
--- ------ ----- ---- - ---- - - --------___ 0-

SC34-0124-0

S1-21

PROGRAM
PRODUCT

IBM Series/1

Program Preparation Subsystem

M aero Assembler

User's Guide

Program Number 5719-AS1

rFD::===:e==: ;;cq:=r:1oT'

II
111

o [])

11

o []j 0 [])

1111111111111111111 ~
o [{])I

11 V
~((b

Series/1

--- ------ ----- ---- - ---- - -----------_.-

c

o

SC34-0124-0

Sl-21

IBM Series/1

PROGRAM
PRODUCT

Program Preparation Subsystem

Macro Assembler

User's Guide

Program Number 5719-ASl

Series/1

This publication is for planning purposes only. The infonnation herein is subject to change before
the products described become available.

First Edition (February 1977)

This manual applys to the IBM Series/l Program Preparation Subsystem, program number 5719-ASl.

Significant changes or additions to the contents of this publication will be reported in subsequent
revisions or Technical Newsletters. Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this pUblication. If the form has been
removed, send your comments to IBM Corporation, Systems Publications, Department 27T, P.O. Box
1328, Boca Raton, Florida 33432. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1977

ii SC34-0124

o

c

c

c

o

Preface v

Introduction 1-1

Coding and Structure of the Assembler Language 2-1

Functional Characteristics 3-1

Machine Instructions 4-1

Assembler Instructions 5-1

Macro Language 6-1

Using the Macro Assembler 7-1

Appendix A. Structured Programming Macros A-I

Appendix B. Decimal/Binary/Hexadecimal Conversions 8-1

Appendix C. American National Standard Code for Information
Interchange (ASCII) C-1

Appendix D. Perforated Tape Transmission Code/Extended Binary
Coded Decimal (PTTC/EBCD) D-l

Appendix E. Priority List for Assembler Instructions £-1

Appendix F. Summary of Constants F-l

Appendix G. Macro Language Summary G-l

Appendix H. Assembler Language Summary H-l

Appendix J. Macro Language Instruction Summary J-l

Index X-I

Contents

Contents iii

iv SC34-0124

o

(\;. , ,

c

(

c

Preface

What This Manual Can Do For You
This publication is a reference for programmers who use the IBM Series/l
assembler language. It gives specific information about assembler language
functions and coding specifications.

How TIt;s Mall.al Is Orgall;zed
• Chapter 1 gives a brief introduction to the assembler and its features.
• Chapter 2 discusses the structure of the assembler language. It also explains

the coding rules you must follow in coding an assembler-language program.
• Chapter 3 describes the characteristics of the IBM Series/l processor. It

explains register usage, addressing modes, and other information you should
understand to effectively use the assembler.

• Chapter 4 describes the machine instructions. It explains the function of each
instruction and how to code it. For most instructions, this chapter gives
examples to help you better understand how the instructions work.

• Chapter 5 describes the assembler instructions. It explains what they do and
how to code them, then gives examples of their use.

• Chapter 6 describes the macro language. Programming in macro language
simplifies coding, reduces the chance for making errors, and ensures that
standard sequences of instructions are coded.

• Chapter 7 describes assembler options, the program listing produced by the
assembler and the control statements necessary to run and assembly. It also
includes performance, invoking of the assembler, and object module formats.

• The appendixes cover structured macros, conversion tables, a priority list for
assembler instructions, a summary of constants, and a summary of the macro
language.

Each chapter of this publication is a separate module. This organization allows
you to use the chapters as published or to combine them with information from
other sources.

Each chapter has a detailed table of contents. A master index is included at
the end of the manual.

Wltat Yo. SIIo.ld KilO", Before Yo" Beg;"

Related Publications

You should be familiar with the concepts of modular programming, and you
should be experienced in assembler-language coding.

The following publications may be helpful to you. The manuals not available at
this time do not show an order number and are noted by an asterisk.

IBM Series/l Program Preparation Subsystem: Introduction, GC34-0121

IBM Series/l Program Preparation Subsystem: Batch User's Guide *
IBM Series/l Program Preparation Subsystem: Text Editor User's Guide *
IBM Series/l Program Preparation Subsystem: Application Builder User's
Guide *
IBM Series/l Model 3: 4953 Processor and Processor Features Description,
GA34-0022

Preface v

vi SC34-0124

IBM Series/l Model 5: 4955 Processor and Processor Features Description,
GA34-0021

IBM Series/l Realtime Programming System: Macro User's Guide-Supervisor * ~
IBM Series/l Realtime Programming System: Macro User's Guide-Data , J

Management *
* These books are not presently available

(

c

Section Contents
The Assembler Language 1-3

Machine Instructions 1-3
Assembler Instructions 1-3
Macro Instructions 1-3

The Assembler Program 1-3
Coding Aids 1-5

Symbolic Representation of Program Elements 1-5
Variety of Data Representation 1-3
Relocatability 1-5
Addresses and Addressing 1-5
Register Usage 1-5
Segmenting a Program 1-6
Linkage Between So urce Modules 1-7
Program Listing 1-7

Programmer Procedures 1-7
Step 1. Design Application and Support System 1-7
Step 2. Generate Realtime Operating System 1-8
Step 3. Generate Batch Processing and Program

Preparation Facility 1-8
Step 4. Code Assembler Language Programs 1-8
Step 5. Create Source Modules 1-10
Step 6. Create Object Modules 1-10
Step 7. Create Composite Modules 1-10
Step 8. Create Task Sets 1-10
Step 9. Install Task Sets 1-10
Step 10. Execute Task Sets 1-10
Step 11. Debug Task Sets 1-10

Summary of Programmer Proced ures 1-10

Chapter 1. Introduction

Introduction I - I

(

1 - 2 SC34-0124

c

(

C= ==

The Assembler Language

Maclti1le [IIStnlCtiOIlS

Assembler [atnlctio1ls

Macro [IIStnlCtiOIlS

The Assembler Program

Assembler language is a symbolic programming language that resembles machine
language in form and content. It is made up of statements that represent
instructions and comments. The instruction statements are the working part of
the language and are divided into three groups:

• Machine instructions
• Assembler instructions
• Macro instructions

A machine instruction is the symbolic representation of a hardware instruction in
the Series/l instruction set. Machine instructions are described in Chapter 4 of
this manual.

An assembler instruction is a request to the assembler program to perform
certain operations during the assembly of a source module; for example, defining
data constants, defining the end of the source module, and reserving storage
areas. Except for the instructions that define constants, parameter lists, or
provide boundary alignment, the assembler does not translate assembler
instructions into object code. The assembler instructions are described in Chapter
5 of this manual.

A macro instruction is a request to the assembler program to process a
predefined sequence of code called a macro definition. From this definition, the
assembler generates machine and assembler instructions which it then processes
as if they were part of the original input in the source module.

You can prepare macro definitions, then call them by coding the corresponding
macro instructions. A complete description of the macro language, including the
macro definition, the macro instruction, and the conditional assembly language is
given in Chapter 6 of this manual.

The assembler program, also referred to as the assembler, processes the machine,
assembler, and macro instructions you have coded in the assembler language and
produces an object module in machine language.

The assembler processes the three types of assembler language instructions at
different times during its processing sequence. You should be aware of this
processing sequence in order to code your program correctly. The following
diagram relates the assembler processing sequence to other times at which your
program is processed and executed.

Introduction 1 - 3

1 - 4 SC34-0124

Coding

Assembly

Applica tion
build

Execution

Application
builder

System

Programmer

Assembler

The assembler processes instructions at two distinct times. It processes macro
instructions at preassembly time, and it processes machine instructions and
assembler instructions at assembly time.

The assembler also- produces information for other programs. The application
builder uses such information to combine object modules and task sets which can
be executed.

(~"'
\J

(~

c

Coding Aids
It is normally difficult to write an assembler language program using only
machine instructions. The assembler provides some coding aids that make this
task easier. They are summarized next.

Symbolic R~prese,.tatio,. of Program Elements
Symbols greatly reduce programming effort and errors. You can define symbols
to represent storage addresses, displacements, constants, registers, and other
elements that make up the assembler language. These elements include operands,
operand subfields, terms, and expressions. Symbols are easier to remember and
code than numbers; also, they are listed in a symbolic cross-reference table which
is printed in the program listing. Thus, you can easily find a symbol when
searching for an error in your code.

Variety of Data Represe"tation

Relocatability

Addresses a"d Addressi"g

Register Usage

You can use decimal, binary, hexadecimal, ASCII or EBCDIC character
representation, which the assembler converts for you into the binary equivalents
required by the machine instructions.

The assembler produces an object module that can be relocated from the
originally assigned storage area to any other suitable main storage area without
affecting program execution. The application builder does the relocation.

Each byte in main storage is specified by a unique numeric address. When you
write a program, you are essentially telling the computer what addresses are
involved in the operation you want it to perform. You are usually not concerned
with the specific main storage locations, because the assembler keeps track of the
location of the statement in your program (relative to the beginning of your
program). The assembler assigns the proper address to each assembled
machine-language instruction.

To keep track of the locations, the assembler uses a location counter. The
counter is set to zero at the beginning of an assembly unless your program
specifies otherwise. The counter is then increased by the number of bytes of
main storage that each instruction needs. In this way, each statement is assigned
an address relative to the beginning of the program. The assembler can then
assign the addresses and displacements that are required when it produces the
object program. (A displacement is the difference between the counter value of
one statement and that of another.)

When your program is processed by the application builder and loaded, each
statement for which storage is allocated takes on a relocated address, which is
equal to the beginning main-storage address of the program plus the location
counter value for that instruction (based on a beginning location counter value of
zero).

To locate data, most machine instructions refer to a storage address. The
Series/1 uses a variety of methods (called addressing modes) to find the data you
request in your machine instructions. Addressing modes are described in Chapter
3; how you use them is discussed in Chapter 4.

Anyone of the eight general-purpose registers can be used to hold a value, an
address, or a displacement for manipulating data, maintaining counters, or
determining the address of a particular instruction or storage location.

The instruction address register contains the address of the next instruction to

Introduction 1 - 5

Segmelltillg a Program

1 - 6 SC34-0124

be executed unless a branch or jump instruction breaks the normal sequence.
When this occurs, the contents of the instruction address register change because
the program transfers control to an instruction not immediately following the
current instruction.

You can code a program in sections and later combine the sections into the
executable program. Sections are assembled in any combination, individually or
grouped. You arrange the sections in the order required for proper execution of
the program during the combining process. The combining process is called
linking and is performed by the application builder program.

Dividing a large program into several sections and assemblies has certain
advantages:

• More than one programmer can code sections of the program. Each can
assemble and debug his sections independently of the others.

• The linking process is much faster, in terms of computer time, than the
assembly process. You can assemble a section of the program and link the
new section to the already assembled program. This uses less computer time
than assembling the entire program.

• Sections that are common to more than one program are assembled only once.
You can then link the common sections to the unique sections of each
program. You again reduce computer time and also have shorter assembly
listings that are easier to debug.

• You can configure a program to various main storage requirements much more
easily by linking the sections into different combinations of storage loads or
phases. Of course, you must make provisions for these variations in your
program logic.

Four types of program sections can be defined in the assembler
language--control sections, common sections, global sections, and dummy
sections. Control sections define the object code, that is, machine instructions
and data definitions. A common section defines an area of main storage that can
be shared with the program sections in multiple assemblies within a task. A
global section may define either task set or system global area. Task set global is
addressable by all programs executing in a partition. If a task set issues a request
to transfer control to another task set, the portion of task set global common to
both task sets is not overlayed. System global is contained in the shared task set
and is addressable by all programs link-edited against the shared task set. The
application builder determines whether a global section is a task set or system
global, according to the name associated with the global section. If the named
global exists in the shared task set and has the proper attributes (for example,
length), the shared task set global area will be used, otherwise, a global area will
be generated within the task set. For more information on task sets, reference
the Application Builder User's Guide. A dummy section describes to the
assembler the format of data located elsewhere. Dummy sections do not appear
in the output module of an assembly. The linking process combines only control,
common and global sections.

The following assembler instructions define the beginning and end of the
various sections in your assembly.

• START and CSECT instructions define the beginning of a control section.
START is used only to define the first control section in an assembly.

• The COM instruction defines the beginning of a common section.
• The GLOBL instruction defines the beginning of a global section.
• The DSECT instruction defines the beginning of a dummy section.
• The end of any type of section is defined when another section is started. The

END instruction defines the end of all sections in an assembly.

(,
, i

(

c

Liltkage Betweell SOflrce MOIbIies

Program Listillg

Programmer Procedures

You can create symbolic linkages between separately assembled source modules.
This allows you to refer symbolically from one source module to data defined in
another source module. You can also use symbolic addresses to branch between
modules.

Combining separately assembled control sections successfully depends on the
techniques for symbolic linkages between the control sections. For example,
symbols can be defined in one module and referred to in another. The
application builder then completes the linkage, using the information passed to it
by the assembler. Not only is the linkage symbol defined (used as a name), it
must also be identified to the assembler by means of an ENTRY assembler
instruction unless the symbol is the name of a CSECT or START statement.
After a symbol is identified as one that names an entry point, another module
can then use that symbol to bring about a branch operation or a data reference.

A module that refers to a linkage symbol defined in another module must
identify it as an externally defined symbol used to bring about linkage. The
EXTRN or WXTRN assembler instructions identify such symbols.

Symbolic linkage can also be achieved by means of the V-type or W-type
address constant, or by means of the BALX or BX machine instruction. Each
constant is an external reference since it is created from an externally defined
symbol that need not be identified by an EXTRN or WXTRN statement. The
V-type or W-type address constant can be used to branch to other modules or to
refer to data in those modules.

The assembler produces a listing of your source module, including any generated
statements, and the object code assembled from the source module. You can
control the content of the listing to a certain extent. The assembler also prints
messages about actual errors and warnings about potential errors in your source
module. A complete description of the program listing is given in Chapter 7 of
this manual.

This book gives you information on the assembler language and on the execution
of the assembler. Using Series/l involves much more. This section gives you an
outline of the process required to generate and execute a program. A step by
step procedure, which refers to the flowchart on page 1-7, points you to the
library source containing more information.

Step 1. Desigll Applicatioll altd S"pport System
You must combine your knowledge of designing a realtime system with the
Series/Ito produce a specification furnishing information for all succeeding
steps.

An introduction to the Series/l programming support and references to
detailed information is in the IBM Series/l Realtime Programming System:
Introduction and Planning Guide, GC34-0102.

Introduction 1 - 7

Step 2. Gellerate Ilealtillle ~rati", System
You can generate your specific operating system by using information in the
IBM Series/l Realtime Programming System: Generation and Installation
Procedures *.

Step 3. Generate lJatc" Processi"g au Program PrePllratio1l Facility
You can generate your specific system by using information in the IBM Series/l
Program Preparation Subsystem: Batch User's Guide *.

Step 4. Code Asselllbler lA""",ge Programs

1 - 8 SC34-0124

This book contains information on the coding of all assembler language
statements and on structured macros furnished as a part of the assembler. You
may also need to code macro statements for macros defined specifically for your
application and code system support macros furnished as a part of that program
product.
Information on these macros is in three volumes: IBM Series/l Realtime
Programming System: Macro User's Guide-Supervisor *; IBM Series/l
Realtime Programming System: Macro User's Guide-Data Management *;
IBM Series/l Realtime Programming System: Macro User's
Guide-Communications *.

(

Series/1
and
Application

System

Facilities

Code
Routines

Create
Source
Modules

Create
Object
Modules

Create
Composite
Modules

Create
Task:
Set

Install
Task
Set

Set

Introduction 1 - 9

Step 5. Create SO.Fee Mod.les
State any special requirements for source modules in your application
specification. Information on normal requirements for source modules assembled
by the Series/1 macro assembler is in this book and in the IBM Series/l ("\
Program Preparation Subsystem: Text Editor User's Guide * \.)

Step 6. Create Object Mod.les
State any special requirements for object modules in your application
specification. Information on normal requirements for object modules processed
by the Series/1 application builder is in this book.

Step 7. Create COMposite Modllies

Step 8. Create Task Sets

Step 9. Illstall Task Sets

Step 10. Execllte Task Sets

Step 11. Deb", Task Sets

State any special requirements for composite modules in your application
specification. Requirements for composite modules which are used in building task sets
to be executed under Series/1 realtime operating system are in the IBM Series/l
Program Preparation Subsystem: Application Builder User's Guide *.

State the requirements for task sets in your application specification. Information
on using the application builder to meet these requirements is in the IBM
Series/l Program Preparation Subsystem: Application Builder User's Guide *

State any requirements for installation of task sets in your application
specification. Information on how to meet these requirements is in the IBM
Series/l Realtime Programming System: Macro User's Guide-Supervisor *.

State requirements for executing your application task sets in your application
specification. Information to help you meet these requirements is in the IBM
Series/l Realtime Programming System: Operator Commands and Utilities * and
IBM Series/l Program Preparation Subsystem: Batch User's Guide *

To debug task sets reference one of the following manuals depending on your
specific problem. The IBM Series/l Realtime Programming System: Control
Blocks and Debugging Guide *, gives you error log descriptions, and explains
how to get a storage dump. Information on macro errors is found in the IBM
Series/l Realtime Programming System Macro Reference *. For descriptions of
control blocks reference the Program Logic Manual (PLM) for your particular
function. Explanations for messages and codes are found in the IBM Series/l
Program Preparation Subsystem: Messages and Codes * manual and/or IBM
Series/l Realtime Programming System: Messages and Codes *
* These books are not presently available.

Sllmmary of Programmer Procedllres

t - to SC34-0124

The table below gives a summary of the procedures to tie them to processes or
publications in Series/1. For a detailed overview of Series/1 and a comparison of
how system functions are supported by different languages, refer to the IBM
Series/l Realtime Programming System: Introduction and Planning Guide,
SC34-0102.

Programmer Procedure Associated System Step Publication

1. Planning and System None. IBM Series/ J Realtime

c Design Programming System:
Introduction and Planning
Guide, GC34-0102

2. Building the Realtime System Generation IBM Series/ J Realtime
Building the Realtime Programming System:
Operating System Generation and

Installation Procedures *

3. Building the Program System Generation IBM Series/ J Program
Preparation & Batch Preparation Subsystem:
Processing System Batch User's Guide *

4. Programs None. (Coding sheet) IBM Series / J Program
Preparation Subsystem:
Macro Assembler User's
Guide, SC34-0124
IBM Series/ J Realtime
Programming System:
Macro User's
Guide-Supervisor *
IBM Series/ J Realtime
Programming System:
Macro User's Guide-Data
Management *
IBM Series/ J Realtime
Programming System:
Macro User's
Guide-Communications *
IBM Series/ J Realtime
Programming System:
Macro Reference *

5. Creating Source Modules Text Editor (Note. Or, use IBM Series/ J Program
(On diskette) 3741) Preparation Subsystem:

Text Editor's User's Guide

*
6. Creating Object Modules Assembler IBM Series / J Program

Preparation Subsystem:
Macro Assembler User's
Guide, SC34-0124

7. Creating Composite Modules Application Build IBM Series/I Program
Preparation Subsystem:
Application Builder User's
Guide *

8. Building Task Sets Application Build: Phases I IBM Series/ J Program
&2&3 Preparation Subsystem:

Application Builder User's
Guide *

9. Installing Task Sets (Not A series of steps using the IBM Series/l Realtime
required) utility DEFINE and COpy Programming System:

facilities and the install Macro User's
option on the start taskset Guide-Supervisor *
operator command

Introduction I - II

10. Executing Task Sets Direct: STARTTASK
operator command or
supervisor macro

Batch: Job Stream Processor

11. Debugging Task Sets Error Management

Messages and Return Codes

*These books are not presently
available.

1 - 12 SC34-0124

IBM Series/I Realtime
Programming System:
Operator Commands and
Utilities *
IBM Series/I Realtime
Programming System:
Macro User's
Guide-Supervisor *

IBM Series/I Program
Preparation Subsystem:
Batch User's Guide *

IBM Series/! Realtime
Programming System:
Control Blocks and
Debugging Guide *

IBM Series/! Program
Preparation Subsystem:
Messages and Codes *
and
IBM Series/! Realtime
Programming System:
Messages and Codes *

("\ ")

(.::

(

c

Chapter 2. Coding and Structure of the Assembler Language

Section Contents
Coding Conventions 2-3

Field Boundaries 2-3
The Statement Field 24
The Continuation Indicator Field 24
The Identification and Sequence Field 24
Field Positions 24
Continuation Lines 2-5
Comments Statement Format 2-5
Instruction Statement Format 2-5

Assembler Language Structure 2-7
Character Set 2-7
Terms 2-8
Symbols 2-8
The Symbol Table 2-8
Restrictions on Symbols 2-9
Location Counter Reference 2-11
Symbol Length Attribute Reference 2-12
Other Attribute References 2-14
Self-defining Terms 2-15

Expressions 2-17
Absolute Expressions 2-17
Register Expressions 2-18
Relocatable Expressions 2-19
Rules for Coding Expressions 2-20
Evaluation of Expressions 2-20
Parenthesis in Instruction Operands 2-21

Coding and Structure of the Assembler Language 2 - I

2 - 2 SC34-0124

c

c

Coding Conventions

IBl1

This chapter describes the coding conventions that you must follow in writing
assembler language programs. Assembler language statements are usually written
on a coding form before they are entered as source statements through some
form of input to the system. You can write assembler language statements on the
standard coding form (GX28-6509). Columns 1-72 of this form correspond to
the positions on a source statement entered at the operator station.

IBM Sy.t.ml360 A ••• mbl.r Coding Form GX2U609-6U1MO&O­
PnnlMl rn U.s.A.

PUNCHING I GRAPHIC I I I I I I I I PAGE OF

1----------------I..-o-ATE-------1INSTRUCTIONSI I I I I I I I I CARD ELECTRO NUMBER

8 10 Oper.llon Operlild

25

• A If¥ldllrri clll'd form, IBM "lKrro 6509, If tlll.Jble for punchmg 1Of."~ Itllnrm6f'ltr from dll' 'orm
Inttrvcr,ofll forvlmg thiS form .,,,m IflY IBM Sysnrml360_mbl"rl6figu.", m"'~m.,u •.
Add,., commenD crNlCflm/flg thIS form fa IBM Nord" LMJofltury, Publiclltion, o-lopmtIf,t,

801C 962,S 181 09Lldmgo9,Swedt1n.

'NCOf lormiper padm..,. ~I'V JI,g,lly

Field Bo",.daries
Assembler language statements usually occupy one 80-column line on the
standard form. (For statements occupying more than 80 columns, see
"Continuation Lines" in this chapter.) Note that any printable character entered
at a position in a source statement is reproduced in the listing printed by the
assembler. Each line of the coding form is divided into three main fields:

• The statement field
• The continuation indicator field.
• The identification and sequence field

Coding and Structure of the Assembler Language 2 - 3

De Statemellt Field

LABEL

\
Begin
column'

The instructions and comments statements must be written in the statement field.
The statement field starts in the "begin" column and ends in the "end" column.
Any continuation lines needed must start in the "continue" column and may 0. Ji
extend to the "end" column. The assembler assumes the following standard "
values for these columns:

• The "begin" column is column 1
• The "end" column is column 71
• The "continue" column is column 16.

These standard values can be changed by using the ICTL instruction.
However, all references to the "begin", "end", and "continue" columns in this
manual refer to the standard values previously described.

OPCOD OPERANDS
CONTINUATION

\
Continue
column I

Statement field

REt1ARKS
LINES MUST START IN COLUMN 16

Continuation
indicator

field ':>.
'",

X

End /
column

TIle COlftb"UltiOlf Ilfdicator Fkld
The continuation indicator field occupies the column following the end column.
Therefore, the standard position for this field is column 72. A nonblank character
in this column indicates that the current statement is continued on the next line. t ';

This column must be blank if a statement is completed on the same line; \.
otherwise the assembler will treat the statement that follows on the next line as a
continuation line of the current statement.

TIle Idelfti/icatiolf alfd Seq"ellce Fkld

Fieltl Positiolls

2 - 4 SC34-0124

The identification and sequence field can contain identification characters, or
sequence numbers, or both. If you have coded the ISEQ instruction, the
assembler will verify whether or not the source statements are in the correct
sequence.

Note. The ISEQ instruction is used to define the identification and sequence
field column boundaries (there are no 'standard' assembler default boundaries for
this field). However, column 73 through 80 are set aside for this purpose on the
standard coding form, and so are normally used. The single requirement is that
this field must not be specified to be within the statement field boundaries.

The statement field is always coded between the begin and the end columns. The
continuation indicator field is always coded in the column after the end column.
The identification and sequence field usually is the field after the continuation
indicator field. However, the ICTL instruction, by changing the standard begin,
end, and continue columns can create a field before the begin column. This field
can then contain the identification and sequence field.

(::

c

c

Contin"ation Lilies
To continue a statement on another line:

1. Enter a nonblank character in the continuation indicator field (column 72).
This character is not treated as part of the statement coding. An operand
field can be continued by coding it up through column 71, or by terminating
it with a comma followed by at least one blank.

2. Continue the statement on the next line, starting in the continue column
(column 16). The columns prior to the continue column (columns 1-15)
must be blank.

Only one continuation line is allowed for a single assembler language
statement. However, macro instruction statements and the prototype statement of
macro definitions can have as many continuation lines as needed. When more
than one continuation line is needed, enter a nonblank character in the
continuation indicator field of each line that is to be continued.

Comments Statement F017lUlt
Comments statements are not assembled as part of the object module, but C!re
only printed on the assembly listing. You can write as many comments
statements as you need, as long as you follow these rules:

• Comments statements require an asterisk in the begin column.

Note. Internal macro definition comments statements require a period in the
begin column, followed by an asterisk in the next column (for details see
"Internal Macro Comments Statements" in this chapter).

• You can use any characters, including blanks and special characters, of the
character set.

• Comments statements cannot be continued. Code comments statements in the
statement field and do not let them run over into the continuation indicator
field.

• Comments statements must not appear between an instruction statement and
its continuation lines.

IlIStnlction Statelllellt F017lUlt

LABEL

SECTDEF

The statement field of an instruction statement must include an operation entry
and can contain one or more of the following entries:

• A name entry
• An operand entry
• A remarks entry

The standard coding form is divided into fields that provide fixed positions for
the name, operation, and operand entries.

1. An 8-character name field starting in column 1
2. A 5-character operation field starting in column 10
3. An operand field that begins in column 16

HVW
BAL
CSECT
ORG

R3,ADCON
ADDRESS,R7

REMARKS ENTRY
NAME ENTRY OMITTED
OPERAND ENTRY NOT REQUIRED
OPERAND ENTRY OMITTED

Adherence to these field positions is called fixed format.

Coding and Structure of the Assembler Language 2 - 5

LABEL MVW

It is not necessary to code the operation and operand entries according to the
fixed fields on the standard coding form. Instead, you can write these entries in
any position, called free format, subject to certain formatting specifications.

Whether you use fixed or free format, the following general rules apply when ,.--)
you code an instruction statement: \. J
• Write the entries in the following order: name, operation, operand, and

remarks.
• The entries must be contained in the begin column (1) through the end

column (71) of the first line and, if needed, in the continue column (16)
through the end column (71) of any continuation lines.

• The entries must be separated from each other by one or more blanks.
• If used, the name entry must start in the begin column (normally column 1).
• The name and operation entries, each followed by at least one blank, must be

in the first line of an instruction statement.
• The operation entry must start to the right of the begin column.

R3,ADCON FIXED FORMAT STATEMENT.

LABEL MVW R3,ADCON FREE FORHAT STATEMENT.

LABEL HVW X
R3,ADCON ONLY OPERANDS AND REMARKS ALLOWED HERE.­

HVW R3,ADCON NAME ENTRY OMITTED, COLUMN 1 MUST BE BLANK.

LABEL MVW

2 - 6 SC34-0124

R3,
ADCON

CONTINUE OPERANDS
ON NEXT LINE

X

The name entry identifies an instruction statement. The following rules apply
to the name entry:

• It is usually optional.
• It must be a valid symbol of 1-8 characters at assembly time (after

substitution for variable symbols, if specified on model statements within
macro definitions).

The operation entry is the symbolic operation code that specifies the machine,
assembler, or macro instruction to be processed. The following rules apply to the
operation entry:

• It is mandatory.
• For machine and assembler instructions it must be a valid symbol at assembly

time (after substitution for variable symbols, if specified on model statements
within macro definitions). The standard symbolic operation codes are 5
characters or less.

• For macro instructions it can be any valid symbol of 1-8 characters that is not
identical to the operation codes for machine and assembler instructions.

The operand entry has one or more operands that identify and describe the
data used by an instruction. The following rules apply to operands:

• One or more operands are usually required, depending on the instruction.
• Operands must be separated by commas. No blanks are allowed between the

operands and the commas that separate them. When an operand entry is being

c

c

continued on the next line, the last operand on the first line can be terminated
with a comma followed by one or more blanks.

• Operands must not contain embedded blanks, because a blank normally
indicates the end of the operand entry. However, blanks are allowed if they
are included in character strings enclosed in apostrophes (for example, C' IN')
or in logical expressions (see "Logical (SETB) Expressions" in Chapter 6).

You can use a remarks entry to comment on the current instruction. The
following rules apply to the remarks entry:

• It is optional.

* These manuals not presently available.
• It can contain any of the 256 characters of the character set, including blanks

and special characters.
• It can follow any operand entry.
• If an entire operand entry is omitted, remarks are allowed if the absence of

the operand entry is indicated by a comma preceded and followed by one or
more blanks.

Note. Macro prototype statements and macro instructions without operands
cannot have a remarks entry, even if a comma is coded as described above.

Assembler Language Structure

Cltaracter Set

This section describes the structure of the assembler language (the various
statements allowed in the language and the elements that make up those
statements) .

A source module is a sequence of instruction and comment statements that
make up the input to the assembler. There are 3 types of instruction statements:

• Machine instructions-symbolic representation of machine language
instructions, which the assembler translates into machine language code

• Assembler instructions-instructions to the assembler program to perform
certain operations during assembly of a source module, such as defining data
constants and reserving storage areas

• Macro instructions-instructions to the assembler program to process
predefined sequences of code called macro definitions (from which the
assembler generates machine and assembler instructions which it then
processes as if they were part of the original input source module)

The operand field of machine instructions is composed of expressions, which
are composed of terms and combinations of terms. Remarks on the instruction
statements and comments statements are composed of character strings. Terms
and character strings are both composed of characters. The following paragraphs
define these language elements.

Terms, expressions, and character strings used to build source statements are
written with the following characters:

• Alphameric characters
Alphabetic characters A through Z

- Special characters $, #, and @
- Digits 0 through 9

• Special characters
+ - , = . * () , / & blank

Note.
set.

Character strings can contain any of the 256 characters of the character

Coding and Structure of the Assembler Language 2 - 7

Terms

Symbols

The S)'IIIbol Table

2 - 8 SC34-0124

Normally, strings of alphameric characters are used to represent data, and
special characters are used as:

• Arithmetic operators in expressions
• Data or field delimiters
• Indicators to the assembler for specific handling

A term is the smallest element of the assembler language that represents a
distinct and separate value. It can therefore be used alone or in combination with
other terms to form expressions. Terms have absolute or relocatable values that
are assigned by the assembler or are inherent in the terms themselves.

A term is absolute if its value does not change upon program relocation and is
relocatable if its value can be modified to compensate for a change in program
origin.

The types of terms are:

• Symbols-absolute or relocatable; value is assigned by the assembler
• Location counter reference-relocatable; value is assigned by the assembler
• Symbolic parameter attributes-absolute; value is assigned by the assembler
• Self-defining terms-absolute; value is inherent in term

You can use a symbol to represent storage locations or arbitrary values. You can
write a symbol in the name field of an instruction and and then specify this
symbol in the operands of other instructions, thus referring to the former
instruction symbolically. This symbol represents a relocatable address.

You can also assign an absolute value to a symbol by coding it in the name
field of an EQU or EQUR instruction with an operand whose value is absolute.
Symbols in the name field of EQUR instructions can be used in other instruction
operands to represent registers; symbols in the name field of EQU instructions
can be used in other instruction operands as displacements in explicit addresses,
immediate data, lengths, and implicit addresses with absolute values. The
advantages of symbolic numeric representation are:

• You can remember symbols more easily than numeric values, thus reducing
programming errors and increasing programming efficiency.

• You can use meaningful symbols to describe the program elements they
represent; for example, INPUT can name a field that is to contain input data,
or INDEX can name a register to be used for indexing.

• You can change the value of one symbol (through an EQU instruction) more
easily than you can change several numeric values in many instructions.

• Symbols are entered into a cross-reference table that the assembler optionally
prints in the program listing.

The symbol cross-reference table helps you to find a symbol in a program
listing, because it lists (1) the number of the statement in which the symbol is
defined (that is, used as the name entry), and (2) the numbers of all the
statements in which the symbol is used in the operands.

The assembler maintains an internal table called a symbol table. When the
assembler processes your source statements for the first time, the assembler
assigns an absolute or relocatable value to every symbol that appears in the name
field of an instruction. The assembler enters this value, which normally reflects
the setting of the location counter, into the symbol table; it also enters the
attributes with the data represented by the symbol. The values of the symbol and

('
'- ,

c

c

Restrictiolls Oil Symbols

Predefmed Register Symbols

its attributes are available later when the assembler finds this symbol used as a
term in an operand or expression.

The assembler recognizes three types of symbols:

• Ordinary symbols-used in the name and operand fields of machine and
assembler instruction statements; written as an alphabetic character followed
by 0-7 alphameric characters (no blanks allowed). For example: BEGIN

• Variable symbols-used only in macro processing conditional assembly
instructions; written as an ampersand followed by an alphabetic character
followed by 0-6 alphameric characters (no blanks allowed). For example:
&PARAM

• Sequence symbols-used only in macro processing conditional assembly
instructions; written as a period followed by an alphabetic character followed
by 0-6 alphameric characters. For example: .SEQOl

An ordinary symbol is considered defined when it appears as:

• The name entry in a machine or assembler instruction of the assembler
language, or

• One of the operands of the following instructions: EXTRN, WXTRN.

Ordinary symbols that appear in instructions generated from model statements
at preassembly time are also considered defined.

The assembler assigns a value to the ordinary symbol in the name field as
follows.

• According to the address of the leftmost byte of the storage area that contains
one of the following:

Any machine instruction
- A storage area defined by the DS instruction
- Any constant defined by the DC instruction
The address value thus assigned is relocatable, because the object code
assembled from these items is relocatable.

• According to the value of the expression specified in the operand of an EQU
instruction. This expression can have a relocatable or absolute value, which is
then assigned to the ordinary symbol.

• According to the value of the expression specified in the operand of an EQUR
instruction. This expression must have an absolute value in the range 0-7,
which is then assigned to the register symbol.

The value of an ordinary symbol must be representable in 16 bits.

Note. The symbol table can contain a maximum of 57330 entires. In a single
assembly, the total number of ordinary symbol entries plus ESD entries cannot
exceed this maximum. ESD entries are created for:

• control sections
• dummy sections
• global sections
• common sections
• unique symbols in EXTRN, WXTRN, and ENTRY statements
• V, W, and N-type address constants
• BALX and BX instructions.

The following symbols are predefined by the assembler and reserved for use only
as register symbols:

• RO (general-purpose register 0)
• R 1 (general-purpose register l)
• R2 (general-purpose register 2)

Coding and Structure of the Assembler Language 2 - 9

Unique Definition

2 - 10 SC34-0t24

• R3 (general-purpose register 3)
• R4 (general-purpose register 4)
• R5 (general-purpose register 5)
• R6 (general-purpose register 6)
• R7 (general-purpose register 7)
• FRO (floating-point register 0)
• FRI (floating-point register 1)
• FR2 (floating-point register 2)
• FR3 (floating-point register 3)

These symbols are absolute and used only for register reference in machine
and assembler instruction operands. Any other usage causes an error message to
be generated. Predefined register symbols appear in the cross-reference listing.

A symbol must be defined only once in a source module (even a source module
that contains two or more control sections) with the following exceptions:

• You can use a duplicate symbol as the name entry of a CSECT, GLOBL,
COM or DSECT instruction. The first use identifies the beginning of the
control section, and subsequent uses identify continuations of the control
section. A symbol used in the name field of one type of section may not be
repeated on another type. For example, a DSECT and a GLOBL statement
may not have the same name field. A label appearing on a START statement
may be used on a subsequent CSECT statement.

• A symbol can appear more than once in the operands of the following
instructions:
- ENTRY
- BALX
- BX
- EXTRN
- WXTRN
- DC for V-, W-, or N-type address constants provided the attributes are not

contradictory (that is, the same symbol can be repeated in an EXTRN and
BALX instruction but cannot be repeated in a WXTRN and EXTRN).

Note. An ordinary symbol that appears in the name field of a TITLE
instruction is not a definition of that symbol. It can, therefore, be used in the
name field of any other statement in a source module.

o

("'"'
.. J

c

C/

c

Previously Dermed Symbols

FIRST

XR3
INDEX
XRq

ENTRIES

TABLE

SECOND

ADCON

FIRST

it It

The symbols used in the operands of the following instructions must be defined
in a previous instruction:

• EQD
• EQUR
• ORG
• DC and DS (in modifier and duplication factor expressions)

The following sample code indicates the ways symbols can be defined and
used:

START 128 FIRST CONTROL SECT I ON STARTS HE,RE.
SYMBOLS DEFI NED IN EXTRti STATEMENT • EXTRN READER,PRINTER .

, .
EQ.UR 3
EQ.UR XR3
EQUR It

HVW TABLE,XR3

DS F

CSECT

HVW XR4,ADCON

DC A(READER)

CSECT

END

IXR3 1 IS PREVIOUSLY DEFINED.

SYMBOL USED IN NAME AND OPERAND.

SYMBOL IN NAME FIELD OF OS.

SECOND CONTROL SECTION STARTS HERE.

SYMBOL IN OPERAND FIELD.

SYMBOL IN NAH£ FIELD OF DC.

RESUME FI RST CO.NTROL SECT ION.

Ii I' I I I I i It i I I I r1
The unique symbols, in the order they
were defined, are:

FIRST
READER
PRINTER
XR3
INDEX
XR4
ENTRIES
TABLE
SECOND
ADCON

Locatioll COIIllter lleferellce
The assembler maintains a location counter to assign storage addresses to your
program statements. You can refer to the current value of the location counter at
any place in a source module by specifying an asterisk as a term in an operand.

As the instructions and constants of a source module are being assembled, the
location counter has a value that indicates a location in storage. The assembler
increases the location counter according to the following rules:

• As each instruction or constant is assembled, the location counter increases by
the length of the assembled item.

Coding and Structure of the Assembler Language 2 - 11

LOCATION EQ.U
AWl

B

lOCAD DC

lOC2 DC

*

• The location counter always points to the first byte of the instruction being
assembled.

• All references to the location counter in the operand field are relative to the
first byte of the instruction being assembled. (" ,

• If the statement is named by a symbol, the value of the symbol is the value of \ J
the location counter.

The assembler maintains a location counter for each control section in the
source module. (For complete details about the location counter setting in control
sections, see "Program Sectioning" in Chapter 5.) The assembler maintains the
intemallocation counter as a 16-bit value. If you specify addresses greater than
65,535, the assembler issues the error message 'CPA205S LOCATION
COUNTER ERROR'.

You refer to the location counter reference by coding an asterisk (*). Code an
asterisk as a relocatable term only in the operands of:

• Machine instructions
• DC and DS instructions
• EQU, ORG, and USING instructions

The value of the location counter reference (*) is the current value of the
location counter when the asterisk is specified as a term. The asterisk has the
same value as the address of the first byte of the instruction being assembled.
For the value of the asterisk in address constants with duplication factors, see
"A-type Address Constant" in Chapter 5.

Coding an asterisk in the operand of an assembler language instruction or a
machine instruction (as part of an address) is the same as placing a symbol in the
name field of the same statement and then using that symbol in the operand. Be
careful how you use this technique; inserting or deleting instructions between an
instruction and the location it refers to makes the displacement from the location
counter invalid. t

" .
* -1, R1

LOCATION BRANCH TO AWl INSTRUCTION

A(LOCAT ION) ADDRESS OF AWl INSTRUCTION

A(*} ADDRESS OF LOC2--SAHE AS CODING:
LOC2 DC A(LOC2)

Symbol Lellgtll Anrib.te Referellce

2 - 12 SC34-0124

When you reference the length attribute of a symbol, you get the length of the
instruction or data referred to by the symbol. You can use this reference as a
term in instruction operands to:

• Specify storage area lengths
• Cause the assembler to compute length specifications
• Build expressions to be evaluated by the assembler.

o

c

Specifkations for Length Attribute References
You must code a length attribute reference according to the following rules.

• The format must be L' immediately followed by a valid symbol.
• The symbol must be defined in the same source module in which the symbol

length attribute reference is specified.
• The symbol length attribute reference can be used in the operand of any

instruction that requires an absolute term.

The value of the length attribute is normally the length, in bytes, of the storage
area required by an instruction, constant, or field represented by a symbol. The
assembler stores the value of the length attribute in the symbol table along with
the address value assigned to the symbol. When the assembler encounters a
symbol length attribute reference, it substitutes the value of the attribute from
the symbol table entry for the symbol specified in the reference.

The assembler assigns the length attribute values to symbols in the name field
of instructions as follows:

• For machine instructions, it assigns a value of 2, 4 or 6 depending on the
length of the instruction.

• For the DC and DS instructions, it assigns either the length or explicitly
specified length of the first operand. The length attribute is not affected by a
duplication factor.

• For the EQU instruction, it assigns the length attribute value of the leftmost
or only term in the operand.

The length attribute of a self-defining term is always one. The length attribute
of another length attribute is always one. See the length specifications for the
individual instructions in Chapter 5. Note that the value of the length attribute is
available only at assembly time.

Coding and Structure of the Assembler Language 2 - 13

MACHA
MACHB

DISPO
CHAR4
DUPLC
INPUT
AREAl
AREA2
AREA3

CABCD
TERM2
TERM3
TERM4

SDTH1
SDTI12
;'~

SDTH3

LOCAT
LNGHl

lOAOX
LATTR

MVW 01 SP ,R5
IR Rl,R3

DC A(OTHER)
DC C'ABCD I

DC 3F 1 200'
OS CL40
OS OCL40
OS 40c
OS 4XL2

EQU
EQU
EQU
EQU

EQU
EQU

EQU

• 2

Leftmost or only term

EQU
DC
Dr.
MV"'I
F.QU

A(L'LNGH1)
CL2 I TEXT '
L 1 LO.AOX,R4
t.ILOADX

Value of symbol
length attribute
(at assembly time)

GENERATES A FOUR BYTE INSTRUCTION. L'MACHA=4

GENE RATES A TWO BYTE I NSTRUCT ION. L'MACHB = 2

I MPL I CIT LENGTH OF TWO BYTES L'DISPO = 2

IMPLICIT LENGTH OF FOUR BYTES VCHAR4=4

I MPL I CIT LENGTH NOT AFFECTED BY DUP. L'DUPLC =2

EXPL I CIT LENGTH SPEC I F I ED. L'INPUT =40

NOT AFFECTED BY DUPL I CAT ION FACTOR. L'AREAl =40

I MPL I CIT LENGTH OF ONE BYTE L'AREA2 = 1

EXPLICIT LENGTH NOT AFFECTED BY DUP. VAREA3=2

S I NGI,E TERti. L'CABCD = 4

TWO TERMS, LENGTH OF LEFTt10ST ONLY. L'TERM2 = 4

TWO TERHS, LENGTH OF LEFTHOST ONLY. L'TERM3 = 1

SINGLE TERti. L'TERM4 = 1

SINGLE SELF-DEFINING TERM.
MULTIPLE TERMS, LEFTMOST IS SELF­
DEFINING.
CHARACTER SELF-DEFINING TERM.

LOCATION COUNTER REFERENCE •
LENGTH OF CURRENT INSTRUCTION.

LENGTH OF CURRENT INSTRUCTION.
LENGTH 0F A LEN~TH ATTRIPUTE.

VSDTMI = 1

VSDTM2=1

L'SDTM3 = 1

L'LOCAT= 1

L'LNGHI = 2

I L'LOADX=4

! L'LATTR= 1

Other Attribute Refere.ces
Other attributes describe the characteristics and structure of the data you define
in a program (for example, the kind of constant you specify or the number of
characters you need to represent a value). These attributes are the type (T),
count (K), and number (N) attributes.

You can refer to these attributes only in macro definition statements; for full
details, see "Data Attributes" in Chapter 6.

2 - 14 SC34-0124

o

c

c

Self -de/;";"g Terms
A self-defining term lets you specify a value explicitly. With self-defining terms,
you can specify decimal, binary, hexadecimal, EBCDIC character data or ASCII
character data. These terms have absolute values and can be used as absolute
terms in expressions to represent bit configurations, absolute addresses,
displacements, length or other modifiers, and duplication factors.

Self-defining terms:

• Represent machine language binary values
• Are absolute terms; their values do not change upon program relocation
• Are padded on the left with zeros if less than one word

The assembler maintains the values represented by self -defining terms to 16
bits; self-defining terms are always considered as positive values in the range
zero through 65,535.

A decimal self-defining term is an unsigned decimal number. The assembler
allows:

• High-order zeros
• A maximum of five decimal digits
• A range of values from zero through 65,535

Note. A negative number is specified as an expression. For details, see
"Expressions" later in this chapter.

kR~l ~ · EQ.UR jJl3
§:r~~~":,',, ' ~Q.~ 65535

HIGH-ORDER ZEROS.

~); i

5 DIGITS IS MAXIMUM VALUE.

A binary self-defining term must be coded as the letter B followed by 1-16
binary digits enclosed in apostrophes. For example:

Binary self Binary
defining term value

B'1111100' 00000000 01111100
B'100' 00000000 00000100
B'l' 00000000 00000001

The assembler assembles each binary digit exactly as specified.

A hexadecimal self-defining term must be coded as the letter X followed by
1-4 hexadecimal digits enclosed in apostrophes. For example:

Hexadecimal
self-defining Binary
term value

X'FFAO' 11111111 10100000
X'F' 00000000 00001111
X'C01' 00001100 00000001
X'7FFF' 01111111 11111111
X'8000' 10000000 00000000
X'O' 00000000 00000000

The assembler assembles each hexadecimal digit into its 4-bit binary equivalent
as shown above, and allows a range of values from X'OOOO' through X'FFFF'.

Coding and Structure of the Assembler Language 2 - 15

2 - 16 SC34-0124

An EBCDIC character self-defining term must be coded as the letter C,
followed by 1 or 2 characters enclosed in apostrophes. When assembling
EBCDIC character constants, the assembler:

• Allows any of the 256 8-bit combinations as input. This includes the printable (lJi:
characters, including blanks and special characters. "

• Assembles each character into its 8-bit EBCDIC equivalent.
• Requires that two ampersands or two apostrophes be specified in the character

sequence for each ampersand or apostrophe required in the assembled term.

Character Characters Hexadecimal Binary
self-defining assembled value value
term

C'AB' AB X'C1C2' 11000001 11000010
C'C' C X'C3' 00000000 11000011
C'3' 3 X'F3' 00000000 11110011
C'D2' D2 X'C4F2' 11000100 11110010
C'

,
blank X'40' 00000000 01000000

C'#' # X'7B' 00000000 01111011
C'&&' & X'50' 00000000 01010000
C"" ,

X'7D' 00000000 01111101
C'L'" L' X'D37D' 11010011 01111101
C'5&&' 5& X'F550' 11110101 01010000

An ASCII character self-defining term must be coded as the letter S, followed
by 1 or 2 characters enclosed in apostrophes. When assembling ASCII character
constants, the assembler:

• Allows any of the 256 8-bit EBCDIC characters as input. This includes the
printable characters, including blanks and special characters.

• Assembles each character into its 8-bit ASCII equivalent (7 bit character code (.,
with high-order zero bit). All characters for which there is not ASCII "
equivalent will assemble as an ASCII blank character code (X'20').

• Requires that two ampersands or two apostrophes be specified in the character
sequence for each ampersand or apostrophe required in the assembled term.

Examples:

ASCII self-defining Characters
term assembled Hex value Binary value

S'AB' AB X'4142' 01000001 01000010
S'C' C X'43' 00000000 01000011
S'3' 3 X'33' 00000000 00110011
S'R3' R3 X'5233' 01010010 00110011
S' ,

blank X'20' 00000000 00100000
S'#' # X'23' 00000000 00100011
S'&&' & X'26' 00000000 00100110
S' '" X'27' 00000000 00100111
S'I' , , I' X'4927' 01001001 00100111
S'7&&' 7& X'3726' 00110111 00100110

The assembler maintains the values represented by self -defining terms as 16 bits.
If a term is used as the operand on a byte immediate instruction, the low-order
byte of the term is placed in the immediate field. The high-order byte must be
zero.

Expressions

. .
ADDRESS HVW
VALUE HVWI

LENGTH OS
FACTOR OS
OPERAND EQU

Abso"'te ExpressiolU

c

You can use an expression to code:

• An address
• An absolute value
• An explicit length
• A length modifier
• A duplication factor
• A complete operand

You can write an expression with a simple term or as an arithmetic
combination of terms. The assembler reduces multiterm expressions to single
values. Thus, you do not have to compute these values. For example, expressions
are used in the following instructions as indicated:

R2,DATA+4 EXPRESSION USED AS AN ADDRESS.
5+2,R3 AS AN ABSOLUTE VALUE,

CL(ALPHA-BETA) AS AN EXPLICIT LENGTH,
(ALPHA-BETA+2)C AS A DUPLICATION FACTOR,
LABEL+l OR AS A COMPLETE OPERAND.

Expressions have absolute or relocatable values. Whether an expression is
absolute or relocatable depends on the attributes of the terms it contains. You
can use the absolute or relocatable expressions described in this section in a
machine instruction or any assembler instruction other than a conditional
assembly instruction. The assembler evaluates relocatable and absolute
expressions at assembly time. Throughout this manual, the word "expressions"
refers to these types of expressions.

Note. The three types of expressions that you can use in conditional assembly
instructions are arithmetic, logical, and character. They are evaluated at
preassembly time. In this manual they are always referred to by their full names;
they are described in detail in Chapter 6.

An expression is absolute if its value is not changed by program relocation; it
is relocatable if its value is changed upon program relocation.

The assembler reduces an expression to a single absolute value if the expression:

• Is composed of a symbol with these values, a self -defining term, or any
arithmetic combination of absolute terms

• Contains relocatable terms, alone or in combination with absolute terms, and
if all these relocatable terms are paired

An expression can be absolute even though it contains relocatable terms,
provided that all the relocatable terms are paired. The pairing of relocatable
terms cancels the effect of relocation. The assembler reduces paired terms to
single absolute terms in the intermediate stages of evaluation. The assembler
considers relocatable terms as paired under the following conditions:

• The paired terms must be defined in the same control section of a source
module (that is, have the same relocatability attribute).

Coding and Structure of the Assembler Language 2 - 17

Register Expressions

• The paired terms must have opposite signs after all unary operators are
resolved. In an expression, the paired terms do not have to be contiguous; that
is, other terms can come between the paired terms.

• The value represented by the paired terms is absolute.

You may code register references as expressions by following the rules for coding
absolute expressions. There must be at least one register symbol present in the
expression to give it the register attribute.

Note. To ensure accuracy of the cross reference listing, code the register
symbol as the first term of a register expression.

The following sample code shows some relocatable and absolute terms:

FIRST CSECT

ABLE OS
BAKER OS
CHARLIE OS

LOCREF EQU

ABSA EQU
ABSB EQU
ABSC EQU

ABSD EQU
ABSE EQU

EXAMPLE 1 EQU
EXAMPLE2 EQU
EXAMPLE3 EQU
EXAMPLE4 EQU

SECOND

DELTA
EASY
FOX

2 - 18 SC34-0124

CSECT

OS
OS
OS

END

F ABLE, BAKER, CHARLIE, AND LOCREF
F ARE RELOCATABLE TERMS THAT CAN BE
F PAIRED IN THE SAME EXPRESSION.

* LOCATION COUNTER REFERENCE

XIFFf1~1 ABSA, ABSB, AND ABSC ARE
128 EQUATED TO ABSOLUTE TERMS.
C lAB'

BAKER-ABLE ABSD AND ABSE ARE EQUATED TO
*-CHARLIE PAIRED RELOCATABLE TERMS.

ABSA THE OPERANDS OF EXAMPLE 1 ,
15 EXAMPLE2, EXAMPLE3, AND
ABSA+ABSC*5 EXAMPLE4 ARE ABSOLUTE EXPRESSIONS.
BAKER-ABLE/ABSB+ABSD

x
X
X

DELTA, EASY, AND FOX ARE
RELOCATABLE TERMS THAT CAN BE
PAIRED IN THE SAME EXPRESSION.

Examples of valid expressions:

Paired relocatable terms

BAKER - ABLE
CHARLIE - ABLE

.. LOCREF - CHARLIE
DELTA - EASY
FOX-DELTA

Unpaired relocatable terms

BAKER
CHARLIE
LOCREF
DELTA

A bsolute expressions

ABLE + ABSA - BAKER
DELTA - EASY + ABSC
FOX - DELTA + BAKER - CHARLIE

Relocatable expressions

BAKER+ABSA
CHARLIE + X'FF'
FOX - 5 * (BAKER - CHARLIE)

o

t ,

c

c

(,"

c

Relocatable Expressions
A relocatable expression is one whose value changes, for example, by a factor of
100, if the object module into which it is assembled is relocated 100 bytes away
from its originally assigned storage area. The assembler reduces a relocatable
expression to a single relocatable value if the expression:

• Is composed of a single relocatable term, or
• Contains relocatable terms, alone or in combination with absolute terms, and

- All the relocatable terms but one are paired. Note that the unpaired term
gives the expression a value with the relocatability attribute of that term.
The paired relocatable terms and other absolute terms increase or decrease
the value of the unpaired term.

- The sign preceding the unpaired relocatable term must be positive, after all
monadic operators have been resolved.

Complex Relocatable Expressions. Complex relocatable expressions, unlike
relocatable expressions, can contain:

• Two or more unpaired relocatable terms, or
• An unpaired relocatable term preceded by a negative sign.

Complex relocatable expressions can be used only in A-type address constants.
(See "A-type Address Constant" in Chapter 5.)

In the following sample code, EXAMPLE1, EXAMPLE2, EXAMPLE 3 , and
EXAMPLE4 are equated to valid relocatable expressions (that is, they belong to
the same control section and have the same relocatability attribute as the
relocatable terms in the expressions):

FIRST CSECT

ABLE DC F12' ABLE, BAKER, AND CHARLIE
BAKER DC FI 31 ARE RELOCATABLE TERMS.
CHARLIE DC F'4'

ABSA EQU III ABSA, ABSB, AND ABSC
ABSB EQU *-ABLE ARE ABSOLUTE TERMS.
ABSC EQU lf/* (BAKER-ABLE)

EXAMPLE 1 EQU ABLE+ABSA+l; BAKER-ABLE AND CHARLIE-ABLE ARE
EXAMPLE2 EQU BAKER-ABLE+CHARLIE PAIRED RELOCATABLE TERMS
EXAMPLE3 EQU BAKER+2+ (CHARLI E-ABLE)

EXTRN EXTERNAL . .
EXAMPLE" DC
*
*

END

A (ABLE-EXTERNAL) COMPLEX RELOCATABLE EXPRESSIONS ARE
VALID IN A-TYPE ADDRESS CONSTANTS
ONLY

Coding and Structure of the Assembler Language 2 - 19

Rules for Coding Expressions

Evaluation of Expressions

2 - 20 SC34-0124

The rules for coding an absolute or relocatable expression are:

• An expression must not begin with an operator other than the unary minus or o ..
unary plus, and must not contain two operators in succession.
Unary operators: -, +
Binary operators: +, -, *, I
Valid expressions: -2, INDEX+4
Invalid expressions: 12, A+/2

• An expression must not contain two terms in succession. Valid expressions:
ABLE * BAKER
Invalid expressions: ABLEBAKER, X'FF'(10*A),C'A'B'101'

• No blanks are allowed between an operator and a term.
Valid expression: ABLE*BAKER
Invalid expression: ABLE * BAKER

• An expression can contain up to 16 terms and up to five levels of parentheses.
Note that parentheses that are part of an operand specification do not count
toward this limit (see "Parentheses in Instruction Operands" in this chapter).

• A single relocatable term is not allowed in a multiply or divide operation. Note
that paired relocatable terms have absolute values and can be multiplied and
divided if they are enclosed in parentheses.

• Context determines whether an asterisk (*) is the binary operator for
multiplication, the location counter reference, or the indirect addressing
indicator.
Valid expressions: ABSA + *, * + 3
Invalid expressions: A* IB, ABSA+*ABSB, *3

The assembler reduces a multiterm expression to a single value as follows:

• It evaluates each term.
• It performs arithmetic operations from left to right; however, multiplication

and division are performed before addition and subtraction.
• In division, it gives an integer result; any fractional portion is dropped.

Division by zero gives a zero result.
• Every expression is computed using 32-bit arithmetic.
• In parenthesized expressions, the assembler evaluates the innermost

expressions first and then considers them as terms in the next outer level of
expressions. It continues this process until the outermost expression is
evaluated. It is assumed that the assembler evaluates paired relocatable terms
at each level of expression nesting. The expression
A-(X'FF'*2+B-(C/2*D» is evaluated in the order:
-. Evaluate C/2*D; call the result resultl.
- Evaluate X'FF'*2+B-resultl; call the result result2.
- Evaluate A-result2.

• Expression values are maintained internally to 32 bits during assembly.
Negative results are carried in twos complement form, and intermediate results
can range from - 231 through 231 -1. However, the final value of an expression
must be in the allowable range for the instruction. For most instructions, that
range is -65,536 through 65,535. The one exception is DC type A with
length 4. That instruction initializes a double word value, and therefore can be
in the range - 231 to 231 -1.

c

o

c

c

The following examples indicate the order of evaluation of expressions:

Absolute Assumed Valli£' of
/;,xpression I 'a lu£'s Hxprcssioll

A + 10/B A = 10, B = 2 15
(A+ 10)/B A = 10, B = 2 10
A/2 A = 10 5
A/2 A = 11 5
A/2 A = 1 0
10*A/2 A=l 5
A/O A = 1 0

Parentheses in Instruction Operands
Two types of parentheses may be used in instruction operands:

1. Syntactic parentheses delimit the elements of an operand. Whenever the
contents of a register are to be used in an effective address calculation, that
register reference is enclosed in syntactic parentheses. The following operand
forms use syntactic parentheses:

(reg)
(reg)+

(reg)*

(req, addr)
(reg, addr)*

di spl (reg, d i Sp2) *
(req,disp)*
disp(req)*
disp(addr)*

See Chapter 4 for an explanation of these forms of addressing.
2. Arithmetic parentheses are used to combine the terms of an arithmetic

expression. They may be used in comhination with syntactic parentheses
subject to the following rules:
a. Any occurrence of arithmetic parentheses must be preceded or followed

by an arithmetic operator (+, -, *, /) or the indirect addressing indicator
(*). The following examples show valid syntactic/arithmetic parentheses
combinations:

l:'XQlIlp!C Iddress Mude

(LOC' + 4)* addf*

«R2 + 1)*2) (reg)

(Rl + 3)/2 reg

(R2, LOC' + (6*[)) (reg, addr)

h. No operand may he completely enclosed in arithmetic parentheses. That is,
the following are invalid:
(I)«(ADDRA)*) where ADORA is an ordinary symbol and the intended

addressing mode is addr*.
(2)«Rl+4)-3) where the intended addressing mode is reg; the outer

arithmetic parentheses will be interpreted as syntactic causing address
mode (reg) to he generated.

Coding and Structure of the Assemhler Language 2 - 21

o

(::
2 - 22 SC34-0124

c

c

Section Contents
Introduction 3-3
Registers 3-3

Registers Fitted on a Per-Level Basis 3-3
Registers Fitted on a Per-System Basis 3-4

Number Representation 3-5
Indicators 3-5

Other Uses of Indicators 3-7
Storage Addressing 3-8
Effective Address Generation 3-9

Base Register, Word Displacement Short 3-9
Base Register, Word Displacement 3-10
Four-bit Address Argument 3-11
Five-bit Address Argument 3-13
Base Register, Storage Address 3-14
Instruction Length Variations for Address Arguments 3-14

Stack Operations 3-15
Stack Control Block 3-15
Linkage Stacking 3-16

Chapter 3. Functional Characteristics

Functional Characteristics 3 - 1

3 - 2 SC34-0t24

r\
\ J

f

"

c
Introduction

Registers

This chapter describes the characteristics of the IBM 4953 Processor and the
IBM 4955 Processor. All information in this chapter applies to both processors,
unless specifically noted otherwise. This chapter explains register usage,
addressing modes, and other information you should understand to effectively use
the assembler.

Each processor has one Interrupt Mask Register (IMR) and one Processor Status
Word (PSW). Each priority interrupt level has eight general-purpose registers,
one Instruction Address Register OAR), one Address Key Register (AKR) (4955
Processor only), and one Level Status Register (LSR). All of the preceding are
16-bit registers. Optionally, each level can have installed four 64-bit floating­
point registers (4955 Processor only).

Registers Fitted on a Per-Level Basis
Each of the four levels on the system has the following registers available to the
software:

General registers (RO-R7). Also referred to simply as registers, these are eight
16-bit general-purpose registers, whose selection is controlled by the R fields in
instructions.

Floating-point registers (FRO-FR3) (4955 Processor only). Four 64-bit
floating-point registers are provided with the floating-point optional feature. They
are selected by the R fields in floating-point instructions.

Instruction Address Register OAR). The lAR contains the address of the leftmost
byte of the next instruction to be executed.

Address Key Register (AKR) (4955 Processor only). This 16-bit register contains
three address keys and an address key control bit associated with address space
management and the storage protection mechanism. Separate 3-bit fields contain
an address key for (1) instruction address space, (2) operand 1 address space, and
(3) operand2 address space. For more information, see Chapter 8 of IBM 4955
Processor and Processor Features Description. GA34-0021.

Functional Characteristics 3 - 3

Bits Contents

00 Eq uate operand spaces
.D1 Not used, always zero
02 Not used, always zero
03 Not used, always zero
04 Not used, always zero
05 Operand 1 key (bit 0)
06 Operand 1 key (bit 1)
07 Operand 1 key (bit 2)
08 Not used, always zero
09 Operand 2 key (bit 0)
10 Operand 2 key (bit 1)
11 Operand 2 key (bit 2)
12 Not used, always zero
13 Instruction space key (bit 0)
14 Instruction space key (bit 1)
15 Instruction space key (bit 2)

Level Status Register (LSR). This 16-bit register contains information about the
status of an interrupt level. It has this format:

Bit Contents

00 Even indicator
01 Carry indica tor
02 Overflow indicator
03 Negative result indicator
04 Zero result indicator
05 Not used, always zero
06 Not used, always zero
07 Not used, always zero
08 Supervisor state
09 In process
10 Trace
11 Summary mask
12 Not used, always zero
13 Not used, always zero
14 Not used, always zero
15 Not used, always zero

Bits not used in the LSR are always zero.

Registers Fitted on a Per-System Basis

3 - 4 SC34-0124

The registers discussed in this section are addressable through assembler-language
instructions.

Interrupt Mask Register (lMR). A 16-bit register used for control of interrupts.
Bit zero controls level 0, bit one controls levell, and so on. A one in bit
position N enables interrupts on level N, while a zero disables level N.

Processor Status Word (PSW). The PSW is a 16-bit register that reports the
specific condition that caused an exception interrupt (program check, machine
check, or soft exception check).

o

I \,

\ J'

c

c Number Representation

Indicators

c

The PSW contains the following:

Type of Interrupt Bit Meaning

00 Specification check
01 Invalid storage address

Program check 02 Privilege violate
03 Protect check

Either program check or 04 Invalid function
soft exception trap

05 Floating-point exception
Soft exception trap 06 Stack exception

07 Not used

08 Storage parity check
09 Not used

Machine check 10 CPU control check
11 I/O check

12 Seq uence indica tor
Sta tus flags 13 Auto-IPL

14 Translator enabled

Power /Thermal 15 Power /Thermal warning

Bits not used in the PSW are always zero.

Console Data Buffer. A 16-bit register that is accessible with the full-function
console. Issue the CPCON instruction to read this buffer.

Operands can be signed or unsigned. An unsigned number is a binary integer in
which all bits contribute to its magnitude. A storage address is an example of an
unsigned number. Signed positive numbers are represented in true binary notation
with the sign bit (high-order) set to zero. Signed negative numbers are
represented in twos complement notation with a one in the sign bit. To get the
twos complement of a number, invert each bit of the number and add a one to
the low-order bit position.

When the number is positive, all bits to the left of the most significant bit of
the number, including the sign bit, are zero. When the number is negative, all
bits to the left of the most significant bit of the number, including the sign bit,
are set to one.

Twos complement notation does not include a negative zero. The maximum
positive number consists of an all-one integer field with a sign bit of zero. The
maximum negative number (the negative number with the greatest absolute
value) consists of an all-zero integer field with a one-bit for sign.

A single set of add and subtract integer arithmetic operations performs both
signed arithmetic and unsigned (that is, binary or logical) arithmetic. The carry
and overflow indicators are set to reflect the result in both cases.

For signed addition and subtraction, the overflow indicator signals a result that
exceeds the representation capability of the system. When an overflow occurs,
the carry indicator and the contents of the result operand together form a valid
result of which the carry indicator is the sign bit for addition and the complement

Functional Characteristics 3 - 5

3 - 6 SC34-0124

of the sign bit for subtraction. If there is no overflow, the carry indicator
contains no information about the result.

For unsigned addition and subtraction, the carry indicator signals that:

• On an add instruction, a carry out of the high-order bit position has occurred
• On a subtract operation, a borrow beyond the high-order bit position has

occurred

When a carry is indicated on an add operation, the carry indicator and the
result operand together form a valid result of which the carry indicator is the
most significant bit.

When a borrow is signaled on a subtract operation, the result is in twos
complement form. The overflow indicator contains no information about
unsigned addition or subtraction operations.

The following example shows how the processor performs the subtraction, with
respect to the setting of the carry indicator.

Add Complement (Subtract)

+6 0110
-(+7) 1001

1111 ----lJi~ No carry out, carry indicator on

If the same operation were to be done with the binary subtract method, we see
that a borrow out would occur:

Binary Subtract

o 1 10 10
10 0 0 10

+6 0 0 0
-(+7) _o _________ ~

1 I(Borrow out of Bit 0,
Oury indicator on

The hardware adds or subtracts a negative and positive number by using the
add complement method. The operations are identical in the hardware, except
that the carry indicator settings are different for add and subtract.

The following examples show how the hardware adds and subtracts numbers
that produce the same result:

Add

+3 0011
+(--4) 1100

1111 -------jJi~ No carry out, carry indicator off

Subtract

+3 0011
-(+4) 1100

1111 -----~Ji~ No carry out, carry indicator on

The following examples show how the hardware adds and subtracts, with
respect to the overflow indicators. The processor recognizes an overflow
condition by observing the internal carries both into and out of the high-order bit
position (the sign bit). If the carries disagree, an overflow condition exists. If
they agree, there is no overflow. There are four possibilities:

• No carry in and no carry out (carries agree-no overflow)
• Both carry in and carry out (carries agree-no overflow)
• Carry in, but no carry out (carries disagree--overflow)
• Carry out, but no carry in (carries disagree--overflow) c

C

Other Uses of Indicators

c

The four possible cases are shown in the following examples. Decimal
equivalents are given for comparison.

Example 1 - No Overflow

111 11 .. Carries
+62 0011 1110
+27 0001 1011

+ 89 0101 1001

In this straightforward addition, there is neither a carry into the high-order bit
position nor a carry out; therefore, there is no overflow. The carry indicator is
off.

Example 2 - No Overflow

1111 .. Carries

+62 0011 1110
-27 1110 0101

+35 0010 0011

Here there is both a carry in and a carry out; hence, no overflow. The carry
indicator is on.

Example J - Overflow

+62
+89

+151

1111 f------- Curies
0011 111 0
0101 1001

1001 0111

Here there is a carry into the high-order position, but no carry out. Since the
overflow indicator is on, the result has exceeded the capacity of the system. The
result is an unsigned binary integer, and the carry indicator contains the sign bit.
The overflow condition is also evident from the decimal result] 51, which
exceeds 127, the maximum value that can be represented in eight bits.

Example 4 - Overflow

11 If----- Carr irs

-62 1100 0010
-89 1010 0111

-151 0110 1001

In this example, there is a carry out of the high-order bit position, but no carry
in. This causes an overflow condition. The carry indicator is on. As in the
previous example, the result is an unsigned binary integer with the carry indicator
containing the sign bit. Again, the presence of overflow is evident from the
decimal result.

The even, carry and overflow indicators contain the condition code following an
I/O instruction or interrupt. The even indicator is bit 0 of the condition code,
the carry indicator is bit 1, and the overflow indicator is bit 2. For detailed
information about this use of indicators, refer to the processor description manual
for your processor.

The carry indicator is also used to reflect the value of the last bit shifted out
of the target register on shift left logical operations. The overflow indicator is
used in these operations to indicate whether bit 0 of the shifted register has
changed (if bit 0 has changed, the sign of the number has changed).

The carry indicator is used on shift left logical and count operations to reflect
the value of the last bit shifted out of the register.

Functional Characteristics 3 - 7

Storage Addressing

3 - 8 SC34-0124

A compare operation affects the indicators in the same manner as a subtract
operation. Compare instructions are usually used in conjunction with conditional
branches or jumps. The specified conditions in conditional branches and jumps
are named with respect to the indicators, so that in all compare instructions the ()
subtracted-from operand is compared relative to the other operand. For example, \ J
in a Compare Word instruction (CW R 1 ,R2) where the contents of R 1 are
subtracted from the contents of R2, the indicators reflect arithmetically less than
if the contents of R2 are arithmetically less than the contents of Rl.

The indicators are tested according to a selected condition on a conditional
branch or jump instruction. For a discussion of the conditions set by these
indicators, see "Using Compare Instructions" in Chapter 4.

Multiplication and division always operate on signed numbers. The indicator
settings for these operations are described in Chapter 4.

Since the complement of the maximum representable negative number is itself
not representable, an attempt to complement this number turns on the overflow
indicator.

The result indicators are the zero, negative, and even indicators. A positive
result is indicated when the zero and negative indicators are both zero. These
indicators reflect the result of the last arithmetic or logical operation performed.
See the individual instruction descriptions in Chapter 4 for details of indicator
setting.

All indicators are changed by the data associated with the Set Indicators
(SEIND) and Set LSB (SELB) instructions.

Indicators (carry, overflow, zero, negative and even) are set or reset at the end
of each floating-point instruction. Whether each is set or reset is described in the
detailed instruction descriptions in Chapter 4.

All storage addresses are 16-bit, unsigned, binary integers. The direct address
range of the system is 64KB. The addressable unit of main storage is the byte,
and all references to storage locations are byte addresses. Instructions refer to
bits, bytes, words, doublewords, or fields as data types. Some rules concerning
storage addressing are:

• All instructions must start on an even byte boundary. The effective address for
all branching instructions must be on an even byte boundary.

• All word and double word operand addresses must be on an even byte
boundary.

• In the case of indirect addressing, the address operand must be on an even
byte boundary.

• A stack control block must be on an even byte boundary.
• All byte, word, and double word operand addresses point to the leftmost byte

in the operand.
• All bit and field addresses are specified by a byte address and a bit

displacement, and point to the leftmost bit in a field.
• In order to provide maximum addressing range, some instructions refer to an

even byte displacement that is added to the contents of a register. In these
cases, the register must also contain an even byte address to point to a word
or double word operand.

If one of the above rules is violated, a program check interrupt occurs with
specification check set in the PSW. The instruction is suppressed.

o

Effective Address Generation
For purposes of storage efficiency, certain instructions formulate storage operand
addresses in a specialized manner. These instructions have self-contained fields
that the assembler uses when generating effective addresses. Standard methods
for deriving effective addresses are described in this section.

Base Register, Word Displacement Short
Instruction format:

op code RB I I word disp

o 4 8 9

Base register ------'
00 register 0
01 register 1

10 register 2
11 register 3

Word displacement
range 0 - 31 (decimal)

11 15
~

The 5-bit unsigned integer word disp is doubled in magnitude to form a byte
displacement, then is added to the contents of the specified base register to form
the effective address.

Example:

op code

o 4 8 9 11 15

Contents of register 1 (RB)
Word displacement doubled
Effective address

0000 0000 0110 0000
+ 01000
000000000110 1000

(HEX)
0060

8
0068

This is coded as shortaddr in the MVWS instruction.

Functional Characteristics 3 - 9

Base Register, Word Displacement
Instruction format:

3 - 10 SC34-0124

op code word disp

o 4 5 7 8 15
~ ~----~----~'

Base register J
000 register 0
001 register 1
010 register 2
011 register 3
100 register 4
101 register 5
110 register 6
111 register 7

Word displacement -----....
range +127 to -128 (decimal)

The 8-bit signed integer word disp is doubled in magnitude to form a byte
displacement, then is added to the contents of the specified base register to form
the effective address. The word displacement can be either positive or negative;
bit 8 of the instruction word is the sign bit for the displacement value. If this
high-order bit of the displacement field is a 0, the displacement is positive with a
maximum value of + 127 (decimal). If the high-order bit of the displacement field
is a 1, the displacement is negative with a maximum value of -128. A negative
displacement is represented in twos complement form.

Example:

op code word disp
1 101 0 0

o 4 5 7 8 15

Note: Th~s example shows a negative word displacement (-:-17 hex)
shown in twos complement.

(HEX)
Contents of register 6 (RB) 00000000 10000110 0086
Word displacement 'doubled

(Sign bit is propagated left) + 1111 1111 1101 0010 - 2E
p058 Effective address 0000000001011000

This is coded as (reg,jdisp) in the BXS instruction.

o

Four-bit Address Argument

o

c

o

Instruction format:

op code

o 4 8 9 10 11 12 15
'-v-' ~

Base register ~
00 register 0

(AM = 00 or AM = 01)
00 no register

(AM = 10 or AM = 11)
01 register 1
10 register 2
11 register 3

Address mode

The address mode has the following significance:
AM=OO. The contents of the selected base register form the effective address.
The equivalent assembler instruction operand format is reg o-~
AM=Ol. The contents of the selected base register form the effective address.
After use, the base register contents are increased by the number of bytes in the
operand.

For certain instructions (SELB, CPLB, LMB, STM, PB, PD, PW, PSB, PSD,
and PSW) the effective address does not point to an operand, but to a control
block or other system parameters. For these instructions, the contents of the
specified register are increased by two.

Example:

op code

o 4 8 9 10 11 12 15

Effective address (HEX)
(Contents of register 1) 0000 0000 1000 0000 0080

Contents of register 1
after instruction execution

Byte operand 0000 0000 1000 000 1 0081

Word operand 0000 0000 1000 00 1 0 0082

Doubleword operand 0000 0000 1000 0100 0084

The equivalent assembler instruction operand format is (regO-~+.

AM = 1 O. An additional word is appended to the instruction. The word has the
following format.

address

16 31

• If RB is zero, the appended word contains the effective address.
• If RB is not zero, the contents of the selected base register and the contents

of the appended word are added to form the effective address.

Functional Characteristics 3 - 11

3 - 12 SC34-0124

Example:

op code address
a a a a a a a 10 0 a 0 a 00 0

a 4 10 11 12

(HEX)
Contents of register 3 0000 1000 0000 0000 0800
Contents of appended word + 0000 000 1 0000 0000 0100
Effective address 0000 -100 1 0000 0000 0900

The equivalent assembler instruction operand formats are: addr and
(reg 1~ waddr).
AM = 11. An additional word is appended to the instruction.

• If RB is zero, the appended word has the format:

indirect address

16 31

This address points to a main storage location, on an even byte boundary, that
contains the effective address.

Example:

Contents of appended word
Effective address equals

contents of storage at
address 0050 (hexadecimal)

indirect address

0000 0000 010 1 0000

0000 0000 0101 0000

0000 0100 0000 0000

31

(HEX)
0050

0400

• If RB is not zero, the appended word has the format:

disp 1 disp 2

16 2324 31

The two displacements are unsigned 8-bit integers. Displacement 2 is added to
the contents of the selected base register to generate a main storage address. The
contents of this storage location are added to displacement 1, resulting in the
effective address.

3

c

C

Five-bit A.ddress A.rgument

c

Example:

disp 1
0010 0101

a 4 8 9 10 1112 15 16 23 24

(HEX)
Contents of register 2 0000 0101 0011 0101 0535
Displacement 2 + 0100 0010 ~
Storage address 0000 0101 0111 0111 0577

Contents of storage at 0000 0100 0001 0000 0410
address 0577 (Hexadecimal)

Displacement 1 + 0010 0101 --li
Effective address 0000 0100 0011 0101 0435

The equivalent assembler instruction operand formats are:
dispJ (reg 1-~disp2)
disp(reg 1-~*
(reg 1-~*
(reg l-~disp) *.

Instruction format:

op code

'0 4 . 5 7 .
"-v-"

Base register ~
000 register a

(AM = 00 or AM = 01)
000 no register

(AM = 10 or AM = 11)
00 1 register 1
a 1 a register 2
a 11 register 3
100 register 4
101 register 5
110 register 6
111 register 7

10 1112
'-v-'

Address mode _______ ..J

IS'

disp2
0100 0010

Operation of this mode is identical to the four-bit argument, but provides
additional base registers.

This is coded as addr 5.

31

Functional Characteristics 3 - 13

Base Register, Storage Address
Instruction format:

~_O_P_c_o_d_e __ ~ __ ~~ __ R_B __ ~I_X~I~ ______ ~ ___________ a_dd_r_e_ss_M_is_p_1a_c_em __ en_t __________ ~_,;
a 4 8 10 11 12 15'16 31'

'-v-"

Base register ---------',
000 no register

00 1 register 1
010 register 2
011 register 3
100 register 4
101 register 5
110 register 6
111 register 7

{
0 = direct
1 = indirect

• If RB is zero, the address field contains the effective address.
• If RB is not zero, the contents of the selected base register and the contents

of the address field are added together to form the effective address.

Note. Bit 11, if a one, specifies that the effective addressing is indirect.

Example:

op code indirect address
o 0 0 a 0 1 000 0 a 1 000 0

a 4

Contents of register 4
Address field
Storage address

Effective address
Contents of storage at

address 0510 (hexadecimal)

This is coded as longaddr.

31

(HEX)
0000 0001 0000 0000 0100

+ 0000 0100 0001 0000 0410
0000 0101 0001 0000 0510

0000 0110 0100 0000 0640

Instruction Length Variations lor Address Arguments

3 - 14 SC34-0124

• One-word instructions that contain a single AM field become two words in
length if AM is equal to 10 or 11. The appended word follows the instruction
word.

• Two-word instructions that contain a single AM field become three words in
length if AM is equal to 10 or 11. The AM word is appended to the first
instruction word. The data or immediate field then becomes the third word of
the instruction.

• One-word instructions that contain two AM fields (AMI and AM2) are one,
two, or three words in length depending on the values of AM 1 and AM2. The
AM 1 word is appended first, then the AM2 word.

c

c

Stack Operations
Stack Control Block

o

o

o

Examples:
• AMl=OO or AMl=OI; AM2=00 or AM2=01

instruction word no appended word

o 15

• AMI = 10 or AMI = 11; AM2=00 or AM2=01

instruction word AMI appended word

15 16 31

• AMI =00 or AMl=OI; AM2=10 or AM2=11

instruction word AM2 appended word

15 16 31

• AMl=10 or AMl=l1; AM2=10 or AM2=11

instruction word AMI appended word AM2 appended word

15 16 31 32 47

Stacking is a simple efficient mechanism for queuing data and/or parameters.
Basically, a stack is a LIFO queue. There are operations that push a data item or
parameter into the stack and operations that pop the top item from the stack. In
addition, there are limit-checking facilities, which test for overflow and underflow
of a stack area.

Any contiguous area of storage can be defined as a stack. Each logical stack is
defined by a stack control block in the following format:

Word t Top element address (TEA)
Word 2 High limit address of stack (HLA)

Word 3 Low limit address of stack (LLA)

The size of the stack is equal to HLA minus LLA. When a stack is empty, the
top element address is equal to the high limit address. The HLA must be greater
than the LLA.

When an item is pushed to the stack, the address value in the TEA is
decreased and compared against the LLA. If it is less than the LLA, a stack
overflow exists. Stack overflow causes a soft exception interrupt to occur, with
stack exception set in the PSW. The TEA is unchanged. If the stack does not
overflow, the TEA is updated and the data item is moved to the storage location
defined by the TEA.

When an item is popped from a stack, the TEA is compared against the HLA.
If it is greater than or equal to the HLA, a stack underflow exists. Stack
underflow causes a soft exception interrupt to occur, with the stack exception bit
on in the PSW. If the stack does not underflow, the data item defined by the
current TEA is moved to a specified register and the address value of the TEA is
increased.

Note. It is possible to pop data from beyond the stack boundary if the TEA is
less than the HLA, and the operand size is greater than (HLA-TEA).

Functional Characteristics 3 - t 5

Linkage Stacking

3 - 16 SC34-0124

Stack operations are register-to-storage for push, and storage-to-register for
pop. Bytes, words, doublewords, and register blocks can be stacked. You are
responsible for ensuring that the TEA word of a stack control block contains an
even byte address for word, doubleword, and register blocks operations. All stack (-,
control blocks must be aligned on a word boundary.J

A word stack can be used for subroutine linkage, as a method of
saving/ restoring caller status and allocating dynamic work areas. The STM/LMB
instruction pair operate using a stack area. The STM instruction specifies:

• Stack control block address (A)
• Limit register number (R)
• Number of bytes to allocate as dynamic work area (N)

Note. You code this value in bytes, then the assembler converts it to words for
use by the hardware instruction.

When STM is executed, the TEA value is decreased by the size of the area
allocated on the stack before an overflow check is made. The size of that area is
N, plus two bytes for each register saved, plus two bytes for the control word.
The link register (R7) and register 0 through register R are saved sequentially in
the stack area and the address of the dynamic work area is returned to you in
register R. If R 7 is specified, only R 7 is stored. The value of Rand N are also
saved as an entry in the stack. When an LMB instruction is executed, these
values (R, N) are retrieved from the stack and are used to control the reloading
of registers and restoring the stack control pointer to its former status. The
contents of R7 are then loaded into the IAR, returning to the calling routine. For
example, if you want to store register 7, then registers 0 through R, in a stack
defined by the stack control block at location A, and you want to allocate N
bytes of dynamic work area: I

STH R,A,N

this is how the stack is stored:

Low Storage.

.. LLA

Unused stack area

.... TEA

Stack Control Word

Dynamic

1 • Work
Area (if any)

R

o ~ N ~ 16382 bytes

R7

RO
TEA

HLA .
LLA • Previously

Stacked
Data (if any) .. H
First word beyond stack

LA (-, ... ,

,ji

High Storage

c

c

c

Section Contents
Coding Notes 4-3
Coding The Assembler Language Instruction 4-3
Data Movement Instructions 4-7

Fill Byte Field and Decrement (FFD) 4-7
Fill Byte Field and Increment (FFN) 4-8
Interchange Registers (lR) 4-9
Move Address (MV A) 4-9
Move Byte (MVB) 4-10
Move Byte and Zero (MVBZ) 4-11
Move Byte Field and Decrement (MVFD) 4-11
Move Byte Field and Increment (MVFN) 4-12
Move Byte Immediate (MVBI) 4-13
Move Doubleword (MVD) 4-14
Move Doubleword and Zero (MVDZ) 4-15
Move Word (MVW) 4-15
Move Word and Zero (MVWZ) 4-16
Move Word Immediate (MVWI) 4-16
Move Word Short (MVWS) 4-17

Arithmetic Instructions 4-18
Add Address (AA) 4-18
Add Byte (AS) 4-18
Add Byte Immediate (ABI) 4-19
Add Carry Indicator (ACY) 4-19
Add Doubleword (AD) 4-20
Add Word (AW) 4-21
Add Word Immediate (AWl) 4-21
Add Word with Carry (A WCY) 4-22
Subtract Address (SA) 4-22
Subtract Byte (SB) 4-23
Subtract Carry Indicator (SCY) 4-24
Subtract Doubleword (SD) 4-24
Subtract Word (SW) 4-25
Subtract Word Immediate (SWI) 4-26
Subtract Word with Carry(SWCY) 4-26
Multiply Byte (MB) 4-27
Multiply Doubleword (MD) 4-27
Multiply Word (MW) 4-28
Divide Byte (DB) 4-29
Divide Doubleword (DO) 4-29
Divide Word (OW) 4-30
Complement Register (CMR) 4-30

Branching Instructions 4-32
Branch (B) 4-32
Branch and Link (BAL) 4-32
Branch and Link External (BALX) 4-32
Branch and Link Short (BALS) 4-33
Branch External (BX) 4-34
Branch if Mixed (BMIX) 4-34
Branch if Not Mixed (BNMIX) 4-35
Branch if Not Off (BNOIT) 4-35
Branch if Not On (BNON) 4-36
Branch if Off (BOFF) 4-37
Branch if On (BON) 4-37
Branch Indexed Short (BXS) 4-38
Branch on Carry (BCY) 4-38
Branch on Condition (BC) 4-38
Branch on Condition Code (BCC) 4-39
Branch on Equal (BE) 4-40
Branch on Error (BER) 4-40
Branch on Even (BEV) 4-40

Chapter 4. Machine Instructions

Branch on Greater Than (BGT) 4-41
Branch on Greater Than or Equal (BGE) 4-41
Branch on Less Than (BLT) 4-42
Branch on Less Than or Equal (BLE) 4-42
Branch on Logically Greater Than (BLGT) 4-43
Branch on Logically Greater Than or Equal (BLGE) 4-43
Branch on Logically Less Than (BLLT) 4-44
Branch on Logically Less Than or Equal (BLLE) 4-44
Branch on Negative (BN) 4-44
Branch on No Carry (BNCY) 4-45
Branch on Not Condition (BNC) 4-45
Branch on Not Condition Code (BNCC) 4-46
Branch on Not Equal (BNE) 4-47
Branch on Not Error (BNER) 4-47
Branch on Not Even (BNEV) 4-47
Branch on Not Negative (BNN) 4-48
Branch on Not Overflow (BNOV) 4-48
Branch on Not Positive (BNP) 4-48
Branch on Not Zero (BNZ) 4-49
Branch on Overflow (BOV) 4-49
Branch on Positive (BP) 4-50
Branch on Zero (BZ) 4-50
No Operation (NOP) 4-50

Coding Jump Instructions 4-51
Jump (1) 4-51
Jump and Link (J AU 4-51
Jump if Mixed (JMIX) 4-52
Jump if Not Mixed (JNMIX) 4-52
Jump if Not Off (1NOFF) 4-52
Jump if Not On (JNON) 4-53
Jump if Off (JOlT) 4-53
Jump if On (JON) 4-54
Jump on Carry (JCY) 4-54
Jump on Condition (JC) 4-55
Jump on Count (JCT) 4-55
Jump on Equal (JE) 4-57
Jump on Even (lEV) 4-57
Jump on Greater Than (JGT) 4-57
Jump on Greater Than or Equal (JGE) 4-58
Jump on Less Than (JLT) 4-58
Jump on Less Than or Equal (JLE) 4-59
Jump on Logically Greater Than (JLGT) 4-59
Jump on Logically Greater TIlan or Equal (JLGE) 4-60
Jump on Logically Less Than (J LL T) 4-60
Jump on Logically Less Than or Equal (JLLE) 4-61
Jump on Negative (JM) 4-61
Jump on No Carry (JNCY) 4-61
Jump on Not Condition (JNC) 4-62
Jump on Not Equal (JNE) 4-62
Jump on Not Even (JNEV) 4-63
Jump on Not Negative (JNN) 4-63
Jump on Not Positive (JNP) 4-64
Jump on Not Zero (JNZ) 4-64
Jump on Positive (JP) 4-65
Jump on Zero (JZ) 4-65

Shift Instructions 4-66
Coding Shift Instructions 4-66
Shift Left Circular (SLC) 4-66
Shift Left Circular Double (SLCD) 4-66
Shift Left Logical (SLL) 4-67
Shift Left LogicallJouble (SLLD) 4-68
Shift Left and Test (SLT) 4-68

Machine Instructions 4 - I

Shift Left and Test Double (SLTD) 4-69
Shift Right Arithmetic (SRA) 4-70
Shift Right Arithmetic Double (SRAD) 4-71
Shift Right Logical (SRL) 4-71
Shift Right Logical Double (SRLD) 4-72

Stack Instructions 4-73
Store Multiple (STM) 4-73
Load Multiple and Branch (LMB) 4-73
Coding Pop/Push Instructions 4-74
Pop Byte (PB) 4-74
Pop Doubleword (PD) 4-74
Pop Word (PW) 4-75
Push Byte (PSB) 4-75
Push Doubleword (PSD) 4-76
Push Word (PSW) 4-77

Compare Instructions 4-78
Using Compare Instructions 4-78
Compare Address (CA) 4-78
Compare Byte (CB) 4-79
Compare Byte Field Equal and Decrement (CFED) 4-79
Compare Byte Field Equal and Increment (CFEN) 4-81
Compare Byte Field Not Equal and Decrement (CFNED) 4-82
Compare Byte Field Not Equal and Increment (CFNEN) 4-83
Compare Byte Immediate (CBI) 4-84
Compare Doubleword (CD) 4-84
Compare Word (CW) 4-85
Compare Word Immediate (CWI) 4-85
Scan Byte Field Equal and Decrement (SFED) 4-85
Scan Byte Field Equal and Increment (SFEN) 4--86
Scan Byte Field Not Equal and Decrement (SFNED) 4-87
Scan Byte Field Not Equal and Increment (SFNEN) 4-88

Logical Instructions 4-89
AND Word Immediate (NWI) 4-89
Exclusive OR Byte (XB) 4-89
Exclusive OR Doubleword (XD) 4-90
Exclusive OR Word (XW) 4-90
Exclusive OR Word Immediate (XWI) 4-91
Invert Register (VR) 4-91
OR Byte (OB) 4-92
OR Doubleword (OD) 4-92
OR Word (OW) 4-93
OR Word Immediate (OWl) 4-94
Reset Bits Byte (RBTB) 4-94
Reset Bits Doubleword (RBTD) 4-95
Reset Bits Word (RBTW) 4-95
Reset Bits Word Immediate (RBTWI) 4-96
Set Bits Byte (SBTB) 4-97
Set Bits Doubleword (SBTD) 4-97
Set Bits Word (SBTW) 4-98
Set Bits Word Immediate (SBTWI) 4-98
Test Bit (TBT) 4-99
Test Bit and Invert (TBTV) 4-100
Test Bit and Reset (TBTR) 4-100
Test Bit and Set (TBTS) 4-101
Test Word Immediate (TWI) 4-101

Processor Status Instructions 4-103
Copy Level Status Register (CPLSR) 4-103
Set Indicators (SEIND) 4-103
Stop (STOP) 4-103
Supervisor Call (SVC) 4-104

Privileged Instructions 4-105
Copy Address Key Register (CPAKR)

(4955 Processor Only) 4-105
Copy Console Data Buffer (CPCON) 4-105
Copy Current Level (CPCL) 4-105
Copy In-Process Flags (CPIPF) 4-106
Copy Instruction Space Key (CPISK)

(4955 Processor Only) 4-106
Copy Interrupt Mask Register (CPIMR) 4-107
Copy Level Status Block (CPLB) 4-108
Copy OperandI Key (CPOOK) (4955 Processor Only) 4-108
Copy Operand2 Key (CPOTK) (4955 Processor Only) 4-109
Copy Processor Status and Reset (CPPSR) 4-110
Copy Segmentation Register (CPSR)

(4955 Processor Only) 4-110

4 - 2 SC34-0124

Copy Storage Key (CPSK) (4955 Processor Only) 4-111
Diagnose (DIAG) 4-111
Disable (DIS) 4-112
Enable (EN) 4-112
Interchange Operand Keys (I0PK) (4955 Processor Only) 4-113
Level Exit (LEX) 4-113
Operate I/O (10) 4-114
Set Address Key Register (SEAKR)

(4955 Processor Only) 4-114
Set Console Data Lights (SECON) 4-115
Set Instruction Space Key (SEISK)

(4955 Processor Only) 4-115
Set Interrupt Mask Register (SEIMR) 4-116
Set Level Status Block (SELB) 4-116
Set OperandI Key (SEOOK) (4955 Processor Only) 4-117
Set Operand2 Key (SEOTK) (4955 Processor Only) 4-118
Set Segmentation Register (SESR) (4955 Processor Only) 4-118
Set Storage Key (SESK) (4955 Processor Only) 4-119

Floating-Point Instructions 4-121
Floating-Point Number Representation 4-121
Floating-Point Registers and Instructions 4-122
Copy Floating Level Block (CPFLB) 4-123
Floating Add (FA) 4-123
Floating Add Double (FAD) 4-124
Floating Compare (FC) 4-124
Floating Compare Double (FCD) 4-125
Floating Diagnose (FDIAG) 4-125
Floating Divide (FD) 4-126
Floating Divide Double (FDD) 4-126
Floating Move (FMV) 4-127
Floating Move Double (FMVD) 4-127
Floating Move and Convert (FMVC) 4-128
Floating Move and Convert Double (FMVCD) 4-129
Floating Multiply (FM) 4-129
Floating Multiply Double (FMD) 4-130
Floating Subtract (FS) 4-130
Floating Subtract Double (FSD) 4-131
Set Floating Level Block (SFLB) 4-132

()
'-)

c

c

C·"''·
=

Coding Notes

Hardware instructions are represented symbolically by assembler-language
statements. Each statement generates one hardware instruction-the actual
instruction generated depends on the operation code and the syntax of the
operand.

Each mnemonic operation code specifies the function of an instruction and the
type of data it operates on. For example, the Move Word (MVW) instruction
moves (MV) a word (W) from a register to storage, storage to a register, storage
to storage, or a register to a register, depending on the operands you code. Based
on the syntax of the operands, the assembler generates one of several possible
hardware instructions. If more than one hardware instruction can perform the
operation specified by the mnemonic and its operand, the assembler generates the
one that is most efficient in timing and storage usage.

This chapter discusses the assembler-language machine instructions-how you
code them and what they do.

• Data flow, when it modifies a field, is always from left to right.
• Registers used in effective address calculations are always in parentheses.
• An address specification followed by an asterisk indicates indirect addressing.

Here, the effective address is the contents of the addressed storage location.
: The (reg)+ format indicates that, after use, the contents of the reg are

increased by the number of bytes addressed.

Coding The Assembler Language Instructions
This section explains the symbols that are used as generalized operands in the
discussion of machine instructions. (The discussion of machine instructions
comprises the remainder of this chapter.)
abcnt

An absolute value or expression representing the size of a work storage area to
be allocated by the Store Multiple (STM) instruction. The value you code must
be an even number in the range 0-16382.

addr
An address value. Code an absolute or relocatable expression in the range
0-65535.

addr4
An address value that you code in one of the following forms:
(reg 0-3)

The effective address is the contents of the register reg 0-3.

(regO-~+

The effective address is the contents of the register reg 0-3. After an
instruction uses it, the contents of the register are increased by the number
of bytes addressed by the instruction.

addr
The effective address is the value of addr, unless the instruction is in the
domain of a USING directive and addr is in the range of the same USING
directive. If they are, the assembler computes the effective address as a
displacement (-32768 to +32767 or 0 to 65535) from the base register,
which must be reg 1-3.

Machine Instructions 4 - 3

4 - 4 SC34-0124

addr·
The effective address is the contents of storage at the address defined by
addr, unless the instruction is in the domain of a USING directive and addr
is in the range of the same USING directive. If they are, the assembler
computes the effective address as the contents of storage at the address
defined by a displacement (0-255) from the base register, which must be
reg 1-3.

disp(addr) •
If the instruction is in the domain of a USING directive and the operand is
in the range of this same USING directive, then the assembler will compute
the displacement and register combination which will reference the
requested location; i.e., the resulting addressing mode will be
disp1 (reg1-3 ,disp2).

(reg 1-~ waddr)
The effective address is the contents of the register reg 1-3, added to the
value of waddr.

dispJ (reg 1-~disp2)·
The effective address is calculated as follow: The contents of the register
reg 1-3 are added to the value of the displacement disp2 to form an address.
The contents of that storage location are added to the value of disp J to
form the effective address.

disp(reg 1-~.
The effective address is the contents of storage at the address defined by
the contents of reg 1-3, added to the value of disp.

(reg 1-~.

The effective address is the contents of storage at the address defined by
the contents of reg 1-3.

(reg 1-~disp)·
The contents of reg 1-3 are added to disp, forming an address. The contents
of storage at that address form the effective address.

Note. For the byte addressing, the effective address can be even or odd.
For word or doubleword addressing, the effective address must be even.

addr5
An address value that you code in one of the following forms:
(reg)

The effective address is the contents of the register reg.
(reg) +

The effective address is the contents of the register reg. After an instruction
uses it, the contents of the register are increased by the number of bytes
addressed by the instruction.

addr
The effective address is the value of addr, unless the instruction is in the
domain of a USING directive and addr in the range of the same USING
directive. If they are, the assembler computes the effective address as a
displacement (-32768 to +32767 or 0 to 65535) from the base register,
which must be reg 1-7.

addr·
The effective address is the contents of storage at the address defined by
addr, unless the instruction is in the domain of a USING directive and addr
is in the range of the same USING directive. If they are, the assembler
computes the effective address as the contents of storage at the address
defined by a displacement (0-255) from the base register, which must be
reg 1-7.

disp(addr) •
If the instruction is in the domain of a USING directive and

()
\)

(,

c

c

c

the operand is in the range of this same USING directive, then the
assembler will compute the displacement and register combination which
will reference the requested location; i.e., the resulting addressing mode will
be disp1(regl-7,disp2)*

(reg 1-~ waddr)
The effective address is the contents of reg 1-7, added to the value of waddr.

displ (reg 1-~disp2) *
The effective address is calculated as follows: contents of the register reg 1-7
are added to the value of the displacement disp2 to form an address. The
contents of that storage location are added to the value of displ to form
the effective address.

disp(reg 1-~ *
The effective address is the contents of storage at the address defined by
the contents of reg 1-7, added to the value of disp.

(reg 1-~*
The effective address is the contents of storage at the address defined by
the contents of reg 1-7.

(reg l-~disp)*
The contents of reg 1-7 are added to disp, forming an address. The contents
of storage at that address form the effective address.

Note. For byte addressing, the effective address can be even or odd. For
word or double word addressing, the effective address must be even.

bitdisp
A displacement into a bit field. Code an absolute value or expression in the
range 0-63.

byte
A byte value. Code an absolute value or expression in the range -128 to
+ 127 or ° to 255.

cnt16
A single word (one register) shift count. Code an absolute value or expression
in the range 0-16.

cnt31
A doubleword (register pair) shift count. Code an absolute value or expression
in the range 0-3 1.

cond
A condition code value. Code an absolute value or expression in the range
0-7.

disp
A byte address displacement. Code an absolute value or expression in the
range 0-255.

[reg
A floating-point register. Code either a predefined floating register symbol
(FRO-FR3) or a symbol that is equated to the desired register number (0, 1,
2, or 3). Symbols are equated with EQUR statements, which must precede the
instruction using the register symbol.

jaddr
The address of an instruction that is within -256 to +254 bytes of the byte
following a jump instruction. Code a relocatable expression.

jdisp
A byte address displacement. Code an even absolute value or expression in the
range -256 to +254.

longaddr
An address value that you code in one of the following forms:
addr

The effective address is the value of addr, unless the instruction is in the
domain of a USING directive and addr is in the range of the same USING

Machine Instructions 4 - 5

4 - 6 SC34-0124

directive. If they are, the assembler computes the effective address as a
displacement (-32768 to +32767 or 0 to 65535) from the base register,
which must be reg 1-7.

addr* ('
The effective address is the contents of storage at the address defined by \ J
addr, unless the instruction is in the domain of a USING directive and addr
is the range of the same USING directive. If they are, the assembler
computes the effective address as the contents of storage at the address
defined by a displacement (-32768 to +32767 or 0 to 65535) from the
base register, which must be reg 1-7.

(reg 1-~ waddr)
The effective address is the contents of reg 1-7, added to the value of waddr.

(reg 1-~ waddr) *
The contents of reg 1-7, plus waddr, form an address. The contents of
storage at that location form the effective address.

(reg 1-~
The effective address is the contents of the register reg 1-7.

(reg 1-~*

raddr

The effective address is the contents of storage at the address defined by
the contents of reg 1-7.

An address value. Code a relocatable expression in the range 0-65535.
reg

A general-purpose register. Code either a predefined register symbol (RO-R7)
or a symbol that is equated to the desired register number (0, 1, 2, 3, 4, 5, 6,
or 7). Symbols are equated with EQUR statements, which must precede the
instruction using the register symbol.

reg 0-3

A general-purpose register. Code either a predefined register symbol (RO-R3) t
or a symbol that is equated to the desired register number (0, 1,2, or 3). " ".
Symbols are equated with EQUR statements, which must precede the
instruction using the register symbol.

reg 1-3

A general-purpose register. Code either a predefined register symbol (R1-R3)
or a symbol that is equated to the desired register number (1, 2, or 3).
Symbols are equated with EQUR statements, which must precede the
instruction using the register symbol.

reg 1-7

A general-purpose register. Code either a predefined register symbol (R1-R7)
or a symbol that is equated to the desired register number (1, 2, 3, 4, 5, 6, or
7). Symbols are equated with EQUR statements, which must precede the
instructions using the register symbol.

ubyte
An unsigned byte value or mask. Code an absolute value or expression in the
range 0-255.

vcon
An ordinary symbol that is defined externally from the current source program.

waddr
A one-word address value. Code an absolute or relocatable expression in the
range -32768 to +32767 or 0 to 65535.

wdisp
An even byte address displacement. Code an absolute value or expression in
the range 0-62.

~~ (~ A word value. Code an absolute value or expression in the range -32768 to,
+32767 or 0 to 65535.

c

c

o

Data Movement Instructions
Fill Byte Field and Decrement (FFD)

Indicators

FFD Example

This instruction fills a field in storage, right-to-Ieft, with a byte from a register.

Name Operation Operand

[label] FFD reg, (reg)

Here is how to use FFD:

1. Before FFD, code an instruction to load register 7 with the size (in bytes) of
the destination field. Note that this is an unsigned value.

2. For reg, code the register from which the byte is moved.
3. For (reg), code the address of the rightmost byte of the destination field.

Here is what FFD does:

1. It moves bits 8-15 of reg to the rightmost byte of the (reg) field.
2. It then moves the same byte from reg to the byte (in the (reg) field) to the

left of the preceding byte .
.. 3. It proceeds to the left, moving one byte at a time from reg to (reg), until it

has moved the number of bytes specified by register 7.

When FFD is finished, register 7 contains 0, reg is unchanged, and (reg)
contains the address of the byte before the leftmost byte in the field. That is, if
the leftmost byte is 0207, (reg) points to 0206.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the last byte moved.

FFD R5,(R6)

Assume that:

• Register 7 contains X'0003 '-the number of bytes to be moved,
• Register 5 contains X'34AT, and
• Register 6 contains X'0300'-the address of the rightmost byte in the

destination field.

As Figure 4-1 shows, FFD moves the value A 7 into:

(1) Byte 0300,
(2) Byte 02FF, then
(3) Byte 02FE.

After FFD:

• Register 7 contains 0,
• Register 5 contains X'34A 7,' and
• Register 6 contains X'02FD'.

Machine Instructions 4 - 7

Coding Hint

3 4 A 7 I Register 5

T
DDD

02FD 02FE 02FF 0300

Figure 4-1. FFD example.

Use this instruction when you want to clear an area-that is, fill it with blanks or
zeros.

Fill Byte Field and Increment (FFN)

Indicators

FFN Example

4 - 8 SC34-0124

This instruction fills a field in storage, left-to-right, with a byte from a register.

Name Operation Operand

[label] FFN reg, (reg)

Code FFN like FFD, with one difference. For (reg), code the address of the
leftmost byte of the destination field. ("

FFN does the same thing as FFD, with one exception. The reg byte moves to '- it'

the leftmost byte of the (reg) field, and proceeds to the right.
When FFN is finished, register 7 contains 0, reg is unchanged, and (reg)

contains the address of the byte following the rightmost byte in the field. That is,
if the rightmost byte is 010B, (reg) points to 010e.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the last byte moved.

FFN R5, (R6)

Assume that:

• Register 7 contains X'0003'-the number of bytes to be moved,
• Register 5 contains X'34A 7', and
• Register 6 contains X'0600'-the address of the leftmost byte in the

destination field.

As Figure 4-2 shows, FFN moves the value A 7 into:

(1) Byte 0600,
(2) Byte 0601, then
(3) Byte 0602.

After FFN:

• Register 7 contains 0,
• Register 5 contains X'34A7', and c:

c

Coding Hint

Interchange Registers (IR)

c
Indicators

IR Example

Move Address (MVA)

Indicators

c

• Register 6 contains X'0603'.

] 4 A 7 1 Register 5

~

A
ODD

/,

0600 0601 0602 0603

Figure 4-2. FFN example.

Use this instruction when you want to clear an area-that is, fill it with blanks or
zeros.

This instruction interchanges the contents of two registers.

Name Operation Operand

[label] IR reg, reg

The indicators are set to reflect the new contents of the register defined by the
second operand.

I R R4,Rl

Assume that register 4 contains X'1234' and register 1 contains X'5678'. After
IR, register 4 contains X'5678' and register 1 contains X' 1234'.

This instruction places an effective address into a register or a storage location.

Name Operation Operand

[label] MVA
addr4, reg
addr, addr4

Note. The addr or addr* form of the first operand must be coded as a
relocatable expression.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the new contents of the second operand.

Machine Instructions 4 - 9

MVA Example

Move Byte (MVB)

Indicators

MVB Examples

4 - 10 SC34-0124

MVA LOC1,R3

This instruction loads the address of LOCI into register 3.

This instruction moves one byte from a register to storage, from storage to a
register, or from storage to storage.

Name Operation Operand

reg, addr4
[label] MVB addr4, reg

ad drS , addr4

• In the register-to-storage format, bits 8-15 of reg are moved to addr4.
• In the storage-to-register format, the byte is moved from addr4 to bits 8-15

of the register. The high-order bit of the moved byte is propagated through
bits 0-7 of reg.

• In the storage-to-storage format, the byte moves from addr5 to addr4.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the byte moved.

MVB R3, (R2)

Bits 8-15 of register 3 are moved to the storage location whose address is in
register 2.

MVB 6(R3,4)*,R5
• The contents of register 3, plus 4, form an address.
• The contents of that storage location, plus 6, form the address of the byte to

be moved.
• MVB moves the byte to bits 8-15 of register 5.
• If the high-order bit of the moved byte is 0, bits 0-7 of register 5 contain

zeros; if the high-order bit is 1, bits 0-7 contain ones.

MVB THERE,HERE+l
The first byte of storage location THERE is moved to one byte past storage

location HERE.

n
\.. J

c

~ 0":····

c

o

Move Byte and Zero (MVBZ)

Indicators

MVBZ Example

This instruction moves a byte from storage to a register, then replaces the byte in
storage with zeros.

Name Operation Operand

[label] MVBZ addr4, reg

MVBZ moves a byte from addr4 to bits 8-15 of reg. The high-order bit of
the moved byte is propagated through bits 0-7 of the register.

After the move, the byte at addr4 is filled with zeros.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the moved byte.

MVBZ LOC4.R3

MVBZ moves the contents of the byte at LOC4 to bits 8-15 of register 3, and
propagates the high-order bit of the byte through bits 0-7 of the register. After
MVBZ executes, LOC4 contains zeros.

Move Byte Field and Decrement (MVFD)

Indicators

MVFD Example

This instruction moves a specified number of bytes, one byte at a time,
right-to-Ieft, from one storage location to another.

Name Operation Operand

[label] MVFD (reg), (reg)

MVFD moves a field between two storage locations. For (reg), (reg) code the
registers that contain the addresses of the rightmost bytes of the source and
destination fields.

MVFD assumes that you have loaded register 7 with an unsigned number-the
number of bytes to be moved. If R 7 contains zero, this instruction is treated as a
no-operation.

After MVFD:

• Register 7 contains 0,
• The first operand points to the byte before the leftmost byte in the source

field, and
• The second operand points to the byte before the leftmost byte in the

destination field.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the last byte moved.

M V FD (R5) • (R6)

Machine Instructions 4 - 11

Assume that:

• Register 5 contains X'0200',
• Register 6 contains X'0300', and

• TRhegisdtedr 7 conftahins ~h'0003'. b f h f· ld· 0200 d 0300· h 0
e a ress 0 t e ng tmost yte 0 t e source Ie IS , an IS t e

address of the rightmost byte of the destination field. As Figure 4-3 shows,
MVFD moves 3 bytes:

(1) Byte 0200 to byte 0300,
(2) Byte 01 FF to byte 02FF, and
(3) Byte 01 FE to byte 02FE.

SOURCE

IJ fJ D

DESTINATION

Figure 4-3. MVFD example.

When MVFD is finished:

• Register 7 contains X'OOOO',
• Register 5 contains X'OlFD', and
• Register 6 contains X'02FD'.

Move Byte Field and Increment (MVFN)

4 - 12 SC34-0124

This instruction moves a specified number of bytes, left-to-right, from one
storage location to another.

Name Operation Operand

[label] MVFN (reg), (reg)

MVFN moves a field between two storage locations. For (reg),(reg) code the
registers that contain the addresses of the leftmost bytes of the source and
destination fields.

MVFN assumes that you have loaded register 7 with an unsigned number-the
number of bytes to be moved. If R 7 contains zero, this instruction is treated as a
no-operation.

After MVFN:

• Register 7 contains 0,
• The first operand points to the byte after the rightmost byte in the source

field, and
• The second operand points to the byte after the rightmost byte in the

destination field. c

c

c

Indicators

MVFN Example

The carry and overflow indicators are unchanged. The remaining indicators
reflect the last byte moved.

M V FN (R5) , (R6)

Assume that:

• Register 5 contains X'0200',
• Register 6 contains X'0300', and
• Register 7 contains X'0003'.

The address of the leftmost byte of the source field is 0200, and 0300 is the
address of the leftmost byte of the destination field. As Figure 4-4 shows,
MVFN moves 3 bytes:

(1) Byte 0200 to byte 0300,
(2) Byte 0201 to byte 0301, and
(3) Byte 0202 to byte 0302.

SOURCE

D fJ o

DESTINATION

Figure 4-4. MVFN example.

When MVFN is finished:

• Register 7 contains X'OOOO',
• Register 5 contains X'0203', and
• Register 6 contains X'0303'.

Move Byte Immediate (MVBI)

Indicators

This instruction places one byte of immediate data into a register.

Name Operation Operand

[label) MVBI byte, reg

For the byte operand, code an absolute value or expression, -128 to 127 or 0
to 255. MVBI places this value into bits 8-15 of reg. The high-order bit of the
byte value is propagated through bits 0-7 of reg.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the byte loaded into reg.

Machine Instructions 4 - 13

MVBI Example

Move Doubleword (MVD)

Indicators

MVD Examples

4 - 14 SC34-0124

MVB I -3.R6

This instruction places -3 into bits 8-15 of register 6. Bits 0-7 contain ones.

This instruction moves a double word (4 bytes):

• From a register pair to storage,
• From storage to a register pair, or
• From storage to storage.

Name Operation Operand

reg, addr4
[label] MVD addr4, reg

addrS, addr4

For the register-to-storage syntax or the storage-to-register syntax, specify a
storage address and the first register of a register pair.

For the storage-to-storage syntax, specify the addresses of the source and
destination of the doubleword.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the double word moved into the second operand.

MVD THERE,HERE

This instruction moves a double word from storage location THERE to storage
location HERE.

MVD R4, (R6)
This instruction moves a doubleword-the contents of registers 4 and 5-to

the storage location indicated by the contents of register 6.

MVD LOC2,R7
This instruction moves a doubleword from storage location LOC2 and places it

in registers 7 and o.

c

Move Doubleword and Zero (MVDZ)

Indicators

MVDZ Example

Move Word (MVW)

Indicators

MVW Examples

This instruction moves a double word (4 bytes) from storage to a register pair,
then replaces the double word in storage with zeros.

Name Operation Operand

[label] MVDZ addr4, reg

When you code MVDZ, specify a storage address and the first register of a
register pair. MVDZ moves a double word from addr4 to the register pair.

After the move, the doubleword at addr4 is filled with zeros.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the double word moved into the second operand.

MVDZ (R2), R3

This instruction moves a doubleword from the address in register 2 to registers 3
and 4. After the move, the double word whose address is in register 2 is filled
with zeros.

This instruction moves a word (2 bytes):

• From a register to a register,
• From a register to storage,
• From storage to a register, or
• From storage to storage.

Name Operation Operand

reg, reg
reg, addr4

[label) MVW addr4, reg
longaddr, reg
reg, longaddr
addrS,addr4

The carry and overflow indicators are unchanged. The remaining indicators
reflect the word moved into the second operand.

MVW Rl,R2

This instruction (coded in reg,reg form) moves a word from register 1 to register
2.

MVW (Rl), R2

This instruction (coded in addr4,reg form) moves a word from the storage
location whose address is in register 1 to register 2.

Machine Instructions 4 - 15

Note. This instruction is also a valid longaddr,reg form. The assembler
generates the addr4,reg form because it is more efficient with respect to speed
and storage usage.

MVW (R1), (R2)
This instruction (coded in addr5,addr4 form) moves a word from the storage

location whose address is in register 1 to the storage location whose address is in
register 2.

Move Word and Zero (MVWZ)

Indicators

MVWZ Example

This instruction moves a word (2 bytes) from storage to a register, then fills the
word in storage with zeros.

Name Operation Operand

[label] MVWZ addr4, reg

The ca~ry and overflow indicators are unchanged. The remaining indicators
reflect the word moved into the second operand.

MVWZ (R2,DISPS),R6

The address in register 2, plus the value of DISP5, form the address of the word
to be moved. The word is moved to register 6. After the move, the word in
storage is filled with zeros.

Move Word Immediate (MVWI)

Indicators

MVWI Example

4 - 16 SC34-0124

This instruction moves a one-word (2-byte) absolute value to a storage location
or into a register.

Name Operation Operand

[label] MVWI
word, addr4
word, reg

For the word operand, code an absolute value or expression in the range of
-32768 to +32767 or 0 to 65535.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the word moved into the second operand.

HVWI 3488,LOC3

This instruction moves the value 3488 into the word at storage location LOC3.

(-,

\ J

(

c

(

c

Move Word Short (MVWS)

Indicators

MVWS Examples

Coding Hints

This instruction moves a word (2 bytes):

• From a register to storage, or
• From storage to a register.

Name Operation Operand

[label] MVWS
reg, shortaddr
shortaddr, reg

The operand shortaddr is an address value that you code in one of the
following forms:
(reg o-~ wdisp)

The effective address is the value of wdisp added to the contents or reg 0-3.

(reg O-~ wdisp) *
The effective address is the contents of storage at the address defined by the
value of wdisp added to the contents of reg 0-3.

(regO-~

The effective address is the contents of (reg 0-3).

(regO-~*

" The effective address is the contents of storage at the address defined by the
contents of reg 0-3.

addr
To use this form, the instruction is in the domain of a USING directive and
addr is in the range of the same USING directive. The assembler computes a
displacement (0-62) and register combination that references the requested
location.

addr*
Same as addr, except the assembler computes the effective address as the
contents of storage at the address defined by a displacement (0-62) and
register combination.

Note. For addr and addr*, the base register must be reg 0-3.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the word moved into the second operand.

HVWS R6, (R2)

This instruction moves the contents of register 6 into the storage location whose
address is in register 2.

HVWS (R3,24)*,R5

• The contents of register 3, plus 24, form an address.
• That storage location contains the address of the word to be moved into

register 5.
• MVWS moves this word into register 5.

Use this instruction to move to or from an address that is either:
• The contents of a register with no displacement, or
• The contents of a register plus a displacement of 0 to 62.

The advantage of using MVWS is that it requires only 2 bytes of storage.

Machine Instructions 4 - 17

Arithmetic Instructions
Add Address (AA)

Indicators

AA Example

Add Byte (AB)

Indicators

4-18 SC34-0124

This instruction adds an address value to either a register or a word in storage.

Name Operation Operand

[label] AA
raddr, reg [,reg]
raddr, addr4

In the first format, note the optional third operand. If you code this register,
AA places its result there, leaving the first and second operands unchanged.
Otherwise, AA places its result in the second operand, leaving the first operand
unchanged.

The overflow indicator is cleared. If the addition results in a sum that is less than
_215 or greater than +215_1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the
high-order bit position of the result operand (for a total of 17 bits in the sum). If
there is no carry, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
result operand contains the low-order 16 bits of the sum.

The other indicators change to reflect the 16-bit result.

AA DATA,RO ,R3

In this example, AA adds the address of DATA to the contents of RO, and
places the result in R3.

This instruction adds:

• A byte in a register to a byte in storage, or
• A byte in storage to a byte in a register.

Name Operation Operand

[label] AB reg, addr4
addr4, reg

If you code the reg,addr4 form, bits 8-15 of reg are added to the byte at
addr5.

In the addr4,reg form, the byte at addr4 is added to bits 8-15 of reg. The
high-order byte of reg remains unchanged.

The overflow indicator is cleared. If the addition results in a sum that is less than
- 27 or greater than + 27 -1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the
high-order bit position of the byte (for a total of 9 bits in the sum). If there is
no carry, the carry indicator is turned off.

c

c

AD Examples

Add Byte Immediate (ABI)

Indicators

ADI Example

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
second operand contains the low-order 8 bits of the sum.

The other indicators change to reflect the 8-bit result.

AB VALJil,R5

Assume that VALOI contains X'20', and register 5 contains X'2C83'. AB adds:
20+83=A3. VALOI remains unchanged, and register S now contains X'2CA3'.
The carry indicator and overflow indicator are both off.

AB VAL9'2.R5
Assume that V AL02 contains X'30', and register S contains X'08FE'. AB

adds: 30+FE= 12E. VAL02 remains unchanged, and register 5 now contains
X'082E'. The carry indicator is on and the overflow indicator is off.

This instruction adds a I-byte absolute value to a register.

Name Operation Operand

[label] ABI byte, reg

F or byte, code an 8-bit value in the range of - 128 to + 127 or 0 to 255. ABI
expands this value to 16 bits by propagating the sign bit to the left of the byte
value. This value is then added to reg.

The overflow indicator is cleared. If the addition results in a sum that is less than
_215 or greater than +215 _1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the
high-order bit position of the register (for a total of 17 bits in the sum). If there
is no carry, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
register contains the low-order 16 bits of the sum.

The other indicators change to reflect the 16-bit result.

ABI 34,R6

Assume that R6 contains X'OOSO'. ABI expands X'22' (the equivalent of decimal
34) to 16 bits by propagating the sign bit (zero) to the left. ABI then adds:
X'0022'+X'OOSO'=X'0072'. R6 now contains X'0072' (decimal 114).

Add Ca"y Indicator (ACY)
This instruction adds the value of the carry indicator to a register.

Name Operation Operand

[label] ACY reg

Machine Instructions 4 - 19

Indicators

ACY Example

Add Doubleword (AD)

Indicators

AD Example

4 - 20 SC34-0124

The overflow indicator is cleared. If the addition results in a sum that is less than
_215 or greater than +215-1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the ("
high-order bit position of the register (for a total of 17 bits in the sum). If there \ J
is no carry, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
register contains the low-order 16 bits of the Slm.

If the zero indicator is on at the beginning of this instruction, it is set to reflect
the result; if it is off at the beginning, it stays off. The negative indicator reflects
the sum, and the even indicator is unchanged.

ACY R4

Assume that register 4 contains X'0027', and the carry indicator is on. ACY adds
1 to the contents of R4, and the register now contains X'0028'.

This instruction adds:

• A double word (4 bytes) in a register pair to a double word in storage,
• A double word in storage to a doubleword in a register pair, or
• A double word in storage to a doubleword in storage.

Name Operation Operand

reg, addr4
[label] AD addr4, reg

addr5 addr4

In either the register-to-storage form or the storage-to-register form, code-for
the reg operand-the first register of a register pair. For example, if you code
R5, AD uses registers 5 and 6. If you code R7, AD uses registers 7 and O.

AD adds the contents of the double word specified by the first operand to the
contents of the doubleword specified by the second operand, placing its result in
the second operand. The first operand remains unchanged.

The overflow indicator is cleared. If the sum is less than _231 or greater than
+ 231 _ 1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the
high-order bit position of the sum (for a total of 33 bits in the sum). If there is
no carry, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
register pair or doubleword in storage contains the low-order 32 bits of the sum.

The other indicators change to reflect the 32-bit result.

AD R3,(Rl)

Assume that the register pair R3,R4 contains X'25000000', R1 contains X'0300',
and the double word at storage address 0300 contains X'10000000'. AD adds:

t

X'25000000'+X'10000000'=X'35000000'. Registers 3 and 4 remain unchanged,
and the double word at storage address 300 contains X'35000000'. (-:

c

C-.~
=

Add Word (A W)

Indicators

AW Example

This instruction adds:

• A word (2 bytes) in a register to a word in a register,
• A word in a register to a word in storage,
• A word in storage to a word in a register, or
• A word in storage to a word in storage.

Name Operation Operand

reg, reg
reg, addr4

[label] AW addr4, reg
longaddr, reg
addrS, addr4

A W adds the contents of the word specified by the first operand to the
contents of the word specified by the second operand. The first operand remains
unchanged.

The overflow indicator is cleared. If the addition results in a sum that is less than
_215 or greater than +215_1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the
high-order bit position of the result operand (for a total of 17 bits in the sum). If
there is no carry, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
result operand contains the low-order 16 bits of the sum.

The other indicators change to reflect the 16-bit result.

AW THERE, (R2)

This instruction adds the word at storage location THERE to the word at the
storage location whose address is in R2.

Add Word Immediate (A WI)
This instruction adds a I-word (2-byte) absolute value:

• To a register, or
• To the contents of a storage location.

Name Operation Operand

[label] AWl
word, reg [,reg]
word, addr4

For word, code a 16-bit value in the range -32768 to +32767 or 0 to 65535.
AWl adds this value to the contents of the word specified by the second
operand.

In the word, reg[,
register for this operand, the result of the addition is placed in that register. If
you do not code the third operand, AWl places the sum in the register specified
by the second operand.

Machine Instructions 4 - 21

Indicators

AWl Example

The overflow indicator is cleared. If the addition results in a sum that is less than
_215 or greater than +215 _1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the 0»;
high-order bit position of the result operand (for a total of 17 bits in the sum). If ,
there is no carry, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
result operand contains the low-order 16 bits of the sum.

The other indicators change to reflect the 16-bit result.

AWl 25,02,R3,Rl

In this example, A WI adds the decimal value 2502 to the contents of R3, and
places the result in Rl. R3 is unchanged.

Add Word with Carry (A WCY)

Indicators

A WCY Example

Subtract Address (SA)

4 - 22 SC34-0124

This instruction adds the contents of a specified register, plus the value of the
carry indicator, to another register.

Name" Operation Operand

[label] AWCY reg,reg

AWCY places the final sum of the register specified by the first operand, the
register specified by the second operand, and the carry indicator in the register
specified by the second operand. The contents of the first register are unchanged. I"

The overflow indicator is cleared. If the addition results in a sum that is less than
_215 or greater than +215 -1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the
high-order bit position of the word (for a total of 17 bits in the sum). If there is
no carry, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the
second operand contains the low-order 16 bits of the sum.

If the zero indicator is on at the beginning of this instruction, it is set to reflect
the result; if it is off at the beginning, it stays off. The negative indicator reflects
the sum, and the even indicator is unchanged.

AWCY R6,R4

Assume that the instruction just before this A WCY left the carry indicator on.
This instruction adds the contents of R6, plus 1, to the contents of R4. Register
4 contains the result, and register 6 remains unchanged.

This instruction subtracts an address value from either a word in a register or a
word in storage.

~

c

Indicators

SA Example

(' Subtract Byte (SB)

Indicators

c

Name Operation Operand

[label] SA raddr, reg [,regJ
raddr, addr4

In the first format, note the optional third operand. If you code this register,
SA places its result there, leaving the first and second operands unchanged.
Otherwise, SA places its result in the second operand, leaving the first operand
unchanged.

The overflow indicator is cleared. If the subtraction results in a difference that is
less than _215 or greater than + 215 _1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow into the
high-order bit position of the result operand. If there is no borrow, the carry
indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the
sign bit, and the result operand contains the low-order 16 bits of the difference.

The other indicators change to reflect the 16-bit result.

S/\ DATA2, (R2)

In this example, R2 contains the address of a word in storage. SA subtracts the
address of OAT A2 from that word, replacing the word in storage with the result.
OAT A2 and R2 are unchanged.

This instruction subtracts either:

• A byte in a register from a byte in storage, or
• A byte in storage from a byte in a register.

Name Operation Operand

[label] SB reg, addr4
addr4, reg

If you code the reg,addr4 form, bits 8-15 of reg are subtracted from the byte
at addr4.

In the addr4,reg form, the byte at addr4 is subtracted from bits 8-15 of reg.
The high-order byte of reg remains unchanged.

The overflow indicator is cleared. If the subtraction results in a difference that is
less than - 27 or greater than + 27 - 1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond
the high-order bit position of the byte. If there is no borrow, the carry indicator
is turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the
sign bit, and the second operand contains the low-order 8 bits of the difference.

The other indicators change to reflect the 8-bit result.

Machine Instructions 4 - 23

SB Example

SB VAL;l. R5

In this example, assume that VAL01 contains X'20', and RS contains X'2C83'. ("
SB subtracts: X'83'-X'20'=X'63'. VAL01 remains unchanged, and register 5 \ J
now contains X'2C63'. The carry and overflow indicators are off.

Subtract Ca"y Indicator (SCY)

Indicators

SCY Example

Subtract Doubleword (SD)

4 - 24 SC34-0124

This instruction subtracts the value of the carry indicator from a register.

Name Operation Operand

[label] SCY reg

The overflow indicator is cleared. If the subtraction results in a difference that is
less than - 215 or greater than + 215 -1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond
the high-order bit position of the register. If there is no borrow, the carry
indicatot is turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the
sign bit, and the register contains the low-order 16 bits of the difference.

If the zero indicator is on at the beginning of this instruction, it is set to reflect
the result; if it is off at the beginning, it stays off. The negative indicator reflects
the sum, and the even indicator is unchanged.

SCy R4

Assume that R4 contains X'0027', and the carry indicator is on. SCY subtracts 1
from the contents of R4, and the register now contains X'0026'.

This instruction subtracts:

• The contents of a register pair from a doubleword (4 bytes) in storage,
• A double word in storage from the contents of a register pair, or
• A double word in storage from another doubleword in storage.

Name Operation Operand

reg, addr4
[label] SO addr4, reg

addrS, addr4

In either the register-to-storage form or the storage-to-register form, code-for
reg-the first register of a pair. For example, if you code R2, SD uses registers 2
and 3. If you code R7, SD uses registers 7 and o.

SD subtracts the contents of the doubleword specified by the first operand
from the contents of the doubleword specified by the second operand. The first
operand remains unchanged.

Indicators

c

SD Example

Subtract Word (SW)

Indicators

SW Example

c

The overflow indicator is cleared. If the subtraction results in a difference that is
less than _231 or greater than +231_1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond
the high-order bit position. If there is no borrow, the carry indicator is turned
off.

Also, if an overflow occurs, the carry indicator contains the complement of the
sign bit, and the second operand contains the low-order 32 bits of the difference.

The other indicators change to reflect the 32-bit result.

so R3, (Rl)

In this example, assume that registers 3 and 4 contain X' 10000000', and register
1 contains X'0300'. The doubleword at storage address 0300 contains
X'2S000000'. SO subtracts: X'2S000000'-X'10000000'=X'1S000000'. Registers
3 and 4 remain unchanged, and the double word at storage address 0300 contains
X'1S000000'.

'This instruction subtracts:

• A register from a register,
• A register from a word (2 bytes) in storage,
• A word in storage from a register, or
• A word in storage from a word in storage.

Name Operation Operand

reg, reg
reg, addr4

[label] SW addr4, reg
longaddr, reg
addrS, addr4

SW subtracts the contents of the word specified by the first operand from the
contents of the word specified by the second operand. SW places its result in the
second operand.

The overflow indicator is cleared. If the subtraction results in a difference that is
less than _215 or greater than +2 15 _1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond
the high-order bit position of the result operand. If there is no borrow, the carry
indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the
sign bit, and the result operand contains the low-order 16 bits of the difference.

The other indicators change to reflect the 16-bit result.

SW THERE, (R2)

This instruction subtracts the word at location THERE from the word in storage
whose address is in R2.

Machine Instructions 4 - 25

Subtract Word Immediate (SWI)

Indicators

SWI Example

This instruction subtracts a I-word (2-byte) absolute value from a register or
from the contents of a storage location.

Name Operation Operand

[label] SWI word, reg [,reg]
word, addr4

For word, code a 16-bit value in the range -32768 to +32767 or 0 to 65535.
SWI subtracts this value from the contents of the word specified by the second
operand.

In the word, reg [reg] format there is an optional third operand. If you code a
register for this operand, the result of the subtraction is placed in that register. If
you do not code the third operand, SWI places the difference in the register
specified by the second operand.

The overflow indicator is cleared. If the subtraction results in a difference that is
less tha~ _215 or greater than +215_1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond
the high-order bit position of the result operand. If there is no borrow, the carry
indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the
sign bit, and the result operand contains the low-order 16 bits of the difference.

The other indicators change to reflect the 16-bit result.

SWI 25j12,R3,Rl

In this example, SWI subtracts the decimal value 2502 from the contents of R3,
and places the result in R 1.

Subtract Word with Carry (SWCY)

Indicators

4 - 26 SC34-0124

This instruction subtracts the contents of one register and the carry indicator
from the contents of another register.

Name Operation Operand

[label] SWCY reg, reg

SWCY subtracts the contents of the first register and the carry indicator from
the contents of the second register. SWCY places the final result in the second
register, leaving the first register unchanged.

The overflow indicator is cleared. If the subtraction results in a difference that is
less than _215 or greater than +215_1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond
the high-order bit position of the register. If there is no borrow, the carry
indicator is turned off.

('\

\ j

c
SWCY Example

Multiply Byte (MB)

Indicators

MB Example

Multiply Doubleword (MD)

c

Also, if an overflow occurs, the carry indicator contains the complement of the
sign bit, and the second register contains the low-order 16 bits of the difference.

If the zero indicator is on at the beginning of this instruction, it is set to reflect
the result; if it is off at the beginning, it stays off. The negative indicator reflects
the difference, and the even indicator is unchanged.

SWCY R6.R4

Assume that the instruction just before this SWCY left the carry indicator on.
This instruction subtracts the contents of R6 from R4, then decreases the
difference by 1. R4 contains the result, and R6 remains unchanged.

This instruction multiplies the contents of a register by a byte in storage.

Name Operation Operand

[label] MB addr4, reg

MB multiplies the contents of reg by the byte at addr4. The result (1 word) is
placed in reg.

The carry and overflow indicators are cleared. If the product of the multiplication
cannot be represented in 16 bits, the overflow indicator is turned on. If there is
an overflow, the contents of the result register are undefined. The remaining
indicators change to reflect the result.

HB (R3,2S),R6

In this example, assume that R3 contains X'0400' and register 6 contains
X'0035'.

MB determines that the address of the byte to be multiplied is X'0419' (25
bytes past the address in R3). Assume that this byte contains X'11'.

MB multiplies: X' 11 'X'0035'=X'0385'. This result is placed in register 6.

This instruction multiplies a word in storage by the contents of a register pair.

Name Operation Operand

[label) MD addr4, reg

For the reg operand, code the first register of a register pair. For example, if
you code R 1, MD uses registers 1 and 2. If you code R7, MD uses registers 7
and o.

MD multiplies the word at addr4 by the contents of the register pair specified
by reg. The result (1 double word) is placed in the register pair.

Machine Instructions 4 - 27

Indicators

MD Example

Multiply Word (MW)

Indicators

MW Example

4 - 28 SC34-0124

The carry and overflow indicators are cleared. If the product of the multiplication
cannot be represented in 32 bits, the overflow indicator is turned on. If there is
an overflow, the contents of the register pair are undefined. The remaining r ,
indicators change to reflect the result. " J

HO 8(Rl)*.R7

Here is how MD calculates the address of the word to be multiplied:

1. R 1 contains the address of a location in storage.
2. The contents of that location are another address.
3. That address value is increased by 8 to form the address of the word to be

multiplied.

MD multiplies the contents of registers 7 and 0 by this word, and places the
result in registers 7 and O.

This instruction multiplies the contents of a register by a word in storage.

Name Operation Operand

[label] MW addr4, reg

MW multiplies the contents of reg by the word at addr4. The result (1 word)
is placed in reg. .f

The carry and overflow indicators are cleared. If the product of the multiplication
cannot be represented in 16 bits, the overflow indicator is turned on. If there is
an overflow, the contents of the result register are undefined. The remaining
indicators change to reflect the result.

HW Loc8* ,R6

.. .

c Divide Byte (DB)

Indicators

DB Example

Divide Doubleword (DD)

Indicators

c

The contents of storage at address LOC8 are the address of the word to be
multiplied. MW fetches the word and mUltiplies the contents of R6 by it. The
product is in R6.

This instruction divides a byte in storage into the contents of a register.

Name Operation Operand

[label] DB addr4, reg

DB divides the byte at addr4 into the contents of reg. The quotient is placed
in reg, and the remainder is placed in the register following the one you coded.
For example, if you coded R3, the quotient appears in register 3, and the
remainder in register 4. If you coded R 7, the quotient appears in register 7, and
the remainder in register O.

The overflow indicator is cleared. If you tried to divide by zero, or if the
quotient cannot be represented in 16 bits, the overflow indicator is turned on. If
there is an overflow, the result of the division and the remaining indicators are
undefined.

If you tried to divide by zero, the carry indicator is also turned on; otherwise,
the carry indicator is cleared. The other indicators change to reflect the quotient.

DB (Rl) ,R6

DB divides the byte whose address is in R 1 into the contents of R6. The
quotient is in R6 and the remainder is in R 7.

This instruction divides a word in storage into the contents of a register pair.

Name Operation Operand

[label] DD addr4, reg

For the reg operand, code the first register of a register pair. For example, if
you code R2, DO uses registers 2 and 3. If you code R7, DO uses registers 7
and O.

DO divides the word at addr4 into the contents of the register pair specified
by reg. The quotient is placed in the register pair, and the remainder is placed in
the register following the second register of the pair. For example, if you coded
R3, the quotient is placed in registers 3 and 4, and the remainder in register 5.

The overflow indicator is cleared. If you tried to divide by zero, or if the
quotient cannot be represented in 32 bits, the overflow indicator is turned on. If
there is an overflow, the result of the division and the remaining indicators are
undefined.

Machine Instructions 4 - 29

DD Example

Divide Word (DW)

Indicators

DW Example

If you tried to divide by zero, the carry indicator is also turned on; otherwise,
the carry indicator is cleared. The other indicators change to reflect the quotient.

DO (Rl)* .R6

In this example, the storage location whose address is in R1 contains the address
of the word to be used. DD divides this word into the doubleword in registers 6
and 7. The quotient is in registers 6 and 7, and the remainder is in register o.

This instruction divides a word in storage into the contents of a register.

Name Operation Operand

[label] DW addr4, reg

DW divides the word at addr4 into the contents of reg. The quotient is placed
in reg, and the remainder is placed in the register following the one you coded.
For example, if you coded R5, the quotient appears in register 5, and the
remaindir in register 6. If you coded R7, the quotient appears in register 7, and
the remainder in register O.

The overflow indicator is cleared. If you tried to divide by zero, or if the
quotient cannot be represented in 16 bits, the overflow indicator is turned on. If

()

there is an overflow, the result of the division and the remaining indicators are t

undefined. , '#

If you tried to divide by zero, the carry indicator is also turned on; otherwise,
the carry indicator is cleared. The other indicators change to reflect the quotient.

OW WORD5+4,R7

In this example, the word to be used is 4 bytes past WORDS. DW divides this
word into the contents of R 7. R 7 contains the quotient, and RO contains the
remainder.

Complement Register (CMR)

4 - 30 SC34-0124

This instruction places the complement (in twos complement form) of the
contents of a register back into the same register or, optionally, into another
register.

Name Operation Operand

[label] CMR reg [,reg]

Note the optional second operand. If you code this register, CMR places the
complement of the first register into the second, leaving the first operand
unchanged. Otherwise, CMR places the complement back into the source
register.

Indicators

CMR Examples

c

The overflow indicator is cleared. If the number to be complemented is -32768
(X'8000'), the overflow indicator is turned on.

The carry indicator is cleared. If the number to be complimented is zero, the
carry indicator is turned on. The remaining indicators change to reflect the result.

CHR ~

Assume that RO contains X'0003'. CMR places its complement, X'FFFD', into
RO.

eHR Rf/.R6
Assume that RO contains X'0003'. CMR places its complement, X'FFFD', into

R6, leaving RO unchanged.

Machine Instructions 4 - 31

Branching Instructions
Branch (B)

Indicators

B Example

Branch and Link (BAL)

Indicators

BAL Example

This instruction causes an unconditional branch to the address specified by
longaddr.

Name Operation Operand

[label] B longaddr

All indicators are unchanged.

B (R6 t L 0 C 1 +,.) *
This instruction branches to the location whose address it calculates as follows:

1. Register 6 contains an address.
2. The contents of R6, plus the value of LOC 1, plus 4, form an address.
3. The contents of that storage location specify the branch address.

This instruction saves-in a register-the address of the next sequential
instruction, then branches to longaddr.

Name Operation Operand

[label] BAL longaddr, reg

Note. If the same register specified as the second operand is also used as a
base register in longaddr, the initial contents of that register are first used in
effective address computation and then overwritten with the address of the next
sequential instruction.

All indicators are unchanged.

BAL NEXT,R7

In this example, BAL:

• Determines the address of NEXT,
• Saves (in register 7) the address of the next sequential instruction, and then
• Branches to NEXT.

Branch and Link External (BALX)

4 - 32 SC34-0124

This instruction causes an unconditional branch to an address in another source
module. It saves-in a register-the address of the instruction that follows the
BALX instruction.

'-'
\. j

I

(.

c

Indicators

BALX Example

Name Operation Operand

[label] BALX veon, reg

For vcon, code the external symbol that defines the location to be branched to.
For reg, code the register that you want to load with the address of the next
sequential instruction.

Note. You need not code an EXTRN statement to define the external symbol
specified by vcon. The vcon symbol must be a valid entry point in another source
module. The application builder will resolve the reference between modules.

All indicators are unchanged.

* SOURCE MODULE A . .
BALX
MVW

ENTER1,R3
VALJl3,Rl

*SOURCE MODULE B
ENTRY ENTERl

ENTERl EQU *
BXS (R3)

Branch and Link Short (BALS)

Indicators

This instruction saves-in register 7-the address of the next sequential
instruction, then branches to the specified address.

Name Operation Operand

(reg, jdisp)*
[label] BALS (reg)*

addr*

Code the address of the location whose contents specify the address to be
branched to. If you specify the (reg,jdisp) * form, jdisp must be in the range
-256 to 254. The addr* form can be used only when BALS and the address to
be branched to are within the domain and range of the same USING statement.

If the implied register (register 7) is used as reg in either (reg,jdisp)* or (reg) * ,
the initial contents of register 7 are first used in effective address computation
and then overwritten with the address of the next sequential instruction.

Note. BALS is a 2-byte instruction, and uses only indirect addressing.

All indicators are unchanged.

Machine Instructions 4 - 33

BALS Example

Branch Extemal (BX)

Indicators

BX Example

Branch i/ Mixed (BMIX)

4 - 34 SC34-0124

BALS (R3,28)*

In this example, BALS:

• calculates an address as follows:
(1) R3 contains an address.
(2) This address is increased by 28.
(3) The result is the address of the location that contains the branch address.

• then saves (in register 7) the address of the next sequential instruction, and
• branches to the address calculated.

This instruction causes an unconditional branch to an address in another source
module.

Name Operation Operand

[label] BX veon

For vcon, code the external symbol that defines the branch location.

Note. The vcon symbol must be a valid entry point in another source module.
You need not code an EXTRN statement to define the external symbol specified
by vcon. The application builder will resolve the reference between modules.

All indicators are unchanged.

* SOURCE MODULE A
ENTRY ENTER2

BX ENTERl
ENTER2 EQU *

* SOURCE MODULE B
ENTRY ENTERl

ENTERl EQU *
BX ENTER2

After a Test Word Immediate (TWI) instruction, BMIX causes a branch if the
bits tested by TWI are a combination of zeros and ones.

Note. BMIX actually tests the zero and negative indicators.

(. "')

(:

c

o

Indicators

BMIX Example

Name Operation

[label] BMIX longaddr

All indicators are unchanged.

Assume that R4 contains X'002B'.

TWI
BHIX

Operand

Because the bits tested by TWI are a combination of zeros and ones, BMIX
causes a branch to the address in R2.

Branch if Not Mixed (BNMIX)

Indicators

BNMIX Example

After a Test Word Immediate (TWI) instruction, BNMIX causes a branch if the
bits tested by TWI are either all zeros or all ones.

Note. BNMIX actually tests the zero and negative indicators.

Name Operation Operand

[label] BNMIX longaddr

Note. If the first operand (the l-word mask) of the TWI instruction is all
zeros, the resulting condition is not mixed. In this case, BNMIX causes a branch.

All indicators are unchanged.

Assume that the word whose address is in R 1 contains X'OOOF'.

TWI X'~jFl1' ,(R1)
BNH I X (R6, it)

Because the bits tested by TWI are all zeros, BNMIX causes a branch to the
location that is 4 bytes past the address in R6.

Branch if Not Off (BNOFF)
After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, BNOFF
causes a branch if:

• The bit tested by TBT is on, or
• The bits tested by TWI are either mixed or all on.

Machine Instructions 4 - 35

Indicators

BNOFF Example

Branch if Not On (BNON)

Indicators

BNON Example

4 - 36 SC34-0124

Name Operation Operand

[label] BNOFF longaddr

Note. BNOFF actually tests the zero indicator.

All indicators are unchanged.

Assume that the word at location TEST contains X'0246'.

TWI X'Jl369 , ,TEST
BNOFF (R3)

Because the bits tested by TWI are mixed, BNOFF causes a branch to the
address in R3.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, BNON
causes a branch if:

• The bit tested by TBT is off, or
• The bits tested by TWI are either mixed or all off.

Note. BNON actually tests the negative indicator.

Name Operation Operand

[label] BNON longaddr

Note. If the first operand (the 1-word mask) of a TWI instruction is all zeros,
the resulting condition is not on. In this case, BNON causes a branch.

All indicators are unchanged.

Assume that the word whose address is in R3 contains X'OOFF'.

TWI
BNON

x'lillFl' ,(R3)
Loc4

Because the bits tested by TWI are all on, BNON does not cause a branch to
LOC4.

(~

Branch if Off (BOFF)

c

Indicators

BOFF Example

c
Branch if On (BON)

Indicators

BON Example

o

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, BOFF causes
a branch if:

• The bit tested by TBT is off, or
• The bits tested by TWI are all off.

Note. BOFF actually tests the zero indicator.

Name Operation Operand

[label] BOFF longaddr

Note. If the first operand (the I-word mask) of a TWI instruction is all zeros,
the resulting condition is off. In this case BOFF causes a branch.

All indicators are unchanged.

TBT
BOFF

(~,7)
OFF+2

Assume that the byte whose address is in RO contains:
0110 1001
Because the eighth bit is on, BOFF does not cause a branch to the address that
is 2 bytes past location OFF.

After a Test Bit (TBT) or a Test Word Immediate (TWI) instruction, BON
causes a branch if:

• The bit tested by TBT is on, or
• The bits tested by TWI are all on.

Name Operation Operand

[label] BON longaddr

Note. BON actually tests the negative indicator.

All indicators are unchanged.

TBT (R2,3)
BON (R4)*

Assume that the byte whose address is in R2 contains:
01110011
Because the fourth bit is on, BON causes a branch to the address defined by the
contents of the location whose address is in R4.

Machine Instructions 4 - 37

Branch Indexed Short (BXS)

Indicators

BXS Example

Branch on Carry (BCY)

Indicators

Bey Example

Branch on Condition (Be)

4 - 38 SC34-0124

This instruction causes an unconditional branch to the specified address.

Name Operation Operand

(reg 1-7 ,jdisp)
[label] BXS (reg 1-7)

addr

In the (reg 1-7,

form can be used only when BXS and the address to be branched to are within
the domain and range of the same USING statement.

Note. BXS is a 2-byte instruction.

All indicators are unchanged.

BXS (R2,2)

In this ~xample, BXS causes a branch to the location that is 2 bytes past the
address in register 2.

This instruction tests the carry indicator. If the indicator is on, Bey branches to
longaddr. If the indicator is off, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BCY longaddr

All indicators are unchanged.

Bey THERE+6

In this example, assume that Bey found the carry indicator on. Bey branches to
the location that is 6 bytes past THERE.

This instruction tests a condition that you specify. If the tested condition is met,
Be causes a branch to longaddr. If the condition is not met, the branch is not
taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BC cond,longaddr

()
\. J

c

c

Indicators

BC Example

Code BC to test the indicator settings that result from a previous instruction.
For the cond operand, code the value of the condition you want to test:

Condition Value Condition

0 Zero or equal
1 Positive and non-zero
2 Negative
3 Even
4 Arithmetically less than
5 Arithmetically less than or equal
6 Logically less than or equal
7 Logically less than (carry)

All indicators are unchanged.

Be 2,NEG3

In this example, assume that a previous instruction set the negative result
indicator on. BC causes a branch to NEG3.

Branch on Condition Code (BCC)

Indicators

This instruction tests the even, carry, and overflow indicators. If the tested
condition code is met, BCC branches to longaddr. If the condition code is not
met, the branch is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BCC cond,longaddr

Code BCC to test the indicator settings that result from a previous instruction.
For the cond operand, specify the condition code you want to test:

('ondition Code Indicators

0 E = 0, C = 0, V = 0
I E = 0, C = 0, V = 1
2 E = 0, C = 1, V = 0
3 E = 0, C = 1, V = 1
4 E = I, C = 0, V = 0
5 E = 1, C = 0, V = 1
6 E=l,C=l,V=O
7 E=l,C=l,V=l

Abbreviations used for the indicators are:

• E-even
• C-carry
• V -overflow.

All indicators are unchanged.

Machine Instructions 4 - 39

BCC Example

Branch on Equal (BE)

Indicators

BE Example

Branch on E"or (BER)

Indicators

Branch on Even (BEV)

4 - 40 SC34-0t24

Bee 5, (R3)

In this example, assume that a previous instruction left the even indicator on, andf)
the carry and overflow indicators off. Because only the even indicator is on, j

BCC does not cause a branch to the address in register 3.

This instruction tests the indicator settings that result from a previous instruction,
such as a compare, for an equal condition. If the condition is met, BE causes a
branch to longaddr. If the condition is not met, the branch is not taken, and the
next sequential instruction is executed.

Name Operation Operand

[label] BE longaddr

Note. This instruction actually tests the zero result indicator.

All indicators are unchanged.

BE EQUAL

Assume that this BE was preceded by a compare instruction whose result was
equal. BE causes a branch to EQUAL.

This instruction tests the condition code (after an I/O operation) for an error
condition. If there is an error, BER causes a branch to longaddr.

Name Operation Operand

[label] BER longaddr

Note. Coding this instruction does the same thing as coding the BN CC
instruction to branch on condition code not 7.

All indicators are unchanged.

This instruction tests the even indicator. If the previous instruction left it on,
BEV causes a branch to longaddr. If the indicator is off, the branch is not taken,
and the next sequential instruction is executed.

o

c

o

Indicators

BEV Example

Name Operation Operand

[label] BEV longaddr

All indicators are unchanged.

BEV (R4)

In this example assume that the previous instruction left the even indicator on.
BEV causes a branch to the address in register 4.

Branch on Greater Than (BGT)

Indicators

BGT Example

This instruction tests the indicator settings that result from a previous instruction
for an arithmetically greater than condition. If the condition is met, BGT causes
a branch to longaddr. If the condition is not met, the branch is not taken, and
the next sequential instruction is executed.

Name Operation Operand

[label] BGT longaddr

Note. This instruction actually tests the negative, overflow, and zero result
indicators.

All indicators are unchanged.

BGT GREATER+6

In this example, assume that the previous instruction left an arithmetically greater
than condition. BGT causes a branch to the location that is 6 bytes past
GREATER.

Branch on Greater Than or Equal (BGE)
This instruction tests the indicator settings that result from previous instruction
for an arithmetically greater than or an equal condition. If either condition is
met, BGE causes a branch to longaddr. If neither condition is met, the branch is
not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BGE longaddr

Note. This instruction actually tests the negative and overflow indicators.

Machine Instructions 4 - 41

Indicators

BGE Example

All indicators are unchanged.

BGE (R3)

In this example, assume that the previous instruction left a less than condition.
BGE does not cause a branch to the address in register 3.

Branch on Less Than (BLT)

Indicators

BLT Example

This instruction tests the indicator settings that result from a previous instruction
for an arithmetically less than condition. If the condition is met, BLT causes a
branch to longaddr. If the condition is not met, the branch is not taken, and the
next sequential instruction is executed.

Name Operation Operand

[label] BLT longaddr

Note. This instruction actually tests the negative and overflow indicators.

All indicators are unchanged.

Bll lESS+3

In this example, assume that the previous instruction left an arithmetically less
than condition. BL T branches to the location that is 3 bytes past address LESS.
Note that LESS+3 must be an even byte address.

Branch on Less Than or Equal (BLE)

Indicators

BLE Example

4 - 42 SC34-0124

This instruction tests the indicator settings that result from a previous instruction
for an arithmetically less than or an equal condition. If either condition is met,
BLE causes a branch to the address specified by longaddr. If neither condition is
met, the branch is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BLE longaddr

Note. This instruction actually tests the negative, overflow, and zero result
indicators.

All indicators are unchanged.

BlE lHERE-4

fl
\. J

c

c
In this example, assume that the previous instruction left an equal condition.
BLE causes a branch to the location that is 4 bytes before address THERE.

Branch on Logically Greater Than (BLGT)

Indicators

BLGT Example

This instruction tests the indicator settings that result from a previous instruction,
such as a compare, for a logically greater than condition. If the condition is met,
BLGT causes a branch to longaddr. If the condition is not met, the branch is not
taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BLGT longaddr

Note. This instruction actually tests the carry and zero indicators. If both are
off, the branch is taken. For more information about how the indicators are set,
see "Compare Instructions."

All indicators are unchanged.

BLGT (R2)

In this example, assume that the previous instruction was a compare instruction
whose result was logically greater than. BLGT causes a branch to the address in
register 2.

C/ Branch on Logically Greater Than or Equal (BLGE)

Indicators

BLGE Example

o

This instruction tests the indicator settings that result from a previous instruction,
such as a compare, for a logically greater than or equal condition. If either
condition is met, BLGE causes a branch to longaddr. If neither condition is met,
the branch is not taken, and the next sequential instruction is executed.

Name Operation Operand

(label) BLGE longaddr

This instruction actually tests the carry indicator; if 'it is off, the branch is
taken. For more information about how the indicator is set, see "Compare
Instructions. "

All indicators are unchanged.

BLGE (R2,LOC1)

In this example, assume that the previous instruction set a condition of equal.
BLGE causes a branch to the location whose address is the contents of register
2, increased by the value of LOC 1.

Machine Instructions 4 - 43

Branch on Logically Less Than (BLLT)

Indicators

BLLT Example

This instruction tests the indicator settings that result from a previous instruction,
such as a compare, for a logically less than condition. If the condition is met,
BLL T causes a branch to longaddr. If the condition is not met, the branch is not
taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BLLT longaddr

Note. This instruction actually tests the carry indicator; if it is on, the branch
is taken. For more information about how the indicator is set, see "Compare
Instructions. "

All indicators are unchanged.

BLLT LESS

In this txample, assume that the previous instruction set a condition of equal.
BLL T does not cause a branch to LESS.

Branch on Logically Less Than or Equal (BLLE)

Indicators

BLLE Example

Branch on Negative (BN)

4 - 44 SC34-0124

This instruction tests the indicator settings that result from a previous instruction,
such as a compare, for a logically less than or equal condition. If either
condition is met, BLLE causes a branch to longaddr. If neither condition is met,
the branch is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BLLE longaddr

Note. This instruction actually tests the carry and zero indicators. For more
information about how the indicators are set, see "Compare Instructions."

All indicators are unchanged.

BLLE (R6) *

In this example, assume that the previous instruction set a condition of logically
less than. BLLE branches to the address defined by the contents of the storage
location whose address is in register 6.

This instruction tests the negative result indicator. If it is on, BN causes a branch
to longaddr. If the indicator is off, the branch is not taken, and the next
sequential instruction is executed.

()
\ J

c

c

o

Indicators

BN Example

Name Operation Operand

[label] BN longaddr

All indicators are unchanged.

BN LOC3+6

In this example, assume that the previous instruction turned off the negative
result indicator. BN does not cause a branch to the location that is 6 bytes past
LOC3.

Branch on No Carry (BNCY)

Indicators

BNCY Example

This instruction tests the carry indicator. If it is off, BNCY causes a branch to
longaddr. If the indicator is on, the branch is not taken, and the next sequential
instruction is executed.
~

Name Operation Operand

[label] BNCY longaddr

All indicators are unchanged.

BNCY NOCARRY

In this example, assume that the previous instruction left the carry indicator off.
BNCY causes a branch to NOCARRY.

Branch on Not Condition (BNC)
This instruction tests a condition that you specify. If the condition is met, BNC
causes a branch to longaddr. If the condition is not met, the branch is not taken,
and the next sequential instruction is executed.

Name Operation Operand

[label] BNC cond,longaddr

Code BN C to test the indicator settings that result from a previous instruction.
For the cond operand, code the value of the condition you want to test:

Machine Instructions 4 - 45

Indicators

BNC Example

Condition Value Condition

0 Non-zero or non-equal
1 Not positive
2 Not negative
3 Not even
4 Arithmetically greater than or equal
5 Arithmetically greater than
6 Logically greater than
7 LogicallY greater than or equal (no carry)

Note. BNC causes a branch if the specified condition is met.

All indicators are unchanged.

SNe 6,GREATER

In this example, assume that the previous instruction set an equal condition.
BNC does not cause a branch to GREATER.

Branch on Not Condition Code (BNCC)

Indicators

4 - 46 SC34-0124

This instruction tests the even, carry, and overflow indicators. If the tested
condition code is not met, BNCC causes a branch to longaddr. If the condition
code is inet, the branch is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] BNCC cond, longaddr

Code BNCC to test the indicator settings that result from a previous
instruction. For the cond operand, specify the condition code you want to test:

Condition Code Indicators

0 E = 0, C = 0, V = 0
1 E = 0, C = 0, V = 1
2 E = 0, C = 1, V = 0
3 E = 0, C = 1, V = 1
4 E=l,C=O,V=O
5 E = 1, C = 0, V = 1
6 E=I,C=l,V=O
7 E=I,C=I,V=l

The abbreviations used for the indicators are:

• E-even
• C--carry
• V -overflow

All indicators are unchanged.

fl
\ J

c

c

BNCC Example

BNCC 3, (R3)

In this example, assume that the previous instruction left the even and carry
indicators off. BNCC causes a branch to the address in register 3.

Branch on Not Equal (BNE)

Indicators

BNE Example

This instruction tests the indicator settings that result from a previous instruction,
such as a compare, for an equal condition. If the condition is not met, BNE
causes a branch to longaddr. If the condition is met, the branch is not taken, and
the next sequential instruction is executed.

Name Operation Operand

[label] BNE longaddr

Note. This instruction actually tests the zero indicator.

1\11 indicators are unchanged.

BNE UNEQUAL

In this example, assume that the previous instruction left an equal condition.
BNE does not cause a branch to UNEQUAL.

Branch on Not E"or (BNER)

Indicators

This instruction tests the condition code (after an I/O operation) for an error
condition. If there is no error, BNER causes a branch to longaddr.

Name Operation Operand

[label] BNER longaddr

Note. Coding this instruction does the same thing as coding the BCC
instruction to branch on condition code 7.

All indicators are unchanged.

Branch on Not Even (BNEV)
This instruction tests the even result indicator. If a previous instruction left it off,
BNEV causes a branch to longaddr. If the indicator is on, the branch is not
taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BNEV longaddr

Machine Instructions 4 - 47

Indicators

BNEV Example

All indicators are unchanged.

BNEV (R6)*

In this example, assume that BNEV found the even indicator off. BNEV causes a
branch to the address defined by the contents of the location whose address is in
register 6.

Branch on Not Negative (BNN)

Indicators

BNN Example

This instruction tests the negative result indicator. If it is off, BNN causes a
branch to longaddr. If the indicator is on, the branch is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] BNN longaddr

All indicators are unchanged.

BNN LOC3+6

In this example, assume that the previous instruction turned off the negative
indicator. BNN causes a branch to the location that is 6 bytes past LOC3.

Branch on Not Over/low (BNOV)

Indicators

BNOV Example

This instruction f-ests the overflow indicator. If it is off, BNOV causes a branch
to longaddr. If the indicator is on, the branch is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] BNOV longaddr

All indicators are unchanged.

BNOV (R2)

In this example, assume that the previous instruction turned on the overflow
indicator. BNOV does not cause a branch to the address in register 2.

Branch on Not Positive (BNP)

(l
\ J

This instruction tests the indicator settings that result from a previous instruction
for a positive condition. If the condition is not met, BNP causes a branch to
longaddr. If the condition is met, the branch is not taken, and the next sequential C
instruction is executed.

4 - 48 SC34-0124

o
Indicators

BNP Example

Name Operation Operand

[label] BNP longaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

BNP LOC5-8

In this example, assume that the previous instruction turned on the negative
indicator. BNP causes a branch to the location that is 8 bytes before LOC5.

Branch on Not Zero (BNZ)
This instruction tests the zero result indicator. If it is off, BNZ causes a branch
to longaddr. If the indicator is on, the branch is not taken, and the next
-sequential instruction is executed.

Name Operation Operand

[label] BNZ longaddr

C Indicators

o

BNZ Example

All indicators are unchanged.

BNZ (RS)*

In this example, assume that the previous instruction turned off the zero
indicator. BNZ causes a branch to the address defined by the contents of the
location whose address is in register 5.

Branch on Overflow (BOV)

Indicators

BOV Example

This instruction tests the overflow indicator. If it is on, BOV causes a branch to
longaddr. If it is off, the branch is not taken, and the next sequential instruction
is executed.

Name Operation Operand

[label] BOV longaddr

All indicators are unchanged.

BOV OVER

Machine Instructions 4 - 49

Branch on Positive (BP)

Indicators

BP Example

Branch on Zero (BZ)

Indicators

BZ Example

No Operation (NOP)

4 - 50 SC34-0124

In this example, assume that the previous instruction turned on the overflow
indicator. BOV causes a branch to OVER.

This instruction tests the indicator settings that result from a previous instruction
for a positive condition. If the condition is met, BP causes a branch to longaddr.
If the condition is not met, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BP longaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

BP LOC5-4

In this example, assume that the previous instruction turned on the negative
indicator. BP does not cause a branch to the location that is 4 bytes before
LaCS.

o

I

This instruction tests the zero result indicator. If it is on, BZ causes a branch to t \
longaddr. If the indicator is off, the branch is not taken, and the next sequential \ ,.
instruction is executed.

Name Operation Operand

[label] BZ longaddr

All indicators are unchanged.

BZ ZERO

In this example, assume that the previous instruction turned off the zero
indicator. BZ does not cause a branch to ZERO.

This instruction causes an unconditional branch to the next sequential instruction.

Name Operation Operand

[label] NOP c

Indicators

~

c.····
Coding Jump ["structions

lump (J)

Indicators

c J Example

lump and Link (IAL)

Indicators

JAL Example

o

All indicators are unchanged.

You can jump to locations that are within the same CSECT as the jump
instruction. For all jump instructions, code either the jdisp or jaddr operand to
specify the address to be jumped to. This address must be within -256 to 254
bytes of the byte following the jump instruction.

If you use the jdisp form, code-as an even absolute value or expression-a
displacement from the byte following the jump instruction.

If you use the jaddr form, code-as a relocatable expression-the even byte
address you want to jump to.

Note. The IAR points to the byte following the jump instruction; therefore,
jdisp is actually a displacement from the IAR. Jump instructions are the only
IAR-relative instructions. .

This instruction causes an unconditional jump to the specified address.

Name Operation Operand

[label] J
jdisp
jaddr

All indicators are unchanged.

J THERE

This instruction causes a jump to the location THERE.

This instruction saves-in a register-the address of the next sequential
instruction, then causes a jump to the specified location.

Name Operation Operand

[label] JAL
jdisp
jaddr

For reg specify the register in which you want to save the address of the next
sequential instruction.

All indicators are unchanged.

JAL 8,R7

In this example, JAL saves-in register 7-the address of the instruction that
follows this JAL. This instruction then causes a jump to the location that is 8
bytes past the byte that follows this JAL instruction.

Machine Instructions 4 - 51

Jump if Mixed (JMIX)

Indicators

JMIX Example

After a Test Word Immediate (TWI) instruction, JMIX causes a jump if the bits
tested by TWI are a combination of zeros and ones.

Name Operation Operand

[label] JMIX
jdisp
jaddr

Note. JMIX actually tests the zero and negative indicators.

All indicators are unchanged.

Assume that the word at location TEST contains X'0369".

TWI
JMIX

X'~3691 ,TEST
MIXED

Because the bits tested by TWI are all ones, JMIX does not cause a jump to
location MIXED.

Jump if Not Mixed (JNMIX)

Indicators

JNMIX Example

Jump if Not Off (JNOFF)

4 - 52 SC34-0124

After a Test Word Immediate (TWI) instruction, JNMIX causes a jump if the
bits tested by TWI are either all zeros or all ones.

Note. JNMIX actually tests the zero and negative indicators.

Name Operation Operand

[label] JNMIX
jdisp
jaddr

Note. If the first operand (the I-word mask) of the TWI instruction is all
zeros, the resulting condition is not mixed. In this case, JNMIX causes a jump.

All indicators are unchanged.

Assume that R4 contains X'OOOO'.

TWI X'JI~FF' ,R4
JNMIX 14

Because the bits tested by TWI are all zeros, JNMIX causes a jump to the
location that is 14 bytes past the byte following this JNMIX.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JNOFF
causes a jump if:

• The bit tested by TBT is on, or

('-,
i ~ " }

(
, I'

(,:

c

Indicators

JNOFF Example

Jump if Not On (JNON)

c

Indicators

JNON Example

Jump if Off (JOFF)

o

• The bits tested by TWI are either mixed or all on.

Name Operation Operand

[label) JNOFF
jdisp
jaddr

Note. JNOFF actually tests the zero indicator.

All indicators are unchanged.

t\ssume that the word whose address is in R3 contains X'03AC'.

TWI X'jC53 1 ,(R3)
JNOFF 36

Because the tested bits are all off, JNOFF does not cause a jump to the location
that is 36 bytes past the byte following this JNOFF.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JNON causes
a jump if:

• The bit tested by TBT is off, or
• The bits tested by TWI are either mixed or all off.

Note. JNON actually tests the negative indicator.

Name Operation Operand

[label) JNON
jdisp
jaddr

Note. If the first operand (the I-word mask) of a TWI instruction is all zeros,
the resulting condition is not on. In this case, JNON causes a jump.

All indicators are unchanged.

Assume that the word in R7 contains X'OI23'.

TWI
JNON

X'j321I R7
-6 '

Because the tested bits are mixed, JNON causes a jump to the location that is
6 bytes before the byte following this JNON.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JOFF causes
a jump if:

• The bit tested by TBT is off, or
• The bits tested by TWI are all off.

Machine Instructions 4 - 53

Indicators

JOFF Example

Jump if 0" (JON)

Indicators

JON Example

Jump on Carry (JCY)

4 - 54 SC34-0124

Note. JOFF actually tests the zero indicator.

Name Operation Operand

[label] JOFF
jdisp
jaddr

Note. If the first operand (the I-word mask) of a TWI instruction is all zeros,
the resulting condition is off. In this case, JOFF causes a jump.

All indicators are unchanged.

T8T
JOFF

(R6,5)
OFF

Assume that the byte whose address is in R6 contains:
1111 0000
Because the sixth bit is off, JOFF causes a jump to location OFF.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JON causes
a jump if:

• The bit tested by TBT is on, or
• The bits tested by TWI are all on.

Name Operation Operand

[label] JON jdisp
jaddr

Note. JON actually tests the negative indicator.

All indicators are unchanged.

T8T (Rl,j)
JON ON+4

Assume that the byte whose address is in R1 contains:
0000 1111
Because the first bit is off, JON does not cause a jump to the address that is 4
bytes past locati~n ON.

This instruction tests the carry indicator. If the indicator is on, JCY jumps to the
specified location. If the indicator is off, the jump is not taken, and the next

('-',
\J

sequential instruction is executed. (:

~ o.c:-•... -.

Indicators

JCY Example

Jump on Condition (JC)

c

Indicators

JC Example

Jump on Count (JCT)

o

Name Operation Operand

[label] JCY
jdisp
jaddr

All indicators are unchanged.

JCY CARRY-4

In this example, assume that JCY found the carry indicator on. JCY jumps to the
location that is 4 bytes before the address CARRY.

This instruction tests a condition that you specify. If the tested condition is met,
JC causes a jump to the specified location. If the condition is not met, the jump
is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] JC
jdisp
jaddr

Code the JC instruction to test the indicator settings that result from a
previous instruction. For the cond operand, code the value of the condition you
want to test:

Condition Value Condition

0 Zero or equal
I Positive and non-zero
2 Negative
3 Even
4 Arithmetically less than
5 Arithmetically less than or equal
6 Logically less than or equal
7 LogicallY less than (carry)

All indicators are unchanged.

JC 2, HI
In this example assume that a previous instruction set the negative result
indicator on. JC causes a jump to the location that is 10 bytes past the byte
following this JC instruction.

This instruction tests the contents of the specified register. If the contents of the
register are not zero, JCT decreases the register by 1. If the contents are still not
zero, JCT causes a jump to the specified location.

Machine Instructions 4 - 55

Indicators

JeT Example

4 - 56 SC34-0124

Subtract 1
from reg

JUMP

Name Operation

[label] JeT

NO JUMP

NO JUMP

jdisp, reg
jaddr, reg

All indicators are unchanged.

JeT ZERO,R3

Operand

Assume that R3 (before the decrement) contains X'002S'. JeT decreases R3 by
1, leaving X'0024', and causes a jump to ZERO.

(l
\ J

c

c

Jump on Equal (JE)

Indicators

JE Example

Jump on Even (JEV)

Indicators

JEV Example

This instruction tests the result of a previous instruction, such as a compare, for
an equal condition. If the condition is met, JE causes a jump to the specified
location. If the condition is not met, no jump is taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] JE
jdisp
jaddr

Note. This instruction actually tests the zero result indicator.

All indicators are unchanged.

JE EQUAL

Assume that this JE was preceded by a compare instruction whose result was
equal. JE causes a jump to EQUAL.

This instruction tests the even indicator. If a previous instruction left it on, JEV
causes a jump to the specified location. If the indicator is off, the jump is not
taken, and the next sequential instruction is executed.

Name Operation Operand

[label] JEV
jdisp
jaddr

All indicators are unchanged.

JEV 26

In this example assume that the previous instruction left the even indicator on.
JEV causes a jump to the location that is 26 bytes past the byte following this
JEV.

Jump on Greater Than (JGT)
This instruction tests the result of a logical instruction for an arithmetically
greater 'than condition. If the condition is met, JGT causes a jump to the
specified location. If the condition is not met, the jump is not taken, and the next
sequential instruction is executed.

Machine Instructions 4 - 57

Indicators

JGT Example

Name Operation Operand

[label] JGT
jdisp
jaddr

Note. This instruction actually tests the negative, overflow, and zero result
indicators.

All indicators are unchanged.

JGT GREATER+6

In this example, assume that the previous instruction left a greater than
condition. JGT causes a jump to the location that is 6 bytes past GREATER.

Jump on Greater Than or Equal (JGE)

Indicators

JGE Example

Jump on Less Than (JLT)

4 - 58 SC34-0124

This instruction tests the result of a logical instruction for an arithmetically
greater than or an equal condition. If either condition is met, JGE causes a
jump to the specified location. If neither condition is met, the jump is not taken,
and the next sequential instruction is executed.

Name Operation Operand

[label] JGE
jdisp
jaddr

Note. This instruction actually tests the negative and overflow indicators.

All indicators are unchanged.

JGE 84

In this example, assume that the previous instruction left a less than condition.
JGE does not cause a jump to the location that is 84 bytes past the byte that
follows this JGE instruction.

This instruction tests the result of a logical instruction for an arithmetically less
than condition. If the condition is met, JL T causes a jump to the specified
location. If the condition is not met, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] JLT
jdisp
jaddr

(---,
\ J

c

Indicators

JLT Example

Note. This instruction actually tests the negative and overflow indicators.

All indicators are unchanged.

JLT LESS+2

In this example, assume that the previous instruction left a less than condition.
JL T causes a jump to the location that is 2 bytes past LESS.

Jump on Less Thall or Equal (JLE)

Indicators

JLE Example

This instruction tests the result of a logical instruction for an arithmetically less
than or an equal condition. If either condition is met, JLE causes a jump to the
specified location. If neither condition is met, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] JLE
jdisp
jaddr

Note. This instruction actually tests the overflow, negative, and zero result
indicators.

All indicators are unchanged.

JLE THERE-it

In this example, assume that the previous instruction left an equal condition. JLE
causes a jump to the location that is 4 bytes before address THERE.

Jump on Logically Greater Than (JLGT)

IndiCators

JLGT Example

This instruction tests the result of a logical instruction, such as a compare, for a
logically greater than condition. If the condition is met, JLGT causes a jump to
the specified location. If the condition is not met, the jump is not taken, and the
next sequential instruction is executed.

Name Operation Operand

[label] JLGT
jdisp
jaddr

Note. This instruction actually tests the carry and zero indicators. If both
indicators are off, the jump is taken. For more information about how the
indicators are set, see "Logical Instructions."

All indicators are unchanged.

JLGT THERE

Machine Instructions 4 - 59

In this example, assume that the previous instruction was a compare instruction
whose result was logically greater than. JLGT causes a jump to location
THERE.

Jump on Logically Greater Than or Equal (JLGE)

Indicators

JLGE Example

This instruction tests the result of a logical or arithmetic instruction, such as a
compare or subtract, for a logically greater than or logically equal condition. If
either condition is met, JLGE causes a jump to the specified location. If neither
condition is met, the jump is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] JLGE
jdisp
jaddr

Note. This instruction actually tests the carry indicator; if it is off, the jump is
taken. For more information about how the indicator is set, see "Logical
Instructions" and "Arithmetic Instructions."

All indicators are unchanged.

JLGE -12

Assume that this JLGE appears in this piece of code:

X MVWI
MVA
CW
JLGE
CMR

14,R2
LOC, R 1
R3,R4
-12
Rl,R2

If CW R3,R4 set a condition of logically greater than or equal, JLGE -12
causes a jump to MVWI 14,R2. (JLGE X would do the same thing.)

Jump on Logically Less Than (JLLT)

Indicators

4 - 60 SC34-0124

This instruction tests the result of a logical instruction, such as a compare, for a
logically less than condition. If the condition is met, JLL T causes a jump to the
specified location. If the condition is not met, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] JLLT
jdisp
jaddr

Note. This instruction actually tests the carry indicator-if it is on, the jump is
taken. For more information about how the indicator is set, see "Logical
Instructions. "

All indicators are unchanged.

(,
~

\. I

c

c

JLLT Example
JLLT LESS

In this example assume that the previous instruction set a condition of equal.
JLL T does not cause a jump to LESS.

Jump on Logically Less Than or Equal (JLLE)

Indicators

JLLE Example

Jump on Negative (IN)

Indicators

IN Example

This instruction tests the result of a logical instruction, such as a compare, for a
logically less than or equal condition. If either condition is met, JLLE causes a
jump to the specified location. If neither condition is met, the jump is not taken,
and the next sequential instruction is executed.

Name Operation Operand

[label] JLLE
jdisp
jaddr

Note. This instruction actually tests the carry and zero indicators. Both
indicators must be on for the jump to be taken. For more information about how
the indicators are set, see "Logical Instructions."

All indicators are unchanged.

JLLE LESS

In this example, assume that the previous instruction set a condition of logically
less than. JLLE causes a jump to LESS.

This instruction tests the negative result indicator. If it is on, IN causes a jump to
the specified location. If the indicator is off, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

Ilabel] IN
jdisp
jaddr

All indicators are unchanged.

IN LOC3+6

In this example, assume that the previous instruction turned off the negative
result indicator. IN does not cause a jump to the location that is 6 bytes past
LOC3.

Jump on No Ca"y (JNCY)
This instruction tests the carry indicator. If it is off, JNCY causes a jump to the
specified location. If the indicator is on, the jump is not taken, and the next
sequential instruction is executed.

Machine Instructions 4 - 61

Indicators

JNCY Example

Name Operation Operand

[label] JNCY
jdisp
jaddr

All indicators are unchanged.

JNCY NO CARRY

In this example assume that the previous instruction left the carry indicator off.
JNCY causes a jump to NOCARRY.

()
\. j

Jump on Not Condition (JNC)

Indicators

JNC Example

Jump on Not Equal (JNE)

4 - 62 SC34-0124

This instruction tests a condition that you specify. If the condition is met, JNC
causes a jump to the specified location. If the condition is not met, the jump is
not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] JNC
cond, jdisp
cond, jaddr

Code JNC to test the result of a previous instruction. For the cond operand,
code the value of the condition you want to test:

Condition Value Condition

0 Non-zero or non-equal
1 Not positive
2 Not negative
3 Not even
4 Arithmetically greater than or equal
5 Arithmetically greater than
6 Logically greater than
7 Logically greater than or equal (no carry)

Note. JNC causes a branch if the specified condition is met.

All indicators are unchanged.

JNC 6,-12

In this example, assume that the previous instruction set a logically equal
condition. JNC does not cause a jump to the location that is 12 bytes before the
byte that follows the JNC instruction.

This instruction tests the result of a previous instruction, such as a compare, for
an equal condition. If the condition is not met, JNE causes a jump to the (:
specified location. If the condition is met;the jump is not taken, and the next

c

(."" ..

,,-

c

Indicators

JNE Example

Jump on Not Even (JNEV)

Indicators

JNEV Example

sequential instruction is executed.

Name Operation Operand

[label] JNE
jdisp
jaddr

Note. This instruction actually tests the zero result indicator.

All indicators are unchanged.

JNE UNEQUAL

In this example, assume that the previous instruction left an equal condition.
JNE does not cause a jump to UNEQUAL.

This instruction tests the even resuit indicator. If a previous instruction left it off,
JNEV causes a jump to the specified location. If the indicator is on, the jump is
not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] JNEV
jdisp
jaddr

All indicators are unchanged.

JNEV 6

In this example, assume that JNEV found the even indicator off. JNEV causes a
jump to the location that is 6 bytes past the byte following this JNEV
instruction.

Jump on Not Negative (JNN)

Indicators

This instruction tests the negative result indicator. If it is off, JNN causes a jump
to the specified location. If the indicator is on, the jump is not taken, and the
next sequential instruction is executed.

Name Operation Operand

[label] JNN
jdisp
jaddr

All indicators are unchanged.

Machine Instructions 4 - 63

JNN Example
JNN LOC3-6

In this example assume that the previous instruction turned off the negative
indicator. JNN causes a jump to the location that is 6 bytes before LOC3.

Jump on Not Positive (JNP)

Indicators

JNP Example

Jump on Not Zero (JNZ)

Indicators

JNZ Example

4 - 64 SC34-0124

This instruction tests the result of a previous instruction for a positive condition.
If the condition is not met, JNP causes a jump to the specified location. If the
condition is met, the jump is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] JNP
jdisp
jaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

JNP THERE

In this example assume that the previous instruction turned off the negative and
zero indicators (leaving a positive condition). JNP does not cause a jump to
THERE.

This instruction tests the zero result indicator. If it is off, JNZ causes a jump to
the specified location. If the indicator is on, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] JNZ
jdisp
jaddr

All indicators are unchanged.

JNZ -4

In this example assume that the previous instruction turned off the zero indicator.
JNZ causes a jump to the location that is 4 bytes before the byte following this
JNZ instruction.

f

(:

IIImp 011 l'ositive (JP)

c

Indicators

JP Example

IlImp 011 Zero (JZ)

c'

Intlicators

JZ Example

o

This instruction tests the result of a previous instruction for a positive condition.
If the condition is met, IP causes a jump to the specified location. If the
condition is not met, the jump is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] JP
jdisp
jaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

JP LOC5-12

In this example assume that the previous instruction turned on the negative
indicator. IP does not cause a jump to the location that is 12 bytes before
LaCS.

This instruction tests the zero result indicator. If it is on, IZ causes a jump to the
specified location. If the indicator is off, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] JZ
jdisp
jaddr

All indicators are unchanged.

JZ ZERO

In this example, assume that the previous instruction turned off the zero
indicator. IZ does not cause a jump to ZERO.

Machine Instructions 4 - 65

Shift Instructions
Coding Shift Instructions

Shift Left Circular (SLC)

Indicators

SLC Example

The shift instructions all have the same basic syntax. The first operand is always n
the shift count, and the second is always the register to be shifted. \. J

You can code shift count as an absolute value or expression, or you can code
it in register form, where bits 8-15 of the register contain the count. If the shift
count is in a register, that register is not altered by the shift instruction, unless
the instruction is SL T or SL TD, or the same register is also specified as the
register to be shifted.

Note. For SL T and SLTD, code the shift count in register form only.

If you code a shift count value, it can be in the range 0-16 (for cntl6) or
0-31 (for cnt31). You may code a value greater than 16 for cntl6, however, it
will be flagged with a warning message. When the instruction is executed, a shift
count greater than 16 will lengthen the execution time. If you code a register that
contains the shift count, the count can be in the range 0-255. Note that if you
code a shift count of 0, the register is not shifted.

The second operand is the register to be shifted. In the case of double shift
instructions, the register you code here is the first register of a register pair. For
example, if you code R5, the instruction shifts the pair R5,R6. If you code R7,
the instruction shifts the pair R7,RO.

This instruction shifts the contents of a register to the left by a specified number
of bits. The bits shifted out of the high-order bit (bit 0) reenter in the low-order
bit (bit 15).

Name Operation Operand

[label] SLC
cnt16, reg
reg,reg

The carry and overflow indicators are unchanged. The remaining indicators
reflect the final contents of the register.

SLC 3,R6

Before the shift, register 6 contains:

i- - ~~//lih 0010 1111 0000 I I 1······················: •

I 0 15 L __________________ ,

After the shift, register 6 contains: I
I

1001 0111 1000 OJ.ij!)?~ - - J

o 15

Shift Left Circular Double (SLCD)

4 - 66 SC34-0124

This instruction shifts the contents of a register pair to the left by a specified
number of bits. The bits shifted out of the high-order bit (bit 0) reenter in the (0."
low-order bit (bit 31).··'

c
Indicators

SLeD Example

Shift Left Logical (SLL) c

Indicators

c

Name Operation Operand

[label] SLCD
cnt31 , reg
reg, reg

The carry and overflow indicators are unchanged. The remaining indicators
reflect the final contents of the register pair.

SLeD 4,Rl

Before the shift, the register pair R1, R2 contains:

R1 R2

r -1r~t'fmt\ 0000 0000 0000 10000 1111 1010 1111 ,
I o 31
L _____________________________ ,

After the shift, the register pair R1, R2 contains: I

I
R1 R2 I

0000 0000 0000 0000 11111 101 0 1111]MmII1~- - - ...J

o 31

This instruction shifts the contents of a register to the left by a specified number
of bits. The vacated low-order bits are filled with zeros.

Name Operation Operand

[label] SLL
cnt16, reg
reg, reg

The overflow indicator is first reset, then set to 1 if the most significant bit in
the register changed during the shift. The carry indicator reflects the last bit
shifted out of bit O. The remaining indicators reflect the final contents of the
register.

Machine Instructions 4 - 67

SLL Example

SLL I,R7
Before the shift, register 7 contains:

o 15

Shift Left Logical Double (SLLD)

Indicators

SLLD Example

Shift Left and Test (SLT)

4 - 68 SC34-0124

This instruction shifts the contents of a register pair to the left by a specified
number of bits. The vacated low-order bits are filled with zeros.

Name Operation Operand

[label] SLLD
cnt31,reg
reg, reg

The overflow indicator is first reset, then set to 1 if the most significant bit in
the register pair changed during the shift. The carry indicator reflects the last bit
shifted out of bit O. The remaining indicators reflect the final contents of the
register pair. i

SLLD R7,R4
Assume that register 7 contains X'OOOC'.
Before the shift, the register pair R4, R5 contains:

R4 R5

o 31

This instruction shifts the contents of a register to the left. It continues shifting
until it has:

• Shifted the number of bits specified as a shift count, or
• Shifted a 1-bit out of bit zero.

The vacated low-order bits are filled with zeros.

, .

c

c

Indicators

SLT Example

Name Operation Operand

[label] SLT reg, reg

If SL T shifts a I-bit out of bit zero before it has shifted the number of bits
you specified, the remaining shift count is loaded into bits 8-15 of the register
you coded for the first operand.

The overflow and carry indicators are first reset. Then the overflow indicator is
set to I if the most significant bit in the register changed during the shift. The
carry indicator reflects the last bit shifted out of bit O. The remaining indicators
reflect the contents of the register you coded for the first operand.

SLT R5,R2

In this example, assume that register 5 contains x'oooe'.
Before the shift, register 2 contains:

o 15

and register 5 contains X'0003', the shift count that remained after SL T shifted a
I-bit out of the high-order bit of the register.

Shift Lefl and Test Double (SLTD)
This instruction shifts the contents of a register pair to the left. It continues
shifting until it has:

• Shifted the number of bits specified as a shift count, OR
• Shifted a I-bit out of bit zero of the first register in the pair.

The vacated low-order bits are filled with zeros.

Name Operation Operand

[label] SLTD reg, reg

If SL TD shifts a I-bit out of bit zero before it has shifted the number of bits
you specified, the remaining shift count is loaded into bits 8-15 of the register
you coded for the first operand.

Machine Instructions 4 - 69

Indicators

SLTD Example

The carry and overflow indicators are first reset. Then the overflow indicator is
set to 1 if the most significant bit in the register pair changed during the shift.
The carry indicator reflects the last bit shifted out of bit O. The remaining
indicators reflect the contents of the register you coded for the first operand.

SLTD Rl,R2

In this example, assume that register 1 contains X'0003'.
Before the shift, register pair R2, R3 contains:

R2 R3

o 31

and Rl contains O.

Shift Right Arithmetic (SRA)

Indicators

SRA Example

4 - 70 SC34-0t24

This instruction shifts the contents of a register to the right by a specified
number of bits. The original high-order bit of the register is propagated through
the vacated high-order bits.

Name Operation Operand

[label] SRA
cnt16, reg
reg, reg

The carry and overflow indicators are unchanged. The remaining indicators
reflect the final contents of the register.

SRA 2,R5

Before the shift, register 5 contains:

o 15

c

c

Shilt Right Arithmetic Double (SRAD)

Indicators

SRAD Example

Shift Right Logical (SRL)

Indicators

This instruction shifts the contents of a register pair to the right by a specified
number of bits. The original high-order bit of the register pair is propagated
through the vacated high-order bits.

Name Operation Operand

[label] SRAD
cnt31, reg
reg, reg

The carry and overflow indicators are unchanged. The remaining indicators
reflect the final contents of the register pair.

SRAD RI, R7

Assume that register 1 contains X'0018'.
Before the shift, the register pair R7, RO contains:

R7 RO

After the shift, the register pair R 7, RO contains:

o 31

This instruction shifts the contents of a register to the right by a specified
number of bits. The vacated high-order bits of the register are filled with zeros.

Name Operation Operand

[label] SRL
cnt16, reg
reg, reg

The carry and overflow indicators are unchanged. The remaining indicators
reflect the final contents of the register.

Machine Instructions 4 - 71

SRL Example

SRL 2,R5

Before the shift, register 5 contains:

o 15

Shift Right Logical Double (SRLD)

Indicators

SRLD Example

4 - 72 SC34-0124

This instruction shifts the contents of a register pair to the right by a specified
number of bits, The vacated high-order bits of the register pair are filled with
zeros,

Name Operation Operand

[label] SRLD
cnt31,reg
reg, reg

The carry and overflow indicators are unchanged. The remaining indicators
reflect the final contents of the register pair.

SRLD Rl,R7

In this example, assume that register 1 contains X'OOlS',
Before the shift, the register pair R 7, RO contains:

R7 RO

o 31

n
\j

t

c

c

Stack Instructions
Store Multiple (STM)

Indicators

STM Example

STM saves the contents of one or more general-purpose registers from your main
routine. Code it at the beginning of a subroutine.

Name Operation Operand

[label] STM reg, addr4 [,abcnt]

In the first operand, code a register n. STM stores register 7, then registers 0
through n. For example, if you code register 2, STM stores registers 7, 0, 1, and
2. If you code register 7, STM stores register 7 only.

In the second operand, specify the address of the stack control block that
points to the stack where you want the registers stored.

Use the optional third operand to define the size, in bytes, of a work storage
area within the stack. For ahent, code the size of the work area. That amount
must be an even number in the range 0-16382.

After it stores the registers and reserves the work area, STM loads reg (the
first operand) with the address of the low-storage end of the work storage area
or the address of the last register stored if ahent was not specified or specified as
o.

All indicators are unchanged.

STH RIf, (RI) ,32

• R 1 contains the address of a stack control block.
• The stack now contains 32 bytes of work storage and a 2-byte control word,

in addition to the 12 bytes required for the registers.

STM stores registers 7, 0, 1, 2, 3, and 4 in the specified stack, then loads register
4 with the address of the work area.

Load MUltiple and Branch (LMB)
This instruction is useful when a subroutine passes control back to your main
program. At the end of the subroutine, LMB reloads the registers from a stack,
then branches to the address in register 7.

Name Operation Operand

[label] LMB addr4

Before it gave control to the subroutine, the main program loaded register 7
with the address that will gain control when the subroutine finishes. This address
is usually the address of the next sequential instruction following the branch to
the subroutine.

After the main program passed control to the subroutine, the subroutine saved
the contents of the index registers in a stack (with a STM instruction).

Machine Instructions 4 - 73

Indicators

LMB Example

All indicators are unchanged.

LMB (Rl)

Assume that register 1 contains the address of the stack control block that points
to the stack where the registers are stored. LMB reloads the registers from the
stack, and passes control to the address in register 7.

Coding Pop/Push Instructions

Pop Byte (PB)

Indicators

PH Example

Pop Doubleword (PD)

4 - 74 SC34-0124

In general, a push instruction moves an element from a register to a stack, and a
pop instruction moves an element from a stack to a register.

For the stack operand (addr4) in a push or pop instruction, code the address
of the stack control block that points to the stack you want to use.

For the register operand (reg) in a push or pop instruction, code the register
you want to use. If you code a doubleword instruction (PD or PSD), the register
you code is the first register of a pair. Note that if you code register 7 as the
first register of a pair, the instruction uses registers 7 and O.

This instruction moves a byte from a stack and places it into a register.

Name Operation Operand

[label] PB addr4, reg

PB moves the top byte in the stack into bits 8-15 of reg. Bits 0-7 of reg are '- ¥

unchanged.
After PB executes, the Top Element Address pointer in the stack control block

points to the next byte to be popped from the stack.

All indicators are unchanged.

PB (Rl),R3

In this example, register 1 contains the address of a stack control block. PB
moves the top byte from the stack into bits 8-15 of register 3. Bits 0-7 of
register 3 are unchanged. After this PB executes, the Top Element Address
pointer is updated and points to the next byte to be popped.

This instruction moves a doubleword from a stack and places it into a pair of
registers.

Name Operation Operand

[label] PD addr4, reg

c

c
Indicators

PD Example

Pop Word (PW)

Indicators

PW Example

Push Byte (PSB)

c

PD moves the top double word in the stack into the register pair specified by
reg.

After PD executes, the Top Element Address pointer in the stack control block
points to the next doubleword to be popped from the stack.

All indicators are unchanged.

PO (R 1) ,R3

In this example, register 1 contains the address of a stack control block. PD
moves the top double word from the stack into registers 3 and 4. After PD
executes, the Top Element Address pointer is updated and points to the next
doubleword to be popped.

PO STACK/ll, R7

In this example, STACKOI is the address of a stack control block. PD moves
the top double word from the stack into registers 7 and O. After PD executes, the
Top Element Address pointer is updated and points to the next doubleword to be
popped.

This instruction moves a word from a stack and places it into a register.

Name Operation Operand

[label] PW addr4, reg

PW moves the top word in the stack into reg.
After PW executes, the Top Element Address pointer in the stack control

block points to the next word to be popped from the stack.

All indicators are unchanged.

PW (Rl),R5

In this example, register 1 contains the address of a stack control block. PW
moves the top word from the stack into register 5. After this PW executes, the
Top Element Address pointer is updated and points to the next word to be
popped.

This instruction moves a byte from a register and places it into a stack.

Name Operation Operand

[label] PSB reg, addr4

PSB moves bits 8-15 from the reg into the stack; reg is unchanged.

Machine Instructions 4 - 75

Indicators

PSB Example

Push Doubleword (PSD)

Indicators

PSD Example

4 - 76 SC34-0124

After PSB executes, the Top Element Address pointer in the stack control
block points to the byte just pushed into the stack.

All indicators are unchanged.

PSB R2,(Rl)

In this example, R1 contains the address of a stack control block. PSB pushes
bits 8-15 from R2 into the stack. After this PSB executes, the Top Element
Address pointer is updated, and points to the byte just pushed into the stack. R2
is unchanged.

This instruction moves a double word from a register pair and places it into a
stack.

Name Operation Operand

[label] PSD reg, addr4

After PSD executes, the Top Element Address pointer in the stack control
block points to the doubleword just pushed into the stack. The register pair is
unchanged.

All indicators are unchanged.

PSD R5, (Rl)

In this example, R 1 contains the address of a stack control block. PSD pushes
the contents of registers 5 and 6 into the stack. After this PSD executes, the Top
Element Address pointer is updated, and points to the double word just pushed
into the stack. R5 and R6 are unchanged.

c

Push Word (PSW)

c

Indicators

PSW Example

o

This instruction moves a word from a register and places it into a stack.

Name Operation Operand

[label] PSW reg, addr4

After PSW executes, the Top Element Address pointer in the stack control
block points to the word just pushed into the stack. The register is unchanged.

All indicators are unchanged.

psw R4, (Rl)

In this example, R 1 contains the address of a stack control block. PSW pushes
the contents of R4 into the stack. After this PSW executes, the Top Element
Address pointer is updated, and points to the word just pushed into the stack. R4
is unchanged.

Machine Instructions 4 - 77

Compare Instructions
Using Compare Instructions

Compare Address (CA)

4 - 78 SC34-0124

For a compare instruction, you code two operands. The operands are compared,
and indicators are set to reflect the result. Results of the compare can be tested
arithmetically or logically. Both operands remain unchanged.

Note. A compare operation actually subtracts the first operand from the
second, then sets indicators to reflect the result. Both operands are unchanged.
The result is expressed in terms of the second operand relative to the first; for
example, arithmetically greater than means that the second operand is greater
than the first.

An arithmetic test looks at the value of each operand, while a logical test
looks for the operand with the most significant bit ON. For example, code a
compare with the operands A,B. Assume that the value of A is - 31, and the
value of B is +57. An arithmetic test would look at the values and determine
that B>A. A logical test would look at the individual bits:

-31 = 1110 0001
+57 = 0011 1001

Because -31 (the A value) has its most significant bits ON, the logical test
determines that B<A.

You can interpret a compare instruction as either arithmetic or logical,
depending on the indicators you test after it executes. For example, if the
operands on a compare instruction are A,B, here is how the indicators are set:

If the result of compare A, B is These indicators are set

(Arithmetic)
B=A Z=1

B*A Z=O
B<A (N = 1, V = 0) or (N = 0, V = 1)
B.;;;;A (N = 1, V = 0) or (N = 0, V = 1) or Z = 1
B>A [(N = 1, V = 1) or (N = 0, V = 0)] and Z = °
B~A (N = 1, V = 1) or (N = 0, V = 0)

(Logical)
B>A (C = 0, Z = 0)
B~A C=O
B<A C=1
B.;;;;A C=1orZ=1

The abbreviations used for the indicators are:

• Z-zero
• N-negative
• V -overflow
• C-carry.

This instruction compares either a word in a register or a word in storage to an
address value, then sets indicators to reflect the result.

Name Operation Operand

[label] CA
raddr, reg
raddr, addr4 (:

c

c

c

Indicators

CA Example

Compare Byte (CB)

Indicators

CB Example

See "Using Compare Instructions" for a description of the indicator settings.

CA FIELD,DATA

In this example, assume that the address of FIELD is X' 5024', and the word at
the storage address defined by DATA contains X'6000'. CA compares these
values, and sets arithmetically greater than and logically greater than conditions.

This instructions compares:

• A byte in a register (bits 8-15) to a byte in storage, or
• A byte in storage to a byte in storage,

and sets indicators to reflect the result.

Name Operation Operand

[label] CB
addr4, reg
addrS, addr4

See "Using Compare Instructions" for a description of the indicator settings.

CB BYTE+3,R4

Assume that the byte at location BYTE+3 contain X'02' and bits 8-15 of
register 4 contain X'FD'. CB compares the two values, and sets arithmetically
less than and logically greater than conditions.

Compare Byte Field Equal and Decrement (CFED)
This instruction compares successive (right-to-Ieft) bytes in one field to
corresponding bytes in another field. It compares two bytes at a time until it
finds an equal condition OR until it has exhausted the length count.

Name Operation Operand

[label] CFED (reg), (reg)

Before coding CFED, code an instruction to load register 7 with the number
of bytes in each field. Both fields are the same size. (If register 7 contains 0,
CFED is treated as a no-operation.)

CFED compares the rightmost byte in the second field to the rightmost byte in
the first field, and sets indicators to reflect the result. The contents of both
registers are decreased by 1, and now point to the bytes to the left of the ones
just compared. If the two bytes were equal, CFED is finished. If they were not
equal, the contents of R 7 are decreased by 1, and the next bytes to the left are
compared.

When CFED is finished:

• R 7 contains 0 (if CFED found no equal condition) or the number of byte
pairs not compared, plus 1 (if it found an equal condition).

Machine Instructions 4 - 79

Indicators

CFED Example

4 - 80 SC34-0124

• The first operand (reg) points to the byte to the left of the last byte compared
in the first field .

• The second operand (reg) points to the byte to the left of the last byte
compared in the second field. (")

Compare bytes
and set indicators

Decrement
addresses of
byte fields

Subtract 1
from R7

End ofCFED

End ofCFED

When CFED is finished, the indicators reflect the result of the last compare. See
"Using Compare Instructions" for a description of the indicator settings.

CFED (R3), (RII)

,)

c

o

c

o

Assume that:

• R7 contains X'0003'.
• The field whose starting address is in R3 contains, in hexadecimal:

21 21 21
(R3 points to the rightmost byte).

• The field whose starting address is in RO contains, in hexadecimal:
22 23 24
(RO points to the rightmost byte, X'24').

CFED compares the rightmost byte in the second field, X'24', to the rightmost
byte in the first field, X'21'. RO and R3 are decreased by 1, and now point to
the next bytes to the left (RO points to X'23' and R3 points to X'21'). Because
the two bytes were not equal, register 7 is decreased by 1, and CFED compares
X'23' to X'21'. Because there will be no equal condition, CFED continues until
register 7 contains O. When CFED is finished, RO points to the byte to the left
of X'22', and R3 points to the byte to the left of the leftmost X'21'.

Compare Byte Field Equal and Increment (CFEN)

Indicators

CFEN Example

This instruction compares successive (left-to-right) bytes in one field with
corresponding bytes in another field. It compares one byte pair at a time until it
finds an equal condition OR until it has exhausted the length count.

Name Operation Operand

[label] CFEN (reg), (reg)

Code CFEN like CFED, with one exception. Load the registers with the
addresses of the leftmost bytes in the fields.

CFEN compares the leftmost byte in the second field to the leftmost byte in
the first field, and sets indicators to reflect the result. Both registers are increased
by 1, and now point to the bytes to the right of the ones just compared. If the
two bytes were equal, CFEN is finished. If they were not equal, register 7 is
decreased by 1, and the next bytes
to the right are compared. When CFEN is finished:

• R 7 contains 0 (if CFEN found no equal condition) or the number of byte
pairs not compared, plus 1, (if it found an equal condition).

• The first operand (reg) points to the byte to the right of the last byte
compared in the first field.

• The second operand (reg) points to the byte to the right of the last byte
compared in the second field.

When CFEN is finished, the indicators reflect the result of the last compare. See
"Using Compare Instructions" for a description of the indicator settings.

CFEN (R4), (R3)

Machine Instructions 4 - 81

Assume that:

• R7 contains X'0005'.
• The field whose starting address is in R4 contains, in hexadecimal:

FI F3 F5 F7 F9
(R4 points to the leftmost byte, X'FI ').

• The field whose starting address is in R3 contains, in hexadecimal:
FI F2 F3 F4 F5
(R3 points to the leftmost byte, X'FI ').

CFEN compares the leftmost byte in the second field, X'F I " to the leftmost
byte in the first field, X'F I '. R3 and R4 are increased by I, and now point to
the next bytes to the right (R3 points to X'F2' and R4 points to X'F3'). Because
the two bytes were equal, CFEN is finished. R7 contains X'0005', R4 points to
X'F3' in the second field, and R3 points to X'F2' in the first field.

o

Compare Byte Field Not Eqllal and Decrement (CFNED)

Indicators

CFNED Example

4 - 82 SC34-0124

This instruction compares successive (right-to-Ieft) bytes in one field with
corresponding bytes in another field. It compares one byte pair at a time until it
finds a not equal condition OR until it has exhausted the length count.

Name Operation Operand

[label] CFNED (reg), (reg)

Code CFNED exactly like CFED.
CFNED compares the rightmost byte in the second field to the rightmost byte

in the first field, and sets indicators to reflect the result. Both registers are
decreased by 1, and now point to the bytes to the left of the ones just compared. t
If the two bytes were not equal, CFNED is finished. If they were equal, register \"
7 is decreased by I, and the next bytes to the left are compared. When CFNED
is finished:

• R 7 contains 0 (if CFNED did not find a not equal condition) or the number
of byte pairs not compared, plus 1 (if it found a not equal condition).

• The first operand (reg) points to the byte to the left of the last byte compared
in the first field.

• The second operand (reg) points to the byte to the left of the last byte
compared in the second field.

When CFNED is finished, the indicators reflect the result of the last compare.
See "Using Compare Instructions" for a description of the indicator settings.

C FN E 0 (R5) , (R 1)

Assume that:

• R7 contains X'0008'.
• The field whose starting address is in R5 contains, in hexadecimal:

02 24 46 68 8A AC CE EO
(R5 points to the rightmost byte, X'EO').

• The field whose starting address is in Rl contains, in hexadecimal:
00 00 00 00 00 AC CE EO
(Rl points to the rightmost byte, X'EO'). c

o

c

o

CFNED compares the rightmost byte in the second field, X'EO', to the
rightmost byte in the first field, also X'EO'. R5 and R 1 are decreased by 1, and
now point to the next byte pair to the left. Because the two bytes were equal,
register 7 is decreased by 1, and CFNED compares the next bytes in the field.
CFNED continues until it compares X'OO' (in the second field) to X'SA' (in the
first field). R5 and R 1 are decreased by 1, and point to the next pair to the left.
Because the two compared bytes were not equal, CFNED is finished. R 7
contains X'0005', R5 points to X'6S' in the first field, and R1 points to X'OO' in
the second field.

Compare Byte Field Not Equal and Increment (CFNEN)

Indicators

CFNEN Example

This instruction compares successive (left-to-right) bytes in one field with
corresponding bytes in another field. It compares one byte pair at a time until it
finds a not equal condition OR until it has exhausted the length count.

Name Operation Operand

[label] CFNEN (reg), (reg)

Code CFNEN exactly like CFEN.
CFNEN compares the leftmost byte in the second field to the leftmost byte in

the first field, and sets indicators to reflect the result. Both registers are increased
by 1, and now point to the bytes to the right of the ones just compared. If the
two bytes were not equal, CFNEN is finished. If they were equal, register 7 is
decreased by 1, and the next bytes to the right are compared. When CFNEN is
finished:

• R 7 contains 0 (if CFNEN did not find a not equal condition) or the number
of byte pairs not compared, plus 1 (if it found a not equal condition).

• The first operand (reg) points to the byte to the right of the last byte
compared in the first field.

• The second operand (reg) points to the byte to the right of the last byte
compared in the second field.

When CFNEN is finished, the indicators reflect the result of the last compare.
See "Using Compare Instructions" for a description of the indicator settings.

CFNEN (R4), (Rl)

Assume that:

• R7 contains X'OOOD'.
• The field whose starting address is in R4 contains, in hexadecimal:

FF FF FF 12 12 12 12 12 12 12 12 12 12
(R4 points to the leftmost byte, X'FF').

• The field whose starting address is in R 1 contains, in hexadecimal:
12 FF FF FF FF FF FF FF FF FF FF FF FF
(R1 points to the leftmost byte, X'12').

CFNEN compares the leftmost byte in the second field, X '12', to the leftmost
byte in the first field, X'FF'. R4 and R 1 are increased by 1, and now point to
the next bytes to the right. Because the two bytes were not equal, CFNEN is
finished. R7 contains X'OOOD', R1 and R4 point to the bytes to the right of the
ones just compared.

Machine Instructions 4 - 83

Compare Byte Immediate (CBI)

Indicators

CHI Example

Compare Doubleword (CD)

Indicators

CD Example

4 - 84 SC34-0124

This instruction compares a specified register to a I-byte absolute value or
expression, and sets indicators to reflect the result.

Name Operation Operand

[label] CBI byte, reg

For byte, code an 8-bit value in the range -128 to 127 (arithmetic) or 0 to
255 (logical). CBI expands this value to 16 bits by propagating the sign bit to
the left of the byte value. This value is then used in the comparison.

Note. A logical value in the range 128 to 255 will propagate a sign bit of one
to the left.

See "Using Compare Instructions" for a description of the indicator settings.

eBI 125,R7

Assume that R7 contains X'02A6'. CBI expands X'7D' (the equivalent of
decimal 125) to 16 bits by propagating the sign bit (zero) to the left. CBI then
compares X'02A6' to X'007D', and sets arithmetically greater than and logically
greater than conditions.

This instruction compares:

• A double word in a register pair to a doubleword in storage, or
• A doubleword in storage to a double word in storage,

and sets indicators to reflect the result.

Name Operation Operand

[label] CD
addr4, reg
addr5, addr4

See "Using Compare Instructions" for a description of the indicator settings.

CD DWORD, R2

Assume that:

• DWORD contains X'OOE4EICO', and
• The register pair R2,R3 contains X'OI8P3A66'.

CD compares the two values, and sets arithmetically greater than and
logically greater than conditions.

()

c

c

c

Compa,.e Wo,.d (CW)

Indicators

CW Example

This instruction compares:

• A word in a register to a word in a register,
• A word in a register to a word in storage, or
• A word in storage to a word in storage,

and sets indicators to reflect the result.

Name Operation Operand

reg, reg
[label] CW addr4, reg

addrS, addr4

See "Using Compare Instructions" for a description of the indicator settings.

CW WORD,R3

Assume that WORD contains X'369C' and register 3 contains X'OD02'. CW
compares the two values, and sets arithmetically less than and logically less than
conditions.

Compa,.e Wo,.d Immediate (eWl)

Indicators

CWI Example

This instruction compares:

• A word in a register to a 1-word absolute value or expression, or
• A word in storage to a 1-word absolute value or expression,

and sets indicators to reflect the result.

Name Operation Operand

[label] CWI
word, reg
word, addr4

See "Using Compare Instructions" for a description of the indicator settings.

CWI -766.~

The immediate word value is equal to X'FD02'. Assume that register 0 contains
X'369C'. CWI compares the values, and sets arithmetically greater than and
logically less than conditions.

Scan Byte Field Equal and Dec,.ement (SFED)
This instruction compares successive bytes in a field (right-to-Ieft) to a byte in a
register until it either finds an equal condition or exhausts the length count.

Name Operation Operand

[label] SFED reg, (reg)

Machine Instructions 4 - 85

Indicators

SFED Example

Before coding SFED, code instructions to:

• Load register 7 with the number of bytes in the field to be scanned.
• Load reg so that bits 8-15 of the register contain the byte that the field is to 0

be scanned for.
• Load the (reg) register with the address of the rightmost byte in the field to .)

be scanned.

SFED compares the rightmost byte in the field to the reg byte, and sets
indicators to reflect the result. The (reg) register is decreased by 1, and now
points to the byte to the left of the one just compared. If the two bytes were
equal, SFED is finished. If they were not equal, register 7 is decreased by 1, and
the next byte is compared.

When SFED is finished, the indicators reflect the result of the last compare. See
"Using Compare Instructions" for a description of the indicator settings.

SFED R2, (R4)

Assume that:

• Register 7 contains X'0003', the size of the byte field to be scanned.
• Bits 8-15 of register 2 contain X'6D', the byte to be compared to the field.
• The contents of the byte field defined by register 4 are, in hexadecimal:

A4 6D 53
where R4 points to the rightmost byte in the field (X'53').

SFED compares X'53' to X'6D', then decreases R4 by 1. Because the two
bytes were not equal, SFED decreases R7 by 1. Now, R4 points to the next byte t",
to the left of the one just compared, and R7 contains X'0002', the number of \ ,
bytes yet to be compared. SFED compares the byte in the field (X'6D') to the
R2 byte (X'6D'), and again decreases R4 by 1. Because the two bytes were
equal, SFED is done. R4 points to X'A4', and R7 contains X'0002',

Scan Byte Field Equal and Increment (SFEN)

4 - 86 SC34-0124

This instruction compares successive bytes in a field (left-to-right) to a byte in a
register until it either finds an equal condition or exhausts the length count.

Name Operation Operand

[label] SFEN reg, (reg)

c

"-0 ·····

c

o

'Indicators

SFEN Example

Before coding SFEN, code instructions to:

• Load register 7 with the number of bytes in the field.
• Load reg so that bits 8-15 of the register contain the byte that the field is to

be scanned for.
• Load the (reg) register with the address of the leftmost byte in the field.

SFEN compares the leftmost byte in the field to the reg byte, and sets
indicators to reflect the result. The (reg) register is increased by 1, and now
points to the byte to the right of the one just compared. If the two bytes were
equal, SFEN is finished. If they were not equal, register 7 is decreased by 1, and
the next byte is compared.

When SFEN is finished, the indicators reflect the result of the last compare. See
"Using Compare Instructions" for a description of the indicator settings.

SFEN R5, (Rl)

Assume that:

• Register 7 contains X'0005', the size of the byte field to be scanned.
• Bits 8-15 of register 5 contain X'OO', the byte to be compared to the field.
• The contents of the byte field defined by register 1 are, in hexadecimal:

10 83 B5 4A FF
where R 1 points to the leftmost byte in the field (10).

SFEN compares X' 10' to X'OO', then increases R 1 by 1. Because the two
bytes were not equal, SFEN decreases R7 by 1. Now, Rl points to the next byte
to the right of the one just compared, and R7 contains X'0004', the number of
bytes yet to be compared. Because no byte in the field is equal to the byte in
R5, SFEN compares until it exhausts the field. When SF EN is finished, R 1
points to the byte to the right of X'FF'. R 7 contains X'OOOO'.

Scan Byte Field Not Equal and Decrement (SFNED)

Indicators

This instruction compares successive bytes in a field (right-to-Ieft) to a byte in a
register until it either finds a not equal condition or exhausts the length count.

Name Operation Operand

[label] SFNED reg, (reg)

Code SFNED exactly like SFED.
SFNED compares the rightmost byte in the field to the reg byte, and sets

indicators to reflect the result. The (reg) register is decreased by 1, and now
points to the byte to the left of the one just compared. If the two bytes were not
equal, SFNED is finished. If they were equal, register 7 is decreased by 1, and
the next byte is compared.

When SFNED is finished, the indicators reflect the result of the last compare.
See "Using Compare Instructions" for a description of the indicator settings.

Machine Instructions 4 - 87

SFNED Example
SFNED R3, (R6)

Assume that:

• Register 7 contains X'0009', the size of the byte field to be scanned.
• Bits 8-15 of register 3 contain X'FF', the byte to be compared to the field.
• The contents of the field defined by register 6 are, in hexadecimal:

FF FF 00 FF FF FF FF FF FF where R6 points to the rightmost byte in the
field.

SFNED compares the rightmost byte in the field to the reg byte, then
decreases R6 by 1. Because the two bytes were equal, SFNED decreases R 7 by
1, and compares the next byte to the left. SFNED continues until it reaches the
byte X'OO'. It compares the reg byte to X'OO', decreases R6 by 1, and, because
the two bytes were unequal, SFNED is finished. R 7 contains X'0003'.

o

Scan Byte Field Not Equal and Increment (SFNEN)

Indicators

SFNEN Example

4 - 88 SC34-0124

This ~nstruction compares successive bytes in a field (left-to-right) with a byte in
a register until it either finds a not equal condition or exhausts the length count.

Name Operation Operand

[label] SFNEN reg, (reg)

Code SFNEN exactly like SFEN.
SFNEN compares the leftmost byte in the field to the reg byte, and sets

indicators to reflect the result. The (reg) register is increased by 1, and now f ~

points to the byte to the right of the one just compared. If the two bytes were , #

not equal, SFNEN is finished. If they were equal, register 7 is decreased by 1,
and the next byte is compared.

When SFNEN is finished, the indicators reflect the result of the last compare.
See "Using Compare Instructions" for a description of the indicator settings.

SFNEN RII, (R 1)

Assume that:

• Register 7 contains X'0004'.
• Bits 8-15 of RO contain X'OO'.
• The byte field defined by Rl contains:

0000 00 00
where R 1 points to the leftmost byte.

Because the reg byte is equal to every byte in the field, SFNEN compares
until R 7 contains X'OOOO'. When SFNEN is finished, R 1 points to the right of
the last byte compared.

c

c

Logical Instructions
AND Word Immediate (NWI)

Indicators

NWI Example

Exclusive OR Byte (XB)

Indicators

XB Example

This instruction performs an AND operation between an immediate word value
and a register.

Name Operation Operand

{label] NWI word, reg [,reg]

Note the optional third operand. If you code this third operand, NWI places its
result into that register, leaving the second operand unchanged. Otherwise, the
result is placed in the register specified by the second operand. In either case, the
word operand remains unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the result.

NWI X' 13Al ' ,R6,R3

In this example, the immediate value looks like this:
0001 0011 1010 0001
Assume that register 6 contains:
0101 1101 11100111
The result that NWI places in register 3 is:
0001 0001 1010 0001

This instruction performs an exclusive OR between a byte in a register and a
byte in storage.

Name Operation Operand

{label] XB
reg, addr4
addr4, reg

If you code the reg,addr4 form, XB exclusive ORs bits 8-15 of reg and the
byte at addr4, placing the result at addr4. The register is unchanged.

In the addr4,reg form, XB places the result in bits 8-15 of reg, leaving bits
0-7 unchanged. The byte at addr4 is not altered.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 8-bit result.

XB BYTE6,R3

Assume that the byte at BYTE6 contains:
0001 1101
and bits 8-15 of register 3 contain:

Machine Instructions 4 - 89

01100110
The result that XB places in bits 8-15 of R3 is:
0111 1011

Exclusive OR Doubleword (XD)

Indicators

XD Example

Exclusive OR Word (XW)

Indicators

XW Example

4 - 90 SC34-0124

This instruction performs an exclusive OR between a doubleword in a register
pair and a double word in storage.

Name Operation Operand

[label] XD
reg, addr4
addr4, reg

For the reg operand, code the first register of a pair. If you code R3, for
example, XD uses the register pair R3,R4. If you code R7, XD uses the pair
R7,RO.

XD exclusive ORs the first operand to the second, and places the result in the
second operand. The first operand remains unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 32-bit result.

XD DWORD,R7

Assume that the doubleword at DWORD contains:
0111 1011 0001 1101 0110 0110 0111 1011
and the register pair R7,RO contains:
0001 1101 0110 0110 0111 1011 1011 1100
The result that XD places in R 7 ,RO is:
011 0 0110 0111 1011 0001 1101 1100 0111

This instruction performs an exclusive OR between:

• A register and a register, or

Name Operation Operand

reg, reg

[label] XW
reg, addr4
addr4, reg
longaddr, reg

XW exclusive ORs the first operand to the second, placing the result in the
second operand. The first operand remains unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 16-bit result.

XW (R6)*,Rj

(\

\ #

c

c

c

o

In this example (coded in longaddr,reg form), the first operand is the word
whose address is the contents of storage at the location defined by register 6.
Assume that this word contains:
a 11 a 0111 000 1 1100
and register a contains:
a 111 10 11 000 1 1101
The result that XW places in RO is:
0001 1100 0000 0001

Exclusive OR Word Immediate (XWI)

Indicators

XWI Example

Invert Register (VR)

Indicators

This instruction performs an exclusive OR between a I-word absolute expression
and a register.

Name Operation Operand

[label] XWI word, reg [,reg]

Note that there is an optional third operand. If you code it, XWI places the
result in this register, leaving the second operand unchanged. Otherwise, the
result is placed in the register defined by the second operand. In either case, the
word operand remains unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 16-bit result.

XWI X' j6BD' ,Rl,R5

The immediate value, X'06BD', looks like this:
0000 a 11 a 1 a 11 1101
Assume that Rl contains:
0110 1001 1000 0001
The value that XWI places in R5 is:
a 11 a 11 11 00 11 1 1 00

This instruction produces the ones complement of the contents of the specified
register.

Name Operation Operand

[label] VR reg[,regJ

Note the optional second operand. If you code this register, VR places the
result (in ones complement form) in that register, leaving the first operand
unchanged. If you don't code the second operand, VR places the complement
back into the source register.

The carry indicator and overflow indicators are unchanged. The other indicators
are changed to reflect the result.

Machine Instructions 4 - 91

VR Example

OR Byte (OB)

Indicators

OB Example

I

OR Doubleword (OD)

4 - 92 SC34-0t24

VR R3,R4

Assume that register 3 contains:

10011 0100 0101 0110 I
o 15

After execution of VR, register 4 contains:

11100 1011 1010 1001 I
o 15

Register 3 is unchanged.

This instruction performs an OR operation between:

• A byte in a register and a byte in storage, or
• A byte in storage and another byte in storage.

Name Operation Operand

reg, addr4
[label] OB addr4, reg

addr5, addr4

If you code the reg,addr4 form, OB ORs bits 8-15 of reg and the byte at
addr4, placing the result at addr4. The register is unchanged.

In the addr4,reg form, OB places the result in bits 8-15 of reg, leaving bits t '
0-7 unchanged. The byte at addr4 is not altered. \ ¥

If you code addr5,addr4, the result is placed at addr4, leaving addr5
unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 8-bit result.

OB (R5) * • (R2) *
In this example (coded in addr5,addr4 form), the first operand is the byte in
storage whose address is the contents of storage at the location defined by
register 5. Assume that this byte contains:
0111 0001
The second operand is the byte in storage whose address is the contents of
storage at the location defined by register 2. Assume that this byte contains:
0001 0100
The result that OB places in the byte specified by the second operand is:
0111 0101

This instruction performs an OR operation between:

• A double word in a register pair and a doubleword in storage, or
• A double word in storage and another doubleword in storage. (:

G

Indicators

on Example

c. OR Word (OW)

Indicators

ow Example

c

Name Operation Operand

reg, addr4
[label] OD addr4, reg

addrS, addr4

For the reg operand, code the first register of a pair. If you code R3, for
example, OD uses registers 3 and 4. If you code R 7, OD uses the pair R 7 ,RO.

ODORs the first operand to the second, and places the result in the second
operand. The first operand remains unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 32-bit result.

OD (R7),(Rl)

In this example (coded in addr5,addr4 form), the first operand is the double word
in storage whose address is in register 7. Assume that this double word contains:
011 0 0110 0111 1011 0001 1101 1100 0111
The second operand is the double word in storage whose address is the contents
of register 1. Assume that this doubleword contains:
0111 1011 0001 1101 0110 011 0 0111 1011
The result that OD places in the doubleword defined by the second operand is:
01111111011111110111111111111111

This instruction performs an OR operation between:

• A register and a register,
• A register and a word in storage, or
• A word in storage and another word in storage.

Name Operation Operand

reg, reg
reg, addr4

[label] OW addr4, reg
longaddr, reg
addrS, addr4

OW ORs the first operand to the second, and places the result in the second
operand. The first operand remains unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the result.

ow (R5,3),R4

In this example (coded in longaddr,reg form), the first operand is the word in
storage that is 3 bytes past the address specified by register 5. Assume that this
word contains:

Machine Instructions 4 - 93

0111101100011101
and register 4 contains:
0001 1100 0000 0001
The result that OW places in register 4 is:
0111 1111 000 1 1101 o

OR Word Immediate (OWl)

Indicators

OWl Example

Reset Bits Byte (RBTB)

4 - 94 SC34-0124

This instruction performs an OR operation between:

• A I-word absolute expression and a register, or
• A I-word absolute expression and a word in storage.

Name Operation Operand

[label] OWl
word, reg[,reg]
word, addr4

Note the optional third operand in the word,reg,{regJ form. If you code this
third operand, the result of the OR is placed in the register you code, leaving the
second operand unchanged. Otherwise, OWl places the result in the register
specified for the second operand. In either case, the word operand remains
unchanged.

If you code the word.addr4 form, the result is placed in addr4, leaving the
word operand unchanged.

Note. The word operand is an absolute value or expression in the range
-32768 to +32767 or a to 65535.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the result.

OWl X' 13Al ' ,WORD

In this example (coded in word,addr4 form), the immediate value looks like this:
0001 0011 1010 0001
Assume that the word at storage location WORD is:
0100 0101 0110 0111
The result that OWl places in WORD is:
0101 0111 11100111

This instruction operates on a byte, setting specified bits to zero.

Name Operation Operand

reg, addr4
[label] RBTB addr4, reg

addrS, addr4

RBTB finds the bits that are on in the byte defined by the first operand. It
then turns off the corresponding bits in the byte defined by the second operand.
The first operand is unchanged.

If you code the reg,addr4 form or the addr4,reg form, RBTB uses bits 8-15 (-::
of reg, leaving bits 0-7 unchanged.

c~

c

Indicators

RBTB Example

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 8-bit result.

RBTB R3,BYTES

In this example (coded in reg,addr4 form), assume that bits 8-15 of R3 contain:
0111 0010
and the byte at BYTES contains:
0010 1111
Because the 1, 2, 3, and 6 bits of the R3 byte are on, RBTB turns off the
corresponding bits in BYTES:
0000 1101

Reset Bits Doubleword (RBTD)

Indicators

RBTD Example

Reset Bits Word (RBTJV)

This instruction operates on a doubleword, setting specified bits to zero.

Name Operation Operand

reg, addr4
[label] RBTD addr4, reg

addrS, addr4

RBTD finds the bits that are on in the doubleword defined by the first
operand. It then turns off the corresponding bits in the doubleword defined by
the second operand. The first operand is unchanged.

For reg. code the first register of a pair. For example, if you code R5, RBTD
uses registers 5 and 6. If you code R 7, RBTD uses the pair R 7 ,RO.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the result.

RBTD 4(R3,48)*,R6

In this example (coded in addr4,reg form), the location of the double word
defined by addr4 is computed as follows: The contents of R3, added to 48. form
an address. The contents of storage at that location are added to 4, forming the
address of the doubleword. Assume that this double word contains:
0011 0 101 0110 0 111 1111 111 0 11 0 1 11 00
and the register pair R6,R7 contains:
0000 0010 0100 0110 1000 1100 1110 1111
RBTD finds the bits that are on in the first operand, and sets the corresponding
bits off in the second operand. The result that RBTD leaves in R6,R7 is:
0000 0010 0000 0000 0000 0000 0010 0011

This instruction operates on a word, setting specified bits to zero.

Machine Instructions 4 - 95

Indicators

RBTW Example

Name Operation Operand

reg, reg
reg, addr4

[label} RB1W addr4, reg
longaddr, reg
addrS, addr4

RBTW finds the bits that are on in the word defined by the first operand. It
then turns off the corresponding bits in the word defined by the second operand.
The first operand is unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the result.

RBTW (R6,36)*,(R2)+

In this example (coded in addr5,addr4 form), the location of the word defined
by addr5 'is computed as follows: The contents of R6, plus 36, form an address.
The contents of storage at that location are the address of the word. Assume that
this word contains:
0000 0100 0101 0111
The second word is at the address defined by the contents of R2. (After RBTW,
R2 is increased by 2, the number of bytes addressed by this instruction.) Assume
that this word contains:

o

1100 1111 1011 0001 f
The result that RBTW leaves in the second operand is: 4 "
1100 1011 1010 0000

Reset Bits Word Immediate (RBTWI)

Indicators

RBTWI Example

4 - 96 SC34-0124

This instruction operates on a word, setting to zero the bits specified by an
immediate value.

Name Operation Operand

[label] RBTWI
word, addr4
word, reg[,reg]

RBTWI finds the bits that are on in the immediate value defined by the word
operand. It then turns off the corresponding bits in the word defined by the
second operand. The first operand remains unchanged.

Note the optional third operand in the word,reg[,regj form. If you code this
register, RBTWI places the result there, leaving the second operand unchanged.
If you do not code the third operand, the result is placed in the second operand.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the result.

RBTWI X'45671,R~,Rl ('
./

o

c'

o

Set Bits Byte (SBTB)

Indicators

SBTB Example

In this example (coded in word,reg{,regJ form), the immediate word value looks
like this:
0100 0101 0110 0111
Assume that RO contains:
0111 0110 01 0 1 0100
The result that RBTWI places in R 1 is:
0011 0010 0001 0000
The immediate value and RO are unchanged.

This instruction operates on a byte, setting specified bits to one.

Name Operation Operand

reg, addr4
[label] SBTB addr4, reg

addr 5, addr4

SBTB finds the bits that are on in the byte defined by the first operand. It
then turns on the corresponding bits in the byte defined by the second operand.
The first operand is unchanged.

If you code the reg,addr4 form or the addr4,reg form, SBTB uses bits 8-15 of
reg, leaving bits 0-7 unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 8-bit result.

SBTB SET,R7

In this example, assume that the SET byte contains:
0001 1000
Assume that bits 8-15 of R 7 contain:
0010 0110
The result that SBTB places in bits 8-15 of R 7 is:
0011 1110
The SET byte is unchanged, as are bits 0-7 of R 7.

Set Bits Doubleword (SBTD)
This instruction operates on a doubleword, setting specified bits to one.

Name Operation Operand

reg, addr4
[label] SBTD addr4, reg

addrS, addr4

SBTD finds the bits that are on in the double word defined by the first
operand. It then turns on the corresponding bits in the doubleword specified by
the second operand. The first operand is unchanged.

For reg, code the first register of a pair. For example, if you code R5, SBTD
uses registers 5 and 6. If you code R7, SBTD uses the pair R7,RO.

Machine Instructions 4 - 97

Indicators

SBTD Example

Set Bits Word (SBTW)

Indicators

SBTW Example

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 32-bit result.

SBTD RO. (R2)

In this example, assume that the register pair RO,R1 contains:
0000 0110 0001 1101 0010 1010 0100 1111
and the doubleword defined by the address in R2 contains:
0111 0000 0000 0000 0000 0000 0000 1111
The result that SBTD places in the doubleword specified by the second operand
is:
0111 011 0 0001 1101 0010 10 1 a 0100 1111
Registers 0, 1, and 2 are unchanged.

This instruction operates on a word, setting specified bits to one.

Name Operation Operand

reg, reg
reg, addr4

[label] SBTW addr4, reg
longaddr, re g
addr 5, addr4

SBTW finds the bits that are on in the word defined by the first operand. It
then turns on the corresponding bits in the word specified by the second
operand. The first operand is unchanged.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the 16-bit result.

SBTW R5, R2

In this example, assume that R5 contains:
0001 0001 0000 0000
and R2 contains:
0001 0010 0011 0100
The value that SBTW places in R2 is:
0001 0011 0011 0100
Register 5 is unchanged.

Set Bits Word Immediate (SBTWl)

4 - 98 SC34-0124

This instruction operates on a word, setting to one the bits specified by an
immediate operand.

Name Operation Operand

[label] SBTWI
word, reg [,reg]
word, addr4

n ,)

c
Indicators

SBTWI Example

Test Bit (TBT)

c

Indicators

TBT Example

o

SBTWI finds the bits that are on in the immediate value defined by the word
operand. It then turns on the corresponding bits in the word defined by the
second operand. The first operand remains unchanged.

Note the optional third operand in the word,reg[,reg] form. If you code this
register, SBTWI places the result there, leaving the second operand unchanged. If
you do not code the third operand, the result is placed in the second operand.

The carry and overflow indicators are unchanged. The remaining indicators
reflect the result.

SBT~JI X' 1234 1 .R3,RO

In this example (coded in word,reg[,reg] form), the immediate word value looks
like this:
0001 0010 0011 0100
Assume that R3 contains:
a 1 1 1 101 1 000 1 11 00
The result that SBTWI places in RO is:
0111 10 11 00 11 1100
The immediate value and R3 are unchanged.

This instruction tests a single bit, and sets an indicator to reflect the result.

Name Operation Operand

[label] TBT. (reg, bitdisp)

To find the bit to be tested, TBT uses the contents of reg as a byte address,
and the value of bitdisp as a displacement from the byte address.

Note. Bitdisp must be in the range 0-63.

Here is what TBT does:

• It turns off the zero and negative indicators, then
• It tests the specified bit.
• If the bit is zero, TBT turns on the zero indicator; if the bit is one, TBT turns

on the negative indicator.

The zero and negative indicators reflect the result of the test. The remaining
indicators are unchanged.

TBT (R7,3)

Assume that:

• R7 contains X'0420'.
• The byte at address 0420 contains:

0000 1111

TBT turns off the zero and negative indicators, then tests bit number 3 (the
fourth bit in the byte). Because the bit is zero, TBT turns on the zero indicator.

Machine Instructions 4 - 99

Test Bit and Invert (TBTV)

Indicators

TBTV Example

Test Bit and Reset (TBTR)

Indicators

TBTR Example

4 - 100 SC34-0l24

This instruction tests a single bit, and sets an indicator to reflect the result. After
setting the appropriate indicator, TBTV unconditionally inverts the tested bit.

Name Operation Operand

[label] TBTV (reg, bitdisp)

TBTV computes the address of the bit in the same way as TBT, and follows
the same procedure for testing the bit and setting the indicator.

The zero and negative indicators reflect the result of the test. The remaining
indicators are unchanged.

TBTV (R7,3)

Assume that:

• R7 contains X'0420'.
• The byte at address 0420 contains:

0000 1111

TBTV turns off the zero and negative indicators, then tests bit number 3 (the
fourth bit in the byte). Because the bit is zero, TBTV turns on the zero
indicator. TBTV inverts the tested bit, and the byte now looks like this:
0001 1111 t '

\. ,

This instruction tests a single bit, and sets an indicator to reflect the result. After
setting the appropriate indicator, TBTR unconditionally sets the tested bit to
zero.

Name Operation Operand

[label] TBTR (reg, bitdisp)

TBTR computes the address of the bit in the same way as TBT, and follows
the same procedure for testing the bit and setting the indicator.

The zero and negative indicators reflect the result of the test. The remaining
indicators are unchanged.

Assume that:

• R2 contains X'0348'.
• The byte at address 0348 contains:

1010 1110 C··"'"
;

c

o

Test Bit and Set (TBTS)

Indicators

TBTS Example

TBTR turns off the zero and negative indicators, then tests bit number 0 (the
first bit in the byte). Because the bit is one, TBTR turns on the negative
indicator. TBTR sets the tested bit to zero, and the byte now looks like this:
00101110

This instruction tests a single bit, and sets an indicator to reflect the result. After
setting the appropriate indicator, TBTS unconditionally sets the tested bit to one.

Name Operation Operand

[label] TBTS (reg, bitdisp)

TBTS computes the address of the bit in the same way as TBT, and follows
the same procedure for testing the bit and setting the indicator.

The zero and negative indicators reflect the result of the test. The remaining
indicators are unchanged.

TBTS (R3,S)

Assume that:

• R3 contains X'8680'.
• The byte at address 8680 contains:

1101 0010

TBTS turns off the zero and negative indicators, then tests bit number 5 (the
sixth bit in the byte). Because the bit is zero, TBTS turns on the zero indicator.
TBTS sets the tested bit to one, and the byte now looks like this:
1101 0110

Test Word Immediate (TWI)
This instruction tests specified bits within a word, and sets an indicator to reflect
the result.

Name Operation Operand

[label] TWI
word, reg
word, addr4

For the word operand, code a I-word mask. TWI finds the bits that are on in
the mask and tests the corresponding bits in the word defined by the second
operand. TWI clears the zero and negative result indicators, then sets them as
follows:

• If the mask bits or all of the tested bits are zeros, TWI turns on the zero
indicator.

• If all the tested bits are ones, TWI turns on the negative indicator.
• If the tested bits are a combination of zeros and ones, TWI sets no indicators

(sets a positive condition).

Machine Instructions 4 - 101

Indicators

TWI Example

4 - 102 SC34-0124

The even, carry, and overflow indicators are unchanged. The remaining indicators
reflect the result.

TWI X' 13Al' ,R4

The word mask looks like this:
0001 0011 1010 0001
Assume that R4 contains:
1011 0111 1110 0001
Because all the tested bits are ones, TWI turns on the negative indicator.

()

f
, 1#

C .. ' ,

c

o

Processor Status Instructions
Copy Level Status Register (CPLSR)

Indicators

CPLSR Example

Set Indicators (SEIND)

Indicators

SEIND Example

Stop (STOP)

This instruction loads the contents of the current Level Status Register (LSR)
into a specified register.

Name Operation Operand

[label] CPLSR reg

Note. For information about the contents of the LSR see Chapter 3 of this
manual.

All indicators are unchanged.

CPLSR R5

The contents of the LSR are placed in R5, and the LSR remains unchanged.

This instruction stores the contents of bits 0-4 of a specified register into the
result indicators in the Level Status Register (bits 0-4).

Name Operation Operand

[label] SEIND reg

SEIND stores bits 0-4 of reg into the even, carry, overflow, negative, and
zero indicators. Bits 5-15 of the Level Status Register are unchanged. Bits 5-15
of the register are ignored.

The indicators contain the values specified by bits 0-4 of reg.

SEIND Rl

Assume that register 1 contains:
11010000 1101 0110
The result that SEIND places into bits 0-4 of the Level Status Register is:

Bit 0 even= 1
Bit 1 carry = 1
Bit 2 overflow=O
Bit 3 negative = 1
Bit 4 zero=O

This instruction causes the processor to enter the stop state.

Machine Instructions 4 - 103

Indicators

Supervisor Call (SVC)

Indicators

4 - 104 SC34-0t24

Name Operation Operand

[label] STOP [ubyte]

For the ubyte operand, you can optionally code a I-byte unsigned absolute
value or expression. The processor ignores this value, so you can use it for a flag
or indicator.

Note. ubyte defaults to zero when it's not coded.

For STOP to stop the processor, the processor must have a full-function
console, and the auto-IPL switch must be in the "Diagnostic Mode" position.
Otherwise, STOP is executed as a no-operation instruction, causing control to be
passed to the next sequential instruction.

All indicators are unchanged.

This instruction interrupts the program being executed, then passes control to the
supervisor so it can perform the service specified by the operand.

Name Operation Operand

[label] SVC [ubyte]

For the ubyte operand, you can optionally code a I-byte unsigned absolute
value or expression. The value is loaded into the low-order byte of R 1. The
high-order byte of R1 is set to zero. Control is passed to the address that is in
location X'OOI2'. For more information about supervisor state, refer to the
processor description manual for your processor.

All indicators are unchanged.

t '\ , ,

c

o

c

o

Privileged Instructions
Copy Address Key Register (CPAKR) (4955 Processor Only)

Indicators

CPAKR Example

This instruction copies the value in bits 0-15 from the Address Key
Register(AKR) into a storage location or a register.

Name Operation Operand

[label] CPAKR
addr4
reg

If you code the addr4 operand, CP AKR copies the contents of the AKR into
bits 0-15 of this word.

If you code the reg operand, the contents of the AKR are copied into bits
0-15 of the specified register.

All indicators are unchanged.

The contents of the AKR are stored in R6, and the AKR remains unchanged.

Copy Console Data Buffer (CPCON)

Indicators

CPCON Example

This instruction places the contents of the console data buffer into a specified
register.

Name Operation Operand

[label] CPCON reg

Notes.

1. If your processor does not have the full-function console, the contents of the
register are undefined.

2. For information about the console data buffer, refer to the processor
description manual for your processor. See the Preface of this manual for
titles and order numbers.

All indicators are unchanged.

CPCON R5

The contents of the console data buffer are placed in R5, and the console data
buffer remains unchanged.

Copy Cu"ent Level (CPCL)
The Copy Current Level (CPCL) instruction loads the current level into the
specified register.

Machine Instructions 4 - 105

Indicators

CPCL Example

Name Operation Operand

[label] CPCL reg

All indicators are unchanged.

CPCL R3

Assume that your program is currently running on level 1. The value that CPCL
places in register 3 is X'OOO 1'.

o

Copy In-Process Flags (CPIPF)

Indicators

CPIPF Example

This instruction places the value of the in-process flag for each level (bit 9 of
each Level Status Register) into a word in storage.

Name Operation Operand

[label] CPIPF addr4

For addr4, code the address of the word in storage where the in-process flags
are to be stored. Each bit in the word then corresponds to an interrupt level's
in-process flag. For example, bit 0 of the word corresponds to level O-if the (..
in-process flag for level 0 is on, CPIPF places a 1 in bit 0 of addr4; if the flag is ,."
off, CPIPF places a 0 in bit 0 of addr4. Bit 1 of addr4 corresponds to levell,
bit 2 corresponds to level 2, and so on.

Bits corresponding to nonexistent levels are set to zero, and the in-process
flags remain unchanged.

All indicators are unchanged.

CPIPF (Rl)

Assume that the in-process flags for each level are:

Level 0 Flag=O
Level 1 Flag=O
Level 2 Flag= 1
Level 3 Flag=O

The result that CPIPF leaves in the word (whose address is in register 1) is:
0010 0000 0000 0000

Copy Instruction Space Key (CPISK) (4955 Processor Only)

4 - 106 SC34-0124

This instruction copies the instruction space key field (bits 13-15) within the
Address Key Register (AKR) into bits 13-15 of either a word in storage or a
register. Bits 0-12 are set to zero.

(.~

-'

c

Indicators

CPISK Example

Name Operation Operand

[label) CPISK
addr4
reg

If you code the addr4 operand, CPISK copies the contents of bits 13-15 from
the AKR into bits 13-15 of a word in storage defined by addr4.

If you code the reg operand, CPISK copies the contents of bits 13-15 of the
AKR into bits 13-15 of the specified register.

All indicators are unchanged.

CP I SK R4

Assume the AKR contains X'O 112 ':

AKR

I 0000 0001 0001 0010 I
o 15

After execution of CPISK register 4 contains:

R4

I 0000 0000 0000 0010 I
o 15

The instruction space key field is copied into bits 13-15, and bits 0-12 are set
to zero. The AKR remains unchanged.

Copy Inte""pt Mask Register (CPIMR)

Indicators

CPIMR Example

This instruction places the contents of the Interrupt Mask Register into a word in
storage.

Name Operation Operand

[label] CPIMR addr4

Each bit of the Interrupt Mask Register corresponds to an interrupt level; for
example, bit 3 corresponds to level 3. Bits corresponding to nonexistent levels are
always zero. CPIMR leaves the Interrupt Mask Register unchanged.

All indicators are unchanged.

CPIHR (R3)*

In this example, CPIMR places the contents of the Interrupt Mask Register into
the word whose address is the contents of storage at the location defined by
register 3.

Machine Instructions 4 - 107

Copy Level Status Block (CPLB)

Indicators

CPLB Example

This instruction places the contents of a specified Level Status Block into a
word-aligned 22-byte storage area that you define.

Name Operation Operand

[label] CPLB reg, addr4

The reg operand defines the interrupt level whose Level Status Block is to be
copied. Load this register so that the level is specified in bits 12-15, with bits
0-11 containing zeros. CPLB ignores bits corresponding to nonexistent levels.

The addr4 operand defines the first word of a 22-byte (11-word) storage area
where the Level Status Block is to be stored. CPLB stores the Level Status Block
in the following format:

Main storage
address
(LSB pointer) Instruction address register

Address key register *

Level status register

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

o 15

*4955 Processor only

The Level Status Block remains unchanged.

All indicators are unchanged.

ePLB R6,BLOCK2

Assume that register 6 contains X'0002'. CPLB places the Level Status Block for
interrupt level 2 into the 22-byte storage area that begins at BLOCK2.

Copy OperandI Key (CPOOK) (4955 Processor Only)

4 - 108 SC34-0124

This instruction copies the operand 1 key field (bits 5-7) within the Address Key
Register (AKR) to bits 13-15 of either a word in storage or a register.

Name Operation Operand

[label] CPOOK
addr4
reg

o

c

o

c

c

Indicators

CPOOK Example

If you code the addr4 operand, CPOOK copies the contents of bits 5-7 from
the AKR into bits 13-15 of the word defined by addr4.

If you code the reg operand, CPOOK copies the contents of bits 5-7 from the
AKR into bits 13-15 of the specified register.

All indicators are unchanged.

CPOOK R4

Assume that the AKR contains X'OI20':

AKR

10000 0001 0010 0000 I
o 15

After execution of CPOOK, register 4 contains:

R4

I 0000 0000 0000 000 1 f
a 15

The operand 1 key field within the address key register (AKR), has been
copied into bits 13-15 while bits 0-12 have been set to zero. The AKR remains
unchanged.

Copy Operand2 Key (CPOTK) (4955 Processor Only)

Indicators

CPOTK Example

This instruction copies the operand 2 key field (bits 9-11) within the Address
Key Register (AKR) into bits 13-15 of either a word in storage or a register.

Name Operation Operand

[label] CPOTK
addr4
reg

If you code the addr4 operand, CPOTK copies the contents of bits 9-11 from
the AKR into bits 13-15 of the word defined by addr4.

If you code the reg operand, CPOTK copies the contents of bits 9-11 from
the AKR into bits 13-15 of the specified register.

All indicators are unchanged.

CPOTK R4

Assume that the AKR contains X'OI20':

AKR

I 0000 0001 0010 0000 I
a 15

After execution of CPOTK register 4 contains:

R4

I 0000 0000 0000 0010 I
a 15

Machine Instructions 4 - 109

The operand 2 key field within the address key register (AKR) has been
copied into bits 13-15 while bits 0-12 have been set to zero. The AKR remains
unchanged.

Copy Processor Status and Reset (CPPSR)

Indicators

CPPSR Example

This instruction places the contents of the Processor Status Word into a specified
word in storage and resets bits 0-12 of the PSW.

Name Operation Operand

[label] CPPSR addr4

CPPSR stores the Processor Status Word in the address specified by addr4.
(For the format of the Processor Status Word, see "Registers" in Chapter 3.)

CPPSR resets bits 0-12 of the PSW, leaving bits 13-15 unchanged.

All indicators are unchanged.

In this example, here is how the address is calculated: The contents of register 2,
plus 64, form an address. The contents of storage at that location, plus 120, form
the address where the Processor Status Word is to be stored.

Copy Segmentation Register (CPSR) (4955 Processor Only)

4 - 110 SC34-0124

This instruction places the contents of a specified segmentation register into a
doubleword in storage.

Name Operation Operand

[label] CPSR reg, addr4

For reg, code the register that defines-in the following form-the segmenta­
tion register whose contents you want to store:

Bits 0-4 the 5 high-order bits of the logical storage address
Bits 5-7 the address key
Bits 8-15 zeros

For addr4, code the address of the doubleword into which the segmentation
register is to be stored. CPSR copies the register into the double word in the
following form:

Bits 0-12 physical segment address
Bit 13 if 1, the contents of the segmentation register are valid; if 0, any

attempt to use this register results in program check.
Bit 14 if 1, the block is read-only; any attempt to write into the block

while the processor is in problem state results in program check. Bit
14 is ignored when the processor is in supervisor state or during a
cycle-steal access.

Bits 15-31 zeros

()

f ~

, #

(.:

c

c

c

Indicators

CPSR Example

CPSR leaves the segmentation register unchanged.

All indicators are unchanged.

CPSR R3,DWORD

Assume that register 3 contains:
0110 1100 0000 0000
and segmentation register 108 contains:
1110 0001 1101 0000
CPSR places the following result into the doubleword at DWORD:
1110 000 1 1101 0000 0000 0000 0000 0000

Copy Storage Key (CPSK) (4955 Processor Only)

Indicators

CPSK Example

Diagnose (DIAG)

This instruction places the contents of a specified storage key into a byte in
storage.

Name Operation Operand

[label] CPSK reg, addr4

For protection purposes, storage is divided into blocks of 204g bytes. Each
block has associated with it a storage key register.

The reg operand defines the general purpose register that contains, in the
following form, the number of the storage key register to be copied:

Bits 0-4 the block number in main storage (0-31)
Bits 5-15 zeros

CPSK places the storage key into the byte at addr4, in the following form:

Bits 0-3 zeros
Bits 4-6 the value of the storage key
Bit 7 read-only bit

The storage key remains unchanged.

All indicators are unchanged.

CPSK R4,KEY

Assume that R4 contains:
1010 1000 0000 0000
Because bits 0-4 of R4 contain X'IS', CPSK copies the storage key register for
block 21. Assume that the value of this key is 4 and the read-only bit is on.
CPSK places X'09' into the byte at KEY.

The storage key register and register 4 remain unchanged.

This machine-dependent instruction controls and tests various hardware
functions. It is not intended for use in problem programs or supervisor programs.

Machine Instructions 4 - III

Disable (DIS)

Indicators

DIS Example

Enable (EN)

4- 112 SC34-0124

Name Operation Operand

[label] DIAG ubyte

For the specific meaning of the ubyte field, and for a discussion of the
instruction's diagnostic functions, refer to the processor description manual for
your processor. See the Preface of this manual for titles and order numbers.

This instruction disables:

• Storage protection,
• Equate operand spaces,
• Address translator, or
• Summary mask,

depending on the value you specify for a I-byte mask.

Name Operation

[label] DIS ubyte

The mask has the following format:

Bits 0-3 unused, must be coded as zeros
storage protection
equate operand spaces

Operand

Bit 4
Bit 5
Bit 6 address translator-this bit is ignored if the translator is not fitted

on your system.
Bit 7 summary mask

Notes.

1. On the 4953 Processor, bits 0-6 of the mask are not used.
2. This instruction is not interruptable.

All indicators are unchanged.

In this example, bits 4 and 7 of the DIS mask are ON; storage protection and
the summary mask are disabled.

The Enable (EN) instruction enables:

• Storage protection,
• Equate operand spaces,
• Address translator, or
• Summary mask,

depending on the value you specify for a I-byte mask.

o

c

c

o

Indicators

EN Example

Name Operation Operand

[label] EN ubyte

The mask has the following format:

Bits 0-3 unusp-d, must be coded as zeros
Bit 4 storage protection
Bit 5 equate operand spaces
Bit 6 address translator-this bit is ignored if the translator is not fitted

on your system.
Bit 7 summary mask

Note. On the 4953 Processor, bits 0-6 of the mask are not used.

All indicators are unchanged.

In this example, bit 5 of the EN mask is ON; equate operand spaces is enabled.

Interchange Operand Keys (IOPK) (4955 Processor Only)

Indicators

IOPK Example

Level Exit (LEX)

This instruction interchanges the contents of operand 1 key and operand 2 key in
the Address Key Register.

Name Operation Operand

[label] IOPK

Note. For information about the contents of the Address Key Register see
IBM 4955 Processor and Processor Features Description, GA34-0021.

All indicators are unchanged.

IOPK

Assume that the AKR contains X'0120'. After execution of IOPK, the AKR
would contain X'021 0'.

This instruction causes the processor to exit the current level.

Name Operation Operand

[label] LEX [ubyte]

Machine Instructions 4 - 113

Indicators

LEX Example

Operate I/O (10)

Indicators

For the ubyte operand, you can optionally code a I-byte unsigned absolute
value or expression. The processor ignores this value, so you can use it for a flag
or indicator.

Note. ubyte defaults to zero when it's not coded.

LEX does one of two things:

• If no interrupts are pending, it places the processor into wait state.
• If there are interrupts waiting, the one with the highest priority is given

control.

All indicators are unchanged.

LEX 175

Assume that the processor encountered this LEX while it was running on level 0,
and there are interrupts waiting on levels 1 and 3. The processor exits level 0,
and begins servicing the first interrupt for level 1.

This instruction initiates input/output operations from the processor.

Name Operation Operand

[label] 10 longaddr

o

f ~

For the longaddr operand, code the address of the Immediate Device Control , ~
Block (lDCBi that defines the I/O operation you want to perform.
For a detailed discussion of the IDCB, refer to the processor description manual
for your processor. See the Preface of this manual for titles and order numbers.

This instruction sets a condition code using the even, carry, and overflow
indicators. See "Other Uses of Indicators" in Chapter 3 of this manual.

Set Address Key Register (SEAKR) (4955 Processor Only)

Indicators

4 - 114 SC34-0124

This instruction sets a specified value in the Address Key Register (AKR) (bits
0-15) from a storage location or a register.

Name Operation Operand

[label] SEAKR
addr4
reg

If you code the addr4 operand the SEAKR instruction loads the contents of
this word into bits 0-15 of the AKR.

If you code the reg operand the contents of the specified register are placed in
bits 0-15 of the AKR.

All indicators are unchanged. c

c

o

SEAKR Example

SEAKR R2

Assume that R2 contains X'1030':

R2

I 0001 0000 0011 0000 I
o 15

After execution of SEAKR the AKR contains:

AKR
I 0001 0000 0011 0000 I
o 15

Register 2 remains unchanged.

Set Console Data Lights (SECON)

Indicators

This instruction places the contents of a specified register into the console data
lights.

Name Operation Operand

[label] SECON reg

Note. If your processor does not have the full-function console, SECON is
treated as a no-operation.

All indicators are unchanged.

Set Instruction Space Key (SEISK) (4955 Processor Only)

Indicators

SEISK Example

This instruction sets the instruction space key field (bits 13-15) within the
Address Key Register (AKR) from the contents of the word (bits 13-15) defined
by the addr4 or reg operand. Bits 0-12 in the AKR remain unchanged.

Name Operation Operand

[label] SEISK
addr4
reg

If you code the addr4 operand the SEISK instruction loads bits 13-15 of this
word into bits 13-15 of the AKR.

If you code the reg operand bits 13-15 of the specified register are placed in
bits 13-15 of the AKR.

All indicators are unchanged.

SEISK R4

Assume that R4 contains X'0002':

Machine Instructions 4 - 115

R4

I 0000 0000 0000 0010 I
o 15

After execution of SEISK bits 13-15 of the AKR contain:

AKR
I xxxx xxxx xxxx xO 1 0 I
o 15

Bits 0-12 of the AKR remain unchanged. Register 4 also remains unchanged.

Set Inte""pt Mask Register (SEIMR)
This instruction loads the Interrupt Level Mask Register from a word in storage.

Name Operation Operand

[label] SEIMR addr4

For addr4, code the address of the location that contains the value to be
loaded into the Interrupt Level Mask Register.

Each bit in the register corresponds to an interrupt level-bit 0 corresponds to
level 0, bit 1 corresponds to levell, and so on. If the bit for a given level is 1,
that level is enabled and can accept interrupts.

SEIMR leaves the word in storage unchanged.

Note. Set to zero any bits that correspond to nonexistent interrupt levels.

o

Indicators I "

SEIMR Example

All indicators are unchanged.

SEIHR (R2)

In this example, assume that the word whose address is in R2 contains:
1011 0000 0000 0000
SEIMR loads this value into the Mask Register, leaving the word in storage
unchanged. Now levels 0, 2, and 3 can accept interrupts. All other levels are
disabled.

Set Level Status Block (SELB)

4 - 116 SC34-0124

This instruction loads a specified Level Status Block from a word-aligned 22-byte
storage area that you define.

Name Operation Operand

[label] SELB reg, addr4

The reg operand defines the interrupt level whose Level Status Block is to be
loaded. Load reg so that the level is specified in bits 12 through 15, with bits
1-11 containing zeros. Bit 0 is the inhibit-trace-interrupt bit. SELB ignores bits
that correspond to nonexistent levels. c

c

c

o

Indicators

SELB Example

The addr4 operand defines the first word of a 22-byte (II-word) storage area
that is to be loaded into the Level Status Block. The storage area has the
following format:

Main storage
address
(LSB pointer) Instruction address register

Address key register *
Level status register

Register 0

Register I

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

o 15

*4955 processor only

The 22-byte storage area remains unchanged.

Note. If this instruction turns off bit 8 of the Level Status Register, the
processor leaves supervisor state. This instruction is the only way to exit
supervisor state.

The indicators reflect the contents of the LSR that this instruction loaded into
word 2 of the Level Status Block.

SELB R4,BLOCK3

Assume that R4 contains X'0003'. SELB places the contents of the 22-byte
storage area that begins at BLOCK3 into the Level Status Block for level 3. If
the LSR trace bit is on in the LSB, trace interrupts can occur after SELB has
executed.

Set Operandl Key (SEOOK) (4955 Processor Only)
This instruction sets the operand 1 key field (bits 5-7) within the Address Key
Register (AKR) from the contents of the word (bits 13-15) defined by the addr4
or reg operand. Bits 0-4 and 8-15 of the AKR remain unchanged.

Name Operation Operand

[label] SEOOK
addr4
reg

If you code the addr4 operand the SEOOK instruction loads bits 13-15 of this
word into bits 5-7 of the AKR.

If you code the reg operand bits 13-15 of the specified register are placed in
bits 5-7 of the AKR.

Machine Instructions 4 - 117

Indicators

SEOOK Example

All indicators are unchanged.

SEOOK R3

Assume R3 contains X'0002':

R3

I 0000 0000 0000 0010 I
o 15

After execution of SEOOK bits 5-7 of the AKR contain:

AKR
I xxxx xOl0 xxx x xxxx I
o 15

Bits 0-4 and 8-15 of the AKR remain unchanged. Register 3 also remains
unchanged.

Set Operand2 Key (SEOTK) (4955 Processor Only)

Indicators

SEOTK Example

This instruction sets the operand 2 key field (bits 9-11) within the Address Key
Register (AKR) from the contents of the word (bits 13-15) defined by the addr4
or reg operand. Bits 0-8 and 12-15 of the AKR remain unchanged.

Name Operation Operand

[label] SEOTK addr4
reg

If you code the addr4 operand the SEOTK instruction loads bits 13-15 of this
word into bits 9-11 of the AKR.

If you code the reg operand, bits 13-15 of the specified register are placed in
bits 9-11 of the AKR.

All indicators are unchanged.

SEOTK R4

Assume register 4 contains X'OOOl':

R4

I 0000 0000 0000 0001 I·
o 15

After execution of SEOTK bits 9-11 of the AKR contain:

AKR
Ixxxx xxxx xOOl xxx x I
o 15

Bits 0-8 and 12-15 remain unchanged. Register 4 also remains unchanged.

Set Segmentation Register (SESR) (4955 Processor Only)

4 - 118 SC34-0124

This instruction places the contents of a doubleword in storage into a specified
segmentation register.

') \j

(~

c

c

o

Indicators

SESR Example

Name Operation Operand

[label] SESR reg, addr4

For reg, code the register that defines the segmentation register you want to
load. See CPSR for the form of this register.

For addr4, code the address of the doubleword whose contents are to be
loaded into the segmentation register. See CPSR for the form of this doubleword.

SESR loads the doubleword into the segmentation register, leaving the
doubleword unchanged.

All indicators are unchanged.

SESR R5 J (R3)

Assume that register 5 contains:
1100 0011 0000 0000
and doubleword whose address is in register 3 contains:
0010 1111 0010 0000 0000 0000 0000 0000
SESR places the following result into segmentation register 195:
0010 1111 0010 0000 0000 0000 0000 0000

Set Storage Key (SESK) (4955 Processor Only)

Indicators

SESK Example

This instruction places a specified value into a storage key.

Name Operation Operand

[label] SESK reg, addr4

The reg operand defines the general purpose register that contains, in the
following form, the number of the storage key register to be loaded:

Bits 0-4 the block number in main storage (0-31)
Bits 5-15 zeros

The value that SESK loads into the storage key is in the following form:

Bits 0-3 zeros
Bits 4-6 the value of the storage key
Bit 7 read-only bit

The contents of reg and addr4 remain unchanged.

All indicators are unchanged.

SESK R7, (Rl)

Assume that register 7 contains:
1101 1000 0000 0000

Machine Instructions 4 - 119

4 - 120 SC34-0124

Because bits 0-4 of R7 contain decimal 27, SESK loads the storage key
register 27. Assume that the byte whose address is in register 1 contains X'07'.
SESK loads this 8-bit value into storage key 27. The contents of R7, Rl, and the
byte in storage remain unchanged. 0

(\

\ ,

c

o

c

o

Floating-Point Instructions
Note. To use the floating-point instructions you must have either the
floating-point hardware feature or the floating-point emulator.

Floating-Point Number Representation
Each floating-point number is represented as a combination of two items: a
numeric fraction and a power of 16 by which the fraction is multiplied. The
power of 16 is called the characteristic, by analogy with logarithms. For instance,
the number 1 is represented by 1/16 x 161. The 1/16 is stored as a hexadecimal
fraction: 0.1 16 The characteristic is written in excess 64 notation, which means
that every characteristic is 6410 greater than the power actually represented.
Thus, the characteristic + 1 is represented as:

=1+64 = 6510 = 41 16

The characteristic -1 becomes:

-1+64 = 6310 = 3F16

The excess 64 method is used to avoid the need of a sign for the characteristic.
The processor permits two types of floating-point numbers, called

single-precision and double-precision. In each, the excess 64 exponent is
contained in bits 1-7 of the first byte (bit 0 is the sign of the number). In a
single-precision number, the fractional part consists of six hexadecimal digits
contained in the next three bytes.

Fraction

S
i Charac-
g teristic
n

In a double-precision number, the fractional part consists of 14 hexadecimal
digits contained in the next seven bytes.

Fraction

A single-precision number, therefore, occupies two words, and a double­
precision number four words.

The number +3 would be represented as 4130 0000 in (single-precision)
floating point, and would be stored as:

4

~­
Characteristic

Sign

3 o o o o o

0000 0000 0000 0000 0000

~-....... ------
Fraction (3 bytes)

Machine Instructions 4 - 121

The number - 3 would be represented as C 130 0000 0000 0000 in
(double-precision) floating point, and would be stored as:

C 1 3 o o o o o

~ _________ ~ ______ OO_O_O ___ ~i 0000 ()()()() 0000 0000 I

~---------------~----------------Characteristic Fraction (7 bytes)

Sign

Here are examples of some single-precision floating-point representations:

Decimal Floa ting-Poin t

0 0000 0000
1 4110 0000
9 4190 0000

16 4210 0000
4096 4410 0000

-1 C110 0000
-15 C1FO 0000
0.5 4080 0000

0.001 3E41 8937

And here are some double-precision numbers:

Decimal Floating-Point

0 0000 0000 0000 0000
2 4120 0000 0000 0000

12345678912345 4BB3 A73C E5B5 9000
0.1 4019 9999 9999 999A

-15 C1 FO 0000 0000 0000

When a floating-point number has no leading hexadecimal zeros in its fraction,
it is said to be normalized. Note that a normalized floating-point number might
have as many as three leading binary zeros in its fraction. For example, the
floating-point number 4120 0000 is normalized, because the first hexadecimal
digit of the fraction (200000) is not zero. The binary representation of the first
digit of the fraction, however, is 0010, which has two leading binary zeros.
Define Constant (DC) entries in assembler language are always converted to
normalized form, and floating-point numbers in storage are assumed to be
normalized.

Floating-point representation can express decimal values ranging from about
5.4 x 10-79 to about 7.2 x 1075 .

Floating-point Registers and Instructions
Each interrupt level has four 64-bit floating-point registers, numbered 0, 1, 2,
and 3. All floating-point arithmetic and compare instructions use at least one of
these registers, placing results (from arithmetic instructions) in the register
defined by the second operand.

The entire set of floating-point instructions is available for both single­
precision and double-precision operands. When you code a single-precision

o

(~ , .;

arithmetic instruction-FA, FD, or FS-all operands and results are 32-bit C·· .. ·
floating-point values. The rightmost 32 bits of the floating-point registers do not

4 - 122 SC34-0124

o

c

o

participate and are unchanged. The product in Floating Multiply (FM) is 64 bits,
and occupies a full register. When you code a single-precision move
instruction-FMV or FMVC-the rightmost 32 bits of the floating-point register
are set to zero. When you code a double-precision instruction-such as FAD,
FDD, or FSD-all operands and results occupy 64 bits.

Copy Floating Level Block (CPFLB)

Indicators

CPFLB Example

Floating Add (FA)

Indicators

FA Example

This instruction places the contents of the floating-point registers for a specified
level into a word-aligned 32-byte storage area. This is a privileged instruction.

Name Operation Operand

[label] CPFLB reg, addr4

For reg, code the general-purpose register that contains, in bits 12-15, the
interrupt level whose floating-point registers you want to store. Bits 0-11 of reg
must contain zeros.

For addr4, code the address of the first byte of the 32-byte storage area where
the registers are to be stored.

The floating-point registers and reg are unchanged.

All indicators are unchanged.

CPFLB R6, FREGS

Assume that R6 contains X'OOO 1'. CPFLB copies the contents of the floating­
point registers for level 1 into the 32-byte storage area that begins at FREGS.

This instruction adds two single-precision floating-point values, and places the
normalized result into a floating-point register.

Name Operation Operand

[label] FA addr4, freg
freg, freg

The floating-point value specified by the first operand is added to the contents
of the [reg specified by the second operand. The first operand is unchanged.

The even, carry, and overflow indicators are reset. The overflow indicator is
turned on if an underflow or overflow occurs. If there is an underflow, the even
indicator is also turned on. The carry indicator is reset, and the remaining
indicators reflect the result.

FA FR3,FR1

Assume that:

Machine Instructions 4 - 123

• Bits 0-31 of FR3 contain 4150 0000 (the floating-point hexadecimal
representation of decimal 5).

• Bits 0-31 of FRO contain 41CO 0000 (the floating-point hexadecimal
representation of decimal 12). 0
FA adds the two values, and places 4211 0000 (the floating-point hexadecimal .

representation of decimal 17) into FRO. FR3 is unchanged, and bits 32-63 of
FRO contain zeros.

Floating Add Double (FAD)

Indicators

FAD Example

Floating Compare (FC)

4 - 124 SC34-0124

This instruction adds two double-precision floating-point numbers, and places the
normalized result into a floating-point register.

Name Operation Operand

[label] FAD addr4, freg
freg, freg

The floating-point value specified by the first operand is added to the contents
of the [reg specified by the second operand. The first operand is unchanged.

The even, carry, and overflow indicators are reset. The overflow indicator is
turned on if an underflow or overflow occurs. If there is an underflow, the even
indicator is also turned on. The carry indicator is reset, and the remaining
indicators reflect the result.

FAD FLOAT,FR2

Assume that:

• The 64 bits at FLOAT contain 41 CO 0000 0000 0000 (the double-precision,
floating-point, hexadecimal representation of decimal 12).

• The 64 bits in FR2 contain 422F 0000 0000 0000 (the double-precision,
floating-point, hexadecimal representation of decimal 47).

FAD adds the two values, and places 423B 0000 0000 0000 (the double­
precision, floating-point, hexadecimal representation of decimal 59) into FR2.
FLOAT is unchanged.

This instruction compares two single-precision numbers, and sets indicators to
reflect the result.

Name Operation Operand

[label] Fe freg, freg

FC compares bits 0-31 of the two registers. See "Compare Instructions" for a
discussion of the compare process. FC leaves both operands unchanged.

(,
\ ,

c

c

c

o

Indicators

FC Example

The even, carry, and overflow indicators are reset. If an underflow or overflow
occurs, the overflow indicator is turned on. If there is an underflow, the even
indicator is also turned on. The remaining indicators reflect the result.

Fe FR1. FRl

Assume that:

• Bits 0-31 of FRO contain 41FO 0000, the floating-point equivalent of decimal
15 .

• Bits 0-31 of FRI contain CIFO 0000, the floating-point equivalent of decimal
-15.

FC compares the two values, and sets an arithmetically less than condition.

Floating Compare Double (FCD)

Indicators

FCD Example

Floating Diagnose (FDIAG)

This instruction compares two double-precision floating-point numbers, and sets
indicators to reflect the result.

Name Operation Operand

[label] FeD freg, freg

FCD compares the two registers. See "Compare Instructions" for a discussion
of the compare process. FCD leaves both operands unchanged.

The even, carry, and overflow indicators are reset. If an underflow or overflow
occurs, the overflow indicator is turned on. If there is an underflow, the even
indicator is also turned on. The remaining indicators reflect the result.

FeD FR3,FR2

Assume that:

• FR3 contains 4211 0000 0000 0000, the floating-point equivalent of decimal
17.

• FR2 contains 4111 9999 9999 999A, the floating-point equivalent of decimal
1.1.

• FCD compares the two values, and sets an arithmetically less than condition.

This instruction tests various functions of the floating-point hardware. It is not
intended for use in problem programs or supervisor programs.

Name Operation Operand

[label] FDIAG

For a discussion of the instruction's diagnostic functions, see IBM 4955
Processor and Processor Features Description, GA34-0021.

Machine Instructions 4 - t 25

Floating Divide (FD)

Indicators

FD Example

This instruction divides one single-precision floating-point number into another.

Name Operation Operand

[label) FD
addr4, freg
freg, freg

Bits 0-31 of the [reg defined by the second operand are divided by the 32-bit
value defined by the first operand. FD places the result into bits 0-31 of the
second operand, leaving the first operand unchanged. Bits 32-63 of the second
operand are unchanged. FD saves no remainder.

Note. If you try to divide by zero, neither operand is altered.

The even, carry, and overflow indicators are reset, then:

If this occurs: These indicators are turned on:

Overflow Overflow
Underflow Overflow & Even
Attempt to divide by zero Carry & Overflow

The remaining indicators are set to reflect the result.

FD FLOAT,FR2

Assume that:

• Bits 0-31 of FR2 contain 4310 2000, the floating-point equivalent of decimal
258.

• The 32 bits at FLOAT contain 4256 0000, the floating-point equivalent of
decimal 86.

FD divides: 4310 2000 divided by 4256 0000 = 4130 0000 (in decimal it
would be 258 divided by 86 = 3), and places the result into bits 0-31 of FR2.
Bits 32-63 of FR2 are unchanged.

Floating Divide Double (FDD)

Indicators

4 - 126 SC34-0124

This instruction divides one double-precision floating-point number into another.

Name Operation Operand

[label) FDD
addr4, freg
freg, freg

The contents of the [reg defined by the second operand are divided by the
64-bit value defined by the first operand. FDD places the result into the second
operand, leaving the first operand unchanged. FDD saves no remainder.

Note. If you try to divide by zero, neither operand is altered.

See "Indicators" under FD. c

o

c

o

FDD Example

Floating Move (FMV)

Indicators

FMV Example

FDD F~,FR3

Assume that:

• FRO contains 4421 C500 0000 0000, the floating-point equivalent of decimal
8645.

• FR3 contains 472B 2030 9000 0000, the floating-point equivalent of decimal
45,273,865.

FOO divides:
472B 2030 9000 0000 divided by 4421 C500 0000 0000 =

4414 7500 0000 0000
(in decimal it would be 45,273,865 divided by 8645 = 5237), and places the
result into FR3.

This instruction moves a single-precision floating-point number:

• From storage to bits 0-31 of a floating-point register (setting bits 32-63 to
zero),

• From bits 0-31 of one floating-point register to bits 0-31 of another (setting
bits 32-63 of the destination to zero), or

• From bits 0-31 of a floating-point register to a 4-byte storage location.

Name Operation Operand

addr4, freg
[label] FMV freg, freg

freg, addr4

The even, carry, and overflow indicators are reset. The remaining indicators
reflect the new contents of the second operand.

FMV FLOAT. FRl

Assume that:

• FLOAT contains 4501 3C76.
• Bits 0-31 of FRI contain 3F3B 2490.

FMV moves the contents of FLOAT to bits 0-31 of FR 1. After FMV, both
operands contain 4501 3C76. Bits 32-63 of FRI contain zeros.

Floating Move Double (FMVD)
This instruction moves a double-precision floating-point number:

• From storage to a floating-point register,
• From one floating-point register to another, or
• From a floating-point register to an 8-byte storage location.

Name Operation Operand

addr4, freg
[label] FMVD freg, freg

freg, addr4

Machine Instructions 4 - 127

Indicators

FMVD Example

The even, carry, and overflow indicators are reset. The remaining indicators
reflect the new contents of the second operand.

Note. ubyte defaults to zero when it's not coded.

FHVD FR3.FLOAT
Assume that:

• FR3 contains 4112 5CE2 3010 0000.
• FLOAT contains 4200 3458 CDF1 2000.

FMVD moves the contents of FR3 to FLOAT. After FMVD, both operands
contain 4112 5CE2 3010 0000.

Floating Move and Conve,.t (FMVC)

Indicators

FMVC Examples

4 - 128 SC34-0124

This instruction does one of the following:

• Converts an integer to a single-precision floating-point number, loading it into
bits 0-31 of a floating-point register.

• Converts a single-precision floating-point number to an integer, placing it into
a I-word storage location.

Name Operation Operand

[label] FMVC addr4, freg
freg, addr4

If you code the addr4,[reg form, FMVC converts the signed, 2-byte integer at
addr4 to a 32-bit floating-point number, then places it into bits 0-31 of [reg.
Bits 32-63 of [reg are set to zero.

If you code the [reg,addr4 form, FMVC converts bits 0-31 of the floating­
point number in [reg to a signed 2-byte integer, then stores it at addr4. Any
fractional portion of the floating-point number is truncated.

The first operand is unchanged.

The even, carry, and overflow indicators are reset. If you coded addr4,[reg, the
remaining indicators are set to reflect the new contents of the second operand. If
you specified the [reg,addr4 form, the indicators are set as follows: If the
converted number is larger than +215 _1 or less than _215, the carry indicator is
turned on. In this case, the value stored is either the largest (+215 _1) or the
smallest (_215) representable number. The remaining indicators reflect the new
contents of the second operand.

FHVC (RS). FR2

Assume that the word whose address is in R5 contains X'0018' (the equivalent
of decimal 24). FMVC converts this value to floating-point 4218 0000, and
places it into bits 0-31 of FR2. Bits 32-63 of FR2 contain zeros.

FKVC FRjI.INT+2

O? . .J

(

Assume that FRO contains 41CO 0000. FMVC converts this value to X'OOOC'
(the equivalent of decimal 12), and places it into the word that is 2 bytes past
INT. o Floating Move and Convert Double (FMVCD)

Indicators

c
FMVCD Examples

Floating Multiply (FM)

o

This instruction does one of the following:

• Converts an integer to a double-precision floating-point number, loading it
into a floating-point register.

• Converts a double-precision floating-point number to an integer, placing it into
a double word storage location.

Name Operation Operand

[label] FMVCD addr4, freg
freg, addr4

If you code the addr4,freg fonn, FMVCD converts the signed, 4-byte integer
at addr4 to a 64-bit floating-point number, then places it into freg.

If you code the freg,addr4 fonn, FMVCD converts the 64-bit floating-point
number in freg to a signed 4-byte integer, then stores it at addr4. Any fractional
portion of the floating-point number is truncated.

The first operand is unchanged.

The even, carry, and overflow indicators are reset. If you coded addr4,freg, the
remaining indicators are set to reflect the new contents of the second operand. If
you specified the freg,addr4 fonn, the indicators are set as follows: If the
converted number is larger than +231 _1 or less than -231, the carry indicator is
turned on. In this case the value stored is either the largest (+231 _1) or the
smallest (_231) representable number. The remaining indicators reflect the new
contents of the second operand.

FHVCD (R3)*,FR3

R3 contains the address of a storage location. Assume that the double word
whose address is in that location contains X'FFFF EFFF' (the equivalent of
decimal -4097). FMVCD converts this value to floating-point C410 0100 0000
0000, placing it in FR3.

FMVCD FR9',(R6)
Assume that FRO contains 42FF 0000 0000 0000. FMVCD converts this

value to X'OOFF' (the equivalent of decimal 255), placing it into the storage
location whose address is in R6.

This instruction multiplies one single-precision floating-point number by another.

Name Operation Operand

[label] FM
addr4, freg
freg, freg

Machine Instructions 4 - 129

Indicators

FM Example

The 32-bit value defined by the first operand is multiplied by bits 0-31 of the
freg defined by the second operand. FM places the result into bits 0-63 of the
second operand, leaving the first operand unchanged.

The even, carry, and overflow indicators are reset. The overflow indicator is
turned on if an overflow or underflow occurs. If there is an underflow, the even
indicator is also turned on. The remaining indicators are set to reflect the result.

FH FRI, FR3

Assume that:

• Bits 0-31 of FRI contain 4120 0000, the floating-point equivalent of decimal
2.

• Bits 0-31 of FR3 contain 4160 0000, the floating-point equivalent of decimal
6.

FM multiplies the two values, placing the result, 41 CO 0000 0000 0000 (the
floating-point equivalent of decimal 12), in all 64 bits of FR3. FRI is unchanged.

Floating Multiply Double (FMD)

Indicators

FMD Example

Floating Subtract (FS)

4 - 130 SC34-0124

This instruction multiplies one double-precision floating-point number by another.

Name Operation Operand

[label] FMD
addr4, freg
freg, freg

The 64-bit value defined by the first operand is multiplied by the freg defined
by the second operand. FMD places the result into the second operand, leaving
the first operand unchanged.

The even, carry, and overflow indicators are reset. The overflow indicator is
turned on if an overflow or underflow occurs. If there is an underflow, the even
indicator is turned on. The remaining indicators are set to reflect the result.

FHO FLOAT+4,FR2

Assume that:

• The 64 bits at FLOAT +4 contain 4219 0000 0000 0000, the floating-point
equivalent of decimal 25.

• FR2 contains 4140 0000 0000 0000, the floating-point equivalent of decimal
4.

FM multiplies the two values, placing the result, 4264 0000 0000 0000 (the
floating-point equivalent of decimal 100), into FR2. The 64 bits at FLO A T + 4
are unchanged.

This instruction subtracts one single-precision floating-point number from
another.

t , ,

c

o

c

o

Indicators

FS Example

Name Operation Operand

[label] FS addr4, freg
freg, freg

The 32-bit value specified by the first operand is subtracted from bits 0-31 of
the freg defined by the second operand. FS places the normalized result into bits
0-31 of the second operand, leaving the first operand unchanged. Bits 32-63 of
the second operand are set to zero.

The even, carry, and overflow indicators are reset. If an underflow or overflow
occurs, the overflow indicator is turned on. If there is an underflow, the even
indicator is also turned on. The remaining indicators reflect the result.

FS FR1,FR2

Assume that:

• Bits 0-31 of FR 1 contain 4150 0000, the floating-point equivalent of decimal
5.

• Bits 0-31 of FR2 contain 4211 0000, the floating-point equivalent of decimal
17.

FS subtracts FR1 from FR2, leaving 41 CO 0000 (the floating-point equivalent
of decimal 12) in FR2. Bits 32-63 of FR2 are unchanged, as is FRl.

floating Subtract Double (FSD)

Indicators

FSD Example

This instruction subtracts one double-precision floating-point number from
another.

Name Operation Operand

[label] FSD addr4, freg
freg, freg

The 64-bit value specified by the first operand is subtracted from the freg
defined by the second operand. FSD places the normalized result into the second
operand, leaving the first operand unchanged.

The even, carry, and overflow indicators are reset. If an underflow or overflow
occurs, the overflow indicator is turned on. If there is an underflow, the even
indicator is also turned on. The remaining indicators reflect the result.

FSD FR1,FR3

Assume that:

• FR1 contains 4210 0000 0000 0000, the floating-point equivalent of decimal
16.

• FR3 contains 4310 0000 0000 0000, the floating-point equivalent of decimal
256.

Machine Instructions 4 - 131

FSD subtracts FRI from FR3, leaving 42FO 0000 0000 0000 (the floating­
point equivalent of decimal 240) in FR3. FRI is unchanged.

Set Floating Level Block (SEFLB)

Indicators

SEFLB Example

4 - 132 SC34-0124

This instruction loads the floating-point registers for a specified level from a
word-aligned 32-byte storage area. This is a privileged instruction.

Name Operation Operand

[label] SEFLB reg, addr4

For reg, code the general-purpose register that contains, in bits 12-15, the
interrupt level whose floating-point registers you want to load. Bits 0-11 of reg
must contain zeros.

For addr4, code the address of the first byte of the 32-byt~ storage area that
the registers are to be loaded from. The contents of the storage location and reg
are unchanged.

All indicators are unchanged.

SEFLB Rt, (R 1)

Assume that RO contains X'0003'. SEFLB loads the floating-point registers for
level 3 from the 32-byte storage area whose starting address is in register 1.

()

{

\ #'

c:

c~

c

c

Section Contents
Establishing Symbolic Representation 5-3

Assigning Values to Symbols 5-3
EQU-Equate Symbol 5-3
EQUR-Equate Register 5-4

Defining Data 5-5
DC-Define Constant 5-5
Length Attribute Value of Symbols Naming Constants 5-6
Padding and Truncating Constants 5-7
DC Operand Sub field I: Duplication Factor 5-8
DC Operand Subfield 2: Type 5-8
DC Operand Subfield 3: Modifiers 5-9
Length Modifier 5-9
Scale Modifier 5 -1 0
Exponent Modifier 5 -12
DC Operand Sub field 4: Nominal Value 5-14
EBCDIC Character Constant (C) 5-14
ASCII Character Constant (S) 5-15
PTTC/EBCD Character Constant (P) 5-16
Hexadecimal Constant (X) 5-16
Binary Constant (B) 5-17
Fixed-Point Constant (F) 5-18
Fixed-Point Constant (H) 5-19
Fixed-Point Constant (D) 5-19
Floating-Point Constant (E) 5-20
Floating-Point Constant (L) 5-21
A-Type Address Constant 5-21
V-Type Address Constant 5-22
W-Type Address Constant 5-23
N-Type Name Constant 5-23
The DS Instruction 5-24

Parameter Reference (PREF) 5-26
Program Sectioning 5-28

Communication Between Program Parts 5-28
The Source Module 5-28

The Beginning of a Source Module 5-29
The End of a Source Module 5-29
COpy -Copy Predefined Source Coding 5-29
END-End Assembly 5-31

General Information About Control Sections 5-32
Control Sections at Different Processing Times 5-32
Types of Control Sections 5-32
Location Counter Setting 5-32
Length of Control Sections 5-33
First Control Section 5-33
Unnamed Control Section 5-34
External Symbol Dictionary Entries 5 -34

Defining a Control Section 5-35
START -Start Assembly 5-35
CSECT -Start or Resume a Control Section 5-36
DSECT -Start or Resume a Dummy Control Section 5-37
COM-Start or Resume a Common Control Section 5-38
GLOBL-Start or Resume a Global Control Section 5-39
PUSH - Push Section 5-40
POP-Pop Section 5-40

Chapter S. Assembler Instructions

Symbolic Addressing Within Source Modules-Establishing
Addressability 541

USING-Use Base Address Register 542
USING Instruction Format 546
DROP-Drop Base Register 547

Symbolic Addressing Between Source Modules-Symbolic
Linkage 549

To Refer to External Data 5-50
To Branch to an External Address 5-51

ENTRY -Identify Entry Point Symbol 5-52
EXTRN-Identify External Symbol 5-53
WXTRN-Identify Weak External Symbol 5-54

Controlling the Assembler Program 5-55
ORG-Set Location Counter 5-55
ALIGN-Align Location Counter 5-56

Determining Statement Format and Sequence 5-56
ICTL-Input Format Control 5-56
ISEQ-Input Sequence Checking 5-58

Listing Format and Output 5-59
PRINT -Print Optional Data 5-59
TITLE-Identify Assembly Output 5-60
EJECT -Start New Page 5-60
SPACE-Space Listing 5-61

Assembler Instructions 5 - 1

I , ,

(:
5 - 2 SC34-0124

o

Establishing Symbolic Representation
Symbols greatly reduce programming effort and errors. You can define symbols
to represent storage addresses, displacements, constants, registers, and other
elements that make up the assembler language.

Some symbols represent absolute values, while others represent relocatable
address values. Relocatable addresses are associated with:

• Instructions
• Constants
• Storage areas

You can use these defined symbols in the operand fields of instruction
statements to refer to the instruction, constant, or area represented by the
symbol.

Assigning Values to Symbols

EQU-Equate Symbol

The EQU and EQUR instructions assign values to symbols:

• EQU-for symbols other than registers
• EQUR-for symbols that represent registers

EQU assigns absolute or relocatable values to symbols. You can use it for the
following purposes:

• To assign single absolute values to symbols.
• To assign the values of previously defined symbols or expressions to new

symbols, thus allowing you to use different symbolic names for different
purposes.

• To compute expressions whose values are unknown at coding time or difficult
to calculate. The value of the expression is then assigned to a symbol.

You can code the EQU instruction anywhere in a source module after any
source macro definitions you have specified. Note, however, that the EQU
instruction initiates an unnamed control section (private code) if you code it
before the first control section (initiated by a START or CSECT instruction).

The format of the EQU instruction statement is:

Name Operation Operand

label EQU expression

The label field can contain any ordinary symbol. Expression represents a value.
It must always be specified and can have a relocatable or absolute value in the
range -65536 through +65535. The assembler evaluates the expression internally
as a signed 32-bit number. Only the rightmost 16 bits are retained.

You must define all symbols appearing in the expressions in previously coded
instructions-instructions that physically precede this EQU in the source module.

Assembler Instructions 5 - 3

EQUR-Equate Register

5 - 4 SC34-0124

The assembler assigns an absolute or relocatable value to the symbol in the
name field (the label) of the EQU instruction. The length of the symbol is the
length attribute of the leftmost or only term in the operand.

The following examples indicate valid EQU statements and the value (absolute (, ',J-"

or relocatable) assigned to the symbol in the label field of each.

SECTA START •

FULL DC F'33'
AREA OS XL2J1J1
TO OS CL24;
FROM OS CL8j

AOCONS DC A(X,Y,Z)

A EQU X'FF' ABSOLUTE
B EQU *+4 RELOCATABLE
C EQU A*lj$ ABSOLUTE
D EQU FULL RELOCATABLE
E EQU AREA+l~j RELOCATABLE
F EQU TO RELOCATABLE
G EQU FROM-TO ABSOLUTE
H EQU AOCONS RELOCATABLE
I EQU SECTA RELOCATABLE

END

EQUR defines a register symbol (that may be used in addition to the predefined !
register names) by assigning to the symbol the value of an absolute expression. , ..
You can code the EQUR instruction anywhere in a source module after the start
of the program control section and after any other statement that defines
symbols used in the absolute expression on the EQUR instruction. The EQUR
instruction must precede all assembler and machine instructions that use the
register symbol.

The format of the EQUR instruction is:

Name Operation Operand

label EQUR absolute expression

where label is an ordinary symbol given the value of the absolute expression
(value must be in the range 0-7). Any symbols in the absolute expression must
be previously defined (defined in statements coded prior to the EQUR
instruction). The symbol is absolute and its length attribute is 1.

Note. All register specifications in machine instructions must contain a register
symbol, which is either one of the predefined register symbols or has been
defined in a preceding EQUR instruction. These register symbols may only
appear in machine or assembler instructions as a register specification.

c

C~·
.#

Defining Data

DC-Define Constant

c

o

The following examples indicate valid EQUR instructions.

REG1
REG2
REG3
REG4

EQUR 1
EQUR 2
EQUR 3
EQUR A+B (ASSUMING A-3 AND B-1, REG4-4.)

This section describes DC and DS instructions, used to define data constants and
reserve main storage. You can code a label for these instructions and then refer
to the data constant or storage area symbolically in the operands of machine and
assembler instructions. The symbol used as a label represents the address of the
constant or storage area-do not confuse it with the assembled object code for
the constant or contents of the storage area. This data is generated, and storage
is reserved at assembly time and used by the machine instructions at execution
time.

DC defines data constants needed for program execution. The DC instruction
causes the assembler to generate (at assembly time) the binary representation of
the data constant you specify, storing that value in a particular location in the
assembled object module. One DC statement can generate a maximum of 65535
bytes of data (the product of the length and duplication factor must be less than
or equal to 65535).

The DC instruction can generate the following types of constants:

• Binary constants, which define bit patterns
• Character constants (EBCDIC, ASCII, or PTTC/EBCD), which define

character strings or messages
• Hexadecimal constants, which define hexadecimal numeric values
• Fixed-point constants, which define fixed-point numeric values
• Floating-point constants, which define floating-point numeric values
• Address constants, which define addresses or values resulting from expression

evaluation
• Name constants, which define resource references

The format of the DC instruction is:

Name Operation Operand

[label] DC 1 Yalue' f [dup] type[mods] (value) [,opnd 2] ...

The symbol in the name field represents the address of the left most byte of
the assembled constant. The operand in a DC instruction consists of 4 subfields.
The first 3 subfields describe the constant, and the fourth subfield specifies the
nominal value of the constant to be generated.

Subfield Contents

1 Duplication factor (optional)
2 Constant type (required)
3 Modifiers (optional)
4 Nominal value or values (required)

Assembler Instructions 5 - 5

Rules for the DC Operand.

• The type subfield and the nominal value must always be specified.
• The duplication factor and modifier subfields are optional.
• When multiple operands are specified, they can be of different types. (--.. 'Ji:
• When multiple nominal values are specified in the fourth subfield, they must

be separated by commas and be of the same type. The descriptive sub fields
apply to all the nominal values.

Note. Separate constants are generated for each separate nominal value
specified.

No blanks are allowed in the DC instruction:

• Between sub fields
• Between multiple operands
• Within any subfields, unless they occur as part of the nominal value of a C-,

P-, or S-type character constant, or as part of a character self-defining term in
a modifier expression or in the duplication factor subfield

Constants defined by the DC instruction are assembled into an object module
at the location where the DC instruction is coded. The value of the symbol that
names the DC instruction is the address of the leftmost byte of the constant. For
example, the instruction

HEXCON DC XL6'AD'

causes the assembler to generate the 6-byte constant
0000 0000 OOAD
and assign the address of the leftmost byte to the symbol HEXCON.

Length Attribute Value of Symbols Naming Constants

5 - 6 SC34-0124

The length attribute value assigned to symbols in the name field of constants is
equal to:

• The implicit length of the constant when no explicit length is specified in the
operand of the constant or

• The explicitly specified length of the constant.

Note. If more than one operand is present, the length attribute value of the
symbol is the length, in bytes, of the first constant, depending on its implicit or
explicitly specified length.

The following table shows some sample DC instructions for the various
constant types:

Type Implicit length DC Instruction Alignment Value of length
(Bytes) (If explicit length attribute

not specified)

B as needed DC B'101' Byte 1
C as needed DC C'ABCD' Byte 4
P as needed DC P'ABCD' Byte 4
S as needed DC S'ABCD' Byte 4
X as needed DC X'FFFF' Byte 2
F 2 DC F'2' Word 2
H 1 DC H'2' Byte 1
D 4 DC D'2' Word 4
E 4 DC E'1.414' Word 4
L 8 DC L'1.414' Word 8
A 2 DC A(TABLE) Word 2
V 2 DC V(EXTDATA) Word 2
W 2 DC W(WEAKDAT A) Word 2
N 2 DC N(DISK) Word 2

, " ,

c

c

o

Padding and Truncating Constants

The nominal values specified for constants are assembled into storage. The
amount of space available for the nominal value of a constant is determined:

• By the explicit length specified in the second subfield of the operand, or
• If no explicit length is specified, by the implicit length according to the type of

constant defined (see preceding table).

If more space is available than is needed to hold the binary representation of
the nominal value, the extra space is padded:

• With binary zeros on the left for the binary (B), hexadecimal (X), fixed-point
(F, H, and D), address (A) constants

• With binary zeros on the right for floating-point (E and L) constants
• With blank character codes on the right for the character (C, P, and S)

constants

Note. Binary zeros are always assembled for N -, V-and W -type constants.

The following examples indicate the results of padding the different type data
constants.

Constant definition Value assemhled (Hex)

DC B'101 ' 05
DC X'F' OF
DC XL4'C4F' 00000C4F
DC F'255' OOFF
DC H'6' 06
DC D'202010' 0003151 A
DC £'575£2' 44B09COO
DC V73£4' 45B2390000000000
DC AL2(512) 0200
DC CL6'ABCD' CIC2C3C44040
DC SL4'A' 41 AOAOAO
DC P'ABC' E2E4E781

If less space is available than is needed to hold the nominal value, the nominal
value is truncated and part of the constant is lost or the value is assembled as
zero. Truncation of the nominal value is:

• On the left for binary (B) and hexadecimal (X) constants.
• On the right for character (C, P, and S) constants.

The following types of constants are not truncated:

• Fixed-point (F, H, and D) constants are rounded if necessary. If the value
exceeds the allowable range, zeros are assembled into the field.

• Floating-point (E and L) constants are rounded.
• Address (A) is not truncated. If the nominal value cannot be represented in

the space available, the constant is flagged and assembled as zero.

The following examples indicate the results of truncating the different type
data constants.

Assembler Instructions 5 - 7

Constant definition Value assembled (Hex)

DC BL2'Olll1000011110000' FOFO
DC XL4 'FFCOOFFC8' FCOOFFC8
DC A(65535+1) 0000 (*ERROR *)
DC CL2'ABCD' C1C2
DC SL2'ABC' 4142
DC F'32770' 0000 (*ERROR *)
DC F'1.2' 0001
DC H'-160' 00 (*ERROR *)

DC Operand Subfield 1: Duplication Factor

DC Operand Subfield 2: Type

5 - 8 SC34-0124

The duplication factor, if specified, causes the nominal value or multiple nominal
values specified in a constant to be generated the number of times indicated by
the factor. It is applied after the nominal value or values are assembled into one
constant.

The factor can be specified by an unsigned decimal self -defining term or by an
absolute expression enclosed in parentheses. The expression should have a
positive value or be equal to zero. Any symbols used in the expression must have
been previously defined.

The following examples indicate the results of specifying a duplication factor in
the constant definition:

Constant definition Value assembled (Hex)

DC 3F'240' OOFOOOFOOOFO
DC 2F'3,4' 0003000400030004

A EQU 5
DC (A - 3) F'S' 00050005

Notes.
1. A duplication factor of zero is permitted with the following results:

a. No value is assembled.
b. If the zero duplication factor is used on an F-, D-, E-, L-, N-, A-, W-, or

V-type constant, the location counter is forced to a word boundary. A
byte of zeros is placed in the object text.

2. If duplication is specified for an address constant containing a location
counter reference, the value of the location counter reference is not increased
until after the DC instruction is completely processed. Therefore, it
generates 2 words, each containing the address of X.

X DC 2A(*)

The type subfield must be coded. It defines the type of constant to be generated
and is specified by a single letter code as shown below.

The type specification indicates to the assembler:

1. How the nominal value (or values) coded in sub field 4 is to be assembled;
that is, which binary representation the object code of the constant must
have.

2. How much storage the constant is to occupy, according to the implicit length
of the constant if no explicit length specification is present. (For details see
"Padding and Truncating Constants".)

()
\ ;

c'

c

o

Code Type of Constant

C EBCDIC

S ASCII

P PTTC/EBCD

X Hexadecimal

B Binary.

F Fixed-point

H Fixed-point

D Fixed-point

E Floating-point

L Floating-point

A Address

V Address

W Address

N Name

* DC TYPE EXAMPLES
DC C 'AB'
DC S'ASCII I

DC X'FFFA'
DC B' 111_1'
DC F' 12.5'
DC H'-3'
DC 0 I 123f1J1 I
DC E 112.5'
DC L'-12.5'
DC A(ADDRESS)
DC V (EXTERNAL)
DC W(WEAK)
DC. N(DISK)

Machine formats

8-bit code for each character

8-bit code for each character

8-bit code for each character

4-bit code for each digit

I-bit for each digit

Signed, Fixed-point binary; normally 2 bytes (can be I 2 bytes)

Signed, Fixed-point binary; always I byte

Signed, Fixed-point binary; normally 4 bytes (can be I 4 bytes)

Floating-point binary; normally 4 bytes (can be 2 4 bytes)

Floating-point binary; normally 8 bytes (can be 2 8 bytes)

Value of address or expression; I 4 bytes

Space reserved for external address; always one word

Space reserved for external address; always one word

Space reserved for resource reference value; always one word

OBJECT CODE IN HEXADECIMAL
C1 C2 ,

:4153 C3C9: ·C9AJ,
-FFFA - - ~ ,'-

;5
~j$tD
FD
~j; 3!4jC
41 C8, ~;;!4
C 1 C 8 ~J1!4R1 ;'i1i jJ1jfl

___ ~Value of location counter where ADDRESS is defmed)

j~lI;
;JljJ1
%rt!ifi

DC Operand Subfield 3: Modifiers

Length Modifier

The 3 modifiers you can code to describe a constant are:

• The length modifier (L), which explicitly defines the length in bytes desired
for a constant.

• The scale modifier (S), which is only used with the fixed-point or
floating-point constants. (For details, see "Scale Modifier".)

• The exponent modifier (E), which is only used with fixed-point or
floating-point constants, and indicates the power of 10 by which the constant
is to be mUltiplied before conversion to its internal binary format.

If multiple modifiers are used, they must appear in the sequence: length, scale,
exponent.

The length modifier indicates the explicit number of bytes into which the
constant is to be assembled. You code it as Ln, where n is either of the
following:

• A decimal self-defining term. For example:

SDTERH DC

Assembler Instructions 5 - 9

Scale Modifier

5 - 10 SC34-0124

• An absolute expression enclosed in parentheses. It must have a positive value
and any symbols it contains must have been previously defined; that is, in an
instruction that physically precedes this DC in the source module. For
example:

A

I"

EQ.U

DC

6

Xl(A+4)'FF'

When you specify the length modifier:

• Its value determines the number of bytes allocated to a constant. It therefore
determines whether the nominal value of a constant must be padded or
truncated to fit into the space allocated. (See "Padding and Truncating
Constants" .)

• Any boundary alignment normally implied by the constant type is lost. The
constant assembles starting with the next available byte.

• Its value must not exceed the maximum length allowed. (For the allowable
range of length modifiers, see the specifications for the individual constants
and areas in this chapter.)

The scale modifier specifies the amount of scaling (shifting) desired for
fixed-point or floating-point constants. The scale modifier specifies a shifting
count of:

• Binary digits for fixed-point (F, H, and D) constants
• Hexadecimal digits for floating-point (E and L) constants

The scale modifier is written as Sn, where n is either:

• A decimal self -defining term or
• An absolute expression enclosed in parentheses. Any symbols used in the

expression must have been previously defined; that is, in an instruction that
physically precedes this DC in the source module.

Both types of specifications can be preceded by a plus or minus sign; if no
sign is present, a plus sign is assumed.

SCALE

PLUS3

HINUS2

A
EXPRS

FLTPT

DC

DC

DC

EQ.U
DC

DC

FS3 1 2.25 1

FS+3 1 2.25 1

FS-2 I 141 .4 I

4
FS(A*3) 11.8 1

Fixed-point;
the allowable
range for scale
modifier is
-31 to +63

I., .1 , '. Floating-point; ;, =:?~e
o through 14

Scale Modifier for Fixed-point Constants. The scale modifier for fixed-point
constants specifies the power of 2 by which the fixed-point constant is to be

t
\ ,.

multiplied after its nominal value has been converted to a binary representation, C

c

o

but before it is assembled in its final scaled form. Scaling causes the binary point
to move from its assumed fixed position at the right of the rightmost bit position.

Object code (binary)

I
DC FI21 00000000 I 00000010

DC FS+2 1 2' 00000000 00001000

--4

00 0 0.1,~,~ I, DC FS+2 1 2.25 1 00000000
, :

FS-2'8 1
•.. % ..

DC 00000000 00000010

Notes.

1. When the scale modifier has a positive value, it indicates the number of
binary positions to be occupied by the fractional portion of the binary
number.

2. When the scale modifier has a negative value, it indicates the number of
binary positions to be deleted from the integer portion of the binary number.

3. When positions are lost because of scaling (or lack of scaling), rounding
occurs in the leftmost bit of the lost portion. The rounding is reflected in the
rightmost position retained.

4. Scaling must not cause a value overflow condition, nor is it permitted that all
significant bits be lost.

5. The assembler must be able to internally maintain the fixed point number
prior to scaling. The integer portion must be represented in 32 bits.

DC

DC FS-2

OC

DC

Converted to binary representation

Assembled constant

Converted to binary representation

Object code

Binary digits ,..------e Binary
point

_----..... Binary
point

_---- Binary
point

____ A_ss_em_b_l_ed_co_n_s_ta_n_t --,/ 00000000 00001001 11

Assembler Instructions 5 - 11

ROUND

ERROR

Exponent Modifier

5 - 12 SC34-0124

Scale Modifier for Floating-point Constants. The scale modifier for floating-point
constants must have a positive value. It specifies the number of hexadecimal
positions that the fractional portion (mantissa) of the binary representation of a
floating-point constant is to be shifted to the right. The hexadecimal point is (" '. }
assumed to be fixed at the left of the leftmost position in the fractional field. f

When scaling is specified, it causes an unnormalized hexadecimal fraction to be
assembled. (A number is unnormalized when the leftmost positions of the
fraction contain hexadecimal zeros). The magnitude of the constant is retained
because the exponent in the characteristic portion of the constant is adjusted
upward accordingly. When hexadecimal positions are lost, rounding occurs in the
leftmost hexadecimal position of the lost portion. The rounding is reflected in the
rightmost position retained. Scaling must not cause all significant mantissa digits
to be lost.

DC EI41

DC ES2 141

DC E1 3.3 1

DC ES2 1 3.3 1

DC IE LZS,3I 2 I:

j. o. ~ject code'
...... -r-........ --...., ~, in hex

" .

l4~,!?Ji!3±J(
~,- ,! """., '..;..1-_' __

'.1 41134CCCD IJ

)44100102 ,:':

"L ~ ,Error cOndition; t

j
all significance is lost
because of length
j~odifier J

The exponent modifier specifies the power of 10 by which the nominal value of a
constant is multiplied before being converted to its internal binary representation.
You can only use it with the fixed-point (F, H, and D) and floating-point (E and
L) constants. You code the exponent modifier as En, where n is either:

• A decimal self -defining term or
• An absolute expression enclosed in parentheses. Any symbols used in the

expression must be previously defined, that is, in an instruction that physically
precedes this DC in the source module.

You can precede the decimal self -defining term or the expression with a sign;
if no sign is present, a plus sign is assumed. The range for the exponent modifier
is -85 through +75.

C

(,

c

Decimal value Object code
before conver-
sion to binary (Binary digits)
form
-

A EQU 5
B EQU 1

DC F'q' 4] ooooooo~J 00000100]

DC FE2Iq' 400 100000001 I 10010000)

DC FE(A-B*3)'q' 400 1000000011 100100001 I

DC FE-2 Iq;j11 4 J OOOOOOO~ 'I 00000100 l'
Notes.

1. Do not confuse the exponent modifier with the exponent you specify in the
nominal value subfield of fixed-point and floating-point constants. The
exponent modifier affects each nominal value in the operand, whereas the
exponent you code as part of the nominal value subfield affects only that
nominal value. If both types of exponent specification are present in a DC
operand, their values are algebraically added together before the nominal
value is converted to binary form. However, this sum must be within the
permissible range of -85 through +75.

2. The value of the constant, after exponents are applied, must be contained in
the implicit or explicitly specified length of the constant. Also, significance
must not be permitted to be completely lost.

DC

DC

DC

DC

EI~.2.25.~~'

'y

FE-2f1 12.25E+8J1I

Values assembled
in decimal

225,2.25,2.25

225,225,22500

225

Assembler Instructions 5 - 13

Storage Requirements for Constants. The total amount of storage required to
assemble a DC instruction operand is any bytes skipped for alignment, plus the
product of:

• The length (implicit or explicit), and ()
• The duplication factor (if specified) _J

The maximum amount of storage allowed for a constant is 65535 bytes.

DC Operand Subfield 4: Nominal Value

EBCDIC Character Constant (C)

5 - 14 SC34-0124

You must code the nominal value subfield in a DC instruction. It defines the
value of the constant (or constants) described and affected by the subfields that
precede it. It is this value that assembles into the internal binary representation
of the constant.

Only one nominal value is allowed for C-, S-, P-, B-, and X-type constants.
How nominal values are specified and interpreted by the assembler is explained
in the sections that describe each individual constant. The formats for specifying
nominal values are described in the following table.

Format of nominal value sub/ields

Constant Single Multiple
type

C
p

S 'value' Not allowed
B
X

F 'value' 'value,value, ... , value'
H !/ D
E separated by commas
L \
A ,
V (value) (value,value, ... , value)
W
N

This character constant specifies character strings that the assembler converts
into their internal EBCDIC representation.

The maximum number of bytes generated by one DC statement is 65535.
Each character specified in the nominal value subfield assembles into one byte.

Multiple nominal values are not allowed; the assembler considers the comma as
a valid string character. Scale and exponent modifiers are not allowed.

Note. When ampersands or apostrophes are to be included in the assembled
constant, double ampersands or double apostrophes must be specified; they are
assembled as a single ampersand or single apostrophe.

The contents of the subfields defining a character constant are described by
the following examples.

C~

c

C

* DC INSTRUCTION DESCRIPTION
* DUP DC

LENGTH DC

RANGE DC

VALUE DC
DC
DC
DC

ENCLOS DC
*
~V~TI DC

PNt; DC
~,J"!,,,.,~,,, :
!BUNt, DC

ASCII Character Constant (S)

4;C I I DUPLICATION FACTOR IS ALLOWED

C'ABCDI IMPLICIT LENGTH AS NEEDED

CL256 1 I RANGE FOR LENGTH IS 1 to 256 BYTES

C'AB121$' VALUE REPRESENTED BY CHARACTERS
C I I I t TWO APOSTROPHES ASSEMBLE AS ONE
C'&&t TWO AMPERSANDS ASSEMBLE AS ONE
C' , I COMMA ASSEMBLES AS COMMA

C· NOMINAL VALUE ENCLOSED BY
APOSTROPHES

CtAB,C' MULTIPLE NOMINAL VALUES NOT POSSIBLE

CL2 tAt PADDED WITH EBCDIC BLANKS AT RIGHT

CL1'ABC I TRUNCATION OF VALUE AT RIGHT

This character constant specifies character strings, such as message text, that the
assembler converts into their internal ASCII representation. ASCII code is
generated as a 7 -bit character code with the high-order bit of zero.

The maximum number of bytes generated by one DC statement is 65535.
Each character specified in the nominal value subfield assembles into one byte.

Multiple nominal values are not allowed; the assembler considers the comma as
a valid string character. Scale and exponent modifiers are not allowed.

Note. Specify double ampersands or double apostrophes for each single
ampersand or single apostrophe you want assembled into the constant.

* DC INSTRUCTION DESCRIPTION
* DUP DC 4;5 1 I DUPLICATION FACTOR IS ALLOWED

LENGTH DC S'ABCD' IMPLICIT LENGTH AS NEEDED

RANGE DC SL256 , I RANGE FOR LENGTH IS 1 to 256 BYTES

VALUE DC S'ABI2IS 1 VALUE REPRESENTED BY CHARACTERS
DC S II II TWO APOSTROPHES ASSEMBLE AS ONE
DC S'&&' TWO AMPERSANDS ASSEMBLE AS ONE
DC SI I , COMMA ASSEMBLES AS COMMA .

ENCLOS DC S' NOMINAL VALUE ENCLOSED BY
* APOSTROPHES

MULTI DC S'AB,C' MULTIPLE NOMINAL VALUES NOT POSSIBLE

PAD OC SL2'AI PADDED WITH ASCII BLANKS AT RIGHT

TRUNC DC SL 1 'ABC' TRUNCATION OF VALUE AT RIGHT

Assembler Instructions 5 - 15

PITC/EBCD Character Constant (P)

DUP

LENGTH

RANGE
*

This character constant specifies character strings that the assembler converts
into their internal PTTC /EBCD representation.

The maximum number of bytes generated by one DC statement is 65535.
Each character you code in the nominal value sub field assembles into one byte.

Multiple nominal values are not allowed; the assembler considers the comma as
a valid string character. Scale and exponent modifiers are not allowed.

Note. Specify double apostrophes or ampersands for each single apostrophe or
ampersand you want assembled into the constant.

DC 4jP' I DUPLICATION FACTOR IS ALLOWED.

DC P'ABCD' IMPLICIT LENGTH AS NEEDED.
t •

TH ROUGH ~.125~: DC ~~; PL256'
, -.~ RANGE FOR LENGTH IS 1 --,

(BYTES.~I 1; , I -,

* SCALE MODIFIER AND EXPONENT MODIFIER ARE NOT ALLOWED.

VALUE

ENCLOS
*

DC
DC
DC
DC

DC

P'AB12#$'
P I I I I
pl,,1
P' , •

P'

VALUE REPRESENTED BY CHARACTERS.
2 APOSTROPHES ASSEMBLE AS ONE.
2 AMPERSANDS ASSEMBLE AS ONE.
COMMA ASSEMBLES AS COMMA.

NOMINAL VALUE ENCLOSED BY
APOSTROPHES.

* EXPONENT NOT ALLOWED IN NOMINAL VALUE SUBFIELD.

KILT I DC PIAB,C' MULTIPLE NOMINAL VALUES NOT
* POSSIBLE.

PAD ·DC PiA' PADDED WITH PTTC/EBCD BLANKS AT
* RIGHT.

TRUNC DC PL 1 • ABC' TRUNCATION OF VALUE OF RIGHT.

Hexadecimal Constant (X)

5 - 16 SC34-0124

You can use hexadecimal constants to generate large bit patterns more
conveniently than with binary constants. Also, the hexadecimal values you
specify in a source module allow you to compare them directly with the
hexadecimal values generated for the object code and address locations printed in
the program listing.

Each hexadecimal digit specified in the nominal value subfield is assembled
into 4 bits. The implicit length in bytes of a hexadecimal constant is then
one-half the number of hexadecimal digits specified (assuming that the number of
digits is a multiple of 2).

The contents of the subfields defining a hexadecimal constant are described by
the following examples.

()
\)

' ..

C··' T

c

o

* DC INSTRUCTION DESCRIPTION
* DUP DC

LENGTH DC

RANGE DC

VALUE DC
*
ENCLOS DC

*
MULTI DC

PAD DC

TRUNC DC

Binary Constant (B)

X'FFFF'

XL256 1j11

X I Jf9AF I

X'FFFF I

XIAB,C '

XL1 1 FFFFFI

DUPLICATION FACTOR IS ALLOWED

IMPLICIT LENGTH AS NEEDED

RANGE FOR LENGTH IS 1 to 256 BYTES

VALUE REPRESENTED BY
HEXADECIMAL DIGITS

NOMINAL VALUE ENCLOSED BY
APOSTROPHES

MULTIPLE NOMINAL VALUES NOT POSSIBLE

PADDED WITH BINARY ZEROS AT LEFT

TRUNCATION OF VALUE AT LEFT

The binary constant specifies the precise bit pattern you want to assemble into
storage. Each binary constant assembles into the integral number of bytes
required to contain the bits specified.

The contents of the subfields defining a binary constant are described by the
following examples.

* DC INSTRUCTION DESCRIPTION
* DUP DC

LENGTH DC

RANGE DC

VAlUE DC

ENCLOS DC
*
MULTI DC

PAO DC

DC

2B I 1;11

BI]I

BL256 1.'f1

Bll~l;lj11

Bill

Bll~~jl

B 1111111)1

DUPLICATION FACTOR IS ALLOWED

IMPLICIT LENGTH AS NEEDED

RANGE FOR LENGTH IS 1 to 256 BYTES

VALUE REPRESENTED BY BINARY DIGITS

NOMINAL VALUE ENCLOSED BY
APOSTROPHES

MULTIPLE NOMINAL VALUES NOT POSSIBLE

PADDED WITH BINARY ZEROS AT LEFT

BL111111~'~1111'~~jlll TRUNCATION OF VALUE AT LEFT

Assembler Instructions 5 - 17

Fixed-point Constant (F)
A fixed-point constant is written as a decimal number and can be followed by a
decimal exponent. The number can be an integer, a fraction, or a mixed number
(one with integral and fractional portions). The format of the constant is as (-,
follows: _J
• The number is written as a signed or unsigned decimal value. The decimal

point can be placed before, within, or after the number. If it is omitted, the
number is assumed to be an integer. A positive sign is assumed if an unsigned
number is specified.

• The exponent is optional. If specified, it is written immediately after the
number as En, where n is an optionally signed decimal value specifying the
exponent of the factor 10. The exponent must be in the range -85 to + 75. If
an unsigned exponent is specified, a plus sign is assumed.

The number is converted to binary, the exponent and scale factor (if any) are
applied, the number is rounded and assembled into the proper field, according to
the specified or implied length. An implied length of 2 bytes is assumed if a
length is not specified. The resulting number does not differ from the exact value
by more than one in the last binary position. If the value of the number exceeds
the allowable range (-32768 to 32767), the statement is flagged and a zero is
assembled into the whole field. Any duplication factor that is present is applied
after the constant is assembled. A negative number is carried in twos complement
form.

*DC I NSTRUCT ION DESCRIPTION
* DUP DC 4F'I' DUPLICATION FACTOR IS ALLOWED

LENGTH DC FllJl{I' IMPLICIT LENGTH IS ALWAYS 2 BYTES ,
RANGE DC FLI' Ufj' LENGTH MODIFIER MUST BE 1 OR 2, ., " ,
* I FUSED

VALUE DC F'32767 1 VALUE REPRESENTED BY DECIMAL DIGITS

ENCLOSE DC F'-l' NOMINAL VALUE ENCLOSED BY
* APOSTROPHES

EXPVAL DC F'I.414E21 EXPONENT ALLOWED IN NOMINAL VALUE;
* RANGE FOR EXPONENT IS -85 TO +75

PAD DC F'2;' PADDED WITH BINARY ZEROS AT LEFT

MULT I DC F' I,2,3 1 HULTIPLE NOMINAL VALUES AlLOWED

SCALE DC FS6 1-25.46 1 RANGE FOR SCALE IS -187 TO +346

EXPON DC FE2146415 1 RANGE FOR EXPONENT IS -85 TO +75

Note. Truncation of F-type constants is not allowed.

5 - 18 SC34-0124

c

c

o

Fixed-Point Constant (H)
An H-type (halfword) fixed-point constant is identical to an F-type constant,
except that the H-type constant is assembled as a I-byte field on a byte
boundary. The maximum range of an H-type constant is -128 to 127.

* OC I NSTRUCT ION OEseR I PT ION
*

EXPVAL EXPONENT ALLOWED IN NOMINAL VALUES;
* RANGE FOR EXPONENT IS -85 to +75

PAD PADDED WITH BINARY ZEROS AT LEFT

Fixed-Point Constant (D)

Note. Truncation of H-type constants is not allowed.

AD-type (doubleword) fixed-point constant is identical to an F-type constant,
except that the D-type constant is assembled as a 4-byte field on a word
boundary. The maximum range of a D-type constant is _231 to 231 _1.

* DC INSTRUCTION DESCRIPTION
*

Note. Truncation of D-type constants is not allowed.

Assembler Instructions 5 - 19

Floating-Point Constant (E)

5 - 20 SC34-0124

An E-type (single-precision) floating-point constant is written as a decimal
number and can be followed by a decimal exponent. The number can be an
integer, a fraction, or a mixed number (one with integral and fractional portions).
The format of the constant is as follows:

• The number is written as a signed or unsigned decimal value. The decimal
point can be placed before, within, or after the number. If it is omitted, the
number is assumed to be an integer. A positive sign is assumed if an unsigned
number is specified.

• The exponent is optional. If specified, it is written immediately after the
number as En, where n is an optionally signed decimal value specifying the
exponent of the factor 10. The exponent must be in the range -85 to +75. If
an unsigned exponent is specified, a plus sign is assumed.

The external format for a floating-point number has 2 parts: the portion
containing the exponent, which is called the characteristic, followed by the
portion containing the fraction, which is called the mantissa. Therefore, the
number specified as a floating-point constant must be converted to a fraction
before it can be translated into the proper format.

For example, the constant 27.35E2 represents the number 27.35 times 102.

Represented as a fraction, 27.35E2 would be 0.2735 times 104 , the exponent
having been modified to reflect the shifting of the decimal point. Thus, the
exponent is also altered before being translated into machine format.

In machine format, a floating-point number also has 2 parts, the signed
exponent and signed fraction. The quantity expressed by this number is the
product of the fraction and the number 16 raised to the power of the exponent.

The exponent is translated into its binary equivalent in excess 64 binary
notation and the fraction is converted to a binary number. Leading hexadecimal
zeros are removed. Rounding of the fraction is then performed according to the
specified or implied length, and the number is stored in the proper field. The
resulting number does not differ from the exact decimal value by more than one
in the last place.

The maximum range of the magnitude of an E-type constant is approximately
10-78 to 1076. If this range is exceeded, the DC instruction is flagged and a zero
is assembled into the whole field.

Within the portion of the floating-point field allocated to the fraction, the
hexadecimal point is assumed to be to the left of the leftmost hexadecimal digit,
and the fraction occupies the leftmost portion of the field. Negative fractions are
carried in true representation, not in the twos complement form.

As an example, the machine representation of the floating-point constant
E'55.125' would be:

Bit Portion of/constant Contents

0 Sign bit of mantissa 0
1-7 Exponent X'42'
8-31 Mantissa X'372000'

()

c

o

c

o

*DC INSTRUCTION
*

DESCRIPTION

DUP

LENGTH

RANGE
*
VALUE

ENCLOS

*
EXPVAL
*
PAD

TRUNC

SCALE

EXPON

Floating-Point Constant (L)

DC 4EI.;;;251

DC EI1.315 1

DC EL4' 1 • 1111

DC E'1.41416 1

DC E 111

DC E'1 E-8.fl1

DC E15;1

DC EI_123.4567891

DC Es6 1 1~J11

DC EE-85 111

DUPLICATION FACTOR IS ALLOWED

IMPLICIT LENGTH IS ALWAYS 4 BYTES

LENGTH MODIFIER MUST BE 2, 3, OR 4,
IF USED

VALUE REPRESENTED BY DECIMAL DIGITS

NOMINAL VALUE ENCLOSED BY
APOSTROPHES

EXPONENT ALLOWED IN NOMINAL VALUE;
RANGE FOR EXPONENT IS -85 TO +75

PADDED WITH BINARY ZEROS AT RIGHT

VALUE IS ROUNDED

RANGE FOR SCALE IS ~ THROUGH 6

RANGE FOR EXPONENT IS -85 TO +75

An L-type (double-precision) floating point constant is identical to an E-type
constant except that the L-type constant is assembled as an 8-byte field on a
word boundary. The resulting constant consists of a 1-byte sign and exponent
plus a 7 -byte hexadecimal fraction.

*DC INST'RUCTION DESCRIPTION
* DUP

LENGTH

RANGE
*
VAlUE

ENCLOS
*.
.EX·PVAl
*

A-Type Address Constant

, .DC

DC

DC

DC

DC

DC

DC

4L".p,25'

L'T.315'

LL8'1.315 1

L'1.41416'

L'1'

L 11E·-~1

LIS;'

DUPLICATION FACTOR I'S ALLOWED

I MP,L I CIT LENGTH IS ALWAYS 8 BYTES

LENGTH MODIFIER MUST BE 2, 3. 4, 5.
6. 7. OR 8, IF USED

VALUE REPRESENTED BY DECIMAL DIGITS

NOMINAL VALUE ENCLOSED BY
APOSTROPHES

EXPONENT ALLOWED IN NOMINAL VALUE.;'
RANGE FOR EXPONENT I S -85 TO + 75 .

PADDED WITH BINARY ZEROS AT RIGHT

This section and the two following sections describe how the different types of
address constants assemble from expressions that usually represent storage
addresses, and how you use the constants for addressing within and between
source modules.

Assembler Instructions 5 - 21

In the A-type address constant, you can specify any of the three types of
assembly-time expressions (see "Expressions" in Chapter 2), whose value the
assembler then computes and assembles into object code. You use this expression
computation as follows:

• Relocatable expressions for addressing
• Absolute expressions for addressing and value computation
• Complex relocatable expressions to relate addresses in different source

modules.

The value of the location counter reference (*) when specified in an address
constant does not vary from constant to constant if a duplication factor, multiple
nominal values, or multiple operands are specified.

The contents of the sub fields defining the A-type address constants are
described by the following examples.

* DC INSTRUCTION
*

DESCRIPTION

DUP DC 4A(*) DUPLICATION FACTOR ALLOWED

LENGTH

RANGE

*
*
*
VALUE

ENCLOS
*
ttJLTI

PAD

DC

DC

DC

DC

DC

DC

A(LABEL)

AL 1 (LABEL)

A(LABEL+2)

A(*-*)

A(LABEL,SYMBOL)

A(1)

IMPLICIT LENGTH IS ALWAYS 2 BYTES

LENGTH MODIFIER CAN BE FROM 1 TO 4;
ONLY LENGTH 2 IS VALID FOR A
RELOCATABLE VALUE--LENGTHS 1.3. AND
4 MUST BE FOR ABSOLUTE VALUES

VALUE REPRESENTED BY ANY EXPRESSION

NOMINAL VALUE ENCLOSED BY
PARENTHESES

MULTIPLE NOMINAL VALUES ALLOWED

PADDED WITH BINARY ZEROS AT LEFT

Note. Truncation of A-type constants is not allowed; if the value is too large,
a zero is assembled and the statement is flagged as an error.

v -Type Address Constant

5 - 22 SC34-0 124

The V-type address constant reserves storage for the address of a location in
another module. You can use the V -type address constant to branch to the
external address. (There are other ways to branch to external addresses, as
described in "Symbolic Addressing Between Source Modules-Symbolic
Linkage" later in this chapter.)

When you specify a symbol in a V -type address constant, the assembler
assumes that it is an external symbol. A value of zero is assembled into the space
reserved for the V -type constant; the correct relocated value of the address is
inserted into this space by the application builder. The symbol specified in the
nominal value subfield does not constitute a definition of the symbol for the
source module in which the V -type address constant appears.

The contents of the subfields defining the V -type address constants are
described in the following examples.

()

f ·
\. ;

C

C

o

* DC I NSTRUCT ION DESCRIPTION
* DUP

LENGTH

RANGE

VALUE
*
ENCLOS
*
MULTI

W - Type Address Constant

DC 4V(EXTERNAL) DUPL I CAT ION FACTOR IS ALLOWED

DC v (EXTERNA,-) IMPLICIT LENGTH IS ALWAYS 2 BYTES

DC VL2 (EXTERNAL) LENGTH MODIFIER MUST BE 2, IF USED

DC V (EXTERNAL) VALUE REPRESENTED BY SINGLE
RELOCTABLE SYMBOL . .

DC V (EXTE RNAL) NOMINAL VALUE ENCLOSED BY
PARENTHESES

DC V (EXT 1 ,EXT2) MULTIPLE NOMINAL VALUES ALLOWED

Note. Truncation of V -type constants is not applicable.

Specified as one relocatable symbol, the W -type address constant reserves storage
for the address of a weak external symbol that refers to other modules. The
automatic library call mechanism (AUTOCALL) of the application builder is not
activated for symbols identified by a weak external reference. The implied length
of a W -type address constant is 2 bytes. Specifying a symbol as the operand of
the constant does not constitute a definition of the symbol.

*DC INSTRUCTION DESCRIPTION
* DUP

LENGTH

RANGE

VALUE
*
ENCLOS
*
MULTI

N-Type Name Constant

DC 4W(WEAK) DUPLI CAT I ON FACTOR IS ALLOWED

DC W(WEAK) IMPLICIT LENGTH IS ALWAYS 2 BYTES

DC WL2(WEAK) LENGTH MODIFIER MUST BE 2, IF USED

DC W(WEAK) VALUE REPRESENTED BY SINGLE
RELOCATABLE SYMBOL

DC W(WEAK) NOMINAL VALUE ENCLOSED BY
PARENTHESES

DC W(WXT 1 ,WXT2) MULTIPLE NOMINAL VALUES ALLOWED

Note. Truncation of W -type constants is not applicable.

Specified as one symbol, the N-type constant reserves storage for the value of
the resource reference constant to be resolved by the application builder.

A resource reference constant must be used when two or more programs
reference, through supervisor assistance, a specific name (as opposed to a storage
address).

The implied length of the N-type constant is two bytes. Specifying a symbol as
the operand of the constant does not constitute a definition of the symbol.

Assembler Instructions 5 - 23

Example:

DC INSTRUCTION DESCRIPTION

DUP DC
LENGTH DC
RANGE DC
VALUE DC

ENCLOS DC

MULTI DC

The DS Instruction

5 - 24 SC34-0124

4N(DISK)
N (01 SK)
NL2(DISK)
N (0 I S K)

N(DISK)

N(DISK1,DISK2)

.~.~ __ , .. _ ____ -~··~~··M·· _~.~,-,

DUPLICATION FACTOR IS ALLOWED
IMPLICIT LENGTH IS ALWAYS 2 BYTES
LENGTH MODIFIER MUST BE 2, IF USED
VALUE REPRESENTED BY A SINGLE
SYMBOL
NOMINAL VALUE ENCLOSED BY
PARENTHESES
MULTIPLE NOMINAL VALUES ALLOWED

The DS instruction allows you to:

• Reserve areas of storage
• Provide labels for these areas
• Use these areas by referring to the symbols defined as labels

The format of the DS instruction is like that of the DC instruction:

Name Operation Operand

[label] DS [~~alue'G [dup] type[mods] (value) [,opnd 2] ...

where operand consists of the same 4 sub fields as the DC statement. However,
with the DS instruction no data is assembled and the nominal value subfield is
therefore optional.

The sub fields for the DS instruction operand are:

Subfield Contents

1 duplication factor (optional)
2 data type (required)
3 modifiers (optional)
4 nominal value or values (optional)

The maximum length that can be specified in a DS operand is 65535 bytes.
The label of a DS instruction, like the label of a DC instruction, has an

address value of the leftmost byte of the area reserved.
If the DS instruction is specified with more than one nominal value, the label

addresses the area reserved for the field that corresponds to the first nominal
value.

(.-.-.' J

t '
\ ,

c

c

c

o

Using the DS instruction to reserve storage. The DS instruction is the best way
to symbolically define storage for work areas and 110 buffers. If you wish to
take advantage of implicit length calculation, do not supply a length modifier in
your operand specification. Specify a type subfield that corresponds to the type
of area you need.

* OS INSTRUCTION
* FAREA
XAREA
OUPFAC
EAREA

OS
OS
OS
DS

F
X
8F
3E

STORAGE RESERVED

2 BYTES
2 BYTES
16 BYTES
12 BYTES

To reserve large areas, you can use a duplication factor. You can also use
character (C and S) or hexadecimal (X) field types to specify large areas using
the length modifier.

* OS INSTRUCTION

* CAREA
SAREA
COMBIN

OS
OS
OS

CLB;
.SL2;
64XL8

STORAGE, I\ESE~VEO

8; BYTES '"
i1 BYTE~
512 BYTES

Although the nominal value is optional for a DS instruction, you can put it to
good use by letting the assembler compute the length of areas for the B-, C-, S-,
and X-type areas. You achieve this by specifying the general format of the data
that will be placed in the area at execution time.

You can force the location counter to a word boundary by using the
appropriate data type with a duplication factor of zero. This method ensures a
boundary alignment that you would otherwise not have.

STORAGE RESERVED

,1.2QYT,ES,
1 ene '
6_8YtES<~ ,

Using the DS instruction to name fields of an area. Using a duplication factor of
zero in a DS instruction allows you to provide a label for an area of storage
without actually reserving the area. You can use DS or DC instructions to reserve
storage for and assign labels to fields within the area. These fields can then be
addressed symbolically. (You can also do this with DSECTs as described later in
this chapter.)

Nothing is assembled into the storage area reserved by a DS instruction. No
assumption should be made as to the initial contents of the reserved area at
execution time. In addition, no RLDs are generated for A, V, W, or N-type DS
statements.

The size of a storage area that can be reserved by a DS instruction is limited
by the maximum value of the location counter (65535).

Assembler Instructions 5 - 25

Parameter Reference (PREF)

5 - 26 SC34-0124

Parameter lists often need to be generated to pass information to routines. The
PREF (parameter reference) instruction lets you generate a one to five word
parameter list. PREF instructions are generated by IBM -supplied macros to (l
create parameter lists. The locations of the parameters are resolved by the . -~
program manager.

The format of the PREF instruction is:

Name Operation Operand

[label] PREF Zero to four address specifications separated by commas

The PREF operand may contain up to four address specifications separated by
commas. A specification may be omitted by coding two successive commas or by
omitting trailing parameters.

Valid specifications are:
expression
expression*
(reg,disp)
(reg ,disp)*
(reg)
(reg)*
reg

The expression may be any relocatable expression or an explicitly declared
external symbol. Also, the expression may be in the range of a USING
instruction. If the PREF instruction is in the domain of that same USING
instruction, the assembler will convert the address to a (reg,disp) format. The reg t
must be specified as a valid register expression. The disp may be a self -defining \ dI'

term or an absolute expression, having a value in the range 0 to 4095.

Note. RO may not be specified as any of the register type address
specifications.

The PREF can generate up to five words. The first word contains four four-bit
fields which indicate the address specification type for each parameter. The
remaining words (up to four) contain the parameter address specifications.

The address specification types are:

Type Address
(binary) Specification

0000 omitted

0001 expression

0010 (reg)
(reg, disp)
expression with USING

0011 reg

0100 * * *invalid * * *

0101 expression*

0110 (reg)*
(reg, disp)*
expression* with USING

c

c

c

o

The parameter words contain:

Parameter Address
word specification

Value of expression expression
o for external expression*
symbol

Register value in reg
bits 0-3
Bits 4-15 are zero
Register value in (reg, disp)
bits 0-3 (reg, disp)*
Displace men t expression

~ with USING (unsigned in bits 4-15) expression *

Alignment is to a word boundary.

Example:

PREF BUF, , (R2)* , BUF2 Second parameter omitted

Note. If an error is detected during the processing of a PREF operand, the
address specification type in the parameter word will be set to B'OlOO' (invalid).
The address specification itself will be assembled as binary zeros.

Assembler Instructions :; - 27

Program Sectioning
This section explains how you can subdivide a large program into smaller parts so
that they are easier to understand and maintain. It also shows how you can f._ 'I"
divide these smaller parts into convenient sections; for example, one section to
contain your executable instructions and another section to contain your data
constants and areas.

You should consider two distinct subdivisions when writing an assembler
language program:

• Dividing the program into source modules
• Dividing the program into control sections

You can divide a program into two or more source modules. Each source
module is assembled into a separate object module. You then use the application
builder to combine the object modules into a load module, forming an executable
program.

You can also divide a source module into two or more control sections. Each
control section of a full assembly is assembled as part of the object module. The
application builder processes these control sections, producing a load module with
contiguous storage addresses.

Communication Between Program Parts

The Source Module

5 - 28 SC34-0 124

You must be able to communicate between the parts of your program; that is, be
able to refer to data in a different part or be able to branch to another part:

• To communicate between 2 or more source modules, you must symbolically
link them together; symbolic linkage is described in "Symbolic Addressing
Between Source Modules-Symbolic Linkage" in this chapter.

• To communicate between control sections within a source module, you must
establish the addressability of each control section; establishing addressability (,
is described in "Symbolic Addressing Within Source Modules-Establishing \ ,
Addressability" in this chapter.

A source module is composed of source statements in the assembler language.
You can include these statements in the source module in 2 ways:

1. You write them on a coding form and then enter them as input; for example,
using the text editor.

2. You specify one or more COpy instructions among the source statements
being entered. When the assembler encounters a COpy instruction, it inserts
a predetermined set of source statements from a library. These statements
then become a part of the source module.

c

o

Assembler
program

The Beginning of a Source Module

The End of a Source Module

The first statement of a source module can be any assembler language statement
described in this manual (except MEND or MEXIT). You should initiate the first
control section of a source module with the START or CSECT instruction.
However, you can, or in some cases must, write source statements before the
beginning of the first control section. (For a list of these statements see "First
Control Section" in this chapter.)

The END instruction marks the end of a source module. Only one END
instruction is allowed. The assembler does not process any instruction that
follows the END instruction.

COPY-Copy Predefined Source Coding
The COPY instruction allows you to copy predefined source statements from a
library and include them in your source module. You thereby avoid:

1. Writing repeatedly the same, often-used sequence of code
2. Keying or handling the source statements for that code.

Assembler Instructions 5 - 29

5 - 30 SC34-0124

Source statements Resulting
source module

Library

START START

COpy EQU ATES + ONE EQU 1
TWOEQU 2
THREE EQU 3

END

First input
to assembler

END
program

Effective
input to
assembler
program

Specifications
The format of the COpy instruction statement is shown next. The symbol in the
operand field must identify:

• A member of a partitioned data set.

Name Operation Operand

Blank COpy A symbol

This member contains the coded source statements you want copied. The
source coding that is copied into a source module:

• Immediately follows the COpy instruction
• Is inserted and processed according to the standard instruction statement

coding format (described under "Coding Specifications" in Chapter 2), even if
an ICTL instruction has been specified

• Must not contain COpy, END, ISEQ, or ICTL instructions.

Notes.

1. You can also copy statements into source or system macro definitions with
the COpy instruction.

()

(~ ,

2. The rules that govern the occurrence of assembler language statements in a
source module also govern the statements you copy into a source module. C

&NfHE

C

OPEN

XRl
XR2

FT\.JO
AREA
PAST

c END-End Assembly

o

MAr.RO
HACR02 &OP
COpy HACROl

: (macro ~ody)

MEND
START

coPy COOEl
EQU 1
EQU 2

CODEl

COpy CnDE2
HV'y.J Rl.R2
AW FT~JO ,AREA
B PAST
DC F'21
DS F
EQU ;~

END

The END instruction marks the end of a source module. It indicates to the
assembler where to stop assembly processing.

You can also supply on the END instruction the address of the location in
your program where execution must start. This location is quite often the address
of the first executable instruction in the source module. In this case leave the
operand blank. Later, if you wish, you can override this location with application
build control statements.

Note. The entry address you specify in an application build control statement
must be a CSECT name or a name defined in an assembler ENTRY instruction.
The entry address in an END instruction can be any name defined in your source
module.

The format of the END instruction statement is:

Name Operation Operand

blank END relocatable expression OR blank

If specified, the relocatable expression must meet one of the following
conditions:

• It must be a relocatable expression representing an address in the source
module delimited by the END instruction, or

• If it contains an external symbol, that symbol must be the only term in the
expression, or the remaining terms in the expression must reduce to zero.

Assembler Instructions 5 - 31

The following example indicates the use of the END instruction:

* :
END ENTER

General In/ormation About Control Sections
A control section is the smallest subdivision of a program that can be relocated
as a unit. The assembled control sections contain the object code for machine
instructions and data.

Control Sections at Different Processing Times

Types of Control Sections

Location Counter Setting

5 - 32 SC34-0124

Consider the concept of a control section at different processing times:

At Coding Time. You create a control section when you write the instructions it
contains. In addition, you establish the addressability of each control section
within the source module, and provide any symbolic linkages between control
sections that are in different source modules.

At Assembly Time. The assembler translates the source statements in the control
section into object code. Each source module is assembled into one object
module. The entire object module and each of the control sections it contains is
relocatable.

At Application Builder Time. Based on your control statements, the application
builder combines the object code of one or more control sections into one load
module. It also calculates the linkage addresses necessary for communication
between two or more control sections from different object modules.

An executable control section begins with the START or CSECT instructions and
is assembled into object code. At execution time, an executable control section
contains the binary data assembled from your coded instructions and constants.

Note. An executable control section is usually named. You can also initiate an
executable control section as "private code" when you omit the START or
CSECT instruction, or when you specify an unnamed START or CSECT
instruction. (See "Unnamed Control Section" in this chapter.)

A reference control section begins with the DSECT, COM or GLOBL
instruction and is not assembled into object code. You can use reference control
sections to describe the contents of data areas to your executable control sections
(DSECT) and also to reserve common storage (COM) or global storage
(GLOBL).

The assembler maintains a separate internal location counter for each control
section so that they can be intermixed in your source module. The location
counter for each control section is set to zero at the beginning of that control
section. The location values assigned to the instructions and other data in a
control section are relative to the beginning of that control section.

You can continue a control section that has been discontinued by another
control section and thereby intersperse code sequences from different control
sections. Note that the location values that appear in the listings for a control
section, divided into segments, follow from the end of one segment to the
beginning of the subsequent segment.

(~)

c

G

c

o

* SOURCE STATEMENTS LISTED LOCATION (HEXADECIMAL)
* ONE

TWO

THREE

TWO

Length of Control Sections

First Control Section

START 128 ;;8;

CSECT
j2;3
;-'[1
jA43

CSECT jist;

[lcJIJI
CSECT jA44

;B;1
END

The length of a control section is the sum of the extents of the first definition
plus all continued control sections of the same name. The assembler maintains
each control section on a byte address basis; that is, a control section may
contain an odd number of bytes and a continued section need not resume at an
even byte address. The application builder, however, will allocate an even
number of bytes for all executable control sections.

The following specifications apply only to the first executable control section,
and not to a reference control section:

Instruction that establish the first control section. Any instruction that affects the
location counter or uses its current value establishes the beginning of the first
executable control section. The instructions that establish the first control section
are:
All machine instructions

CSECT
DC
DROP
DS
ALIGN
END
EQU
EQUR
ORG
PREF
PUSH
START
USING

These instructions are always considered a part of the control section in which
they appear. The DSECT, COM and GLOBL il1structions initiate reference
control sections and do not establish the first executable control section.

What must come before the f"irst control section. Source macro definitions, if
specified, must appear before the first control section .. (See Chapter 6.) The
ICTL instruction, if used, must be the first statement in a source program.

Assembler Instructions 5 - 33

Unnamed Control Section

What can optionally come before the first control section. The instructions or
groups of instructions that can optionally be specified before the first control
section are listed below. Any instruction you copy with a COpy instruction or
generate with a macro instruction, before the first control section, must also ()
belong to one of the following groups of instructions.

ICTL instruction
Macro definitions (must precede first control section)
COPY instruction
EJECT instruction
ENTR Y instruction
EXTRN instruction
PRINT instruction
SPACE instruction
TITLE instruction
WXTRN instruction
Comments statements
Dummy control sections
Macro call (depends on expanded body of macro)
Common control sections
Global control sections

Notes.

1. These instructions belong to a source module, but are not considered as part
of an executable control section.

2. TITLE, PRINT, SPACE, EJECT, ISEQ, and comment statements must
follow your ICTL instruction, if specified. However, they can precede or
appear between source macro definitions. All other instructions in your
source module must follow any source macro definitions.

3. These instructions can all be coded within a control section.

Each source module can have only one unnamed control section. An unnamed
control section is an executable control section you initiate in one of the
following two ways:

• By coding a ST ART or CSECT instruction without a name entry
• By coding any instruction (other than the START or CSECT instruction) that

initiates the first executable control section

The unnamed control section is also referred to as private code. You should
name all control sections so that you can refer to them symbolically:

• Within a source module
• In EXTRN, WXTRN, BX, and BALX instructions, for linkage between source

modules

t , ,

External Symbol Dictionary Entries

5 - 34 SC34-0124

The assembler keeps a record of each control section and prints the following
information about them in the external symbol dictionary:

• Symbolic name, if one is specified
• Type code
• ESD identification number
• Starting address
• Length in bytes

The following table lists:

• The assembler instructions that define control sections and dummy control
sections, or identify entry and external symbols, and

• The type code that the assembler assigns to the control sections or dummy C.'
control sections, and to the entry and external symbols.

o

c Defining a Control Section

ST ART-Start Assembly

o

Instruction Instruction Type code entered into external
label symbol dictionary

Optional START SD if label is present
PC if label is omitted

Optional CSECT SD if label is present
PC if label is omitted

Optional Any instruction that PC
initiates the unnamed
control section

Mandatory DSECT None

Blank ENTRY LD

Blank EXTRN ER

Blank WXTRN WX

Optional DC ER
(V type address
constant)

Optional DC WX
(W type address
constant)

Optional DC RR
(N type name
constant)

Optional BX and BALX ER

Optional COM CM

Optional GLOBL GL

You must use the START, CSECT, COM, GLOBL, and DSECT instructions to
indicate to the assembler:

• Where a control section begins, and
• What type of control section is being defined

The START instruction can initiate only the first executable control section in
your source module. You should use the START instruction for this purpose,
because it allows you to:

• Determine exactly where the first control section begins, thereby avoiding the
accidental initiation of the first control section by some other instruction.

• Give a symbolic name to the first control section, so you can distinguish it
from the other control sections listed in the external symbol dictionary.

• Specify the initial setting of the location counter for the first or only control
section.

The ST ART instruction, when used, must be the first instruction of the first
executable control section in your source module. You must not precede it with
any instruction that affects the location counter and thereby causes the first
control section to be initiated.

The format of the START instruction statement is:

Name Operation Operand

[label] START self-defining term OR blank

Assembler Instructions 5 - 35

The symbol in the label of the START instruction identifies the first control
section. You use the same symbol in the label of any CSECT instruction that
resumes the first control section. This symbol represents the address of the first
word in the control section. The assembler uses the value of the self-defining 0 ___ -.
term you specify on the START instruction, to set the location counter initial J

value.
The value of the operand must be aligned to a word (divisible by 2). If you

omit the operand entry, the assembler sets the location counter to zero. For
example:

* SOURCE STATEMENTS LISTED LOCATION (HEXADECIMAL)
* FIRST START 256 IIljll

;110
SECOND CSECT ~~IIJI

FIRST
JI~JI

CSECT ,e$llE

J122B
END

The source statements that follow the START instruction are assembled into
the first control section. If a CSECT instruction indicates a continuation of the
first control section, the source statements that follow this CSECT instruction are
also assembled into the first control section.

Any instruction that defines a new or continued control section marks the end
of the preceding control section or part of a control section. The END
instruction marks the end of the last control section. For example:

FIRST

SECOND CSECT

DW1HY OSECT

FIRST CSECT

END
CSECT -Start or Resume a Control Section

5 - 36 SC3~124

With the CSECT instruction, you initiate an executable control section or
indicate the continuation of an executable control section.

You can use the CSECT instruction anywhere in a source module after your
source macro definitions, if you have them. If you use CSECT to initiate the first
executable control section, you must not precede it with any instruction that
affects the location counter and thereby causes the first control section to be
initiated.

The format of the CSECT instruction statement is:

Name Operation Operand

[label] CSECf blank

c

c

o

The symbol you specify in the label of the CSECT instruction identifies the
control section. If you have several CSECT instructions within your source
module with the same symbol in the name field, the first occurrence initiates the
control section and the rest indicate the continuation of the same control section.
If you initiate the first control section with a START instruction, use the symbol
in its label to indicate a continuation of the first control section.

Note. Coding a CSECT instruction with a blank label either initiates or
indicates the continuation of the unnamed control section. There can be only one
unnamed control section in a source module.

The symbol in the label of the CSECT instruction represents the first word in
the control section. The source statements following a CSECT instruction
assemble into the object code of the control section identified by that CSECT
instruction. The end of a control section, or part of a control section, is marked
by:

• Any instruction that defines a new or continued control section, or
• The POP instruction
• The END instruction

DSECT -Start or Resume a Dummy Control Section

The DSECT instruction begins a dummy control section or indicates its
continuation. A dummy control section is a reference control section that allows
you to write a sequence of assembler language statements to describe the layout
of data located elsewhere. The assembler produces no object code for statements
in a dummy control section and it reserves no main storage. Rather, the dummy
section provides a symbolic format for a data area in storage. The assembler
assigns location values to the symbols you define in a dummy section, relative to
the beginning of that dummy section.

Therefore, to use a dummy section you must:

• Reserve a storage area for the data in an executable control section of the
same or another source module.

• Ensure that the data is in the area at execution time.
• Ensure that the locations of the symbols in the dummy section actually

correspond to the locations of data in the area.
• Establish the addressability for the DSECT in combination with the storage

area.

You can then refer to the data symbolically by using the symbols defined in
the DSECT.

The symbol you specify in the label of the DSECT instruction identifies the
dummy section. If you have several DSECT instructions within your source
module with the same symbol in the name field, the first occurrence initiates the
dummy section and the rest indicate the continuation of that dummy section.

The symbol in the label of the DSECT instruction represents the first location
described in the dummy section. The location counter for a dummy section has
an initial value of zero. However, the continuation of a dummy section begins at
the next available location in that dummy section.

The format of the DSECT instruction statement is:

Name Operation Operand

label DSECT blank

Assembler Instructions 5 - 37

The label of the DSECT instruction can be any ordinary symbol. The source
statements that follow a DSECT instruction belong to the dummy section
identified by that DSECT instruction. Assembler language statements that appear O.
in a dummy control section do not assemble into object code. .

When you establish address ability for a dummy section, the symbol in the label
of the DSECT instruction, or any symbol defined in the dummy section can be
specified in a USING instruction.

A symbol defined in a dummy section can be specified in an address constant
only if the symbol is paired with another symbol from the same dummy section,
and if the symbols have the opposite sign. For example:

* INSTRUCT IONS DESCRIPTION
* MYPROG START

EXTRN
KVA
USING

ADCON DC

DUMMY DSECT

TO OS
FROM DS

END

DATA
OATA,R7
DUMMY,R7

A(FROM-TO)

CL2!1
CL6!1

ESTABLISH ADDRESSABILITY
NAME FIELD OF A DSEeT STATEMENT

PAIRED SYMBOLS DEFINED IN DSECT

FIELDS NOT ASSEMBLED INTO
OBJECT CODE

COM-Start or Resume a Common Control Section

5 - 38 SC34-0124

You use the COM instruction to initiate a common control section or to indicate
its continuation. A common control section is a reference control section that f
allows you to reserve a storage area that can be shared by more than one source \. "
module within a task.

A common control section allows you to describe a common storage area in
one or more source modules.

When the application builder combines separately assembled object modules
into one program, the required storage space is reserved for the common control
section. Thus, 2 or more modules can share common area which is defined with
the same name in each module.

Only the storage area is provided; the assembler does not assemble the source
statements that make up a common control section into object code. You provide
the data for the common area at execution time.

The assembler assigns locations to the symbols you define in a common section
relative to the beginning of that common section. This allows you to refer
symbolically to data in the common area at execution time. If you code common
sections in 2 or more source modules, you can communicate data symbolically
between these modules through this common section.

Note. When you write a source module in a higher level language such as
FORTRAN, you can also code a common control section. This allows you to
communicate between assembler language modules and higher level language
modules.

Specifications for COM

The COM instruction identifies the beginning or continuation of a common
control section.

You can use the COM instruction anywhere in a source module after the ICTL(~.
instruction, and after your source macro definition if you have them. . ,

G

c

o

The format of the COM instruction is:

Name Operation Operand

[label] COM Blank

The COM instruction either initiates or indicates the continuation of a common
section. The location counter for a common section is always set to an initial
value of zero. However, the continuation of a common section begins at the next
available location in that section.

Note. If you specify a common section with the same name in 2 or more
source modules, the application builder reserves the amount of storage for the
common section equal to that required by your longest common section.

The source statements that follow a COM instruction belong to the common
section identified by that COM instruction.

GLOBL-Start or Resume a Global Control Section
A GLOBL instruction is used to initiate a global control section or to indicate its
continuation. A global control section is one of two types:

• An area that is shared across tasks linked to the shared task set (system
global)

• An area that is shared by task sets which run within the same partition
(partition global).

When the application builder combines object modules to form a task set, and
a shared task set has been specified for resolving references, a check will be
made for a match of the global section names against the shared task set. If a
match is found in the shared task set, references to that global section will be
resolved to it (system global). If no match is found, the global section becomes a
part of partition global for the task set and the application builder will reserve
storage for the section equal to that required by the longest global section with
the same name.

Only the storage area is provided; the assembler does not create object code
for the source statements that make up a global section. You provide the data for
the global sections at execution time.

Specifications for GLOBL

The GLOBL instruction identifies the beginning or continuation of a global
control section.

You can use the GLOBL instruction anywhere in a source module after the
ICTL instruction, if any, and after any source macro definitions.

The format of the GLOBL instruction is:

Name Operation Operand

[label] GLOBL Blank

The location counter for the global section is always set to an initial value of
zero. The continuation of a global section begins at the next available location in
the section.

Assembler Instructions 5 - 39

PUSH-Push Section

POP-Pop Section

5 - 40 SC34-0124

The PUSH statement saves information about the current control section in an
internal assembler stack. The section may be restored later on a last-in, first-out
basis by the use of a POP instruction. PUSH does not change the current (1
section. "'

The format of the PUSH instruction is:

Name Operation Operand

blank PUSH SECTION

The name field of the PUSH instruction must be blank. SECTION is a
required keyword. Use the PUSH instruction to:

• Save data about the current control section whether it has been initiated by a
CSECT, DSECT, COM, GLOBL, START, or is private code. The section
type, name, and ESDID are all saved by PUSH and restored by POP. Up to
16 sections may be concurrently on the stack.

PUSH can appear as often as required anywhere within a storage program. It
will initate an unnamed control section, CSECT (private code), if it appears
before the start of a control section.

The POP instruction restores the control section to the section on the top of the
internal assembler section stack.

The format of the POP instruction is:

Name Operation Operand

blank POP SECTION

The name field of the POP instruction must be blank. SECTION is a required
keyword. Use the POP instruction to:

• Restore the section name, section type and ESDID of the last section PUSHed
on the stack. It sets the location counter to the next available location in the
section. POP can appear as often as required anywhere within a source

A CSECT
MVW
XYZO

+ PUSH
+XYZ OSECT
+Xl OS
+X2 OS
+ POP

MVW

Rl,R2
,
SECTION

F
F
SECTION
R2,R3

MACRO CALL
SAVE SECTION A

RESUME SECTION A - ... -.- ~-- ... -- --

The macro XYZD saves the current section, CSECT A. It generates DSECT
XYZ and then resumes CSECT A. c

c

o

Symbolic Addressing Within Source Modules-Establishing Addressability
The assembler must be able to establish addressability for all machine
instructions that reference a storage location. You can consider these instructions
to belong to one of four groups:

• Instructions that reference a location using a register as a base, such as BALS,
MVWS, and BXS.

• Instructions that reference a location by its effective address or by using a
register as a base; this group includes all instructions with addr4, addr5, and
longaddr formats, such as MVW, B, CW, and BAL. These instructions can
reference any location within the range of the assembler's location counter
(65535). You do not have to establish addressability for these instructions,
even if the referenced location is not in the same control section as the
instruction.

Note. When you use the addr form of these instruction formats, the
assembler generates RLD items which must be processed by the application
builder. The base register-displacement format is self-relocating and does not
need to be relocated by the application builder. RLD items are not generated
for instructions or data in DSECT, COM, and GLOBL sections.

• Jump instructions that can only reference a location using the IAR as a base,
such as J, JAL, and JCT. For this group, the referenced location must be
relocatable and within the range -256 to 254 bytes of the byte following the
jump instruction, and also within the same control section. You manually
establish addressability for these instructions by ensuring that the referenced
location is within IAR range. If the location is not within range, the assembler
will flag the jump instruction.

• Instructions that refer to a location specified as the contents of a register. You
do not have to establish address ability for these instructions.

You can establish address ability for the first two types of instructions in either
of two ways:

• You can code an explicit address by coding the register-displacement form of
the operand. This method requires that you develop absolute displacements
from a location whose address you load into the register at execution time.
Using EQU instructions permits you to develop symbolic displacements.

• You can let the assembler compute a displacement and index register
combination that is suitable for referencing the required location.

Letting the assembler compute displacements has certain advantages over other
methods of establishing addressability:

• All data constants and I/O buffers can be grouped together and separated
from machine instruction logic at the end of your control section or they can
be assembled as a separate control section.

• Fields can be symbolically referenced, thus improving code readability.

For the assembler to compute displacements from a register, you must, at
coding time:

• Specify a base address from which the assembler can compute the
displacements

• Assign a register to contain this base address
• Write the instruction that loads the register with the base address

At assembly time, the address operands you code are converted into their
register-displacement form. Then they are assembled into the object code of the
machine instructions in which you coded them.

Assembler Instructions 5 - 41

At execution time, the base address must be loaded into the register and
should remain there throughout execution of the code that depends on that
address to locate the subject data locations.

The following example indicates the use of a base register to establish
addressability.

__ ~ •• _c __

* INSTRUCTIONS DESCRIPTION

* MYPROG START

MVA
USING

*
MVWS
AW
MVWS

DATA EQU
FIElDl OS
FIELD2 OS
FIELD3 OS

END

DATA, R2
DATA,R2

FIElDl,R3
FIElD2,R3
R3, FI ElD3

.,1:

FIOI
FI21
F

LOAD BASE ADDRESS INTO REGISTER
SPECIFY BASE ADDRESS AND
ASSIGN REGISTER

USING-Use Base Address Register

5 - 42 SC34-0 124

The USING instruction allows you to specify a base address and assign a
register. If you also load the register with the base address, you have established
addressability for data located within, as a maximum, -32767 to +65535 bytes
of the base address. To use the USING instruction correctly, you should:

• Know which locations in a control section are made addressable by the
USING instruction.

• Know which instructions can use these addresses as operands.
• Know which instructions can use the specified register as a base register.

The range of a USING instruction (called the USING range) is a maximum of
-32767 to +65535 bytes from the base address specified in the USING
instruction. The range does not extend beyond the boundaries of the executable
or reference control section in which the base address is defined. The assembler
can convert only addresses that are within a USING range to their
register-displacement form; those outside the USING range cannot be converted.

The USING range does not depend upon the position of the USING
instruction in the source module; rather, it depends upon the location of the base
address specified in the USING instruction.

Note. The USING range is the range of addresses within a control section that
is associated with the register specified in the USING instruction.

The range of the USING instruction and the valid base registers vary according
to individual instruction formats, as follows:

• All instructions with addr4 operand formats:

Resulting register
Coded format displacement format USING range

addr (reg l
- 3 , waddr) , -32767 to +65535

addr* (reg l
-

3
, disp)* o to 255

o

c

• All instructions with addr5 operand formats:

Resulting register
Coded format displacement format USING range

addr (reg l
-

7
, waddr) -32767 to +65535

addr* (reg l
-

7
, disp)* o to 255

• All instructions with longaddr operand formats:

Resulting register
Coded format displacement format USING range

addr (reg l
-

7
, waddr) -32767 to +65535

addr* (reg l
-

7
, waddr)* -32767 to +65535

• The MVWS instruction:

Resulting register
Coded format displacement format USING range

addr (regO
- 3, wdisp) o to 62

addr* (reg O
- 3 , wdisp) * o to 62

• The BALS instruction:

c Resulting register
Coded format displacement format USING range

addr* (reg,jdisp)* -256 to +254

• The BXS instruction:

Resulting register
Coded format dispiacemen t forma t USING range

addr (reg l
-

7
, jdisp) -256 to +254

Here is some sample code that illustrates the range of the USING instruction:

o
Assembler Instructions 5 - 43

'!'INSJRUCTION DESCRIPTION
* MVPROG

•

*

* • •
DATA
*
*
* FIELD)

SECOND
FIELD2

5 - 44 SC34-0124

START

0 . •
HVA DATA,R2 LOAD BASE ADDRESS INTO REGISTER
US ING DATA,R2 SPECIFY BASE ADDRESS AND ASSIGN

REGISTER

HVWS FI ELD) ,Rl FIELDI WITHIN -USING RANGE SO
ADDRESS CONVERTS PROPERLY

HVW FIELD2,R6 CANNOT CONVERT ADDRESS EVEN THOUGH
FIELD2 IS WITHIN 65535 BYTES OF DATA
BECAUSE FIELD2 IS NOT IN THE SAME
CONTRO L SE CT I ON

CSECT USING RANGE STARTS HERE AND IS 65535
BYTES OR LESS, DEPENDING ON THE
BOUNDARIES OF THE CONTROL SECTION

. AND THE I NSTRUCT I ONS CODED
DS F

CSECT
DS F

END

The domain of a USING instruction (called the USING domain) begins where
the USING instruction appears in a source module and continues to the end of { ...
the source module. (Exceptions are discussed later in this chapter in "Notes \ ;
About the Using Domain.") The assembler converts addresses in instructions into
register-displacement form only when:

• The instructions appear in the domain of a USING instruction, and
• The addresses referred to are within the range of the same USING instruction.

The USING domain depends on the position of the USING instruction in the
source module after macro expansion, if any, occurred.

* INSTRUCT IONS DESCRIPTION
* MYPROG START

MVA DATA,R2
MVW FIELD,R6 CANNOT CONVERT ADDRESS

USING DATA,R2 USING DOMAIN STARTS HERE
MVW FI ELD,R5 CAN CONVERT ADDRESS

DATA CSECT
FIELD DC XI);I

END USING DOMAIN ENDS HERE

You should specify your USING instructions so that:

• As many data items as possible are grouped within a USING range, and c

o

• All the instructions that refer to these data locations are within the
corresponding USING domain.

You should therefore place USING instructions at the beginning of your coded
instruction sequences and specify a base address in each USING instruction for
each USING range you require. You can use the same register in multiple
USING instructions so long as you load the register each time the required
address changes.

For Executable Control Sections. The next example shows a way to establish
address ability for an executable control section. The USING domain starts with
the USING instruction and continues to the END instruction; the USING range
(maximum) is from 32767 bytes before the EQU instruction to 65535 bytes after
the EQU instruction.

~* I HSr'RUCT I OMS

*
DESCRIPTION

*

DATA

HVA DATA,R2
US ING DATA, R2

EQ.U

END

*

LOAD BASE ADDRESS INTO REGISTER
SPECIFY BASE ADDRESS AND ASSIGN
REGISTER

MACHINE INSTRUCTIONS HERE

DATA ITEMS HERE

For Reference Control Sections. The next example shows how to establish
address ability for a dummy section (a reference control section defined by a
DSECT instruction). The address you load into the register at execution time
must be the base address specified in the USING instruction. Note that the
assembler assumes you are referring to the symbolic addresses in the dummy
section, and it computes displacements accordingly. However, at execution time,
the assembled addresses refer to the location of real data in the storage area. The
USING range in the next example is the reference control section-from the
DSECT instruction to the END instruction. The USING domain is from the
USING instruction to the END instruction.

* I NSTRU CT I ONS

*
DESCRIPTION

*
ADeON

DUMMY
FIELD

· · MVW ADCON, R 1
US I NG DUMMY, R 1

· · DC V (EXTERNAL)
· · MVW FIELD,R6

OSECT
DS F

· · END

LOAD BASE ADDRESS INTO REGISTER
SPECIFY BASE ADDRESS AND ASSIGN
REGISTER

USING RANGE STARTS HERE

USING RANGE ENDS HERE

Assembler Instructions 5 - 45

USING Instruction Format

5 - 46 SC34-0124

The format of the USING instruction is:

Name Operation Operand

blank USING addr, reg

The name field of the USING instruction must be blank. The address specifies
a base address, which must be a relocatable expression. The value of the
expression must be in the range 0-65535. The register can be specified by an
absolute register expression whose value is in the range 0-7. The assembler
assumes that the register contains the base address at execution time (the USING
instruction does not load the address into the register).

Coding Note. If you use the MV A instruction to load the base register, code it
before the USING instruction. That prevents the following error:

DATA

US. HG OATA,Rl
"VA DATA,Rl

EQU *
In this example, the MV A is in the domain of the USING, so the assembler

computes a displacement of 0 for DATA, then generates the equivalent of:

MVA (R 1 , 0) , R 1

o

Since Rl does not already contain the address of DATA, unpredictable results f'
will occur at execution time whenever Rl is used as a base register. Code this \. ,;
instead:

DATA

"VA DATA,Rl
US ING DATA,Rl

EQ.U *
Notes About the USING Domain. The domain of a USING instruction continues
until the end of a source module except when:

• A subsequent DROP instruction specifies the same register assigned by the
USING instruction .

• A subsequent USING instruction specifies the same register assigned by the
preceding USING instruction.

In the following example, instructions cannot be converted to
register-displacement form between the DROP instruction and the second
USING instruction.

(."'. '

j

c

C

o

* I NSTRU CT IONS
*

DESCRIPTION

us ING DATA,R 1

DATA EQ.U *
DROP Rl

DATA2 EQU *
USING DATA,R2 . .
USING DATA2,R2

*
END

FIRST USING DOMAIN STARTS HERE

FIRST USING DOMAIN ENDS HERE

SECOND USING DOMAIN STARTS HERE

SECOND USING DOMAIN ENDS HERE, AND
THIRD USING DOMAIN STARTS HERE

THIRD USING DOMAIN ENDS HERE

Notes About the USING Range. Two USING ranges coincide when the same
base address is specified in two different USING instructions, even though the
registers are different. When two USING ranges coincide, the assembler uses the
lower numbered register for assembling the addresses within the common USING
range. (The first USING domain terminates at the second USING instruction.)

* I NSTRUCT IONS DESCRIPTION
* CO I NC I DE START

· · USING

· · USING

· · DATA. EQU

END

DATA,R2

DATA,R 1

*

INSTRUCTIONS HERE USE R2 AS
A BASE REG I STER

INSTRUCTIONS HERE USE Rl AS
A BASE REG I STER

INSTRUCTIONS HERE USE Rl AS
A BASE REGI STER

- ------.~--~

DROP-Drop Base Register

Two USING ranges overlap when the range of one USING instruction is
within the range of another USING instruction. When two ranges overlap, the
assembler computes displacements from the base address using the
lower-numbered register when it assembles the addresses within the range
overlap. This applies only to instructions that appear after the second USING
instruction.

The DROP instruction terminates the USING domain for one or more registers.
Use the DROP instruction to:

• Free registers for other purposes.
• Ensure that the assembler uses the base register desired in a particular coding

situation (as when two USING ranges overlap or coincide, as described in
"Notes About the Using Range.")

The format of the DROP instruction is:

Assembler Instructions 5 - 47

5 - 48 SC34-0124

Name Operation Operand

blank DROP 1-8 absolute register expressions, separated by commas

The name field of the DROP instruction must be blank. Up to 8 register
expressions can be specified on one DROP instruction; the expressions must be
absolute with a value in the range 0-7.

After a DROP instruction, the assembler no longer uses the dropped register as
a base register. A register made unavailable as a base register by a DROP
instruction can be reassigned as a base register with a subsequent USING
instruction. For example:

* INSTRUCTIONS
'*

DROP R2

us ING DATA,R2

:
DATA EQ.U ..

END

You need not use a DROP instruction:

DESCRIPTION

R2 AVAILABLE FOR USE AS A
BASE REGISTER HERE

R2 UNAVAILABLE FOR USE
AS A BASE REGISTER HERE

R2 AVAILABLE FOR USE AS A
BASE REGISTER HERE

• If you reassign a register in a new USING instruction (however, you must load
the new base address into the register).

• At the end of a source module .

.. I NSTRUCT IONS DESCRIPTION ..

..

..
DATA

DATA2

· · "VA DATA,R1
US ING DATA,R1

· · tfJA DATA2,R1 .
USING DATA2,R1

· · EQ.U ..
· · EQ.U ..
· · END

LOAD BASE ADDRESS INTO REGISTER
SPECIFY BASE ADDRESS AND
ASS I GN REG I STER

LOAD NEW BASE ADDRESS INTO REGISTER
SPECIFY NEW BASE ADDRESS AND
ASS I GN REG I STER

(J

(::

c

c

o

Symbolic Addressing Between Source Modules-Symbolic Linkage
This section describes symbolic linkage; that is, using symbols to communicate
between different source modules that are separately assembled and then linked
together by the application builder.

To establish symbolic linkage with an external source module:

1. You must identify the symbols that are not defined in your source module.
These symbols are called external symbols, because they are defined in
another (external) source module. You can identify external symbols:

Explicitly with the EXTRN or WXTRN instruction
- Implicitly with the V-or W -type address constants
- With the BALX and BX machine instructions

2. You must provide the A-, V-, or W-type address constants so the assembler
can reserve storage for the addresses of the external symbols. When you use
a BALX or BX instruction you do not provide an address constant; the
address area is part of the instruction.

3. To resolve linkages, you must identify the symbols in the external source
modules where you have them defined. These symbols are called entry
symbols because they provide points of entry to a source module. You
identify entry symbols with the ENTRY, CSECT, or START instruction.

The assembler places information about entry and external symbols in the
external symbol dictionary. The application builder uses this information in
conjunction with the relocation dictionary to resolve the linkages.

The following example illustrates symbolic linkage between three source
modules.

Assembler Instructions 5 - 49

* I NST'RUCT I ONS DESCRIPTION
* REFERX START ,.

EXTRN ONE,TWO
START OF FI RST SOURCE MODU~E. (-)

WXTRN THREE
· · BALX FOUR,R7
· · ADCONS EQ.U * DC A(ONE, TWO, THREE)
DC V(FIVE)
DC W(SIX)
· · END ONE END OF FIRST SOURCE MODULE

DEFI NE START ,. START OF SECOND SOURCE MODULE
ENTRY ONE,TWO,THREE,FOUR

ONE EQ.U *
TWO EQ.U *
THREE ", EQ.U *
FOUR EQ.U *

END, END OF SECOND SOURCE MODULE
f

DEFINE2 START, START OF TH I RD SOURCE MODULE" \. "
ENTRY FI VE ,S I X

FIVE EQ.U *
SIX EQ.U *

END ,. END OF THIRD SOURCE MODULE

To Refer to External Data

5 - 50 SC34-0124

You should use the EXTRN instruction to identify the external symbol that
represents data in an external source module, if you wish to refer to this data
symbolically.

For example, you can identify the address of a data area in an external source
module as an external symbol and load the address constant for this symbol into
a register. Then you may use this register when establishing the addressability of
a dummy section (DSECT) that defines this external data area. You can now
refer symbolically to data in the external area. You must also identify, in the
source module that contains the data area, the same relative address of the data
as an entry symbol.

In the following example, FIELD3 is assembled as part of the DEFINE source
module (second source module); a dummy section in the REFERX source
module (first source module) is used to refer to FIELD3; and, after link-editing
the two source modules together, both source modules can access FIELD3.

(:

c~

c

* 'I iNSTRUCT I ONS DESCRIPTION

;REFERX START. FIRST SOURCE MODULE STARTS HERE

ADCON

DUHHY

iFtlELDj

EXTRN DATA
HVW ADeON • R2
US I NG DUMMY, R2

tfJW R3,FIELD3

DC A (DATA)

OSEeT
OS 2F
OS F

END,

START,
ENTRY DATA

FIELD3 REFERRED TO HERE

DUMMY SECTION STARTS HERE

FIELD3 DEFINED HERE

FIRST SOURCE MODULE ENDS HERE

SECOND SOURCE MODULE STARTS HERE

FIELD3 ASSEMBLED HERE

SECOND SOURCE MODULE ENDS HERE

To Branch to an External Address
You can use the BALX or BX machine instruction to branch to a location in an
external source module. Code the external symbol as an operand in these
instruction types.

You can also use the V-type address constant to identify the external symbol.
For example, you can branch to an external address by branching indirectly with
the V -type address constant. For the specifications of the V -type address
constant, see "Defining Data" in this chapter.

If the external symbol is the label of a START or CSECT instruction in the
other source module, and thus names an executable control section, it is
automatically identified as an entry symbol. If the symbol represents an address
in the middle of a control section, you must, however, identify it as an entry
symbol in the external source module. For example:

Assembler Instructions 5 - 51

SUBRTN

ADCON* v (MOD2)

DESCRIPTION

START OF FIRST SOURCE MODULE

BRANCH TO EXECUTE SUBROUTINE

BRANCH TO EXECUTE KOD2
ADDRESS OF KOD2

END OF FIRST SOURCE MODULE

START OF SECOND SOURCE MODULE

END OF SECOND SOURCE MODULE

You can also use a combination of an EXTRN instruction to identify, and an
A-type address constant to contain the external branch address. However, the
external branch instruction, or the V-or W -type address constants, is more
convenient because you do not have to code an EXTRN instruction. With
external branch instructions, you also do not code an address constant.

The assembler does not consider the symbol in an external branch instruction,
a V-type or W-type constant, as defined in the source module. Therefore, you
can use the same symbol as the name for most statements in the same source
module, even the DC statement defining the V -type or W -type constant.

ENTRY-Identify Entry Point Symbol

5 - 52 SC34-0124

ENTRY identifies symbols defined in the source module containing the ENTRY
instruction so that you can refer to them in another source module. These
symbols define locations that are called entry points.

The format of the ENTRY instruction is:

Name Operation Operand

blank ENTRY
one or more relocatable symbols
(entry symbols), separated by commas

The label of an ENTRY instruction must be blank.
The following rules apply to entry symbols:

• They must be valid symbols.
• You must define them in an executable control section within the current

assembly. A symbol can appear on mUltiple ENTRY statements within an
assembly.

A symbol used as the label of a START or CSECT instruction is also
automatically considered as an entry point and does not have to be identified by
an ENTRY instruction. Thus, in the following example, the two entry points are
FIRST and SUBRTN.

()

(~ ..

c

0

FIRST START
f' ' -",+

i ENTRY SUBTRN

suaTaN EQ.U *
END

The assembler lists each entry symbol in the external symbol dictionary, along
with other entries for external symbols.

EXTRN-Identify External Symbol
EXTRN identifies symbols referred to in the source module containing the
EXTRN instruction but defined in another source module. These symbols are
called external symbols.

The format of the EXTRN instruction is:

Name Operation Operand

one or more relocatable symbols
blank EXTRN (external symbols), separated by commas

The label of an EXTRN instruction must be blank.
The following rules apply to the external symbols:

• They must be valid symbols.
• You must not use them as the name entry of any source statement in the same

source module.
• You must use them alone and not pair them in an expression, except within

A-type address constants.-

The assembler lists each external symbol in the external symbol dictionary,
along with entries for entry symbols.

The following example indicates the relationship of ENTRY and EXTRN
statements. Note that FOURTH need not be specified in an EXTRN statement
since it is a V-type address constant in FIRST, and that SECOND need not be
specified on an ENTRY statement since it is the label on the START statement.

FIRST START
EXTRN SECOND, TH I RD

EXTADl DC A(SECOND)
EXTAD2 DC A(TH I RD)
EXTAD3 DC V(FOURTH)

END

SECOND START
ENTRY THIRD,FOURTH

THIRD EQU *
FOURTH EQU *

END

Assembler Instructions 5 - 53

WXTRN-Identify Weak External Symbol

5 - 54 SC34-0 124

WXTRN identifies symbols in the source module containing the WXTRN
instruction but defined in another source module. The WXTRN instruction
differs from the EXTRN instruction as follows:

The EXTRN instruction causes the application builder to make an automatic
search of libraries to find the module that contains the external symbols. If a
module is found, linkage addresses are resolved when the module is linked to
yours.

The WXTRN instruction suppresses this automatic search of libraries. The
application builder will resolve the linkage addresses only if the external symbols
in the WXTRN operand field are defined:

• In a module that is linked to your object module because of application
builder control statements

• In a module brought in from a library due to the presence of an EXTRN
instruction in another module linked to yours.

The format of the WXTRN instruction statement is:

Name Operation Operand

blank WXTRN
one or more relocatable symbols (weak external
symbols), separated by commas

The label of a WXTRN instruction must be blank.
To the assembler, the external symbols identified by a WXTRN instruction

have the same properties as the external symbols identified by the EXTRN
instruction. However, the type code assigned to these external symbols in the

(J

external symbol dictionary is different. Also, the automatic library call mechanism ~
(AUTOCALL) of the application builder is not activated for "weak" external " ,
references.

If you specify a symbol in a V -type address constant and also in a WXTRN
instruction in the same source module, the symbol is processed as a weak
external reference. If you specify an external symbol by both an EXTRN and
WXTRN instruction in the same source module, the first declaration takes
precedence, and subsequent declarations are flagged with error messages. You
may use the same symbol in multiple EXTRN and external branch instructions.
You may also duplicate a symbol in WXTRN instructions.

* I NSTRUCT IONS

* FIRST

*

VCON
WCON

START
EXTRN OUT,A

EXTRN 8,OUT
WXTRN WooT
WXTRN A
DC V (wour)
DC W(WOUT)

END

DESCRIPTION

ESD TYPE FOR FIRST IS SO
ESD TYPE FOR OUT IS ER
ESD TYPE FOR A IS ER
ESD TYPE FOR B IS ER
ESD TYPE FOR WOUT IS WX
ERROR
ERRO R

(/

o

Controlling the Assembler Program
ORG-Set Location Counter

The ORG instruction alters the setting of the location counter and thus controls
the structure of the current control section. This allows you to redefine parts of a
control section.

The ORG instruction can cause the location counter to point to any part of a
control section, where you can assemble desired data. It can also cause the
location counter to point back to the next available location so that your program
can continue to be assembled in a sequential fashion.

The format of the ORG instruction is:

Name Operation Operand

blank ORG relocatable expression OR blank

The label of an ORG instruction must be blank. The symbols in the relocatable
expression must be previously defined in the source module. If the expression
contains an unpaired relocatable term, you must define that term in the same
control section in which the ORG statement appears. The location counter is set
to the value of the relocatable expression. If the expression is omitted, the
location counter is set to the next available location for the current control
section. The following sample code illustrates the setting of the location counter
with the ORG instruction:

* INSTRUCT I ONS LISTED LOCATION (HEXADECIMAL)
* MYPROG START

BAL

B
BUFFER OS

OS
ORG

INITIAL EQU

8XS
ORG

CONTINUE EQU

END

INITIAL,R7

CONTINUE
CL4j
F
BUFFER

.*
(R7)

*

jljA
11132
;l11A
1I111A

j12C
;134
1134

You must not specify an expression on an ORG instruction for a location that
precedes the beginning of the control section in which the ORG appears. In the
next example, the ORG instruction is invalid if it appears less than 100 bytes
from the beginning of its control section. This is because the resulting expression
would be negative and therefore invalid.

Assembler Instructions 5 - 55

ALIGN-Align Location Counter

Note. Using the ORG instruction to insert data at the same location as earlier
data does not always work. In the next example, it appears as if the character

constant overlays the address constant. However, after the application builder (-' '.'Jlt.., ..

places the character constant into the same location as the address constant, it l'

adds the relocation factor required for the address constant to the value of the
constant. This sum is the object code that resides in the word ADDR.

ADOR

CHAR

DC
ORG
DC

A(Loe)
*-2
elBEI

You will experience unpredictable results when you code an ORG statement to
insert data in any relocatable machine instruction.

The ALIGN instruction ensures the setting of the location counter to an odd
byte, or word address during program assembly. This instruction is used primarily
for data alignment.

The format of the ALIGN instruction is:

Name Operation Operand

blank ALIGN {WORD} ODD

The name field of the ALIGN instruction must be blank. WORD specifies that
the location counter is to be reset if necessary to the next higher address which is
evenly divisible by 2. ODD specifies that the location counter is to be reset if
necessary to the next higher address which is not divisible by 2 (an odd byte
boundary).

The ALIGN instruction can appear as often as required in a source program,
but must not precede the start of the program control section.

Note. When the location counter is set to the required boundary address
before ALIGN instruction processing, the ALIGN instruction is ignored. When
the ALIGN instruction causes the location counter to be advanced, binary zeros
are placed in the vacated byte positions.

Determining Statement Format and Sequence

ICTL-Input Format Control

5 - 56 SC34-0124

You can change the standard coding conventions for the assembler language
statements or check the sequence of source statements with the following
instructions.

The ICTL instruction allows you to change the begin, end, and continue columns
to establish a different coding format for your assembler language source
statements.

For example, with the ICTL instruction, you can increase the number of
columns for the identification or sequence checking of your source statements.
By changing the begin column, you can even create a field before the begin
column to contain identification or sequence numbers.

You can code the ICTL instruction only once, at the very beginning of your (, "
source module. If you do not code it, the assembler recognizes the standard
values for the begin, end, and continue columns.

c

c

o

Standard values for columns

BEGIN CONTINUE END

I
16 71

Columns

If you code the ICTL instruction, it must be the first statement in your source
module. The format of the ICTL instruction statement is:

Name Operation Operand

Blank ICTL One to three decimal self-deflning
values of the form b,e,c

Operands Specifies Allowable range

b Begin column 1 through 40

e End column 41 through 80

c Continue column 2 through 40

Rules for interaction of b, e and c

The position of the End column must
not be less than the position of the Begin e ~b + 5
column + 5, but must be greater than the
position of the Continue column e > c

The position of the Continue column
must be greater than that of the Begin c >b
column

The operand entry must be one to 3 decimal self -defining terms. There are
only 3 possible ways you can specify the operand entry:

• begin
• begin,end
• begin,end,continue.

The operand begin must always be specified. The operand end, when not
specified, is assumed to be 71. If the operand continue is not specified, or if end
is specified as 80, the assembler assumes that continuation lines are not allowed.
The values specified for the 3 operands depend on each other.

Note. The ICTL instruction does not affect the format of statements brought
in by a COpy instruction or generated from a library macro definition. The
assembler processes those statements according to the standard begin, end, and
continue columns.

Assembler Instructions 5 - 57

ISEQ-Input Sequence Checking

5 - 58 SC34-0124

You use the ISEQ instruction to cause the assembler to sequence check the
statements in your source module. In the ISEQ instruction you specify the
columns you want the assembler to check for sequence numbers. ()

The assembler begins sequence checking with the first statement line following
the ISEQ instruction. The assembler also checks continuation lines.

Sequence numbers on adjacent statements or lines are compared according to
the internal EBCDIC collating sequence. When the sequence number on one line
is not greater than the sequence number on the preceding line, a sequence error
is flagged, and a warning message is issued, but the assembly is not terminated.

73 77 80 Compares made

ISEQ 73,80 * + +
llPROG0051 PROG0051 with PROG0052

MVW)
I

lPROG0052
) AW

PROG0052 with PROG0053

I PROG0053 PROG0053 with PROG0054
BAL t

J I PROGOO54
(card

PROG0054 with PROG0055
Continuation

~ ~PROGOO55 and so on

The ISEQ instruction initiates or terminates the checking of the sequence of
statements in a source module. The format of the ISEQ instruction is:

Name Operation Operand

Blank ISEQ Two decimal self-defining values
of the form l,r or blank

Operand Specifies Rules for interaction

l~
leftmost column of I must not be
field to be checked greater than r

r----.
I and r not allowed
between begin and
end columns

r~
v

rightmost column r must not be
of field to be checked less than I

When the operand field specifies 2 self -defining terms, the ISEQ instruction
initiates sequence checking, beginning with the statement following the ISEQ
instruction.

When the operand field is blank, the ISEQ instruction terminates the sequence
checking operation. This terminating ISEQ instruction is also sequence checked.

Note. The assembler checks only those statements that are in your source
module. This includes COPY instructions.

c
Listing Format and Outpllt

PRINT-Print Optional Data

c

o

However, the assembler does not check:

• Statements inserted by a COPY instruction
• Statements generated from model statements inside macro definitions

(Statement generation is discussed in detail in Chapter 6)
• Statements in library macro definitions.

The PRINT, TITLE, EJECT, and SPACE instructions request the assembler to
produce listings and identify records in the object module according to your
special needs. They allow you to determine printing and page formatting options
other than the ones the assembler program assumes by default. Among other
things, you can introduce your own page headings, control line spacing, and
suppress unwanted detail.

PRINT controls the amount of detail you want printed in the listing of your
program. The three options that you can set are given in the following table.
They are listed in hierarchic order; if OFF is specified, GEN and DATA do not
apply. If NOGEN is specified, DATA does not apply to the constants in
generated statements. The standard options inherent in the assembler program
are ON, GEN, and NODATA.

Hierarchy PRINT options Description

1 ON A listing is printed

1 OFF No listing is printed

2 GEN All statements generated by the processing of a macro
instruction are printed

2 NOGEN Statements generated by the processing of a macro
instruction are not printed. (Note. the MNOTE
instruction always causes a message to be printed)

3 DATA Constants are printed in full in the listing

3 NODATA Only the leftmost 8 bytes of constants are printed
in the listing

The format of the PRINT instruction is:

Name Operation Operand

blank PRINT
ON GEN DATA
OFF NOGEN NODATA

The label of the PRINT instruction must be blank. At least one of the print
options must be specified, and at most one of the options from each group. If
more than one option is specified, they must be separated by commas.

The options can be specified in any order. The PRINT instruction can be
specified any number of times in a source module. At assembly time, all options
are in force until the assembler encounters a new and opposite option in a
PRINT instruction.

Note. The option specified in a PRINT instruction takes effect after the
PRINT instruction. If PRINT OFF is specified, the PRINT instruction itself is
printed, but not the statements that follow it.

Assembler Instructions 5 - 59

TITLE-Identify Assembly Output

EJECT-Start New Page

5 - 60 SC34-0124

TITLE provides headings for each page· of the assembly listing.
The format of the TITLE instruction is:

Name Operation Operand

id TITLE
character string up to 100 characters, enclosed in

characters apostrophes

The label field of the first TITLE instruction in a program can contain
identification characters. Up to four identification characters are printed in the
top left-hand corner of every page of the listing. Specifying a valid ordinary
symbol in this field does not constitute a definition of that symbol for the source
module.

The character string on the TITLE instruction is printed as a heading at the
top of each page of the assembly listing. The heading is printed beginning on the
page in the listing following the page on which the TITLE instruction is
specified. A new heading is printed when a subsequent TITLE instruction
appears in the source module.

Any printable character specified will appear in the heading, including blanks.
However, the following rules apply to apostrophes:

• A single apostrophe followed by one or more blanks simply terminates the
heading prematurely. If a nonblank character follows a single apostrophe, the
assembler issues an error message and does not print a heading.

• Double ampersands or apostrophes print as a single ampersand or apostrophe
in the heading.

o

Only the characters printed in the heading count toward the maximum of 100 t "
characters allowed. t ,
Note. The TITLE statement itself is not printed in an assembly listing.

EJECT stops the printing of the assembly listing on the current page and
continues the printing on the next page.

The format of the EJECT instruction is:

Name Operation Operand

blank FJECf blank

The label on an EJECT instruction must be blank. The EJECT instruction
causes the next line of the assembly listing to be printed at the top of a new
page. If the line before the EJECT instruction appears at the bottom of a page,
the EJECT instruction has no effect.

Note. The EJECT instruction is not printed in the listing.

c

SPACE-Space Listing

c

c

SP ACE inserts one or more blank lines in the listing of a source module. This
allows you to separate sections of code on the listing page.

The format of the SPACE instruction is:

Name Operation Operand

blank SPACE decimal value from 1 to 255 OR blank

The label on a SPACE instruction must be blank.
The decimal value on the SPACE instruction specifies the number of lines to

be left blank. A blank causes one blank line to be inserted. If the value specified
is greater than the number of lines remaining on the listing page, the instruction
has the same effect as an EJECT statement.

Note. The SPACE instruction is not printed in the listing.

Assembler Instructions 5 - 61

o

5 - 62 SC34-0124

c

c

o

Section Contents
Overview of Creating Macros 6-4

Contents of a Macro Definition 6-5
Model Statements 6-5
Processing Statements 6-5
Comment Statements 6-6

Where To Place a Macro Definition in the Source Module 6-6
Parts of a Macro Definition 6-6

Coding the Prototype Statement 6-7
The Body of a Macro Definition 6-8

Symbolic Parameters 6-8
Subscripted Symbolic Parameters 6-11

Model Statements 6-12
Variable Symbols as Points of Substitution 6-12
Rules for Concatenation 6-12

Contents of Model Statement Name Field 6-13
Contents of Model Statement Operation Field 6-14
Contents of Model Statement Operand Field 6-15
Contents of Model Statement Remarks Field 6-15
Examples of Model Statements 6-15

Processing Statements 6-15
Conditional Assembly Instructions 6-16
Inner Macro Instructions 6-16
COpy Instruction 6-16
MNOTE Instruction 6-16
MEXIT Instruction 6-18

Comment Statements In Macro Definitions 6-18
System Variable Symbols 6-19

&SYSLIST -Refer to Positional Parameters
and Sublists 6-19

&SYSNDX-Generate Unique Symbols for Multiple
Expressions 6-21

&SYSPARM-System Parameter for Conditional
Assembly 6-22

&SYSDATE-Date of Assembly 6-22
&SYSTIME-Time of Assembly 6-22

Using the Calling Macro Instruction 6-23
Macro Instruction Name Field 6-24
Macro Instruction Operation Field 6-24
Macro Instruction Operand Field 6-24

Macro Instruction Operands 6-24
Positional Parameters on the Macro Instruction 6-25
Keyword Parameters on the Macro Instruction 6-26
Combining Positional and Keyword Parameters 6-27

Sublists in the Macro Instruction Operand 6-28
Values in Macro Instruction Parameters 6-29
Nesting Macro Definitions 6-32

Levels of Nesting 6-32
Conditional Assembly Language 6-34

SET Symbols 6-35
Data Attributes 6-37

Type Attribute (T) 6-37
Count Attribute (K) 6-38

Chapter 6. Macro Language

Number Attribute (N) 6-38
Sequence Symbols 6-38
Declaring SET Symbols 6-39

LCLA, LCLB, and LCLC Instructions 6-39
GBLA, GBLB, and GBLC Instructions 6-41

Assigning Values to Set Symbols 6-43
SETA-Assign Arithmetic Value 6-43
SETC-Assign Character Value 6-44
SETB-Assign Binary Value 6-45

Using Expressions in SET Instructions 6-46
Arithmetic (SETA) Expressions 6-46
Coding Conditional Assembly Arithmetic Expressions 6-48
Evaluation of Arithmetic Expressions 6-48
Character (SETC) Expressions 6-49
Evaluation of Character Expressions 6-50
Logical (SETB) Expressions 6-51
Rules for Coding Logical Expressions 6-52
Evaluation of Logical Expressions 6-53

Selecting Characters From a String-Substring Notation 6-54
Branching 6-55

AIF -Conditional Branch 6-55
AGO-Unconditional Branch 6-56
ACTR-Assembly Loop Counter 6-56
ANOP-Assembly No Operation 6-57

Macro Language 6 - I

6 - 2 SC34-0124

f '
\ ,

(::

c

c

o

Macros are used mainly to insert defined groups of assembler language
statements into a source program. The defined group of statements is a macro
definition; the statements are either stored in a library or placed at the beginning
of the source module. This chapter explains how to prepare macro definitions as
the first portion of your source module.

The statements contained in the macro definition are called by macro
instructions in your source program; the macro instruction is coded at the point
you would otherwise include the statements contained in the macro definition.
The calling macro instruction can specify parameters which change the statements
contained in the macro definition. The assembler inserts the macro definition
statements, as modified by the parameters on the calling macro instruction,
immediately after the calling macro instruction. The process of inserting the text
of the macro definition is called macro generation or macro expansion The
expansion occurs for each macro instruction that calls the macro definition.

The assembler processes the source module in two phases:

First, preassembly; during this phase the assembler expands macro calls by
inserting text from macro definitions inline after the calling macro instructions.
The statements contained in the macro definition can be modified during
preassembly by assembler action as follows:

Processing symbolic parameters specified on the calling macro instruction to
modify the statements in a macro definition which contain the same
symbolic parameters.
Processing conditional assembly instructions contained within a macro
definition; these instructions declare and assign values to SET symbols
(symbols used to write source statements that can be modified during
expansion) and allow for branching and loop control within a macro
expansion. With conditional assembly language instructions, you can select
and reorder the statements generated each time a macro is expanded.
Processing MNOTE instructions, which produce error messages that you
provide.
Processing system variable symbols; these symbols can be used in macro
definitions to cause the assembler to perform specific actions (for example,
to count the number of symbolic parameters on a calling macro instruction
so that the number can be used to determine further expansion of the
macro).

• Then, assembly; during this phase the assembler processes the source module
(known as open code) and the statements generated during macro expansion at
preassembly time, to produce the object module.

By using the macro language you reduce programming effort, because:

• You write and test the code for a macro definition only once. You and other
programmers can then use the same code as often as you like by calling the
definition; this means that you do not have to reconstruct the coding logic
each time you use the code.

• You need write only one macro instruction to call for the generation of many
assembler language statements from the macro definition. Appendix A
'Structured Programming Macros' gives an example of using structured macros.

When you are designing and writing large assembler language programs, the
above features allow you to:

Macro Language 6 - 3

• Change the code in one place when updating or making corrections, that is, in
the macro definition. Each call gets the latest version automatically, thus
providing standard coding conventions and interfaces.

• Describe the functions of a complete macro definition rather than the function 0
of each individual statement it contains, thus providing more comprehensible _J
documentation for your source module.

Overview of Creating Macros

6 - 4 SC34-0124

You can create a macro definition by enclosing any sequence of assempler
language statements between MACRO and MEND statements, and by writing a
prototype statement in which you give your definition a name. This name is then
the operation code that you must use in the macro call.

When you code a macro call in your source module, you tell the assembler to
process a particular macro definition. The assembler generates assembler
language statements from this macro definition for each occurrence of the macro
call; if you code four calls to the macro MYMACRO, four sets of assembler
language statements are generated. The statements generated can be:

• Copied directly from the definition
• Modified by parameter values before generation
• Manipulated by internal macro processing to change the sequence in which

they are generated
• Selectively chosen or discarded in groups

You can define your own macro definitions in which any combination of these
processes can occur. Some macro definitions do not generate assembler language
statements, but perform only internal processing.

The MACRO and MEND instructions establish the boundaries of a macro
definition. The prototype statement establishes the name of the macro and t "
declares its parameters. In the operand field of the calling macro instruction, you \ j;

can assign values to the parameters declared for the called macro definition. The
body of a macro definition contains the statements that will be generated when
you call the macro. These statements are called model statements; they are
usually interspersed with conditional assembly statements or other processing
statements.

You can include a macro definition at the beginning of a source module. This
type of definition is called an inline macro definition. You can also insert a
macro definition in a library. This type of definition is called a library macro
definition.

The following example indicates the general format of a macro definition
within a source module:

OPEN

MACRO
MACID &PARAM1,&PARAH2

MEND
START

MACIO OPERAN01,OPERAND2

MACID OPERAN03,OPERAND4

END

MACRO HEADER
PROTOTYPE STATEHENT

(Body of macro definition)

MACRO TRAILER
START OF OPEN CODE

MACRO CALL

MACRO CALL

END OF SOURCE MODULE c

c~

c

You can call an inline macro definition only from the source module in which
it is included. You can call a library macro definition from any source module.
You can code a calling instruction anywhere in a source module, except before or
between any in line macro definitions contained in that source module. You can
also call a macro definition from within another macro definition. This type of
call is an inner macro call; it is said to be nested in the macro definition.

COllte"ts 0/ a Macro De/inition

Model Statements

Processing Statements

The body of a macro definition can contain a combination of model statements,
processing statements, and comment statements.

Model statements are assembler or machine instructions. As model statements,
these instructions can use variable symbols as points of substitution. The macro
assembler substitutes character string values in place of the variable symbols each
time the macro is called.

The assembler processes the generated statements, with or without value
substitution, at assembly time.

The 3 types of variable symbols in the assembler language are:

• Symbolic parameters, which are declared in the prototype statement
• System variable symbols
• SET symbols, which are part of the conditional assembly language

Processing statements perform functions at preassembly time when macros are
expanded, but they are not themselves generated for further processing at
assembly time. The processing statements are:

• Conditional assembly instructions
• Inner macro calls
• MNOTE instructions
• MEXIT instructions

The MNOTE instruction allows you to generate an error message with an error
condition code attached, or to generate comments in which you can display the
results of preassembly operations.

The MEXIT instruction tells the assembler to stop processing a macro
definition. The MEXIT instruction provides an exit from the middle of a macro
definition. The MEND instruction not only delimits the contents of a macro
definition, but also provides an exit from the definition.

The conditonal assembly language provides:

• Variables
• Data attributes
• Expression computation
• Assignment instructions
• Labels for branching
• Branching instructions
• Substring operators that select characters from a string

You can use the conditional assembly language in a macro definition to operate
on input from a calling macro instruction. You can use the functions of the
conditional assembly language (1) to select statements for generation, (2) to
determine their order of generation, (3) to perform computations that affect the
content of the generated statements, and (4) to produce preassembly messages
through the MNOTE instruction. The conditional assembly language is fully
described in this chapter.

Macro Language 6 - 5

Comment Statements

Note. Conditional assembly instructions can be used only within macro
definitions.

A macro definition can contain two types of comment statements-one type
describes pre assembly operations and is not generated when the macro is
expanded; the other type describes assembly operations and is generated. For
details, see "Comment Statements in Macro Definitions." When a macro
definition is called, the assembler generates assembler language statements.

Where To Place a Macro De/i"itio" i" the SOllrce Modllie
A macro definition within a source module must be at the beginning of that
source module.

Open code is that part of a source module that is outside of and after any
inline macro definition. Open code is initiated by any statement of the assembler
language that appears outside of a macro definition, except the ICTL, ISEQ,
EJECT, PRINT, SPACE, or TITLE instructions or a comment statement.
Statements that do not start open code and comment statements can appear at
the beginning of a source module:

• Before all macro definitions
• Between macro definitions
• After macro definitions and before open code

All other statements of the assembler language must appear after any inline
macro definitions that are specified.

Parts 0/ a Macro De/i"ition

6 - 6 SC34-0l24

A macro definition consists of a header, prototype statement, body, and trailer.

Macro header. The MACRO instruction is the macro definition header; it must
be the first statement of every macro definition. Its format is:

Name Operation Operand

blank MACRO blank

Prototype Statement. The prototype statement in a macro definition serves as a
model (prototype) of a macro instruction used to call the macro definition. The
prototype statement must be the second statement in every macro definition. It
comes immediately after the MACRO instruction. The format of the prototype
statement is:

Name Operation Operand

macro
[label] name zero to 100 symbolic parameters, separated by commas

where label can be a symbolic parameter or blank.

Body of Macro. The machine instructions generated during macro expansion are
determined by the machine, assembler, and conditional assembly instructions
coded between the prototype statement and macro trailer.

Macro Trailer. The MEND instruction indicates the end of a macro definition.
It also provides an exit when it is processed during macro expansion. Its format
is:

[1

(:

c

c

0

Coding the Prototype Statement

Name Operation Operand

[label] MEND blank

where label can be a symbolic parameter or blank.

If no parameters are specified on the prototype statement, remarks are not
allowed. Remarks are allowed after parameters, if preceded by at least one blank.
To intersperse remarks with parameters (for example, a remark for each
parameter), use continuation lines as shown below. Any number of continuation
lines is allowed. However, each continuation line must be indicated by a
nonblank character in the column after the end column on the preceding input
record. For each continuation line, the symbolic parameters must begin in the
begin column; otherwise, the whole line and any lines that follow are considered
to contain remarks. See the example on the next page.

MOVE &TO, REMARKS X
&FROM, REMARKS X
&LENGTH, REMARKS X
&PARAH,&PARAH2,&PARAM3, REMARKS X

&PARAH15 REMARKS

Prototype Label. You can write a parameter, similar to a symbolic parameter, as
the label of a macro prototype statement. You can then assign a value to this
parameter from the name entry in the calling macro instruction. If used, the label
must be a variable symbol. If this parameter also appears in the body of a macro,
it is given the value assigned to the parameter in the label of the corresponding
macro instruction. For example:

• I NSTRUCT IONS DESCRIPTION

.' MACRO
&NAME INTRCHG &TO,&FROM PROTOTYPE STATEMENT

&NAME HVW Rl,SAVE
MVW &FROM,Rl
HVW &TO,&FROH
MVW Rl,&TO
HVW SAVE,Rl

MEND
START

HERE INTRCHG RESULT,DATA MACRO CALL THAT GENERATES
FOLLOWING STATEHENTS:

HERE HVW Rl,SAVE
HVW DATA,Rl
MVW RESULT, DATA
HVW Rl,RESULT
HVW SAVE ,Rl

END

Macro Language 6-7

The Body of a Macro Definition

Symbolic Parameters

6 - 8 SC34-0124

Note that the value assigned to the label parameter on the prototype statement
has special restrictions that are listed in this chapter under "Using the Calling
Macro Instruction."

Prd 0f.t~~ Mwahcro Name. !fhe. ~acrho name i~ a sf~mldbolfthat identi~ies the. macrho()
e InltIon. en you specI y It In t e operatIon Ie 0 a source InstructIOn, t e

appropriate macro definition is called and processed by the assembler. The
operation code specified in the prototype statement (prototype macro name)
must not be the same as that specified in:

1. Any machine instruction.
2. Any assembler instruction other than the macro call.
3. The prototype statement of any other inline (or source file) macro definition.

(If the name of a source file macro definition matches the name of one of
your inline macro definitions, the assembler uses the inline definition.)

Prototype Symbolic Parameters. The operand entry in a prototype statement can
contain positional or keyword symbolic parameters. These parameters represent
the values passed from the calling macro instruction to the statements within the
body of a macro definition. (See "Symbolic Parameters" in this chapter.)

Note. The operands must be symbolic parameters~ parameters in sublists are
not allowed. For a discussion of sublists in macro instruction operands, see
"Sublists in Operands" in this chapter.

The body of a macro definition contains the sequence of statements that are the
working part of a macro, including:

• Model statements to be generated
• Processing statements that, for example, can alter the content and sequence of

the statements generated or issue error messages! \
• Comment statements, some of which are generated and others which are not , ~

• Conditional assembly instructions to compute results to be displayed in the
message created by the MNOTE instruction, without causing any assembler
language statements to be generated

The statements in the body of a macro definition must appear between the
macro prototype statement and the MEND statement.

Symbolic parameters (recognized by an ampersand as initial character) are
declared in the macro prototype statement and serve as points of substitution in
the body of the macro definition. During macro expansion, they are replaced by
the values assigned to them by the calling macro instruction. By using symbolic
parameters with meaningful names, you can indicate the purpose for the
parameters (or substituted values).

Symbolic parameters must be valid variable symbols, consisting of an
ampersand followed by an alphabetic character, followed by 0-6 alphameric
characters (maximum of 8 characters total). They have a local scope~ that is, the
value they are assigned only applies to the macro definition in which they have
been declared. The value of the parameter remains constant throughout each
processing of the containing macro definition, changing with each call to the
macro definition based on values assigned by each macro call.

Note. Symbolic parameters must not be defined in duplicate or be identical to
any other variable symbols within the given local scope. (This applies to system
variable symbols, and local and global SET symbols described later in this
chapter.) C

c~

c

o

There are 2 kinds of symbolic parameters:

• Positional parameters; for example:
Prototype: MYMAC & PARMI, & PARM2
Calling macro: MYMAC FIELDA,FIELDB

• Keyword parameters; for example:
Prototype: MYMAC2 & TO=, & FROM=
Calling macro: MYMAC2 TO=FIELDA,FROM=FIELDB
The two types of symbolic parameters may be mixed; for example:
Prototype: MYMAC & PARAMl, & FROM=
Calling macro: MYMAC FIELDA,FROM=FIELDB

All positional parameters must precede any keyword parameters, if the two
kinds are mixed on a prototype statement.

If a parameter is positional on the prototype statement, it must be positional
on the calling macro instruction; likewise, if keywords are used on the prototype
statement, they must also be used on the calling macro instruction. Positional
parameters on the calling macro instruction must appear in the same sequence as
corresponding positional parameters on the prototype statement. Keyword
parameters on the calling macro instruction do not have to appear in the same
sequence as specified on the prototype statement, but must follow any positional
parameters on the same calling macro instruction.

Which kind of parameters should you use-positional or keyword? There are
advantages to each:

Positional. You should use a positional parameter if the value of the parameter
changes with each calling macro instruction. Less coding is required to supply the
value for a positional parameter than for a keyword parameter, since you code
only the value; with keyword parameters, you must also code the keyword and
equal sign.

Keyword. You should use keyword parameters if you have a large number of
parameters. The keywords make it easier to identify which values are being
assigned to which parameters on the calling macro instruction in any order. You
should also use a keyword parameter if the value changes infrequently. Keyword
parameters can be initialized to default values in the prototype statement; then if
the calling macro instruction does not change that default value, it need not
contain that parameter. For example:
Prototype: MYMAC & TO=FIELDA, & FROM=FIELDB
Calling macro: MYMAC TO=FIELDC

Values are assigned to keyword parameters as follows:

• If the corresponding keyword appears on the calling macro instruction, the
value after the equal sign is the value for the parameter in that macro
expansion.

• If the corresponding keyword does not appear on the calling macro instruction,
the default value from the prototype statement is the value for the parameter
in that macro expansion.

Macro Language 6 - 9

6 - 10 SC34-0124

* INSTRUCTIONS DESCRIPTION
*

t'i;~ ,+ ..

t''',!,mt

MACRO
KEYS &KEY1-ABC,&KEY2=(A,B,C) PROTOTYPE STATEMENT

MEND
START

KEYS MACRO CALL THAT GENERATES CODE
USING THE FOLLOWING VALUES:

&KEY1==ABC
&KEY2==(A,B,C)

KEYS KEY1-DEF,KEY2-(D,E,F) MACRO CALL THAT GENERATES CODE
USING THE FOLLOWING VALUES:

. .
END

&KEY1=DEF
&KEY2==(D,E,F)

Note. A null character string can be specified as the default value of a
keyword parameter and will be generated if the corresponding keyword operand
is omitted.

"ko
'r;FDcDPT "tyPE-, ®-R3
· ·
~AL'TYPE ADDR,®
· · 8&TVPE ADDRESS

. MEND
START

: fXPPT

:
· ·
FXDPT TYPE-X
:
· · :
:
· · END

DESCRIPTION

PROTOTYPE STATEMENT--NULL CHARACTER
STRING DEFAULT VALUE FOR &TYPE

MACRO CALL THAT GENERATES
THE FOLLOWING CODE:

BAL ADDR,R3

B ADDRESS'

MACRO CALL THAT GENERATES
THE FOLLOWING CODE:

BALX ADDR,R3

BX ADDRESS

()

(
, ill

c

Subscripted Symbolic Parameters

c

c

o

Symbolic parameters may have several values expressed as a sublist rather than a
single value. In this case, the symbolic parameter is written with a subscript, in
the following format:

&PARAM(subscript)

where & P ARAM is a valid variable symbol and subscript is an arithmetic
expression (as described later in this chapter under "Arithmetic (SET A)
Expressions"). The subscripted arithmetic expression can contain other
subscripted variable symbols; nesting of subscripted variable symbols is allowed
for up to five levels. The value of the subscript must be greater than or
equal to 1.

The subscript on the prototype statement indicates the number of entries in the
value sublist. The subscript in the body of the macro definition (when the
symbolic parameter is used on a model statement) indicates the position of one
entry in the sublist; if a symbolic parameter is subscripted on the prototype
statement and nonsubscripted on a model statement, the model statement refers
to the entire sublist (all entries). Sublists as values in calling macro instructions
are fully described later in this chapter under "Sublists in the Macro Instruction
Operand."

Macro Language 6 - 11

Model Statelllellls
Assembler language instructions are generated from model statements at
pre assembly time. By specifying variable symbols as points of substitution in a
model statement, you can vary the content of the instruction generated from that OJ

f

model statement. <

A model statement consists of the same fields as an ordinary assembler
language statement: name, operation, operand, and remarks. You cannot generate
the identification and sequence field from a model statement. Model statements
must have an entry in the operation field, in order to generate valid assembler
language instructions. Each field or subfield can consist of:

• An ordinary character string
• A variable symbol as a point of substitution
• Any combination of ordinary character strings and variable symbols to form a

concatenated string.

The statements generated at pre assembly time from model statements must be
valid machine or assembler instructions, and must not be conditional assembly
instructions. They must obey the coding rules described in Chapter 2 or they will
be flagged as errors at assembly time. A generated statement can occupy up to
two continuation lines on the listing, unlike source statements, which are
restricted to one continuation line.

Variable Symbols as Points of Substitution

Rules for Concatenation

6 - 12 SC34-0124

Values can be substituted for variable symbols that appear in the name,
operation, and operand fields of model statements; thus, variable symbols
represent points of substitution. The three main types of variable symbols are:

• Symbolic parameters (positional and keyword)
• System variable symbols (& SYSLIST, & SYSNDX, & SYSP ARM,

& SYSDATE and & SYSTIME) (it.

• SET symbols (global SETA, SETB, SETC and local SETA, SETB, SETC) " ,

Symbolic parameters, SET symbols, and the system variable symbol
& SYSLIST can all be subscripted. The remaining system variable symbols
& SYSNDX, & SYSP ARM, & SYSDA TE, and & SYSTIME cannot be
subscripted.

When values are substituted for variable symbols, the generated fields begin in
standard columns, if possible.

When variable symbols are concatenated to ordinary character strings the
following rules apply to the use of the concatenation character (a period).

• The concatenation character is mandatory when:
- An alphameric character is to follow a variable symbol

A left parenthesis that does not enclose a subscript is to follow a variable
symbol.

- A period (.) is to be generated. Two periods must be specified in the
concatenated string following a variable symbol.

• The concatenation character is not necessary when:
An ordinary character string precedes a variable symbol
A special character, except left parenthesis or period, follows a variable
symbol
A variable symbol follows another variable symbol.

«' ,

G

c

o

The concatenation character must not be used between a variable symbol and
its subscript; otherwise, the characters will be considered a concatenated string
and not a subscripted variable symbol.

Following are examples of concatenated strings and the resulting generated
code:

Concatenated string Su hstitu ted values Generated result

&FIELD.A &FIELD: AREA AREAA

&FIELDA &FIELDA: SUM SUM

&DISP.(&BASE) &DISP: 100 100 (10)
&BASE: 10

DC F'INT .. &FPACT' &INT: 99 DC F'99.88'
&FRACT: 88

DC F'&INT &FRACT' &INT: 99 DC F'9988'
&FRACT: 88

DC F'&INT.&FRACT' &INT: 99 DC F'9988'
&FRACT: 88

FIELD&A &A: A FIELDA

&A + &B* 3 - D &A: A A+B*3-D
&B: B

&A&B &A: A AB
&B: B

&SYM(&SUBSCR) &SUBSCR: 10 ENTRY
&SYM (10): ENTRY

Contents of Model Statement Name Field
The entries allowed in the name field of a model statement a!'e:

• Blank
• Ordinary symbol
• Sequence symbol
• Variable symbol
• Any combination of variable symbols and other character strings concatenated

The name field of the generated statement must contain a valid ordinary
symbol or blank. Variable symbols must not be used to generate comment
statement indicators (an asterisk in the "begin" column).

Note. Restrictions on the name entry are further specified where each
individual assembler language instruction is described in this manual.

Macro Language 6 - 13

Contents of Model Statement Operation Field

6 - 14 SC34-0124

Allowed

The entries allowed and not allowed in the operation field of a model statement
are:

Allowed Not allowed

• An ordinary symbol that represents the operation • Blank
code for: • The assembler operation codes:

-any machine instruction
-a macro instruction END
-the following assembler instructions: ICTL

ISEQ
ALIGN EJECT PRINT MACRO
COM ENTRY PUSH
COPY EQU SPACE
CSECT EQUR START
DC EXTRN TITLE
DROP GLOBL USING
DS ORG WXTRN
DSECT POP

· A variable symbol

· A combination of variable symbols and other
character strings concatenated together

As a result, the entries allowed and not allowed in the operation field of the
generated statements are:

Not allowed

• An ordinary symbol that represents the operation • Blank
code for: • Macro instruction operation code

-any machine instruction • A conditional assembly operation code:
-the following assembler instructions:

ACTR LCLA
ALIGN
COM
CSECT
DC

DROP
DS
DSECT
EJECT

ENTRY PRINT AGO LCLB
EQU PUSH AIF LCLC
EQUR SPACE ANOP SETA
EXTRN START GBLA SETB
GLOBL TITLE GBLB SETC
MNOTE USING GBLC
ORG WXTRN
POP • The following assembler operation codes:

COPY ISEQ MEXIT
END MACRO
ICTL MEND

The MACRO and MEND operation codes are not allowed in model
statements; they are used only for delimiting macro definitions. The END
operation code is not allowed inside a macro definition.

Note. The MNOTE and MEXIT statements are not model statements. The
MNOTE operation code can, however, be created by substitution.

o

f "
'\ ,

c

c

c

o

Contents of Model Statement Operand Field
The entries allowed in the operand field of a model statement are:

• Blank (if valid)
• An ordinary symbol
• A character string combining alphameric and special characters (but not

variable symbols)
• A variable symbol
• A combination of variable symbols and other character strings concatenated

The generated statement operand field must contain a blank or character string
that represents a valid assembler or machine instruction operand.

Contents of Model Statement Remarks Field

Examples of Model Statements

Process;IIg Statemellts

Any combination of characters can be specified in the remarks field of a model
statement. No values are substituted into variable symbols in this field.

Model: &NAME SOP ®,&ADDR

Generated: LABE L MVW R3,ADCON
Note. Value is not substituted in remarks field.

&ADDR

Madel:

Generated:

LCLC
SETC

AW

AW

&ADDR
IADCON MAl

R3,&ADDR REMARKS

R3,ADCON MA REMARKS

REMARKS ®

REMARKS ®

Note. Space between ADCON and MA in the SETC model statement causes MA to be generated as part
of the remarks field.

LCLC &A
LCLC &C

&A SETA 3
&C SETC IR&A &A I

Model: CMR &C IS REGISTER COMPLEMENTED

Generated: CMR R3 3 IS REGISTER COMPLEMENTED
Note. Generated remarks are combined with remarks field of model statement.

Model:

Generated:

&STMT
&STMT

SETC IA CMR

ERROR
Note. The generated statement has no operation field.

The processing statements are:

• Conditional assembly instructions
• Inner macro instructions
• MNOTE instructions
• MEXIT instructions

R3'

Macro Language 6 - 15

Conditional Assembly Instructions

Inner Macro Instructions

COPY Instruction

MNOTE Instruction

6 - 16 SC34-0124

Conditional assembly instructions allow you to control at pre assembly time the
contents of the generated statements and the sequence in which they are

('.1· generated. The instructions and their functions are: . ,;

Conditional assembly instruction Function

GBLA,GBLB,GBLC Declaration of initial value, type, and array dimensions
LCLA,LCLB,LCLC for variable symbols (global and local SET symbols)

SET A, SETB, SETC Assignment of values to variable symbols (SET symbols)

AIF Conditional branch (based on logical test)

AGO Unconditional branch

ANOP Branch to next sequential instruction (no operation)

ACTR Set loop counter

Macro instructions can be nested inside macro definitions, allowing you to call
other macros from within your own definitions. Nesting of macro instructions is
fully described in "Nesting in Macro Definitions" in this chapter.

The COpy instruction, inside macro definitions, allows you to copy into the
macro definition any sequence of statements allowed in the body of a macro
definition. These statements become part of the body of the macro before macro
processing takes place. You can also use the COpy instruction to copy complete
macro definitions into a source module.

The specifications for the COpy instruction, which can also be used in open
code, are described in Chapter 5, under "Program Sectioning."

You can use the MNOTE instruction to generate your own error messages or
display intermediate values of variable symbols computed at pre assembly time.

The MNOTE instruction is used inside macro definitions and its operation
code can be created by substitution. The MNOTE instruction causes the
generation of a message which is given a statement number in the printed listing.

The format of the MNOTE instruction statement is:

Name Operation Operand

[label) MNOTE message specifica tion

(:

o

The name field can contain a sequence symbol or blank. The message
specification is 1 of 4 options:

Messaxe specification MessaKc produced

n'message' error message, severity n(O -- 255)
, 'message' error message, severity 0
'message' error message, severity 0
*, 'message' comments, severity 0

The n stands for a severity code. The rules for specifying the contents of the
severity code subfield are as follows:

• The severity code can be specified as a decimal self -defining term, or as a
variable symbol representing a decimal self -defining term. The self -defining
term must have a value in the range 0-255.

• If the severity code is omitted, with or without the comma, the assembler
assigns a default value of 0 as the severity code.

• An asterisk in the severity code subfield causes the message and the asterisk
to be generated as a comment statement.

The following examples show the four options for MNOTE operands:

• MNOTE 2,'ERROR IN SYNTAX'
Generates severity 2 diagnostic error message.

• MNOTE ,'MISSING OPERAND'
Generates severity 1 diagnostic error message .

• MNOTE 'INVALID PARAMETER'
Generates severity 0 diagnostic error message.

• MNOTE *,'DEFAULT VALUE TAKEN'
Generates a comment-type MNOTE

An MNOTE instruction causes a message to be printed if the current PRINT
option is ON, even if the PRINT NOGEN option is specified.

Any combination of characters enclosed in apostrophes can be specified in the
message subfield. The rules that apply to this character string are:

• Variable symbols are allowed (variable symbols can have a value that includes
even the enclosing apostrophes).

• Double ampersands or double apostrophes are needed to generate one
ampersand or one apostrophe. If variable symbols have ampersands or
apostrophes as values, the values must have double ampersands or apos­
trophes.

• Any remarks for the MNOTE instruction statement must be separated from
the apostrophe that ends the message by one or more blanks.

• Single apostrophes substituted or specified cause message generation to stop
where the single apostrophe appears. If a single apostrophe is substituted in a
position immediately after the closing apostrophe of the MNOTE instruction,
then the apostrophe is printed. An error message is issued because a closing
apostrophe cannot be found.

Macro Language 6 - 17

MEXIT Instruction

The following examples indicate the results generated during pre assembly
processing of MNOTE instructions:

MNOTE instruction Generated result

MNOTE 3, 'THIS IS A MESSAGE' 3, THIS IS A MESSAGE

MNOTE 3, &PARAM 3, ERROR
(&PARAM = 'ERROR')

MNOTE 3, 'VALUE OF &&A IS &A' 3, VALUE OF &A IS 10
(&A = 10)

MNOTE 3, 'DOUBLE &S' 3. DOUBLE &
(&S = &&)

MNOTE 3, 'DOUBLE &APOS' 3, DOUBLE'
(&APOS ="

MNOTE 3, 'MESSAGE STOP' RMRKS 3, MESSAGE STOP RMRKS

The MEXIT instruction causes the assembler to exit from a macro definition to
the next sequential instruction after the calling macro instruction. (This also
applies to nested macro instructions.) Its format is:

Name Operation Operand

[label] MEXIT blank

where name is either a sequence symbol or blank.

Commellt Statemellts III Macro Definitions

6 - 18 SC34-0124

Macro definitions can contain two kinds of comment statements:

• Internal macro comments-used to describe operations performed at
pre assembly time; not generated in the macro expansion

• Ordinary comments-used to describe operations performed at assembly time;
generated in macro expansion

No values are substituted for variable symbols specified in either internal or
ordinary comments. If you want to display the value of a variable symbol, use a
comment-type MNOTE.

The format of an internal macro comment is:

Column Contents

1 period (.)
2 asterisk (*)

3-72 textof comment (any character string)

For example:

.*THIS IS AN INTERNAL MACRO COMMENT

The format for an ordinary comment statement within a macro definition is the
same as for comment statements in open code (described in Chapter 2).

()

I

G

c

o

System Variable Symbols
There are five variable symbols whose values are set by the assembler according
to specific rules; these are the system variable symbols:

• & SYSLIST -to refer to positional parameter or sublist in the calling macro
instruction when there is no corresponding parameter or sublist in the
prototype statement and to count the number of positional parameters or items
in a positional parameter sublist

• & SYSNDX-to generate unique symbols for each expansion of a macro
definition, by concatenating to the symbol a suffix whose value changes for
each expansion

• & SYSP ARM-to refer to a parameter specified in the assembler options list
• & SYSDA TE-to provide the date of assembly
• & SYSTIME-to provide the time of the start of the assembly

You can use these symbols as points of substitution in model statements and
conditional assembly instructions. All system variable symbols are subject to the
same rules of concatenation and substitution as other variable symbols (see
"Model Statements"). System variable symbols must not be used as symbolic
parameters in the macro prototype statement. Also, they must not be declared as
SET symbols. The assembler assigns read-only values to system variable symbols;
they cannot be changed by using the SETA, SETB, or SETC instructions (see
"Declaring SET Symbols").

The system variable symbols & SYSLIST and & SYSNDX are assigned a
read-only value each time a macro is called and have that value only within that
expansion of the macro. The system variable symbols & SYSP ARM,
& SYSDATE and & SYSTIME are assigned a read-only value for an entire
source module.

&SYSLIST -Refer to Positional Parameters and Sublists
By varying the subscripts attached to & SYSLIST, you can refer to any positional
parameter or sublist entry in a calling macro instruction. & SYSLIST can refer to
positional parameters that have no corresponding positional parameter in the
macro prototype statement. & SYSLIST can also count the number of positional
parameters or entries in a positional sublist that were given on the calling macro
instruction.

The assembler assigns read-only values to & SYSLIST each time a macro
definition is called, applicable to that expansion of the macro only. & SYSLIST
refers to the complete list of positional parameters in a calling macro instruction;
& SYSLIST does not refer to keyword parameters.

When used as a point of substitution within the macro definition, one of 2
forms of & SYSLIST must be used:

• To refer to a positional parameter
Calling macro instruction:

MACLST PI,P2, ... ,Pn, ...
Point of substitution:

& SYSLIST(n)
• To refer to a sublist entry in a positional parameter

Calling macro instruction:
MACSUB PI ,P2, ... ,(Pn 1 ,Pn2, ... ,Pnm, ...), ...

Point of substitution:
& SYSLIST(n,m)

The subscript n indicates the position of the parameter referred to. The
subscript m, if specified, indicates the position of an entry in a sub list. The
subscripts nand m can both be any arithmetic expression allowed in the operand
of a SET A instruction; they must be greater than or equal to one.

Macro Language 6 - 19

6 - 20 SC34-0124

If n refers to an omitted parameter or refers past the end of the complete list
of positional parameters the null character s~ring is substituted for
& SYSLIST(n). If m refers to an omitted entry or refers past the end of the
sublist, the null character string is substituted for & SYSLIST(n,m). Further, if
the nth positional parameter is not a sublist, & SYSLIST(n,l) refers to the nth
parameter and & SYSLIST(n,m) causes the null character string to be substituted
if m is greater than one.

As an example of values substituted for & SYSLIST, consider the calling macro
instruction:

HACALL ONE,TWO,(3,4"6),,EIGHT

This results in the following value substitutions:

Point of substitution Value
in macro definition substituted

&SYSLIST (2) TWO
&SYSLIST (3, 2) 4
&SYSLIST (4) Null
&SYSLIST (9) Null
&SYSLIST (3, 3) Null
&SYSLIST (3, 5) Null
&SYSLIST (2, 1) TWO
&SYSLIST (2, 2) Null
&SYSLIST (3) (3,4, , 6)

The attributes of the previously described forms of & SYSLIST are the
attributes inherent in the positional parameter or sublist entry referred to.

There are two forms of & SYSLIST:

• To indicate the number of positional parameters in a macro call, use the form:
N'& SYSLIST

• To indicate the number of sub list entries in a positional parameter, use the
form:
N' & SYSLIST(n)
where n indicates the positional parameter.

For N' & SYSLIST, positional parameters are counted if specifically omitted
(by specifying the comma that would normally have followed the omitted
parameter). A sub list is counted as one parameter.

For N' & SYSLIST(n), sublist entries are counted if specifically omitted (by
specifying the comma that would normally have followed the omitted entry). If
the nth parameter is not a sublist, the value of N' & SYSLIST(n) is one; if the
nth parameter is omitted, the value of N' & SYSLIST(n) is zero.

o

1
'-

c

c

o

The following examples show values for N' & SYSLIST:

Macro instruction Value of N'&SYSUST

MACLST 1,2,3,4 4
MACLST A,B"D,E 5
MACLST ,A, B,C,D 5
MACLST (A, B, C) , (D, E, F) 2
MACLST 0
MACLST KEYl = A, KEY2 = B 0
MACLST A, B, KEYI = C 2

The following examples show values for N' & SYSLIST(n):

Macro instruction Value oIN'&SYSLlST (2)

MACSUB A, (l, 2, 3,4,5) , B 5
MACSUB A, (1" 3" 5), B 5
MACSUB A, (, 2, 3, 4, 5) , B 5
MACSUB A,B,C 1
MACSUB A, ,C 0
MACSUB A, KEY = (A, E, C) 0
MACSUB ()

&SYSNDX--Generate Unique Symbols for Multiple Expansions

To generate a unique suffix for a symbol used in a macro definition for each
expansion of that macro, concatenate & SYSNDX to the symbol. Although the
same symbol is generated by two or more expansions (two or more calling macro
instructions), the suffix provided by & SYSNDX produces unique symbols.

The assembler assigns & SYSNDX a read-only value each time a macro
definition is expanded (for each calling macro instruction); this value is a 4-digit
number, starting at 0001 for the first macro call and increased by 1 for each
subsequent macro call (including nested macro calls).

& SYSNDX alone does not generate a valid symbol. It must be concatenated
as the suffix to another symbol, and that symbol must not contain more than 4
characters (for a total of not more than 8 characters). For example,
ITEM & SYSNDX. If & SYSNDX is concatenated to a variable symbol, the
parameter assigned to that variable symbol must not contain more than 4
characters. For example, if the parameter THREE is substituted for the variable
symbol & PRM & SYSNDX, the result would be THREEnnnn, which exceeds the
length maximum for symbol names.

The type attribute of & SYSNDX, when used as a parameter on an inner
macro call, is always N, and the count attribute is always 4.

The following example indicates the results of using & SYSNDX in naming DC
and DS instructions.

Macro Language 6 - 21

* SOURCE CODE
* MACRO

CONST &Pl,&P2

&Pl&SYSNDX DC FI&P2 1

AREA&SYSNDX OS F
MEND

OPEN START

CONST TWO,2
· ·
CONST TWO,2jj

· · CONST THREE,3;;

· ·
1 Example notes.

GENERATED CODE

TWO __ !ll
ARE~~l

Two!l;lf2
AREASfj~2

DC FI21
OS F

DC FI211t1'
DS F

THREE;;~3 DC FI3;~'
AREASf~!l3 OS F

1. TWOOOOl and TW00002 are two different symbols, and thus are not multiply dermed.
2. THREE0003 exceeds eight characters,in length, causing an error.

ItSYSPARM-System Parameter for Conditional Assembly
The system parameter & SYSP ARM allows you to control conditional assembly
flow and source code generation through the use of a parameter specified in the

o

assembler options list. Thus, you can modify the output of an assembly without (
changing the source code itself. \. ,

&SYSDA TE-Date of Assembly

ItSYSTIME-Time of Assembly

6 - 22 SC34-0 124

The system parameter behaves like a global SETC symbol except that its value
can be set only through the assembler options list. & SYSP ARM cannot be
modified during assembly and can only be coded inside macro definitions.

The system parameter contains the value of a character string within quotes,
which must be zero to 8 characters long. It may consist of any combination of
EBCDIC characters. A single quote in the string must be represented by two
quotes. If no & SYSP ARM value is specified, the value of the system parameter
is a null string.

The value of the variable symbol is an 8-character string which is the date of the
assembly. The format is mm/dd/yy (month/day/year) or dd/mm/yy
(day/month/year) depending on which form was specified at SYSGEN.
& SYSDATE cannot be modified during assembly and can only be coded inside
macro definitions.

The value of the variable symbol is a 5-character string which provides the time
at the start of the assembly. The format is hh.mm (hours.minutes). The value of
& SYSTIME cannot be modified during assembly. For systems without the timer
feature, & SYSTIME is a 5-character string of blanks.

c

c

c

o

Using the Calling Macro Instruction
The calling macro instruction (or macro call) provides the assembler with the
name of a macro definition and the information or values you want passed to
that macro definition. This information is the input to a macro definition. The
assembler uses the information either in processing the macro definition or for
substituting values into model statements during macro expansion. The output
from a macro definition, called by a macro instruction, can be:

• A sequence of source statements generated from the model statements in the
macro definition (macro expansion)

• Values assigned to global SET symbols, for use in other macro definitions

You can code a macro call anywhere in the open code part of your source
module. However, the statements generated from the called macro definition
must be valid assembler language instructions and allowed where the calling
macro instruction appears. A macro call is not allowed before or between your
inline macro definitions, but you can nest them inside a macro definition.

The format of a macro call statement is:

Name Operation Operand

[label]
macro zero to 100 operands, separated by commas
name

where the name field can contain any ordinary symbol or blank, and macro name
identifies the macro definition to be expanded. The assembler allows up to 100
operands in the operand field. Your entries in the name, operation, and operand
fields correspond to entries in the prototype statement of the called macro
definition.

If you code no operands, remarks are not allowed. You can specify remarks on
a macro instruction with operands in any of three ways:

1. The normal way, with all operands preceding all remarks; for example:

HACNORH PARHI,PARH2,PARH3, ••••••••••••••••••••••••••••••••••• ,X
PARMN REMARKS

2. The alternate way, allowing remarks for each operand, with continuation
lines used to pair remarks with parameters; for example:

HACAL T PARMI, REMARKS ABOUT PARMl
PARM2, REMARKS ABOUT PARM2
PARM3, REMARKS ABOUT PARM3

PARMN REMARKS ABOUT PARMN
3. A combination of the first two ways; for example:

MACOMB PARM1,PARM2,PARM3, REMARKS
PARM4,PARM5, MORE REMARKS

PARMN MORE REMARKS

~
~

[~

You are allowed any number of continuation lines. However, you must identify
each continuation line with a nonblank character in the column after the end
column of the previous statement line. Operands on continuation lines must begin
in the continue column or beyond. If, in continuation lines, you make any entries
in the columns preceding the continue column, the assembler issues an error
message and does not process the entire statement.

Macro Language 6 - 23

Macro Instruction Name Field
The name field on a macro call can be used to generate an assembly-time label
for a machine or assembler instruction. To accomplish this, a symbolic parameter 0
must appear in the name field of the macro prototype statement and also in the)
name field of a model statement within the macro definition. Macro expansion
will result in the name field of the model statement containing the name field
entry from the calling macro instruction. See the example on the next page.

* SOURCE CODE GENERATED CODE

* MACRO
,MAtt HACNAH

'HAM HVWS R6. (R2)

MEND
QP;EN START

HEJ~;'E HACNAM
1

HERE HVWS R6, (R2)

MCNAM

THE~E HVWS R6, (R2)

Macro Instruction Operation Field

Macro Instruction Operand Field

The symbolic operation code identifies the macro definition that you want the (
assembler to process. The operation entry for a macro instruction must be a valid \.,
symbol that is identical to the operation code in the prototype statement of the
macro definition you want to call.

Note. If one of your inline macro definitions has the same name as a library
macro definition, the assembler processes the inline macro definition.

You use the operand entry in a macro instruction to pass values (parameters) to
the called macro definition. These values can be passed through:

• The symbolic parameters you have specified in the macro prototype, or
• The system variable symbol & SYSLIST, if it is specified in the body of the

macro definition.

Macro lllstnlctioll Opertlllds

6 - 24 SC34-0124

The assembler allows two types of parameters in a macro instruction operand;
positional and keyword. You can specify a sub list with multiple values in both
types of parameters. "Symbolic Parameters" earlier in this chapter explains the
advantages of each type. Special rules for the various values passed in parameters
are given in "Values in Macro Instruction Parameters" in this chapter.

c

c

c

o

Positional Parameters on the Macro Instruction
Use a positional parameter on the macro call to pass a value to a macro
definition through the corresponding positional parameter declared on the
prototype statement or to pass a value to the system variable symbol
& SYSLIST.

If you specify & SYSLIST with appropriate subscripts in a macro definition,
you do not need to declare positional parameters in the prototype statement. You
can thus use & SYSLIST to refer to any positional parameter. And, & SYSLIST
allows you to vary the number of parameters passed with each calling macro
instruction.

If & SYSLIST is not used, you must code the positional parameters on the
calling macro instruction in the same order and quantity as the positional
parameters declared in the macro definition prototype statement. Otherwise:

• If the number of positional parameters on the calling macro instruction is
greater than the number of positional parameters on the macro definition
prototype statement, the excess parameters are meaningless.

• . If the number of positional parameters on the calling macro instruction is less
than the number of positional parameters on the macro definition prototype
statement, the omitted parameters pass null character string values to
corresponding parameters.

You must ensure that the nth parameter on the calling macro instruction and
the nth parameter on the macro definition prototype statement are appropriately
paired; omitted parameters on the calling macro instruction must be indicated
specifically by coding the comma that would normally follow the omitted
parameter, to maintain proper correspondence of subsequent parameters. For
example:

* INSTRUCTIONS
* MACRO

OMIT
DC

MEND
START

&Pl,&P2,&P3
&Pl&P2 I ALWAYS &P3'

OMIT ,C,HERE

END

DESCRIPTION

PROTOTYPE STATEMENT
MODEL STATEMENT USING
SYMBOLIC PARAMETERS

CALLING MACRO INSTRUCTION THAT
GENERATES THE FOLLOWING INSTRUCTION:

DC C'ALWAYS HERE'

Macro Language 6 - 25

Keyword Parameters on the Macro Instruction
Use a keyword parameter on the macro call to pass a value through a keyword
parameter into a macro definition. To override the default value assigned to a
keyword parameter on the prototype statement, code the corresponding keyword 0
parameter on the macro instruction..)

Any keyword parameter you specify in a macro instruction must correspond to
a keyword parameter in the prototype statement. However, you do not have to
code keyword parameters in any particular order.

You must code a keyword operand in the format keyword=value. The keyword
coded on the calling macro instruction has up to seven characters and is not
preceded by an ampersand; the corresponding keyword on the macro prototype
statement consists of the same characters preceded by an ampersand. The value
coded on the calling macro instruction can be up to 127 characters long. The
value you specify overrides the default value in the prototype statement. The
def ault value has the same rules as a value in a keyword parameter.

The following examples describe (1) the relationship between keyword
operands and keyword parameters, and (2) the values that the assembler assigns
to these parameters under different conditions'.

* INSTRUCTIONS DESCRIPTION
*

SHOW

OPEN

6 - 26 SC34-0124

MACRO
HAC &KEY1-DEFAULT,&KEY2- PROTOTYPE STATEMENT--DEFAULT VALUE

FOR &KEY2 IS A NULL CHARACTER STRING
DC C'&KEY1&KEY2 1

MEND
START

MAC

MAC

HAC

MAC . ..
END

KEY1-0VERRIDE,KEY2-1 CALLING MACRO INSTRUCTION THAT
GENERATES:

KEY1-0VERRIDE

KEY2-1

SHOW DC C'OVERRIDEl l

CALLING MACRO INSTRUCTION THAT
GENERATES:
SHOW DC C'OVERRIDE '

CALLING MACRO INSTRUCTION THAT
GENERATES:
SHOW DC C' DEFAULTl l

CALLING MACRO INSTRUCTION THAT
GENERATES:
SHOW DC C'DEFAULT '

The assembler issues an error message when the keyword of the calling macro
instruction does not correspond to any keyword on the prototype statement.

You can specify the null character string as the value for a keyword parameter
either as a default value on the prototype statement or on the calling macro
instruction by coding &keyword= or keyword=, respectively, with no value
following the equal sign. If another keyword parameter follows, the equal sign
would be followed by a comma with no intervening blanks.

t , ,

G

c

o

Combining Positional and Keyword Parameters

You can use a combination of positional and keyword parameters in the same
macro instruction. See the following example.

* INSTRUCTIONS

* MACRO

DESCRIPTION

MIXED &P1,&P2,&P3-16,&P4-NO

MEND
START

MI XED 1;, YES

.
MIXED P3=1;,P4=YES

MI XED 1,ff ,P4=YES

MIXED

END

CALLING MACRO INSTRUCTION THAT
USES POSITIONAL PARAMETERS

CALLING MACRO INSTRUCTION THAT
USES KEYWORD PARAMETERS

CALLING MACRO INSTRUCTION THAT
USES BOTH POSITIONAL AND
KEYWORD PARAMETERS

CALLING MACRO INSTRUCTION WITH NO
PARAMETERS--USING DEFAULT VALUES

All positional parameters on the calling macro instruction must precede all
keyword parameters on that instruction. The list of positional parameters must
correspond to the positional parameters on the macro definition prototype
statement as described under "Positional Parameters on the Macro Instruction."

Macro Language 6 - 27

S"bluts ill tile Maero [lIstnletioll Operand
You can use a sublist in a positional· or keyword parameter on the calling macro
instruction to specify several values. A sublist is one or more entries separated by
commas and enclosed in parentheses. The sublist, including parentheses, must not 0
exceed 127 characters. .. .

In a macro definition, you can refer to the value of each entry by coding:

• The corresponding symbolic parameter with an appropriate subscript, or
• The system variable symbol & SYSLIST with appropriate subscripts, the first

to refer to the positional parameter and the second to refer to the sublist entry
in the operand.

These rules apply to sublists in macro instructions:

• & SYSLIST can refer only to sublists in positional parameters.
• The value in a positional or keyword parameter can be a sub list.
• A symbolic parameter as used within the macro definition can refer to the

entire sublist or to an individual entry of the sublist. To refer to an individual
entry, the symbolic parameter must have a subscript whose value indicates the
position of the entry in the sublist. The subscript must have a value greater
than or equal to one.

The following shows an example of a sublist:

* I NSTRUCT I ONS DESCRIPTION

* MACRO
MAC &Pl,&P2,&KEY-(F,_) PROTOTYPE STATEMENT WITH SUBLIST

DEFAULT VALUE FOR KEYWORD PARAMETER

KEY DC &KEY (1) I &KE Y (2) I HODEL STATEHENT--SUBSCRIPTS REFER TO
POSITIONS WITHIN SUBLIST VALUE FOR t '
&KEY \. ,

&P1 (1) DC &Pl (2) I &P1 (3) I MODEL STATEMENT--SUBSCRIPTS REFER TO
POSITIONS WITHIN SUBLIST VALUE TO BE
PASSED AS POSITIONAL PARAMETER ON
MACRO CALL

DC A&P2

MEND
START

HAC (POS.F,2~,),{A,B,C) MACRO CALL THAT GENERATES:
KEY DC Fiji

· · POS DC F'21~'
· · DC A{A,B ,C)

END

c
6 - 28 SC34-0124

c~

c

o

The following table shows the relationship between subscripted parameters and
sublist entries when:

• A sublist entry is omitted.
• The subscript refers past the end of the sublist.
• The value of the operand is not a sublist.
• The parameter is not subscripted.

Parameter in macro Sublist in Value generated
definition macro call

&PAR (3) (1, 2, ,4) Null character string
&PAR (5) (1,2,3,4) Null character string
&PAR A A
&PAR (1) A A
&PAR (2) A Null character string
&PAR (A) (A)

See Note 1 below.
&PAR (1) (A) A

See Note 1 below.
&PAR (2) (A) Null character string

See Note 1 below.
&PAR () ()

See Note 2 below.
&PAR (1) () ()

See Note 2 below.
&PAR (3) () Null character string

See Note 2 below.
&PAR (2) (A, ,C,D) Nothing

See Note 3 below.
&PAR (1) () Nothing

See Note 4 below.

Note I. Because the single value A is enclosed in parentheses, it is considered a sublist
with one entry.

Note 2. The val ue of the operand is not a sublist. It is considered to be a character
string.

Note 3. The blank between commas on the calling macro instruction indicates end of
the operand field; thus instead of a null character string value being passed to the macro
definition, no value is passed. In addition, an error message is generated because the
assembler considers this an unmatched left parenthesis.

Note 4. The blank following the left parenthesis indicates end of the operand field; thus
instead of a null character string value being passed to the macro definition, no value is
passed. In addition, an error message is generated because the assembler considers this an
unmatched left parenthesis.

The macro definition can also use & SYSLIST to refer to sublist entries in
positional parameters. For example, given the sublist
A,(1 ,2,3,4)
& SYSLIST(2,3) would have the value 3.

Vallles ill Macro l"stnlcti9" Parameters
You can use a macro instruction parameter to pass values to a macro definition.
The two types of values you can pass are:

• Explicit values, or the actua I character strings you specify in the operand of
the calling macro instructio~l

• Implicit values, or the attributes inherent to the data represented by the
explicit values

Macro Language 6 - 29

6 - 30 SC34-0124

The explicit value of a macro instruction parameter is a character string that
must not exceed a length of 127 characters (including any sublists). If the macro
call is contained within a macro definition (a nested macro call), the explicit
value of the parameter may contain: 0
• Variable symbols . ~. .
• Any of the symbolic parameters specified in the prototype statement of the

containing macro definition
• Any SET symbols declared in the containing macro definition
• The system variable symbols

If the macro call is in open code, it cannot contain the above symbols.
The assembler assigns the character string value, including sublist entries, to

the corresponding parameter declared in the prototype statement. A sublist entry
is assigned to the corresponding subscripted parameter. When you omit a
keyword parameter on the calling macro instruction, the assembler assigns the
default value specified for the corresponding keyword parameter on the prototype
statement. When you omit a positional parameter or sublist entry, on the calling
macro instruction, the assembler assigns the null character string to the
parameter. Any of the 256 characters of the EBCDIC character set can appear
in a macro instruction parameter (or sublist entry). However, the following
characters require special consideration:

Ampersands. In macro calls nested within macro definitions a single ampersand
indicates the presence of a variable symbol. The assembler substitutes the value
of the variable symbol into the character string specified in a macro instruction
parameter. The resultant string is then the value passed into the macro definition.
If the variable symbol is undefined, the assembler issues an error message. You
must specify double ampersands if they are to be passed without substitution to
the macro definition.

Value specified on Value of variable Character string
macro call symbols values passed

&VAR XYZ XYZ

&A + &B + 3 + &C* 10 &A - 2 2 + X + 3 + COUNT* 10
&B =X
&C = COUNT

'&MESSAGE' BLANK BETWEEN 'BLANK BETWEEN'
(see Quoted Strings in
this list.)

&®ISTER &®ISTER

NOTE&&&& NOTE&&&&

Apostrophes. A single apostrophe indicates the beginning and end of a quoted
string.

Quoted Strings. A quoted string is any sequence of characters that begins and
ends with a single apostrophe (compare with conditional assembly character
expressions). You must specify double apostrophes inside each quoted string to
result in a single apostrophe value. This includes substituted apostrophes. Macro
instruction parameters can have values that include one or more quoted strings.
Each quoted string can be separated from the following quoted string by one or
more characters, and each must contain an even number of apostrophes. Quoted
strings can contain variable symbols only on macro calls nested within macro
definitions. The following examples indicate the values passed for quoted strings.

t \
\ ,

c:

c

c

o

Value on macro call Value of variable Value passed
symbol

'&&NOT A TION' '&&NOT A TION'
'&MESSAGE' &MESSAGE = OK 'OK' , , , ,

'"ES' "ES=' , " " , " ,
'QUOTEl' AND 'QUOTE2' 'QUOTEl' AND 'QUOTE2'
'QUOTEl' 'QUOTE2' 'QUOTEl' 'QUOTE2'

Parentheses. In macro instruction operand values, there must be an equal
number of left and right parentheses. They must be paired; that is, to each left
parenthesis belongs a following right parenthesis at the same level of nesting. An
unpaired (single) left or right parenthesis can appear only in a quoted string.

Blanks. One or more blanks outside a quoted string indicates the end of the
entire operand field in a macro instruction. Thus, blanks should be used only
inside quoted strings.

Commas. A comma outside a quoted string indicates the end of a parameter
value or sub list entry. Commas that do not delimit values can appear inside
quoted strings or inside paired parentheses that do not enclose sublists. A comma
must not follow the final parameter specification.

Equal Signs. An equal sign can appear in the value of a macro instruction
parameter sublist entry (1) inside quoted strings, or (2) between paired
parentheses. For example:

HACCALL A'.'B,C(A-B)
Where '=' is a quoted string and C(A=B) is a character string.

Periods. A period can appear in the value of a parameter or sublist entry. It will
be passed as a period. However, if you use a period immediately after a variable
symbol (valid only on macro calls from within macro definitions), it becomes a
concatenation character. In this case, you must code two periods if one is to be
passed as a character.

Ozaracter string on Value of varia hie Value passed
macro call symhol

3.4 3.4

(3.4,3.5,3.6) (3.4, 3.5, 3.6)

&A.l FIELD FIELDl

&A.1 3 31

&A .. 1 3 3.1

&A&B &A = AREA AREA200
&B = 200

&A.&B &A = AREA AREA200
&B = 200

&DISP. (&BASE) &DISP = 1000 1000 (10)
&BASE = 10

Macro Language 6 - 31

Nestill, Macro De/;II;tiOllS

Levels of Nesting

6 - 32 SC34-0124

A nested macro instruction is a macro instruction specified as one of the
statements in the body of a macro definition. The assembler allows the expansion
of a macro definition from within another macro definition. Any macro 0
instruction in the open code of a source module is an outer macro ·call. Any
macro instruction that appears within a macro definition is an inner macro call.
For example:

MACRO
OUTER PROTOTYPE STATEMENT

INNER INNER MACRO CALL

KENO
MACRO
INNER PROTOTYPE STATEMENT

MEND
OPEN START J1

OUTER OUTER MACRO .CAll . .
END

The code generated by a macro definition called by an inner macro call is nested
inside the code generated by the macro definition that contains the inner macro
call. In the macro definition called by an inner macro call, you can include a
macro call to another macro definition. Thus, you can nest macro calls at
different levels.

The zero level includes outer macro calls that appear in open code; the first
level of nesting includes inner macro calls that appear inside macro definitions
called from the zero level; the second level of nesting includes inner macro calls
inside macro definitions that are called from the first level, etc.

You can also call a macro definition recursively-the body of a macro
definition can contain an inner macro call to that same macro definition. In other
words, a macro can call itself. This allows you to define macros to process
recursive functions.

When macro instructions appear inside macro definitions, the assembler
substitutes values in the same way as it does for the model statements in the
containing macro definition. The assembler processes the called macro definition,
passing to it the operand values (after substitution) from the inner macro
instruction.

The number of nesting levels permitted depends on the complexity and size of
the macros at the different levels: the number of operands you specify, the
number of local and global SET symbols you declare, and the number of
sequence symbols you use.

Note. Nesting macros may cause assembler performance to be slower.

c

c

C

o

Exits taken from the different levels of nesting when a MEXIT or MEND
instruction is encountered are as follows:

• From the expansion of a macro definition called by an inner macro call, the
exit is to the next sequential instruction after the inner macro call.

• From the expansion of a macro definition called by an outer macro, the exit is
to the next sequential instruction after the outer macro call in your open code.

You can pass a parameter value in an outer macro instruction through one or
more levels of nesting. However, the value you specify in the inner macro
instructions must be identical to the corresponding symbolic parameter declared
in the prototype statement. Thus, you can pass and refer to a sublist in the
macro definition called by the inner macro call. Also, all symbols carry their
inherent attribute values through the nesting levels. You can pass values from
open code through several levels of macro nesting if you specify inner macro
calls at each level with symbolic parameters as parameter values. For example:

!~JI .. istr,RUCTI OHS DESCR I PT ION
,~"l ,1

MACRO
MER iP

INNER &P

t£NO
MeRO
INNER &'1
:
HVW &'1(1),Rl
NtI &Q(2),Rl
lfIW iU ,&Q.(3)
· · MEND
START _

OUTER (AREA,F2I1; ,SUM)

· · :
· · · ·
END

PROTOTYPE STATEMENT FOR OUTER

NESTED MACRO CALL

PROTOTYPE STATEMENT FOR INNER

START OF OPEN CODE

MACRO CALL IN OPEN CODE PRODUCES THE
FOLLOWING NESTED MACRO CALL:

INNER (AREA,F2jj,SUH)
WHICH PRODUCES THE FOLLOWING:

MVW AREA,Rl
AW F2j~,Rl
MVW Rl,SUM

Note. If a symbolic parameter is only a part of the value in an inner macro
instruction, only the character string value given to the parameter by an outer
call passes through the nesting level. Inner sublist entries and attributes of
symbols are not available for reference in the inner macro.

Macro Language 6 - 33

~; ,llftcrn IIQNS

! i ; i r ; i· .MACRO
~·:T+··~"· OurER &P ,&Q.

DESCRIPTION

PRdTOTYPE STATEMENT FOR OUTER
· I,.; -,.

INNER (ABC,SP,DEF),SQ.+3 NESTED MACRO CALL
MEND
MACRO
INNER SR,&S PROTOTYPE STATEMENT FOR INNER

DC A&R(2)
OS XL(&S)
MEND
START _ START OF OPEN CODE

OUTER (ADX,ADY,AOZ),TWOI MACRO CALL FROM OPEN CODE PRODUCES
THE FOLLOWING NESTED MACRO CALL:

· · INNER (ABC,(ADX,ADY,ADZ),DEF),TWOj+3

WHICH RESULTS IN:
DC A(ADX,ADY,ADZ)
OS XL(TWol+3)

END

The assembler gives system variable symbols local read-only values that depend
on the position of your macro call and the parameter value specified on the
macro call.

o

t ~

&:SYSLIST. If you specify & SYSLIST in a macro definition called by an inner \. ,
macro instruction, then & SYSLIST refers to the positional operands of the inner
macro instruction.

&:SYSNDX. The assembler increases the value of & SYSNDX by one each time
it encounters a macro call. It retains the increased value throughout the
expansion of the macro definition that is called; that is, within the local scope of
the nesting level. For example, if open code contains a macro call to the macro
INNER l, and INNER 1 contains a call to the macro INNER2, and the value of
& SYSNDX is 000 1 when the call to INNER 1 is executed, then & SYSNDX
will have the value 0002 throughout the expansion of INNER 1 except for the
portion of code included from INNER2 at the point of the call from INNER 1 to
INNER2 (for that portion & SYSNDX will have the value 0003); note that the
value of & SYSNDX is 0002 for all code expanded from INNERl after the
portion inserted from INNER2.

&:SYSP ARM, &:SYSDA TE, &:SYSTIME. The nesting of macros does not affect
& SYSPARM, & SYSDATE, or & SYSTIME.

Conditional Assembly Language

6 - 34 SC34-0124

This section describes the conditional assembly language used to interact with
symbolic parameters and system variable symbols inside a macro definition. With
the conditional assembly language, you can perform general arithmetic and logical
computations as well as many of the other functions you can perform with any
other programming language. By combining conditional assembly instructions c·
with assembler and machine instructions, you can: . .J

SET Symbols

c

o

• Select sequences of model statements, from which the assembler generates
machine and assembler instructions

• Vary the contents of these model statements during generation

The assembler processes the instructions and expressions of the conditional
assembly language at preassembly time. Then, at assembly time, it processes the
generated model statements. Conditional assembly instructions, however, are not
processed after preassembly time.

The elements of the conditional assembly language are:

• SET symbols that represent data
• Attributes that represent different characteristics of data
• Sequence symbols that act as labels for branching to statements at preassem­

bly time

The functions of the conditional assembly language are:

• Declaring SET symbols as variables for use by the conditional assembly
language in its computations

• Assigning values to the declared SET symbols
• Evaluating conditional assembly expressions used as values for substitution, as

subscripts for variable symbols, or as condition tests for branch instructions
• Selecting characters from strings, for substitution in and concatenation with

other strings, or for inspection in condition tests
• Branching and exiting from conditional assembly loops

SET symbols are variable symbols that provide arithmetic, binary, or character
data, whose values you can vary at pre assembly time.

You can use SET symbols as:

• Terms in conditional assembly expressions
• Counters, switches, and character strings
• Subscripts for variable symbols
• Values for substitution

Thus, SET symbols allow you to control your conditional assembly logic and to
generate many different statements from the same model statements.

You can use a SET symbol to represent an array of many values. You can
then refer to anyone of the values in this array by subscripting the SET symbol.

You must declare a SET symbol before you can use it. If you declare a SET
symbol to have a local scope, you can use it only in the statements that are part
of the same macro definition. If you declare a SET symbol to have a global
scope, you can use it in statements that are part of:

• The same macro definition
• Any other macro definition

You must, however, declare the SET symbol as global in each macro definition
where you use it. You can change the value you previously assigned to a SET
symbol without affecting the scope of the symbol.

Note. A symbolic parameter has a local scope. You can use it only in the
statements that are part of the macro definition where you declare the parameter
in the prototype statement. The values of & SYSNDX and & SYSLIST are local
to each individual macro definition. The value of & SYSP ARM is global-the
same within all macro definitions.

Macro Language 6 - 35

6 - 36 SC34-0124

Three types of SET symbols are used in model statements and conditional
assembly instructions:

• SETA (arithmetic data)
• SETB (binary data)
• SETC (character data)

You must declare a SET symbol, to determine its scope and type, before you
can use it. The declaration instructions for SET symbols are:

Instruction SET symbol type Scope of SET symbol

LCLA &symbol SETA Local
LCLB &symbol SETB Local
LCLC &symbol SETC Local
GBLA &symbol SETA Global
GBLB &symbol SETB Global
GBLC &symbol SETC Global

where &symbol indicates the name of the SET symbol declared.
Once a SET symbol has been declared, you can change the value of that

symbol with the SET A, SETB or SETC instruction anywhere within the declared
scope of the SET symbol. Values of symbolic parameters and system variable
symbols, in contrast, remain fixed throughout their scope. Wherever a SET
symbol appears in a statement, the assembler replaces the symbol with the last
value assigned to the symbol.

The features of SET symbols are compared with those of symbolic parameters
and system variable symbols in the following table.

SET symbols Symbolic System variable symbols
parameters

Local scope yes yes yes

Global scope yes no no-&SYSNDX, &SYSLIST
yes-&SYSPARM, &SYSDATE,

&SYSTIME

Values can yes no no
change within
scope

Note. You can use SET symbols in the name and operand fields of inner
macro calls; however, the assembler considers the value thus passed through a
symbolic parameter into a macro definition to be a character string and generates
it as such.

A subscripted SET symbol is written as:
&symbol(subscript)
where &symbol is a valid SET symbol name and the subscript is an arithmetic
expression with a value greater than zero. You can use a subscripted SET symbol
anywhere an unsubscripted SET symbol is allowed. However, you must declare
subscripted SET symbols as dimensioned in a previous local or global declaration
instruction. The subscript refers to one of the many positions in an array of
values identified by the SET symbol. The value of the subscript must not exceed
the dimension declared for the array in the corresponding local or global
declaration instruction.
For example:

lClA &ARRAY (2J1)

&ARRAY(S) SETA S

DECLARE ARRAY OF 2~ ELEMENTS

REFER TO FIFTH ELEMENT

o

C
·~

i'

Data Anrib.tes

c

Type Attribute (T)

o

Note. A subscript can be a subscripted SET symbol. Five levels of subscript
nesting are allowed.

Macro instruction operands can be described in terms of:

• Type, which distinguishes numeric data and identifies missing operands.
• Count, which gives the number of characters required to represent data in a

macro instruction operand.
• Number, which gives the number of operands in a macro instruction or the

number of sublist entries in an operand.

These three characteristics are called data attributes. The assembler assigns
attribute values to the symbolic parameters and & SYSLIST that represent the
operands.

Specifying attributes in conditional assembly instructions allows you to control
conditional assembly logic, which in turn can control the sequence and contents
of the statements generated from model statements. The specific purpose for
which you use an attribute depends on the kind of attribute being considered.
The attributes and their main uses are listed in the following table.

A ttrihute Purpose

Type Gives a letter tha t identifies
type of data represented

Count Gives the number of
characters required to
represent data

Number Gives the number of
sub list entries in operand
sublist or number of
operands in a macro
instruction

The format for an attribute reference is:
code 'symbol

Main uses

- In tests to disting uish numeric
data
- To discover missing operands

-For scanning and decomposing
of character strings
-As indexes in sub-string notation

-For scanning sublists
-As counter to test for end of
sublist

where code is one of the three attribute codes (T for type, K for count, or N for
number) and symbol is a variable symbol; the apostrophe between code and
symbol must be present.

The attribute notation indicates the attribute whose value you desire. The
variable symbol represents the data that has the attribute. The assembler
substitues the value of the attribute for the attribute reference. The attribute
reference can appear only in conditional assembly instructions. Thus, their values
are available only at preassembly time.

Note. You can use the system variable symbol & SYSLIST in an attribute
reference to refer to a macro instruction operand.

The type attribute has a value of a single alphabetic character that indicates the
type of data represented by a macro instruction operand. If the operand is a
sublist, the entire sublist and each entry in the sublist can possess the type
attribute.

Macro Language 6 - 37

Count Attribute (K)

Number Attribute (N)

Sequence Symbols

6 - 38 SC34-0124

Type attribute codes Data characterized by type attribute code

N A self-defining term used as macro instruction operand

0 Omitted macro instruction operand (has a value of a null
character string)

U Non-numeric macro instruction operand

You can use a type attribute reference only in the SETC instruction or as one
of the comparison values in a SETB or AIF instruction.

The count attribute applies only to macro instruction operands. It has a numeric
value equal to the total number of characters in a macro instruction operand.
You can use a count attribute reference only in arithmetic expressions. The count
attribute for an omitted operand is zero. For example:

Macro instruction operands Value of count attribute

ALPHA 5
(SUB, LIST, ALL) 14
2 (l0, 12) 8
'A' 'B' 6
, ,

blank 3
, ,

null character string 2
(omitted operand) 0

The number attribute applies only to the operands of macro instructions. It has a

(~"')

\. J

numeric value that is equal to the number of sublist entries in an operand (1 + f

the number of commas separating the entries). \. '"
You can use a number attribute reference only in arithmetic expressions.

N' & SYSLIST refers to the total number of positional parameters in a macro
instruction, and N' & SYSLIST(m) refers to the number of sublist entries in the
mth parameter. If the mth parameter is not a sublist, the value of
N' & SYSLIST(m) is 1. For example:

Macro instruction operand suhlist Value of numher attrihute

(A, B, C, D) 4
(A, , B, C, D, E) 6
(, B, C, D) 4
(A) I
A 1

(No operands) 0

You can use a sequence symbol in the name field of a statement to branch to
that statement at pre assembly time, thus altering the sequence in which the
assembler processes your conditional assembly and macro instructions. You can
select the model statements from which the assembler generates assembler
language statements.

A sequence symbol is written as a period followed by an alphabetic character,
followed by 0-6 alphameric characters (for a total of 2-8 characters). For
example:

.SEQ (.~

.A1234 ~

.#924

o

C

o

J)eclarillg SET Symbols

You can specify sequence symbols in the name field of any model statements
in a macro definition, except instructions that already contain ordinary or
variable symbols in the name field. You cannot specify a sequence symbol in the
name field of the macro prototype statement.

You can specify sequence symbols in the operand field of an AlF or AGO
instruction to branch to a statement with the same sequence symbol in its name
field. Sequence symbols have a local scope. Thus, if you code a sequence symbol
in an AIF or AGO instruction, you must define that sequence symbol as a label
in the same macro definition. And, since the scope for sequence symbols is local,
you can use the same sequence symbol in several macro definitions, without
conflict. For example:

MACRO
MACONE

AGO

.GENERAT ANOP

MEND
MACRO
HACTWO

.GENERAT ANOP

AGO

MEND
OPEN START

MACONE

HACTWO

END

.GENERAT

.GENERAT

Note. The assembler does not substitute a sequence symbol from the name
field of an inner macro call for the parameter in the name field of the
corresponding prototype statement.

You must declare a SET symbol before you can use it. In the declaration, you
specify whether it is to have a global or local scope. The assembler assigns an
initial value to a SET symbol at its point of declaration. All global declarations
must immediately follow the macro prototype statement; local declarations must
immediately follow any global declarations.

LCLA, LCLB, and LCLC Instructions
The LCLA, LCLB, and LCLC instructions declare local SETA, SETB, and
SETC symbols. The format of the LCLA, LCLB, and LCLC instructions is:

Name Operation Operand

LCLA
blank LCLB one or more variable symbols to be used as SET symbols,

LCLC separated by commas

The name field of the LCLA, LCLB, and LCLC instructions must be blank.

Macro Language 6 - 39

OPEN

6 - 40 SC34-0124

These instructions must appear immediately following any GBLA, GBLB, or
GBLC instructions. Any variable symbols declared in the operand field have a

local scope. You can use them as SET symbols anywhere after the pertinent (_.~~._ ...
LCLA, LCLB, or LCLC instructions, but only within the declared local scope.]
The following example indicates the scope of several local SET symbols:

MACRO
MAC)
lClA &Al SCOPE OF &Al STARTS HERE
lClC &Cl SCOPE OF &Cl STARTS HERE . .
MEND SCOPE OF &Al AND &Cl ENDS HERE
MACRO
MAC 2
lClA &A2 SCOPE OF &A2 STARTS HERE
LClC &C2 SCOPE OF SC2 STARTS HERE

MEND SCOPE OF SA2 AND &C2 ENDS HERE
START

HAC)

HAC2

END

The assembler assigns initial values to local SET symbols as follows:

Instruction Initial value assigned to SET symbols

LCLA 0
LCLB 0
LCLC Null character string

A local SET variable symbol declared by the LCLA, LCLB, or LCLC
instruction must not be identical to any other variable symbol within the same
local scope. The following rules apply to a local SET variable symbol:

• It must not be the same as any symbolic parameter declared in the prototype
statement.

• It must not be the same as any global variable symbol declared within the
same local scope.

• The same variable symbol must not be declared or used as 2 different types of
SET symbols, for example, as a SET A and a SETB symbol, within the same
local scope.

Note. A local SET symbol should not begin with the characters & SYS; this
prefix is reserved for system variable symbols.

You declare a subscripted local SET symbol with the LCLA, LCLB, or LCLC
instruction by following the subject name with dimension information enclosed in
parentheses. For example:

LClA &ARRAY (1;)

The dimension must be an unsigned decimal self -defining term not equal to
zero. The maximum dimension allowed is 255. The dimension indicates the
number of SET variables associated with the subscripted SET symbol. The
assembler assigns an initial value to every variable in the array (the same initial C'
value as for nonsubscripted local SET symbols). You can use a subscripted local .,

c

C

o

SET symbol only if the declaration has a subscript, which represents a dimension.
You can use a nonsubscripted local SET symbol only if the declaration has no
subscript.

GBLA, GBLB, and GBLe Instnactions
GBLA, GBLB, and GBLC instructions declare global SET A, SETB, and SETC
symbols. The format of the GBLA, GBLB, and GBLC instruction statements is:

Name Operation Operand

GBLA
blank GBLB one or more variable symbols to be used as SET symbols,

GBLC separated by commas

The name field of the GBLA, GBLB, and GBLC instructions must be blank.
The GBLA, GBLB, and GBLC instructions must appear immediately following

the macro prototype statement. Any variable symbols declared in the operand
fields of these instructions have a global scope. You can use them as SET
symbols anywhere after the pertinent GBLA, GBLB, or GBLC instructions; note
that they can be used only in those macro definitions which contain the global
declarations. Global scope means the value can be passed from one macro
definition to another, as opposed to local scope which means the value is
initialized for each macro definition.

For example, in the following code, values can pass between the macro
definitions MACl and MAC2 through the global SET symbols & Band & C; the
value of & A in MACl is unknown to MAC2, and the value of & A in MAC2 is
unknown to MAC 1 since & A is a local SET symbol.

MACRO
HAC 1
GBlB &B
GBlC &C
lClA &A

MEND
MACRO
HAC2
GBlB &B
GBlC &C
lClA &A

MEND
OPEN START

HAC 1

HAC 2

END

Macro Language 6 - 41

OPEN

6 - 42 SC34-0124

The assembler assigns an initial value to a. global SET symbol when processing
the first GBLA, GBLB, or GBLC instruction containing the symbol (in the first
macro definition which declares the symbol to be a global SET symbol); initial
values are not reassigned when the global SET symbol is subsequently declared ,0· .. J.
in other macro definitions. The initial values assigned to global SET symbols are:

Instruction Initial value assigned to SET symbols

GBLA 0
GBLB 0
GBLC Null character string

The following example shows the values of a global SET symbol:

K\CRO
FIRST
GBlA &A &A INITIALIZED TO ;
· · MEND
MACRO
SECOND
GBlA &A
· · MEND
START

FIRST
· · SECOND &A-VALUE DETERMINED BY FI RST

f
FIRST &A-VALUE DETERMINED BY SECOND \ #

END
A global SET symbol declared by the GBLA, GBLB, or GBLC instruction

must not be identical to any other variable symbol used within the same macro
definition. The following rules apply to a global SET symbol:

• It must not be the same as any symbolic parameter declared in the prototype
statement.

• It must not be the same as any local variable symbol declared within the same
macro definition.

• The same variable symbol must not be declared or used as 2 different types of
global SET symbol, for example, as SET A and SETB symbols.

Note. A global SET symbol should not begin with the characters & SYS; this
prefix is reserved for system variable symbols.

You declare a subscripted global SET symbol with the GBLA, GBLB, or
GBLC instruction by following the symbol name with dimension information
enclosed in parentheses. For example:

GBlA &ARRAY (1,if)

(... "
iF

c

c

o

The dimension must be an unsigned decimal self -defining term not equal to
zero. The maximum dimension allowed is 255. The dimension indicates the
number of SET variables associated with the subscripted SET symbol. The
assembler assigns an initial value to every variable in the array (the same initial
value as for nonsubscripted global SET symbols). You can use a subscripted
global SET symbol only if the declaration has a subscript, which represents a
dimension. You can use a non subscripted global SET symbol only if the
declaration has no subscript. Wherever you declare a particular global SET
symbol with a dimension as a subscript, the dimension must be the same in each
declaration.

A.ssigsi", Va/.es to Set Symbols

SETA-ACi4Jign Arithmetic Value

SET A assigns an arithmetic value to a SET A symbol. You can specify a single
value or an arithmetic expression; the assembler will compute the value of the
expression. Since you can change the value of a SETA symbol by assigning
arithmetic expressions, you can use SET A symbols as counters, indexes, or for
other repeated computations that require varying values.

The format of the SETA instruction is:

Name Operation Operand

symbol SETA arithmetic expression

The symbol in the name field must have been previously declared as a SETA
symbol in a GBLA or LeLA instruction. The assembler evaluates the arithmetic
expression in the operand field as a signed 32-bit arithmetic value and assigns
this value to the SET A symbol in the name field. The SET A symbol in the name
field can be subscripted, but only if the same SET A symbol is declared with an
allowable dimension. If the symbol in the name field is subscripted, the assembler
assigns the value of the expression in the operand field to the position in the
declared array given by the value of the subscript. The subscript expression must
not (1) be zero, (2) have a negative value, or (3) exceed the dimension you
specified in the declaration.

* I NSTRUCT IONS
*

lClA
lClA

&A
&SUBA(9.0')

&SUBA(2;) SETA 2'.0'fl

&A SETA &SUBA(2~) . .
&SUBA(99) SETA 1~~~

DESCRIPTION

DECLARE 9~-ElEHENT ARRAY

SET 2,TH ElEHENT.2;~;

SET &A=2;TH ELEMENT (=2~~9)

ERROR ONLY 91 ELEMENTS

Macro Language 6 - 43

SETC-Assign Character Valoe

6 - 44 SC34-0124

SETC assigns a character string value to a SETC symbol. You can assign whole
character strings or concatenate several smaller strings. The assembler assigns the
composite string to your SETC symbol. A maximum of 64 characters is allowed 0
in the composite character string. You can also assign parts of a character string
to a SETC symbol by using substring notation.

You can change the character value assigned to a SETC symbol. This allows
you to use the same SETC symbol with different values for character compari­
sons in several places or for substituting different values into the same model
statement.

The format of the SETC instruction is:

Name Operation Operand

symbol SETC one of 4 options

The variable symbol in the name field must have been previously declared as a
SETC symbol in GBLC or LCLC instruction. The four options you can specify
in the operand field are:

• A type attribute reference
• A character expression
• A substring notation
• A concatenation of substring notations, character expressions or both

The assembler assigns the first 64 characters of the character string in the
operand field to the SETC symbol in the name field.

Note. When you code a SET A or SETB symbol in a character expression, the
unsigned decimal value of the symbol (with leading zeros removed) is the t ~
character value given to the symbol. \. ,;

Value of Value of
SETC Instruction variable symbol SET symbol

&CI SETC T'&DATA &DATA = RST U
&C2 SETC 'ABC' ABC
&C3 SETC 'ABCDE' (l,3) ABC
&C4 SETC 'ABC' . 'DEF' ABCDEF
&C5 SETC '&A' &A = 200 200
&C6 SETC '&A' &A = 00200 200
&C7 SETC '&A' &A = 200 200
&C8 SETC '-200' -200
&C9 SETC '&A' &A = 0 0
&CIO SETC '00200' 00200
&C11 SETC '&A+l1' &A = 30 30 + 11
&C12 SETC '1 -- &A' &A = - 30 1-30

SETB-Assip Binary Value

c

o

The SETC symbol in the name field can be subscripted, but only if the same
SETC symbol has been previously declared in a GBLC or LCLC instruction with
an allowable dimension. If the symbol in the name field is subscripted, the
assembler assigns the character value represented by the operand field to the
position in the declared array given by the value of the subscript. The subscript
expression must not (1) be zero, (2) have a negative value, or (3) exceed the
dimension you specified in the declaration.

* INSTRUCT I OMS

*
DESCRIPTION

· · LCLC
LCLC

&C
&SUBC(2,0') DECLARE 2,-ELEHENT ARRAY

&SUBC (1,f1) SETC 'ABC I SETS TENTH ELEMENT-ABC

&C SETC &SUBC (1,0')

· · &SUBC(25) SETC 'DEFI

SETS &C=TENTH ELEMENT(=ABC)

ERROR ONLY 2; ELEMENTS

SETB assigns a binary bit value to a SETB symbol. You can assign bit values
zero or one to a SETB symbol directly and use it as a switch. If you specify a
logical expression in the operand field, the assembler evaluates this expression to
determine whether it is true or false and then assigns the values one or zero,
respectively. You can use the computed value in condition tests or for
substitution.

The format of the SETB instruction is:

Name Operation Operand

variable SETB one of 3 options
symbol

The symbol in the name field must have been previously declared as a SETB
symbol in a GBLB or LCLB instruction. The 3 options you can specify in the
operand field are:

• A binary value, 0 or 1
• A binary value enclosed in parentheses, (0) or (1)
• A logical expression enclosed in parentheses

The assembler evaluates a logical expression and determines if it is true or
false. If it is true, it is given a value of 1; if it is false, a value of O. The
assembler assigns the explicitly specified binary value (0 or 1) or the computed
logical value (0 or 1) to the SETB symbol in the name field. For example:

* SETB INSTRUCTION
* &81
&B2
&83
&B4

SETB
SETB
SET8
SETB

fI
(1)
(2 GT 3)
(2 LT 3)

VALUE ASSIGNED

$I
1
J!
1

Macro Language 6 - 45

The SETB symbol in the name field can be subscripted, but only if the same
SETB symbol has been previously declared in a GBLB or LCLB instruction witlt
an allowable dimension. If the symbol in the name field is subscripted, the
assembler assigns the binary value explicitly specified or implicit in the logical
expression to the position in the declared array given by the value of the
subscript. The subscript expression must not (1) be zero, (2), have a negative
value, or (3) exceed the dimension specified in the declaration. For example:

* INSTRUCTIONS DESCRIPTION
*

LCLB
LCLB

&B
&SUBSCR(5$1)

&SUBSCR(1_) SETB 1

DECLARES 5~-ELEMENT ARRAY

SETS TENTH ELEMENT-1

&B SETB &SUBS CR (I;) . .
&SUBSCR(72) SETB

SETS &B-TENTH ELEHENT(-l)

ERROR ONLY 5; ELEMENTS

Usillg ExpressiolU ill SET Il1stnlctiolfS
You can use three types of expressions in conditional assembly instructions:
arithmetic, character, and logical. The assembler evaluates these conditional
assembly expressions at preassembly time.

Do not confuse the conditional assembly expressions with the absolute or
relocatable expressions used in other assembler language instructions. The
assembler evaluates absolute and relocatable expressions at assembly time.

o

Arithmetic (SETA) Expressions f

6 - 46 SC34-0124

You can use an arithmetic expression to assign an arithmetic value to a SETA \ "
symbol, or to provide subscripting values during conditional assembly processing.

An arithmetic expression can contain one or more SET symbols. This allows
you to use arithmetic expressions wherever you wish to specify varying values,
for example as:

• Subscripts for SET symbols
• Subscripts for symbolic parameters
• Subscripts for & SYSLIST
• Substring notation

Thus you can control loops, vary the results of computations, and produce
different values for substitution into the same model statement.

Arithmetic expressions can be used as shown in the following table.

o

c

o

(lzn be used in Uses as Example

SET A instruction operand &A1 SET A &A1 +2

AIF instruction comparand in AIF (&A*10 GT 30) .A
or arithmetic
SETB instruction relation

SUbscripted SET subscript &SETSYM(&A+10-&C)
symbols

Substring notation subscript '&STRING' (&A *2, &A-1)

Sub list notation subscript Sublist: (A, B, C, D)
When &A = 1 the value of
&PARAM (&A + 1) is B.

&SYSLIST subscript &SYSLIST (&M + 1, &N - 2)
&SYSLIST (N '&SYSLlST)

SETC instruction character &C SETC '5-10*&A'
string in If &A = 10 then
operand &C = 5 - 10*10.

Note. When an arithmetic expression is used in the operand field of a SETC
instruction, the assembler assigns the character string representing the arithmetic
expression to the SETC symbol, after substituting values into any variable
symbols. It does not evaluate the arithmetic expression.

An arithmetic expression consists of one or more arithmetic terms combined
with the arithmetic operators + (addition), - (subtraction), * (multiplication),
and / (division). An arithmetic term can be any of the following:

• self-defining term
• count or number attribute reference
• variable symbol as follows

Variable symbols allowed as terms in an arithmetic expression are:

Variahle symbol Restrictio/l Exalllple
Value of
example

SETA None ---- ------
SETH None ---- ----

SETC Value must be an unsigned &C 123
decimal self-{iefining term

Symbolic parameters Value must be a self- &PARAM X'AI'
defining term

&SYSLlST (n) Corresponding operand &SYSLlST(3) 24
or or sub list entry must be
&SYSLlST (n, Ill) a self-<lefining term &SYSLlST (3,2) B'IOI'

&SYSNDX None ---- ----

Macro Language 6 - 47

Coding Conditional Assembly Arithmetic Expressions
The following is a summary of coding rules for arithmetic expressions:

• Only binary operators are allowed in arithmetic expressions.
• An arithmetic expression must not begin with an operator, and it must not 0

contain two operators in succession. -
• An arithmetic expression must not contain two terms in succession.
• An arithmetic expression must not have blanks between an operator and a

term.
• An arithmetic expression can contain up to 16 terms and up to five levels of

parentheses. The parentheses required for sub list , substring, and subscript
notation count toward this limit.

Evaluation of Arithmetic Expressions

6 - 48 SC34-0124

The assembler evaluates arithmetic expressions at pre assembly time as follows.

• It evaluates each arithmetic term.
• It performs arithmetic operations from left to right; however, it performs the

operations of multiplication and division before the operations of addition and
subtraction.

• In division, it gives an integer result; any fractional portion is dropped.
Division by zero gives a zero result.

• In parenthesized arithmetic expressions, the assembler evaluates the innermost
expressions first and then considers them as arithmetic terms in the next outer
level of expressions. It continues this process until the outermost expression is
evaluated.

• The computed result, including intermediate values, must be in the range _231

through +231_1.

For example, the expression

&A+(X'FF'*2+&B~(&C/2+K'&AREA))

would be evaluated in the order:

(1) evaluate & C
(2) evaluate & C/2
(3) evaluate K' & AREA
(4) evaluate result of (2) + result of (3)
(5) evaluate X'FF'*2
(6) evaluate & B
(7) evaluate result of (5) + result of (6)
(8) evaluate result of (7) - result of (4)
(9) evaluate & A
(10) evaluate result of (9)+ result of (8)

Note. Self-defining terms are limited by assembly-time constraints; they must
be in the range _216 through +216_1.

t c".

l ,

(:

o

Character (SETC) Expressions

c

o

The performance time of the assembler may be affected by the way SET A
expressions are coded if large values are being used. The timing on multiply
operations will be improved if the larger of the two values is placed first in the
expression. When possible, write the expression so that the partial results of
division operations will be small values. For example, the expression 600/300* 10
gives the same result as 10*600/300, but the first expression will be evaluated in
less time than the second. However, loss of precision must be considered when
using divide because fractional integers, in partial results, are dropped. For
example: 2*9/6 gives a result of 3, while 9/6*2 gives a result of 2.

Arithmetic expression Value of pariahle symhol Value of expression
-

&A + 10/&8 &A= 10;&B=-2 15
(&A + 10) /&8 &A = 10; &13 = 2 10
&A/2 &A = 10 5
&A/2 &A = 11 5
&A/2 &A = 1 0
10*&A/2 &A = 1 5

The main purpose of a character expression is to assign a character value to a
SETC symbol. You can then use the SETC symbol to substitute the character
string into a model statement. You can also use a character expression as a value
for comparison in condition tests and logical expressions. In addition, a character
expression provides the string from which you can select characters with
substring notation.

Substitution of one or more character values into a character expression allows
you to use the character expression wherever you need to vary values for
substitution or to control loops.

You can use character (SETC) expressions in conditional assembly instructions
only as follows:

• In SETC instruction as an operand; for example:
& C SETC 'STRINGO'

• In AIF or SETS instructions as a character string in character relation; for
example:
AIF (' & C' EO 'STRING 1 ').8

• In substring notation as the first part of the notation; for example:
'SELECT'(2,S)
where 'SELECT' is a character expression

A character expression consists of any combination of characters enclosed in
apostrophes. Variable symbols are allowed. The assembler substitutes the
representation of their values as character strings into the character expression
before evaluating the expression.

Note. Up to 127 characters are allowed in a character expression. Attribute
references are not allowed in character expressions.

Variable symbols used in character expressions are subject to the following
restrictions:

Macro Language 6 - 49

Variable symbol Restrictions Example Value substituted

SETA Sign and leading &A SETA 0-201 -201
zeros are &C SETC '&A' 201
suppressed; stand- &D SETC 0105 105
alone zero is used &ZERO SETA 0 0 o

&C SETC '&ZERO' 0
&B SETB 1 1

SETB Must be 0 or 1 &B SETB 1 1
&C SETC '&B' 1

SETC None &C 1 SETC 'ABC' ABC
&C2 SETC '&Cl' ABC

Symbolic None & Cl SETC '&PARAM' (ABC)
if &PARAM is (ABC)

System None &NUM SETC '&SYSNDX' 0201
variable if &SYSNDX = 0201
symbols Note. Leading zeros are

not suppressed

Evaluation of Character Expressions

6 - 50 SC34-0124

The value of a character expression is the character string within the enclosing
apostrophes, after the assembler performs any substitution for variable symbols.
Character expressions can be concatenated with each other or with substring
notations in any order. You can then use the concatenated string in the operand
field of a SETC instruction or as a value for comparison in a logical expression.
The resultant string is the value of the expression used in conditional assembly
operations: for example, the value assigned to a SETC symbol. Only the first 64
characters of the resultant string are assigned to a SETC symbol. You must codet ~
a double apostrophe to generate a single apostrophe as part of the value of a\..;
character expression. A double ampersand generates a double ampersand as part
of the value of a character expression. To generate a single ampersand in a
character expression, use the substring notation: for example (' & & '(1,1». To
generate a period following a variable symbol, either you must code 2 periods or
the variable symbol must have a period as part of its value. You must code the
concatenation character (a period) to separate the apostrophe that ends one
character expression from the apostrophe that begins the next. For example:

Example Value of variahle Vallie of character
symbols used expressioll

'ABC' ABC
'&PARAM' &PARAM = SYMBOL SYMBOL
'&A + 10' &A = 10 10 + 10
'&A&A' &A = 10 1010
'&C.&C' &C = DEF DEFDEF
'&C. ABC' &C = DEF DEFABC
'ABC&D' &D= . ABC.
'&E' &E = null null character

string
'ABC&D.DEF' &D = null ABCDEF
'&C .. 505' &C = 2 2.505
'&C.S05' &C= 2. 2.505
'ABC'. 'DEF' ABCDEF
'ABC'.'ABCDEF' (4, 3) ABCDEF
'&C' (4, 3). 'DEF' &C = ABCDEF DEFDEF
'&C' (4, 3) 'DEF' &C = ABCDEF DEFDEF
'ABC'. '&C'. 'DEF' &C = null ABCDEF
'ABC'. ' , . 'DEF' ABCDEF c

Logical (SETB) Expressions

c

c

o

You can use logical (Boolean) expressions to assign the binary value 1 or 0 to a
SETB symbol. You can also use a logical expression to represent the condition
test in an AIF instruction. This allows you to code a logical expression whose
value (0 or 1) will vary according to the values substituted into the expression
and thereby determine whether or not a preassembly branch is taken.

You can code logical (SETB) expressions in conditional assembly instructions
only as follows:

• In SETB instructions as the operand; for example:

&Bl SETB (&B2 OR 8 GT 3)

• In AIF instructions as the condition test part of the operand; for example:

AIF (NOT &Bl OR 8 EQ 3).A

A logical expression consists of one or more logical terms connected by the
logical operators:

• OR-addition
• AND-multiplication
• NOT-negation

The logical operators OR and AND must connect two logical terms; the logical
operator NOT is a unary operator-it precedes a single logical term to indicate
the negation of that term.

A logical term can be either:

• A SETB variable symbol, or
• A logical relation, which is one of the following:

An arithmetic relation: 2 arithmetic expressions separated by a relational
operator
A character relation: 2 character strings (character expression, substring
notation, type attribute reference, or concatenation of character expression
and substring notation) separated by a relational operator

The relational operators are:

EO (equal)
NE (not equal)

- LE (less than or equal)
L T (less than)

- GE (greater than or equal)
GT (greater than)

Macro Language 6 - 51

Rules for Coding Logical Expressions

6 - 52 SC34-0124

A summary of coding rules for logical expressions follows:

• A logical expression must be enclosed in parentheses. (1.
• A logical expression must not contain two logical terms in succession. J

• A logical expression can begin with the logical operator NOT.
• A logical expression can contain two logical operators in succession; however,

the only combinations allowed are: OR NOT or AND NOT. The two
operators must be separated from each other by one or more blanks.

• Any logical term, relation, or inner logical expression can be optionally
enclosed in parentheses.

• Relational and logical operators must be immediately preceded by a right
parenthesis, a single quote, or at least one blank.

• Relational and logical operators must be immediately followed by an
ampersand, a left parenthesis, a single quote, or at least one blank.

• A logical expression can contain up to 16 terms and up to five levels of
parentheses.

Following are examples of logical expressions.

Examples of logical expressions

(&A GT 100 OR '&C' EQ 'F')

,;;;;; --=~""""
(NOT &B OR (NOT .~~G~IOO)))

(NOT ('&C' EQ 'F'))

logical expression

(NOT (&B) OR (&A GE 10 AND &A LE 0))

(NOT &B OR &A GE 10 AND &A LE 0)

('&C' EQ 'ALLOC')

('&C'EQ'ALLOC')

(&A NE 10)

~ blank mandatory

Evaluation of Logical Expressions

c

c

o

The assembler evaluates logical expressions as follows.

1. It evaluates each logical term, and assigns a binary value of 0 or 1.
2. If the logical term is an arithmetic or character relation, the assembler

evaluates:
a. The arithmetic or character expression specified as values for comparison,

and then
b. The arithmetic or character relations, and finally
c. The logical term, which is the result of the relation. If the relation is true,

the logical term it represents is given a value of 1; if the relation is false,
the term is given the value of O.

Note. If two comparands in a character relation have character values of
unequal length, the assembler always takes the shorter character value to be
less than the longer one.

3. The assembler performs logical operations from left to right. However:
a. It performs logical NOTs before logical ANDs and ORs, and
b. It performs logical ANDs before logical ORs.

4. In parenthesized logical expressions, the assembler evaluates the innermost
expressions first and then considers them as logical terms in the next outer
level of expressions. It continues this process until the outermost expression
is evaluated. For example, the expression

(NOT (&Bl OR (&B2 AND ('&e' EQ 'X' OR &B3))))

would be evaluated in the order:
(1) evaluate' & C' EQ 'X'
(2) evaluate the result of (1) OR & B3
(3) evaluate & B2 AND the result of (2)
(4) evaluate & B 1 OR the result of (3)
(5) evaluate NOT the result of (4)

Following are examples of logical expressions:

Examples of logical expressions

«&A NE 100) OR T'&AREA EQ '&PARAM'(3,4»

('ABC' LT 'ABCD') (Always true)

(&B AND NOT (5 GT 3))

(&B AND (NOT (5 GT 3»)

(&B OR &A AND ('&C EO 'B'»

(&B OR (&A AND C&C' EO 'B'»

Macro Language 6 - 53

Selectiltg Cltaracters Fro", a Stri,.,.-SlIbstring Notation

6 - 54 SC34-0 124

The substring notation allows you to refer to one or more characters within a
character string. You can select characters from the string and use them for
substitution or testing. By concatenating substrings with other substrings or 0.)
character strings, you can rearrange and build your own strings. '-

Substring notation can be used only in the following conditional assembly
instructions:

• SETC instruction as an operand or part of an operand; for example:
& Cl SETC 'ABC'(1,3)
assigns the value ABC to & C 1
& C2 SETC '& Cl'(1,2).'DEF'
assigns the value ABDEF to & C2, based on & C 1 =ABC

• SETB and AIF instructions as a character value in the comparand of a
character relation comprising part of a logical expression; for example:
- AIF (' & STRING'(1,4) EO 'AREA').SEO
- & B SETB (' & STRING'(1,4).'9' EO 'FULL9')

Substring notation has the following format:
'character string'(e 1 ,e2)
where the character string must be a valid character expression with a length N
in the range 1-127 characters, and the subscripts eland e2 are arithmetic
expressions. The first subscript, e 1, indicates the first character that is extracted
from the character string; the second subscript, e2, indicates the number of
characters extracted (or the length of the substring). Substring notation is
replaced by a value that depends on the 3 elements N, el, and e2 as follows:

• When e 1 has a value of zero or a negative value, the assembler issues an error
message.

• When the value of e 1 exceeds N, the assembler issues a warning message, and
a null character string is generated.,

• When e2 has a value of zero, the assembler generates a null character string. \.
Note that if e2 is negative, the assembler issues an error message.

• When e2 indexes past the end of the character expression (that is, el +e2 is
greater than N + 1), the assembler issues a warning message and generates a
substring that includes only the characters up to the end of the character
expression (e2 must be less than or equal to 64).

The following examples indicate the results of valid and invalid substring
notation:

• 'ABCDEF'(2,5)
Valid; results in character value of BCDEF

• 'ABCDEF'(0,5)
Invalid because e 1 =0; results in null character value

• 'ABCDEF'(7 ,5)
Invalid because e 1 is greater than N; results in null character value

• 'ABCDEF'(3,0)
Invalid because e2=0; results in null character value

• 'ABCDEF'(3,5)
Valid, but produces a warning message because e2 indexes past end of string;
results in character value of CDEF (only 4 characters long)

• 'ABCDEF'(3,4)
Valid; results in character value of CDEF

c

Brallc/tiltg

AIF-Conditiooal Branch

c

o

There are four conditional assembly instructions that control the sequence of
execution of statements within a macro definition:

• AlF-Conditional branch
• AGO-Unconditional branch
• ACTR-Loop control counter
• ANOP-No Operation

AlF is used to:

• Branch according to the result of a condition test
• Provide loop control for conditional assembly processing
• Check for error conditions and branch to an appropriate MNOTE instruction

Code the AlF instruction as follows:

Name Operation Operand

sequence logical expression enclosed in parentheses, immediately
symbol or AIF followed by a sequence symbol with no intervening
blank blanks

The assembler evaluates the logical expression in the AlF operand field at
pre assembly time. If the logical expression is true (logical value = 1), the next
statement processed by the assembler is the statement identified by the sequence
symbol in the operand field of the AIF instruction; if the logical expression is
false (logical value=O), the next sequential statement is processed next. The
sequence symbol in the operand field is a conditional assembly label (the name
field of a model statement or another conditional assembly instruction) that
represents a location at preassembly time; the label can appear before or after
the AlP instruction, within the same macro definition as the corresponding AlF
instruction.

The following example indicates the use of the AlP instruction:

MACRO
HACAIF

(I&C 1 EQ 'F').FORWARD

AIF (&A GT S).BACK
.FORWARD ANOP

• BACK AIF

MEND

Macro Language 6 - 55

AGO-Unconditional Branch

ACTR-Assembly Loop Counter

6 - 56 SC34-0124

AGO is used to branch unconditionally. This provides you with final exits from
conditional assembly loops.

Code the AGO instruction as follows: 0
Name Operation Operand

sequence
symbol AGO sequence symbol
or blank

The statement identified by the sequence symbol in the AGO instruction
operand can appear before or after the AGO instruction, within the same macro
definition as the corresponding AGO instruction.

The following example indicates the use of the AGO instruction:

• BACK

MACRO
KACAGO

AGO • FO RWARD

ANOP

AGO • BACK

.FORWARD ANOP

KENO

ACTR is used to set a conditional assembly loop counter. Each time the
assembler processes an AlF or AGO branching instruction, the loop counter for
that macro definition is decreased by one. When the number of conditional
assembly branches taken reaches the value assigned by the ACTR instruction,
the assembler exits from the macro definition.

By using the ACTR instruction, you avoid excessive looping during conditional
assembly processing at preassembly time (in case of errors).

The format of the ACTR instruction statement is:

Name Operation Operand

blank ACfR any valid SETA expression

The ACTR instruction, if used, must be the first statement following global
and local declarations for the macro definition.

A conditional assembly loop counter is set to the value of the arithmetic
expression in the operand field. The loop counter has a local scope; its value is
decreased only by AGO and AlF instructions (if the branch is taken). The loop
counter is reset each time the macro is called. The nesting of macros has no
effect on the setting of individual loop counters.

The assembler sets its own internal loop counter for each macro definition that
does not contain an ACTR instruction. The assembler assigns a standard value of
150 to each of these internal loop counters.

Within the local scope of a particular loop counter (including the internal
counters run by the assembler), the following rules apply. c

c
ANOP-Assembly No Operation

o

• Each time the assembler executes an AGO or AIF branch, it checks the loop
counter for a zero value.

• If the count is not zero, it is decreased by one.
• If the count is zero, before decreasing the counter value, the assembler

terminates the expansion of the entire nest of macro definitions and processes
the next sequential instruction after the outer macro call.

You can specify a sequence symbol in the name field of an ANOP instruction,
and use the symbol as a label for branching purposes. The ANOP instruction
performs no operation itself. Instead, if you branch to an ANOP instruction, the
assembler processes the next sequential instruction. You use it preceding an
instruction that already has a symbol in its name field. For example, if you
wanted to branch to a SETC instruction, which requires a variable symbol in the
name field, you would insert a labeled ANOP instruction immediately before the
SETC instruction. By branching to the ANOP instruction with an AIF or AGO
instruction, you would, in effect, be branching to the SETC instruction.

The format of the ANOP instruction statement is:

Name Operation

sequence ANOP
symbol

For example:

.SEQ
&A

AGO .SEQ

ANOP
SETA 1_

Operand

blank

Macro Language 6 - 57

()

6 - 58 SC34-Q124

c

c

o

Section Contents
Assembler Options 7-3

Required Files 7-3
Optional Files 74

Assembler Program Listing 74
External Symbol Dictionary (ESD) 74
Source and Object Program 7-5
Relocation Dictionary 7-9
Cross-reference 7-9
Diagnostics 7 -1 0
Statistics 7-10

Performance 7 -11
Invoking the Assembler (Example) 7 -11
Object Module Formats 7-12
Record Formats 7-13

General Record Format 7-13
Record Types 7-13

External Symbol Dictionary (ESD) Record 7 -13
ESD Control Information 7-13
ESD DATA 7-13

Text (TXT) Record 7-14
TXT Control Information 7-14
TXT Data 7-14

Relocation Dictionary (RLD) Record 7-14
RLD Control Information 7-14
RLD Data (per complete entry) 7-15
R LD Da ta (per partial en try) 7 -15

End of Module (END) Record 7-15
End Control Information 7-15

Chapter 7. Using the Macro Assembler

Using the Macro Assembler 7 - 1

o

7 - 2 SC34-0124

c

c

o

Assembler Options

Option

~/NOLIST

~/NOTEXT

You may specify assembler options to the assembler through the JSP P ARM
control statement. The following list explains each of the options-the defaults are
underlined.

Explanation

LIST tells the assembler to write all assembly listings to the PRINT file. The listings are
(l) external symbol dictionary (ESD), (2) source and object programs, (3) relocation
dictionary (RLD), (4) cross-reference (XREF) and (5) diagnostic messages.
NOLIST tells the assembler to write only error messages to the PRINT file.

TEXT tells the assembler to write the source and object program listing to the PRINT file.
NOTEXT suppresses this processing.

~'/NOXREF/FULLXREF XREF tells the assembler to write the cross-reference listing to the PRINT me for only
referenced symbols.

~/NOESD

RLD/NORLD

SYSPARM(' .. .')

OBJECT /NOOBJECT

LI NECOUNT (n)

MACRO/NOMACRO

Req"ired Files

NOXREF suppresses this processing.
FULLXREF tells the assembler to write the cross-reference listing to the PRINT file
for all defined and referenced symbols.

ESD tells the assembler to write the external symbol dictionary before the source
program listing.
NOESD suppresses this processing.

RLD tells the assembler to write the relocation dictionary after the source program listing.
NORLD suppresses this processing.

Defines up to 8 characters of information substituted for the &SYSPARM value during
macro processing. Blanks may be contained within the apostrophes. Each blank counts
as one character. A single apostrophe within the string TIlust be represented by two
apostrophes. The default value for &SYSPARM is a null character string.

OBJECT causes the object module to be written to the OBJOUT file.
NOOBJECT suppresses this processing.

LlNECOlJNT specifies n as the number of lines per page of the PRINT file. If this
option is omitted, the default line count is 55. The value of n must be in the range I -999.

MACRO tells the assembler to process any macros encountered in the source.
NOMACRO tells the assembler that there arc no macros in the source and that
macro processing may be bypassed.

Options are processed in the order they are specified. For example, if you
enter

NOLIST,ESD

your output will be an ESD listing and diagnostic messages. NOLIST turns off
the ESD, source, RLD, and XREF listings. ESD turns the ESD listing option
back on.

• Source program input file, SOURCIN
• Three assembler workfiles, WORKl, WORK2, WORK3, and/or WORKVOL.
• Program listing output file, PRINT.
• Assembler phase and overlay file, TSOVL Y.

Using the Macro Assembler 7 - 3

Optiollal Files
• Libraries, LIB 1, LIB2. The libraries contain copy code, system macros, and

user provided macros. LIB 1 is searched before LIB2.
• Object module output file, OBJOUT

Assembler Program Listing
The assembler listing consists of six sections ordered as follows:

• External symbol dictionary
• Source and object program
• Relocation dictionary
• Symbol cross-reference table
• Diagnostic messages
• Statistics

The contents of the listing are controlled by the assembler options list.

Extemal Symbol DictiollQry (ESD)

7 - 4 SC34-0124

This section of the listing contains the external symbol dictionary information
passed to the application builder in the object module. The entries describe the
control sections, external references, and entry points in the source module. Six
types of entries with their associated fields are shown in the following chart. The
circled numbers refer to the corresponding heading in the sample program listing.
The XS indicate entries accompanying the designator for each type.

0 e e 0 e e
SYMBOL TYPE ID ADDR LENGTH LDID

X SD X X X -

X LD X -- X

X ER X - - -

- PC X X X -

X wx x - --

X CM X -- X -

X GL X X -

X RR X - - -

1. This column contains the name of every control section, entry point, and
external symbol.

2. This column contains the type designator for the entry, as shown in the
table. The type designators are defined as:
SD Section definition. The symbol appears in the name field of a CSECT

or START statement.
LD Label definition. The symbol appears as the operand of the ENTRY

statement.
ER External reference. The symbol appears as the operand of the EXTRN

statement or is defined as a V -type address constant, or an external
branch instruction; for example, BALX.

PC Private code. Unnamed control section definition.

()

f '
\ ,

c

o

WX Weak external reference. The symbol appears as the operand of
WXTRN statement, or is defined as a W -type address constant.

CM Common section. The symbol appears in the name field of a COM
statement.

GL Global section. The symbol appears in the name field as a GLOBL
statement.

RR Resource reference. The symbol is defined as an N-type constant.

3. This column contains the external symbol dictionary identification number
(ESDID), a unique 4-digit hexadecimal number identifying the entry. It is
also used in an LD entry and in the relocation dictionary for
cross-referencing the ESD. The assembler assigns this number in sequence as
the items are encountered in your source program.

4. This column contains the address of the symbol (hexadecimal notation) for
SD and LD type entries, and is blank for ER, eM, GL, RR, and WX entries.
For PC and SD entries, it indicates the starting address of the control
section.

S. This column contains the assembled length, in bytes, of the control section
(hexadecimal notation).

6. This column contains, for LD entries only, the ESDID assigned to the
control section that defines the entry symbol.

Source alld Ob jeet Program
This section shows, on the next two pages, a sample assembly listing. An
explanation of each part of the listing follows the sample.

Using the Macro Assembler 7 - 5

EXAM EXTERNAL SYMBOL DICTIONARY PAGE 1

n " ., 0 e e 0 8 4D o
SYMBOL TYPE ID ADDR LENGTH LDID PGMID DATE TIME

SECTA SD 0001 0100 002E
GAMMA ER 0002
ENTA LD 0118 0001
ALPHA ER 0003
PROCZ WX 0004

0 0 ~

EXA.M 0 SAMPLE ASSEMBLY LISTING PAGE 2

CD G 4D fD 4D
LOC OBJECT CODE STMT SOURCE STATEMENT PGM ID DATE TIME

0100 2 SECTA START X'OlOO'
3 EXTRN GAMMA
4 ENTRY ENTA

0000 5 REGO EQUR a
0002 6 REG2 EQUR 2
0007 7 REG7 EQUR 7
0100 D020 0120 8 MVD OPND1,REGO
0104 6F03 0000 9 BAL GAMMA,REG7
0108 D028 0124 10 MVD REGO,RESULT
OIOC 6808 0000 11 MVW OPND2,REGO
ERROR
0110 6F03 0000 12 BALX ALPHA,REG7
0114 680D 012A 13 MVW REGO,RESULT2 (
0118 14 ENTA EQU * \. .t'

0118 6A08 012C 15 MVW ADDRZ,REG2
OllC 6842 0000 16 B (REG2)

17 *
18 * DATA AREA
19 *

0120 OOOOOOOA 20 OPNDI DC D'IO'
0124 21 RESULT DS D
0128 001E 22 OPNDI DC F'30'
ERROR
012A 23 RESULT2 DS F
OI2C 0000 24 ADDRZ DC W(PROCZ)
0000 25 END

~

EXAM RELOCATION DICTIONARY PAGE 3

G) 4D 4D e 4D
PGM ID DATE TIME

REL.ID POS.ID FLAGS ADDRESS REL.ID POS.ID FLAGS ADDRESS

0001 0001 00 0102 0002 0001 10 0106
0001 0001 00 010A 0003 0001 10 OlIO
0001 0001 00 0116 0001 0001 00 OllA
0004 0001 10 012C

(
..

... " ..•
. J:

7 - 6 SC34-0124

(i

c

o

EXAM CROSS-REFERENCE LISTING PAGE 4

8 e G fD e fD e
SYMBOL ESDID LEN VALUE DEFN REFERENCES PGM ID DATE TIME

ADDRZ 0001 0002 012C
ENTA 0001 0001 0118
GAMMA 0003 0001 0000
OPND1 0001 0004 0120
OPND1 ***DUPLICATE***
OPND2 ***UNDEFINED***
REGO RG 0001 0000

REG2 RG 0001 0002
REG7 RG 0001 0007
RESULT 0001 0004 0124
RESULT2 0001 0002 012A

EXAM DIAGNOSTICS

e
STMT MACRO ERROR CODE MESSAGE

0024
0014
0003
0020
0022

0005

0006
0007
0021
0023

0015
0004
0009
0008

0011
0008 0010
0011 0013
0015 0016
0009 0012
0010
0013

PGMID

PAGE 5

4D
DATE TIME

11
22

CPA220E
CPA219E

UNDEFINED SYMBOL
PREVIOUSLY DEFINED NAME

EXAM STATISTICS

2 ST ATEMENT(S) FLAGGED IN THIS ASSEMBLY
8 WAS HIGHEST SYSTEM SEVERITY CODE ~
o WAS HIGHEST MACRO SEVERITY CODE W

OPTIONS IN EFFECT
LIST
OBJECT

ESD G
TEXT
RLD
XREF
NOMACRO

SPECIFICATIONS IN EFFECT
SYSPARM = 'FP'

25 SOURCE RECORDS READ
o MACRO FILE RECORDS READ
5 OBJECT RECORDS OUTPUT

82 PRINTED LINES

PAGE 6

PGM ID DATE TIME

Using the Macro Assembler 7 - 7

-

7 - 8 SC34-0124

7. This is the 4-character object module identification. It is the symbol that
appears in the name field of the first TITLE statement. The assembler prints
the TITLE statement identification and program identification (item 14) on
every page of the listing. ()

8. This is the infonnation taken from the operand field of a TITLE statement.

Note. TITLE, SPACE, and EJECT statements do not appear in the source
listing.

9. This is the listing page number.
10. This column contains the location counter value (hexadecimal notation) of

the object code. For EQU instructions, this column contains the assembled
value of the operand field.

11. This column contains the object code assembled from source statements. The
entries are always left-justified. The notation is hexadecimal. Entries are
either machine instructions or data constants. Machine instructions are
printed in full with a blank inserted after every 4 digits (one word).
Constants might be only partially printed, depending on the PRINT option in
effect.

12. This column contains the statement number. A plus sign (+) to the right of
the number indicates that the statement was generated as the result of
expanding a macro instruction.

13. This column contains the source program statement. The following items
apply to this section of the listing:

Source statements are listed, including macro definitions submitted in the
source module.
Listing control instructions are not printed, with one exception. PRINT is
listed when PRINT ON is in effect.
The statements generated as the result of a macro instruction follow the
macro instruction in the listing unless PRINT NOGEN is in effect.
Diagnostic messages are not listed inline in the source and object program
section. An error indicator, ***ERROR ***, follows the statement in error,
and appears inline when errors occur during macro definition expansion in
NOGEN mode. (One or more of these indicators appear following the
macro call, depending on the number of definition statements in error.)
The message appears in the diagnostic section of the listing.
MNOTE messages are listed inline in the source and object program
section. They are printed even if the NOGEN option is in effect. An
MNOTE indicator appears in the diagnostic section of the listing for
MNOTE statements other than MNOTE *. The MNOTE message format
is severity code, followed by message text.
The MNOTE * fonn of the MNOTE statement results in an inline
message only. An MNOTE indicator does not appear in the diagnostic
section of the listing.
When an error is found in a source macro definition, it is treated the same
as any other assembly error: the error indication appears after the
statement in error, and a diagnostic is placed in the list of diagnostics. An
error encountered during the expansion of a macro instruction is indicated
at the point of error in the expansion and the associated diagnostic
message is placed in the list of diagnostics. Errors occuring in a macro
expansion (print NOGEN mode) are flagged inline with the macro call.
If the END statement contains an operand, the transfer address appears in
the location column (LOC).
In the case of CSECT, START, COM, GLOBL, and DSECT statements,
the location field contains the starting or resuming address of these control
sections.

'" , ,

(.. :

c

Relocatioll Dictiollary

c

Cross-reference

o

In the case of EXTRN, WXTRN, and ENTRY instructions, the location
field and object code field are blank.
For a USING statement, the location field contains the value of the first
operand.
For ORG statements, the location Field contains the address value of the
ORG operand.
For an EQU or EQUR statement, the location field contains the value
assigned to the symbol in the name field.
Generated statements always print in standard statement format. Because
of this, a generated statement can occupy two continuation lines on the
listing, unlike source statements, which are restricted to one continuation
line.

14. Program identification. The assembler supplies this information, which
identifies the assembler program. The assembly date and the time the
assembly started is also printed.

This section of the listing contains the relocation dictionary information passed to
the application builder in the object module. Each line of the listing contains up
to three relocation dictionary entries. The entries describe all address constants in
the source module that are affected by relocation.

15. This column contains the ESDID number assigned to the ESD entry for the
control section in which the referenced symbol is defined, or the ESDID
number assigned to an ER item in the ESD.

16. This column contains the ESDID number assigned to the ESD entry that
describes the control section in which the address constant is used as an
operand.

17. The 2-digit hexadecimal number in this column is interpreted as follows:
First digit. A a indicates that the entry describes an A-type address
constant. A 1 indicates that entry describes a V -type address constant. A 4
indicates the entry describes a W -type address constant. A 5 indicates the
entry describes an N-type address constant.
Second digit. A 0 indicates that the relocation factor must be added to this
item. A 2 indicates that the relocation factor must be subtracted.

18. This column contains the location counter value of the address constant in
the source module.

This section of the listing contains symbolic names used in the source module as
well as certain information corresponding to the use of each symbolic name. If
the FULLXREF option is specified, all symbolic names used are listed.
Otherwise, only referenced symbolic names are listed.

19. This column contains the symbolic names in alphabetic order.
20. This column specifies the external symbol dictionary identifier (ESDID) in

hexadecimal notation for the symbolic name. For register symbols, this field
contains RG. Register symbols are absolute. An ESDID of X'OOOO' specifies
that the symbol value is absolute. An ESDID other than X'OOOO' specifies
that the symbol value is relocatable and is associated with that identifier.

21. This column states the length attribute (decimal notation) assigned to the
symbol.

22. This column contains either the address the symbol represents, or a value to
which the symbol is equated (hexadecimal notation).

23. This column contains the number of the statement in which the symbol is
defined (decimal notation). Predefined register symbols will have statement
number O.

Using the Macro Assembler 7 - 9

Diagllostics

Statistics

7 - 10 SC34-0124

24. This column contains, from left to right, in ascending order, the numbers
(decimal notation) of all statements in which the symbol appears in an
operand.

&~ 0
1. A PRINT OFF listing control instruction does not affect the printing of the . }

cross-reference section of the listing.
2. In the case of an undefined symbol, the assembler fills columns 20, 21, 22,

and 23 with the message:
UNDEFINED

3. In the case of duplicate symbols, the assembler fills columns 20, 21, and 22
with the message:
DUPLICATE

4. Symbols appearing in V or W -type address constants do not appear in the
cross-reference listing.

This section of the listing contains the diagnostic messages issued as a result of
error conditions encountered in the program. For actual messages, see IBM
Series/l Program Preparation Subsystem Messages and Codes.

25. This column contains the number of the statement in error.
26. This column contains the name of a macro definition whenever certain errors

associated with that macro definition are encountered.
27. This column contains the message identification-assembler identifier, message

number, and severity.
28. This column contains the message text. In many cases, the assembler

indicates the vicinity of the error with a near operand column pointer.

An MNOTE indicator of the form SEVERITY CODE xxx-MNOTE
STATEMENT appears in the "Diagnostics" section if an MNOTE statement
other than MNOTE * is issued by a macro instruction. xxx is the severity code
associated with the statement flagged. The MNOTE statement itself is inline in
the source and object program section of the listing. The operand field of an
MNOTE * is printed as a comment but does not appear in the "Diagnostics"
section of the listing.

Note. Editing errors in macro definitions from the macro source file are
discovered when the macro definitions are read from the macro file. This occurs
after the END statement has been read. They are therefore flagged after the
END statement. The assembler lists the names of macro definitions along with
error messages associated with those definitions. To help in isolating these types
of editing errors, place the offending macro(s) into the source stream before the
first control section.

This section of the listing contains these statistical messages:

29. This is the number of statements flagged. The statements in error are printed
in the "Diagnostics" listing.

30. This is the highest assembler severity code encountered, if not zero. Your
macro severity code is also printed.

. , "

c

Performance

Code Message suffix Meanillg

* Informational message; no effect on execution
0 I Informational message; normal execution is expected
4 W Warning message; successful execution is probable
8 E Error; execution may fail
12 S Serious error; successful execution is improbable
20 T Assembler program terminated abnormally

31. This is a list of the assembler options in effect.
32. This is the number of source records processed.

You may improve assembler performance by:

1. Increasing the size of the batch partition. This will allow the assembler to
allocate larger I/O buffers and thereby, decrease the number of I/O
operations.

2. Allocating SOURCIN and aBlaUT on the fixed disk. I/O is faster to the
fixed disk than to the diskette.

3. Locating WORK 1 on a second fixed disk. Leave WORK2, WORK3,
SOURCIN and OBlOUT on the system disk. If a third disk is available, put
WORK2 on that disk.

4. Not coding nested macros. Nested macros may cause additional I/O
operations.

C Invoking The Assembler (Example)

o

You must provide the assembler with the:

• Location of source input,
• Location of the assembler phases and overlays,
• Location of work volume or work files and
• Printer device.

An object file is required if you want object output. Libraries are required if
you code copy code or want to access library macro definitions.

If you have set up the recommended program preparation default environment,
with OSDs for assembler workfiles, object file, printer and system macro library,
the following are the minimum lSP statements required to invoke the assembler.
(Note that PPENV on the JOB statement is the name of a OSO statement
describing a file on which the default OS Os reside):

ASMl JOB ENVL=PPENV
EXEC TSN=CPA

SOURCIN DSD DEV=MYDSKT,DSDTYPE=DISKETTE,VOL1=MYVOL,
DSN=MYINPUT

EOJ

WORK 1, WORK2, and WORK3 default to the fixed disk specified in the
default environment. The object file is created in the location specified in the
default environment, and the default macro library that is specified is used.
Source comes from data set 'MMYINPUT' on volume 'MYVOL', on device
'MYDSKT'. The printed output will go to the printer. Standard assembler default
options will apply.

An example of an assembly with the source entered in the job stream is shown
on page 7-10.

Using the Macro Assembler 7 - I I

Object Module Fonnats

7 - 12 SC34-0124

ASM2 JOB ENVL=PPENV
EXEC TSN=CPA

SOURCIN DSD *
MACRO
AVG F;A, F;B, &C AVERAGE MACRO
MVWS F;A,R6 ACCESS THE TWO
MVWS F;B,R7 * PARAMETERS
AW R6,R7 ADD THEM TOGETHER
SRL ONE,R7 DIVIDE BY 2
MVWS R7,F;C SAVE AT SPECIFIED LOCATION
MEND

PROGA START 0
PSW R7, (R1) SAVE LINK REGISTER
AVG (RO) , (R2) , (R3) GET AVERAGE
PW (R1),R7 RESTORE R7
BXS (R7) RETURN TO CALLER

ONE EQU 1 CONSTANT '-1 '
END PROGA
EOJ

All DSDs and assembler options default as in the first example, except for
SOURCIN, which is spooled to a disk file by the job stream processor. The
assembler will access that spool file.

The following is an example of JSP statements invoking the assembler with no
environment list:

ASM1

ASMBLR
WORK 1
WORK2
WORK3
SOURCIN

LIB1
LIB2
OBJOUT

PRINT

JOB
EXEC TSN=CPA
DSD DEV=DSK1,DSDTYPE=DISK,VOL=ASMVOL,DSN=ASM
DSD DEV=DSK1,DSDTYPE=DISK,VOL=WRKVOL,DSN=WK1
DSD DEV=DSK1,DSDTYPE=DISK,VOL=WRKVOL,DSN=WK2
DSD DEV=DSK1,DSDTYPE=DISK,VOL=WRKVOL,DSN=WK3
DSD DEV=MYDSKT,DSDTYPE=DISKETTE,VOL1=MYVOL,

DSN=MYINPUT
DSD DEV=DSK2,DSDTYPE=DISK,VOL=SYSLIB,DSN=MACLIB1
DSD DEV=DSK2,DSDTYPE=DISK,VOL=USERLIB,DSN=STRUCMAC
DSD DEV=DSK2,DSDTYPE=DISK,VOL=DECKOUT,DSN=MODULES,

MEM=ASM11
DSD DEV=OPS,DSDTYPE=OPS
PARM 'NOTEXT,NEXREF'
EOJ

WORKl, WORK2, and WORK3 are in data sets 'WKI " 'WK2', and 'WK3'
respectively, on volume 'WRKVOL', on device 'DSKl'. WORKl, WORK2, and
WORK3 are accessed as direct type data sets with random organization. The
source is accessed as in the previous example. Two macro libraries are on device
'DSK2': one in data set 'MACLIBl' on volume 'SYSLIB' and the other in data
set 'STRUCMAC', on volume 'USERLIB'. The object output will go out to
member 'ASMll' in data set 'MODULES', on volume 'DECKOUT', on device
'DSK2'. All printed output is routed to the 'OPS'. No assembly listing or cross
reference listing will be output.

The macro assembler transforms source statements into object modules which are
subsequently used as input to the application builder. The object module resides
on a file which must be defined by a DSD statement named OBJOUT. This file
can be a partitioned data set or consecutive data set.

Object modules are made up of ESD records, TEXT records, RLD records,
and an END record. An object module always contains an ESD and an END
record. Text is usually present in an object module; however, it is possible that
none exist. The RLD is present only if there are relocatable address constants in
the object module.

('
'- J

c-

c

o

Record Formats
General Record Format

Record Types

The following figure represents the general format of an object module
contained in a consecutive data set or member of a partitioned data set on disk.

ESD
Records

TEXT
Records

RLD
Records

END Record

Object Module

Object module records are of variable length ranging from 16 to 512 bytes.
Records are packed into a block of 128 or 256 bytes and may span blocks. The
first record of an object module always begins a new block. The last block of an
object module is written with the actual count of bytes present.

Object module records have two basic parts: control information and data area.
The following figure represents the format:

I

\ I J

" ------ -----/ ----------,/
I
I

Control
Information

Y
Data Area

External Symbol Dictionary (ESD) Record

ESD Control Infonnation

ESD DATA

An ESD record contains one or more ESD entries where each entry is associated
with a symbolic definition or reference within the object module text.

Offset

0(0)

1(1)

4(4)
6(6)
8(8)
IO(A)

12(C)
14(E)

Offset

0(0)

Bytes

1
3
2
2
2
2
2
2

Bytes

8

Field

Code
10

Length

ESDID

Field

Symbol

Description

Record code (X'02')
Record Identifier (C'ESD')
Undefined
Reserved
Undefined
Number of bytes of ESO data
Undefined
ESO entry identifier of the first entry for a symbol
type other than LO.

Description

Symbolic name in EBCDIC of the symbol described
in this entry

Using the Macro Assembler 7 - 13

Text (TXT) Record

TXT Control Information

TXT Data

8(8)

9(9)
lO(A)

12(C)
14(E)

2

2
2

Type A code which identifies the type of symbol being
described.

X'OO'-Section definition (SD)
X'Ol'-Label Definition (LD)
X'02'-External Reference (ER)
X'Q4'-Private Code (PC)
X'05'-Common (CM)
X'OA'-Weak External Reference (WX)
X'OB'-Global (GL)
X'OC'-Resource Reference (RR)

Reserved
Address Address of the symbol within the object module when

the type is SD, LD, or Pc.
Reserved

ESDID/Length The ESD entry of the control section containing the
symbol if type is LD. For SD, PC, CM and GL type
entries, this specifies the section length in bytes.

The instructions and data that make up a program are in text (TXT) records as
text data. A given TXT record contains text data that is associated with a
particular control section (CSECT).

Offset Bytes

0(0) 1
1(1) 3
4(4) 2
6(6) 2

8(8) 2
lO(A) 2
12(C) 2
14(E) 2

Offset Bytes

0(0) An
even
numbers

Field

Code
ID

Address

Length

ESDIO

Field

Data

Description

Record Code (X'02')
Record Identifier (C'TXT')
Undefined
Address Assigned to the first byte of text data in this
record relative to the beginning of the SD/PC entry
that the text corresponds to.
Undefined
Number of bytes of text data.
Undefined
Identifier of the ESD entry for the control section
(ESD type SO) to which the text is associated.

Description

Text data of a specified control section
of a program.

Relocation Dictionary (RLD) Record

RLD Control Information

7 - 14 SC34-0124

RLD records contain RLD entries. An RLD entry is produced for each address
constant that is sensitive to the relocation of the program. RLD entries are
generated for each relocatable A-type constant and for each V, W, and N-type
constant within an object module.

Offset

0(0)
1(1)
4(4)
6(6)
8(8)
to(A)
12(C)
14(E)

Bytes

1
3
2
2
2
2
2
2

Field

Code
10

Length

Description

Record Code (X'02')
Record Identifier (C'RLD')
Undefined
Reserved
Undefined
Number of bytes of RLD data.
Undefined
Reserved

C~

L

o

RLD Data (per complete entry)
Offset Bytes Field Description

0(0) 2 R-Pointer Relocation Pointer, which is the ESDID number for
the ESD entry describing the reference symbol.

2(2) 2 P-Pointer Position Pointer, which is the ESDID number of the
ESD entry for the control section referencing the
symbol identified by the R-pointer.

4(4) Flags Indicates the direction of relocation, the type of
relocatable constant, and the format of the next RLD
data entry.

B'TTTTUUDF'

TTTT -Type of Constant
OOOO--A-type
OOOI-V-type
OIOO-W-type
0101-N-type

UU-Undefined

D-Direction of relocation
O--Positive; addition of the relocation factor.
I-Negative; subtraction of the relocation factor

F-format of the next RLD data entry item.
O--Complete entry
I-Partial entry-R and P Pointers omitted (use
same pointers as last complete RLD data entry)

5(5) I Undefined
6(6) 2 Address Location (address) of the address constant requiring

adjustment due to relocation.

RLD Data (per partial entry)
Offset Bytes Field Description

0(0) 1 Flags Indicates the direction of relocation, the type of
relocatable constant, and the format of the next RLD
data entry. See complete entry for format of the bit
field.

1(I) I Undefined
2(2) 2 Address Location (address) of the address constant requiring

adjustment due to relocation.

End of Module (END) Record
There is one END record for an object module. It is the last record for that

End Control Information

object module.

Offset

0(0)

1(1)

4(4)
6(6)

8(8)
lO(A)
12(C)
14(E)

Bytes

I
3
2
2

2
2
2
2

Field Description

Code Record Code (X'02')
ID Record Identifier (C'END')

Undefined
Address

Length

ESDID

Entry point address of the object module if specified
in the END source statement.
Undefined
Value of zero.
Undefined
Identifier of the ESD entry for the control section
containing the entry point specified in the address
field.

Using the Macro Assembler 7 - 15

(:

7 - 16 SC34-0124

c

c

o

Appendix A

Structured Programming Macros
A set of structured programming macros (discussed in this section) are provided
on a separate macro library which can be used as input to the assembler. This
section describes the macros that support the following structures.

BLOCK

>
Note: All other structures must be nested within a block structure

IF THEN ELSE

True []

p o >
•

False D
Note: Either A or B can be null

Appendix A A-I

A - 2 SC34-0124

LEAVE

True

------->~ . p

False

Note. LEA VE is not a proper structure. It is a compromise between code
efficiency and the advantages of structured code (reduced development and
maintenance cost, increased productivity, reduced errors, improved readability
and understandability). See full discussion under macro syntax section.

DO WHILE

>. p

c

o

DO INFINITE

H LEAVE macro for exiting Note: as

DO UNTIL

~O ~[]

~

True

>. p

False

~. p

I False

Appendix A A - 3

Macro Syntaxes
BLOCK

ENDBLK

A - 4 SC34-0124

CASE

·0·.

>

Structured programming macros eliminate branch and jump instructions in
source code. The code generated by the expansion of structured macros is
reenterable.
To create these structures:

BLOCK
IF-THEN-ELSE
DO-WHILE, DO-INFINITE,
DO-UNTIL (depending on
CASE

Use these macros:

BLOCK/ENDBLK
IF/[ELSE]/ENDIF or LEAVE

and DO/ENDDO/LEAVE
operands)

CASEBLK/CASE/ENDCASE

A structured programming macro that indicates the beginning of a section of
code to be treated as a unit.

[label] BLOCK [LEVELS={YESINO} 1

where:
label

>

Any unique label acceptable to the native assembler. This optional label is an aid
to readability. Structured programming macros keep track of blocks by using
internal nesting level numbers and therefore do not require labels on blocks.

If you code a label, your program can use it either as an operand on the
LEA VE macro, telling it which structure you want to exit, or as an operand on
the ENDBLK macro to verify that the two macros are related.

LEVELS={YES I NO}
The internal nesting level of every structured macro is available as a debugging
aid through this optional keyword. When LEVELS= YES is coded, the nesting
level of each structured programming macro appears as an MNOTE in each
structured macro's expansion until a BLOCK macro with LEVELS=NO is
encountered. If this keyword is never used then no nesting level MNOTEs are
generated.

A structured programming macro that indicates the end of a section of code to
be treated as a unit.

[label] ENDBLK [BLOCK=blocklabel]

()

(

c

IF

c

o

where:

label
Optional. Any unique label acceptable to the native assembler.

BLOCK = block label
The label of the last preceding block that is not paired with an ENDBLK. Think
of BLOCKS as left parentheses and ENDBLKS as right parentheses.

This optional keyword improves readability and allows verification. If the
blocklabel provided does not match the label of the last preceding unpaired
BLOCK, then an MNOTE noting the discrepancy is issued, and the last
preceding unpaired BLOCK is ended.

A structured programming macro that:

a. determines whether a statement or group of logically-connected statements
are true or false, then

b. passes control to user-coded "true" code or "false" code.

[label] IF statement[, {ANDIOR},statement X
[, ...]] [,THEN] [,END=FAR]

where:

label
Optional. Any unique label acceptable to the native assembler. If you code a
label, your program can use it either as an operand on the LEAVE macro, telling
it which structure you want to exit, or as an operand on the END IF macro to
verify that the two macros are related.

statement
A statement to be tested by the IF macro. If the statement is true, control is
given to the "true" code. If the statement is false, control is given to the "false"
code. The "true" code is the code between the IF macro and the ELSE macro.
The "false" code is the code between the ELSE macro and the ENDIF macro. If
there is no "false" code, you can omit the ELSE macro, and the "true" code is
the code between the IF macro and the ENDIF macro.

The statement to be tested can be one of two types:

1. The relationship between two items (for example, A is greater than B?)
2. The current status in the Level Status Register (for example, does the LSR

indicate positive?)

A detailed presentation of all allowable statements follows this macro syntax
discussion.

AND/OR
Statements can be logically connected. However, such logical statement strings
are not evaluated according to normal Boolean reduction. They are evaluated this
way:

• The macro evaluates the expression from left to right.
• If the next conjunction the macro encounters is OR, the macro checks whether

the previous condition was true. If it was, the macro transfers control to the
"true" code. If it was not true, the macro checks the next condition.

• If the next conjunction the macro encounters is AND, the macro checks
whether the previous condition was false. If it was, the macro transfers control
to the "false" code. If it was not false, the macro checks the next condition.

• If there are no more conjunctions, and the last statement is true, the macro
passes control to the "true" code. Otherwise, it passes control to the "false"
code.

Appendix A A - 5

ELSE

ENDIF

LEAVE

A - 6 SC34-0124

THEN
An optional positional parameter that improves readability. This is also
implemented as a macro itself. The THEN macro does nothing, generates no
code, supports no labels, but is better documentation than the THEN positional
parameter because the THEN macro may be aligned with the ELSE macro.

END = FAR
This optional keyword appears on every structured programming macro that
implies a skip beyond the macro expansion itself. In the case of the IF macro, a
skip from the IF around the "true" code to the "false" code is needed. By
default the skip is generated in the form of a one-word jump instruct jon. If the
user-provided code being skipped is very large, the range of a one-word jump
might be exceeded. The END=F AR keyword tells the macro to generate a
two-word branch instruction (range=64K bytes).

A suggested coding technique is to let all structured macros default to
one-word jumps, and then code END=F AR on any flagged macro expansion.

THEN
A structured programming macro associated with IF macro and used solely to
improve readability by allowing THEN to appear in the same column as the
ELSE macro. THEN has no parameters and does not support labels.

A structured programming macro associated with IF macro and used to separate
"true" code from "false" code.

[label] ELSE [END=FAR]

where:

label
Optional. Any unique label acceptable to the native assembler.

END=FAR
See END keyword discussion in IF macro.

A sturctured programming macro associated with the IF macro. This macro
indicates the end of user-written "false" code, if an ELSE macro is in effect, or
the end of user-written "true" code, if an ELSE macro was not coded.

[label] ENDIF [IF=iflabel]

where:

label
Optional. Any unique label acceptable to the native assembler.

IF=iflabel
The label of the last preceding IF that is not already paired with an ENDIF.
Think of the IFs as left parentheses and ENDIFs as right parentheses.

This optional keyword is provided for readability and verification. If the
provided iflabel is not identical to the name of the last preceding unpaired IF, a
warning MNOTE is generated, and the last preceding unpaired IF is ended.

A macro that passes control out of a named structure. Without this macro, you
must set and test switches when leaving a nested structure. With LEAVE you
can avoid this overhead, but you violate the structured properties of your code.

C.·-.'.;, . J

f

" " ,

This macro has certain controls that keep its violations of structured principles
to a minimum. These controls ensure that you are allowed to LEAVE only to the (.".
end of the current structure or to the end of an outer-nested structure. For -.. .JI

c~

DO

o

example, your program is executing code in structure C. Structure C is nested
inside structure B, and structure B is nested inside structure A. You can LEAVE
from C to the end of C, to the end of B, or to the end of A. In other words, you
must be in the structure you are leaving.

You can use LEAVE in a way that preserves a proper structure. Using
LEAVE to exit from a DO-INFINITE preserves structured coding as long as you
LEA VE only the DO and not an outer-nested structure.
[label] LEAVE [statement,] {BLOCK I IF I DO I CASEBLK} =

structurelabel[,END=FAR]

where:

label
Optional. Any unique label acceptable to the native assembler.

statement
A statement that is one of the two types discussed under the IF macro. A full list
of allowed statements follows this syntax section. If the statement you code is
true, or if you do not code a statement, control leaves the specified structure. If
the statement you code is false, LEAVE does not pass control out of the
specified structure. The unconditional form of the LEAVE macro allows multiple
entry points to modules, as approved in our programming specifications. If you
use the unconditional LEAVE, be careful not to follow it with dead code.

Note. Unlike the IF and DO macros, the LEAVE macro does not permit
logically-connected statement strings.

{BLOCK I IF I DO I CASEBLK}
Keyword for naming the highest-level structure in the set of containing structures
that you wish to LEAVE.

Associating a structure name with a structure type improves readability and
allows verification. If the structure you name is not of the type you specify, or if
the LEAVE macro is not in the structure you name, an MNOTE is generated,
and control passes to the end of the current structure.

END = FAR
See END= keyword discussion in IF macro.

A structured programming macro that indicates the beginning of a user-coded
program section through which the user wishes to loop.
[label] DO {WHILE I INF I UNTIL I CNTREG=reg}

where:

label

[,statement[,{ANDIOR},statement[, ...]]]
[, END=FAR]

Optional. Any unique label acceptable to the native assembler. If you code a
label, your program can use it either as an operand on the LEAVE macro, telling
it which structure you want to exit, or as an operand on the ENDDO macro to
verify that the two macros are related.

WHILE I INF I UNTIL I CNTREG=reg
The first information you must specify to the DO macro is whether you wish to
code a DO WHILE, DO INFINITE, or DO UNTIL. This is done by coding one
of these three positional parameters, or the keyword CNTREG.

The keyword CNTREG generates a special form of DO UNTIL that is very
efficient in both execution time and core utilization. Reg is a register (RO-R 7)
you have loaded with a value in the range 0-65535. This value is the number of
times that the loop is executed. Because DO CNTREG is a trailing-decision loop,
a count of either zero or one executes the DO once. The macro generates the

Appendix A A - 7

END DO

CASEBLK

A - 8 SC34-0124

code to decrement the register. The drawbacks of the CNTREG form of the DO
are as follows:

1. The UNTIL condition can only be the decrementing of the count to one. (.. . "' ..
2. You can have only 256 bytes of code between the DO CNTREG= macro

and the ENDDO macro.)

If you code DO INF, you must provide the mechanism for exiting from the
loop. You can do this by coding the LEAVE macro (explained later), or, if you
are executing an infinite GET I/O loop, by coding an END OF FILE exit
address that is outside the loop.

Tests for exiting the remaining two forms of the DO macro (DO WHILE and
the general form of the DO UNTIL) are provided through the following
(statement) parameter.

statement
Valid only following WHILE or UNTIL, this is the loop exit test. A DO WHILE
loop continues as long as this statement is true (a DO WHILE is a
leading-decision loop). A DO UNTIL loop continues until this statement is true,
at which time the loop is exited (a DO UNTIL is a trailing-decision loop). There
are two types of statements, and they are introduced under the IF macro. A full
list of allowed statements follows this syntax section.

AND/OR
Valid only following WHILE or UNTIL. Statements can be logically connected
as discussed under the IF macro. The statement string nets out to true or false,
as does a single statement. The netted-out string is handled as a single statement
by DO WHILE and DO UNTIL. See preceding paragraph.

END=FAR
Not valid in DO CNTREG form. See END keyword discus~ion in IF macro.

A structured programming macro associated with the DO macro. ENDDO
indicates the end of the DO loop.

[label] ENDDO [DO=dolabel]

where:

label
Optional. Any unique label acceptable to the native assembler.

DO=dolabel
The label of the last preceding DO that is not already paired with an ENDDO.
Think of the DOs as left parentheses and ENDDOs as right parentheses.

This optional keyword improves readability and allows verification. If the
dolabel you code is not the name of the last preceding unpaird DO, a warning
MNOTE is generated, and the last preceding unpaired DO is ended.

A structured programming macro that indicates that beginning (fan out) of a case
structure. Coding the case structure is more efficient than coding multiple IFs.
However, the CASE structure has the following limitation: A CASE structure
cannot be nested within a CASE structure.

[label] CASEBLK

where:

label

REG=register[,TREG=register] [,END=FAR]

Optional. Any unique label acceptable to the native assembler. If you code a (_.
label, your program can use it either as an operand on the LEAVE macro, telling .,

c

c CASE

ENDCASE

o

it which structure you want to exit, or as an operand on the ENDCASE macro
to verify that the CASEBLK and ENDCASE macros are related.

REG=
A general register (RI-R7) that contains the current case value (0-254) upon
entry to the CASEBLK macro. The number in this register determines which
case (see CASE macro below) gets control on this pass through the case
structure. The register need be set up only at entry to CASEBLK, that is, the
register is available for any other use before and after the CASEBLK macro.
CASEBLK alters the value it finds in the specified register.

TREG=
A general register (RO-R7). Must be a different register than the one selected
for REG=. Coding this optional keyword produces a less efficient form of the
CASEBLK/ENDCASE structure that has an additional restriction: the entire
CASEBLK/ENDCASE structure may not span more than 256 bytes. Note that
this restriction is encountered only when TREG= is coded. The single advantage
of this form is that TREG= produces a CASEBLK/ENDCASE structure with
no relocatable items in it. This form of the structure is the only form that runs
when it is not possible to resolve RLDs. For example, transient code must be
quickly read into one of several transient areas. There must be no RLDs in such
code because time is not avaialable to resolve them as they are loaded, and
because there are several equally possible transient areas available, the RLDs
cannot be resolved before they are loaded.

END =
For use with TREG form of the structure. END=FAR removes the restriction
that ENDCASE follow within 256 bytes of CASEBLK at the cost of doubling
the size of the branch table generated by ENDCASE.

A structured programming macro that indicates the beginning of a section of
user-provided code. The end of this CASE code is indicated either by another
CASE macro or by an END CASE macro. This code is executed if the number
associated with this CASE is in the CASEBLK register at entry to the
CASEBLK macro.

[label] CASE n[,n ...] [,END=FAR]

where:

label
Optional. Any unique label acceptable to the native assembler.

n{,n ...)
The number or numbers associated with this case. If anyone of the numbers
provided here is in the register coded on the CASEBLK macro, then CASEBLK
passes control to this case. The number(s) must be unique; that is, once a
number is assigned to a case, no other case within that entire case structure can
use that number.

Note. Storage is conserved by using contiguous numbers beginning with O.
Thus, if you have five cases, use numbers 0 through 4, not 10, 20, 30, 40, and
50 or 201 through 205.

A structured programming macro that indicates the end (fan in) of a case
structure.

[label] ENDCASE

where:

label

[CASEBLK=caseblklabel]

Appendix A A - 9

Statements

A - 10 SC34-0124

Optional. Any unique label acceptable to the native assembler.

CASEBLK=
The label of the last preceding CASEBLK. This optional parameter improves
readability and allows verification. If the caseblklabel you code is not the name (.)
of the last preceding CASEBLK, the CASE structure is closed and a warning J

MNOTE is issued.

A Statement tells the branching macros (IF , LEAVE, DO) under what conditions
a skip is to be taken. The Level Status Register (LSR) is what all skip
(Branch/Jump) instructions key on.

The LSR looks like this:

BIT

o EVEN Indicator
1 CARRY Indicator
2 OVERFLOW Indicator
3 NEGATIVE RESULT Indicator
4 ZERO RESULT Indicator
5-15 Other LSR Bits

A Statement always indicates which bits in the LSR are to be tested. Some
Statements set the LSR bits before indicating which bits are to control the skip.
Other statements just indicate which LSR bits are important and assume that
you, in your preceding code, have set the LSR bits the way you want them. Said
another way, some statements generate a compare and a skip, while other
statements just generate a skip, assuming that you have code,d the compare
yourself ahead of the macro.

Conditional statements assume the LSR is already set up by you and just
generate a skip. Conditional Statements are mnemonics that generate the proper I

LSR testing mask for the skip. A list of all supported conditional statements \ ..
follows:
EQ NE equal, not equal
P NP positive, not positive
N NN negative, not negative
EV NEV even, not even
Z NZ zero, not zero
CY NCY carry, not carry
OV NOV overflow, not overflow
ON NON bit(s) on, bit(s) not on
OFF NOFF bit(s) off, bit(s) not off
MIX NMIX bits mixed, bits not mixed
LGT LLE logically greater than, less than or equal
LLT LGE logically less than, greater than or equal
GT LE arithmetically greater than, less than or equal
LT GE arithmetically less than, greater than or equal
CCn NCCn condition code 'n', not condition code 'n'

where: n = an expression whose value is ~7
ER NER error (NCC7), no error (CC7)

Relational statements do more than just generate a skip. They generate a
compare and a skip. Because of the additional information required to generate
the compare that alters the LSR, a relational statement is more complex than a
conditional statement:

(:

llelatiollal S)'IItax

c

c

o

(p1,relcond,p2[,width])
or
(p1 , IS, {ON I OFF I NON I NOFF} [, width])

where:

pJ,p2
Data elements, coded with same syntax as assembler language operands because
the macro merely places PI and P2 as the first and second operands of the
appropriate compare instruction without doing any syntax checking. If P2 is
coded as an immediate, then the macro strips off the equal sign and sees that P2
is placed as the first operand of the compare immediate. Other than this minor
exception no operations are performed on the data you supply as PI and P2. So
if you code improper syntax, the macro will not detect it, but the assembler will.
See the section on 'Conditional-Setting Instructions' below for examples of
assembler language syntax.

Note. If you wish the macro to generate a compare immediate, then code the
immediate self -defining value or expression in the P2 position, preceded by an
equal sign.

BYTE IMMEDIATE FORMS
=X' . .', =B' ', =C'.', =n, =expression, =H'n', =S'n'

WORD IMMEDIATE FORMS
=X' ',=B' ',=C' . .', =n, =expression
=F'n', =S' .. '
IS,{ON I OFF} single-bit-testing form, in this syntax 'pI'
{NON I NOFF} must be (reg, bit disp)

relcond
A relational condition that indicates the relationship to be applied against the two
data elements.

RELATIONAL MNEMONICS
Logical
EQ NE
LGT LLT
LGE LLE

Arithmetic
GT LT
GE LE

Bit Mask
ON NON
OFF NOFF

equal, not equal
greater than, less than
greater than or equal, less than or
equal

greater than, less than
greater than or equal, less than or
equal

bit(s) on, bit(s) not on
bit(s) off, bit(s) not off

MIX NMIX bits not same, bits same

width
Implied by one of the three preceding operands. Can always be coded if desired
to improve readability.

WIDTH MNEMONICS

{BITI BYTE I WORD I DWORDI FLOAT I DFLOAT IADDR}

defau 1 t = WORD

Appendix A A-II

RelatiolUll Exalllp"ks

General Notes

Examples

«R2),LGT,=AB-B)
«R3,3),IS,ON)
(Rl,EQ,=X'17')
«Rl),EQ,=C' /*')
(R2,EQ,=C', ')
(A,EQ,B,BYTE)
(R4,EQ,=B'OlOll10l')
(A,ON,=B'lllll00000llllll')
(A,EQ,B,WORD)
(A,EQ,B,DWORD)
((R3,6),NMIX,=X'OOOF')
(FRO,GT,FR2,DFLOAT)
(R3,LGT,LABEL,ADDR)

defaults to WORD
implies BIT, via 'IS,ON'
implies BYTE, hexadecimal length
implies WORD, string length
implies BYTE, string length
specifies BYTE
implies BYTE, binary length
implies WORD, via 'ON'
specifies WORD
specifies DWORD
implies WORD, via 'NMIX'
specifies double Floating (64 bits)
specifies ADDRESS

Note. IF and DO macros permit logically-connected strings of statements. If a
relational statement precedes a conditional statement, remember that the
relational statement changes the LSR. If you want the conditional statement to
test the LSR as you set it up in your preceding code, then arrange the statement
string so that there are no intervening relational statements.

• Structured programming macro generated code is reenterable.
• During execution, the generated code does NOT modify any floating-point

registers, general purpose registers, or main storage, with the following
exceptions:
- The LSR indicators (negative, carry, overflow, and zero) are modified.
- The CASEBLK's REG= register's value is doubled. (If END= and

TREG= are both coded, then REG= register's value is quadrupled.) If
coded, TREG=register's value is unpredictably modified.

- During the DO-COUNT structure, a user-specified general-purpose register
is decremented.

• Structured programming macros let the programmer use all hardware facilities
(such as indicrect addressing) and data types (such as bit processing).

• Structured programming macros permit up to 20 levels of structure nesting.
• The macros print English-language assembly-time diagnostic messages. In

many cases, these messages include the variables the programmer coded--this
helps him find and correct his errors. (For more information reference the
Messages and Codes manual, SC34-0126.

Examples of Compolllld Express;ollS
(A,EQ,B),AND,(C,GT,D)
EQ,OR,(E,L T,F)

BLOCK Examples

A - 12 SC34-0124

«R 1, 1O),MIX,=X'0807'),OR,OFF
(A,EQ,B),OR,(A,EQ,C),OR(A,EQ,D)
(A,LT,B),AND,EV A less than B by an even difference

ABC BLOCK
•
BLOCK

•
LEAVE BLOCK=ABC

DONE

•
ENDBLK
ENDBLK BLOCK=ABC

o

\. ,

(:

IF Examples

(j

DO Example

CASE Examples

o

ABC

POSITIVE

END

START

IFON

LOOP 1

ENDLOOP1

END

BLOCK
•
IF (A,EQ,B),OR,((R2,4),IS,ON),END=FAR

•
IF P,THEN
•
ELSE
•
ENDIF IF=POSITIVE
•

ENDIF
•
ENDBLK BLOCK=ABC

BLOCK
•
IF Z,END=FAR

•
DO INF

•
DO UNTIL,(A,EQ,B),OR,(A,EQ,C)

LEAVE (R1,LE,R5),DO=LOOP1
•

ENDDO
ENDDO DO=LOOP1

•
•

ELSE
DO WHILE,(A,NE,B),AND,(A,NE,C),OR,(R1,LE,R5)

•
•
•
•
•
•
•

ENDDO
ENDIF IF=IFON
•
ENDBLK BLOCK=START

Note. Because Boolean rules are not followed, a branch to the false code will
occur even when the relation following the OR is true if the relation preceding
the AND is false. See rules of expression evaluation under the IF macro section
above.

MAINPGM

FAN

MAINEND

BLOCK
•
CASEBLK REG=R 1

CASE 0,4
•

CASE 2,5

REG1=0 THRU 5

DO UNTIL,(R2,GT,XYZ)
•

ENDDO
CASE 3 NULL CASE-NOTHING BETWEEN

CASE & ENDCASE
ENDCASE CASEBLK=FAN
•
ENDBLK BLOCK=MAINPGM

Appendix A A - 13

LEAVE Example

PGMA

LOOP 1

EXIT7F

BLOCK
•
DO WHILE,((Rl,9),IS,ON,BIT)

•
IF (R5,LT,XYZCT)

LEAVE ((R4), EQ, =X' 7F'), BLOCK=PGMA
ELSE

•
ENDIF

ENDLOOPl ENDDO DO=LOOPl
•

END ENDBLK BLOCK=PGMA

The following code represents an operator station interrupt service routine:
TTYINT BLOCK

code A
OK IF CC7,THEN
*INTERRUPT NON-ERROR PROCESS

code B
PACK DO UNTIL,(R2,EQ,=X'7F'),OR,(A,GT,B*)

code C
LEAVE (CNT,GE,MAX),DO=PACK
code D

ENDDO DO=PACK
code E

ELSE
*INTERRUPT ERROR PROCESS

code F
ERRFAN CASEBLK REG=Rl CONDITION CODE IN REG 1

CASE O,3,4,END=FAR
code G

CASE 1,5
code H

CASE 2
code I

LEAVE (X,LLT,Y),BLOCK=TTYINT
code J

ENDCASE CASEBLK=ERRFAN
code K

ENDIF IF=OK
code L

DONE ENDBLK BLOCK=TTYINT

Schematic Example Of Stnlctllred Macro Use

B --UNTIL-C - JAVE-D- ENDDO _-'1"---_ E

I.. 1

BLOCK-A-IF ENDIF-L-ENDBLK-*

LF-CAF:~-KJ
LI-LEAVE-J--.J

A - 14 SC34-0124

o

("

\ ,

c

c

c

o

Miscellaneous Notes on Internals
Labels

Code Siziltg

The programmer can code labels on structured macros. These labels are intended
to be used as reference points during debugging and text-editing operations, and
to maintain the structured concept, the programmer should not refer to them in
assembler language code. Code generated by structured programming macros
does not refer to a user's labels.

The following chart shows the assembler language labels that are generated by
the structured programming macros:
MACRO LABEL
BLOCK
ENDBLK
IF
ELSE
ENDIF

DO

ENDDO
CASEBLK
CASE
ENDCASE

MACRO
BLOCK
ENDBLK
IF
ELSE
ENDIF
DO
DO-INF
DO-COUNT
ENDDO
CASEBLK
CASE
ENDCASE

LEAVE
THEN

Where:

END=O
=1

#WI=
#COMP=
#COND=
MAX=
FIRST=O

##ENnnnn target of LEAVE
##ITnnnn target of true condition
##IFnnnn target of false condition
##IFnnnn target of false condition
##ENnnnn target of LEAVE
##DOnnnn target of ENDDO
##DUnnnn target of true condition
##ENnnnn target of LEAVE or false

##CSnnnn target of CASEBLK
##CVnnnn CASE vector table
##ENnnnn target of LEAVE or

WORDS
o
o
((END+#WI)*#COMP)+#COND+2
l+END
o
((END+#WI)*#COMP)+#COND+2
o

l+END
3 (2 if TREG coded)
l+END-FIRST

CASE

condition

MAX+2 (MAX+4 if TREG coded on CASEBLK;
2*V~X+4 if both TREG and END coded on CASEBLK)
l+END
o

if END=FAR not coded
if END=FAR coded
number of words generated for immediate data elements
number of 'relationals' in compound expression
number of 'conditionals' tested
largest numeric coded on related CASE macros
if first CASE

=1 if not first CASE

Conditiollal-Settiltg Instnlctiolls
The following define which assembler instructions are generated by the structured
programming macros for the purpose of evaluating a relational. The syntaxes
permitted by the macros are directly governed by the assembler as explained in
the "Relational Syntax" Section.

Note. For the following syntax, when you make a choice of operand format
for one operand, you must choose the format in the same relative position in the
other operand. For example, in CB, if you choose addr5 for the first operand
you must choose addr4 for the other operand, reg is not allowed with addr5.

Appendix A A - 15

Reference Summary

A - 16 SC34-0124

DATA
WIDTH
BIT
BYTE

WORD

DWORD
FLOAT
DFLOAT
ADDR

[label]
[label]
[label]
[label]
[label]
[label]

[label]

[label]
[label]
[label]
[label]
[label]
[label]

[label]

ASM
OPCODE
TBT
CB
CBI
CW

CWI
TWI

CD
FC
FCD
CA

STRUCTURED MACRO RELATIONAL SYNTAX
((reg,bitdisp),IS,{ONINONIOFFINOFF} [,BIT])
({addr4Iaddr5},rel,{regladdr4},BYTE)
(reg,rel,irnmed8,BYTE)
({regladdr4Iaddr5},rel,{reglregladdr4}
[,WORD])
({regladdr4},rel,irnmed16[,WORD])
{regladdr4},{ONINON },irnmed16[,WORD])

{OFFINOFF }
{MIXINMIX}

({addr4Iaddr5},rel,{regladdr4},DWORD)
(fp-reg,rel,fp-reg,FLOAT)
(fp-reg,rel,fp-reg,DFLOAT)
({REG,ADDR4},rel,raddr,ADDR)
irnmed8: =C' . ' , =X' .. ' , =B' ' ,
=expression,=S'. '
immed16:=C' .. ' ,=X' ',
=B ' ,
=expression,=S' .. '

BLOCK [LEVELS={YESINO}]
CASE n[,n[, ..]] [,END=FAR]
CASEBLK REG=reg [, TREG=reg] [, END=FAR]
DO INF[,END=FAR]
DO CNTREG=reg
DO UNTIL, {statement} [, {ANDIOR},{statement}
[, ..]] [, END= FAR]

DO WHILE, {statement} [, {ANDIOR},{statement}
[, ..]] [, END= FAR]
ELSE [END=FAR]
ENDBLK [BLOCK=label]
ENDCASE [CASEBLK=label]
ENDDO [DO=label]
ENDIF [IF=label]
IF {statement} [, {AND lOR} , {statement} [, .. J]
[, END=FAR] [, THEN]
LEAVE [{statement},] {BLOCKIIFIDOICASEBLK}
=label[,END=FAR]
THEN

CONDITIONALS RELATIONAL CONDITIONS WIDTHS
EQ NE LOGICAL: EQ NE BIT
P NP LGT LLT BYTE
N NN LGE LLE WORD
EV NEV ARITHMETIC: GT LT DWORD
Z NZ GE LE FLOAT
CY NCY BIT MASK: ON NON DFLOAT
OV NOV OFF NOFF ADDR
ON NON
OFF NOFF
MIX NMIX
LGT LLE
LGE LLT
GT LE
GE LT
CCn NCCn
ER NER

o

(\

l);

c

o

RellltiolUll S)'Ittaxes
(pl ,rei, p2 [,width])
(pl ,IS, {ONINONIOFFINOFF} [,BIT])

Structured Macro Generated Message Format
Note. For more information reference the Messages and Codes manual,
SC34-0126.

ERRORS/WARNINGS: Messages are parameterized with operand values
that are in error.

MNOTE
MNOTE

Examples:

MNOTE
MNOTE

m, 'CCCnn***(ERROR WARNING):----------'
m, 'CCCnn***ACTION:--------------------'

4, 'CPB01***ERROR: "&OP1" BEYOND MAX "&CNTS",
*, 'CPB02***ACTION: DEFAULT "CNT=128",

DEFAULTS of optional operands:

MNOTE

Example:

*, 'CCCnn***DEFAULT:--------------------'

MNOTE *, 'CPB04***DEFAULT" BLKSIZE=128 BYTES '
MNOTE m CCCnn

m=* INFORMATION, COMMENT IS PRINTED
m=4 MINOR ERRORS DETECTED; SUCCESSFUL PROGRAM

EXECUTION IS PROBABLE.
m=8 ERRORS DETECTED, UNSUCCESSFUL PROGRAM

EXECUTION IS POSSIBLE.
m=12 SERIOUS ERRORS DETECTED; UNSUCCESSFUL

EXECUTION IS PROBABLE.
m=16 CRITICAL ERRORS DETECTED: NORMAL EXECUTION

IS IMPOSSIBLE
CCC COMPONENT CODE
nn DECIMAL NUMBER ID OF MESSAGE

Appendix A A - 17

o

c;
A - 18 SC34-0124

c

c

o

Appendix B. Decimal/Binary/Hexadecimal Conversions

DECIMAL TO BINARY CONVERSION

Several methods exist for converting binary numbers to decimal numbers. The method
used here is repetitive division. To find the binary equivalent of a decimal number:

1. Divide the decimal number by 2.
2. Save the remainder (0 or 1).

3. Divide the quotient by 2.
4. Repeat steps 2 and 3 until the quotient can no longer be divided. The last quotient is

the last remainder.

Example: Convert decimal 236 to binary.

118
2/236

59
21Tl8

29
2/59

14
2/29

7
2114

R=O

R=O

R = 1

R = I

R=O

3 R = 1
2~

R = I Last quotien t

To represent this binary number in a byte: first. assign the units position of the binary
number the value I. the tens position the value 2. and the hundreds position the value 4.
Doubling the value each time. assign values to all bit positions through the high-order bit
as shown in the following example:

Bit position

Decimal
assigned values

o

128 64

2 3

32 16

4 5 6 7

8 4 2

Decimal/Binary/Hexadecimal Conversions B-1

Second, take the remainders you obtained in the division process and place them in each
~it position. Place the first remainder in bit position 7. Fill all unused high-order bits with ()

Bit position 0 1 2 3 4 5 6 7

Decimal
assigned value

128 64 32 16 8 4 2 1

Binary
1 1 1 0 1 1 0 0

value of 236

BINARY TO DECIMAL CONVERSION

To convert from binary to decimal: add the decimal equivalent of each bit position that
contains 1. In this example, binary 1110 1100 = 128 + 64 + 32 + 8 + 4 = 236 decimal.

BINARY TO HEXADECIMAL CONVERSION

B-2 SC34-0 1 24

Hexadecimal numbering is similar to decimal numbering. However, since the hexadecimal
base is 16, numbers greater than 9 are assigned alphabetic equivalents, as follows:

Decimal Hexadecimal

0 0

2 2
3 3
4 4
5 5
6 6
7 7
H H
9 9
10 A
11 B
12 C
13 0
14 L
15 I·

(

\ ,

C

c

o

Four binary bits represent a hexadecimal number.

Binary Hexadecimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A

1011 B
1100 C
1101 D
1110 E
1111 F

Two hexadecimal numbers are represented in a byte. Bit positions 0---3 represent the first
hexadecimal character, and bit positions 4-7 represent the second hexadecimal character.
The following examples show the hexadecimal equivalents of one-byte binary numbers.

One-byte binary number Hexadecimal equivalent

First Second

character character

Bit position 0 1 2 3 4 5 6 7

0 0 0 1 1 0 0 0 1 8

0 0 1 0 0 0 0 0 2 0

Examples 0 0 1 1 0 0 1 0 3 2

0 1 0 0 1 1 0 0 4 C

1 1 1 1 1 1 1 0 F E

Figure B-1 gives the binary, decimal. and hexadecimal equivalents from 0 to l55. Where
applicable. equ ivalen t prin ter graphics are also shown.

Decimal/Binary/Hexadecimal Conversions B-3

Binary

First Second

Binary

First Second o
half byte half byte half byte half byte
128 Printer

Decimal
Hexa-

1fr~216
graphic decimal

8421 8421

128 Printer
Decimal Hexa-

r graphic decimal

(~~16
8421 8421

0000 0000 a 00 0100 0001 65 41
0000 0001 1 01 0100 0010 66 42
0000 0010 2 02 0100 0011 67 43
0000 0011 3 03 0100 0100 68 44
0000 0100 4 04 0100 0101 69 45
0000 0101 5 05 0100 0110 70 46
0000 0110 6 06 0100 0111 71 47
0000 0111 7 07 0100 1000 72 48
0000 1000 8 08 0100 1001 73 49
0000 1001 9 09 0100 1010 74 4A
0000 1010 10 OA 0100 1011 . (period) 75 48
0000 1011 11 OB 0100 1100 < 76 4C
0000 1100 12 OC 0100 1101 (77 40
0000 1101 13 00 0100 1110 + 78 4E
0000 1110 14 OE 0100 1111 79 4F
0000 1111 15 OF 0101 0000 & 80 50
0001 0000 16 10 0101 0001 81 51
0001 0001 17 11 0101 0010 82 52
0001 0010 18 12 0101 0011 83 53
0001 0011 19 13 0101 0100 84 54
0001 0100 20 14 0101 0101 85 55
0001 0101 21 15 0101 0110 86 56
0001 0110 22 16 0101 0111 87 57
0001 0111 23 17 0101 1000 88 58
0001 1000 24 18 0101 1001 89 59
0001 1001 25 19 0101 1010 90 5A
0001 1010 26 1A 0101 1011 $ 91 58
0001 1011 27 18 0101 1100 92 5C
0001 1100 28 1C 0101 1101 93 50 f 0001 1101 29 10 0101 1110 94 5E
0001 1110 30 1E 0101 1111 95 5F l '" 0001 1111 31 1F 0110 0000 96 60
0010 0000 32 20 0110 0001 97 61
0010 0001 33 21 0110 0010 98 62
0010 0010 34 22 0110 0011 99 63
0010 0011 35 23 0110 0100 100 64
0010 0100 36 24 0110 0101 101 65
0010 0101 37 25 0110 0110 102 66
0010 0110 38 26 0110 0111 103 67
0010 0111 39 27 0110 1000 104 68
0010 1000 40 28 0110 1001 105 69
0010 1001 41 29 0110 1010 106 6A
0010 1010 42 2A 0110 1011 107 68
0010 1011 43 2B 0110 1100 % 108 6C
0010 1100 44 2C 0110 1101 109 60
0010 1101 45 20 0110 1110 110 6E
0010 1110 46 2E 0110 1111 111 6F
0010 1111 47 2F 0111 0000 112 70
0011 0000 48 30 0111 0001 113 71
0011 0001 49 31 0111 0010 114 72
0011 0010 50 32 0111 0011 115 73
0011 0011 51 33 0111 0100 116 74
0011 0100 52 34 0111 0101 117 75
0011 0101 53 35 0111 0110 118 76
0011 0110 54 36 0111 0111 119 77
0011 0111 55 37 0111 1000 120 78
0011 1000 56 38 0111 1001 121 79
0011 1001 57 39 0111 1010 122 7A
0011 1010 58 3A 0111 1011 # 123 78
0011 1011 59 38 0111 1100 @ 124 7C
0011 1100 60 3C 0111 1101 125 70
0011 1101 61 30 0111 1110 126 7E
0011 1110 62 3E 0111 1111 127 7F
0011 1111 63 3F 1000 0000 128 80
0100 0000 blank 64 40 1000 0001 a 129 81

I-igure B-1 (Part 1 of 2). LBCDIC. hnadl'cimal. dl'l'imal table

C
B-4 SC34-0124

Binary Binary

First Second First Second
half byte half byte half byte half byte
128 Printer

Decimal
Hexa-

lrr~16
graphic decimal

128 Printer
Decimal

Hexa-

lr~16
graphic decimal

8421 8421 8421 8421

1000 0010 b 130 82 1100 0001 A 193 Cl
1000 0011 c 131 83 1100 0010 8 194 C2
1000 0100 d 132 84 1100 0011 C 195 C3
1000 0101 e 133 85 1100 0100 D 196 C4
1000 0110 f 134 86 1100 0101 E 197 C5
1000 0111 g 135 87 1100 0110 F 198 C6
1000 1000 h 136 88 1100 0111 G 199 C7
1000 1001 137 89 1100 1000 H 200 C8
1000 1010 138 8A 1100 1001 I 201 C9
1000 1011 139 8B 1100 1010 202 CA
1000 1100 140 8C 1100 1011 203 C8
1000 1101 141 8D 1100 1100 204 CC
1000 1110 142 8E 1100 1101 205 CD
1000 1111 143 8F 1100 1110 206 CE
1001 0000 144 90 1100 1111 207 CF
1001 0001 j 145 91 1101 0000 208 DO
1001 0010 k 146 92 1101 0001 J 209 Dl
1001 0011 I 147 93 1101 0010 K 210 D2
1001 0100 m 148 94 1101 0011 L 211 D3
1001 0101 n 149 95 1101 0100 M 212 04
1001 0110 0 150 96 1101 0101 N 213 05
1001 0111 p 151 97 1101 0110 0 214 06
1001 1000 q 152 98 1101 0111 P 215 D7
1001 1001 153 99 1101 1000 Q 216 D8
1001 1010 154 9A 1101 1001 R 217 09
1001 1011 155 9B 1101 1010 218 DA
1001 1100 156 9C 1101 1011 219 DB
1001 1101 157 9D 1101 1100 220 DC

C
1001 1110 158 9E 1101 1101 221 DD
1001 1111 159 9F 1101 1110 222 DE
1010 0000 160 AO 1101 1111 223 OF
1010 0001 161 Al 1110 0000 224 EO
1010 0010 162 A2 1110 0001 225 El
1010 0011 163 A3 1110 0010 S 226 E2
1010 0100 u 164 A4 1110 0011 T 227 E3
1010 0101 v 165 A5 1110 0100 U 228 E4
1010 0110 w 166 A6 1110 0101 V 229 E5
1010 0111 x 167 A7 1110 0110 W 230 E6
1010 1000 y 168 A8 1110 0111 X 231 E7
1010 1001 z 169 A9 1110 1000 y 232 f8
1010 1010 170 AA 1110 1001 Z 233 E9
1010 1011 171 AB 1110 1010 234 EA
1010 1100 172 AC 1110 1011 235 EB
1010 1101 173 AD 1110 1100 236 EC
1010 1110 174 AE 1110 1101 237 ED
1010 1111 175 AF 1110 1110 238 EE
1011 0000 176 BO 1110 1111 239 EF
1011 0001 177 Bl 1111 0000 0 240 FO
1011 0010 178 B2 1111 0001 1 241 Fl
1011 0011 179 B3 1111 0010 2 242 F2
1011 0100 180 B4 1111 0011 3 243 F3
1011 0101 181 85 1111 0100 4 244 F4
1011 0110 182 B6 1111 0101 5 245 F5
1011 0111 183 B7 1111 0110 6 246 F6
1011 1000 184 B8 1111 0111 7 247 F7
1011 1001 185 B9 1111 1000 8 248 F8
1011 1010 186 BA 1111 1001 9 249 F9
1011 1011 187 BB 1111 1010 250 FA
1011 1100 188 BC 1111 1011 251 FB
1011 1101 189 BD 1111 1100 252 FC
1011 1110 190 BE 1111 1101 253 FD
1011 1111 191 BF 1111 1110 254 FE
1100 0000 192 CO 1111 1111 255 FF

ligurl'B-l (Part 2 or 2)" I B("D I (". Ill' \.a lkl"i III ~II. dL'L"IIllJ I Ll hie

0
Dccimal. Binary IIc\adccimal Convcr\ions B-5

Hexadecimal/Decimal Conversion

DECIMAL TO HEXADECIMAL

HEXADECIMAL TO DECIMAL

B-6 SC34-0 124

Figure B-2 provides direct conversion of decimal and hexadecimal numbers in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

Decimal numbers are within the table. The first two hexadecimal characters are in the
left column of the table; the third hexadecimal character (x) is arranged across the top of
the table.

For numbers outside the range of the table, add the following values to the table figures.

Hexadecimal Decimal

1000 4096
2000 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
AOOO 40960
13000 45056
COOO 49152
0000 53248
LOOO 57344
1,000 61440

To convert from decimal to hexadecimal using Figure B-2:

I, hnd the del'imal 11l1l11i1l'r in thl' table,
2. Determine the he'.adl'l'imalnumlwr.

a. Locate the he'.adel'imalcharal'ters in the left l'olullln,
h, Substitute the value for'. (the character in thl' top l'olullln ahovl' thl' dl'cimal nUlIlhn),

l::-tamp/c: Decimal 123 is equivalent to hexadecimal 07B: decimal 147X is equivalent to
hexadecimal 5Ch.

To find tIll' decilllalequivalent of a hexadecimal nUlllher using Figure B-2:

I. I-ind thl' fir,t t\\'o hn,adl'cimal charaL'tl'r, in the kft ullullln,
2, Sl'an anoss this row until you find the L'(llullln L'tll1taining thl' last hl''.J(.kl'illlal dlaral"

ter. /ll're is thl' del'imalnUlIlbl'r,

!::~amp/c: Find decimal equivalent of hexadecimal ()('l), Find OC in the left columll. Look
under l'ulumn 9, The decimal llull1her is 0201,

O· --,

I x = 0 1 2 3 4 5 6 7 8 9 A B C 0 E F

c OOx 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
03x 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
OOx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEx 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

lOx 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11 x 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19x 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAx 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
lBx 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCx 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
lOx 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEx 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495

c lFx 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

20x 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21 x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22x 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23x 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

24x 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25x 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26x 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0169 0620 0621 0622 0623
27x 0624 0625 0626 0627 0628 0269 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

28x 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2Ax 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2Bx 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2Cx 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2Dx 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2Ex 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2Fx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30x 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31x 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32x 0800 0801 0002 0803 0004 0805 0006 0807 0008 0809 0010 0811 0012 0813 0014 0815
33x 0016 0017 0018 0819 0020 0821 0022 0823 0024 0825 0026 0827 0028 0829 0030 0831

34x 0832 0033 0034 0835 0036 0037 0038 0839 0040 0841 0042 0843 0044 0845 0846 0847
35x 0048 0849 0050 0051 0052 0853 0054 0055 0056 0857 0058 0859 0060 0861 0062 0863
36x 0864 0865 0066 0067 0868 0869 0070 0871 0072 0873 0074 0875 0076 0877 0078 0879
37x 0880 0081 0082 0883 0084 0085 0086 0887 0088 0889 0890 0891 0092 0893 0094 0895

38x 0096 0897 0098 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39x 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3Ax 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3Bx 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3Cx 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3Dx 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 o 3Ex 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3Fx 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

Dnimal'BinaryHn.adccimal ConvCf,ions B-7

Ix = 0 1 2 3 4 5 6 7 8 9 A B C 0 E F

40x 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41x 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42x 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43x 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1003 1084 1005 1086 1007

44x 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45x 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46x 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47x 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

48x 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49x 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4Ax 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4Bx 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4Cx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
40x 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4Ex 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4Fx 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

50x 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

54x 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55x 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56x 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57x 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

58x 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59x 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5Ax 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5Bx 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5Cx 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
50x 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5Ex 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5Fx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60x 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62x 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63x 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

64x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65x 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66x 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

68x 1664 1665 1666 1667 1668 1699 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69x 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6Bx 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6Cx 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
60x 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6Ex 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6Fx 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

70x 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72x 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73x 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

74x 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75x 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77x 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

78x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79x 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7Ax 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1976
7Bx 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
70x 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7Ex 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7Fx 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 c

Figure B-2 (Part 2 of.f l. Hl'\aol'cimal!ol'cimall'ollvl'r,ioll table

B-8 SC34-0 124

Ix = 0 1 2 3 4 5 6 7 8 9 A B C D E F

c 80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82x 2000 2001 2002 2083 2004 2005 2086 2007 2088 2009 2090 2091 2092 2093 2094 2095
83x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

94x 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99x 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2471 2462 2463
9Ax 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9Bx 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9Cx 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9Dx 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2~37 2538 2539 2540 2541 2542 2543 c 9Fx 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

AOx 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A 1x 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A4x 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2699 2670 2671
A7x 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADx 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFx 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOx 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B1x 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B4x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBx 2992 2993 2994 2995 2P96 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

o BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

Figure B-2 (Part 3 of 4). HL'\adl'cimal!del'imal l'onversion table

Dl'cimaI/Binary/tie\adl'cimal Conver~ions B-9

I x = 0 1 2 3 4 5 6 7 8 9 A B C 0 E F

COx 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C1x 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2x 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 o
C3x 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4x 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5x 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6x 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7x 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C8x 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9x 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAx 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCx 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COx 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

OOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dlx 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2x 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3x 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D4x 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5x 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6x 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7x 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D8x 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9x 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAx 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBx 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCx 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDx 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFx 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 I
EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 \. ,
Elx 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4x 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5x 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6x 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7x 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E8x 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9x 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAx 3744 3745 3746 3747 3748 3749 3550 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBx 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECx 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDx 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOx 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Flx 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2x 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F4x 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5x 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6x 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7x 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8x 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAx 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBx 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCx 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FOx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEx 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFx 4080 4001 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 c

Figure B-2 (Part ~ of ~ l" He,adccimal!deL"imal cOl1ver,iol1 table

B-IO SC34-0124

c
Bit position 0-3

4-7 Hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

c 1101 D

1110 E

1111 F

o

Appendix C. American National Standard Code
for Information Interchange (ASCII)

0000 0001 0010 0011 0100 0101 0110 0111

0 1 2 3 4 5 6 7

NUL DLE 0 @ p ,
P

SOH DC1 ! 1 A G a q

STX DC2 " 2 B R b r

ETX DC3 # 3 C S c s

EaT DC4 $ 4 D T d t

ENG NAK % 5 E U e u

ACK SYN 8,. 6 F V f v

BEL ETB I 7 G W 9 w

BS CAN (8 H X h x

HT EM) 9 I Y i y

LF SUB * J Z j z

VT ESC + ; K [k {
FF FS < L "-- I I

I

CR GS - = M I m }

SO RS > N I n "v

SI US !
"'

a - 0 DEL

:\mcricJIl National St:.lI1dard C(lde for Information Interchan,l!l' (ASCII) C-l

o

C-2 SC34-0124

c

c

o

Appendix D. Perforated Tape Transmission Code/Extended
Binary Coded Decimal (PTTC/EBCD)

.,.". .".".

Bit 0-3
',n (S,B,A,8) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 U:>llIUII:>

4-7 <::~:::::::::::::::':' F:::::::::::::: ,..:.:::: . :: .

(4,2,l,C)) Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F
, :::c k::::: ::::: I· .,

0000 > 0
:::

8 @ @ h ¢ H ~\ NAK *

0001 1
::,.

Space y q & Space Y Q +
'.'

:::

.. :

0010 2 ' .. 1 z r a = Z R A ::
::: ::

0011 • 3 .: 9 I j i (? J I

0100
:' .':.

2 4 b < B

0101 5 0 s k) S K

:< #@ G)
0110 :

6 I T L 1 t YAK EOA

0111
:

7 3 '@ $ c ; I I C
SOA

1000 > 8 4 d : D

1001 1<
9 U M I:::: u m

::
Horiz Horiz 1010 A v n

tab
V N

tab :::

LF see NLsee LF see NLsee
1011 B 5 note note e % note note E

1 2 1 2

1100 C
Up- Down- Up-

W 0 Down-
shift

w 0
shift shift shift

1101 D 6 ® Back
EOB space f ® Back F

EOB space

1110 E 7 IDLE g > IDLE G

1111 F ©
EOT

x P DEL X P DEL

11-------- Lower Case I' .I ~------ Upper Case

0 2 3 4 5 I 6 7 Bits

S B A 8 4 I 2 I C
Terminal code

Shift (S) bit position 0 (lower case)
or 1 (upper case) inserted on receive
operations, I nsertion/deletion is
performed by equ ipment

structure

I Start B A 8 4 L_~_] C I Stop I
C is odd parity check bit for S, B, A, 8,4,2, 1.

On receiving operation, start and stop bits are deleted.

On transmitting operation, start and stop bits are added.

Transmitted and
received character

Notes:

1. Line feed (LF) performs the indexing

function

2. New line (NL) performs the carrier

return and line feed function

3. Similar terms:

downsh itt = lower case

upshift = upper case

Perforated Tape Tr<Jnsmission Code/E:\h:nded Binary Coded Decimal (PTTC/EBCJ)) D-l

(.. ~
. ,

D-2 SC34-0124

Appendix E. Priority List for Assembler Instructions

c
ICTL must be the first statement of an assembly

TITLE
EJECT
PRINT any place
SPACE
COpy

MACRO before first CSECT

GBL after macro prototype
LCL follows globals
ACTR follows locals

AIF
AGO
SETA
SETB within macro definitions, anywhere
SETC between ACTR and MEND
ANOP
MEXIT

C MNOTE

MEND must be last statement of a macro definition

ENTRY
WXTRN
EXTRN
DSECT
POP anywhere after macro definitions
PUSH
COM
GLOBL
ISEQ

START after macro definitions

CSECT after macro definitions

EQU if there is a START or CSECT
EQUR statement, anywhere after it.
DC If there is no START or CSECT,
DS any of these instructions can
ORG begin a nameless CSECT.
USING
DROP

0
ALIGN
PREF

END must be last statement of an assembly

Priority List for Assembkr Instructions E-I

()

1
\ JI

E-2 SC34-0124

c

o

Appendix F. Summary of Constants

I,ength
Implied modifier lv/umber of
lengtli range constants per Exponent I'rzlllcatioll/ Padding

Type (bytes) (bytes) Specified hy operand range Scale range padding side character

C as CD 1-256 characters one right blank

S needed CD p

X as CD 1-256 hexadecimal one left 0
needed CD digits

l3 as CD 1-256 binary one left 0
needed digits

F 2 1-2 decimal several -H5 to -31 left 0
digits +75 to

+63

E 4 2-4 decimal several -H5 to 0-14 right 0
digits +75

A 2 1-4 any several left 0
e"pression

N 2 2 name several assembled
as X'OOOO'

V 2 2 relocatable several assembled
symbol as X'()()()()'

W 2 2 relocatablc several assembled
symbol as X'()()()()'

H I I decimal "everal -H5 tll left 0
digits +75

D 4 1-4 decimal several -H5 to -31 to left 0
digits +75 +63

L H :2 X decimal several -X5 to () 14 right 0
digits +75

CD In DS assembler instructions. C, S, P, and X type constants can have len!!th specification to 65535.

CD In DS assembler instruction types C, S, P. X. and B. the implied lengt h is I when a length modifier and a l'onstant v~i1ue
arc not specified.

CD Constants A, D, E, F, H, L are not truncated.

Summary of Constants \·-1

(
~)

-}

(:

F-2 SC34-0124

c

c

o

Expression

May contain

Operators are

Range of
values

May be
lIsed in

Appendix G. Macro Language Summary

The 4 figures in this appendix summarize the macro language described in Chapter 6
of this publication.

Figure G-l is a summary of the expressions that may be used in macro instruction
statements.

Figure G-2 indicates which macro language elements may be used in the name and
operand entries of each statement.

Figure G-3 is a summary of the attributes that may be used in each expression.
Figure G-4 is a summary of the variable symbols that may be used in each expression.

Arithmetic expressions

I. Self-defining terms
2. Count and number attributes
3. SETA and SETH symbols
4. SETC symbols whose value

is 1-8 decimal digits
5. Symbolic parameters if the

corresponding operand is
a self-defining term

6. &SYSLIST (n) if the cor-
responding operand is a
self-defining term

7. &SYSLIST (n,m) if the
corresponding operand
is a self-defining term

8. &SYSNDX
9. &SYSPARr-.t whose value is

1-8 decimal digits

+,-.*,ancl/

parentheses permitted

_21 I to +21 I -1

I. SETA operands
2. Arithmetic relations
3. Subscripted SET symbols
4. A subscript of &SYSLIST
5. Substring notation
6. Sublist notations
7. SFTC operands
8. ACTR operands

Character expressiolls

I. Any combination of
characters enclosed in
apostrophes

2. Any variable symbol
enclosed in apostrophes

3. A concatenation of
variable symbols and
other characters enclosed

in apostrophes
4. A request for a type

attribute

concatenation, with a
period (.)

() through 127 characters

I. SETC operands l

2. Character relations 2

3. SETA operands (if
1-8 decimal digits)

I,Of;ical expressiolls

I. SETH symbols
2. Arithmetic relations l

3. Character relations 2

4. SETA expression 4

AND, OR, and NOT
parentheses permitted

() (false) or
1 (true)

1. SLTB operands
2. AII:operands

An arithmetic relation consists of two arithmetic expressions related by the operator CT, LT, FQ, Nt-:, GL, or LE-
A character relation consists of two character expressions related by the operator CT, LT, FQ, NF, Ct-:, or LE. The
type attribute notation and the substring nntation may also be used in character relations. The maximum size of the
character expressions that can be compared is 127 characters. If the two character e.\pressions are of unequal size,
then the smaller one will always compare less than the larger.

Maximum of 64 characters will be assigned.
The expression must be a valid SETA expression which resolves to 0 or I.

li,l!lIre C 1. ['pressions for conditional assembly

Macro Language Summary G-I

Variable Symbols

Global SET Symbols Local SET Symbols System Variable Symbols o
Symbolic &SYSTIME

Statement Parameter SETA SETS SETC SETA SETS SETC &SYSNDX &SYSUST &SYSPARM &SYSDATE

MACRO

Prototype Name
Statement Operand

GBLA Operand

GBLB Operand

GBLC Operand

LCLA Operand

LCLB Operand

LCLe Operand

Model Name Name Name Name Name Name Name Name Name Name Name

Statement Operation Operation Operation Operation Operation Operation Operation Operation Operation Operation Operand

Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand

SFTA Operand ' Name Operand \ Operand 7 Name Operand' Operand? Operand Operand' Operand?

Operand Operand

SFTH Operand 4 Operand 4 Name Operand 4 Operand 4 Name Operand 4 Operand 4 Operand 4 Operand 4

Operand Operand

S['TC Operand Operand S Operand" Name Operand S Operand" Name Operand Operand Operand Operand

Operand Operand

All Operand 4 Operand 4 Operand Operand 4 Opera nd 4 Operand Operand 4 Operand 4 Operand 4 Operand 4 Operand 4

A(;O

A(TR Operamj2 ()perand Operand' Operand 2 Opera nd Operand \ Operand 2 Operand Operand' Oper;1I1d'

ANOP

MI-XII (
I\INOIF Operation Operand Oper~IIHI Operati(In Opera nd Operand Operation Operand Opcra t ion Operation Operation \. ,
"liND

Outer Name Namc Namc N;lllle Naml' Naml' Namc Name
Macro Operand Oper;lI1d Opn;lllll ()per;lnd Operand Oper~lnd Operand Operand

Inncr Naille Naillc Naille -';;IIllC -';;111ll' \Iaml' N;lllle Na11le \I;lme N;II11L' Name
Macro Operand Operand ()perand OPl'Llllll Operand Oper~lnd Operand OpeLlI1d Operand Oper;lI1d Operand

Asseillbler Naille N;lllle Naille Naillc N~lllll' Na11le N;lllll' Name
L,anglla~t.: Operation Operation Opera t ion Oper;lIilln Operation Oper;lIion Operation Operand
Stateillent Operand Opera nd Operand Opl'r;IIHI ()perand Opera nd Operand

I Variable sYlllblll, in 11laCfll instIlll,tions arc fepial'l'd h~ theif values hdllfC Pfol'cssin[!,
2 Only if valuc is sclf-dcfinin[! teflll,
I ('llnvl'rlL'd til ;lrithll1l'til' + I llr +(l,

" ()nly in ;lfith11ll'lil' llf l'Il;lf;II'll'f fl'LllitlllS,

('llllvcrtl'd III unsi~lll'd 1l1l1ll11L'r.

('llnvefted tll l'h;ILIL'ler I Of (l,
7 Ollh if llllL' tll l'i~ht dl'l'illla) di~its,

Figure G-2. (Part 1 of 2). Macro language elements

c
G-2 SC34-0124

Attributes

c 5;CqllCIlCC

Statement Type Count Numher sYlllhol

MACRO

Prototype
Statement

GBLA

GBLB

GBLC

LCLA

LCLB

LCLC

Model Name
Statement

SETA Operand Operand

SETB Operandi Operand 2 Operand 2

SETC Operand

AIr Operand I Operand 2 Operand 2 Name
Operand

AGO Name
Operand

ACTR Operand Operand

ANOP Name

MEXIT Name

MNOTE Name c
MEND Name

Outer Name
Macro

Inner Name
Macro

Assembler Name
Language
Statement

I Only in character relations.
2 Only in arithmetic relations.

Figure G-2. (Part 2 of 2). Macro language clements

o
Macro Language Summary G-3

Attribute Notation May be used with:

Type T' Symbolic parameters,
&SYSLIST (n), and
&SYSLIST (n,m)
inside macro
definitions

Count K' Symbolic parameters
corresponding to
macro instruction
operands, &SYSLIST,
and &SYSLIST (n)
inside macro
definitions

Number N' Symbolic parameters,
&SYSLIST, and
&SYSLIST (n) inside
macro definitions

*Note. There are definite restrictions in the use of these attributes.

Figure G-3. Attributes of macro-instruction operands

G-4 SC34-0124

May be used in: *

1. SETC operand fields
2. Character relations

Arithmetic expressions

Arithmetic expressions

Refer to Chapter 6.

o

t
l .;

c

Variable Initialized, Value changed

c symbol Defined by: or set to: by: May be llsed in:

Symbolic1 Prototype Corresponding (Constant l. Arithmetic expressions

parameter statement macro instruc- throughout if operand is self-

tion operand definition) defining term
2. Character expressions

SETA LCLA orGBLA 0 SETA l. Arithmetic expressions

instruction instruction 2. Character expressions

SETB LCLB or GBLB 0 SETB l. Arithmetic expressions

instruction instruction 2. Character expressions
3. Logical expressions

SETC LCLC ro GBLC Null character SETC l. Arithmetic expressions

instruction value instruction if value is self-
defining term

2. Character expressions

&SYSNDX I The assembler Macro instruc- (Constant I. A ri thmetic expressions
tion index throughout 2. Character expressions

definition;
unique for
each macro
instruction)

&SYSLIST 1 The assembler Not applicable Not applicable N' &SYSLIST in
arithmetic expressions

&SYSLIST (n)1 The assembler Corresponding (Constant I. Arithmetic expressions
&SYSLIST (n,m)1 macro instruc- throughout if operand is self-

C"
..

tion operand definition) defining term
2 . Character expressions

&SYSPARM 1 You, in response Value specified (Constant I. Arithmetic expressions

to OPTIONS= in a job control throughout if value is I-H decimal

prompt at the statement (null assembly) digits
operator sta tion character value 2. Character expressions

if not specified)

&SYSDATE1 Supervisor Value obtained at (Constant Character expressions

&SYSTIME1 at time beginning of throughout

assembly assembly if timer assembly)

is started support available
(blanks if no
timer support)

1 All may only be used in macro definitions.

i"igure (;-4. Variable symbols

o
Macro Language Summary G-5

o

G-6 SC34-0124

Appendix H. Assembler Language Summary

C
Name field Mnemonic Operand field Notes

blank ALIGN { WORD} 9
ODD

[label] COM blank

blank COPY a symbol identifying a member of a
partitioned data set

[label] CSECT blank

[label] DC [dup] type [mods] {'value' } (value) [,opnd2] ...

blank DROP 1-8 absolute register expressions, 2
separated by commas

[label] DS [dup] type [mods] [{'value' }] [opnd2,] ...
(value)

label DSECT blank

blank EJECT blank

blank END relocatable expression OR blank 3

blank ENTRY one or more relocatable symbols (entry symbols),
separated by commas

symbol EQU expression 4

symbol EQUR absolute expression 7

C blank EXTRN one or more relocatable symbols (external symbols),
separated by commas

[label] GLOBL blank

blank ICTL one to three decimal self-defining values 10
of the form b, e, c

blank ISEQ two decimal self-defining values of the 11
form I, r, or blank

blank ORG relocatable expression OR blank

blank POP SECTION

[label] PREF zero to four address specifications 8
separated by commas

blank PRINT ON GEN DATA
OFF NOGEN NODATA

blank PUSH SECTION

blank SPACE decimal value from 1-255 OR blank 5

[label] START self-defining term OR blank 6

id char TITLE character string up to 100 characters,
enclosed in apostrophes

blank USING addr, reg 1,2

blank WXTRN one or more relocatable symbols
(weak external symbols), separated by commas

o
Assembler Language Summary H-l

H-2 SC34-0124

Notes.

1. Code any absolute or relocatable expression for the addr operand. Usually, you code either a
single relocatable symbol or a self-defining term.

2. For a register operand, code any register expression that has a value of 0 through 7.

3. If you choose to code the operand in this instruction, you usually code a single relocatable symbol
or a location counter reference.

4. Code any relocatable or absolute expression. Usually, you code a decimal or hexadecimal self­
defining term, or a combination of a previously defined symbol and a self-defining term.

5. If you choose to code the operand in this instruction, you must code a decimal self-defining term.

6. If you choose to code the operand in this instruction, you usually code a hexadecumal self­
defining term.

7. Code any absolute expression that has a value of 0 through 7.

8. An address specification may be omitted by coding two successive commas or by omitting
trailing parameters.

9. WORD specifies that the location counter is to be reset if necessary to the next higher
address which is evenly divisible by 2. ODD specifies that the location counter is to

10.

11.

be reset if necessary to the next higher address which is not divisible by 2 (an odd byte
boundary).

Operand Specifies Allowable range

b Begin column 1 through 40
e End column 41 through 80
c Continue column 2 through 40

Operand Specifies

leftmost column of field to be checked
rightmost column of field to be checked

o

f
\. "

c

c

" c.

0

Appendix J. Macro Language Instruction Summary

Name field Mnemonic

(calling instruction) ------.~ /label] macro name

(prototype statement) -----... /label] macro name

blank ACTR

sequence symbol or blank AGO

sequence symbol or blank AIF

sequence symbol ANOP

blank GBLA

blank GBLB

blank GBLC

bl:.tnk LCLA

blank LCLB

blank LCLC

blank MACRO

Ilabell MEND

llabell MEXIT

llabel] MNOTE

symbol SETA

symbol SETB

symbol SETC

Operand field

zero to 100 operands, separated
by commas

zero to 100 symbolic parameters,
separated by commas

any valid SET A expression

sequence symbol

logical expression enclosed in
parentheses, immediately followed
by a sequence symbol with no
intervening blanks

blank

one or more variable symbols to
be used as SET symbols, separated
by commas

one or more variable symbols to be
used as SET symbols, separated by
commas

one or more variable symbols to be
used as SET symbols, separated by
commas

one or more variable symbols to be
used as SET symbols, separated by
commas

one or more variable symbols to be
used as SET symbols, separated by
commas

one or more variable symbols to be
used as SET symbols, separated by
commas

blank

blank

blank

message specifica t ion

arithmetic e'l:pression

one of 3 options

one of 4 options

Notes

2

Macro Language I nstruction Summary J-l

J-2 SC34-0124

Notes.

1. Normally, you code this operand as a decimal self-defining term.

2. Logical expressions contain combinations of variable symbols, logical and relational operators,
and arithmetic and character expressions. Normally, you code this operand in the form:

(variable-symbol relational-operator self-defining term) or
(varia ble-sym bol relational-operator 'character-string').

()

c

c

L.

o

&SYSDATE-date of assembly 6-22
&SYSLIST 6-19
&SYSNDX 6-21
&SYSPARM 6-22
&SYSTIME--time of assembly 6-22

A-type address constant 5-21
AA, add address 4-18
AB, add byte 4-18
abcnt 4-3
ABI, add byte immediate 4-19
absolute expressions 2-17
ACTR-assembly loop counter 6-56
ACY, add carry indicator 4-20
AD, add doubleword 4-20
add address (AA) 4-18
add instructions (see arithmetic instructions)
addition, unsigned 3-6
addr 4-3
address argument, five-bit 3-13
address argument, four-bit 3-11
address arguments, instruction length 3-14
address key register (AKR) 3-3
addresses and addressing 1-5
addr4 4-3
addr5 4-4
AGO-unconditional branch 6-56
AIF-conditional branch 6-55
AKR, address key register 3-3
ALIGN-align location counter 5-56
alphameric characters 2-7
AND word immediate 4-89
ANOP-assembly no operation 6-57
arithmetic (SET A) expressions 6-46
arithmetic instructions 4-18

add address (AA) 4-18
add byte (AB) 4-18
add carry indica tor (ACY) 4-19
add doubleword (AD) 4-20
add word (A W) 4-21
add word immediate (AWl) 4-21
add word with carry (A WCY) 4-22
compare address (CA) 4-78
complement register (CMR) 4-30
divide byte (DB) 4-29
divide doubleword (DD) 4-29
divide word (DW) 4-30
multiply byte (MB) 4-27
multiply doubleword (MD) 4-27
multiply word (MW) 4-28
subtract address (SA) 4-22
subtract byte (SB) 4-23
subtract carry indicator (SCY) 4-24
subtract doubleword (SD) 4-24
subtract word (SW) 4-25
subtract word immediate (SWI)
subtract word with carry (SWCY)

4-26
4-27

arithmetic parentheses 2-21
arithmetic value, SETA 6-43
ASCII C-1
ASCII character constant (S) 5-15
assembler instruction summary H-1
assembler instructions 5-1

ALIGN-align location counter 5-56
COM-define a common control section 5-38
CSECT -control section 5-36
DC-define constant 5-5
DROP-drop base register 5-49
DS instruction 5-24
DSECT-dummy section 5-37
EJECT -start new page 5-60
END-end assembly 5-31
ENTRY -identify entry point symbol 5-52
EQU-equate symbol 5-3
EQUR-equate register 5-4
EXTRN-identify external symbol 5-53
GLOBL-define a global control section 5-39
ICTL-input format control 5-56
ISEQ-input sequence checking 5-58
ORG-set location counter 5-55
POP-pop section 5-40
PRINT-print optional data 5-59
PUSH-push section 5-40
SPACE-space listing 5-61
START -start assembly 5-35
TITLE-identify assembly output 5-60
USING instruction format 5-46
WXTRN -identify weak external symbol 5-54

assembler language, definition of 1-3
assembler instructions 1-3
definition of 1-3
machine instructions 1-3
macro instructions 1-3

assembler language operand symbols 4-3
abcnt 4-3
addr 4-3
addr4 4-3
addr5 4-4
bitdisp 4-5
byte 4-5
cnt16 4-5
cnt31 4-5
cond 4-5
disp 4-5
freg 4-5
jaddr 4-5
jdisp 4-5
longaddr 4-5
reg 4-6
regO-3 4-6
regl-3 4-6
regl-7 4-6
ubyte 4-6
vcon
waddr
wdisp

4-6
4-6
4-6

Index

Index X-I

assembler language operand symbols (continued)
word 4-6

assembler language structure 2-7
attribute references 2-12
character set 2-7
location counter reference 2-11
machine instructions 2-7
macro instructions 2-7
other attribute references 2-14
register expressions 2-18
self-defining terms 2-15
source module 2-7
special characters 2-7
symbol length attribute reference 2-12
symbol table 2-8
symbols 2-8
terms 2-7

assembler options 7-3
assembler program 1-3

diagram 1-4
assembler program listing 7-4

cross-reference 7-9
diagnostics 7-10
external symbol dictionary 7-4
relocation dictionary 7-9
source and object program 7-5
statistics 7-10

assembly language, conditional 6-34
assembly loop counter, ACTR 6-56
assembly no operation, ANOP 6-57
attribute references 2-12

binary self-defining term 2-15
decimal self-defining term 2-15
EBCDIC character self-defining term 2-16
hexadecimal self-defining term 2-15

AW, add word 4-21
AWCY, add word with carry 4-22
AWl, add word immediate 4-21

B, branch 4-32
BAL, branch and link 4-32
BALS, branch and link short 4-33
BALX, branch and link external 4-32
base register, storage address 3-14
base register, word displacement 3-9
base register, word displacement short 3-9
BC, branch on condition 4-38
BCC, branch on condition code 4-39
BCY, branch on carry 4-38
BE, branch on equal 440
BER, branch on error 4-40
BEV, branch on even 4-40
BGE, branch on arithmetically greater than or equal 4-41
BGT, branch on arithmetically greater than 441
binary constant (B) 5-17
binary self-defining term 2-15
binary subtract 3-6
binary to decimal conversion B-2
binary to hexadecimal conversion B-2

X-2 SC34-0124

binary value, SETB 645
bitdisp 4-5
BLE, branch on arithmetically less than or equal 442
BLGE, branch on logically greater than or equal 4-43
BLGT, branch on logically greater than 443
BLLE, branch on logically less than or equal 444
BLLT, branch on logically less than 444
BLT, branch on arithmetically less than 442
BMIX, branch if mixed 4-34
BN, branch on negative 4-44
BNC, branch on not condition 445
BNCC, branch on not condition code 4-46
BNCY, branch on no carry 445
BNE, branch on not equal 447
BNER, branch on not error 447
BNEV, branch on not even 447
BNMIX, branch if not mixed 4-35
BNN, branch on not negative 448
BNOFF, branch if not off 4-35
BNON, branch if not on 4-36
BNOV, branch on not overflow 448
BNP, branch on not positive 448
BNZ, branch on not zero 449
BOFF, branch if off 4-37
BON, branch if on 4-37
boundaries, field 2-3
BOV, branch on overflow 449
BP, branch on positive 4-50
branching 6-55

ACTR-assembly loop counter 6-56
AGO-unconditional branch 6-56
AIF -conditional branch 6-55
ANOP-assembly no operation 6-57

branching instructions 4-32
branch (B) 4-32
branch and link (BAL) 4-32
branch and link external (BALX) 4-32
branch and link short (BALS) 4-33
branch external (BX) 4-34
branch if mixed (BMIX) 4-34
branch if not mixed (BNMIX) 4-35
branch if not off (BNOFF) 4-35
branch if not on (BNON) 4-36
branch if off (BOFF) 4-37
branch if on (BON) 4-37
branch indexed short (BXS) 4-38
branch on arithmetically greater than (BGT) 441
branch on arithmetically greater than or equal

(BGE) 441
branch on arithmetically less than (BLT) 442
branch on arithmetically less than or equal (BLE) 442
branch on carry (BCY) 4-38
branch on condition (BC) 4-38
branch on condition code (BCC) 4-39
branch on equal (BE) 440
branch on error (BER) 440
branch on even (BEV) 440
branch on logically greater than (BLGT) 443
branch on logically greater than or equal (BLGE) 4-43
branch on logically less than (BLLT) 444

c

o

branching instructions (continued)
branch on logically less than or equal (BLLE)
branch on negative (BN) 4-44

4-44

branch on no carry (BNCY) 4-45
branch on not condition (BNC) 4-46
branch on not condition code (BNCC) 4-46
branch on not equal (BNE) 4-47
branch on not error (BNER) 4-47
branch on not even (BNEV) 4-47
branch on not negative (BNN) 4-48
branch on not overflow (BNOV) 4-48
branch on not positive (BNP) 4-48
branch on not zero (BNZ) 4-49
branch on overflow (BOV) 4-49
branch on positive (BP) 4-50
branch on zero (BZ) 4-50
no operation (NOP) 4-50

BX, branch external 4-34
BXS, branch indexed short 4-38
byte 4-5
BZ, branch on zero 4-50

CA, compare address 4-78
calling macro instruction 6-23

keyword parameters 6-26
name field 6-24
operands 6-24
operation field 6-24
positional parameters 6-25

carry indica tor 3-7
CB, compare byte 4-79
CBI, compare byte immediate 4-84
CD, compare doubleword 4-84
CFED, compare byte field equal and decrement 4-79
CFEN, compare byte field equal and increment 4-81
CFNED, compare byte field not equal and decrement
CFNEN, compare byte field not equal and increment
character (SETC) expressions 6-49
character set 2-7
character strings 2-7
character value, SETC 6-44
CMR, complement register 4-30
cnt16 4-5
cnt31 4-5
coding aids 1-5

addresses and addressing 1-5
data representation 1-5
linkage between so urce mod ules 1-7
program listing 1-7
register usage 1-5
relocatability 1-5
segmen ting a program 1-6
symbolic representation 1-5

coding assembler language instructions 4-3
coding conventions 2-3

coding form (GX28-6509) 2-3
comments statement format 2-5
continuation lines 2-4
field boundaries 2-3

continuation indicator field 2-4
identification and sequence field 2-4
statement field 2-4

4-79
4-81

instruction statement format 2-5
fixed format 2-5
free format 2-6
name entry 2-6
operand entry 2-6
operation entry 2-6

coding form (GX28-6509) 2-3
coding notes 4-3
COM-define a common control section 5-38
comment statements 6-6
comments statement format 2-5
compare address (CA) 4-78
compare instructions 4-78

compare byte (CB) 4-79
compare byte field equal and decrement (CFED)
compare byte field equal and increment (CFEN)
compare byte field not equal and decrement

4-79
4-81

(CFNED) 4-79
compare byte field not equal and increment

(CFNEN) 4-81
compare byte immediate (CBI) 4-84
compare doubleword (CD) 4-84
compare word (CW) 4-85
compare word immediate (CWI) 4-85
scan byte field equal and decrement (SFED) 4-85
scan byte field equal and increment (SFEN) 4-86
scan byte field not equal and decrement (SFNED)
scan byte field not equal and increment (SFNEN)

complex relocatable expressions 2-19
concatenation 6-12
cond 4-5
conditional assembly language 6-34

data attributes 6-37
count attribute (K) 6-38
number attribute (N) 6-38
type attribute (T) 6-37

sequence symbols 6-38
SET symbols 6-35

conditional branch, AlF 6-55
constants, summary of F-l
continuation indicator field 2-4
continuation lines 2-4
control sections 5-32

ALIGN-align location counter 5-56
COM-define a common control section
CSECT -start or resume control section
defining 5-35
DSECT -start or number dummy section
first control section 5-33
GLOBL-define a global control section
location counter setting 5-32
POP--pop section 5-40
PUSH-push section 5-40
START -start assembly 5-35
types of 5-32
unnamed control section 5-34

conventions, coding 2-3
coding form (GX28-6509)
comments statement format
continuation lines 2-4
field boundaries 2-3

2-3
2-5

continuation indicator field 2-4
identification and sequence field 2-4
statement field 2-3

5-38
5-36

5-37

5-39

4-87
4-88

Index X-3

conventions, coding (continued)
instruction statement format 2-5

fixed format 2-5
free format 2-6
name entry 2-6
operand entry 2-6
operation entry 2-6
remarks entry 2-7

restrictions on symbols 2-9
copy address key register (CPAKR) 4-105
copy console data buffer (CPCON) 4-105
copy current level (CPCL) 4-105
copy floating level block (CPFLB) 4-123
copy in-process flags (CPIPF) 4-106
copy instruction space key (CPISK) 4-106
copy interrupt mask register (CPIMR) 4-107
copy level status block (CPLB) 4-108
copy level status register (CPLSR) 4-103
copy operandI key (CPOOK) (4955 processor only) 4-108
copy operand2 key (CPOTK) (4955 processor only) 4-109
copy processor status and reset (CPPSR) 4-110
copy segmentation register (CPSR) (4955 processor

only) 4-110
copy storage key (CPSK) (4955 processor only) 4-111
CPAKR, copy address key register 4-105
CPCL, copy current level 4-105
CPCON, copy console data buffer 4-105
CPFLB, copy floating level block 4-123
CPIMR, copy interrupt mask register 4-107
CPIPF, copy in-process flags 4-106
CPISK, copy instruction space key 4-106
CPLB, copy level status block 4-108
CPLSR, copy level status register 4-103
CPOOK (4955 processor only), copy operandI key 4-108
CPOTK (4955 processor only), copy operand2 key 4-109
CPPSR, copy processor status and reset 4-110
CPSK (4955 processor only), copy storage key 4-111
CPSR (4955 processor only), copy segmentation

register 4-110
creating macros 6-4
cro ss-ref eren ce listing, sam pIe 7 -7
CSECT -control section 5-36
CW, compare word 4-85
CWI, compare word immediate 4-85

data movement instructions 4-7
add byte immediate (ABI) 4-19
fill byte field and decrement (FFD) 4-7
interchange registers OR) 4-9
move address (MV A) 4-9
move byte (MVB) 4-10
move byte and zero (MVBZ) 4-11
move byte field and decrement (MVFD) 4-11
move byte field and increment (MVFN) 4-12
move byte immediate (MVBI) 4-13
move doubleword (MVD) 4-14
move doubleword and zero (MVDZ) 4-15
move word (MVW) 4-15
move word and zero (MVWZ) 4-16
move word immediate (MVWI) 4-16
move word short (MVWS) 4-17

data representation 1-3
DB, divide byte 4-29
DC-define constant 5-5

X-4 SC34-0124

DC operand rules 5-6
DC operand sub field 5-8

duplication factor 5-8
exponent modifier 5-12
length modifier 5-9
modifiers 5-9
nominal value 5-17
scale modifier 5 -1 0
type 5-8

DO, divide doubleword 4-29
decimal self-defining term 2-15
decimal to binary conversion B-1
decimal to hexadecimal conversion B-6
defining data 5-5

A-type address constant 5-21
ASCII character constant (S) 5-15
binary constant (B) 5-17
DC-define constant 5-5
OS instruction 5-24
EBCDIC character constant (C) 5-14
exponent modifier 5-12
fixed-point constant (D) 5-19
fixed-point constant (F) 5-18
fixed-point constant (H) 5-19
floating-point constant (E) 5-20
floating-point constant (L) 5-21
hexadecimal constant (X) 5-16
N-type name constant 5-23
padding constants 5-7
PTTC/EBCD character constant (P) 5-16
truncating constants 5-7
V-type address constant 5-22
W-type address constant 5-23

DIAG, diagnose 4-111
diagnostics listing, sam pIe 7-7
DIS, disable 4-112
disp 4-5
disp (addr)* 44
divide instructions (see arithmetic instructions)
DROP-drop base register 5-47
OS instruction 5-24
DSECT -dummy section 5-37
dummy sections 5-37
OW, divide word 4-30

EBCDIC character constant (C) 5-14
EBCDIC character self-defining term 2-16
effective address generation 3-9

base register, storage address 3-14
base register, word displacement short 3-9
base register word displacement 3-10
five-bit address argument 3-13
four-bit address argument 3-11

EJECT -start new page 5-60
EN, enable 4-112
END-end assembly 5-31
ENTRY -identifY entry point symbol 5-52
EQU-equate symbol 2-8,5-5
EQUR-equate register 2-8,5-4
error, location counter 2-12
establishing addressability 5-41
evaluation of expressions 2-20
exclusive OR byte (XB) 4-89

(1

c

(::~

o

exclusive OR doubleword (XD) 4-90
exclusive OR word (XW) 4-90
exclusive OR word immediate (XWI) 4-91
exponent modifier 5-12
expressions 2-17

absolute expressions 2-17
sample code 2-18

evaluation of 2-20
example of 2-18
parentheses in instruction operands 2-21
relocatable 2-19
rules for coding 2-20

expressions, arithmetic (SETA) 6-46
expressions, character (SETC) 6-49
expressions, logical (SETB) 6-51
EXTRN-identify external symbol 5-53

FA, floating add 4-123
FAD, floating add double 4-124
FC, floating compare 4-124
FCD, floating compare double 4-125
FD, floating divide 4-126
FDD, floating divide double 4-126
FDIAG floating diagnose 4-125
FFD, fill byte field and decrement 4-7
FFN, fill byte field and increment 4-8
field boundaries 2-3
field positions 2-4
five-bit address argument 3-13
fixed format 2-5
fixed-point constant (D) 5-19
fixed-point constant (F) 5-18
fixed-point constant (H) 5-19
fixed-point constants 5-18
floating-point constant (E) 5-20
floating-point constant (L) 5-21
floating-point constants 5-20
floating-point instructions (4955 processor only) 4-121

copy floating level block (CPFLB) 4-123
floating add (FA) 4-123
floating add double (FAD) 4-124
floating compare (FC) 4-124
floating compare double (FCD) 4-125
floating diagnose (FDIAG) 4-125
floating divide (FD) 4-126
floating divide double (FDD) 4-126
floating move (FMV) 4-127
floating move and convert (FMVC) 4-129
floating move and convert double (FMVCD) 4-129
floating move double (FMVD) 4-127
floating multiply (FM) 4-129
floating multiply double (FMD) 4-130
floating subtract (FS) 4-130
floating subtract double (FSD) 4-131
set floating level block (SEFLB) 4-132

floating-point number representation 4-121
double-precision 4-121
single-precision 4-121

floating-point registers 3-3

FM, floating multiply 4-129
FMD, floating multiply double 4-130
FMV, floating move 4-127
FMVC, floating move and convert 4-128
FMVCD, floating move and convert double 4-129
FMVD, floating move double 4-127
form (GX28-6509), coding 2-3
format and sequence, determining statement 5-56

ICTL-input format control 5-56
ISEQ-input sequence checking 5-58

four-bit address argument 3-11
free format 2-6
freg 4-5
FS, floating subtract 4-130
FSD, floating subtract double 4-131
functional characteristics 3-1

indicators 3-5
number representation 3-5

GBLA, GBLB, and GBLC instructions 6-41
general registers 3-3
GLOBL-define a global control section 5-39
GX28-6509, coding form 2-3

hardware adds or subtracts 3-6
hexadecimal constant (X) 5 -16
hexadecimal self~efining term 2-15
hexadecimal to decimal conversion B-6

I/O instruction (10) 4-114
JAR, instruction address register 3-3
ICTL-input format control 5-56
identification and sequence field 2-4
IMR, interrupt mask register 3-4
indicators 3-5

carry 3-5
other uses of 3-7
overflow 3-7

instruction address register (lAR) 3-3
instruction length address arguments 3-14
instruction statement format 2-5
instructions, assembler 1-3, 2-7,5-1
instructions, machine 1-3,2-7,4-3
instructions, macro 1-3, 2-7
interchange operand keys (lOPK) (4955 processor

only) 4-113
interchange registers (lR) 4-9
interrupt mask register (lMR) 3-4
invert register (VR) 4-91
invoking the assembler (example) 7-11
10, operate I/O 4-114
10PK (4955 processor only) interchange operand

keys 4-113
IR, interchange registers 4-9
ISEQ-input sequence checking 5-58

J,jump 4-51
jaddr 4-5

Index X-5

J AL, jump and link 4-51
JC, jump on condition 4-55
JCT,jump on count 4-55
JCY, jump on carry 4-54
jdisp 4-5
JE, jump on equal 4-57
JEV, jump on even 4-57
JGE, jump on greater than or equal 4-58
JGT,jump on greater than 4-57
JLE, jump on less than or equal 4-59
JLGE, jump on logically greater than or equal 4-60
JLGT,jump on logically greater than 4-59
JLLE, jump on logically less than or equal 4-61
JLLT, jump on logically less than 4-60
JLT, jump on less than 4-58
JMIX, jump if mixed 4-52
IN,jump on negative 4-61
JNC, jump on not condition 4-62
JNCY,jump on no carry 4-61
JNE, jump on not equal 4-62
JNEV, jump on not even 4-63
JNMIX, jump if not mixed 4-52
JNN, jump on not negative 4-63
JNOFF, jump if not off 4-52
JNON, jump if not on 4-53
JNP, jump on not positive 4-64
JNZ, jump on not zero 4-64
JOFF,jumpifoff 4-53
JON, jump if on 4-54
JP, jump on positive 4-65
jump instructions 4-51

jump (J) 4-51
jump and link (J AL) 4-51
jump if mixed (JMIX) 4-52
jump if not mixed (JNMIX) 4-52
jump if not off (JNOFF) 4-52
jump if not on (JNON) 4-53
jump if off (JOFF) 4-53
jump if on (JON) 4-54
jump on carry (JCY) 4-54
jump on condition (JC) 4-55
jump on count (JCT) 4-55
jump on equal (JE) 4-57
jump on even (JEV) 4-57
jump on greater than (JGT) 4-57
jump on greater than or equal (JGE) 4-58
jump on less than (JLT) 4-58
jump on less than or equal (JLE) 4-59
jump on logically greater than (JLGT) 4-59
jump on logically greater than or equal (JLGE) 4-60
jump on logically less than (JLLT) 4-60
jump on logically less than or equal (JLLE) 4-61
jump on negative (IN) 4-61
jump on no carry (JNCY) 4-61
jump on not condition (JNC) 4-62
jump on not equal (JNE) 4-62
jump on not even (JNEV) 4-63
jump on not negative (JNN) 4-63
jump on not positive (JNP) 4-64
jump on not zero (JNZ) 4-64
jump on positive (JP) 4-65
jump on zero (JZ) 4-65

JZ, jump on zero 4-65

X-6 SC34-0124

language, assembler 1-3
diagram 1-4

LCLA, LCLB, and LCLC instructions 6-39
length modifier 5-9
level exit (LEX) 4-114
level status register (LSR) 3-4
LEX, level exit 4-114
linkage between source modules 1-7
linkage stacking 3-16
LMB, load multiple and branch 4-73
location counter error 2-12
location counter reference 2-11
location counter set, ORG 5-55
logical (SETB) expressions 6-51
logical instructions 4-89

AND word immediate (NWI) 4-89
exclusive OR byte (XB) 4-89
exclusive OR doubleword (XD) 4-89
exclusive OR word (XW) 4-90
exclusive or word immediate (XWI) 4-91
invert register (VR) 4-91
OR byte, (OB) 4-92
OR doubleword (OD) 4-92
OR word (OW) 4-93
OR word immediate (OWl) 4-94
reset bits byte (RBTB) 4-94
reset bits doubleword (RBTD) 4-95
reset bits word (RBTW) 4-95
reset bits word immediate (RBTWI) 4-96
set bits byte (SBTB) 4-97
set bits doubleword (SBTD) 4-97
set bits word (SBTW) 4-98
test bit (TBT) 4-99
test bit and invert (TBTV) 4-100
test bit and reset (TBTR) 4-100
test bit and set (TBTS) 4-101
test word immediate (TWI) 4-101
wet bits word immediate (SBTWI) 4-98

longaddr 4-5
LSR, level status register 3-4

machine instructions 1-3,2-7,4-3
macro assembler, using 7-1
macro instructions 1-3,2-7
macro language 6-1

&SYSDATE-date of assembly 6-22
&SYSLIST 6-19
&SYSNDX 6-21
&SYSPARM 6-22
&SYSTIME-time of assembly 6-22
calling macro instruction 6-23
comment statements 6-6
concatenation 6-12
COpy instruction 6-16
creating macros 6-4
MEX IT instruction 6-18
MNOTE instruction 6-16
model statements 6-5,6-12
processing statements 6-15
symbolic parameters 6-8
system variable symbols 6-19

(,
\. J

o

macro language instruction summary J-1
macro language summary G-1
MB, multiply byte 4-27
MD, multiply doubleword 4-27
MEXIT instruction 6-18
MNOTE instruction 6-16
model statements 6-5,6-12
move instructions, (see data movement instructions)
multiply instructions (see arithmetic instructions)
MV A, move address 4-9
MVB, move byte 4-10
MVBI, move byte immediate 4-13
MVBZ, move byte and zero 4-11
MVD, move doubleword 4-14
MVDZ, move doubleword and zero 4-15
MVFD, move byte field and decrement 4-11
MVFN, move byte field and increment 4-12
MVW, move word 4-15
MVWI, move word immediate 4-16
MVWS, move word short 4-17
MVWZ, move word and zero 4-16
MW, multiply word 4-28

N-type name constant 5-23
name entry rules 2-6
no operation (NOP) 4-50
NOP, no operation 4-50
number representation 3-5

signed number 3-5
unsigned number 3-5

NWI, AND word immediate 4-89

OB, OR byte 4-92
object module format 7-12
OD, OR doubleword 4-92
operand entry rules 2-6
operands, parentheses in 2-21
operate I/O (10) 4-114
operation entry rules 2-6
options, assembler 7-3
ordinary symbols 2-8
ORG-set location counter 5-55
overflow indicator 3-7
OW, OR word 4-93
OWl, OR word immediate 4-94

padding constants 5-7
examples of 5-7

parameter reference (PREF) 5-26
parentheses, arithmetic 2-21
parentheses, syntactic 2-21
parentheses in instruction operands 2-21
PB, pop byte 4-74
PD, pop doubleword 4-74
perforated tape transmission code/extended binary coded

decimal (PTTC/EBCD) D-1

performance 7-11
POP-pop section 5-40
pop/push instructions 4-74

pop byte (PB) 4-74
pop doubleword (PD) 4-74
pop word (PW) 4-75
push byte (PSB) 4-75
push doubleword (PSD) 4-76
push word (PSW) 4-77

predefined register symbols 2-9
previously defined symbols 2-10
PRINT-print optional data 5-59
priority list for assembler instructions E-l
privileged instructions 4-105

copy address key register (CPAKR) 4-105
copy console data buffer (CPCON) 4-105
copy current level (CPCL) 4-105
copy in-process flags (CPIPF) 4-106
copy instruction space key (CPISK) 4-106
copy interrupt mask register (CPIMR) 4-107
copy level status block (CPLB) 4-108
copy operandI key (CPOOK) (4955 processor only) 4-108
copy operand2 key (CPOTK) (4955 processor only) 4-109
copy processor status and reset (CPPSR) 4-110
copy segmentation register (CPSR) (4955 processor

only) 4-110
copy storage key (CPSK) (4955 processor only) 4-111
diagnose (DIAG) 4-111
disable (DIS) 4-112
enable (EN) 4-112
interchange operand keys (lOPK) (4955 processor

only) 4-113
level exit (LEX) 4-113
operate I/O (10) 4-114
set address key register (SEAKR) (4955 processor

only) 4-114
set console data lights (SECON) 4-115
set instruction space key (SEISK) (4955 processor

only) 4-115
set interrupt mask register (SEIMR) 4-116
set level status block (SELB) 4-116
set operandI key (SEOOK) 4-117
set operand2 key (SEOTK) (4955 processor call) 4-118
set segmentation register (SESR) (4955 processor

call) 4-118
set storage key (SESK) 4-119

processing statements 6-5, 6-15
processor, 4953 3-3
processor, 4955 3-3
processor modules 3-3
processor status instructions 4-103

copy level status register (CPLSR) 4-103
set indicators (SEIND) 4-103
stop (STOP) 4-103
supervisor call (SVC) 4-104

processor status word (PSW) 3-4
program, assembler 1-3

definition of 1-3
program listing 1-7, 7-4

Index X-7

program listing, assembler 7-4
cross-reference 7-9
diagnostics 7 -10
external symbol dictionary 7-4
relocation dictionary 7-9
source and object program 7-5
statistics 7 -10

program sectioning 5-28
control sections 5-31
CSECT -control section 5-36
DSECT -dummy section 5-37
END-end assembly 5-31
source module 5-28

COpy -copy predefined source coding 5-29
END-end assembly 5-31

START-start assembly 5-35
PSB, push byte 4-75
PSD, push doubleword 4-76
pseudobinary PTTC/EBCD conversion D-l
PSW, processor status word 3-4
PSW, push word 4-77
PTTC/EBCD character constant (P) 5-16
PUSH-push section 5-40
PW, pop word 4-75

RBTB, reset bits byte 4-94
RBTD, reset bits doub1eword 4-95
RBTW, reset bits word 4-95
RBTWI, reset bits word immediate 4-96
record formats 7-13

general record format 7-13
record types 7 -13

end of module (END) record 7-15
external symbol dictionary (ESD) record 7-13
relocation dictionary (RLD) record 7-14
text (TXT) record 7-14

reg 4-6
register, predefined symbols 2-9
register usage 1 =-5
registers 3-3

address key register (AKR) 3-3
floating-point registers 3-3
general registers 3-3
instruction address register OAR) 3-3
interrupt mask register (IMR) 3-4
level status register (LSR) 3-4
processor status word (PSW) 3-4

regO-3 4-6
regl-3 4-6
regl-7 4-6
relocatability 1-5
relocatable expressions 2-19
remarks entry 2-7
reset bits byte (RBTB) 4-94
reset bits doubleword (RBTD) 4-95
reset bits word (RBTW) 4-95
reset bits word immediate (RBTWI) 4-96
restrictions on symbols 2-9

predefined register symbols 2-9
previously defined symbols 2-11
uniq ue definition 2-10

X -8 SC34-Q 124

rules for coding expressions 2-20

SA, subtract address 4-22
SB, subtract byte 4-23
SBTB, set bits byte 4-97
SBTD, set bits doubleword 4-97
SBTW, set bits word 4-98
SBTWI set bits word immediate 4-98
scale modifier 5 -1 0

fixed-point constants 5-18
floating-point constants 5-20

scan byte field equal and increment (SFEN) 4-86
scan byte field not equal and decrement (SFNED) 4-87
scan byte field not equal and increment (SFNEN) 4-88
SCY, subtract carry indicator 4-24
SD, subtract doubleword 4-24
SEAKR (4955 processor only), set address key

register 4-114
SECON, set console data lights 4-115
SEFLB, set floating level block 4-132
segmenting a program 1-6
SEIMR, set interrupt mask register 4-116
SEIND, set indicators 4-103
SEISK (4955 processor only), set instruction space
key 4-115

SELB, set level status block 4-116
self-defining terms 2-15
SEOOK, set operand 1 key 4-117
SEOTK (4955 processor only), set operand2 key 4-118
sequence symbols 2-9
SESK, set storage key 4-119
SESR (4955 processor only), set segmentation

register 4-11 8
set address key register (SEAKR) (4955 processor

only) 4-114
set bits byte (SBTB) 4-97
set bits doubleword (SBTD) 4-97
set bits word (SBTW) 4-98
set bits word immediate (SBTWI) 4-98
set console data lights (SECON) 4-115
set floating level block (SEFLB) 4-132
set indicators (SEIND) 4-103
set instruction space key (SEISK) (4955 processor

only) 4-115
set interrupt mask register (SEIMR) 4-116
set level status block (SELB) 4-116
set operand 1 key (SEOOK) 4-117
set operand2 key (SEOTK) (4955 processor only) 4-118
set segmentation register (SESR) (4955 processor

only) 4-118
set storage key (SESK) 4-119
SETA-assign arithmetic value 6-43
SETB-assign binary value 6-45
SETC-assign character value 6-44
SFED, scan byte field equal and decrement 4-85
SFEN, scan byte field equal and increment 4-86
SFNED, scan byte field not equal and decrement 4-87
SFNEN, scan byte field not equal and increment 4-88

()
" J

(::

c

o

shift instructions 4-66
shift left and test (SLT) 4-68
shift left and test double (SLTD) 4-69
shift left circular (SLC) 4-66
shift left circular double (SLCD) 4-66
shift left logical (SLL) 4-67
shift left logical double (SLLD) 4-68
shift right arithmetic (SRA) 4-70
shift right arithmetic double (SRAD) 4-71
shift right logical (SRL) 4-71
shift right logical double (SRLD) 4-72

signed number 3-5
SLC, shift left circular 4-66
SLCD, shift left circular double 4-66
SLL, shift left logical 4-67
SLLD, shift left logical double 4-68
SL T, shift left and test 4-68
SLTD, shift left and test double 4-69
source module 2-7,5-28
SPACE-space listing 5-61
special characters 2-7
SRA, shift right arithmetic 4-70
SRAD, shift right arithmetic double 4-71
SRL, shift right logical 4-71
SRLD, shift right logical double 4-72
stack control block 3-15
stack instructions 4-73

load multiple and branch (LMB) 4-73
pop byte (PB) 4-74
pop doubleword (PD) 4-74
pop word (PW) 4-75
push byte (PSB) 4-75
push doubleword (PSD) 4-76
push word (PSW) 4-77
store multiple (STM) 4-73

stack operations 3-15
linkage stacking 3-16
stack control block 3-15

START -start assembly 5-35
statement field 2-3
statistics listing, sample 7-6
STM, store multiple 4-73
stop (STOP) 4-103
storage addressing, rules for 3-8
store multiple (STM) 4-73
struct ure, assembler-language 2-7

alphameric characters 2-7
assembler instructions 2-7
attribute references 2-12
character set 2-7
location counter reference 2-11
machine instructions 2-7
macro instructions 2-7
sample code 2-11
self-defining terms 2-15
source module 2-7
special characters 2-7
symbols 2-8
symbols table 2-8
terms 2-7

structured macros A-I
subtract, binary 3-5
subtract address (SA) 4-22
subtract instructions (see arithmetic instructions)
subtraction, unsigned 3-5
summary of constants F-1
supervisor call (SVC) 4-104
SVC, supervisor call 4-104
SW, subtract word 4-25
SWCY, subtract word with carry 4-27
SWI, subtract word immediate 4-26
symbol cross-reference table 2-8
symbol definition sample 2-11
symbol table 2-8
symbolic addressing 5-41

establishing addressability 5-41
DROP-drop base register 5-47
USING-use base address register 5-42

symbolic linkage 5-49
ENTRY -identify entry point symbol 5-52
EXTRN-identify external symbol 5-53
WXTRN-identify weak external symbol 5-54

symbolic parameter attributes 2-8
symbolic parameters 6-8
symbolic representation 5-3
symbols 2-8

predefined register 2-9
previously defined 2-11
restrictions on symbols 2-9

symbols, system variable 6-19
syntactic parentheses 2-21
system variable symbols 6-19

&SYSLIST 6-19
&SYSNDX
&SYSPARM

6-21
6-22

TBT, test bit 4-99
TBTR, test bit and reset 4-100
TBTS, test bit and set 4-101
TBTV, test bit and invert 4-100
terms 2-7
test instructions (see logical instructions)
TITLE-identify assembly output 5-60
truncating constants 5-7

examples of 5-7
TWI, test word immediate 4-101

ubyte 4-6
unconditional branch, AGO 6-56
unsigned addition 3-5
unsigned number 3-5
unsigned subtraction 3-5
USING-use base address register 5-42
USING instruction format 5-46
using the macro assembler 7-1

V-type address constant 5-22
variable symbols 2-9
vcon 4-6
VR, invert register 4-91

Index X-9

W-type address constant 5-23
waddr 4-6
wdisp 4-6
word 4-6
word displacement, base register 3-10
word displacement short, base register
WXTRN-identify weak external symbol

XB, exclusive OR byte 4-89
XD, exclusive OR doubleword 4-90
XW, exclusive OR word 4-90

3-9
5-54

XWI, exclusive OR word immediate 4-91

4953 processor 3-3
4955 processor 3-3

X-I0 SC34-0124

C
I
I
I
I
I
I
I
I
I
I
I
I

, I
I
I
I
I
I
I

€
;0 ...,
''11
0
.0:
,~

C
0
'~

to

'c
~
Cl)

o

Program Preparation Subsystem
Macro Assembler: User's Guide

SC34-0124-0

YOUR COMMENTS, PLEASE ...

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. All comments
and suggestions become the property of IBM.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or to the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

READER'S
COMMENT
FORM

Whatisyouroccupation?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_

Number of latest Technical Newsletter (if any) concerning this publication: _____ ~_~_~~_
Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

SC34-0124-0

Your comments, please ...

This manual is part of a library that serves as a reference source for IBM systems.
Your comments on the other side of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All comments and
suggestions become the property of IBM.

Fold Fold

Fold

--- ------ - ---- ---- - ---- - - --------___ 0-

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N.E.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

First Class
Permit 40
Armonk
New York

Fold

n (:) s
~
0
~

'CC

r-
5'
CD

I
I

, I

: I
, I
I tii

s:
CJ)

~
[...
"'0
(3
~
Q)

3
:,0
CD
"C
Q)

§
o·
~

CJ)
c:
c-
UI

I ~
CD

\ 3 !'

s:
Q)
(')

(3

~
CD

3
c-
~

~
~-
Gl
c:
c:
CD

~
~
CD
c..
5'
C
en
~
CJ)

n
w
~

~
f'.)
~

6

--- ------ ----- ---- - ---- - - ----------_ .-
®

International Business Machines Corporation

General Systems Division
57750 Glenridge Drive N.E.
P. O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

SC34-0124-0

