction word No appended word 

o 15 

AM=10 or 11 I Instruction word lAM appended word 

o 15 16 

• Two-word instructions that contain a single AM field 
become three words in length if AM is equal to 10 or 
11. The AM word is appended to the first instruction 
word. The data or immediate field then becomes the 
third word of the instruction. 

Example: 

AM=OO or 01 I Instruction word IImmediate field 
o 15 16 

AM=lO or 11 Instruction word AM appended word 
o 15 16 

• One-word instructions that contain two AM fields (AMI 
and AM2) may be one, two, or three words in length 
depending on the values of AMI and AM2. The AMI 
word is appended first, then the AM2 word is appended. 

2-18 GA34-002tr +, . 

31 

31 

31 

Immediate field 
31 32 47 

o 



0 

c 

o 

Example: 

AM1=00 or 01 
AM2=00 or 01 I Instruction word No appended word 

0 15 

AM1=10 or 11 
I Instruction word AM2=OO or 01 IAMI appended word 
0 15 16 31 

AM1=00 or 01 
I Instruction word AM2=10 or 11 IAM2 appended word 
0 15 16 31 

AMl=10 or 11 
AM2=10 or 11 Instruction word AMI appended word AM2 appended word 

0 15 16 

Processor State Control 
The processor is always in one of the following mutually 
exclusive states: 

• Power off 
• Stop 
• Load 
• Wait 
• Run - when in run state, programs can be executed in 

either: 
Supervisor state or 

- Problem state 

Stop State 

The stop state is entered when: 

1. 'The Stop key on the programmer console is pressed. 
2. The STOP instruction is executed and (a) the mode 

switch on the basic console is in the Diagnostic posi­
tion, and (b) the optional programmer console is 
installed. 

3. An address-compare occurs and the rate control on 
the programmer console is in the Stop on Address 
position. 

4. An instruction has completed execution and the rate 
control on the programmer console is in the Instruction 
Step position. 

31 32 47 

5. An error occurs and the error control on the program­
mer console is in the Stop on Error position. 
- When the processor stops, the check indicator is 

on and the appropriate PSW bits are set to one. 
A subsequent depression of any console key turns 
off the check indicator but does not affect the 
PSw. 
The next depression of the Start key (assuming no 
system reset) allows a class interrupt to occur 
based on the PSW bit of the highest priority. 

6. The Reset key on the programmer console is pressed. 
7. Power-on reset occurs. 

While the processor is in the stop state: (1) the Stop 
light on the programmer console is on, (2) the functions 
provided on the console can be activated, and (3) no 
interrupt requests can be accepted by the processor. 

Note that the check indicator on the programmer con­
sole is used solely as an indication of main storage parity 
when the processor is in stop state (after the first key 
depression). Refer to Chapter 7 for console information. 

Certain error or exception conditions cannot occur 
during stop state. These are; specification check, 
privilege violate, invalid function, floating-point 
exception, stack exception, and CPU control check. These 
conditions are explained in the PSW section of Chapter 3. 

Processing Unit Description 2-19 



If an I/O check condition occurs during stop state, 
PSW bits 11 and 12 are set to one and the condition is 
preserved by hardware. The check indicator is not 
turned on. A subsequent depression of the Start key 
(assuming no system reset) allows a machine check class 
interrupt to occur. 

If a power/thermal warning condition occurs during 
stop state, PSW bit 15 is set to one and remains set for 
the duration of the condition. A subsequent depression of 
the Start key allows a power/thermal warning class 
interrupt to occur assuming the condition is still active 
and no system reset has occurred. 

The processor exits the stop state when: 

1. The Load key on the basic console is pressed. 
2. The Start key on the programmer console is pressed. 

When the Start key is pressed, the processor returns 
to the state that was exited before entering stop state. 
If the run state is entered, one instruction is executed 
before interrupts are accepted by the processor. If 
the stop state was entered because of a reset (power­
on reset or reset key), pressing the start key causes 
program execution to begin on level zero with the 
instruction in location zero of main storage. If the 
stop state was entered because of an error, with the 
Stop on Error switch turned -on, a system reset or 
class interrupt can clear the error condition. For more 
information about system reset, see State of Processor 
Following a Reset. 

Notes. 
1. Any manual entry into Stop State is via the program­

mer console. 
2. The STOP instruction performs no operation if the 

programmer console is not installed. 

Wait State 

The processor enters wait state when: (1) a Level Exit 
(LEX) instruction is executed and no other level is pending, 
or (2) a Set Level Block (SELB) instruction is executed 
that sets the current in-process bit off and no level is 
pending. While the processor is in the wait state, (1) the 
Wait light on the basic console is on and (2) interrupts 
can be accepted under control of the system mask register 
and the summary mask as defined by the LSR of the last 
active level. 

The processor exits the wait state when: 

1. The Stop key on the programmer console is pressed. 
2. The Reset key on the programmer console is pressed. 
3. An I/O interrupt is accepted (the level must be enabled 

by the summary mask and the mask register). 
4. A class interrupt occurs. (See Class Inte"upts in 

Chapter 3.) 

2-20 GA34-0021 

Load State 

The processor enters the load state when initial program 
load (IPL) begins. This occurs: 

1. When the Load key on the basic console is pressed. 
2. After a power-on reset if the Mode switch is in the 

Auto IPL position. 
3. When an IPL signal is received from a host system. 

While the processor is in load state, the Load light on 
the basic console is on. 

The processor exits the load state and enters the run 
state upon successful completion of the IPL. See Initial 
Program Load (IPL). 

Run State 

The processor enters the run state when not in the stop, 
wait, or load state. Run state is entered: 

1. From load state upon successful completion of IPL. 
2. From wait state when an interrupt is accepted. 
3. From stop state when the start key is pressed. (See 

Stop State.) 

The processor exits run state when entering stop, wait, or 
load states as previously described. 

Supervisor State and Problem State 

While in run state, instructions can be executed in either 
supervisor state or problem state. This is determined by 
bit 8 of the level status register (LSR): 

State 

Supervisor 
Problem 

LSR Bit 8 

1 
o 

Supervisor and problem states are discussed in the follow­
ing sections. 

Supervisor State. The processor enters supervisor state 
when: 

1. A class interrupt occurs. This type of interrupt is 
caused by the following: 
a. Machine check condition 
b. Program check condition 
c. Power/thermal warning 
d. Supervisor Call (SVC) instruction 
e. Soft exception trap condition 
f. Trace bit (LSR bit 10) set to one 
g. Console Interrupt key on the programmer console 

2. An I/O interrupt is accepted. 
3. After initial program load (IPL) has been completed. 

Class interrupts and I/O interrupts are discussed in Chapter 
3. Initial program load is discussed in a subsequent section 
of this chapter. 

o 

o 



o 

o 

When the processor is in supervisor state, the full 
instruction set may be executed. The following privileged 
instructions may only be executed in supervisor state: 

Copy Address Key Register (CP AKR) 
Copy Console Data Buffer (CPCON) Note 1 
Copy Current Level (CPCL) 
Copy In-Process Flags (CPIPF) 
Copy Interrupt Mask Register (CPIMR) 
Copy Instruction Space Key (CPISK) 
Copy Floating Level Block (CPFLB) Note 2 
Copy Level Status Block (CPLB) 
Copy Operand 1 Key (CPOOK) 
Copy Operand 2 Key (CPOTK) 
Copy Processor Status and Reset (CPPSR) 
Copy Segmentation Register (CPSR) Note 3 
Copy Storage Key (CPSK) 
Diagnose (DIAG) 
Disable (DIS) 
Enable (EN) 
Interchange Operand Keys (IOPK) 
Level Exit (LEX) 
Operate I/O (10) 
Set Address Key Register (SEAKR) 
Set Console Data Lights (SEC ON) Note 4 
Set Floating Level Block (SEFLB) Note 2 
Set Instruction Space Key (SEISK) 
Set Interrupt Mask Register (SEIMR) 
Set Level Status Block (SELB) 
Set Operand 1 Key (SEOOK) 
Set Operand 2 Key (SEOTK) 
Set Segmentation Register (SESR) Note 3 
Set Storage Key (SESK) 

Notes. 
1. The resultant data is unpredictable if the programmer 

console feature is not installed. 
2. Invalid (soft exception trap) if the floating-point 

feature is not installed. 
3. Invalid (program check) if the relocation translator 

feature is not installed. 
4. Performs no operation if the programmer console 

feature is not installed. 

Supervisor State overrides the storage protection 
mechanism. This permits unlimited access to all of main 
storage regardless of address keys or storage keys (see 
Chapter 5). When the Storage Address Relocation Trans­
lator Feature is installed and enabled, storage protection 
works differently. Supervisor State can only access the 
storage defined by the active address keys (see Chapter 6). 
Address key 0 is implicitly assigned to the supervisor for 
handling interrupts. 

Problem State. This is a state that does not allow the 
processor to execute the privileged instructions. The 
processor enters the problem state when the supervisor 
state bit (LSR bit 8) is turned off. This can be 
accomplished with a Set Level Status Block (SELB) 
instr~ction. This instruction can change the contents of 
the registers for a selected priority interrupt level. 

While the processor is in problem state, privileged 
instructions cannot be executed. If a privileged instruction 
execution is attempted, the instruction is suppressed and 
a program check class interrupt occurs, with privilege 
violate (bit 2) set in the processor status word. 

State of Processor Following a Reset 

The term reset used in the following sections denotes 
the reset action that occurs during: 

1 . Power -on reset 
2. Initial program load (IPL) reset 
3. System reset initiated by pressing the Reset key on 

the programmer console 

The following registers and conditions are not affected 
by a reset and must be initialized by the program or 
operator before they become valid: 

• AKR on levels 1-3 
• Console data buffer (programmer console feature) 
• General registers 
• IAR on levels 1-3 
• Storage key registers (storage protection) 
• Main storage 
• Segmentation registers (relocation translator feature) 
• Floating-point registers (floating-point feature) 

The following registers and conditions are affected by 
a reset: 

• CIAR - set to zeros 
• IAR on level zero - set to zeros 
• Mask register - set to ones (all levels enabled) 
• LSR on level zero 

Indicators - set to zeros 
Supervisor state (bit 8) - set on 
In-process (bit 9) - set on 
Trace (bit 10) - set to zero (disabled) 
Summary mask (bit 11) - set on (enabled) 
All other bits - set to zeros 

• AKR on level zero is set to zeros 
• PSW - set to zeros except as noted 

- Auto-IPL (bit 13) - set to zero unless the reset 
was caused by an Auto-IPL 

- Power/thermal (bit 15) - reflects the status of 
the power/thermal condition 

• LSR on levels 1-3 - set to zeros 
• SAR - set to zeros 

Processing Unit Description 2-21 



Initial Program Load (IP L) 
A n initial program load function is provided to (1) read 
an IPL record (set of instructions) from an external storage 
media, and (2) automatically execute a start-up program. 
An IPL record is read into storage from a local I/O device 
or host system. The I/O attachments for the desired IPL 
sources are prewired at installation time. Two local 
sources, primary and alternate, can be wired and either 
can be selected by using the IPL Source switch on the 
console. 

IPL can be started by three methods: 

1. Manually, by pressing the Load key on the console. 
2. Automatically, after a power-on condition. 
3. Automatically, when a signal is received from a host 

system. The host system can be connected through a 
communications adapter. 

The automatic power-on IPL is selected by a Mode switch 
on the console. When the Mode switch is in the Auto-IPL 
position, IPL occurs whenever power turns on (either 
initially or after a power failure). Auto IPL is useful for 
unattended systems. A manual IPL can be initiated at 
any time by pressing the Load key on the console (even 
when in run state). The Mode switch has no effect" on the 
manual IPL. For Auto-IPL and manual IPL, the local IPL 
source (primary or alternate) is selected. IPL from a host 
system can occur at any time and is initiated by the host 
system. The IPL record is transferred through the host­
system device; for example, the communications adapter. 
When an auto-IPL occurs, bit 13 of the PSW is turned on 
to indicate the condition to the software. When a manual 
or host-system IPL occurs, this bit is set to zero. 

During IPL, the storage protection mechanism is 
disabled and main storage is loaded starting at location 
zero. The length of the IPL record depends on the media 
used by the IPL source. 

2-22 GA34-0021 

Upon successful completion of an IPL, the processor 
enters supervisor state and begins execution on priority 
level zero. The summary mask is enabled and all priority 
interrupt levels in the mask register are enabled. The level 
zero AKR is set to all zeros. The first instruction to be 
executed is at main storage location zero. The IPL source 
has a' pending interrupt request on level zero. The system 
program must: 

1. Perform housekeeping; for example, load vector table 
addresses in the reserved area of storage (see 
Automatic Interrupt Branching in Chapter 3). 

2. Issue a Level Exit (LEX) instruction. This allows the 
processor to accept the interrupt from the IPL source. 
When the interrupt is accepted, a forced branch is 
taken using the device-address vector table. The vector 
table entry is determined by the device address of the 
IPL source and results in a branch to the proper program 
routine for handling the interrupt. The device address 
of the IPL source is set into bits 8-15 of register 7 
on level zero. Condition code 3, device end, is reported 
by the IPL source. For additional information, see 
I/O Interrupts in Chapter 3. 

A system reset always occurs prior to an IPL. However, 
if any errors occur during the IPL, the results are un­
predictable. 

Sequential Instruction Execution 
Normally, the operation of the processor is controlled by 
instructions taken in sequence. An instruction is fetched 
from the main storage location specified in the instruction 
address register (IAR). The instruction address in the 
IAR is then increased by the number of bytes in the 
instruction just fetched. The IAR now contains the 
address of the next sequential instruction. After the 
current instruction is executed, the same steps are 
repeated using the updated address in the IAR. 

A change from sequential operation can be caused by 
branching, jumping, interrupts, level switching, or manual 
intervention. 

(~.' 1 

;f---'~ 

V 

o 



o 
Jumping and Branching 
The normal sequential execution of instructions is changed 
when reference is made to a subroutine; when a two-way 
choice is encountered; or when a segment of coding, such 
as a loop, is to be repeated. All of these tasks can be 
accomplished with branching and jumping instructions. 
Provision is also made for subroutine linkage, permitting 
not only the introduction of a new instruction address, 
but also the preservation of the return address and 
associated information. 

The conditiortal branch and jump instructions are used 
to test the indicators in the LSR. These indicators are set 
as the result of I/O operations and most arithmetic or 
logical operations. Single or multiple indicators are tested 
as determined by the value in a three-bit field within the 
instruction. Refer to: (l) Indicators and (2) Testing 
Indicators with Conditional Branch and Jump 
Instructio ns. 

Jumping 

Jump instructions are used to specify a new instruction 
address relative to the address in the IAR. The new address 
must be within -256 to +254 of the byte following the 
jump instruction. 

Note. The jump instruction contains a word displacement 
that is converted to a byte displacement when the 
instruction is executed. However, when using the 
assembler, the programmer specifies a byte value that is 
converted to a word displacement by the assembler. 

Branching 

Branch instructions are used to specify a new full-width 
16-bit address. A 16-bit value, range ° to 65535, is 
contained in the second word of the instruction or in a 
register. The value in the second word can be used as the 
effective branch address or added to the contents of a base 
register to form an effective address. (See Base Register 
Storage Address in this chapter.) 

Level Switching and Interrupts 
The processor can execute programs on four different 
interrupt priority levels. These levels, listed in priority 
sequence, are numbered 0, 1, 2, and 3 with level ° having 
highest priority. The processor switches from one level to 
another in two ways: 

1. Automatically, when an interrupt request is accepted 
from an I/O device operating on a higher priority level 
than the current level. 

2. Under program control, by using the Set Level Block 
(SELB) instruction. 

Both types of level switching are discussed in detail in 
Chapter 3. Class Interrupts and Interrupt Masking Facilities 
are also discussed in Chapter 3. 

Stack Operations 
The processing unit provides two types of stacking facilities. 
Each facility is briefly described in this section. Additional 
information appears in subsequent sections. The two types 
of stacking facilities are: 

1. Data Stacking. This facility provides an efficient and. 
simple way to handle last-in first-out (LIFO) queues 
of data items and/or parameters in main storage. The 
data items or parameters are called stack elements. For 
a given queue (or stack), each element is one, two, or 
four bytes wide. Instructions for each element size 
(byte, word, or doubleword) are provided to: 
a. Push an element into a stack (register to storage). 
b. Pop an element from a stack (storage to register). 

2. Linkage stacking. This facility provides an easy 
method for linking subroutines to a calling program. 
A word stack is used for saving and restoring the 
status of general registers and for allocating dynamic 
work areas. The Store Multiple (STM) instruction 
stores the contents of the registers into the stack and 
reserves a deSignated number of bytes in the stack as 
a work area. The Load Multiple and Branch (LMB) 
instruction reloads the registers, releases the stack 
elements, and causes a branch via register 7 back to the 
calling program. 
Note. The Store Multiple instruction pushes a block 
of information into a stack. This block is referred to 
as a register block. The Load Multiple and Branch 
instruction pops a register block from a stack. 

Processing Unit Description 2-23 



Data Stacking Description 
Any contiguous area of main storage can be defmed as a 
stack. Each stack is defined by a stack control block. 
Figure 2-4 shows a data stack and its associated stack 
control block. Stack control blocks must be aligned on a 
word boundary. 

The words in the stack control block are used as follows: 

Main Storage 

Address 0000 1~-~1 
Stack control block 

Top element address (TEA) 

High limit address (HLA) 

- Low limit address (LLA) 

Stack 

L-..,. 

----- !~~s~c~ !..Ei Stack element 

Empty Stack element 

stack TEA 

\ "" 
0 15 

Word 0 

Word 1 

Word 2 

The TEA for an empty 
stack points to the 
same place as the HLA 

Stack clement shown is 1 
word; clement can be 1, 
2, or 4 bytes wide 

Figure 2-4. Relationship of stack control block to data stack 

2-24 GA34-0021 

C" \ 
. ~ j 

o 



c 
High Limit Address (HLA). This word contains the 
address of the first byte beyond the area being used for the 
stack. All data in the stack has a lower address than the 
contents of the HLA. Note that the HLA points to the 
first byte beyond the bottom of an empty stack. 

Low Limit Address (LLA). This word designates the 
lowest storage location that can be used for a stack element. 
Note that the LLA points to the top of a stack. 

Top Element Address (TEA). This word points to the 
stack element that is currently on top of the stack. For 
empty stacks, the TEA points to the same location as the 
high limit address (HLA). 

Notes. 
1. For word, double word, and register block operations, 

the HLA, LLA, and TEA must all contain an even 
address to ensure data alignment on a word boundary . 

2. The HLA and LLA define a contiguous range of 
addresses. These addresses must not cross the 64K 
byte boundary that causes storage to wrap. 

Push Operation. When a new element is pushed into a 
stack, the address value in the TEA is decremented by the 
length of the element (one, two, or four bytes) and 
compared against the LLA. If the TEA is less than the 
LLA, a stack overflow exists. A soft exception trap 
interrupt occurs with stack exception set in the PSW. The 
TEA is unchanged. If the stack does not overflow, the 
TEA is updated and the new element is moved to the top 
location defined by the TEA. 

The following diagram shows how elements are pushed 
into a stack. Note that each push operation always places 
an element at a lower address in the stack than the 
preceding element. 

LLA-

TEA -l 
and HLA 

Empty 
stack 

TEA 
Push 

TEA 
Push 

TEA 
Push 

Refer to Chapter 8 for descriptions of the following 
instructions: 

• Push Byte (PSB) 
• Push Word (PSW) 
• Push Doubleword (PSD) 

Note. For a push doubleword operation, the TEA points 
to the high-order word of the doubleword operand. 

Pop Operation. When an element is popped from a stack, 
the TEA is compared against the HLA. If it is equal to or 
greater than the HLA, an underflow condition exists. A 
soft exception trap interrupt occurs with stack exception 
set in the PSW. If the stack does not underflow, the stack 
element defined by the TEA is moved to the specified 
register and the TEA is incremented by the length of the 
element. 

The following diagram shows how elements are popped 
from a stack. 

LLA 

TEA Pop 

HLA_ 

Pop 

Pop 

TEA_i 

Empty 
stack 

Refer to Chapter 8 for descriptions of the following 
instructions: 

• Pop Byte (PB) 
• Pop Word (PW) 
• Pop Doubleword (PD) 

Note. It is possible to pop data from beyond a stack 
boundary if (1) the TEA is less than the HLA, and (2) the 
operand size is greater than HLA minus TEA. 

Data Stacking Example - Allocating Fixed Storage Areas 

Many programs require temporary main storage work areas. 
It is very useful to be able to dynamically assign such work­
area storage to a program only when that storage is 
needed. Conversely, when work-area storage is no longer 
needed by a program, it is desirable to free that resource so 
it may be used by other programs. Use of the stacking 
mechanism can assist in the programming of the dynamic 
storage management function. 

The following is an example of how storage areas could 
be allocated using the stacking mechanism. 

A stack is initialized with addresses that point to fixed 
areas of storage. Each element in the stack represents the 
starting address of a block of storage consisting of 512 
bytes; e.g., addresses 0200 through 03FF. As storage is 
needed, the starting address for a block of storage is popped 
from the stack. When the block of storage is no longer 
needed, the starting address is pushed back into the stack. 

Processing Unit Description 2-25 



The stack control block, stack, and storage areas appear 
initially as follows: 

Stack control block 

TEA OBOO 

HLA OB08 

LLA OBOO 

Full stack 

TEA = LLA = OBOO --.... 0200 

0400 

0600 

0800 

HLA=OB08~ 

Storage areas 

0200 
Available 
storage 

Available 
storage 

0600 Available 
storage 

0800 Available 
storage 

2-26 GA34-0021 

Notice that each stack element is one word long; addresses 
of storage areas are the stack elements; the TEA points to 
the lowest location of the last element because the initial­
ized stack is fUll. Contrast this with an empty stack, in 
which the TEA points to the same location as the HLA. 

Now assume that program A requires a block of 
storage. Program A (or a storage management function at 
the request of program A) issues a pop word instruction 
against the stack control block. The TEA is updated as 
follows: 

TEA 

HLA 

LLA 

LLA = OBOO 

TEA = OB02· 

HLA = OB08 --.. 

0200 

0400 

0600 

0800 

Stack control block 

OB02 

OB08 

OBOO 

Stack 

0600 

0800 

Storage areas 

Available 
storage 

/~-~ 

\ ~ .. 

"'< 

o 



The word element popped is placed in the register specified 
by the pop word instruction executed by program A. This 
is the address of the 512-byte storage area beginning at 
address 0200. 

At this time, assume that program B (operating on a 
different hardware level than program A) also requires a 
storage area. It too executes a pop word instruction 
against the stack. The next element is moved to the register 
specified and points to the next available storage area 
and the TEA is updated: 

Stack control block 

TEA~ 

HLA~ 

LLA --+-

TEA = OB04 

HLA=OB08~ 

OB04 

OB08 

OBOO 

Stack 

0800 

Storage areas 

Available 
storage 

-+- TEA after 
second Pop 

Now, before any further requests occur, program A 
terminates its need for a work area. Program A then issues a 
push word instruction against the stack and returns the 
address of the area it was using for use by other programs: 

TEA 

HLA----I~ 

LLA 

LLA = OBOO 

TEA = OB02 

HLA=OB08~ 

0200 

0400 

0600 

0800 

Stack control block 

OB02 

OB08 

OBOO 

Stack 

0600 

0800 

Storage areas 

Available 
storage 

TEA after 
program A 
Push operation 

A similar operation will be performed by program B 
when it releases its storage to the stack, popping address 
0400 into location OBOO. While the addresses are 
obviously shuffled in the stack (from the values initially 
established), this presents no problem since each program 
requires only an area of storage - it is not important 
where that area is located. 

Processing Unit Description 2-27 



Linkage Stacking Description 

As previously described a word-stack mechanism may be 
used for subroutine linkage. This mechanism saves and 
restores registers and allocates dynamic work areas. 

The letters in the following description correspond to 
the letters in Figure 2-5. 

m Stack control block 

New TEA 

TEA 

HLA 

LLA 

Dynamic 
work 
area 

~--------------------------------------4 

Old TEA--+­
and HLA 

R7 contents 

RO contents 

• 
• 
• 
• 

RL contents 

Figure 2-5. Word stack for subroutine linkage 

2-28 GA34-D021 

}N 

The Store Multiple (STM) instruction specifies: 

It Stack control block address 
II Limit register (RL) number 
II Number (N) of words to allocate for work areas 

When the STM instruction is executed, the allocate value 
(N), plus the number of registers saved, plus one control word, 
is the requested block size in words. The block size 
(converted to bytes) is used to decrement the TEA before 
an overflow check is made. If no overflow occurs the 
operation proceeds. The link register (R 7) and register 0 
through the specified limit register (RL) are saved 
sequentially in the stack. If register 7 is specified as the 
limit register, only register 7 is stored in the stack. The 
dynamic work space is allocated ~nd a pointer to the work 
area is returned in register RL. If no work area is 
specified, the returned pointer contains the location of R7 
in the stack. The values of RL and N are also saved as 
an entry in the stack. The TEA is updated to point to the 
new top of stack location. 

When a Load Multiple and Branch (LMB) instruction is 
executed, the values of RL and N are retrieved from the 
stack and an underflow check is made. The value of RL 
controls the reloading of the registers; the values of RL 
and N are used to restore the stack pointer (TEA) to its 
former status. The contents of register 7 are then loaded 
into the instruction address register, returning program 
control to the calling routine. 

Linkage Stacking Example - Reenterable Subroutine 

A subroutine may be used by programs that operate on 
different interrupt levels. Rather than providing copies of 
the subroutine, one copy for each program that needs it, 
the subroutine can be made reenterable. Here, only one 
copy of the subroutine is provided; the single copy is used 
by all requesting programs. Two items must be considered 
in the reenterable subroutine code: 

• Saving the register contents of each calling program. 
The subroutine is then free to use the same registers, 
restoring their contents to the calling-program's values 
just prior to returning to the calling program. 

• Preserving the applicable variable data (generated by 
the subroutine) that is related to each call of the 
subroutine. That is, data associated with one call must 
not be disturbed when subroutine execution is 
restarted due to another call from a higher priority 
program. 

\ 
\ 

o 



The stacking mechanism, by means of the STM and 
LMB instructions, handles the two items just mentioned. 
As an example, operation could proceed as follows: 

1 . Program A calls the subroutine by means of a 
branch and link instruction (return address is in R7). 

BALSUBRT,7 

2. The subroutine, in this example, uses registers R3 and 
R4 during its execution. The subroutine receives 
(from program A) a parameter list address in RO and 
the address of the stack control block in Rl. Also, 
the subroutine requires 20 bytes of work space. Thus, 
the subroutine executes, upon entry, the following 
store multiple instruction: 

SUBRT STM 4,(1),20 

After execution of the STM, the stack contains the 
following: 

Stack 

LLA 

TEA 
* 

R4 

} N=10 20 bytes 

~----------------~ 

R7 

RO 

Rl 

R2 

R3 

R4 

HLA~ 

*The last word contains a value that specifies the last register 
stored (e.g., R4 in this example) and the size of the dynamic 
work area (in words). 

R4 (the last register stored in the stack) is automati­
cally loaded, during the STM operation, with the 
address of the work area to be used by the subroutine 
to hold its work data. 

3. When subroutine processing for this call is completed, 
the subroutine executes a single load multiple 
instruction in order to reload the registers and return 
(via R7) to the calling program: 

LMB (1) 

If a second call to the subroutine has occurred prior 
to execution of the LMB, action similar to that just 
stated would occur again. However, another stack 
area would be used. Then, when subroutine execution 
is completed for the second call, and all higher 
priority interrupt level processing is completed, a 
return would be made to the interrupted subroutine 
for completion of processing for the first call. 

Thus, multiple calls to a single subroutine are 
processed without interfering with the integrity of 
data associated with any other call to the subroutine. 

Processing Unit Description 2-29 



o 
2-30 GA34-0021 



o 

o 

Introduction 
Efficient operation of a central processor depends on 
prompt response to I/O device service requests. This is 
accomplished by an interrupt scheme that stops the cur­
rent processor operation, branches to a device service 
routine, handles device service, then returns to continue 
the interrupted operation. One processor can control 
many I/O devices; therefore, an interrupt priority is 
established to handle the more important operations before 
those of lesser importance. Certain error or exception 
conditions (such as machine check) also cause interrupts. 
These are called class interrupts and are processed in a 
manner similar to I/O interrupts. Both I/O and class inter­
rupts are explained further in the following sections. 

Interrupt priority is established by four priority levels of 
processing. These levels, listed in priority sequence,. are 
numbered 0,1,2, and 3 with level 0 having highest priority. 
Interrupt levels are assigned to I/O devices via program 
control. This provides flexibility for reassigning device 
priority as the application changes. 

Each of the four priority levels has its own set of 
registers. These consist of an address key register (AKR), 
a level status register (LSR), eight general registers (RO-R7), 
and an instruction address register (IAR). Information 
pertaining to a level is automatically preserved in these 
hardware registers when an interrupt occurs. 

Processor level switching, under program control, may 
be accomplished by use of the Set Level Block (SELB) 
instruction. Details of this method are presented in a 
separate section of this chapter. 

I/O and class interrupts cause automatic branching to a 
service routine. Fixed locations in main storage are 
reserved for branch addresses or pointers that are referenced 
during interrupt processing. This storage allocation is shown 
in the section Automatic Interrupt Branching in this chapter. 

Chapter 3. Interrupts and Level Switching 

Interrupt masking facilities provide additional program 
control over the four priority levels. System and level mask­
ing are controlled by the Summary Mask and the Interrupt 
Level Mask Register. Device masking is controlled by the 
Device Mask. Manipulation of the mask bits can enable 
or disable interrupts on all levels, a specific level, or for a 
specific device. See Interrupt Masking Facilities in this 
chapter. 

Interrupt Scheme 
As previously stated, four priority interrupt levels exist. 
Each I/O device is assigned to a level, dependent on the 
application. When an interrupt on a given level is accepted, 
that level remains active until (1) a Level Exit (LEX) instruc­
tion is executed, (2) a Set Level Block (SELB) instruction 
causes a level switch, or (3) a higher priority interrupt is 
accepted. In the first two cases, the active level at the time 
is cleared. In the latter case, the processor switches to the 
higher level, completes execution (including a LEX or 
SELB instruction), then automatically returns to the 
interrupted-from level. This automatic return can be de­
layed by other higher priority interrupts. 

If an interrupt request is pending on the currently active 
level, it will not be accepted until the level is cleared by a 
LEX or SELB instruction. If no other level of interrupt 
is pending when a program exits the current level, the 
processor enters the wait state. In the wait state no pro­
cessing is performed, but the processor can accept inter­
rupts that are expected to occur. See Figure 3-1. 

Class interrupts do not change priority levels. They are 
processed at the currently active level. If the processor is 
in the wait state when a class interrupt occurs, priority 
level 0 is used to process the interrupt. 

Interrupts and Level Switching 3-1 



Requests for interrupts . 

Level 0 
__________________ ~rl~ ________________________________ _ 

Level 1 
____________ ~rl~ ____________________________________ __ 

Level 2 
________ rl~ __________________________________________ ___ 

Level 3 rl~ ________________ ~I* 

Priority level processing 

Priority 
level 0 

Priority 
level 1 

Priority 
level 2 

LEX 

Priority 
level 3 

r-r-......... '"I'""T....-.-t - - - - - - - - - - - - - - - - - - - - - - _J-r .......... _-..-........... .....-.......... ....--___. 
~.L.J.....L.L...L...I-l ______________________ L..L..L..L=::..:.L...J......I-L....L..L..L;;; ..... 

* This interrupt request cannot be honored until 
after a LEX instruction has been executed on 
level 3 to clear the previous interrupt service. 

Figure 3-1. Interrupt priority scheme 

Automatic Interrupt Branching 
Hardware processing of an interrupt includes automatic 
branching to a service routine. The processor uses a 
reserved storage area for branch information. The 
reserved area begins at main storage address 0000. The 
total size of the area depends on the number of interrupting 
devices attached. One word (two bytes) is reserved for 
each interrupting device and is related to a particular device 
by the device address. For example: device 00 causes a 
reference to location 0030, device 01 to location 0032, 
and so on. The device area begins at address 0030 (Hex); 
the reserved area is 0000 through 022F (Hex) if 256 devices 
(maximum number) are attached. These storage locations 
and contents are shown in Figure 3-2. 

~ 

Main storage 
address (Hex) 

022E 

0032 
0030 
002E 
002C 
002A 
0028 
0026 
0024 
0022 
0020 
001E 

Wait state 

Contents of word 

Device FF DDB pointer 

~~ 
Device 01 DDB pointer 
D~vice 00 DDB pointer 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Soft exception trap SIA 
Soft exception trap LSB 
Console interrupt SIA 

pointer 

001C Console interrupt LSB pointer 
001A Trace SIA 
0018 Trace LSB point~r 

0016 Power failure SIA 
0014 Power failure LSB pointer 
0012 SVC SIA 
0010 SVC LSB pointer 
OOOE Program check SIA 
OOOC Program check LSB pointer 
OOOA Machine check SIA 
0008 Machine check LSB pointer 
0006 Reserved 
0004 Reserved 
0002 Restart instruction word 2 
0000 Restart instruction word 1 

Figure 3-2. Reserved storage locations 

3-2 GA34-0021 

~~ () 

o 



o 

o 

The reserved storage locations are described as follows: 

Storage Location Contents 
(Hex) 

0000-0003 Restart instruction. Following IPL a forced 
branch is made to location 0000. 

0004-0005 Reserved. 

0006-0007 Reserved. 
0008-0023 Addresses used for class interrupts. The Level 

Status Block (LSB) pointer is the first address 
of an area where a level status block will be 
stored. The Start Instruction Address (SIA) 
points to the first instruction of a service 
routine. 

0024-002F Reserved. 

0030-022F Addresses used for I/O interrupts. The Device 
Data Block (DDB) pointer is the address of the 
first word of a device data block. This word is 
used to obtain the start instruction address for 
the service routine. See I/O Interrupts in this 
chapter. 

Note. The area reserved for I/O devices varies in size 
depending on the number of devices. The device address 
determines the fixed loc"ation to be accessed. For example: 
Interrupts for device 01 always vector to main storage 
address 0032. 

A device address is established by installing the appropri­
ate connectors on the I/O feature card for the device. 

I/O Interrupts 

Prepare I/O Device for Interrupt 
I/O device interrupt parameters are established via program 
control. The Operate I/O (10) instruction initiates the 
device operation and in conjunction with the "Prepare" 
I/O command tells the device: 

1. If the device can interrupt. 
2. What priority level to use for interrupts. See Chapter 

8 Instructions and Chapter 4 Input/Output Operations 
for details of the Operate I/O instruction. 

Execution of the Prepare command transfers a word to 
the addressed device that controls its interrupt parameters. 
This word has the format: 

Zero Level II I 
o 10 11 14 15 

Bits Contents 

0-10 Set to zeros. 
11-14 Level. A four-bit encoded field that assigns an interrupt 

priority level to the device (see note). 

Example: 0000 -level 0, 0001 -levell, 0010 -level 2, 
0011 - level 3. 

15 Device mask or I-bit. This bit sets the interrupt mask in 
the device. When set to one, the device can interrupt. 
When set to zero, the device cannot request an interrupt. 

Note. The 4955 Processor does not recognize priority levels 
other than zero through three; therefore, bits 11 and 12 
must always be set to zero or the interrupt is lost. 

An interrupting device is always able to accept and exe­
cute a Prepare command, even if it is presently busy or has 
an interrupt request pending from a previous command. 
This allows the software to change the device mask and 
interrupt level at any time. Any pending interrupt request 
is then serviced on the new interrupt level. 

Present and Accept I/O Interrupt 
The I/O device presents an interrupt request on its assigned 
priority level. This request is applied to the interrupt 
algorithm for acceptance determination. 

For an I/O interrupt to be serviced, the following condi­
tions must exist: 

1. The summary mask must be o~ (enabled). 
2. The mask bit (Interrupt Level Mask Register) for the 

interrupting level must be on (enabled). 
3. For I/O interrupts the device must have its Device 

Mask bit on (enabled). 
4. The interrupt request must be the highest priority of 

the outstanding requests and higher than the current 
level of the processor. 

5. The processor must not be in the stop state. 

Supervisor state is entered upon acceptance of all priority 
interrupts. 

Following acceptance, the device sends an interrupt ID 
word and a condition code to the processor. The condition 
code is placed in the even, carry, and overflow indicators 
for the interrupted-to level. The ID word is placed into 
register 7 of the interrupted-to level. The interrupt ID 
word consists of an interrupt information byte (bits 0-7) 
and the device address (bits 8-15). See Chapter 4 for 
condition codes and interrupt information byte (lIB) 
details. Hardware causes the following events to occur after 
the processor receives the interrupt ID word and the condi­
tion code (Figure 3-3): 

Interrupts and Level Switching 3-3 



-------r------r------r------r-------
Device 01 I New level 2 I I Next I 
interrupts I I Main storage instruction registers I I 
on level 2 address 

Interrupted 
level 3 

--------I-------L------~------4-------

Interrupt ID 

3-4 GA34-0021 

I IAR3 
I . 

G······'i····{~ 

IAR2 

I 
I 
I 
I 
I 
I 
I 

DDB 

0100~(SIA) 

IL------IJ 

I . I I/O routme 

'---__ ............. 1"0200 I 1- ... f··· .. G 
:0240~······:·····G 
I I 
I I 
I I 
I I 
I I 0900 

I I 

Figure 3-3. Example of I/O interrupt with automatic branching 

IAR3 

0900 

o 



o 

o 

• The processor hardware switches from the registers and 
status of the interrupted-from level to those of the 
interrupted-to level. 

• The interrupt ID word is placed in register 7 of the 
interrupted-to level. 

• The condition code is placed in LSR positions 0-2. 
• Supervisor state is entered (LSR bit 8 is set to one). 
• The processor executes an automatic branch. 

The device address is used by hardware to fetch the 
DDB pointer from reserved storage. 
The DDB pointer is placed in register 1 of the 
interrupted-to level. 
The DDB pointer is used by hardware to fetch the 
start instruction pointer. 
The Start Instruction Address (SIA) is loaded into 
the IAR of the interrupted-to level. 

• Execution begins on the new level. 

Oass Interrupts 
System error or exception conditions can cause seven types 
of class interrupts: 

1. Machine check, caused by a hardware error. 
2. Program check, caused by a programming error. 
3. Power/thermal warning, caused by a power or thermal 

irregulari ty . 
4. Supervisor call, caused by execution of an SVC 

instruction. 
S. Soft exception trap, caused by software. 
6. Trace, caused by instruction execution (trace 

enabled in the current LSR). 
7. Console, caused by a console interrupt when the 

optional programmer console is installed. 

Machine check, program check, soft exception trap, and 
power/thermal warning are defined by bits in the processor 
status word. Software can refer to the processor status 
word for a specific condition and any related status 
information. See Processor Status Word in this chapter. 

Class interrupts do not cause a change in priority level. 
The interrupt is serviced on the level that is active when 
the condition occurs. If the processor is in the wait state, 
the interrupt is serviced on priority level zero. Independent 
routines are used to handle each type of class interrupt 
regardless of priority level. 

All class interrupts cause the processor to enter super­
visor state. Refer to a subsequent section, Present and 
Accept Qass Interrupt, for details of the hardware 
processing. 

Programming Notes. 
1. Two class interrupts (power/thermal warning and 

console) can be disabled by the summary mask. 
2. If the optional programmer console is installed and 

Check Restart is selected, machine check, power/ 
thermal warning, and program check interrupts do not 
occur. If Stop on Error is selected, a stop occurs before 
a machine check, power/thermal warning, or program 
check interrupt is serviced. See Programmer Console 
Feature in Chapter 7. 

Priority of Class Interrupts 
Although class interrupts are serviced on the current priority 
level, they are serviced according to an exception condition 
priority. 

The following table lists the exception conditions in 
priority sequence with zero being the highest priority. Two 
exception conditions of the same priority, such as protect 
check and specification check, may be reported to the PSW 
simultaneously. The table also shows the associated class 
interrupt vector for the exception conditions. 

Class Interrupt 
Priority Exception Condition Routine 

0 CPU control check Machine check 
I/O check 

1 Invalid function (Note 1) 

2 Privilege violate 

3 Invalid function (Note 2) 

4 Protect check Program check 
Specification check 

5 Invalid storage address 
Specification check 

6 Storage parity Machine check 

7 Power warning Power / thermal 
Thermal warning warning 

8 Supervisor call Supervisor call 

9 Invalid function (Note 3) 

10 Floating-point exception 
Soft exception 
trap 

11 Stack exception 

12 Trace Trace 

13 Console Console 

Note 1. Caused by an illegal operation code or function 
combination. 

Note 2. A Copy Segmentation Register (CPSR) or Set 
Segmentation Register (SESR) instruction is attempted 
and the translator feature is not installed. 

Note 3. A floating-point instruction is attempted and the 
floating-point feature is not installed .. 

Interrupts and Level Switching 3-5 



Present and Accept Class Interrupt 
When a class interrupt occurs, it is serviced on the currently 
active level or on level zero (if in the wait state). Hardware 
processing of the interrupt causes the following: 

• Register contents are saved 
• Supervisor state is entered (LSR bit 8 is set to one) 
• Trace is reset (LSR bit 10 is set to zero) 
• Summary mask is disabled (LSR bit 11 is set to zero) 
• The address key register is set to pre-determined values 

dependent on the type of class interrupt 
• An automatic branch is taken to a service routine 

Each type of class interrupt has an associated LSB pointer 
and SIA in the reserved area of main storage (see Figure 
3-2). Reference is made to the reserved area to: 

1. Store current level IAR, AKR, registers, and LSR into 
a level status block (LSB) in main storage. 

2. Automatically branch to a service routine by using the 
start instruction address (SIA). 

Notes. 
1. Priority level zero is forced active when a class interrupt 

occurs in the wait state. The level zero LSB is stored 
into main storage. The in-process flag (LSR bit 9) is 
zero in the stored LSB. 

2. Address key values are set in anticipation of the address 
spaces required by the interrupt service routine. See 
Address Space Management in Chapter 5. 

Contents of the level status block are as follows: 

Main storage 
address (LSB) 
pointer) 

+14 (Hex) 

Instruction address register 
Address key register 
Level status register 
Register 0 
Register 1 
Register 2 

Register 3 

Register 4 

Register 5 
Register 6 
Register 7 
o 

3-6 GA34-0021 

15 

The instruction address (contents of IAR) stored in the 
LSB depends on the type of class interrupt and is shown in 
the following chart. 

Type of Oass Contents of IAR 
Interrupt (Stored in LSB) 

Program check Address of instruction that 

Soft exception trap caused the interrupt. 

Supervisor call Address of the next 

Trace instruction. 

Console 

Power/thermal warning 

Machine check (with Address of instruction 
Sequence indicator that caused the 
off) interrupt. 

Machine check (with Address of instruction 
Sequence indicator that was being executed 
on) at the time of the error. 

Machine Check 

A machine check interrupt is caused by a hardware mal­
function and is considered a system-wide incident. The 
three types are: 

1. Storage parity check (PSW bit 08) 
2. CPU control check (PSW bit 10) 
3. 110 check (PSW bit 11) 

A level status block is stored, starting at the location in 
main storage designated by the machine check LSB pointer 
(contents of storage locations hex 0008 and 0009). The 
contents of the storage address register (SAR) are loaded 
into register seven. The last active processor address key 
is placed into the OPIK address key of the AKR; then, 
OP2K, EOS bit and ISK are set to zero. The machine 
check SIA (contents of storage locations hex OOOA and 
OOOB) is then loaded into the IAR, becoming the address 
of the next instruction to be fetched. 

o 



o 

ell,. ) 

o 

Note. When the error condition occurs: 

1. The IAR contains the true address of the first word of 
the instruction; it is not incremented if the error occurs 
in the second or third word of a long instruction. 

2. For a storage parity check, the last active processor key 
defines the address space corresponding to the storage 
address loaded into R7. For a CPU control check or an 
I/O check, this key and R7 provide no useful 
information. 

Program Check 

A program check interrupt is caused by a programming 
error. The types are: 

1. Specification check (pSW bit 00). 
2. Invalid storage address (PSW bit 01). 
3. Privilege violate (pSW bit 02). 
4. Protect check (pSW bit 03). 
5. Invalid function (PSW bit 04). 

A level status block is stored, starting at the location in 
main storage designated by the program check LSB pointer 
(contents of storage locations hex OOOC and OOOD). The 
contents of the storage address register (SAR) are loaded 
into register seven. The last active processor address key is 
placed into the OP1K address key of the AKR; then, 
OP2K, EOS bit, and ISK are set to zero. The program 
check SIA (contents of storage locations hex OOOE and 
OOOF) is then loaded into the IAR, becoming the address 
of the next instruction to be fetched. 

Note. 
1. A program check interrupt condition on one priority 

level does not affect software on other levels. 
2. For a specification check, an invalid storage address, 

and a protect check, the last active processor key 
defines the address space corresponding to the storage 
address loaded into R7. For privilege violate, this key 
and R7 provide no useful information. 

Power/Thennal Warning (pSW Bit 15) 
A power/thermal warning class interrupt is initiated by: 

1. A power warning signal that is generated when the 
power line decreases to about 85% of its rated value. 

2. A thermal warning that occurs if the temperature limits 
inside the closure are exceeded. 

In both cases, the instruction address that is stored in 
the LSB points to the next instruction to be executed. 

A level status block is stored, starting at the location in 
main storage designated by the power failure LSB pointer 
(contents of storage locations hex 0014 and 0015). The 
EOS bit and all address keys in the AKR are set to zero. 
The power failure SIA (contents of storage locations hex 
0016 and 0017) is then loaded into the IAR, becoming 
the address of the next instruction to be fetched. 

A power/thermal warning interrupt can occur when the 
system is running or in the wait state, assuming (1) the 
summary mask is enabled and (2) the programmer console 
is not set to Check Restart. These interrupts are not taken 
by the processor if either of the two conditions are not 
met. 

If the optional battery backup unit is installed and a 
power warning occurs, PSW bit 15 remains on as long as 
power is supplied by the battery. If a thermal warning 
occurs, the processor will power down regardless of the 
battery backup unit. The minimum time before the 
processor powers down is 20 milliseconds. The IBM 4999 
Battery Backup Unit is explained in a separate publica­
tion;IBM Series/1 Battery Backup Unit Description, 
GA34-0032. 

Power/thermal warning interrupts are not taken by the 
processor until the first instruction is executed following a 
power-on reset, an IPL, or exit from stop state. 

Note. If the processor is in the wait state when the 
power/thermal condition occurs: 

1. The interrupt is serviced on priority level O. The level 
o LSB is stored into main storage. Additional power/ 
thermal interrupts, along with priority interrupts, are 
disabled at this time because the summary mask is set 
to zero by the class interrupt. 

2. The instruction address stored in the LSB is 
unpredictable. 

Supervisor Call 

A supervisor call class interrupt is initiated by executing an 
SVC instruction. The SVC instruction is described in 
Chapter 8. A level status block is stored, starting at the 
main storage location designated by the supervisor call LSB 
pointer (contents of storage locations hex 0010 and 0011). 
The OP2K address key is placed into the OP1 K address key 
in the AKR; then, OP2K, EOS bit, and ISK are set to zero. 
The supervisor call SIA (contents of storage locations 0012 
and 0013) is then loaded into the IAR, becoming the 
address of the next instruction to be fetched. 

Interrupts and Level Switching 3-7 



Soft Exception Trap 

A soft exception trap interrupt is caused by software. The 
types are: 

1. Invalid function (PSW bit 4) 
2. Floating-point exception (PSW bit 5) 
3. Stack exception (PSW bit 6) 

These exception conditions may be handled by software; 
therefore, they do not constitute an error condition. 

A level status block is stored, starting at the location in 
m~in storage designated by the soft-exception-trap LSB 
pointer (contents of storage locations hex 0020 and 0021). 
The contents of the storage address register (SAR) are 
loaded into register seven. The OP2K address key is placed 
into the OP1K address key in the AKR; then, OP2K, EOS 
bit, and ISK are set to zero. The soft-exception-trap SIA 
(contents of storage locations hex 0022 and 0023) is then 
loaded into the IAR, becoming the address of the next 
instruction to be fetched. 

Note. The contents of R 7 are unpredictable. 

Trace 

The trace class interrupt provides an instruction trace 
facility for software debugging. Instruction tracing may 
occur on any priority level, and is enabled by the trace bit 
(LSR bit 10). The tracing occurs when bit 10 of the 
current LSR is set to one. When trace is enabled, a trace 
class interrupt occurs at the beginning of each instruction. 
A level status block is stored, starting at the location in 
main storage designated by the trace LSB pointer (contents 
of storage locations hex 0018 and 0019). The ISK address 
key is placed into the OP1K address key in the AKR; then, 
OP2K, EOS bit, and ISK are set to zero. The trace SIA 
(contents of storage locations hex OOIA and 001 B) is then 
loaded into the IAR, becoming the address of the next 
instruction to be fetched. 

Note. After the LSB is stored, and before the next 
instruction is fetched, supervisor state is set on (LSR bit 8), 
trace is turned off (LSR bit 10), and the summary mask is 
disabled (LSR bit 11). 

Programming Note. When trace is enabled, a trace class 
interrupt occurs prior to executing each instruction. Hard­
ware processing of the interrupt provides an automatic 
branch to the programmer's trace routine. To prevent 
retracing the same instruction, the program should exit the 
trace routine by using the Set Level Block (SELB) instruc­
tion with the inhibit trace (IT) bit set to one. The inhibit 
trace bit prevents a trace interrupt from occurring for the 
duration of one instruction (see SELB instruction in 
Chapter 8). A double trace of an instruction can also 
occur when the instruction is interrupted and must be 
reexecuted. For example: a class interrupt occurs duri~g 
execution of a variable field length instruction. Under this 
condition, exit from the class interrupt routine should be 
via a SELB instruction with the inhibit trace bit set to one. 

3-8 GA34-0021 

The occurrence of any class interrupt or priority interrupt 
causes the trace bit (LSR bit 10) to be set to zero. This 
action permits tracing only problem state code. If the 
programmer desires to trace supervisor code, he must make 
provisions within the service routine to enable the trace bit. 

The following three conditions inhibit a trace class 
interrupt: 

1. A Set Level Block (SELB) instruction sets the trace bit 
on and the in-process bit on in the LSR of a selected 
level lower than the current level; then, w.hen the 
selected level becomes active, the first instruction exe­
cuted is not preceded by a trace interrupt. 

2. The programmer console is in diagnose mode and a stop 
instruction is encountered while tracing; then, when 
the Start Key is depressed, a tr'ace interrupt does not 
occur prior to executing the first instruction. 

3. When a level is exited by either a LEX or a SELB 
instruction and processing is to continue on a pending 
level, one instruction is executed on the pending level 
prior to sampling for a trace interrupt. 

Console 

A console interrupt function is provided when the optional 
programmer console is installed. To recognize the interrupt, 
the processor must have the summary mask enabled and be 
in the run state or wait state. A level status block is stored, 
starting at the main storage location designated by the 
console interrupt LSB pointer (contents of storage loca­
tions hex 001C and 001D). The EOS bit and all address 
keys are set to zero. The console interrupt SIA (contents 
of storage locations hex 001E and OOIF) is then loaded 
into the JAR, becoming the address of the next instruction 
to be fetched. 

Notes. 
1. If the processor is in the wait state when a console 

interrupt occurs, the interrupt is serviced on priority 
levelO. 

2. If the summary mask is disabled, the console interrupt 
is ignored since it is not buffered. 

o 

o 

c 



o 
Summary of Class Interrupts 
The following chart is a summary of class interrupt 
processing. Each class interrupt is fully explained in 
separate sections of this chapter. 

;:~~~~:n H 
condition 

• 

Store 
LSB 

• • • • 

H~~tH ~ H 
• • 

Branch 
to 
service 
routine 

• • • • 
• • • 

LSB 
Class Interrupt Pointer 

Machine check 0008-0009 

Program check OOOC-OOOD 

Power / thermal 0014-0015 
warning 

SVC 0010-0011 

Soft exception 0020-0021 
trap 

Trace 0018-0019 

Console 001C-001D 

*Last active processor address key 
**OP2K at time of interrupt 

** *ISK at time of interrupt 

• • • • 
Reg 
7 

SAR 

SAR 

SAR 

EOS 

0 

0 

0 

0 

0 

0 

0 

OP1K 

* 

* 

0 

** 

** 

*** 

0 

• • 

Recovery from Error Conditions 

OP2K 

0 

0 

0 

0 

0 

0 

0 

Error recovery procedures, initiated by software, depend 
on several factors: 

1. Application involved. 
2. Type of error. 
3. Number of recommended retries. 

The error class interrupt provides an automatic branch to 
a service routine. This routine can interrogate the PSW for 
specific error and status information. The routine can then 
initiate corrective action or retry the failing instruction(s). 
If an error occurs during a priority interrupt sequence, the 
priority level switch is completed before the error class 
interrupt is processed. This facilitates automatic register 
retention. A reset is generated by machine check class 
interrupts caused by an I/O check or a CPU control check. 
No reset is generated by program check or power/thermal 
warning class interrupts. Error conditions along with error 
recovery information are presented in the following sections. 

ISK 

0 

0 

0 

0 

0 

0 

0 

SIA 
Pointer 

OOOA-OOOB 

OOOE-OOOF 

0016-0017 

0012-0013 

0022-0023 

001A-001B 

001E-001F 

Program Check 
A program check is caused by a programming error and 
initiates a program check class interrupt. Error retry de­
pends on the application. All necessary parameters are 
made available for locating and, if required, correcting the 
invalid condition. There is no change to operands or priority 
level during a program check class interrupt. The stored 
LSB reflects conditions at the time the interrupt occurred 
and contains: 

• The contents of all general registers. 
• Status information (AKR and LSR contents). 
• The address of the failing instruction (IAR contents). 

The contents of the storage address register (SAR) are 
loaded into R7, but has meaning only for specification 
check, invalid storage address, and protect check. The 
programmer must reference the PSW to determine the type 
of program check. 

Interrupts and Level Switching 3-9 



Storage Parity Check 
A storage parity error initiates a machine check class inter­
rupt. The error may occur when accessing a storage loca­
tion that has not been validated since power on. Any retry 
procedure should include refreshing data in the failing 
location. Two unsuccessful.retries are considered a 
permanent failure and the storage location should not be 
used. 

9PU Control Check 
A CPU control check occurs if hardware detects a malfunc­
tion of the processor controls. It is a machine-wide error 
and initiates a machine check class interrupt. A reset is 
generated to the channel, the I/O attachment features, and 
all attached I/O devices. The processor, sensor-based 
output points, and timer values are not reset. The gener­
ated reset should clear the error condition, but validity of 
any previous execution is not guaranteed. No retry is 
recommended. An IPL should be initiated. 

I/O Check 
An I/O check condition occurs if a hardware error is 
detected that may prevent further communication with I/O 
devices. A machine check class interrupt is initiated and 
a reset is generated to the I/O attachment features, the 
channel, and all I/O devices. Error recovery from an I/O 
check depends on the sequence indicator setting (pSW 
bit 12). 

Sequence Indicator Set to Zero. The error occurred during 
an Operate I/O instruction. The address of the failing 
instruction (JAR contents) is available in the stored LSB. 
Retry should be attempted twice. After two unsuccessful 
retries, use of the device should be discontinued. 

Sequence Indicator Set to One. The error occurred during 
an interrupt or cycle steal operation. The instruction 
address (IAR contents) stored in the LSB is not related to 
the error. The sequence of events leading to the I/O check 
is lost, along with all pending interrupt requests within the 
devices. Retry is not recommended. 

Soft Exception Trap 
A soft exception trap interrupt is the result of an exception 
condition that software may choose to handle dynamically. 
All necessary parameters are available to locate and correct 
the condition. The address of the instruction (IAR 
contents) causing the exception is preserved in the level 
status block in main storage. The processor is not reset. 
The programmer must reference the PSW to determine the 
soft-exception type. 

3-10 GA34-0021 

Processor Status Word 
The processor status word (PSW) is used to record error or 
exception conditions in the system that may prevent 
further processing. It also contains certain status flags 
related to error recovery. Error or exception conditions 
recorded in the PSW cause four of the possible seven class 
interrupts to occur. These are machine check, program 
check, soft exception trap, and power/thermal warning. 
See Qass Interrupts in this chapter. 

The Copy Processor Status and Reset (CPPSR) instruc­
tion can be used to examine the PSW. This instruction 
stores the contents of the PSW into a specified location 
in main storage. 

The PSW is contained in a 16-bit register with the 
following bit representation: 

Bit Condition 
00 Specification check 
01 Invalid storage address 
02 Privilege violate 
03 Protect check 
04 Invalid function 

05 Floating-point exception 
06 Stack exception 
07 Not used 
08 Storage parity check 
09 Not used 
10 CPU control check 
11 I/O check 
12 Sequence indicator 
13 Auto-IPL 
14 Translator enabled 
15 Power/thermal warning 

Class 
Interrupt 
Program check 
Program check 
Program check 
Program check 
Program check or 
Soft exception trap 
Soft exception trap 
Soft exception trap 

Machine check 

Machine check 
Machine check 
None 
None 
None 
Power/thermal 

Remarks 

always zero 

always zero 

Status flag 
Status flag 
Status flag 
Note 1 

Note 1. The power/thermal warning class interrupt is controlled by 
the summary mask. 

Bit 00 Specification Check. Set to one if the storage 
address violates the boundary requirements of the specified 
data type. 

Bit 01 Invalid Storage Address. Set to one when an attempt 
is made to access a storage address outside the storage size 
of the system. This can occur on an instruction fetch, an 
operand fetch, or an operand store. 

Bit 02 Privilege Violate. Set to one when a privileged 
instruction is attempted in the problem state (supervisor 
state bit in the level status register is not on). 

c 

o 



D 

o 

o 

Bit 03 Protect Check. In the problem state, this bit is set 
to one when (1) an instruction is fetched from a storage 
area not assigned to the current operation, (2) the instruc­
tion attempts to access a mam storage operand in a storage 
area not assigned to the current operation, or (3) the 
instruction attempts to change a main storage operand in 
violation of the read-only control. 

Bit 04 Invalid Function. Set to one by one of the following 
conditions: 

1. Attempted execution of an illegal operation code or 
function combination. These are: 

Op code 

00111 
01000 
01011 

01011 
01100 
01110 
01111 
11011 
10110 
11101 

Function 

All 
0001,0010,0011,0101,0110,0111 
0001, 1001 (When relocation translator feature 
is not installed) 
0101,0111 
111 
11000,11010,11011,11100,11110,11111 
1X1XX, 01XXX, 1X011, 10001 
All 
All 
1100,1101,1110,1111 

Note. The preceding illegal conditions cause a program check 
class interrupt to occur. 

2. The processor attempts to execute an instruction 
associated with an uninstalled feature. These are: 

Op code 

00100 
01011 

Function 

All (Floating-point feature not installed) 
0011, 1011 (If the floating-point feature is not 
installed and the processor is in supervisor state). 

Note. The preceding condition causes a soft-exception-trap 
class interrupt to occur. 

Bit OS Floating-Point Exception. Set to one when an excep­
tion condition is detected by the optional floating-point 
processor. The arithmetic indicators (carry, even, and 
overflow) define the specific condition. 

Bit 06 Stack Exception. Set to one when an attempt has 
been made to pop an operand from an empty main storage 
stack or push an operand into a full main storage stack. A 
stack exception also occurs when the stack cannot contain 
the number of words to be stored by a Store Multiple (STM) 
instruction. 

Bit 08 Storage Parity. Set to one when a parity error has 
been detected on data being read out of storage by the 
processor. This error may occur when accessing a storage 
location that has not been validated since power on. 

Bit 10 CPU Control Check. A control check will occur if 
no levels are active but execution is continuing. This is a 
machine-wide error. (See I/O check note.) 

Bit 11 I/O Check. Set to one when a hardware error has 
occurred on the I/O interface that may prevent further 
communication with any I/O device. PSW bit 12 (sequence 
indicator) is a zero if the error occurred during an Operate 
I/O instruction and is set to one if the error occurred 
during a non-DPC transfer. The sequence indicator bit is 
not an error in itself but reflects the last interface 
sequence at any time. An I/O check cannot be caused by 
a software error. (See note.) 

Note. The machine check class interrupt initiated by a 
CPU control check or I/O check causes a reset. The I/O 
channel and all devices in the system are reset as if a Halt 
I/O (channel directed command) had been executed. The 
processor, sensor-based output points, and timer values 
are not reset. 

Bit 12 Sequence Indicator. This bit reflects the last I/O 
interface sequence to occur. See "I/O Check" described 
above. 

Bit 13 Auto IPL. Set to one by hardware when an auto­
matic IPL occurs. 

Set to zero by: 

• A power on reset when Auto IPL mode is not selected. 
• Pressing the Load key. 
• An IPL initiated by a host system. 

Refer to Initial Program Load (IPL) in Chapter 2. 

Bit 14 Translator Enabled. When the Storage Address 
Relocation Translator Feature is installed this bit is set to 
one or zero as follows: 

1. Set to one (enabled) 
• An Enable (EN) instruction is executed with bit 12 

of the instruction word set to zero and bit 14 
set to one. 

2. Set to zero (disabled) 
• A Disable (DIS) instruction is executed with bit 14 

of the instruction word set to one. 
• An Enable (EN) instruction is executed wtih bit 12 

of the instruction word set to one. 
• A processor reset (power-on reset, check restart, 

IPL, or system reset key). 

Bit 15 Power Warning and Thermal Warning. Set to one 
when these conditions occur (see Power/Thermal Warning 
class interrupt in this chapter). The power/thermal class 
interrupt is controlled by the summary mask. 

Interrupts and Level Switching 3-11 



Program Controlled Level Switching 
Level switching under program control may be accomplished 
by using the Set Level Block (SELB) instruction. This 
instruction is covered in detail in Chapter 8, Instructions, 
and in general it will: 

• Specify the location of a level status block (LSB) at 
an effective address in main storage. 

• Specify a selected priority level associated with the 
main storage LSB. 

• Load the main storage LSB into the hardware LSB for 
the selected level. 

Note. The hardware LSB consists of the following hard­
ware registers for the selected level: 

1. Instruction address register 
2. Address key register 
3. Level status register 
4. Eight general registers (0-7) 

The system programmer should become thoroughly familiar 
with other effects on the processor caused by execution of 
the SELB instruction. These effects are determined by 
three factors: 

1. The current execution level. 
2. The selected level specified in the SELB instruction. 
3. The state of the in-process flag (Bit 9 of the LSR) 

contained in the main storage LSB. 

Note. Interrupt masking, provided by the summary mask 
and the interrupt level mask register, does not apply to 
program controlled level switching. 

The main storage LSB and the location of the in-process 
flag bit are shown in the following diagram: 

Main storage 
effective 
address 

EA+14 (Hex) 

IAR 
AKR 
LSR 
Register 0 
Register 1 
Register 2 
Register 3 
Register 4 
Register 5 

Register 6 
Register 7 

*In-process flag (bit 9) 

o = off 
1 = on 

I * I 

Execution of the SELB instruction may result in level 
switching or a change in the pending status of a level as 
described in the following sections. 

3-12 GA34-0021 

c 

o 



o 

( \ 
/ 

o 

Selected Level Lower Than Current Level and 
In-process Flag On 
These conditions cause the selected level to be pending. 
The main storage LSB is loaded into the hardware LSB 
for the selected level. Execution of a LEX instruction on 
the current level causes the selected level to become active 
providing no higher priority interrupts are being requested. 

Load 
LSB 

LEX 

Selected level 
('" l\ - - - - - - - Pe;d~g - - - - - - - - +-.....-.....-.....-...-.....-....---........ ......--.--.-­
\" ",Ii- _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _'_-L.. ....... ..J--L.. ......... --L..--'---'---'"--.I..--Io_ 

Selected Level Equal to Current Level and 
In-process Flag On 
These conditions cause the selected level to become the 
current level. The main storage LSB is loaded in to the 
hardware LSB for the selected level. 

Current and 
Selected level 

~ 9 
I I I I I I I I I IS(:)L BI 

Selected Level Higher Than Current Level and 
In-process Flag On 
These conditions cause the selected level to become the 
current level. The main storage LSB is loaded into the 
hardware LSB for the selected level. This is a level switch 
to the higher (selected) level and causes the lower level to 
be pending. 

Selected level (-'I I 

~~ 

T 
=======~~~~~~_=_~_:I~:I-_:I-s::E:~L~::B:_I .... = = -= -=-~;~~!-_-_ -_ -___ -J Current level 

Interrupts and Level Switching 3-13 



Selected Level Lower Than Current Level and 
In-process Flag Off 
These conditions cause the selected level to be not pending. 
The main storage LSB is loaded into the hardware LSB for 
the selected level. 

Current level I I Is E L B I 

Selected level 

$ 
r------ :------- -;(-, 
L _____ P~~g _____ .!t _.) Not pending 

Selected Level Equal to Current Level and 
In-process Flag Off 
These conditions cause an exit from the selected (current) 
level. This exit is identical to executing a LEX instruction 
with the exception that the main storage LSB is loaded 
into the hardware LSB for the selected level. Refer to the 
LEX Instruction in Chapter 8. 

~ 9 
Selected Level Higher Than Current Level and 
In-process Flag Off 
The main storage LSB is loaded into the hardware LSB for 
the higher (selected) level. 

I I 

r--------------~~~----------------, Selected level Not pending I' Not pending L ______________ ~~---------------~ 

3-14 GA34-0021 

Load 
LSB 

c 

o 



D 

o 

Interrupt Masking Facilities 
Three levels of priority interrupt masking are provided to 
the programmer for control of the interrupt processing. 
These consist of: 

1. Summary Mask (LSR bit 11) 
2. Interrupt Level Mask Register 
3. Device Mask (I-bit) 

Each masking facility has specific control as explained in 
the following sections. 

Summary Mask 
The summary mask provides a masking facility for priority 
interrupts and certain class interrupts. The state of the 
summary mask (enabled or disabled) is controlled by bit 11 
in the level status register (LSR) of the active priority level. 
When bit 11 is set to zero, the summary mask is disabled 
and prevents (1) all priority interrupts regardless of priority 
level, and (2) power/thermal and console class interrupts. 
All other class interrupts are not masked. When bit 11 is 
set to one, the mask is enabled and the interrupts are 
allowed. 

The summary mask is disabled and enabled as follows: 

• Disabled (Set to Zero) 
1. When a Supervisor Call (SVC) instruction is exe­

cuted, the summary mask for the active level is 
disabled. 

2. Execution of a Disable (DIS) instruction, with bit 
15 of the instruction equal to one, causes the 
summary mask for the active level to be disabled. 

3. All class interrupts disable the active level summary 
mask. 

4. The summary mask for a selected level is disabled 
by executing a Set Level Block (SELB) instruction 
with bit 11 of the LSR to be loaded equal to zero. 

5. The summary mask bits for priority levels 1-3 are 
set to zero by a system reset, power-on reset, or 
IPL. 

• Enabled (Set to One) 
1. Execution of an Enable (EN) instruction, with bit 

15 of the instruction equal to one, causes the active 
level summary mask to be enabled. 

2. The summary mask for a selected level is enabled 
by executing a Set Level Block (SELB) instruction 
with bit 11 of the LSR to be loaded equal to one. 

3. The level zero summary mask is enabled by a 
system reset, power-on reset, or IPL. 

4. The summary mask for the interrupted-to level is 
enabled by a priority interrupt. 

Note. If the processor is in the wait state, the summary 
mask is enabled or disabled as defined by bit 11 in the 
LSR of the last active priority level. 

Interrupt Level Mask Register 
The interrupt level mask register is a 4-bit register used for 
control of interrupts on specific priority levels. Each level 
is controlled by a separate bit of the mask register as shown 
below: 

Interrupt Level Mask Register 

Bit position o 1 2 3 

I I I I 
Priority level o 123 

With a bit position set to one, the corresponding priority 
level is enabled and permits interrupts. With a bit position 
set to zero, the corresponding priority level is disabled. 
The Set Interrupt Mask Register (SEIMR) instruction is 
used to control bit settings in the interrupt level mask 
register. The Copy Interrupt Mask Register (CPIMR) 
instruction may be used to interrogate the register. 

Note. All levels are enabled (Set to one) by a system reset, 
power-on reset, or IPL. 

Device Mask (I-bit) 
Each interrupting device contains a one-bit mask called the 
device mask or interrupt bit (I-bit). Interrupts by the 
device are permitted when its device mask is enabled (set 
to one). With the device mask bit disabled (set to zero), 
that device cannot cause an interrupt. The device mask is 
controlled by a Prepare command in conjunction with 
an Operate I/O instruction. See Chapter 8,lnstructions, 
and Chapter 4, Input/Output Operations. 

Interrupts and Level Switching 3-15 



c 

3-16 GA34-0021 



o 

o 

Input/output (I/O) operations involve the use of 
input/output devices. These devices are attached to the 
processor and main storage via the I/O channel with the 
channel directing the flow of information. The I/O channel 
can accommodate a maximum of 256 addressable devices. 
The general data flow is shown in Figure 4-1. 

Main 
Storage 

Processor 
Channel 
Controls 

I/O Device 
01 

I/O Channel 

I/O Device 
FF 

Figure 4-1. Block diagram of Series/l Model 5 system 

The channel supports three basic types of operations: 

• Direct Program Control (DPC) Operations - An 
immediate data transfer is made between main storage 
and the device for each Operate I/O instruction. The 
data may consist of one byte or one word. The opera­
tion mayor may not terminate with an interrupt. 

• Cycle Steal Operations - An Operate I/O instruction 
can initiate cycle-stealing data transfers of up to 
65,535 bytes between main storage and the device. 
Cycle steal operations are overlapped with processing 
operations. Word or byte transfers, DCB chaining, 
burst mode, and program controlled interrupt can be 
supported. All cycle stealing operations terminate with 
an interrupt. 

• Interrupt Servicing - Four preemptive priority interrupt 
levels are available to facilitate device service. The 
device interrupt level is assignable by the program. In 
addition, the device interrupt capability may be masked 
under program control. Interrupt requests, along with 
cycle steal requests, are presented and polled concur­
rently with DPC and cycle-steal data transfers. 

Chapter 4. Input/Output Operations 

The channel provides comprehensive error checking 
including', time-outs, sequence checking, and parity check­
ing. Error, exception, and status reporting are facilitated 
by (I) recording condition codes in the processor during 
execution of Operate I/O instructions, and (2) recording 
condition codes and an Interrupt Information Byte (lIB) 
in the processor during interrupt acceptance. Additional 
status words may be used by the device as necessary to 
describe its status (see I/O Condition Codes and Status 
Information in this chapter). 

Input/Output Operations 4-1 



Operate I/O Instruction 
The Operate I/O instruction initiates all I/O operations 
from the processor. It is a privileged instruction and is 
independent of specific I/O parameters. The generated 
effective address points to an immediate device control 
block (IDCB) in main storage. The IDCB consists of two 
words that contain an I/O command, a device address, and 
an immediate data field. For DPC operations, the immedi­
ate data field is used as a device data word. For cycle steal 
operations, the immediate data field points t~ a device 
control block (DCB) that provides additional information 
needed for the operation. For more details of the Operate 
I/O Instruction refer to Chapter 8. 

Operate I/O Instruction 

10 I I 0 II 0 0 0 I R21·11 I 0 0 

Effective address 

IDCB 
Command Device address Immediate data field 

o 7 8 15 16 31 

~~--------------~y--------------~' . I 
Cycle steal operatIOns I 

r-----------------------------------~ 
I 

+ 
DCB 

1 1 

*Indirect addressing bit 

4-2 GA34-0021 

('~~ ,y 

o 



o 

C) 

o 

Immediate Device Control Block (IDCR) 
The location in storage specified by the Operate I/O instruc­
tion contains the first word of the IDCB. The IDCB con­
tains an I/O command that describes the specific nature of 
the I/O operation. This command is used by the channel 
for execution of the operation. The IDCB must always be 
on a word address boundary and has the following format: 

IDCB (immediate device control block) 
, Command field , Device address field 

o 7 8 15 

'Immediate data field 

16 31 

Command field (bits 0-7) 
Bit 0 

Bit 1 

Bits 2-3 

Bits 4-7 

Channel directed. If this bit is equal to one, the I/O 
command is directed to the channel rather than to a 
specific device. The Halt I/O command is the only 
valid channel directed command. Any other com­
mand with bit 0 set to one causes a command reject 
exception condition. 

Read/Write. If this bit is equal to one, the data 
contained in the immediate field is transferred to the 
addressed I/O device. If this bit is equal to zero, the 
immediate field contains the data received from the 
I/O device at the conclusion of the 10 instruction. 

Function. This field specifies the general type of 
I/O operation to be performed (see Figure 4-2). 

Modifier. This field contains four bits for further 
specification of a function, if required (see Figure 4-2). 

Device address field (bits 8-15) 

This byte contains the I/O device address. The address 
range is 00 through FF (hex). 

Immediate data field (bits 16-31) 

This field contains a device data word for DPC operations. 
It contains the address of a device control block for cycle 
steal operations. 

Figure 4-2 shows the relationship of the IDCB and the 
Operate I/O instruction. It also contains a chart of the 
various I/O commands. The Start command and the Start 
Cycle Steal Status command are used to initiate cycle steal 
operations. The remaining commands are used for DPC 
operations only. 

Input/Output Operations 4-3 



4-4 GA34-0021 

Operate I/O Instruction 

10 1 1 0 11 0 0 0 I R2 

o 4 5 7 8 101112 1516 

Effective address 

! 
IDCB (immediate device control block) 

Immediate field 

1 15 16 

11;:IiI~it :;:;:;:;:;:;:;:;:::::;:;:::::: 
Function **Modifier Hex Specific command 

o 0 00 Read XXXX OX Read 
o 0 01 Read XXXX IX Read 
o 0 10 Read status 0000 20 Read ID 
o 0 10 Read sta tus XXXX 2X Read status 
o 0 11 3X Unused*** 
o 00 Write XXXX 4X Write 
o 01 Write XXXX 5X Write 
o 10 Control 0000 60 Prepare 
o 10 Control XXXX 6X Control 
o 10 Control III I 6F Device reset 
o 11 Start XXXX 7X Start 
o 11 Start III I 7F Start cycle steal status 
I 11 Channel 0000 Fa Halt I/O 

*Indirect addressing bit. 
**Modifier XXXX is device dependent. Other modifiers are system defined. 

***To avoid future code obsolescence, this command format must not be used. 

Figure 4-2. lOeB and I/O commands 

31 c 

Type of operation 

DPC 
DPC 
DPC 
DPC 
Unused 
DPC 
DPC 
DPC 
DPC 
DPC 
Cycle steal G\ Cycle steal .J 
Channel 

o 



o 

() 

o 

Device Control Block (DCB) 
This section describes the device control block that is used 
for a cycle steal operation. The actual cycle steal opera­
tion is explained in a later section of this chapter. The 
DeB is an eight-word control block residing in the super­
visor area of main storage. It contains the specific param­
eters of a cycle steal operation. The device fetches the 
DeB using the cycle steal mechanism. The format of the 
DeB is shown in Figure 4-3. 

Word 

o 

2 

3 

4 

5 

6 

7 

DCB (device control block) 

Control word I---

Device parameter word 1 

Device parameter word 2 

Device parameter word 3 

Device parameter word 4 

Device parameter word 5 

Count 

Data address 

0 IS 

Control word format (DCB word 0) 
Addr key Modifier bits ------ -I .... 

o I 2 345 7 8 

Reserved 
Input flag 

14 15 

III L ::;~r:::::ePtion (SE)* 

Program controlled interrupt (PCI)* 
L-______ Chaining flag * 

* Device option bits 

Figure 4-3. Device control block 

The DeB words have the following meanings: 

Control word 

Bit 0* Chaining flag. If this bit is equal to one, a DCB 
chaining operation is indicated. 

Bit 1 * Programmed controlled interrupt (PCI). If this bit 
is equal to one, the device presents a programmed 
controlled interrupt (PCl) at the completion of the 
DCB fetch. 

Bit 2 Input flag. The setting of this bit tells the device 
the direction of data transfer. 

Bit 3 

0= Output (main storage to device) 
1 = Input (device to main storage) 
For bidirectional data transfers under one DCB 
operation, this bit must be set to one. For control 
operations involving no data transfer, this bit must be 
set to zero. 

Reserved. This bit must be set to zero to avoid future 
code obsolescence. 

Bit 4* Suppress exception (SE). If this bit is equal to one, 
the device is allowed to suppress the reporting of 
certain exception conditions. The device can then 
take alternative action depending on the condition. 

Bits 5-7 Cycle steal address key. This key is presented by the 
device during data transfers. It is used to ascertain 
storage access authorization (see Chapter 5, Storage 
Protection). 

Bits 8-15 Modifier. These are device dependent bits with one 
exception. When a device uses burst mode, it is 
specified in bit 15. These bits may be used for func­
tions that are unique to a particular device. 

*Chaining, PCI, and SE are device options that are available on a 
device feature basis. Any bit not used by the device should be set 
to zero although it is not checked by the device. 

Refer to the Cycle-Steal Device Options section of this chapter. 

Device Parameter Words 1-2 

These parameter words are device-dependent control words 
and are implemented as required. Refer to the individual 
device publications for definition. 

Device Parameter Word 3 

When PCI is specified, the high-order byte (bits 0-7) of 
this word is used for a DeB identifier. The device places 
the identifier in the interrupt information byte when the 
pel is processed. The low-order byte (bits 8-15) is always 
device dependent. The high-order byte is device dependent 
when PCI is not specified. 

Input/Output Operations 4-5 



Device Parameter Word 4 

If suppress exception (SE) is used by a device, this word 
specifies a 16-bit main storage address called the status 
address. This address points to a residual status block that 
is stored by the device following completion of the DCB 
operation. 

If suppress exception is not used by a device, a residual 
status block is not stored. In this case, parameter word 4 
is device dependent. Refer to Cycle-Steal Device Options 
in this chapter. 

Device Parameter Word 5 

If the DCB chaining bit (bit 0 of the control word) is equal 
to one, this word specifies a 16-bit main storage address of 
the next DCB in the chain. If chaining is not indicated, this 
parameter word is device dependent. 

Count 

The count word contains a 16-bit unsigned integer repre­
senting the number of data bytes to be transferred for the 
current DCB. Count is specified in bytes with a range of 0 
through 65,535. The count specification must be even for 
word-only devices. 

Data Address 

This word contains the starting main storage address for 
the data transfer. 

Programming Considerations When Using the DCB 

1. Only those words required for the cycle stealing opera­
tion are fetched by the device and they may be fetched 
in any order. Contents of the words must be specified 
correctly; if not, the device records a DCB specification 
check in the interrupt status byte and terminates the 
cycle steal operation with an exception interrupt. 

2. The DCB address (in the IDCB), the chain address, and 
the status address must be even (word boundary). If 
the DCB address is odd, the device records a command 
reject condition code and terminates the cycle steal 
operation. An odd chain address or status address 
results in a DCB specification check. 

Note. Condition code and status recording are explained 
in detail in a separate section of this chapter. 

I/O Commands 
This section describes each I/O command and shows the 
related IDCB. The command field (bits 0-7) of the IDCB 
contains the binary value of the command. An X in this 
field means the value is device dependent. 

4c6 GA34-0021 

Read 

IDCB (immediate device control block) 
Command field Device address field 
o 0 0 X X X X X X X X X X X X X 
o~ .... ___ .-____ ] 8~ .... ___ y,. __ -,,}5 

OX 
IX 

OO-FF 

IImmediate data field 
Data word 

16 31 

This command transfers a word or byte from the addressed 
device to the data word of the IDCB. If a single byte is 
transferred, it is placed in bits 24-31 of the data word with 
bits 16-23 set to zeros. Correct parity is always main­
tained and checked for both bytes on the I/O channel. The 
individual devices may use either the OX or IX type of 
read command. The two commands operate the same in 
the channel. 

Read ID 

IDCB (immediate device control block) 
Command field Device address field 
001 000 0 0 X X X X X X X X 

~"" ____ y~ ____ ~7 ~ .... _____ y,. ____ ~!5 

20 OO-FF 

IImmediate data field 
Data word 

16 31 

This command transfers an identification (ID) word from 
the device to the data word of the IDCB. The device 
identification word contains physical information about 
the device and may be used to determine the devices that 
are attached to the system. This word is not related to 
the interrupt ID word associated with interrupt processing. 
The device ID word format is: 

o 

Bits 0-12 

Bit 13 

Bit 14 

Assigned code 
12131415 

Unique identification code for the device 

Zero - not a controller device or the device does not 
report delayed command reject 
One - controller device or any device that reports 
delayed command reject 

Zero - not a cycle steal device 
One - cycle steal device 

Bit 15 Zero - IBM device 
One - OEM device 

Note. A controller may control more than one I/O device and is not 
directly addressable, but is not transparent to software. That is, the 
controller may cause busy or exception conditions as opposed to 
those caused by an attached I/O device. 

o 

o 



D 

() 

o 

Read Status 

IDCB (immediate device control block) 
Command field Device address field 
001 0 X X X X X X X X X X X X 

o 7 8 15 
~~ ____ ~~ ____ ~~ ~~ ____ ~~ ____ ~J 

2X OO-FF 

rmmedlate data/ield 
Data word 

16 31 

This command transfers a device status word from the 
device to the data word of the IDCB. Contents of the 
status word are device dependent. 

Write 

IDCB (immediate device control block) 

Command field Device address field 
o lOX X X X X X X X X X X X X 

o 7 8 15 
'-____ ~y~ __ --~J ''-____ ~y~----~J 

4X OO-FF 
5X 

I Immediate data field 
Data word 

16 31 

This command transfers a word or byte to the addressed 
device from the data word of the IDCB. The individual 
device may use either format of the command. If a single 
byte is to be transferred, it must be placed in bits 24-31 
of the data word and bits 16-23 must be set to zero. A 
byte oriented device may ignore bits 16-23 (including the 
parity bit) on the I/O channel but these bits should be 
zeros to avoid future code obsolescence. 

Note. Both bytes of the IDCB data word are fetched by 
the channel and placed on the I/O data bus (in good 
parity) even if not required by the device. 

Prepare 

IDCB (immediate device control block) 
Command field Device address field 
o 1 1 0 0 0 0 0 X X X X X X X X 

O,'-___ ~ __ --~ J 8,. 15 
J 

60 OO-FF 

IImmediate data field 

Zeros Level I I 
16 26 27 30 31 

This command transfers a word (to the addressed device) 
that controls the device interrupt parameters. The word is 
transferred from the immediate data field of the IDCB in 
the format shown. A priority interrupt level is assigned to 
the device by the level field. The I-bit (device mask) con­
trols the device interrupt capability. If the I-bit equals 1, 
the device is allowed to interrupt. If the I-bit equals 0, the 
device cannot interrupt. See Prepare I/O Device for 
Interrupt in Chapter 3. 

Note. The IBM 4955 Processor does not recognize a 
priority level other than 0-3. Lost interrupts result if a 
device is prepared for a level other than 0-3. 

Control 

IDCB (immediate device control block) 
Command field Device address field 
o 1 lOX X X X X X X X X X X X 

~~ ____ ~y~----~7 ~~ ____ ~~ ____ ~}5 
6X OO~FF 

ilmmedlate data !;eld 
Data word 

16 31 

This command initiates a control action in the addressed 
device. A word, or byte, transfer from the data word of the 
IOCB to the addressed device mayor may not occur, 
depending on device requirements. If a single byte is to be 
transferred it must be placed in bits 24-31 of the data word 
and bits 16-23 must be set to zero. 

Note. Both bytes of the IDCB data word are fetched by 
the channel and placed on the I/O data bus (in good 
parity) even if not required by the device. 

Input/Output Operations 4-7 



Device Reset 

IDeB (immediate device control block) 
Command field Device address field 
0 1 1 0 1 1 1 1 X X X X X X X X 
0, 7 8, }5 

~ 

y y 

6F OO-FF 

IImmediate data field 

Zeros 
16 31 

This command resets the addressed device. A pending 
interrupt from this device (or a busy condition) is cleared. 
The device mask (I-bit) is not changed. There is no change 
to the assigned priority level for the device. The residual 
address (device status) and output sensor points are not 
affected. Parity checking of the IDCB data word is not 
performed. 

Start 

IDeB (immediate device control block) 
Command field Device address field 
o 1 1 I X X X X X X X X X X X X 
o~ ..... ' ___ ..,-__ -,] 8~ ..... ___ y.".. __ ~}5 

7X OO-FF 

IImmediate data field 
DeB address 

16 31 

This command initiates a cycle steal operation for the 
addressed device. The second word of the IDCB is trans­
ferred to the device. It contains a 16-bit logical storage 
address of a device control block (DCB) to be used by the 
device. See Cycle Steal in this chapter. 

Start Cycle Steal Status 

lOeB (immediate device control block) 
Command field 

o I I I I 
Device address field 

I I X X X X X X X X 
() 7 8 15 
~""'---".--~ ~""'---""'---'" 

7F OO-FF 

IImmediate data field 
DeB address 

16 31 

This command initiates a cycle steal operation for the 
addressed device. Its purpose is to collect status informa­
tion from the addressed device. The second word of the 
IDCB is transferred to the device and contains a 16-bit 
logical address of a device control block (DCB). See 
Start Cycle Steal Status Operation in this chapter. 

4-8 GA34-0021 

Halt I/O 

IDeB (immediate device control block) 
Command field Device address field 
1 1 1 100 0 0 

~ 7 8 
-----v,..---~ 

15 

FO 

I Immediate data field 

16 31 

This is a channel directed command that causes a halt of 
all I/O activity on the I/O channel and resets all devices. 
No data is associated with this command. All pending 
device interrupts are cleared. Device priority-interrupt­
level assignments and device masks (I-bits) are unchanged. 
The residual address (device status) and output sensor 
points are not affected. 

Notes. 
1. The channel is always able to accept and execute this 

command. 
2. Halt I/O is the only valid channel directed command. 

DPe Operation 
A DPC operation causes an immediate transfer of data or 
control information to or from an I/O device. An Operate 
I/O instruction must be executed for each data transfer 
and causes the following events to occur (refer to Figure 
4-4). 

1. The Operate I/O instruction points to an IDCB in 
main storage. It 

2. The I/O channel uses the IDCB to select the addressed 
device and to determine the operation to perform. II 

3. The I/O channel sends data to the device from main 
storage, or from the device to main storage. II 

4. The device sends an 10 instruction condition code to 
the level status register (LSR) in the processor. II 

Notes. 
1. The DPC operation may end with a priority interrupt 

if the device has this capabiltiy. Refer to I/O Inter­
rupts in Chapter 3. 

2. There are two types of condition codes: the first is 
an I/O instruction condition code and is available 
immediately after completion of an Operate I/O instruc­
tion; the second is an interrupt condition code and is 
presented upon acceptance of a priority interrupt. The 
code significance is different for the two cases. Refer 
to I/O Condition Codes and Status Information in this 
chapter. o 



Operate I/O Instruction 

D o 0 ,Address 

L Effective address 
.----.---~ 

11 

Hex Command IDCB immediate field 

OX, lX Read Data (word or byte) 
20 Read ID Device ID word 
2X Read status Device status word 
4X,5X Write Data (word or byte) 
60 Prepare Interrupt parameters 
6X Control Data (word or byte) 
6F Device reset Zero 

Device address 

o 2 3 4 7 8 15 16 31 

~~--------------~------------~; ~~--------------~--------------'~ 

I/O device 

mI 
II 

(note 1) 

1
0

1 )1 1 

t 10 instruction CC m 
Note . LSR Bit 0 even indicator 

Bit 1 carry indicator 
Bit 2 overflow indicator 

Figure 4-4. Direct program control I/O operation 

Input/Output Operations 4-9 



Cycle Steal 
The cycle steal mechanism allows data service to or from 
an I/O device while the processor is processing instructions. 
This overlapped operation allows multiple data transfers 
to be started by one Operate I/O instruction. The processor 
executes the Operate I/O instruction, then continues 
processing instructions while the I/O device steals main 
storage data cycles when needed. The channel resolves 
contention among multiple devices requesting cycle ~teal 
transfers. The operation always ends with a priority inter­
rupt from the device. 

The cycle steal operation includes certain capabilities 
that are provided on a device feature basis: 

1. Burst mode 
2. DCB chaining 
3. Programmed controlled interrupt (PCI) 
4. Suppress exception (SE) 
5. Storage addresses and data transfers by byte or word 

See the Cycle-Steal Device Options section of this chapter 
for details of these facilities. 

All cycle steal operations terminate with a priority inter­
rupt, providing, the device has executed a successful Prepare 
command, with the device mask (I-bit) enabled. If the 
device mask is disabled, the interrupt presentation is 
blocked and the device remains busy until (1) the condi­
tion is cleared by a reset, or (2) the proper Prepare com­
mand is executed. 

All cycle steal operations are started by an Operate I/O 
instruction that points to an IDCB. The immediate data 
field of the IDCB contains the address of a device control 
block (DCB). The DCB is fetched by the device using a 
cycle-steal address key of zero. Within the DCB are 
specific parameters of the cycle steal operation. See Device 
Control Block in this chapter. 

There are two types of cycle steal commands: 

• Start 
• Start Cycle Steal Status 

Start Operation 
A cycle, steal operation begins after successful execution of 
the Start command. The IDCB, pointed to by an Operate 
I/O instruction, has the format: 

IDCB (immediate device control block) 
Command field Device address field 

o 1 1 1 X X X X X X X X X X X X 
o 7 8 15 
~"""---.....---~ ~"""---....----' 

7X OO-FF 

IImmediate data field 

DCB address 
16 31 

4-10 GA34-0021 

The command modifier (X) is device dependent. The DCB 
address always specifies a word boundary and is the start­
ing storage address of the DCB. This address is used by the 
device to fetch the DCB, using the cycle steal mechanism. 

A cycle steal operation is presented in the following 
chapt. Use Figure 4-5 in conjunction with this chart. 
Condition codes used in the chart are fully explained in 
the section I/O Condition Codes and Status Information 
in this chapter. 

Note. An I/O device must be properly prepared (using a 
Prepare command), before it is allowed to interrupt. 

Cycle steal major steps Remarks 

Start cycle steal 1. Execute 10 instruction. 
2. IDCB contains Start command and 

points to a DCB. The DCB address is 
sent to the device. lEI 

3. Device presents condition code 7 
(bits 0-2 in the LSR). III 

Device fetches DCB 1. Device uses cycle steal mechanism to 
fetch DCB. II 

2. Cycle steal address key of zero is used. 

Data transfer 1. Data is transferred to or from the device 
in word or byte format. II 

2. Transfer continues until count in DCB 
is exhausted. 

3. DCB specifies cycle steal address key for 
data area. 

Termination (no 1. Device presents interrupt request. 
error condition) 2. Channel polls I/O attachment feature 

and accepts request. 
3. Device sends interrupt ID word and 

interrupt condition code 3 (device end). 

Termination 1. Device presents interrupt request. 
(Exception condition) 2. Channel polls I/O attachment feature 

and accepts request. 
3. Device sends interrupt ID word and 

interrupt condition code 2 (exception). 

Note. Other events that might occur during the cycle steal 
operation are: 

Chaining 

Program controlled 
interrupt 

Suppress Exception 

1. Device completes the current DCB opera­
tion but does not present an interrupt 
request. 

2. Device fetches next DCB in the chain. II 
1. Device fetches DCB (PCI bit = 1). 
2. Device initiates an interrupt and sends 

an interrupt ID word and interrupt 
condition code 1 (PCI). 

1. Device completes current operation. 
2. Device stores status at the main storage 

location defined by DCB parameter 
word 4. 

c 

{~ 
~J 

o 



Operate I/O Instruction 

D 
I Add", .. 

Effective address 

IDCB 

Command Device address DCB address 
0200 0500 

o 7 8 15 16 31 

~~--------------~------------~~ 

LSR 

I I ~D m 
023 15 Device 
"-v-' 

m 

DCB II 
05 00 Control word 

-:: ~ =;:: 
Data area m OA 0600 ~-l 0800 

05 

Count I 
II I ::,::: .::::: 

OE 0800 I 
I 05 

I 
I 
I 
I 
I 
I Chained DeB 
L_ ---. 0600 

........... ..... '--

*Indirect addressing bit 

o Figure 4-5. Example of cycle steal control information 

Input/Output Operations 4-11 



Start Cycle Steal Status Operation 
The purpose of this operation is to obtain data from the 
device if the previous cycle steal operation terminates due 
to an error or exception condition. The operation is 
initiated by a Start Cycle Steal Status command. The 
IDCB format is: 

IDeB (immediate device control block) 
Command field Device address field 

011 1 1 1 1 1 X X X X X X X X 

o 7 8 15 
~~-----v----~~ ~~-----v----~~ 

7F OO-FF 

rmmediat< data field 
DeB address 

16 31 

This command uSeS a special DCB format with some words 
and fields set to zeros (see Figure 4-6). 

Word DeB (device control block) 

o Control word 
0 0 1 0 OIAddr keyl 0 0 0 0 0 0 0 0 

Not used (zeros) 

2 Not used (zeros) 

3 Not used (zeros) 

4 Not used (zeros) 

5 Not used (zeros) 

6 Byte count 

7 Data address 

o 15 

Figure 4-6. DeB for start cycle steal status operation 

4-12 GA34-0021 

Programming Note. 
Concerning the DCB for the start cycle steal status 
operation: 

1. Bits designated as zero are not checked by hardware 
(see Figure 4-6). 

2. The count is specified in bytes. 
3. The maximum count is device dependent. 
4. The validity of a count value less than the maximum 

value is device dependent. 
S. If the maximum count is exceeded, or a count value is 

specified that indicates the partial storing of a word 
length parameter, the device records a DCB specifica­
tion check in the ISB and terminates the operation. 

6. An odd data address also results in a DCB specification 
check. 

Data is transferred to main storage starting at the data 
address specified in the DCB. This data consists of residual 
parameters and device dependent status information and 
has the following formats: 

Word 0 Residual address 

Word 1 Device cycle steal status word 1 

Word 2 Device dependent status word 

() 15 
,.V V 

Residual Address. This word contains the main storage 
address of the last attempted cycle steal transfer associated 
with a Start command. It may be a data address, a DCB 
address, or a residual-status-block address. It is updated 
to the current cycle-steal storage address upon execution 
of cycle steal transfers. For word transfers, the residual 
address points to the high-order byte of the word. If an 
error occurs during a start cycle steal status operation, this 
address (as contained within the device) is not altered. 
Device reset, Halt I/O, machine check, and system reset 
have no effect on the residual address in the device. It is 
cleared by a power-on reset. Following a power-on reset 
the residual address is: 

• 0000 (Hex) for a byte-oriented device. 
• 0001 (Hex) for a word-oriented device. 

o 



o 

o 

Device Cycle-Steal-Status Word 1. This word contains the 
residual byte count of the previous cycle steal operation 
associated with a start command. The byte count is 
initialized by the count field of a DeB associated with a 
Start command, and is updated as each byte of data is 
successfully transferred via a cycle steal operation. It is not 
updated by cycle-steal transfers into the residual status 
block. The residual byte count is not altered if an error 
occurs during a start cycle steal status operation. It is 
reset by (1) power-on reset, (2) system reset, (3) device 
reset, (4) Halt I/O, and (5) machine check condition. 

Note. The contents of the device cycle-steal-status word 
1 are device dependent if the device does not: (1) imple­
ment suppress exception (SE), or (2) store a residual byte 
count as part of its cycle-steal status. 

Device Dependent Status Words. The number and contents 
of these words are specified by the individual device. 
Three conditions can cause bits to be set in the device 
dependent status words (refer to individual device 
pUblications). 

1. Execution of an I/O command that causes an exception 
interrupt. 

2. Asynchronous conditions in the device that indicate an 
error, exception, or a state condition. 

3. As defined by the individual device. 

The bits are reset as follows: 

1. For the first condition listed above, the bits are reset 
by the acceptance of the next I/O command (except 
Start Cycle Steal Status) following the exception 
interrupt. These bits are also reset by a power-on 
reset, system reset, or execution of a Halt I/O 
command. 

2. For the second condition, the bits are reset on a device 
dependent basis. 

3. For the third condition, the bits are reset as defined by 
the individual device. 

Cycle-Steal Device Options 
The I/O channel supports operations such as burst mode 
and chaining when required by individual devices. Bits in 
the DCB control word are used to activate these operations. 
Refer to the individual device publications for the device 
options used. The following sections explain the 
operations. 

Burst Mode 
Burst mode, when used by a device, is specified in bit 15 
of the DCB control word. If bit 15 is equal to one, the 
transfer of data takes place in burst mode. This mode 
dedicates the I/O channel to the device until the last data 
transfer for the DCB is completed. Cycle steal interleave, 
by other devices, is prevented. Burst mode also prevents 
any priority interrupt request from being accepted by the 
processor. 

The maximum burst rate for the 4955 channel is: 

• 1.8 megabytes per second for storage input cycles. 
• 1.5 megabytes per second for storage output cycles. 

Chaining 
The purpose of chaining is to allow the programmer to 
sequence an I/O device through a set of operations by using 
a chain of DCBs. Bit 0 of the DCB control word (when set 
to one) indicates a chaining operation. This means that the 
chained DCB, fetched by the device, is interpreted as a 
new operation (or function) to be performed. The DCB 
may be equal to, but not a continuation of, the operation 
specified by the previous DCB. 

When the current DCB indicates a chaining operation, 
device parameter word 5 of the DCB must contain a main 
storage address that points to the next DCB in the chain. 
The device completes the current operation but does not 
present an interrupt request (excluding PCI) to the 
processor. Instead, the device fetches the next DCB in 
the chain and continues operation. 

Note. The chaining operation has no effect on programmed 
controlled interrupt (PCI). These interrupts, when specified 
in the DCB, still occur at the completion of the DCB fetch 
operation. 

Programmed Controlled Interrupt (PCI) 
Bit 1 of the DCB control word (when set to one) tells the 
device to present a PCI to the processor at the completion 
of the DCB fetch prior to data transfer. 

When the PCI is serviced, a DCB identifier byte is 
returned to the processor in the interrupt information byte 
(lIB). Refer to DCB device parameter word 3 in this 
chapter. Two conditions should be noted by the 
programmer: 

1. Chaining and data transfers associated with the DCB 
may commence even if the PCI is pending. 

2. If the PCI is pending when the device encounters the 
next interrupt causing condition, the PCI condition is 
discarded by the device and replaced with the new 
interrupt condition. 

Input/Output Operations 4-13 



Suppress Exception (SE) 
When a device uses this option it is allowed to suppress the 
reporting of certain exception conditions that would 
normally cause an exception interrupt. The device is then 
allowed to take alternative action depending on the condi­
tion. The suppressed exception conditions are reported to 
the programmer as status information upon completion of 
the operation. Refer to a subsequent section, Suppression 
of Exceptions, for details of the various actions a device 
might take. 

The suppress exception option also provides for auto­
matic logging of status information (including suppressed 
exceptions) into main storage. When the SE bit for a DCB 
is set to one, the device always stores a residual status block 
into main storage after successful completion of the data 
transfer for the DCB. Device parameter word 4 of the DeB 
must be used to specify the starting main storage address 
for the residual status block. Note that a residual status 
block is stored even if there are no exception conditions 
to be suppressed. 

The following section shows the residual status block 
that is stored. 

Residual Status Block 

The residual status block is stored into main storage at the 
location pointed to by the status address (DCB word 4). 
The device uses an address key for this operation that 
corresponds to the DCB address space. The size of a 
residual status block is fixed for each device with a limit 
of 8 words total. The format is: 

Word 

o 
reserved status flags NE - T -

I 0 7 8 14 151 I 
J.. J. Maximum 

T T of 8 words 

~d~v~e:!~~~n~ ~~s= := := = ~ ~ _-_____ := ~_l_ 
o 15 

Word 0 Contains the residual byte count associated with the OCB. 

Word 1 EOC is the End of Chain bit and is set to one for all 
conditions that would terminate a chaining operation. 
NE is the No Exception bit and is set to one when the 
operation is completed and no exceptions are reported. 
The Status Flags are device dependent flags that indicate 
suppressed exception conditions. 

Any additional words are device dependent as to 
number and content. Refer to the individual device 
publications for the additional status information and, 
also, the bit significance of the status flags. 

4-14 GA34-0021 

Suppression of Exceptions 

An exception condition can be suppressed by a device 
only when it occurs during a data transfer operation. It 
cannot be suppressed if it occurs during (1) a DCB fetch, 
(2) storing of a residual status block, or (3) a cycle steal 
statu~ operation. A second requirement of a suppressible 
exception is that the device be capable of continuing 
operation in a normal and predictable manner after 
occurrence of the exception. If these conditions are not 
met, the exception condition causes an exception interrupt. 
When a suppressible exception is encountered, the device 
initiates one of a possible three types of action depending 
on the device and the exception condition. Note that the 
number of action types used by a device and the suppress­
ible exceptions for each type are a' device specification. 
Refer to the individual device publication. The three 
action types are: 

1. Suppress Exception and Continue. The exception 
condition occurs but data transfer is allowed to pro­
ceed. At the completion of the data transfer (defined 
by the DC B) a residual status block is stored with 
word one set as follows: 

• A status flag for this exception is set to one. 
• If the DCB specifies chaining, then the EOC bit 

is set to zero. Otherwise, it is set to one. 
• The NE bit is set to zero. 

The device may then continue with the next DCB 
if chaining is specified. 

2. Suppress Exception and Terminate Data Transfer. 
Upon detecting the exception condition, the device 
terminates the data transfer for this DCB. It then 
stores a residual status block containing: 

• A status flag for the exception condition. 
• EOC bit set to zero, if chaining. Otherwise, set to 

one. 
• NE bit set to zero. 

The device may then continue with the next DCB if 
chaining is specified. 

Programming Note. For some devices, the most common 
exception condition of this type is incorrect length record 
(ILR). For example, the data transfer is completed prior 
to the count reaching zero. 

In certain communications devices a short ILR is 
considered normal operation. When a short ILR occurs in 
this type device, the residual byte count is sufficient to 
indicate the condition; therefore, the NE bit may be set 
to indicate no exception. 

c 

o 



o 

o 

o 

3. Suppress Exception and Terininate Chain. Upon 
, detecting this exception condition, the device termin­
ates the data transfer for this OCB. It ignores any 
commands specifying further chaining. 

The device stores a residual status block containing: 

• A status flag for the exception condition 
• EOC bit set to one 
• NE bit set to zero. 

The device then presents a device end interrupt. 
Refer to Interrupt Condition Codes in a subsequent 
section of this chapter. 

Programming Note. In certain communication devices a 
change-of-direction character is considered normal opera­
tion. When a change-of-direction character occurs in this 
type device, the EOC bit is sufficient to indicate the 
condition; therefore, the NE bit may be set to indicate no 
exception. 

Priority of Suppress Exception Actions. Multiple excep­
tions that are suppressible can occur during an operation. 
They are noted in the residual status block by setting 
multiple status flags. The type of action taken by a device 
depends on the exception/action combination with highest 
priority. The priority sequence is type 3, type 2, and 
type 1 with type 3 having the highest priority. 

Cycle-Steal Termination Conditions 
The following chart shows the action that occurs at the 
end of a DCB operation depending on the function 
specified and the exception conditions encountered: 

Suppressible Non-Suppressible 
CHN SE exception exception 

0 0 I(XCT) I(XCT) 
0 1 I(PDE) I(XCT) 
1 0 I(XCT) I(XCT) 
1 1 *I(PDE)/CC I(XCT) 

CC - DCB chaining 

CHN - Chaining flag (bit 0 of the DCB control word) 

I(DE) - Device end interrupt 

No 
exception 

I(DE) 
I(DE) 
CC 
I(DE) 

I(PDE) - Permissive device end interrupt (see device end interrupt) 
I(XCT) - Exception interrupt 

SE - Suppress exception (bit 4 of the DCB control word) 

*Dependent on the specific exception condition in the individual 
device. 

I/O Condition Codes and Status Information 
Each time an Operate I/O instruction is issued, the device, 
controller, or channel immediately reports to the processor 
one of seven condition codes pertaining to execution of 
the I/O command. These codes are called 10 instruction 
condition codes. Three bits are used to encode a condition 
code value (range 0 through 7). The bits are recorded in 
the even, carry, and overflow positions of the LSR and may 
be interrogated by specific instructions such as Branch on 
Condition Code and Branch on Not Condition Code. (See 
BCC and BNCC in Chapter 8.) 

F or interrupting devices, condition codes are also 
reported during a priority interrupt. These codes are called 
Interrupt condition codes and pertain to operations that 
continue beyond execution of the Operate I/O instruction 
(such as cycle stealing of data). The interrupt condition 
codes are recorded in the LSR and interrogated in the 
same manner as the I/O instruction codes. Along with the 
interrupt condition code, the device also transfers an inter­
rupt ID word to the processor. Bits 0 through 7 of the 
interrupt ID word contain status information related to 
the interrupt processing and are called the interrupt infor­
mation byte (see Interrupt ID Word in this chapter). 

Figure 4-7 presents an overall view of condition code 
reporting along with status information. Details of the 
condition codes and status information are discussed in 
the following sections. Note that there are two unique 
sets of condition codes (10 instruction and interrupt) and 
that most status information is device dependent. 

Input/Output Operations 4-15 



4-16 GA34-0021 

Operate I/O (10) 
instruction 

Device dependent status word ---------- -----
Returned by the device if this 
is a Read Status operation 

Device reports 10 
instruction condition 
code 

No 

...... ' 

•••••• 
LSR bits 0-2 

CC o Device not attached 
1 Busy 
2 Busy after reset 
3 Command reject 
4 Intervention required 
5 Interface data check 
6 Controller busy 
7 Satisfactory 

End operation 

Figure 4-7. Condition codes, status words, and status bytes received 
from a device (Part 1) 

c 

o 

o 



o 

() 

Cycle steal 

Residual parameters 
and device dependent 
status 

Returned by the device 
if this is a Start Cycle 
Steal Status operation 

Residual status block 

Stored into main storage 
if the device uses SE and 
the SE bit is set to one 

DPC 

••••• 

••••• 

DCB word 7 

residual address 

cycle steal status word 1 

I device dependent status I 
t- - - - - - - - - - -I 
I device dependent status I 

X - - - - - - - - - -~ 

o 15 

DCB word 4 

l:-
device dependent status J 
------------ ,l, 

o 15 

Figure 4-7. Condition codes, status words, and status bytes received 
from a device (part 2) 

Input/Output Operations 4-17 



4-18 GA34-0021 

LSR bits 0-2 

I/O Interrupt CC 1-------------- o Con troller end 
1 PCI 

The device reports an • • • • • • 
interrupt condition 
code 

2 Exception 
3 Device end 
4 Attention 
5 Attention and PCI 
6 Attention and exception 
7 Attention and device end 

CC =1= 2 or 6 (OPC or cycle steal) 

Interrupt ID word ••• : •• , ~ ____ II_B ______ ~I_d_e_v_ic_e_a_d_d_re_s_s_1 
1---------------

Presen ted by the device 
and placed in register 7 
of the interrupted-to 
level 

*The available status is returned 
by the device when the following 
commands are used: 

Read Status-DPC 
Start Cycle Steal Status-cycle steal 

• 0 
78 15 

Bits 0-7 Device dependent status 
or special meaning for 
CC1, CC3 and CC7 

• • • • • • • CC = 2 or 6 (DPC) 

••• • • 0 

• • • • • • • ••• 
0 

ISB I device address 

7 8 15 

Bit 0 Device status available * 
1 Delayed command reject 

2-7 Device dependent 

CC = 2 or 6 (cycle steal) 

ISB I device address 

7 8 15 

Bit 0 Device status available * 
I Delayed command reject 
2 Incorrect length record 
3 DCB specification check 
4 Storage data check 
5 Invalid storage address 
6 Protect check 
7 Interface data check 

Figure 4-7. Condition codes, status words, and status bytes received 
from a device (Part 3) 

c 

o 



o 

o 

10 Instruction Condition Codes 
These codes are reported during execution of an Operate 
I/O instruction. 
Condition 
code (CC) 
value 

o 
1 
2 
3 
4 
5 
6 
7 

CC=O 

CC=l 

CC=2 

CC=3 

CC=4 

CC=5 

CC=6 

CC=7 

LSR position 
Over- Reported 

Even Carry flow by Meaning 

o 0 0 channel Device not attached 
o 0 1 device Busy 
o 1 0 device Busy after reset 
o 1 1 chan/dev Command reject 
1 0 0 device Intervention required 
1 0 1 chan/dev Interface data check 
1 1 0 controller Controller busy 
1 1 1 chan/dev Satisfactory 

Device not attached. Reported by the channel when the 
addressed device is not attached to the system. 

Busy. Reported by the device when it is unable to exe­
cute a command because it is in the busy state. The 
device enters the busy state upon acceptance of a 
command that requires an interrupt for termination. It 
exits the busy state when the processor accepts the 
interrupt. Certain devices also enter the busy state when 
an external event occurs that results in an interrupt. 
When this condition code is reported, a subsequent 
priority interrupt from the addressed device always occurs. 
Busy after reset. Reported by the device when it is 
unable to execute a command because of a reset and the 
device has not had sufficient time to return to the 
quiescent state. No interrupt occurs to indicate termin­
ation of this condition. 
Command reject. Reported by the device or the channel 
when: 

1. A command is issued (in the IDCB) that is outside 
the device command set. 

2. The device is in an improper state to execute the 
command. 

3. The IDCB contains an incorrect parameter. For 
example: an odd byte DCB address, or an incorrect 
function/modifier combination. 

When a cycle-steal device reports command reject, it 
does not fetch the DCB. 
Intervention required. Reported by the device when it 
is unable to execute a command due to a condition 
requiring manual intervention to correct. 

Interface data check. Reported by the device or the 
channel when a parity error is detected on the I/O 
data bus during a data transfer. 
Controller busy. This condition is reported by a device 
controller, not the addressed device, when the controller 
is busy. It is reported only by controllers that have two 
or more devices attached (each device having a unique 
address). When this condition code is reported, a subse­
quent controller-end interrupt always occurs. 

Satisfactory. Reported by the device or the channel 
when it accepts the command. 

These condition codes are mutually exclusive and have a 
priority sequence. That is; beginning with CC=7, each 
successive condition code through CC=O takes precedence 
over the previous code. For example, if a device cannot 
accept a command because it is busy, it reports CC= 1, 
irrespective of error conditions encountered. 

Note. The only exception is CC=6 (controller busy). This 
condition code may have a variable priority depending on 
the particular controller. 

Interrupt Condition Codes 
These condition codes are reported by the device or 
controller during priority interrupt acceptance. 

Condition 
code (CC) 
value 

0 
1 

2 
3 
4 
5 
6 

7 

CC=O 

CC=1 

CC=2 

CC=3 

CC=4 

CC=5 

LSR position 
Over-

Even Carry flow 

0 0 0 
0 0 1 

0 1 0 
0 I 1 
1 0 0 
1 0 1 
1 1 0 

Reported 
by 

controller 
device 

device 
device 
device 
device 
device 

device 

Meaning 

Controller end 
Program controlled 
interrupt (PCI) 
Exception 
Device end 
Attention 
Attention and PCI 
Attention and 
exception 
Attention and 
device end 

Controller end. Reported by a controller when controller 
busy (10 instruction condition code) has been previously 
reported one or more times. It signifies that the controller 
is now free to accept I/O commands for devices under its 
control. The device address reported with controller end 
is always the lowest address (numerical value) of the 
group of devices serviced by the controller. The interrupt 
information byte, in the interrupt ID word, is set to zero. 

Program controlled interrupt. Reported when the inter­
rupt indicates that a DCB with the PCI bit set to one has 
been transferred by cycle steal to the device and no error 
or exception condition has occurred. The device places a 
DCB identifier into the interrupt information byte. 

Exception. Reported when an error or exception condi­
tion is associated with the interrupt. The condition is 
described in the interrupt status byte (lSB) or in device 
dependent status words. 

Device end. Reported when no error, exception, or 
attention condition has occurred during the I/O opera­
tion, and the interrupt is not the result of a PCI. For 
example: an operation has terminated normally. 

Note. If the device has come to a normal end while using 
suppress exception (SE bit set to one) and an exception 
was suppressed since the last Start command, then bit 
zero of the interrupt status byte is set to one. This 
condition is called permissive device end (POE) and indi­
cates that errors or exceptions have been suppressed. 
Related status information is contained in the residual 
status block. 

Attention. Reported when the interrupt was caused by 
an external event rather than execution of an Operate 
I/O instruction. Additional status information is not 
provided unless the event requires further definition; for 
example, code bits for a keyboard function. 

Attention and PCl. Reported when attention and PCI 
are both present. In this case, the interrupt information 
byte contains the DCB identifier, and the attention must 
be singular in meaning. 

Input/Output Operations 4-19 



CC=6 Attention and exception. Reported when attention and 
exception are both present. 

CC=7 Attention and device end. Reported when attention and 
device end are both present. For this condition code, 
device end could also mean permissive device end. Refer 
to interrupt condition code 3. 

The interrupt condition codes are mutually exclusive 
with each other but have no priority sequence. 

I/O Status Information 
Some form of status information is transferred from the 
device to the processor as a result of: 

• A read status operation (see Read Status command in 
this chapter). 

• A start cycle steal status operation (see Start Cycle Steal 
Status Operation in this chapter). 

• Storing a residual status block (see Cycle-Steal Device 
Options in this chapter). 

• A priority interrupt. 

The interrupt status information is detailed in the follow­
ing two sections (Interrupt ID Word and Interrupt Status 
Byte). 

Interrupt ID Word 

Acceptance of an I/O interrupt causes the device to present 
an interrupt ID word to the processor. Presentation of 
the interrupt ID word is explained in Chapter 3 (see I/O 
Interrupts). This word has the following format: 

Interrupt ID word 

o 

Bits 0-7 

lIB Device address 

7 8 15 

Interrupt information byte (IIB). For interrupt condi­
tion codes 2 and 6, the liB has a special format and is 
called an interrupt status byte (lSB). Refer to inter­
rupt status byte in this section. For most other 
interrupt condition codes, implementation of the liB 
is device dependent. Exceptions are: 

1. CC=O. The liB is set to zero. 
2. CC=3 or 7. Bit zero may be set to one if suppress 

exception is in effect. 

Bits 8-15 Device address. This byte contains the address of the 
interrupting device. 

Interrupt Status Byte (lSB) 

The ISB is a special format of the interrupt information 
byte (lIB) and contains detailed information on the nature 
of the interrupt. The ISB is reported only for error or 
exception conditions (interrupt condition codes 2 or 6). 
The ISB bits are normally set as a result of: 

1. Status errors that occur during a DPe operation that 
cannot be indicated via a condition code. 

2. Status errors that occur during a cycle steal operation. 

4-20 GA34-0021 

The ISB is never reported as zero unless the condition code 
presentation of 2 or 6 is singular in meaning for devices that 
do not cycle steal. After the processor has accepted the 
interrupt request, the device resets the ISB. 

Bits 0-7 of the two special formats are explained in the 
following sections. 

ISB (devices that do not cycle steal): 

Bit 0 

Bit 1 

Bits 2-7 

Device dependent status available. This bit set to one 
signifies that additional status information is available 
from the device. The information content and 
method of reading is described in the individual device 
publications. 

Delayed Command reject. This bit is set to one if the 
device cannot execute the command (specified in the 
IDCB) due to an incorrect parameter in the IDCB, or 
it cannot execute the command due to its present 
state. For example: (1) the IDCB specifies an incor­
rect function/modifier combination, or (2) the device 
is temporarily not ready. The operation in progress 
is terminated. Command reject is set in the ISB only 
if the device cannot report 10 instruction condition 
codes for the condition. 

Device dependent. These bits, if used, are described 
in the individual device publications. 

ISB (cycle stealing device): 

Bit 0 

Bit 1 

Bit 2 

Device dependent status available. This bit, when set 
to one, signifies that: (1) additional status informa­
tion is available from the device, or (2) the device is 
in an improper state to execute a function specified 
by a DCB. 

The operation is terminated. The content and 
method of reading the additional status information 
is described in the individual device publications. 

Note. When bit 0 of the ISB is equal to one and 
bits 2-7 are zeros, the contents of the residual­
address word (cycle steal status) are defined by the 
device. 

Delayed command reject. This bit is set to one if the 
device cannot execute the command due to one of the 
following conditions: 

1. The IDCB contains an incorrect parameter. 
Examples are (a) an odd-byte DCB address, or 
(b) an incorrect function/modifier combination. 

2. The present state of the device, such as a not 
ready condition, prevents execution of an I/O 
command specified in the IDCB. 

Delayed command reject is set in the ISB only if 
the device cannot report 10 instruction condition 
codes for the condition. The operation is terminated. 
The DCB is not fetched. 

Incorrect length record. This bit is set to one when 
the device encounters a mismatch between byte count 
and actual record length after beginning execution of 
the DCB. For example: the byte count is reduced to 
zero (with chaining flag of 0 and no end of record 
encountered. Incorrect length record is not reported 
when the SE bit in the control word is set to one. 
Reporting of incorrect length record is a device 
dependent feature and may be implemented regard­
less of the suppress exception feature. The operation 
is terminated. 

c 

o 

o 



D,;~· 
'I 

o 

o 

Bit 3 

Bit 4 

DCB specification check. This bit is set to one when 
the device cannot execute a command due to an 
incorrect parameter specification in the DCB. 
Examples are (1) an odd-byte DCB chaining or status 
address, (2) the byte count is odd for a word-only 
device, (3) an odd-byte data address for a word-only 
device, (4) an invalid command or invalid bit settings 
in the coritro1 word, or (5) an incorrect count. 

'The operation is terminated. 

Storage data check. This error condition applies to 
cycle steal output operations only. If the bit is set 
to one, it indicates that the main storage location 
accessed during the current output cycle contained 
bad parity. Parity in main storage is not corrected. 
The device terminates the operation. The bad parity 
data is not transferred to the I/O data bus. No 
machine check condition occurs. 

Bit 5 Invalid storage address. When set to one, this bit 
indicates one of the following conditions: 

Bit 6 

Bit 7 

1. During a cycle steal operation, the device has 
presented a main storage address that is outside 
the storage size of the system. 

2. A cycle stealing device has attempted to access 
storage through a segmentation register and the 
valid bit in the segmentation register is set to zero. 
Note that the relocation translator feature must 
be installed and enabled before this condition can 
occur. 

Invalid storage address can occur on a data transfer 
or on a DCB fetch operation. In either case, the cycle 
steal operation is terminated. 

Protect check. When set to one, this bit indicates that 
the I/O device attempted to access a main storage 
location and presented an incorrect address key. 

Interface data check. This bit set to one indicates 
that a parity error has been detected on the I/O data bus 
during a cycle steal data transfer. The condition may be 

detected by the channel or the I/O device. In either 
case, the operation is terminated. 

Input/Output Operations 4-21 



c 

() 

o 
4-22 GA34-0021 



D 

o 

The storage protection mechanism is provided as a basic 
part of the IBM 4955 Processor. This chapter describes 
the operation of the storage protection mechanism when 
the Storage Address Relocation Translator Feature is not 
installed or is disabled and, therefore, applies only to the 
first 64K bytes of storage. When the relocation 
translator feature is installed and enabled, the storage 
protection mechanism, as described in this chapter, is 
disabled and all storage protection is controlled by the 
relocation translator. See Chapter 6, Storage Address 
Relocation Translator Feature. 

The state of the storage protection mechanism is 
controlled by the Enable (EN) and the Disable (DIS) 
instructions described in Chapter 8. When enabled, it 
protects against: (1) access (reading and writing) to 
defined blocks of storage by software or by an I/O 
operation, and (2) writing in an undesired location within 
a defined block by software. 

Storage is divided into blocks of 2048 bytes (Figure 
5-1). Thirty-two storage key registers are installed; one 
for each block of storage up to the maximum storage size 
of 64K bytes. Each block has an associated 8-bit storage 
key register containing a three-bit storage key and a read­
only bit. The storage key and the read-only bit are set 
into a storage key register by the Set Storage Key (SESK) 
instruction. The Copy Storage Key (CPSK) instruction 
can be used to read out the storage key register. Both 
instructions are described in Chapter 8. The SESK 
instruction can specify a main storage block greater than 
the amount of storage installed on the system without 
causing a program check (if the installed storage is less 
than 64K bytes). 

Chapter s. Storage Protection 

The processor determines storage-access authorization 
by comparing a storage key against an address key. Each 
priority level has an associated address key register (AKR). 
This register contains three address-key fields for: (1) 
operand 1, (2) operand 2, and (3) instruction space 
(Figure 5-1). Each address-key field is three bits long. 
The address key used for a partic:ular storage access is 
determined by the type of operand being accessed and is 
called the active address key. Proper access is determined 
by comparing the active address key against the storage 
key. If writing into storage is involved, the access is 
further controlled by the read-only bit associated with the 
storage block. See the Address Space Management 
section of this chapter for more details on the active 
address key and the AKR. The address keys in the AKR are 
assigned by the supervisor using the appropriate system 
register instructions: (1) Set Address Key Register 
(SEAKR), (2) Set Instruction Space Key (SEISK), (3) 
Set Operand 1 Key (SEOOK), and (4) Set Operand 2 Key 
(SEOTK). They can be read by the Copy Level Block 
(CPLB) instruction or the appropriate system register 
instructions: (1) Copy Address Key Register (CP AKR), 
(2) Copy Instruction Space Key (CPISK), (3) Copy 
Operand 1 Key (CPOOK), and (4) Copy Operand 2 Key 
(CPOTK). 

Storage Protection 5-1 



Storage Key 
Registers * Main Storage 

Main Storage 
Block Number 

One for each 
storage block Blocks of 2048 bytes Decimal Binary 

0000 Key R Addresses 
Hex 

0000 Key R Addresses 
Hex 

..... "'- -~ :~ 

0000 R Addresses 
hex 

o 3 4 6 7 

\.-Read-only bit 

OValueO-7 

0-2047 .. o 00000 
0000 - 07FF 

2048 - 4095 .. 00001 
0800 - OFFF 

.::~ 

63488 - 65535 . •• • • • • • 31 11111 
F800- FFFF 

Address Key Register 

I I OP1K I I OP2K IISK 
o 5 7 9 11 13 

One of the three keys is selected as the active 
address key 

eValue 0-7 

15 

• For a main storage access, the storage key 0 must match the active address key e except as noted 
below: 
-Supervisor state. Access to any area of storage, regardless of address keys or storage keys. 
-Storage key of 7. Unprotected - any address key can be used. 

• The read-only control is ignored by an I/O cycle-steal access or when in supervisor state. 

*The information is shown.in the storage key register as it appears to the programmer. 

Figure 5-1. Storage protection mechanism 

When the storage protection mechanism is enabled, 
one or more of the following conditions must be true to 
authorize an attempt to access storage: 

1. The machine is in supervisor state. 
2. The storage key of the addressed block must be set to 

seven. If attempting to write into storage, the read­
only bit must be set to zero. 

3. The storage key of the addressed block must equal the 
active address key. If attempting to write into 
storage, the read-only bit must be set to zero. 

If none of the three conditions is true: 

• The storage access is prevented. 
• The contents of main storage are not changed. 
• A program check interrupt occurs with protect check 

set in the processor status word. 

5-2 GA34-0021 

Programming Notes. 
1. A storage key of seven allows access to any storage 

location within the block regardless of the active 
address key. However, the read-only control cannot 
be violated. 

2. An active address key of zero is not a master key. The 
storage protection mechanism (if enabled) should be 
disabled prior to dumping the contents of storage to 
an I/O device. 

(f-'~ 

~J 

o 



o 

o 

For certain hardware functions that involve the access 
of main storage, the storage protection mechanism is 
suppressed. In the following cases, no storage protection 
checking is performed until the hardware function is 
completed: 

I. During initial program load (see Storage Protection 
during Initial Program Load in this chapter). 

2. While the system is in the stop state and a main storage 
access is being performed from the programmer console 
(optional feature). 

3. While level status blocks are being stored by the 
hardware during class interrupts. 

For I/O devices, one of the following conditions must be 
true to authorize an attempt to access storage: 

I. The storage key of the addressed block must be set to 
seven. 

2. The storage key of the addressed block must equal the 
active I/O cycle-steal address key. 

Note that the read-only bit is ignored during cycle-steal 
access to main storage. The I/O cycle-steal address key is 
speCified in the device control block (DCB). The DCB is 
used to control the cycle steal operation as explained in 
Chapter 4, Input/Output Operations. 

Storage Protection During Initial Program Load 

During initial program load (IPL), the storage protection 
mechanism is disabled. IPL is preceded by a hardware 
reset and no instructions are executed until the IPL 
terminates. At the successful completion of IPL, the 
processor enters supervisor state on priority level zero with 
all address keys in the address key register set to zero. 

Storage Protection in Supervisor State 
Supervisor state overrides the storage protection mechanism. 
The supervisor has unlimited access to all of main storage. 
Any of the following events cause the processor to enter 
supervisor state: 

1. A priority interrupt. 
2. A class interrupt. 
3. A successful IPL and a subsequent I/O interrupt. 

Note. Occurrence of these events results in specific 
values being set in the address keys in the affected 
address key register. These address-key values are 
described in the section Address Space Management in 
this chapter. 

When the processor exits supervisor state, via a Set 
Level Block (SELB) instruction, storage protection 
functions are resumed. The processor is now in the problem 
state and makes reference to the current address-key 
register for the active address key. 

Note. Storage protection in supervisor state is changed 
when the relocation translator feature is installed and 
enabled. This change is described in Chapter 6, Storage 
Address Relocation Translator Feature. 

Address Space Management 

Active Address Key 
At any point in time, one of four address keys may be used 
to access storage. The key in use is called the active 
address key and may be either the ISK, OPIK, OP2K, or the 
cycle-steal address key. The address key in use (active) 
depends on the type of operation being performed at a 
specific instant in time. When the storage protection 
mechanism is enabled, the active· address key is used to 
determine storage access authorization. When the reloca­
tion translator feature is installed and enabled, the active 
address key defines storage access through a particular 
block of segmentation registers. See Chapter 6, Storage 
Address Relocation Translator Feature. 

Each priority level in the processor has an associated 
address key register (AKR). Each register contains three 
address keys and an equate operand spaces (EOS) bit. 

Address Key Register (AKR) 

o 1 , 
EOS 

EOS 

OPIK 

o 0 
4 5 78 9 111213 15 

OPIK OP2K ISK 

Equate operand spaces. This bit when set to one causes 
all data operands to use the OP2K address key. See 
Equate Operand Spaces section in this chapter. 

Operand 1 key. These bits contain the binary-coded 
operand 1 address key with bit 7 as the low-order bit. 

OP2K Operand 2 key. These bits contain the binary-coded 
operand 2 address key 'Nith bit 11 as the low-order bit. 

ISK Instruction space key. These bits contain the binary-coded 
instruction-space address key with bit 15 as the low-
order bit. 

Equate Operand Spaces (EOS) 
The equate operand spaces bit (bit 0) in the address key 
register provides a control to modify the active address key 
definition for data operands. When the EOS bit is set to 
one (enabled), all processor data fetches occur within a 
single address space. The processor uses the OP2K address 
key for storage access. The OPIK is unchanged but is 
ignored. When the EOS bit is set to zero (disabled), the 
OPIK address key functions in a normal manner. 

Equate operand spaces (EOS) may be enabled by (1) 
an Enable (EN) instruction, (2) a Set Level Block (SELB) 
instruction, or (3) a Set Address Key Register (SEAKR) 
instruction. EOS may be disabled by (1) a Disable (DIS) 
instruction, (2) a Set Level Block (SELB) instruction, or 
(3) a Set Address Key Register (SEAKR) instruction. These 
instructions are described in Chapter 8. 

Storage Protection 5-3 



Address Space 
An address key defines a particular address space where: 

• The address space is a range of logically contiguous 
storage. 

• The address space is accessible by the effective address 
without intervention by a resource management 
function. That is, the address space is not greater than 
64K bytes. 

All instruction fetches occur within the address space 
defined by the instruction space key (18K). For storage 
to storage instructions, all reads and writes concerning 
data operand 1 occur in the address space defined by the 
operand 1 key (OPIK). All reads and writes concerning 
data operand 2 occur in the address space defined by the 
operand 2 key (OP2K). 

Examples: 

18K = OPIK = OP2K. For instruction processing, all 
storage accesses occur within the same address space. 

18K =1= OPIK, OPIK = OP2K. Instruction fetches occur in 
the 18K address space. Data access occurs in the OP2K 
address space. 

18K =1= OPIK =1= OP2K (Refer to Figure 5-2). The instruc­
tion fetch occurs in the 18K address space. The source­
data operand access (storage to storage operations) occurs 
in the OPIK address space. All other data operand accesses 
occur in the OP2K address space. 

5-4 GA34-0021 

Storage/Storage 
OPIK -------

Address 
space 

Branch/J ump 
,----1 
I I 

ISK 

Address 
space 

Assembler syntax for 
address spaces 

OPlK OP2K 

addr5 addr4 

(reg) (reg) 

Storage 
Immediate 

Register Immediate -------. 

Example: AW 

Example: MVFD 

(reg, bitdisp) 

longaddr 

shortaddr 

Notes. 

OP2K 

Address 
space 

I 
I 
I 
I R~gisterl 
I Storage 
I 
I 
I 

1 
General 
registers 

System 
registers 

Floating-point 
registers 

addr5,addr4 

(reg) , (reg) 

1. OPIK is only used for the source operand in Storage to Storage 
operations. 

2. OP2K is used for storage data access in all other operations 
(excluding Branchl Jump). 

Figure 5-2. Data movement in address spaces when ISK *- OPIK 
*-OP2K 

0 1' 

.. ) 

o 



D 

C'~\ 

o 

I/O operations that access main storage also use an 
address key. Cycle steal operations (read or write) use 
the cycle-steal address key specified within the device 
control block. An address key of zero is used when the 
device fetches the device control block. DPC operations 
that write data to storage use the OP2K address key. The 
cycle steal and DPC operations are explained in Chapter 4, 
Input/Output Operations. 

Other defined usage of the address key register: 

1. All indirect access for branching uses ~he ISK. 
2. Effective address generation (access of indirect 

storage address) occurs in the address space of the 
particular data operand. 

3. Storage access via the console is defined by the ISK. 
Stop on Address is based on the ISK when the transla­
tor feature is installed and enabled. 

4. System reset and IPL set all address keys and the EOS 
bit to zero. 

Address Key Values After Interrupts 
When priority or class interrupts occur, certain values are 
set into the address keys of the affected AKR. These 
values anticipate the address spaces that the prognimmer 
might need for interrupt processing. The following chart 
shows the resulting AKR for each type of interrupt. 

Resulting AKR values 
Interrupt EOS OP1K OP2K ISK 

Priority 0 0 0 0 
Supervisor Call 0 Note 1 0 0 

Machine check 0 Note 2 0 0 
Program check 0 Note 2 0 0 
Soft exception trap 0 Note 1 0 0 

Trace 0 Note 3 0 0 
Console 0 0 0 0 
Power/Thermal warning 0 0 0 0 

Note. 
1. OPIK is set to the preceding key contained in OP2K 
2. OPIK is set to the last active processor address key. 
3. OPIK is set to the precedihg key contained in the ISK. 

All interrupt service routines are presumed to reside in 
address space zero; therefore, the ISK and OP2K are set 
to zero when an interrupt occurs. Necessary information 
for processing a specific interrupt may reside in an address 
space other than zero. The address key related to the 
particular interrupt is placed in OPIK. The OPIK is set 
in anticipation of a storage to storage move of information 
from the interrupting address space to address space zero. 

Note. Class interrupts cause a hardware controlled storing 
of a level status block. This operation uses address key zero. 

Storage Protection 5-5 



o 
5-6 GA34-0021 



o 

0 1' .. 
" 

Chapter 6. Storage Address Relocation Translator Feature 

The Storage Address Relocation Translator Feature is an 
optional feature for the IBM 4955 Processor Model B or D. 

The relocation translator feature permits addressing of 
main storage locations beyond 64K bytes. The first 64K 
bytes can be directly addressed when the translator is 
disabled. Therefore, the feature is required when main 
storage is larger than 64K bytes. The reason for this 
requirement is that addresses, without this feature, are 16 
bits long and provide an addressing capability of: 

Hexadecimal Decimal 

0000 0 
to to 
FFFF 65,535 
Addresses generated in relocation mode are 24 bits long. 
The 24·bit address provides an addreSSing capability of: 

Hexadecimal Decimal 

000000 0 
to 
FFFFFF 

to 
16,777,215 

Segmentation registers 

Stack 0 Stack 1 

This addressing range should not be confused with main 
storage size, which is a maximum of 128K bytes for the 
IBM 4955 Processor Model B or D. 

Besides address generation, storage protection also 
functions differently in relocation mode. When the 
translator feature is installed and enabled, the storage 
protection mechanism as described in Chapter 5 is 
disabled and all storage protection is under control of the 
translator. Refer to Storage Protection when Using the 
Relocation Translator in this chapter. 

Translator Description 
The translator feature provides 8 stacks of 16-bit segmenta­
tion registers. The stacks are numbered 0 through 7 to 
correspond to the 8 possible values of the address keys. 
Each stack consists of 32 registers (0 through 31): 

Stack 7 

Segmentation reg 
o 

Segmentation reg 
o 

Segmentation reg 
o 

Segmentation reg 
1 

Segmentation reg 
31 

o 15 

Segmentation reg 
1 

Segmentation reg 
31 

o 15 

Segmentation reg 
1 

• Segmentation reg 
31 

o 15 

Storage Address Relocation Translator Feature 6-1 



Thus, 256 segmentation registers are provided in the 
relocation translator. Note that only one translator can be 
installed in the IBM 4955 Processor Model B or D. 

The eight stacks of segmentation registers are under 
supervisory program control. Four privileged instructions 
are provided: 

• Set Segmentation Register (SESR). This instruction 
loads one segmentation register. 

• Copy Segmentation Register (CPSR). This instruction 
allows the supervisor to inspect the contents of a 
segmentation register. 

• Enable (EN). This instruction enables the relocation 
translator. Until the translator is enabled, 16-bit 
addressing is in effect for the low-order 64K bytes of 
storage. Any storage above 64K bytes is not accessible 
to the programs until the translator is .enabled. 

• Disable (DIS). This instruction disables the relocation 
translator. 

Refer to Chapter 8 for descriptions of the preceding 
instructions. 

Storage Mapping 
Mapping of main storage is achieved through the segmen­
tation registers. Each segmentation register controls 2K­
byte segments of storage. The SESR instruction is used to 
load each segmentation register with a unique physical 
segment address. This segment address is the physical 
address of a 2K-byte segment of storage. Note however, 
that more than one segmentation register can be loaded 
with the same segment address. For example; stack 0, 
register 15 (associated with the supervisor address key of 0) 
can be loaded with the same number as stack 3, register 6 . 

. This arrangement allows the supervisor (for example) to 
address control blocks within a problem program even 
though the address key for the supervisor is different than 
the key for the problem program. Once loaded, each stack 
of segmentation registers contains a complete map of 64K 
bytes scattered in 2K-byte physical segments. A separate 
stack of segmentation registers is provided for each 
address-key value and allows fast task switching without 
the need for saving or restoring the storage map. 

The following is an example of storage mapping for 
128K bytes. 

6-2 GA34-0021 

c 

o 



First word of double word to be loaded 
2K block into segmentation register (see SESR 
number instruction) 

1st 2nd First address Last address 
64K 64K in block in block 0 Segment address 12:13 15 

o 
0 32 0000 07FF 0 0 0 0 0 0 o * 0 0 0 0 o IX X 0 
1 33 0800 OFFF 0 0 0 0 0 0 o * 0 0 0 0 1 IX X 0 
2 34 1000 17FF 0 0 0 b 0 0 o * 0 0 0 1 o IX X 0 
3 35 1800 IFFF 0 0 0 0 0 0 o * 0 0 0 1 1 IX X 0 
4 36 2000 27FF 0 0 0 0 0 0 o * 0 0 1 0 o IX X 0 
5 37 2800 2FFF 0 0 0 0 0 0 o * 0 0 1 0 1 Ix X 0 
6 38 3000 37FF 0 0 0 0 0 0 o * 0 0 1 1 0 Ix X 0 
7 39 3800 3FFF 0 0 0 0 0 0 o * 0 0 1 1 1 Ix X 0 
8 40 4000 47FF 0 0 0 0 0 0 o * 0 1 0 0 0 Ix X 0 
9 41 4800 4FFF 0 0 0 0 0 0 o * 0 1 0 0 1 Ix X 0 

10 42 5000 57FF 0 0 0 0 0 0 o * 0 1 0 1 0 Ix X 0 
11 43 5800 5FFF 0 0 0 0 0 0 o * 0 1 0 1 1 IX X 0 
12 44 6000 67FF 0 0 0 0 0 0 o * 0 1 1 0 o IX X 0 
13 45 6800 6FFF 0 0 0 0 0 0 o * 0 1 1 0 1 IX X 0 
14 46 7000 77FF 0 0 0 0 0 0 o * 0 1 1 1 o IX X 0 
15 47 7800 7FFF 0 0 0 0 0 0 o * 0 1 1 1 1 IX X 0 
16 48 8000 87FF 0 0 0 0 0 0 o * 1 0 0 0 o IX X 0 
17 49 8800 8FFF 0 0 0 0 0 0 o * 1 0 0 0 1 IX X 0 
18 50 9000 97FF 0 0 0 0 0 0 o * 1 0 0 1 o IX X 0 
19 51 9800 9FFF 0 0 0 0 0 0 o * 1 0 0 1 1 IX X 0 
20 52 AOOO A7FF 0 0 0 0 0 0 0 * 1 0 1 0 o Ix X 0 
21 53 A800 AFFF 0 0 0 0 0 0 o * 1 0 1 0 1 Ix X 0 
22 54 BOOO B-7FF 0 0 0 0 0 0 o * 1 0 1 1 0 Ix X 0 
23 55 13800 BFFF 0 0 0 0 0 0 0 * 1 0 1 1 1 IX X 0 
24 56 coon C7FF 0 0 0 0 0 0 o * 1 1 0 0 0 Ix X 0 
25 57 C800 CFFF 0 0 0 0 0 0 o * 1 1 0 0 1 Ix X 0 
26 58 DOOO D7FF 0 0 0 0 0 0 o * 1 1 0 1 0 Ix X 0 

() 27 59 D800 DFFF 0 0 0 0 0 0 o * 1 1 0 1 1 IX X 0 
28 60 EOOO E7FF 0 0 0 0 0 0 o * 1 1 1 0 0 Ix X 0 
29 61 E800 EFFF 0 0 0 0 0 0 0 * 1 1 1 0 1 IX X 0 
30 62 FOOO F7FF 0 0 0 0 0 0 o * 1 1 1 1 o IX X 0 
31 63 F800 FFFF 0 0 0 0 0 0 o * 1 1 1 1 1 IX X 0 

I 

*This bit is 0 for 1 st 64K and 1 for 2nd 64K 

Example of storage mapping for 128K bytes 

o 
Storage Address Relocation Translator Feature 6-3 



Relocation Addressing 
'This se,ction describes how the relocation translator 
generates a 24·bit address to address any byte in storage. 
Flgure6~lshows an example of address translation. The 
letters in the following steps correspond to the letters on 
the figure. 

II The active address key from the address key register 
selects a segmentation register stack. The address 
key pertains to the instruction being executed on the 
current priority level. 

:111 The five ,high~rder bits (0 through 4) of the 16-bit 
address (generated for the instruction being executed) 
select a segmentation register within the stack 
selected in step A. These bits define the logical 
segment. 

The active address Address key reg 
key for this 

I IOPIKI IOP2KI example is the 
18K (instruction 

I :S~ 
13 

II The 24-bit address is generated. The 13 high~rder 
bits (0 through 12) are from the.segmentation 
register; these bits specify the phYSical address of a 
i2K~byte segment of storage. 

111 The Illow~rder bits (bits 13 through 23) of the 
24-bit address are the 11 low-order bits (5 through 
15) of the 16-bit logical address (generated for the 
instruction being executed); these bits specify the 
byte addre,ss within the 2K-byte,segment. 

16-bit logical address 

11 10 0 0 0 110 0 0 00 0 0 0 0 1 01 
15 0 4 5 15 

space key) '-v-' ~ ... .;, 
., 

Segmentation registers 

Stack 0 

Segmenta tion reg 
o 

Segmentation reg 
1 

Segmentation reg 
31 

o 15 

Select stack 7 E1 

Stack 1 

Segmentation reg 
o 

Segmentation reg 
1 

r 

Select reg 1 iii 

'----___ Stack 7 

Segment addr VRO 
0000000111111xxO 

~--
Note 1 

High-order bits from.reg ~ 

Segmentation reg 
31 

o 15 

24-bit phy~cal address iii 10 0 0 0 0 0 0 1 1 1 1 1 11 

Note 1: 

V = valid 
R = read only 
o = always zero 
Refer to "Storage 
Protection when 
Using the Relocation 
Translator" 

o 0 000 0 0 0 0 1 0 
o 12 13 23 

Example: 

Select address 
129, 026 decimal 
1 F802 hexadecimal 

Select 2K block 

64 GA34-0021 

~~---------v--------~., ... --------~------~~ T. J • Select byte 

Main storage 

J I 

Figure 6-1. Address translation example 

o 

o 



o 

C:: 

o 

Storage Protection When Using the Relocation 
Translator 
When the translator is installed but disabled, by a Disable 
(DIS) instruction with parameter field bit 14 set, only the 
first 64K bytes of storage can be addressed. Operation of 
the storage protection mechanism is exactly as described in 
Chapter S. When the translator is installed and enabled by 
an Enable (EN) instruction (with parameter field bit 14 
set to one and bit 12 set to zero) the storage protection 
mechanism described in Chapter 5 is disabled. 

When -the translator is enabled, the storage protection 
mechanism by itself no longer protects against inadvertent 
writing or instruction access of main storage. This function 
is undertaken by the translator. To this end, the storage 
key registers are ignored by the hardware. As previously 
described, the address keys are used to select stacks of 
segmentation registers. There are eight such stacks in the 
translator with 32 segmentation registers in each stack. 
Address key 0 is implicitly assigned to the supervisor for 
handling interrupts. Address key 0 is also used for (1) 
cycle steal DCB fetching, and (2) storing of the residual 
status block. Chapter 5 describes the method of setting 
and reading the address keys. Because each stack of 
segmentation registers has access to storage only within its 
assigned region, protection is provided against writing into 
storage or fetching instructions from another region. 

The translator also provides no-access and read-only 
protection within the regions controlled by each stack of 
segmentation registers. This allows storage protection of 
shared segments of storage. Bits 13 and 14 of the segmen­
tation registers are used for this purpose: 

Bit 13 (Valid Bit). When set to one, this bit specifies that 
the contents of the segmentation register are valid; the 
segmentation register can be used to perform the transla­
tion. When bit 13 is a zero, the segmentation register 
cannot be used for translation (no access). If translation 
is attempted, a program check interrupt occurs with 
invalid storage address (ISA) set in the program status word. 
This is called a logical ISA. 

Bit 14 (Read-Only Bit). When set to a one, this bit 
specifies that the block is read only. If an attempt is made 
to write into storage using a segmentation register with 
the read-only bit set to one, a program check interrupt 
occurs with protect check set in the program status word. 
Storage is not changed. Bit 14 is ignored by a cycle steal 
access, or when in supervisor state. 

I/O Storage Access Using the Relocation 
Translator 
All storage access requests from I/O devices are translated 
by the same mechanism that handles storage requests from 
the processor. The device control block (DCB) must reside 
in the supervisor's address space. Therefore; all I/O devices 
must use address key 0 to gain access to the DCB and to 
store the residual status block. The address key of the 
process requiring a cycle steal operation resides in the DCB. 
The I/O device presents this address key along with a 16 
bit logical address to the translator. This allows the I/O 
device to directly address the storage space for a particular 
process. The address key allows I/O storage protection to 
be established between address spaces assuming the super­
visor ensures the integrity of the DCBs. 

Compatibility Between the Relocation Translator 
and the Storage Protection Mechanism 
The storage protection mechanism (as described in 
Chapter 5) has similar characteristics to those of the 
relocation translator; also, there are certain characteristics 
that are dissimilar. The programmer should be familiar 
with these characteristics in order to write code that 
migrates from a system using the storage protection 
mechanism to one using the relocation translator. 

The two sets of characteristics are listed below and 
require the following definitions: 

• Storage protect system - the storage protection 
mechanism is enabled. The relocation translator (if 
installed) is disabled. 

• Translator system - the storage protection mechanism 
is disabled. The relocation translator is enabled. 

Storage Address Relocation Translator Feature 6-5 



Characteristics That Are Similar 

1. The active address key defines the storage that may be 
addressed at any point in time. 

2. For a storage protect system, the storage key registers 
define access control to a 2K-byte block of storage. 
For a translator system, the segmentation registers 
define access control to a 2K-byte block of storage. 

3. Within the storage defined by an address key, a 
read-only area may be designated. The read-only areas 
are defined for 2K-byte blocks. 

4. No protect check occurs when accessing storage in 
supervisor state. 

5. I/O cycle-steal access to main storage is unaffected by 
the read-only bit. 

6. The storage protection mechanism or the relocation 
translator may be either enabled or disabled using the 
Enable (EN) or Disable (DIS) instructions. 

7. For a storage protect system, a storage key of 7 
defines a common area accessible by any address key. 
A translator system can reproduce this function by 
mapping the same logical address in all address spaces 
into a unique physical address. 

Characteristics That Are Dissimilar 
1. In a storage protect system, supervisor state allows 

access to all of main storage, irrespective of address 
keys or storage keys. In a translator system, super­
visor state may only access the storage defined by the 
active address key. 

2. In a storage protect system, the total storage defined 
by address keys is less than or equal to 64K-bytes. 
In a translator system, the total storage defined by 
address keys is less than or equal to 512K -bytes at an 
instant in time. ' 

3. In a translator system, the address space defined by an 
address key starts at logical address zero. In a storage 
protect system, the address space defined by an address 
key starts on various 2K-byte block boundaries. 

4. The instructions used to load and store storage key 
registers are different from the instructions used to 
load and store segmentation registers. 

5. In a translator system, an I/O device should not 
receive protect checks. In a storage protect system, it 
is possible for an I/O device to receive protect checks. 

6. Due to the address mapping capability of a translator 
system, certain mappings from logical to physical 
address space are difficult to emulate in a storage 
protect system. For example: a common area 
exclusive to only two address keys. 

7. In a translator system, PSW bit 14 provides status 
information on whether the translator is enabled or 
disabled. There is no status bit to provide this infor­
mation concerning the storage protection mechanism. 

6-6 GA34-0021 

Error Recovery Considerations 

Invalid Storage Address 

If a program check interrupt with invalid storage address 
(ISA) set in the program status word occurs when the 
relocation translator is enabled, it has two possible mean­
ings: 

1. Mapping occurred into a real storage address, but that 
segment of storage is not installed on the machine. 
This error is called a physical ISA. 

2. Bit 13 (valid bit) of the segmentation register was not 
set when mapping was attempted. This signifies that 
the contents of the segmentation register are invalid. 
This error is called a logical ISA. 

The specific nature of the ISA can be resolved as follows: 

1. Store the segmentation register following the program 
check interrupt. 

2. Test the segmentation register for the presence of bit 
13. 

3. If bit 13 is a one, the supervisor's concept of the actual 
storage installed on the machine is incorrect. 

Protect Check 
When the translator is enabled, a program check interrupt 
with protect check set in the PSW is caused by an attempt 
to write into storage using a segmentation register with 
bit 14 (read-only) set to one. 

When the translator is disabled, protect check in the 
PSW can be set by the storage protection mechanism (if it 
is enabled). Refer to Chapter 5 for additional information 
about the storage protection mechanism. 

To resolve the cause of the protect check error, the 
supervisor must determine if the translator is enabled. 

Status of Translator After Power Transitions and 
Resets 
The translator is enabled only by the Enable (EN) 
instruction. The translator is disabled by the following: 

1. Disable (DIS) instruction 
2. Power on reset 
3. Check restart 
4. Initial program load (IPL) 
5. System reset key (programmer Console Feature) 

Notes. 
1. A machine check does not disable the translator. 
2. The segmentation registers are not reset when the 

translator is disabled. 

o 



Instruction Execution Time When Using the 
Translator 
The translator, when enabled, adds 220 nanoseconds to 
each reference to main storage. When the translator is 
disabled, storage references proceed at normal speed (660 
nanoseconds). Table 2 in Appendix A provides instruction 
execution times when the translator is enabled. 

Storage Address Relpcation Translator Feature 6-7 



c 
6-8' GA34"'OOZl 



o 

o 

There are two configurations of consoles available for the 
IBM 4955 Processor. The Basic Console is standard, and 
remains with the processor. The Programmer Console is an 
optional feature that is added to the basic console when 
the option is selected. 

IPL Source 

Primary ~ 

Alternate U 
Mode 

Auto IPL ~ 
Normal 
Oiagnostic 

~
heck LJeset LJtare [Jato 

Buffer 

o +++ 

rJevel 0 ~evel 1 bJevel 2 ~evel 3 Stop On 
Address 

o 0 0 0 0 

[;~'O"l 
R 
L:J 

LJLJLJODDOO 
LJLJLJ ~,~:."' DOOD 
LJLJLJDODDD 
DLJLJLJODOD 

Chapter 7. Console 

Basic Console 

Programmer Console 

Console 7-1 



The basic console is primarily intended for those 
systems that are totally dedicated to a particular applica­
tion, where operator intervention is not needed during the 
execution of the application. 

The programmer console is aimed at operator oriented 
systems where various programs are entered and executed 
during the day. This type of environment requires a more 
versatile console arrangement for program and machine 
problem determination, and for manual alteration of data 
and programs in storage. 

Basic Console 
Each IBM 4955 Processor comes equipped with the standard 
Basic Console. The Basic Console provides the following 
capabilities: 

• Power On/Off switch for the processor card me 
• IPL source switch to select a primary or alternate IPt 

device 
• Load key for IPL (initial program load) 
• Mode switch to select: Diagnostic mode, Auto IPL, or 

Normal mode 
• Load, Wait, Run, and Power On indicators. 

Keys and Switches 
11 Power On/Off When this switch is placed in the On position, 

power is applied to the processor unit. After 
all power levels are up, the Power On indica­
tor is turned on. When this switch is placed 
in the Off position, power is removed from 
the processor card file and the Power On 
indicator is turned off. 

iii IPL Source 

rI Load 

7-2 GA34-0021 

This switch selects the I/O device to be 
used for program loading. In the Primary 
position, the device that was pre-wired as 
the primary IPL device is selected. In the 
Alternate position, the device that was pre­
wired as the alternate IPL device is selected. 

Pressing this key causes a system reset, then 
the initial program load (IPL) sequence is 
started. The Load indicator is turned on 
and remains on until the IPL sequence is 
completed. When the IPL is completed, 
instruction execution begins at location 
zero on level zero. 

m Mode 

Indicators 

II Power On 

II Load 

m Wait 

m Run 

This switch has the following positions: 

• Auto IPL - In this position, an IPL is 
initiated after a successful power-on 
sequence. Bit 13 of the PSW is set to 
indicate to the software that an auto­
matic IPL was performed. In this mode 
STOP instructions are treated as no-ops. 

• Normal- This position is for attended 
operatiQn. In this mode STOP instruc­
tions are treated as no-ops. 

• Diagnostic - This position has no 
function without the Programmer· 
Console. This position places the 
processor in diagnostic mode if the 
Programmer Console is attached. When 
the processor is in diagnostic mode, 
STOP instructions cause the processor 
to enter stop state. 

On when the proper power levels are 
available to the system. 

On when the machine is performing an 
initial program load (IPL). 

On when an instruction that exits the 
active level has been executed and no 
other priority interrupts are pending. 

On when the machine is executing 
instructions 

IPL Source 

Pnmary ~ 

Alternate U iii 
Mode 

AutolPL ~ m 
Normal I 
DIi:Hjnostlc 

11 

Ial 
L:J 

o 

o 



o 

c 

Programmer Console 
The Programmer Console is an optional feature that can be 
ordered ~th the IBM 4955 Processor or may be field 
installed at a later date. The Programmer Console provides 
the following capabilities: 

• Start and stop the processor. 
• Display or alter any storage location. 
• System reset. 
• Select any of the four interrupt levels for display or 

alter purposes. 
• Display or alter the storage address register (SAR), 

instruction address register (IAR), console address 
key register (AKR), console data buffer, or any general 
purpose register. 

• Display but not alter the level status register (LSR), 
curren.t instruction address register (CIAR), op 
register, level address key register (AKR), or processor 
status word (PSW). 

• Stop-on-address. 
• Stop-on-error. 
• Instruction step. 
• Check restart. 
• Request a console interrupt. 
• Check indicator, on when a machine check or program 

check class interrupt has occurred. 

The Programmer Console is touch sensitive with an 
audio tone generator providing an audio response tone 
whenever a key depression has been accepted and serviced 
by the processor. 

EjheCk LJeset LJtare [)dta 
Buffer 

o tt1 

~
evel 0 ~evel 1 ~evel 2 bJevel3 Stop On 

Address 

o 0 0 0 0 

LJLJLJLJOOOD 
LJLJLJ ~;,:~ DODD 
LJDLJDODDD I 
[][JL][JODOO 

Console Display 

Run or Wait State 

When the processor is in run or wait state, the console 
data buffer is displayed in the data display indicators. 
An exception to this is when a Set Console Data Lights 
instrpction writes a message to the data lights. This 
instruction does not change the buffer. When the Data 
Buffer key is pressed, the console data buffer is again 
displayed in the indicators. 

When the console data buffer is being displayed, it 
can be changed by entering new data using the data entry 
keys. No depression of the Store key or Data Buffer key 
is required. 

Stop State 

When the processor enters stop state, the IAR is displayed 
in the data display indicators. Any system resource that 
has a corresponding select key on the console can be 
displayed. For example, the console data buffer can be 
displayed by pressing the Data Buffer key. 

In run mode, displayed 
all the time. In stop 
sta te, displayed when 
the Data Buffer key 

} 

pressed. 

--'---'--r----1 

Console 
Data 
Buffer 

IAR displayed in 
Stop state 

Displayable areas 
or 

Message from Set Console 
Data Lights Instruction. 

Console 7-3 



Power-On Reset 
After a power-on reset, the data display indicators are 
set on and the level indicators are set off. 

Indicators 
11 Data Display 

iii Check 

74 'GA34-0021 

• When the processor is in run state, 
the console data buffer is displayed 
in the data display indicators. 

• The Set Console Data Lights (SECON) 
instruction can write a message to the 
data display. 

• When the processor enters stop state, 
the IAR is displayed unless another 
system resource is selected. 

• To display the contents of the console 
data buffer after a system resource has 
been displayed, press the Data Buffer 
key·a 

On when a machine check or program 
check class interrupt has occured. The 
check indicator is turned off by: 

• Clearing the check condition 
Reset key 
Load key 
Executing a Copy Processor Status 
and Reset (CPPSR) instruction. 
This instruction resets bits 0-12 
of the PSW. 

• Pressing any console key while in the 
stop state. Note that the check condi­
tion is not cleared unless the Reset key 
or the Load key is pressed. 

While in the stop state, the check indi­
cator is used to indicate main storage 
parity errors during display operations. 
Refer to Displaying Main Storage Locations 
in this chapter. 

LJLJLJDOODD 
LJLJLJ ~,:~~ DOOD 
LJLJLJLJOODD I 

LJLJDl]ODDD 

it('~ 

I",,~) 

o 



o 

o 

Combination Keys/Indicators The Stop On Address key and the Instruct Step key are 
mutually exclusive. When one is pressed, the other is 
reset if it was on. 

There are nine combination key/indicators: 

• Level 0, 1, 2, and 3 II Stop on 
Address • Stop 

• Stop On Address 

• Instruct Step 

• Check Restart 

• Stop On Error 

m Level 0-3 

II Stop 

The current active level is always displayed 
by one of the level indicators. When in the 
stop state, pressing any of the level keys 
causes that level to be selected and the 
associated indicator is turned on. 

This indicator is on when the processor 
is in the stop state. Stop state is entered 
in the following ways: 

• By pressing the Stop key. 
In run state the current instruction 
is completed. 
In wait state, stop state is entered 
directly. 
In the stop state, the contents of 
the IAR upon entering stop state 
are restored to the IAR and dis­
played in the lights. The lev~l that 
was active upon entering stop state 
is reselected (becomes active). 

• By execution of the Stop instruction 
(diagnostic mode only). 

• When an address compare occurs in 
stop-on-address mode. 

• When an error occurs in stop-on-
error mode. 

• By pressing the Reset key. 
• When a power-on reset occurs. 
• By selecting the Instruction Step mode 

while in run state. 

m Instruction 
Step 

This key places the processor in stop on 
address mode. Pressing the Stop On 
Address key a second time resets stop 
on address mode and turns off the 
indicator. 

Pressing the Instruct Step key places the 
processor in instruction step mode and 
turns the Instruction Step indicator on. 
The Stop On Address indicator is turned 
off if it was on. 

If the processor is in run or wait states, 
pressing this key causes the processor to 
enter stop state. Pressing the Instruction 
Step key a second time resets instruction 
step mode, the processor remains in stop 
state. 

To operate in instruction step mode: 

• Key the desired starting address and 
store into the IAR. 

• Press the Instruct Step key. 
• Press the Start key. The instruction 

located at the selected address is 
executed, the processor returns to 
stop state. The IAR is updated to the 
next instruction address, this address 
is displayed in the data display 
indicators. 

• Each subsequent depression of the 
Start key causes one instruction to be 
executed and the IAR is updated to 
the next instruction address. 

Note. Priority and class interrupts are not 
inhibited during execution of the 
instruction. 

LJLJLJDDDDO 
fRlFlFl M"", DODD LJLJLJ Star,,'iC 

LJDLJLJOODD' 
LJLJLJLJDDDD 

Console 7-5 



Stop On Address Mode 

Processor must be in stop state to set the compare address. 

1. If the Storage Address Relocation Feature is not 
installed go to step 2, otherwise: 
a. Press AKR key (selects console AKR when all level 

ligh ts are off). 
b. Key in the Address Key (lSK bits of AKR). 
c. Press Store key. 

2. Press Stop On Address Key. 
3. Key in selected address. 
4. Press Store Key. The selected address and address key 

are placed in the stop on address buffer. 
s. Press Start Key. Execution begins at current IAR 

address on the current level. 

When the selected address is loaded into the IAR, the 
processor enters stop state. To exit stop state press the 
Start key; execution begins at the next sequential address. 

~
heCk CJeset LJtare Data 

Buffer 

o +++ 

~
evel 0 bJevel 1 ~evel 2 ~evel 3 Stop On 

Address 

o 0 0 0 0 

LJLJLJDDOOD 
FlFlOAR Main DODD uu Storage 

LJDLJLJODDD I 
LJCJOLJODOD 

7-6 GA34-0021 

The Check Restart key and the Stop On Error key are 
mutually exclusive. When one is pressed the other is reset 
if it was on. 

II Check Restart Pressing this key places the processor in 
check restart mode. While in this mode, 
a program check, a machine check, or a 
power/thermal warning class interrupt 
causes the processor to be reset and 
execution to restart at address zero on 
level zero. 

Note. The power/thermal warning class 
interrupt is controlled by the summary 
mask. 

II Stop On Error Pressing this key places the processor in 
stop on error mode. Any program check, 
machine check, or power/thermal warning 
causes the processor to enter stop state. 
To determine the cause of the error, 
display the PSW. To restart the processor, 
press the Reset key then the Start key. 
Pressing only the Start key, allows the 
processor to proceed with the class 
interrupt as if stop mode had not occurred. 
Note that the check indicator may have 
been turned off while in stop state. After 
the class interrupt routine is completed, 
control may be returned to the instruction 
that caused the error and an attempt to 
reexecute the instruction may be made. 
Note that some instructions are not re­
executable because operand registers or 
storage locations were changed before the 
instruction was terminated (because of 
the initial error). In these cases, the oper­
ator must be familiar with the program be­
cause manual restoration of affected loca­
tions must be made before restart is 
attempted. 

Note. The power/thermal warning class 
interrupt is controlled by the summary 
mask. 

() 

o 



0',' ',( 

o 

Keys and Switches 
II Reset This key initiates a system reset that 

performs the following functions: 

• IAR on level zero set to zeros. 
• AKR on level zero set to zeros. 
• Console AKR set to zero. 
• Interrupt mask set to all levels enabled. 
• LSR on level zero - indicators set to 

zero, summary mask enabled, super­
visor state and in-process flag turned 
on, trace disabled. 

• LSRs for levels 1-3 set to zeros. 
• PSW set to zero. 
• SAR set to zeros. 
• CIAR set to zeros. 

After the system reset is completed, the processor is 
placed in the stop state with stop indicator on. 

The following resources are not affected by system 
reset: 

• General registers (all levels) 
• lARs (levels 1-3) 
• AKRs (levels 1-3) 
• Storage key stack 
• Main storage 
• Console data buffer 
• Segmentation registers (relocation translator features) 
• Floating-point registers (floating-point feature) 
• Stop on Address buffer. 

iii Store 

II Data Buffer 

II Console 
Interrupt 

.. Start 

This key is effective only when the 
processor is in stop state. Pressing this 
key causes the last data entry to be 
stored in the last selected resource. 

Pressing this key causes the console data 
buffer to be selected. The contents of the 
console data buffer are displayed in the 
data display indicators. 

The effect of this key depends on the state 
of the processor. If the processor is in the 
stop or load states, this key has no effect. 
If the processor is in the run or wait state 
and the summary mask is enabled prior to 
the key action, a console class interrupt 
occurs. The audio response tone is gener­
ated when the interrupt is processed. 

Effective in stop state only. Stop state is 
exited and the processor resumes execution 
at the address in the IAR on the current 
level. If stop state was entered from system 
reset, execution begins at address zero, 
level zero. If stop state was entered from 
wait state, the processor returns to wait 
state. 

Note. The Reset and Console Interrupt keys have an 
indication (+++) on the face of the keys. This signifies 
that additional pressure must be used to activate these 
keys . .This is to minimize the possibility of the operator 
inadvertently activating these functions. 

LJLJLJLJDODD 
LJLJLJ ~,::.- DODD 
LJ LJLJLJ DODD 
DLJLJLJODDO 

Console 7-7 



.. PSW Pressing this key selects the processor 
status word. The contents of the PSW are 
displayed in the data display indicators. 
Data cannot be stored into the PSW from 
the console. 

II, OpReg Data cannot be stored into the Op register 
from the console. Pressing this key selects 
the Op register and displays the contents 
in the data display indicators. 

m CIAR Pressing this key after entering stop state 
causes the address of the instruction just 
executed to be displayed. Data cannot be 
stored into the CIAR from the console. 

II; SAR Pressing this key while in stop state dis-
plays the contents of the storage address 
register. An address can be stored into the 
SAR to address main storage for display 
or store operations. Bit 15 of the SAR 
cannot be set from the console. 

13 Main Storage Pressing this key selects main storage as tne 
facility to be accessed by the console. When 
this key is pressed, the contents of the 
main storage location addressed by the 
SAR is displayed in the data display indi-
cators. Procedures for displaying and 
storing main storage are provided in sub-
sequent sections of this chapter. 

~
heCk rJeset LJtore Data 

Buffer 

o +++ 

(JevelO ~evell uevel2 ~evel3 Stop On 
Address 

o 0 0 0 0 

[iJL;JLiJ~OOOO 
EJLJLJ ~,~~~ DOOD 
LJLJ[J[JOODD 
[][][][]ODDO 

7-8 GA34-0021 

Level Dependent Keys 

The following keys select registers that are duplicated in If"" 
hardware for each of the four interrupt levels: I(V 

• LSR 

• AKR 

• lAR 

• General purpose registers 0-7 

Pressing any of these keys, once a level has been 
selected, causes the contents of that register to be 
displayed in the data display indicators. 

The level status register (LSR) is displayable only; 
data cannot be stored into this register. 

To display an AKR for a given level, press the AKR key; 
the console AKR is displayed in the data display indicators, 
and the level indicators are reset. Press the desired Level 
key; the contents of the AKR for that level are now 
displayed. The level AKRs are displayable only. The 
console AKR is used for console operations only, and 
data can be stored into or displayed from this register. 

Bit 15 of the lARs cannot be changed from the 
console. 

Pressing the Store key after selecting an LSR or AKR 
results in no action taken and no audio tone response. 

o 



0" .. ,1 
'I 

o 

0'" 
, , 

Data Entry Keys 

The sixteen data entry keys are used to enter data into a 
selected resource such as main storage or a general 
register. When data is entered it is shifted through the 
indicators as shown in the following example. 

Example: Data to be entered: F3A8 

Action Data display indicators 

Press data entry key F 

Press data entry key 3 

Press data entry key A 

Press data entry key 8 

Legend: 

.- Indicator on 

0- Indicator off 

Console 7-9 



Displaying Main Storage Locations 
• Machine must be in stop state. 
• If the Storage Address Relocation Translator Feature 

is installed and enabled, start at step 1, otherwise start 
at step 4. 

1. Press the AKR key. 11 
The contents of the console AKR are displayed in the 
data display indicators. 

2. Key in one hex character (new address key). This 
character is displayed in bits 12-15 of the data 
display indicators. Bit 12 is ignored when the address 
key is stored (the key is stored in bits 13-15). 

3. Press the Store key II 
to Store the new address key into the AKR. 

4. Press the SAR key. rI 
The contents of the SAR are displayed in the data 
display indicators. 

5. Key in the selected address (four hex characters). 
This address is displayed in the data display 
indicators. 

6. Press the Store key. iii 
The address that is displayed is stored into the SAR. 

7. Press the Main Storage key. m 
The contents of the addressed storage location are 
displayed in the data display indicators. To display 
sequential main storage locations, continue pressing 
the Main Storage key. The storage address is incre­
mented by +2 each time the Main Storage key is 
pressed, and the addressed location is displayed. 

~
heCk [Jeset [i]tore Ddta 

Butter 

o Ht II 

~
evel a ~evel 1 uevel 2 ~evel 3 Stop On 

Address 

o 0 0 0 0 

LJLJLJriJOODD 
Fl~PI Mall) DOOD LJ~LJSme 

LJDLJLJOODD I 

DLJDLJDDOD 

7-10 GA34-0021 

Notes. 
1. The use of the procedure at step 1 through 3, assumes 

a thorough knowledge of the relocation translator 
feature and the storage mapping assigned by the 
program. 

2. If an invalid storage address or a protect check 
condition occurs: 
a. The program check is suppressed. 
b. No PSW bit is set. 
c. The check indicator is not turned on. 
d. The storage access is suppressed. 
e. The data display indicators are set to a value of 

0003 with no other visual indication of the error. 

Storing Into Main Storage 

• Machine must be in stop state. 
• If the Storage Address Relocation Translator Feature 

is installed and enabled, start at step 1, otherwise start 
at step 4. 

1. Press the AKR key. 11 
The contents of the console AKR are displayed in the 
data display indicators. 

2. Key in one hex character (new address key). This 
character is displayed in bits 12 -15 of the data 
display indicators. Bit 12 is ignored when the address 
key is stored (the key is in bits 13 -15). 

3. Press the Store key II 
to store the new address key in to the AKR. 

4. Press the SAR key. II 
The current contents of the SAR are displayed in the 
data display indicators. 

5. Key in the selected address (four hex characters). The 
address is displayed in the data display indicators. 

6. Press the Store key. iii 
The address displayed in the data display indicators 
is stored into the SAR. 

7. Press the Main Storage Key. m 
The contents of the addressed storage location are 
displayed in the data display indicators. 

8. Key in the data that is to be stored into main storage. 
This data is displayed in the data display indicators. 

9. Press the store key. iii 
The data that is displayed is stored at the selected 
storage location. Each subsequent pressing of the 
Store key causes the SAR to be incremented by +2, and 
the data stored at the location is displayed. 

Note. The use of the procedure at step 1 through 3, 
assumes a thorough knowledge of the relocation translator 
feature and the storage mapping assigned by the program. 

tf~ 
1\Jt __ ! ,.;d 

() 



o 

o 

Displaying Registers 

• Processor must be in Stop State. 

1. Select the proper level by pressing the appropriate 
Level key. II 

The contents of any register associated with the 
selected level can now be displayed by pressing the 
register key. 

2. Press the desired register key. The contents of that 
register are displayed in the data display indicators. 

m 
To display the same register on each level, select 

the register, then press each level key. Each level 
selection causes the selected register for that level to 
be displayed in the data display indicators. 

Storing Into Registers 

• Processor must be in stop state . 

1. Select the proper level by pressing the appropriate 
Level key. lEt 

2. Press the key for the register where data is to be 
stored. The contents of that register are displayed 
in the data display indicators. iii 

3. Key in the data that is to be stored. This data is 
displayed in the data display indicators. 

4. Press the Store key. II 
The data that is displayed is stored into the selected 
register. 

To store into the corresponding register on another 
level, select the level and proceed with step 3; or, if the 
same data is to be stored, select the level and press the 
Store key. 

LJLJLJDOODD 
FINN MaIO). DODD LJLJLJ Stord"e 

DLJLJLJDODD I 
DLJO[]ODDD 

Console 7-11 



o 
7-12 GA34-0021 



o 
The instructions (excluding floating-point instructions) for 
the IBM 4955 Processor are described in this chapter. 
Floating-point instructions are described in Chapter 9. A 
complete listing of instruction formats is contained in 
Appendix B. Instruction timings are contained in Appendix 
A. Indicator settings are listed for each instruction. For 
additional indicator information, refer to Indicators in 
Chapter 2. 

Exception Conditions 
Exception conditions that might occur during instruction 
execution are shown in abbreviated form with each instruc­
tion description. Refer to the following sections for a 
detailed description of these conditions. 

Program Check Conditions 

Invalid Function 

(1) An illegal operation code or function combination is 
encountered during instruction execution, or (2) while in 
supervisor state, the processor attempts to execute a Copy 
Segmentation Register (CPSR) or Set Segmentation Register 
(SESR) instruction and the optional relocation translator 
feature is not installed. 

A program check class interrupt occurs with invalid 
function (bit 4) set in the PSW. 

Invalid Storage Address 

Instruction Word or Operand. One or more words of the 
instruction or the effective address is outside the installed 
storage size of the system. The instruction is suppressed 
unless otherwise noted in the individual instruction 
description. 

A program check class interrupt occurs with invalid 
storage address (bit I) set in the PSW. 

Privilege Violate 

Privileged Instruction. A privileged instruction is encountered 
while in problem state. The instruction is suppressed. 

A program check class interrupt occurs with privilege 
violate (bit 2) set in the PSW. 

Protect Check 

Instruction Fetch or Operand Access. In the problem state, 
an instruction is fetched or data is accessed from a storage 
area not assigned to the current operation. 

Operand Store. In the problem state, the instruction 
attempts to change an operand in a storage area assigned as 
read-only. 

The instruction is suppressed unless otherwise noted in 
the individual instruction description. A program check 
class interrupt occurs with protect check (bit 3) set in the 
PSW. 

Specification Check 

Operand Address. The generated effective address has 
violated an even-byte boundary requirement. 

Indirect Address. When using addressing mode (AM=II), 
the indirect address is not on an even-byte boundary. 

The instruction is suppressed unless otherwise noted in 
the individual instruction description. A program check 
class interrupt occurs with specification check (bit 0) set in 
the PSW. 

Note. A specification check can also occur during a 
Supervisor Call (SVC) instruction if the SVC LSB pointer 
or the SVC SIA pointer violates an even-byte boundary 
requirement. 

Soft Exception Trap Conditions 

Invalid Function 

(1) A floating-point instruction (operation code 00100) is 
attempted and the floating-point feature is not installed, or 
(2) a Set Floating Level Block (SEFLB) or Copy Floating 
Level Block (CPFLB) instruction is attempted while in 
supervisor state, and the floating-point feature is not 
installed. 

The instruction is suppressed. A soft-exception-trap 
class interrupt occurs with invalid function (bit 4) set in the 
PSW .. 

Instr.uctions 8-1 



AB 

Stack Exception 

(1) The stack is full and a Push instruction or a Store 
Multiple (STM) instruction is attempted, (2) the stack is 
empty and a Pop instruction or a Load Multiple and 
Branch (LMB) instruction is attempted, or (3) the stack 
cannot contain the number of words to be stored by a 
Store Multiple instruction. 

The instruction is suppressed. A soft-exception-trap 
class interrupt occurs with stack exception (bit 6) set in the 
PSW. 

Note. When the AM field is equal to 01, the register 
specified by the RB field is incremented before the, class 
interrupt occurs. 

Instruction Termination or Suppression 
Exception conditions that occur during instruction 
processing might cause the instruction to be terminated or 
suppressed. When an instruction is terminated, partial 
execution has taken place and may have caused a change to 
registers, indicators, or main storage. When an instruction 
is suppressed, there has been no execution, therefore, no 
changes. Refer to Exception Conditions in the previous 
section. 

Instruction Descriptions 
The following descriptions are in alphabetical sequence 
based on assembler mnemonics. However, extended 
mnemonics are listed under the appropriate machine 
instruction. For example: branching, jumping, and address 
key register instructions. 

8-2 GA34-0021 

Add Byte (AB) 
AB reg,addr4 

addr4,reg 

Operation Code 

1 1 0 0 0 
o 

1 = result to storage } ~ 
o = result to register 

An add operation is performed between the least significant 
byte of the register specified by the R field and the location 
specified by the effective address in main storage. (See 
Effective Address Generation in Chapter 2.) Bit 12 of the 
instruction specifies the destination of the result. The 
source operand and high-order byte of the register are 
unchanged. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the byte. If no carry is detected, the 
carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one byte; i.e., if the sum is less than _27 or 
greater than +2 7 -1. 

If an overflow occurs, the result contains the correct low­
order eight bits of the sum; the carry indicator contains the 
high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

,~\ 
'-,c.,»j 

o 



0, 
" ,',' 

o 

Add Byte Immediate (ABI) 
ABI byte,reg 

I Operation code I 
00000 
045 

R Immediate 

7 8 15 

The immediate field is expanded to 16 bits by sign propa­
gation to the eight high-order bits. The field is then added 
to the contents of the register specified by the R field. The 
result is placed in the register specified by the R field. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, the 
carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _2 15 

or greater than +2 15 _1. 
If an overflow occurs, the result contains the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Add Carry Register (ACY) 
ACY reg 

Operation code 
o 1 110 

045 7 8 

Function 
o 1 100 

10 11 15 

ABI 
ACY 

The value of the carry indicator on entry is added to the 
contents of the register specified by the R2 field, and 
the result is placed in the register specified by the R2 field. 
Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

Programming Note. This instruction can be used when 
adding multiple word operands. See Indicators - Multiple 
Word Operands in Chapter 2. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, the 
carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _2 15 

or greater than +2 15 -1. 
If an overflow occurs, the result contains the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even. Unchanged. 

Negative. Changed to reflect the result. 

Zero. If on at entry, changed to reflect the result. If off at 
entry, it remains off. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Instructions 8-3 



AD 

Add Doubleword (AD) 

Register/Storage Format 
AD reg,addr4 

addr4,reg 

Operation Code 
1 101 0 

o 

1 = result to storage } ~ 
o = result to register 

An add operation is performed between the register pair 
specified by the R field (R and R+ 1) and the doubleword in 
main storage specified by the effective address. (See 
Effective Address Generation in Chapter 2.) Bit 12 of the 
instruction specifies the destination of the result. The 
source operand is unchanged. 

If the R field equals 7, register 7 and register 0 are 
used. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the doubleword. If no carry is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in the doubleword; i.e., if the sum is less than 
_2 31 or greater than +2 31 _1. 

If an overflow occurs, the result contains the correct 
low-order 32 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. If the doubleword location 
specified by the effective address crosses a read-only 
protection boundary, partial data may be stored into the 
non read-only protected area. The status of the indicators 
is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-4 GA34-0021 

Storage/Storage Format 
AD addr5,addr4 

Operation code 
1 0 1 0 1 

o 4 5 101112131415 

r-------------------, 
~ - - ___ ~cf!!:.rf!.!..sIDisgla~n;;.nl_ - - - --1 
L _ ~sIZ!.a~m~tJ __ l. _ ~isplac~m~t 1. _..J 
32 3940 47 

The address arguments generate the effective addresses of 
two operands in main storage. (See Effective Address 
Generation in Chapter 2.) Doubleword operand 1 is added 
to doubleword operand 2. The result replaces operand 2. 
Operand 1 is unchanged. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit positiorl of the doubleword. If no carry is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in the doubleword; i.e., if the sum is less than 
_2 31 or greater than +231 _1. 

If an overflow occurs, the result contains the correct 
low-order 32 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. The 
instruction is terminated. If RBI and RB2 specify the 
same register and AM 1 =01, the register is incremented 
before the program check interrupt occurs. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand store, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main storage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

I~' 
li(lJ 

o 



o 

e'i 

Add Word (AW) 

Register/Register Format 
AW reg,reg 

Operation code 
01110 

Function 

o 1 000 
o 4 5 7 8 10 11 15 

The contents of the register specified by the R1 field are 
added to the contents of the register specified by the R2 
field. The result is placed in the register specified by the 
R2 field. The contents of the register specified by the R1 
field remain unchanged if R1 and R2 do not specify the 
same register. 

Indicators 

Carry .. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, the 
carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _2 15 

or greater than +2 15 -1. 
If an overflow occurs, the result contains the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Register/Storage Format 
AW reg,addr4 

addr4,reg 

Operation Code 
1 100 1 
o 4 5 7 8 9 10 11 12 13 

I = result to storage } ~ 
0= result to register 

15 

r------------------I- _____ ~d:!.r::..s/DiP...la~~nf_ ____ ~ 
L Displacement 1 ] Displacement 2 .I 
16- - - - - - - -23 24 - - - - - - - 31 

AW 

An add operation is performed between the register 
specified by the R field and the location specified by the 
effective address in main storage. (See Effective Address 
Generation in Chapter 2.) Bit 12 of the instruction 
specifies the destination of the result. The source 
operand is unchanged. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, the 
carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _2 15 

or greater than +2 15 _1. 
If an overflow occurs, the result contains the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-5 



AW 

Storage to Register Long Format 
AW longaddr ,reg 

Operation code 

o 1 101 
o 

16 

0= direct address } ~ 
1 = indirect address 

Address 

31 

The contents of the main storage location specified by an 
effective address are added to the contents of the register 
specified by the Rl field. The result is placed in the 
register specified by the Rl field. 

The effective main storage address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field. If the R2 field 
equals zero, no register contributes to the address 
generation. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0 (direct address). The result from step 1 is the 
effective address. 
Bit 11=1 (indirect address). The result from step 1 is 
the address of the main storage location that contains 
the effective address. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, the 
carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _2 15 

or greater than +2 15 _1. 
If an overflow occurs, the result contains the correct' 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-6 GA34-0021 

Storage/Storage Format 
AW addr5,addr4 

Operation code 

10101 
o 4 5 7 8 9 10 11 12 13 14 15 

-----------------, ~ _____ ~d'!!:.e~DisPlac!!.....~:!!.t ____ -I 
L Displacement 1 [ DIsplacement 2 1 
32 - - - - - - 39 40 - - - - - - 47 

The address arguments generate the effective addresses of 
two operands in main storage. (See Effective Address 
Generation in Chapter 2.) Word operand 1 is added to word 
operand 2. The result replaces operand 2. Operand 1 is 
unchanged. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, 
the carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _21 S 

or greater than +2 15 _1. 
If an overflow occurs, the result contaiQ,s the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access~ or 
operand store. For instruction fetch or operand access, the 
instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main storage is not changed but the indica­
tors are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand add'ress). 

c 

o 



D 

0 ,\ ,., 

Add Word With Carry (AWCY) 
AWCY reg,reg 

Operation code 

o 1 1 1 0 
o 4 5 7 8 

Function 
o 1 0 0 

1011 

This instruction adds three terms together: 

15 

(Rl) the contents of the register specified by the Rl field. 
(R2) the contents of the register specified by the R2 field. 
e the value of the carry indicator at entry. 

The contents of the register specified by the Rl field are 
unchanged if Rl and R2 do not specify the same register. 
The final result replaces the contents of the register 
specified by the R2 field. 

Programming Note. This instruction can be used when 
adding multiple word operands. See Indicators - Multiple 
Word Operands in Chapter 2. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, 
the carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _2 15 

or greater than +2 15 _1. 
If an overflow occurs, the result contains the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even. Unchanged. 

Zero. If on at entry, set to reflect the result. If off at 
entry, remains off. 

Negative. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Add Word Immediate (AWl) 

Register Immediate Long Format 
AWl word,reg(,reg] 

Operation code 
o 1 111 

o 4 5 

16 

7 8 

Immediate 

Function 
10 0 0 0 

10 11 15 

31 

AWCY 
AWl 

The immediate field is added to the contents of the 
register specified by the Rl field. The result is placed in 
the register specified by the R2 field. The contents of the 
register specified by the Rl field are unchanged if Rl and 
R2 do not specify the same register. 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, 
the carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
represented in one word; i.e., if the sum is less than _2 15 

or greater than +2 15 _1. 
If an overflow occurs, the result contains the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word. 

Protect Check. Instruction fetch. 

Instructions 8-7 



AWl 

Storage Immediate Format 
AWl word,addr4 

Format without appended word for 
effective addressing (AM = 00 or 01) 

Operation code 

o 1 0 0 0 
o 4 5 

16 

7 8 9 101112 

Immediate 

Format with appended word for 
effective addressing (AM = 10 or 11) 

Opera tion code 

o 1 0 0 0 
o 4 5 7 8 9 101112 

Address/ Displacement 
-llispbcenumt T - - - -DiSpiacemellt 2 

16 2324 

Immediate 

32 

15 

31 

15 

47 

The immediate field is added to the contents of the 
location specified by the effective address. (See Effective 
Address Generation in Chapter 2.) The result replaces the 
contents of the storage location specified by the effective 
address. 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

The immediate operand is unchanged. 

8-8 GA34-0021 

Indicators 

Carry. Turned on if a carry is detected out of the high­
order bit position of the word. If no carry is detected, 
the carry indicator is reset. 

Overflow. Cleared, then turned on if the sum cannot be 
rel>resented in one word; i.e., if the sum is less than _215 

or greater than +2 15 -1. 
If an overflow occurs, the result contains the correct 

low-order 16 bits of the sum; the carry indicator contains 
the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
{indirect address or operand address}. 

o 



o 

o 

Branch Unconditional (B) 
B longaddr 

Extended Assembler Mnemonic 

BX vcon 

Operation code 

o 101 
o 4 

Branch External 

0= direct address } ~ 
1 = indirect address 

Address 

16 31 

An effective branch address is generated and loaded into 
the instruction address register, becoming the next instruc­
tion to be fetched. 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address and· 
is loaded into the instruction address register. 
Bit 11 =1. The result from step 1 is an indirect 
address. The contents of the main storage location 
specified by the result are loaded into the instruction 
address register. 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
branch address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or branch address). 

B 

Instructions 8-9 



BAL 
BALS 
Branch and Link (BAL) 
BJlL longaddr7eg 

Extended Assembler Mnemonic 

BJlLX vcon,reg Branch and Link External 

Operation code 

o 1 101 
o 

16 

0= direct address } ~ 
1 = indirect address . 

Address 

15 

31 

The updated value of the instruction address register (the 
address of the next sequential instruction) is stored into 
the register specified by the Rl field. An effective branch 
address is then generated and loaded into the instruction 
address register, becoming the next instruction to be 
fetched. 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address 
and is loaded into the instruction address register. 
Bit 11 =1. The result from step 1 is an indirect 
address. The contents of the main storage location 
specified by the result are loaded into the instruction 
address register. 

Programming Note. If Rl and R2 specify the same 
register the initial contents are used in effective address 
computation and subsequently overwritten by the return 
data. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
branch address. No branch is taken, but the contents of 
the register specified by the Rl field are still changed. 
The instruction is terminated. 

Protect Check. Instruction fetch. 

8-lO GA34-0021 

Specification Check. Even byte boundary violation 
(indirect address or branch address). The instruction is 
terminated. No branch is taken but the contents of the 
RI register are changed. 

Branch and Link Short (BALS) 
BALS (regjdisp)* 

(reg) * 
addr* 

Operation code 

111 
o 4 5 7 8 

Word displacement 

15 

The updated contents of the instruction address register 
(the location of the next sequential instruction) are stored 
in register 7. 

Bit 8 of the word displacement field is propagated left 
by 7 bit positions and a zero is appended at the low order 
end, resulting in a 16-bit word. (Word displacement is 
converted to a byte displacement.) This value is added to 
the contents of the register specified by R to form an 
effective address. The contents of the storage location 
specified by the effective address are stored into the 
instruction address register, and become the address of 
the next instruction to be fetched. 

Programming Note. If the implied register (R7) is used 
as a base register, the initial contents of R7 are used in 
effective address computation and subsequently over­
written by the return data. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Effective address. The instruc­
tion is terminated. Branching does not occur but storing 
of the updated instruction address into R7 does occur. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(effective address). The instruction is terminated. 
Branching does not occur but storing of the updated 
instruction address into R7 does occur. 

o 



Branch on Condition (BC) 

~'I 
~\ Operand 

Mnemonic syntax Instruction name 

BC cond,longaddr Branch on Condition 

Extended Operand 
Mnemonic syntax Instruction name 
BE longaddr Branch on Equal 
BOFF longaddr Branch if Off 
BZ longaddr Branch on Zero 
BP longaddr Branch on· Positive 
BMIX longaddr Branch if Mixed 
BN longaddr Branch if Negative 
BON longaddr Branch if On 
BEV longaddr Branch on Even 
BLT longaddr Branch on Arith-

metically Less Than 
BLE longaddr Branch on Arith-

metically Less 
Than or Equal 

BLLE longaddr Branch on Logically 
Less Than or Equal 

BCY longaddr Branch on Carry 
BLLT longaddr Branch on Logically 

Less Than 

c': 

Condition 
field 
bits (see 11) 
Any value 
listed below 

Condition 
field 
bits (see II:; 
000 
000 
000 
001 
001 
010 
010 
011 
100 

101 

110 

111 
111 

Operation code 

o 101 
o 4 511 

0= direct address. } ~ 
1 = indirect address 

Address 

16 

Be 

31 

This instruction tests the condition of the various indi­
cators (LSR bits 0-4). If the condition tested is met, the 
effective branch address is loaded.into the instruction 
address register and becomes the next address to be 
fetched. 

If the condition tested is not met, the next sequential 
instruction is fetched. 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address 
and is loaded into the instruction address register. 
Bit 11 =1. The result from step 1 is an indirect 
address. The contents of the main storage location 
specified by the result are loaded into the instruction 
address register. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or branch address). 

Instructions 8-11 



Bee 

Branch on Condition Code (BCC) 
BCC cond Jongaddr 

Extended mnemonic 

BNER longaddr Branch on Not Error (CC field = 
111) 

Operation code 

o 1 101 
o 4 7 

16 

0= direct address }~ 
1 = indirect address 

Address 

31 

The value of the CC field is compared to the even, carry, 
and overflow indicators. These indicators hold the I/O 
condition code: (1) following an I/O instruction or (2) 
following an I/O interrupt. 

CC bit 

5 

Indicator 

Even 
Carry 
Overflow 

6 
7 

If the conditions match, an effective branch address is 
generated and loaded into the instruction address register, 
becoming the next instruction to be fetched. 

If the conditions do not match the next sequential 
instruction is fetched. 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address 
and is loaded into the instruction address register. 
Bit 11 =1. The result from step 1 is an indirect 
address. The contents of the main storage location 
specified by the result are loaded into the instruction 
address register. 

8-12 GA34-0021 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
add,ress. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or branch address). 

I/O Condition Codes 

The I/O condition codes are summarized in the following 
tables. Refer to Chapter 4 for a detailed description of 
each condition code value. Also refer to the specific I/O 
device descriptions because some devices do not report all 
condition codes. 

Condition Codes Reported After I/O Instruction. 

Condi-
tion Indicators 
code Even Carry Overflow Meaning 

0 0 0 0 Device not attached 
1 0 0 1 Busy 
2 0 1 0 Busy after reset 
3 0 1 1 Command reject 
4 1 0 0 Intervention required 
5 1 0 1 Interface data check 
6 1 1 0 Controller busy 
7 1 1 1 Satisfactory 

Condition Codes Reported During an I/O Interrupt. 

Condi-
tion Indicators 
code Even Carry Overflow Meaning 

0 0 0 0 Controller end 
1 0 0 1 PCI (program control 

interrupt) 
2 0 0 Exception 
3 0 1 1 Device end 
4 1 0 0 Attention 
5 0 1 Attention and PCI 
6 1 0 Attention and exception 
7 1 1 Attention and device end 

c 

~'" 
~~ 

o 



0 

o 

Branch on Not Condition (BNC) 

Operand 
Condition 
field 

Mnemonic syntax Instruction name bits (see II) 
BNC cond,longaddr Branch on Not Any value 

listed below 

Extended Operand 
Mnemonic syntax 

BNE 10 ngaddr 
BNZ longaddr 
BNOFF longaddr 
BNP. longaddr 
BNMIX longaddr 
BNN longaddr 

BNON longaddr 
BNEV longaddr 
BGE longaddr 

BGT longaddr 

BLGT longaddr 

BLGE longaddr 

BNCY longaddr 

Condition 

Instruction name 

Branch on Not Equal 
Branch on Not Zero 
Branch if Not OFF 

Condition 
field 
bits (see 11) 
000 
000 
000 

Branch on Not Positive 001 
Branch on Not Mixed 001 
Branch on Not 010 
Negative 
Branch if Not On 010 
Branch on Not Even 011 
Branch on Arith- 100 
metically Greater 
Than or Equal 
Branch on Arith- 101 
metically Greater 
Than 
Branch on Logically 110 
Greater Than 
Branch on Logically 111 
Greater Than or Equal 
Branch on No Carry 111 

Operation code 

o 1 101 
o 4 8 101112 

o = direct address } ~ 
1 = indirect address 

Address 

16 

BNC 

15 

31 

This instruction tests the various indicators (LSR bits 
0-4). If the condition tested is met, the effective branch 
address is loaded into the instruction address register and 
becomes the next address to be fetched. 

If the condition tested is not met, the next sequential 
instruction is fetched. 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address 
and is loaded into the instruction address register. 
Bit 11 =1. The result from step 1 is an indirect address. 
The contents of the main storage location specified by 
the result are loaded into the instruction address 
register. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or branch address). 

Instructions 8-13 



BNCC 

Branch on Not COildition Code (BNCC) 
BNCC condJongaddr 

Extended mnemonic 

BER longaddr Branch on Error (CC Field=lll) 

Operation code 

o 1 1 0 1 
o 

16 

0= direct address } ~ 
1 = indirect address 

Address 

31 

The value of the CC field is compared to the even, carry, 
and overflow indicators. These indicators hold the I/O 
conditions code: (1) following and I/O instruction or (2) 
following an I/O interrupt. 

CC bit 

5 

Indicator 

Even 
Carry 
Overflow 

6 
7 

If the conditions do not match, an effective branch address 
is generated and loaded into the instruction address register, 
becoming the next instruction to be fetched. 

If the conditions match, the next sequential instruction 
is fetched. 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address and 
is loaded into the instruction address register. 
Bit 11 =1. The result from step 1 is an indirect address. 
The contents of the main storage location specified by 
the result are loaded into the instruction address 
register. 

8-14 GA34-0021 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or branch address). 

I/O Condition Codes 

The I/O condition codes are summarized in the following 
tables. Refer to Chapter 4 for a detailed description of 
each condition code value. Also refer to the specific 
I/O device descriptions because some devices do not report 
all condition codes. 

Condition Codes Reported After I/O Instruction. 

Condi-
tion Indicators 
code Even Carry Overflow Meaning 

0 0 0 0 Device not attached 
1 0 0 1 Busy 
2 0 1 0 Busy after reset 
3 0 1 1 Command reject 
4 1 0 0 Intervention required 
5 1 0 1 Interface data check 
6 1 1 0 Controller busy 
7 1 1 1 Satisfactory 

Condition Codes Reported During an I/O Interrupt. 

Condi 
tion Indicators 
Code Even Carry Overflow Meaning 

0 0 0 0 Controller end 
1 0 0 1 PCI (program controlled 

interrupt) 
2 0 1 0 Exception 
3 0 1 1 Device end 
4 1 0 0 Attention 
5 0 1 Attention and PCI 
6 1 0 Attention and Exception 
7 1 Attention and device end 

c 

o 



D 

c 

o 

Branch on Not Overflow (BNOV) 
BNOV longaddr 

Operation code 

o 1 101 
o 

16 

4 5 7 8 10 11 12 

o = direct address } ~ 
1 = indirect address 

Address 

15 

31 

The overflow indicator is tested. If the indicator is off, 
the effective branch address is loaded into the instruction 
address register and becomes the next address to be fetched. 

If the overflow indicator is on, the next sequential 
instruction is fetched. 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address 
and is loaded into the instruction address register. 
Bit 11 =1. The result from step 1 is an indirect 
address. The contents of the main storage location 
specified by the result are loaded into the instruction 
address register. 

Bits 5 -7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or branch address). 

Branch on Overflow (BOV) 
BOV longaddr 

Operation code 

o 1 101 
o 

16 

4 5 7 8 

0= direct address } ~ 
1 = indirect address 

Address 

31 

BNOV 
BOV 

The overflow indicator is tested. If the indicator is on, 
the effective branch address is loaded into the instruction 
address register and becomes the next address to be fetched. 

If the overflow indicator is off, the next sequential 
instruction is fetched. . 

The effective branch address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11 =0. The result from step 1 is a direct address 
and is loaded into the instruction address register. 
Bit 11=1. The result from step 1 is an indirect 
address. The contents of the main storage location 
specified by the result are loaded into the instruction 
address register. 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or effective 
address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation 
(indirect address or branch address). 

Instructions 8-15 



BXS 

Branch Indexed Short (BXS) 
BXS (reg! -7 jdisp) 

(reg!-7) 
addr 

Operation code 
o 1 010 
o 4~8 

1-7 

Word displacement 

15 

Bit 8 of the word displacement field is propagated left 
seven bit positions and a zero is appended at the low order 
end, resulting in a 16-bit word. (Word displacement is 
converted to a byte displacement.) This value is added to 
the contents of the register specified by the R field; and 
the result is stored into the instruction address register, 
becoming the address of the next instruction to be fetched. 

Note. The hardware format of this instruction is identical 
to the format used for the Jump Unconditional (J) and 
No Operation (NOP) instructions. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Effective address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation (branch 
address). 

8-16 GA34-0021 

c 



o 

0"""',' I' 

Compare Byte (CB) 

Register/Storage Format 
CB addr4,reg 

Operation code 

1 1 000 
o 4 5 789101112 15 

The contents of the location specified by the effective 
address in main storage are subtracted from the least 
significant byte of the register specified by the R field. 
(Effective Address Generation is explained in Chapter 2.) 

Neither operand is changed. 
Bit 12 of the instruction is not used and must be set to 

zero to avoid future code obsolescence. 

Indicators 

Carry. Turned on by the detection of a borrow beyond 
the high-order bit position of the byte. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one byte; i.e., if the difference is less 
than _27 or greater than +2 7 -1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address). 

Storage/Storage Format 
CB addr5,addr4 

Operation code 

10000 
o 4 5 7 8 9 1011 12 13 14 15 

r------------ - - - - - -...., 
L ____ Address/Displac:::...m::.::!. ___ I 

L _ y~p!a~~~ 1 __ r.. _ ~isgl~c~~n~ ~ _ ~ 
16 23 24 31 

CB 

The address arguments generate the effective addresses of 
the two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) Byte operand I is 
subtracted from byte operand 2. Neither operand is 
changed. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the byte. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one byte; i.e., if the difference is less than 
_27 or greater than +27_1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch or operand access. The 
instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Specification Check. Even byte boundary violation 
(indirect address). 

Instructions 8-17 



CBI 

Compare Byte Immediate (CBI) 
CBI byte ,reg 

loperation code I R 
1 1 1 1 0 
o 4 5 

Immediate 

7 8 15 

The immediate field is extended to 16 bits by sign 
propagation to the eight high-order bit positions. The 
result is subtracted from the contents of the register 
specified by the R field. Neither operand is changed. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the word. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less 
the _2 15 or greater than +2 15 _1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Che ck Conditions 

Protect Check. Instruction fetch. 

8-18 GA34-0021 

(} 

o 



o 

o 

Compare Doubleword (CD) 

Register/Storage Format 
CD addr4,reg 

, Operation code 
1 1 0 1 0 
o 4 5 7 8 9 10 11 12 15 

r- - - - - - - - - -, - - - - - - -, I- ___ _ Add:!!.!!/Displace.!!!!!.n~ __ 

L Displacement 1'- Displacement 2 -I --------...l _________ ...J 

16 2324 31 

The contents of the doubleword in main storage specified 
by the effective address are subtracted from the contents 
of the register pair specified by the R field and R+ 1. 
(Effective Address Generation is explained in Chapter 2.) 

Neither operand is changed. 
Bit 12 of the instruction is not used and must be set to 

zero to avoid future code obsolescence. 
If the R field equals 7, register 7 and register 0 are used. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the doubleword. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in the doubleword; i.e., if the difference is 
less than _2 31 or greater than +2 31 _1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Storage /Storage Format 
CD addrS ,addr4 

Operation code 

10010 
o 4 5 7 8 9 1011 121314 15 

~ -= =-= =--XddYeSS;DtsPlacement--=- -=-=- -=-~ 
L- Displacement 1 C Displacement 2 I 
16 - - - - - - - 2J 24 - - - - - - - 31-

CD 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address Genera­
tion is explained in Chapter 2.) Doubleword operand 1 is 
subtracted from douhleword operand 2. Neither operand 
is changed. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the operand. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one doubleword; i.e., if the difference 
is less than _2 31 or greater than +2 31 _1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch or operand access. The 
instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-19 



CFED 
CFEN 
Compare Byte Field Equal and Decrement (CFED) 

Compare Byte Field Equal and Increment (CFEN) 
CFED (reg),(reg) 
CFEN (reg),(reg) 

loperation code I Rl 
00101 

R2 

o 4 5 7 8 10 11 12 13 14 15 

o for CFED or CFEN ~ 
o for CFED; decrement! 

contents of Rl & R2. 

1 for CFEN; increment 

contents of Rl & R2. 

This instruction compares two fields in main storage on a 
byte for byte basis. Register 7 contains the number of 
bytes to be compared. This number is decremented after 
each byte is compared. The register specified by Rl 
contains the address of operand 1. The register specified 
by R2 contains the address of operand 2. Operand 1 is 
subtracted from operand 2, but neither operand is changed. 
After each byte is compared, the addresses in Rl and R2 
are incremented or decremented (determined by bit 13 of 
the instruction). The operation terminates when either: 

1. An equal condition is detected, or 
2. The number of bytes specified in register 7 has been 

compared. 

When an equality occurs, the addresses in the registers 
point to the next operands to be compared, but the count 
in R7 is not updated. 

Bit 11 of the instruction is not used and must be set to 
zero to avoid future code obsolescence. 

See Scan Byte Field Equal and De<;rement (SFED) and 
Scan Byte Field Equal and Increment (SFEN) for other 
versions of this machine instruction. 

Notes. 
1. If the specified count in R7 is zero, the instruction 

performs no operation (No-op). 
2. Variable field length instructions can be interrupted. 

When this occurs and the interrupted level resumes 
operation, the processor treats the uncompleted 
instruction as a new instruction with the remaining 
byte count specified in register 7. 

8-20 GA34-0021 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the byte. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one byte; Le., if the difference is less 
than _27 or greater than +2 7 -1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Operand. The instruction is 
terminated. 

Protect Check. Instruction fetch or operand access. The 
instruction is terminated. 

,(1' 
I(.J 

o 



o 

o 

Compare Byte Field Not Equal and Decrement 
(CFNED) 

Compare Byte Field Not Equal and Increment 
(CFNEN) 
CFNED 
CFNEN 

(reg),(reg) 
(reg),(reg) 

loperation code I R1 

.0 ° 1 ° 1 . 

R2 

o 4 5 78 101112131415 

o for CFNED or CFNEN ~ 
o for CFNED; decrement 

. contents of R1 & R2. 
1 for CFNEN; increment 

contents of R.l & R2. 

This instruction compares two fields in main storage on a 
byte for byte basis. Register 7 contains the number of 
bytes to be compared. This number is decremented after 
each byte is compared. The register specified by Rl 
contains the address of operand 1. The register specified 
by R2 contains the address of operand 2. Operand 1 is 
subtracted from operand 2, but neither operand is changed. 
Mter each byte is compared, the addresses in Rl and R2 are 
incremented or decremented (determined by bit 13 of 
the instruction). The operation terminates when either: 

1. An unequal condition is detected, or 
2. The number of bytes specified in register 7 has been 

compared. 

When an inequality occurs, the addresses in the registers 
point to the next operands to be compared, but the count 
in R7 is not updated. 

Bit 11 is not used and must be set to zero to avoid future 
code obsolescence. 

See Scan Byte Field Not Equal and Decrement (SFNED) 
and Scan Byte Field Not Equal and Increment (SFNEN) 
for other versions of this machine instruction. 

Notes. 
1. If the specified count in R7 is zero, the instruction 

performs no operation (no-op). 
2. Variable field length instructions can be interrupted. 

When this occurs and the interrupted level resumes 
operation, the processor treats the uncompleted 
instruction as a new instruction with the remaining 
byte count specified in register 7. 

Indicators 

CFNED 
CFNEN 

Carry. Turned on by the detection of a borrow beyond the 
high -order bit position of the byte. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one byte; i.e., if the difference is less than 
_27 or greater than +27_1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Operand. The instruction is 
terminated. 

Protect Check. Instruction fetch or operand access. The 
instruction is terminated. 

Instructions 8-21 



Complement Register (CMR) 
CMR reg [,reg] 

Operation code 

o 1 1 1 0 
Function 
00110 

o 15 

The contents of the register specified by the Rl field are 
converted to the two's complement. The result is placed 
in the register specified by the R2 field. The contents of 
the register specified by the Rl field are unchanged if Rl 
a.nd R2 do not specify the same register. 

Indicators 

Carry. Reset. Then turned on if the number to be 
complemented is zero. 

Overflow. Reset. Then turned on if the number to be 
complemented is the maximum negative number repre­
sentable. 

Even, Negative, and Zero. Unchanged. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-22 GA34-0021 

\ 
\ 

\ 

/' 
i,\;,;.7,c 

o 



4f 

c 

o 

Copy Address Key Register (CPAKR) 

System Register/Storage Format 
Mnemonic Syntax Instruction name K field 

CPAKR addr4 Copy Address Key 011 
Register 

Extended 
Mnemonic Syntax Instruction name K field 

CPISK addr4 Copy Instruction Space 000 
Key 

CPOOK addr4 Copy Operand 1 Key 010 
CPOTK addr4 Copy Operand 2 Key 001 

Operation code 

0 1 0 1 1 
o 4 5 789101112 15 

!="" --=-_-_ AddressjDisplaceme:.::...t ~ ~-- _ ~ 
t Displacement 1 I Displacement 2 I 
~------ -------
16 2324 31 

The contents of the address key register (AKR) field, 
specified by the K field, are stored into the word location 
specified by the effective address. The contents of the 
AKR are unchanged. (Effective Address Generation is 
explained in Chapter 2.) The K field can specify: (1) a 
field within the AKR, or (2) the entire AKR. 

Address key register 
K field field name Bits 

000 Instruction space key 13-15 
001 Operand 2 key 9-11 
010 Operand 1 key 5-7 
011 Address key register 0-15 
100' Unused 
101 Unused 
110 Unused 
111 Unused 

Unused K-field values should not be used to avoid future 
program obsolescence. 

If the K field specifies a specific field within the AKR, 
the specified field is stored in bits 13-15 of the word 
location in main storage. Bits 0-12 of the word in main 
storage are set to zero. If the K field specifies the entire 
AKR, the entire AKR is stored in the word location in 
main storage. 

Indicators 

All indicators are unchanged. 

Program Check. Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check.. Even byte boundary violation 
(indirect address or operand address). 

CPAKR 

System Register/Register Format 
Mnemonic Syntax Instruction name K field 
CPAKR reg Copy Address Key 011 

Register 
Extended 
Mnemonic Syntax Instruction name K field 
CPISK reg Copy Instruction Space 000 

Key 
CPOOK reg Copy Operand 2 Key 001 
CPOTK reg Copy Operand 1 Key 010 

Operation code Function 
0 1 1 1 1 1 1 0 1 0 
0 4 5 7 8 1011 15 

The contents of the address key register (AKR) field, 
specified by the K field, are loaded into the register 
specified by the R field. The contents of the AKR are 
unchanged. The K field can specify: (1) a field within 
the AKR, or (2) the entire AKR. 

Address key register 
K field field name Bits 

000 Instruction space key 13-15 
001 Operand 2 key 9-11 
010 Operand 1 key 5-7 
011 Address key register 0-15 
100 Unused 
101 Unused 
110 Unused 
111 Unused 

Unused K-field values should not be used to avoid future 
program obsolescence. 

If the K field specifies a specific field within the AKR, 
the specified field is loaded into bits 13-15 of the register 
in the R field. Bits 0-12 of the register are set to zero. If 
the K field specifies the entire AKR, the entire AKR is 
loaded into the register. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

Instructions 8-23 



CPCL 
CPCON 
Copy Current Level (CPCL) 
CPCL reg 

Function Operation code 
o 1 1 1 1 1 100 1 
o 4 5 7 8 1011 15 

The register specified by the R2 field is loaded as follows: 

• Bits 0 through 13 are set to zero. 
• Bits 14 and 15 are set to the binary-encoded current 

level. For example if the current level is three, bits 14 
and 15 are set to 11. 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

8-24 GA34-0021 

Copy Console Data Buffer (CPCON) 
CPCON reg 

Function Operation code 

01111 1 1 000 
o 15 

The contents of the console data buffer are loaded into 
the register specified by the R2 field. The contents of the 
buffer are unchanged . 

If the programmer console is not installed, the data 
loaded into the specified register is undefined. 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

\ 
\ 
\ 
~ 

o 



o 

o 

Copy Interrupt Mask Register (CPIMR) 
CPIMR addr4 

Operation code 

o 1 011 
o 4 5 7 8 9 10 11 12 , 15 

The contents of the interrupt mask register are stored at 
the word location in main storage specified by the effective 
address. (See Effective Address Generation in Chapter 2.) 
The interrupt mask register is unchanged. 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

The mask is represented in a bit significant manner as 
follows: 

Mask bit 

o 
1 
2 
3 

Interrupt level 

o 
1 
2 
3 

Bits 4 -15 are set to zero. 

A mask bit set to "1" indicates that the level is enabled. 
A mask bit set to "0" indicates that the level is disabled. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Copy In-process Flags (CPIPF) 
CPIPF addr4 

Operation code 

o 1 0 1 1 
o 

CPIMR 
CPIPF 

The in-process flags for each level are stored at the word 
location in main storage specified by the effective address. 
(Effective Address Generation is 'explained in Chapter 2.) 

The in-process flags are not changed. The flags are 
stored in a bit significant manner with bit zero representing 
level zero, and so on. Bits 4-15 are set to zero. 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

This instruction permits the supervisor on the current 
level to inspect the in-process flags of the other levels. The 
in-process flag, bit 9 of the level status register, is on when 
a level is active or pending (previously interrupted by a 
higher level). 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-25 



CPLB 
CPLSR 
Copy Level Block (CPLB) 
CPLB reg,addr4 

Operation code 

o 1 011 
o 4 5 789101112 

This instruction stores a level status block (LSB) into 11 
words of main storage beginning with the location specified 
by the effective address. (Effective Address Generation is 
explained in Chapter 2.) The contents of the LSB and the 
R field register are not changed. 

The register specified by the R field contains the binary 
encoded level of the LSB to be stored. The binary 
encoded level is placed in bits 14 and 15 of the register. 
Bits 0-13 are unused and must be zero. 

Using this one instruction, the supervisor can copy the 
information contained in the hardware registers assigned 
to a program operating on any level. Most instructions 
are restricted to the registers associated with the current 
level. After executing a CPLB instruction, the supervisor 
can: 

1. Use the information just stored; for example, the 
contents of the general registers or the protect key in 
the LSR. 

2. Assign the level to another task by executing a Set 
Level Block (SELB) instruction that points to a 
different level status block. 

In the second case, the supervisor can restart the preempted 
program at a later time by executing another SELB 
instruction that points to the previously stored level status 
block. 

Programming Note. If the AM field equals 01, the contents 
of the register specified by the RB field are incremented by 
2. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or the 11 word 
main storage area. The instruction is terminated. If the 
main storage area being accessed is partially outside the 
installed storage size, a partial data transfer occurs. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-26 GA34-0021 

Level Status Block Format 

EA IAR 

EA+20 
(+14 hex) 

AKR 
LSR 
Register 0 
Register 1 
Register 2 
Register 3 
Register 4 
Register 5 
Register 6 
Register 7 

EA=effective address 

Format of Register Specified by R in CPLB Instruction 

I 0 ILevel1 
o 0 0 0 0 0 0 0 0 0 0 0 0 _ _ 
o 13 14 15 

Level 0 0 0 

Levell 0 1 

Level 2 1 0 

Level 3 1 1 

Copy Level Status Register (CPLSR) 
CPLSR reg 

Operation code 

o 1 1 1 0 
o 

Function 

01110 
15 

The level status register is loaded into the register specified 
by the R2 field. The level status register is unchanged. 
Bits 5-7 of the instruction are not used and must be set to 
zero to avoid future code obsolescence. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Protect Check. Instruction fetch. 

c 

o 



D 

c 

o 

Copy Processor Status and Reset (CPPSR) 
CPPSR addr4 

Operation code 

o 1 011 
o 

The contents of the processor status word (PSW) are 
stored at the word location in main storage specified by the 
effective address. (Effective Address Generation is 
explained in Chapter 2.) 

This instruction resets bits 0 through 12 of the PSW. 
Bits 13 through 15 are unchanged. 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Program Status Word (PSW) Format 

PSW bit 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Meaning 

Specification check 
I nvalid storage address 
Privilege violate 
Protect check 
Invalid function 
Floating point exception 
Stack exception 
Not used 
Storage parity check 
Not used 
CPU control check 
I/O check 
Sequence indicator 
Auto-IPL 
Translator enabled 
Power/thermal warning 

Copy Storage Key (CPSK) 

CPPSR 
CPSK 

Refer to Chapter 5 for a description of the storage 
protection mechanism. 

CPSK reg,addr4 

Operation code 

o 1 011 
o 

This instruction stores the contents of a storage key 
register at the byte location in main storage specified by 
the effective address. (Effective Address Generation is 
explained in Chapter 2.) 

The register specified by the R field contains the main 
storage block number for the storage key register to be 
stored. (A storage key register is associated with every 
2048 bytes of storage.) The block number is binary 
encoded in bits 0-4 of the register. Bits 5 -15 are not 
used and must be zero to avoid future code obsolescence. 

The format of the register specified by the R field is: 

\

BlOCk r 
_ 0 o 0 0 0 0 0 000 
045 
~ 

Values 
0-31 

15 

The format of the byte at the storage location is: 

10 0 0 0 I Key I R I 
o 3 4 6 7 

1 =readOnlY~ 
Bits 4-7, the storage key and read only bit, are the 

data from the storage key register for the selected main 
storage block. Bits 0-3 must be zero to avoid future code 
obsolescence. 

The contents of the storage key register are unchanged. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address). 

Instructions 8-27 



CPSR 

Copy Segmentation Register (CPSR) 
This instruction is invalid if the Storage Address Relocation 
Translator Feature is not installed. Chapter 6 describes the 
relocation translator feature. 

CPSR reg,addr4 

Operation code 

o 1 011 
o 

This instruction stores the contents of a segmentation 
register into the doubleword location in main storage 
specified by the effective address. (Effective Address 
Generation is explained in Chapter 2.) 

The register specified by the R field contains the 
number of the segmentation register to be stored (0-255). 
This number is composed of three bits from the address 
key (values 0-7) and the five high-order bits of the 
logical storage address (values 0-31). Bits 8 through 15 of 
the register are not used and must be set to zero to avoid 
future code obsolescence. 

The format of the register specified by the R field is: 

1 Logical segmenj Addr keJ 0 0 0 0 0 0 0 0 I 
o 4 5 7 8 15 
~~ 

Values 
0-31 

Values 
0-7 

The format of the segmentation register stored at the 
effective address is: 

I Segment address 

o 12131415 

.1 = va1id~ --1 
1 = read only --=-.J 

(must be zero) 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 31 

8-28 GA34-0021 

Bits 0 through 12 contain the high-order 13 bits of the 
physical address used by the translator to select a 2K 
block of storage. 

Bit 13, if a one, signifies that the contents of the 
segmentation register is valid, and translation can be 
performed. If an attempt is made to use a segmentation 
register in which bit 13 is a zero, a program check interrupt 
occurs, with invalid storage address set in the PSW. 

Bit 14, if a one, Signifies that the block is read only. If 
an attempt is made to write into the block when bit 14 of 
the associated segmentation register is a one and while in 
problem state, a program check interrupt occurs, with 
protect check set in the PSW. The contents of main 
storage are not changed. When in supervisor state or on a 
cycle steal access, bit 14 is ignored. 

Bits 15 through 31 are not used and must be set to 
zero to avoid future code obsolescence. 

The contents of the segmentation register are unchanged. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Function. Translator not installed. 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

c 

o 



0, 
:,,1 
'" 

o 

o 

Compare Word (CW) 

Register/Register Forma t 
CW reg,reg 

Operation code 

o 1 1 1 0 
o 4 5 7 8 

Function 

001 0 
15 

The contents of the register specified by the R1 field are 
subtracted from the contents of the register specified by 
the R2 field. The contents of both registers are unchanged. 

Indicators 

Carry. Turned on by the detection of a borrow beyond 
the high-order bit position of the word. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less 
than _2 15 or greater than +2 15 -1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Register/Storage Format 
CW addr4,reg 

o 4 5 789101112 15 

~----------------I l- ____ Address/Displacement ____ \ 

L Displacement 1 r Displacement 2 .J 
16--- ---2324-----31 

The contents of the word in main storage specified by the 
effective address are subtracted from the contents of the 
register specified by the R field. (Effective Address 
Generation is explained in Chapter 2.) 

Both operands are unchanged. 

Indicators 

Carry. Turned on by the detection of a borrow beyond 
the high-order bit position of the word. If no borrow is 
detected, the carry indicator is reset. 

cw 

Overflow. Cleared, then turned on if the difference 
cannot be represented in one word; i.e., if the difference is 
less than _2 15 or greater than +2 15 _1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Storage/Storage Format 
CW addr5,addr4 

Operation code 

10001 
o 4 5 7 8 9 10 11 12 13 14 15 

t== = =- - Address/DisPlacement---=-= =-J 
L Displacement 1 r. Displacement 2 I 
32 - - - - - 39 40- - - - - 47 

The address arguments generate the effective addresses of 
two operands in main storage. (See Effective Address 
Generation in Chapter 2.) Word operand 1 is subtracted 
from word operand 2. Neither operand is changed. 

Indicators 

Carry. Turned on by the detection of a borrow beyond 
the high-order bit position of the word. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less 
than _2 15 or greater than +2 15 _1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. The 
instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch or operand access. The 
instruction is terminated. If AMI equals 01, RBI may be 
incremented. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-29 



CWI 

Compare Word Immediate (CWI) 

Register Immediate Long Format 
CWI word ,reg 

Function Operation code 
b 1 1 1 1 o OIl' 0 
o 15 

Immediate 

16 31 

The immediate field is subtracted from the contents of the 
register specified by the Rl field. The contents of the 
register specified by the Rl field are unchanged. 

Bits 8-10 are not used and must be set to zero to avoid 
future code obsolescence. 

Indicators 

Carry. Turned on by the detection of a borrow beyond 
the high-order bit position of the word. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; Le., if the difference is less 
than _2 15 or greater than +2 15 _1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word. 

Protect Check. Instruction fetch. 

8-30 GA34-0021 

Storage Immediate Format 
CWI word ,addr4 

Operation code 

o 1 0 0 0 
o 4 5 

16 

789101112 

Immediate 

Format with appended word for effective 
addressing (AM = 10 or 11) 
Operation code 
o 1 0 0 0 
o 4 5 789101112 

A ddressl Displacement 

15 

31 

15 

- Dis"p~e~nti - - - llispbce~nt2 -

16 2324 31 

Immediate 

32 47 

The immediate word is subtracted from the contents of 
the location specified by the effective address. (Effective 
Address Generation is explained in Chapter 2.) 

Bits 5 -7 are not used and must be set to zero to avoid 
future code obsolescence. Both operands are unchanged. 

Indicators 

Carry. Turned on by the detection of a borrow beyond 
the high -order bit position of the word. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; Le., if the difference is less 
than _2 15 or greater than +2 15 _1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

c 

o 



o 

C) 

o 

Divide Byte (DB) 
DB addr4,reg 

Operation code 

1 1 101 
o 4 5 7 8 9 1011 12 15 

A divide operation is performed between the word 
dividend contained in the register specified by the R field 
and the byte divisor at the location specified by the 
effective address. (Effective Address Generation is 
explained in Chapter 2.) The I-word quotient replaces the 
contents of the specified register while the I-word remainder 
is placed in the register specified by R+ 1. If the R field 
specifies register 7, the remainder is placed in register O. 

R EA I Dividend I : I Divisor 

0 • 15 0 

R R+l 
I Quotient IR el1Ullnder 

0 15 0 

Indicators 

Overflow. Cleared, then turned on if division by zero is 
attempted, or if the quotient cannot be represented in one 
word. If overflow occurs, the remaining indicators and 
the contents of the specified register are undefined. 

Carry. Cleared, then turned on (together with the over­
flow indicator) if the overflow was caused by an attempt 
to divide by zero. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. If 
the AM field equals 01, the contents of the register speci­
fied by the RB field are incremented. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address). 

DB 

7 

15 

Instructions 8-31 



Divide Doubleword (DD) 
DD addr4,reg 

Operation code 
1 1 101 
,0 4 5 7 8 9 10 11 12 15 

r - - - -Address/DisplaCement - - - -, 
/--------- --- ---I 
L _D~la~e1!1.l. _, _ 12!&>l~ent 2_J 
16 2324 31 

A divide operation is performed between the doubleword 
dividend contained in the registers, specified by the R 
field and R+ 1, and the word divisor at the location 
specified by the effective address. (Effective Address 
Generation is explained in Chapter 2.) The doubleword 
quotient replaces the contents of the specified registers 
(least significant word is in R+ 1). The one-word 
remainder is placed in the register specified by R+2. 

The R field wraps from 7 to 0; e.g., if R specifies 
register 6, registers 6, 7, and 0 are used. 

R 

I 
I 
I 
I R+ 1 EA 

1 4 Dividend W 1 
~0------~~ar'--~I-----J'~--3-1~ 

I 

• • ,---I _Divl~·sor D 
I 

R : R+ 1 

t....-..-I -----..~&.__~ _Qu_otient-----l7D 

o I 
I 
I 
I 

31 

Programming Note. If the AM field equals 01, the 
contents of the register specified by the RB field are 
incremented by 2. 

Indicators 

Overflow. Cleared, then turned on if division by zero is 
attempted, or if the quotient cannot be represented in a 
doubleword. If overflow occurs, the remaining indicators 
and the contents of the specified registers are undefined. 

Carry. Cleared, then turned on (together with the over­
flow indicator) if the overflow was caused by an attempt 
to divide by zero. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-32 . ,GA3.4-0021 

o 

R+2 

o 

15 

Remainder 5'.0 
15 

o 



o 

o 

Diagnose (DIAG) 
DIAG ubyte 

Parameter 

o 4 5 15 

000 0 000 
16 23 24 25 26 31 

I Immediate data 

32 47 

The Diagnose instruction is used for controlling or testing 
various hardware functions in a machine dependent 
manner. The parameter field has the following general 
significance: 

t I 
Modifier bits 

I I c I Func 
10 0 

8 910 11 12 13 14 15 

Bits 10 and 11 are not used and should be set to zero to 
avoid future code obsolescence. 

• If the C bit (bit 13) is set to one, the number 0005 is 
loaded into Register 0 of the current interrupt level. 
Software uses this number to determine that the 
processor is a 4955. 

• If the C bit is set to zero, the function bits have the 
following meanings: 

Bits 
8 9 
o 0 Diagnostic word storage error recovery 
o 1 Diagnostic byte storage error recovery 
1 0 Main storage to/from local storage 

Enable/disable channel request lines 

Diagnostic storage error recovery - This function allows 
the inhibiting of storage parity generation and checking 
when using the processor SAR and SDR. The cycle steal 
storage data register and storage address register can be 
selected but parity cannot be inhibited. Other bits in the 
parameter field are as follows: 

Bits Significance 

12=0 
12=1 
14=0 
14=1 
15=0 
15=1 

Load from storage 
Store storage 
Inhibit parity check/generation 
Enable parity check/generation 
Select processor SDR/SAR 
Select cycle steal SDR/SAR (ignore bit 14) 

DIAG 

The storage address for this storage cycle is contained in 
R7 while the data register is RO. 

Notes. 

1. Functions selected by the parameter field apply only to 
the storage cycle initiated by the execution of this 
instruction. 

2. Bit 9 provides the option of single byte manipulation 
when using the processor SAR and SDR. Diagnostic 
byte operations are not supported when using the cycle 
steal SAR and SDR; therefore, bit 9 is ignored when 
bit 15 is set to one. 

3. If bit 9 is on (byte operation) and bit 12 is off (load 
storage operation), the register that is loaded has bits 
0-7 set to zeros. 

Main storage to/from local storage - This function permits 
the transfer of data between main storage and local storage 
by directly addressing local storage. Two additional words 
are appended to the Diagnose instruction when this function 
is specified. 

The bits in the two additional words are defined as 
follows: 

Bits Significance 

16-25 Unused 
26-31 Local storage address 
32-47 Data to be transferred 
Bit 12 of the parameter field specifies the direction of transfer. 
12=0 Load immediate data to local storage 
12=1 Store local storage to immediate data 

Programming Note. This function can change AKRs, lARs, 
and LSRs in local storage. The current level AKR and LSR 
in local storage are not continuously updated. Use of this 
instruction to load or store the current level AKR or LSR 
is not recommended. 
Enable/disable I/O channel request lines - This function 
inhibits and logically isolates the interrupt and cycle 
steal request lines between the channel and the device. 
Bit 14 of the parameter field is used as follows: 

14=0 Disable channel request lines 
14=1 Enable channel request lines 

Indicators 

No indicators are directly changed by this instruction~ 
however, LSRs may be changed by the main storage to 
local storage function. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

Instructions 8-33 



DIS 

Disable (DIS) 
DIS ubyte 

Operation code 
o 1 100 
o 4 5 

Parameter 

7 8 15 

The facilities designated by one bits in the parameter field 
are disabled. The bits in the parameter field have the 
following significance: 

Bit Facility 

8 Not used 
9 Not used 

10 Not used 
11 Not used 
12 Storage protect* 
13 Equate operand spaces (AKR bit 0 set to zero)* 
14 Translator (PSW bit 14 set to zero)** 
15 Summary mask (LSR bit 11 set to zero) 

* See. Chapters 5 and 6. 
** See Chapter 6. 

Note. Bits not used must be set to zero to avoid future code 
obsolescence. 

If parameter bit 14 is set to one and the relocation 
translator feature is not installed, no action occurs 
regarding this bit. If parameter bit 14 is set to one and the 
relocation translator feature is installed and enabled (bit 14 
of the PSW is on), the translator is disabled (bit 14 of the 
PSW is turned off). 

Indicators 

No indicators are changed. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

8-34 GA34-0021 

o 



C~\ 
/ 

Divide Word (OW) 
DW addr4,reg 

Operation code 

1 1 101 
o 4 5 7 8 9 10 11 12 15 

r- =--=--=-=- Address/DisPlacer;:::nt =-= -=- -=1 t Displacement 1 C Displacement 2 I 
16--- -- -23 24- - - - - 3i 

A divide operation is performed between the word 
dividend contained in the register specified by the R field 
and the word divisor at the location specified by the 
effective address. (Effective Address Generation is 
explained in Chapter 2.) The one word quotient replaces 
the contents of the specified register. The one word 
remainder is placed in the register specified by R+ 1. 

The R field wraps from 7 to 0; that is, if R specifies 
register 7, registers 7 and 0 are used. 

R EA I Dividend 1+1 Divisor 

0 J 15 0 

R R+l I Quotient I Remainde. 

0 15 0 

Indicators 

Overflow. Cleared, then turned on if division by zero is 
attempted, or if the quotient cannot be represneted in one 
word. If overflow occurs, the remaining indicators and 
the contents of the specified registers are undefined. 

Carry. Cleared, then turned on (together with the overflow 
indicator) if the overflow was caused by an attempt to 
divide by zero. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

DW 

15 

15 

Instructions 8-35 



'EN 

Enable (EN) 
EN ubyte 

. Parameter 

The facilities designated by one bits in the parameter field 
are enabled. 

The bits in the parameter field have the following sig­
nificance: 

Bit Facility 

8 Not used 
9 Not used 

10 Not used 
11 Not used 
12 Storage protect* 
13 Equate operand spaces (AKR bit 0 set to one)* 
14 Translator (PSW bit 14 set to one)** 
15 Summary mask (LSR bit 11 set to one) 

* See Chapters 5 and 6. 
** See Chapter 6. 

Note. Bits not used must be set to zero to avoid future code 
obsolescence. 

If bit 12 is equal to 1: 

• Bit 14 is not checked. 
• Storage protection mechanism is enabled. 
• Relocation translator (if installed and enabled) is 

disabled. 

Ifbit 14 is equal t~ 1: 

.. No action occurs if the Storage Address Relocation 
Translator Feature is not installed. 

• If the relocation translator feature is installed, it is 
enabled. 

• The storage protection mechanism (if enabled) is 
disabled. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

8-36 . GA34-0021 

o 



D 

o 

o 

Fill Byte Field and Decrement (FFD) 

Fill Byte Field and Increment (FFN) 
FFD reg,(reg) 
FFN reg,(reg) 

I Operation code I R1 

.0 0 1 0 1. 
045 

R2 

7 8 101112]31415 

fur FFDor FFN ~ 
o for FFD; decrement contents I 

ofR2 
for FFN; increment contents 
ofR2 

This instruction fills all bytes of a field in main storage with 
the same bit configuration in each byte. Register 7 contains 
the number of bytes to be filled (field length). If a field 
length of zero is specified, the instruction is a no·op. The 
register specified by Rl contains, in bits 8-15, the byte 
used to fill the field. The register specified by R2 contains 
the starting address of the field in main storage. 

After each byte in the field is filled: 

1. The address in R2 is either incremented or decremented, 
determined by bit 13 of the instruction. This permits 
filling the field in either direction. 

2. The length count in R7 is decremented. 

FFD 
FFN 

The operation ends when the specified field length has 
been filled (contents of R7 equal zero). At this time, the 
address in R2 has been updated and points to the byte 
adjacent to the end of the field. 

Bits 11 and 15 of the instruction are not used and must 
be set to zero to avoid future code obsolescence. 

See Move Byte Field and Decrement (MVFD) and 
Move Byte Field and Increment (MVFN) for other versions 
of this machine instruction. 

Note. Variable field length instructions can be interrupted. 
When this occurs and the interrupted level resumes 
operation, the processor treats the uncompleted instruction 
as a new instruction with the remaining byte count 
specified in register 7. 

Indicators 

Carry. Unchanged. 

Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect that result of 
the last byte moved. 

Program Check Conditions 

Invalid Storage Address. Operand. The instruction is 
terminated. 

Protect Check. Instruction fetch, operand access, or 
operand store. The instruction is terminated. 

Instructions 8-37 



10 
IOPK 
Operate I/O (10) 
Refer to Chapter 4·for a detailed description concerning 
the operation of this instruction. 

10 longaddr 

Operation code 

o 1 101 
o 4 5 7 8 10 11 12 

0= direct address } ~ 
1 = indirect address· 

Address 

16 

15 

31 

An effective main storage address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field. If the R2 field equals 
zero, no register contributes to the address generation. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 

Bit 11=0 (direct address). The result from step I is the 
effective address. 

Bit 11=1 (indirect address). The result from step 1 is the 
address of the main storage location that contains the 
effective address. 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

The effective address specifies the location of a two­
word control block, called the immediate device control 
block (IDCB). The IDCB contains the command, device 
address, and a one-word immediate data field: 

loeB (immediate device control block) 

icommand field I Device address field 

o 7 8 15 

IImmediate data field 

16 31 

The immediate data field serves two purposes: 

1. For direct program control (DPC) operations, it holds 
the data transferred to or from the I/O device. 

2. For cycle steal operations, it holds the address of the 
device control block (DCB). 

Refer to Chapter 4 for additional information. 

8-38 GA34-o021 

Indicators 

Even, Carry, and Overflow. Changed to reflect the condi­
tion code. See Branch on Condition Code (BCC) or 
Branch on Not Condition Code (BNCC) instructions. 

Negative and Zero. These indicators are not changed. 

Program Check Conditions 

Invalid Storage Address .. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand.address). 

Interchange Operand Keys (IOPK) 
IOPK 

Operation code 

o 1 1 0 o 0 0 0 0 00 0 
o 4 5 7 8 15 

The contents of the operand 1 key (OPIK) are interchanged 
with the contents of the operand 2 key (OP2K) in the, . 
address key register. Bits 8-15 of the instruction are not' 
used and must be set to zero to avoid future ·code obsO­
lescence. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

c 

o 



o 

o 

o 

Interchange Registers (IR) 
IR reg,reg 

Operation code 

o 1 1 1 0 
Function 

o 0 1 1 
o 10 11 15 

The contents of the register specified by the Rl and R2 
fields are interchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
moved from Rl to R2. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Jump Unconditional (J) 
J jdisp 

jaddr 

Operation code 

o 1 010 
o 4 5 7 8 
~ 

Zero 

Word displacement 

15 

IR 
J 

Bit 8 of the word displacement field is propagated left 
seven bit positions and a zero is appended at the low order 
end, resulting in a 16-bit word. (Word displacement is 
converted to a byte displacement.) This value is added to 
the instruction address register. The new value in the IAR 
becomes the address of the next instruction to be fetched. 

Note. The hardware format of this instruction is identical 
to the format used for the Branch Indexed Short (BXS) 
instruction. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Effective address. 

Protect Check. Instruction fetch. 

Specification Check. Even byte boundary violation (branch 
address). 

Instructions 8-39 



JAL 

Jump and Link (JAL) 
JAL jdisp,reg 

jaddr,reg 

Operation code 

10011 

a 4 5 7 8 

Word displacement 

15 

The updated value of the instruction address register (the 
location of the next sequential instruction) is stored into 
the register specified by the R field. Bit 8 of the word 
displacement field is propagated left by seven bit 
positions and a zero is appended at the low order end, 
resulting in a 16-bit word. (The word displacement is 
converted to a byte displacement.) This value is added to 
the updated contents of the instruction address register, 
and the result is stored in the instruction address register, 
becoming the address of the next instruction to be 
fetched. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Effective address. The instruction 
is terminated. Branching does not occur, but the storing 
of the updated instruction address into the register 
specified by the R field still occurs. 

Protect Check. Instruction fetch. 

840 GA34-0021 

c 

c 



o 

0,' 
, I 

Jump on Condition (JC) 

Operand 
Mnemonic syntax 

JC condjdisp 
condjaddr 

Extended Operand 
Mnemonic syntax 

JE jdisp 
jaddr 

JOFF jdisp 
jaddr 

JZ jdisp 
jaddr 

JMIX jdisp 
jaddr 

JP jdisp 
jaddr 

JON jdisp 
jaddr 

JN jdisp 
jaddr 

JEV jdisp 
jaddr 

JLT jdisp 
jaddr 

JLE jdisp 
jaddr 

JLLE jdisp 
jaddr 

JCY jdisp 
jaddr 

JLLT jdisp 
jaddr 

Instruction name 

Jump on Condition 

Instruction name 

Jump on Equal 

Jump if Off 

Jump on Zero 

Jump if Mixed 

Jump on Positive 

Jump if On 

Jump on Negative 

Jump on Even 

Jump on Arith­
metically Less Than 
Jump on Arith­
metically Less Than 
or Equal 
Jump on Logically 
Less Than or Equal 
Jump on Carry 

Jump on Logically 
Less Than 

Condition 
field 
bits (see., ) 

Any value 
listed below 

Condition 
field 
bits (see II) 
000 

000 

000 

001 

001 

010 

010 

011 

100 

101 

110 

111 

111 

Operation code 
00010 
o 8 

JC 

Word displacement 

15 

This instruction tests the condition of the various 
indicators set by a previously executed instruction (for 
example: an arithmetic, compare, test bit, or test word 
type of instruction). 

If the condition tested is met, bit 8 of the word 
displacement field is propagated left by seven bit positions 
and a zero is appended at the low-order end resulting in a 
16-bit word. (Word displacement is converted to a byte 
displacement.) This value is added to the updated value 
of the instruction address register, becoming the address of 
the next instruction to be fetched. If the condition tested 
is not met, the next sequential instruction is fetched. 

For additional information about the indicator settings 
for the various conditions, see Chapter 2. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Effective address. 

Protect Check. Instruction fetch. 

Instructions 841 



JeT 

Jump on Count (JCT) 
JeT jdisp,reg 

jaddr ,reg 

Operation code Word displacement 

10111 

o 4 5 7 8 15 

This instruction tests the contents of the register specified 
by the R field. 

If the register contents are not zero, the contents are 
decremented by one. If the register contents are still not 
zero, the word displacement is converted to a byte 
displacement and added to the contents of the updated 
instruction address register (lAR). This value indicates 
the location of the next instruction to be fetched. 

If the register contents are zero when initially tested, 
no decrementing occurs. In this case, or when the register 
contents are zero after decrementing, the next sequential 
instruction is fetched. 

JeT 

No 

Yes 

No jump 

8-42 GA34-0021 

Yes 

Subtract 1 from 
reg contents 

Add the byte 
displacement to 
the IAR 

Jump 

Note. When the register contents are not zero, the word 
displacement is converted to a byte displacement as 
follows. Bit 8 of the word displacement field is propagated 
left by seven bit positions, and a zero is appended at the 
low-order end. This results in a 16-bit word that has been 
doubled in magnitude. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Effective address. The jump does 
not occur, but the contents of the register specified by the 
R field are still decremented by one. 

Protect Check. Instruction fetch. 

o 



Jump on Not Condition ONC) 

Operand 
Mnemonic syntax 

JNC condjdisp 
condjaddr 

Extended Operand 
Mnemonic syntax 
JNE jdisp 

jaddr 
JNOFF jdisp 

jaddr 
JNZ jdisp 

jaddr 
JNMIX jdisp 

jaddr 
JNP jdisp 

jaddr 
JNON jdisp 

jaddr 
JNN jdisp 

jaddr 
JNEV jdisp 

jaddr 
JGE jdisp 

jaddr 

JGT jdisp 

JLGT 

JLGE 

JNCY 

jaddr 

jdisp 
jaddr 
jdisp 
jaddr 
jdisp 
jaddr 

Instruction name 
Jump on Not Condi­
tion 

Instruction name 

Jump on Not Equal 

Jump if Not Off 

Jump on Not Zero 

Jump on Not Mixed 

Jump on Not Positive 

Jump if Not On 

Condition 
field 
bits (see II) 
Any value 
listed below 

Condition 
field 
bits (see II) 
000 

000 

000 

001 

001 

010 

Jump on Not Negative 010 

Jump on Not Even 011 

Jump on Arith- 100 
methically Greater 
Than or Equal 
Jump on Arith- 101 
metically Greater 
Than 
Jump on LogicallY 110 
Grea ter Than 
Jump on Logically 111 
Greater Than or Equal 
Jump on No Carry 111 

Operation code 

o 0 0 1 1 
o 

Word displacement 

JNC 

15 

This instruction tests the condition of the various 
indicators set by a previously executed instruction (for 
example: an arithmetic, compare, test bit, or test word 
type of instruction.) 

If the condition tested is met, bit 8 of the word 
displacement field is propagated left by seven bit 
positions and a zero is appended at the low-order end result­
ing in a 16-bit word. (Word displacement is converted to a 
byte displacement.) This value is added to the updated 
value of the instruction address register, becoming the 
address of the next instruction to be fetched. 

If the condition tested is not met, the next sequential 
instruction is fetched. 

For additional information about the indicator settings 
for the various conditions, see Chapter 2. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Effective address. 

Protect Check. Instruction fetch. 

Instructions 843 



LEX 
LMB 
Level Exit (LEX) 
LEX [ubyte] 

Parameter 

15 

When this instruction is executed, the processor exits the 
current level. The in-process flag (LSR bit 9) for the 
current level is turned off. Next the instruction tests for 
(1) pending levels or outstanding priority interrupt 
requests, and (2) the condition of the summary mask (LSR 
bit 11) for the level to be exited: 

• If pending levels or outstanding requests exist and 
the summary mask is enabled: 

A branch is executed to the address contained in the 
IAR of the highest pending or requesting level. 
This level then becomes the current level and 
processing resumes. 

• If pending levels or outstanding requests exist and the 
summary mask is disabled: 

The priority interrupts are not allowed. 
The highest pending level becomes the current level 
and processing resumes. 
If no levels are pending, the processor goes to the 
wait state. 

• If no levels are pending and no interrupt requests are 
outstanding, the processor goes to the wait state. 

For additional information on level switching, refer to 
Chapter 3. 

Programming Note. When a level is exited by a LEX 
instruction and processing is to continue on a pending 
level, one instruction is executed on the pending level 
prior to sampling for a trace class interrupt. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

844 GA34-0021 

Load Multiple and Branch (LMB) 
Refer to Stack Operations in Chapter 2 for a detailed 
description concerning the operation of this instruction. 
The LMB instruction is used in conjunction with the 
Store Multiple (STM) instruction described later in this 
chapter. 

LMB addr4 

Operation code 

o 1 0 0 0 
o 

~ = = ~ -=-~~;;_~i~~sPla~~~ -_-_ -___ -J 
L Displacement 1 [Displacement 2 J -------- --------
16 2324 31 

The contents of the registers for the current level are 
loaded from the stack defined by the stack control block 
pointed to by the effective address. (Effective Address 
Generation is explained in Chapter 2.) The registers to be 
loaded are defined by the stack entry previously stored 
by a Store Multiple (STM) instruction. The next 
instruction is fetched from the storage address contained in 
register 7. 

Bits 5 -7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

Programming Note. If the AM field equals 01 the contents 
of the register specified by the RB field are incremented 
by2. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or stack control 
block. The instruction is terminated. 

Protect Check. Instruction fetch or operand access. The 
instruction is terminated. A partial data transfer occurs 
if the area of the stack being accessed crosses a protection 
boundary. 

Specification Check. 

1. Even byte boundary violation (indirect address, stack 
control block, or stack element). 

2. Address in R 7 is odd. 

Soft Exception Trap Condition 

Stack Exception. Stack is empty. If the AM field equals 
01, the contents of the register specified by the RB field 
are incremented: The instruction is terminated. 

c 

(f-~\ 
\,;'t,~.Y 

o 



o 

0·,·,·, ,-

Multiply Byte (MB) 
MB addr4,reg 

Opera tion code 

1 1 101 
o 4 5 789101112 15 

A multiply operation is performed between the word 
multiplier contained in the register specified by the R 
field and the byte multiplicand at the location specified 
by the effective address. (Effective Address Generation 
is explained in Chapter 2.) The word product replaces the 
contents of the register. 

R EA 

Multiplier x 
o 15 a 

R 

Product 

a 15 

Indicators 

Carry. Reset. 

Overflow. Cleared, then turned on if the result cannot be 
represented in 16 bits. If overflow occurs, the contents of 
the specified register are undefined. 

Even, Negative, and Zero. Set to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. If 
the AM field equals 01, the contents of the register 
specified by the RB field are incremented. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address). 

MB 

Multiplicand 

7 

Instructions 845 



MD 

Multiply Doubleword (MD) 
MD addr4,reg 

Operation code 

1 1 1 0 
o 15 

r------------------. r- - - - - ~d~e!!l.Eispla.::.e'?2!!'!!.. - - - - - -I 
L Displacement 1 J Displacement 2 I ------- --------
16 23 24 31 

A multiply operation is performed between the double­
word multiplier contained in the registers specified by the R 
field and R+ 1 and the word multiplicand at the location 
specified by the effective address. (Effective Address 
Generation is explained in Chapter 2.) The doubleword 
product replaces the contents of the registers with the 
least significant word in R+ 1. 

The R field wraps from 7 to 0; that is, if R specifies 
register 7, registers 7 and 0 are used. 

EA 

x I Multiplicand 41] 
o 15 

Programming Note. If AM=OI, the register specified by 
the RB field is incremented by 2. 

Indicators 

Carry. Reset. 

Overflow. Cleared, then turned on if the result cannot be 
represented in 32 bits. If overflow occurs, the contents 
of the specified registers are undefined. 

Even, Negative, and Zero. Set to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check:. Instruction fetch or operand access. 

Specification Check:. Even byte boundary violation 
(indirect address or operand address). 

846 GA34-0021 

c 

/f~'r,,\ 

''4:.1 

o 



() 

o 

Move Address (MY A) 

Storage Address to Register Format 
MY A addr4,reg 

Operation code 

o 1 000 
o 

The effective address is loaded into the register specified 
by the R field. (Effective Address Generation is 
explained in Chapter 2.) 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
loaded into the register specified by the R field. 

Program Check Conditions 

Invalid Storage Address. Second Instruction word. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address). 

Storage Immediate Format 
MV A raddr ,addr4 

Format without appended word for 
effective addressing (AM = 00 or 01) 

Operation code 

010 
o 4 5 

16 

789101112 

Immediate 

Format with appended word for 
effective addressing (AM = 10 or 11) 

Operation code 

010 
o 4 5 7 8 9 

15 

31 

______ ~d!:.r::s/D~l~e!!!e!!...t ____ _ 

Displacement 1 Displacement 2 
16 2324 

Immediate 

32 47 

MVA 

The operand in the immediate field replaces the contents 
of the location specified by the effective address. 
(Effective Address Generation is explained in Chapter 2.) 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

The immediate operand is not changed. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed, 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-47 



MVB 

Move Byte (MVB) 

Register/Storage Format 
MVB reg,addr4 

addr4,reg 

Operation code 

000 
o 4 5 7 8 9 

I = result to storage } ~ 
o = result to register 

A byte is moved between the least significant byte of the 
register specified by the R field and the location 
specified by the effective address in main storage. 
(Effective Address Generation is explained in Chapter 2.) 
Bit 12 of the instruction specifies the direction of the 
move: 

Bit 12=0. The byte is moved from storage to register. 
The high-order bit of the byte (sign) is propagated to the 
eight high order bits of the register. This permits the 
Compare Byte Immediate (CBI) instruction to be used for 
byte compare operations. The operand in storage is 
unchanged. 

Bit 12=1. The byte is moved from register to storage. 
The contents of the register specified by the R field are 
not changed. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negat!Ye, an.d Zero. Changed to reflect the operand 
moved. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

848 GA34-0021 

Storage /Storage Format 
MVB addrS ,addr4 

Operation code 

10000 
o 4 5 7 8 9 1011 12 13 14 15 

~ =-= =- -=-= ~d~e~ms;ia~m-;n;_-_-_-_-~ 
L Displacement 1 [Displacement 2 I 
~------~40------~ 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) A byte is moved 
from operand 1 to operand 2. Operand 1 is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the byte 
moved. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2.effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main stolage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

o 



o 

o 

Move Byte Immediate (MVBI) 
MVBI byte ,reg 

I Operation code I 
o 0 001 
o 4 5 

R Immediate 

7 8 15 

The register specified by the R field is loaded with the 
immediate operand. 

The immediate field of the instruction forms the 
operand to be loaded. The immediate field is expanded to 
a sixteen bit operand by propagating the sign bit value 
through the high order bit positions; this operand is 
loaded into the register specified by the R field. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
loaded into the register. 

Program Che ck Conditions 

Protect Check. Instruction fetch. 

Move Byte and Zero (MVBZ) 
MVBZ addr4,reg 

Operation code 

1 1 0 0 0 
045 789101112 15 

MVBI 
MVBZ 

The byte specified by the effective address is loaded into 
the least significant byte of the register specified by the 
R field. (Effective Address Generation is explained 
in Chapter 2.) The high order bit of the byte (sign) is 
propagated to the eight high order bits within the register. 

The byte specified by the effective address is then set 
to zeros. 

Bit 12 of the instruction is not used and must be set 
to zero to avoid future code obsolescence. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
loaded into the register. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. The register is loaded but 
the main storage location is unchanged. The status of the 
even, negative, and zero indicators is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address). 

Instructions 849 



-MVD 

Move Doubleword (MVD) . 

Register/Storage Format 
MVD addr4,reg 

reg,addr4 

Operation Code 
1 1 010 
o 

1 = result to storage } ~ 
o = result to register 

A doubleword is moved between the contents of the 
register pair specified by the R field (R and R+ 1) and 
the doubleword location specified by the effective address 
in main storage. (Effective Address Generation is 
explained in Chapter 2.) The source operand is unchanged. 

The R field wraps from 7 to 0; that is, if R specifies 
register 7, registers 7 and 0 are used. 

Bit 12 of the instruction specifies the direction of the 
move: 

Bit 12=0. The doubleword is moved from storage to the 
register pair. 

Bit 12=1. The doubleword is moved from the register 
pair to storage. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
moved. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. If the doubleword 
location specified by the effective address crosses a read­
only protection boundary, partial data may be stored into 
the non read-only protected area. The status of the even, 
negative, and zero indicators is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-50 GA34-0021 

Storage/Storage Format 
MVD addrS ,addr4 

Operation code 

o 0 1 0 
o 4 5 7 8 9 1011121314 15 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained iIi Chapter 2.) A doubleword is 
moved from operand 1 to operand 2. Operand 1 is 
unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the double­
word moved. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

For opera-nd store (read-only violation), the instruction 
is terminated. Main storage is not changed but the indicators 
are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

o 



o 

c 

o 

Move Doubleword and Zero (MVDZ) 
MVDZ addr4,reg 

Operation code 

1 0 1 0 
o 4 5 789101112 15 

The doubleword specified by the effective address is 
loaded into the register pair specified by the R field (R 
and R+ 1). (Effective Address Generation is explained in 
Chapter 2.) The R field wraps from 7 to 0; that is, if R 
specifies register 7, registers 7 and 0 are used. 

The double word specified by the effective address is 
then set to zeros. 

Bit 12 of the instruction is not used and must be set 
to zero to avoid future code obsolescence. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
loaded into the register pair. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. If the doubleword location 
specified by the effective address crosses a read-only 
protection boundary, partial data may be stored into the 
non read-only protected area. The status of the even, 
negative, and zero indicators is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

MVDZ 

Instructions 8-51 



l\fVFD 
MVFN 
Move Byte Field and Decrement (MVFD) 

Move Byte Field and Increment (MVFN) 
MVFD (reg),(reg) 
MVFN (reg),(reg) 

I Operation code I R1 
.0 0 1 0 l. 
045 7 8 

R2 

1011 1213 1415 

o for MVFD or MVFN ~ 
o for MVFD; decrement contents} 

ofRl & R2 
1 for MVFN; increment contents 

ofRl & R2 

This instruction moves a specified number of bytes (one 
byte at a time) from one storage location to another. 
Register 7 contains the number of bytes to be moved (field 
length). If a field length of zero is specified, the instruc­
tion is a no-oPe The register specified by Rl contains the 
address of operand 1; the register specified by R2 contains 
the address of operand 2. Operand 1 is moved to operand 
2. 

After each byte is moved: 

1. The addresses in Rl and R2 are either incremented or 
decremented, determined by bit 13 of the instruction. 
This allows the field to be moved in either direction. 

2. The length count in R7 is decremented. 

8-52 GA34-002l 

The operation ends when the specified field length has 
been filled (contents of R7 equal zero). At this time, the 
addresses in Rl and R2 have been updated and point to 
the next operands. 

Bits 11 and 15 of the instructions are not used and 
must be set to zero to avoid future code obsolescence. 

See Fill Byte Field and Decrement (FFD) and Fill 
Byte Field and Increment (FFN) for other versions of this 
machine instruction. 

Note. Variable field length instructions can be interrupted. 
When this occurs and the interrupted level resumes 
operation, the processor treats the uncompleted instruction 
as a new instruction with the remaining count specified in 
register 7. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result of 
the last byte moved. 

Program Check Conditions 

Invalid Storage Address. Operand. The instruction is 
terminated. 

Protect Check. Instruction fetch, operand access, or 
operand store. The instruction is terminated. 

o 



0", 'I. 

0 :' .J 

Move Word (MVW) 

Register/Register Format 
MVW reg,reg 

Function Operation code 

o 1 1 1 0 o 0 1 0 0 
o 4 5 7 8 10 11 15 

The contents of the register specified by the Rl field 
replace the contents of the register specified by the R2 
field. The contents of the register specified by the Rl 
field are unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Register /Storage Format 
MVW reg,addr4 

addr4,reg 

Operation Code 

1 1 001 
o 

1 = result to storage } ~ 
o = result to register 

------------------. r ____ ~~r!!!sl.Eispl~e'!!:..e!!:! ______ ~ t Displacement 1 I Displacement 2 .J 
16- -- - - -- -2324- --- - - --31 

A word is moved between the contents of the register 
specified by the R field and the location specified by the 
effective address in main storage. (Effective Address 
Generation is explained in Chapter 2.) The source operand 
is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
moved. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

MVW 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Register to Storage Long Format 
MVW regJongaddr 

Operation code 

o 1 101 
o 

16 

0= direct address } ~ 
1 = indirect address 

Address 

31 

The contents of the register specified by the Rl field arc 
stored into the main storage location specified by an 
effective address. This effective address is generated as 
follows: 

1. The address field is added to the contents of the 
register specified by the R2 field. If the R2 field 
equals zero, no register contributes to the address 
generation. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 

Bit 11=0 (direct address). The result from step 1 is the 
effective address. 
Bit 11 =1 (indirect address). The result from step 1 is 
the address of the main storage location that contains 
the effective address. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result 
stored from the register specified by the Rl field. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-53 



MVW 

Storage to Register Long Format 
MVW longaddr ,reg 

Operation code 

o 1 101 
o 

16 

0= direct address } ~ 
1 = indirect address 

Address 

31 

The register specified by the RI field is loaded with the 
contents of the main storage location specified by an 
effective address. This effective address is generated 
as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field. If the R2 field 
equals zero, no register contributes to the address 
generation. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11=0 (direct address). The result from step I is 
the effective address. 
Bit 11=1 (indirect address). The result from step 1 is 
the address of the main storage location that contains 
the effective address. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result 
loaded into the register specified by the RI field. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-54 GA34-0021 

Storage/Storage Format 
MVW addrS ,addr4 

Operation code 

1 000 1 
o 4 5 7 8 9 10 11 12 13 14 15 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) A word is moved 
from operand 1 to operand 2. Operand 1 is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the word 
moved. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 "effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 arid the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only violation), the instruction 
is tenninat~d. Main storage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 



D 

c 

Move Word Immediate (MVWI) 

Storage to Register Format 
MVWI word,reg 

Operation code 

o 1 000 
o 15 

The effective address value is loaded into the register 
specified by the R field. (Effective Address Generation 
is explained in Chapter 2.) This value is equal to the value 
of word as specified by the programmer. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
loaded into the register specified by the R field. 

Program Che<.k Conditions 

Invalid Storage Address. Second instruction word. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address). 

Storage Immediate Format 
MVWI word,addr4 

Format without appended word for 
effective addressing (AM = 00 or 01) 

Operation code 

o 1 000 
o 

16 

Immediate 

Format with appended word for 
effective addressing (AM = 10 or 11) 

Operation code 
o 1 0 0 0 0 
o 4 5 789 

Address/ Displacement 

MVWI 

31 

15 

- Di;Pl~e-;'~tl - - - - DisPiaZe;e~ 2" -
2324 

Immediate 

32 47 

The operand in the immediate field replaces the contents 
of the location specified by the effective address. 
(Effective Address Generation is explained in Chapter 2.) 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

The immediate operand is not changed. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-55 



MVWS 

Move Word Short (MVWS) 

Register to Storage Format 
MVWS reg,shortaddr 

Operation code 

o 1 0 0 

X Wd displacement 

o 4 5 7 8 9 

o = direct address } J 
1 = indirect address 

15 

The contents of the register specified by Rl are stored 
into the main storage location specified by the effective 
address. The contents of the register are unchanged. 

The effective address is generated as follows: 

1. The five bit unsigned integer (word displacement) is 
doubled in magnitude (converted to a byte displace­
ment). 

2. The result from step 1 is added to the contents of the 
base register (RB) to form a main storage address. 

3. Instruction bit 10 is tested for direct or indirect 
addressing: 
Bit 10=0 (direct address). The result from step 2 is 
the effective address. 
Bit 10=1 (indirect address). The result from step 2 is 
the address of the main storage location that contains 
the effective address. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
stored into main storage. 

Program Check Conditions 

Invalid Storage Address. Operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-56 GA34-0021 

Storage to Register Format 
MVWS shortaddr ,reg 

Operation code 

1 1 100 

o 4 5 7 

0= direct address } J 
1 = indirect address 

The contents of the main storage location specified by 
the effective address are loaded into the register specified 
by the Rl field. The contents of the main storage 
location remain unchanged. 

The effective address is generated as follows: 

1. The five bit unsigned integer (word displacement) is 
doubled in magnitude (converted to a byte displacement). 

2. The result from step 1 is added to the contents of the 
base register (RB) to form a main storage address. 

3. Instruction bit lOis tested for direct or indirect 
addressing: 
Bit 10=0 (direct address). The result from step 2 
is the effective address. 
Bit 10=1 (indirect address). The result from step 2 
is the address of the main storage location that contains 
the effective address. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the operand 
loaded into the register specified by the Rl field. 

Program Check Conditions 

Invalid Storage Address. Operand. 

Protect Check. Instruction fetch or operand access, 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

c 

o 



o 

Move Word and Zero (MVWZ) 
MVWZ addr4,reg 

Operation code 

1 1 001 
o 4 5 789101112 15 

The word specified by the effective address is loaded into 
the register specified by the R field. (Effective Address 
Generation is explained in Chapter 2.) 

The word specified by the effective address is then set 
to zeros. 

Bit 12 of the instruction is not used and must be set to 
zero to avoid future code obsolescence. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result of 
the operand loaded. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. The register is loaded but the 
main storage location is unchanged. The status of the 
even, negative, and zero indicators is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

MVWZ 

Instructions 8-57 



MW 

Multiply Word (MW) 
MW addr4,reg 

Operation code 

1 101 
o 4 5 7 8 9 10 11 12 15 

A multiply operation is performed between the word 
multiplier contained in the register specified by the R 
field and the word multiplicand at the location specified 
by the effective address. (Effective Address Generation 
is explained in Chapter 2.) The word product replaces 
the contents of the register. 

R EA 

Multiplier x I 
15 0 

R 

Product 

o 15 

Indicators 

Carry. Unchanged. 

Overflow. Cleared, then turne~ on if the result cannot be 
represented in 16 bits. If overflow occurs, the contents of 
the specified register are undefined. 

Even, Negative, and Zero. Set to Reflect the result. 

Program Check Condiiions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-58 GA34-0021 

Multiplicand ~fJ 
15 

c 

o 



o 

o 

No Operation (NOP) 
NOP 

I Operation code I I I 
.0 1 ° 1 0. 0 0 0 0 0 0 0 0 0 0 0 
o 4 5 7 8 15 

The hardware format of this instruction is identical to 
the format used for the Branch Indexed Short (BXS) and 
Jump Unconditional (J) instructions. When bits 5-15 are 
all zeros, the instruction performs no operation. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Protect Check. Instruction fetch. 

AND Word Immediate (NWI) 
NWI word,reg[ ,reg] 

Operation code 

o 1 111 
045 

16 

7 8 

Immediate 

Function 

o 0 0 0 0 
10 11 15 

31 

NOP 
NWI 

The immediate field is ANDed bit by bit with the contents 
of the register specified by the Rl field. The result is 
placed in the register specified by the R2 field. The 
contents of the register specified by Rl are unchanged 
unless Rl and R2 specify the same register. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word. 

Protect Check. Instruction fetch. 

Instructions 8-59 



OB 

OR Byte (OB) 

Register/Storage Format 
OB reg,addr4 

addr4,reg 

Operation Code 

000 
o 101112131415 

1 = result to storage } ~ 
o = result to register 

r-----------------J- _ -:- __ :!,d<!!:.e!.!J0..splac!!,!!l:!!,t _ _____ ~ 
L DIsplacement 1 I Displacement 2 ~ 
16-- - - - - - 23 24- - - - - - - 31 

A logical OR operation is performed between the least 
significant byte of the register specified by the R field 
and the location specified by the effective address in 
main storage. (Effective Address Generation is explained 
in Chapter 2.) Bit 12 of the instruction specifies the 
destination of the result. The source operand is unchanged. 
Also, when going from storage to register, bits 0 through 
7 of the register are unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
thp. in~trlJ('.ti()n ic;: tprmin~tprl M~in dAr~op ic nAt f'h'lnnorl . _________________ -_ -------_ ... ____ ...... -._ ............... _.&"""O-.AU .A.A.,,",'" ""..I..I."".I..I.b"' ..... 

but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

8-60 GA34-0021 

Storage/Storage Format 
OB addrS ,addr4 

Operation code 

1 0 0 0 0 
o 4 5 7 8 9 1011 12131415 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) A one byte logical 
OR operation is performed between operand 1 and 
operand 2. The result replaces operand 2. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RB 1 is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main storage i~ not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

o 



D 

o 

o 

OR Doubleword (OD) 

Register /Storage Format 
OD addr4,reg 

reg,addr4 

Operation Code 

1 1 0 1 0 

o 

1 = result to storage } ~ 
o = result to register 

r------------------. I- - ..... __ ~d.:!:..r:!!/Eispla~'!!!n!... _____ -I 
L _ DJ.s~~m~nt..! __ ] _ ~s!:.1a~~n.!} _ _....I 
16 23 24 31 

A logical OR operation is performed between the contents 
of the register pair specified by the R field (R and R + 1) 
and the doubleword in main storage specified by the 
effective address. (Effective Address Generation is 
explained in Chapter 2.) Bit 12 of the instruction specifies 
the destination of the result. The source operand is 
unchanged. 

If the R field equals 7, register 7 and register 0 are 
used. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the results 
of the OR operation. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. If the doubleword location 
specified by the effective address crosses a read-only 
protection boundary, partial data may be stored into the 
non read-only protected area. The status of the even, 
negative, and zero indicators is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address or direct address). 

Storage/Storage Format 
OD addrS ,addr4 

Operation code 

1 001 0 
o 

OD 

10 11 1213 14 15 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) A doubleword 
logical OR operation is performed between operand 1 
and operand 2. The result replaces operand 2. Operand 
1 is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result 
of the OR operation. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AM 1 equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AM 1 equals Oland the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only Violation), the instruction 
is terminated. Main storage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-61 



ow 

OR Word (OW) 

Register/Register Format 
OW reg,reg 

Operation code 

01110 
o 4 5 7 8 

Function 

o 0 001 
15 

The con ten ts of the register specified by the Rl field are 
ORed bit by bit with the contents of the register specified 
by the R2 field. The result is placed in the register 
specified by the R2 field. The contents of the register 
specified by the RI field remain unchanged unless R1 and 
R2 specify the same register. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-62 GA34-0021 

Register/Storage Format 
OW reg,addr4 

addr4,reg 

Operation Code 

1 100 1 
o 78910111213 15 

1 = result to storage } ~ 
o = result to register 

A logical OR operation is performed between the contents 
of the register specified by the R field and the loc.ation 
specified by the effective address in main storage. (See 
Effective Address Generation in Chapter 2.) Bit 12 of 
the instruction specifies the destination of the result. 
The source operand is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result 
of the OR operation. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specificutioh Check. Even byte boundary violation 
(indirect address or operand address). 

c 

o 



o 

o 

Storage to Register Long Format 
OW longaddr ,reg 

Operation code 

o 1 101 
o 

16 

0= direct address } ~ 
1 = indirect address 

Address 

31 

A logical OR operation is performed between the contents 
of the main storage location specified by an effective 
address and the contents of the register specified by the 
Rl field. The result is placed in the register specified 
by the Rl field. 

The effective main storage address is generated as 
follows: 

1. The address field is added to the contents of the 
register specified by the R2 field. If the R2 field 
equals zero, no register contributes to the address 
generation. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11=0 (direct address). The result from step 1 
is the effective address. 
Bit 11=1 (indirect address). The result from step 1 
is the address of the main storage location that 
contains the effective address. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result 
loaded into the register specified by the Rl field. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Storage/Storage Format 
OW addr5,addr4 

Operation code 

1 000 1 
o 4 5 7 8 9 10 11 12 13 14 15 

ow 

The address arguments generate the effective addresses of 
two operands in main storage. (See Effective Address 
Generation in Chapter 2.) A one word logical OR operation 
is performed between operand 1 and operand 2. The result 
replaces operand 2. Operand 1 is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main storage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-63 



OWl 

OR Word Immediate (OWl) 

Register Immediate Format 
OWl word,reg[ ,reg] 

Operation code 

o 1 111 
Function 

00011 
o 4 5 7 8 10 11 15 

Immediate 

16 31 

The immediate field is ORed bit by bit with the contents 
of the register specified by the RI field. The result is 
placed in the register specified by the R2 field. The 
contents of the register specified by RI are unchanged 
unless RI and R2 specify the same register. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch. 

8-64 GA34-0021 

Storage Immediate Format 
OWl word,addr4 

Format without appended word for 
effective addressing (AM = 00 or 01) 

Operation code 
o 1 000 

o 

16 

Immediate 

Yormat with appended word for 
effective addressing (AM = 10 or 11) 

Operation code 
o 1 000 

o 

16 

32 

2324 

Immediate 

31 

31 

47 

A logical OR operation is performed between the immed­
iate field an,d the contents of the main storage location 
specified by the effective address. (Effective Address 
Generation is explained in Chapter 2.) The result replaces 
the contents of the storage location. 
Bits 5 -7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 
The immediate operand is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result 
of the OR operation. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even 'byte boundary violation 
(indirect address or operand address). 

c 

o 



o 

Pop Byte (PB) 
Refer to Stack Operations in Chapter 2 for additional 
information about the operation of this instruction and 
the associated stack control block. 

PB addr4,reg 

Operation code 

1 110 1 
o 4 5 789101112 15 

~====~~~~~w~~~~~~~=~ 
L Displacement 1 I Displacement 2 -1 
16-- - - - - - 2324- - - - - - - 31 

The top element of a byte stack is popped from the stack 
and loaded into the least significant byte of the register 
specified by the R field. The stack is defined by the 
stack control block pointed to by the effective address. 
(Effective Address Generation is explained in Chapter 2.) 

Programming Note. If AM equals 01, the register 
specified by the RB field is incremented by two. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word, stack control 
block, or operand. 

Protect Check. Instruction fetch, operand access, or 
stack control block. 

Specification Check. Even byte boundary violation 
(indirect address or stack control block). 

Soft Exception Trap Condition 

Stack Exception. Stack is empty. If AM equals 01, the 
contents of the register specified by the RB field are 
incremented. 

Pop Doubleword (PD) 

PB 
PD 

Refer to Stack Operations in Chapter 2 for additional 
information about the operation of this instruction and 
the associated stack control block. 

PD addr4,reg 

Operation code 

1 1 1 0 
o 

The top element of a doubleword stack is popped from 
the stack and loaded into the register pair specified by the 
R field (R and R+l). The stack is defined by the stack 
control block pointed to by the effective address. 
(Effective Address Generation is explained in Chapter 2.) 

If the R field equals 7, registers 7 and 0 are used. 

Programming Note. If AM equals 01, the register specified 
by the RB field is incremented by two. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word, stack control 
block, or operand. 

Protect Check. Instruction fetch, operand access, or 
stack control block. The instruction is terminated. For 
operand access, partial data is transferred to the register 
pair if the doubleword being addressed crosses a protection 
boundary. 

Specification Check. Even byte boundary violation 
(indirect address, stack control block, or stack element). 

Soft Exception Trap Condition 

Stack Exception. Stack is empty. If the AM field equals 
01, the contents of the register specified by the RB field 
are incremented. 

Instructions 8-65 



PSB 
PSD 
Push Byte (PSB) 
Refer to Stack Operations in Chapter 2 for additional 
information about the operation of this instruction and 
the associated stack control block. 

PSB reg,addr4 

Operation code 

1 1 1 0 1 
o 15 

The least significant byte of the register specified by 
the R field is pushed into the stack. The stack is defined 
by the stack control block pOinted to by the effective 
address. (Effective Address Generation is explained in 
Chapter 2.) 

Programming Note. If AM equals 01, the register specified 
by the RB field is incremented by two. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word, stack control 
block, or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. 

Specification Check. Even byte boundary violation 
(indirect address or stack control block). 

Soft Exception Trap Condition 

Stack Exception. Stack is full. !f AM equals 01, the 
contents of the register specified by the RB field are 
incremented. 

8-66 GA34-0021 

Push Doubleword (PSD) 
Refer to Stack Operations in Chapter 2 for additional 
information about the operation of this instruction and 
the associated stack control block. 

PSD reg,addr4 

Operation code 

1 1 101 
o 

The doubleword operand contained in the register pair 
specified by the R field (R and R+l) is pushed into the 
stack. The stack is defined by the stack control block 
pointed to by the effective address. (Effective Address 
Generation is explained in Chapter 2.) 

If the R field equals 7, registers 7 and 0 are used. 

Programming Note. If AM equals 01, the register specified 
by the RB field is incremented by two. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word, stack control 
block, or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. The instruction is terminated. For operand 
store (read-only violation), partial data is transferred 
to the non-read-only area of main storage if the doubleword 
being stored crosses a protection boundary. 

Specification Check. Even byte boundary viohltion 
(indirect address, stack control block, or stack element). 

Soft Exception Trap Condition 

Stack Exception. Stack is full. If the AM field equals 
01, the contents of the register specified by the RB field 
are incremented. 

o 



o 

o 

o 

Push Word (PSW) 
Refer to Stack Operations in Chapter 2 for additional 
information about the operation of this instruction and 
the associated stack control block. 

PSW reg,addr4 

Operation code 

1 1 101 

o 4 5 789101112 15 

The word operand contained in the register specified by 
the R field is pushed into the stack. The stack is defined 
by the stack control block pointed to by the effective 
address. (Effective Address Generation is explained in 
Chapter 2.) 

Programming Note. If AM equals 01, the register specified 
by the RB field is incremented by two. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word, stack control 
block, or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. 

Specification Check. Even byte boundary violation 
(indirect address, stack control block, or stack element). 

Soft Exception Trap Condition 

Stack Exception. Stack is full. If the AM field equals 
01, the contents of the register specified by the RB field 
are incremented. 

Pop Word (PW) 

PSW 
PW 

Refer to Stack Operations in Chapter 2 for additional 
information about the operation of this instruction and 
the·associated stack control block. 

PW addr4,reg 

Operation code 

1 1 101 
o 

The top element of a word stack is popped from the stack 
and loaded into the register specified by the R field. The 
stack is defined by the stack control block pointed to by 
the effective address (Effective Address Generation is 
explained in Chapter 2.) 

Programming Note. If AM equals 01, the register 
specified by the RB field is incremented by two. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word, stack control 
block, or operand. 

Protect Check. Instruction fetch, operand access, or 
stack control block. 

Specification Check. Even byte boundary violation 
(indirect address, stack control block, or stack element). 

Soft Exception Trap Condition 

Stack Exception. Stack is empty. If the AM field equals 
01, the contents of the register specified by the RB field 
are incremented. 

Instructions 8-67 



RBTB 

Reset Bits Byte (RBTB) 

Register/Storage Format 
RBTB addr4,reg 

reg,addr4 

Operation Code 

1 1 0 0 0 
o 7 8 9 1011 12 13 15 

o = storage to register } ~ 
1 = register to storage 

r------------------~ - - - - :i.d,!!:e!!lEispla.:;.e~n.!.. _ _ ___ J 
L Displacement 1 J Displacement 2 I 
16- - - - -- -2324 -- - - - - 3i 

This instruction operates either: 

1. Storage to register (instruction bit 12 equals 0) or 
2. Register to storage (instruction bit 12 equals 1). 

Storage to Register. The specified bits are reset in the 
least significant byte of the register specified by the Rl 
field. The bit positions turned off correspond to the bit 
positions containing one-bits in the main storage byte 
location specified by the effective address. The remaining 
bits in the low-order byte of the register are unchanged. 
Also, bits 0-7 of the register and the storage operand 
are unchanged. 

Register to Storage. The specified bits are reset in the 
main storage byte location specified by the effective 
address. The bits turned off correspond to the bit 
positions containing one-bits in the least significant byte 
of the register specified by the R field. The remaining 
bits in the storage location are unchanged. The register 
operand is unchanged. 

Note. Effective Address Generation is explained in 
Chapter 2. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

8-68 GA34-0021 

Storage/Storage Format 
RBTB addr 5 ,addr4 

Operation code 

1 0 0 0 0 
o 4 5 7 8 9 1011 12131415 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) The bit positions 
containing one-bits in byte operand 1 determine the bit 
positions turned off in byte operand 2. The remaining bits 
in operand 2 are unchanged. The result replaces operand 
2. Operand 1 is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 "effective address is invalid, RBI is incfemen i~d. 

For operand store (read-only violation), the instruction 
is terminated. Main storage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

. ) 0:' 



o 

o 

Reset Bits Doubleword (RBTD) 

Register/Storage Format 
RBTD addr4,reg 

reg,addr4 

Operation Code 

1 1 0 1 0 
o 

0= storage to register} ~ 
1 = register to storage 

15 

r---------------- - --, 
Address/Displacement t -=-D~p~c~::T C ~ _-L -Eispii~mIn~ ~ ~ j 

16 23 24 31 

This instruction operates either: 

1. Storage to register (instruction bit 12 equals 0) or 
2. Register to storage (instruction bit 12 equals 1) 

Storage to Register. The specified bits are reset in the 
register pair specified by the R field (R and R+l). The 
bit positions turned off correspond to the bit positions 
containing one-bits in the doubleword main storage loca­
tion specified by the effective address. The remaining bits 
in the register pair are unchanged. The storage operand is 
unchanged. 

Register to Storage. The specified bits are reset in the 
doubleword main storage location specified by the 
effective address. The bit positions turned off correspond 
to the bit positions containing one-bits in the register 
pair specified by the R field (R and R + 1). The remaining 
bits in the storage operand are unchanged. The register 
operand is unchanged. If the R field equals 7, registers 7 
and 0 are used. 

Note. Effective Address Generation is explained in 
Chapter 2. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. If the doubleword location 
specified by the effective address crosses a read-only 
protection boundary, partial data may be stored into the 
non read-only protected area. The status of the even, 
negative, and zero indicators is unpredictable. 

RBTD 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Storage /Storage Format 
RBTD addrS,addr4 

Operation code 

10010 
o 4 5 789101112131415 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) The bit positions 
containing one-bits in doubleword operand 1 determine 
the bit positions turned off in double word operand 2. 
The remaining bits in operand 2 are unchanged. The 
result replaces operand 2. Operand 1 is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RB 1 is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main storage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-69 



RBTW 

Reset Bits Word (RBTW) 

Register/Register Format 
RBTW reg,reg 

Operation code 
o 1 1 1 0 

Function 
00000 

o 4 5 7 8 10 11 15 

The bit positions containing one-bits in the register 
specified by the R 1 field determine the bit positions 
turned off in the register specified by the R2 field. The 
remaining bits in the register specified by the R2 field 
are unchanged. The contents of the register specified by 
the RI field are unchanged unless Rl and R2 specify the 
same register. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-70 GA34-0021 

Register/Storage Format 
RBTW addr4,reg 

reg,addr4 

Operation Code' 

100 
() 

o = storage to register 

1 = register to storage }~ 

This instruction operates either: 

1 . Storage to register (instruction bit 12 equals 0) or 
2. Register to storage (instruction bit 12 equals 1) 

Storage to Register. The specified bits are reset in the 
register specified by the R field. The bit positions turned 
off correspond to the bit positions containing one-bits in 
the main storage word location specified by the effective 
address. The remaining bits in the register are unchanged. 
The storage operand is unchanged. 

Register to Storage. The specified bits are reset in the 
main storage word location specified by the effective 
address. The bit positions turned off correspond to the 
bit positiqns containing one-bits in the register specified 
by the R field. The remaining bits in the storage operand 
are unchanged. The register operand is unchanged. 

Note. Effective Address Generation is explained in 
Chapter 2. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

o 



o 

o 

Storage to Register Long Format 
RBTW longaddr,reg 

Operation code 

o 1 1 0 1 
o 7 8 10 11 12 

0= direct address } ~ 
1 = indirect address 

Address 

16 

15 

31 

The bit positions containing one-bits in the main storage 
word location specified by the effective address determine 
the bit positions turned off in the register specified by 
the RI field. The remaining bits in the register specified 
by the RI field are unchanged. The storage operand is 
unchanged. 

The effective address is generated as follows: 

1. The address field is added to the contents of the 
register specified by the R2 field to form a main 
storage address. If the R2 field equals zero, no 
register contributes to the address generation. The 
contents of R2 are not changed. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11=0 (direct address). The result from step 1 
is the effective address. 
Bit 11=1 (indirect address). The result from step 1 
is the address of the main storage location that 
contains the effectiVe address. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Storage/Storage Format 
RBTW addr 5 ,addr4 

Operation code 

1 000 1 
o 7 8 9 10 11 1213 14 15 

[==~~=~~~~~~~In~~~~~~ 
L Displacement 1 ] Displacement 2 j -------- ---------
16 23 24 31 

RBTW 

The address arguments generate the effective addresses of 
two operands in main storage. (Effective Address 
Generation is explained in Chapter 2.) The bit positions 
containing one-bits in word operand 1 determine the bit 
positions turned off in word operand 2. The remaining 
bits in operand 2 are unchanged. The result replaces 
operand 2. Operand 1 is unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AM 1 equals Oland the 
operand 2 effective address is invalid, RB I is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RB 1 is incremented. 

For operand store (read-only Violation), the instruction 
is terminated. Main storage is not changed but the indica­
tors are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-71 



RBTWI 

Reset Bits Word Immediate (RBTWI) 

Register Immediate Long Format 
RBTWI word,reg( ,reg] 

Operation code 
o 1 111 

Function 
00100 

o 4 5 7 8 10 11 15 

Immediate 

16 31 

The bit positions containing one-bits in the immediate 
field determine the bit positions to be reset. These bit 
positions are reset in the operand from the contents of 
the register specified by the Rl field. The result is 
placed in the register specified by the R2 field. 

Example: 

Contents of immediate field 
Contents of R1 register 
Result in R2 register 

0000 0000 0000 1111 
0101 0101 0101 0101 
0101 0101 0101 0000 

The contents of the register specified by the Rl field 
are unchanged unless Rl and R2 specify the same register. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word. 

Protect Check. Instruction fetch. 

8-72 GA34-0021 

Storage Immediate Format 
RBTWI word,addr4 

Format without appended word for 
. effective addressing (AM = 00 or 0 1) 

Operation code 

o 1 000 
o 4 5 

16 

7 8 9 10 11 12 

Immediate 

Format with appended word for 
effective addressing (AM = 10 or 11) 

Operation code 

o 1 000 
o 

15 

31 

______ ~<!;!r;:s/ DiE!l~e!!!e!E ____ _ 

Displacement 1 Displacement 2 

16 2324 31 

Immediate 

32 47 

The bit positions containing one-bits in the immediate 
field determine the bit positions turned off in the main 
storage location specified by the effective address. 
(Effective Address Generation is explained in Chapter 2.) 
The immediate operand is unchanged. 

Bits 5 -7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch~ operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

~~. 
''-.c;:;I 

;f'--~\ 

\~~~ 



~ .. J,I. 

~ 

o 

Subtract Byte (SB) 
SB reg,addr4 

addr4,reg 

Operation code 

1 1 0 0 0 
o 4 5 7 8 9 10 11 12 13 15 

1 = result to storage t ~ 
o = result to register \ 

A subtract operation is performed between the least 
significant byte of the register specified by the R field 
and the location specified by the effective address in main 
storage. (See Effective Address Generation in Chapter 
2.) Bit 12 of the instruction specifies the destination of 
the result. The source operand and high-order byte of the 
register are unchanged. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the byte. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one byte; i.e., if the difference is less 
than _27 or greater than +27-1. 

If an overflow occurs, the result contains the correct 
low-order eight bits of the difference; the carry indicator 
contains the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. Main storage is not changed 
but the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

Subtract Carry Indicator (SCY) 
SCY reg 

Operation code 

o 1 1 1 0 
045 7 8 

Function 

o 0 0 1 0 
10 11 15 

SB 
SCy 

The value of the carry indicator on entry is subtracted 
from the contents of the register specified by the R2 field. 
The result is placed in the register specified by the R2 
field. Bits 5-7 of the instruction are not used and must 
be set to zero to avoid future code obsolescence. 

Programming Note. This instruction can be used when 
subtracting multiple word operands. See Indicators­
Multiple Word Operands in Chapter 2. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the word. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less 
than _2 15 or greater than +2 15 _1. 

If an overflow occurs, the result contains the correct 
low-order 16 bits of the difference; the carry indicator 
contains the complement of the high-order (sign) bit. 

Even. Unchanged. 

Negative. Changed to reflect the result. 

Zero. If on at entry, changed to reflect the result. If 
off at entry, it remains off. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Instructions 8-73 



SD 

Subtract Doubleword (SD) 

Register/Storage Format 
SO reg,addr4 

addr4,reg 

I Operation code I 
1 1 0 1 0 
045 

R 

7 8 9 10 11 12 13 15 

1 = result to storage t ~ 
o = result to register f 

r-------- ---------I- ____ ~d!!!e!!JDisp.!!!ce.!!!e~ _____ I 
L Displacement 1 I Displacement 2 I 
16 - - - - - -23 i4" - - - - - - 31 

A subtract operation is performed between the register pair 
specified by the R field (R and R+l) and the doubleword 
in main storage specified by the effective address. (See 
Effective Address Generation in Chapter 2.) Bit 12 of 
the instruction specifies the destination of the result. 
The source operand is unchanged. 

If the R field equals 7, register 7 and register 0 are 
used. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the doubleword. If no borrow 
is detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in the doubleword; i.e., if the difference 
is less than _2 31 or greater than +231 _1. 

If an overflow occurs, the' result contains the correct 
low-order 32 bits of the difference; the carry indicator 
contains the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), 
the instruction is terminated. If the doubleword location 
specified by the effective address crosses a read-only 
protection boundary, partial data may be stored into the 
non read-only protected area. The status of the even, 
negative, and zero indicators is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-74 GA34-o021 

Storage/Storage Format 
SO addrS ,addr4 

o 4 5 7 8 9 10 11 12 13 14 15 

The address arguments generate the effective addresses of 
two operands in main storage. (See Effective Address 
Generation in Chapter 2.) Ooubleword operand 1 is 
subtracted from double word operand 2. The result 
replaces operand 2. Operand 1 is unchanged. 

Indicators 

Carry. Turned on by the detection of a borrow beyond 
the high-order bit position of the doubleword. If no 
borrow is detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in the doubleword; i.e., if the difference is 
less than .:..231 or greater than +231 _1. 

If an .overflow occurs, the result contains the correct 
low-order 32 bits of the difference; the carry indicator 
contains the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 
The instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RBI is incremented. 

Protect Check. Instruction fetch, operand access, or 
operand store. For instruction fetch or operand access, 
the instruction is terminated. If AMI equals 01 and the 
operand 2 effective address is invalid, RB 1 is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main storage is not changed but the 
indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

c 



C 

o 

Set Address Key Register (SEAKR) 

System Register/Storage Format 

Mnemonic Syntax 

SEAKR addr4 

Extended 
Mnemonic Syntax 

SEISK addr4 
SEOOK addr4 
SEOTK addr4 

Operation code 

o 1 011 
o 

Instruction name 

Set Address Key Register 

Instruction name 

Set Instruction Space Key 
Set Operand 1 Key 
Set Operand 2 Key 

15 

~ = = = = Addre~s/Displacement ~ -=--=--=1 
L Displacement 1 -I Displacement 2 I 
16- - - - - - 23 24 - - - - - -31 

K field 

011 

K field 

000 
010 
001 

The address key register (AKR) field, specified by the K 
field, is loaded from the word location in main storage 
specified by the effective address. (Effective Address 
Generation is explained in Chapter 2.) The K field can 
specify: (1) a field within the AKR, or (2) the entire AKR. 

K field Address key register field name Bits 
000 Instruction space key 13-15 
001 Operand 2 key 9-11 
010 Operand 1 key 5-7 
011 Address key register 0-15 
100 Unused 
101 Unused 
110 Unused 
111 Unused 

Unused K-field values should not be used to avoid future 
program obsolescence. 

If the K field specifies a specific field within the 
AKR, bits 13-15 from the word location in main storage 
are loaded into the AKR field. If the K field specifies 
the entire AKR, bits 0-15 from the word location in main 
storage are loaded into the AKR. 

The contents of the word in main storage are unchanged. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address). 

SEAKR 

System Register/Register Format 
Mnemonic Syntax Instruction name K Field 

SEAKR reg Set Address Key Register 011 

Extended 
Mnemonic Syntax Instruction name K Field 

SEISK reg Set Instruction Space Key 000 
SEOOK reg Set Operand 1 Key 010 
SEOTK reg Set Operand 2 Key 001 

rperanon code I 
o 1 111 I Function I 

.1 0 0 1 0 
K R 

045 7 8 1011 15 

The address key register (AKR) field, specified by the K 
field, is loaded from the register specified by the R field. 
The contents of the register are unchanged. The K field 
can specify: (1) a field within the AKR, or (2) the 
entire AKR. 

K field Addre~s key register field name Bits 

000 Instruction space key 13-15 
001 Operand 2 key 9-11 
010 Operand 1 key 5-7 
011 Address key register 0-15 
100 Unused 
101 Unused 
110 Unused 
111 Unused 

Unused K-field values should not be used to avoid future 
program obsolescence. 

If the K field specifies a specific field within the 
AKR, bits 13-15 from the register specified by the R field 
are loaded into the AKR field. If the K field specifies 
the entire AKR, bits 0-15 from the specified register are 
loaded in the AKR. 

Indicators 
All indicators are unchanged. 

Program Check Condition 

Privilege Violate. Privileged instruction. 

Instructions 8-75 



SECON 
SEIMR 
Set Console Data Lights (SECON) 
SECON reg 

Function 
10000 

15 

The con ten ts of the register specified by R2 are stored in 
the console data lights. The contents of the register are 
unchanged. 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

If the Programmer console is not installed, the 
instruction performs no operation. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Privilege Violate. Privileged instruction. 

8-76 GA34-Q021· 

Set Interrupt Mask Register (SEIMR) 
SEIMR addr4 

Operation code 

o 1 011 
o 

Bits 0-3 of the word location in main storage specified 
by the effective address are loaded into the interrupt mask 
register. (Effective Address Generation is explained in 
Chapter 2.) Bits 4-15 of the word in main storage are not 
used. The contents of main storage are unchanged. 

Bits 5-7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

The mask is represented in a bit significant manner as 
follows: 

Mask bit 

o 
1 
2 
3 

Inte"upt level 
o 
1 
2 
3 

A mask bit set to "1" indicates that the level is enabled. 
A mask bit set to "0" indicates that the level is disabled. 

Indicators 

All indicators are unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

o 



o 

o 

Set Indicators (SEIND) 
SEIND reg 

Function Operation code 

o 1 1 1 0 o 1 1 1 1 
o 4 5 7 8 1011 15 

Bits 0 through 4 of the register specified by the R2 field 
are loaded into bits 0 through 4 of the current level status 
register (indicators). Bits 5 through 15 of the register 
specified by R2 are ignored. Bits 5 through 15 of the 
level status register are unchanged. 

Bits 5 - 7 of the instruction are not used and must be 
set to zero to avoid future code obsolescence. 

The following table shows the indicator bits of the 
level status register (LSR): 

LSR bit 

o 
1 
2 
3 
4 

Indicators 

Indicator 

Even 
Carry 
Overflow 
Negative 
Zero 

Changed as specified by the R2 register. 

Program Check Conditions· 

Protect Check. Instruction fetch. 

SEIND 

Instructions 8-77 



SELB 

Set Level Block (SELB) 
Execution of the SELB instruction can cause the processor 
to change levels. Also, the processor may exit supervisor 
state. For additional information concerning the processor 
action when executing this instruction, refer to Program 
Controlled Level Switching in Chapter 3. 

SELB reg,addr4 

Operation code 

o 1 0 1 
o 4 5 

~ -=- -=--_ -_ ~ddressii5isPiacemen~ =- =-::, 
L __ D!pl~e~n~ 1_ [ _ .Eispla~m~t2-...J 

16 2324 31 

This instruction loads a level status block (LSB), from 11 
words of main storage, into the LSB for a selected level. 
The beginning location for the main storage LSB is 
specified by the effective address. (Effective Address 
Generation is explained in Chapter 2.) The contents of the 
storage locations are not changed. 

The selected level is specified (binary encoded) in 
bits 14-15 of the R field register. Bits 1-13 of the 
register are not used and must be zero to avoid future code 
obsolescence. 

Inhibit Trace (IT) Bit 

Bit 0 of the register specified by the R field is the 
inhibit trace (IT) interrupt bit. If bit 0 is a one and 
the trace bit (bit 10) in the LSR of the target LSB is a 
one, then both the Set Level Block instruction and the 
instruction pointed to by the IAR in the target LSB are 
executed before trace interrupts are allowed. See 
Programming Note 1. 

If bit 0 is zero and the trace bit in the LSR of the 
target LSB is a one, the Set Level Block instruction is 
executed and then trace interrupts are allowed. 

The target LSB is defined by either (1) the effective 
address, if the in-process bit is set to one in the LSR 
of the main storage LSB and the specified R field level is 
higher than or equal to the current level, or (2) the 
currently active LSB when condition 1 is not met. 

Level Status Block Format 

EA IAR 

EA+20 
(+14 hex) 

AKR 
LSR 
Register 0 
Register 1 
Register 2 
Register 3 
Register 4 
Register 5 
Register 6 
Register 7 

EA=effective address 

8-78 GA34-0021. 

Format of Register Specified by R in Instruction 

o 0 0 0 0 0 0 0 0 0 0 
o 1 

Programming Notes. 

Level 0 

Level 1 
Level 2 

Level 3 

1314 15 

o 0 
o 1 

1 0 

1 1 

1. The Set Level Block instruction with the IT bit equal 
to one should be used to return from the trace interrupt 
routine and from a class interrupt routine when the 
instruction causing the interrupt is to be reexecuted. 
This is necessary to prevent a double trace of the 
instruction. 

2. If the Set Level Block instruction sets the current 
level in-process bit to zero and the current level 
trace bit to one, no trace interrupt. occurs as the 
level is exited. 

3. The registers, AKR, and LSR for the current level are 
not changed if the specified R field level is other 
than the current level. 

4. If the AM field equals 01, the contents of the register 
specified by the RB field are incremented by 2. 

Indicators 

All indicators are unchanged if the specified level is 
other than the current level. 

Program Check Conditions 

Invalid Storage Address. Instruction word or level status 
block. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or level status block address). 

c 

o 



o 

Set Storage Key (SESK) 
Refer to Chapter 5 for a description of the storage 
protection mechanism: 

SESK reg,addr4 

Operation code 

o 1 011 
o 4 5 7 8 9 10 11 12 15 

This instruction loads a storage key register with the 
contents of the byte location in main storage specified by 
the effective address. (Effective Address Generation is 
explained in Chapter 2.) 

The register specified by the R field contains the main 
storage block number for the storage key register to be 
loaded. (A storage key register is associated with every 
2048 bytes of storage.) The block number is binary 
encoded in bits 0-4 of the register. Bits 5 -15 are not 
used and must be zero to avoid future code obsolescence. 

The format of the register specified by the R field is: 

I Block I I 
.0000 000 0 0 0 0 
o 4 5 15 
~ 

Values 
0-31 

The format of the byte at the storage location is: 

10 0 0 o I Key 

03467 

~ Values 0-7 --.J 
1 = read only 

SESK 

Bits 4-7 are the storage key and read-only bit for 
the selected storage block. Bits 0-3 are not used and 
must be zero to avoid future code obsolescence. 

The contents of the storage location are unchanged. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address). 

Instructions 8-79 



SESR 

Set Segmentation Register (SESR) 
This instruction is invalid if the Storage Address 
Relocation Translator Feature is not installed. Chapter 
6 describes the relocation translator feature and relocation 
addressing. 

Refer to Storage Mapping in Chapter 6 for an example 
of loading segmentation registers. 

SESR reg,addr4 

Operation code 

o 1 011 
o 4 5 789101112 15 

This instruction loads a segmentation register with 
the contents of the double word location in main storage 
specified by the effective address. (Effective Address 
Generation is explained in Chapter 2.) 

The general register specified by the R field must 
contain, in bits 0-7, the number of the segmentation 
register to be loaded (0-255). This number is composed 
of: 

• Three bits that correspond to an address-key value 
(0-7). These bits select a particular stack of 
segmentation registers. 

• Five bits that correspond to the five high-order bits 
of a logical storage address. These bits provide a 
number (0-31) that selects a segmentation register 
within a stack. 

Note that relocation addressing selects the identical 
segmentation register when the same logical storage address 
and address key combination are used by the program. 

Bits 8-15 of the R field register are not used and 
must be set to zero to avoid future code obsolescence. 

The format of the register specified by the R field 
is: 

Logical 
address bits o 0 0 000 0 0 
o 4 5 7 8 
~ '-v-" 

Register Stack 
0-31 0-7 

8-80 GA34-0021 

15 

The format of the doubleword to be loaded into the 
segmentation register is: 

I Segment address 

o 12131415 

1=valid~1 
1 read onlv 

(must be zero) 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 
16 31 

Bits 0 through 12 contain the high-order 13 bits of 
the physical address used by the translator to select a 2K 
block of storage. 

Bit 13, if a one, signifies that the contents of the 
segmentation register are valid, and translation can be 
performed. If an attempt is made to use a segmentation 
register with bit 13 set to zero, a program check interrupt 
occurs, with invalid storage address set in the PSW. 

Bit 14, if a one, Signifies that the block is read 
only. If an attempt is made to write into the block when 
bit 14 of the associated segmentation register is a one 
and while in problem state, a program check interrupt 
occurs, with protect check set in the PSW. When in 
supervisor state or on a cycle steal access, bit 14 is 
ignored. The contents of main storage are not changed . 

Bits 15 through 31 are not used and must be set to zero 
to avoid future code obsolescence. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Function. Translator not installed. 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

c 

o 

o 



o 

o 

Scan Byte Field Equal and Decrement (SFED) 

Scan Byte Field Equal and Increment (SFEN) 
SFED reg,(reg) 
SFEN reg,(reg) 

I Operation code I R1 
o 0 1 0 1 
o 4 5 

R2 

7 8 101112131415 

1 for SFED or SFEN =J 
o for SFED; decrement} 

contents of R2. 
1 for SFEN; increment 

contents of R2. 

This instruction compares a field in main storage against 
a single byte contained in a register. This comparison is 
made one byte at a time. Register 7 contains the number 
of bytes to be compared. This number is decremented 
after each byte is compared. 

The register specified by R 1 contains, in bits 8-15, 
the single byte of operand 1. The register specified by 
R2 contains the starting address of operand 2. Operand 1 
is subtracted from operand 2, but neither operand is 
changed. 

After each byte is compared, the address in R2 is 
incremented or decremented (determined by bit 13 of the 
instruction). The operation terminates when either: 

1. An equal condition is detected, or 
2. The number of bytes specified in register 7 has been 

compared. 

When an equality occurs, the address in the register 
specified by R2 points to the next operand to be compared, 
but the count in R7 is not updated. 

Bit 11 of the instruction is not used and must be set 
to zero to avoid future code obsolescence. 

See Compare Byte Field Equal and Decrement (CFED) 
and Compare Byte Field Equal and Increment (CFEN) for 
other versions of this machine instruction. 

Notes. 

SFED 
SFEN 

1. Variable field length instructions can be interrupted. 
When this occurs and the interrupted level resumes 
operation, the processor treats the uncompleted 
instruction as a new instruction with the remaining 
byte count specified in register 7. 

2. If the specified count in R7 is zero, the instruction 
performs no operation (no-op). 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the byte. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one byte; i.e., if the aifference is less 
than _27 or greater than +27-1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Operand. The instruction is 
terminated. 

Protect Check. Instruction fetch. The instruction is 
terminated. 

Instructions 8-81 



SFNED 
SFNEN 
Scan Byte Field Not Equal and Decrement (SFNED) 

Scan Byte Field Not Equal and Increment (SFNEN) 
SFNED reg,( reg) 
SFNEN reg,(reg) 

I Operation code I R1 
.0 0 1 0 1 _ 

R2 

o 4 5 78 101112131415 

1 for SFNED or SFNEN =J 
o for SFNED; decrement} 

contents of R2. . 
1 for SFNEN; increment 

contents of R2. 

This instruction compares a field in main storage against 
a single byte contained in a register. This comparison is 
made one byte at a time. Register 7 contains the number 
of bytes to be compared. This number is decremented after 
each byte is compared. 
The register specified by Rl contains, in bits 8-15, the 
single byte of operand 1. The register specified by R2 
contains the starting address of operand 2. Operand 1 is 
subtracted from operand 2, but neither operand is changed. 
After each byte is compared, the address in R2 is 
incremented or decremented (determined by bit 13 of the 
instruction). The operation terminates when either: 

1. An unequal condition is detected, or 
2. The number of bytes specified in register 7 has been 

compared. 

When an inequality occurs, the address in the register 
specified by R2 points to the next operand to be com­
pared, but the count in R7 is not updated. 

Bit 11 of the instruction is not used and must be set to 
zero to avoid future code obsolescence. 

See Compare Byte Field Not Equal and Decrement 
(CFNED) and Compare Byte Field Not Equal and 
Increment (CFNEN) for other versions of this machine 
instruction. 

8-82 GA34-0021 

Notes. 
1. Variable field length instructions can be interrupted. 

When this occurs and the interrupted level resumes 
operation, the processor treats the uncompleted 
instruction as a new instruction with the remaining 
byte count specified in register 7. 

2. If the specified count in R7 is zero, the instruction 
performs no operation (no-op). 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the byte. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one byte; i.e., if the difference is less 
than _27 or greater than +27-1. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Operand. The instruction is 
terminated. 

Protect Check. Instruction fetch. The instruction is 
terminated. 

c 

o 



o 

c) 

0 

Shift Left Circular (SLC) 

Immediate Count Format 
SLC cnt16,reg 

Operation code 

o 0 1 1 0 
o 4 5 

Count 

7 8 

The bits in the register specified by the R field are shifted 
left by the number of bit positions specified in the count 
field. The bits shifted out of the high-order bit (bit 0) 
re-enter at the low-order bit (bit 15). A count of zero 
causes no shifting to take place. 
. Although the register to be shifted contains only 16 bits, 

shift count values of 0-31 may be specified. Shift counts 
greater than 16 lengthen the execution time and provide an 
effective shift of modulo 16. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final con­
tents of the register. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Example: 

Instruction 
Operation code 

00110 
Count 

o 0 100 
o 4 5 7 8 12 13 15 

--..-- -----
R3 Count = 4 

R3 before shift 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 
0 15 

~ '-..-' ~ ~ 

0 1 2 3 

R3 after shift 

0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 
0 15 

~ ~ '-...-' '-...-' 

1 2 3 0 

SLC 

Count in Register Format 
SLC reg,reg 

Operation code 

o 1 1 1 0 
o 7 8 

Function 

1 000 0 
10 11 15 

The bits in the register specified by the Rl field are shifted 
left by the number of bits speCified by the shift count. This 
count is obtained from bits 8 through 15 of the register 
specified by the R2 field. 

The contents of the register specified by the R2 field are 
unchanged unless the Rl and R2 fields specify the same 
register. In this case, the register contents are shifted as 
specified. 

Although the register to be shifted contains only 16 bits, 
shift count values of 0-255 may be specified. Shift counts 
greater than 16 lengthen the execution time and provide an 
effective shift of modulo 16. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register specified by the Rl field. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Example: 

Instruction 
Operation code 

01110 
Function 

1 000 0 
o 4 5 7 8 10 11 15 
~~ 

Count = 8 

R3 before shift 

000 0 000 1 001 000 1 
o 

o 2 3 

R3 after shift 

0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 
0 

2 3 0 1 

15 

15 

Instructions 8-83 



SLeD 

Shift Left Circular Double (SLeD) 

Immediate Count Format 
SLCD cnt31 ,reg 

Operation code 
00110 
o 4 5 7 8 

Count 

12 13 15 

The bits in the register pair specified by the R field and R+ 1 
are shifted left by the number of bit-positions specified in 
the count field. 

Within the register pair, the register specified by the R 
field contains the high-order word (bits 0-15); the register 
specified by R+ 1 contains the low-order word (bits 16-31). 
The bits shifted out of the high-order bit (bit 0) re-enter at 
the low-order bit (bit 31). 

If the count is zero, no shifting occurs. If the R field 
equals 7, registers 7 and 0 are used for the register pair. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the two registers. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Example: 

Instruction 
Operation code 
o 0 1 1 0 

Count 
o 1 0 0 

o 4 5 7 8 1213 15 
~------

R3 Count = 20 

Register pair before shift 
R3 R4 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 10 1 0 0 
0 

~ ~ ~ ~ ~ 

0 1 2 3 4 

Register pair after shift 
R3 R4 

0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 o 10 0 0 1 

0 

~ -..,-.- ~ ~ ~ 
5 6 7 0 1 

8-84 GA34-0021 

c 

0 1 0 1 0 1 1 0 0 1 1 1 
31 

~ ~ ~ 

5 6 7 

0 0 1 0 0 0 1 1 0 1 0 0 

31 

~ ~ ~ 

2 3 4 o 



CO, 

l 
I 

o 

Count in Register Format 
SLCD reg,reg 

Operation code 

01110 
o 4 5 7 8 

Function 

1 0 1 0 0 
10 11 15 

The bits in the register pair specified by the Rl field and 
Rf+l are shifted left by the number of bits _specified by the 
shift count. This count is obtained from bits 8 through 15 
of the register specified by the R2 field. 

Within the register pair, the register specified by the Rl 
field contains the high-order-word (bits 0-15); the register 
specified by Rl + 1 contains the low-order word (bits 16-31). 
The bits shifted out of the high-order bit (bit 0) re-enter at 
the low-order bit (bit 31). 

If the count is zero, no shifting occurs. If the Rl field 
equals 7, registers 7 and 0 are used for the register pair. 

Register pair before shift 
R7 

0 0 0 0 0 0 0 1 
0 
'-..,--' ~ 

0 1 

Register pair after shift 
R7 

0 1 0 1 0 1 1 0 
0 

~ ~ 

5 6 

0 0 1 0 

'-...--' 

2 

0 1 1 1 

~ 

7 

0 

SLeD 

The contents of the register specified by the R2 field 
are unchanged unless the Rl (or Rl+l) and R2 fields speci­
fy the same register. In this case, the register contents are 
shifted as specified. 

Although the registers to be shifted represent 32 bits, 
shift count values of 0-255 may be specified. Shift count 
values greater than 32 lengthen the execution time and 
provide an effective shift of modulo 32. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the two registers. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Example: 

Instruction 
Function Operation code 

o 1 1 1 0 1 0 100 
o 15 

~--.,.-' 

R7 R4 

R4 contains shift count 

10 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 I 
o 15 

Count = 20 

IRO 

0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 
31 

~ ~ ~ ~ ~ 

3 4 5 6 7 

RO 

I 
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 

31 

~ ~ ~ ~ ~ 

0 1 2 3 4 

Instructions 8-85 



SLL 

Shift Left Logical (SLL) 

Immediate Count Format 
SLL cnt16,reg 

Operation code 

00110 
o 4 5 

Count 

12 13 15 

The bits in the register specified by the R field are shifted 
left by the number of bit positions specified in the count 
field. The vacated low-order bit positions of the register 
are set to zerO". A count of zero causes no shifting to take 
place. 

Although the register to be shifted contains only 16 bits, 
shift count values of 0-31 may be specified. Shift counts 
greater than 17 lengthen the execution time of the shift 
instruction and provide an effective shift of 17. 

Indicators 

Carry. Set to reflect the last bit shifted out of bit O. If the 
count is zero, the carry indicator is reset. 

Overflow. First reset, then set to a one if the most signifi­
cant bit in the register (bit 0) has changed during the 
operation. 

Even, Carry, and Overflow. Changed to reflect the final 
contents of the register. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-86 GA34-Q021 

Count in Register Format 
SLL reg ,reg 

Operation code 

o 1 1 1 0 
o 15 

The bits in the register specified by the Rl field are shifted 
left by the number of bits specified by the shift count. 
This count is obtained from bits 8 through 15 of the 
register specified by the R2 field. The vacated low-brder 
bits of the register specified by the Rl field are set to zero. 

The contents of the register specified by the R2 field 
are unchanged unless the Rl and R2 fields specify the same 
register. In this case, the register contents are shifted as 
specified. 

Although the register shifted contains only 16 bits, shift 
count values of 0-255 may be specified. Shift counts 
greater than 17 lengthen the execution time of the shift 
instruction and provide an effective shift of 17. 

Indicators 

Carry. Set to reflect the last bit shifted out of bit O. If the 
count is zero, the carry indicator is reset. 

Overflow. First reset, then set to a one if the most signifi­
cant bit in the register (bit 0) has changed during the 
operation. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register specified by the Rl field. 

Program Check Conditions 

Protect Check. Instruction fetch. 

c 

/"'~\ 
\'-0 ... 1 

o 



o 

O;~ 
"1'1 

Shift Left Logical Double (SLLD) 

Immediate Count Format 
SLLD cnt31 ,reg 

Operation code 

o 0 1 1 0 
045 

Count 

The bits in the register pair specified by the R field and 
R+l are shifted left by the number of bit positions specified 
in the count field. The vacated low-order bits of the 
register pair are set to zero. 

Within the register pair, the register specified by the R 
field contains the high-order word (bits 0-15); the register 
specified by R+l contains the low-order word (bits 16-31). 

If the shift count is zero, no shifting occurs. If the R 
field equals 7, registers 7 and 0 are used for the register pair. 

Indicators 

Carry. Set to reflect the last bit shifted out of bit o. 
Overflow. First reset, then set to a one if the most signifi­
cant bit in the register pair (bit 0) has changed during the 
operation. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the two registers. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Count in Register Format 
SLLD reg,reg 

Operation code 

o 1 1 1 0 
o 4 5 7 8 

Function 

101 0 
15 

SLLD 

The bits in the register pair specified by the Rl field and 
Rl + 1 are shifted left by the number of bit positions speci­
fied by the shift count. This count is obtained from bits 8 
through 15 of the register specified by the R2 field. The 
vacated low-order bit positions of the register pair are set 
to zero. 

Within the register pair, the regist~r specified by the Rl 
field contains the high-order word (bits 0-15); the register 
specified by Rl + 1 contains the low-order word (bits 16-31). 

If the shift count is zero, no shifting occurs. If the Rl 
field equals 7, registers 7 and 0 are used for the register pair. 

The contents of the register specified by the R2 field are 
unchanged unless the Rl (or Rl+1) and R2 fields specify 
the same register. In this case, the register contents are 
shifted as specified. 

Although the registers to be shifted represent 32 bits, 
shift count values of 0-255 may be specified. Shift counts 
greater than 33 lengthen the execution time of the shift 
instruction and provide an effective shift of 33. 

Indicators 

Carry. Set to reflect the last bit shifted out of bit O. 

Overflow. First reset, then set to a one if the most signifi­
cant bit in the register pair (bit 0) has changed during the 
operation. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the two registers. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Instructions 8-87 



SLT 
SLTD 
Shift Left and Test (SLT) 
SLT reg,reg 

Operation code 
o 1 110 
o 4 5 7 8 

Function 
1 100 

1011 15 

The bits in the register specified by the Rl field are shifted 
left. The vacated low-order bit positions of the register are 
set to zero. 

Shifting continues until either one of the following occurs: 

1. The number of bits specified by the shift count have 
been shifted. This count is obtained from bits 8 through 
15 of the register specified by the R2 field. No shifting 
occurs if the shift count is zero. 

2. A one-bit is shifted from the high-order bit (bit 0) to 
the carry indicator. In this case, the remaining shift 
count is loaded into bits 8 through 15 of the register 
specified by the R2 field. 

Bits 0 through 7 of the register specified by the R2 field 
are unchanged; these bits must be set to zero to avoid future 
code obsolescence. 

If the Rl and R2 fields specify the same register, the bits 
in the register are shifted as specified and, when shifting is 
complete, the remaining shift count replaces the shifted 
result. 

Although the register to be shifted contains only 16 bits, 
shift count values of 0-255 may be specified. 

Indicators 

Carry. Set to reflect the last bit shifted out of bit 0 of the 
Rl register. If the count is zero, the carry indicator is reset. 

Overflow. First reset, then set to a one if the most signifi­
cant bit (bit 0) in the register specified by the Rl field has 
changed during the operation. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register specified by the R2 field. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-88 GA34-0021 

Shift Left and Test Double (SLTD) 
SLTD reg,reg 

Function Operation code 
o 1 1 1 0 1 1 101 
o 4 5 15 

The bits in the register pair specified by the Rl field and 
Rl + 1 are shifted left. The vacated low-order bit positions 
of the register pair are set to zero. 

Shifting continues until either one of the following occurs: 

1. The number of bits specified by the shift count have 
been shifted. This count is obtained from bits 8 
through 15 of the register specified by the R2 field. 
No shifting occUrs if the shift count is zero. 

2. A one-bit is shifted from the high-order bit to the carry 
indicator. In this case, the remaining shift count is 
loaded into bits 8 through 15 of the register specified 
by the R2 field. 

Bits 0 through 7 of the register specified by the R2 field 
are unchanged; these bits must be set to zero to avoid future 
code obsolescence. 

Within the register pair, the register specified by the Rl 
field contains the high-order word (bits 0-15); the register 
specified by Rl + 1 contains the low-order word (bits 16-
31). If the Rl field equals 7, registers 7 and 0 are used for 
the register pair. 

If the Rl (or Rl + 1) and R2 fields specify the same regis­
ter, the bits in the register are shifted as specified and, when 
shifting is complete, the remaining shift count replaces the 
shifted result. 

Although the registers to be shifted contain only 32 bits, 
shift count values of 0-255 may be specified. 

Indicators 

Carry. Set to reflect the last bit shifted out of bit 0 of the 
Rl register. If the count is zero, the carry indicator is reset. 

Overflow. First reset, then set to a one if the most signifi­
cant bit (bit 0) in the register specified by the Rl field has 
changed during the operation. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register specified by the R2 field. 

Program Check Conditions 

Protect Check. Instruction fetch. 

(
~ 

1'" 

"'~ 

o 

() 



D 

o 

Shift Right Arithmetic (SRA) 

Immediate Count Format 
SRA cntl6,reg 

Operation code 

00110 
o 

Count 

7 8 

The bits in the register specified by the R field are shifted 
right by the number of bit positions specified in the count 
field. The value of the sign (the high-order bit) is entered 
into the vacated high-order bit positions of the register 
specified by the R field. If the shift count is zero, no shift­
ing takes place. 

Although the register to be shifted contains only 16 bits, 
shift count values of 0-31 may be specified. Shift counts 
greater than 16 lengthen the execution time of the shift 
instruction and provide an effective shift of 16. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Count in Register Format 
SRA reg,reg 

Operation code 

o 1 1 1 0 
o 

SRA 

Function 

100 1 
15 

The bits in the register specified by the Rl field are shifted 
right by the number of bit positions specified by the shift 
count. This count is obtained from bits 8 through 15 of the 
register specified by the R2 field. The value of the sign 
(the high-order bit) is entered into the vacated high-order 
bit positions of the register specified by the Rl field. If 
the shift count is zero, no shifting takes place. 

The contents of the register specified by the R2 field are 
unchanged unless the Rl and R2 fields specify the same 
register. In this case, the register contents are shifted as 
specified. 

Although the register to be shifted is 16 bits, shift count 
values of 0-255 may be specified. Shift counts greater than 
16 lengthen the execution time of the shift instruction and 
provide an effective shift of 16. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register specified by the Rl field. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Instructions 8-89 



SRAD 

Shift Right Arithmetic Double (SRAD) 

Immediate Count Format 
SRAD cnt31 ,reg 

Operation code 
o 0 1 1 0 
o 

Count 

12 13 15 

The bits in the register pair specified by the R field and R+ 1 
are shifted right by the number of bit positions specified in 
the count field. The value of the sign (the high-order bit) is 
entered into the vacated high-order bit positions of the 
register pair. 

Within the register pair, the register specified by the R 
field contains the high-order word (bits 0-15); the register 
specified by R+l contains the low-order word (bits 16-31). 

If the shift count is zero, no shifting occurs. If the R 
field equals 7, registers 7 and 0 are used for the register pair. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register pair. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-90 GA34-0021 

Count in Register Format 
SRAD reg,reg 

Operation code 
o 1 110 
o 4 5 

Function 
10111 

15 

The bits in the register pair specified by the Rl field and 
Rl + 1 are shifted right by the number of bit positions speci­
fied by the shift count. This count is obtained from bits 8 
through 15 of the register specified by the R2 field. The 
value of the sign (the high-order bit) is entered into the 
vacated high-order bit positions of the register pair. 

Within the register pair, the register specified by the Rl 
field contains the high-order word (bits 0-15); the register 
specified by Rl+1 contains the low-order word (bits 16-31). 

If the shift count is zero, no shifting occurs. If the R 
field equals 7, registers 7 and 0 are used for the register pair. 

The contents of the register specified by the R2 field are 
unchanged unless the Rl (or Rl + 1) and R2 fields specify 
the same register. In this case, the register contents are 
shifted as specified. 

Although the registers to be shifted represent 32 bits, 
shift count values of 0-255 may be specified. Shift counts 
greater than 32 lengthen the execution time of the shift 
instruction and provide an effective shift of 32. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register pair. 

Program Check Conditions 

Protect Check. Instruction fetch. 

c 

o 



o 

o 

Shift Right Logical (SRL) 

Immediate Count Format 
SRL cnt16,reg 

Operation code 

00110 
o 

Count 

7 8 

The bits in the register specified by the R field are shifted 
right by the number of bit positions specified in the count 
field. The vacated high-order bit positions of the register 
are set to zero. A count of zero causes no shifting to take 
place. 

. Although the register to be shifted contains only 16 bits, 
shift count values of 0-31 may be specified. Shift counts 
greater than 16 lengthen the execution time of the shift 
instruction and provide an effective shift of 16. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Count in Register Format 
SRL reg,reg 

Operation code 

o 1 110 
o 

Function 
10010 

15 

SRL 

The bits in the register specified by the Rl field are shifted -
right by the number of bit positions specified by the shift 
count. This count is obtained from bits 8 through 15 of 
the register specified by the R2 field. The vacated high­
order bit positions of the register specified by the Rl field 
are set to zero. A count of zero causes no shifting to take 
place . 

The contents of the register specified by the R2 field are 
unchanged unless the Rl and R2 fields.specify the same 
register. In this case, the register contents are shifted as 
specified. 

Although the register to be shifted contains only 16 bits, 
shift count values of 0-255 may be specified. Shift counts 
greater than 16 lengthen the execution time of the shift 
instruction and provide an effective shift of 16. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register specified by the Rl field. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Instructions 8-91 



SRLD 

Shift Right Logical Double (SRLD) 

Immediate Count Format 
SRLD cnt31 ,reg 

Operation code 

00110 
'0 

Count 

12 13 15 

The bits in the register pair specified by the R field and R+l 
are shifted right by the number of bit positions specified in 
the count field. The vacated high-order bits of the register 
pair are set to zero. 

Within the register pair, the register specified by the R 
field contains the high-order word (bits 0-15); the register 
specified by R+ 1 contains the low-order word (bit 16-31). 

If the shift count is zero, no shifting occurs. If the R 
field equals 7, registers 7 and 0 are used for the register pair. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register. 

Program Check Conditions 

Protect Check. Instruction fetch. 

-8-92 GA34-0021 

Count in Register Format 
SRLD reg,reg 

Operation code 
o 1 1 1 0 

o 4 5 7 8 

Function 
1 0 1 1 0 

15 

The bits in the register pair specified by the Rl field and 
Rl + 1 are shifted right by the number of bit positions speci­
fied by the shift count. This count is obtained from bits 8 
through 15 of the register specified by the R2 field. The 
vacated high-order bits of the register pair are set to zero. 

Within the register pair, the register specified by the R1 
field contains the high-order word (bits 0-15); the register 
specified by Rl + 1 contains the low-order word (bits 16-31). 

If the shift count is zero, no shifting occurs. If the Rl 
field equals 7, registers 7 and 0 are used for the register 
pair. 

The contents of the register specified by the R2 field are 
unchanged unless the R1 (or Rl + 1) and R2 fields specify 
the same register. In this case, the register contents are 
shifted as specified. 

Although the registers to be shifted represent 32 bits, 
shift count values of 0-255 may be specified. Shift counts 
greater than 32 lengthen the execution time-of the shift 
instruction and provide an effective shift of 32. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the final 
contents of the register pair. 

Program Check Conditions 

Protect Check. Instruction fetch. 

o 



o 

o 

Store Multiple (STM) 
Refer to Stack Operations in Chapter 2 for additional 
information about the operation of this instruction. The 
STM instruction is used in conjunction with the Load 
Multiple and Branch (LMB) instruction described previously 
in this chapter. 

STM reg,addr4 [,abcnt] 

Format without appended word for effective 
addressing (AM = 00 or 01) 
Operation code 

o 1 0 0 0 
o 4 5 

16 1819 

789101112 

N 

Format with appended word for effective 
addressing (AM = 10 or 11) 
Operation code RB 

o 1 0 0 0 
o 4 5 789101112 

A ddress/ Displacement 

15 

31 

15 

--------- --------
Displacement 1 Displacement 2 

16 2324 31 

N 

32 3435 47 

The STM instruction stores the contents of a specified 
number of registers for the current level into a stack. This 
stack is defined by the stack control block pointed to by 
the effective address. (Effective Address Generation is 
explained in Chapter 2.) 

The RL field specifies the last register to be stored. 
Register 7 is stored first, then registers 0 through the register 
specified by RL. If RL specifies register 7, only register 7 
is stored. 

The N field specifies the number of words to be allocated 
in the stack as a dynamic work area. A value of zero is valid. 

The new top element address of the stack (incremented 
by two) is loaded into the last register stored; that is, the 
register specified by RL. This address points to the low 
storage end of the dynamic work area (or the last register 
stored if N=O). 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

STM 

Programming Note. If the AM field equals 01, the contents 
of the register specified by the RB field are incremented 
by 2. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or stack control 
block. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For operand store (read-only violation), the 
instruction is terminated. A partial data transfer occurs if 
the area of the stack being accessed crosses a protection 
boundary. 

Specification Check. Even byte boundary violation 
(indirect address, stack control block, or stack element). 

Soft Exception Trap Condition 

Stack Exception. 

1. Stack is full. 
2. Stack cannot contain the number of words to be stored; 

that is: 
a. Number of words specified by the N field, plus 
b. The number of registers to be moved, plus 
c. One control word. 

If the AM field equals 01, the contents of the register 
specified by the RB field are incremented. 

Instructions 8-93 



STOP 
SVC 
Stop (STOP) 
STOP [ubyte ] 

Operation code 

o 1 100 
o 

Parameter 

15 

The parameter field is ignored by the hardware, and may be 
used for software flags or indicators. 

This instruction is executed only when the Programmer 
Console is installed and the Mode switch is in the Diagnostic 
position. Otherwise this instruction performs no operation 
(no-op). The processor enters the stop state following exe­
cution of this instruction. The indicators are unchanged. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-94 GA34-0021 

Supervisor Call (SVC) 
Execution of this instruction causes a class interrupt. 
Additional information appears in Chapter 3. 

SVC ubyte 

15 

The instruction address register is incremented by two: the 
current level status block (LSB) is stored, using an address 
key of zero, starting at the main storage location specified 
by the contents of the SVC LSB pointer that resides in 
main storage location 0010 hexadecimal. The instruction 
also causes the following events: 

• The summary mask (LSR bit 11) is disabled. 
• Supervisor state (LSR bit 8) is turned on. 
• Trace (LSR bit 10) is turned off. 
• Equate operand spaces (AKR bit 0) is turned off. 
• Operand 2 key contents are loaded into the operand 1 

key. 
• Then the operand 2 key and the instruction space key 

are set to zero. 

The parameter field (bits 8-15) is under control of the 
Programming System. This field is loaded into the low­
order byte of register 1. The high-order byte of register 1 
is set to zero. 

Subsequently, the contents of main storage location 
0012 hexadecimal (SVC start instruction address) are loaded 
into the instruction address register, becoming the address of 
the next instruction to be fetched. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Specification Check. LSB pointer or SIA pointer. The 
instruction is terminated. 

(: 

o 



() 

0 ',,\ 'I,' 

Subtract Word (SW) 

Register/Register Format 
SW reg,reg 

Operation code 

o 1 1 1 0 
o 4 5 7 8 

Function 

01010 
15 

The contents of the register specified by the Rl field are 
subtracted from the contents of the register specified by 
the R2 field. The result is placed in the register specified by 
the R2 field. The contents of the register specified by the 
Rl field remain unchanged unless Rl and R2 specify the 
same register. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the register. If no borrow is 
detected, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less than 
_215 or greater than +2 15 _1. 

If an overflow occurs, the result contains the correct low­
order 16 bits of the difference; the carry indicator contains 
the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

Register/Storage Format 
SW reg,addr4 

addr4,reg 

Operation code 

1 1 0 0 1 
o 4 5 7 8 9 10 11 12 13 

1 = result to storage } ~ 
o = result to register 

----------------, .- ____ ,.3ddress/Displac'!.!!!:e:!!.. ____ ., t Displacement 1 I Displacement 2 ....J 
16- - - - - - 2324 - - - - - - 31 

sw 

A subtract operation is performed between the register 
specified by the R field and the location specified by the 
effective address in main storage. (See Effective Address 
Generation in Chapter 2.) Bit 12 of the instruction speci­
fies the destination of the result. The source operand is 
unchanged. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the word. If no borrow is detec­
ted, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the "difference is less than 
_2 15 or greater than +2 15 _1. 

If an overflow occurs, the result contains the correct low­
order 16 bits of the difference; the carry indicator contains 
the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-95 



sw 

Storage to Register Long Format 
SW longaddr ,reg 

Operation code 

o 1 101 
o 

16 

4 5 

0= direct address } ~ 
1 = indirect address 

Address 

31 

The contents of the main storage word location specified by 
an effective address are subtracted from the contents of the 
register specified by the Rl field. The result is placed in the 
register specified by the Rl field. 

The effective main storage address is generated as follows: 

1. The address field is added to the contents of the register 
specified by the R2 field. If the R2 field equals zero, 
no register contributes to the address generation. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit 11=0 (direct address). The result from step 1 is the 
effective address. 
Bit 11=1 (indirect address). The result from step 1 is 
the address of the main storage location that contains 
the effective address. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the word. If no borrow is detec­
ted, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less than 
_2 15 or greater than +2 15 _1. 

If an overflow occurs, the result contains the correct low­
order 16 bits of the difference; the carry indicator contains 
the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

8-96 GA34-0021 

Storage/Storage Format 
SW addrS ,addr4 

Operation code 

10101 
o 

r-----AM~~~~~m----'__I 
r----------------L Displacement 1 I Displacement 2 I 
16--- - - - -2324---- - - 31 

The address arguments generate the effective addresses of 
two operands in main storage. (See Effective Address 
Generation in Chapter 2.) Word operand 1 is subtracted 
from word operand 2. The result replaces operand 2. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the word. If no borrow is detec­
ted, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less than 
_2 15 or greater than +215 _1. 

If an overflow occurs, the result contains the correct low­
order 16 bits of the difference; the carry indicator contains 
the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. The 
instruction is terminated. If AMI equals 01 and the oper­
and 2 effective address is invalid, RB I is incremented. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For instruction fetch or operand access, the 
instruction is terminated. If AMI equals 01 and the oper­
and 2 effective address is invalid, RB 1 is incremented. 

For operand store (read-only violation), the instruction 
is terminated. Main storage is not changed but the indi­
cators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

o 



0) 
" 

o 

Subtract Word With Carry (SWCY) 
SWCY reg,reg 

Operation code 

01110 
o 

Function 

o 1 0 1 1 

If the carry indicator is on at entry (denoting a borrow), a 
positive one is subtracted from the contents of the register 
specified by the R2 field. Then the contents of R1 are sub­
tracted from the intermediate result. If the carry indicator 
is off at entry, the contents of R1 are subtracted from the 
contents of the register specified by R2. The contents of 
the register specified by the R1 field are unchanged unless 
R1 and R2 specify the same register. The final result 
replaces the contents of the register specified by the R2 
field. 

Programming Note . . This instruction can be used when sub­
tracting multiple word operands. See Indicators - Multiple 
Word Operands in Chapter 2. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order position of the word. If no borrow is detected, 
the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less than 
_2 15 or greater than +2 15 _1. 

If an overflow occurs, the result contains the correct low­
order 16 bits of the difference; the carry indicator contains 
the complement of the high-order (sign) bit. 

Even. Unchanged. 

Zero. If on at entry, set to reflect the result. If off at entry, 
remains off. 

Negative. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

SWCy 

Instructions 8-97 



swi' 

Subtract Word Immediate (SWI) 

Register Immediate Long Format 
SWI word,reg [,reg] 

Function Operation code 

01111 o 0 0 1 0 
o 4 1011 15 

Immediate 

16 31 

The immediate field is subtracted from the contents of the 
register specified by the R1 field. The result is placed in the 
register specified by the R2 field. The contents of the 
register specified by the R1 field are unchanged unless R1 
and R2 specify the same register. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high-order bit position of the word. If no borrow is detec­
ted, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less than 
_2 15 or greater than +2 15 _l. 

If an overflow occurs, the result contains the correct low­
order 16 bits of the difference; the carry indicator contains 
the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word. 

Protect Check. Instruction fetch. 

Storage Immediate Format 
SWI word,addr4 

Format without appended word for effective 
addressing (AM = 00 or 01) 
Operation code 

o 1 0 0 0 
o 4 5 

16 

7 8 9 1011 12 

Immediate 

Format with appended ,word for effective 
addressing (AM = 10 or 11) 
Operation code 

o 1 0 0 0 
o 4 5 789101112 

Address/Displacement 

15 

] 
31 

15 

- -Disphcemellt 1 - - DisPhtcement"l -

16 2324 31 

Immediate 

3.2 47 

The immediate field is subtracted from the contents of the 
main storage location specified by the effective address. 
(See Effective Address Generation in Chapter 2.) The result 
replaces the contents of the storage location specified by 
the effective address. 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 

The immediate operand is unchanged. 

Indicators 

Carry. Turned on by the detection of a borrow beyond the 
high70rder.bit position of the word. If no borrow is detec­
ted, the carry indicator is reset. 

Overflow. Cleared, then turned on if the difference cannot 
be represented in one word; i.e., if the difference is less than 
_2 15 or greater than +2 15 _1. 

If an overflow occurs, the result contains the correct low­
order 16 bits of the difference; the carry indicator con tains 
the complement of the high-order (sign) bit. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or 
operand store. For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

~"" 
~nl', __ .J) 

( "" ,) 



D 

o 

Test Bit (TBT) 
TBT (reg,bitdisp) 

Operation code 

o 1 001 
o 4 5 

Bit displacement 

7 8 9 10 15 

The bit displacement is added to the byte address contained 
in the register specified by the R field to form an effective 
bit address. The bit displacement field is an unsigned six­
bit binary integer. The bit at the effective bit address is 
tested, and the zero and negative indicators are set to reflect 
the result. 

Indicators 

Zero and Negative. First reset, then set as follows: 

Value of 
tested bit 

o 
1 

Indicators 
Zero Negative 

1 
o 

o 
1 

Even, Carry, and Overflow. Unchanged. 

Program Check Conditions 

Invalid Storage Address. Operand. 

Protect Check. Instruction fetch or operand access. 

Test Bit and Reset (TBTR) 
TBTR (reg,bitdisp) 

TBT 
TBTR 

Operation code 

o 1 001 
Bit displacement 

o 7 8 9 10 15 

The bit displacement is added to the byte address contained 
in the register specified by the R field to form an effective 
bit address. The bit displacement field is an unsigned six­
bit integer. 

The bit at the effective address is tested, and the zero and 
negative indicators are set to reflect the result. 

FollOWing the preceding test, the addressed bit is 
unconditionally set to zero. 

Indicators 

Zero and Negative. First reset, then set as follows: 

Value of 
tested bit 

o 

Indicators 
Zero Negative 

1 
o 

o 

Even, Carry, and Overflow. Unchanged. 

Program Check Conditions 

Invalid Storage Address. Operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For operandstore (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

Instructions 8-99 



TBTS 
TBTV 
Test Bit and Set (TBTS) 
TBTS (reg,bitdisp) 

Operation code 

o 1 001 
Bit displacement 

o 4 5 7 8 9 10 15 

The bit displacement is added to the byte address contained 
in the register specified by the R field to form an effective 
bit address. The bit displacement field is an unsigned six­
bit binary integer. 

The bit at the effective address is tested, and the zero 
and negative indicators are set to reflect the result. 

Following the preceding test, the addressed bit is 
unconditionally set to one. 

Indicators 

Zero and Negative. First reset, then set as follows: 

Value of 
tested bit 

o 

Indicators 
Zero Negative 

o 
o 

Even, Carry, andOverflow. Unchanged. 

Program Check Conditions 

Invalid Storage Address. Operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

8-100 GA34-0021 

Test Bit and Invert (TBTV) 
TBTV (reg,bitdisp) 

Operation code 

o 1 001 

Bit displacement 

o 10 15 

The bit displacement is added to the byte address contained 
in the register specified by the R field to form an effective 
bit address. The bit displacement field is an unsigned six­
bit binary integer. 

The bit at the effective address is tested, and the zero and 
negative indicators are set to reflect the result. 

Following the preceding test, the addressed bit is 
unconditionally inverted. 

Indicators 

Zero and Negative. First reset, then set as follows: 

Value of 
tested bit 

o 

Indicators 
Zero Negative 

1 
o 

o 

Even, Carry, and Overflow. Unchanged. 

Program Check Conditions 

Invalid Storage Address. Operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

o 



o 

o 

Test Word Immediate (TWI) 

Register Immediate Long Format 
TWI word,reg 

Operation code 

o 1 1 1 1 
Function 

00111 

o 4 5 7 8 1011 15 

Mask 

16 31 

The contents of the register specified by the Rl field are 
tested against the mask contained in the immediate word of 
the instruction. The contents of the register specified by 
the RI field are not changed. 

Mask bits set to one select the bits to be tested in the 
register. 

Example: 

Mask 000000000101 1100 
Register 0000 0000 0011 0101 
Selected bits 0 1 01 

The selected bits are tested for the following: (1) all bits 
zero, (2) all bits ones, or (3) a combination of one and zero 
bits (mixed). The zero and negative indicators are set to 
reflect the result as shown under Indicators. 

Instruction bits 8 through 10 are not used and must be 
set to zero to avoid future code obsolescence. 

Indicators 

Zero and Negative. Reset, then set as follows: 

Indicators 
Selected bits Zero Negative 

All zeros* 1 0 
All ones 0 1 
Mixed 0 o (positive) 

* Also applies when the mask bits are all zeros. 

Even, Carry, and Overflow. Unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch. 

Storage Immediate Format 
TWI word,addr4 

Format without appended word for effective 
addressing (AM = 00 or 01) 
Operation code 

o 1 0 0 0 
o 4 5 7 8 9 10 11 12 

Mask 

16 

Format with appended word for effective 
addressing (AM = 10 or 11) 
Operation code RB 

o 1 0 0 0 
o 

A ddress/ Displacement 

15 

31 

- DisPlac~;;;t 1 - - Dt;p~e~nt2 -
16 2324 31 

Mask 

32 47 

TWI 

The contents of the storage location specified by the effec­
tive address are tested against the mask in the immediate 
word of the instruction. (Effective Address Generation is 
explained in Chapter 2.) Both operands remain unchanged. 

Mask bits set to one select the bits to be tested in the 
storage operand. 

Example: 

Mask 0000 0000 0000 1110 
Storage operand 000000000101 1110 
Selected bits 111 

The selected bits are tested for the following: (1) all 
bits zeros, (2) all bits ones, or (3) a combination of one 
and zero bits (mixed). The zero and negative indicators 
are set to reflect the result as shown under Indicators. 

Bits 5-7 of the instruction are not used and must be set 
to zero to avoid future code obsolescence. 
Indicators 

Zero and Negative. Reset, then set as follows: 

Selected bits 

All zeros* 
All ones 
Mixed 

Indicators 
Zero Negative 

1 0 
o 
o 0 (positive) 

* Also applies when the mask bits are all zeros. 

Even, Carry, and Overflow. Unchanged. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Instructions 8-101 



VR 
XB 
Invert Register (VR) 
VR reg [,reg] 

Operation code 

o 1 1 1 0 
o 

Function 
o 1 101 

15 

The contents of the register specified by the R 1 field are 
one's complemented. The result is placed in the register 
specified by the R2 field. The contents of the register speci­
fied by the Rl field are unchanged. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-102 GA34-0021 

Exclusive OR Byte (XB) 
XB reg,addr4 

addr4,reg 

Operation code 
1 1 0 0 0 
o 

1 = result to storage} 
o = result to register ------' 

r - - - - Add~s/ DisPlac~;;;t - - - -, 
t--- - -----------1 
L _ ..Eisplac~e!E. 1_ [ _ Displace~n~ _ i 
16 23 24 31 

A logical exclusive OR operation is performed between the 
least significant byte of the register specified by the R field 
and the main storage location specified by the effective 
address. (Effective Address Generation is explained in 
Chapter 2.) Bit 12 of the instruction specifies the destina­
tion of the result. The source operand is unchanged. Also, 
when going from storage to register, bits 0-7 of the register 
are unchanged. 

Example of Exclusive OR Byte: 

Register contents 00001010 11000011 
Storage operand 01100101 
Result 1010 0110 

Rule: Either but not both bits. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result of 
the exclusive OR operation. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

Specification Check. Even byte boundary violation 
(indirect address). 

(~ 

o 



o 

() 

o 

Exclusive OR Doubleword (XD) 
XD reg,addr4 

addr4,reg 

Operation code 

1 1 0 1 0 
o 

A logical exclusive OR operation is performed between the 
contents of the register pair specified by the R field (R and 
R+ 1) and the doubleword in main storage specified by the 
effective address. (Effective Address Generation is explained 
in Chapter 2.) Bit 120f the instruction specifies the destina­
tion of the result. The source operand is unchanged. 

If the R field equals 7, registers 7 and 0 are used as the 
register pair. 

Example of Exclusive OR Doubleword: 

Register pair contents 00000000 1010 11000000 0000 1110 1111 
Storage operand 00000000 1101 0011 0000 0000 1101 0000 
Result 0000 0000 0111 1111 0000 0000 0011 1111 

Rule: Either but not both bits. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result of 
the exclusive OR operation. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. For operand store (read-only violation), the 
instruction is terminated. If the doubleword location speci­
fied by the effective address crosses a read-only protection 
boundary, partial data may be stored into the non read-only 
protected area. The status of the even, negative, and zero 
indicators is unpredictable. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

XD 

Instructions 8-103 



XVi. 

Exclusive OR Word (XW) 

Register/ Register Format 
XW reg,reg 

Operation code 
o 1 110 
o 

Function 

000 1 
15 

The contents of the register specified by the Rl field are 
exclusive ORed bit by bit with the contents of the register 
specified by the R2 field. The result is placed in the register 
specified by the R2 field. The contents of the register speci­
fied by Rl are unchanged unless Rl and R2 specify the 
same register. 

Example of Exclusive OR Word: 

Register contents (Rl) 1111 0000 1010 0000 
Register contents (R2) 0011 1111 0111 1111 
Result 11 00 1111 11 01 1111 

Rule: Either but not both bits. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result of 
the exclusive OR operation. 

Program Check Conditions 

Protect Check. Instruction fetch. 

8-104 GA34-D021: 

Register/Storage Format 
XW reg,addr4 

addr4,reg 

Operation code 
1 100 1 
o 4 5 78910111213 15 

1 = result to storage} 
o = result to register ___ ---J 

A logical exc?usive OR operation is performed between the 
contents of the register specified by the R field and the 
main storage location specified by the effective address. 
(Effective Address Generation is explained in Chapter 2.) 
Bit 12 of the instruction specifies the destination of the 
result. The source operand is unchanged. 

Example of Exclusive OR Word: 

Register contents (R) 1111 0000 10 10 0000 
Storage operand 0011 1111 0111 1111 
Result 11 00 1111 11 01 1111 

Rule: Either but not both bits. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result of 
the exclusive OR operation. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. "For operand store (read-only violation), the 
instruction is terminated. Main storage is not changed but 
the indicators are set as described. 

SpeCification Check. Even byte boundary violation 
(indirect address or operand address). 

c 



o 

Storage to Register Long Format 
XW longaddr ,reg 

Operation code 

o 1 101 
o 

16 

0= direct address } ~ 
1 = indirect address 

Address 

31 

A logical exclusive OR operation is performed between the 
contents of the register specified by the Rl field and the 
contents of the main storage word location specified by the 
effective address. The result is placed in the register speci­
fied by the Rl field. 

The effective main storage address is generated as follows: 

1. The address field is added to the contents of the register 
specified by the R2 field. If the R2 field equals zero, no 
register contributes to the address generation. 

2. Instruction bit 11 is tested for direct or indirect 
addressing: 
Bit ]]=0 (direct address). The result from step 1 is the 
effective address. 
Bit ]]=] (indirect address). The result from step 1 is 
the address of the main storage location that contains 
the effective address. 

Example of Exclusive OR Word: 

Register contents (R 1) 1111 0000 10 10 0000 
Storage operand 0011111101111111 
Result 11 00 1111 11 0 1 1111 

Rule: Either but not both bits. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result 
10aded into the register specified by the Rl field. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Exclusive OR Word Immediate (XWI) 
XWI word,reg[,reg] 

Operation code 

o 1 111 
o 4 

16 

Immediate 

Function 

o 0 1 0 
15 

31 

XW 
XWI 

The immediate field is exclusive ORed bit by bit with the 
contents of the register specified by the Rl field. The 
result is placed in the register specified by the R2 field. The 
contents of the register specified by Rl are unchanged unless 
Rl and R2 specify the same register. 

Example of Exclusive OR Word: 

Register contents (R1) 1111 0000 1010 0000 
Immediate operand 0011 1111 0111 1111 
Result 1100 1111 1101 1111 

Rule: Either but not both bits. 

Indicators 

Carry and Overflow. Unchanged. 

Even, Negative, and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word. 

Protect Check. Instruction fetch. 

Instructions 8-105 



o 
8-106 GA34-D021 



o 

o 

The floating-point feature includes (1) all floating-point 
instructions and (2) four 64-bit floating-point registers for 
each of the four prior~ty interrupt levels in the processor. 
The floating-point instruction set performs calculations on 
operands with a wide range of magnitude. Results of these 
calculations are scaled to preserve precision. The floating­
point registers are provided to avoid unnecessary storing and 
loading operations for results and operands. 

A floating-point number consists of a signed exponent 
and a signed fraction. The quantity expressed by this 
number is the product of the fraction and the number 16 
raised to the power of the exponent. The exponent is 
expressed in excess 64 binary notation; the fraction is 
expressed as a hexadecimal number having a radix point to 
the left of the high-order hexadecimal digit. 

Data Format 
Two fixed-length formats (short and long) may be used for 
floating-point data. 

r:F=~~:::~:::cint Numr -used fO;,:~~~: preci'I 0 
o 1 7 8 31 

rT :'::~;:;;';:;t Nwnr-used fO~~:c~~~: precT 0 
o 1 7 8 63 

Both formats may be used in main storage and in the float­
ing-point registers. The first bit in either format is the sign 
bit (S). The subsequent seven bit positions are occupied by 
the characteristic. The fraction field may have either six or 
14 hexadecimal digits. 

The entire set of floating-point instructions is available 
for both short and long operands. When single precision 
(short format) is specified, all operands and results are 32-
bit floating-point words. With two exceptions, the rightmost 
32-bits of the floating-point registers do not participate in 
single precision operations and are unchanged by the opera­
tions. The two exceptions are (1) the product in multiply 
operations (it is a 64-bit floating-point word and occupies 
a full register), and (2) a storage to register move (the low­
order 32 bits are set to zero). When double precision (long 
format) is specified, all operands and results are 64-bit 
floating-point words. 

Chapter 9. Floating-Point Feature 

Although final results in short precision have six fraction 
digits, intermediate results in add and subtract operations 
may extend to seven fraction digits. The low-order digit of 
a seven digit fraction is called the guard digit arid serves to 
increase the preciSion of the final result. Intermediate results 
in long precision may extend to 15 fraction digits with the 
15th digit being the guard digit. 

Number Representation 

Floating-Point Numbers 
The fraction of a floating-point number is expressed in hexa­
decimal digits. The radix point of the fraction is assumed to 
be immediately to the left of the high-order fraction digit. 
To provide the proper magnitude for the floating-point 
number, the fraction is considered to be multiplied by a 
power of 16. The characteristic portion, bits 1-7 of both 
floating-point formats, indicates this power. The bits within 
the characteristic field can represent numbers from 0 through 
127. To accommodate large and small magnitudes, the 
characteristic is formed by adding 64 to the actual exponent. 
The range of the exponent is thus -64 through +63. This 
technique produces a characteristic in excess 64 notation. 

Both positive and negative quantities have a true fraction, 
the difference in sign being indicated by the sign bit. The 
number is positive or negative accordingly as the sign bit is 
zero or one. 

A floating-point number with zero characteristic, zero 
fraction, and plus sign is called a true zero. A true zero may 
arise as the result of an arithmetic operation because of the 
particular magnitude of the operands. A result is forced to 
be true zero when an exponent underflow occurs or when a 
result fraction is zero. 

Conversion Example 

Convert the decimal number 149.25 to a short-precision 
floating-point operand. 

1. The number is decomposed into a decimal integer and a 
decimal fraction. 
149.25 = 149 plus 0.25 

2. The decimal integer is converted to its hexadecimal 
representation. 

149 10 = 95 1 6 

3. The decimal fraction is converted to its hexadecimal 
representation. 

0.25 10 = 0.4 1 6 

Floating-Point Feature 9-1 



4.' Combine the integral and fractional parts and express as 
a fraction times a power of 16 (exponent). 

95.4 16 = (0.954 X 10
2

)16 

5. The characteristic is developed from the exponent and 
converted to binary. 

base + exponent = characteristic 
64 + 2 = 66 = 1000010 

6. The fraction is converted to binary and grouped 
hexadecimally. 

.95416 = .1 001 0101 0100 

7. The characteristic and the fraction arc stored in short 
precision format. The sign position contains the sign 
of the fraction. 

SChar Fraction 

o 1000010 1001 0101 0100000000000000 

Binary Integers in Main Storage 
Signed binary integers occupy storage in one of two fixed 
length formats: 

1. One word format (16 bits) 
2. Doubleword format (32 bits) 

Both formats may be used in main storage and are auto­
matically converted to single or double precision floating­
point numbers during floating move and convert operations 
that move data from storage to a floating-point register. 
Negative signed binary integers are in main storage in two's 
complement form. They are converted to contain a true 
fraction. An integer may be moved from main storage to a 
floating-point register, without conversion, by using the 
floating move instruction. In this case, the integer is 
assumed to be a floating-point number. 

Floating move and convert operations that move data 
from a floating-point register to storage accomplish the 
reverse process; the floating-point number in the register is 
automatically converted to an integer. This integer result is 
then placed in main storage. The floating move and floating 
move and convert operations are fully explained in the 

section Floating-Point Instructions in this chapter. 

Normalization 
A quantity can be represented with the greatest precision by 
a floating-point number of given fraction length when that 
number is normalized. A normalized floating-point number 
has a nonzero high-order hexadecimal fraction digit. If one 
or more high-order fraction digits are zero, the number is 
said to be unnormalized. The process of normalization 
consists of shifting the fraction left until the high-order 
hexadecimal digit is nonzero and reducing the characteristic 

by the number of hexadecimal digits shifted. 

9-2 GA34-0021 

Normalization takes place (1) after the multiply opera­
tions, and (2) after the add or subtract operations if an actual 
subtraction has taken place; for example, +A+(-B), +A-(+B), 
or -A-( -B). Normalization does not take place following a 
true addition or division; therefore, unn(')rmalized operands 
can produce an unnormalized result. Floating-point numbers 
in main storage are assumed to be normalized. 

Programming Considerations 

Floating-Point Feature Not Installed 
An attempt to execute a floating-point instruction when 
the feature is not installed results in a soft-exception-trap 
interrupt with invalid function set in the PSW. An excep­
tion to this rule exists when attempting to execute a floating­
point privileged instruction while in problem state. In this 
case, a program check interrupt occurs, with privilege 
violate set in the PSW. 

Floating-Point Registers 
Four floating-point registers are provided for each of the 
four priority interrupt levels associated with the processor. 
Floating-point register selection is determined by the 
register (R) field of the instruction. The R field in the 
instruction format consists of two bits and may be labeled 
R, R1, and R2 as required by the individual instruction. 

R field value 

00 
01 
10 
11 

Floating·point register selected 

Register 0 
Register 1 
Register 2 
Register 3 

Note. The floating-point registers are not affected by Reset 
and must be initialized by the programmer. 

Arithmetic Indicators 
The processor indicators (carry, overflow, zero, negative, 
and even) are set or reset at the end of each floating-point 
instruction. Details of indicator settings are contained in 
the individual instruction descriptions in this chapter. 

Floating-Point Exceptions 
Floating-point underflow, overflow, and divide check are 
considered exception conditions. When these conditions 
are recognized, a soft-exception-trap class interrupt occurs 
with floating-point exception (bit 5) set in the PSW. Note 
that the soft-exception-trap interrupt does not occur during 
floating-point compare operations. The overflow, carry and 
even indicators are set as follows: 

Overflow Indicator. Set to one by an overflow, underflow, 
or divide check. 

Carry Indicator. Set to one by a divide check. 

Even Indicator. Set to one by an underflow. 

(C' .. '"') 

o 



o 

C .. 'Ii 

Floating,.Point Overflow 

• Add operations - An exponent overflow occurs when a 
carry from the high-order position of the intermediate­
sum fraction causes the characteristic of the sum to 
exceed 127. The operation is completed by making the 
characteristic equal to 127. The result fraction is 
changed to the largest possible value. 

• Subtract and compare operations - An exponent over­
flow occurs when a borrow from the high-order position 
of the intermediate-sum fraction causes the characteristic 
of the sum to exceed 127. The operation is completed by 
making the characteristic equal to 127. The result frac­
tion bits are all changed to one. 

• Divide operations - An exponent overflow occurs when 
the final-quotient characteristic exceeds 127. The opera­
tion is completed by forcing the characteristic to 127 
and the result fraction to all ones. 

• Multiply operations - An exponent overflow occurs 
when the characteristic of the normalized product 
exceeds 127 and the fraction is not zero. The operation 
is completed by forcing the characteristic to 127 and the 
result fraction to all ones. 

Floating-Point Underflow 

• Add operations - An exponent underflow occurs when 
the characteristic of the normalized sum is less than zero 
and the fraction is not zero. The result sign, characteristic, 
and fraction are forced to zero. 

• Subtract and compare operations - An exponent under­
flow occurs when the characteristic of the normalized 
sum is less than zero and the fraction is not zero. The 
result sign, characteristic, and fraction are forced to zero. 

• Divide operations - An exponent underflow occurs when 
the characteristic of the normalized quotient is less than 
zero and the fraction is not zero. The result sign, charac­
teristic, and fraction are forced to zero. 

• Multiply operations - An exponent underflow occurs 
when the characteristic of the normalized product is 
less than zero and the fraction is not zero. The result 
sign, characteristic, and fraction are forced to zero. 

Divide Check 

• Divide operations - A divide check occurs when division 
by zero is attempted. The dividend is not changed. 

Level Control 
Floating-point instructions are executed in a normal instruc­
tion stream on the active priority level in the processor. 
This level is sampled by the floating-point operation at the 
beginning of each floating-point instruction. Only program 
check and machine check class interrupts can occur during 
execution of floating-point instructions. 

Instruction Termination or Suppression 
Exception conditions that occur during instruction process­
ing might cause the instruction to be terminated or sup­
pressed. When an instruction is terminated, partial execu­
tion has taken place and may have caused a change to 
registers, indicators, or main storage. When an instruction 
is suppressed, there has been no execution, therefore, no 
changes. Refer to Exception Conditions in this chapter. 

Floa ting-Poin t Instructions 
The floating-point instruction set provides a variety of 
instructions that deal with single or double preciSion float­
ing-point data. The main categories are: 

• Arithmetic instructions (add, subtract, multiply, divide, 
and compare) 

• Data movement instructions (with or without conversion 
of binary integers) 

Two privileged instructions are also provided for interroga­
tion of the floating-point registers. They are (1) Copy 
Floating Level Block (CPFLB) and (2) Set Floating Level 
Block (SEFLB). 

All floating-point instructions use the floating-point 
registers. One group of instructions (storage/floating-point 
register) specifies a register for one operand, and an effec­
tive main storage address for the other operand. Another 
group (floating-point register to floating-point register) 
specifies registers for both operands. 

Floating-Point Feat~re 9-3 



Instmction Formats 
Arithmetic and data movement instructions use the follow­
ing two formats: 

Storage/Floating-point Register 

I Operation code 10 I R I RB I AM FunctionlP I 
() 4 5 6 7 8 9 1 () 11 12 14 15 

Op code field. Specifies floating-point operation. 

R field. Specifies a floating-point register. 

Function field. Designates function to be performed (add, 
subtract, multiply, divide, move, move and convert). 

RB and AM fields. Designate the effective address 
argument. 

(See Effective Address Generation in Chapter 2.) 
P field. Designates precision of floating-point data. 

o = Single precision 
1 = Double precision 

Second word (Bits 16-31). Address mode appended word 
for an AM field equal to 10 or 11. 

Floating-point Register to Floating-point Register 

I Operation code 11 I R 1 I R 21 0 0 I Function I pi 
o 4 5 6 78 9 101112 1415 

Op code field. Specifies floating-point operation. 

R1 and R2 fields. Specify floating-point registers. 

Bits 10-11. Designate the function modifier. These bits 
are not used and must be set to zero to avoid future code 
obsolescence. 

Function field. Designates function to be performed (add, 
subtract, multiply, divide, move, compare). 

Note. To avoid future code obsolescence, function field bit 
combinations equal to 110 and 111 must not be used. 

P field. Designates precision of floating-point data. 
o = single precision 
1 = double precision 

9-4 GA34-0021 

Another instruction format is used for the two privileged 
instructions (Copy Floating Level Block and Set Floating 
Level Block). The three-bit R field associated with this 
format specifies a processor general register (0-7). See the 
individual instructions for the complete format. 

Note. The instruction formats are also shown in Appendix 
B of this manual. 

Exception Conditions 
Exception conditions that might occur during instruction 
execution are shown in abbreviated form with each instruc­
tion description. Refer to the following sections for a 
detailed description of these conditions. 

Program Check Conditions 

Invalid Storage Address 

Instruction Word or Operand. One or more words of the 
instruction or the effective address is outside the installed 
storage size of the system. The register to register instruc­
tions are suppressed. The storage/register instructions are 
terminated. 

A program check class interrupt occurs with invalid 
storage address (bit 1) set in the PSW. 

Privilege Violate 

Privileged Instruction. A privileged instruction is encountered 
while in problem state. The instruction is suppressed. 

A program check class interrupt occurs with privileged 
violate (bit 2) set in the PSW. 

Protect Check 

Instruction Fetch or Operand Access. In the problem state, 
an instruction is fetched or data is accessed from a storage 
area not assigned to the current operation. 

Operand Store. In the problem state, the instruction 
attempts to change an operand in a storage area assigned as 
read-only. 

The register to register instructions are suppressed. The 
storage/register instructions are terminated. A program 
check class interrupt occurs with protect check (bit 3) set 
in the PSW. 

c 



0 ,1 
" 

Specification Check 

Operand Address. The generated effective address has 
violated an even-byte boundary requirement. 

Indirect Address. When using addressing mode (AM=11), 
the indirect address is not on an even-byte boundary. 

The register to register instructions are suppressed. The 
storage/register instructions are terminated. A program 
check class interrupt occurs with Specification check (bit 0) 
set in the PSW. 

Soft Exception Trap Condition 

Floating-Point Exception 

A floating-point underflow, overflow, or divide check has 
occurred. The instruction completes execution. A soft­
exception-trap class interrupt occurs with floating-point 
exception (bit 5) set in the PSW. 

Invalid Function 

An attempt is made to execute a floating-point instruction 
when (1) the feature is not installed, or (2) the feature is 
installed but cannot be selected. The register to register 
instructions are suppressed. The storage/register instructions 
are terminated. A soft exception trap class interrupt occurs 
with invalid function (bit 4) set in the PSW. 

Note. The resulting class interrupt causes the contents of 
the storage address register (SAR) to be loaded into general 
register seven. SAR contains either (1) the calculated 
effective address of data operand 2, or (2) the address of 
the attempted instruction for register to register operations. 

Floating-Point Feature 9-5 



CPFLB 

Instruction Descriptions 
The following descriptions are in alphabetical sequence 
based on assembler mnemonics. Indicator settings are listed 
for each instruction. For additional indicator information, 
refer to Arithmetic Indicators in this chapter and to 
Indicators in Chapter 2. 

Instruction timings are contained in Appendix A of this 
manual. 

Copy Floating Level Block (CPFLB) 
CPFLB reg,addr4 

Operation code 

o I 0 1 
() 10 11 12 15 

The contents of the floating-point registers (floating level 
block) for the level specified by the R field register are 
stored into main storage locations beginning at the speci­
fied effective address (EA). All registers remain unchanged. 
After execution of this instruction, the floating level block 
appears in main storage as follows: 

EA Contents of floating-point register 0 
Contents of floating-point register 1 
Contents of floating-point register 2 

EA + 24 (Hex) Contents of floating-point register 3 
o 63 

The general register specified by the R field has the format: 

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ILevel1 
o 13 14 15 

9-6 GA34-0021 

Bits 0-7, 12 and 13 are not used and must be zero to avoid 
future code obsolescence. Bits &-11 must be zero in order 
to select the floating-point feature. Bits 14 and 15 hold the 
binary-encoded level of the floating level block associa ted 
with this operation. For example: 00 for level 0, 01 for 
level I, 10 for level 2, and II for level 3. 

Programming Note. If AM=OI, the register specified by 
the RB field is incremented by two. 

Indicators. 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

c 

o 



D 

C\ 
) 

o 

Floating Add (FA) 

General Description (Short Precision) 
Addition of two floating-point numbers is based on charac­
teristic comparison and fraction addition. The characteristics 
of the two operands are compared, and the fraction accom­
panying the smaller characteristic is shifted right, with its 
characteristic increased by one for each hexadecimal digit 
shifted, until the two characteristics are equal. 

When an operand is shifted right during alignment, the 
leftmost hexadecimal digit of the field shifted out is 
retained as a guard digit. The operand that is not shifted is 
considered to be extended with a low-order zero. Both 
operands are considered to be extended with low-order 
zeros when no alignment shift occurs. The 28-bit fractions 
are then added algebraically to form an intermediate sum. 

The intermediate-sum fraction consists of seven hexa­
decimal digits and a possible carry. If a carry is present, 
the sum is shifted right one digit position, to make room 
for the carry, and the characteristic is increased by one. 

If the operand signs are unlike (resulting in a subtraction) 
and the fraction is not zero, normalization takes place. The 
intermediate sum is shifted left as necessary to form a 
normalized number. Vacated low-order digit positions are 
filled with zeros, and the characteristic is reduced by the 
number of hexadecimal digits shifted. The intermediate­
sum fraction is subsequently truncated to the proper result 
fraction length of six hexadecimal digits. 

Storage/Register Format 
FA addr4,freg 

Operation code 

o 0 100 
o 456789101112 1415 

The 32-bit main storage operand specified by the effective 
address is algebraically added to the 32-bit operand in the 
floating-point register specified by the R field. The result is 
placed back into the floating-point register specified by the 
R field. The main storage operand is unchanged. The low­
order 32 bits of the specified floating-point register are 
unchanged. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; in 
this, case, the sign is made plus and the result characteristic 
is forced to zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

FA 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Register to Register Format 
FA freg,freg 

Operation code 

o 0 100 
o 456789101112 1415 

The two 32-bit operands contained in the floating-point 
registers specified by the Rl and R2 fields are added alge­
braically. The result is placed back into the floating-point 
register specified by the R2 field. The Rl register is 
unchanged when not equal to R2. The low-order 32 bits 
of the R2 register are unchanged. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Floating-Point Feature 9-7 



FAD 

Floating Add Double (FAD) 

General Description (Double Precision) 
Addition of two floating-point numbers is based on charac­
teristic comparison and fraction addition. The character­
istics of the two operands are compared and the fraction 
accompanying the smaller characteristic is shifted right, 
with its characteristic increased by one for each hexadecimal 
digit shifted, until the two characteristics are equal. The 
fractions are then added algebraically to form an inter­
mediate sum. 

When an operand is shifted right during alignment, the 
last hexadecimal digit shifted out of the 64-bit register is 
preserved as a guard digit with 15 digits participating in the 
arithmetic. 

The long intermediate-sum fraction consists of 15 hexa­
decimal digits and a possible carry. If a carry is present, 
the sum is shifted right one digit position, and the charac­
teristic is increased by one. 

If the operand signs are unlike (resulting in a subtraction) 
and the fraction is not zero, normalization takes place. The 
intermediate sum including the guard digit is shifted left as 
necessary to form a normalized number. Vacated low-order 
digit positions are filled with zeros, and the characteristic 
is reduced by the number of hexadecimal digits shifted. 

Storage/Register Format 
FAD addr4,freg 

Operation code 

o 0 1 0 0 
o 4 5 6 78 9 101112 1415 

r = ______ -_A]~~0s;la~e~"0 __ -_______ = ~ t Displacement 1 ] Displacement 2 .J 
16- - - - - - - -iJ 24 - - - - - - - 31 

The 64-bit main storage operand specified by the effective 
address is algebraically added to the 64-bit operand in the 
floating-point register specified by the R field. The result 
is placed back into the floating-point register specified by 
the R field. The main storage operand is unchanged. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

9-8 GA34-0021 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Register to Register Format 
FAD freg,freg 

Operation code 

o 0 1 0 0 
o 4 5 6 7 8 9 

The two 64-bit operands contained in the floating-point 
registers specified by the RI and R2 fields are added alge­
braically. The result is palced back into the floating-point 
register specified by the R2 field. The Rl register is 
unchanged when not equal to R2. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

Indicators 

Overflow. Turned on by an exponent oVerflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

c 

() 



o 

o 

Floating Compare (FC) 
FC freg,freg 

Operation code 

00100 
o 4 5 6 7 8 9 JO J1 12 14 15 

The 32-bit operand contained in the floating-point register 
specified by the Rl field is algebraically subtracted from 
the 32-bit operand contained in the floating-point register 
specified by the R2 field. Contents of both floating-point 
registers remain unchanged. See Roating Subtract for 
details of the subtract operation. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Floating Compare Double (FeD) 
FCD freg,freg 

Operation code 

o 0 1 0 0 
o 6 7 8 9 14 15 

FC 
FCD 

The 64-bit operand contained in the floating-point register 
specified by the Rl field is algebraically subtracted from 
the 64-bit operand contained in the floating-point register 
specified by the R2 field. Contents of both floating-point 
registers remain unchanged. See Roating Subtract Double 
for details of the subtract operation. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Floating-Point Feature 9-9 



FD 

Floating Divide (FD) 

Storage/Register Format 
FD addr4,freg 

Operation code 

o 0 100 
() 4 5 6 7 8 9 10 11 12 14 15 

r - .;... ~ - -Afld7e;;rDisii/a;;;ment - - - - -..., 
t- ~\&sPra'i;ellWnt r - - [ Displacement 1" - --f L_ ...:..,. __ ' ____________ ...J 

16 , 23 24 31 

The 32-bit dividend contained in the floating-point register 
specified by the R field is divided by the 32-bit divisor at 
the main storage location specified by the effective address. 
Th~ 32~bit quotient is placed back in the floating-point 
register 'speCified by the R field. The low-order 32 bits of 
the specified floating-point regIster are unchanged. No 
remainder is preserved. The main storage operand is 
unchanged. 

The floating-point division is based on characteristic sub­
traction and fraction division. The operands are assumed 
to be normalized. The difference between the dividend and 
divisor characteristics plus 64 is used as the characteristic of 
the intermediate quotient. 

The sign of the quotient is determined by the rules of 
algebra unless the quotient is made a true zero; in this case, 
the sign is made plus. 

All dividend and divisor fraction digits participate in : 
forming the fraction of the quotient. The quotient fraction 
will be a 24-bit normalized result if the dividend and the 
divisor are normalized. 

Indicators 

Overflow. Turned on by divide check, exponent overflow, 
or exponent underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Turned on by divide check. Otherwise, the indicator 
is reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow, underflow, or divide 
check. 

9~10 GA34-0021 

Register to Register Format 
FD . freg,freg 

Operation code 

o 0 100 
o 4 5 6 7 8 9 10 11 12 14 15 

The 32-bit dividend contained in the floating-point register 
specified by the R2 field is divided by the 32-bit divisor 
contained in the floating-point register specified by the RI 
field. The 32-bit quotient is placed back in the floating­
point register specified by the R2 field. No remainder is 
preserved. The low-order 32 bits of the R2 register are 
unchanged. The RI register is unchanged when not equal 
to R2. 

The floating-point division is based on characteristic sub­
traction and fraction division. The operands are assumed to 
be normalized. The difference between the dividend and 
divisor characteristics plus 64 is used as the characteristic 
of the intermediate quotient. 

The sign of the quotient is determined by the rules of 
algebra unless the quotient is made a true zero; in this case, 
the sign is made plus. 

All dividend and divisor fraction digits participate in 
forming the fraction of the quotient. The quotient fraction 
will be a 24-bit normalized result if the dividend and divisor 
are normalized. 

Indicators 

Overflow. Turned on by divide check, exponent overflow, 
or exponent underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Turned on by divide check. Otherwise, the indicator 
is reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow, underflow, or divide 
check. 

0, 



o 

0,:;( , , 

Floating Divide Double (FDD) 

Storage/Register Format 
FDD addr4,freg 

Operation code 

o 0 I 0 0 
() 4 5 6 7 8 9 1011 12 14 15 

r-----------------
I-

Address/Displacement i --------r--------, 
L Displacement I 1_ Displacement 2 ..J 
16--- - - - - i3 24 - - - - - - 31 

The 64-bit dividend contained in the floating-pOint register 
specified by the R field is divided by the 64-bit divisor at 
the main storage location specified by the effective address. 
The 64-bit quotient is placed back in the floating-point 
register specified by the R field. No remainder is preserved. 
The main storage operand is unchanged. 

Floating-point division is based on characteristic subtrac­
tion and fraction division. The operands are assumed to be 
normalized. The difference between the dividend and 
divisor characteristics plus 64 is used as the characteristic of 
the intermediate quotient. 

All dividend and divisor fraction digits participate in 
forming the fraction of the quotient. The quotient fraction 
will be a 56-bit normalized result if the dividend and divisor 
are normalized. 

The sign of the quotient is determined by the rules of 
algebra unless the quotient is made a true zero; in this case, 
the sign is made plus. 

Indicators 

Overflow. Turned on by divide check, exponent overflow, 
or exponent underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Turned on by divide check. Otherwise, the indicator 
is reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow, underflow, or divide 
check. 

Register to Register Format 
FDD freg,freg 

Operation code 

o 0 100 
o 4 5 6 7 8 9 10 J1 12 

FDD 

14 15 

The 64-bit dividend contained in the floating-point register 
specified by the R2 field is divided by the 64-bit divisor 
contained in the floating-point register specified by the Rl 
field. The 64-bit quotient is placed back in the floating­
point register specified by the R2 field. No remainder is 
preserved. The Rl register is unchanged when not equal 
to R2. 

Floating-point division is based on characteristic subtrac­
tion and fraction division. The operands are assumed to be 
normalized. The difference between the dividend and 
divisor characteristics plus 64 is used as the characteristic of 
the intermediate quotient. 

All dividend and divisor fraction digits participate in 
forming the fraction of the quotient. The quotient fraction 
will be a 56-bit normalized result if the dividend and divisor 
are normalized. 

The sign of the quotient is determined by the rules of 
algebra unless the quotient is made a true zero; in this case, 
the sign is made plus. 

Indicators 

Overflow. Turned on by divide check, exponent overflow, 
or exponent underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Turned on by divide check. Otherwise, the indicator 
is reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow, underflow, or divide 
check. 

Floatin,g-Point Feature 9-11 



FM 

Floating Multiply (FM) 

General Description (Short Precision) 
Multiplication of two floating-point numbers is based on 
exponent addition and fraction multiplication. The oper­
ands are assumed to be normalized. The sum of the charac­
teristics of the operands less 64 is used as the characteristic 
of the intermediate product. When the result is normalized 
without requiring any postnormalization, the intermediate­
product fraction is the result fraction, and the intermediate­
product characteristic becomes the final-product character­
istic. When the intermediate-product fraction has one lead­
ing zero digit, it is shifted left one digit position and the 
intermediate-product characteristic is reduced by one. 

The multiplier and multiplicand have six-digit fractions. 
The product fraction has 14 digits. The two low-order 
fraction digits are always zero, unless overflow occurs. 

Storage/Register Format 
FM addr4,freg 

Operation code 
o 0 I 0 0 

o 4 5 6 7 8 9 10 11 12 14 15 

The 32-bit main storage operand specified by the effective 
address and the 32-bit operand contained in the floating­
point register specified by the R field are multiplied. The 
normalized result is placed back into the floating-point 
register specified by the R field. The main storage operand 
is unchanged. 

The sign of the product is determined by the rules of 
algebra unless all digits of the product fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

When either or both operand fractions are zero, the result 
is made a true zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

9-12 GA34-0021 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Register to Register Format 
FM freg,freg 

Opera tion code 

o 0 100 
o 4 5 6 7 8 9 10 11 12 14 15 

The two 32-bit operands contained in the floating-point 
registers specified by the Rl and R2 fields are multiplied 
and the normalized result is placed back into the floating­
point register specified by the R2 field. The Rl register is 
unchanged when not equal to R2. 

The sign of the product is determined by the rules of 
algebra unless all digits of the product fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

When either or both operand fractions are zero, the 
result is made a true zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indica tor is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

:f/'~ 

"\..,,'~ 

o 



~I U 

o 

Floating Multiply Double (FMD) 

General Description (Double Precision) 
Multiplication of two floating-point numbers is based on 
exponent addition and fraction multiplication. The oper­
ands are assumed to be normalized. The sum of the charac­
teristics of the operands less 64 is used as the characteristic 
of the intermediate product. When the result is normalized 
without requiring any postnormalization, the intermediate­
product fraction is th~ result fraction, and the intermediate­
product characteristic becomes the final-product character­
istic. When the intermediate-product fraction has one lead­
ing zero digit, it is shifted left one digit position and the 
intermediate-product characteristic is reduced by one. The 
multiplier and multiplicand fractions have 14 digits and 
the result-product fraction is truncated to 14 digits. 

Storage/Register Format 
FMD addr4,freg 

Operation code 

00100 
o 456789101112 1415 

The 64-bit main storage operand specified by the effec­
tive address and the 64-bit operand contained in the floating­
point register specified by the R field are multiplied. The 
normalized result is placed back into the floating-point 
register specified by the R field. The main storage operand 
is unchanged. 

The sign of the product is determined by the rules of 
algebra unless all digits of the intermediate-sum fraction 
are zero; in this case, the sign is made plus and the result 
characteristic is forced to zero. 

When either or both operand fractions are zero, the result 
is made a true zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

FMD 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Register to Register Format 
FMD freg,freg 

Operation code 

o 0 1 0 0 
o 4 5 6 7 8 9 1011 12 14 15 

The two 64-bit operands contained in the floating-point 
registers specified by the Rl and R2 fields are multiplied. 
The normalized result is placed back into the floating-point 
register specified by the R2 field. The Rl register is 
unchanged when not equal to R2. 

The sign of the product is determined by the rules of 
algebra unless all digits of the intermediate-sum fraction 
are zero; in this case, the sign is made plus and the result 
characteristic is forced to zero. 

When either or both operand fractions are zero, the result 
is made a true zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Floating-Point Feature 9-13 



FMV 

Floating Move (FMV) 

Storage to Register Format 
FMV addr4,freg 

Operation code 

o 0 100 
o 4 5 6 7 8 9 10 11 12 1415 

The 32-bit floating-point number in the main storage loca­
tion specified by the effective address is loaded into the 
floating-point register specified by (I) the R field and (2) 
the current interrupt level. The main storage operand is 
unchanged. The low order 32 bits of the 64-bit register are 
set to zeros. 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the result loaded 
into the register. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Register to Storage Format 
FMV freg,addr4 

Operation code 

o 0 1 0 0 
o 789101112 1415 

The 32-bit floating-point number contained in the high­
order 32 bits of the floating-point register specified by the 
R field is stored in the main storage location specified by; 
the effective address. The register specified by the R field 
is unchanged. 

9-14 GA34-0021 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the stored result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. 

Specification Check. Even byte boundary violation 
{indirect address or operand address}. 

Register to Register Format 
FMV freg,freg 

Operation code 

00100 
o 101112 1415 

The 32-bit operand contained in the floating-point register 
specified by the Rl field is moved to the floating-pOint 
register specified by the R2 field. The low-order 32 bits 
of the R2 register are set to zeros. The floating-point 
register specified by R 1 is unchanged when not equal to 
R2. Bit 13 of the instruction, along with bits 10 and 11, 
must be set to zero to avoid future code obsolescence. 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

o 



D 

o 

Floating Move and Convert (FMVC) 

Storage to Register Format 
FMVC addr4,freg 

Operation code 

o 0 100 
o 7 8 9 10 11 12 14 15 

The 16-bit signed binary integer in the main storage location 
specified by the effective address is converted to a 32-bit 
floating-point number with low-order zeros inserted; then 
loaded into the floating-point register specified by (1) the R 
field and (2) the current interrupt level. The low-order 32 
bits of the register are set to zero. The 64-bit register is 
normalized with zeros inserted at the low-order positions 
during normalization. The main storage operand is 
unchanged. 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the result loaded 
into the register. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Register to Storage Format 
FMVC freg,addr4 

Operation code 

o 0 1 0 0 

FMVC 

o 7 8 9 10 11 12 14 15 

The 32-bit floating-point number contained in the high­
order 32 bits of the floating-point register specified by the 
R field is converted to a signed 16-bit binary integer and 
stored at the main storage location specified by the effective 
address. For proper conversion to occur, the floating-point 
number must be normalized. Any fraction remaining after 
conversion is truncated. The register specified by the R 
field is unchanged. 

If the characteristic of the floating-point number is nega­
tive, the integer stored is zero. 

Indicators 

Carry. Reset. 

Overflow. Turned on if the converted number is larger than 
+2 15 _1 or less than _2 15 . In this case, the largest possible 
value is stored (_2 15 if negative overflow or 2 15 -1 if posi­
tive overflow). Otherwise, the indicator is reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the stored integer. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Floating-Point Feature 9-15 



FMVCD 

Floating Move and Convert Double (FMVCD) 

Storage to Register Format 
FMVCD addr4,freg 

Operation code 

o 0 1 0 0 
o 4 5 6 7 8 9 

------------------- -.., r Address/ Displacemen t 

t~~~~~~0~~J~~~~~§~~~j 
16 23 24 31 

The 32-bit signed binary integer in the main storage location 
specified by the effective address is converted to a 64-bit 
floating-point number with low-order zeros inserted; then 
loaded into the floating-point register specified by (1) the 
R field and (2) the current interrupt level. The 64-bit 
register is normalized with zeros inserted at the low-order 
positions during normalization. The main storage operand 
is unchanged. 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the result loaded 
into the register. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

9-16 GA34-0021 

Register to Storage Format 
FMVCD freg,addr4 

Operation code 

o 0 1 0 0 
o 

The 64-bit floating-point number contained in the floating­
point register specified by the R field is converted to a 
signed 32-bit binary integer and stored at the main storage 
location specified by the effective address. For proper 
conversion to occur, the floating-point number must be 
normalized. Any fraction remaining after conversion is 
truncated. The register specified by the R field remain$ 
unchanged. 

If the characteristic of the floating-point number is 
negative, the integer stored is zero. 

Indicators 

Carry. Reset. 

Overflow. Turned on if the converted number is larger than 
+231 -1 or less than _2 31

. In this case, the largest possible 
value is stored (_2 31 if negative overflow or 231 -1 if posi­
tive overflow). Otherwise, the indicator is reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the stored integer .. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

C."'" i I 

~c.i-

;(-~ 

\'----,: 

o 



o 

Floating Move Double (FMVD) 

Storage to Register Format 
FMVD addr4,freg 

Operation code 

o 0 100 
o 4 5 6 7 8 9 10 11 12 14 15 

The 64-bit floating-point number in the main storage loca­
tion specified by the effective address is loaded into the 
floating-point register specified by (1) the R field and (2) 
the current interrupt level. The main storage operand is 
unchanged. 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the result loaded 
into the register. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Register to Storage Format 
FMVD freg,addr4 

Operation code 
00100 
o 4 5 6 7 8 9 1011 12 14 15 

The 64-bit floating-point number contained in the register 
specified by the R field is stored in the main storage location 
specified by the effective address. The register specified by 
the R field remains unchanged. 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

FMVD 

Negative and Zero. Changed to reflect the stored result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch, operand access, or oper­
and store. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Register to Register Format 
FMVD freg,freg 

Operation code 

o 0 100 
o 4 5 6 7 8 9 1011 12 14 15 

The 64-bit operand contained in the floating-point register 
specified by the Rl field is moved to the floating-point 
register specified by the R2 field. The floating-point register 
specit1ed by the Rl field is unchanged. Bit 13 of the instruc­
tion, along with bits 10 and 11, must be set to zero to avoid 
future code obsolescence. 

Indicators 

Carry. Reset. 

Overflow. Reset. 

Even. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Floating~Point Feature 9-17 



FS 

Floating Subtract (FS) 

General Description (Short Precision) 
Subtraction of two floating-point numbers is based on 
characteristic comparison and fraction subtraction. The 
characteristics of the two operands are compared, and the 
fraction ac'.'ompanying the smaller characteristic is shifted 
right, with its characteristic increased by one for each hexa­
decimal digit shifted, until the two characteristics are equal. 

When an operand is shifted right during alignment, the 
leftmost hexadecimal digit of the field shifted out is retained 
as a guard digit. The operand that is not shifted is con­
sidered to be extended with a low-order zero. Both operands 
are considered to be extended with low-order zeros when no 
alignment shift occurs. The 28-bit fractions are then sub­
tracted algebraically to form an intermediate sum. 

The intermediate-sum fraction consists of seven hexa­
decimal digits and a possible borrow. If a borrow is present, 
the sum is shifted right one digit position, and the charac­
teristic is increased by one. 

If a true subtraction is performed and the fraction is 
not zero, normalization takes place. The intermediate sum 
is shifted left as necessary to form a normalized number. 
Vacated low-order digit positions are filled with zeros and 
the characteristic is reduced by the number of hexadecimal 
digits shifted. The intermediate-sum fraction is subsequently 
truncated to the proper result-fraction length of six hexa­
decimal digits. 

Storage/Register Format 
FS addr4,freg 

Operation code 

00100 
o 4 5 6 7 8 9 10 11 12 14 15 

r - - - - - - --- ---- --- --1 
I-

Address/Displacement -I --------l--------L y~~c~~t.!.. _ _ _D~p~c~~t~ __ J 
16 23 24 31 

The 32-bit main storage operand specified by the effective 
address is algebraically subtracted from the 32-bit operand 
contained in the floating-point register specified by the R 
field. The result is placed back in the floating-point register 
specified by the R field. The low-order 32 bits of the speci­
fied floating-point register are unchanged. The main storage 
operand is unchanged. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

9-18 GA34-0021 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Neg~tive and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Register to Register Format 
FS freg,freg 

Operation code 

o 0 1 0 0 
o 456789101112 1415 

The 32-bit operand contained in the floating-point register 
specified by the Rl field is algebraically subtracted from 
the 32-bit operand contained in the floating-point register 
specified by the R2 field. The result is placed back in the 
floating-point register specified by the R2 field. The low­
order 32 bits of the R2 register are unchanged. The Rl 
register is unchanged when not equal to R2. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. o 



D 

C~I 

o 

Floating Subtract Double (FSD) 

General Description (Double Precision) 
Subtraction of two floating-point numbers is based on 
characteristic comparison and fraction subtraction. The 
characteristics of the two operands are compared and the 
fraction accompanying the smaller characteristic is shifted 
right, with its characteristic increased by one for each hexa­
decimal digit shifted, until the two characteristics are equal. 

When an operand is shifted right during alignment, the 
last hexadecimal digit shifted out of the 64-bit register is 
preserved as a guard digit with 15 digits participating in the 
arithmetic. The fractions are then subtracted algebraically 
to form an intermediate sum. 

The long intermediate-sum fraction consists of 15 hexa­
decimal digits and a possible borrow. If a borrow is present, 
the sum is shifted right one digit position, and the charac­
teristic is increased by one. 

If a true subtraction is performed and the fraction is 
not zero, normalization takes place. The intermediate sum 
including the guard digit is shifted left as necessary to form 
a normalized number. Vacated low-order digit positions 
are filled with zeros, and the characteristic is reduced by 
the number of hexadecimal digits shifted. 

Storage/Register Format 
FSD addr4,freg 

Operation code 

o 0 I 0 0 
o 4 5 6 7 8 9 10 11 12 14 15 

The 64-bit main storage operand specified by the effective 
address is algebraically subtracted from the 64-bit operand 
contained in the floating-point register specified by the R 
field and the result is placed back in the floating-point 
register specified by the R field. The main storage operand 
is unchanged. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; 
in this case, the sign is made plus and the result characteristic 
is forced to zero. 

Indicators 

Overflow. Turned on by an exponent overflow or expon­
ent underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

FSD 

Negative and Zero. Changed to reflect the result. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Protect Check. Instruction fetch or operand access. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Register to Register Format 
FSD freg,freg 

Operation code 

o 0 100 
o 4 5 6 78 9 101112 1415 

The 64-bit operand contained in the floating-point register 
specified by the Rl field is algebraically subtracted from 
the 64-bit operand contained in the floating-point register 
specified by the R2 field. The result is placed back in the 
floating-point register specified by the R2 field. The Rl 
register is unchanged when not equal to R2. 

The sign of the sum is determined by the rules of algebra 
unless all digits of the intermediate-sum fraction are zero; 
in this case, the sign is made plus and the result character­
istic is forced to zero. 

Indicators 

Overflow. Turned on by an exponent overflow or exponent 
underflow. Otherwise, the indicator is reset. 

Even. Turned on by an exponent underflow. Otherwise, 
the indicator is reset. 

Carry. Reset. 

Negative and Zero. Changed to reflect the result. 

Program Check Condition 

Protect Check. Instruction fetch. 

Soft Exception Trap Condition 

Floating-Point Exception. Overflow or underflow. 

Floating-Point Feature 9-19 



SEFLB· 

Set Floating Level Block (SEFLB) 
SEFLB reg,addr4 

Operation code 

o 1 0 1 
o 4 5 789101112 

A floating level block in main storage is loaded into the 
floating-point registers for the level specified by the R field 
register. The generated effective address (EA) specifies the 
beginning address of the floating level block. The contents 
of main storage and the R field register remain unchanged. 
The floating level block appears in main storage as follows: 

EA Loaded into floating-point register 0 
Loaded into floating-point register 1 
Loaded into floating-point register 2 

EA + 24 (Hex) Loaded into floating-point register 3 
o 

The general register specified by the R field has the 
format: 

I 0 0 0 0 0 0 0 0 0 0 0 0 0 OILeve11 
o 13 14 15 

Bits 0-7, 12 and 13 are not used and must be zero to 
avoid future code obsolescence. Bits 8-11 must be zero 
in order to select the floating-point feature. Bits 14 and 15 
hold the binary-encoded level of the floating level block 
associated with this operation. For example: 00 for level 
0,01 for levell, 10 for level 2, and 11 for level 3. 

Programming Note. If AM;::OI, the register specified by 
the RB field is incremented by two. 

Indicators 

No indicators are changed. 

Program Check Conditions 

Invalid Storage Address. Instruction word or operand. 

Privilege Violate. Privileged instruction. 

Specification Check. Even byte boundary violation 
(indirect address or operand address). 

9-20 GA34-0021 

63 

o 



o 

C.·I 
j 

o 

Appendix A. Instruction Execution Times 

This appendix contains two tables: 

Table 1: Instruction execution times when the Storage 
Address Relocation Translator feature is not 
installed or is disabled. 

Table 2: Instruction execution times when the Storage 
Address Relocation Translator feature is 
enabled. 

The instructions in each table are in alphabetical sequence 
based on assembler mnemonics. Figure A-I is used with 
Table 1. Figure A-2 is used with Table 2. 

Key to symbols for tables in this appendix: 

Symbol 

A 

AMI 

AM2 

BT 

CL 

CT 

Meaning 

Additional time for the bit number tested (see TBTV 
note). 

Additional time for operand 1 addressing mode (see 
Figure A- i or A-2). 

Additional time for operand 2 addressing mode (see 
Figure A-I or A-2). 

Bit number of tested bit (see TBTV note). 
Current level. 

The count value at the beginning of instruction 
execution. 

D Additional time for the Disable instruction (see EN 
note). 

E Additional time for the Enable instruction (see EN 
note). 

IP In-process flag. 

K The bit number of the left most one bit (see SLTD 
note 2). 

RL Limit register (LMB and STM instructions). 

RS Additional addressing-mode time for register/storage 
instructions (see Figure A-I or A-2). 

SL Selected level. 

X Additional time for addressing mode when AM = 01 
(see Figure A-I or A-2). 

Y Additional time for addressing mode when AM = 01 
(see Figure A-lor A-2). 

* Indirect address. 

Instruction Execution Times A-I 



Use this figure with Table 1. 

Instructions that use addressing mode (AM) for effective address 
generation require additional time that must be added to the base 
time for execution. 

• RS-the additional time for register/storage instructions 

AM Time (RS) 

00 220 
01 440 
10 RB=O 880 
10 RB*O noo 
11 RB=O 1540 
11 RB*O 2420 

• AMI, AM2, X, V-the additional time for storage/storage 
instructions 

AM Time (AM1) Time (AM2) X Y 

00 220 220 0 0 
01 440 440 220 440 
10 RB=O 880 880 0 0 
10 RB*O 1100 1100 0 0 
11 RB=O 1540 1540 0 0 
11 RB*O 2420 2420 0 0 

Example: 

For an instruction time equal to 5720+(AMI +Y)+AM2 if AMl=OI 
and AM2=11 (RB*O) then total instruction time is 5720+(440+440) 
+2420=9020 

• Assembler syntax for address modes 

Assembler Syntax 
addr4 

(regO - 3) 
(regO - 3)+ 
addr 

addrS 

(reg) 
(reg)+ 
addr 

(reg I - 3, waddr) (reg l - 7, waddr) 
addr* addr* 
displ(reg l - 3, disp2)* diSPl(regl-7,diSP2)*} 
disp(reg l - 3)* disp(reg l - 7)* 
(reg l - 3)* (reg l - 7)* 
(reg l - 3, disp)* (reg I - 7, disp)* 

Address Modes 
(see Note 1) 

00 
01 
10 RB=O 
10 RB*O 
11 RB=O 

11 RB*O 

Note 1. Register/storage instructions use assembler syntax addr4 
for address mode (AM). 

Storage/storage instructions use assembler syntax: 

(1) addrS for address mode for operand 1 (AMI), and 
(2) addr4 for address mode for operand 2 (AM2).· 

Figure A-I. Additional instructIon times for addressing mode when 
the relocation translator is not installed or is disabled. 

A-2 GA34-0021 

c 

o 



D 

o 

Use this figure with Table 2. 

Instructions that use addressing mode (AM) for effective address 
generation require additional time that must be added to the base 
time for execution. 

• RS-the additional time for register/storage instructions 

AM Time (RS) 

00 440 
01 660 
10 RB=O 1~20 
10 RR#O 1540 
II RB=O 2200 
II RB*O 3080 

• AMI, AM2, X, V-the additional time for storage/storage 
instructions 

AM Time (AMI) Time (AM2) X Y 

00 440 440 0 0 
01 660 660 220 440 
10 RB=O 1320 1320 0 0 
to RB*O 1540 1540 0 0 
II RB=O 2200 2200 0 0 
II RB*O 3080 3080 0 0 

Example: 

For an instruction time equal to 6820+(AMI+y)+AM2 if AMl==OI 
and AM2=ll (RB*O) then total instruction time is 6820+(660+440) 
+3080=11000 

• Assembler syntax for address modes 

Assembler Syntax 
addr4 addr5 

(regO - 3) (reg) 
(regO - 3)+ (reg)+ 
addr addr 
(reg 1 - 3, waddr) (reg 1 - 7, waddr) 
addr* addr* 
displ(reg l - 3,disp2)* diSPI(regl-7,diSP2)*} 
disp(reg 1 - 3)* disp(regl-7)* 
(reg l - 3)* (reg l - 7)* 
(reg 1 - 3, disp)* (reg 1 - 7, disp)* 

Address Modes 
(see Note 1) 

00 
01 
to RB=O 
10 RB*O 
11 RB=O 

II RB*O 

Note 1. Register/storage instructions use assembler syntax addr4 
for address mode (AM). 

Storage/storage instructions use assembler syntax: 

(1) addr5 for address mode for operand I (AMI), and 
(2) addr4 for address mode for operand 2 (AM2). 

Figure A-2. Additional instruction times for addressing mode when 
the relocation translator is enabled. 

Instruction Execution Times A-3 



Table 1. Instruction Times-Relocation 
~ Translator Not Installed or Disabled 
~!l .. 

Execution time .. ~ 

Mnemonic Instruction name Syntax (nanoseconds) 

AB Add Byte reg,addr4 2420+RS 
addr4,reg 1540+RS 

ABI Add Byte Immedilite byte,reg 1100 

ACY Add Carry Register reg 1540 

AD Add Double Word reg,addr4 4180+RS 
addr4,reg 3300+RS 
addr 5 ,addr4 5720+(AM1 +Y)+AM2 

AW Add Word reg,reg 1100 
reg,addr4 2420+RS 
addr4,reg 1540+RS 
addr5,addr4 3080+(AM1 +Y)+AM2 

R=O Rio 
longaddr ,reg 2420 2420 
longaddr* ,reg 2860 3080 

AWCY Add Word With Carry reg,reg 1540 

AWl Add Word Immediate word,reg [ ,reg] 1980 
word,addr4 3740+RS 

B Branch Unconditional longaddr 1760 
longaddr* 2420 

BAL Branch and Link longaddr ,reg 1980 
longaddr* ,reg 2640 

BALS Branch and Link Short (regjdisp) * 2200 
(reg) * 2200 
addr* 2200 

BALX Branch and Link External See BAL r' Branch 
Not taken Taken 

~~j 
BC Branch on Condition cond,longaddr 1540 1760 

cond,longaddr* 1540 2420 

Branch 
Not taken Taken 

BCC Branch on Condition Code cond,longaddr 1540 1760 
cond,longaddr* 1540 2420 

BCY Branch on Carry See BC 

BE Branch on Equal See BC 

BER Branch on Error See BNCC 

BEV Branch on Even See BC 

BGE Branch on Arithmetically See BNC 
Greater Than or Equal 

BGT Branch on Arithmetically See BNC 
Greater Than 

BLE Branch on Arithmetically See BC 
Less Than or Equal 

BLGE Branch on Logically See BNC 
Greater Than or Equal 

BLGT Branch on Logically See BNC 
Greater Than 

BLLE Branch on Logically See BC 
Less Than or Equal 

BLLT Branch on Logically SeeBC 
Less Than 

BLT Branch on Arithmetically See BC 

0 Less Than 

Table 1 (Part 1 of 10) 

A-4 GA34-0021 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

D BMIX Branch if Mixed See BC " 

BN Branch on Negative See BC 

Branch 
Not taken Taken 

BNC Branch on Not Condition cond,longaddr 1540 1760 
cond,longaddr* 1540 2420 

Branch 
Not taken Taken 

BNCC Branch on Not Condition cond,longaddr 1540 1760 
Code cond,longaddr * 1540 2420 

BNCY Branch on No Carry See BNC 

BNE Branch on Not Equal See BNC 

BNER Branch if Not Error See BCC 

BNEV Branch on Not Even See BNC 

BNMIX Branch if Not Mixed See BNC 

BNN Branch on Not Negative See BNC 

BNOFF Branch if Not Off See BNC 

BNON Branch if Not On See BNC 

Branch 
Not taken Taken 

BNOV Branch on Not Overflow 10 ngaddr 1540 1760 
longaddr* 1540 2420 

BNP Branch on Not Positive See BNC 

BNZ Branch on Not Zero See BNC 

BOFF Branch if Off See BC 

BON Branch if ON See BC 

C:l Branch 
Not taken Taken 

BOV Branch on Overflow longaddr 1540 1760 
longaddr* 1540 2420 

BP Branch on Positive See BC 

BX Branch External vcon See B 

BXS Branch Indexed Short (reg l
-

7 Jdisp) 1320 
(reg l - 7 ) 1320 
addr 1320 

BZ Branch on Zero See BC 

CB Compare Byte addr4,reg 1540+RS 
addr5,addr4 2200+AM1 +AM2 

CBI Compare Byte Immediate byte,reg 1100 

CD Compare Double Word addr4,reg 3080+RS 
addr5,addr4 4620+AM1 +AM2 

CFED Compare Byte Field Equal (reg),(reg) 1540+(3080 x CT) See CFNEN note 
and Decrement 

CFEN Compare Byte Field Equal (reg) ,(reg) 1540+(3080 x CT) See CFNEN note 
and Increment 

CFNED Compare Byte Field Not (reg),(reg) 1540+(3080 x CT) See CFNEN note 
Equal and Decrement 

CFNEN Compare Byte Field Not (reg),(reg) 1540+(3080 x CT) See note 
Equal and Increment 

Note. For CFED, CFEN, CFNED, and CFNEN, subtract 880 if the instruction 
is terminated by a comparison condition. 

Table 1 (Part 2 of 10) 

C' ,I " 

Instruction Execution Times A-5 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) ,~ 

CMR Complement RegisteT reg[,reg] 1320 ~ 
CPAKR Copy Address addr4 3080+RS 

Key Register reg 1760 

CPCL Copy Current Level reg 1540 

CPCON Copy Console Data Buffer reg 1540 

CPFLB Copy Floating Level Block reg,addr4 18260+RS 

CPIMR Copy Interrupt Mask addr4 2640+RS 
Register 

CPIPF Copy In-process Flags addr4 2640+RS 

CPISK Copy Instruction addr4 3080+RS 
Space Key reg 1760 

CPLB Copy Level Block reg,addr4 13200+RS SL=CL 
12540+RS SL1=CL 

CPLSR Copy Level Status Register reg 1100 

CPOOK Copy Operand 1 Key addr4 3080+RS 
reg 1760 

CPOTK Copy Operand 2 Key addr4 3080+RS 
reg 1760 

CPPSR Copy Processor Status addr4 2640+RS 
and Reset 

CPSK Copy Storage Key reg,addr4 3740+RS 

CPSR Copy Segmentation reg,addr4 3520+RS 
Register 

CW Compare Word reg,reg 1100 
addr4,reg 1540+RS 
addr5,addr4 2200+(AM 1 + X)+AM2 

CWI Compare Word Immediate word,reg 1980 

C~) word,addr4 3080+RS 

DB Divide Byte addr4,reg 24220+RS Minimum 
28380+RS Average 
32780+RS Maximum 
3520+RS Divide by zero 
5500+RS Overflow 

DD Divide Double Word addr4,reg 41800+RS Minimum 
49940+RS Average 
58960+RS Maximum 
2420+RS Divide by zero 
5060+RS Overflow 

DIAG Diagnose ubyte See chart 
Time 

If instruction bit 13 is on: 1760 

If instruction bit 13 is off, check other 
bits as follows: 

8 9 12 14 15 
0 X 0 0 0 3520 
0 X 0 0 I 5060 
0 X 0 1 0 3300 
0 X 0 1 1 4840 
0 X 1 0 0 3300 
0 X 1 0 1 4620 
0 X 1 1 0 3080 
0 X 1 1 1 4400 
1 0 0 X X 3300 
1 0 1 X X 3740 
1 1 X X X 2200 

Note. X can be either 0 or 1. 0 Table 1 (Part 3 of 10) 

A-6 GA34-0021 



Execution time 

~I 
Mnemonic Instruction name Syntax (nanoseconds) 

DIS Disable ubyte 1760+D See EN note 
J DW Divide Word addr4,reg 22220+RS Minimum 

26400+RS Average 
31900+RS Maximum 
2420+RS Divide by zero 
4400+RS Overflow 

EN Enable ubyte 1760+E See note 

Note. For the DIS and EN instructions, the values of D and 
E are baseq on instruction-word bits 12-15. 

12 13 14 15 D E 

0 0 0 0 0 0 
0 0 0 1 220 0 
0 0 1 0 220 220 
0 0 1 1 440 220 
0 1 0 0 440 220 
0 1 0 1 660 220 
0 1 1 0 660 440 
0 1 1 1 880 440 
1 0 0 0 220 0 
1 0 0 1 440 0 
1 0 1 0 440 0 
1 0 1 1 660 0 
1 1 0 0 660 220 
1 1 0 1 880 220 
1 1 1 0 880 220 

1 1 1 1100 220 

FA Floating Add addr4,freg 10120+RS Minimum 
25740+RS Maximum 

C' 
freg,freg 8360 Minimum 

23980 Maximum 

FAD Floating Add Double addr4,freg 11440+RS Minimum 
49060+RS Maximum 

freg,freg 8580 Minimum 
47080 Maximum 

FC Floating Compare freg,freg 7700 Minimum 
22660 Maximum 

FCD Floating Compare Double freg,freg 7920 Minimum 
42680 Maximum 

FD Floating Divide addr4,freg 28160+RS Minimum 
34540+RS Maximum 

freg,freg 26180 Minimum 
31240 Maximum 

FDD Floating Divide Double addr4,freg 53240+RS Minimum 
66660+RS Maximum 

freg,freg 50160 Minimum 
62260 Maximum 

FFD Fill Byte Field and reg,(reg) 1540+(1980 x CT) 
Decrement 

FFN Fill Byte Field and reg,(reg) 1540+(1980 x CT) 
Increment 

FM Floating Multiply addr4,freg 19360+RS Minimum 
22220+RS Maximum 

freg,freg 16500 Minimum 
19140 Maximum 

FMD Floating Multiply addr4,freg 23760+RS Minimum 
Double 30140+RS Maximum 

freg,freg 20240 Minimum 

0 
26400 Maximum 

Table 1 (Part 4 of 10) 

Instruction Execution Times A-7 



Execution time 

C Mnemonic Instruction name Syntax (nanoseconds) 

FMV Floating Move addr4,freg 6380+RS 
freg,freg 4400 
freg,addr4 6380+RS 

FMVC Floating Move and addr4,freg 12100+RS Minimum 
Convert 16940+RS Maximum 

freg,addr4 8360+RS Minimum 
17380+RS Maximum 

FMVCD Floating Move and addr4,freg 12100+RS Minimum 
Convert Double 28160+RS Maximum 

freg,addr4 11220+RS Minimum 
30800+RS Maximum 

FMVD Floating Move Double addr4,freg 7480+RS 
freg,freg 5500 
freg,addr4 8360+RS 

FS Floating Subtract addr4,freg 10120+RS Minimum 
25740+RS Maximum 

freg,freg 8360 Minimum 
23980 Maximum 

FSD Floating Subtract Double addr4,freg 11440+RS Minimum 
49060+RS Maximum 

freg,freg 8580 Minimum 
47080 Maximum 

R=O R=lO 
10 Operate I/O longaddr 4400 4400 See note 

longaddr* 4840 5060 See note 
Note. Channel and device times must be added (typically 1760). 

10PK Interchange Operand Keys 1760 

IR Interchange Registers reg,reg 1320 ;r--"1 
(. \) 

J Jump Unconditional jdisp 880 \t .. ,}) 
jaddr 880 

JAL Jump and Link jdisp,reg 1320 
jaddr,reg 1320 

Jump 
Not taken Taken 

JC Jump on Condition condJdisp 1100 1320 
condJaddr 1100 1320 

CT=O CT=1 CT>1 

JCT Jump on Count jdisp,reg 1540 1760 1980 
jaddr,reg 1540 1760 1980 

JCY Jump on Carry See JC 
JE Jump on Equal SeeJC 
JEV Jump on Even See JC 
JGE Jump on Arithmetically See JNC 

Greater Than or Equal 

JGT Jump on Arithmetically See JNC 
Grea ter Than 

JLE Jump on Arithmetically See JC 
Less Than or Equal 

JLGE Jump on Logically Greater See JNC 
Than or Equal 

JLGT Jump on Logically Greater See JNC 
Than 

JLLE Jump on Logically Less See JC 
Than or Equal 

JLLT Jump on Logically See JC 
(~ Less Than ;I 

Table 1 (Part 5 of 10) 

A-8 GA34-0021 



Execution time 

~ 
Mnemonic Instruction name Syntax (nanoseconds) 

JLT Jump on Arithmetically See JC 
Less Than 

JMIX Jump if Mixed See JC 

IN Jump on Negative See JC 

Jump 
Not taken Taken 

JNC Jump on Not Condition cond,jdisp 1100 1320 
cond,jaddr 1100 1320 

JNCY Jump on ~o Carry See JNC 

JNE Jump on Not Equal See JNC 

JNEV Jump on Not Even See JNC 

JNMIX Jump if Not Mixed See JNC 

JNN Jump on Not Negative See JNC 

JNOFF Jump if Not Off See JNC 

JNON Jump if Not On See JNC 

JNP Jump on Not Positive See JNC 

JNZ Jump on Not Zero See JNC 

JOFF Jump if Off See JC 

JON Jump if On See JC 

JP Jump on Positive See JC 

JZ Jump on Zero See JC 

LEX Level Exit [ubyte] 2860 

LMB Load Multiple and Branch addr4 7700+RS RL=7 
8580+(660xRL)+RS RLf7 

MB Multiply Byte addr4,reg 10340+RS Minimum 
16940+RS Average 

C) 23320+RS Maximum 

MD Multiply Doubleword addr4,reg 10780+RS Minimum 
26400+RS Average 
41800+RS Maximum 

MVA Move Address addr4,reg 2200+RS 
addr,addr4 3520+RS 

MVB Move Byte reg,addr4 2200+RS 
addr4,reg 1760+RS 
addr5,addr4 2860+AMI+AM2 

MVBI Move Byte Immediate byte,reg 880 

MVBZ Move Byte and Zero addr4,reg 2640+RS 

MVD Move Doubleword reg,addr4 3300+RS 
addr4,reg 2420+RS 
addr5,addr4 4620+AMl+AM2 

MVDZ Move Doubleword and addr4,reg 3740+RS 
Zero 

MVFD Move Byte Field and (reg),(reg) 1540+(2200 x eT) 
Decrement 

MVFN Move Byte Field and (reg),(reg) 1540+(2200 x CT) 
Increment 

MVW Move Word reg,reg 1100 
reg,addr4 2200+RS 
addr4,reg 1540+RS 
addr5,addr4 2860+(AM 1 + X)+ AM2 

R=O R =I 0 

reg,longaddr 2640 2640 
reg,longaddr* 3080 3300 
longaddr,reg 2420 2420 

0 longaddr* ,reg 2860 3080 

Table 1 (Part 6 of 10) 

Instruction Execution Times A-9 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) C MVWI Move Word Immedill-te word,reg 2200 

word,addr4 3520+RS 

MVWS Move Word Short reg,shortaddr 2640 
reg,shortaddr* 3520 
shortaddr ,reg 2420 
shortaddr* ,reg 3080 

MVWZ Move Word and Zero addr4,reg 2420+RS 

MW Multiply Word addr4,reg 9460+RS Minimum 
16060+RS Average 
22440+RS Maximum 

NOP No Operation 880 

NWI And Word Immediate word,reg [,reg) 1980 

OB OR Byte reg,addr4 2420+RS 
addr4,reg 1540+RS 
addr5,addr4 3080+AM1+AM2 

OD OR Doubleword reg,addr4 4180+RS 
addr4,reg 3300+RS 
addr5,addr4 5500+AM1+AM2 

OW OR Word reg,reg 1100 
reg,addr4 2420+RS 
addr4,reg 1540+RS 
addr5,addr4 3080+(AM1+X)+AM2 

R=O R=j:O 
longaddr,reg 2420 2420 
longaddr* ,reg 2860 3080 

OWl OR Word Immediate word,reg[,reg) 1980 
word,addr4 3520+RS 

PB Pop Byte addr4,reg 572O+RS r)' 
PD Pop Doubleword addr4,reg 5940+RS ~;JI 
PSB Push Byte reg,addr4 5500+RS 

PSD Push Doubleword reg,addr4 5940+RS 

PSW Push Word reg,addr4 5060+RS 

PW Pop Word addr4,reg 5280+RS 

RBTB Reset Bits Byte reg,addr4 2420+RS 
addr4,reg 1540+RS 
addr5,addr4 3080+AM1+AM2 

RBTD Reset Bits Doubleword reg,addr4 4180+RS 
addr4,reg' 3300+RS 
addr5,addr4 5500+AM1+AM2 

RBTW Reset Bits Word reg,reg 1100 
reg,addr4 2420+RS 
addr4,reg 1540+RS 
addr5,addr4 3080+(AM I + X)+ AM2 

R=O R=j:O 
longaddr ,reg 2420 2420 
longaddr* ,reg 2860 3080 

RBTWI Reset Bits Word word,reg[,reg) 1980 
Immediate word,addr4 3520+RS 

SB Subtract Byte reg,addr4 2420+RS 
addr4,reg 1540+RS 

SCY Subtract Carry Indicator reg 1540 
SD Subtract Doubleword reg,addr4 4180+RS 

addr4,reg 3300+RS 
addr5,addr4 5720+(AM1+Y)+AM2 

Table 1 (Part 7 of 10) 0 
A-IO GA34-0021 



Execution time 

~ 
Mnemonic Instruction name Syntax (nanoseconds) 

1'1 SEAKR Set Address Key addr4 2420+RS 
V Register reg 2200 

SECON Set Console Data Lights reg 1540 

SEFLB Set Floating Level Block reg,addr4 14740+RS 

SEIMR Set Interrupt Mask addr4 2420+RS 
Register 

SEIND Set Indicators reg 2420 

SEISK Set instruction addr4 2420+RS 
Space Key reg 2200 

SELB Set Level Block reg,addr4 11220 IP off and SL<CL 
12320 IP off and SL=CL 
10780 IP off and SL>CL 
11220 IP on and SL<CL 
11440 IP on and SL=CL 
12100 IP on and SL>CL 

Note. IP = in process flag; SL = selected level; CL = current level 

SEOOK Set Operand 1 Key addr4 2420+RS 
reg 2200 

SEOTK Set Operand 2 Key addr4 2420+RS 
reg 2200 

SESK Set Storage Key reg,addr4 3960+RS 

SESR Set Segmentation reg,addr4 2860+RS 
Register 

SFED Scan Byte Field Equal reg,(reg) 1540+(2680 x CT) See SFNEN note 
and Decrement 

SF EN Scan Byte Field Equal reg,(reg) 1540+(2680 x CT) See SFNEN note 
and Increment 

C SFNED Scan Byte Field Not reg,(reg) 1540+(2680 x CT) See SFNEN note 
Equal and Decrement 

SFNEN Scan Byte Field Not reg,(reg) 1540+(2680 x CT) See note 
Equal and Increment 
Note. For SFED, SFEN, SFNED, and SFNEN, subtract 880 if the 
instruction is terminated by a comparison condition. 

SLC Shift Left Circular cnt16,reg 1980 Zero count 
1980+110 x (CT+1) Odd count 
1980+110 x (CT) Even count 

reg,reg 1760 Zero count 
1760+110 x (CT+l) Odd count 
1760+110 x (CT) Even count 

SLCD Shift Left Circular cnt31,reg 2640 Zero count 
Double 2640+110 x (CT+l) Odd count 

2640+110 x (CT) Even count 
reg,reg 2200 Zero count 

2200+110 x (CT+l) Odd count 
2200+110 x (CT) Even count 

SLL Shift Left Logical cnt16,reg 2200 Zero count 
2200+ 11 0 x (CT+ 1) Odd count 
2200+110 x (CT) Even count 

reg,reg 1980 Zero count 
1980+110 x (CT+l) Odd count 
1980+110 x (CT) Even count 

SLLD Shift Left Logical cnt31,reg 2860 Zero count 
Double 2860+110 x (CT+l) Odd count 

2860+110 x (CT) Even count 
reg,reg 2420 Zero count 

2420+110 x (CT+l) Odd count 
2420+110 x (CT) Even count 

0 ' ' Table 1 (Part 8 of 10) 

Instruction Execution Times A-II 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) Ie SLT Shift Left and Test reg,reg 2860+660 x CT See SLTD note (1) 

3960+660 x K See SLTD note (2) 
2640 See SLTD note (3) 

SLTD Shift Left and Test reg,reg 3080+660 x CT See note (1) 
Double 4180+660 x K See note (2) 

2860 See note (3) 

Notes. 
(1) The shift count goes to zero before a shifted bit is set into 

the carry indicator. 
(2) A shifted bit is set into the carry indicator before the shift 

count goes to zero. K = bit number of leftmost one bit. 
(3) The initial operand is zero. 

SRA Shift Right Arithmetic cnt16,reg 1980 Zero count 
1980+110 x (CT+1) Odd count 
1980+110 x (CT) Even count 

reg,reg 1760 Zero count 
1760+110 x (CT+l) Odd count 
1760+110 x (CT) Even count 

SRAD Shift Right Arithmetic cnt31,reg 2640 Zero count 
Double 2640+110 x (CT+1) Odd count 

2640+110 x (CT) Even count 
reg,reg 2200 Zero count 

2200+ 11 0 x (CT+ 1) Odd count 
2200+ 110 x (CT) Even count 

SRL Shift Right Logical cnt16,reg 1980 Zero count 
1980+110 x (CT+l) Odd count 
1980+110 x (CT) Even count 

reg,reg 1760 Zero count 
1760+110 x (CT+l) Odd count r-'h 1760+110 x (CT) Even count \L)i 

SRLD Shift Righ t Logical cnt31,reg 2640 
' -" 

Zero count 
Double 2640+110 x (CT+1) Odd count 

2640+110 x (CT) Even count 
reg ,reg 2200 Zero count 

2200+110 x (CT+l) Odd count 
2200+110 x (CT) Even count 

STM Store Multiple reg,addr4 [,a bcn t] 9900+RS RL=7 
10780+(880xRL)+RS RL=I=7 

STOP Stop [ubyte] 1540 

SVC Supervisor Call ubyte 14300 

SW Subtract Word reg,reg 1100 
reg,addr4 2420+RS 
addr4,reg 1540+RS 
addr5,addr4 3080+(AMl+Y)+AM2 

R=O R=/O 
longaddr ,reg 2420 2420 
longaddr* ,reg 2860 3080 

SWCY Subtract Word With Carry reg,reg 1540 

SWI Subtract Word Immediate word,addr4 3520+RS 
word,reg[,reg] 1980 

TBT Test Bit (reg,bitdisp) 4400+A See TBTV note 
TBTR Test Bit and Reset (reg,bitdisp) 5060+A See TBTV note 
TBTS Test Bit and Set (reg,bitdisp) 5060+A See TBTV note 
TBTV Test Bit and Invert (reg,bitdisp) 5060+A See note 

Table 1 (Part 9 of 10) 

0' 
A-12 GA34-0021 



Execution time 

0 
Mnemonic Instruction name Syntax (nanoseconds) 

Note. For TBT, TBTR, TBTS, and TBTV: 

A = 0 if BT is zero. 
A = 110 x BT if BT is even. 
A = 110 x (BT+l) if BT is odd. 

BT = bit number of tested bit (range 0-7). 

TWI Test Word Immediate word,reg 2420 All bits = 0 
2640 All bits =/= 0 

word,addr4 3080+RS All bits = 0 
3300+RS Any bits =/= 0 

VR Invert Rewster reg[,reg] 1320 

XB Exclusive OR Byte reg,addr4 2420+RS 
addr4,reg 1540+RS 

XD Exclusive OR Doubleword reg,addr4 4180+RS 
addr4,reg 3300+RS 

XW Exclusive OR Word reg,reg 1100 
reg,addr4 2420+RS 
addr4,reg 1540+RS 

R=O Rio 
longaddr,reg 2420 2420 
longaddr* ,reg 2860 3080 

XWI Exclusive OR Word word,reg [,reg] 1980 
Immediate 

Table 1 (Part 10 of 10) 

o 
Instruction Execution Times A-13 



Table 2. Instruction Times - Relocation Translator Enabled 
Execution time C Mnemonic Instruction name Syntax (nanoseconds) 

AB Add Byte reg,addr4 2860+RS 
addr4,reg 1760+RS 

ABI Add Byte Immediate byte,reg 1320 

ACY Add Carry Register reg 1760 

AD Add Double Word reg,addr4 5060+RS 
addr4,reg 3740+RS 
addr5,addr4 6820+(AM1+Y)+AM2 

AW Add Word reg,reg 1320 
reg,addr4 2860+RS 
addr4,reg 1760+RS 
addr5,addr4 3520+(AM1+Y)+AM2 

R=O RIo 
longaddr ,reg 3080 3080 
longaddr* ,reg 3740 3960 

AWCY Add Word With Carry reg,reg 1760 
AWl Add Word Immediate word,reg[ ,reg] 2420 

word,addr4 4400+RS 

B Branch Unconditional longaddr 2200 
longaddr* 3080 

BAL Branch and Link longaddr ,reg 2420 
longaddr* ,reg 3300 

BALS Branch and Link Short (regjdisp)* 2640 
(reg) * 2640 
addr* 2640 

BALX Branch and Link External See BAL 

Branch r-) Not taken Taken 
~. 

BC Branch on Condition cond,longaddr 1980 2200 
cond,longaddr * 1980 3080 

Branch 
Not taken Taken 

BCC Branch on Condition Code cond,longaddr 1980 2200 
cond,longaddr * 1980 3080 

BCY Branch on Carry See BC 

BE Branch on Equal See BC 

BER Branch on Error See BNCC 

BEV Branch on Even SeeBC 

BGE Branch on Arithmetically See BNC 
Greater Than or Equal 

BGT Branch on Arithme~ically See BNC 
Greater Than 

BLE Branch on Arithmetically See BC 
Less Than or Equal 

BLGE Branch on Logically See BNC 
Greater Than or Equal 

BLGT Branch on Logically See BNC 
Greater Than 

BLLE Branch on Logically SeeBC 
Less Than or Equal 

BLLT Branch on Logically SeeBC 
Less Than 

Table 2 (Part 1 of 10) 

0 
A-14 GA34-0021 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

C) BLT Branch on Arithmetically See BC 
Less Than 

BMIX Branch if Mixed See BC 

BN Branch on Negative See BC 

Branch 
Not taken Taken 

BNC Branch on Not Condition cond,longaddr 1980 2200 
cond,longaddr* 1980 3080 

Branch 
Not taken Taken 

BNCC Branch on Not Condition cond,longaddr 1980 2200 
Code cond,longaddr* 1980 3080 

BNCY Branch on No Carry See BNC 

BNE Branch on Not Equal See BNC 

BNER Branch if Not Error See BCC 

BNEV Branch on Not Even See BNC 

BNMIX Branch if Not Mixed See BNC 

BNN Branch on Not Negative See BNC 

BNOFF Branch if Not Off See BNC 

BNON Branch if Not On See BNC 

Branch 
Not taken Taken 

BNOV Branch on Not Overflow longaddr 1980 2200 
longaddr* 1980 3080 

BNP Branch on Not Positive See BNC 

BNZ Branch on Not Zero See BNC 

BOFF Branch if Off See BC 

C·~ BON Branch if ON See BC 
"'v 

Branch 
Not taken Taken 

BOV Branch on Overflow longaddr 1980 2200 
longaddr* 1980 3080 

BP Branch on Positive SeeBC 

BX Branch External vcon See B 

BXS Branch Indexed Short (regl -7 ,jdisp) 1540 
(reg l -7 ) 1540 
addr 1540 

BZ Branch on Zero SeeBC 

CB Compare Byte addr4,reg 1760+RS 
addr5,addr4 2420+AMI +AM2 

CBI Compare Byte It;nmediate byte,reg 1320 

CD Compare Double Word addr4,reg 3520+RS 
addr5,addr4 5280+AMI +AM2 

CFED Compare Byte Field Equal (reg),(reg) 1760+(3520 x CT) See CFNEN note 
and Decrement 

CFEN Compare Byte Field Equal (reg), (reg) 1760+(3520 x CT) See CFNEN note 
and Increment 

CFNED Compare Byte Field Not (reg),(reg) 1760+(3520 x CT) See CFNEN note 
Equal and Decrement 

CFNEN Compare Byte Field Not (reg), (reg) 1760+(3520 x CT) See note 
Equal and Increment 

Note. For CFED, CFEN, CFNED, and CFNEN, subtract 880 if the instruction 
is terminated by a comparison condition. 

0 Table 2 (part 2 of 10) 

Instruction Execution Times A-15 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

(f~" CMR Complement Register reg[,reg] 1540 
CPAKR Copy Address Key Register addr4 3300+RS ~,J' 

reg 1980 
CPCL Copy Current Level reg 1760 
CPCON Copy Console Data Buffer reg 1760 
CPFLB Copy Floating Level Block reg,addr4 21780+RS 
CPIMR Copy Interrupt Mask addr4 2860+RS 

Register 

CPIPF Copy In-process Flags addr4 2860+RS 
CPISK Copy Instruction Space Key addr4 3300+RS 

reg 1980 
CPLB Copy Level Block reg,addr4 15620+RS SL=CL 

14960+RS SL:fCL 
CPLSR Copy Level Status Register reg 1320 
CPOOK Copy Operand 1 Key addr4 3300+RS 

reg 1980 
CPOTK Copy Operand 2 Key addr4 3300+RS 

reg 1980 
CPPSR Copy Processor Status addr4 2860+RS 

and Reset 
CPSK Copy Storage Key reg,addr4 4180+RS 
CPSR Copy Segmentation reg,addr4 3960+RS 

Register 

CW Compare Word reg,reg 1320 
addr4,reg 1760+RS 
addr5,addr4 2420+(AM 1 + X)+ AM2 

CWI Compare Word Immediate word,reg 2420 
word,addr4 3520+RS 

DB Divide Byte addr4,reg 24440+RS Minimum 
28600+RS Average 
33000+RS Maximum 
3740+RS Divide by zero 
5720+RS Overflow 

DD Divide Double Word addr4,reg 42020+RS Minimum 
50160+RS Average 
59180+RS Maximum 
2640+RS Divide by zero 
5280+RS Overflow 

DIAG Diagnose ubyte See chart 

Time 
If instruction bit 13 is on: 1980 
If instruction bit 13 is off, check other 
bits as follows: 

8 9 12 14 15 
0 X 0 0 0 5280 
0 X 0 0 1 550Q 
0 X 0 1 0 3740 
0 X 0 1 1 5060 
0 X 1 0 0 3740 
0 X 1 0 1 4840 
0 X 1 1 0 3520 
0 X 1 1 1 4620 
1 0 0 X X 3960 
1 0 1 X X 4400 
1 1 X X X 2420 

Note. X can be either 0 or 1. (\ 
Table 2 (part 3 of 10) , ./ 

A-16 GA34-0021 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

0 DIS Disable ubyte 1760+D See EN note 

DW Divide Word addr4,reg 22440+RS Minimum 
26620+RS Average 
32120+RS Maximum 
2640+RS Divide by zero 
4620+RS Overflow 

EN Enable ubyte 1760+E See note 

Note. For the DIS and EN instructions, the values of D and 
E are based on instruction-word bits 12-15. 

12 13 14 15 D E 

0 0 0 0 0 0 
0 0 0 1 220 0 
0 0 1 0 220 220 
0 0 1 1 440 220 
0 0 0 440 220 
0 0 1 660 220 
0 1 0 660 440 
0 1 1 1 880 440 
1 0 0 0 220 0 
1 0 0 1 440 0 
1 0 1 0 440 0 
1 0 1 1 660 0 
1 1 0 0 660 220 
1 1 0 1 880 220 
1 1 1 0 880 220 
1 1 1 1100 220 

FA Floating Add addr4,freg 10780+RS Minimum 
26400+RS Maximum 

freg,freg 8580 Minimum 

C 24200 Maximum ) FAD Floating Add Double addr4,freg 12540+RS Minimum 
50160+RS Maximum 

freg,freg 8800 Minimum 
47300 Maximum 

FC Floating Compare freg,freg 7920 Minimum 
22880 Maximum 

FCD Floating Compare Double freg,freg 8140 Minimum 
42900 Maximum 

FD Floating Divide addr4,freg 28820+RS Minimum 
35200+RS Maximum 

freg,freg 26180 Minimum 
31460 Maximum 

FDD Floating Divide Double addr4,freg 54180+RS Minimum 
67760+RS Maximum 

freg,freg 50380 Minimum 
62480 Maximum 

FFD Fill Byte Field and reg,(reg) 1760+(2200 x CT) 
Decrement 

FFN Fill Byte Field and reg,(reg) 1760+(2200 x CT) 
Increment 

FM Floating Multiply addr4,freg 20020+RS Minimum 
22880+RS Maximum 

freg,freg 16720 Minimum 
19360 Maximum 

FMD Floating Multiply Double addr4,freg 24860+RS Minimum 
31240+RS Maximum 

freg,freg 20460 Minimum 
26460 Maximum 

0 Table 2 (Part 4 of 10) 

Instruction Execution Times A-17 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

C FMV Floating Move addr4,freg 7040+RS 
freg,freg 4620 
freg,addr4 7040+RS 

FMVC Floating Move and Convert addr4,freg 12540+RS Minimum 
17380+RS Maximum 

freg,addr4 8800+RS Minimum 
17820+RS Maximum 

FMVCD Floating Move and addr4,freg 12760+RS Minimum 
Convert Double 28820+RS Maximum 

freg,addr4 11880+RS Minimum 
31460+RS Maximum 

FMVD Floating Move Double addr4,freg 8580+RS 
freg,freg 5720 
freg,addr4 9460+RS 

FS Floating Subtract addr4,freg 10780+RS Minimum 
26400+RS Maximum 

freg,freg 8580 Minimum 
24200 Maximum 

FSD Floating Subtract Double addr4,freg I 2540+RS Minimum 
50160+RS Maximum 

freg,freg 8800 Minimum 
47300 Maximum 

R=O RIo 
10 Operate I/O longaddr 5280 5280 See note 

longaddr* 5940 6160 See note 

Note. Channel and device times must be added (typically 1760). 

10PK Interchange Operand Keys 1980 

IR Interchange Registers reg,reg 1540 ;(~, 

J Jump Unconditional jdisp 1100 
~ .... j 

jaddr 1100 
""-,,I" 

JAL Jump and Link jdisp,reg 1540 
jaddr,reg 1540 

Jump 
Not taken Taken 

JC Jump on Condition condjdisp 1320 1540 
condjaddr 1320 1540 

CT=O CT=] CT>] 
JCT Jump on Count jdisp,reg 1760 1980 2200 

jaddr,reg 1760 1980 2200 

JCY Jump on Carry See JC 
JE Jump on Equal See JC 

JEV Jump on Even See JC 
JGE Jump on Arithmetically See JNC 

Greater Than or Equal 

JGT Jump on Arithmetically See JNC 
Greater Than 

JLE Jump on Arithmetically See JC 
Less Than or Equal 

JLGE Jump on Logically Greater See JNC 
Than or Equal 

JLGT Jump on Logically Greater See JNC 
Than 

JLLE Jump on Logically Less See JC 
Than or Equal 

Table 2 (Part 5 of 10) 0 
A-18 GA34-0021 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

0 JLLT Jump on Logically See JC 
Less Than 

JLT Jump on Arithmetically See JC 
Less Than 

JMIX Jump if Mixed See JC 

IN Jump on Negative See JC 

Jump 
Not taken Taken 

JNC Jump on Not Condition condjdisp 1320 1540 
condjaddr 1320 1540 

JNCY Jump on No Carry See JNC 

JNE Jump on Not Equal See JNC 

JNEV Jump on Not Even See JNC 

JNMIX Jump if Not Mixed See JNC 

JNN Jump on Not Negative See JNC 

JNOFF Jump if Not Off See JNC 

JNON Jump if Not On See JNC 

JNP Jump on Not Positive See JNC 

JNZ Jump on Not Zero See JNC 

JOFF Jump if Off See JC 

JON Jump if On See JC 

JP Jump on Positive See JC 

JZ Jump on Zero See JC 

LEX Level Exit [ubyte] 3080 

LMB Load Multiple and Branch addr4 8800+RS RL=7 
9900+(880 x RL)+RS RL+7 

C) MB Multiply Byte addr4,reg 10560+RS Minimum 
17160+RS Average 
23540+RS Maximum 

MD Multiply Doubleword addr4,reg 11000+RS Minimum 
26620+RS Average 
42020+RS Maximum 

MVA Move Address addr4,reg 2200+RS 
addr,addr4 3960+RS 

MVB Move Byte reg,addr4 2640+RS 
addr4,reg 1980+RS 
addr5,addr4 3300+AM1+AM2 

MVBI Move Byte Immediate byte,reg 1100 

MVBZ Move Byte and Zero addr4,reg 3080+RS 

MVD Move Doubleword reg,addr4 3960+RS 
addr4,reg 2860 
addr5,addr4 5500+AMl+AM2 

MVDZ Move Doubleword and addr4,reg 4620+RS 
Zero 

MVFD Move Byte Field and (reg), (reg) 1760+(2640 x CT) 
Decrement 

MVFN Move Byte Field and (reg), (reg) 1760+(2640 x CT) 
Increment 

Table 2 (part 6 of 10) 

o 
Instruction Execution Times A-19 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

C MVW Move Word reg,reg 1320 
reg,addr4 2640+RS --.-
addr4,reg 1760+RS 
addrS ,addr4 3 300+(AM 1 + X)+ AM2 

R=O Rio 
reg,longaddr 3300 3300 
reg,longaddr* 3960 4180 
longaddr ,reg 3080 3080 
longaddr* ,reg 3740 3960 

MVWI Move Word Immediate word,reg 2200 
word,addr4 3960+RS 

MVWS Move Word Short reg,shortaddr 3080 
reg,shortaddr* 4180 
shortaddr ,reg 2860 
shortaddr* ,reg 3740 

MVWZ Move Word and Zero addr4,reg 2860+RS 

MW Multiply Word addr4,reg 9680+RS Minimum 
16280+RS Average 
22660+RS Maximum 

NOP No Operation 1100 

NWI And Word Immediate word,reg[ ,reg] 2420 

OB OR Byte reg,addr4 2860+RS 
addr4,reg 1760+RS 
addrS,addr4 3S20+AM1 +AM2 

OD OR Doubleword reg,addr4 S060+RS 
addr4,reg 3740+RS 
addrS ,addr4 6600+AM1 +AM2 

OW OR Word reg,reg 1320 (r--...\ 
reg,addr4 2860+RS [' ~ 

addr4,reg 1760+RS ~~, 

addrS,addr4 3520+(AM1+X)+AM2 

R=O Rio 
longaddr ,reg 3080 3080 
longaddr* ,reg 3740 3960 

OWl OR Word Immediate word,reg[ ,reg] 2420 
word,addr4 4180+RS 

PB Pop Byte addr4,reg 6600+RS 

PD Pop Doubleword addr4,reg 7040+RS 
PSB Push Byte reg,addr4 6380+RS 

PSD Push Doubleword reg,addr4 7040+RS 

PSW Push Word reg,addr4 5960+RS 

PW Pop Word addr4,reg 6160+RS 

RBTB Reset Bits Byte reg,addr4 2860+RS 
addr4,reg 1760+RS 
addrS ,addr4 3S20+AM1+AM2 

RBTD Reset Bits Doubleword reg,addr4 5060+RS 
addr4,reg 3740+RS 
addrS,addr4 6600+AM1 +AM2 

RBTW Reset Bits Word reg,reg 1320 
reg,addr4 2860+RS 
addr4,reg 1760+RS 
addrS ,addr4 3S20+(AM1+X)+AM2 

R=O Rio 
longaddr,reg 3080 3080 
longaddr* ,reg 3740 3960 

Table 2 (part 7 of 10) () 

A-20 GA34-0021 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

0 RBTWI Reset Bits Word word, reg [,reg] 2420 
Immediate word,addr4 4180+RS 

SB Subtract Byte reg,addr4 2860+RS 
addr4,reg 1760+RS 

SCY Subtract Carry Indicator reg 1760 

SD Subtract Doubleword reg,addr4 5060+RS 
addr4,reg 3740+RS 
addr5,addr4 6820+(AM 1 + Y)+ AM2 

SEAKR Set Address Key Register addr4 2640+RS 
reg 2420 

SECON Set Console Data Lights reg 1760 
SEFLB Set Floating Level Block reg,addr4 18480+RS 
SEIMR Set Interrupt Mask Register addr4 2640+RS 

SEIND Set Indicators reg 2640 
SEISK Set Instruction Space Key addr4 2640+RS 

reg 2420 
SELB Set Level Block reg,addr4 13640 IP off and SL < CL 

14740 IP off and SL=CL 
13200 IP off and SL >CL 
13640 IP on and SL < CL 
13860 IP on and SL=CL 
14520 IP on and SL >CL 

Note. IP = in process flag; SL = selected level; CL = current level. 

SEOOK Set Operand 1 Key addr4 2640+RS 
reg 2420 

SEOTK Set Operand 2 Key addr4 2640+RS 
reg 2420 

C 
SESK Set Storage Key reg,addr4 4400+RS 
SESR Set Segmentation Register reg,addr4 3080+RS 
SFED Scan Byte Field Equal reg,(reg) 1760+(3080 x CT) See SFNEN note 

and Decrement 

SFEN Scan Byte Field Equal reg,(reg) 1760+(3080 x CT) See SFNEN note 
and Increment 

SFNED Scan Byte Field Not reg, (reg) 1760+(3080 x CT) See SFNEN note 
Equal and Decrement 

SFNEN Scan Byte Field Not reg,(reg) 1760+(3080 x CT) See note 
Equal and Increment 

Note. For SFED, SFEN, SFNED, and SFNEN, subtract 880 if the 
instruction is terminated by a comparison condition. 

SLC Shift Left Circular cnt16,reg 2200 Zero count 
2200+110 x (CT+l) Odd count 
2200+110 x (CT) Even count 

reg,reg 1980 Zero count 
1980+110 x (CT+l) Odd count 
1980+110 x (CT) Even count 

SLCD Shift Left Circular cnt31,reg 2860 Zero count 
Double 2860+110 x (CT+l) Odd count 

2860+110 x (CT) Even count 
reg,reg 2420 Zero count 

2420+110 x (CT+l) Odd count 
2420+110 x (CT) Even count 

SLL Shift Left Logical cnt16,reg 2420 Zero count 
2420+110 x (CT+l) Odd count 
2420+110 x (CT) Even count 

reg,reg 2200 Zero count 

0 
2200+110 x (CT+1) Odd count 
2200+110 x (CT) Even count 

Table 2 (Part 8 of 10) 

,Instruction"Execution Times A-21 



Execution time 
Mnemonic Instruction name Syntax (nanoseconds) 

C SLLD Shift Left Logical Double cnt31,reg 3080 Zero count 
3080+110 x (CT+l) Odd count 
3080+110 x (CT) Even count 

reg,reg 2640 Zero count 
2640+110 x (CT+l) Odd count 
2640+110 x (CT) Even count 

SLT Shift Left and Test reg,reg 3080+660 x CT See SLTD note (1) 
4180+660 x K See SLTD note (2) 
2860 See SLTD note (3) 

SLTD Shift Left and Test Double reg,reg 3300+660 x CT See note (1) 
4400+660 x K See note (2) 
3080 See note (3) 

Notes. 
(1) The shift count goes to zero before a shifted bit is set into 

the carry indicator. 
(2) A shifted bit is set into the carry indicator before the shift 

count goes to zero. K = bit number of leftmost one bit. 
(3) The initial operand is zero. 

SRA Shift Right Arithmetic cnt16,reg 2200 Zero count 
2200+110 x (CT+l) Odd count 
2200+110 x (CT) Even count 

reg,reg 1980 Zero count 
1980+110 x (CT+l) Odd count 
1980+110 x (CT) Even count 

SRAD Shift Right Arithmetic cnt31,reg 2860 Zero count 
Double 2860+110 x (CT+l) Odd count 

2860+110 x (CT) Even count 
reg,reg 2420 Zero count 

2420+110 x (CT+l) Odd count 
r~ 

2420+110 x (CT) Even count ~~j SRL Shift Right Logical cnt16,reg 2200 Zero count 
2200+110 x (CT+l) Odd count 
2200+110 x (CT) Even count 

reg,reg 1980 Zero count 
1980+110 x (CT+l) Odd count 
1980+110 x (CT) Even count 

SRLD Shift Right Logical Double cnt31,reg 2860 Zero count 
2860+110 x (CT+l) Odd count 
2860+110 x (CT) Even count 

reg,reg 2420 Zero count 
2420+110 x (CT+l) Odd count 
2420+110 x (CT) Even count 

STM Store Multiple reg,addr4 [,abcnt] 11220+RS RL=7 
12320+(1100 x RL)+RS RL=f7 

STOP Stop [ubyte] 1760 
SVC Supervisor Call ubyte 17380 
SW Subtract Word reg,reg 1320 

reg,addr4 2860+RS 
addr4,reg 1760+RS 
addrS ,addr4 3520+(AM1+Y)+AM2 

R=O RiO 
longaddr ,reg 3080 3080 
longaddr* ,reg 3740 3960 

SWCY Subtract Word With Carry reg,reg 1760 
SWI Subtract Word Immediate word,addr4 4180+RS 

word,reg [,reg] 2420 

Table 2 (part 9 of 10) 0 
A-22 GA34-0021 



ExeCution time 
Mnemonic Instruction name Syntax (nanoseconds) 

D TBT Test Bit (reg,bitdisp) 4840+A See TBTV note 

TBTR Test Bit and Reset (reg,bitdisp) 5720+A See TBTV note 

TBTS Test Bit and Set (reg,bitdisp) 5720+A See TBTV note 

TBTV Test Bit and Invert (reg,bitdisp) 5720+A See note 

Note. For TBT, TBTR, TBTS, and TBTV: 

A = 0 if BT is zero. 
A = 110 x BT if BT is even. 
A = 110 x (BT+l) if BT is odd. 
BT = bit number of tested bit (range 0-7). 

TWI Test Word Immediate word,reg 2860 All bits = 0 
3080 All bits:f: 0 

word,addr4 3520+RS All bits = 0 
3740+RS Any bits:f: 0 

VR Invert Register reg[,reg] 1540 
XB Exclusive OR Byte reg,addr4 2860+RS 

addr4,reg 1760+RS 
XD Exclusive OR Doubleword reg,addr4 5060+RS 

addr4,reg 3740+RS 
XW Exclusive OR Word reg,reg 1320 

reg,addr4 2860+RS 
addr4,reg 1760+RS 

R=O RID 
longaddr ,reg 3080 3080 
longaddr* ,reg 3740 3960 

XWI Exclusive OR Word word,reg [ ,reg] 2420 
Immediate 

C} Table 2 (Part 10 of 10) 

o 
Instruction Execution Times A-23 



o 

o 
A-24 GA34-0021 



) 

o 

The following instruction formats are shown in ascending 
sequence based on operation code. Bits zero through four 
of the first instruction word comprise the operation code 
field. Bit combinations are shown for each operation code 
along with the hexadecimal representation. 

Some instructions contain a function field that modifies 
the operation code to form individual instructions within a 
group. Each chart shows the function field bit combina­
tions in hexadecimal and in ascending sequence. The 
assembler mnemonic, assembler syntax, and instruction 
name are listed for the individual instructions. The asterisk 
shown with the assembler syntax indicates indirect 
addressing. 

Refer to Chapter 2, Effective Address Generation, for a 
description of the Address Mode (AM) appended words. 

o 4 5 7 8 15 
~~~~ 

o 0-7 X X

byte,reg Add Byte Immediate

o 4 5 7 8 15
~~~~ 

o 8-F X X 

MVBI byte,reg Move Byte Immediate 

Oxxx 
Appendix B. Instruction F onnats 

Instruction Formats B-1 



lxxx 
Operation code 

00010 
Word displacement 

o 4 5 7 8 15 
~~~~ 

1 0-7 X X

Operation code

o 0 0 1 1

1

JC

JC

condjdisp

cond,jaddr

Extended mnemonics:

Jump on Condition

Jump on Condition

JCY, JE, JEV, JLE, JLLE, JLLT, JLT, JMIX,
IN, JOFF, JON, JP, JZ

Word displacement

8-F X X

11 IS-FI X I X I JNC cond,jdisp Jump on Not Condition

Jump on Not Condition

B-2 GA34-0021

JNC condjaddr

Extended mnemonics:
JGE, JGT, JLGE, JLGT, JNCY, JNE, JNEV,
JNMIX, JNN, JNP, JNZ

(

o

2xxx

I ~~_p_~_ro_~_.o_no_co_d_;~I_o~I_R __ ~R_B~_A ___ M~IF_U_n __ ~I_p~I ____ ~~
o 4 5 6 7 8 9 10 11 12 14 15 16 31
~~~'- V .-' 

2 0-3 X O-F AM appended word 

X: 0 FA addr4,freg Floating Add 

1 FAD addr4,freg Floating Add Double 

2 FS addr4,freg Floating Subtract 

3 FSD addr4,freg Floating Subtract Double 

4 FM addr4,freg Floating Multiply 

5 FMD addr4,freg Floating Multiply Double 

6 FD addr4,freg Floating Divide 

7 FDD addr4,freg Floating Divide Double 

8 FMVC addr4,freg Floating Move and Convert 

9 FMVCD addr4,freg Floating Move and Convert Double 

A FMVC freg,addr4 Floating Move and Convert 

B FMVCD freg,addr4 Floating Move and Convert Double 

C FMV addr4,freg Floating Move 

D FMVD addr4,freg Floating Move Double 

E FMV freg,addr4 Floating Move 

C'I F FMVD freg,addr4 Floating Move Double 
,,' 

0'·", 
", 

Instruction Formats B-3 



2xxx 

I ~pet7n ;d; 111 RJ R2 

10 
IFunc rI 0 ( 0 4 5 6 7 8 9 1011 12 14 15 

~~~~ 
2 4-7 X O-F

X 0 FA freg,freg Floating Add

FAD freg,freg Floating Add Double

2 FS freg,freg Floating Subtract

3 FSD freg,freg' Floating Subtract Double

4 FM freg,freg Floating Multiply

5 FMD freg,freg' Floating Multiply Double

6 FD freg,freg Floating Divide

7 FDD freg,freg Floating Divide Double

8 FMV freg,freg Floating Move

9 FMVD freg,freg Floating Move Double

A FC freg,freg Floating Compare

B FCD freg,freg Floating Compare Double

C (must not be used) Executes FMV

D (must not be used) Executes FMVD

E (must not be used) Indicators are reset

F (must not be used) Indicators are reset tf~
lJ~JvJ

B-4 GA34-0021 .·1

I Operation code I Rl R2
10 II ID I Fun I J o 0 101

0 4 5 7 8 10 11 12 13 14 15
~~~~ 

2 8-F X O-F 

X 0 MVFD (reg),(reg) 

(unused) 

2 CFNED (reg),(reg) 

3 CFED (reg),(reg) 

4 MVFN (reg), (r eg) 

5 (unused) 

6 CFNEN (reg),(reg) 

7 CFEN (reg),(reg) 

8 FFD reg,(reg) 

9 (unused) 

A SF NED reg,(reg) 

B SF ED reg,(reg) 

C FFN reg~(reg) 

D (unused) 

E SFNEN reg,(reg) 

C F SFEN reg,(reg) 
(I 

" 

I gp~at~n ~Od; I R I Count I Functionl 

o 4 5 7 8 12 13 15 
~~~~ 

3 0-7 X O-F

Xi 0,8 SLC cnt16,reg

1,9 SLL cnt16,reg

2,A SRL cnt16,reg

3,B SRA cnt16,reg

4,C SLCD cnt31,reg

5,D SLLD cnt31,reg

6,E SRLD cnt31,reg

7,F SRAD cnt31,reg

o

Move Byte Field and Decrement

Compare Byte Field Not Equal and Decrement

Compare Byte Field Equal and Decrement

Move Byte Field and Increment

Compare Byte Field Not Equal and Increment

Compare Byte Field Equal and Increment

Fill Byte Field and Decrement

Scan Byte Field Not Equal and Decrement

Scan Byte Field Equal and Decrement

Fill Byte Field and Increment

Scan Byte Field Not Equal and Increment

Scan Byte Field Equal and Increment

Shift Left Circular

Shift Left Logical

Shift Right Logical

Shift Right Arithmetic

Shift Left Circular Double

Shift Left Logical Double

Shift Right Logical Double

Shift Right Arithmetic Double

2xxx
3xxx

Instruction Formats B-5

3xxx
4xxx
I Operation code I
00111
o 4 5 15
~~~~ 

3 8-F X X 

Illegal operation code (program check condition) 

AM appended word 

~ 

I Operation code I R RB AM IFunction ~LJ o 1 000 
0 4 5 7 8 9 101112 15 16 31 

Operation code 1] 0 1 0 0 0 
0 1 4 5 7 8 9 10 11 12 15 16 31 

I ~pe;at~n ~od;1 R I RB I AM IFunction S ~ I Immedwte 10 
o 4 5 7 8 9 10 11 12 - 15 16 31 32 47 
~~~~~ 

4 0-7 X O-F AM appended word

x 0 MVA addr,addr4 Move Address

0 MVWI word,addr4 Move Word Immediate

1 (invalid)

2 (invalid)

3 (invalid)

4 MVA addr4,reg Move Address (Note 1)

4 MVWI word,reg Move Word Immediate (Note 1)

5 (invalid)

6 (invalid)

7 (invalid)

8 STM reg,addr4 [,abcnt] Store Multiple

9 AWl word,addr4 Add Word Immediate

A LMB addr4 Load Multiple and Branch (Note 1)

B TWI word,addr4 Test Word Under Mask Immediate

C OWl word,addr4 OR Word Immediate

D RBTWI word,addr4 Reset Bits Word Immediate

E SWI word,addr4 Subtract Word Immediate

F CWI word,addr4 Compare Word Immediate

Note 1. Use format without immediate field.

B-6 GA34-0021

0

o

()

o

Operation code

o 100 1
Bit displacement

o 4 5 7 10 15
~~~~ 

4 8-F O-F X 

Operation code 

o 1 0 1 0 
o 

I 5 0 0 0 

0 X X 

1-7 X X 

TBT 

TBTS 

TBTR 

TBTV 

(reg,bitdisp) 

(reg,bitdisp) 

(reg,bitdisp) 

(reg,bitdisp) 

Word displacement 

15 

NOP No Operation 

J jdisp 

J jaddr 

BXS (reg l
-

7 Jdisp) 

BXS (reg l - 7 ) 

BXS addr 

Test Bit 

Test Bit and Set On 

Test Bit and Reset 

Test Bit and Invert 

Jump Unconditional 

Jump Unconditional 

Branch Indexed Short 

Branch Indexed Short 

Branch Indexed Short 

4xxx 
5xxx 

Instruction Formats 8-7 



,operation code , 
o 101 1 
o 4 5 

K 
'RB , AM 'FunctiOn sO 

7 8 9 101112 15 16 31 
~ 
AM appended word 

I~pet~n;od;' R , RB , AM 'FunctiOn, ~D 
o 4 5 7 8 9 10 11 12 15 16 31 
~~~~~ 

5 8-F X O-F AM appended word

0 SEIMR addr4 Set Interrupt Mask Register

SESR reg,addr4 Set Segmentation Register

2 SEAKR addr4 Set Address Key Register (Note 2)

3 SEFLB reg,addr4 Set Floating Level Block

4 SESK reg,addr4 Set Storage Key

5 (invalid)

6 SELB reg,addr4 Set Level Status Block

7 (invalid)

8 CPIMR addr4 Copy Interrupt Mask Register

9 CPSR reg,addr4 Copy Segmentation Register

A CPAKR addr4 Copy Address Key Register (Note 3)

B CPFLB reg,addr4 Copy Floating Level Block

C CPSK reg,addr4 . Copy Storage Key

D CPIPF addr4 Copy In-Process Flags

E CPLB reg,addr4 Copy Level Block

F CPPSR addr4 Copy Processor Status and Reset

Note 2. Use format with K field.
Extended mnemonics: SEISK, SEOTK, SEOOK

Note 3. Use format with K field.
Extended mnemonics: CPISK, CPOTK, CPOOK

B:-S -GA34-0021

o

o

C:·
"

o

Operation code

o 1 1 0 0
o 4 7 8 15
~~~ 

6 0-7 X X 

SVC ubyte 

1 LEX [ubyte] 

2 EN ubyte 

3 DIS ubyte 

4 STOP [ubyte] 

5 DIAG ubyte 

6 IOPK 

7 (invalid) 

6xxx 

Supervisor Call 

Level Exit 

Enable 

Disable 

Stop 

Diagnose 

Interchange Operand Keys 

Instruction Formats B-9 



R 1, condition, or condition code 

O=Direct address, 1=lndirect address 

Operation code 0 
o 1 1 0 1 
LO---------4-L-5-----L------~~~--~~~------J 31 

~~~~ 

6 8-F I O-F

,
0

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0, 2, 4, 6, 8, A, C, E
'- 'V ./

BC co nd ,10 ngaddr Branch on Condition (Note 4)

BNC cond,longaddr Branch on Not Condition (Note 5)

B longaddr Branch Unconditional (Note 6)

BAL longaddr ,reg Branch and Link (Note 7)

Bec cond,longaddr Branch on Condition Code (Note 8)

BNCC cond,longaddr Branch on Not Condition Code (Note 9)

BOV longaddr Branch on Overflow

BNOV 10 ngaddr Branch on Not Overflow

MVW 10ngaddr,reg Move Word

OW longaddr,reg OR Word

RBTW 10ngaddr ,reg Reset Bits Word

XW 10 ngaddr ,reg Exclusive OR Word

10 longaddr Operate I/O

MVW reg,longaddr Move Word

AW 10ngaddr,reg Add Word

SW 10ngaddr ,reg Subtract Word

Note 4. Extended mnemonics: BCY, BE, BEV, BLE, BLLE,
BLLT, BLT, BMIX, BN, BOFF, BON, BP, BZ

Note 5. Extended mnemonics: BGE, BGT, BLGE, BLGT, BNCY,
BNE, BNEV, BNMIX, BNN, BNOFF, BNON, BNP, BNZ

Note 6. Extended mnemonic: BX

Note 7. Extended mnemonic: BALX

Note 8. Extended mnemonic: BNER

Note 9. Extended mnemonic: BER

B-I0 GA3,4-0P2~., ,.f, .

o

C:'

o

R 1, condition, or condition code

O=Direct address, 1 =lndirect address

Operation code
o 1 1 0 1
o
~~~~ 

6 8-F I O-F 
I, 3, 5, 7, 9, B, D, F 

"- V ./ 

t 
0 BC cond,longaddr* 

BNC cond,longaddr* 

2 B 10 ngaddr * 

3 BAL longaddr* ,reg 

4 BCC co nd,longaddr * 

5 BNCC co nd,longaddr * 

6 BOV longaddr* 

7 BNOV longaddr* 

8 MVW longaddr* ,reg 

9 OW longaddr* ,reg 

A RBTW longaddr * ,reg 

B XW longaddr * ,reg 

C 10 longaddr* 

D MVW reg,longaddr* 

E AW longaddr* ,reg 

F SW 10 ngaddr * ,reg 

Branch on Condition 

Branch on Not Condition 

Branch Unconditional 

Branch and Link 

Branch on Condition Code 

Branch on Not Condition Code 

Branch on Overflow 

Branch on Not Overflow 

Move Word 

OR Word 

Reset Bits Word 

Exclusive OR Word 

Operate I/O 

Move Word 

Add Word 

Subtract Word 

6xxx 

Instruction Formats B-ll 



o 
B-12 GA34-0021 



7xxx 

) 
loperation code I Rl R2 I Function 
o 1 1 1 0 

0 4 5 7 8 10 11 15 
~~~~ 

7 0-7 I O-F
1, 3, 5, 7, 9, B, D, F

'-- 'V ./

t
I

0 SLC reg,reg Shift Left Circular

SLL reg,reg Shift Left Logical

2 SRL reg,reg Shift Right Logical

3 SRA reg,reg Shift Right Arithmetic

4 SLCD reg,reg Shift Left Circular Double

5 SLLD reg ,reg Shift Left Logical Double

6 SRLD reg,reg Shift Right Logical Double

7 SRAD reg,reg Shift Right Arithmetic Double

8 (invalid)

9 SLT reg,reg Shift Left and Test

A (invalid)

B (invalid)

C (invalid)

C~
D SLTD reg,reg Shift Left and Test Double

E (invalid)

F (invalid)

Instruction Formats B-13

7xxx
Operation code Function U
0, 1 1 1 1
~----L---...I---L-----'------' o 4 5 7 8 10 11 15 16 31
~~~~ 

7 8-F I O-F 
0, 2, 4, 6, 8, A, C, E 

'- V' ./ 

I 

~ 
0, NWI word ,reg [,reg] 

AWl word~reg [,reg] 

2 SWI word ,reg [,reg] 

3 OWl word,reg[,reg] 

4 RBTWI word ,reg [ ,reg] 

5 XWI word ,reg [,reg] 

6 CWI word,reg 

7 TWI word ,reg 

8 (invalid) 

9 (invalid) 

A (invalid) 

B (invalid) 

C (invalid) 

D (invalid) 

E (invalid) 

F (invalid) 

B-14 GA34.,O,02l 

And Word Immediate 

Add Word Immediate 

Subtract Word Immediate 

OR Word Immediate 

Reset Bits Word Immediate 

Exclusive OR Word Immediate 

Compare Word Immediate 

Test Word Under Mask Immediate 

c 

(f~'I\ 

i\lc,/ 



... ~:) 

..,,' 

C" 

o 

loperation code I 
01 

R2 1 Function 
0 o 1 1 1 1 0 

0 4 5 7 8 10 11 15 

1 Function I Operation code 1 K R 

01111 
0 4 5 7 8 10 11 15 
~~~~ 

7

+
0

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8-F I
1, 3, 5, 7, 9, B, D, F
'- v ,;

SECON

(invalid)

SEAKR

(invalid)

(invalid)

(invalid)

(invalid)

(invalid)

CPCON

CPCL

CPAKR

(invalid)

(invalid)

(invalid)

(invalid)

(invalid)

I

reg

reg

reg

reg

reg

O-F

Note 10. Use format with K field.

Set Console Data Lights

Set Address Key Register (Note 10)

Copy Console Data Buffer

Copy Current Level

Copy Address Key Register (Note 11)

Extended mnemonics: SEISK, SEOTK, SEOOK

Note 11. Use format with K field.
Extended mnemonics: CPISK, CPOTK, CroOK

~~~~-~ ______________ v-____________ ~J 

8 0-7 X O-F 

MVB 

OB 

RBTB 

CB 

addr5,addr4 

addr5,addr4 

addr5,addr4 

addr5,addr4 

AM appended words 

Move Byte 

OR Byte 

Reset Bits Byte 

Compare Byte 

7xxx 
8xxx 

InstrUction Formats B-15 



8xxx 
9xxx 
Operation code 

10001 

MVW addr5,addr4 

OW addr5,addr4 

RBTW addr 5 ,addr4 

CW addr5,addr4 

I SO 
31 32 47 

~ 

or 

AM appended words 

Move Word 

OR Word 

Reset Bits Word 

Compare Word 

~~_p_~_ro_t_~_n_;_o_~_e~ ____ ~ ____ L-__ ~ __ ~ ____ L-_________ ~ __ ~ ________ JIJ~ 
o 4 5 7 8 9 10 11 12 13 14 15 16 31 32 47 

~~~~-,------------~~------------~~ 
9 0-7 X O-F

Operation code

10011

MVD

OD

RBTD

CD

addr5,addr4

adctr 5 ,addr4

addr5,addr4

addr5,addr4

Word displacement

o 4 5 7 8 15

~~~~ 
9 8-F X X 

9 18- F] X ;1 X I JAL 

JAL 

B-16 GA34-0021 

jdisp,reg 

jaddr,reg 

AM appended words 

Move Double Word 

OR Double Word 

Reset Bits Double Word 

Compare Double Word 

Jump and Link 

Jump and Link 

o 



) 

o 

I O=Direct address; l=Indirect address 

I Operation code I R1 
10100 

RB 10 I Word disp I 
o 4 5 7 8 9 10 11 15 
~~~~ 

A 0-7 I X
0, 1, 4, 5, 8, 9, C, D

...... V /

I

MVWS reg,shortaddr Move Word Short

"O=Direct address; 1 =Indirect address

I Operation code I R1
1 0 1 0 0
045

RB 11 I Word d;,p I
7 8 9 10 11 15

~~~~ 
A 0-7 I X 

2,3.6, 7, A, B, E, F 
..... V / 

I 

reg,shortaddr* Move Word Short 

~o_1_pe_;_a_t~_o_n_~_od_;-L ______ L-__ -L ____ ~ __ ~ __ ~ ________ --J~ __ -L ________ 9~~ 
o 4 5 7 8 9 10 11 12 13 14 15 16 31 32 47 

~~~~'~------------~y~------------~' 
A 8-F

AW

SW

AD

SD

I Operation code I Function

.10110.

X O-F

addr5,addr4

addr5,addr4

addr5,addr4

addr5,addr4

o 4 5 15
~~~~ 

B 0-7 X X 

AM appended words 

Add Word 

Subtract Word 

Add Double Word 

Subtract Double Word 

I B 10- 7) X I X I illegal operation code (Program check condition) 

Axxx 
Bxxx 

Instruction Formats B-17 



Bxxx 
Cxxx 
Operation code 

10111 
Word displacement 

o 4 5 7 8 15 
~~~~ 

B 8-F X X

B !8-F.f X ! X! JCT

JCf

jdisp,reg

jaddr,reg

Jump on Count

Jump on Count

I O=Storage to register,'1=Register to storage

&.-...1 ~p_e;a_t~_n ;_od;--L..I_R-----LI_RB---'I'---A_M&.-1 x-,--I F_unCffon 1 sO
o 4 5 78910111213 15 16 31
~~~~ ...... V'.....,/ 

C 0- 7 X O-B, E, F AM appended word 

0 MVB addr4,reg Move Byte 

OB addr4,reg OR Byte 

2 RBTB addr4,reg Reset Bits Byte 

3 XB addr4,reg Exclusive OR Byte 

4 CB addr4,reg Compare Byte 

5 MVBZ addr4,reg Move Byte and Zero 

6 AB addr4,reg Add Byte 

7 SB addr4,reg Subtract Byte 

8 MVB reg,addr4 Move Byte 

9 OB reg,addr4 OR Byte 

A RBTB reg,addr4 Reset Bits Byte 

B XB reg,addr4 Exclusive OR Byte 

E AB reg,addr4 Add Byte 

F SB reg,addr4 Subtract Byte 

B'-18 GA34-002I, 

~\ 
\~ I -/I 

o 



Cxxx 
I O=Storage to register; 1=Register to storage 

I °ve'·tio. code I 
1 100 1 

R I RB I AM Ix I FuncUon I SO 
045 7 8 9 1011 1213 15 16 31 
~~~~'- V ./ 

C 8-F X O-B, E, F AM appended word

0 MVW addr4,reg Move Word

OW addr4,reg OR Word

2 RBTW addr4,reg Reset Bits Word

3 XW addr4,reg Exclusive OR Word

4 CW addr4,reg Compare Word

5 MVWZ addr4,reg Move Word and Zero

6 AW addr4,reg Add Word

7 SW addr4,reg Subtract Word

8 MVW reg,addr4 Move Word

9 OW reg,addr4 OR Word

A RBTW reg,addr4 Reset Bits Word

B XW reg,addr4 Exclusive OR Word

E AW reg,addr4 Add Word

Ci
F SW reg,addr4 Subtract Word

o
Instruction Formats B·19

D.xxx

I Operation code I
1 101 0
o 4 5

I O=Storage to register; 1=Register to storage

R
RB AM Ix IFunCNon, ~O

7 8 9 10111213 15 16 31
~~~~'- V ./ 

D 0- 7 X O-B, E, F AM appended .word 

0 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

E 

F 

I Opera Non code I 
1 101 1 
045 

MVD 

OD 

RBTD 

XD 

CD 

MVDZ 

AD 

SD 

MVD 

OD 

RBTD 

XD 

AD 

SD 

addr4,reg Move Double Word 

addr4,reg OR Double Word 

addr4,reg Reset Bits Double Word 

addr4,reg Exclusive OR Double Word 

addr4,reg Compare Double Word 

addr4,reg Move Double Word and Zero 

addr4,reg Add Double Word 

addr4,reg Subtract Double Word 

reg,addr4 Move Double Word 

reg,addr4 OR Double Word 

reg,addr4 Reset Bits Double Word 

reg,addr4 Exclusive OR Double Word 

reg,addr4 Add Double Word 

reg,addr4 Subtract Double Word 

15 

I D 18-pl X I X I megal operation code (Program check condition) 

B-20 GA34.0021 

( 

o 



D 

o 

I O=Direct address,' 1 =Indirect address 

~1~--pe-;-a-t~-o-n-~-O-do-e~I--R-1--~--R-B-'I-o-'I-W-o-r-d-d-~-p----~ 

o 4 5 7 8 9 10 11 15 

~~~~ 

E 0-7 I X
0, 1, 4, 5, 8, 9, C, D

...... 'V.-, /

Lo-
E--II __ O-....I..71 ----L...1 ----IX I MVWS shortaddr ,reg Move Word Short

I O=Direct address; 1=Indirect address

~IO-l-p-7-a-~-.o-n-~-o-~-e~I~R-1--~~R-B--I~1~I-w-o-r-d-d-~-P----~I

o 4 5 7 8 9 10 11 15
~~~~ 

E 0-7 I X 
2,3,6, 7, A, B, E, F 

'- 'V / 

I 

L-E---II_o-.....L.i ---1..-1 X.....,JI MVWS shortaddr* ,reg Move Word Short 

Exxx 

Instruction Formats B~21 



Exxx 
Fxxx 

I ~~_p_e_;a_t_~_n_~_o_d_:~I ___ R __ -L_R_B __ LI_A_M~I~F~U_n_cn_o_n __ -LI ________ ~~~ 
o 4 5 7 8 9 10 11 12 15 16 31 
~~~~, v/' 

E 8-F X O-F AM appended word

0 PSB reg,addr4

MB addr4,reg

2 DB addr4,reg

3 PB addr4,reg

4 PSW reg,addr4

5 MW addr4,reg

6 DW addr4,reg

7 PW addr4,reg

8 PSD reg,addr4

9 MD addr4,reg

A DD addr4,reg

B PD addr4,reg

C (invalid)

D (invalid)

E (invalid)

F (invalid)

o 4 5 7 8 15

~~~~ 
F 0-7 X X 

Operation code 
1 1 1 1 1 

byte,reg 

Word displacement 

o 4 5 7 8 15 

~~~~ 
F 8-F X X

I F 18- F,1 X I X I BALS

BALS

BALS

(reg,jdisp)*

(reg)*

addr*

Push Byte

Multiply Byte

Divide Byte

Pop Byte

Push Word

Multiply Word

Divide Word

Pop Word

Push Double Word

Multiply Double Word

Divide Double Word

Pop Doubleword

Compare Byte Immediate

Branch and Link Short

Branch and Link Short

Branch and link Short

r\
,-y

o

o

0"" 'I,',

Coding Notes
1. Data flow, when it modifies a field, is always from left

to right.
2. Registers used in effective address calculations are

always in parentheses.
3. An address specification followed by an asterisk indi­

cates indirect addressing. Here, the effective address is
the contents of the addressed storage location.

4. The (reg) + format indicates that, after use, the contents
of reg are increased by the number of bytes addressed.

5. AM indicates address mode.

Legend for Machine Instruction Operands
abcnt

addr

addr4

An absolute value or expression representing the size
of a work storage area to be allocated by the Store
Multiple (STM) instruction. The value you code must
be an even number in the range O-l6382.

An address value. Code an absolute or relocatable
expression in the range 0-65535.

An address value that you code in one of the follow­
ing forms:
(regO-3)

addr

addr*

The effective address is the con­
tents of the register regO-3.
(AM=OO)

The effective address is the
contents of the register regO-3.
After an instruction uses it, the
contents of the register are in­
creased by the number of bytes
addressed by the instruction.
(AM=Ol)

The effective address is the value
of addr, unless the instruction
and addr are within the range of
the same USING statement. If
they are, the assembler computes
the effective address as a displace­
ment (-32768 to +32767 or 0
to 65535) from the base register,
which must be reg l

-3. (AM=lO)

The effective address is the con­
tents of storage at the address
defined by addr, unless the instruc­
tion and addr are within the .
domain and range of the same
USING statement. If they are,
the assembler computes the effec­
tive address as the contents of
storage at the address defined by
a displacement (0-255) from the
base register, which must be
reg l

-3. (AM=ll)

addr5

Appendix C. Assembler Syntax

(reg l
-3,waddr) The effective address is the con­

tents of the register reg l
-
3, added

to the value of waddr. (AM=lO)
disp 1 (reg 1 -3 ,disp2) * The effective address is calculated

as follows: The contents of the
register reg l -3 are added to the
value of the displacement disp2
to form an address. The contents
of that storage location are added
to the value of displ to form the
effective address. (AM=ll)

disp(reg 1-3)*

(reg l
-
3,disp)*

The effective address is the
contents of storage at the address
defined by the contents of
reg l

-
3, added to the value of

disp. (AM=ll)

The effective address is the con­
tents of storage at the address
defined by the contents of reg l

-
3.

(AM=ll)

The contents of reg l
-
3 are added

to disp, forming an address. The
contents of storage at that
address form the effective address.
(AM=ll)

For the byte addressing, the effective address can be
even or odd. For word or doubleword addressing, the
effective address must be even.

An address value that you code in one of the following
forms:
(reg)

(reg) +

addr

The effective address is the con­
tents of the register reg. (AM=OO)

The effective address is the con­
tents of the register reg. After an
instruct~on uses it, the contents
of the register are increased by
the number of bytes addressed by
the instruction. (AM=Ol)
The effective address is the value
of addr, unless the instruction
and addr. are within the domain
and range of the same USING
statement. If they are, the
assembler computes the effective
address as a displacement (-32768
to +32767 or 0 to 65535) from
the base register, which must be
reg l

-7 . (AM=lO)

Assembler Syntax C-l

addr* The effective address is the con- jdisp A displacement from the byte following a jump
tents of storage at the address instruction. Code an absolute value or expression or defined by addr, unless the instruc- in the range -256 to +254. I~
tion and addr are within the longaddr An address value that you code in one of the follow-
domain and range of the same ing forms:
USING statement. If they are,

addr The effective address is the value
the assembler computes the

of addr, unless the instruction
effective address as the contents
of storage at the address defined

and addr are within the domain

by a displacement (0-255) from
and range of the same USING

the base register, which must be
statement. If they are, the

reg l
-7 . (AM=I1)

assembler computes the effective
address as a displacement (-32768

(reg l -7 ,waddr) The effective address is the con- to +32767 or 0 to 65535) from

tents of reg l
-7 , added to the value the base register, which must be

of waddr. (AM=IO) reg l -7 .

disp 1 (reg 1-7 ,disp2)* The effective address is calculated addr* The effective address is the

as follows: The contents of the contents of storage at the address

register reg l
-
7 are added to the defined by addr, unless the instruc-

value of the displacement disp2 tion and addr are within the

to form an address. The contents domain and range of the same

of that storage location are added USING statement. If they are,

to the value of displ to form the the assembler computes the

effective address. (AM=l1) effective address as the contents

disp(reg l -7)* The effective address is the con-
of storage at the address defined

tents of storage at the address
by a displacement (-32768 to

defined by the contents of reg l
-
7
,

+32767 or 0 to 65535) from the
base register, which must be

added to the value of disp. reg l -7

(AM=ll)
(reg l -7 ,waddr) The effective address is the con-

(reg l -7)* The effective address is the con- tents of reg l
-
7

, added to the value
tents of storage at the address of wad dr.
defined by the contents of reg l

-
7
.

(reg l -7 ,waddr)* The contents of the reg l -
7

, plus :r'~ (AM=ll)

(reg l -7 ,disp)* The contents of reg1
-7 are added

wad dr, form an address. The ~.,;
contents of storage at that loca-

to disp, forming an address. The tion form the effective address.
contents of storage at that address

(regl -7) The effective address is the con-form the effective address.
tents of the register reg1

-7. (AM=II)

For byte addressing, the effective address can be even (reg l -7)* The effective address is the con-

or odd. For word or doubleword addressing, the tents of storage at the address

effective address must be even. defined by the contents of reg l
-
7
.

bitdisp A displacement into a bit field. Code an absolute raddr An address value. Code a relocatable expression in

value or expression in the range 0-63. the range 0-6?535.

byte A byte value. Code an absolute value or expression reg A general-purpose register. Code either a predefined

in the range -128 to +127 or 0 to 255. register symbol (RO-R7) or a symbol that is equated

cnt16 A single word (one register) shift count. Code an
to the desired register number (0, 1,2,3,4,5,6, or 7).
Symbols are equated with EQUR statements, which

absolute value or.expression in the range 0-16. must precede the instruction using the register symbol.
cnt31 A doubleword (register pair) shift count. Code an regO-3 A general-purpose register. Code either a predefined

absolute value or expression in the range 0-31. register symbol (RO-R3) or a symbol that is equated
cond A condition code value. Code an absolute value or to the desired register number (0, 1,2, or 3).

expression in the range 0-7. Symbols are equated with EQUR statements, which
disp A byte address displacement. Code an absolute must precede the instruction using the register symbol.

value or expression in the range 0-255. reg l -3 A general-purpose register. Code either a predefined
freg A floating-point register. Code either a predefmed register symbol (RI-R3) or a symbol that is equated

floating register symbol (FRO-FR3) or a symbol that to the desired register number (1, 2, or 3). Symbols
is equated to the desired register number (0, 1,2, or are equated with EQUR statements, which must pre-
3). Symbols are equated with EQUR statements, cede the instruction using the register symbol.
which must precede the instruction using the register regl -7 A general-purpose register. Code either a predefined
symbol. register symbol (RI-R7) or a symbol that is equated

jaddr The address of an instruction that is within -256 to to the desired register number (1, 2, 3, 4,5,6, or 7).
+254 bytes of the byte following a jump instruction. S'ymbols are equated with EQUR statements, which

0 Code a relocatable expression. must precede the instructions using the register
symbol.

C-2 GA34-0021

shortaddr An address value that you code in one of the follow-

~
ing forms:
(regO-3 ,wdisp) The effective address is the value

of wdisp added to the contents of
regO-3 •

(regO-3 ,wdisp) * The effective address is the con-
tents of storage at the address
defined by the value of wdisg
added to the contents of reg -3.

(regO-3) The effective address is the con-
tents of (regO

-3).

(regO-3)* The effective address is the con-
tents of storage at the address
defined by the contents of regO

-
3

addr To use this form, the instruction
and addr must be in the domain
and range of the same USING
statement. The assembler com-
putes a displacement (0-62) and
register combination that refers
to the requested location.

addr* Same as addr, except the assembler
computes the effective address as
the contents of storage at the
address defined by a displacement
(0-62) and register combination.

Note. For addr and addr*, the base register must be
0-3 reg

ubyte An unsigned byte value or mask. Code an absolute
value or expression in the range 0-255.

0 vcon An ordinary symbol that is defined externally from
the current source program.

waddr A one-word address value. Code an absolute or
relocatable expression in the range -32768 to
+32767 or 0 to 65535.

wdisp An even byte address displacement. Code an absolute
value or expression in the range 0-62.

word A word value. Code an absolute value or expression
in the range -32768 to +32767 or 0 to 65535.

o
Assembler Syntax C-3

c

o
C-4 GA34-0021

o

o

Binary and Hexadecimal Number
Notations

Binary Number Notation
A binary number system, such as is used in Series/1 uses
a base of two. The concept of using a base of two can be
compared with the base of ten (decimal) number system.

Decimal number Binary number
o =0
1 = 1
2 = 10
3 = 11
4 = 100
5 = 101
6 = 110
7 = 111
8 = 1000
9 = 1001

Example of a decimal number:

9 units PositionS!

30 tens POSitiOn~
200 hundreds position:

1000 thousands position

1239 = decimal number

As shown above, the decimal number system allows count­
ing to ten in each position from units to tens to hundreds
to thousands, etc. The binary system allows counting to
two in each position. Register displays in the. S~ries/ 1
are in binary form: a bit light on is a 1; a bit light off is a O.

Example of a binary number:

. I.

+ + + + or
~u> ~.. ~.. ~o +0000 = decimal

1000 = decimal

~~
o
8--.....J

1\0\0~1\ ~ :~~~~ : :::::::

--
1001 = decimal 9

Appendix D. Numbering Systems and
Conversion Tables

Hexadecimal Number System
It has been noted that binary numbers require about three
times as many positions as decimal numbers to express the
equivalent number. This is not much of a problem to the
computer; however, in talking and writing or in communi­
cating with the computer, these binary numbers are bulky.
A long string of 1 's and O's cannot be effectively trans­
mitted from one individual to another. Some shorthand
method is necessary.

The hexadecimal number system fills this need. Because
of the simple relationship of hexadecimal to binary, num­
bers can be converted from one system to another by inspec­
tion. The base or radix of the hexadecimal system is 16.
This means there are 16 symbols: 0, 1,2,3,4,5,6, 7, 8,
9, A, B, C, D, E, and F. The letters A, B, C, D, E, and F
represent the 10-base system values of 10, 11, 12, 13, 14,
and 1 5, respectively.

F our binary positions are equivalent to one hexadecimal
position. The following table shows the comparable values
of the three number systems.

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

At this point, all 16 symbols have been used, and a carry
to the next higher position of the number is necessary. For
example:

Decimal Binary Hexadecimal

16 0001 0000 10
17 0001 00.01 11
18 0001 0010 12
19 0001 0011 13
20 0001 0100 14
21 0001 0101 15

-and so on-

Numbering Systems and Conversion Tables D-l

Remember that as far as the internal circuitry of the For numbers outside the range of the table, add the
computer is concerned, it understands only binary. But an following values to the tables figures: rf'
operator can look at a series of lights on the computer con- Hexadecimal Decimal \.,J9
sole showing binary 1 's and O's, for example: 0001 1110 1000 4096
0001 0011, and say that the lights represent the hexa- 2000 8192
decimal value 1E13, which is easier to state than the string 3000 12288

of 1 's and O's. 4000 16384
5000 20480
6000 24576
7000 28672
8000 32768

Hexadecimal-Decimal Conversion Tables

The table in this appendix provides for direct conversion
of decimal and hexadecimal number in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

0 ------1 .----E .-----9
I I ~I ~I ~I ~

0000: 000.: ••• 0: .00.
I I I
I I I

~-------------------------~ I I
I I I Jr---------------------------------J I

r-----------J

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 0001 0002 0003 0004 0005 0006 0007 0010 0011 0012 0013 0014 0015 ~\

OL 0016 0017 0018 0019 0020 0021 0022 0023 0026 0027 0028 0029 0030 0031 !:~)
02_ 0032 0033 0034 0035 0036 0037 0038 0039 0042 0043 0044 0045 0046 0047
03_ 0048 0049 0050 0051 0052 0053 0054 0055 0058 0059 0060 0061 0062 0063
04_ 0064 0065 0066 0067 0068 0069 0070 0071 0074 0075 0076 0077 0078 0079
05_ 0080 0081 0082 0083 0084 0085 0086 0087 0090 0091 0092 0093 0094 0095
06_ 0096 0097 0098 0099 0100 0101 0102 0103 0106 0107 0108 0109 0110 0111
OL 0112 0113 0114 0115 0116 0117 0118 0119 0122 0123 0124 0125 0126 0127
08_ 0128 0129 0130 0131 0132 0133 0134 0135 0138 0139 0140 0141 0142 0143
09_ 0144 0145 0146 0147 0148 0149 0150 0151 0154 0155 0156 0157 0158 0159
OL 0160 0161 0162 OHl3 0164 0165 0166 0167 0170 0171 (0172 0173 0174 0175
OB_ 0176 0177 0178 0179 0180 0181 0182 0183 0186 0187 0188 0189 0190 0191
OC_ 0192 0193 0194 0195 0196 0197 0198 0199 0202 0203 0204 0205 0206 0207
OD_ 0208 0209 0210 0211 0212 0213 0214 0215 0218 0219 0220 0221 0222 0223
OE_ 0224 0225 0226 0227 0228 0229 0230 0231 0234 0235 0236 0237 0238 0239
OF_ 0240 0241 0242 0243 0244 0245 0246 0247 0250 0251 0252 0253 0254 0255

10_ 0256 0257 0258 0259 0260 0261 0262 0263 0266 0267 0268 0269 0270 0271
1L 0272 0273 0274 0275 0276 02rt7 0278 0279 0282 0283 0284 0285 0286 0287
12_ 0288 0289 0290 0291 0292 0293 0294 0295 0298 0299 0300 0301 0302 0303
13_ 0304 0305 0306 0307 0308 0309 0310 0311 0314 0315 0316 0317 0318 0319
14_ 0320 0321 0322 0323 0324 0325 0326 0327 0330 0331 0332 0333 0334 0335
15_ 0336 0337 0338 0339 0340 0341 0342 0343 0346 0347 0348 0349 0350 0351
16_ 0352 0353 0354 0355 0356 0357 0358 0359 0362 0363 0364 0365 0366 0367
1L 0368 0369 0370 0371 0372 0373 0374 0375 0378 0379 0380 0381 0382 0383
18_ 0385 0387 0394 0395 0396 0397 0398 0399
19_ 0401 0403 0410 0411 0412 0413 0414 0415
1A_ 0417 0419 0426 0427 0428 0429 0430 0431
1B_ 0433 0435 0442 0443 0444 0445 0446 0447
1C_ 0449 0458 0459 0460 0461 0462 0463

0474 0475 0476 0477 0478 0479
0490 0491 0492 0493 0494 0495
0506 0507 0508 0509 0510 0511

o
D-2 GA34-0021

o ,+-0 1 2 3 4 5 6 7 8 9 A B C D E F

201 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
2L 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
2L 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06'B4 0685 0686 0687
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E_ 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
3L 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
3L 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
3L 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B_ 0944 094.') 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0 1 2 3 4 5 6 7 8 9 A B C D E F

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
4L 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

o
45_ 1104 1105 1106 1107 ll08 ll09 Ill0 1111 1112 1113 ll14 1115 1116 1117 Ill8 1119
46_ 1120 1121 1122 1123 ll24 ll25 ll26 1127 1128 1129 1130 1131 1132 1133 1134 1135
4L 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ 1152 1153 1154 1155 ll56 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 i 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F_ 1264 1265 1266 1267 1268 1269 • 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

50_ 1280 1281" 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
5L 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

O"~
I I~

Numbering Systems and Conversion Tables D-3

r+0 1 2 3 4 5 6 7 8 9 A B C D E F

60..! 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
6L 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 c
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
6L 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
6L 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6.L 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1120 1721 1722 1723 1724 1725 1726 1727
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
7L 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
7L 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
7L 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
8L 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 a094 2095
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 110 2111
8L 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
8L 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E_ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
9L 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
9L 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
9L 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
9L 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
9L 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2't14 2415
9L 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C_ 2496 2497 2498 2499 2.500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

c
D-4 GA34-0021

1'-0 1 2 3 4 5 6 7 8 9 A B C D E F

AO! 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AL 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4_ 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
AL 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF_ 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
BL 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4_ 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5_ 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
BL 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8_ 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9_ 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA - 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB - 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD - 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE - 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF - 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

c CL 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3_ 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
CL 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 - 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3.224 3225 3226 3227 3228 3229 3230 3231

\ CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD_ 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE - 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DO_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl - 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3_ 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
DL 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5_ 3-408 3409. 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
DL 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB - 3504 3505 3506 3507 3508 3509 3510 3511 ,3512 3513 3514 3515 3516 3517 3518 3519
DC_ 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 DD_ 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE - 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 .3564 3565 3566 3567
DF - 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

o
Numbering Systems and Conversion Tables D-S

r+o 1 2 3 4 5 6 7 8 9 A B C D E F

EO! 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
EL 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 - 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB - 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3715 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Fl - 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 - 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 - 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
FL 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 __ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
FL 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD - 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE - 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

o
D-6' GA34-0021

Powers of Two Table

D 2n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.0625
32 5 0.03125
64 6 0.01562 5

128 7 0.00781 25

256 8 0.00390 625
512 9 0.0019!: 3125

1,024 10 0.00'097 65625
2,048 11 0.00048 82812 5

4,096 12 0.00024 41406 25
8,192 13 0.00012 20703 125

16,384 14 0.00006 10351 5625
32,768 15 0.00003 05175 78125

65,536 16 0.00001 52587 89062 5
131,072 17 0.00000 76293 94531 25
262,144 18 0.00000 38146 97265 625
524,288 19 0.00000 19073 48632 8125

1,048,576 20 0.00000 09536 74316 40625
2,097,152 21 0.00000 04768 37158 20312 5
4,194,304 22 0.00000 02384 18579 10156 25
8,388,608 23 0.00000 01192 09289 55078 125

16,777,216 24 0.00000 00596 04644 77539 0625
33,554,432 25 0.00000 00298 02322 38769 53125
67,108,864 26 0.00000 00149 01161 19384 76562 5

134,217,728 27 0.00000 00074 50580 59692 38281 25

268,435,456 28 0.00000 00037 25290 29846 19140 625
536,870,912 29 0.00000 00018 62645 14923 09570 3125

1,073,741,824 30 0.00000 00009 31322 57461 54785 15625
2,147,483,648 31 0.00000 00004 65661 28730 77392 57812

C: 4,294,967,296 32 0.00000 00002 32830 64365 38696 28906 25
8,589,934,592 33 0.00000 00001 16415 32182 69348 14453 125

17,179,869,184 34 0.00000 00000 58207 66091 34674 07226 5625
34,359,738,368 35 0.00000 00000 29103 83045 67337 03613 28125

68,719,476,736 36 0.00000 00000 14551 91522 83668 51806 64062 5
137,438,953,472 37 0.00000 00000 07275 95761 41834 25903 32031 25
274,877,906,944 38 0.00000 00000 03637 97880 70917 12951 66015 625
549,755,813,888 39 0.00000 00000 01818 98940 35458 56475 83007 8125

1,099,511,627,776 40 0.00000 00000 00909 49470 17729 28237 91503 90625
2,199,023,255,552 41 0.00000 00000 00454 74735 08864 64118 95751 95312 5
4,398,046,511,104 42 0.00000 00000 00227 37367 54432 32059 47875 97656 25
8,796,093,022,208 43 0.00000 00000 00113 68683 77216 16029 73937 98828 125

17,592.186.044.416 44 0.00000 00000 00056 84341 88608 08014 86968 99414 0625
35,184,372,088.832 45 0.00000 00000 00028 42170 94304 04007 43484 49707 03125
70,368,744,177,664 46 0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5

140,737,488,355,328 47 0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25

281,474,976,710,656 48 0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625
562,949,953,421,312 49 0.00000 00000 00001 77635 68394 00250 46467 78106 68945 3125

1,125,899,906,842,624 50 0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625
2,251,799,813.685,248 51 0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812

4,503,599,627,370,496 52 0.00000 00000 00000 22204 46049 25031 30808 47263 33618 16406 25
9,007,199,254,740,992 53 0.00000 00000 00000 11102 23024 62515 65404 23631 66809 08203 125

18,014,398,509,481,984 54 0.00000 00000 00000 05551 11512 31257 82702 11815 83404 54101 5625
36,028,797,018,963,968 55 0.00000 0000 0 00000 02775 55756 15628 91351 05907 91702 27050 78125

72,057,594,037,927,936 56 0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 5
144,115,188,07~,855,872 57 0.00000 00000 00000 00693 88939 03907 22837 76476 97925 56762 69531 25
288,230,376,151,711,744 58 0.00000 00000 00000 00346 94469 51953 61418 8823 8 48962 18381 34765 625
576,460,752,303,423,488 59 0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125

1,152,921,504,606,846,976 60 0.00000 00000 00000 00086 73617 37988 40354 72059 62240 69595 33691 40625
2,305,843,009,213,693,952 61 0.00000 00000 00000 00043 36808 68994 20177 36029 81120 34797 66845 70312 5
4,611,686,018.427,387,904 62 0.00000 00000 00000 00021 68404 34497 100R8 68014 90560 17398 83422 85156 25
9,223,372,036,854,775,808 63 0.00000 00000 00000 00010 84202 17248 55044 34007 45280 08699 41711 42578 125

18,446,744,073,709,551,616 64 0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625

0
Numbering Systems and Conversion Tables D-7

Powers of Two Table

n

18,446,744,073,709,551,616 64
36,893,488,147,419,103,232 65
73,786,976,294,838,206,464 66

147,573,952,589,676,412,928 67

295,147,905,179,352,825,856 68
590,295,810,358,705,651,712 69

1,180,591,620,717,411,303.424 70
2,361,183,241,434,822,606,848 71

4,722,366,482,869,645,213,696 72
9,444,732,965,739,290,427,392 73

18,889,465,931,478,580,854,784 74
37,778,931,862,957,161,709,568 75

75,557.863,725,914,323,419,136 76
151,115,727,451,828,646,838,272 77
302,231,454,903,657,293,676,544 78
604,462,909,807,314,587,353,088 79

1.208.925.819,614.62Q.174.706,176 80
2,417.851.639,229.258,349.412,352 81
4,835.703.278,458,516.698,824,704 82
9.671,406.556,917,033,397,649.408 83

19,342.813.113,834.066.795.298,816 84
38.685.626.227,668.133,590.597,632 85
77.371,252.455,336,267.181,195,264 86

154.742,504.910,672,534,362.390,528 87

309,485.009,821,345.068.724.781,056 88
618.970,019.642,690,137,449,562,112 89

1.237.940.039.285,380.274.899.124,224 90
2.475,880.078.570,760,549.798.248.448 91

4.951.760.157,141,521.099.596,496,896 92
9.903,520.314,283,042.199.192.993,792 93

19.807.040,628.566,084.398,385,987,584 94
39,614,081,257.132,168,796,771.975,168 95

79,228.162,514,264,337,593.543.950,336
158,456,325,028.528,675.187,087,900,672
316.912,650,057,057,350.374,175,801,344
633,825,300,114,114,700,748.351,602.688

96
97
98
99

1,267.650,600,228.229,401.496.703,205,376 100
2,535,301,200,456.458.802,993.406,41~.752 101
5,070,602,400,912.917,605.986,812.821.504 102

10.141,204,801.825,835,211,973,625.643,008 103

20,282,409,603.651,670,423,947,251.286.016 104
40,564,819,207,303,340,847,894,502,572,032 105
81,129,638.414.606,681,695.789,005,144.064 106

162,259,276.829,213,363,391,578,010,288,128 107

324,518.553,658,426.726,783,156,020,576,256 108
649,037,107,316,853.453.566.312,041,152,512 109

l,298,074,214,6~3,706,907,132,624.082,305,024 110
2,596,148,429,267,413,814.265,248,164,610,048 111

5,192,296,858,534,827,628,530,496,329,220,096 112
10,384,593,717,069,655,257,060,992,658,440,192 113
20,769,187,434,139,310,514,121,985,316,880,384 114
41,538.374,868.278.621.028.243.970.633.760,768 115

83,076,749,736.557,242,056,487,941,267,521,536 116
166,153,499,473.114,484,112,975,882.535,043,072 117
332,306,998,946,228,968,225,951,765,070,086,144 118
664,613,997,892,457,936,451,903,530.140,172,~8f 119

1,329,227,995,784,915,872,903,807,060.280,344,576 120
2,658,455.991,569.831.745,807,614,120,560,689,152 121
5.316,911.983,139,663,491,615,228,241.121,378,304 122

10.633,823,966,279.326,983,230,456,482,242,756,608 123

21.267.647.932.558,653,966.460,912,964,485,513,216 124
42.535,295,865,117,307,932,921,825,928,971,026,432 125
85,070,591,730,234,615,865,843,651,857,942.052.864 126

170,141,183,460,469.231,731.687.303,715,884,105,728 127

340,282,366,920,938.463.463.374.607.431,768,211,456 128

D-8 GA34-0021

!'~--'\

l~)

o

o Appendix E. Character Codes

Eight bit
data inter- PTTC/

Decimal Hex Binary EBCDIC ASCII change PTTC/EBCD Correspondence

0 00 00000000 NUL NUL NUL
1 01 0001 SOH SOH NUL space space
2 02 0010 STX STX 1 1,]
3 03 0011 ETX ETX @

4 04 0100 PF EOT 2 2
5 05 0101 HT ENQ space
6 06 0110 LC ACK
7 07 0111 DEL BEL 3 3
8 08 1000 BS 4 5
9 09 1001 RLF HT
10 OA 1010 SMM LF P (even parity)
11 OB 1011 VT VT P (odd parity) 5 7
12 OC 1100 FF FF o (even parity)
13 OD 1101 CR CR o (odd parity) 6 6
14 OE 1110 SO SO 7 8
15 OF 1111 SI SI
16 10 00010000 DLE DLE 8 4
17 11 0001 DC1 DC1
18 12 0010 DC2 DC2 H (even parity)
19 13 0011 TM DC3 H (odd parity) 9 0
20 14 0100 RES DC4 ((even parity)
21 15 0101 NL NAK ((odd parity) 0 z
22 16 0110 BS SYN @ (EOA) @ (EOA),9
23 17 0111 IL ETB
24 18 1000 CAN CAN
25 19 1001 EM EM
26 1A 1010 CC SUB
27 1B 1011 CUI ESC X
28 1C 1100 IFS FS upper case upper case
29 1D 1101 IGS GS 8 A

30 IE 1110 IRS RS
31 IF 1111 IUS US © (EOT) © (EOT)
32 20 00100000 DS space @ t
33 21 0001 SOS ! EOT
34 22 0010 FS " D (even parity)
35 23 0011 # D (odd parity) I x
36 24 0100 BYP $ S (even parity)
37 25 0101 LF % S (odd parity) s n
38 26 0110 ETB & t u
39 27 0111 ESC ,

40 28 1000 (

41 29 1001) u e
42 2A 1010 SM * v d
43 2B 1011 CU2 + T
44 2C 1100 , w k
45 2D 1101 ENQ " 4
46 2E 1110 ACK
47 2F 1111 BEL I x c
48 30 0011 0000 0 form feed
49 31 0001 1 form feed y 1

o 50 32 0010 SYN 2 z h
51 33 0011 3 L
52 34 0100 PN 4
53 35 0101 RS 5 ,
54 36 0110 UC 6

Character Codes E" 1

Eight bit
data inter- PTTC/

Decimal Hex Binary EBCDIC ASCII change PTTC/EBCD Correspondence
55 37 0011 0111 EOT 7 ® (SOA), comma b
56 38 1000 8
57 39 1001 9
58 3A 1010 : \ (even parity)
59 3B 1011 CU3 ; \ (odd parity) index index
60 3C 1100 DC4 < < (even parity)
61 3D 1101 NAK = < (odd parity) ® (EOB)
62 3E 1110 >
63 3F 1111 SUB ?
64 40 01000000 space @ N .,- !
65 41 0001 A EOA
66 42 0010 B B (even parity)
67 43 0011 C B (odd parity) i m
68 44 0100 D " (even parity)
69 45 0101 E " (odd parity) k
70 46 0110 F 1 v
71 47 0111 G
72 48 1000 H
73 49 1001 I m

,

74 4A 1010 ¢ J n r
75 4B 1011 K R
76 4C 1100 < L 0 i
77 4D 1101 (M 2
78 4E 1110 + N
79 4F 1111 I 0 p a
80 50 0101 0000 & P line feed
81 51 0001 Q line feed q 0

82 52 0010 R r s
83 53 0011 S J
84 54 0100 T
85 55 0101 U *
86 56 0110 V
87 57 0111 W $ w
88 58 1000 X
89 59 1001 Y
90 5A 1010 ! Z Z (even parity)
91 5B 1011 $ [Z (odd parity) CRLF CRLF
92 5C 1100 * \ : (even parity)
93 5D 1101) I : (odd parity) backspace backspace
94 5E 1110 ; A idle idle
95 5F 1111 -, -

96 60 0110 0000 - ACK
97 61 0001 I a & j
98 62 0010 b a g
99 63 0011 c ,F
100 64 0100 d b
101 65 0101 e &
102 66 0110 f
103 67 0111 g c f
104 68 1000 h d P
105 69 1001 i
106 6A 1010 J j V (even parity) f

107 6B 1011 , k V (odd parity) e
108 6C 1100 9 I 6 (even parity)
109 6D 1101 - m 6 (odd parity) f q
110 6E 1110 > n g comma
111 6F 1111 ? 0

112 70 01110000 P h I
113 71 0001 q shift out
114 72 0010 r N (even parity)
115 73 0011 s N (odd parity) i y

116 74 0100 t . (even parity) o
B-2 GA34-0021

Eight bit
data inter- PTTC/

Decimal Hex Binary EBCDIC ASCII change PTTC/EBCD Correspondence o
117 75 0111 0101 u . (odd parity)
118 76 0110 v ® ,period
119 77 0111 w
120 78 1000 x
121 79 1001 y
122 7A 1010 : z horiz tab tab
123 7B 1011 # { t
124 7C 1100 @ I lower case lower case
125 7D 1101

, } >
126 7E 1110 = ,.,

127 7F 1111 " DEL delete
128 80 10000000
129 81 0001 a SOM space space
130 82 0010 b A (even parity) = ±, [

131 83 0011 c A (odd parity)
132 84 0100 d ! (even parity) < @

133 85 0101 e ! (odd parity)
134 86 0110 f
135 87 0111 g ; #
136 88 1000 h X-ON : %
137 89 1001 i
138 8A 1010
139 8B 1011 Q % &
140 8C 1100
141 8D 1101 1

, ¢
142 8E 1110 > *
143 8F 1111
144 90 1001 0000 horiz tab * $

145 91 0001 j horiz tab
146 92 0010 k
147 93 0011 1 I () C

~'\
.. '

~/

148 94 0100 m
149 95 0101 n)) Z
150 96 0110 0 @ (EOA),'~ (

151 97 0111 P
152 98 1000 q
153 99 1001 r
154 9A 1010 Y (even parity)
155 9B 1011 Y (odd parity)
156 9C 1100 9 (even parity) upper case upper case
157 9D 1101 9 (odd parity)
158 9E 1110
159 9F 1111 © (EOn © (EOT)
160 AO 1010 0000 WRU (even) ¢ T
161 Al 0001 ,..,. WRU (odd)
162 Ai 0010 s
163 A3 0011 t E ? X
164 A4 0100 u
165 AS 0101 v % S N
166 A6 0110 w T U
167 A7 0111 x
168 A8 1000 y
169 A9 1001 z U E

170 AA 1010 U (even parity) V D
171 AB 1011 U (odd parity)
172 AC 1100 5 (even parity) W K

173 AD 1101 5 (odd parity)
174 AE 1110

o 175 AF 1111 X C
176 BO 10110000
177 B1 0001 return Y L
178 B2 0010 M (even parity) Z H

Character Codes E-3

Eight bit

C data inter- PTTC/
Decimal Hex Binary EBCDIC ASCII change Fl'TC/EBCD Correspondence

179 B3 1011 0011 M (odd parity)
180 B4 0100 - (even parity)

181 B5 0101 - (odd parity)
182 B6 0110
183 B7 0111 ® (SO A), I B
184 B8 1000
185 B9 1001
186 BA 1010
187 BB 1011] index index
188 BC 1100
189 BD 1101 = ® (EOB)
190 BE 1110
191 BF 1111
192 CO 11000000 { EOM (even) ® , -
193 Cl 0001 A EOM (odd)
194 C2 0010 B
195 C3 0011 C C J M
196 C4 0100 D
197 C5 0101 E # K
198 C6 0110 F L V
199 C7 0111 G
200 C8 1000 H
201 C9 1001 I X-OFF M "
202 CA 1010 S (even parity) N R
203 CB 1011 S (odd parity)
204 CC 1100 J 3 (even parity) 0 I
205 CD 1101 3 (odd parity) rt---\ 206 CE 1110 Y k, I

207 CF 1111 P A ~~
.208 DO 1101 0000 }
209 D1 0001 J vertical tab Q 0
210 D2 0010 K K (even parity) R S
211 D3 0011 L K (odd parity)
212 D4 0100 M + (even parity)
213 D5 0101 N + (odd parity)
214 D6 0110 0
215 D7 0111 P ! W
216 D8 1000 Q
217 D9 1001 R
218 DA 1010
219 DB 1011 [CRLF CRLF
220 DC 1100
221 DD 1101 ; backspace backspace
222 DE 1110 idle idle
223 DF 1111 PAD
224 EO 11100000 \
225 E1 0001 bell + J
226 E2 0010 S G (even parity) A G
227 E3 0011 T G (odd parity)
228 E4 0100 U , (even parity) B +
229 E5 0101 V , (odd parity)
230 E6 0110 W
231 E7 0111 X C F
232 E8 1000 y D P
233 E9 1001 Z
234 EA 1010
235 EB 1011 W E
236 EC 1100 Ii

0 237 ED 1101 7 F Q
238 EE 1110 G comma
239 EF 1111

E-4 GA34-0021

Eight bit
data inter- PTTC/

Decimol Hex Binary EBCDIC ASCII change FTTC/EBCD Co"espondence

240 FO 1111 0000 0 shift in (even) H ?
241 FI 0001 1 shift in (odd)
242 F2 0010 2
243 F3 0011 3 0 I Y
244 F4 0100 4
245 F5 0101 5 I
246 F6 0110 6 (2), ---, -247 F7 0111 7
248 F8 1000 8
249 F9 1001 9
250 FA 1010 LVM - (even parity) horiz tab tab
251 FB 1011 - (odd parity)
252 FC 1100 ? (even parity) lower case lower case
253 FD 1101 ? (odd parity)
254 FE 1110

delete 255 FF 1111
rub out delete

o
Character Codes E-5

c

o
£-6 GA34-0021·.

D

o

Appendix F. Carry and Overflow Indicators

This appendix explains the meaning of the carry and over­
flow indicators for signed and unsigned numbers. Examples
for setting these indicators are also provided.

Signed Numbers
For signed addition and subtraction, the overflow indicator
·signals a result that exceeds the representation capability
of the system for the result operand size. When overflow is
indicated, the carry indicator and the resulting operand
together form a valid result with the carry indicator being
the most significant bit. For addition, the carry indicator
is the sign (high-order bit) of this result. For subtraction,
the carry indicator is the complement of the sign (high­
order bit) of the result. A negative result appears in two's
complement form. When no overflow is i{ldicated, the
carry indicator provides no information about the result.

Figure F-l shows how the carry and overflow indicators
are set for an add operation when using 16-bit operands.
Figure F-2 provides the same information for a subtract
operation.

SIGNED NUMBERS

ADD OPERATION-All possible results (16-bit example)

Indicators Result value

Overflow

1

Carry Hexadecimal Decimal

1 0000 -65536

} (See Note) ,
1 1 7FFF

--- -f--8~OO

(Note 2)

____ l_EEF~
FFFF ----1-- 0000-

(Note 2)

____ l_}!E~
1 8000 ,

FFFE

-32769
-32768

-2
-1
o

+32767
+32768

+65534

16-bit
I represent­
able range

} (See Note)

Notes.
1. When overflow occurs, the carry indicator and the result

together form a valid 17-bit signed number, of which the
carry is the sign, and the result is the magnitude. A negative
result is in two's complement from. When no overflow
occurs, no useful information is provided by the carry
indicator.

2. The carry indicator may be on or off depending on the
operands.

Figure F-1. All possible results of an add operation regarding the
operands as signed 16-bit numbers

Carry and Overflow Indicators F-l

SIGNED NUMBERS

SUBTRACT OPERATION-All possible results (16-bit example)

Indicators Result value

Overflow Carry Hexadecimal Decimal

1 0001 -65535

} (See Note 1) !
1 7FFF -32769 ---t---8000 -32768

8001 -32767
(Note 2)

---'---
16-bit

FFFF -1 representable
0000 0 range -- -,--- 0001 +1

(Note 2)

__ J ___ 7FFF +32767
1 1 8000 +32768

} (See Note \)
J !

1 FFFF +65535

Notes.

1. When overflow occurs, the carry indicator and the result form a
valid 17-bit signed number, of which the carry is the
complement of the correct sign, and the result is the magnitude.
A negative result is in two's complement form. When no
overflow occurs, no useful information is provided by the carry
indicator.

2. The carry indicator may be on or off depending on the operands.

Figure F-2. All possible results of a subtract operation regarding the
operands as signed 16-bit numbers

F-2 GA34-0021

Unsigned Numbers
For unsigned addition and subtraction, the carry indicator
signals that:

1. On an add instruction, a carry out of the high-order
bit position has occurred (result exceeds result operand
size). The carry indicator and the resulting operand
together form a valid result of which the carry indicator
is the most significant bit.

2. On a subtract operation, a borrow beyond the high­
order bit position has occurred. A borrow during a
subtract operation is defined as either of the following:

No carry is generated out of the high-order bit posi­
tion when a two's complement of the subtrahend
and add is performed to accomplish the subtract
operation.
The most significant digit of the minuend must be
made larger to generate a difference of zero or one
when subtracting the most significant digit of the
subtrahend; for example, 1 subtracted from O.

When a borrow is signalled on a subtract operation, the
result is in two's complement form.

The overflow indicator provides no useful information
about unsigned operations.

Figure F-3 shows how the carry and overflow indicators
are set for an add operation when using 16-bit operands.
Figure F-4 provides the same information for a subtract
operation.

UNSIGNED NUMBERS

ADD OPERATION-All possible results (16-bit example)

Indicators Result value

Overflow Carry Hexadecimal Decimal

(Note 2) 0000 o

7FFF 32767 16-bit
8000 32768 representable

range

FFFE 65534
FFFF 65535

1 0000 65536

I
17 -bit range

7FFF 98303 using carry bit
8000 98304 (See Note 1)

1 FFFE 131070-

Notes.

1. With the carry indicator on, the result and carry form a valid
17-bit unsigned number of which the carry is the most
significant bit.

2. The overflow indicator may be set; however, it provides no
useful information.

Figure F-3. All possible results of an add operation regarding the
operands as unsigned 16-bit numbers

f-~

Itc.)I!

o

D

o

UNSIGNED NUMBERS

SUBTRACT OPERATION-All possible results (16-bit example)

Indicators

Overflow

(Note 2)

Notes.

Carry

Result value

Hexadecimal Decimal

0001

7FFF
8000
8001

FFFF
0000
0001

7FFF
8000

FFFF

-65535

-32769
-32768
-32767

-1
0

+1

+32767
+32768

+65535

17-bit
negative range
(See Note 1)

16-bit
representable
range

1. With carry (borrow) on, the result and carry indicator form a
valid 17-bit negative number of which the carry is the sign and
result is the magnitude in normal two's complement form.

2. The overflow indicator may be set; however, it provides no
useful information.

Figure F-4. All possible results of a subtract operation regarding the
operands as unsigned 16-bit numbers

Carry Indicator Setting
The carry indicator is used to signal overflow of the result
when operands are presented as unsigned numbers. The
machine does not regard the numbers as either signed or
unsigned, but performs the designated operation (add or
subtract) on the values presented. The programmer must
interpret the condition of the result for the number
representation involved. The machine detects the carry
condition during the operation in two ways:

1. Add operation - when a carry out of the high-order
bit position of the result operand occurs.

2. Subtract operation - when a borrow beyond the high­
order bit position of the result operand occurs.

Add Operation Examples
A four-bit operand size is used in the following examples.
Note that the unsigned number range for this operand is
o to 15. No other unsigned number values may be
represented for this size operand.

• Addition (carry indicator is not set)
Desired operation: 6 + 9 = 15
Machine operation: Augend

Addend

Result
High-order bit carry = 0

0110
1001

1111

The result fits as an unsigned number. The carry indicator is
not set (C=O).

• Addition (carry indicator is set)
Desired operation: 15 + 1 = 16

Machine operation: Augend
Addend

Result
High-order bit carry = 1

1111
0001

0000

The result does not fit as an unsigned number. The carry
indicator is set (C=l).

• Addition (carry indicator is set)
Desired operation: 15 + 15 = 30

Machine operation: Augend 1111
Addend 1111

Result 1110

High-order bit carry = 1

Result does not fit as an unsigned number. The carry indicator
is set (C=l).

Note. The result of adding the two largest numbers can be
contained in the operand size and the-carry indicator. The carry
indicator represents the most significant bit.

Carry and Overflow Indicators F-3

Subtract Operation Examples
The processor performs subtraction by using the comple­
ment addition method. The second operand is comple­
mented (two's complement) then an add operation is per­
formed. This is actually a three-way add operation between
the minuend, the subtrahend (one's complement), and a
constant of one. To provide the correct carry (borrow)
indication for the subtraction, the carry result of the comple­
ment add operation must be inverted to determine the carry
indicator setting. The following examples use a four-bit
operand with an unsigned number range of 0 to 15.

• Subtract (carry indicator is not set)
Desired operation: 15 - 1 = 14
Machine operation: Minuend 1111

Subtrahend 1110 one's complement
Constant __ 1 for two's complement

Result 1110

High-order bit carry = 1 invert for carry
indicator

The result fits as an unsigned number. The carry indicator is not
set (C=O).

Note. The carry indicator setting (C=O) for this subtract opera­
tion was determined by inverting the complement-add carry.

• Subtract (carry indicator is not set)
Desired operation: 15 - 15 = 0

Machine operation: Mmuend 1111
Subtrahend 0000 one's complement
Constant __ 1_ for two's complement

Result 0000

High-order bit carry = 1 invert for carry indicator

The result fits as an unsigned number. The carry indicator is not
set (C=O).

F-4 GA34-0021

• Subtract (carry indicator is set)
The following two examples show the case of a negative
result (subtrahend greater than minuend). This negative
result cannot be' represented in the operand width be­
cause all operand bits are used to represent the unsigned
number. To flag this condition the carry indicator is set.

Example 1.
Desired operation: 0 - 1 = -1

Machine operation: Minuend 0000
Subtrahend 1110 one's complement
Constant 1 for two's complement

Result 1111

High-order bit carry = 0 invert for carry indicator

The result does not fit as an unsigned number. The carry indicator
is set (C=l).

Example 2.
Desired operation: 0 - 15 = -15

Machine operation: Minuend 0000
Subtrahend 0000 one's complement
Constant __ I_for two's complement

Result 0001

High-order bit carry = 0 invert for carry indicator

The result does not fit as an unsigned number. The carry indicator
is set (C=l) .

Note. When a negative result occurs on a subtract operation, the
values may be useful to the programmer. The carry indicator and
the result form a signed number. The carry indicator is the sign
and the result is the number in two's complement form (see
Figure F-4).

Overflow Indicator Setting
The overflow indicator is used to signal overflow of the
result when the operands are presented as signed numbers.
The machine does not regard the numbers as either signed
or unsigned, but performs the designated operation (add or
subtract) on the values presented. The programmer must
interpret the condition of the result for the number repre­
sentation involved. The machine detects this condition by
inspection of any carry into and out of the high-order bit
(sign position) of the result operand during the operation.
The overflow indicator is set (0 = 1) for the two cases where
the carries disagree:

I., A carry into, but no carry out of the sign position.
2. No carry into, but a carry out of the sign position.

The overflow indicator is not set (0 = 0) for the remain­
ing two cases where the carries agree:

1. A carry into and out of the sign position.
2. No carry into and no carry out of the sign position.

I~"'"
(\,~.,¥

o

D

c

o

Examples
A four-bit operand size is used in the following examples.
Note that the signed number range for a four-bit operand is
-8 to +7. No other signed number values may be
represented.

• Addition (overflow indicator is not set)
Desired operation: +5 + (+2) = +7

Machine operation: Augend 0101
Addend 0010

Result 0111

Carry into sign position = 0

Carry out of sign position = 0 carries agree

The result fits as a signed number. The overflow indicator is not
set (0 = 0).

Desired operation: -4 + (-4) = -8

Machine operation: Augend
Addend

Result

Carry into sign position = 1

Carry out of sign position = 1

1100 two's complement
1100 two's complement

1000 two's complement

carries agree

The result fits as a signed number. The overflow indicator is not
set (0 = 0).

• Addition (overflow indicator is set)
Desired operation: +4 + (+4) = +8

Machine operation: Augend 0100
Addend 0100

Result

Carry into sign position = 1

1000

Carry out of sign position = 0 carries disagree

The result does not fit as a signed number. The overflow indi­
cator is set (0 = 1).

Desired operation: -4 + (-5) = -9

Machine operation: Augend
Addend

1100 two's complement
1011 two's complement

Result

Carry into sign position = 0

0111

Carry out of sign position = 1 carries disagree

The result does not fit as a signed number. The overflow indi­
cator is set (0 = 1).

• Subtraction (overflow indicator is not set)
Desired operation: +7 - (+2) = +5

Machine operation: Minuend 0111
Subtrahend 1101 one's complement
Constant 1 for two's complement

Result 0101

Carry into sign position = 1

Carry out of sign position = 1 carries agree

The result fits as a signed number. The overflow indicator is not
set (0 = 0).

Desired operation: +5 - (-1) = +6

Note. -1 is equal to 1111

Machine operation: Minuend 0101
Subtrahend 0000 one's complement
Constant 1 for two's complement

Result

Carry into sign position = 0

Carry out of sign position = 0

0110

carries agree

The result fits as a signed number. The overflow indicator is
not set (0 = 0).

• Subtraction (overflow indicator is set).
Desired operation: +7 - (-2) = +9

Note. -2 is equal to 1110

Machine operation: Minuend 0111
Subtrahend 0001 one's complement
Constant for two's complement

Result 1001

Carry into sign position = 1

Carry out of sign position = 0 carries disagree

The result does not fit as a signed number. The overflow indicator
is set (0 = 1).

Desired operation: -3 - (+6) = -9

Machine operation: Minuend 1101 two's complement
Subtrahend 1001 one's complement
Constant 1 for two's complement

Result 0111

Carry into sign position = 0

Carry out of sign position = 1 carries disagree

The result does not fit as a signed number. The overflow indi­
cator is set (0 = 1).

Carry and Overflow Indicators F-5

c

c
F-6 GA34-0021

o

C')

o

This appendix contains the following reference information:

• Address key register (AKR)
• Condition codes
• General registers
• Interrupt status byte
• Level status register (LSR)
• Processor status word (PSW)

Address Key Register (AKR)
Bits Contents

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Equate operand spaces
(not used, always zero)
(not used, always zero)
(not used, always zero)
(not used, always zero)
Operand-1 key (bit 0)
Operand-1 key (bit 1)
Operand-1 key (bit 2)
(not used, always zero)
Operand-2 key (bit 0)
Operand-2 key (bit 1)
Operand-2 key (bit 2)
(not used, always zero)
Instruction space key (bit 0)
Instruction space key (bit 1)
Instruction space key (bit 2)

Condition Codes

I/O Instruction Condition Codes
These codes are reported during execution of an Operate
I/O instruction.

Condition LSR position

code (eC) Over- Reported
value Even Carry flow by Meaning

0 0 0 0 channel Device not attached
1 0 0 1 device Busy
2 0 1 0 device Busy after reset
3 0 1 1 chan/dev Command reject
4 1 0 0 device Intervention

required
5 1 0 1 chan/dev Interface data check
6 1 1 0 controller Controller busy
7 1 1 1 chan/dev Satisfactory

Appendix G. Reference Information

Interrupt Condition Codes
These condition codes are reported by the device or con­
troller during priority interrupt acceptance.

Condition LSR position
code (CC) Over- Reported
value Even Carry flow by

0 0 0 0 controller
1 0 0 1 device

2 0 0 device
3 0 1 device
4 0 0 device
5 0 1 device
6 0 device

7 device

General Registers
R or RB* field value

000
001
010
011
100
101
110
111

Register selected

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Meaning

Controller end
Program controlled
interrupt (PCI)
Exception
Device end
Attention
Attention and PCI
Attention and
exception
Attention and
device end

*The RB field sometimes contains only the two low-order bits. In
this case, registers 4 through 7 cannot be specified.

Interrupt Status Byte (ISB)

DPCDevices
Bits Contents
o Device status available
1 Delayed command reject
2 Device dependent
3 Device dependent
4' Device dependent
5 Device dependent
6 Device dependent
7 Device dependent

Reference Information G-l

Cycle Steal Devices
Bits Contents C 0 Device status available '-.J
1 Delayed command reject
2 Incorrect length record
3 DCB specification check
4 Storage data check
5 Invalid storage address
6 Protect check
7 Interface data check

Level Status Register (LSR)
Bit Contents

0 Even indicator
1 Carry indicator
2 Overflow indicator
3 Negative result indicator
4 Zero result indicator
5 (not used, always zero)
6 (not used, always zero)
7 (not used, always zero)
8 Supervisor state
9 In process
10 Trace
11 Summary mask
12 (not used, always zero)
13 (not used, always zero)
14 (not used, always zero)
15 (not used, always zero)

1~'\
(
\~J

Processor Status Word (PSW)
Bit Contents

0 Specification check
1 Invalid storage address
2 Privilege violate
3 Protect check
4 Invalid function
5 Floating-point exception
6 Stack exception
7 (not used, always zero)

'8 Storage parity check
9 (not used, always zero)
10 CPU control check
11 I/O check
12 Sequence indicator
13 Auto-IPL
14 Translator enabled
15 Power/thermal warning

o
G-2 GA34-0021

o

o

o

add byte (AB) instruction 8-2
add byte immediate (ABI) instruction 8-3
add carry register (ACY) instruction 8-3
add double word (AD) instruction

register/storage format 8-4
storage/ storage format 8-4

add word (A W) instruction
register/register 8-5
register/storage format 8-5
storage/storage format 8-6
storage to register long format 8-6

add word immediate (AWl) instruction
register immediate long format 8-7
storage immediate format 8-8

add word with carry (AWCY) instruction 8-7
address generation, effective 2-12
address key register (AKR) 2-5, 5-1
address key register (AKR), example of use 5-2
address mode (AM) 2-14
address space management 5-3

active address key 5-3
address key values after interrupts 5-5
address space 5-4

AKR (see address key register)
AKR key, console 7-8
alternate IPL source, console switch 7-2
ALU (see arithmetic and logic unit)
AM (see address mode)
and word immediate (NWI) instruction
arithmetic and logic unit (ALU) 2-3
assembler syntax, summary of C-l
attention and device end condition code
attention and exception condition code
attention and PCI condition code 4-19
attention condition code 4-19
auto IPL, bit in PSW 3-11
auto IPL mode, console switch 7-2

base register (RB)

8-59

4-20
4-20

used for effective address generation 2-13
basic console 7-2
branch and link (BAL) instruction 8-10
branch and link external (BALX) instruction 8-10
branch and link short (BALS) instruction 8-10
branch external (BX) instruction 8-9
branch if mixed (BMIX) instruction 8-11
branch if negative (BN) instruction 8-11
branch if not off (BNOFF) instruction 8-13
branch if not on (BNON) instruction 8-13
branch if off (BOFF) instruction 8-11
branch if on (BON) instruction 8-11
branch indexed short (BXS) instruction 8-16

branch/jump instructions
branch and link (BAL) 8-10

branch and link external (BALX)
branch and link short (BALS) 8-10
branch indexed short (BXS) 8-16
branch on condition (BC) 8-11

branch if mixed (BMIX)
branch if negative (BN)
branch if off (BOFF)
branch if on (BON)
branch on arithmetically less than (BLT)
branch on arithmetically less than or equal (BLE)
branch on carry (BCY)
branch on equal (BE)
branch on even (BEV)
branch on logically less than (BLL T)
branch on logically less than or equal (BLLE)
branch on positive (BP)
branch on zero (BZ)

branch on condition code (BCe) 8-12
branch on not error (BNER)

branch on not condition (BNC) 8-13
branch if not off (BNOFF)
branch if not on (BNON)
branch on arithmetically greater than (BGT)

Index

branch on arithmetically greater than or equal (BGE)
branch on logically greater than (BLGT)
branch on logically greater than or equal (BLGE)
branch on no carry (BNCY)
branch on not equal (BNE)
branch on not even (BNEV)
branch on not mixed (BNMIX)
branch on not negative (BNN)
branch on not positive (BNP)
branch on not zero (BNZ)

branch on not condition code (BNCC) 8-14
branch on error (BER)

branch on not overflow (BNOV) 8-15
branch on overflow (BOV) 8-15
branch unconditional (B) 8-9

branch external (BX)
jump and link (JAL) 8-40
jump on condition (JC) 8-41

jump if mixed (JMIX)
jump if off (JOFF)
jump if on (JON)
jump on arithmetically less than (JLT)
jump on arithmetically less than or equal (JLE)
jump on carry (JCY)
jump on equal (JE)
jump on even (JEV)
jump on logically less than (JLLT)
jump on logically less than or equal (JLLE)

Index X-I

branch/jump instructions (continued)
jump on condition (JC) (continued)

jump on negative (IN)
jump on positive (JP)
jump on zero (JZ)

jump on count (JCT) 8-42
jump on not condition (JNC) 8-43

jump if not off (JNOFF)
jump if not on (JNON)
jump on arithmetically greater than (JGT)
jump on arithmetically greater than or equal (JGE)
jump on logically greater than (JLGT)
jump on logically greater than or equal (JLGE)
jump on no carry (JNCY)
jump on not equal (JNE)
jump on not even (JNEV)
jump on not mixed (JNMIX)
jump on not negative (JNN)
jump on not positive (JNP)
jump on not zero (JNZ)

jump unconditional (J) 8-39
no operation (NOP) 8-59

branch on arithmetically greater than (BGT)
instruction 8-13

branch on arithmetically greater than or equal
(BGE) instruction 8-13

branch on arithmetically less than (BLT)
instruction 8-11

branch on arithmetically less than or equal (BLE)
instruction 8-11

branch on carry (BCY) instruction 8-11
branch on condition (BC) instruction 8-11
branch on condition code (BCC) instruction 8-12
branch on equal (BE) instruction 8-11
branch on error (BER) instruction 8-14
branch on even (BEV) instruction 8-11
branch on logically greater than (BLGT) instruction 8-13
branch on logically greater than or equal (BLGE)

instruction 8-13
branch on logically less than (BLLT) instruction 8-11
branch on logically less than or equal (BLLE)

instruction 8-11
branch on no carry (BNCY) instruction 8-13
branch on not condition (BNC) instruction 8-13
branch on not condition code (BNCC) instruction 8-14
branch on not equal (BNE) instruction 8-13
brancq on not error (BNER) instruction 8-12
branch on not even (BNEV) instruction 8-13
branch on not mixed (BNMIX) instruction 8-13
branch on not negative (BNN) instruction 8-13
branch on not overflow (BNOV) instruction 8-15
branch on not positive (BNP) instruction 8-13
branch on not zero (BNZ) instruction 8·13
branch on overflow (BOV) instruction 8·15
branch on positive (BP) instruction 8-11
branch on zero (BZ) instruction 8-11
branch unconditional (B) instruction 8-9
burst mode 4-13
busy, condition code 4-19
busy after reset, condition code 4-19

X-2 GA34-0021

carry and overflow indicators F-l
carry indicator

how used 2-6
setting F-3,2-6

examples, add operation F-3
examples, subtract operation F-4

chaining 4-13
chaining flag bit in DCB 4-5
character codes E-l
check indicator 7-4
check restart key, console 7-6
CIAR (see current instruction address register)
CIAR key, console 7-8
class interrupts 3-5

console 3-8
machine check 3-6
power/thermal warning 3-7
present and accept 3-6
priority of 3-5
program check 3-7
soft exception trap 3-8
summary of 3-9
supervisor call 3-7
trace 3-8

codes, character E-l
command field, IDCB 4-3
command reject, condition code 4-19
commands

I/O, general 4-6
communications features, description 1-5
compare byte (CB) instruction

register/storage format 8-17
storage/storage format 8-17

compare byte field equal and decrement (CFED)
instruction 8-20

compare byte field equal and increment (CFEN)
instruction 8·20

compare byte field not equal and decrement
(CFNED) instruction 8-21

compare byte field not equal and increment
(CFNEN) instruction 8-21

compare byte immediate (CBI) instruction 8-18
compare double word (CD) instruction

register/ storage format 8-19
storage/ storage format 8-19

compare operation
example 2-7
indicator settings 2-7
testing results 2-7

compare word (CW) instruction
register/register format 8-29
register/storage format 8-29
storage/storage format 8-29

compare word immediate. (CWI) instruction
register immediate long format 8-30
storage immediate format 8-30

compatibility between the relocation translator and
the storage protection mechanism 6-5

complement register (CMR) instruction 8-22

o

o

o

o

condition codes, defined
interrupt 4-19
10 instruction 4-19

console 7-1
basic 7-2

indicators 7-2
keys and switches 7-2

programmer 7 -3
combination keys/indicators 7-5
display 7-3
displaying main storage 7-10
displaying registers 7-11
indicators 7-4
keys and switches 7-7
storing into main storage 7-10
storing into registers 7-11

console data buffer 2-4, 7-3
console interrupt 3-8
console interrupt key 7-7
control command 4-7
controller busy condition code
controller end condition code

4-19
4-19

conversion tables, numbering systems and D-l
copy address key register (CPAKR) instruction

system register/register format 8-23
system register/storage format 8-23

copy console data buffer (CPCON) instruction 8-24
copy current level (CPCL) instruction 8-24
copy floating level block (CPFLB) instruction 9-6
copy in-process flags (CPIPF) instruction 8-25
copy instruction space key (CPISK) instruction

system register/register format 8-23
system register/storage format 8-23

copy interrupt mask register (CPIMR) instruction 8-25
copy level block (CPLB) instruction 8-26
copy level status register (CPLSR) instruction 8-26
copy operand 1 key (CPOOK) instruction

system register/register format 8-23
system register/storage format 8-23

copy operand 2 key (CPOTK) instruction
system register/register format 8-23
system register/storage format 8-23

copy processor status and reset (CPPSR) instruction 8-27
copy segmentation register (CPSR) instruction 8-28
copy storage key (CPSK) instruction 8-27
count

residual byte 4-13
restrictions for the start cycle steal status operation 4-12
word in DCB 4-6

CPU control check, bit in PSW 3-11
current-instruction address register (CIAR) 2-5
cycle steal

description 4-10
device options 4-13
interrupt status byte (ISB) 4-20
start cycle steal status operation 4-12
start operation 4-10
status words 4-12
termination conditions 4-15

cycle steal, typical operation 4-10
cycle steal a~dress key in DCB 4-5

data buffer key, console 7-7
data display indicators 7-4
data entry keys (O-F), console 7-9
data stacking 2-24

example, allocating fixed storage areas 2-25
pop operation 2-25
push operation 2-25

DCB (see device control block)
DCB chaining 4-13
DCB specification check status bit 4-21
delayed command reject status bit 4-20
device address field, IDCB 4-3
device control block (DCB) 4-5

control word 4-5
count word 4-6
data address word 4-6
device parameter word 3 4-5
device parameter word 4 4-6
device parameter word 5 4-6
device parameter words 1-2 4-5
for start command, summary of 4-5
for start cycle steal status command, summary of 4-12
specification check status bit 4-21

device cyc1e-steal-sta tus word 1 4-13
device dependent status available status bit 4-20
device dependent status words 4-13
device end condition code 4-19
device ID word 4-6
device mask (I-bit) 3-15,4-7
device not attached, condition code 4-19
device options, cycle steal 4-13

burst mode 4-13
chaining 4-13
programmed controlled interrupt 4-13
suppress exception 4-14

device reset command 4-8
diagnose (DIAG) instruction 8-33
diagnostic mode, console switch 7-2
direct program control (DPC) operation 4-8
disable (DIS) instruction 8-34
displaying main storage 7 -10
displaying registers 7 -11
divide byte (DB) instruction 8-31
divide check, floating-point 9-3
divide double word (DD) instruction 8-32
divide word (DW) instruction 8-35
DPC (direct program control) operation 4-8

EA (see effective address)
effective address 2-12
effective address generation 2-12

base register storage address 2-17
base register word displacement 2-13
base register word displacement short 2-13
five-bit address argument 2-17
four-bit address argument 2-13

address mode (AM) 2-14
enable (EN) instruction 8-36
end of chain (EOC) bit 4-14
EOC bit (see end of chain bit)

Index X-3

EOS (see equate operand spaces)
equate operand spaces (EOS) 5-3
error conditions

recovery from 3-9
relocation translator, recovery from 6-6
that cause class interrupts 3-5

error recovery considerations, relocation translator 6-6
even indicator 2-6
exception condition code 4-19
exception conditions, during instruction execution

program check
basic instructions 8-1
floating-point instructions 9-4

soft exception trap
basic instructions 8-1
floating-point instructions 9-5

exceptions, suppression of (I/O) 4-14
~xclusive OR byte (XB) instruction 8-102
exclusive OR double word (XD) instruction 8-103
exclusive OR word (XW) instruction

register/register format 8-104
register/ storage format 8-104
storage to register long format 8-105

exclusive OR word immediate (XWI) instruction 8-105

fill byte field and decrement (FFD) instruction 8-37
fill byte field and increment (FFN) instruction 8-37
flags, status (residual status block) 4-14
floating add (FA) instruction

general description (short precision) 9-7
register to register format 9-7
storage/register format 9-7

floating add double (FAD) instruction
general description (double precision) 9-8
register/register format 9-8
storage/register format 9-8

floating compare (FC) instruction 9-9
floating compare double (FCD) instruction 9-9
floating divide (FD) instruction

register to register format 9-10
storage/register format 9-10

floating divide double (FDD) instruction
register to register format 9-11
storage/register format 9-11

floating move (FMV) instruction
register to register format 9-14
regjster to storage format 9-14
storage to register format . 9-14

floating move and convert (FMVC) instruction
register to storage format 9-15
storage to register format 9-15

floating move and convert double (FMVCD) instruction
register to storage format 9-16
storage to register format 9-16

floating move double (FMVD) instruction
register to register format 9-17
register to storage format 9-17
storage to register format 9-17

floating multiply (PM) instruction
general description (short precision) 9-12
register to register format 9-12
storage/register format 9-12

X-4 GA34-0021

floating multiply double (FMD) instruction
general description (double precision) 9-13
register to register format 9-13
storage/ register format 9-13

floating-point
conversion of binary integers 9-2
data format 9-1
normalization 9-2
numbers 9-1
programming considerations 9-2

arithmetic indicators 9-2
divide check 9-3
exceptions 9-2
feature not installed 9-2
level control 9-3
overflow 9-3
registers 9-2
underflow 9-3

floating-point exception 9-4
floating-point exception, bit in PSW 3-11
floating-point feature 9-1
floating-point instructions

copy floating level block (CPFLB) 9-6
descriptions 9-6
exception conditions 9-4
floating add (FA) 9-7
floating add double (FAD) 9-8
floating compare (FC) 9-9
floating compare double (FCD) 9-9
floating divide (FD) 9-10
floating divide double (FOD) 9-11
floating move (FMV) 9-14
floating move and convert (FMVC) 9-15
floating move and convert double (FMVCO) 9-16
floating move double (FMVD) 9-17
floating multiply (FM) 9-12
floating multiply double (FMD) 9-13
floating subtract (FS) 9-18
floating subtract double (FSD) 9-19
formats 9-4
general description 9-3
set floating level block (SEFLB) 9-20

floating subtract (FS) instruction
general description (short precision) 9-18
register to register format 9-18
storage/register format 9-18

floating subtract double (FSO) instruction
general description (double precision) 9-19
register to register format 9-19
storage/register format 9-19

general registers G-1, 2-5

halt I/O command 4-8
high limit address (HLA) 2-25
HLA (see high limit address)

I-bit, device mask 3-15
I-bit (device mask), field in IDCB 4-7
I/O check, bit in PSW 3-11

c

o

o

()

o

I/O commands, general
control 4-7
device reset 4-8
halt I/O 4-8
prepare 4-7
read 4-6
read 10 4-6
read status 4-7
start 4-8
start cycle steal status 4-8
summary chart 4-4
write 4-7

I/O condition codes and status information, general 4-15
I/O status information 4-20

interrupt status byte (ISB) 4-20
in terru pt condition codes 4-19
interrupt information byte (lIB) 3-3,4-20
10 instruction condition codes 4-19
summary of 4-15

I/O interrupts 3-3
prepare I/O device for 3-3
present and accept 3-3

I/O storage access using the relocation translator 6-5
IAR (see instruction address register)
IAR key, console 7-8
IBM 4955 processor 1-1
10 word

device 4-6
interrupt 3-3,4-20

loeB (immediate device control block) 4-3
lIB (see interrupt information byte)
ILR (see incorrect length record)
immediate data field, lOeB 4-3
immediate device control block (lOeB) 4-3
in-process bit 2-10

effect on program controlled level switching 3-12
incorrect length record (lLR)

status bit 4-20
indicator bits in LSR 2-5
indicators

affected by floating-point operations 9-2
arithmetic 2-5
basic console 7-2
programmer console 7-4
sequence 3-11

indicators, add and subtract operations (carry and
overflow) F-l,2-6

signed numbers F-l
unsigned numbers F-2

indicators, compare operations 2-7
indicators, condition code for I/O operations 2-6
indicators, multiple-word operands 2-8
indicators, result (even, negative, and zero) 2-6
indicators, shift operations (carry and overflow) 2-7
indicators, testing with branch and jump

instructions 2-8
indirect address 2-15, 2-18
inhibit trace (IT) bit 8-78

effect on SELB instruction 8-78
how used, programming note 3-8

initial program load (IPL) 2-22
auto IPL, bit in PSW 3-11
auto IPL mode, console switch 7-2
source switch, console 7-2
storage protection during 5-3

input flag bit in DeB 4-5
input/output (see also I/O)

commands (see I/O commands)
condition codes and status information 4-15
interrupt status byte (ISB) 4-20
operate I/O (10) instruction 4-2, 8-38

input/output operations 4-1
instruct step key/indicator 7-5
instruction

exception conditions 8-1
formats 2-10

floating-point 9-3
index of X-12
names 2-12
one word 2-10
summary of B-1
two word 2-11
variable length 2-11,2-18

index of, by name X-IS
privileged 2-21
termination or suppression 8-2,9-3

instruction address register (lAR) 2-5
instruction execution time when using the translator 6-7
instruction execution times A-I

relocation translator disabled A-4
additional time for addressing mode A-2

relocation translator enabled A-14
additional time for addressing mode A-3

instruction formats B-1, 2-10
instruction space key (lSK) 5-3
interchange operand keys (lOPK) instruction 8-38
interchange registers (IR) instruction 8-39
interface data check, condition code 4-19
interface data check status bit 4-21
interrupt

automatic branching 3-2
class 3-5
I/O 3-3
masking facilities 3-15

device mask (I-bit) 3-15
mask register, in terru pt level 3-15
summary mask 3-15

priority scheme 3-1
interrupt 10 word 3-3,4-20
interrupt information byte (lIB) 3-3,4-20
interrupt level mask register 3-15
interrupt scheme 3-1
interrupt status byte (lSB)

defined 4-20
for cycle stealing devices 4-20
for devices that do not cycle steal 4-20

interrupts and level switching, introduction 3-1
intervention required, condition code 4-19
invalid function, bit in PSW 3-11
invalid function, program check conditi<?n 8-1
invalid function, soft exception trap condition 8-1
invalid storage address 8-1, 9-4
invalid storage address, bit in PSW 3-10
invalid storage address status bit, I/O 4-21
invert register (VR) instruction 8-102
10 (operate I/O) instruction 4-2, 8-38
IPL (see initial program load)
IPL source switch 7-2
ISB (see interrupt status byte)
ISK (see instruction space key)
IT bit (see inhibit trace bit)

Index X-5

jump and link (IAL) instruction 8-40
jump if mixed (lMIX) instruction 8-41
jump if not off (JNOFF) instruction 8-43
jump if not on (JNON) instruction 8-43
jump if off (lOFF) instruction 8-41
jump if on (JON) instruction 8-41
jump on arithmeticall greater than or equal (JGE)

instruction 8-43
jump on arithmetically greater than (JGT)

instruction 8-43
jump on arithmetically less than OLT) instruction 8-41
jump on arithmetically less than or equal. OLE)

instruction 8-41
jump on carry (JCY) instruction 8-41
jump on condition (JC) instruction 8-41
jump on count (JCT) instruction 8-42
jump on equal (lE) instruction 8-41
jump on even (lEV) instruction 8-41
jump on logically greater than (JLGT) instruction 8-43
jump on logically greater than or equal (JLGE)

instruction 8-43
jump on logically less than (ILLT) instruction 8-41
jump on logically less than or equal (JLLE)

instruction 8-41
jump on negative (IN) instruction 8-41
jump on no carry (lNCY) instruction 8-43
jump on not condition (JNC) instruction 8'-43
jump on not equal (JNE) instruction 8-43
jump on not even (lNEV) instruction 8-43
jump on not mixed (INMIX) instruction 8-43
jump on not negative (INN) instruction 8-43
jump on not positive (lNP) instruction 8-43
jump on not zero (lNZ) instruction 8-43
jump on positive (lP) instruction 8-41
jump on zero (JZ) instruction 8-41
jump unconditional (J) instruction 8-39

level exit (LEX) instruction 8-44
level status block (LSB) 2-4
level status register (LSR) G-2, 2-5
level switching

priority interrupt 3-3
program controlled 3-12

level 0 key/indicator 7-5
level 1 key/indicator 7-5
level 2 key/indicator 7-5
level 3 key/indicator 7-5
linkage stacking

description 2-28
example, reenterable subroutine 2-28

LLA (see low limit address)
load indicator 7-2
load key 7-2
load multiple and branch (LMB) instruction 8-44
load state 2-20
low limit address (LLA) 2-25
LSB (see level status block)
LSB pointer, class interrupts 3-3
LSR (see level status register)
LSR key, console 7-8

X-6 GA34-0021

machine check conditions 3~ 10
machine check interrupt 3-6
main storage 2-1

address boundaries, instruction and operand 2-1
addressing 2-1
defined 2-3
storage protection 5-1

main storage key, console 7-8
mask register, interrupt level 2-5, 3-15
mode switch 7-2
move address (MV A) instruction

storage address to register format 8-47
storage immediate format 8-47

move byte (MVB) instruction
register/storage format 8-48
storage/storage format 8-48

move byte and zero (MVBZ) instruction 8-49
move byte field and decrement (MVFD) instruction 8-52
move byte field and increment (MVFN) instruction 8-52
move byte immediate (MVBI) instruction 8-49
move double word (MVD) instruction

register/storage format 8-50
storage/storage format 8-50

move double word and zero (MVDZ) instruction 8-51
move word (MVW) instruction

register/register format 8-53
register/storage format 8-53
register to storage long format 8-53
storage/storage format 8-54
storage to register long format 8-54

move word and zero (MVWZ) instruction 8-57
move word immediate (MVWI)

storage immediate format 8-55
storage to register format 8-55

move word short (MVWS) instruction
register to storage format 8-56
storage to register format 8-56

multiple register/storage instructions
load multiple and branch (LMB) 8-44
store multiple (STM) 8-93

multiply byte (MB) instruction 8-45
multiply double word (MD) instruction 8-46
multiply word (MW) instruction 8-58

NE bit (see no exception bit)
negative indicator 2-6
no exception (NE) bit 4-14
no operation (NOP) instruction 8-59
normal mode, console switch 7-2
normalization, floating-point numbers 9-2
numbering representation 2-3

floating-point 9-1
signed numbers 2-3
unsigned numbers 2-3

numbering systems and conversion tables D-l

op reg key, console 7-8
operand 1 key (OPIK) 5-3
operand 2 key (OP2K) 5-3

c

o

o

o

o

operate I/O (10) instruction 4-2, 8-38
options, cycle steal device 4-13
OPIK (see operand 1 key)
OP2K (see operand 2 key)
OR byte (OB) instruction

register/storage format 8-60
storage/storage format 8-60

OR double word (00) instruction
register/ storage format 8-61
storage/ storage format 8-61

OR word (OW) instruction
register/register format 8-62
register/storage format 8-62
storage/storage format 8-63
storage to register long format 8-63

OR word immediate (OWl) instruction
register immediate format 8-64
storage immediate format 8-64

overflow, floating-point 9-3
overflow indicator

setting F-4,2-6
examples, arithmetic F-5

parametric instructions
diagnose (OIAG) 8-33
disable (DIS) 8-34
enable (EN) 8-36
interchange operand keys (IOPK) 8-38
level exit (LEX) 8-44
stop (STOP) 8-94
supervisor call (SVC) 8-94

PCI (see programmed controlled interrupt)
POE (see permissive device end)
permissive device end (POE)

(see device end) 4-19
pop byte (PB) instruction 8-65
pop doubleword (PO) instruction 8-65
pop operation 2-25
pop word (PW) instruction 8-67
power on mdicator 7-2
power on/off switch 7-2
power-on reset, effects of 2-21
power/thermal warning, bit in PSW 3-11
power/thermal warning condition 3-10
power/thermal warning interrupt 3-7
prepare command 4-7
primary IPL source, console switch 7-2
privilege violate 8-1, 9-4
privilege violate, bit in PSW 3-10
privileged instructions, list of 2-21
problem state 2-21
processing unit description 2-1
processor

data flow 2-2
description 1-1
features

communications 1-5
input/output units 1-5
optional 1-1
standard 1-1

introduction 1-1
models 1-3

processor (continued)
options

miscellaneous 1-5
packaging and power 1-5
sensor input/output 1-5

processor, 4955 1-1
processor state control 2-19
processor status word (PSW) 2-5, 3-10
program check conditions

basic instructions 8-1
floating-point instructions 9-4

program check conditions in PSW 3-10
program check interrupt 3-7
program check or soft exception trap conditions 3-10
program controlled interrupt condition code 4-19
program controlled level switching 3-12
program execution 2-10

jumping and branching 2-23
level switching and interrupts 2-23
sequential instructions 2-22

programmed controlled interrupt (PCI) 4-13
programmer console 7-3
protect check 8-1, 9-4
protect check, bit in PSW 3-11
protect check status bit 4-21
protection, storage 5-1
PSW (see processor status word)
PSW key, console 7-8
push byte (PSB) instruction 8-66
push double word (PSO) instruction 8-66
push operation 2-25
push word (PSW) instruction 8-67

RB (see base register)
read command 4-6
read 10 command 4-6
read status command 4-7
recovery from error conditions 3-9
reference information G-l

address key register G-l
condition codes G-l
general registers G-l
interrupt status byte G-l
level status register G-2
processor status word G~2

register immediate instructions
add byte immediate (ABI) 8-3
add word immediate (AWl) 8-7
AND word immediate (NWI) 8-59
compare byte immediate (CBI) 8-18
compare word immediate (CWI) 8-30
exclusive OR word immediate (XWI) 8-105
move byte immediate (MVBI) 8-49
OR word immediate (OWl) 8-64
reset bits word immediate (RBTWI)· 8-72
subtract word immediate (SWI) 8-98
test word immediate (TWI) 8-101

register/register instructions
add carry register (ACY) 8-3
add word (A W) 8-5
add word with carry (AWCY) 8-7
compare word (CW) 8-29

Index X-7

register/register instructions (continued)
complement register (CMR) 8-22
copy level status register (CPLSR) 8-26
exclusive OR word (XW) 8-104
interchange registers (lR) 8-39
invert register (VR) 8-102
move word (MVW) 8-53
OR word (OW) 8-62
reset bits word (RBTW) 8-70
set indicators (SEIND) 8-77
subtract carry indicator (SCY) 8-73
subtract word (SW) 8-95
subtract word with carry (SWCY) 8-97

register/ storage instruc'tions
add byte (A B) 8-2
add double word (AD) 8-4
add word (A W) 8-5
compare byte (CB) 8-17
compare double word (CD) 8-19
compare word (CW) 8-29
divide byte (DB) 8-31
divide double word (DD) 8-32
divide word (DW) 8-35
exclusive OR byte (XB) 8-102
exclusive OR double word (XD) 8-103
exclusive OR word (XW) 8-104
move address (MV A) 8-47
move byte (MVB) 8-48
move byte and zero (MVBZ) 8-49
move double word (MVD) 8-50
move double word and zero (MVDZ) 8-51
move word (MVW) 8-53
move word and zero (MVWZ) 8-57
move word immediate (MVWI) 8-55
multiply byte (MB) 8-45
multiply double word (MD) 8-46
multiply word (MW) 8-58
OR byte (OB) 8-60
OR double word (OD) 8-61
OR word (OW) 8-62
pop byte (PB) 8-65
pop double word (PD) 8-65
pop word (PW) 8-67
push byte (PSB) 8-66
push double word (PSD) 8-66
push word (PSW) 8-67
reset bits byte (RBTB) 8-68
reset bits double word (RBTD) 8-69
reset bits word (RBTW) 8-70
subtract byte (SB) 8-73
subtract double word (SD) 8-74
subtract word (SW) 8-95

register/storage long instructions
add word (A W) 8-6
exclusive OR word (XW) 8-105
move word (MVW) 8-53
operate I/O (10) 8-38
OR word (OW) 8-63
reset bits word (RBTW) 8-71
subtract word (SW) 8-96

register/ storage short instruction
move word short (MVWS) 8-56

X,;.8 GA34-0021 ,

registers
address key 5-1
address key (AKR) 2-5
base 2-13
console data buffer 2-4
current-instruction address (CIAR) 2-5
floating-point 9-2
general 2-5
instruction address (lAR) 2-5
level status (LSR) 2-5
mask 2-5
processor status word (PSW) 2-5
segmentation 6-1
storage address (SAR) 2-5
storage key 5-1

relocation addressing 6-4
relocation translator (see storage address relocation

translator)
reserved storage locations 3-2
reset 2-21
reset bits byte (RBTB) instruction

register/storage format 8-68
storage/storage format 8-68

reset bits double word (RBTD) instruction
register/storage format 8-69
storage/storage format 8-69

reset bits word (RBTW) instruction
register/register format 8-70
register/storage format 8-70
storage/ storage format 8-71
storage to register long format 8-71

reset bits word immediate (RBTWI) instruction
register immediate long format 8-72
storage immediate format 8-72

reset key, console 7-7
residual address 4-12

after power-on reset 4-12
updating 4-12

residual byte count 4-13
residual status block

size of 4-14
storing 4-14

restrictions
instruction and operand address boundaries 2-1
programming, DCB 4-6
programming, DCB (start cycle steal status) 4-12
when in problem state 2-21

result indicators (even, negative, and zero) 2-6
run indicator' 7-2
run state 2-20
RO key, console 7-8
R1 key, console 7-8
R2 key, console 7-8
R'3 key, console 7-8
R4 key, console 7-8
R5 key, console 7-8
R6 key, console 7-8
R 7 key, console 7-8

SAR (see storage address register)
SAR key ~ console 7-8
satisfactory, condition code 4-19 o

D

o

scan byte field equal and decrement (SFED)

instruction 8-81
scan byte field equal and increment (SFEN)

instruction 8-81
scan byte field not equal and decrement (SFNED)

instruction 8-82
scan byte field not equal and increment (SFNEN)

instruction 8-82
SE (see suppress exception)
segmentation registers 6-1

bit 13 (valid bit) 6-5
bit 14 (read-only bit) 6-5
description 6-2
how used 6-2

sensor input/output options, description 1-5
sequence indicator, bit in PSW 3-11
set address key register (SEAKR) instruction

system register/register format 8-75
system register/storage format 8-75

set console data lights (SECON) instruction 8-76
set floating level block (SEFLB) instruction 9-20
set indicators (SEIND) instruction 8-77
set instruction space key (SEISK) instruction

system register/register format 8-75
system register/storage format 8-75

set interrupt mask register (SEIMR) instruction 8-76
set level status block (SELB) instruction 8-78
set operand 1 key (SEOOK) instruction
system register/register format 8-75

system register/storage format 8-75
set operand 2 key (SEOTK) instruction

system register/register format 8-75
system register/storage format 8-75

set segmentation register (SESR) instruction 8-80
set storage key (SESK) instruction 8-79
shift instructions

shift left and test (SLT) 8-88
shift left and test double (SLTD) 8-88
shift left circular (SLC) 8-83
shift left circular double (SLCD) 8-84
shift left logical (SLL) 8-86
shift left logical double (SLLD) 8-87
shift right arithmetic (SRA) 8-89
shift right arithmetic double (SRAD) 8-90
shift right logical (SRL) 8-91
shift right logical double (SRLD) 8-92

shift It:ft and test (SLT) instruction 8-88
shift left circular (SLC) instruction

count in register format 8"-83
immediate count format 8-83

shift left circular double (SLCD) instruction
count in register format 8-85
immediate count format 8-84

shift left logical (SLL) instruction
count in register format 8-86
immediate count format 8-86

shift left logical double (SLLD) instruction
count in register format 8-87
immediate count format 8-87

shift right arithmetic (SRA) instruction
count in register format 8-89
immediate count format 8-89

shift right arithmetic double (SRAD) instruction
count in register format 8-90
immediate count format 8-90

shift right logical (SRL) instruction
count in register format 8-91
immediate count format 8-91

shift right logical double (SRLD) instruction
count in register format 8-92
immediate count forinat 8-92

SIA (see start instr.uction address) 3-3
signed numbers· .". .

examples 2-3
single bit manipulation instructions

test bit (TBT) 8-99
test bit and invert (TBTV) 8-100
test bit and reset (TBTR) 8-99
test bit and set (TBTS) 8-100

soft exception trap conditions
basic instructions 8-1
floating-point instructions 9-5

soft exception trap conditions in PSW 3-10
soft exception trap interrupt 3-8
specifica tion check 8-1, 9-5
specification check, bit in PSW 3-10
stack control block, relationship to data stack 2-24
stack exception 8-2
stack exception, bit in PSW 3-11
stack operations 2-23
stacking

data, description 2-24
linkage, description 2-28

start command 4-8
start cycle steal status command 4-8
start cycle steal status operation 4-12

DCB format 4-12
DCB restrictions 4-12
residual parameters (status) 4-12

start instruction address (SIA) 3-3
start key, console 7-7
start operation, cycle steal 4-10
states, processor

following a reset 2-21
load 2-20
problem 2-21
run 2-20
stop 2-19
supervisor 2-20
wait 2-20

status address, DCB word 4 4-6
status after resets, processor 2-21
status block, residual 4-14
status flags, in PSW 3-10
status flags, in residual status block 4-14
status information, I/O 4-20
status of translator after power transitions and
resets 6-6

status words, cycle steal 4-12
stop (STOP) instruction 8-94
stop key/indicator 7-5
stop on address key/indicator 7-5

Index X-9

stop on address mode 7-6
stop on error key, console 7-6
stop state 2-19
storage address register (SAR) 2-5
storage address reloCation translator 6-1

addressing, example of 6-4
addressing range 6-1
compatibility with storage protection mechaniSlll

characteristics that are dissimilar 6-6
characteristics that are similar 6-6

description 6-1
error recovery considerations 6-6

invalid storage address 6-6
protect check 6-6

I/O storage access when using 6-5
instruction execution time when using 6-7
status after power transitions and resets 6-6
storage mapping 6-2
storage protection when using 6-5

read-only bit 6-5
valid bit 6-5

storage data check status bit 4-21
storage immediate instructions

add word immediate (AWl) 8-7
compare word immediate (CWI) 8-30
move address (MV A) 8-47
move word immediate (MVWI) 8-55
OR word immediate (OWl) 8-64
reset bits word immediate (RBTWI) 8-72
subtract word immediate (SWI) 8-98
test word immediate (TWI) 8-101

storage key register 5-1
storage mapping, relocation translator 6-2

example of 6-3
storage parity, bit in PSW 3-11
storage protection 5-1

during IPL 5-3
for I/O devices 5-3
in supervisor state 5-3

storage protection during IPL 5-3
storage protection in supervisor state 5-3
storage protection when using the relocation

translator 6-5
storage/ storage instructions

add double word (AD) 8-4
add word (A W) 8-6
compare byte (CB) 8-17
compare byte field equal and decrement (CFED)
compare byte field equal and increment (CFEN)
compare byte field not equal and decrement

(CFNED) 8-21
compare byte field not equal and increment

(CFNEN) 8-21
compare double word (CD) 8-19
compare word (CW) 8-29
move byte (MVB) 8-48
move byte field and decrement (MVFD) 8-52
move byte field and increment (MVFN) 8-52
move double word (MVD) 8-50
move word (MVW) 8-54
OR byte (OB) 8-60
OR double word (OD) 8-61
OR word (OW) 8-63

X-I 0 GA34-0021

6-5

8-20
8-20

storage/ storage instructions (continued)
reset bits byte (RBTB) 8-68
reset bits double word (RBTD) 8-69
reset bits word (RBTW) 8-71
subtract double word (SD) 8-74
subtract word (SW) 8-96

store key, console 7-7
store multiple (STM) instruction 8-93
storing into main storage 7 -10
storing into registers 7-11
subtract byte (SB) instruction 8-73
subtract carry indicator (SCY) instruction 8-73
subtract double word (SD) instruction

register/storage format 8-74
storage/storage format 8-74

subtract word (SW) instruction
register/register format 8-95
register/storage format 8-95
storage/ storage format 8-96
storage to register long format 8-96

subtract word immediate (SWI) instruction
register immediate long format 8-98
storage immediate format 8-98

subtract word with carry (SWCY) instruction 8-97
summary mask 3-15
summary mask bit 2-10
summary of assembler syntax C-l
summary of character codes E-l
summary of class interrupts 3-9
summary of instructions

by format X-12
by name X-IS

supervisor call (SVC) instruction 8-94
supervisor call interrupt 3-7
supervisor state 2-20
supervisor state bit 2-10
suppress exception (SE) 4-14
suppression of instructions 8-2,9-3
syntax, assembler (summary of) C-I
system register/register instructions

copy address key register (CPAKR) 8-23
copy instruction space key (CPISK)
copy operand 1 key (CPOOK)
copy operand 2 key (CPOTK)

copy console data buffer (CPCON) 8-24
copy current level (CPCL) 8-24
set address key register (SEAKR) 8-75

set instruction space key (SEISK)
set operand I key (SEOOK)
set operand 2 key (SEOTK)

set console data lights (SECON) 8-76
system register/storage instructions

copy address key register (CPAKR) 8-23
copy instruction space key (CPISK)
copy operand I key (CPOOK)
copy operand 2 key (CPOTK)

copy floating level block (CPFLB) 9-6
copy in-process flags (CPIPF) 8-25
copy interrupt mask register (CPIMR) 8-25
copy level block (CPLB) 8-26
copy processor status and reset (CPPSR) 8-27
copy segmentation register (CPSR) 8-28
copy storage key (CPSK) 8-27 o

o

o

system register/storage instructions (continued)
set address key register (SEAKR) 8-75

set instruction space key (SEISK)
set operand 1 key (SEOOK)
set operand i key (SEOTK)

set floating level block (SEFLB) 9-20
set interrupt mask register (SEIMR) 8-76
set level status block (SELB) 8-78
set segmentation register (SESR) 8-80
set storage key (SESK) 8-79

TEA (see top element address)
termination conditions, cycle steal 4-15
termination of instructions 8-2,9-3
test bit (TBT) instruction 8-99
test bit and invert (TBTV) instruction 8-100
test bit and reset (TBTR) instruction 8-100
test bit and set (TBTS) instruction 08-100
test word immediate (TWI) instruction

register immediate long format 8-101
storage immediate format 8-101

testing indicators with conditional instructions 2-8
top element address (TEA) 2-25
trace bit 2-10
trace interrupt 3-8
translator (see storage address relocation translator)
translator description 6-1
translator enabled, bit in PSW 3-11

underflow, floating-point 9-3
unsigned numbers

defined 2-3
examples 2-3
how used 2-6

variable field length byte instructions
compare byte field equal and decrement (CFED) 8-20
compare byte field equal and increment (CFEN) 8-20
compare byte field not equal and decrement

(CFNED) 8-21
compare byte field not equal and increment

(CFNEN) 8-21
fill byte field and decrement (FFD) 8-37
fill byte field and increment (FFN) 8-37
move byte field and decrement (MVFD) 8-52
move byte field and increment (MVFN) 8-52
scan byte field equal and decrement (SF ED) 8-81
scan byte field equal and increment (SFEN) 8-81
scan byte field not equal and decrement (SFNED) 8-82
scan byte field not equal and increment (SFNEN) 8-82

variable length instructions
defined 2-11
examples for address arguments 2-18

wait indicator 7-2
wait state 2-20
WD (see word displacement)
word displacement (WD) 2-13
write command 4-7

zero indicator 2-6

Index X-l1

Index of Instructions by Format

branch/jump instructions
branch and link (BAL) 8-10

branch and link external (BALX)
branch and link short (BALS) 8-10
branch indexed short (BXS) 8-16
branch on condition (BC) 8-11

branch if mixed (BMIX)
branch if negative (BN)
branch if off (BOFF)
branch if on (BON)
branch on arithmetically less than (BLT)
branch on arithmetically less than or equal (BLE)
branch on carry (BCY)
branch on equal (BE)
branch on even (BEV)
branch on logically less than (BLLT)
branch on positive (BP)
branch on zero (BZ)

branch on condition code (BCC) 8-12
branch on not error (BNER)

branch on not condition (BNC) 8-13
branch if not off (BNOFF)
branch if not on (BNON)
branch on arithmetically greater than (BGT)
branch on arithmetically greater than or equal (BGE)
branch on logically greater than (BLGT)
branch on logically greater than or equal (BLGE)
branch on no carry (BNCY)
branch on not equal (BNE)
branch on not even (BNEV)
branch on not mixed (BNMIX)
branch on not negative (BNN)
branch on not positive (BNP)
branch on not zero (BNZ)

branch on not condition code (BNCC) 8-14
branch on error (BER)

branch on not overflow (BNOV) 8-15
branch on overflow (BOV) 8-15
branch unconditional (B) 8-9

branch external (BX)
jump and link (JAL) 8-40
jump on condition (JC) 8-41

jump if mixed (JMIX)
jump if off (JOFF)
jump if on (JON)
jump on arithmetically less than (JLT)
jump on arithmetically less than or equal (JLE)
jump on carry (JCY)
jump on equal (JE)
jump on even (JEV)
jump on logically less than (JLLT)
jump on logically less than or equal (JLLE)
jump on negative (IN)
jump on positive (JP)
jump on zero PZ)

X-12 GA34-0021

branch/jump instructions (continued)
jump on count (JCT) 8-42
jump on not condition (JNC) 8-43

jump if not off (JNOFF)
jump if not on (JNON)
jump on arithmetically greater than (JGT)
jump on arithmetically greater than or equal (JGE)
jump on logically greater than (JLGT)
jump on logically greater than or equal (JLGE)
jump on no carry (JNCY)
jump on not equal (JNE)
jump on not even (JNEV)
jump on not mixed (JNMIX)
jump on not negative (JNN)
jump on not positive (JNP)
jump on not zero (JNZ)

jump unconditional (J) 8-39
no operation (NOP) 8-59

floating-point instructions
copy floating level block (CPFLB) 9-6
flo a ting add (FA) 9-7
floating add double (FAD) 9-8
floating compare (FC) 9-9
floating compare double (FCD) 9-9
floating divide (FD) 9-10
floating divide double (FDD) 9-11
floating move (FMV) 9-14
floating move and convert (FMVC) 9-15
floating move and convert double (FMVCD) 9-16
floating move double (FMVD) 9-17
floating multiply (FM) 9-12
floating multiply double (FMD) 9-13
floating subtract (FS) 9-18
floating subtract double (FSD) 9-19
set floating level block (SEFLB) 9-20

multiple register/storage instructions
load multiple and branch (LMB) 8-44
store multiple (STM) 8-93

parametric instructions
diagnose (DIAG) 8-33
disable (DIS) 8-34
enable (EN) 8-36
interchange operand keys (lOPK) 8-38
level exit (LEX) 8-44
stop (STOP) 8-94
supervisor call (SVC) 8-94

c

o

0,
. ,"!

o

o

register immediate instructions
add byte immediate (ABI) 8-3
add word immediate (AWl) 8-7
AND word immediate (NWI) 8-59
compare byte immediate (CBI) 8-18
compare word immediate (CWI) 8-30
exclusive OR word immediate (XWI) 8-105
move byte immediate (MVBI) 8-49
OR word immediate (OWl) 8-64
reset bits word immediate (RBTWI) 8-72
subtract word immedi~te (SWI) 8-98
test word immediate (TWI) 8-101

register/register instructions
add carry register (ACY) 8-3
add word (A W) 8-5
add word with carry (A WCY) 8-7
compare word (CW) 8-29
complement register (CMR) 8-22
copy level status register (CPLSR) 8-26
exclusive OR word (XW) 8-104
interchange registers (IR) 8-39
invert register (VR) 8-102
move word (MVW) 8-53
OR word (OW) 8-62
reset bits word (RBTW) 8-70
set indicators (SEIND) 8-77
subtract carry indicator (SCY) 8-73
subtract word (SW) 8-95
subtract word with carry (SWCY) 8-97

register/ storage instructions
add byte (AB) 8-2
add double word (AD) 8-4
add word (A W) 8-5
compare byte (CB) 8-17
compare double word (CD) 8-19
compare word (CW) 8-29
divide byte (DB) 8-31
divide double word (DD) 8-32
divide word (DW) 8-35
exclusive OR byte (XB) 8-102
exclusive OR double word (XD) 8-103
exclusive OR word (XW) 8-104
move address (MV A) 8-47
move byte (MVB) 8-48
move byte and zero (MVBZ) 8-49
move double word (MVD) 8-50
move double word and zero (MVDZ) 8-51
move word (MVW) 8-53
move word and zero (MVWZ) 8-57
move word immediate (MVWI) 8-55
multiply byte (MB) 8-45
multiply double word (MD) 8-46
multiply word (MW) 8-58
OR byte (OB) 8-60
OR double word (OD) 8-61
OR word (OW) 8-62
pop byte (PB) 8-65
pop double word (PD) 8-65
pop word (PW) 8-67
push byte (PSB) 8-66
push double word (PSD) 8-66
push word (PSW) 8-67
reset bits byte (RBTB) 8-68
reset bits double word (RBTD) 8-69

register/ storage instructions (continued)
reset bits word (RBTW) 8-70
subtract byte (SB) 8-73
subtract double word (SD) 8-74
subtract word (SW) 8-95

register/ storage long instructions
add word (A W) 8-6
exclusive OR word (XW) 8-105
move word (MVW) 8-53
operate I/O (10) 8-38
OR word (OW) 8-63
reset bits word (RBTW) 8-71
subtract word (SW) 8-96

register/storage short instruction
move word short (MVWS) 8-56

shift instructions
shift left and test (SL T) 8-88
shift left and test double (SLTD) 8-88
shift left circular (SLC) 8-83
shift left circular double (SLCD) 8-84
shift left logical (SLL) 8-86
shift left logical double (SLLD) 8-87
shift right arithmetic (SRA) 8-89
shift right arithmetic double (SRAD) 8-90
shift right logical (SRL) 8-91
shift right logical double (SRLD) 8-92

single bit manipulation instructions
test bit (TBT) 8-99
test bit and invert (TBTV) 8-100
test bit and reset (TBTR) 8-99
test bit and set (TBTS) 8-100

storage immediate instructions
add word immediate (AWl) 8-8
compare word immediate (CWI) 8-30
move address (MV A) 8-47
move word immediate (MVWI) 8-55
OR word immediate (OWl) 8-64
reset bits word immediate (RBTWI) 8-72
subtract word immediate (SWI) 8-98
test word immediate (TWI) 8-101

storage/storage instructions
add double word (AD) 8-4
add word (A W) 8-6
compare byte (CB) 8-17
compare byte field equal and decrement (CFED) 8-20
compare byte field equal and increment (CFEN) 8-20
compare byte field not equal and dect:ement

(CFNED) 8-21
compare byte field not equal and increment

(CFNEN) 8-21
compare double word (CD) 8-19
compare word (CW) 8-29
move byte (MVB) 8-48
move byte field and decrement (MVFD) 8-52
move byte field and increment (MVFN) 8-52
move double word (MVD) 8-50
move word (MVW) 8-54
OR byte (OB) 8-60
OR double word (OD) 8-61
OR word (OW) 8-63
reset bits byte (RBTB) 8-68
reset bits double word (RBTD) 8-69

Index X-13

storage/storage instructions (continued)
reset bits word (RBTW) 8-71
subtract double word (SD) 8-74
subtract word (SW) 8-96

system register/register instructions
copy address key register (CPAKR) 8-23

copy instruction space key (CPISK)
copy operand 1 key (CPOOK)
copy operand 2 key (CPOTK)

copy console data buffer (CPCON) 8-24
copy current level (CPCL) 8-24
set address key register (SEAKR) 8-75

set instruction space key (SEISK)
set operand 1 key (SEOOK)
set operand 2 key (SEOTK)

set console data lights (SECON) 8-76
system register/storage instructions

copy address key register (CPAKR) 8-23
copy instruction space key (CPISK)
copy operand 1 key (CPOOK)
copy operand 2 key (CPOTK)

copy floating level block (CPFLB) 9-6
copy in-process flags (CPIPF) 8-25
copy interrupt mask register (CPIMR) 8-25
copy level block (CPLB) 8-26
copy processor status and reset (CPPSR) 8-27
copy segmentation register (CPSR) 8-28
copy storage key (CPSK) 8-27
set address key register (SEAKR) 8-75

set instruction space key (SEISK)
set operand 1 key (SEOOK)
set operand 2 key (SEOTK)

set floating level block (SEFLB) 9-20
set interrupt mask register (SEIMR) 8-76
set level status block (SELB) 8-78
set segmentation register (SESR) 8-80
set storage key (SESK) 8-79

variable field length byte instructions
8-20 compare byte field equal and decrement (CFED)

compare byte field equal and increment (CFEN)
compare byte field not equal and decrement

8-20

(CFNED) 8-21
compare byte field not equal and increment

(CFNEN) 8-21
fill byte field and decrement (FFD) 8-37
fill byte field and increment (FFN) 8-37
move byte field and decrement (MVFD) 8-52
move byte field and increment (MVFN) 8-52
scan byte field equal and decrement (SFED) 8-81
scan byte field equal and increment (SFEN) 8-81
scan byte field not equal and decrement (SFNED) 8-82
scan byte field not equal and increment (SFNEN) 8-82

X-14 GA34-0021

o

o

o

add byte (AB) instruction 8-2
add byte immediate (ABI) instruction 8-3
add carry register (ACY) instruction 8-3
add double word (AD) instruction

register/storage format 8-4
storage/storage format 8-4

add word (A W) instruction
register/register 8-5
register/storage format 8-5
storage/storage format 8-6
storage to register long format 8-6

add word immediate (AWl) instruction
register immediate long format 8-7
storage immediate format 8-8

add word with carry (A WCY) instruction 8-7
and word immediate (NWI) instruction 8-59

branch and link (BAL) instruction 8-10
branch and link external (BALX) instruction 8-10
branch and link short (BALS) instruction 8-10
branch external (BX) instruction 8-9
branch if mixed (BMIX) instruction 8-11
branch if negative (BN) instruction 8-11
branch if not off (BNOFF) instruction 8-13
branch if not on (BNON) instruction 8-13
branch if off (BOFF) instruction 8-11
branch if on (BON) instruction 8-11
branch indexed short (BXS) instruction 8-16
branch on arithmetically greater than (BGT)

instruction 8-13
branch on arithmetically greater than or equal

(BGE) instruction 8-13
branch on arithmetically less than (BL T)

instruction 8-11
branch on arithmetically less than or equal (BLE)

instruction 8-11
branch on carry (BCY) instruction 8-11
branch on condition (BC) instruction 8-11
branch on condition code (BCC) instruction 8-12
branch on equal (BE) instruction 8-11
branch on error (BER) instruction 8-14
branch on even (BEV) instruction 8-11
branch on logically greater than (BLGT) instruction 8-13
branch on logically greater than or equal (BLGE)

instruction 8-13
branch on logically less than (BLLT) instruction 8-11
branch on logically less than or equal (BLLE)

instruction 8-11
branch on no carry (BNCY) instruction 8-13
branch on not condition (BNC) instruction 8-13
branch on not condition code (BNCC) instruction 8-14
branch on not equal (BNE) instruction 8-13
branch on not error (BNER) instruction 8-12
branch on not even (BNEV) instruction 8-13
branch on not mixed (BNMIX) instruction 8-13

Index of Instructions by Name

branch on not negative (BNN) instruction 8-13
branch on not overflow (BNOV) instruction 8-15
branch on not positive (BNP) instruction 8-13
branch on not zero (BNZ) instruction 8-13
branch on overflow (BOV) instruction 8-15
branch on positive (BP) instruction 8-11
branch on zero (BZ) instruction 8-11
branch unconditional (B) instruction 8-9

compare byte (CB) instruction
register/storage format 8-17
storage/storage format 8-17

compare byte field equal and decrement (CFED)
instruction 8-20

compare byte field equal and increment (CFEN)
instruction 8-20

compare byte field not equal and decrement
(CFNED) instruction 8-21

compare byte field not equal and increment
(CFNEN) instruction 8-21

compare byte immediate (CBI) instruction 8-18
compare double word (CD) instruction

register/storage format 8-19
storage/storage format 8-19

compare word (CW) instruction
register/register format 8-29
register/storage format 8-29
storage/storage format 8-29

compare word immediate (CWI) instruction
register immediate long format 8-30
storage immediate format 8-30

complement register (CMR) instruction 8-22
copy address key register (CPAKR) instruction

system register/register format 8-23
system register/storage format 8-23

copy console data buffer (CPCON) instruction 8-24
copy current level (CPCL) instruction 8-24
copy floating level block (CPFLB) instruction 9-6
copy in-process flags (CPIPF) instruction 8-25
copy instruction space key (CPISK) instruction

system register/register format 8-2?
system register/storage format 8-23

copy interrupt mask register (CPIMR) instruction 8-25
copy level block (CPLB) instruction 8-26
copy level status register (CPLSR) instruction 8-26
copy operand 1 key (CPOOK) instruction

system register/register format 8-23
system register/storage format 8-23

copy operand 2 key (CPOTK) instruction
system register/register format 8-23
system register/storage format 8-23

copy processor status and reset (CPPSR) instruction 8-27
copy segmentation register (CPSR) instruction 8-28
copy storage key (CPSK) instruction 8-27

Index X-15

diagnose (DIAG) instruction 8-33
disable (DIS) instruction 8-34
divide byte (DB) instruction 8-31
divide double word (DD) instruction 8-32
divide word (DW) instruction 8-35

enable (EN) instruction 8-36
exclusive OR byte (XB) instruction 8-102
exclusive OR double word (XD) instruction 8-103
exclusive OR word (XW) i~struction

register/register format 8-104
register/storage format 8-104
storage to register long format 8-105

exclusive OR word immediate (XWI) instruction 8-105

fill byte field and decrement (FFD) instruction 8-37
fIll byte field and increment (FFN) instruction 8-37
floating add (FA) instruction

general description (short precision) 9-7
register to register format 9-7
storage/register format 9-7

floating add double (FAD) instruction
general description (double precision) 9-8
register/register format 9-8
storage/register format 9-8

floating compare (FC) instruction 9-9
floating compare double (FCD) 9-9
floating divide (FD) instruction

register to register format 9-10
storage/register format 9-10

floating divide double (FDD) instruction
register to register format 9-11
storage/register format 9-11

floating move (FMV) instruction
register to register format 9-14
register to storage format 9-14
storage to register foramt 9-14

floating move and convert (FMVC) instruction
register to storage format 9-15
storage to register format 9-15

floating move and convert double (FMVCD) instruction
register to storage format 9-16
storage to register format 9-16

floating move double (FMVD) instruction
register to register format 9-17
register to storage format 9-17
storage to register format 9-17

floating multiply (FM) instruction
general description (short precision) 9-12
register to register format 9-12
storage/register format 9-12

floating multiply double (FMD) instruction
general description (double precision) 9-13
register to register format 9-13
storage/register format 9-13

floating subtract (FS) instruction
general description (short precision) 9-18
register to register format 9-18
storage/register format 9-18

floating subtract double (FSD) instruction
general description (double precision) 9-19
register to register format 9-19
storage/register format 9-19

X-16 GA34-0021

interchange operand keys (lOPK) instruction 8-38
interchange registers (IR) instruction 8-39
invert register (VR) instruction 8-102

jump and link (JAL) instruction 8-40
jump if mixed (JMIX) instruction 8-41
jump if not off (JNOFF) instruction 8-43
jump if not on (JNON) instruction 8-43
jump if off (JOFF) instruction 8-41
jump if on (JNON) instruction 8-41
jump on arithmeticall greater than or equal (JGE)

instruction 8-43
jump on arithmetically greater than (JGT)

instruction 8-43
jump on arithmetically less than (JL T) instruction 8-41
jump on arithmetically less than or equal (JLE)

instruction 8-41
jump on carry (JCY) instruction 8-41
jump on condition (JC) instruction 8-41
jump on count (JCT) instruction 8-42
jump on equal (JE) instruction 8-41
jump on even (JEV) instruction 8-41
jump on logically greater than (JLGT) instruction 8-43
jump on logically greater than or equal (JLGE)

instruction 8-43
jump on logically less than (JLLT) instruction 8-41
jump on logically less than or equal (JLLE)

instruction 8-41
jump on negative (IN) instruction 8-41
jump on no carry (JNCY) instruction 8-43
jump on not condition (JNC) instruction 8-43
jump on not equal (JNE) instruction 8-43
jump on not even (JNEV) instruction 8-43
jump on not mixed (JNMIX) instruction 8-43
jump on not negative (JNN) instruction 8-43
jump on not positive (JNP) instruction 8-43
jump on not zero (JNZ) instruction 8-43
jump on positive (JP) instruction 8-41
jump on zero (JZ) instruction 8-41
jump unconditional (J) instruction 8-39

level exit (LEX) instruction 8-44
load multiple and branch (LMB) instruction 8-44

move address (MV A) instruction
storage address to register format 8-47
storage immediate format 8-47

move byte (MVB) instruction
register/storage format 8-48
storage/storage format 8-48

move byte and zero (MVBZ) instruction 8-49
move byte field and decrement (MVFD) instruction 8-52
move byte field and increment (MVFN) instruction 8-52
move byte immediate (MVBI) instruction 8-49
move double word (MVD) instruction

register/storage format 8-50
storage/storage format 8-50

move double word and zero (MVDZ) instruction 8-51
move word (MVW) instruction

register/register format 8-53
register/storage format 8-53 o

o

o

move word (MVW) instruction (continued)
register to storage long format 8-53
storage/storage format 8-54
storage to register long format 8-54

move word and zero (MVWZ) instruction 8-57
move word immediate (MVWI)

storage immediate format 8-55
storage to register format 8-55

move word short (MVWS) instruction
register to storage format 8-56
storage to register forrpat 8-56

multiply byte (MB) instruction 8-45
multiply double word (MD) instruction 8-46
multiply word (MW) instruction 8-58

no operation (NOP) instruction 8-59

operate I/O (10) instruction 8-38
OR byte (OB) instruction

register/storage format 8-60
storage/storage format 8-60

OR double word (OD) instruction
register/ storage format 8-61
storage/ storage format 8-61

OR word (OW) instruction
register/register format 8-62
register/storage format 8-62
storage/storage format 8-63
storage to register long format 8-63

OR word immediate (OWl) instruction
register immediate format 8-64
storage immediate format 8-64

pop byte (PB) instruction 8-65
pop doubleword (PD) instruction 8-65
pop word (PW) instruction 8-67
push byte (PSB) instruction 8-66
push double word (PSD) instruction 8-66
push word (PSW) instruction 8-67

reset bits byte (RBTB) instruction
register/storage format 8-68
storage/storage format 8-68

reset bits double word (RBTD) instruction
register/storage format 8-69
storage/storage format 8-69

reset bits word (RBTW) instruction
register/register format 8-70
register/storage format 8-70
storage/storage format 8-71
storage to register long format 8-71

reset bits word immediate (RBTWI) instruction
register immediate long format 8-72
storage immediate format 8-72

scan byte field equal and decrement (SFED)
instruction 8-81

scan byte field equal and increment (SFEN)
instruction 8-81

scan byte field not equal and decrement (SFNED)
instruction 8-82

scan byte field not equal and increment (SFNEN)
instruction 8-82

set address key register (SEAKR) instruction
system register/register format 8-75
system register/storage format 8-75

set console data lights (SECON) instruction 8-76
set floating level block (SEFLB) instruction 9-20
set indicators (SEIND) instruction 8-77
set instruction space key (SEISK) instruction

system register/register format 8-75
system register/storage format 8-75

set interrupt mask register (SEIMR) instruction 8-76
set level status block (SELB) instruction 8-78
set operand 1 key (SEOOK) instruction

system register/register format 8-75
system register/storage format ·8-75

set operand 2 key (SEOTK) instruction
system register/register format 8-75
system register/storage format 8-75

set segmentation register (SESR) instruction 8-80
set storage key (SESK) instruction 8-79
shift left and test (SLT) instruction 8-88
shift left and test double (SLTD) instruction 8-88
shift left circular (SLC) instruction

count in register format 8-83
immediate count format 8-83

shift left circular double (SLCD) instruction
count in register format 8-85
immediate count format 8-84

shift left logical (SLL) instruction
count in register format 8-86
immediate count format 8-86

shift left logical double (SLLD) instruction
count in register format 8-87
immediate count format 8-87

shift right arithmetic (SRA) instruction
count in register format 8-89
immediate count format 8-89

shift right arithmetic double (SRAD) instruction
count in register format 8-90
immediate count format 8-90

shift right logical (SRL) instruction
count in register format 8-91
immediate count format 8-91

shift right logical double (SRLD) instruction
count in register format 8-92
immediate count format 8-92

stop (STOP) instruction 8-94
store multiple (STM) instruction 8-93
subtract byte (SB) instruction 8-73
subtract carry indicator (SCY) instruction 8-73
subtract double word (SD) instruction

register/ storage format 8-74
storage/storage format 8-74

subtract word (SW) instruction
register/register format 8-95
register/storage format 8-95
storage/storage format 8-96
storage to register long format 8-96

Index X-17

subtract word immediate (SWI) instruction
regiSter immediate long format 8-98
storage immediate format 8-98

subtract word with carry (SWCY) instruction 8-97
supervisor call (SVC) instruction 8-94

test bit (TBT) instruction 8-99
test bit and invert (TBTV) instruction 8-100
test bit and reset (TBTR) instruction 8-99
test bit and set (TBTS) instruction 8-100
test word immediate (TWI) instruction

register immediate long format 8-101
storage immediate format 8-101

X-18 GA34-0021

c

()

o

o

(")

s
~

" 0
0::
»

0
0'
:::I
to

r
:;'
CD

o

IBM Series/1 Model 5 4955 Processor
and Processor Features Description

GA34-0021-1

YOUR COMMENTS, PLEASE ...

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. All comments
and suggestions become the property of 18M.

Please do not use this form for technical q!Jestions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your IBM representative or to the IBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

READER'S
COMMENT
FORM

What is your occupation? ________________________ -----__

Number of latest Technical Newsletter (if any) concerning this publication: ____________ _

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

GA34-0021,.1

Your comments, please ...

This manual is part of a library that serves as a reference source for IBM systems.
Your comments on the other side of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All comments and
suggestions become the property of IBM.

Fold Fold

Fold

--- ------ --------- ----- -- ----------_.-

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N. E.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

First Class
Permit 40
Armonk
New York

Fold

I

()

S

I,

I

c

OJ
s::
en
~

~
s::
0
0.
~
(J'1

-0
(3
C"l

~
Q
Dl
:J
0.
-0 :f~\ (3
C"l \~1 CD
~
Q
"T1
CD

~
c:
"'" m
0
m
Q

~:
0
:J

U>

~

~
~
CD
0.

5·
c
en
~
Cl » w
.j::>.

6
0
tv

0

o

o

o

()
c ...
~

" o
c::
»
5"
::l

(Q

r
~.

IBM Series/1 Model 54955 Processor
and Processor Features Description

GA34-0021-1

YOUR COMMENTS, PLEASE ...

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. All comments
and suggestions become the property of IBM.

Please do not use this form for technical q,!Jestions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or to the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

READER'S
COMMENT
FORM

What is your occupation? ______________________________ _

Number of latest Technical Newsletter (if any) concerning this publication: ___________ _

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

GA34-0021-: 1. .

Your comments, please ...

This manual is part of a library that serves as a reference source for IBM systems.
Your comments on the other side of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All comments and
suggestions become the property of IBM.

Fold Fold

Fold

--- ------ ----- ---- ----- -- ----------_.-

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N.E.
P.O. Box 2J50, Atl.anta, Georgia 30301
(U.S.A. only)

First Class
Permit 40
Armonk
New York

Fold

I
I
f

I
I
I

-
to
~
(J)

~
[....
~
0
0.
~
01
-0

0
n

~
Q
OJ
:J
0.
-0 rf--'\
0
n '~y ~

~
."
C\l

~
C ...
~
0
~
Q
~.

o·
:J

U)

6

~
~
C\l
0.

:J

C
en
~
G)

»
w
.I=>
6
0
I\J

o

--- ------ ----- ---- ---- - - ----------_ .-
<!>

International Business Machines Corporation

General Systems Division
57750 Glenridge Drive N. E.
P. O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

G A34-0021-1

(jj
~

~
[J
~

~
0
0-
~
U1
"tI

0
C'l

'" ., .,
Q
III
::>
0-
"tI

0
C'l

'" .,
Q
"TI

'" 0> ...
I: ..,
'" .,
0

'" .,
~
~.

o·
::>

en
~

~ -
~
::>
<b
0-

::>

C
en
~
Gl .J :t>
w
~
6
0
I\J

~

THE ~1~~~m~ill~~mruillij l~i~li~I~llINTER
1 026 2099 4

