
•

t
f

--- ------ - ---- ---- - ---- - - -----------.-

.GC34-0138-0
j

S1 -20

IBM Series/1

Mathematical and Functional

Subroutine Library

Introduction

Program Number 5719-LM1

PROGRAM
PRODUCT

o

111

o []

11

o

111111 1111111111111

o []JI

~ II V
t _)IE

Series/1

--- ------ - ---- ---- - ---- - - ----------_.-

o

o

GC34-0138-0 PROG RAM
PRODUCT

S1-20

IBM Series/1

Mathematical and Functional

Subroutine Library

Introduction

Program Number 5719-LM1

Series/1

This publication is for planning purposes only. The information herein is subject to change before
the products described become available.

First Edition (February 1977)

This edition applies to the IBM Series/l Mathematical and Functional Subroutine Library (MFSL)
program product (Program Number 5719-LMl). MFSL is compatible with the following program
products:

IBM Series/l FORTRAN IV, Program Number 5719-FOl.
IBM Series/l FORTRAN IV, Realtime Subroutine Library, Program Number 5719-F03.
IBM Series/l Program Preparation Subsystem, Program Number 5719-ASl.
IBM Series/1 Realtime Programming System, Program Number 5719-PCl.

Significant changes or additions to the contents of this publication will be reported in subsequent
revisions or Technical Newsletters. Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, send your comments to IBM Corporation, Systems Publications, Department 27T,
P. O. Box 1328, Boca Raton, Florida 33432. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1977

ii GC34-0138

o

o

o

o

o

o

Preface v
Related Publications v

The Mathematical and Functional Subroutine Library
General Description 1

Mathematical Subroutines
Conversion Subroutines 2
Error-Checking Subroutines 2
Service Subroutines (Assembler Applications Only) 2

Subroutine Library Contents 3
Mathematical Subroutines 3
Conversion Subroutines 10
Error-checking Subroutines 11
Service Subroutines (Called by Assembler Language

Programs Only) 12
Configuration Requirements 15

Hardware Support 15
Program Support 15

MFSL and the Application System 17
Installing MFSL 17
Sharing MFSL Modules 17
Referencing MFSL from Assembler Programs 17
Referencing MFSL from FORTRAN IV Programs 17
Building Applications with MFSL 18
Executing the Application 18
Managing Storage 18

Storage Optimization Techniques 18
Using a Shared Task Set for MFSL 19
Using a Subset of MFSL 20
Including MFSL Subroutines in a Shared Subroutine Area 21

Appendix A. Storage Estimating 23
Basic MFSL Storage Requirement 23
MFSL Functional Storage Requirements 23
Common MFSL Subroutines 24

Index 31

Contents

Contents III

o

o

o
iv GC34-0138

o

Related Publications

o

o

Preface

This is an introductory manual that describes the Mathematical and Functional
Subroutine Library (MFSL) for the IBM Series/1. MFSL comprises
mathematical, EBCDIC conversion, and error-checking subroutines for both
FORTRAN IV and assembler language users. Library service routines are
included for assembler language users only. The topics covered include a general
description of MFSL and a description of using MFSL with the application
system.

The reader should be familiar with the basic coding techniques of FORTRAN
IV or assembler programming; the related language publications are listed below.
The section "MFSL and the Application System" is related to the IBM Series/l
Program Preparation Subsystem program product and the IBM Series/l Realtime
Programming System program product. The reader may find it useful to refer to
the introductory publications listed below for these program products.

This publication describes the basic mathematical and functional capability of the
MFSL program product. Related subroutine support for executive functions and
realtime process input/output is provided by the FORTRAN IV Realtime Subroutine
Library program product. For information on these subroutines, see the related
FORTRAN IV publication listed below.

IBM Series/l FORTRAN IV: Introduction, GC34-0132.
IBM Series/l FORTRAN IV: Language Reference, GC34-0133.
IBM Series/l Program Preparation Subsystem: Macro Assembler User's Guide,
SC34-0124.
IBM Series/l Program Preparation Subsystem: Introduction, GC34-0121.
IBM Series/l Realtime Programming System: Introduction and Planning Guide,
GC34-0102.
IBM Series/l System Summary, GC34-003S.

Preface v

o

o

o
vi GC34-0138

o

General Description

o
Mathematical Sllbro"tines

o

The Mathematical and Functional Subroutine Library

The Mathematical and Functional Subroutine Library (MFSL) is a set of
subroutines that aids in developing application programs. The MFSL subroutines
can be used with the IBM Series/l FORTRAN IV program product (hereafter
referred to as FORTRAN IV) or the macro assembler language provided with
the IBM Series/l Program Preparation Subsystem program product (hereafter
referred to as Program Preparation Subsystem). The operating environment
required for MFSL, FORTRAN IV, and the assembler is provided by the IBM
Series/l Realtime Programming System program product (hereafter referred to as
Realtime Programming System). A user-written operating system that provides
the required interfaces can also use the MFSL subroutines.

MFSL is compatible with any Series/l hardware configuration that includes
the primary and secondary storage required for the MFSL subroutines used. The
configuration requires floating-point support only if the user application requires
REAL or floating-point arithmetic. MFSL functions that operate on integer or
fixed-point variables have no internal requirements for floating-point support.

In the course of developing application programs, many mathematical and other
functions are performed over and over again. These functions are often difficult
and tedious to implement. For this reason, a set of mathematical and functional
subroutines that perform the functions required can save time and effort in
developing applications. The functions provided by MFSL are as follows:

Arc Tangent, one or two arguments:
Given one argument, an arc tangent subroutine returns the angle that has the
argument as its tangent. Given two arguments, an arc tangent subroutine returns
the angle that has the quotient of the two arguments as its tangent. All angles are
in radians.
Cosine:
A sine-cosine subroutine returns the value of the cosine of the argument. All
angles are in radians.
Doubleword Divide:
A division subroutine returns the doubleword value of a doubleword number
divided by a doubleword number.
Doubleword Multiply:
A multiplication subroutine returns the doubleword value of a doubleword
number multiplied by a doubleword number.
Exponential function:
An exponential subroutine returns the value of e raised to the power of the
argument.
Exponentiation:
An exponentiation subroutine returns the value of any base raised to any power.
Hyperbolic tangent:
A hyperbolic tangent subroutine returns the value of the hyperbolic tangent for
the argument.
Logarithms, common or natural:
Logarithmic subroutines return the value of the base 10 or base e logarithm of
the argument.

The Mathematical and Functional Subroutine Library

Conversion Subroutines

Maximum value:
A maximum value subroutine returns the value of the largest argument in a set of
arguments.
Minimum value:
A minimum value subroutine returns the value of the smallest argument in a set
of arguments.
Modular arithmetic:
A modular arithmetic subroutine returns the remainder from the division of two
arguments.
Positive difference:
A positive difference subroutine returns the positive difference between the first
argument and the smaller of two arguments.
Sine:
A sine-cosine subroutine returns the value of the sine of the argument. All angles
are in radians.
Square root:
A square root subroutine returns the value of the square root of the argument.
Transfer of sign:
A transfer-of -sign subroutine returns the value of the sign of the second
argument concatenated to the absolute value of the first argument.

EBCDIC to floating-point:
A conversion subroutine converts an EBCDIC input into a floating-point
number.
EBCDIC to integer:
A conversion subroutine converts an EBCDIC input into an integer value.
Floating-point to EBCDIC:
A conversion subroutine converts a floating-point number into an EBCDIC
output.
Integer to EBCDIC:
A conversion subroutine converts an integer value into an EBCDIC output.

E"or-Checking Subroutines
Function test:
A function test subroutine determines if an error was detected in any MFSL
logarithmic, trigonometric, exponentiation, square root, or conversion subroutine
since the last call to function test.
Floating-point divide exception:
A floating-point divide exception subroutine determines if an error in a
floating-point divide operation has occurred since the last call to floating-point
divide exception.
Floating-point overflow/underflow:
A floating-point overflow/underflow subroutine determines if an overflow or
underflow condition has occurred since the last call to floating-point
overflow / underflow.

Service Subroutines (Assembler Applications Only)

2 GC34-0138

Applications that consist entirely of assembler-coded programs require these
services. FORTRAN IV programs, or assembler programs that run under
FORTRAN IV main programs, should not call these subroutines. The
FORTRAN IV compiler generates the necessary interfaces without any user
action.

o

o

o

o

c

o

Library work area initialization/termination:
An initialization or termination subroutine creates or deletes a work area in
storage for user communication (error flagging).
Abnormal termination routine specification:
An abnormal termination routine specification subroutine allows the user to
specify a routine to receive control if a program interruption occurs or if an
abnormal termination macro instruction (STOPT ASK) is issued.

Subroutine Library Contents

Mathematical Subroutines

MFSL contains four types of subroutines: (1) mathematical functions such as
SIN and SQRT, (2) EBCDIC conversion subroutines such as $FCIN
(EBCDIC-to-floating-point), (3) error-checking subroutines such as FCTST
(function test), and (4) subroutine library services such as $FMYINT (work area
initialization) .

The library subroutines can be used in either a FORTRAN IV or assembler
language program. In FORTRAN IV, calls to the library subroutines are either at
the programmer's request through explicit references to subroutine names or in
response to the FORTRAN IV exponentiation notation. In assembler language,
all MFSL subroutines are invoked through explicit calls to subroutine names. The
MFSL subroutines are added to the application task set load module by the
application builder.

The MFSL mathematical subroutines perform many commonly used mathematical
operations to aid the application programmer. The explicitly called mathematical
subroutines include logarithmic and exponential functions, trigonometric
functions, and the miscellaneous functions of maximum and minimum values,
modular arithmetic, positive difference, and transfer of sign. These subroutines
are described in Figure 1 through Figure 5. The implicitly called mathematical
subroutines provide a general exponentiation capability and an INTEGER *4
(doubleword) multiply and divide capability. These subroutines are described in
Figure 6.

The Mathematical and Functional Subroutine Library 3

General function Specific function Entry name(s)

Logarithmic and exponential Exponential EXP

subroutines (described in DEXP

Figure 2) o
Logarithmic, ALOG, ALOGlO

common and DLOG, DLOG lO

natural

Square root SQRT, DSQRT

Trigonometric Arc tangent ATAN,ATAN2

subroutines DATAN, DATAN2

(described in

Figure 3) Cosine and sine COS, DCOS

SIN, DSIN

Hyperbolic function Hyperbolic tangent TANH,DTANH

subroutine

(described in Figure 4)

Miscellaneous Maximum and minimum MAXO, MINO

subroutines value MAXO#, MINO#

(described in AMAXO, AMINO

Figure 5) AMAXO#, AMINO#

MAXI, MINI

MAXI#, MINI#

AMAXI, AMIN 1

DMAXI, DMINI

Modular arithmetic MOD
AMOD, DMOD o

Positive difference DIM

IDIM,IDIM#

Transfer of sign SIGN, DSIGN

ISIGN, ISIGN#

Figure 1. Explicitly called MFSL subroutines

o
4 GC34-0138

Function or
General entry Function value

o function name Definition Arguments type 1 and range 2

No. Type l Range

Common ALOG y=loge x or 1 REAL*4 x>O REAL*4
and natural y=ln x y~ -180.218
logarithm y~ 174.673

ALOGto y=loglOx 1 REAL*4 x>O REAL*4
y~-78.268

y~75.859

DLOG y=logex or 1 REAL*8 x>O REAL*8
y=ln x y~-180.218

y~ 174.673

DLOGto y=loglOx 1 REAL*8 x>O REAL*8
y~-78.268

y~75.859

Exponential EXP y=ex 1 REAL*4 x~-180.218 REAL*4
x~174.673 O~y~'Y

DEXP y=ex 1 REAL*8 x~-180.218 REAL*8
x~ 174.673 O~y~'Y

Square root SQRT y=x1/2 1 REAL*4 x~O REAL*4
0~y~'Y1/2

DSQRT y=xl /2 1 REAL*8 x~O REAL*8
O~y~'Y1/2

o Notes.
1 Assembler programming: REAL*4 and REAL*8 FORTRAN IV arguments correspond to doubleword and two-doubleword

floating-point arguments, respectively.

2"1 is approximately 7.24 x to75 ; "11/2 is approximately 8.51 x to37 .

Figure 2. Logarithmic and exponential MFSL subroutines

o
The Mathematical and Functional Subroutine Library 5

Function or
General entry Function value
function name Definition Arguments type 1 and range

No. Type 1 Range 2 o
Arc tangent ATAN y=arctan x 1 REAL*4 Any REAL REAL*4 (in radians)

argument -'fT/2<;,y<;''fT/2

ATAN2 y=arctan xl"2 2 REAL*4 Any REAL REAL*4 (in radians)
arguments -'fT<y<;,'fT
(except O/O)

DATAN y=arctan x 1 REAL*8 Any REAL REAL*8 (in radians)
argument -'fT/2<;,y<;''fT/2

DATAN2 y=arctan xl"2 2 REAL*8 Any REAL -'fT<y<;,'fT
arguments
(except O/O)

Sine and SIN y=sin x 1 REAL*4 I x I <218'fT REAL*4
cosine (in radians) -1 <;,y<;, 1

COS y=cos x 1 REAL*4 I x I <218'fT REAL*4
(in radians) -1 <;,y<;, 1

DSIN y=sin x 1 REAL*8 I x I <250 'fT REAL*8
(in radians) -1 <;,y<;,l

DCOS y=cos x 1 REAL*8 I x I <250'fT REAL*8
(in radians) -1 <;,y<;, 1

Notes.
1 Assembler programming: REAL*4 and REAL*8 FORTRAN IV arguments correspond to doubleword and two-doubleword

floating-point arguments, respectively.
2 The following are approximate values:

218'fT=2.62 x loS'fT o
250'fT= 1.13 x 1015 'fT

Figure 3. Trigonometric MFSL subroutines

Function or
General entry Function value
function name Definition Arguments type 1 and range

No. Type 1 Range

Hyperbolic TANH y=(eX_e-X}/(ex+e-X) 1 REAL*4 Any REAL REAL*4
Tangent argument -1 <;,y<;, 1

DTANH y=(eX_e-X)/(ex+e-X) 1 REAL*8 Any REAL REAL*8
argument -1 <;,y<;, 1

Notes.

1 Assembler programming: REAL*4 and REAL*8 FORTRAN IV arguments correspond to double word and two-doubleword
floating-point arguments, respectively.

Figure 4. Hyperbolic function MFSL subroutines

o
6 GC34-0138

Function or Arguments
General entry Function value

o [unction name Definition No. Type I Range type I

Maximum MAXO y=max (Xl , .•• ,xn) ~2 INTEGER*2 Any INTEGER*2
and or INTEGER or
minimum INTEGER*4 arguments INTEGER*4
values (See Note 2) (See Note 2)

MAXO# y=max (Xl , .•• ,xn) ~2 INTEGER*2 Any INTEGER*2
(See Note 3) INTEGER

arguments

MINO y=min (XI , ••• ,xn) ~2 INTEGER*2 Any INTEGER*2
or INTEGER or
INTEGER*4 arguments INTEGER*4
(See Note 2) (See Note 2)

MINO# y=min (Xl , ••• ,xn) ~2 INTEGER*2 Any INTEGER*2
(See Note 3) INTEGER

arguments

AMAXO y=max (Xl , .•• ,xn) ~2 INTEGER*2 Any REAL*4
or INTEGER
INTEGER*4 arguments
(See Note 2)

AMAXO# y=max (Xl , .•. ,xn) ~2 INTEGER*2 Any REAL*4
(See Note 3) INTEGER

arguments

AMINO y=min (XI , ..• ,xn) ~2 INTEGER*2 Any REAL*4
or INTEGER
INTEGER*4 arguments
(See Note 2)

AMINO# y=min (Xl , •.• ,xn) ~2 INTEGER*2 Any REAL*4
(See Note 3) INTEGER o arguments

Notes.

(See end of Figure 5.)

Figure 5. Miscellaneous mathematical subroutines (Part 1 of 3)

o
The Mathematical and Functional Subroutine Library 7

Function or Arguments
General entry Function value
function name Definition No. Type I Range type l

Maximum MAXI y=max (Xl , ... ,xn) ~2 REAL*4 Any INTEGER*2 or
and REAL INTEGER*4

o
minimum arguments (See Note 2)
values MAXI# y=max (Xl , ... ,xn) ~2 REAL*4 Any INTEGER*2
(cont.) (See Note 3) REAL

arguments

MINI y=min (Xl , ... ,xn) ~2 REAL*4 Any INTEGER*2 or
REAL INTEGER*4
arguments (See Note 2)

MINI# y=min (Xl , ... ,xn) ~2 REAL*4 Any INTEGER*2
(See Note 3) REAL

arguments

AMAXI y=max (Xl , ... ,xn) ~2 REAL*4 Any REAL*4
REAL
arguments

AMINI y=min (Xl , ... ,xn) ~2 REAL*4 Any REAL*4
REAL
arguments

DMAXI y=max (Xl , ... ,xn) ~2 REAL*8 Any REAL*8
REAL
arguments

DMINI y=min (Xl ,,,,,xn) ~2 REAL*8 Any REAL*8
REAL
arguments

Notes.

(See end of Figure 5.)

Figure 5. Miscellaneous mathematical subroutines (Part 2 of 3) o

o
8 GC34-0138

Function or Arguments
General entry Function value

o junction name Definition No. Type 1 Range type 1

Modular MOD y=XI modulo X z 2 INTEGER*2 x,* 0 INTEGER*2 or
arithmetic (See Note 4) or (See Note 5) INTEGER*4

INTEGER*4
(See Note 2)

MOD# y=Xl modulo x, 2 INTEGER*2 x, * 0 INTEGER*2
(See Note 3) (See Note 4) (See Note 5)

AMOD y=Xl modulo X z 2 REAL*4 xz* 0 REAL*4
(See Note 4) (See Note 5)

DMOD y=XI modulo X z 2 REAL*8 x2 * 0 REAL*8
(See Note 4) (See Note 5)

Positive DIM y=XI -min (Xl ,x2) 2 REAL*4 Any REAL*4
difference REAL

arguments

IDIM y=Xl -min(x i ,x2) 2 INTEGER*2 Any INTEGER*2
or INTEGER or
INTEGER*4 arguments INTEGER*4
(See Note 2) (See Note 2)

IDIM# y=xl-min(xl ,x,) 2 INTEGER*2 Any INTEGER*2
(See Note 3) INTEGER

arguments

Transfer SIGN y=sgn(x,) IXI I 2 REAL*4 x, *0 REAL*4
of (See Note 6) (See Note 6)
sign DSIGN y=sgn(x,) IX I I 2 REAL*8 x,* 0 REAL*8

(See Note 6)

ISIGN y=sgn(x,) IX I I 2 INTEGER*2 x,*O INTEGER * 2 or

o
or (See Note 6) INTEGER*4
INTEGER*4
(See Note 2)

ISIGN# y=sgn(x2) IX I I 2 INTEGER*2 x,*O INTEGER*2
(See Note 3) (See Note 6)

Notes.
1 Assembler programming: REAL*4 and REAL*8 FORTRAN IV arguments correspond to doubleword and two-doubleword floating-

point arguments, respectively.
,

In FORTRAN IV, argument and value must be the same type. In assembler language, this entry name is for doublewords only.
3 These entry names are for assembler language programs only.
4 The expression Xl modulo x, is defmed as Xl -X2 [Xl Ix, I where the brackets indicate that an integer is used. The largest integer

whose magnitude does not exceed the value of Xl Ix, is used. The sign of the integer is the same as the sign of Xl /x2 •

5 If x, = 0, the modular function is undefined. In this case, a divide exception is recognized, and an interruption occurs.
6 The sgn function is defined as follows: sgn(x2) = 1 if X z > 0, and sgn(X 2) = -1 if Xz < O. If X z = 0, sgn(x) is not defined. In this

case, the transfer-of-sign function does not indicate an error, but its results are unpredictable.

Figure 5. Miscellaneous mathematical subroutines (Part 3 of 3)

o
The Mathematical and Functional Subroutine Library 9

General function Entryl name Implicit 2 function reference Arguments Function value type

No. Type 3

Raise an integer to IEXP# m=i**j 2 i=INTEGER *2 m=INTEGER *2
an integer power j=INTEGER*2

IEXP m=i**j 2 i=INTEGER *4 m=INTEGER *4
j=INTEGER*4

Raise a real EXPI# y=x**k 2 x=REAL*4 y=REAL*4
number to an k=INTEGER *2
integer power

EXPI y=x**k 2 x=REAL*4 y=REAL*4
k=INTEGER *4

DEXPI# y=x**k 2 x=REAL*8 y=REAL*8
k=INTEGER*2

DEXPI y=x**k 2 x=REAL*8 y=REAL*8
k=INTEGER*4

Raise a real EXPE y=x**z 2 x=REAL*4 y=REAL*4
number to a real z=REAL*4
power

DEXPD y=x**z 2 x=REAL*8 y=REAL*8
z=REAL*8

Divide a IDIV k=1/m 2 1=INTEGER *4 k=INTEGER *4
doubleword integer m=INTEGER *4
by a doubleword
integer

Multiply a IMULT k=l*m 2 1=INTEGER *4 k=INTEGER *4
doubleword integer m=INTEGER*4
by a doubleword
integer

Notes.

1 Entry names are used in assembler language programs only.

2 This is only a representation of a FORTRAN IV statement; it is not the only way the subroutine can be called.
3 Assembler programming: REAL*4 and REAL*8 FORTRAN IV arguments correspond to doubleword and two-doubleword

floating-point arguments, respectively.

Figure 6. Exponentiation and INTEGER *4 (doubleword) multiplication and division subroutines

Conversioll SlIbrolltines

10 GC34-0138

Input and output data conversions are made easier by the MFSL EBCDIC
conversion subroutines. Numerical input data in EBCDIC format can be
converted to an internal representation in integer or floating-point format. After
computations in integer or floating-point arithmetic, the resulting numerical
output can be converted back to an EBCDIC format. These subroutines are
described in Figure 7.

To use the conversion subroutines, the user program must establish input and
output buffers and manage their contents by using the READ/WRITE facilities
of FORTRAN IV or the macro assembler language. The MFSL conversion
subroutines always move data between a variable in the user program and an
input or output buffer. Each conversion subroutine manages its buffer so that
repeated calls to the subroutine will process sequential fields in the buffer. When
the buffer is completely processed, the conversion subroutine goes back to the
beginning of the buffer for the next conversion following a READ or WRITE

o

()

o

o

Error-claeckillg S"brtHltilles

o

To convert from To Call entry name

EBCDIC (with or without Floating-point single precision $ECIN
exponent)

Floating-point double precision $DCIN

EBCDIC (no exponent) Fullword integer $I2CIN

Doubleword integer $I4CIN

Floating-point EBCDIC (with exponent) $ECOT
single precision

EBCDIC (no exponent) $FCOT

Floating-point EBCDIC (with exponent) $DCOT
double precision

EBCDIC (no exponent) $FCOTD

Fullword integer EBCDIC (no exponent) $I2COT

Doubleword integer EBCDIC (no exponent) $I4COT

Figure 7. EBCDIC conversions and MFSL subroutines

110 operation. The user call to a conversion subroutine requires a parameter list
to specify the following:

• The name of the variable used in the user program
• The width (in characters) of the input or output buffer field for each

conversion
• The name of the input or output buffer
• The value of a decimal scale factor (if used)
• The default number of decimal places (if used)

The MFSL subroutines communicate with the user through flags in the MFSL
library work area. There are no MFSL error messages. The typical MFSL
procedure for error handling is that the error-detecting subroutine (for example,
SQRT detecting a negative argument) sets a flag in the library work area and
then continues processing according to a predefined rule (such as taking the
square root of the absolute value). To check for errors, the user must either
check function arguments before invoking a subroutine or use the error-checking
subroutines to validate the results. These subroutines are described in Figure 8.

The Mathematical and Functional Subroutine Library 11

Call Call
Using as assembler FORTRAN IV

To check interface variables name name

Logarithmic, trigonometric, Fullwords FCTST# FCTST
exponential, square root,
conversion subroutines

Doublewords FCTST FCTST

Floating-point Fullwords DVCHK# DVCHK
divide by zero

Doublewords DVCHK DVCHK

Floating-point Fullwords OVERFL# OVERFL
overflow or
underflow

Doublewords OVERFL OVERFL

Figure 8. Error conditions and MFSL error-checking subroutines

In using the error-checking subroutines, the user does not directly access the
library work area. The subroutine call requires a parameter list that names an
interface variable that is used in the user program. The error-checking subroutine
accesses the library work area and sets the interface variable to indicate the error
status to the user program. On return from the error-checking subroutine, the
user program must test the interface variable to determine whether an error was
detected. Each call to an error-checking subroutine resets the associated error
indicator bits in the library work area. The values returned by the error-checking
subroutines are shown in Figure 9.

Error-checking subroutine Returned value Error status indicated

DVCHK or DVCHK# 1 Division by zero occurred

2 No division by zero occurred

FCTST or FCTST# (See 1 Function error occurred
note below)

2 No function error occurred

OVERFL or OVERFL# 1 Overflow occurred

2 No overflow or underflow occurred

3 Underflow occurred

Note. Two interface variables are required for function test. If the first indicates that an
error occurred, the second can be tested to determine the specific error.

Figure 9. Returned values from error-checking subroutines

Service SIIbrolltilles (Called by Assembler LallglUlge Programs Only)

12 GC34-0138

The MFSL subroutines require an operating environment that includes the library
work area and an interruption-handling facility. This environment is established
by the FORTRAN IV compiler for FORTRAN IV programs or a set of
programs whose main program is in FORTRAN IV. Assembler language
programs that do not execute in a FORTRAN IV environment must perform
these service subroutine calls. The library service subroutines are described in
Figure 10.

o

o

o

o

MFSL Library Work. Area

Interruption Handling

o

o

To Call entry name

Initialize library work area $FMYINT

Delete library work area $FMYTRM

Specify abnormal termination routine $FMYSPE

Figure to. Library services and MFSL subroutines (called by assembler programs only)

The user controls the service subroutines through the calling parameters and
interprets their actions through returned parameters or return codes. The user
communication with the service subroutines is shown in Figure 11.

The MFSL library work area is created and initialized by the service subroutine
$FMYINT. The library work area is deleted by $FMYTRM. The initialization
subroutine should be called before any other MFSL subroutines are invoked. The
termination routine should be called after all MFSL subroutines have been
invoked.

The MFSL subroutines intercept floating-point exceptions to provide
error-handling support. The user can specify a subroutine to receive control when
a program check other than floating-point occurs or when an abnormal
termination macro instruction (STOPT ASK) is issued.

The Mathematical and Functional Subroutine Library 13

Return code (R C) in register
Calling parameter list (pointed o or parameter list (pointed

Service subroutines to by register 0) to by register 0)

$FMYINT Word 1: Address of a flag Word 2: Address of a pointer o
field to describe the to the library work area.
operating environment and Or
required MFSL functions RC=O: Successful first
(see note below). initialization (pointer to
Word 2: If dynamic library work area is in task
allocation option is not used, work stack descriptor).
the address of a pointer to a RC=2: Successful
storage area for the library initialization (pointer to
work area. library work area is in task

work stack descriptor).
RC=4: No MFSL functions
requested.
RC=6: Internal error
occurred (initialization
results unknown).

$FMYTRM None RC=O: Successful release of
library work area.
RC=2: No library work area
existed when $FMYTRM
was called.
RC=4: Reserved.
RC=6: Internal error
occurred (termination results
unknown).

$FMYSPE Word 1: Address of a Word 3: Address of a pointer
pointer to the routine to get to the abnormal termination
control on abnormal routine that existed when
termination. $FMYSPE was called (if
Word 2: Address of a none existed, this word o
pointer to the parameter list contains zero).
passed to the abnormal Word 4: Address of a pointer
termination routine. to the parameter list that was

specified on the last call to
$FMYSPE (if none was
specified, this word contains
zero).

Note. The option flags are as follows:
Bits Meaning
0-3 Reserved
4 Conversion subroutines used
5 Mathematical subroutines used
6-7 Reserved
8 Dynamic allocation allowed
9-14 Reserved
15 Abnormal termination exit allowed

Figure 11. User communication with service subroutines

o
14 GC34-0138

o

o

o

Configuration Requirements

Hardware S"pport

Program S"pport

The system installation must be properly equipped to use MFSL. Both hardware
and software requirements are given below.

1. Processors:
4953
4955

2. Processor Features (optional):
Floating-point Feature Number 3920 (4955 Processor only)

3. Primary Storage Considerations:
For MFSL (See also Appendix A.):

The size of user-called subroutines
The size of subroutine-called subroutines
The size of the error exit routine
The size of operating system services

For User:
The size of linkage code for all calls

4. Secondary Storage (Approximate Sizes):
For MFSL:

The size of the MFSL object
library, if installed,
The size of the MFSL load
module library, if installed,
If both libraries are installed,
the total,

38 912 bytes

139 008 bytes

177 920 bytes

MFSL is supported by the Realtime Programming System program product and
the Program Preparation Subsystem program product. These programs allow the
user to assemble, compile, combine, and execute programs that use the MFSL
subroutines.

If floating-point operations are used and the floating-point hardware feature is
not installed, then the floating-point emulator option of the Realtime
Programming System must be installed. If no functions that require REAL
arithmetic are used, MFSL has no requirement for floating-point support in either
hardware or software. The functions that require floating-point support are the
following:

• Logarithmic and exponential
• Trigonometric
• Hyperbolic
• Exponentiation with REAL variables
• Arithmetic with REAL variables
• EBCDIC conversions with REAL variables

The Mathematical and Functional Subroutine Library 15

o

o

o
16 GC34-0138

o

o

Installing MFSL

Sharing MFSL Modules

MFSL and the Application System

The following topics describe the user actions required to use MFSL. They are
presented in the order that represents a typical application.

At any time after system generation, the distribution library copies of the MFSL
subroutines can be copied from diskette to the system library specified by the
user. Distribution libraries are provided for both object and composite modules,
so no further assemblies or compilations are required. Both object and composite
modules are required to fully support task set preparation. During phase 1 of the
application builder, the MFSL object modules can be included in overlay
structures. During phase 3 of the application builder, the MFSL composite
modules can be included in the task set load module. Installation of the MFSL
object and composite module libraries is independent. If there is no requirement
for the MFSL object modules (such as overlay programming), the object module
library need not be installed.

MFSL uses reentrant programming techniques to allow different user programs to
share the subroutines. The MFSL subroutines can be resident or transient in any
user partition. The subroutines can be shared by programs in one or more
partitions.

Referencing MFSL from Assembler Programs
The assembler user references all MFSL subroutines through the CALL macro
instruction using the PARM= parameter list to pass arguments. Usually, the
subroutines return the function value in a register. In some cases, the value is
returned in a storage location whose address is passed as an input argument. An
example of the assembler interface is

CALL SIN,PARM=(X)

x DC E'O'

which finds the sine of the argument X. X is the name of a single-precision
floating-point field that is defined in the caller's program. The result is returned
in floating-point register 0 following the call.

Referencing MFSL from FORTRAN IV Programs
The FORTRAN IV user references some MFSL subroutines as FORTRAN IV
FUNCTION subprograms, some subroutines by CALL statements, and other
subroutines implicitly in FORTRAN IV statements.

The mathematical subroutines supported by FORTRAN IV as FUNCTION
subprograms are typically coded as

A = SIN(X)

where SIN is the name of the FUNCTION subprogram.

MFSL and the Application System 17

The FORTRAN IV user can invoke other subroutines through the CALL
statement, such as

CALL FCTST(I,J)

where the function test subroutine is invoked with I and J as parameters.
Implicit references to the MFSL subroutines are made in two ways. The first

way is through the FORTRAN IV exponentiation notation, such as

Y = X**2.5

where a subroutine is needed to raise X to the 2.5 power. The second way in
which an implicit reference is made is through the compiler selection of
INTEGER*2 or INTEGER*4 subroutines according to the CMPAT or
NOCMP AT compiler options. (See the publication FOR TRAN IV: Language
Reference, GC34-0133, for further information on the compiler option.)

Building Applications with MFSL
After MSFL is installed in the system, the MFSL modules can be combined with
user-written programs to build the application. When the automatic call facility of
the application builder is used to reference MFSL, the user need only make
source code references to the subroutines. In the compile-load-go process, the
application builder automatically includes the MFSL modules in the application
task set load module.

Executing the Application

Man~g Storage

During execution there are no user actions or interfaces with the MFSL
subroutines. The MFSL functions interact with the application programs and the
library work area.

The following discussion of storage management topics is provided to show
storage-critical installations how they can use the flexibility of MFSL to minimize
the MFSL storage requirement. The design of typical applications will not require
the use of these storage optimization techniques.

Storage Optimization Techniqlles

18 GC34-0138

For any given system generation and application design, there is an optimum way
to install the MFSL subroutines to minimize their storage requirements. The
Series/l program products that allow the user to prepare efficient software
configurations for MFSL applications are the following:

• The shared task set capability of the Realtime Programming System program
product

• The application builder facility of the Program Preparation Subsystem program
product

The Realtime Programming System allows the user to take advantage of the
reentrant property of the MFSL subroutines. When included in the shared task
set, an MFSL subroutine can be executed by different programs in different
partitions at the same time. A single in-storage copy of the subroutine in the
shared task set eliminates the need to allocate storage for the subroutine in any
other partition.

The application builder allows a user task set to minimize its MFSL storage
requirement in three ways: First, the application builder allows the task set to
include only the subset of MFSL subroutines that it actually needs. Secondly, the

o

o

o

o

o

o

application builder allows a group of main programs that executes in one task set
to include MFSL subroutines in a shared subroutine area so that a single
in-storage copy of each subroutine can be executed by any main program or
subprogram in the partition. Finally, the application builder allows the MFSL
subroutines to be used in overlay structures.

The basic MFSL installation questions are these:

• Which MFSL subroutines should go into the shared task set?
• Which MFSL subroutines should go into a shared subroutine area?

The answers to these questions must be based on an analysis of unique system
and application characteristics. The following topics describe the problems and
some methods for their solution.

Using a Shared Task Set lor MFSL
Different applications can be independently prepared for each partition. If this
approach is taken, the application builder will combine the programs for ~ach
task set, and MFSL subroutines that are referenced will be included in each task
set. This approach will result in a software configuration such as the one shown
on the "problem" side of Figure 12. In this case, a four-partition system has
been generated. Partition 0 contains the Realtime Programming System, and
partitions 1-3 are for user applications. Because each of the applications uses the
MFSL subroutines, MFSL is built into each of the user partitions. This approach
uses storage inefficiently because many of the same MFSL modules are included
three times.

Problem:

Storage-inefficient

User User-
3 pro- referenced

grams MFSL

User User-
2 pro- referenced

grams MFSL

User User-
1 pro- referenced

grams MSFL

Realtime
0 Programming

System

Partition J -
Cont ents Partition

Figure 12. Using a shared task set for MFSL

Solution:

User User-
pro- referenced Shared task set

Realtime
o Programming

System

...... --Contents

On the "solution" side of Figure 12, the system has been redesigned to include
partition 4 as a shared task set. The MFSL subroutines included in the shared
task set are now referenced from programs that execute in the three original user
partitions. Now, there is only one copy of each MFSL subroutine in storage. T;te
cross-partition references are made possible by using the application builder to
combine each user task set in partitions 1-3 with the shared task set in
partition 4.

MFSL and the Application System 19

Using a Subset of MFSL

20 GC34-0138

The specific MFSL subroutines placed in the shared task set can be selected in
two ways: One method is simple and flexible, but it does not ensure an absolute
minimum storage requirement. The other method requires more analysis, but it
does eliminate all redundancy.

The simple way is to include all MFSL modules in the shared task set. Then,
any application that uses MFSL can be combined with the shared task set to
resolve its external references to MFSL subroutines. This method is appropriate
if the application usage of MFSL is unknown or unpredictable for a variable set
of applications.

The other method of selecting MFSL subroutines for the shared task set is
shown in Figure 13. Here, the subroutine requirements of each partition are
known in advance. The subroutines used can be tabulated for all partitions, and
only those that are used by more than one partition need be placed in the shared
task set. The other subroutines, which are used only in one partition, can be
included with that partition. This method is appropriate for a dedicated set of
applications where efficiency is more important than flexibility.

User partitions

Partition 1 Partition 2
Subroutines used: Subroutines used:

Partition 4
Shared task set
Subroutines used:

[} Used in more than one partition

Partition 3
Subroutines used:

Figure 13. Selecting subroutines for the shared task set

The organization of MFSL, which provides each function as a separate object or
composite module, provides a great advantage to the user who needs only a few
MFSL functions. In the process of building applications, the application builder
can construct overlays by including the specified MFSL object modules during
phase 1. The application builder can also resolve external references from
user-written programs to MFSL subroutines by bringing the appropriate MFSL
composite modules into a task set load module during phase 3. Only the MFSL
modules that are used (plus supporting data areas) are made part of the task set
load module. The result is that each user task set requires storage only for a
subset of the total MFSL. The user task set does not require storage for unused
subroutines. Figure 14 illustrates the problem that would exist if the entire
subroutine library had to be in a task set that used only a subset of the MFSL
functions. The storage estimating information in Appendix A shows how to
approximate the actual storage that a task set will need for MFSL, based on the
functions used.

o

o

o

o

o

Problem: Solution:

Storage-inefficient MFSL subset only

Task set Task set

MFSL Subset

Subset }~:.:::;\. :.:':~:(:::;::::':::" ','.. ,: ,.:: .. ::'" .. : " ",:.

It~··· .~~ed· -,
Lb>·-.- ~ ___ .:- J

Figure 14. Using an MFSL subset in a task set

Including MFSL Subroutines in a Shared Subroutine Area
When an application contains many programs, it is often convenient to develop
and test the application in logical groups of programs. As the programs that make
up a functional unit of the application are completed, they can be combined to
form task set load modules that can be executed and tested independently. When
all of the functional units are completed, their composite modules can be
combined to form the task set load module for the application. This step-by-step
process allows testing during development and makes it easier to produce the
complete set of programs for the application.

When identical MFSL modules are used throughout a large application, they
should be combined into a shared subroutine area to conserve storage space. This
means that the MFSL library should be specified as input to the application
builder only during the phase 3 process when the composite modules are
combined to build the task set load module.

The "problem" side of Figure 15 shows the task set load module structure that
would result if MFSL were specified as input to the application builder during
separate phase 1 combinations of the three main programs shown. Because two
of the main programs had references to MFSL, the MFSL modules were included
twice. This task set structure does not take advantage of a shared subroutine
area.

The "solution" side of Figure 15 shows the same task set structure modified to
use a shared subroutine area. When each of the main programs was combined
during phase 1 execution of the application builder, MFSL was not specified as
input. The external references to MFSL modules were left unresolved in the
composite modules. Finally, during Phase 3 execution, MFSL was specified as
input to the application builder. At this time, the MFSL modules were included.
However, only one copy of each MFSL subroutine was brought into the task set
load module. Now, external references to MFSL from any program in the task
set can be resolved to a single in-storage copy of each MFSL subroutine. The
storage allocated to MFSL is in a shared subroutine area rather than in the
composite modules of each main program.

The process of selecting MFSL modules for a shared subroutine area is similar
to the process of selecting MFSL subroutines for the shared task set. Figure 16
shows the tabular method of selecting commonly used subroutines. This approach
produces a shared subroutine area of minimum size. However, the total task set
size would be the same if all of the referenced subroutines were placed in the
shared subroutine area. Therefore, on a task set basis, the simple approach of
placing all MFSL modules in the shared subroutine area requires the minimum
amount of storage for MFSL.

MFSL and the Application System 21

22 GC34-0138

Problem: Solution:

User
application

Main Main Main Main
program program program program

Sub-
MFSL

routine
Sub-
routine

Storage-inefficient L ~
Sub-

MFSL
routine

Figure 15. Using a shared subroutine area for MFSL

Within task set

Combine
with main
program 1
during
phase 1 of
application
builder

User application

Main
program 1
Subroutines used:

Co mbine only
during phase 3

Main
program 2
Subroutines used:

Combine
with main
program 2
during
phase 1

User
application

Main
program

I I
MFSL

t
Shared
subroutine
area

of application
builder to create
shared subroutine
area

of application
builder

Figure 16. Selecting subroutines for a shared subroutine area

o

Main
program

Sub-
routine

o

o

o

o

o

Appendix A. Storage Estimating

The following information can be used to determine the additional storage
required by application programs to support MFSL functions. The storage
requirements analysis must consider these factors:

• Basic MFSL storage requirement
• MFSL functional storage requirement
• Common MFSL subroutines

The module sizes and all resulting storage requirements given in this appendix
are approximate.

Basic MFSL Storage Requirement
Any application that uses MFSL must include the following:

• Space in the partition dynamic area (free storage) for a library work area of
32 bytes

• Space for the MFSL error exit routine ($FMYABN) of 136 bytes

The total basic MFSL storage requirement is 168 bytes.

MFSL Functional Storage Requirements
When an application program uses an MFSL function, the user interface is either
a function name or the FORTRAN IV exponentiation notation. The name or
notation used in the application program provides a link to the MFSL
subroutines.

In assembler language programs, most MFSL functions require an interface
module plus one or more dependent subroutine modules to perform the function.
The interface modules are not required by FORTRAN IV programs. For
example, Figure 17 shows the module dependencies that result from references to
the modular arithmetic and hyperbolic tangent functions. The same module
dependencies result for references from the FORTRAN IV program or the
assembler program, except for the interface modules.

The MFSL storage requirement for the functions shown in Figure 17 includes
the following:

• The interface modules for the assembler program, MOD and TANH: total 8
bytes

• The modular arithmetic function $FMEMOD and its module dependencies for
dividing and multiplying integers, $FMDDDD and $FMDDMD: total 424
bytes

• The single-precision hyperbolic tangent function, $ FMETNH , and its module
dependency for the single-precision exponential function, $FMEEXP: total
432 bytes.

The total for all of the above functions is 864 bytes. This storage requirement
is in addition to the basic MFSL requirement of 168 bytes for the library work
area and the error exit routine. Thus, the total MFSL storage requirement for the
user application is 1032 bytes.

Appendix A. Storage Estimating 23

-
FORTRAN program

Y = MOD (A,B)

Y = TANH (X)

MOD

Interface
module

4 bytes

,
User
application

I

User interface

Assem bIer program

CALL MOD,
... PARM = (A,B,y)
CALL TANH,

PARM = (X)

TANH

Interface
module

4 bytes

-- ----- -- -- -- -- - ---- --------
106 bytes

$FMEMOD

Modular arithmetic
--- function:

INTEGER*4
arguments and value

----,I 1 _____

222 bytes

$FMDDDD

Divide
INTEGER*4 by
INTEGER*4

96 bytes

$FMDDMD

Multiply
INTEGER *4 by
INTEGER*4

Figure 17. Typical MFSL module dependencies

142 bytes

$FMETNH

Single-precision
hyperbolic
tangent

290 byte

$FMEEXP

Single-precision
exponential
function

Common MFSL Subroutines

24 GC34-0138

The above example using the data in Figure 17 illustrates an important point to
consider when estimating storage requirements: Only one copy of each required
MFSL module need be included in the task set, load module. If the functional
storage requirements for the FORTRAN IV program and the assembler program
in Figure 17 were calculated independently and the results added together to
obtain the application storage requirements, then the basic MFSL modules would
be counted twice. The functional storage requirement would appear to be almost
twice as large as it really is.

Common subroutines can also reduce the apparent functional storage
requirement for a single program. This case is illustrated by the sine and cosine
functions. In Figure 18, an assembler program is shown referencing both the sine
and cosine functions. Because the sine-cosine subroutine $FMESNC is common

o

o

o

o

o

to both functions, the total functional storage requirement is only 206 bytes. The
requirement for sine or cosine alone is 202 bytes. The only module requirement
for the additional function is the interface module. In FORTRAN IV, there is no
additional module requirement; the only requirement is 198 bytes for $FMESNC.

SIN

Interface
module

Assembler program

CALL COS,PARM=(Z)
•••
CALL SIN,PARM=(Z) ...

I I
4 bytes

User interface

COS

Interface
module

4 bytes

------1---------- - -----------

Figure 18. Common subroutine usage

I 1198 bytes

$FMESNC

Single-precision
sine-cosine
function

The basic tool for MFSL storage estimating is the MFSL functional storage
requirements table given in Figure 19. This table gives the total storage required
for each MFSL function. Module dependencies are shown, including the size of
each module required.

The table should be used in the following way:

1. Identify all MFSL functions used by your application. (FORTRAN IV
programs should include their module requirements for exponentiation by
using the entry names given in Figure 6 for assembler programs.)

2. Look up each function you use in the "Function or entry name" column.
Note the modules required, and cumulatively total the number of bytes given
in the "Maximum storage required" column. (The last column is the sum of
the individual modules required. Estimates for FORTRAN IV programs
should subtract the 4 bytes used by the interface module.)

3. As each function is totaled, check the modules required to make sure that
none are counted twice. Whenever a common subroutine is encountered,
subtract its size from the "Maximum storage required" entry before adding
the functional storage requirement to the cumulative total.

When the storage required for all the functions is totaled in this way, the result
is your application's MFSL functional storage requirement. Add this to the basic
MFSL requirement to find the total MFSL storage requirement for your
application.

Appendix A. Storage Estimating 25

Function or entry Modules required Maximum storage
name (assembler onlyt) Module size (bytes) required (bytes)

$DCIN $DCINt 4 1388
$FFDCIN 880 o
$FFCHRC 92
$FFFTEN 412

$DCOT $DCOTt 4 1562
$FFDCOT 1146
$FFFTEN 412

$ECIN $ECINt 4 1388
$FFDCIN 880
$FFCHRC 92
$FFFTEN 412

$ECOT $ECOTt 4 1562
$FFDCOT 1146
$FFFTEN 412

$FCOT $FCOTt 4 1562
$FFDCOT 1146
$FFFTEN 412

$FCOTD $FCOTDt 4 1562
$FFDCOT 1146
$FFFTEN 412

$FMYINT $FMYINT 336 472
$FMYABN 136
(Weak Reference)

$FMYSPE $FMYSPE 18 18

$FMYTRM $FMYTRM 190 190 o
$I2CIN $I2CINt 4 242

$FFI2CIN 146
$FFCHRC 92

$I2COT $I2COTt 4 160
$FFI2COT 156

$I4CIN $I4CINt 4 254
$FFI4CIN 158
$FFCHRC 92

$I4COT $I4COTt 4 168
$FFI4COT 164

ALOG ALOGt 4 236
$FMELOG 232

ALOGI0 ALOGl0t 4 236
$FMELOG 232

AMAXO AMAXOt 4 60
$FMEAMXO 56

AMAXO# AMAXO#t 4 60
$FMNAMXO 56

Figure 19. MFSL functional storage requirements table (Part 1 of 4)

o
26 GC34-0138

Function or entry Modules required Maximum storage
name (assembler onlyt) Module size (bytes) required (bytes)

AMAXI AMAXlt 4 50
$FMEAMXl 46 o

AMINO AMINOt 4 60
$FMEAMNO 56

AMINO# AMINO#t 4 60
$FMNAMNO 56

AMINI AMINlt 4 50
$FMEAMNI 46

AMOD AMODt 4 40
$FMEAMOD 36

ATAN ATANt 4 268
$FMEATN 264

ATAN2 ATAN2t 4 268
$FMEATN 264

COS Cost 4 202
$FMESNC 198

DATAN DATANt 4 382
$FMLATN 378

DATAN2 DATAN2t 4 382
$FMLATN 378

DCOS DCOSt 4 336

o $FMLSNC 332

DEXP DEXPt 4 394
$FMLEXP 390

DEXPD DEXPDt 4 66
$FMLLPL 62

DEXPI DEXPIt 4 98
$FMLLPD 94

DEXPI# DEXPI#t 4 82
$FMLLPF 78

DIM DIMt 4 40
$FMEDIM 36

DLOG DLOGt 4 306
$FMLLOG 302

DLOGI0 DLOGlOt 4 306
$FMLLOG 302

DMAXI DMAXlt 4 50
$FMLMAXI 46

DMINI DMINlt 4 50
$FMLMINI 46

Figure 19. MFSL functional storage requirements table (Part 2 of 4)

o
Appendix A. Storage Estimating 27

Function or entry Modules required Maximum storage
name (assembler onlyt) Module size (bytes) required (bytes)

DMOD DMODt 4 42
$FMLDMOD 38 o

DSIGN DSIGNt 4 36
$FMLSGN 32

DSIN DSINt 4 336
$FMLSNC 332

DSQRT DSQRTt 4 120
$FMLSQR 116

DTANH DTANHt 4 582
$FMLTNH 188
$FMLEXP 390

DVCHK DVCHKt 4 22
$FMDDCK 18

DVCHK# DVCHK#t 4 20
$FMEDCK 16

EXP EXPt 4 294
$FMEEXP 290

EXPE EXPEt 4 588
$FMEEPE 62
$FMEEXP 290
$FMELOG 232

EXPI EXPlt 4 98
$FMEEPD 94

EXPI# EXPI#t 4 82 ()
$FMEEPF 78

FCTST FCTSTt 4 44
$FMDFNT 40

FCTST# FCTST#t 4 36
$FMFFNT 32

IDIM IDIMt 4 90
$FMLIDIM 86

IDIM# IDIM#t 4 44
$FMNIDIM 40

IDIV IDIVt 4 226
$FMDDDD 222

IEXP IEXPt 4 190
$FMDDPD 186

IEXP# IEXP#t 4 40
$FMFFPF 36

IMULT IMULTt 4 100
$FMDDMD 96

Figure 19. MFSL functional storage requirements table (Part 3 of 4)

o
28 GC34-0138

Function or entry Modules required Maximum storage
name (assembler onlyt) Module size (bytes) required (bytes)

ISIGN ISIGNt 4 44
$FMDSGN 40 o

ISIGN# ISIGN#t 4 26
$FMFSGN 22

MAXO MAXOt 4 98
$FMEMAXO 94

MAXO# MAXO#t 4 50
$FMNMAXO 46

MAXI MAXlt 4 106
$FMEMAXI 102

MAXl# MAXl#t 4 60
$FMNMAXI 56

MINO MINOt 4 98
$FMEMINO 94

MINO# MINO#t 4 50
$FMNMINO 46

MINI MINlt 4 106
$FMEMINI 102

MINl# MINIM 4 60
$FMNMINI 56

MOD MOOt 4 428

o $FMEMOD 106
$FMDDDD 222
$FMDDMD 96

MOD# MODM 4 40
$FMNMOD 36

OVERFL OVERFLt 4 22
$FMDOFL 18

OVERFL# OVERFL#t 4 20
$FMFOFL 16

SIGN SIGNt 4 36
$FMESGN 32

SIN SINt 4 202
$FMESNC 198

SQRT SQRTt 4 134
$FMESQR 130

TANH TANHt 4 436
$FMETNH 142
$FMEEXP 290

Figure 19. MFSL functional storage requirements table (Part 4 of 4)

o
Appendix A. Storage Estimating 29

o

o
30 GC34-0138

o

o

o

$DCIN 11
$DCOT 11
$ECIN 11
$ECOT 11
$FCOT 11
$FMYINT 13
$FMYSPE 13
$FMYTRM
$I2CIN 11
$I2COT 11
$I4CIN 11
$I4COT 11

ALOG 5
ALOGI0 5
AMAXO 7
AMAXO# 7
AMAXI 8
AMINO 7
AMINO# 7
AMINI 8

13

arc tangent 6
AT AN 6
ATAN2 6

basic MFSL storage requirement 23
building applications 18

CMPA T option 18
combining MFSL 18
common subroutines 24
configuration requirements 15
COS 6
cosine 6

DATAN 6
DATAN2 6
DCOS 6
dependent modules 23
DEXP 5
DIM 9
divide check 12
divide doubleword integers 10
DLOG 5
DLOGI0 5
DMAXI 8
DMINI 8
DMOD 9
DSIGN 9
DSIN 6
DSQRT 5
DTANH 6
DVCHK 12
DVCHK# 12

EBCDIC conversion 10
emulators, floating-point 15
error-checking subroutines 11
error conditions 12
error exit routine, storage requirement 23
estimating storage 23
executing MFSL (see referencing MFSL)
EXP 5
explicitly called MFSL subroutines 4
exponential subroutines 5
exponentiation subroutines 10

FCTST 12
FCTST# 12
floating-point emulators 15
FORTRAN IV programs, referencing MFSL 17
function test (see FCTST; FCTST#)
functional storage requirement 23

hardware support 15
hyperbolic tangent 6

IDIM 9
IDlM# 9
IDIV 10
IMULT 10
installing MFSL 17
interface modules 23
interruption handling 13
ISIGN 9

library services 12
library work area 12
library work area, storage requirement 23
logarithmic and exponential MFSL subroutines 5

managing storage 18
mathematical and functional subroutine library

contents 3
mathematical subroutines 3
maximum value 7
MAXO 7
MAXO# 7
MAXI 8
MAXl# 8
MFSL subsets 20
minimizing storage 18
minimum value 7
MINO 7
MINO# 7
MINI 8
MINl# 8
MOD 9

Index

Index 31

MOD# 9
modular arithmetic 9
module dependencies 23
multiply doubleword integers

NOCMPAT option 18

OVERFL 12
overflow check 12
OVERFL# 12

positive difference 9
powers 10
primary storage 15
program support 15

referencing MFSL
from assembler programs
from FORTRAN programs

secondary storage 15
service subroutines 12
services, library 13
shared subroutine area 21
shared task set 19
sharing MFSL 17
SIGN 9
SIN 6
sine 6
SQRT 5
sq uare root 5
storage estimating 23
storage management 18
storage requirements 15
subroutine area, shared 21
subroutines

conversion 2
error-checking 2
mathematical 1
service 2

subsets of MFSL 20

TANH 6
task set, shared 19
transfer of sign 9

10

17
17

trigonometric MFSL subroutines 6

underflow check 12

32 GC34-0138

0

o

o

o

(')

S-
o ,

" 0
n:

0
»
0"
::J
to

c:
::J
co

o

Mathematical and Functional Subroutine

Library: Introduction

GC34-0138-0

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an

important part of the input used in preparing updates to the publications. All comments

and suggestions become the property of IBM.

Please do not use this form for technical questions about the system or for requests

for additional publications; this only delays the response. Instead, direct your

inquiries or requests to your I BM representative or to the I BM branch office serving
your locality.

Corrections or clarification s needed:

Page Comment

READER'S
COMMENT
FORM

What isyouroccupation? __ ___

Number of latest Technical Newsletter (if any) concerning this publication: ______________________ _

Please indicate your name and address in the space below if you wish a reply.

Than k you for your cooperation. No postage stamp necessary if mai led in the U.S.A.

(Elsewhere, an IBM office or representative will be happy to forward your comments.)

GC34·0138·0

Your comments, please . ..

This manual is part of a library that serves as a reference source for IBM systems.

Your comments on the other side of this form will be carefully reviewed by the

persons responsible for writing and publishing this material. All comments and

suggestions become the property of IBM.

Fold Fold

Fold

--- ------ - ---- ---- - ---- - - -------------
®

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

I BM Corporation
Systems Pu bl icati ons, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

I nternational Business Mach ines Corporation
General Systems Division
57750 Glenridge Drive N.E.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

First Class
Permit 40
Armonk
New York

FOld

o

co
s:
(f)

~

[
s:
~
::r-
co
3
~
n'
~
Q)

::J
C.
"Tl
C
::J

0 ~
0'
::J
~
(f)
c:
0"
(3
C
::J
co
c
Q"
Q)

-<

~
(3
c.
c:
~
0'
::J

~
~
co
c.
:;'
c
en
?>
G")
(')
w
~

~
w
00
6

o

--- ------ - ---- ---- - ---- - - ----------- ' -
®

International Business Machines Corporation

General Systems Division

57750 Glenridge Drive N. E.

P. O. Box 2150
Atlanta, Georgia 30301

(U.S.A. only)

GC34-0138-0

III
s::
en
~
iii '
~ ~
s::
~
~
to
3
~
g'
0>
:::l
a.
-n
c:
:::l
n
'"' 0'
:::l
~
en
c:
c-o
S
5'
to
r
s;-
O>

-<

~
0
a.
c:
~
0'
:::l

~
;:;
to a.
5'
C
en
~
Cl ~
(")
w
"'" 9
w co
6

