
Series/ 1 

The 
Small 

Computer 
Concept 

4 

8 

c 

1 

Series/ 1 

5 ·7 

The A B 
Small 
Computer· 
Concept 

D E 



IBM Series/1 

The 
Small 

Computer 
Concept 

by 

James D. Schoeffler 

Prqfessor and Chairman 
Department of Computer and Information Science 

Cleveland State University 
Cleveland, Ohio 

International Business Machines Corporation 
General Systems Division 

Atlanta, Georgia 



Library of Congress Catalog Card Number: 78-61315 

IBM Order Number: SH30-0237 

Additional copies of this book can be obtained from local IBM Branch 
Offices, using the IBM Order Number. 

Comments concerning this publication should be addressed to 
International Business Machi.nes Corporation, General Systems 

Division, Technical Publications, Dept. 796, P.O. Box 2150, 
Atlanta, Georgia 30301. 

I BM may use and distribute any of the information you supply 
in any way it believes appropriate without incurring any obligation 

whatever. You may, of course, continue to use the information supplied. 

©Copyright International Business Machines Corporation 1978 

First edition published August, 1978 

Printed in the United States of America 



Preface 

The trend toward small computers and distributed 
systems for a wide variety of applications has been termed a 
revolution by some. Although the impressive decrease in the 
cost of these systems has certainly made this trend feasible, 
the driving force has been the changing nature of computer 
use. Applications today tend to be much more interactive 
and online and less suitable for batch processing. Because 
such applications are critical to the operation of business or 
industry, they place stringent demands on system hardware, 
application and system software, and system maintenance. 

Consequently, the choice of a small computer system is 
not totally determined by its price. Unfortunately, too many 
small computer systems have been designed to minimize price 
rather than to meet such critical specifications. Hence, users 
have often been frustrated in their attempts to utilize the 
benefits of small computers and distributed applications. 

After being exposed to the designers and planners of the 
Series/1 following its introduction by IBM in November 
1976, I was enthusiastic about writing this book. I believe 
that the Series/1 was expressly designed to meet the kinds 
of critical applications indicated above. I view it as an 
"integrated system" in the sense that the hardware, software, 
and maintenance concepts all were designed from the begin­
ning to work closely together so that critical applications can 
be realized. Furthermore, the system design is such that non­
IBM devices can be included in the system without sacrificing 
performance, use of system software, reliability, or availa­
bility. This aspect of small computer applications is very 
important to the original equipment manufacturers design­
ing application systems around such a computer. 

For the above reasons, I have organized the book around 
this integrated hardware, software, and maintenance concept. 
The book is intended for users who wish to critically evaluate 
the IBM Series/1 for their applications and want to know 
what it does, how it does it, and why it does it that way. 
The book is not a handbook or reproduction of the various 
system reference manuals. It is not an attempt to describe 
every processor, software product, or device in great detail. 
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Rather, those items which I considered important to the 
overall integration of the product into successful applications 
have been included. 

Throughout this project, I have been aided by useful 
suggestions from a variety of IBM people, most of whose 
names I do not even know. However, three people in par­
ticular contributed significantly: Mr. Michael I. Davis, one 
of the principal architects of the Series/1; Mr. Harry J. 
Dewhurst of the marketing group; and Mr. Charles E. Snyder, 
my editor for the book. In my many discussions of the 
Series/1, its objectives, its realization, and its future, I have 
been impressed with their knowledge and insight of small 
computers and grateful for the opportunity of knowing 
and working with them. 

James D. Schoeffler July, 1978 

iv 



Contents 

Chapter 1. Introduction to the Small Computer Concept 1 
Small Computer Application Needs . . 2 
The Multifunction Terminal Application 5 

Hardware Support 7 
Software Support 10 
Support Needs 11 

The Communications' Concentrator Application 11 
The Concentrator Function 15 
Hardware Support 16 
Software Support 16 

The Front-End Processor Application 22 
Hardware and Software Support. 22 

The Data Acquisition and Control Application 25 
The Data Base . . . . . . . 26 
Response Time . . . . . . 26 
Hardware and Software Structure 27 
Software Support . . . . . 30 

Summary of Application Needs . . 34 

Chapter 2. Overview of the IBM Series/1 38 
Series/1 Architecture 38 

System Architecture 38 
The Processors 39 
Input/Output . . 39 
Main Storage . . 43 
Address Translation 43 
Software Organization 47 
Control Program Support 48 
Event Driven Executive 48 
Higher-Level Languages 49 
Self-Diagnosis . . . . 49 
Maintenance . . . . 50 

Hardware and Software Support of Multiple, Cooperating 
Application Tasks . . . . . . . 53 

Interrupt System . . . . . . . 55 
Multiprogramming and Multitasking 55 
Storage Management . . . . . 58 
Intertask Communications 59 

Communications with Remote Devices and Computers 63 
Communications' Protocols . . . . 63 
Communications' Software . . . . 68 
Communications to an I BM System/370 68 

v 



Auxiliary Storage Devices 
Disks. . . . . . 

69 
69 
69 Diskettes 

Large-Volume Diskette . 70 
User Attachment Features. 71 

Asynchronous Terminals 76 
OEM Devices . . . . 76 
Sensor-Based Devices 77 

Multiple Processors and a Shared Input/Output System 78 
Program Preparation Facilities . . . . 78 
The Series/1 and Overall Application Needs . . . . 79 

Chapter 3. Processor Organization . . . . . . . 81 
Overall Flow of Information in the Series/1 Processo~s 81 
Registers and Their Use by Tasks 87 
Storage and Manipulation of Data Types 90 

Logical or Flag Variables . . . . 90 
Character Variables . . . . . . 90 
Unsigned and Signed Numbers of Various Precisions 91 
Floating-Point Numbers with Two Precisions 91 

Processor States and the Interrupt System 95 
Initial Program Load (IPL} State 99 
Stop State . . 100 
Wait State . . . . . . . . 100 
Load State . . . . . . . . 101 
Supervisor and Problem States . 101 

Effect of Interrupts on the Processor State . 102 
Input/Output Interrupts . . . . . . 102 
Internal or Class Interrupts . . . . . 103 
Different Responses to the Two Types of Interrupts . 106 

Class Interrupts in the Use of Stacks . . . . . . . 107 
Data Stacking Description . . . . . . . . . . 107 
Data Stacking Example-Allocating Fixed Storage Areas . . 116 
Linkage Stacking Description . . . . . . . . . 119 
Linkage Stacking Example-Reentrant Subroutine . . 123 

Interrupt Masking Facilities and the Interrupt Response 
Algorithm . . . . . 125 

Summary Mask . . . 127 
Disabled (Set to Zero) . 130 
Enabled (Set to One) . 130 
Interrupt Level Mask Register . 130 
Device Mask . . . . . . . 131 

vi 



Chapter 4. Organization and Management of Main Storage . . 132 
User Concerns in Main Storage Organization . . 133 

Main Storage Addressing Modes . 135 
Direct and Indirect . 136 
Register Modes . . . . . 137 
Based Addressing. . . . . 141 
Indirect and Base Relative . . 142 
Excluded Modes . . . . 151 
Main Storage Protection . 152 
Address Key Protection . 152 
Storage Access Types . . 153 
Storage Access Checking . 153 
Multiple Task Protection . 159 
Main Storage Mapping Systems . 161 
Storage Segmentation . . . 161 
Mapping Multiple Tasks . 165 
Mapped Storage Protection . 168 
Segmentation Registers . . 168 
User Address Spaces . . . 170 
Protection Violations . . 171 

Intertask Communications . 171 
Tasks and the Operating System . . 175 
Tasks and Separate Data . . . 175 
Task Switching . . . . . . 177 
Auxiliary Storage Management . 179 
Storage Overlay Management . . 186 

Chapter 5. Organization and Management of the 
Input/Output System . . . . . . . . . 190 

Important Factors in Computer Input/Output . 190 
Processor Level . . . . . . . 191 
The Basic Software Level . . . . . . . 191 
The Cooperating Task Set Level . 194 

Overview of the Series/1 Input/Output Channel . 195 
Input and Output Under Direct Program Control . 205 

Polling vs. Interrupt-Driven Input/Output . 208 
Effects of Buffering on Task Execution . 209 
Direct Program Control Instructions . 216 
Error Detection and Reporting . . . . . 224 
Overall Operation of Direct Program Control Input/Output . . 225 

Input and Output in the Cycle Stealing Mode . . . . . 233 
Use of Microprocessors in Cycle Steal Controllers . . . 238 
Cycle Steal Input/Output _Instructions and Commands . 239 

vii 



Storage Protection and Address Translation Effects on 
Input/Output Operations . . . . . . . . . 249 

Storage Protection Without Address Translation . 249 
Storage Protection With Address Translation . 250 

Software Use of Input/Output Hardware . . . . 255 
Control Program Support of Input/Output . . 255 
Operating System Support of Input/Output . . 270 

Chapter 6. The Instruction Set and Its Use . 278 
Instruction Formats . . . . . . . . 282 
Instructions Used for Data Movement . . . 284 

Basic Data Movement Instructions . . . 287 
Floating-Point Data Movement Instructions . 287 
String-Data Movement Instructions . . . . 290 
Special Data-Type Movement Instructions . 290 

Instructions Used for Arithmetic and Logical Operations . 291 
Numeric Data Operations . . . 294 
Floating-Point Data Operations . 295 
Logical Data Operations . 295 
Shifting Data Operations . . . 296 

Instructions Associated with Testing Operations' and 
Computations' Status . . . . . . . . . . . . . 301 

Interruptible and Non-Interruptible Testing Instructions . . 302 
Bit and Field Testing Instructions . . . . . . . . 303 
Conditional Transfer Instructions . . . . . . . . 307 

Instructions Associated with Structured Programming and 
Control of Concurrency . . . . . . 312 

Serializing Resource Usage . . . . . . . . . . 312 
Application Software Modularizing . . . . . . . . 315 

Instructions Associated with Management of the Processor . 320 

Chapter 7. Interfacing of User Devices . . . . . . . 326 
Importance of the Processor Input/Output Architecture . . 327 
Importance of System Software Architecture . 327 
Timers and Their Use . . . 329 

Interval Timing . . . . . . 336 
Pulse Rate Measurement . . . 336 
Pulse Duration Measurement . . 342 
Error Detection . . . . . . 342 

The Teletypewriter Interface . . . 343 
Asynchronous Data Transmission . 345 
The Asynchronous Interface . 347 
Software Support . . . . . . 352 

viii 



The Integrated Digital Input/Output Interface . . . 352 
Structure of the Digital Input/Output Interface . 353 
Digital Output . . . . . . . 355 
External Device Synchronization . 355 
Digital Input . . . . . . . . 358 

The Direct Program Control OEM Interface . 362 
OEM Interface Architecture . 363 
The OEM Interface Bus . 363 
Typical Output Sequence . 370 
Typical Input Sequence . 371 
Interrupt Response . . . 371 

Isolated and Directly Connected Channel Interfaces . 378 
Channel Repower .378 
Socket Adapter . . . . . . 379 
Self-Diagnostic Capability . . . 379 
The Instrumentation Interface . 380 

Chapter 8. Distributed Processing Support . 386 
The Many Forms of Distributed Processing . 386 

Centralized Host . . . . . . . 386 
Remote Processors . . . . . . 388 
Distributed Application Example . 388 
Distributed Networks . . 390 
First-Level Protocols . 392 
Second-Level Protocols . . 393 
Third-Level Protocols . . 396 

Structure of Basic Communications' Support of the Series/1 . 397 
Remote Stations' Connections . . . . 401 
Half- and Full-Duplex Communications . . . 401 
Communications' Protocols . . . . . . . 402 
Vertical and Longitudinal Redundancy Checks . 403 
Cyclic Redundancy Checks . . . . . . . 404 
Data Transparency . . . . . . . . . . 405 

Asynchronous Communications' Protocol and its Hardware 
and Software Support . . . . 405 

Line Turnaround Characters . 406 
Asynchronous Interfaces . 406 
Cycle Steal Capability . . . 407 
Software Control . . . . . 408 

Binary Synchronous Communications' Protocols and Support . 408 
Message Structure . 408 
Communications' Example . 410 
Character Stuffing . . . . 414 

ix 



Interface Code Support . 414 
Operating Modes . . . . 415 
Control Characters . . . 421 

The Synchronous Data Link Control Protocol and its Hardware 
and Software Support. . 423 

Need for SDLC . . . 423 
SDLC Messages . . . 424 
Message Coordination . 424 
Message Acknowledgement . 428 
Code I ndependency . . 429 
Bit Stuffing . 430 
Station Polling . 431 
SDLC Interfaces . 435 

Integration of Communications' Support Software into 
the Series/1 . . . . . . . . . . . 436 

Communications' Software Organization . . . . . 436 
Event-Driven Software . . . . . . . . . . . 440 

Dedicated Hardware and Software Support for Communications: 
The Programmable Communications Subsystem . 441 

Subsystem Architecture . 441 
Communications' Interfaces . 442 
Subsystem Controller . . 444 
Line Control Software . . . 448 
User-Generated Software . . 448 
Integrated Software Structure . 449 

Chapter 9. Reliability, Availability, and Serviceability (RAS) . 453 
The Contribution of Maintainability to the Overall System . 453 
Design and Organization for Reliability . 455 

Component and Device Reliability . 455 
Processor Error Detection . . . 461 
Battery Backup . . . . . . 462 
Input/Output Error Detection . 463 
Device Error Detection . . . . 463 

Error Diagnosis: The Key to High Availability . 467 
Microprocessor Based Self-Diagnosis . 467 
Diagnostic Software . . 469 
Interface Diagnosis . . 470 
Diagnostic Commands . 472 
Error Logging . . . . 474 

Support for Maintenance . 474 

Index . 476 

x 



Figures 

Figure 1. 
Figure 2. 

Figure 3. 

Figure 4. 
Figure 5. 
Figure 6. 
Figure 7. 
Figure 8. 

Figure 9. 

Figure 10. 
Figure 11. 
Figure 12. 
Figure 13. 

Essential ingredients of a small computer system 
Common configuration for a multifunction 
terminal application . . . . . . . . . . 
Multiple cooperating programs for the multifunction 
terminal application . . . . . 
Concentrator configuration 
Concentration of communications 
The front-end processor 
The data acquisition and control application . 
Set of concurrent tasks to carry out data 
acquisition and control . . . . . . 
IBM Series/l: an integrated system of hardware, 
software and maintenance elements 
Features of the IBM Series/1 processor family 
Address relocation for user programs . . . 
Series/1 self-diagnosis . . 
Support for multiprogramming of multiple user 
tasks . . . . . . . . . . . 

Figure 14. Task sets and the organization of main storage 

4 

8 

12 
17 
18 
23 
28 

32 

40 
44 
46 
51 

54 

under the Realtime Programming System . 56 
Figure 15. Communications among tasks . . . . 60 
Figure 16. Different data link structures . . . . . 64 
Figure 17. A subsystem can be flexibly configured to 

interface with a combination of analog and 
digital, input and output devices . . . . 72 

Figure 18. Overall data flow in the Series/1 processor 84 
Figure 19. The level status block . . . . . . 88 
Figure 20. Floating-point numbers . . . . . 92 
Figure 21. Indicator set in the level status register 96 
Figure 22. Basic processor states and the transitions 

among them. . . . . . . . . . . . . . 98 
Figure 23. Input/output and class interrupts and the response 

of the processor . . . . . . . 104 
Figure 24. Multilevel priority interrupt response . . . 108 
Figure 25. The processor status word . . . . . . . 110 
Figure 26. The relationship of the stack control block to the 

data stack . . . . . . . . . . . . . 114 
Figure 27. Adding and deleting elements from a stack . . 115 
Figure 28. Example of stack usage: allocation of storage 

areas to concurrent programs . . . . . . . 118 

xi 



Figure 29. Example of hardware and software integrated 
design . 122 

Figure 30. Example of stack usage: subroutine linkage and 
allocation of a work area . 126 

Figure 31. The priority interrupt algorithm . 128 
Figure 32. Storage addressing modes which do not use 

registers . . 138 
Figure 33. Storage addressing modes using registers 

for address storage . 142 
Figure 34. Base relative addressing and its variations . . 144 
Figure 35. Base relative addressing of items within a 

contiguous base . 146 
Figure 36. Combined base relative and indirect addressing 

mode solutions to programming problems . 148 
Figure 37. Combination of pre· and post·base relative 

indirect addressing . 150 
Figure 38. Storage key protection of main storage . 154 
Figure 39. Operation of storage protection during an access . 156 
Figure 40. Use of the three storage protection keys by 

various classes of operations . 160 
Figure 41. Three examples of address key storage protection . 162 
Figure 42. Conceptual basis for storage address translation . 166 
Figure 43. Conceptual mapping of main storage for two tasks 

sharing common data and subroutine areas . 167 
Figure 44. Mapping task address spaces into physical 

storage using multiple sets of segmentation 
registers . . 169 

Figure 45. Multiple address keys for each task . . 172 
Figure 46. Communications between an application task and 

the operating system via supervisor calls which 
generate a class interrupt . 176 

Figure 47. Addressing modes facilitate reentrant routines' 
use of multiple work areas. . 178 

Figure 48. Context switching . 180 
Figure 49. The Realtime Programming System storage 

management . 184 
Figure 50. Overlay methods of storage management . . 187 
Figure 51. The levels from which input/output must be 

considered . 192 
Figure 52. Input/output device combinations . 196 
Figure 53. The Series/1 4955 Processor and input/output 

attachments . 200 

xii 



Figure 54. Organization of the microprocessor-controlled 
interface between the input/output channel 
and devices . . 204 

Figure 55. The Series/1 input/output bus: asynchronous 
and multidropped . 206 

Figure 56. Direct program control of devices . 209 
Figure 57. Effect of non-overlapped input/output on task 

execution . 212 
Figure 58. Direct program control and overlapped input/output . 214 
Figure 59. Direct program control performed with a single 

instruction-Operate 1/0 . 218 
Figure 60. The major input/output commands for direct 

program control of devices . 221 
Figure 61. Individual devices under program control . . 223 
Figure 62. Definition of the eight condition codes which 

may be reported after each input/output 
instruction . . 226 

Figure 63. Condition codes accompanying each 
input/output interrupt . 228 

Figure 64. A common input/output control routine addressing 
different immediate device control blocks . 234 

Figure 65. Cycle stealing input/output (part 1) . 236 
Figure 66. Cycle stealing input/output (part 2) . 240 
Figure 67. The device control block contains the data 

necessary to carry out one transfer between 
a specific device and main storage . 244 

Figure 68. Sequence of operations during cycle stealing 
transfers . 246 

Figure 69. Input/output is consistent with storage protection 
of both mapped and unmapped processors . 251 

Figure 70. Communications between a task and the operating 
system using the Supervisor Call (SVC) 
convention . . 258 

Figure 71. Overlapping and non-overlapping of input/output 
control . 262 

Figure 72. Input/output functions available in the Control 
Program Support package . . 264 

Figure 73. Access to files using Control Program Support . 267 
Figure 74. Organization of main storage for a dedicated 

application utilizing the Control Program 
Support package . . 268 

Figure 75. Four data set organizations supported under the 
Realtime Programming System . 272 

xiii 



Figure 76. The five areas into which the instruction set 
can be classified . . . . . . . . . . . 281 

Figure 77. The basic one-word instruction format . 285 
Figure 78. Addressing modes and their additional storage 

requirements . . . . . . . . . . 286 
Figure 79. Series/1 instructions and modes for data 

movement . . . . . . . . . . . 288 
Figure 80. Arithmetic operations, data types, and modes . 292 
Figure 81. Logical instruction set and modes of use . . . 298 
Figure 82. Options for shifting register contents . . 300 
Figure 83. Operation and computation testing instructions . 304 
Figure 84. Comparing a string of bytes . . . 308 
Figure 85. The jump On Count instruction . . . . . 310 
Figure 86. Instructions which can be used to control 

concurrency . . . . . . . . 313 
Figure 87. Using disabling and enabling interrupts to 

control concurrency . . . . . . . . . 314 
Figure 88. Serializing the use of a resource using the Test 

and Set type of instruction . . . . . . 316 
Figure 89. The subroutine concept . . . . . . . . 318 
Figure 90. Structuring a task or program into modules . . 319 
Figure 91. The level status block and module scheduling . 322 
Figure 92. The privileged instructions used to read and write 

Series/1 system-level registers, and control overall 
processor performance . . . . . . . . . 324 

Figure 93. Options for user attachments to the Series/1 . . . 330 
Figure 94. Block diagram of the timers showing their 

input/output channel connections and external 
signals for special uses . . . . . . . . . . 333 

Figure 95. Using the timer to provide interval timing to the 
processor . . . . . . . . . 337 

Figure 96. Pulse rate measurement using a pair of timers . 340 
Figure 97. Pulse duration measurement using the external 

signal and a timer . . . . . . . . . 344 
Figure 98. Start-stop character transmission . . . . . 346 
Figure 99. The teletypewriter interface block diagram . . 348 
Figure 100. Integrated digital input and output interface . . 354 
Figure 101. The handshake convention used on digital 

group output (part 1) . . . . . . . . . 356 
Figure 102. The handshake convention used on digital group 

output (part 2). . . . . . . . . . 360 
Figure 103. Block diagram of the OEM interface . 364 
Figure 104. The direct program control interface bus . 368 

xiv 



Figure 105. Data bus output sequence . . 372 
Figure 106. Data bus input sequence . 374 
Figure 107. Data bus interrupt sequence . 376 
Figure 108. The sixteen-line interface bus . . 381 
Figure 109. Data transfer coordination . 383 
Figure 110. Data transfers with multiple listeners . 384 
Figure 111. Centralized processing . . 387 
Figure 11 2. Remote processing . . 389 
Figure 11 3. A network of processors . 391 
Figure 114. The three communications' protocol levels . 394 
Figure 115. The structure of communications' support . 398 
Figure 116. Basic message structure . . . . . . . . 409 
Figure 117. Example of a character sequence for a single 

message . . . . . . 411 
Figure 11 8. Exchange of messages . . . . . . . . 412 
Figure 119. Error detection . . . . . . . . . . 413 
Figure 120. Names and functions of special characters . 416 
Figure 121. Binary synchronous interface modes . 420 
Figure 122. Example of a message exchange containing an 

Initial Program Load command and 
acknowledgement . . . . . . . . . . 422 

Figure 123. Basic concept of SDLC . . . . . . . . . 425 
Figure 124. Detailed definition of the SDLC frame format . 426 
Figure 125. Bit stuffing. . . . . . . . . . . . . 432 
Figure 126. Polling takes place with the single P/F bit within 

the control byte of a frame . . . . . . 434 
Figure 127. Software use of communications . . . . . 438 
Figure 128. Basic functions provided by the Programmable 

Communications Subsystem . . . . . . . 443 
Figure 129. Hardware organization of the Programmable 

Communications Subsystem . . . . . . . 445 
Figure 130. Software organization within the Programmable 

Communications Subsystem . . . . . . . . 446 
Figure 131. Integrating software support of the Programmable 

Communications Subsystem into the Realtime 
Programming System operating system . 450 

Figure 132. Availability states . . . . . 456 
Figure 133. Elements of error detection . . . . . 460 
Figure 134. Disk and diskette error detection . 464 
Figure 135. Hardware and software response to a power 

failure . . . . . . . . . . . . . 466 

xv 



Figure 136. Processor self-checking . . . . 468 
Figure 137. External device diagnosis . . . 470 
Figure 138. Teletypewriter interface design . 471 
Figure 139. The integrated digital input/output interface. . 473 

Tables 

Table 1. Integrated system of hardware needs . . . . . 35 
Table 2. Integrated system of software needs . . . . . 36 
Table 3. Integrated system of maintenance and support needs 37 

xvi 



Introduction to the 
Small Computer 
Concept 

Industry, banking, manufacturing, marketing, health care, 
and many other enterprises have achieved increased produc­
tivity in an impressive variety of applications by using small 
computer systems. These applications have been and are 
successful because users have implemented the total, small 
computer system concept instead of relying on the operation 
of the small computer by itself. 

A system is a set of closely interacting subsystems which, 
in turn, have component parts. It is important, however, to 
differentiate between the use of the word system when it is 
applied to small computers and when it is used in other 
contexts. Typically, to create a system in small computer 
applications, end users and third party vendors must inte­
grate processors, peripherals, software systems, and applica­
tion software. 

Conceptually, we should emphasize that the "tools" or 
components made available from a variety of sources must 
be integrated into a system that meets the application needs 
of the individual user. Frequently, manufacturers design 
these components completely independent of one another; 
consequently, integrating them into a single system is 
neither a straightforward nor a simple task. This chapter 
discusses four small computer applications and will serve as 
an introduction to computers' systems. 



Users, whether they are original equipment manufacturers 
imbedding a small computer into their products or are end 
users, need computer components that can be integrated as 
successfully as if each one were designed by the same vendor 
to function solely for the individual user's application. 
Consequently, small computer applications are particularly 
sensitive to three constituents: 

1. An integrated system of hardware components 

2. An integrated system of software components 

3. An integrated system of maintenance and support 

An integrated system, in this context, means that the 
design of each particular part of the hardware, software, 
maintenance equipment, or maintenance procedures 
recognizes that users will later integrate these discrete 
components into their application systems. To enable each 
user to do this, there must exist a comprehensive and detailed 
overall system organization or "architecture" for hardware, 
software, and maintenance. 

Small Computer Application Needs 
The term "architecture" describes the overall organization 

and discipline of the interconnections among the integrated 
system of hardware and software components and their 
maintenance. A modern architecture insures that the user of 
these systems can incorporate future developments in mem­
ories, auxiliary storage devices, distributed systems, and 

. other peripherals without a complete system hardware and 
software redesign. Similarly, an integrated system of software 
components-including, for example, operating system soft­
ware and language preparation facilities-is essential if users 
are to realize the economic benefits of their systems. More­
over, the software system must utilize the architecture of 
the hardware to enable both components to work together 
as a system. 

Operating systems must anticipate the variety of present 
and future application demands so the user does not have to 
maintain an excessive number of systems over an extended 
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period of time. Reliable and serviceable hardware not only 
gives a long mean-time-between-failures but also facilitates 
error diagnosis so repairs can be accomplished quickly when 
failures occur. Because small computers often involve a 
mixture of special attachments, extensive self-diagnosis is 
especially important to pinpoint the source of difficulty to 
a printed circuit card or device. Firm vendor commitment 
to this diagnostic concept through worldwide maintenance 
of hardware and software for the expected lifetime(s) of the 
system(s) is necessary if users, in turn, are to make firm 
commitments to small computers. Vendor commitments 
should include user access to trained analysts and engineers 
when subtle problems arise in the hardware or software 
during development of a new application. Only when all of 
these components are present is a user in a position to attain 
an economical use of the small computer over an extended 
period of time. 

The I BM Series/1 has been expressly designed to serve 
these user requirements. It is a family of small computer 
hardware components, integrated with an extensive range 
of software systems and self-diagnostic capabilities, and 
backed up by a strong maintenance force. The IBM Series/1 
is a general-purpose family intended to serve many applica­
tion areas. 

The name Series/I indicates that the hardware, software, 
and maintenance products can be used as components or 
"tools" to build small computer application systems 
(Figure 1 ). These components are part of a "system" 
because Series/1 has an overall hardware, software, and 
maintenance architecture and I BM has designed each com­
ponent to function specifically within this structure. Further­
more, the overall architecture has been composed to permit 
non-IBM hardware and software to be fully and successfully 
integrated into the final system. This book emphasizes the 
overall system concept because successful implementation 
of this concept is crucially important to the success of 
original equipment manufacturers, system integrators, and 
end users of small computer systems. 
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Integrated Integrated Integrated 
system of system of system of 
hardware software maintenance 
components components and support 

Figure 1. Essential ingredients of a small computer system 

This chapter examines several small computer application 
areas, identifying their application-imposed needs in hard­
ware, software, and support. These applications are 
presented here in the way that they are currently imple­
mented in the industry and not necessarily as they might be 
realized in the IBM Series/1 architecture. Chapter 2 intro­
duces the specific IBM Series/1 hardware and software 
architectures which answer these identified needs. 

Four diverse but very common small computer applica­
tions are: 

1. The multifunction terminal 

2. The communications' concentrator 

3. The front-end processor 

4. Data acquisition and control 

These examples illustrate the broad range of applications 
for which the small computer is a suitable solution. By 
examining typical hardware configurations and software 
implementations, it is possible to abstract the hardware, 
software, and maintenance requirements for each of these 
applications. 
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Terminology usage varies considerably within the industry. 
In this chapter, conventional terminology (e.g. Direct Memory 
Access [ DMA]) is used and related to the standard Series/1 
terminology (e.g., processor 1/0 channel). The remainder 
of this book and all IBM documentation use the standard 
Series/1 terminology. 

The Multifunction Terminal Application 
Small computers have opened many alternatives to 

business data processing. Among the most common and 
successful methods of data handling are: 

• Key entry-the process of entering data; converting 
human-oriented documents into machine-readable 
media; formatting, editing, and compacting data; and 
finally-entering the data directly or indirectly into a 
computer through magnetic tape, diskette, or disk 
intermediate storage. 

• Remote job entry-a remote terminal controls peripheral 
devices such as card, diskette, or tape readers and line 
printers. The terminal accepts jobs through the input 
devices, transmits them to a remote computer, receives 
the output from the computer, and produces reports 
locally. Remote job entry terminals permit quick access 
to centralized computer systems even when the users are 
not physically proximate. 

• Transaction processing on a local data base-a small com­
puter system maintains a local data base which the user 
frequently accesses and updates. Locally, the system 
executes special application programs. Access to a host 
computer system for either data storage retrieval or more 
extensive computational tasks is a characteristic of this 
terminal. 

The simplest data entry application provides a key punch 
replacement by collecting the characters in one record in the 
small computer main storage and transmitting it to an output 
program when the record is complete. A more useful form 
of data entry permits formatted input; the operator selects 
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one from a number of predesigned formats. If the number 
of formats is large, they are stored in auxiliary storage with 
only the active formats in main storage at any given time. 
Validity checking of data fields, prompting of operators, and 
other standard operations can occur with this form of data 
entry. Similar functions are desirable in transaction process­
ing applications where the type of transaction determines 
the data needed for that transaction. 

Typical applications where the multifunction terminal is 
desirable include: 

Order Processing 

• Entering orders 

• Inquiring about the status of orders 

• Interactive specification of data associated with an order 

• Reporting the status of orders and maintenance of the 
local order data base 

Warehouse Inventory Control 

• Maintaining the local data base 

• Matching orders against inventory 

• Communicating with a remote computer to get orders and 
to report the status of orders 

• Interactive inquiry into the inventory status 

• Reporting of overall orders and the inventory status 

Plant Scheduling and Production Data Collection 

• Gathering data from operator terminals about production 
status 

• Maintaining a local data base containing current orders and 
the status of in-process inventory 

• Inquiring about the status of orders, labor, production, 
and machines 

• Rescheduling in response to daily events 

• Communicating to remote computers for overall plant 
control 
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Similar applications occur in many other industrial and 
service activities. 

Hardware Support 

Each of these business data processing applications 
requires similar hardware devices and software support. 
There is a logical trend in the data processing industry to 
combine these functions within the so-called multifunction 
terminal. The specific number of keyboard/CRT statiqns, 
types of peripherals, speeds and numbers of communications' 
ports and volume-auxiliary storage varies with the specific 
user; but the application needs can be summarized. 

Figure 2 shows the hardware system needed to support 
the multifunction terminal application. Terminals generally 
provide keyboard and alphameric display capability but they 
can be more extensive; for instance, they may provide pro­
grammable displays to guide transaction data entering and 
validation. The system must support data storage devices, 
especially the simpler ones like diskettes. Communications 
to the remote or host computer can be at low, medium, or 
high speeds as the application (and costs) dictate. Conse­
quently, the communications' hardware support must incor­
porate these requirements. Frequently, special display 
or output devices are needed. 

Since no single computer vendor can supply every type of 
device for all applications, users must be able to easily 
attach other vendors' devices. Otherwise, the multifunction 
terminal would have limited application: manufacturers 
would have to develop a discrete terminal for each special 
application-a costly duplication of effort. From the point 
of view of the terminal supplier, this generality of small 
computer hardware architecture and support of special 
devices permits suppliers to add to their product lines 
economically without incurring a "dead end" design. A 
general hardware specification for this application can be 
identified. 

Small computers shou.ld have an architecture com­
patible with both large and small systems. 
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The multifunction terminal combines, on a local data base, common business data processing applications 
like key entry, remote job entry, and transaction processing-which have similar hardware, software, and 
maintenance needs-into a common terminal with great flexibility and wide applicability. 

IO Figure 2. Common configuration for a multifunction terminal application (2 of 2) 



The small computer should have an instruction set 
capable of supporting both business data processing 
and communications-oriented applications. 

The hardware system should effectively integrate 
communications' interfaces with the small com­
puter itself. 

Hardware and software compatibility are requirements for 
an economical application. Figure 3 shows a representative 
organization of the software needed to execute the multi­
function terminal application. Certain characteristics of this 
software-for instance,- its definition as a set of programs that 
interact to perform the application-occur repeatedly and 
dictate both the types of software needed in a small computer 
system environment and the types of hardware needed to 
support that software. 

For example, user requirements for terminal peripherals 
vary widely: an elementary school education application 
might require a mark-sense card reader; a research laboratory 
application might need a high-speed printer. 

The hardware and software systems must support 
the user's addition of input/output devices to the 
system. 

-::-

Partitioning an application into a set of related and inter­
reacting programs is a good way to design and implement 
an application. Programs are asynchronous. Typically, they 
need different kinds of data, devices, and other system 
resources like error recovery procedures. Breaking up the 
application into a set of programs structures the application 
into units of work-each unit performing a given function . 

. Software Support 

The integration of the communications' function into the 
hardware and software, while it is not as critical in this 
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application as it is for dedicated communications' applica­
tions, is still crucial to the system's maximization of terminal 
throughput. 

Support Needs 

The third element of the computer system design shown 
in Figure 1 is the support needs. Multifunction terminals 
are often used in office environments where on-site 
maintenance personnel are not knowledgeable about 
computers. In such instances, the user commonly contracts 
service for the computer system and its peripherals from 
the computer vendor. 

After they are fully operational, applications like multi­
function terminals become essential to a company's perform­
ance. Consequently, it is important that the system be 
accessible most of the time and, when it fails, that service 
be readily and promptly available. This service must remain 
available throughout the extended lifetime of the small 
computer because it is not economical for users to redesign 
their application software and buy new hardware for their 
terminals whenever the computer vendor markets a new 
generation of hardware or software. 

The multifunction terminal application needs are easily 
matched with small system hardware, software, and 
maintenance specifications. When these specifications are 
explicit, they not only permit users to evaluate a particular 
system relative to their application but also provide a guide 
as to the best use of the vendor's hardware, software, and 
support products. 

Chapter 2 matches the multifunction terminal application 
needs with the I BM Series/1. 

The Communications' Concentrator 
Application 

Communications involve the transmission and reception 
of data, through messages of various formats, between 
devices which may be long distances apart. The small com­
puter is especially attractive for this application because 
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Many different programs cooperate to support transaction processing: 

• Key entry 

• Inquiry from keyboard/CRT devices into data bases 

• Remote job entry 

• Printing of output 

• Communication with the host 

Software support, through a general purpose operating system, permits the combining of these business data 
processing applications into a single terminal. 

Size scaling for various users involves: 

• Addition or deletion of processors 

• Changing the size of the files 

• Changing types of communications' modes 

Size scaling does not change the generic application configuration or software organization. 

Figure 3. Multiple cooperating programs for the multifunction terminal application (3 of 3) 



its programmability permits an interconnection of terminals 
and devices which have widely differing characteristics-like 
varying transmission and reception speeds. Furthermore, 
the small computer system can take advantage of main and 
auxiliary storage to buffer various communicating devices; 
this insures that the overall system is not sensitive to differ­
ent communications' rates or intermittent unavailability of 
lines or devices. 

The Concentrator Function 

Frequently, the relatively high rental cost of communica­
tions' lines-in many applications accounting for a very 
significant part of the total teleprocessing system costs-is a 
major barrier to wide acceptance of data communications. 
The line costs depend primarily on the type of line used 
(leased or switched), the distance of the terminal(s) from 
the computer site, line quality, and bandwidth. Using 
fewer, high bandwidth lines-a major benefit provided by a 
concentrator-instead of many, low bandwidth lines can 
reduce line costs considerably. 

The primary function of a concentrator is to consolidate 
the input from a group of clustered terminals and transmit 
their combined data at high speed over a single line (or fewer 
lines) to a remote computer (Figure 4). In the past, special 
purpose, hardwired, hardware multiplexers have performed 
the data concentrator functions. Now, the availability of 
programmable, small computers with concentrators adds 
new dimensions to, greater flexibility for, and more 
economy in data processing applications. 

Concentrators are actually multiplexers enhanced with a 
buffer and a processor. They are more complex and more 
expensive than multiplexers but they can also do more to 
reduce line costs. For instance, users may program concen­
trators to perform the following functions: 

• Accommodate changes in format, codes, data rates, and 
communications' procedures 

• "Smooth" traffic 

• Compress data 
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• Adapt channel characteristics 

• Pre-scan data for unacceptable formats and errors 

Hardware Support 

In communications' applications, certain hardware and 
architectural needs are m~re critical than ~h~_X are in other 
types of applications. For example, there is a critical 
dependence on efficient communications' interfaces. 

To support the variety of transmission modes cur­
rently available, the small computer system must 
have extensive communications' interfaces; more­
over, the communications' hardware design must be 
efficiently integrated into the system architecture. 

This integration requires both a variety of interfaces support­
ing the standard line speeds and communications' disciplines, 
and adequate control from the processor so that the system 
can test the integrity of these interfaces for diagnostic 
purposes. The interface should do more than simply collect 
characters and insert them in storage. It should also recog­
nize critical or control characters and-under management of 
the processor-interrupt where appropriate. Such flexibility 
simplifies the software and is a good example of a carefully 
integrated hardware/software system. 

Software Support 

Figure 5 illustrates the programs necessary for the concen­
trator application. Note those programs that are concurrent 
because of the lack of timing control when information 
comes from terminals or communications' lines. Effective 
programming is critical because programs manipulate data 
at the bit and byte level; since the throughput of the system 
is usually very high, execution speed is a paramount consider­
ation. Generally, all of the hardware and software character­
istics previously mentioned in this chapter are apparent in 
communications' concentrators. 
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The concentrator consolidates input from a group of 
clustered terminals and transmits their combined data, at 
high speed, over a single line (or a few lines) to remote 
computers. 

Users may connect terminals directly or input data through 
communication lines which are relatively short in length 
compared to the distance between computers. 

Auxiliary storage permits message buffering for terminals. 

Figure 4. Concentrator configuration 
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Using the necessary communication modes and speeds, terminal control programs perform all high- and low­
speed, input/output operations with local terminals. 

Local data involves queues of messages waiting for transmission to a remote site, or waiting for outputting to 
a local terminal. 

Messages are formatted and grouped for high-speed transm.ission to remote terminals. 

More sophisticated interfaces can remove some of the programs: for example, asynchronous device inter­
faces can input characters through the Direct Memory Access channel and signal via interrupt when a 
control character is encountered. 

Figure 5. Concentration of communications (3 of 3) 



At the lowest level of consideration, a communications' 
attachment must be available to provide an interface to the 
actual device transmitting and receiving signals (the modem) 
across the dedicated or common carrier lines to the com­
puter itself. 

Most applications use a variety of low-, medium-, and 
high-speed communications' methods and must utilize inter­
faces for all of them. Many communications' methods 
identify special characters and use them for control purposes 
(e.g., to indicate that the system has received a message 
correctly, or that a terminal wishes to transmit data). 
Because the particular control characters vary widely, the 
user must be able to program the communications' interfaces. 
Interface identification of such a control character and sub­
sequent action notification to the small computer itself also 
require programmable interfaces. Software support for 
communications conditionally involves basic input/output 
routines whose functions are: 

1. To accept characters into an area in storage (a buffer) until 
either a line is complete or a control character has been 
received 

2. Then, to notify the communications' program, which 
a. Interprets the message 
b. Handles the communications' protocol with the com­

municating remote device 
c. Finally, activates the appropriate program for which the 

message is intended 

Because the overhead would be intolerable, an application 
involving many terminals or high rates of transmission can­
not interrupt the small computer for each character received. 
Instead, the communications' interfaces must insert charac­
ters into storage directly through Direct Memory Access 
(DMA) and interrupt only when the system detects a control 
or critical character. 

For example: the system accepts characters transmitted 
from a remote terminal and inserts them directly into a 
storage buffer until the system detects the end-of-line 
character. The computer then receives an interrupt to enable 
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the communications' program to handle this line and set itself 
up for the next line to be received. 

In this operation, several important needs appear, including: 

• Multiple programs cooperating to carry out an application 

• Concurrent execution of programs 

• Fast response to external events 

• Extensive manipulation of information items in bytes and 
words 

The Front-End Processor Application 
Closely related to the concentrator application is the use 

of the small computer to relieve the main application com­
puter (whether large or small) from the critical communica­
tions' program. The front-end processor application accom­
plishes this: essentially, by removing much of the data 
communications' control function from the central computer. 

The user can incorporate complex, computer-network 
communications' methods into the front-end processor so 
that the applications become completely independent of 
the types of communications' terminals, methods, and 
the specific communications' codes that are used in the 
application. 

Front-end processing is potentially the most important 
application of communications' processors because it can 
increase communications' throughput and processing 
efficiency, save programming, reduce equipment and line 
costs, and even extend the life of the processing facilities. 

Hardware and Software Support 

Figure 6 shows a possible configuration for a front-end 
processor. Flexible and varied communications' interfaces 
are obviously important. As illustrated, the concentrator 
and front-end processor organize software in a similar 
manner. 

Both the front-end processor and concentrator applica­
tions require software that responds rapidly to interrupts 
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Software organization for the front-end processor is similar to that for the concentrator-a set of programs 
to: 
• Control specific classes of terminals 

• Perform communications' protocol functions 

• Maintain buffers and queues 

• Control 1/0 to the host computer 

The front-end processor removes all data communications' control from the host computer and thereby 
reduces its workload considerably. 

The front-end processor incorporates all the required communications' protocol, buffering, error recovery, 
and formatting of messages. 

Communication with the host is through Direct Memory Access channels. 

Figure 6. The front-end processor (2 of 2) 



and events, and that can switch rapidly from program to pro­
gram in the application software complex. Because speed and 
throughput are more critical than generality of operating 
system features, communications' application requirements 
for the operating system are very different from those in 
the multifunction terminal application. 

When it is essential to the application, system soft­
ware must permit users to customize their systems. 

In critical applications like concentrator or front-end 
processing, users must be able to integrate basic system soft­
ware functions (task scheduling, for example) into their 
realtime software while retaining control over methods of 
error recovery and other operations. 

The last of the three application requirements for small 
computers described in Figure 1-the need for highly reliable 
equipment combined with the availability of good service 
even in remote locations-is especially important in com­
munications' applications. Communications' methods which 
detect all errors are obviously important. In many of these 
applications if the system is unavailable for any substantial 
period of time, the user is inconvenienced and important 
applications may be jeopardized. Consequently, to insure 
the acceptability and integrity of these systems, both the 
supplier and the user must provide adequate maintenance 
and support of the small computer installation. 

The Data Acquisition and 
Control Application 

Data acquisition is a critical task in many applications. 
The general purpose, small computer is an excellent system 
to perform this task because of its ability to respond quickly 
to external events, its programmability, and its com puta­
tional capability. These applications include: 

• Process control 

• Laboratory automations 
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• Discrete manufacturing control 

• Data collection and online inspection and testing 

• Control of materials handling systems, and others 

The Data Base 

In this application, data is usually gathered from sensors 
and instruments which are both unique to the process and 
process variable. The computers used must interface to a 
variety of instruments and special-purpose devices, and 
the software operating system supplied must support these 
devices. Often, the user gathers and enters data manually 
from special purpose terminals; this is a common practice 
in some discrete, manufacturing quality control and 
machine-monitoring applications. 

The following characteristics of the data base are common 
to data acquisition and control applications: 

• It is maintained in realtime 

• It is shared and operated upon by a variety of programs 

• It must often be maintained for long periods of time 

• It must be protected from inadvertent destruction 

• It is subject to on-demand display, interrogation, and­
sometimes-change by operators 

Response Time 

For data acquisition and control applications, response 
time to events is an important design consideration in 
hardware, software, and overall system structure. Data 
must be in the right place at the right time. Using dedicated 
small computers at the data source is one way to insure that 
most of the response requirements are fulfilled; sometimes, 
the application needs data from remote computers for a 
quick decision. For example: rescheduling an application 
when a failure is detected may be time-critical. A key point 
in the structuring of the system is how quickly central data 
bases or remote data bases can be accessed. 

External events may trigger or time some data acquisition 
programs. In these cases, the application requires a realtime 
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operating system with rapid scheduling of certain programs. 
If the application schedules programs on the basis of 

complex events rather than clock time, the system-with 
minimal delay-must be able to detect such events, notify 
waiting programs, and activate overall system responses. 

Concurrently, other applications are not time-critical, 
and the system must serve them without introducing the 
overhead in software or hardware that is required to 
support the time-critical applications. Flexibility and easy 
system application tailoring are essential characteristics of 
the combined time-critical/non-time-critical environment. 
Data acquisition and control-whether in a small OEM 
instrumentation system with an imbedded small computer, 
or in a large process control system with sensors and 
operator communications' devices scattered around a plant­
poses a particularly demanding set of requirements for a 
general purpose, small computer system. 

Hardware and Software Structure 

Figure 7 shows a block diagram of a single computer data 
acquisition system. To control precisely the time between 
sensor scans, an external signal may trigger the data 
acquisition cycle. Such precision control over realtime 
programs is a hardware requirement of those small computers 
which are suitable for this application. 

The data acquisition block is a set of programs which carry 
out the following: 

• Scanning sensors 

• Converting input values to proper engineering units 

• Limit checking to detect alarm conditions 

• Designating a set of alarm programs to respond-within 
specified limits-to these violations 

• Data smoothing 

• Controlling output to the instrument or process 

• Detecting more complex events 
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Data acquisition and control involves sensor-based input and output devices-including special instruments­
together with very time-critical programs. Often, operator communication with the data base (for inquiry, 
control over tasks, changing of parameters, and other functions) runs concurrently with the data acquisition 
and control. 

The result is a critical set of software and hardware needs in an environment which often demands almost 
complete availability of the system. 

Figure 7. The data acquisition and control application (2 of 21 



Operator interaction with this online system is a common 
requirement. This interaction involves: 

• Inquiry into the data base (status of a variable, history of 
a variable) 

• Modification of the data base (taking a point off scan, 
modifying calibration parameters) 

• Invocation of programs that provide reports or useful 
computations to the operator 

The many programs intermix in time in the sequence of 
task executions illustrated in Figure 8. 

Where the figure shows methods executing asynchronously, 
the small computer operating system is multiprogramming 
them. That is, only one program at a time is actually 
executing; but when one program is blocked-waiting for 
input data or for another program to supply it data-the 
system runs another waiting program. Such a multiprogram­
ming operating system simulates parallel program execution. 

Software Support 

The demands on the software are exacting because 
programs are communicating extensively with one another 
(e.g., limit checking occurs only after a point has been 
scanned; this program in turn notifies alarm programs if the 
data scanned exceeds a limit). The control program executes 
less often than the data acquisition programs and, further­
more, operates only on certain data points. The supply of 
points, for which the system should carry out feedback 
control, varies from time to tim~; the data acquisition 
and smoothing programs communicate this information to 
the control program. In effect, each program is receiving 
data from other programs in an unpredictable sequence; 
consequently, each program operates asynchronously. The 
arrival of data from one program is the event that triggers 
the execution of another. 

This sequence of transactions imposes the following 
requirement on operating system software: 
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The small computer operating system must 
support a set of rapidly-responsive, tightly­
coupled programs which can share data, govern 
access to data, and control one another's 
scheduling. 

The set of tightly-coupled programs that carry out this 
application is termed a task set. In addition to sharing data, 
the tasks control one another in the following manner: in 
the process of sharing data from the data base, tasks must 
coordinate with each other so that one task does not change 
the same data that another task is in the process of reading. 
The software operating system must provide the controls 
to enable the user to govern these functions efficiently and 
effectively. 

When the small computer is part of a smaller, dedicated 
instrumentation application, the software demands are less 
elaborate. Nonetheless, the critical requirements of fast 
response, task communications, data sharing, and other func­
tions are still present. To be competitive, the application 
and system software must reside in a relatively small main 
storage. Economics, then, dictates an additional software 
requirement: 

In some dedicated small realtime applications, the 
operating system's essential components must be 
available for imbedding in the dedicated application. 

Indirectly, this requirement implies that a small, efficient 
operating system will result when the essential features of 
task switching, interrupt response, and intertask communica­
tions are built into the system hardware. 

Unlike the communications' applications, data acquisition 
and control applications often use extensive application 
software. In the latter case, the critical requirements must 
be imposed on a comparatively general-purpose operating 
system. 
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Combinations of values of several points is an 
event that may have a special response program. 
Detection of such a complex event is a software 
responsibility. 
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Concurrent programs have their own priorities-the Realtime Programming System multiprograms them. 

~ Figure 8. Set of concurrent tasks to carry out data acquisition and control (2 of 2) 



Summary of Application Needs 

Small computer applications vary so widely that it is not 
practical to list all of their characteristics and needs. In the 
future, the number and types of these applications will 
expand further. This chapter has identified some of these 
needs and characteristics by examining, in detail, four dis­
crete applications. A summary of these application needs 
is listed in Tables 1, 2, and 3. 

Although these needs are listed separately, users must inte­
grate them carefully to realize the objectives discussed earlier 
in this chapter. For example, users who integrate complex, 
realtime software modules into the operating system must be 
in a position to maintain that software themselves; conse­
quently, in some instances, they must have operating system 
source code available. Conversely, the smaller user may have 
vendor-provided maintenance but still require access to the 
software to make modifications resulting from the addition of 
OEM device routines. This access should be on a continuing 
basis to prevent conflicts or difficulties when versions change 
or updates are added to the code. Most importantly, users 
must know that the system software is so designed and struc­
tured that new operating systems will build on previous ones 
and-if they want to take advantage of new features-will 
not require them to redesign their application software. 

In contemplating installation of a small computer, users 
must evaluate the system's ability to meet all of their needs 
in the context of their application, however that application 
might be defined: 

• A single standalone small computer system 

• A long-term product line with small computers as only 
one component 

• A company- or plant-wide application involving many, 
communicating small computers 

The I BM Series/1 small computers are general purpose 
systems designed expressly to meet the needs of a broad 
spectrum of applications. The next chapter examines the 
architecture of the Series/1 and shows how each feature 
responds to a variety of application needs. 
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Hardware Characteristics 

• A small computer family whose architecture is economi­
cally compatible with large and small systems 

• An extensive instruction set to support bit and byte 
manipulations and a variety of data formats 

• A storage organization which facilitates multiple tasks 

• Good support for switching between multiple tasks 
with a minimum of overhead 

• Fast and efficient response to external interrupts 

• An architecture which can support large, main storage 
devices 

• Storage protection 

• Efficient and general, programmed and direct, main 
storage access input/output 

• Extensive and flexible communications' interfaces 

• Convenient OEM interfaces which preserve system 
self-diagnosis 

• A variety of data processing peripherals; compatibility 
with special-purpose OEM peripherals 

• A variety of sensor-based input/output devices; com­
patibility with special-purpose and OEM devices 

Table 1. Integrated system of hardware needs 
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Software Characteristics 

• System software support for a set of tasks which 
cooperate to carry' out the application 

• System software support for a set of tasks which have 
widely varying response times 

• Operating system support which allows efficient realiza­
tion of task sets in either small or large systems 

• System software support for creating, accessing, updat­
ing, and protecting data files 

• Good control over system resources needed by tasks­
incl uding resolution of conflicts among tasks competing 
for the resources 

• System software which permits addition of user-written 
modules for support of special devices 

• Realtime support for scheduling tasks on the basis of 
time, internal events, or external events 

• Effective support for data communications and 
control among tasks 

• Support for application software written in assembly 
language where efficiency of code or speed of execution 
is a paramount consideration 

• Support for application software written in higher-level 
languages which support structured programming 

• Background computational capability, especially for 
program preparation 

• Ability to mix assembler language routines with 
higher-level languages to save storage space and reduce 
programming time 

Table 2. Integrated system of software needs 
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Maintenance and Support Characteristics 

• Modern hardware design and packaging for inherent 
reliability and availability 

• Readily available maintenance, including remote loca­
tions and other countries 

• Variety of maintenance plans to suit the widely differ­
ent applications of small computer systems 

• Extensive self-diagnosis to minimize repair time 

• Extensive self-checking to permit detection and locali­
zation of hardware problems, especially when multiple 
device types or attachments are present or the system 
is linked to other systems 

• Software maintenance compatible with the needs of 
both small- and large-sized users of small computers 

• Access to highly-trained software and hardware engi­
neers for support of critical applications 

• Explicit long-term maintenance commitment for 
available operating systems and hardware 

Table 3. Integrated system of maintenance and support needs 
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Overview of 
the IBM Series/1 

IBM designed the Series/1 specifically to meet the inte­
grated application needs of small computers-hardware, soft­
ware, and maintenance support. This chapter presents an 
overview of the IBM Series/1 and demonstrates how that 
computer satisfies these requirements. 

Series/1 Architecture 
Because the IBM Series/1 small computer is a system and 

not simply a set of independent products, it is important to 
recognize two things: 

1. The architectural features of .the system 

2. The specific features of those individual components that 
are available 

System Architecture 

The term "architecture" refers to the overall organization 
of the Series/1. ·it insures that: 

• Individual products in the system integrate closely 

• Software systems integrate efficiently with hardware 
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• Users with different software needs can customize the 
system and still use the hardware efficiently 

• Users with unique hardware devices can integrate them 
into the system efficiently without losing the advantages 
of self-diagnosis and other features of the system 

• Future changes in technology may be more easily incor­
porated into the system without obsoleting existing 
system designs 

In other words, a good architecture for the computer hard­
ware, software, maintenance, and support insures that the 
user will experience a minimum of "future shock". 

The overall Series/1 shown in Figure 9 consists of: 

• A family of processors and input/output devices integrated 
with a family of software support 

• Hardware and software error checking and self-diagnosis 

• Backup by IBM maintenance and support personnel in 
many countries around the world 

The Processors 

The family of processors is microprogrammed; this per­
mits the user to employ a rich instruction set of over 200 
individual instructions facilitating application development 
and minimizing program size. 

One processor in the Series/1 family, shown in Figure 10, 
indicates some of the important characteristics of the entire 
family. The processors are rack-mountable and provide slots 
or positions into which the user can plug printed circuit 
cards. Each card implements storage, input/output interfaces, 
or other options. As indicated, the user can extend the 
number of slots in a straightforward manner, thereby 
economically changing the size of the system. Maintenance­
by exchanging the printed circuit cards-is simple; and, when 
coupled with the extensive self-diagnostic capability of 
modules in the Series/1, requires a minimum of time. 

Input/Output 

The input/output system provides a fast channel (which 
supports both direct access storage devices and direct 
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Figure 9. IBM Series/1: an integrated system of hardware, software and maintenance elements (1 of 3) 

Programmer 
console 

Direct program control 
devices: 

• Slower terminals 

• User-attached devices 

High-speed cycle steal 
devices: 

• Disks 

• Diskettes 

• Communications' 
interfaces 



Realtime Programming System 

Multiprogramming, multitask­
ing, event-driven, disk-based, 
with batch processing in 
background 

Batch and inter­
active Program 
Preparation 
System 

Realtime 
program 
execution 

Realtime application 

.__ __ ta_s_k-L_J .....__ __ ...... 

Batch program 1---------..., 
execution 

' -----, 
Disk or diskette jobs 
..i-.i.__ ll 

DI I . 
0 
I 

Printer or 
other output 
devices 

~ Figure 9. IBM Series/1: an integrated system of hardware, software and maintenance elements (2 of 3) 



~ 
IV 

ld: 

Text editor FORTRAN IV Application 
Compiler builder 

PL/I Compiler COBOL Macro 
Compiler assembler 

Figure 9. IBM Series/1: an integrated system of hardware, software and maintenance elements (3 of 3) 

Utilities and 
libraries 

Job stream 
processor 



program control devices) into the system. Input and output 
can be: 

• A single item at a time under program control or interrupt 
control 

• Multi-item transfers in parallel with program execution on 
a cycle steal basis, or 

• Very fast, high-volume transfers on a "burst mode" basis 
at the maximum storage access rate 

By duplicating appropriate hardware registers on each 
level, the multilevel interrupt system achieves very fast 
response to external events. 

Main Storage 

Semiconductors are used exclusively for the main storage 
of the Series/1. Flexibility in addressing main storage is 
achieved through a variety of addressing modes in the instruc­
tions. Recognizing the fundamental characteristic of small 
computer applications-"a set of cooperating tasks"-the 
IBM Series/1 designers deliberately chose an organization of 
storage which efficiently supports the needs of individual 
tasks. At the same time, this organization permits multiple 
tasks to coexist in storage and insures that real time operating 
systems support them efficiently. 

Address Translation 

Individual tasks generate addresses within the task itself; 
special address relocation hardware then maps the tasks into 
actual main storage hardware addresses. Figure 11 shows 
this process. User programs have a 16-bit address space 
available to them, and may reference all data and locations 
within the program with an address relative to the start of 
the program. Since several programs reside simultaneously 
in physical storage, typically, an individual program does 
not reside at the start of the physical storage. It is the func­
tion of the relocation hardware to translate each address 
generated within the program at execution time into the 
actual physical storage location of the referenced item. 
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• 19-inch rack mountable 

• TTL bipolar LSI logic 

• Over 200 instructions on larger processors 

• Programmer's console-optional 

• 660 nanoseconds or 800 nanoseconds cycle time, 
depending upon the model of the processor 

• 16-bit word length, one parity bit per byte on data bus; 
no parity on address bus 

• Storage protection against writing or access on some 
models of the processor 

• Main storage bit, byte, and word addressable in appro­
priate instructions 

• Maximum storage size from 64K bytes to 256K bytes 
depending upon the processor model 

Figure 10. Features of the IBM Series/1 processor family (1 of 2) 

44 



One model of the I BM Series/1 processor 

ABCDE FGHJ KLMNPQ 

Power 
supply 
300W 

tfPr~or~\ 
1/0 Relocation translator 
1/0 or ~required after 64KB 
floating point is exceeded) 

Channel 
repower Input/output interfaces for IBM­

or user-supplied devices 

• Storage mapping via relocation translator card to map 
multiple user tasks into physical memory space (on 
some models of the processor) 

• Power supply: 
- Battery backup optional 
- Power-fail/thermal warning detection 

• Input/output expansion units for additional devices: 
- Separate power supply 
- Channel signal repower unit 

• All options can be added in the field with pluggable cards 

Figure 10. Features of the IBM Series/1 processor family (2 of 2) 
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Resides in physical 
storage starting at 
location N 

User program: 

• All referenced addresses are in 
the range of 0 to 64 KB 

• Calls the Realtime Programming 
System for input/output services 
and links to external programs, 
files, and data areas 

, ~ Address relocation 
translator (hardware) 

Calls generate hardware 
interrupts to which the 
operating system responds. I 

A physical main storage 
address between N and N + 
64K is generated for actual 
storage accessing. The 
generated address is 24-bits 
wide. 

I 
Physical main-storage access 

Hardware address translation permits storage size to be 
independent of address size within the instructions; it also 
facilitates those applications involving a set of cooperating 
tasks. 

Figure 11. Address relocation for user programs 
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For communications with other programs and input/output 
devices, special instructions (called Supervisor Call instruc­
tions) generate hardware interrupts. The operating system 
or appropriate control program module responds to these 
interrupts. 

Without using relocation hardware, users can create 
economic small systems whose task addresses are the same as 
their physical storage addresses. Larger systems can take 
advantage of relocation hardware to combine a number of 
tasks cooperating to carry out the application. 

Address translation provides the basic hardware method 
by which small and large systems can be included within the 
same overall hardware, software, and maintenance organiza­
tion or architecture. Software systems (operating systems) 
for smaller systems will not support address translation for 
two reasons: 1) it is not needed functionally for such 
systems, and 2) the size and cost of the software make 
address translation uneconomic for these applications. The 
architecture of the software itself, however, is consistent 
with address translation. Therefore, when creating special 
operating system software, users can take advantage of the 
hardware architecture, permitting the development of larger 
application software systems. 

The Series/1 16-bit word length conforms to the general 
characteristics of the application. This word length contri­
butes to efficient instruction and data storage, and provides 
a convenient address size for application tasks. Because of 
the relocation hardware function discussed earlier, the 
16-bit word length does not limit physical storage size. In 
fact, the relocation hardware generates a 24-bit physical 
storage address from each 16-bit address used in an applica­
tion task. Removing the relationship between physical 
storage size and the size of instructions and addresses in 
application tasks insures that users can economically scale 
the size of their Series/1 processors and applications. 

Software Organization 

The software needs and characteristics listed in Table 2 of 
Chapter 1 are, essentially, various aspects of programming 
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support of hardware. Specifically, in this and subsequent 
chapters, software discussions will focus on the Realtime 
Programming System-the primary operating system for 
Series/1-and its supporting program preparation and lan­
guage facilities. Figure 9 indicates this overall Series/1 soft­
ware organization. This organization comprises a general 
purpose operating system (the Real time Programming 
System) which supports: 

1. Realtime task sets of the type needed by applications 

2. A batch processing or background mode of operation for 
application software preparation 

The Realtime Programming System is carefully integrated 
with the hardware architecture of the Series/1. In its task 
usage, the Realtime Programming System takes full advan­
tage of the hardware storage mapping and addressing 
facilities. It cooperates with self-diagnosis by detecting and 
logging errors. Its support of a variety of input/output 
devices is useful both for applications and for user generation 
of software; in the latter case, batch processing or inter­
active terminals are utilized. 

Control Program Support 

Small dedicated applications may not need the full capa­
bility of the Realtime Programming System. For these 
applications, IBM offers a set of modules to provide task 
management, data processing input/output support, and 
initial program loading for both disks and diskettes. Users 
can combine this set of modules, called Control Program 
Support, with their own application programs to furnish 
facilities similar to the Realtime Programming System but 
in a form tailored to each user's dedicated application. Thus, 
t_he Control Program Support modules provide the same 
type of family-size scaling to software that the storage 
management and addressing architecture provides to the 
hardware. 

Event Driven Executive 

A third operating system option exists with the Series/1. 
The Event Driven Executive in the Series/1 can apply to a 
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broad range of applications such as data entry, remote job 
entry, distributed processing, and other commercial applica­
tions, as well as typical sensor-based functions like data 
acquisition, material and component testing, machine and 
process control, and shop floor control. The Event Driven 
Executive offers low-entry multiprogramming in a diskette­
based system. 

Indicative of the integrated nature of the software is the 
design of the software preparation capability. This function, 
running under the Real time Programming System, produces 
object modules which, in turn, run with the Control Program 
Support modules in dedicated applications. The user can 
then prepare software on a large computer and execute it on 
a smaller, dedicated processor. Similarly, Series/1 offers 
the user the Basic Program Preparation Facilities which are a 
set of standalone programs that provide software preparation 
capability on a machine without the Realtime Programming 
System. 

Higher-Level Languages 

The Series/1 gives full support to assembly language pro­
gramming and several higher-level languages. The IBM Series/1 
is unique in the small computer marketplace: by offering a 
full PL/I compiler, a small computer system has-for the 
first time-all the capabilities of a modern, fully-structured 
programming language. FORTRAN and COBOL higher-level 
languages are also available. This range of programming 
languages allows users to select the language most appropriate 
for implementation of their application tasks. 

Self-Diagnosis 

The third element of the small computer design (as dis­
cussed in Chapter 1) is maintenance and support. The IBM 
Series/1 processor is microprogrammed. The interface to 
almost every module in the system contains a micro­
processor-a stored processor implemented with large-scale, 
integrated technology in a single, small package. These 
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microprocessors provide both the logical control and 
coordination between the device and the processor as well 
as a diagnostic capability for the system itself (Figure 12). 

IBM designed the Series/1 architecture to enable each 
module to logically disconnect from the system for diag­
nostic purposes. The microprocessor associated with each 
feature exercises the functions of that feature to diagnose 
any problem to the level of that module. If modules pass 
this self-diagnostic test, they then interconnect and the 
microprocessors carry out a second level of diagnostics. For 
example, the system performs communications back and 
forth between appropriate modules to diagnose any problems 
associated with the interaction of those modules-again to 
the module level. 

If module interconnections pass this second-level, self­
diagnostic test, the system interconnects and initial program 
load (I PL) occurs. Self-diagnosis then passes from the 
hardware level to the software level. Here, modules within 
the Realtime Programming System constantly monitor 
operations, detect and retry errors, and-optionally-log all 
detected errors to disk or diskette for later examination by 
maintenance personnel. 

Self-diagnosis at the module and system level minimizes 
the difficulty in detecting and isolating the source of 
difficulties and, in turn, minimizes the mean-time-to-repair 
them. The functional and economic importance of this 
module by module self-diagnosis cannot be overemphasized. 

Maintenance 

IBM customer engineer and maintenance support backs 
up the self-diagnostic capabilities of Series/1. User 
maintenance and support needs vary considerably. For those 
users producing products or systems involving the IBM 
Series/1 who wish to do their own maintenance of hardware 
and software, IBM provides complete hardware and software 
documentation together with detailed training courses com­
parable to those supplied IBM customer engineers. Hard­
ware diagnostic terminals and special diagnostic software are 
an integral part of the Series/1. 
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Figure 12. Seri9$/1 self-diagnosis (1 of 2) 
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Self-diagnosis 

The system separates into logically independent 
modules. 

I 
Each microprocessor-based module checks itself 
for correct operation. 

l 
Modules interconnect again and check each inter-
connection for correct operation. 

I 
System software is started. 

I 
During operation, the system hardware checks for 
errors; hardware also interrupts to the system soft· 
ware for error recovery and error logging. 

I 
During operation, the system software checks for 
errors. An error log is generated. 

Figure 12. Series/1 self-diagnosis (2 of 2) 
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Software maintenance is always a critical item. IBM­
provided Series/1 software is so structured in its design that 
user documentation is extensive, comprehensive, and easily 
understandable. I BM Series/1 program logic manuals 
provide: 

• Detailed descriptions of each software module method-of­
operation, including HI PO charts (a hierarchical structure 
of charts that shows the functions of the various programs' 
components including their input and output functions} 

• Descriptions of each data area 

• Diagnostic aids 

• Debugging hints 

• Detailed logic of the module 

If Series/1 users want to do their own maintenance, IBM 
will furnish source code for most IBM-supplied software. 

However, most users do not, themselves, maintain either 
hardware or system software; they need quality maintenance 
by competent personnel on a world-wide basis. As an integral 
part of the overall Series/1 product-line support offering, 
IBM makes available hardware maintenance, software 
maintenance, and special customer engineer support for the 
Series/1. 

Hardware and Software Support of 
Multiple, Cooperating Application Tasks 

The Series/1 processors provide hardware support for 
multi pie tasks through the system's relocation hardware. 
Efficient utilization of multiple, cooperating tasks also 
requires that the system be able to multiprogram those 
tasks. When there are several programs in main storage, each 
assigned to one hardware priority level, the processor pro­
vides hardware support for task switching (Figure 13). For 
each level, the system provides a separate set of hardware 
registers including: 

• Eight general purpose registers 

• Floating-point registers 

53 



I 

User registers I Current program 
for level 3 I on level 3 

I 
I 

User registers I Current program 
for level 2 l on level 2 

I 
I 
I 

Current program User registers _j_ 

for level 1 T on level 1 

I 
I 
I Realtime Program-

User registers _J_ ming System users' 
for level 0 l level 0 

I 
Processor 

I 
I Main storage 

Each hardware priority level has its own set of user 
registers: 

• Eight general purpose registers for data, addresses, 
indexing, displacements, and other information 

• An instruction address register or program counter for 
each level 

• A status register for flags and error reporting 

• A storage address key register for storage protection 

Switching from a program on one level to a program on 
another level does not require saving or restoring the 
duplicated user-registers. Hence, multiprogramming of 
tasks on different priority levels is rapid. 

Figure 13. Support for multiprogramming of multiple user tasks 
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• Arithmetic and status indicators 

• An instruction counter 

• Information for storage protection 

Switching from a task on one hardware level to a task on 
another level does not require saving or restoring these 
register contents; consequently, the switching is very 
rapid. 

Interrupt System 

Normally, the system connects input/output routines to 
hardware priority levels which are different from those of 
application programs. As program execution switches back 
and forth between the application priority level and the 
input/output level, this structure permits interrupt-driven 

·input/output operations to occur-with a minimum of over­
head-concurrently with application tasks. To facilitate fast 
response for critical tasks, application tasks themselves can 
reside on different hardware levels. 

The combination of hardware memory management and 
user registers duplicated on each hardware priority level 
allows a fast response to realtime events through cooperating 
tasks. A user can, of course, configure such a set of tasks with 
the Control Program Support modules or another customized 
control program. The Realtime Programming System facili­
tates such applications using the organization shown in 
Figure 14. 

Multiprogramming and Multitasking 

Multiprogramming is the execution of two or more tasks 
concurrently. The system accomplishes multiprogramming 
by switching the processor use to the higher priority of 
two waiting tasks or-when a higher priority task cannot 
continue execution, e.g., because it is waiting for input 
data-to a lower priority task. The Series/1 Realtime Pro­
gramming System performs multiprogramming among all 
tasks in main storage. In addition, it permits multitasking; 
this process consists of generating several secondary tasks 
from a single main task. 
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Figure 14. Task sets and the organization of main storage under the Realtime Programming System (1 of 2) 



Each task in a task set uses the Realtime Pro­
gramming System services to: 

• Schedule other tasks 

• Perform input or output operations 

• Communicate with other tasks 

• Call routines in other tasks 

Main storage 

Task set A 
--------1 

Task set B 
1--------

1 
I 

1----~ ----1 

I 
I 

------1 
Real time 
Programming 
System 

One task set at a time resides 
in each partiition. Requests 
for execution of other task 
sets in this partition are 
queued by the Realtime Pro­
gramming System. 

A task or task set may reside 
on any hardware or software 
priority level. 

The Realtime Programming System is a multiprogramming, multitasking, event-driven, disk-based system. 
It manages all physical resources. 

The Realtime Programming System multi programs among task sets in the partitions according to their 
priority. 

~ Figure 14. Task sets and the organization of main storage under the Realtime Programming System (2 of 2) 



The central concept of this system is the "task set" which 
is a collection of closely cooperating individual tasks, pro­
grams, and data. At program preparation time, the tasks 
within a given task set link together into a single unit for 
loading from disk. Once the task set begins execution, the 
operating system schedules and multiprograms individual 
tasks. 

Storage Management 

To give the system designer good control over response 
time of application tasks, the system uses a fixed partition 
organization of storage as shown in Figure 14. A dynamic 
partition option is also available. A fixed partition is a 
contiguous area of storage in which one task set at a time 
can execute. By specifying the priority of tasks and assign­
ing task sets to appropriate partitions, the system designer 
can insure that critical tasks will respond when they are 
needed. The operating system provides all the facilities 
needed for queueing task sets that are waiting to execute. 

If a task set requires a fast response to an event, the system 
might assign it permanently to a partition so that the task set 
need not be loaded from disk when the event occurs. If 
several task sets are time-critical-but not so critical that they 
must be permanently resident in main storage-the system 
may assign them to share exclusively a partition. This 
minimizes conflict when the task sets are ready for execution. 

The system may assign several less time-critical task sets, 
including background program-preparation task sets, to one 
partition. With this organization, the Realtime Programming 
System gives the application designer fuff control over tasks. 

When response time is less critical, it is often converifont 
to allow the system itself to determine the size of the parti­
tions; this procedu,re enables the partitions to fit the task set 
scheduled to execute without using unneeded space. The 
system then has free space that can be used by another task 
set. Allocating an area of space in which partitions can be 
created on demand is called dynamic storage management 
and is supported under the Series/1 Realtime Programming 
System. The advantage of this convenience is offset by the 
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additional time required to initiate execution of a task in 
such a dynamic partition. Because dynamic partitions are 
not fixed, once the system initiates a task, it cannot be 
rolled out of main storage for higher priority tasks. Conse­
quently, dynamic storage management is useful only for 
tasks that are not time-critical. 

Many applications, however, combine time-critical and 
non-time-critical tasks. Because the Realtime Programming 
System supports both fixed and dynamic partitions, system 
implementors can choose those combinations of fixed and 
variable partition space which most efficiently support their 
applications. 

These features are included at system generation time. 
Users who do not need dynamic partitions do not incur any 
overhead in the size of their operating systems because the 
code for the partition function is not added to their gener­
ated systems. 

Intertask Communications 

Tasks within a task set communicate extensively. In fact, 
the system usually combines multiple tasks into a single, 
specific task set because they share data and control. In 
addition, the related tasks interact so often that they can 
respond within the required time frame only if they are in 
the same partition. In actual applications, tasks communicate 
with one another continuously; this fact is the dominant 
consideration when a user designs software for realtime 
applications. This communication consists of passing data 
items, groups of data, event signals, and control back and 
forth among the various cooperating tasks which are 
implementing the application. 

As illustrated in Figure 15, the Realtime Programming 
System provides different methods of communications 
among the tasks. Optional parameter lists facilitate passing 
control from one task to another. These lists may supply a 
limited amount of data needed for the task to begin execution 
(files or global areas transmit more extensive amounts of 
data). 
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Parameter lists: are passed to programs which are initiated 
by a communicating task. 
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Figure 15. Communications among tasks (1 of 2) 
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Queues: areas defined in main storage or in auxiliary stor­
age. They contain tasks, enter items into the queues, and 
remove items from the queues. 

First-in-first-out/priority queue 

111111 
-Item for task B 

...... 
Task A 

Item from task A 
Task B 

Global common area: an area within a partition which may 
be used by all tasks within a task set. 

Each task set may have its own global common area in its 
own partition. 

Main storage 

1------
1 Common area I 

I Task C I One partition 
in main storage 

I I Task B ~One task set 

I Task A I 
\ ------

Figure 15. Communications among tasks (2 of 2) 
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Synchronization among tasks in a task set is possible 
through: 

• Their different priorities 

• The scheduling of one another using operating system 
service calls, and 

• Other facilities of the Real time Programming System: 
for instance, Wait/Post 

Tasks may invoke their own execution when a certain event 
has occurred once or when it has occurred a specified number 
of times. Other tasks may detect these events and then 
inform the operating system (i.e. post the event). 

For many applications, like communications, tasks process 
a number of transactions and pass the results on to other 
tasks in the task set. Stacks in main storage are a natural 
communications' mechanism for these actions; both the basic 
instruction set of the processor and services in the operating 
system support them. 

The operating system also supports sharing of data through 
an area common to all tasks in a task set-a very useful tech­
nique in task management. In fact, the operating system 
permits task sets themselves to be shared. This means that 
the programs within such a shared task set can be "called" 
from other task sets; the system can then more readily share 
data areas and common subroutines among a variety of real­
time tasks. Communications among tasks is characteristic of 
many applications but the most appropriate communications' 
procedure varies from one application to another. Conse­
quently, flexibility of communications in the operating 
system and control over those communications by the applica­
tion system designer is: 

1. An important attribute of the I BM Series/1 hardware and 
software 

2. A further illustration of the integrated nature of hardware 
and software 
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Communications with Remote 
Devices and Computers 

A general purpose small computer must support-in an 
integrated fashion-hardware and software communications 
with remote terminals and computers. Figure 16-where 
three data link structures are described-indicates how 
necessary the generality of hardware and software arch itec­
ture is. The Realtime Programming System supports the 
more standard configurations; for nonstandard configura­
tions, OEM users can integrate the software appropriate 
to their configuration with the vendor-supplied software. 
When the application involves significant physical distances, 
dial-up networks or switched data links are usually necessary. 
Because of the architecture of the Series/1, customized 
software should not be necessary for most of these 
ap pl ica ti ons. 

Communications' Protocols 

A communications' protocol is the convention by which 
particular sequences of characters are interpreted and 
acknowledged. Both the data link structure itself and the 
protocol or form of communications across these data links 
vary. Communications' features include: 

• Asynchronous communications-single and multiple line 
interfaces 

• Binary synchronous communications-single and multiple 
line interfaces, plus high-speed single line interface, and 
IPL capability 

• Synchronous data link control communications-single line 
interface 

For asynchronous communications, these features permit 
both slow- and high-speed terminals to be either directly 
connected to the Series/1 or connected through modems and 
switched networks. The two synchronous communications' 
modes also support Series/1-to-Series/1, and Series/1-to-host 
communications. The asynchronous communications' attach­
ments provide great program flexibility to the user. Under 
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A line: is point-to-point when a local station is connected to a single remote station. Such a line is non­
switched when there is a permanent connection between the local station and the remote station through 
their respective modems, or when the stations are directly connected. 
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Communications on each type of data link may use different communications' rates and different communi­
cations' protocols like: 

• The start-stop asynchronous communications' protocol 

• The binary synchronous communications' protocol 

• The synchronous data link control communications' protocol 

Figure 16. Different data link structures (1 of 3) 



The primary station: in a multipoint data link is physically connected to several secondary stations through 
their respective modems. The primary station polls the secondary stations using unique station addresses. 
Only the addressed station can respond to the poll. 
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A point-to-point line: can be switched so that one local station can communicate with one of several remote 
stations after a link has been established between the local station and the remote station. The connection is 
maintained only for the duration of the communication. 
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program control, the user can select both communications' 
codes and special control characters to particularize the inter­
face to a specific communications' problem. Under program 
control, the user can also select communications' rates-up to 
9,600 bits per second, and in some cases even 56,000 bits 
per second-to support the common line speeds. 

Similarly, the binary synchronous communications' attach­
ments support both EBCDIC and ASCII codes-again, 
selected under program control. This modem selects trans­
mission rates by using jumper wires on the interface. The 
hardware fully supports: 

• The binary synchronous communications' protocol includ­
ing sending and receiving unrestricted binary data (known 
as data transparency) 

• Intermediate block checking of separate error detection 
information 

• Remote loading of initial programs for computer startup 
or restart. This communications' protocol is most often 
used in communications between computers, between 
remote job entry terminals and computers, and similar 
applications. 

The synchronous data link control (SDLC) communica­
tions' protocol operates in half-duplex mode, on either 
switched or dedicated lines, at rates up to 9,600 bits per 
second. This modern communications' protocol expedites 
remote communications between intelligent terminals and 
computers. 'All the communications' interfaces operate on a 
cycle steal basis so that minimum processor overhead and 
interaction are required. Furthermore, software support of 
communications is enhanced through availability of all cycle 
steal capabilities including command chaining. 

The communications' feature interfaces use imbedded 
microprocessors for self-diagnostic purposes. The system 
can easily perform on line diagnostic tests of terminals-for 
example, echoing of test characters. 
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Communications' Software 

Different Series/1 users need different kinds of communi­
cations' software support. Some dedicated applications may 
need custom software. In most cases, however, users require 
operating system support so they can utilize central error 
detection and recovery, service calls for input/output, and 
similar aids. This support is available through the Realtime 
Programming System, which treats a remote station as a 
data set-just as it does in other modes of input and output. 

Through the operating system, the communications' data 
sets are opened to establish communications with a given 
remote terminal or computer. Then, the system accomplishes 
transmission of data through normal read/write service calls 
like any other input/output operation. The combination 
of operating system software and interface hardware carries 
out the detailed message generation and control functions 
appropriate to a particular data link. The operating system 
supports on line testing of terminals to insure that com­
munications are proceeding correctly. Because of these 
hardware and software interactions, the Series/1 fully 
sustains the communications' requirements of the typical 
small computer application. 

Communications to an IBM System/370 

Series/1 can communicate with an IBM System/370 using 
synchronous data link control or binary synchronous com­
munications. In addition, a special hardware attachment is 
available to interconnect the Series/1 and the System/3 70. 
This interface not only permits the direct coupling of the 
two systems' channels but also provides the internal logic 
that enables the Series/1 to recognize the connection as a 
single device address and the System/370 to recognize the 
connection as a multiple device address. Software support 
for this interconnection permits: 

1. The down-line loading of programs and data from the 
System/370 to the Series/1, and 

2. The implementation of common distributed system 
architectures 
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Auxiliary Storage Devices 
Among the more important system needs are auxiliary 

storage devices suitable for: 

• Data storage 

• File storage 

• Program storage 

• File backup 

• High-volume, long-term data storage 

• Program preparation 

• Field modifications 

• Other uses 

The IBM Series/1 serves these needs with both disk and 
diskette storage devices. 

Disks 

The non-removable disks have capacities ranging up to 64 
megabytes, depending upon the model. Their interfaces 
operate on a cycle steal basis and use a thousand-byte buffer 
which permits instantaneous data transfer rates on the order 
of a megabyte per second. The interfaces contain a built-in 
initial program load capability. The disks have moving heads 
which give a latency time as fast as 9.6 milliseconds, and a 
back-to-back access time as fast as 27 milliseconds. Where 
speed of response to auxiliary storage is important, a portion 
of the disks-on an optional basis-can have fixed heads; this 
option adds approximately 125,000 additional bytes of 
storage that these heads can access. Because the moving­
head access delay does not affect fixed-head storage, average 
access time is no more than the average latency. The reader 
should consult the appropriate reference manuals for the 
specific maximum storage rates and sizes appropriate to a 
given configuration. 

Diskettes 

The second type of auxiliary storage unit available for the 
Series/1 is a diskette unit which uses a removable one- or 
two-sided diskette. The diskette unit provides: 
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• Approximately a one-half megabyte of storage (0.6 mega­
byte if a 512-byte sector format is used) 

• Track-to-track access time of 40 milliseconds 

• A data transfer rate of 31,250 bytes per second through 
the cycle steal interface 

The interface supports multiple sector transfers and initial 
program load capability. As with other devices, the micro­
processor controls the diskette with extensive microdiagnostics 
and constantly-operating error checking. 

The high-speed disk is essential to rapidly processed appli­
cations; the Realtime Programming System uses the disk 
extensively. 

On the other hand, the diskette unit represents a very use­
ful device for: 

• Distributing software 

• Backing up files and software 

• Distributing field updates to programs 

• Aiding programmers-as a storage medium-during program 
preparation 

While diskettes provide an advantageous low-cost medium 
for removable, permanent data storage, they have limited 
capacities. To save backup copies from a large, online disk, 
the system would require: , 

1. Many diskettes 

2. A time-consuming interaction between an operator and the 
system when data must be copied or restored from multiple 
disks 

Magnetic tape is conventionally used for this purpose because 
a single reel offers a large amount of storage. Because of the 
sequential nature of tape data storage, it is a suitable and 
efficient storage medium only for this type of backup. 

Large-Volume Diskette 

The IBM 4966 Diskette Magazine Unit is a more conveni­
ent and useful device with which to provide economical, 

70 



large-volume removable storage. This unit has a special disk­
ette drive with two magazines, each of which contains ten 
diskettes plus three individual separate diskettes-a total of 
up to 23 diskettes. Users can remove both the magazines 
and the three individual diskettes. 

The Diskette Magazine Unit is a large-capacity diskette unit 
that offers direct access to all data stored in the magazines 
or individual diskettes. The unit accommodates any type of 
diskette (single or double sided); storage volume can be as 
large as 1.2 megabytes per diskette-a maximum capacity of 
approximately 27 megabytes. The good performance 
characteristics of the unit insure that the system can use it 
effectively online and for backing up and copying online 
disks. System access time is 3 seconds to move from one 
diskette to the next, and a maximum of five seconds to 
reach any diskette. These timings total up to a 125,000 
byte/second transfer rate after an average random access 
latency or delay of approximately 42 milliseconds. 

The system requires about 10 seconds to completely load 
one, two-sided 1.2 megabyte diskette, and about five 
minutes to load the entire 23 diskette system containing 
27 megabytes. To back up large data bases for either 
historical or error recovery purposes is a practical and econ­
omical procedure with the Diskette Magazine Unit. 

User Attachment Features 
As stated earlier, small computer applications require an 

integrated system of hardware, software, and maintenance; 
this often means the integration of special devices into the 
system. These special devices may be simple terminals or 
they may be complex analytical instruments, machines, or 
special hardware interfaces to other systems. Chapter 1 
emphasizes how essential it is to integrate these devices into 
the hardware, software, and maintenance constituents of 
the system. 

The Series/1 design pays particular attention to this require­
ment and provides the means to attach such hardware devices 
(Figure 17). 
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• Selectable communications' rates 

• Electrical interfaces 

Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (1 of 4) 
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• Accommodates up to 16 1/0 device addresses 

• Provides interrupt vectoring of up to 16 sources 

• Allows full use of processor input/output hardware capability 

• Convenient bus for interfacing to customer special devices, including: 
- Data lines 
- Address lines 
- Interrupt request lines 
- Function and function modifier lines 
- Control and response lines 

~ Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (2 of 4) 
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The subsystem is supported by the Realtime Programming System through its interrupt capability and soft­
ware support of digital input/output. 

Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (3 of 4) 



Sensor input/output unit 

Software support for all analog and digital, 
input and output options 

A subsystem with internal power supply supports 
up to eight input/output cards. 

Cards or groups of cards which implement these 
functions: 

• Analog output 

• Analog to digital conversion with relay or solid 
state multiplexing 

• Digital input/output 

The subsystem can be configured--flexibly-to 
interface with sensors or devices requiring a com­
bination of analog and digital, input and output 
signals. 

V! Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (4 of 41 



Asynchronous Terminals 

The Teletypewriter Adapter provides a means of attaching 
Teletype1 ASR 33/35 or equivalent ASCII devices to the 
system. Many applications use such devices; this adapter 
provides a Series/1 compatibility with most of the terminals 
on the market today. Furthermore, original equipment 
manufacturers have designed many special-purpose, data 
entry devices that have been built to these same standard 
interface specifications. The Teletypewijter Adapter is the 
simplest user-device attachment because \he software 
involved with this feature is minimal. 

OEM Devices 

The Customer Direct Program Control Adapter is much 
more general in its capability. IBM has designed this feature 
to perform direct program control for up to 16 user 1/0 
-devices. The interface fully integrates into the Series/1 which 
permits interrupt vectoring of all 16 sources. These user 
devices can then handle their associated interrupt response 
tasks like any other task using Control Program Support 
modules or the Realtime Programming System. The adapter 
is a convenient bus for control ofarbitrary devices or sub­
systems. Interfacing to this adapter-which is similar to 
interfacing to any small computer or microprocessor, 
general purpose bus-is discussed in a later chapter. 

The built-in, self-diagnostic capability of some of the 
Series/1 interfaces assists in the maintenance of systems which 
mix IBM-supplied devices and user-added devices. This is an 
important practical consideration for the Series/1 user. 

The variety of communications' interfaces, which are use­
ful for attaching to external devices and other systems, have 
already been discussed in this chapter. 

The IBM Series/1 GPIB Adapter provides users with a 
means to connect to and control a variety of instrumentation 
and other devices which have been designed to be compatible 
with the Institute of Electrical and Electronic Engineers (IEEE) 
standard number 488. This standard is entitled "Digital 

1Trademark of the Teletype Corp. 
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Interface for Programmable Instrumentations" and has been 
adopted by many device and instrumentation manufacturers. 
Consequently, Series/1 users can configure very flexible 
instrumentation systems without designing custom interfaces. 
Since the adapter operates off the cycle steal channel, the 
data rate is relatively high-a maximum of 65,000 bytes 
per second. 

Sensor-Based Devices 

Often the interconnection between a general purpose small 
computer and a customer device, subsystem, or process is 
through: 

• Analog signals 

• Digital signals 

• Switches and relays 

• Similar devices 
Interfacing to these signals requires both digital input and 

output capability and a sensor-based input/output unit. 
Series/1 provides both the capability and the sensor. 

Each digital input/output card incorporates 32 points of 
digital input and 32 points of digital output, together with 
external sync and ready lines for each 16-point group. These 
cards offer a convenient interface capability for devices whose 
inputs and outputs are in electronic digital registers. Inter­
rupt-driven software support is equally convenient for this 
Interface. 

The sensor input/output unit has a separate, rack-mount­
able subsystem including a power supply. The subsystem 
supports: 

• Digital input with process interrupt (either isolated or 
non-isolated} 

• Digital output (non-isolated} 

• Multi-plexer-read relay input 

• Multiplexer with solid state digital input 

• Analog input with analog-to-digital converter 

• Multirange amplifier for use with analog inputs and analog 
outputs 
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The system may be configured to support a specific mix 
of input and output types. 

Software support of these features is standard in the 
Realtime Programming System. Users can, confidently, 
build their applications around the IBM-provided Series/1 
hardware and software and then economically integrate their 
own 1/0 devices into the system. 

Multiple Processors and a Shared 
Input/Output System 

Certain critical applications require backup of the processor 
in case of system failure. In some of these applications, it is 
neither economical nor feasible to duplicate the input/output 
system; consequently, both the original processor-or any 
other processor backing up the original one-must be able to 
access the single input/output system. The Series/1 Two­
Channel Switch control accomplishes this access by permitting 
the input/output channel to switch from one processor to 
another. 

The switch can be operated manually or, through program­
ming, on demand of the backup processor. The primary 
processor uses a 'dead-man timer' counter-in the interface 
to detect and signal failure. The primary processor periodi­
cally resets the timer. If it fails, the counter times-out and 
generates an interrupt to the backup processor which can 
then assume control of the input/output channel by com­
manding the Two-Channel Switch. In order to switch back 
to the primary processor, manual intervention is required. 

Program Preparation Facilities 
The Series/1 supports program preparation with either the 

Base Program Preparation Facilities (no operating system 
needed) or as background under control of the Realtime 
Programming System. In either case, source statements can 
be entered from interactive consoles or from diskettes pre­
pared on offline key-to-disk units. An interactive or batch 
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text-editor facility permits updates and modifications to the 
source program. 

Source language may be assembler language (including full 
macro capability), FORTRAN IV, PL/I, or COBOL. The 
PL/I language supports structured programming. The Series/1 
PL/I provides a complete implementation of the standard 
language. Such an advanced high-level programming 
language has not previously been available on small computers. 

FORTRAN, COBOL, and PL/I require extensive program 
preparation facilities supplied by the Realtime Programming 
System. After translation by the appropriate language trans­
lator, the object modules are combined with control blocks 
and tables to form a task set. This task set is used in realtime 
with the Realtime Programming System or for immediate 
execution in the batch stream: The system can build absolute 
or relocatable modules. Absolute modules enable a user­
supplied supervisor to execute like dedicated applications. 

Users control the storage of source and object code; there­
by, they can take advantage of the disk storage units and the 
diskettes for program entry, storage backup, and distribution. 

The Series/1 and Overall Application Needs 
Although no single computer is a solution for all applica­

tion and user problems, IBM has designed the Series/1 
general purpose, small computer family with an architecture 
-an organization for hardware, software, maintenance, and 
support-which closely matches the needs listed in Chapter 1. 
The following characteristics, features, and specifics work 
together to make the Series/1 a long-term, viable solution for 
small computer applications: 

• Support of cooperating tasks 

• Excellent processor computational capability 

• General interrupt and input/output system 

• Integrated software support for small and large systems 

• Substantial software preparation capability 

• Ability to attach customer devices 
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• Availability of IBM documentation 

• Customer engineering maintenance support in most 
countries around the world 

In the succeeding chapters, each of the major features of 
the Series/1 is discussed in more detail to permit users to 
understand how each feature can be used to support their 
applications. 
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Processor 
Organization 

The processor is the key element in a small computer 
system because it is responsible for: 

• Control of data flow 

• Interpretation and execution of instructions 

• Response to external events 

• Detection of internal events and errors 

• Control of nverall system integrity 

Individual processors in the Series/1 share a common archi­
tecture but, in order to support applications of varying size 
and complexity, they may implement the overall architecture 
to differing degrees. This chapter discusses the overall 
Series/1 processor architecture and gives specific exam pies 
from existing processors. For complete details on any 
specific processor, the appropriate processor reference 
manual should be consulted. 

Overall Flow of Information 
in the Series/1 Processors 

Figure 18 shows the major elements in the Series/1 
processors and the data paths connecting them. All 
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processors have four hardware levels of priority interrupt. 
To minimize overhead when responding to interrupts and 
switching from one level to another, the hardware imple­
ments a full set of general purpose and status registers for 
each priority level. 

An important part of the processor is the interface to 
main storage. The processor must: 

• Fetch instructions from storage 

• Interpret these instructions 

• Fetch data from main storage 

• Carry out the instruction 

• In some instances, return data to main storage 

Specifically, consider the IBM 4955 processor, as an 
example. The processor bus is a 16-bit wide data path over 
which instructions, addresses, and data pass among the 
processor elements. The processor utilizes two registers for 
accessing main storage: the storage address register and the 
storage data register. The address of the next instruction 
to be fetched or the data item to be retrieved is transmitted 
along the processor bus to the storage address register. 

Individual programs can address a maximum of 64K bytes 
{corresponding to a 16-bit address) at any one time. For 
processors without storage address translation, the maximum 
addressable main storage is 64K bytes and the address, gener­
ated by a program, is the physical address of the desired item 
in storage. For processor models with storage address trans­
lation, the program-generated address is hardware-mapped 
before physical memory is accessed. This allows main stor­
age addressing of more than 64K bytes. The accessing of 
main storage is important and is discussed in detail in 
Chapter 4. 

The storage data register contains whatever data, if any, 
is to be written into main storage and receives data and 
instructions being fetched from main storage. This register 
is 16-bits wide {the word length of the Series/1) and inter­
faces to the processor bus for transfer of the information 
to or from other registers. 
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All IBM Series/1 processor models are microprogrammed. 
That is, the system implements a set of micro instructions 
at the basic hardware level which control every register and 
data path in the processor. Processor instructions, on the 
other hand, are the machine instructions which manipulate 
data and perform input/output operations. A group of these 
instructions constitutes a program and is stored in main stor­
age. The processor actually interprets and carries out these 
instructions by executing a series of micro instructions. 
Thus, each user instruction can be thought of as a "sub­
routine" made up of micro instructions, although this is 
transparent to the user. 

Figure 18 shows an area denoted "Read only storage" 
where the system stores the microprograms for interpreting 
and executing instructions. The major advantages of a 
microprogrammed processor are: 

1. A system can realize a very complete and general instruc­
tion set with reduced hardware cost penalties. A micro­
programmed processor reduces the number of instructions 
required to perform a particular function; this, in turn, 
leads to a more compact system and more compact 
application software. 

2. Without severe cost penalties, the user can add micro­
programs to the system for self-checking and self-diagnosis. 
This ability to detect errors is dependent upon a sophisti­
cated software which can both detect and recover from 
errors. 

The capability to manipulate the hardware elements at a very 
basic and general level means that-in order to isolate mal­
functions-microprograms can be included to test arithmetic 
operations, logical operations, communications along data 
paths, and the many other hardware elements in a processor. 
This capability gives the processor a minimum-repair-time 
characteristic. 

Figure 18 shows alternative storage address and data 
registers for the cycle stealing, input/output system. Cycle 
stealing involves the transfer of a series of data items to or 
from main storage. The transfer is initiated by the processor 
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but then proceeds, until complete, without further interven­
tion. Thus, cycle stealing requires additional control hard­
ware to handle the individual data transfers. 

A major strength of the Series/1 architecture is the inclu­
sion of the cycle steal control hardware in the individual 
device interfaces rather than in the processor itself. The 
microprocessor-controlled interface can perform the required 
control; the control can also recognize and handle the 
particular device characteristics. Furthermore, the system 
interfaces multiple devices on a cycle steal basis simply by 
providing the necessary control in the devices' interfaces 
themselves. The latter advantage is most apparent when 
many terminals or devices are interfaced: the load on the 
processor is minimal when the system performs input/output 
on a cycle steal basis rather than on a direct, program­
control basis. 

The cycle steal storage address and data register are used 
in the same way as the processor storage address and data 
registers, but the two kinds of registers are separate because 
input/output operations and processor operations can take 
place concurrently. 

The main storage interface resolves any contention for 
main storage should both the processor and the cycle steal 
channel atcempt simultaneous access. If this occurs, the 
channel is given priority, making the processor wait. Hence, 
the channel "steals" cycles from the processor. The 
input/output bus along which addresses and data are trans­
ferred is discussed in more detail in a later chapter. 

The element in Figure 18 labeled "Processor control ... 
arithmetic, and logic unit" is that portion of the processor 
responsible for controlling the sequence of operations in the 
processor, decoding instructions, fetching micro instructions 
from read-only storage, and carrying out the appropriate 
instruction. The instruction register holds the instruction 
fetched from main storage while it is decoded and executed. 
Not shown in Figure 18 are those registers used by the hard­
ware but not accessible by user programs. 

The arithmetic and logical unit provides hardware for 
arithmetic operations (except floating-point operations), 
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logical operations, and shifting operations. This unit is also 
the source of result-status information used in those instruc­
tions which test for: 

• Result even or odd 

• Carry of overflow conditions 

• Result zero or negative 

Since the arithmetic and logical unit is used by instructions 
on all priority levels, the indicators listed above are physically 
maintained in that level status register which is appropriate 
to the priority level on which the instruction was carried out. 
The level status register is one of the registers which is repli­
cated for each priority level and is discussed later in this 
chapter. Operands to be processed by the arithmetic and 
logical unit are transferred across the common processor data 
bus under the control of the microprogrammed control unit. 
Processing is then carried out: 

1. In the general purpose registers on each interrupt level 

2. In processor registers which are not duplicated on each 
level but which do determine the level on which the 
processor operates 

3. Via the interrupt mechanism which is responsible for 
controlling the response to internal and external events 

Registers and Their Use by Tasks 
Each hardware priority level contains a group of eleven 

16-bit registers called the level status block as shown in 
Figure 19. The contents of these registers determine the 
"state" of the program executing on that level. In a sense, 
it is this information which the system must protect from 
change by other programs and which the system must 
restore if the registers on that level are used by another 
program. By using special instructions, the hardware design 
of the processor helps with this saving and restoring of the 
level status block contents. These instructions are illustrated 
later in this chapter. 
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Four floating-point registers are optionally available but are not part of the level status block. 

The eleven 16-bit registers shown here constitute the "state" information necessary to be saved and restored 
when programs are interrupted. 

Special instructions, together with the design of the Series/1 architecture, provide commands to help soft­
ware manipulate these registers as a single group; in turn, they exercise control over processor priority level 
and response to external interrupts. 

~ Figure 19. The level status block (2 of 2) 



In additiorito the eleven registers in the level status block, 
four 64-bit registers for floating-point operations are option­
ally provided. The system uses this total of fifteen registers 
in three basic ways: 

1. Data storage and manipulation 
a. Eight general registers 
b. Four floating-point registers 

2. Addressing main storage 
a. Eight general registers 
b. Instruction address register 

3. Task control 
a. Address key register 
b. Level status register 

Other registers exist in the processor but are not referenced 
explicitly in instructions. For example, the arithmetic and 
logic unit shown in Figure 18 contains registers for temporary 
storage of data items during the execution of instructions 
using that unit. Note that, as shown in Figure 19, individual 
bits within any register are numbered from left to right 
starting with 0. 

Storage and Manipulation of Data Types 
Data storage and manipulation is one of the major tasks 

of a small computer; consequently, it is important that the 
processor support the variety of data types and data struc­
tures commonly used in applications. Data types supported 
by the Series/1 include: 

Logical or Flag Variables 

These are variables which take on the value of true or 
false and are denoted by 1 or 0 in storage. Stored 16 to a 
word, they may be tested and manipulated either a bit at a 
time or as a group. Instructions supporting this data type 
are discussed in Chapter 6. 

Character Variables 

These are variables whose length is eight bits and which 
are coded in some standard code format like ASCII or 
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EBCDIC. Characters occupy one byte in storage; a string of 
characters occupies sequential bytes in storage. Instructions 
for testing and manipulating individual characters and strings 
of characters are also discussed in Chapter 6. Input/output 
devices help test and manipulate characters-especially 
communications' interfaces as discussed in Chapter 8. 

Unsigned and Signed Numbers of Various Precisions 

Processor instructions support both signed and unsigned 
numbers of single precision {16 bits), and double precision 
{32 bits). Formats for the numbers are shown in Figure 20 
together with the range of numbers permitted in each. 

Note: Changing from double precision to single precision 
or vice versa is a straightforward operation with these formats. 
For example: adding a word whose bits are all zero and append­
ing it to any single-precision variable, automatically extends 
it to double precision. This is so because bit 0 {the leftmost 
bit) is not treated as a sign bit in the second word of double­
precision variables. With the aid of the level status register, 
the system performs arithmetic and logical operations in a 
straightforward manner on either signed or unsigned 
variables-including detection of exception conditions-as 
indicated below. 

Not only are the signed and unsigned numbers useful in 
applications, but the hardware also supports the use of 
higher-precision variables. Certain instructions allow the 
addition or subtraction of multi-word operands-taking into 
account any carry from similar operations on previous 
words, and setting the indicators to reflect the multi-word 
result for use in the next stage of the calculation. 

Floating-Point Numbers with Two Precisions 

Single- and double-precision, floating-point numbers­
which occupy two words or four words-are supported by 
the optional floating-point processor and are illustrated 
in Figure 20. The format for these variables is identical to 
that used in the IBM System/360 and System/370 computers: 
an eight-bit exponent considered to be a power of 16 in the 
range -64 to +63 and a fractional part, with only the length 
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Unsigned numbers: positive numbers only 

• Byte length-range from 0 to 28 -1 

• Single precision-range from 0 to 216 -1 

• Double precision-range from 0 to 232 -1 

• The instruction set supports addition and subtraction 
of unsigned numbers 

• Extension of precision involves addition of Os to the 
most significant byte or word 

Unsigned, multiple precision 

• Any number of words 

• Arithmetic operations are programmed as a series of 
operations using special instructions to include carry 
resulting from the previous steps 

Signed, byte-length numbers 

• 8-bit numbers 

• Twos complement form 

• Bit 0 represents the sign 

• Numbers range from -27 to 27 -1 

• Byte in storage or the least significant half of a register 
(bits 8 through 15) 

Signed, single-precision numbers 

• 16-bit numbers 

• Twos complement form 

• Bit 0 represents the sign 

• Numbers range from -215 to 2 15 -1 

• Word in storage or registers 

Figure 20. Floating-point numbers (1 of 3) 

of the fractional part differing between single and double 
precision. This, again, facilitates conversion back and forth 
between the two precisions. 

Operations on the various formats of numbers require: 

• Instructions for addition, subtraction, multiplication, and 
other arithmetic operations 
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Extension of precision 

Extending the precision of twos-complement, signed 
numbers involves extending the sign (Os if positive and 
1s if negative) two additional bits to the left. 

Precision number 
(one word) 

Most significant----. 
word is sign 

Least significant 
word 

extension .-------'--...,-------'----..., 

Stored at lower 
address in storage 

Stored in next 
higher addresses 
in storage 

Signed, double-precision numbers 

• 32-bit numbers 

• Twos complement form 

• Bit 0 of the first word represents the sign 

• Numbers range from -231 to 231 -1 

• Two successive words in storage or two successive 
registers 

• Most significant part of the word is stored in the lower­
numbered register or storage location 

• Least significant part of the word is stored in the higher­
numbered register 

• Bit 0 in second word is part of the value and is not 
treated in. a special manner as is bit 0 in the first word 
(the sign bit) 

Signed, multiple-precision numbers 

• Any number of words in length 

• Arithmetic operations are programmed as a series of 
operations using special instructions which include carry 
and overflow resulting from the previous steps 

Figure 20. Floating-point numbers (2 of 3) 
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Single-precision, floating-point numbers 

32-bit numbers in the IBM System/370 format; they are 
stored in the most significant 32 bits of the 64-bit, float­
ing-point register or in two successive storage words. 

Short floating-point number-used for single precision 

~'-S__.l.__C~ha_r_a_c_te_r_is_t_ic~...._~~~-F-ra_c_t_io_n~~~ ...... 1~ 
0 1 7 8 31 

Double precision, floating-point format 

64-bit numbers in the IBM System/370 format; they are 
stored in the 64-bit, floating-point register or in four 
successive words in main storage. 

Long floating-point number-used for double precision 

~'-S~l.___c_h_a_r_ac_t_e_ri-st_i_c ....... l~~~~F-r_a_ct_i_o_n~~~-l~ 
01 78 63 

Standard, floating-point format 

• Sign: stored in bit 0 

• Characteristic: seven-bit number indicating a power of 
16 and a stored excess of 64. Exponents range from 
-64 throu,'Ah +6-3 and correspond approximately to the 
range 10- to 1076 • 

Fraction 

• An unsigned number between 0 and 1. Floating-point 
numbers are normalized. This means that the leading 
hexadecimal digit of the fraction is nonzero. Hence, 
the fraction is actually between 1/16 and 1 at all times. 

• The 24-bit, single-precision fraction corresponds to 
about 7 significant figures; the 56-bit, double-precision 
fraction corresponds to about 16 significant figures 

Figure 20. Floating-point numbers (3 of 3) 
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• Testing and comparing instructions 

• A method for detecting special results such as arithmetic 
overflow 

The level status register contains the last listed information 
in its indicator bits which provide sufficient information 
concerning the operations' result to permit full use of all 
number formats. Figure 21 defines the portion of the level 
status register used for this purpose. As shown there, each 
operation (arithmetic, logical, compare, shift, and comple­
ment) sets the even, carry, overflow, negative, and zero 
indicators in the level status register in a way appropriate 
to the operation. Instructions for testing and branching on 
each condition are provided and discussed in Chapter 6. 

Of particular interest is the overflow condition which can 
occur in numerical operations. In both signed and unsigned 
operations, the system detects and obtains-from the bits 
in the level status register-the true value of any result which 
is too large to be contained in a register or register pair. For 
example: overflow, resulting from the addition of a signed 
number-pair, both sets the overflow indicator and puts the 
extra bit in the correct result in the carry indicator. The 
system provides similar support of unsigned, numerical 
operations. 

All of the various data types and number formats are 
fully supported in all programming languages available on 
the Series/1. Because of the extensive hardware support 
of these formats by the processor, implementation of 
languages in which numerical processing is extensive (such 
as FORTRAN and PL/I) is especially efficient. 

Processor States and the Interrupt System 
IBM has designed the Series/1 processor to be responsive 

to external and internal events, especially the detection and 
recovery of errors. To accomplish this, the processor has a 
number of states or conditions, in each of which the system 
performs different functions. Figure 22 shows these states 
and the transitions that may occur among them. The non­
running states (power-off, stop, wait, and load) are 
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Figure 21. Indicator set in the level status register (1 of 2) 



Arithmetic operations: 

Signed numbers: 

Unsigned numbers: 

Floating-point 
numbers: 

Input/output operations: 

Non-arithmetic 
operations: 

The even, negative, and zero conditions are set to correspond to the result of 
the operation. 

1. Use overflow to indicate a result too large to be represented 

2. If overflow is indicated, carry is used to contain the extra bit. Carry combined 
with the result register is the correct result of an arithmetic addition or sub­
traction which overflows. 

Use carry to indicate a result which cannot be represented. Carry combined with 
the result is the correct result of an arithmetic addition or subtraction. In the 
latter case, the result is in twos-complement form, even though the original 
numbers were unsigned. 

1. Use overflow to indicate a result too large to be represented, and for under­
flow (too small a result to be represented). and division by zero 

2. Carry is used to indicate division by zero, and to indicate underflow. Hence, 
all three indicators must be checked to determine which conditions occurred. 

The three indicators (even, overflow, and carry) are used as a three-bit condition 
code which is set after each input/output operation. This is discussed further 
in the section concerning these operations. 

The indicators are used for special purposes by various instruction classes. The 
appropriate processor reference manuals should be consulted for specific condi­
tions under which indicators are either changed or unaffected by each instruction. 

::g Figure 21. Indicator set in the level status register (2 of 2) 
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Figure 22. Basic processor states and the transitions among them 
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concerned with start-up of the processor, initialization of 
programs, and other functions. Their definitions are: 

Initial Program Load (IPL) State 

The system provides an initial program load function to: 
(1) read an IPL record (set of instructions) from an external 
storage media, and (2) automatically execute a start-up 
program. An IPL record reads into storage from a local 1/0 
device or host system. The 1/0 attachments for the desired 
IPL sources are prewired at installation time. The user can 
wire two local sources-primary and alternate-and select 
either one by using the IPL source switch on the console. 

IPL can be started by three methods: 

1. Manually, by pressing the load key on the console 

2. Automatically, after a power-on condition 

3. Automatically, when a host system sends a signal. The 
host system can be connected through a communications' 
adapter. 

The user selects the automatic power-on IPL by a mode 
switch on the console. When the mode switch is in the 
auto IPL position, IPL occurs whenever power turns on 
(either initially or after a power failure). Auto IPL is useful 
for unattended systems. A user can initiate a manual IPL 
at any time by pressing the load key on the console (even 
when in the run state). The mode switch has no effect on 
the manual IPL. For auto IPL and manual IPL, the local 
IPL source (primary or alternate) is selected. 

IPL from a host system can occur at any time; the host 
system initiates it. The system transfers the IPL record 
through the host-system device-the communications' adapter, 
for example. When an automatic IPL occurs, one bit (bit 13) 
in the processor status word is turned on so that system soft­
ware can detect this condition. If the source of the IPL is 
either a manual command or the host computer system, this 
bit sets to zero. Upon successful completion of an I PL, an 
1/0 interrupt occurs, forcing the processor to enter the 
supervisor state and to begin execution at address zero. The 
summary mask and all priority interrupt levels in the mask 
register are enabled. 
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The system normally returns control to a routine in the 
operating system which reloads all pertinent system tables 
and sets up the system to respond properly to interrupts. 

Stop State 

The stop state is entered when: 

1. The stop key on the programmer console is pressed 

2. The stop instruction is executed, and 
a. The mode switch on the basic console is in the diag­

nostic position, and 
b. The optional programmer console is installed 

3. An address-compare occurs and the rate control on the 
programmer console is in the stop on address position 

4. An instruction has completed execution and the rate 
control on the programmer console is in the instruction 
step position 

5. An error occurs and the error control on the programmer 
console is in the stop on error position 

6. The reset key on the programmer console is pressed 

7. Power-on reset occurs 

The processor exits the stop state when: 

1. The load key on the basic console is pressed 

2. The start key on the programmer console is pressed. When 
the start key is pressed, the processor returns to the state 
that was exited before entering the stop state. If the run 
state is entered, one instruction is executed before inter­
rupts are accepted by the processor. If the stop state was 
entered because of a reset (power-on reset or reset key), 
pressing the start key causes program execution to begin 
on level zero with the instruction in location zero of main 
storage. If the stop state was entered because of an error, 
with the stop on error switch turned on, a system reset 
must occur to clear the error condition. 

Wait State 

The processor enters the wait state when it leaves the 
current priority level and there is no task waiting on any 
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level. In this case, there is no task to execute and the 
processor waits without executing instructions until an inter­
rupt occurs. While the processor is in the wait state: 

1. The wait light on the basic console is on, and 

2. The processor accepts interrupts under control of the 
system mask register and the summary mask (as defined 
by the LSR of the last active level) 

The processor exits the wait state when: 

1. The stop key on the programmer console is pressed 

2. The reset key on the programmer console is pressed 

3. An 1/0 interrupt is accepted (the level must be enabled) 

4. A class interrupt occurs 

Load State 

The processor enters the load state when initial program 
load (IPL) begins. This occurs: 

1. When the load key on the basic console is pressed 

2. After a power-on reset if the mode switch is in the auto 
I PL position 

3. When an I PL signal is received from a host system 

While the processor is in the load state, the load light on the 
basic console is on. The processor exits the load state and 
enters the run state upon successful completion of the IPL. 

Supervisor and Problem States 

The two running states, supervisor state and problem state, 
are similar in that instructions are executed in each. They 
differ because the system imposes a restriction on those 
instructions that can be legally executed in the problem 
state. The purpose of this restriction is to provide a hard­
ware environment for an operating system which can be 
fully protected against application program errors. That is, 
the system isolates one task from another by preventing the 
application program from directly executing: 
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• Input/output instructions 

• Instructions associated with the management of registers 

• Functions pertinent to the overall system 

The supervisor state is normally restricted to the operating 
system and its subprograms. Of course, in a customized 
operating system or in an application with a special purpose 
software system, the supervisor state may be utilized in any 
way pertinent to the application. 

The supervisor state is entered whenever either an 
input/output interrupt or a class interrupt occurs. This pro­
cedure is explained in the next section of this chapter. 

In addition, an initial program load causes the processor 
to enter the supervisory state. In this manner, the system is 
able to control tasks and initialize an operating system 
properly after an event occurs. The processor leaves the 
supervisory state by executing a privileged instruction which 
sets the state bit in the level status register. 

Effect of Interrupts on the Processor State 
Responding to internal and external events requires: 

• Recognition of an interrupt 

• Control over priority of the interrupt 

• Transfer of control to a responding program 

• Eventual return of the system to its pre-interrupt status 

Figure 23 shows the two general types of interrupts and the 
response that is made to them. 

Input/Output Interrupts 

The first type of interrupts comes from external sources and 
is labeled input/output interrupts. Any external interrupt­
whether it is from a device or a process signal-falls into this 
category. Each source has a unique identification which is 
used to enter an interrupt branching table in main storage to 
find the location of the response routine. When recognized, 
the source places its identification number in general register 
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seven on the level of the interrupt. Since an 1/0 interrupt 
always occurs on a priority level higher than the currently 
executing program, that higher level must be idle; conse­
quently, the contents of the registers are not meaningful at 
the time of the interrupt. Therefore, it is not necessary to 
save, and later restore, register seven's contents prior to using 
it for the device identification. 

The processor uses the device identification number to 
find a pointer in the interrupt branching table, which in turn 
locates an area in main storage called the device data block. 
This buffer contains the address of the response routine which 
is loaded into the instruction address register of the proper 
level to start the response routine. Unique device description 
parameters are also automatically loaded. 

Internal or Class Interrupts 

The second type of interrupts are internal or class inter­
rupts. They come from several sources but, in general, are 
related to the task executing on the current priority level of 
the processor. Consequently, these interrupts are responded 
to on the same priority level. Because a task is currently 
executing on that level, all registers are in use; the processor 
must save the registers' contents before transferring control 
to an interrupt response routine. The processor cooperates 
with interrupt response software by making further inter­
rupts during examination of the critical registers. This pro­
cedure is illustrated in Figure 23 where the particular type of 
internal interrupt shown is used to select two addresses from 
the table: 

1. The address of the interrupt response routine 

2. The address of a save area for the level status block (i.e., 
the eleven user registers defined in Figure 19) 

Following detection of the interrupt, the registers are 
saved, the processor enters the supervisor state, and the 
system transfers control to the starting instruction of the 
response routine. This routine can query the processor 
status word to further identify the source of the interrupt. 
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Figure 23. Input/output and class interrupts and the response of the processor (1 of 2) 
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Main storage 
address (hex) Contents of word 

001C Console interrupt LSB pointer I 

001A Trace SIA 

Internal or class interrupt 
0018 Trace LSB pointer 
0016 Power failure SIA 

Select starting instruction 
0014 Power failure LSB pointer 
0012 SVC SIA address according to the 
0010 SVC LSB pointer type of internal interrupt. \ 

~ 
OOOE Program check SIA 
oooc Program check LSB pointer 
OOOA Machine check SIA 

~ 0008 Machine check LSB pointer ~ 

r 0006 Reserved Class interrupt 

Access table to find the 0004 Reserved 

area where the current 0002 Restart instruction word 2 I Pointers to response 
level status buffer can be 0000 Restart instruction word 1 routines and the LSB 
stored while the interrupt save area. 
is serviced on the same The current level status buffer --hardware priority level. must be saved because the -- ------ response is at the same level 1--

of priority. 

S:: Figure 23. Input/output and class interrupts and the response of the processor 12 of 2) 



Different Responses to the Two Types of Interrupts 

The major difference between input/output interrupts and 
class interrupts is that class interrupts are responded to on 
the same priority level while input/output interrupts are 
recognized only if they are on a higher priority level. This 
difference is illustrated further in Figure 24 which describes 
the effects of priority. Note that once the processor responds 
to an interrupt on a given level, it remains on that level until 
it deliberately leaves by executing a privileged instruction 
such as LEX {Level Exit). As noted previously, class inter­
rupts are responded to on the same level. Following comple­
tion of the interrupt response routine, control is normally 
returned to the interrupted task by restoring the saved 
registers in the level status block. The special instruction for 
this restoration is SELB {Set Level Block). Following recog­
nition of a class interrupt, it is necessary to: 

1. Identify the specific source of the event, and 

2. Perform the proper error recovery procedure 

The processor provides the processor status word (a system 
register whose contents are defined in Figure 25) which uses 
a set of flags to indicate the specific internal error or event 
that occurred. In an error situation, the response routine 
examines the processor status word and carries out an error 
recovery procedure. 

The specific error recovery procedure depends on the 
task, the kind of error, and the current circumstances of the 
system; the recovery procedure will vary from application 
to application. It is important to remember that a user can 
design error recovery into an application thereby producing 
robust, non-sensitive, application programs. certain high­
level languages like PL/I permit the application programmer 
to specify the response to some internal events-a particular 
convenience, and one of the major advantages of PL/I as a 
programming language. 

The Series/1 operating system also permits the user to 
attach tasks to these internal events. Thus, without giving 
up the generality of the operating system, users can con­
veniently control the error recovery of their applications. 

106 



Class Interrupts in the Use of Stacks 
As an example of the integration of hardware and soft­

ware, consider the stack operations of the Series/1 processor. 
The processor takes advantage of the internal interrupt 
systems to make often-used software more efficient. In 
current operating systems and applications, it is often 
important to use a stack data structure for control of re­
entrant software, allocation of storage areas, storage of data, 
and other operations. 

The processing unit offers two types of stacking 
facilities: 

Data Stacking. This facility provides an efficient and simple 
way to handle last-in-first-out {LIFO) queues of data items 
and/or parameters in main stack elements. For a given queue 
{or stack), each element is one-, two-, or four-bytes wide. 
The system incorporates instructions for each element size 
{byte, word or doubleword) to: 

1. Add an element to the stack (register to storage). This 
is popularly called "pushing" the element onto the stack. 

2. Delete the last entered element from the stack. This is 
popularly called "popping" the stack. 

Linkage Stacking. This facility provides an easy method for 
linking subroutines to a calling program. The system uses a 
word stack for saving and restoring the status of general 
registers, and for allocating dynamic work areas. The Store 
Multiple {STM) instruction stores the contents of the registers 
in the stack, and reserves a designated number of words in 
the stack as a work area. The Load Multiple and Branch 
{LMB) instruction reloads the registers, releases the stack 
elements, and causes a branch, via register 7, back to the 
calling program. 

Data Stacking Description 

Any contiguous area of main storage can be defined as a 
stack. Each stack is defined by a stack control block. 
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Figure 24. Multilevel priority interrupt response (1 of 2) 
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0 LEX (Level Exit command) causes the processor to exit the current level on which it is executing, and 
transfer control to the highest priority level below the processor which is waiting to execute a task. e A second request on a level must wait until the processor exits 'that level-except for class interrupts, 
which are immediate. 

e If the processor exits the lowest priority level and no interrupt is waiting service, there is no task to 
carry out and the processor enters the wait state. When some priority level receives an interrupt, the 
wait state ends. 

The processor then enters the supervisor state, at that level, to respond to the interrupt. 

Figure 24. Multilevel priority interrupt response (2 of 2) 



Use of ttie processor status word 
The processor status word (PSW) is used to record error 
or exception conditions in the system that may prevent 
further processing. It also contains certain status flags 
related to error recovery. 

The PSW is contained in a 16-bit register with the follow­
ing bit representation: 

Class 
Bit Condition interrupt Remarks 
00 Specification check Program check 
01 Invalid storage address Program check 
02 Privilege violate Program check 
03 Protect check Program check 
04 Invalid function Program check or 

soft exception trap 
05 Floating-point exception Soft exception trap 
06 Stack exception Soft exception trap 
07 Not used Always zero 
08 Storage parity check Machine check 
09 Not used Always zero 
10 CPU control check Machine check 
11 1/0 check Machine check 
12 Sequence indicator None Status flag 
13 Auto-IPL None Status flag 
14 Translator enabled None Status flag 
15 Power/thermal warning Power /thermal 

Error or exception conditions recorded in the processor 
status word cause the following four class interrupts: 

1. Machine check, caused by a hardware error 

2. Program check, caused by a programming error 

3. Power/thermal warning, caused by a power or thermal 
irregularity 

4. Soft exception trap, caused by software 

Other class interrupts not recorded in the processor status 
word are: 

1. Supervisor call, caused by execution of an SVC 
instruction 

2. Trace, caused by instruction execution (trace enabled 
in the current LSR) 

3. Console, caused by a console interrupt when the optional 
programmer console is installed 

Figure 25. The processor status word (1 of 4) 
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Examples of definitions of processor status word 
flags and conditions 

Program check conditions 

Bit 00 Specification check. Set to one if the storage 
address violates the boundary requirements of the specified 
data type. 

Bit 01 Invalid storage address. Set to one when an 
attempt is made to access a storage address outside the 
storage size of the system. This can occur on an instruc­
tion fetch, an operand fetch, or an operand store if the 
system is using a translator and the segment register is 
declared invalid. 
Bit 02 Privilege violate. Set to one when a privileged instruc­
tion is attempted in the problem state (supervisor state bit 
in the level status register is not on). 

Bit 03 Protect check. In the problem state, this bit is set 
to one when (1) an instruction is fetched from a storage 
area not assigned to the current operation, (2) the instruc­
tion attempts to access a main storage operand in a stor­
age area not assigned to the current operation, or (3) the 
instruction attempts to change a main storage operand in 
violation of the read-only control. 

Program check or soft exception trap condition 

Bit 04 Invalid function: Set to one by one of the follow­
ing conditions: 

1. An illegal operation code or function combination 

2. The processor attempts to execute an instruction 
associated with an uninstalled feature 

Figure 25. The processor status word (2 of 4) 

Figure 26 shows a data stack and its associated stack 
control block. The user must align stack control blocks on 
a word boundary. The words in the stack control block are 
used as follows: 

High limit Address (HLA}. This word contains the address 
of the first byte beyond the area being used for the stack. All 
data in the stack has a lower address than the contents of the 
HLA. Note that the HLA points to the first byte beyond the 
bottom of an empty stack. 
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Soft exception trap condition 

Bit 05 Floating-point exception. Set to one when an 
exception condition is detected by the optional floating­
point processor. The arithmetic indicators (carry, even, 
and overflow) define the specific condition. 

Bit 06 Stack exception. Set to one when an attempt has 
been made to remove (pop) an operand from an empty 
main storage stack or enter (push) an operand into a full 
main storage stack. A stack exception also occurs when 
the stack cannot contain the number of words to be stored 
by a Store Multiple (STM) instruction. 

Machine check conditions 

Bit 08 Storage parity. Set to one when a parity error has 
been detected on data being read out of storage by the 
processor. This error may occur when accessing a storage 
location that has not been validated since power on. 

Bit 10 CPU control check. A control check will occur if 
no levels are active but execution is continuing. This is a 
machine-wide error. 

Bit 111/0 check. Set to one when a hardware error has 
occurred on the 1/0 interface that may prevent further 
communication with any 1/0 device. 

PSW bit 12 (sequence indicator) is a zero if the error 
occurred during an Operate 1/0 instruction and is set to 
one if the error occurred during a non-DPC transfer. 

Figure 25. The processor status word (3 of 4) 

Low Limit Address (LLA). This word designates the lowest 
storage location that can be used for a stack element. Note 
that the LLA points to the top of a stack. 

Top Element Address (TEA}. This word points to the stack 
element that is currently on top of the stack. For empty 
stacks, the TEA points to the same location as the high limit 
address (HLA). 

Notes: 
1. For word, doubleword, and register block operations, the 

high limit address, low limit address, and top element 

112 



Status flags 

Bit 12 Sequence indicator. This bit reflects the last 1/0 
interface sequence to occur after an 1/0 check. 

Bit 13 Auto IPL. Set to one by hardware when an auto­
matic IPL occurs. Set to zero by a power-on reset when 
the mode switch is not in auto-IPL, by pressing the load 
key, or by a host-system IPL. 

Bit 14 Translator enabled. When the Storage Address 
Relocation Translator Feature is installed this bit is set 
to one or zero as follows: 

1. Set to one (enabled) 
a. An Enable (EN) instruction is executed with bit 12 

of the instruction word set to zero and bit 14 set 
to one 

2. Set to zero (disabled) 
a. A Disable (DIS) instruction is executed with bit 

14 of the instruction word set to one 
b. An Enable (EN) instruction is executed with bit 

12 of the instruction word set to one 
c. A processor reset (power-on reset, check restart, 

IPL, or system reset key) 

Power/thermal warning condition 

Bit 15 Power warning and thermal warning. Set to one 
when these conditions occur. The power/thermal class 
interrupt is controlled by the summary mask. 

Figure 25. The processor status word (4 of 4) 

address must all contain an even numbered address to insure 
data alignment on a word boundary. 

2. The high limit address and low limit address define a con­
tiguous range of addresses. These addresses must not cross 
the 64K-byte boundary because that action causes storage 
to wrap around, i.e. correspond to addresses at the begin­
ning of storage. Figure 27 shows how elements are pushed 
into and popped from a stack. Note that each push opera­
tion always places an element at a lower address in the 
stack than the preceding element. 
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Main storage 

Address 0000 1 l 
.... Stack control block 

..------ Top element address (TEA) Word 0 

High limit address (HLA) Word 1 

.-- low limit address (LLA) Word 2 

Stack 
Full stack L....,.-------------. 
TEA Stack element ·-1- - - - - - ... __________ -' 

Stack element Empty 
stack TEA 

.._..__~---a 

The TEA for an 
empty stack points 
to the same place 
as the HLA. 

\ 15 

Stack element shown 
is 1 word; element can 
be 1 -, 2-, or 4-bytes wide. 

Notice that elements 
are added at the higher-
address storage loca- ---' 
tions-down toward 
the lower-numbered 
addresses. 

There may be as many stacks in main storage as desired; 
each stack is, essentially, an arbitrary size. Each stack has 
its own stack control block-a three word structure. 

Figure 26. The relationship of the stack control block to the data stack 
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Push: add an element to a stack 

LLA--+-1 

Empty 
stack 

TEA 

I 
TEA~ 
and HLA Notice that the addition of elements is 

from the higher addresses toward the 
lower addresses in main storage. 

Pop: delete an element from a stack 

LLA 

TEA 

Pop 

I 

HLA ~ TEA._, 

Empty 
stack 

The Series/1 provides instructions for adding and deleting 
one-, two-, and four-byte size elements. 

The processor handles all pointer updating and error 
detection. 

When allocating main storage for the stack, the user must 
insure that the area allocated is a multiple of the size ele­
ment being utilized. 

Elements are added to the stack at the same end from 
which they are deleted (last-in-first-out-LIFO). 

Figure 27. Adding and deleting elements from a stack 
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Push Operation. When a new element is pushed into a stack, 
the address value in the top element address is decremented 
by the length of the element (one, two, or four bytes) and 
compared against the low limit address. If the top element 
address is less than the low limit address, a stack overflow 
exists. An interrupt occurs with the stack exception bit set 
in the program status word. This interrupt is an example of 
an internal or class interrupt discussed earlier in this chapter. 
The top element address is unchanged. If the stack does 
not overflow, the system updates the top element address 
and moves the new element to the top l0<cation defined by 
the top element address. 

Pop Operation. When an element is popped from a stack, the 
top element address is compared against the high limit 
address. If it is equal to or greater than the high limit address, 
an underflow condition exists. An interrupt occurs with the 
stack exception bit set in the program status word. If the 
stack does not underflow, the system moves the stack ele­
ment-defined by the top element address-to the specified 
register, and increments the top element address by the length 
of the element. 

Note: It is possible to pop data from beyond a stack 
boundary if: 

1. The top element address is less than the high limit address, 
and 

2. The operand size is greater than the high limit address minus 
the top element address 

Data Stacking Example-Allocating Fixed Storage Areas 

Many programs require temporary main storage work 
areas. Users find it very economical to be able to assign, 
dynamically, such work-area storage to a program only when 
that storage is needed. Conversely, when work-area storage 
is no longer needed by a program, it is economical to free 
that resource so that other programs can use it. The stacking 
mechanism can assist the user in programming the dynamic 
storage management function. 
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The following paragraphs describe how a user cou Id allo­
cate storage areas using the stacking mechanism {Figure 28). 

A stack is initialized with an address that points to a fixed 
area of storage. Each element in the stack represents the 
starting address of a block of storage consisting of 512 bytes 
(e.g., addresses 0200 through 03FF}. As storage is needed, 
the system pops the starting address for a block of storage 
from the stack. When the system no longer needs the block 
of storage, it pushes the starting address back into the stack. 

The stack control block, and the stack and storage areas 
appear initially as shown in Figure 28 (1 of 4). 

Notice that each stack element is one word long; addresses 
of the storage area are synonymous with the stack elements; the 
the top element address {TEA} points to the lowest location 
of the last element because the initialized stack is full. 
Contrast this with an empty stack {Figure 27} in which the 
top element address points to the same location as the high 
limit address. 

Assume that program A requires a block of storage. Pro­
gram A (or a storage management function at the request of 
program A) issues a Pop Word instruction against the stack 
control block. The system updates the top element address 
as shown in Figure 28 (2 of 4). 

The system places the popped-word element in the register 
specified by the Pop Word instruction executed by program 
A. This is the address of the 512-byte storage area beginning 
at address 0200. 

Assume that program B {operating on a different hardware 
level than program A} also requires a storage area as shown in 
Figure 28 (3 of 4). It, too, executes a Pop Word instruction 
against the stack. The next stack element is moved to the 
register specified and points to the next available storage area; 
then, the top element address is updated. 

Before any further requests occur, program A terminates 
its need for a work area. Program A then issues a Push Word 
instruction against the stack and returns the address of the 
area it occupied so other programs can now use that same 
area as shown in Figure 28 (4 of 4). 
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Problem: Given a supply of buffer or storage areas of equal 
length-provide them, on a temporary basis, to tasks exe­
cuting at different priority levels. 

Solution: Use the stack as the list of available areas. Use the 
stack manipulation instructions to insure that interrupts of 
different priority cannot interfere with one another by 
interrupting during a crucial time-for instance, when stor­
age areas are being allocated. 

Stack control block 

TEA 

HLA 

LLA 

TEA= 
LLA = 0800 __.,. 

HLA=0808-

0200 

0400 

0600 

0800 

0800 

OBOS 

OBOO 

Full stack 

0200 

0400 

0600 

0800 

Storage areas 

Available storage 

Available storage 

Available storage 

Available storage 

The stack is initialized 
with the addresses of 
the available storage 
areas (in this example, 
assumed to be 512 bytes). 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (1 of 4) 
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LLA = OBOO 

TEA= 0802 

HLA=OB08-. 

0400 

Stack 

0600 

0800 

Storage areas 

Available storage 

One storage area address 
has been popped from the 
stack and given to program 

0600 
i---------1 A. Program A keeps this 

Available storage 
address in a register which 
precludes interference 

1--------1 from higher priority tasks. 
osoo-

Available storage 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (2 of 4) 

A similar operation will be performed by program B when 
it releases its storage to the stack, popping address 0400 
into location OBOO. While the addresses are obviously 
shuffled in the stack-the values differ from those initially 
established-no operational problems occur. This is so 
because each program requires only that an area of storage 
be assigned-it is not important where that area is located. 

Linkage Stacking Description 

A word-stack mechanism can be used for subroutine link­
age. This mechanism saves and restores registers and allo­
cates dynamic work areas (Figure 29). 
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A higher-priority program-8-interrupts and requests a stor­
age area. A second address is popped from the stack and 
assigned to program 8. Note that an interrupt cannot occur 
in the middle of a stack operation; consequently, one stack 
operation is always complete before another begins. 

Stack control block 

TEA 0804 TEA after 
second pop 

HLA 0808 

LLA 0800 

Stack 

LLA = 0800 

TEA= 0804 0600 

0800 

H LA = 0808--+-

Storage areas 

0200 

Available storage 

0800 
Available storage 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (3 of 4) 
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Stack control block 

TEA 0802 TEA after 

HLA 
program A 

0808 push operation 

LLA 0800 

Stack 

LLA = 0800 

TEA= 0802 0200 Program A finishes 

0600 with its storage area 
and returns it to the 

0800 stack. The address 

HLA = 0808--.. 
is pushed onto the 
stack. Notice that Storage areas as areas are allocated 

0200 and returned, the 
order of addresses 
on the stack changes. 

0400 

0600 
Available storage 

0800 
Available storage 

Any program requesting storage may discover that no 
storage is available. An interrupt would then signal an 
empty stack of available addresses. The program must 
then decide whether to abort or wait for the storage to 
become available. 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (4 of 4) 
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Stack control block 

TEA 

HLA 

LLA 

Stack 

NewTEA~ RL N 

0 2 3 

NewRL -

OldTEA­
and HLA 

Dynamic work area 

R7 contents 

RO contents 

RL contents 

15 

Special instructions, Store Multiple and Load Multiple, 
reference a stack control block and specify: 

• The number of registers to be saved 

• The number of registers to be restored 

• An arbitrary-sized area to be stacked (N) 

This figure shows the use of special instructions to push 
and pop arbitrary-sized elements on a stack, and to facili· 
tate reentrant programming. 

Figure 29. Example of hardware and software integrated design 
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The Store Multiple (STM) instruction specifies: 

• Stack control block address 

• Limit register (RL) number 

• Number (N) or words to allocate for work areas 

When the STM instruction is executed, the requested block 
size, in words, is the sum of: 

• The allocated value {N), plus 

• The number of registers saved, plus 

• One control word 

The block size (converted to bytes) is used to decrement the 
TEA before making an overflow check. If no overflow 
occurs, the operation proceeds. The link regist~r (R7) and 
register 0 through the specific limit register (RL) are saved, 
sequentially, in the stack. If register 7 is specified as the limit 
register, only register 7 is stored in the stack. The dynamic 
work space is allocated, and a pointer to the work area is 
returned in register RL. If no work area is specified, the 
returned pointer contains the location of R7 in the stack. 
The values of RL and N are also saved as an entry in the stack. 
The TEA is updated to point to the new, top-of-stack 
location. 

When a Load Multiple and Branch (LMB) instruction is 
executed, the values of RL and N are retrieved from the 
stack and the system makes an underflow check. The value 
of RL controls the reloading of the registers; the values of 
RL and N are used to restore the stack pointer (TEA) to its 
former status. The contents of register 7 are then loaded 
into the instruction address register, returning program 
control to the calling routine. 

Linkage Stacking Example-Reentrant Subroutine 

Programs that operate on different interrupt levels may 
use the same subroutine. Instead of providing copies of the 
subroutine (one copy for each program that needs it), the 
subroutine can be made reentrant. That is, only one copy 
of the subroutine is provided and the single copy is used by 
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all requesting programs. Two items must be considered in 
the reentrant subroutine code: 

1. Saving the register contents of each calling program. The 
subroutine is then free to use the same registers, restoring 
their contents to the calling-program's values just before 
the subroutine returns to the calling program itself. 

2. Preserving the applicable variable data (generated by the 
subroutine) that is related to each call of the subroutine. 
This is done because data associated with one call must 
not be disturbed when subroutine execution is restarted 
due to another call from a higher priority program. 

By using the STM and LMB instructions, the stacking 
mechanism handles items one and two, above. As an 
example, the operation could proceed as follows (Figure 30): 

1. Program A calls the subroutine by means of a Branch and 
Link instruction (return address is in R7) 

2. The subroutine, in this example, uses registers R3 and R4 
during its execution. The subroutine receives (from pro­
gram A) a parameter list address in RO, and the address 
of the stack control block in R 1. Also, the subroutine 
executes, upon entry, the following store multiple instruc­
tion: 

SUB RT STM 4,(1 ),20 

After execution of the STM, the stack appears as shown 
in Figure 30. The last word contains a value that specifies 
the last register stored (R4 in this example) and the size 
of the dynamic work area (in words). During the STM 
operation, R4 (the last register stored in the stack) is auto­
matically loaded with the address of the work area to be 
used by the subroutine to hold its work data. 

3. When subroutine processing for this call is completed, the 
subroutine executes a single, Load Multiple and Branch 
instruction in order to reload the registers and return (via 
R7) to the calling program. 

If a second call to the subroutine has occurred prior to 
execution of the LMB, action similar to that just stated 
would occur again. However, another stack area would be 
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used. To complete processing for the first call, a return 
to the interrupted subroutine would occur when: 
a. Subroutine execution is completed for the second call, 

and 
b. All higher priority, interrupt-level processing is 

completed 

In this way, multiple calls to a single subroutine are 
processed without interfering with the integrity of data 
associated with any other call to the subroutine. 

Efficient use of the stacking mechanism depends on 
processor instructions for adding and deleting information. 
The stack, however, is a finite resource; consequently, 
exceptional conditions may occur which must be detected. 
These include overflowing the allotted stack area or remov­
ing more elements than are on the stack. The Series/1 
instructions used to push and pop bytes, words, and double­
words, and the instruction used to store a group of registers 
and allocate an arbitrarily-sized work area on the stack 
(Load and Store Multiple instructions) contain hardware 
facilities to detect exception conditions and cause class 
interrupts. It is not necessary for user programs to test 
repetitively to determine if the stack has enough room. 
Rather, when the exception occurs, an interrupt response 
task can respond and do the appropriate error recovery 
pertinent to the particular use of the stack. 

The ability to test and detect error conditions like these 
is easy and inexpensive in a microprogrammed processor. 
IBM has carefully designed the instruction set of the Series/1 
to take advantage of this capability to make system software 
and application software as reliable as possible. 

Interrupt Masking Facilities and the 
Interrupt Response Algorithm 

It is usually, but not always, advantageous to respond 
quickly to asynchronous external events. Often application 
tasks or operating systems must update shared data items or 
manipulate other shared resources. If interrupting the opera­
tion might result in erroneous information being stored or 
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Problem: Provide an efficient mechanism for: 1) saving 
the registers of a program calling a subroutine, and 2) allo­
cating to the subroutine a work area for its temporary use. 
The latter permits tasks which interrupt one another to 
share subroutines. 

Solution: Use a stack-with special instructions that move 
registers to the stack-and restore register values from the 
stack. The same instructions must permit allocation of an 
arbitrary work area on the stack. Use the hardware-designed 
special instructions of the Series/1 to solve this software 
problem. 

Stack 

LLA ____..,. 

TEA ~ 4 10 

0 2 3 15 
_.,. 

20 bytes 

R4 

} N=10 

R7 

RO 

R1 

R2 

R3 

R4 

HLA--+-

Figure 30. Example of stack usage: subroutine linkage and allocation of a 
work area (1 of 21 
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In this example, ten words have been specified for the work 
area. Not all eight registers need be saved in this example. 
Registers 0 through 4 have been specified. Register 7 is 
automatically saved because it is used during the linkage 
process. Arguments of the subroutine are usually trans­
mitted through the registers and, hence, are available to the 
subroutine on the stack. 

Figure 30. Example of stack usage: subroutine linkage and allocation of a 
work area (2 of 2) 

used by another task, the operation is termed critical. Such 
interrupts must be prevented. Usually, the user carefully 
designs such operations so they will execute quickly and 
infrequently to insure that the overall system response is not 
affected. Control over the interrupt mechanism is a useful 
tool for preventing interrupts that would adversely affect 
the system. 

Three degrees of priority interrupt masking are provided 
for control of the interrupt processing: 

1. Summary mask (bit 11 of the level status register) 

2. Interrupt level mask register 

3. Device mask 

These registers, along with the conditions under which the 
processor responds to an interrupt, are shown in Figure 31. 

Summary Mask 

The summary mask supplies a masking facility for priority 
interrupts and certain class interrupts. The state of the 
summary mask (enabled and disabled) is controlled by bit 11 
in the level status register (LSR) of the active priority level. 
When bit 11 is set to zero, the summary mask is disabled 
and prevents: 

1. All priority interrupts regardless of priority level 

2. Power/thermal and console class interrupts 
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IV 
00 

Mask register: (one bit per hardware priority level): 

If Lk=1, the level is enabled 

If Lk=O, the level is disabled 

1 4 1 L, I L,TJ 
Each input/output device: 

Device 
interrupt 
mask 

Figure 31. The priority interrupt algorithm (1of2) 

Summary mask: 

Bit 11 in the 
level status 
register 

Each level has its own summary mask for 
disabling all interrupts. 

In-process flag: 

Bit 9 in the level 
status register 



Interrupt 

Yes 
Respond 

~ Figure 31. The priority interrupt algorithm (2 of 2) 

Respond to the interrupt: 

1. If the summary mask is enabled 

2. If the interrupt level corresponding to the interrupt is enabled in 
its corresponding bit in the mask register 

3. If the interrupt is from an input/output device, the device inter­
rupt mask for that device must be enabled 

4. If the interrupt request is the highest priority of the outstand­
ing requests-and either higher than the current level of the 
processor, or at the same level in the case of class interrupts 

5. If the processor is not in the stop state 

No 
If any of these conditions do not hold, the 
interrupt is not lost but is left pending or 
waiting until all the above conditions are 
fulfilled. 



All other class interrupts are enabled. When bit 11 is set to 
one, the mask is enabled and the interrupts are allowed. The 
summary mask is disabled and enabled as follows: 

Disabled (Set to Zero) 

• When a Supervisor Call (SVC) instruction is executed, the 
summary mask for the active level is disabled 

• Execution of a Disable (DIS) instruction-with bit 15 of 
the instruction equal to one-causes the summary mask 
for the active level to be disabled 

• All class interrupts disable the active-level summary mask 

• The summary mask for a selected level is disabled by 
executing a Set Level Block (SELB) instruction with bit 11 
of the LSR to be loaded, equal to zero 

• The summary mask bits for priority levels 1-3 are set to 
zero by a system reset, power-on reset, or I PL 

Enabled (Set to One) 

• Execution of an Enable (EN) instruction-with bit 15 of 
the instruction equal to one-causes the active-level 
summary mask to be enabled 

• The summary mask for a selected level is enabled by 
executing a Set Level Block (SELB) instruction with bit 
11 of the LSR to be loaded, equal to one 

• The level zero summary mask is enabled by a system 
reset, power-on reset, or I PL 

• The summary mask for the interrupted-to level is enabled 
by a priority interrupt 

Notice that the summary mask bit exists independently for 
each priority level. If the processor is in the wait state, the 
summary mask is enabled or disabled as defined by bit 11 
in the LSR of the last active priority level. 

Interrupt Level Mask Register 

The interrupt level mask register is a 4-bit register used 
to control interrupts on specific priority levels. Each level 
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is controlled by a separate bit of the mask register as shown 
below: 

Interrupt Level Mask Register 

Bit position 0 1 2 3 
Priority level 0 1 2 3 

With a bit position set to one, the corresponding priority 
level is enabled and permits interrupts. With a bit position 
set to zero, the corresponding priority level is disabled. The 
system uses the Set Interrupt Mask Register (SEIMR) instruc­
tion to control bit settings in the interrupt level mask register. 
The Copy Interrupt Mask Register (CPIMR) instruction may 
be used to interrogate the register. 

Note: All levels are enabled (set to one) by a system reset, 
power-on reset, or IPL. 

Device Mask 

Each interrupting device contains a one-bit mask called 
the device interrupt bit (I-bit). Interrupts by the device are 
permitted when its device mask is enabled (set to one). With 
the device-mask bit disabled (set to zero), the device cannot 
cause an interrupt. The device mask is controlled by a Pre­
pare command in conjunction with an Operate 1/0 
instruction. 

The algorithm for responding to an interrupt, outlined in 
Figure 31, involves the priority of the currently executing 
level and the conditions of the various mask bits. The use of 
these interrupt masking functions is actually carried out with 
privileged instructions. In some dedicated types of applica­
tions, critical user-application tasks may execute in the 
privileged mode and directly manipulate interrupts. More 
often, the operating system maintains complete control over 
interrupts in order to successfully schedule and control 
concurrent sets of cooperating tasks-a condition typical of 
online, realtime applications. 
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Organization and 
Management of 
Main Storage 

The objective of this chapter is to discuss the organization 
and management of main storage from the point of view of 
the overall architecture of the Series/1. Some of the capa­
bilities discussed are hardware supported in some processors 
but not in others; some capabilities may not be supported 
in some software systems. Consequently, it is important to 
review the appropriate processor and software reference 
manuals when considering any single device in the Series/1 
family. 

The organization of main storage is central to the effec-
tive use ofsmall computers. The hardware organization 
must both support a set of cooperating tasks and permit the 
use of efficient software for control of those tasks. To 
achieve compactness and speed, the Series/1 main storage 
itself is constructed using solid state FET (field effect tran­
sistor) technology. Supplied in up to 64K-byte increments, 
the maximum main storage supported is 64K bytes without 
hardware relocation translation and 256K bytes with the trans­
lator in the 4955 processor. Main storage speed is 300 nano­
seconds with a restriction that 660 nanoseconds separate 
successive storage accesses. Each byte of main storage con­
tains a parity bit for error detection. Specific details on 
speeds and parity bits vary from one processor model to 
another. The reader should consult the appropriate processor 
reference manuals for more specific information. 
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Main storage technology has been changing rapidly for 
the past few years and will probably continue to do so in the 
future. It is probable that main storage speeds, sizes, and 
reliability will continue to increase. As indicated earlier, IBM 
has deliberately designed the architecture of the Series/1 so 
that future technological improvements can more easily be 
incorporated in the system without obsoleting the design. 
The organization and use of Series/1 main storage, in parti­
cular, has been designed to rnake it compatible with these 
potential changes; hence, it is very important to consider 
how hardware and software cooperate in using storage. 

Solid state main storage is volatile; that is, it loses its 
contents if power is lost. For those applications which can­
not tolerate any loss of storage-or where it is difficult to 
checkpoint the application for restart from data kept in 
secondary storage-a battery backup unit is available. This 
unit is normally on stand-by and held at full charge. When a 
power failure is detected, this unit switches in to insure that 
the contents of main storage are not lost. 

Chapter 3 discussed the processor and the input/output 
system access of main storage. It should be noted again, 
however, that in Series/1 processors with translation, all 
main storage addresses are actually 24-bits wide even though 
the largest main storage available is 256K bytes. 

As described in Chapter 2, main storage is extensively self­
checked. During processor power-on, the system checks the 
first 16K bytes of main storage for correct operation-general 
pattern checking also occurs. When using the Realtime Pro­
gramming System, all installed storage is validated. Individual 
modules perform self-checking relevant to each module, and 
then check communications into main storage by uniting with 
and rereading a location. It is highly probable that a main 
storage failure will be discovered promptly. 

User Concerns in Main Storage Organization 
Since small computer applications are usually realized as a 

set of cooperating tasks, several aspects of main storage 
organization become important. They include: 
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Storage Addressing. Because multiple programs are co­
resident in main storage, it is desirable to minimize the size of 
each. This minimization further reduces the time required to 
load the program from secondary storage and enhances 
response time of realtime applications. Although mainly 
related to instruction set sophistication, program size also 
relates to main storage word size and addressing. Specifically, 
effective use of registers for addressing purposes results in 
fewer full-word addresses and, consequently, more compact 
programs. 

Address Space. Since small computer applications are usually 
structured as a set of relatively small, cooperating tasks, a 
64K-byte address space (that is, the largest address that may 
be directly generated in an application program) is not often 
a limitation. More important, here, is the ability to use the 
full space for the task (and not share it with a large operating 
system, for example), and to access other tasks and data 
areas each of which may have its own address space. 

Storage Protection. Reliability is the paramount concern in 
applications, but it is not realistic to expect all programs to 
be error free under all conditions. Instead, the user wants to 
be able to detect errors when they occur, trace them to their 
source, and respond in such a way that the application's 
objective_s are still met. Detection of errors and error recovery 
is a function of both the interrupt system discussed in 
Chapter 3 and of the main storage organizaHon. 

Hardware Support for Reentrant Programs. Many software 
routines are shared among tasks. If the routines are reentrant, 
it is not necessary to delay the higher-priority task until the 
lower-priority task has completed its use of the shared 
routine. If suchroutines are to be efficient as reentrant 
routines, the system must provide storage addressing modes 
to permit instructions to reference different data areas at 
different times. 
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Efficient Intertask Communications' Capability. The word 
"cooperating" in the description of applications as a set of 
"cooperating tasks" cannot be overemphasized. The tasks 
share data, share routines, schedule one another, and perform 
many other functions. These tasks run concurrently, often 
in unpredictable sequences, as events occur. Main storage 
organization must permit data and routine sharing even 
though-at program preparation time-addresses of data and 
routines are not usually known. As in the case of reentrant 
routines, addressing modes must be present to do this 
effectively. Furthermore, the intertask communications must 
be consistent with the main storage protection mechanism 
so they do not reduce the reliability of the system. 

Storage Management of Tasks. Either the Realtime Program­
ming System or a special-purpose operating system created by 
the user manages the concurrent application tasks. In either 
case, the hardware organization of the main storage must 
facilitate: 1} getting tasks into and out of main storage with 
minimum overhead, and 2) switching execution rapidly from 
task to task. This is especially important in realtime applica­
tions and in processors with large main storage. 

IBM designed the Series/1 main storage architecture with 
these user concerns in mind. Consider first a single task­
involved in all of the aspects described above-when it 
addresses main storage. 

Main Storage Addressing Modes 

The user address space on the Series/1 is 64K bytes in 
length, corresponding to an address size of 16 bits; it is 
treated as an unsigned number. Storage references may be 
to bytes, words (pairs of bytes), doublewords, and quadruple 
words (as for example in double-precision, floating-point 
data}. Bytes may be referenced at any address, but all words 
and multiples of words must start on word boundaries which 
are even-numbered bytes. Reference to a word is by the 
left-hand byte.address. Hence, the left-hand byte of a word 
must reside at an even address and the right-hand byte of a 
word, at an odd address. This arrangement expedites the 
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accessing of words from main storage. Part of the instruction 
set's sophistication originates from its knowledge of the data 
type being addressed. For example, if it is known that a 
word is being addressed and hence its address is even, the low 
order bit-which is zero-need not be stored in the instruc­
tion. Of course, language translators for PL/I, FORTRAN, 
COBOL, and the assembler language take this into account 
at program preparation time. 

The Series/1 provides a variety of addressing modes-all 
of which are useful in specific instances-for actually 
referring to main storage addresses. They may be divided 
into three broad categories: 

1. Addressing modes which do not use registers 

2. Register addressing modes 

3. Based addressing modes 

Direct and Indirect 

In the first category of addressing modes, the address of the 
data item or main storage location is: 

• 16-bits long 

• Treated as an unsigned positive number 

• Resides in a word in main storage as indicated in Figure 32 

In that figure, direct addressing indicates a word which itself 
contains the desired address; indirect addressing indicates a 
word that contains a main storage address which, in turn, 
contains the desired address. Notice in the latter case that, 
before the system can access the data, an extra storage 
reference must occur to get the actual address. These modes 
of addressing can be used with many instructions but require 
a full storage word appended to the instruction to contain 
the address. This requirement lengthens the instruction from 
one word to two or, in the case of storage to storage instruc­
tions, to three words. In Figure 32, the examples show 
simple references to names which have been defined else­
where in either assembler language or a compiler language. 
The asterisk symbol after a name means that the location 
named contains the address of the desired data rather than 
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the data itself. Direct addressing is useful in those situations 
where locations of routines and data are known at program 
preparation time. 

Even in these cases, however, it is often more efficient to 
load the known addresses into registers and then use one of 
the register and based addressing modes to decrease program 
size. Indirect addressing can obviate the need to know 
addresses at program preparation time. As shown in the 
example in Figure 32, a user might refer to a routine whose 
address is not known by: 1) referring indirectly to a known 
location; 2) then, before the program begins execution, load­
ing the address of the routine into that location. Indirect 
addressing is also used in the other two categories of 
addressing. 

Register Modes 

The second category of addressing modes is the set of 
register addressing modes shown in Figure 33. The first two 
modes illustrated there are similar to the direct and indirect 
modes discussed above because the system uses 16-bit 
addresses to address either the data or a main storage location 
which contains the address of the data. They differ because, 
in the second category, the addresses are in one of the eight 
general purpose registers rather than in a main storage word. 
This placement simplifies the instructions because they have 
to reference only one of the registers {two or three bits, 
depending upon the instruction) rather than a full word 
appended to the instruction. Furthermore, references to a 
data item cite a register containing that item's addresses; to 
move a data item, only that register's contents need be 
changed. This expedites referencing data separate from 
tasks, data in tables, and other data sources. 

The register addressing modes contain one additional 
capability: namely, the post incrementing addressing mode. 
In this mode, denoted by a+ sign after the register number, 
the system accesses the register to find the data address 
stored in that register-just as in register direct addressing; 
but the address in the register is then incremented by the 
length of the data item addressed. As a result, each reference 
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w 
00 

0 Direct addressing generates an instruction containing the address of the data item referenced. 

Example: in the table containing counts of pro­
duction for various orders, each location has an 
address and a symbolic name. 

• Direct 
addressing 

~ ADD-ONE-TO 

l ADD-ONE-TO 

ORDER2-- -I 

ORDER1 -- .j 

Figure 32. Storage addressing modes which do not use registers (1 of 3) 

Main storage 

ORDER4 = loc 3026 

ORDER3 = loc 3024 

ORDER2 = loc 3022 

ORDER1 = loc 3020 



G Indirect addressing generates an instruction containing the address of a storage location; this storage location 
actually contains the address of the data item referenced. 

A storage location with a symbolic name is used as a pointer to the order currently being referenced. 

e 
Indirect 
addressing { ADD-ONE-TO TRANS* 

' ' ' ......... 

ORDER1 = loc 3020 

I r--, 
I 
I 
I 
I 
I 

3020 
TRANS= loc 1410 

Indirect addressing allows programs to refer to different data items at different times by changing only the 
contents of TRANS rather than all of the addresses within the program. 
Actual addresses-which appear as part of an instruction or as an indirect address-are a full 16-bits long and 
occupy a full word in storage. 

~ Figure 32. Storage addressing modes which do not use registers (2 of 31 
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1-Problem: A program calls subroutines whose locations are not known at program preparation time because 
I they are separate from the program itself-part of another program or operating system. 

I 
I 
I 
I 
I 

Solution: Address the subroutines indirectly using a known location in the calling program itself. - - - -­

The actual addresses of the subroutines must be loaded into these locations just prior to execution of the II 
program. 

I 

.... - - -1 

I 
I 
I 

Call subroutine A 

Call subroutine 8 

Loe A1 * 

Loe 81 * 

Figure 32. Storage addressing modes which do not use registers (3 of 3) 

CALL A1 * 
CALL 81* 

1-------...J 

} 
Loaded with addresses 
of subroutines A and 
8 prior to execution 
of this program. 



to a register with post incrementing mode changes the 
address. This procedure is very useful for sequencing through 
a table of items because it eliminates extra instructions that 
add constants to the register contents. The incrementing 
is totally automatic in the sense that the amount to be incre­
mented (one byte, one word, two words) is determined by 
the instruction involved-because the data type referenced 
is implicit in the instruction. Register addressing modes are 
used extensively to minimize program size. Code generation 
in compilers is carefully designed to take this into considera­
tion enabling application programs written in FORTRAN, 
COBOL, or PL/I to produce efficient object programs. An 
important part of assembler language programming is planning 
to permit use of these addressing modes rather than the 
longer, non-register modes. 

Based Addressing 

Based addressing, the third category of addressing modes, 
provides the real power for intertask communications, sharing 
data, and other functions required by a set of cooperating 
tasks. Figure 34 shows the three modes in this category. 
Base relative addressing uses one of the general registers as a 
base register; that is, a register which contains an address to 
be used in relative addressing. An item is referenced relative 
to that base address by providing its displacement from 
that address. The net address then consists of the base 
register number and the displacement as shown in Figure 34. 
This is the addressing mode used in most large computers 
including the IBM System/370. It permits the referencing 
of a number of data items via displacements; the displace­
ments are usually small because programs are designed to 
be compact. 

Figure 35 shows a data table containing several items of 
information. Base relative referencing of that data involves 
loading the selected base register with the starting address of 
the table (which need not be known at program preparation 
time). Each item is referenced by its known displacement 
from the beginning of the table. Notice that the table could 
be moved without changing the relative addresses of the data 
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0 
(r) 

(r)* 

Register direct. Direct addressing where the 
16-bit address is in a register rather than a 
word in storage, 

e 

Register indirect. Indirect addressing where 
the 16-bit address of the storage location con­
taining the address of the data item is stored 
in a register rather than another word of 
storage. 

(r)+ Register post increment. Register direct 
addressing mode-except that the register con­
tents are incremented after its contents are 
used as an address. 

Register addressing modes allow efficient use of main stor­
age: instructions may not need extra storage words contain­
ing addresses. 

Register addressing modes lead to efficient programs: the 
same program code can refer to different data items at 
different times; this is accomplished by changing an address 
in a register rather than changing the addresses within all of 
the instructions in the program. 

Figure 33. Storage addressing modes using registers for address storage (1 of 2) 

within the table; to do so, the user has to change only the 
beginning address of the table in the base register. Certain 
instructions permit registers 1 through 7 to be base registers 
while other instructions restrict the choice to registers 1 
through 3-whichever registers are appropriate for the instruc­
tion under consideration. Other instructions also limit the 
maximum displacement that a user may specify. This limita­
tion is a value appropriate to the particular instruction. 
Maximum displacements range from a low of 31 bytes to a 
high of 32K bytes. 

Indirect and Base Relative 

Indirect addressing in the base relative mode is also per­
mitted as shown in Figure 34. In this case, the user can 
choose when to perform the indirect part of the address 
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e TEST-ZERO (R3)+ 

I 
I 
I 
I 
I 
I 
I 
I 
~ 

Loe 1106 

Register 3 
:- ~o~1~4~ 

-r-- - _,, 

0 
0 
e 

User registers 

: Loe 1102 -----1 
·----~ 

The main-storage sequence 
of words to be tested is 
equal to zero. 

r refers to a user register number. 

The amount of the increment depends upon the data 
type referenced (byte, word, and so on). 

Successive executions of this instruction reference 
successive items in the table. 

Figure 33. Storage addressing modes using registers for address storage (2 of 2) 
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t 

Base relative addressing combined with indirect addressing 

Pre-base relative indirect: add the displacement to the base register contents and use the result as an 
indirect address. 

Post-base relative indirect: use the base register contents as the indirect address. Fetch the address in that 
location and then add the displacement to get the final address. 

Pre- and post-base relative indirect: apply one displacement to the base register contents to get the indirect 
address. Add the second displacement to the address found in the indirect location to get the final address. 

(R3,D) ---- ---- --------------- -1 

Displ~cement ·~ t-----------1 
1-....., ------~ 

Loc1+D 
.......... 

............ 
............. 

............. ~ 
Loc1 Loc1+1 

Loc1 

Figure 34. Base relative addressing and its variations (1 of 2) 



Loc2+D2: Data3 D2(R3,D1)* refers to Data3 

R3 Loc1 Loc2: Data1 (R3,D1 )*refers to Data1 

User registers Loc1+D1: Loc2 (R3,D1) refers to this location 

Loc1: Loc3 

Loc3+D1: Data2 01 (R3)* refers to Data2 

Loc3 

..j:l. 
Vi Figure 34. Base relative addressing and its variations (2 of 2) 



..... 
~ 

Base 
register 

Customer number 

Order number 

Item number c 

Item quantity B 

---L _ J Status code I t A I I I 

D 

Symbolic references to any data item in the data base will be transformed, where possible, to a base relative 
reference by program-preparation software. This minimizes instruction lengths and overall program length. 

Reference to another customer's order would entail change to the register to point to the new data area, 
but would require no change to programs referencing items within the area. 

Loading a base register with the address of the first item in the data base allows all other items to be refer­
enced by their relative displacement. 

Figure 35. Base relative addressing of items within a contiguous base 



cyde. As the figure indicates, in pre-base relative indirect 
addressing, the displacement is added to the indicated base 
register contents and that address is used as an indirect 
address. In post-base relative indirect addressing, the dis­
placement is added after the register contents have been used 
as an indirect address. Both addressing modes are very useful 
as the examples in Figure 36 show. Both modes encourage 
the use of tables of addresses and tables of data items; these 
tables, in turn, simplify documentation, program updates, 
and online interaction among tasks. 

Not only are pre- and post-base relative indirect address­
ing useful in themselves, but their combination can be very 
economical. The Series/1 provides that combination mode 
which is illustrated in Figure 34. Two, eight-bit displace­
ments are permitted in this addressing mode; before actually 
accessing the data, the system adds one of them to the 
register contents before the indirect step and adds the other 
to the address resulting from the indirect step. Figure 37 
shows how useful this can be when organizing data tables 
in a directory or hierarchical form. Clearly, the same effect 
could be obtained by loading addresses into registers and 
adding displacements, but those procedures would slow 
program execution and increase program size. A less 
obvious advantage of the combined addressing mode origi­
nates from the fact that all access to items is through dis­
placements rather than addresses; consequently, tasks shar-
ing data do not need to know the addresses of each data 
item-they need to know only the directory. Other tasks 
can modify and move data items provided the user updates 
directories properly. The IBM Series/1 Realtime Programming 
System makes extensive use of these facilities in its data 
management. 

This variety of addressing modes means that there are 
often several choices for addressing a particular location or 
item. The Series/1 assembler can optimize this choice when 
it has the information available to do so. For example, the 
programmer can inform the assembler-symbolically-of the 
contents of the base registers. When a symbol is cited, the 
assembler attempts to reference it with a base relative address 
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References to a set of routines-each of which handles one 
elementary function-is common. A table of these routines' 
addresses can be referenced relative to the start of the table; 
it is followed by an indirect access. 

-------

-------1 
displacement = 4 

Go to routine number 4: 

BRANCH (reg,4)* 

reg is the number of 
the base register. 

reg 

Address of 
routine 4 

Figure 36. Combined base relative and indirect addressing mode solutions to 
programming problems (1 of 21 
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References to items within a data base are conveniently 
done relative to the beginning of the data base, as shown 
in Figure 35. If multiple, similar data bases are present­
one for each order for example-it is convenient to: 1) use 
indirect addressing to point to the particular data base 
currently being processed; 2) then, reference items relative 
to the start of that data base. 

Access item 3: 

ACCESS 3(reg) * 

,-­
' I 
I 
I 
I 
I 
I 
........ 

........ 

~ 

-

........ 

T 

Multiple, 
similar data 
areas 

Address of data 
base currently 
being processed 

reg ..____.I---'4.___ ___ I~.. ____. 

Figure 36. Combined base relative and indirect addressing mode solutions to 
programming problems (2 of 21 
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Problem: Maintain multiple data sets-whose position can 
vary with time-so that users can efficiently access the 
data items within any one set. 

Solution: Provide a directory in which the current address 
of each data set is maintained. Let this directory be refer­
enced relative to its start (displacement). 

Maintain the address of the directory in a register. Let 
users reference the directory using: 

• The register as a base register 

• The displacement within the directory to access the 
starting address of a specific data set 

• Items within the data set, via a displacement from its 
beginning 

Directory Data sets 

ACCESS-ITEM D1 (r,D2)* D 
D 

r 

Displacement D 1 

Using combined addressing mode, all of the above process­
ing may be done within one instruction; consequently, 
there is no problem of concurrency or need for programs 
to access these addresses and store them within the pro­
gram itself-the system maintains control of the entire 
data base and can assure its integrity. 

The illustrated combination of pre- and post-base relative 
indirect addressing permits easy implementation of efficient 
hierarchical files. 

Figure 37. Combination of pre- and post-base relative indirect addressing 
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rather than a direct address. The assembler picks the shorter 
instruction. 

Other addressing modes are used in specific instructions 
where appropriate but are not included in the above cate­
gories because of their restricted use. For example, 
Chapter 3 discussed the stack referencing instructions which 
perform complex operations on the addresses. Chapter 6 
discusses special-instruction addressing modes together 
with the specific instruction involved in each. 

Excluded Modes 

It is also important to note that certain addressing 
modes are deliberately not present in the Series/1. For 
example, instruction address register relative addressing is 
not provided in the Series/1. This mode is often called 
relative addressing and, if consistently used, provides for 
position-independent code; that is, object code which can 
be executed at any arbitrary starting location in main storage. 
The Series/1 architecture obviates this addressing mode 
primarily because of its address translation capability which 
provides a more powerful position-independence than would 
be provided by relative addressing. The multiple levels of 
indirect addressing facility is not provided because it lacks 
general utility and it introduces problems of error detection 
and recovery. 

When a user chooses an instruction set and storage address­
ing modes, some compromises in system design must follow. 
However, the integrated development of Series/1 hardware 
and software-both program-preparation software and 
operating-system software-has evolved an efficient set of 
main storage addressing modes consistent with the applica­
tions intended for the system. The precise descriptions 
of instruction formats, and the allocation of fields to those 
instructions, are covered in detail in the Series/1 reference 
manuals for the various processors. In Chapter 6, instruction 
formats are presented and their relationship to the addressing 
modes described here is discussed further. 
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Main Storage Protection 

Reliability of the Series/1 is enhanced by an effective 
system for error detection and recovery. Main storage pro­
tection contributes to this system by enabling tasks: 

• To protect critical areas from writing 

• To protect critical areas from any access 

• To connect the internal interrupt system to those tasks 
responsible for responding to violations 

The precise means used for storage protection varies with the 
size of main storage. In particular, a small system with a 
main storage of 64K bytes or less ordinarily does not utilize 
hardware address translation as do systems with more than 
64K bytes of main storage. Therefore, the small system 
needs its own protective mechanism because the built-in 
protection of the translator is not available. Protection 
for the smaller system is discussed in this section; protection 
for larger systems is discussed in the next section of this 
chapter. 

Address Key Protection 

In a 64K-byte (maximum) system, all tasks, data areas, 
and the operating system (the Realtime Programming System 
or a special-purpose operating system) can access the same 
64K-byte address space; consequently, they must be pro­
tected in a way different from the way they would be in an 
environment in which they use different address spaces. For 
this purpose, the address key concept is used as shown in 
Figure 38. Main storage is shown divided into 2K-byte seg­
ments (there are a maximum of 32). Associated with each 
segment is an eight bit storage key register which controls 
access to that segment of storage. The system uses three of 
the eight bits as a key; that is, any integer between 0 and 7 
is used to match a similar key in any task attempting to 
access the storage segment. One bit of the storage key 
register is the read-only flag which is set to the value 0 if 
the segment can perform both reading and writing, and to 
the value 1 if the segment performs reading only. 
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Storage Access Types 

The processor uses three types of storage accesses: instruc­
tion fetching, source operand accessing, and destination 
operand accessing. As shown in Figure 38, three separate 
keys, called ISK (instruction space key), operand 1 key 
(OP1 K), and operand 2 key (OP2K) are provided. When the 
processor is accessing main storage, the key appropriate to 
the item being accessed is termed the active address key and 
is used to determine whether or not the system permits access 
to the addressed segment of storage. 

Storage protection is active when its enabling switch has 
been set by execution of a privileged instruction (Enable). 
Protection is automatically disabled: 

• When the processor is in the supervisor mode 

• During initial program loading 

• While storing level status blocks in response to a class 
interrupt 

Storage Access Checking 

Provided storage protection is enabled, the micropro­
grammed hardware goes through the sequence of tests indi­
cated conceptually in Figure 39. If the addressed segment 
key is 7, the user has indicated that no protection is desired 
for the segment and any task may access the area. Even if all 
accesses are permitted, the user can still protect against change 
by setting the read-only bit in the storage key register for that 
segment. For any key except 7, the system checks protec­
tion against the currently active address key. Prott:ction, 
then, depends upon the items being accessed. If there is a 
key match, access is permitted and only the read/write 
option must still be determined. If there is no match, an 
error has occurred (an attempt to access illegally), and a class 
interrupt is responded to on the same priority level as the 
executing task. A level status block is automatically saved 
and the protect check bit in the processor status word is 
set. The interrupt response checks for the cause of the 
interrupt by examining the processor status word register, 
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Disabled during supervisory mode 

Enabled and dis­
abled by privileged 
instructions only 

Storage 
protection 
enabling switch 

Automatically disabled during: 
• Initial program load 
• Processor stop state 
• Storage of level status block 

during class interrupt response e 

-

-
-

-
-

! Key l R ·-----·-l Key I R !..+-

I Key I R ,~-

I 1 
I I 

~ 

l Key~ R 
---------..,._ 

] Key I R ·-• • e 
64K main storage is divided into 32 segments; each segment has a 2K-byte length. 

• 
Storage key registers are 8-bits wide. The key field is 3-bits wide. Any storage segment may be 
assigned any 3-bit key using privileged instructions. 

The R-bit (read-only flag): 
• If 1, writing is prohibited 
• If 0, read or write access is permitted 

One storage key register exists for each 2K storage segment. Access to the storage key registers is 
limited to privileged instructions. Both the processor and its input/output system obey the same 
rules-except cycle steal input, which ignores the read-only access control. 

Figure 38. Storage key protection of main storage (1 of 2) 
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~ Figure 38. Storage key protection of main storage (2 of 2) 

The key being used 
at any time for 
access is called "the 
active address key". 
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Determine the 
key and read-only 
flag for the selec­
ted main storage 
block 

No 

No 

*Storage key of 7 
means that any 
access is allowed. 

Do not check 
key; ignore 
read-only flag 

Select the key corresponding to the type of access: 
instruction fetch; first operand fetch; second operand 
fetch. Keys are in the address key register for the 
current priority level of the processor. 

Figure 39. Operation of storage protection during an access (1 of 3) 
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~ Figure 39. Operation of storage protection during an access (2 of 31 
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Figure 39. Operation of storage protection during an access (3 of 3) 



and initiates the error recovery procedure appropriate to 
the application being performed. 

Figure 40 shows how the three address keys are used for 
various classes of operations. For example, a branch instruc­
tion fetches the program instruction and then causes the 
next program instruction to come from the location 
addressed. Both addresses are checked with the instruction 
space key. Similarly, the OP2K key is used alone if only 
one storage operand is referenced {the general registers have 
no storage protection key). Only if two storage operands 
are referenced in the same program instruction is the 
OPl K key used. 

Multiple Task Protection 

The method chosen for storage protection is determined 
by the kind of protection the user desires in an environment 
of cooperating tasks. Figure 41 shows three typical examples. 
First, a task which contains some read-only code; second, 
a data area which should not be changed; and third, a work 
area. In the first example, a key of 6 is assigned to the 
entire task and its data areas. The work area is set to read/ 
write, and the read-only data area and code are set to read­
only in the storage key registers. The address key register 
for this task would set all three keys to the same value: 6, 
in the example. Except for the read/write area, the task 
area is protected against other task access. The first 
example illustrated is an essentially self-contained task. 

The second example in Figure 41 shows two tasks cooper­
ating to update a common data area. Three different keys 
are assigned to each task and to the common data area. The 
address key registers for each task use identical OPl Kand 
OP2K keys; as a result, each task can both read and write 
data in the common area. The instruction key is, of course, 
different for each task. Both tasks can then update and 
reference the common data area, but that area is protected 
against any task which does not have its key. 

The third example in Figure 41 shows an important use 
of cooperating tasks where one task writes data into a 
separate data area and a second task reads that data. By 
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Address key register 

I OP1K I I OP2K I I ISK I 
0 5 7 9 11 13 15 

One of the three keys is selected as the active address key. 

Storage/storage 

OP1K t--------...- OP2K 

Address Address 
space ----- space 

I 
I 
I TRegister/ 

Branch/ jump Storage 
r-----, immediate 

I storage 

I ! I 
General I registers 

ISK 1-----1 System 

Address 
registers 

space Register immediate Floating-point 
~------ ...... registers 

Each of the three address keys controls one type of stor­
age access: 

1. OP1 K controls accessing of data from storage 

2. OP2K controls data read into storage 

3. ISK controls instruction fetches 

Instructions which perform several such accesses use more 
than one key. A storage to storage transfer uses all three 
keys. A Branch instruction uses only the ISK key because 
the destination of a branch is an instruction location. 

Key values may be the same or different. A storage key of 
7 implies no storage protection (keys need not match). A 
key of 0 is, by hardware/software convention, considered 
special; it is used during input/output and by the operating 
system. 

Figure 40. Use of the three storage protection keys by various classes of 
operations 
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combining read/write control and address keys, the user 
maintains control over the access of each task. Notice 
that the address key registers of each task use three different 
keys because the code is separate from the data areas. 

In a custom-designed operating system, programmers can, 
at will, lay out their storage protection keys and use the 
system's supervisor and problem states to control the pro­
gram's environment, Under the Realtime Programming 
System, the programmer maintains control at program 
preparation time but allows the operating system to control 
the accessing and changing of all keys and registers. 
Normally, the operating system is the only program execut­
ing privileged instructions (exceptions occur in user­
supplied, privileged interrupt-response, and input/output 
programs). For the smaller system, the multiple-key 
approach gives the user genuine control over storage 
protection. 

Main Storage Mapping Systems 

For larger Series/1 systems, it is desirable for the system 
to be able to expand the size of main storage beyond 64K 
bytes. At the same time, it is not desirable to change the 
basic architecture of the system. To maintain continuity, 
IBM has added a mapped storage system which gives each 
task a 64K-byte address space-as in the smaller systems­
but which also translates user-generated addresses to 
correspond to the physical storage address at execution 
time. This procedure initiates a fast responding, fast 
context-switching system, and also greatly improves storage 
protection. 

Storage Segmentation 

Mapping of main storage involves the division of storage 
into relatively short blocks (2K bytes in the Series/1 ), 
together with mapping or assigning each block to correspond 
with a set of addresses that the user generates. Figure 42 
shows, conceptually, how this is done. The user task has 
an address space of 64K bytes and generates any address in 
the range 0 to 64K bytes. As shown in the figure, 11 of the 
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Example 1 Storage key registers 
Main Storage 

Address key register R 

Io J a J a 1 aJ 
I i I 6 0 ..... Data area 4K I I 

OP1 K OP2K ISK 
I T 
I 6 I 0 ~ (Read/write) I' I 

1 I 

6 I 1 ~ Read only data 2K 
I I 

R=1: writing prohibited I I 
I 6 I 1 ~ 

...,. Program code 4 K 
I I 
I I -- (Read only) : 6 : 1 

Example of a task whose code is ready only and which has two data areas: 1) one read only, and 2) one 
read/write. The same address key is used for all areas. 

Figure 41. Three examples of address key storage protection (1 of 3) 



Example 2 Storage key registers 

Address key register for task 1 Key R 
Main. storage 

I 0 I 6 I 6 I 3 J 6 0 Common data area 

OP1 K OP2K ISK 
Key R 

Address key register for task 2 2 1 Task 2 

~161612] 
OP1 K OP2K ISK 
R=1: writing prohibited 

Key R 

I I I I Task 1 3 1 

Example of two tasks, task 1 and task 2, cooperating in updating a shared data area. Address keys for 
fetching and writing data into the data area must be the same. Program areas use different keys and are 
protected against being overwritten. 

~ Figure 41. Three examples of address key storage protection (2 of 3) 
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Example 3 Storage key registers I Main storage 

Key R 
Address key register for task 1 I I EOS OP1K OP2K ISK 1 I 1 I,. "I Task 1 code 

I 0 I 2 I 3 I 1 I Key R 

If the equate operand spaces (EOS) I I 4 I 1 1~ "I Task 2 code 
flag is 1, OP1 K becomes the same 
as OP2K. 

Key R 

Address key register for task 2 I I 3 I 0 I· ... ~Communicated 
(shared) data 

EOS OP1K OP2K ISK Key R 

I 0 I 3 I ~_[_4 J I I 2 I 1 I,. .. , Source data area 

Example of two tasks communicating. Task 2 writes data from a protected area into an unprotected area for 
reading by task 1. (An example might be a data acquisition task using parameters stored in the area. Key = 2 
inputs and processes data and stores it in the area. Key= 3 is used by an operator communications or control 
task.) 

The equate operand spaces (EOS) flag is useful for tasks like the operating system which must move data 
from area to area. 

Figure 41. Three examples of address key storage protection (3 of 3) 



16 bits of the address are considered to be a displacement on 
a page (i.e., a 2K-byte block). The most significant 5 bits 
remaining are equivalent to the page number. The page­
number portion of the user-generated address accesses one 
of the 32 segmentation registers to find the physical storage 
address of that page. The translator is responsible for: 

• Accessing the segmentation registers 

• Getting the physical page address 

• Adding the displacement to obtain the actual physical 
address corresponding to the user-generated address 

This hardware process executes rapidly and is now used 
widely in small computer technology. 

In the Series/1, translation lengthens the main storage 
access cycle time from 660 nanoseconds to 880 nanoseconds. 
Note, particularly in Figure 42, that the physical segments 
making up what appears to the user to be a 64K-byte con­
tiguous space may actually consist of non-contiguous blocks. 
Mapping frees the system from the necessity of fitting pro­
grams and data areas into contiguous space and the associated 
difficult main storage management that such an operation 
implies. Of even greater importance is a task's ability to 
address an area in main storage containing either shared data 
or shared routines just as though that area were physically 
contiguous with the task itself. This ability is especially 
important when multiple tasks cooperate in an application. 

Mapping Multiple Tasks 

The conceptual mapping of main storage, when multiple 
cooperating tasks reside there, is shown in Figure 43. The 
two tasks residing there may share routines and data areas 
by having the system invoke-in mapping registers belonging 
to each task-the physical segments containing those 
routines and data areas. Mapping provides an efficient 
mechanism for implementing the extensive, intertask com­
munications required from responsive, small computer 
applications. 

The main storage mapping of the IBM Series/1 is more 
complex than indicated above because the system must 
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The appropriate address key is used to select one of the 8 segmentation register stacks. 

Segment Displacement 

The 16-bit user address is issued in two parts: I 5 bits I 11 bits I 

Main storage 

1. The most significant 5 bits are used to select one of the 32 segmentation registers which contain the 
address of a 2K-storage segment 

2. The least significant 11 bits are used as a displacement within the selected 2K-storage segment 

Figure 42. Conceptual basis for storage address translation 
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Main storage 
Shared data e L I-- Shared data area Reentrant 
shared routines I-

• Task 1 

Code 1 L..r "'- Shared reentrant ,......-. routines 
E> 

L..t+...- ,,. Shared data e 1'-- Code for task 1 
Reentrant 
shared routines h e Code for task 2 Code 2 

0 
Task2 

The actual Series/1 address mapping is both more complex and more general than shown in this illustration. 

0 
e 
e 

Each task can have its own 64K-byte address space, addresses' code, data, and shared routines-just 
as if they were in a contiguous 64K-byte space. 

Segmentation registers relate physical storage locations to corresponding addresses in the user's 
64K-byte address space. 

Setup and manipulation of the mapping addresses is a privileged operation usually performed by the 
operating system. 

E> The same physical areas of main storage may be mapped into each user's 64K-byte address space. 

~ Figure 43. Conceptual mapping of main storage for two tasks sharing common data and subroutine areas 



maximize hardware support of those small computer, soft­
ware application requirements listed at the beginning of 
this chapter: 

• Large, effective program size 

• Fast task switching in response to events 

• Extensive intertask communications 

• Efficient implementation of intertask communications 

• Thorough main storage protection 

Mapped Storage Protection 

To enlarge effective program size and to enhance main 
storage protection capability, the concepts introduced as part 
of key-based, storage protection are extended to the trans­
lator. The Series/1 provides three address spaces to a task: 

• One, for instruction fetching or program storage (con­
trolled by the instruction space key) 

• Two, for data storage (controlled by the operand 1 and 
operand 2 keys) 

Intertask communications are clearly enhanced by the ability 
of multiple tasks to include common routines and data in 
their individual maps. The system increases task-switching 
speeds by using multiple sets of registers. This provision of 
the Series/1 helps prevent bottlenecks in the loading and 
saving of segmentation registers. 

Segmentation Registers 

The mapping process is shown in Figure 44. Main storage 
is segmented into 2K-byte segments. Eight sets of segmenta­
tion registers (3 2 registers per set for a total of 256 segmen­
tation registers) are provided in the translator. Each segmen­
tation register contains a physical, storage page address of 
13-bit length to which is added the 11-bit displacement from 
the user-generated, 16-bit address illustrated in Figure 42. 
The translator then generates a 24-bit main storage address 
(maximum address of 16 megabytes). Notice that the 24-bit 
maximum, main storage address is a feature of the Series/1 
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One of eight stacks of segmentation registers is selected by the value of the active address key and is 
used to map 64K-byte user address space into actual physical main storage. Selection is made via the 
address keys which are used for storage protection in those processors without address translation. 

G Multiple tasks can be simultaneously mapped in the eight stacks of the segmentation registers. This 
mapping obviates saving and restoring the registers' contents when switching from one task to another. 

$ Figure 44. Mapping task address spaces into physical storage using multiple sets of segmentation registers 



architecture which provides for compatibility with potential 
future developments in storage technology. At present, the 
maximum main storage which may be attached is 256K bytes. 

User Address Spaces 

As indicated in Figure 42, each user has a 64K-byte 
address space which corresponds to a 16-bit address and, 
consequently, needs 32 segmentation registers to cover the 
64K-byte space. The user's 16-bit address is used as follows: 
5 bits for the page address (which selects one of the segmen­
tation registers); and 11 bits for the displacement. The 
system assigns segmentation register sets to user tasks with 
the same mechanism it used for storage protection in the 
smaller processors without main storage mapping. Each of 
the 8 sets of segmentation registers is assigned a 3-bit address 
(0 through 7 in value), and the address keys are used to 
select the currently active segmentation register stack. 

As shown in Figure 44, the currently active address key 
selects one of the eight stacks of segmentation registers 
which, in turn, are used to map main storage into the user 
address space. Since a user has three possible address keys 
for this task (Figure 45), three different 64K-byte address 
spaces can be mapped for one task. 

The storage protection process is, of course, different 
when a Series/1 processor has a translator installed. Through 
a privileged instruction, the system may enable or disable 
the translator. When disabled, the system functions just as 
if the translator were not present. In that state, only 64K 
bytes of main storage may be addressed and storage protec­
tion is identical to that described earlier. When the trans­
lator is enabled, however, all protection proceeds by using 
the segmentation registers and the translator rather than 
by using the storage protection keys. In the enabled state, 
these keys are used to relate the_particular mapping used 
by a task to a set of segmentation registers. 

Segmentation registers are 16-bits long but need only 
13 bits to contain the segment's physical address. Two of 
the remaining three bits are used for access control: one, 
to indicate access or no access to the storage block; one, to 
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indicate read-only access or read/write access. These are 
also shown in Figure 45. Since a given task can only access 
those portions of main storage mapped into its segmenta­
tion registers, storage protection-from an access point of 
view-is complete. When the Realtime Programming System 
is used, it prevents application tasks from accessing these 
registers and inadvertently changing their contents. In a 
custom·designed system, the user must carefully control 
access to privileged instructions and the segmentation 
registers. With the read/write control, storage protection in 
the mapped system is just as thorough as in unmapped 
systems, but it is actually more secure because it depends 
less on the address keys for complete protection. 

Protection Violations 

If a task attempts to access a block of storage, a class inter­
rupt occurs and the system indicates the problem by setting 
the invalid storage address bit in the processor status word. 
Similarly, an attempt to change the contents of a block 
marked read-only causes a class interrupt, and the protect 
check bit sets in the processor. In this way the error detec­
tion and recovery process is similar whether or not the 
processor uses the translation capability. 

Input/output devices access main storage through the 1/0 
channel; they are also subject to the translator mechanism. 
This fact is exceedingly important to system performance 
because if the accesses did not operate in this manner, cycle 
steal operations would have to be done in those sections 
which correspond to contiguous main storage. This pro­
cedure is discussed further in Chapter 5. 

Intertask Communications 
Intertask communications of various sorts are a primary 

user concern because the structure of application needs in 
a small computer system consists of a set of cooperating, 
communicating tasks. As indicated earlier in this book, the 
organization and management of main storage is crucial to 
successful applications. These communications occur at 
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N Each user task has three access keys: 

1. !SK-instruction fetch space 

2. OP1 K-operand 1 key space 
3. OP2K-operand 2 key space. 
Each access key selects a stack of segmentation registers when it is active. Thus, each user task can actually 
utilize three 64K-byte address spaces. These spaces may be the same or different depending upon the choice 
of key values. 
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Figure 45. Multiple address keys for each task (1 of 3) 



24-bit physical address 

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 

0 12 13 23 
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-
Select byte 

Main storage 
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Select 2K block 1 I 

\;:1 Figure 45. Multiple address keys for each task (2 of 31 
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1. Selecting a stack of segmentation registers using the value (one of eight) of the active address key 

2. Selecting one of 32 segmentation registers using the five most significant bits of the user's 16-bit 
address; this address has been generated during an access to storage 

3. Generating the physical storage address of the 2K-byte segment from the contents of the selected 
segmentation register 

4. Using the least significant 11 bits of the user-generated address to select the particular byte within 
the physical storage segment 

The 16-bit segmentation registers need only 13 bits for selecting physical storage segment addresses. 
This is so because the total physical address is 24-bits wide-with 11 bits being taken from the displace­
ment within the 2K-byte segment. 

The remaining bits are used for protection as follows: 

V: segment is valid or invalid; if invalid no access is allowed at all which is useful when areas less 
than 64K-bytes in length are to be mapped 

R: read-only flag 

0: not used and must be zero 

Figure 45. Multiple address keys for each task (3 of 3) 



various levels, illustrating how the extensive storage hardware 
of the Series/1 can be integrated with the system software. 

Tasks and the Operating System 

In some applications, input/output operations on a 
specific device or set of devices can be dedicated to only one 
task. More generally, tasks share input/output devices; 
it is the responsibility of the operating system (standard or 
custom-designed) to prioritize contention for the devices, and 
to perform most of the detailed aspects of the input/output 
operation. This might be done by enabling those subroutines, 
which a task calls, to: 

• Request an input/output operation 

• Check the status of a device 

• Perform some code conversion 

• Carry out additional operations 

This approach to task communications can be disadvantageous 
because the subroutines involved are shared and-unless the 
main-storage management is exceptionally well designed-they 
may consume part of the user's address space. As an alterna­
tive method, all input/output operations and other executive 
facilities may reside with the operating system; communica­
tions between the user task and the operating system are per­
formed via an internal interrupt designated as a supervisor 
call. 

As shown in Figure 46, the user executes a Supervisor Call 
instruction which transfers control to the operating system. 
The operating system first analyzes the parameter supplied 
in this instruction to determine the type of request the user 
is making, and then carries it out. 

Because there are so many individual services associated 
with input/output data management and scheduling, the 
user should consult the Realtime Programming System 
documentation for specific details. 

Tasks and Separate Data 

It is a characteristic of realtime, small computer applications 
that tasks access data areas separate from the task itself for 
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To invoke any operating system service (including 
input/output), or any operating system routine, a 
Supervisor Call is executed. 

A Supervisor Call generates a class interrupt which is 
responded to on the same, rather than a higher, hard­
ware priority level. The Supervisor Call mechanism 
provides complete system integrity as well as the 
maximum usable address space for the application 
task. 

The interrupt response routine saves the level status 
block of the application task and then carries out the 
routine requested within the address space of the 
operating system. Upon completion, the user's 
registers are restored and control returns to the user's 
application task. 

Routines within the operating system do not have to 
be part of the user's address spaces; this fact allows 
the user to prepare larger application programs. 

Figure 46. Communications between an application task and the operating system 
via supervisor calls which generate a class interrupt 
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one of two reasons: 1) the task needs to be reentrant or; 
2) the task needs to share routines or data bases. This access 
is not difficult if addresses are known at program preparation 
time, but it is complex if addresses are not known until exe­
cution time. Using addressing modes for main storage 
simplifies the access operation. 

Figure 4 7 shows a routine accessing several different areas 
using register displacement addressing mode. In the figure, 
the calls to that reentrant routine are assumed to be on 
different hardware priority levels so that each call has its 
own copy of register 3 in hardware (user registers are dupli­
cated on each priority level). Consequently, the code can 
refer to any item by its displacement, relative to the address 
in register 3; depending upon which level is active, the address 
will refer the code to the correct work area. If the calls are 
from the same level, it is necessary to save and restore only 
the contents of register 3 (or whatever register is used). The 
important point in this procedure is that the reentrant code 
itself does not have to be concerned with the location of 
the particular work area. No interrupt disabling or similar 
functions need occur during the execution of reentrant 
tasks. 

Task Switching 

Frequently, the most economic design of small computer 
applications is achieved by dividing the application into 
many concurrent tasks, each of which is relatively small and 
well defined. Similar economic advantages have been demon­
strated by structuring individual programs. If, however, the 
management of these concurrent tasks is cumbersome, the 
advantage of achieving fast and reliable response to events 
is lost; in these circumstances, users might have to combine 
the tasks in one program so they can perform scheduling 
and task switching at program preparation time. 

The Series/1 architecture is designed to expedite task 
switching with minimum overhead. As explained earlier, each 
hardware priority level of the system has its own set of user 
registers whose contents are duplicated in hardware. This 
means that when the system switches from one interrupt 
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"Pure" code does not write in this area; all writing is done in the work area. 

A t~sk that calls the reentrant routine supplies a work area for.the routine and places its address in 
register r. 

A shared routine is called by the tasks on different priority levels. The shared routine accesses data within 
the work area using base relative addressing. On each priority level, duplication of registers in hardware 
insures that there is no conflict between multiple calls. 

Figure 47. Addressing modes facilitate reentrant routines' use of multiple work areas 



level to another, it need not either save or restore the 
register contents. In a small system, the designer can insure 
fast response to events by carefully allocating tasks to 
different priority levels. The system responds to internal 
or class events on the same priority level, but, in order to 
make the response more rapid, the hardware itself also 
assumes the responsibility of saving the level status block. 

Generally, context switching becomes more difficult in 
large systems. However, the Series/1, by providing eight 
sets of mapping registers for large storage systems, allows 
a set of tasks-which must respond quickly-to remain 
mapped as shown in Figure 48. When an event occurs 
(priority interrupt, for example) and the interrupt response 
tasks have been previously mapped, the system need not 
change either the level status block registers or the segmenta­
tion registers. This resource gives the Series/1 users an 
important level of control over their systems. By allocating 
tasks to storage and premapping each task's segmentation 
registers, users can control the response time to events 
occurring in their application. 

This control is most valuable to an OEM user customizing 
a software system. To insure that, at execution time, execu­
tion can begin with a minimum of overhead, the user must 
set up in advance the following relationships: 

• Tasks and groups of tasks (task sets) 

• Shared data areas 

• Shared routines 

• Storage addresses 

The Series/1 Realtime Programming System fully supports 
this level of control over tasks, thereby permitting a more 
effective structuring and implementation of small computer 
applications. 

Auxiliary Storage Management 

If all user-application tasks are permanently resident in 
main storage, the system can respond rapidly as outlined 
in the previous section. However, many applications require 
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Figure 48. Context switching 11 of 3) 

secondary or disk storage because the application consists 
of a large number of tasks. Response time of disk-resident 
tasks cannot be as fast as that of tasks resident in main stor­
age; however, the response time must be relatively rapid 
and be carried out under control of the application designer. 
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Figure 48. Context switching (2 of 3) 
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To respond to the event, it is necessary that the con­
tents of the active task's level status block registers 
and segmentation registers not be destroyed; this 
will insure that the active task can resume executing 
at a later time. 

If the event response task were to use the same 
address keys and need a different mapping from that 
of the active task, it would be necessary to save the 
segmentation register's contents and load them again 
with the mapping addresses for the event response 
task. This is a time-consuming operation (almost 
200 microseconds). 

With eight sets of segmentation registers, however, 
fast response tasks can be permanently mapped into 
the segmentation registers. Consequently, there is no 
mapping overhead when responding to the event. 

If tasks respond on different levels, the level status 
block need not be saved or restored because these 
registers are duplicated on each level. 

The net result: very fast context switching to respond 
to events. 

One of the design problems in small computer appli­
cations is the choice of which tasks are to be resident, 
which are to be mapped, and on which levels they 
are to execute. When these design problems are care­
fully resolved and implemented, the Series/1 hardware 
provides fast response times. 

To start or resume execution, a task must have its registers 
(level status block) initialized or restored to their previous 
status; the registers must also be mapped. 

Segmentation registers associated with each key used by the 
task must be loaded with proper physical storage addresses 
and read/write control information. 

Context switching can be defined as: the change from one 
active task to another in response to some event; the rapid 
response assumes that the overhead involved in the switch 
is not excessive. 

Figure 48. Context switching (3 of 3) 
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Storage management in the Series/1 is a user option with 
the Realtime Programming System.1 The system can take 
advantage of hardware address translation to load tasks into 
2K-byte segments-wherever they are available-instead of 
loading them into contiguous locations. Such storage 
management is termed "dynamic" because the system dis­
covers space for data or tasks whenever the task is to be 
loaded and wherever the space is available. The Series/1 
hardware permits this type of management. In fact, once 
the system loads the segmentation registers with the storage 
segment addresses, the cycle stealing, input/output system­
using the translator-can load the program from the disk 
into the non-contiguous storage blocks. 

The Series/1 also offers a partitioned storage management 
because: 

1. Rapid response to inquiry requires residency in main 
storage 

2. The real limitation on response to disk-resident tasks 
usually involves the amount of program code and data 
that the system can transmit to and from disk 

This partition system is essentially fixed in the sense that 
partitions are set up at system generation time. Dynamic 
partitions are useful for those tasks which are not time­
critical and which can remain resident until they are com­
pleted. To prevent interference with the response of the 
tasks in the fixed partitions, the dynamic partitions are kept 
separate from the fixed partitions. 

Figure 49 shows this storage management system. 
Individual partitions contain one task set at a time. A task 
set is a group of tasks which: 

• Execute concurrently 

• Communicate extensively among themselves 

• Are prepared as a group for loading into a partition 

1 Storage management is often termed "memory management" in small computer 
literature. The term "storage management" is used here to differentiate between 
main and auxiliary storage. 
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• The Realtime Programming System uses a fixed partition 
organization for main storage in order to expedite: 1) the 
operation of those applications involving a set of cooper­
ating tasks and; 2) user control over event responses. 

• A task set is a group of tasks loaded as a unit from 
auxiliary storage. Only one task set at a time resides in a 
partition. Once resident in a partition, task sets remain 
there until they complete execution. Optionally, a parti­
tion may roll-out one task set in order to bring in a higher 
priority task set; this is usually done only for a background 
task. 

• There may be up to 16 fixed partitions, one of which is 
occupied by the operating system. Partitions may be 
of any size-in 2K-byte increments. 

• Fixed partition main storage management was selected for 
the Realtime Programming System because: 

There is less swapping of tasks; once in main storage, 
most task sets stay there until they complete execution. 
This principle reduces traffic on the disk channel which 
helps prevent a common bottleneck in small computer 
systems. 
There is less overhead involved in saving and restoring 
values in segmentation registers 
There is much more user control over the system and its 
response-time delays; this control permits the user to 
assure adequate response in critical applications through 
proper layout of partitions, tasks, priority levels, and 
access keys 
It is easier for the user to set up and control access to 
shared routines, shared task sets, shared data areas, and 
system-wide data bases 

Figure 49. The Realtime Programming System storage management (1 of 2) 

As indicated earlier, task sets can communicate with the 
operating system through supervisor calls, and can com­
municate with other tasks in other partitions if the user 
indicates this communication at program preparation time. 
Clearly, the ability of the storage management system to 
map non-contiguous areas provides the mechanism for hard­
ware support of the very difficult, intertask communications' 
procedure. 
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Figure 49. The Realtime Programming System storage management (2 of 2) 
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Task sets in a partition usually remain there until they 
complete their execution. If they did not do so, the system 
would have to transmit them through the cycle steal 
channel multiple times and, consequently, overload the 
channel. Optionally, however, a partition may permit the 
roll-out of a task set to accommodate a higher priority 
task set waiting to execute. Even in this case, the roll-out 
is limited to one task set. Experience with fast-response, 
large systems indicates that application designers can assign 
task sets to partitions in such a way that response time is 
adequate as long as the disk channel does not saturate the 
system with a long list of requested transfers. An important 
additional consideration is that the application designer 
can control the response time to external events through 
assignments of task set priorities and partitions. 

As needed, dynamic partitions are set up for task sets 
which are not assigned to execute in a given fixed partition. 
This procedure is essentially equivalent to allowing one of 
the partitions in Figure 49 to contain several task sets 
simultaneously. The Realtime Programming System allocates 
space in the partition on a first-come, first-served basis. In 
this way, multiple task sets may occupy the dynamic parti­
tion area. Again, note that this allocation feature increases 
the amount of work required by the operating system to 
initiate a task and, consequently, slows the response time. 
Nonetheless, the combination of fixed partitions, with 
specific task sets assigned to them, and dynamic partitions, 
with their inherent flexibility, provides system implementors 
with the tools needed to create the small computer software 
organizations that best fit their applications. 

Storage Overlay Management 

Often, a dedicated application requires access to a rela­
tively large data area which does not fit well into the address 
space. This can occur even though Series/1 systems with 
hardware address translation have three address spaces 
available. In this case, it is possible to use storage overlay 
to solve this problem. Figure 50 shows a task within which 
is allocated an area for the data base, but the area is not 
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The standard overlay scheme permits programs to be larger 
than the allowable address space-provided they fit in 
physical main storage. A program too large for storage or 
address space reserves one area within itself which is used 
tb contain routines or data areas (one at a time, as needed). 
When needed or called, the routine or data area is trans­
ferred from auxiliary storage to the area within the task, 
and "overlays" the routine or data area previously there. 

0 

Standard overlay scheme 

------ e ODE> 
G QD -- ---- l 

0 Task area 

Q Overlay area within a task 

e Disk channel 

E> Overlay segments (routines or data sets) loaded on 
call 

Figure 50. Overlay methods of storage management (1 of 2) 
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Storage overlay scheme 

G 
0 

.. 

Task area 

J 

>G 

Mapped 
one 
at a time t-------

t------ Task 
mapping 

Segmentation register s map the 
task area and the overlay area. 

The overlay units reside in physical main storage 
rather than on the disk. 

The overlay area within the task's address space is 
remapped by a call to a special privileged routine 
whenever another overlay segment is desired. The 
time required is the time needed to load several seg­
mentation registers (about 5 microseconds each), 
rather than disk transfer time. 

Storage overlay is effective when the task is too large for the 
address space (even when using three address spaces with 
three different keys); the task will reside in physical main 
storage. 

Figure 50. Overlay methods of storage management (2 of 2) 
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large enough to take the entire data base at one time. The 
entire data base is loaded into main storage with the task, 
rather than being transmitted from the disk each time a 
segment is needed. To overlay the program area with a seg­
ment of the data base involves changes only to the mapping 
registers. No movement of the data base occurs. As indicated 
in Figure 50, a privileged routine is called by the task which 
then loads the appropriate addresses into the segmentation 
registers. Custom-designed systems can use this technique 
effectively to control and facilitate larger, data management­
oriented applications. Both the Program Preparation System 
and the Realtime Programming System also support storage 
overlay use of the hardware translation feature. 

The overlay concept can be used for shared routines in the 
same way. Even if fast-response systems do not fit the 
64K-byte multiple address space provided in a mapped 
machine, they can be effectively accommodated by the 
Series/1. The combination of main storage hardware and soft­
ware designed into the IBM Series/1 supports both large and 
small applications in a controlled, responsive manner. 

189 



Organization and 
"'1anagernentof the 
Input/ Output System 

Important Factors in Computer Input/Output 
The organization of input/output is critical in any small 

computer application-especially when throughput, reliability, 
error detection, and compatibility with OEM devices and 
peripherals are considered. Because applications vary so 
much in size and complexity, it is necessary to integrate the 
input/output hardware into both the processor and the soft­
ware. Otherwise, the system cannot, simultaneously, meet 
all of the requirements listed in Chapter 1. Figure 51 shows 
the various levels from which a user can view the input/out­
put system. At the lowest level in the figure-the device 
level-the system concerns itself with: 

• The self-diagnosing capability of the device and its inter­
face and their consequent easy maintenance 

• The ability to perform extensive error detection within 
the device and its interface to the processor 

• The capability of operating under complete processor 
control when input/output volume is low 

• The capability of off-loading the processor when input/ 
output volume is high 

In other words, the system must be so designed that the 
volume of local intelligence placed in the device and its 
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interface depends upon the device and the amount of input/ 
output it performs. As indicated earlier, the Series/1 inter­
faces incorporate microprocessors which provide this 
flexibility of data flow together with the self-diagnosing 
feature. Since the functions performed by the interface are 
so device-dependent, they are discussed later in this chapter 
when the devices themselves are considered. 

Processor Level 

The processor level of input/output control varies con­
siderably from computer to computer. It is important 
because it affects interfacing, software at the lowest level, 
and the overall organization of an application. Both the 
direct program control and cycle steal data transfer capa­
bilities are necessary: the former is appropriate for slower 
devices where the low volume of data does not impact 
system throughput; the latter is necessary for high-volume 
and high-speed data transfers. Cycle steal data transfer 
also facilitates the offloading of the processor. As the 
system places more and more input/output control func­
tions in interfaces, it usually transfers more and more data 
before involving the processor. The cycle steal mechanism 
reads and writes this data directly into main storage where 
it is ready for processing when the transfer is complete. 

The Basic Software Level 

The first two levels shown in Figure 51 provide the basic 
capability for input and output in the system hardware. The 
utilization of that capability through software processing is 
vital to the system's operation. The basic software level is 
the interface between application tasks and the input/output 
system. Applications running under control of the Realtime 
Programming System need the same control over devices 
that they would have if they were operating at the processor 
level with completely customized software. Otherwise, 
critical applications could not realize the full machine 
potential. Similarly, applications which do not use the Real­
time Programming System still need control over tasking 
and input/output. 
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Programming System 
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Figure 51. The levels from which input/output must be considered ( 1 of 21 

Cooperating task set level 

Basic software level 

Processor level 



Interface 

Device 
• Off-load processor 

Error detection 
- Error recovery 
- Self-diagnosis 

• Low, medium, high-speed devices 

• OEM devices 
- Polled and interrupt driven 

Device level 

All devices of hardware and software must be integrated into the small computer architecture. 

~ Figure 51. The levels from which input/output must be considered (2 of 2) 



Users must take into account the limitations in device 
control imposed by software systems which were not 
designed to be integrated with hardware. When hardware/ 
software integration is not accomplished, it is conceptually 
but not practically feasible to write custom software 
because the careful, manufacturer-designed interactions 
between modules of the software are typically unavailable 
to the user. For example, error detection and recovery is 
just as important in a small computer application as is the 
input/output itself. Error detection and recovery is a 
cooperative effort among the hardware and software 
modules; deleting part of this integrated software-and 
replacing it by special purpose software-may solve a 
particular application problem while, simultaneously, losing 
many of the overall advantages the system provides. Both 
the Control Program Support package and the Realtime 
Programming System provide a complete control over input/ 
output that is equivalent to the control obtainable at the 
processor level. As a result-without sacrificing self-di(l~n_os­
tics or extensive error checking-users can devote their time 
and efforts to the application itself rather than to the system 
software design. 

The Cooperating Task Set Level 

Many small computer applications are themselves small, 
with dedicated, critical input/output requirements which 
are completely satisfied at the basic software level discussed 
above. Many other applications, however, need a more 
general level of support provided at the cooperating task set 
level shown in Figure 51. When a number of tasks execute 
concurrently, it is often desirable to provide a less compli­
cated interface to the input/output system from the user 
tasks. The Realtime Programming System provides two 
control levels in addition to the basic software level; they 
are the Read/Write and the Get/Put levels of control. The 
Read/Write level presents a single physical block of data for 
transfer between the application tasks and the named device. 
All details of this transfer are handled by the system input/ 
output software within the Realtime Programming System. 
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The Get/Put level is higher than the Read/Write level because 
it provides logical rather than physical block transfers. The 
system handles all transferrals between logical and physical 
blocks and device names. The highest level of input/output 
control is convenient for application tasks written in higher­
level languages like FORTRAN, COBOL, or PL/I because it 
minimizes programming and debugging efforts. 

It is not necessarily true that the higher the level of 
interaction with the input/output system, the less efficient 
is the use of the processor. In fact, the typical Series/1 
application is realized as a set of cooperating tasks using 
application devices and sensors that require detailed control 
over buffer sizes, number of buffers, level of priority, and 
similar areas. The user may program these aspects of an 
application using assembly language macros provided with 
the system software. Once the control over the input/output 
system has been established, the user can access it efficiently 
through commands in the higher-level languages. The net 
result is a structured control over the input/output system. 

This chapter discusses the input/output system and 
illustrates the structured control integrated into the hardware 
and software design. 

Overview of the Series/1 Input/Output Channel 
The Series/1 offers a single channel to which all input/out­

put devices are interfaced including special processors like 
the floating-point feature. Details of the Series/1 in put/output 
system may vary from processor to processor; the user should 
consult the appropriate processor reference manuals for 
exact details. Most of the specific examples used in this 
chapter apply to the larger processors like the 4955. Although 
different applications require different groups of devices, 
Figure 52 illustrates some possible combinations. The figure 
notes that the user may install more than one of each input/ 
output device, if needed. Physically, each device is inter-
faced to the input/output bus via a printed circuit card which 
plugs into either the processor card file or an input/output 
expansion unit (Figure 53 ). The expansion units may require 
a repower card to provide adequate power and isolation. 

195 



l.O 
O'I 

Storage 

Storage 

Processor 

Figure 52. Input/output device combinations (1 of 41 

• The Series/1 input/output channel is a bus to which all devices 
connect, including: 

Those under direct program control 
Those operating under cycle steal mode 

- Those functions implemented as parallel processors (like the 
floating-point feature) 

• Up to 256 devices may attach 

• Multiples of devices may attach 

• The user sets the device address by using jumper selections on the 
device interface rather than by positioning the address within the 
enclosures 
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Figure 52. Input/output device combinations (3 of 4) 
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All interfaces and attachments occur via printed circuit cards which plug into slot~. These interfaces and 
attachments include: 

• The optional relocation translator 

• The floating-point processor 

• The channel repower feature 

• The two-channel switch 

Figure 53. The Series/1 4955 Processor and input/output attachments (3 of 3) 



Most of the interfaces between the input/output bus and 
the devices are microprocessor controlled as shown in Figure 
54. Notice that the interface becomes specific to the 
attached device only beyond the microprocessor level. It is 
this commonality in interface design that integrates self­
diagnosis, error detection, and error recovery into the hard­
ware and software system. In the power-on state, the device 
may be logically disconnected from the input/output 
channel-under microprocessor control-and fully tested 
before being reconnected. Furthermore, the system checks 
the interface itself by passing signals back and forth across 
the bus prior to the startup of the application. The system 
attempts to isolate problems in this way-whether the device 
is IBM-supplied or user-supplied. 

During the execution, the microprocessor performs check­
ing in a device-dependent way-a capability allowed by the 
programability of the interface. Time outs, sequence check­
ing, and parity checking are performed as appropriate. 
Errors detected are reported in standard form through the 
level status register (even, carry, and overflow) for use by 
either: 

• The user's custom software 

• The error recovery software of the Realtime Programming 
System 

• The Event Driven Executive 

• The Control Program Support package 

Errors are also signaled by interrupts to the processor as 
explained later in this chapter. 

The input/output bus itself is called an asynchronous 
multidropped channel. It is termed asynchronous because 
operations on the channel are always "hand-shaked" to 
assure correct transfer. That is, the system acknowledges 
each command or reply through an agreed-upon set of proto­
cols. Such handshaking is actually contained in a set of 
timing and control signals passed back and forth on a subset 
of the bus lines as indicated in Figure 55. The channel is 
termed multidropped because all transfers are accompanied 
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Device-dependent circuitry which customizes 
the interface hardware to a specific device or 
class of device. 

The microprocessor interfaces to the bus and device logic 
in a standard hardware manner. 

Standard microprocessor software is present for self-
. diagnosing the interface and the microprocessor; it also 
· tests the communication with the input/output bus. 

Device-dependent software is present for self-diagnosis 
and error recovery of the attached device. 

(Device interface) 

* Device logic 
(Design interface) 

t 
Micro controller 

Interface common 
logic 

t 
(1/0 interface) 

channel 

Figure 54. Organization of the microprocessor-controlled interface between the input/output channel and devices 



by device addresses; all interfaces read these addresses, but 
only the addressed interface responds. 

Transfer of data takes place on the bidirectional data bus. 
The device communicating with the processor is the one 
whose address (a number between 0 and 255) is placed on 
the address lines of the bus. 

A transfer to a device involves passing an address and a 
command-together with data-in the appropriate direction. 
Handshakes and control signals pass on the control lines of 
the channel. High-speed devices transfer data directly into 
main storage without processor intervention. Cycle steal 
transfers must pass a main storage address along with the 
data. The 17-bit address bus permits full 16-bit main storage 
addresses to be passed. The 17th bit indicates either cycle 
stealing or a direct program control operation. For 
processors with main storage translation, this address is fully 
translated. This procedure is discussed further in this 
chapter under the section entitled "Input and Output in the 
Cycle Stealing Mode." 

It is not appropriate to discuss here specific characteristics 
of the Series/1 input/output channel Ii ke signal levels and 
timing constraints. Users typically need knowledge of these 
characteristics when they design custom interfaces to most 
small computer systems. The Series/1, however, provides an 
OEM interface for this purpose; this interface presents a set 
of bus lines (simpler than the one provided by the input/ 
output channel) to which users interface their devices. 
Details of this interfacing are covered in Chapter 9. By not 
interfacing directly to the input/output bus, system diag­
nostic capability is preserved. 

Detailed input/output at the processor level involves 
control over device priority, interrupts from devices, and 
mode of transfer. Input/output at the processor level 
is discussed in the following two sections. 

Input and Output Under 
Direct Program Control 

Direct program control of input and output requires an 
explicit processor intervention in each data item transferred 
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Data bus 

• 16 bits, plus two parity bits 

• A bidirectional bus used to pass 
data and control information to 
and from devices 

• During interrupt acceptance, device­
address information and interrupt 
information is passed along this bus 

Address bus 

• 16-bit, bidirectional bus 

• Used for device selection and pass­
ing commands to devices during 
input/output instructions 



Control and timing 

• During cycle steal operations, main storage addresses are passed along the address bus 

• These addresses are fully mapped or translated in processors with hardware, storage address translation 

Control lines 

A set of unidirectional lines used for: 

• Interrupt and cycle steal requests 

• Condition code and status reporting 

• Reset commands 

• Basic timing and control of bus operations' sequences 

Figure 55. The Series/1 input/output bus: asynchronous and multidropped (2 of 2) 
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across the channel. Under some conditions, it might be 
desirable to transfer a series of characters to or from a device. 
An example of this data transfer is depicted in Figure 56. 

Polling vs. Interrupt-Driven Input/Output 

There are two methods of software organization: polling, 
and interrupt-driven. Polling involves the repetitive testing 
of each device's status and the transmission of data when the 
device is available as shown in Figure 56 (2 of 3). This 
approach is not used in operating systems or applications­
except in situations where special, very fast devices are 
present. Usually, it is much more efficient to use the 
interrupt-driven, input/output method of operation which 
involves the processor in the data transfer operation only 
when the device signals that it is ready to receive or transmit 
data. 

Figure 56 (3 of 3) shows this process, indicating that the 
only time the processor is actually involved with the transfer 
of data to the device is when the device signals it is ready 
to receive a character. Normally, the processor is busy at 
some task level. The system periodically interrupts the 
processor to transfer a character, and then resumes execu­
tion of the interrupted task. In the Series/1, the interrupt 
occurs on a different priority level which has its own 
registers; consequently, there is little overhead expended in 
saving and restoring the state of the interrupted process. 
Direct program control operations take a very small portion 
of the processor's time for each input/output. Assuming 
moderate data rates, the interrupt-driven method is an 
efficient way to transfer data between devices. At fifteen 
characters per second, the overhead is negligible. However, 
devices transferring data at one thousand characters per 
second or higher begin to impact the throughput of the 
processor and increase the overhead of the operation. 

A large number of devices with slow data transfer times 
will also use a significant amount of the processor's time. 
In these cases, the devices are more effectively connected 
in a cycle steal mode; such a connection decreases the 
processor's involvement significantly by putting much of the 
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An example of interrupt and polling organizations 
for a simple output task. 

The buffer contains N characters to be 
output, one at a time, to a printing 
device. 

R E s T A R T 

• • 
I 

I 
Last t--- __ J 

I 

'- ---- - Next 

1 
Initialized to point to first 
character 

Figure 56. Direct program control of devices (1 of 3) 

input/output control function into the interface. The 
Series/1 communications' interfaces are good examples of 
this method. Input and output in the cycle steal mode 
are discussed in the next section. 

Effects of Buffering on Task Execution 

Direct program control of a device affects the task initiat­
ing the input/output operation as indicated in Figures 57 
and 58. A task which calls for a buffer to be filled from a 
specific device initiates a series of transfers. Each of these 
transfers takes only a short span of processor time to 
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Polling input/output under program control 

Possible delay Read status 
or check other 

~ 
--.- of device 

devices 

T 
Yes ..... Is it busy? 

I No 
Performed by an 
input/output Output the next 
operation. The character and 
interface responds update next 
with busy /not 
busy status. T 

No 
Buffer completely ~ 

output? 

l Yes 

Return and notify 
originating task 

Because of the difference between the processor and the 
device speeds, this form of polling ties up the processor 
completely doing what is, essentially, a small task. By 
comparison, interrupt-driven input/output of this type 
operates with a very economical overhead. 

Figure 56. Direct program control of devices (2 of 31 
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Interrupt-driven input/output under program control 

Device-ready interrupt 

}_ 

Output one character from location 
next to the device. 

I 
Update next to point to the next 
character to be printed. 

l 

If next is past last, signal the task 
that initiated the output operation 
that the job is done, or return to the 
interrupted task. 

Device priority 
level (higher) 

Output R 

Overhead is less than half of one percent if: 

Output E ... 

• 50 microseconds are used to respond to the interrupt 
and to output one character, as above 

• The device accepts 100 characters per second 

Figure 56. Direct program control of devices (3 of 3) 
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Figure 57. Effect of non-overlapped input/output on task execution (1 of 2) 
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~ Figure 57. Effect of non-overlapped input/output on task execution (2 of 2) 
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(Task proceeds, processing data in buffer B). 
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Figure 58. Direct program control and overlapped input/output (1 of 2) 
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Level 3 
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Task executes on level 2, periodically interrupted for a brief interval by the device 
handler on level 0. 
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A user can design a task with well-defined, input/output needs to execute concurrently with the input/out­
put operation. In this example, two buffers perform that operation. 

Before initiating the next task or processing the previous task, a task must determine that a requested, con­
current input operation is completed. 

Series/1 software returns control to the initiating task immediately. The task then decides whether to 
continue execution-overlapped with input/output-or to block execution until the operation is complete. 

V: Figure 58. Direct program control and overlapped input/output (2 of 21 



respond to the device interrupt {Figure 57). The processor 
may be busy in performing some other task in between 
data item transfers, but the task asking for the input opera­
tion may still be blocked throughout the duration of the 
data transfer. If the task needs the block of information 
before it can continue, it must wait for the completion 
of the data transfer. In this circumstance, overlapping the 
direct, program control input/output operations of one 
task with the execution of a different task {as in Figure 57) 
is an efficient way to use the processor. Sometimes the 
task initiating the input/output operation can actually 
proceed without waiting for the operation to complete 
{Figure 58). When that occurs a "double buffering" mechan­
ism is deliberately set up by which the task initiates an input 
operation to fill one buffer while processing the other. The 
system, then, overlaps the input operation with the execu­
tion of the same task. Commonly, those input/output 
operations that arise in data acquisition and similar dedicated, 
small computer applications accomplish this double buffer­
ing. Direct program control is an efficient way to handle 
such situations; in critical applications, it also gives the pro­
grammer direct control over timing and response of the 
system. Software systems must permit the programmer to 
decide whether the processor should return to the task 
initiating the input/output operation immediately or only 
after completing the input/output. This programming option 
is discussed later in this chapter. 

Direct Program Control Instructions 

The actual involvement of the Series/1 processor in direct, 
program control input/output operations is straightforward: it 
involves only one instruction whose fields are coded with the 
specific operation desired. Figure 59 shows the Operate 1/0 
instruction: a two-word instruction whose effective address 
points to a two-word package, the immediate device control 
block {IDCB). The immediate device control block, in turn, 
contains all the information specific to an input/output opera­
tion including the device address (eight bits indicating one 
of 256 devices), and a command. The full-word, immediate 
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field within the device control block is the source of data 
for an output operation and the destination of data for an 
input operation. For a transfer involving a byte instead of 
a full word-the length of the data transfer depends upon 
the particular device being addressed-the transfer is to and 
from the last significant half of the immediate field. 

Notice in Figure 59 how the input/output channel trans­
fers the command and device address along the channel 
address bus for recognition and interpretation by the 
appropriate device interface. The control information is 
not depicted. 

Various commands are necessary for complete device 
control, especially when special devices are interfaced to the 
processor. Figure 60 lists these commands. The command 
portion of the immediate device control block is eight-bits 
wide: four bits identify the generic command; four bits 
are available as sub-commands. For example, in addition 
to the expected read and write commands, there exists a 
read identification (Read ID) command. This command 
causes the addressed device to return a sixteen-bit identifi­
cation word to the immediate field of the immediate device 
control block. The identification word contains: 

• A unique identification code for the device so the 
processor can determine physical characteristics and 
input/output requirements for the device 

• An indication of whether the device runs under direct 
program control or cycle steal mode 

• An indication of whether the device is a standard IBM 
device or an OEM device 

• An indication of whether the device is controller-inter-
facing several devices or not 

This information could, of course, be programmed into the 
system rather than being available under software control. 
However, making this information available to programs 
insures that: 

• Error checking can be done 

• Error recovery and startup can be expedited 
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Operate 1/0 instruction (two words) 

• The first word contains: 
- Code for the instruction (12 bits) 
- Register designation (3 bits) 
- Direct/indirect addressing mode flag (1 bit) 

• The second word contains: 
- A 16-bit address (if register 0 is designated), or 
- A 16-bit displacement to be added to the con-

tents of the designated register 
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the immediate device control 
block (two words long). 
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Figure 59. Direct jJrogram control performed with a single instruction-Operate 1/0 (1 of 3) 
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'\O Figure 59. Direct program control performed with a single instruction-Operate 1/0 (2 of 3} 
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Every input/output operation results in a status code called the condition 
code. This code contains one of eight values which is stored, automatically, 
in the most significant three bits of the level status register-on the level at 
which input/output occurs. These three bits are identical to the bits used 
to hold even, carry, and overflow indicators after arithmetic and logic 
operations are concluded. 

Figure 59. Direct program control performed with a single instruction-Operate 1/0 (3 of 3) 



Immediate device control block (two words) 

1/0 command 
(eight bits) 

I 
I 

l 
Device address 
(eight bits) 

Immediate field for data (16 pits) 

i.. Direct program control commands 

• Read-Transfers a word of data or a byte of data from 
the addressed device into the immediate field of the 
immediate device control block. If a byte transfers, it 
occupies the least significant byte of the immediate 
field, and the other byte is zeroed. 

• Write-Transfers a word or byte of data from the 
immediate field of the immediate device control block 
to the addressed device. If a byte transfers, it is the 
least significant byte of the immediate field. 

• Read ID-Transfers an identification word from the 
addressed device to the immediate field of the device 
control block. The device identification word contains 
information about the device and may be used-either 
during startup or as part of error checking-to determine 
the devices that are attached to the system. 

• Read Status-Transfers a word of current device status 
information from the addressed device to the immediate 
field of the device control block. Interpretation of the 
bits and fields depends upon the specific device. 

• Prepare-Transfers a word to the addressed device from 
the immediate field of the immediate device control 
block. The transferred word controls the device's inter­
rupt level and enabling flag (see Figure 61 ). 

• Device Reset-Resets the addressed device including 
clear, any pending interrupt, or busy condition 

Figure 60. The major input/output commands for direct program control 
of devices 
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• Proper operation of devices can be performed from 
common, system software 

For example, knowledge of whether or not a device is IBM­
supplied determines whether or not certain levels of self­
diagnosis will be performed. 

The Read Status command transfers a word from the 
device interface to the immediate field of the immediate 
device control block. The same process occurs during a Read 
or Read Identification (Read ID) command but in the latter 
case, the data codes the status of the particular device. This 
coding might include a busy indication, error detection 
information, or a power status indication depending upon 
the device. Similar commands to the interface from the 
immediate field of the immediate device are: Control, 
Reset, and Prepare. 

Control passes a word from the device control block 
immediate field to the device interface. What the interface 
does with the word depends upon the device itself. Among 
the actions initiated are the following: 

• To abort an operation in process 

• To send a device to some standard state 

• To position an electromechanical system 

• Any other operation: 
- Which must be treated differently from data transfers, 

and 
- Which the interface designer builds into the system 

The availability of the Control command is clearly important 
to OEM device interface designers. Reset is a special kind of 
control which also resets the common, system state including 
any pending interrupt. 

The Prepare command controls the interrupt level of a 
device and the basis on which a device generates interrupts 
(Figure 61 ). As stated earlier in this chapter, interrupts may 
be masked on a system wide basis, on a level basis, or on an 
individual device basis. The hardware priority level for a 
device is not determined by its location in the processor 
or input/output expansion units. This determination is made 
by information stored within the device interface itself and 
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Operate 1/0 instruction 

r------------~ 
Prepare Device N 

The address points to 
the immediate device 
control block. 

------...J...-------' Immediate device 

Interrupt parameter word 
control block 

Data transmitted 
on input/output bus 

Input/output bus 

Zero Level 

Interrupt parameter register 
in interface 

Interface for 
device N 

Device N 

Level: A four-bit area designating on which of the 16 
priority levels the device should respond. Although 
Series/1 architecture supports up to 16 levels, only four 
levels are recognized on current processors. 

I: Device mask. When set to 1, the device interrupt is 
enabled; when set to 0, disabled. These settings provide: 

• Control over specific, individual device interrupts (device 
mask) 

• Control over individual levels of priority interrupt (level 
mask) 

• Control over all interrupts on all levels (summary mask) 

Individual devices may have their priority level set under 
program control, and be individually enabled or inhibited 
under program control. 

Figure 61. Individual devices under program control 
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subject to change under program control. The Prepare 
command transfers a single word to the device. The trans­
ferred word contains the levels of priority on which the 
device acts (note that the Series/1 architecture allows up 
to 16 levels of priority but that currently available processors 
recognize only four levels). One bit is used to indicate 
whether the device is permitted to interrupt or not, in 
exactly the same fashion as the determination is made by 
the interrupt control information built into each level of 
the processor. IBM has designed the interfaces to accept 
the Prepare command at any time; this enables a user to 
change the level and interrupt status of any device at any 
time under program control. 

Normally the system software, like the Realtime Program­
ming System, carries out all control over interrupt level, 
interrupt inhibiting, and similar functions. In custom­
tailored applications, however, users might assume this 
control on their own. The flexibility and generality of the 
direct, program control commands give the user the power 
to run special devices in whatever way the applicatiOn 
dictates. 

Error Detection and Reporting 

This book has repeatedly emphasized that robust 
system design requires good error detection. Without this 
detection, thorough error recovery cannot be built into the 
software system. For this purpose, each input/output 
operation inputs status information to the processor. A 
condition code is a three-bit code used to indicate the 
result of an input/output instruction or the reason for an 
interrupt (Figure 62). The three-bit condition code is 
stored within the level status register in the three bits used 
for even, carry, and overflow information. There is no 
conflict in dual use of the level status register because: 

1. Interrupts and input/output are normally performed on 
priority levels different from those used by tasks 

2. Registers are duplicated on each priority level 

Depending upon the actions of the device, interface, and 
hardware, the condition code is set as indicated in Figure 62; 
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a variety of conditional branching instructions can then inter­
rogate the code. With this system design, software can: 

• Perform an operation 

• Check to determine whether or not the operation was 
carried out satisfactorily 

• Determine the source of difficulty if the operation was 
not satisfactory 

• Handle all special cases 

Overall Operation of Direct Program Control Input/Output 

Overall operation of direct program control, input/output 
transfers involves several steps. First the system prepares 
the device, setting the interrupt priority level and interrupt 
mask with the Prepare command. Secondly, each time the 
device is ready to input or accept data, an interrupt is 
generated (subject, of course, to masks and current processor 
level control). As shown in Figure 63, the interrupt then 
causes a condition code to be placed in the level status 
register on the level of the device. As explained in the 
discussion of interrupts, an interrupt identification word is 
input to register seven on the device priority level. The 
least significant byte of register seven contains the device 
address which the interrupt hardware uses to branch to the 
interrupt response routine. The other byte contains either 
device-dependent information needed by the responding 
software routine or more detailed error information. Figure 
64 defines the interrupt identification word and the addi­
tional error information detected by the interrupt. 

Assuming no error occurred, the processor uses the device 
address in register seven to access a table which contains the 
addresses of blocks of information related to the devices. 
In IBM-supplied software, this block is called a device 
descriptor block (DDB) and includes many parameters 
related to error recovery, buffers, and storage locations. 
The first word of the device descriptor block is the address 
of the interrupt response routine itself; it is this address that 
the system fetches and uses as the starting address for pro­
gram execution. 
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Operate 1/0 
instruction 

1 
Device reports 
condition code 

1/0 instruction condition codes 

1-------------1 

CC 0 Device not attached 
1 Busy 
2 Busy after reset 
3 Command reject 
4 Intervention required 
5 Interface data check 
6 Controller busy 
7 Satisfactory 

The condition code is reported in the 
appropriate level status register. 

CC=O Device not attached Reported by the channel 
when the addressed device is not attached to the 
system. 

CC=l Busy. Reported by the device when it is unable 
to execute a command because it is in the busy 
state. The device enters the busy state upon 
acceptance of a command that requires an inter­
rupt for termination. It exits the busy state when 
the processor accepts the interrupt. Certain 
devices also enter the busy state when an external 
event occurs that results in an interrupt. When 
this condition code is reported, a subsequent 
priority interrupt from the addressed device 
always occurs. 

CC=2 Busy after reset. Reported by the device when it 
is unable to execute a command because of a 
reset and the device has not had sufficient time 
to return to the quiescent state. No interrupt 
occurs to indicate termination of this condition. 

Figure 62. Definition of the eight condition codes which may be reported after 
each input/output instruction (1 of 2) 
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CC=3 Command reject Reported by the device or 
channel when: 

1. A command is issued that is outside the device 
command set 

2. The device is in an improper state to execute 
the command 

3. An incorrect parameter was. supplied to the 
1/0 command 

CC=4 Intervention required. Reported by the device 
when it is unable to execute a command due to 
a condition requiring manual intervention to 
correct. 

CC=5 Interface data check. Reported by the device or 
the channel when a parity error is detected on the 
1/0 data bus during a data transfer. 

CC=6 Controller busy. This condition is reported by a 
device controller, not the addressed device, when 
the controller is busy. It is reported only by 
controllers that have two or more devices attached 
(each device having a unique address). When this 
condition code is reported, a subsequent controller­
end interrupt always occurs. 

CC=7 Satisfactory. Reported by the device or channel 
when it accepts the command. 

Condition codes reported after an Operate 1/0 instruction 
are different from the condition codes reported after an 
input/output interrupt. 

Figure 62. Definition of the eight condition codes which may be reported after 
each input/output instruction (2 of 2) 

Series/1 hardware performs all of these operations, mini­
mizing the overhead expended in responding to interrupts. It 
is the interrupt response routine which actually performs 
the direct program control input/output operations, error­
checks the results, and sets up for the next transfer. Soft­
ware handles most of the complex input/output activity. 
The logical and physical buffer sizes described here are only 
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Example: Device 15 interrupts in level 2 

The device irlterface assembles error data and 
other information into the interrupt status 
word and transmits it to the processor. The 
device interface also generates a condition code 
describing the reason for the interrupt, and 
transmits this information across the channel. 

The interrupt status word is loaded into register 
7 of level 2. The condition code is loaded into 
the level 2, level status register. 

The device address is used to index into the 
main storage device vector table to fetch the 
address of the device description block for the 
interrupting device. 

The address of the device description block is 
stored by the hardware in register 1 for use by 
the interrupt response routine. 

The hardware accesses the first word of the 
device description block to determine the start­
ing address of the interrupt response routine 
for this device. That address is loaded into the 
instruction address register causing an immedi­
ate branch to the response routine. 

Figure 63. Condition codes eccompanying each input/output interrupt (1 of 5) 

simple examples of additional information needed at the 
higher levels. This book, in a later section, briefly discusses 
software for control of input/output at the higher levels. 
The more complex examples are covered there. 

Of special interest to small computer applications is the 
structure of the direct program control command in 
Figure 56. Because the immediate device control block 
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@---------~-, 
@-1 The interrupt status wo~ contains two bytes: 

I 1. The device address 

2. The interrupt information byte 

I The interrupt status byte is the most significant 
iJ byte of the interrupt word; it remains in register 

7 for use by the interrupt response routine. 

The interrupt status byte is normally device 
dependent except when the condition code indi­
cates that an error has occurred. The byte is 
then used to transmit error information which 
cannot be reported by a condition code. 
Generally, the detailed error reporting is device 
dependent, and is defined in Series/1 device 
descriptions. 

Figure 63. Condition codes accompanying each input/output interrupt (2 of 5) 

is separate from the Operate 1/0 command, it is possible 
to write input/output software which can control multiple, 
identical or similar devices in a very efficient manner. 
Figure 64 shows a common input/output control routine 
which addresses different immediate device control blocks 
(perhaps, depending upon a number in a register) each 
time it executes. Because the control-word device 
addresses and immediate data fields are separate from the 
input/output command, the same code can control multiple 
devices without interference. Similarly, input/output 
commands-which prepare devices for operation-address 
different control blocks with different information. 
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Device 

1/0 interrupt 

Device reports 
interrupt 
condition code. 

cc 

... 

Device dependent interrupt 
information byte is trans­
ferred in the interrupt 
identification word. 

Interrupt condition codes 

0 Controller end 
1 PCI 
2 Exception 
3 Device end 
4 Attention 
5 Attention and PCI 
6 Attention and exception 
7 Attention and device end 

*Error condition with inter­
rupt caused by external event 

Figure 63. Condition codes accompanying each input/output interrupt (3 of 5) 
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Interrupt status byte (ISB) 

1-- - ----- -- - - --

Bit 0 Device status available 
1 Delayed command reject 
2 Incorrect length record 

~ 
Cycle steal 

f.I 3 DCB specification check 
device 4 Storage data check 

5 Invalid storage address 
6 Protect check 
7 Interface data check 

Interrupt status byte (ISB) 

-------------
Bit 0 Device status available 

~ 
Direct program 

~ 1 Delayed command reject 
control device 2-7 Device dependent 

CC=O Controller end. Reported by a controller when 
controller busy (1/0 instruction condition code) 
has been previously reported one or more times. 
It signifies that the controller is now free to 
accept 1/0 commands for devices under its con­
trol. The device address reported with controller 
end is always the lowest address (numerical 
value) of the group of devices serviced by the 
controller. The interrupt information byte, in 
the interrupt ID word, is set to zero. 

CC=1 Program controlled interrupt. Reported when 
the interrupt indicates that a DCB with the PCI 
bit set to one has been transferred by cycle steal 
to the device and no error or exception condi­
tion has occurred. 

Figure 63. Condition codes accompanying each input/output interrupt (4 of 5) 
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CC=2 Exception. Reported when an error or exception 
condition is associated with the interrupt. The ... 
condition is described in the interrupt status byte 
(ISB) or in device dependent status words. 

CC=3 Device end. Reported when no error, exception, 
or attention condition has occurred during the 
1/0 operation, and the interrupt is not the result 
of a PCI. For example: an operation has termin­
ated normally. 

CC=4 Attention. Reported when the interrupt was 
caused by an external event rather than execution 
of an Operate 1/0 instruction. Additional status 
information is not provided unless the event 
,requires further definition: for example, code bits 
for a keyboard function. 

CC=5 Attention and PC/. Reported when attention and 
PCI are both present. 

CC=6 Attention and exception. Reported when atten­
tion and exception are both present. 

CC=7 Attention and device end. Reported when atten­
tion and device end are both present. 

The advantages of the microprocessor-controlled interfaces 
and channels are apparent here: 

• The hardware carries out a complex series of operations 
to facilitate low overhead and rapid event response 

• The hardware error-checks every operation 

• The hardware provides extensive diagnostics in an inte­
grated, consistent manner 

Each input/output code is accompanied by a condition code 
reported in the level status register. The condition code 
defines the reason for the interrupt and may be tested to 
guide the interrupt response routine. 

Figure 63. Condition codes accompanying each input/output interrupt (5 of 5) 
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In fact, the common code might address a device with a 
Read Identification command and use the results to deter­
mine which device control block to use in the remainder of the 
code; this procedure would allow one routine to control 
multiple, dissimilar devices. 

Input and Output in the Cycle Stealing Mode 
Cycle stealing, in contrast to direct program control, 

involves much less explicit interaction on the part of the 
processor during the transfer of a block of information 
between main storage and a device. This has been accom­
plished in the Series/1 by building a great deal of processing 
capability in the input/output channel controller. As a 
result, the channel controller can handle many of the func­
tions which the processor handles during a direct, program­
controlled operation. Figure 65 illustrates this procedure­
the processor executes a task whose code is stored in main 
storage. Execution involves many things, including: 

• Fetching instructions from storage 

• Fetching data items 

• Performing computation using the arithmetic and logic 
unit 

• Putting results back into storage 

In other words, the processor uses the storage repeatedly. 
Each read or write storage action takes a length of time 
called a memory cycle; during this time nothing else can use 
the main storage. 

Simultaneous with the execution of a task, the input/out­
put channel cycle steals data between main storage and a 
device. Each such transfer involves many of the same physi­
cal operations discussed in the introduction to this chapter: 
addresses and commands on the bus, handshaking, error 
checking, and data transfer. However, during a cycle steal 
data transfer, the channel controller is responsible for all 
these functions. The only interaction with the processor 
is through contention for main storage. Each time a data 
item has been obtained from a device during an input 
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for multiple devices 

Table of immediate device 
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Command device address 
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Figure 64. A common input/output control routine addressing different immediate device control blocks (1 of 2) 

Device A 

Device B 

Device C 

Device D 
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VI 

Each call on the input/output routine indexes to access the appropriate immediate device control block. 

Separating the device address, the command, and the data area from the Operate 1/0 instruction itself 
creates practical input/output routines. These routines control multiple devices of different types and 
decrease the size of the overall system software. 

Figure 64. A common input/output control routine addressing different immediate device control blocks 12 of 21 
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Figure 65. Cycle stealing input/output (pal't 1) (1 of 2) 
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Main storage access cycles are "stolen" by the 
channel to read or write data to or from the 
buffer. The interruption of the active task is 
not significant enough to illustrate here. 

Active task 

Set up cycle steal ·stolen cycle 

Interrupt the task upon completion 
of the input/output request. 

Task continues 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ....... ~Time 
Input/output 
request 

Cycle stealing input/output is set up via direct program control input/output operations; it is performed with 
only one storage access time required per word transferred. 

~ Figure 65. Cycle stealing input/output (part 1 I (2 of 2) 



operation, the channel controller must present the data­
together with a main storage address-to main storage in 
exactly the same way the processor presents an address 
and data when it wishes to write in main storage. As indi­
cated during the discussion of the processor in Chapter 3, 
both the processor and the channel have registers for access­
ing storage. A storage controller acts as a traffic policeman 
or priority arbitrator when both the processor and controller 
simultaneously contend for storage. Because the channel 
inputs data periodically and because each such data transfer 
has exclusive access to the main storage for one cycle during 
the transfer, the processor periodically finds the main stor­
age busy and must wait-hence, the name cycle stealing for 
this mode of data transfer. 

Once initiated, cycle stealing entails little overhead on the 
part of the processor. Consequently, cycle stealing is an 
economic process for faster devices whose servicing under 
direct program control would considerably decrease the 
throughput of the system. 

Use of Microprocessors in Cycle Steal Controllers 

The Series/1 technology uses a microprocessor-whose 
power resembles that of a small computer-in most device 
interfaces. In the current iterations of the Series/1, it is 
economically attractive to use cycle stealing interfaces even 
for relatively low-speed, input/output devices. One signifi­
cant advantage of this technology is that the microprocessor 
can be programmed to.perform the basic input/output opera­
tion as well as error checking, error recovery, self-diagnosing, 
and those special functions pertinent to a particular device. 
Communications-device data management in the Series/1 is 
an excellent example of this advantage. The interface can 
both transfer characters from a terminal-type device to main 
storage, and also check each character to see if it is a special 
control character requiring a special response from the 
processor. 

An example of this ability occurs when a character signals 
the user who wants to backspace and overwrite something 
already typed on the terminal. The user wants an immediate 
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response to this command; the system must make the correc­
tion before a complete line is input. The programmed 
communications' interface could perform this backspace func­
tion or, alternatively, allow the processor to respond by 
interrupting it when the interface detects the backspace 
character. As a result, the processor is not engaged for most 
characters except when they occur at the end of an input 
line. In a communications' and terminal oriented application, 
this method of operation off-loads the processor very signifi­
cantly and is a good example of the integrated hardware, 
software, and system design prevalent in the Series/1. 

Cycle Steal Input/Output Instructions and Commands 

The user must supply multiple parameters in the input/out­
put command because cycle stealing operations transfer more 
than one data item without processor intervention. Figure 66 
shows the form of the cycle steal, input/output command; it 
is identical to the command used in direct program control 
except for the interpretation of the immediate data field. As 
with direct program control, the system uses the same 
Operate 1/0 command with an address pointing to an 
immediate device control block. The command field, 
however, is specific for cycle stealing-Start 1/0. This com­
mand field is a signal to the channel that the immediate field 
is actually the address of another block of information-the 
device control block-which contains the parameters 
necessary to carry out the transfer. These parameters 
include: 

• An address in main storage where a data buffer resides 

• A count of the number of bytes to be transferred 

• A control word which is, essentially, a command to its 
cycle stealing controller 

The command is part of the device control block rather 
than the immediate device control block because the system 
may often perform long sequences of cycle stealing opera­
tions without processor intervention. The system can 
accomplish this operation by having the following: 
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~ 

Operate 1/0 instruction 

The effective address points 
to the immediate device 
control block. 

Start 1/0 N 

Figure 66. Cycle stealing input/output (part 21 (1 of 2) 

Cycle steal input/output and direct program con­
trol use the same instruction. 

The immediate device control block is identical to 
the block used for direct program control with 
one exception: the command field signals the 
processor that cycle steal input is called for; conse­
quently, the data is not in the immediate field. 

N is the device number. 

Command is standard-details are in the device 
control block. 

The immediate field points to the device control 
block. 



~ 
Cycle steal input/output is controlled 
through an eight word data structure. 

Direct program control input/output instructions set up the cycle steal input/output which the Start 1/0 
command initiates. The command has a format similar to the direct program control command with one 
exception: the immediate data field actually points to ~mother eight-word control block. 

l>J 

:!:: Figure 66. Cycle stealing input/output (part 2) (2 of 2) 



• One intervention to start the process-by pointing to an 
immediate device control block containing the Start 
1/0 command 

• A sequence of device control blocks chained together with 
internal pointers. Each block contains a channel command 
and is read as needed by the device controller using the 
cycle steal channel. 

In a sense, a sequence of device control blocks chained 
together is a program which controls a sequence of opera­
tions and transfers on the cycle steal channel. The channel 
controller is functioning much like a processor itself-and in 
fact it is a microprocessor. 

The device control block is an eight-word information 
block whose contents are partially standard and partially 
device dependent as shown in Figure 67. Words one through 
five are dependent upon the particular device and the 
particular command within the control block. For example, 
a transfer to a disk would require cylinder and sector 
addresses as well as a main storage address and a byte count. 
The interface designer allocates the information needed by 
each device to these words in the control block. OEM cycle 
steal interfaces may be requested-to user specification-on a 
special order basis, that is a request price quotation ( RPQ), 
from IBM. The GPIB Adapter card is a cycle stealing feature 
for OEM attachment. 

The first word of the device control block is the control 
word whose fields are defined in Figure 67. Notice that 
the individual bits: 

• Signal the controller commands, like interrupt, upon 
completion of data transfer 

• Operate in burst (channel-dedicated) mode 

• Chain to another device control block upon completion 
of this transfer 

• Direct the transfer 

• Perform error control 

The seven-bit modifier is available as a device-dependent 
command field. The system uses the cycle steal address key 
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field during the transfer as part of storage protection and 
address translation as indicated in the section of this chapter 
entitled "Storage Protection and Address Translation Effects 
on Input/Output Operations". Notice again that this 
information field, along with others in the device control 
block, constitutes a complex command to the channel. 

Burst mode means that the channel is dedicated to the 
data transfer during the entire time the transfer occurs. In 
burst mode, the processor and all other devices are com­
pletely locked out of the channel. If the transferring device 
is fast enough-the burst mode can accommodate very fast 
devices-data transfers occur at the maximum rate that the 
main storage can accommodate. Burst mode might be useful 
where the remote device is another computer {computer to 
computer communications) and the user wants control over 
concurrent accesses to a data base or critical data area. By 
locking the channel during a transfer, a computer can trans­
fer data and assure the user that the processor will not 
simultaneously update the data. This procedure permits 
communications' software to resolve contention problems 
which arise in networking applications of small computers. 
The technique is analogous to the processor inhibiting or 
masking interrupts to prevent simultaneous access to a 
critical data area by other tasks within the processor itself. 

The device control block resides in main storage itself. 
When the channel receives a Start 1/0 command, it interacts 
with the addressed device controller and fetches those words 
in the device control block needed by the interface to 
initiate and carry out the command. In this way, fetching 
the command itself uses storage accesses and cycles stolen 
from the processor. The system does not necessarily have to 
fetch all eight words contained in the device control block; 
it fetches only those words needed by the device. The exact 
number is then device dependent-in fact, it may depend 
upon the particular modifier field. For effective control over 
concurrency of task execution and input/output, the cycle 
steal operation, optionally, interrupts upon completion of 
each block transfer. 

The operation of a cycle stealing device involves initiation 
by direct program control operations as indicated in Figure 68. 
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Control word format (DCB word 0) 

I 'Add, ·t~d~I~ ~~ ---:-~ ' 
0 ·1 2 3 4 5 7 8 14 1J 

LBurst mode 
Suppress exception (SE) 

Reserved 

Input flag 

'------Program controlled interrupt (PCI) 

,__-----Chaining flag 

Word 
0 

DCB (device control block) 

Control word i...J 

I 

1 Device parameter word 1 

2 Device parameter word 2 

3 Device parameter word 3 

4 Device parameter word 4 

5 Device parameter word 5 

6 Count 

r--') 7 Data address 

Byte count and main storage address are 
'---I the minimum data requirements in a 

cycle steal transfer. 

Device control block words are accessed by the device 
interface. Only those words needed for a specific device 
are actually transferred to the device interface. 

Figure 67. The device control block contains the data necessary to carry out one 
transfer between a specific device and main storage (1 of 2) 
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Bit 0 Chaining flag. If this bit is equal to one, a DCB 
chaining operation is indicated. After complet­
ing the current DCB operation, the device does 
not interrupt unless a program-controlled inter­
rupt has been requested. Instead, the device 
fetches the next DCB in the chain. 

Bit 1 Programmed controlled interrupt (PC!). If this 
bit is equal to one, the device presents a pro­
grammed controlled interrupt (PCI) at the com­
pletion of the DCB fetch. Data transfers associ­
ated with the DCB may commence even if the 
PCI is pending. 

Bit 2 Input flag. The setting of this bit tells the device 
the direction of data transfer. 

0 = Output (main storage to device or no 
transfer) 

1 = Input (device to main storage) 

For bidirectional data transfers under one DCB 
operation, this bit must be set to one. For con­
trol operations involving no data transfer, this 
bit must be set to zero. 

Bit 3 Reserved. This bit must be set to zero to avoid 
future code obsolescence. 

Bit 4 Suppress exception (SE). If this bit is equal to 
one, reporting of device specified exception 
conditions are suppressed. The device contin­
ues the operation. The classes of exception 
conditions that can be suppressed are devi.ce 
dependent. For example: an incorrect-length­
record condition could be suppressed. An 
exception that occurs during a DCB fetch opera­
tion cannot be suppressed. Refer to the indivi­
dual device publications. 

Bits 5-7 Cycle steal address key. This key is presented 
by the device during data transfers. It is used 
to ascertain storage access authorization. 

Bits 8-14 Modifier. These bits may be used to describe 
functions unique to a particular device. 

Bit 15 Burst mode. If this bit is equal to one, the 
transfer of data takes place in burst mode. This 
mode dedicates the channel to the device until 
the last data transfer associated with this DCB 
is completed. This bit is device dependent if 
burst mode is not supported by the device. 

Figure 67. The device control block contains the data necessary t.o carry out one 
transfer between a specific device and main storage (2 of 2) 
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The processor is involved 
in setting up the transfer 
and initiating the channel, 

Transfer takes place con­
currently with processor 
execution of other tasks. 

Cycle steal 
major steps 

Prepare 1/0 
device 

Start cycle 
steal 

Device fetches 
DCB 

Data transfer 

Figure 68. Sequence of operations during cycle stealing transfers (1 of 31 

Remarks 
1. Execute 1/0 instruction. 
2. I DCB contains Prepare command and interrupt 

parameters. 
3. Device presents condition code 7 (satisfactory). 
1. Execute 1/0 instruction. 
2. IDCB contains Start command and points to a 

DCB. 
3. Device presents condition code 7. 

1. Device uses cycle steal mechanism to fetch 
DCB. 

2. Cycle steal address key of zero is used. 
1. Data is transferred to or from the device in 

word or byte format. 
2. Transfer continues until count in DCB is 

exhausted or error occurs. 
3. DCB specifies cycle steal address key for data 

area. 
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By responding to the inter­
rupt, the processor becomes 
involved again upon comple­
tion of the transfer. 

Cycle steal 
major steps 

Termination 
(no error 
condition) 

Termination 
(exception 
condition) 

~ Figure 68. Sequence of operations during cycle stealing transfers (2 of 3) 

Remarks 

1. Device presents interrupt request. 
2. Channel polls 1/0 interface and accepts 

requests. 
3. Device sends interrupt ID word and interrupt 

condition code 3 (device end). 

1. Device presents interrupt request. 
2. Channel polls 1/0 attachment feature and 

accepts request. 
3. Device sends interrupt ID word and interrupt 

condition code 2 (exception). 
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Note: Other events that might occur during the cycle steal opera­
tion are: 

Cycle steal 
major steps 

Chaining 

Program 
controlled 
interrupt 

DCB: device control block (see Figure 66) 

IDCB: immediate device control block (see Figure 66) 

Interrupt 1/0 word: (see Figure 63) 

PCI: program controlled interrupt 

Figure 68. Sequence of operations during cycle stealing transfers (3 of 3) 

Remarks 

l. Device completes the current DCB operation 
but does not present an interrupt request. 

2. Device fetches next DCB in the chain. 

1. Device fetches DCB (PCI bit= 1 ). 
2. Device initiates an interrupt and sends an inter­

rupt ID word and interrupt condition code 1 
(PCI). 



Storage Protection and Address Translation 
Effects on Input/Output Operations 

Storage protection on the Series/1 is performed in two 
basic ways: 1) in systems without address translation, by 
access keys associated with each 2K-block of storage transla­
tion; and 2) in systems with address translation, by access 
keys which address different stacks of segmentation 
registers. The input/output system is fully integrated into 
this system of storage protection {Figure 69). 

Storage Protection Without Address Translation 

For Series/1 systems without address translation (or those 
in which address translation is disabled), access is controlled 
as it is for any other instruction type which accesses storage: 
through the same address key register of the level on which 
the direct program control instruction is executed. Input 
and output operations use the operand 2 key to fetch the 
device control block. Cycle stealing, input/output opera­
tions are more complex because they involve fetching the 
device control block as well as reading or writing data in 
another area of main storage. 

Reading and writing data in main storage during a cycle 
stealing operation requires a match between the address key 
of the block in storage and the address key stored in the 
control work of the device control block. This procedure 
is consistent with the conventional non-mapped storage 
protection procedure with one exception: the read/write 
protection bit is ignored during a cycle steal operation. 

Both Series/1 hardware and software adopt a system-wide 
convention to handle the problem of accessing the device 
control block without violating storage protection. The key 
zero is used during access of the device control blocks (recall 
that a key of zero has no other special characteristics and 
that the no-protection key is key seven). With this conven­
tion, the hardware can set the address key register when an 
interrupt occurs because the system knows that key zero 
will be used to access the device blocks. In addition, input/ 
output hardware and software can remain consistent with 
the storage protection objectives of the system. 
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Storage Protection With Address Translation 

With address translation present and enabled, the accessing 
procedure is different. Tasks are protected from one another 
because their access keys determine sets of segmentation 
registers; these registers, in turn, map the task's 64K-byte 
address space into the physical main storage which is larger 
than 64K bytes. For operational efficiency and data protec­
tion, tasks performing input/output instructions need the 
same, consistent relationship as those accessing the device 
control block. For example, to ignore storage mapping and 
protection during an input/output operation would clearly 
limit how much error detection could be incorporated into 
the overall system-an unacceptable compromise in today's 
data processing_ world. If the available space is not contigu­
ous, cycle stealing input/output operations into physical 
storage might require multipJe commands to transfer data 
and program code. Such a procedure would be inefficient 
and unacceptable in a modern small computer. 

A direct program control, input/output operation poses 
no additional address translation and protection problems. 
All the addresses a:re checked by the same mechanism that 
handles other-purpose storage requests from the processor. 
Because it is addressed by the 1/0 instruction and fetched, 
the immediate device control block must reside in the space 
mapped by the operand 2 key stack of segmentation registers. 
This structuring usually presents no problem because-except 
for special customized systems-all actual input/output 
instructions are carried out by the operating system, and all 
device control blocks reside within its space. This arrange­
ment is consistent with the hardware convention of using 
address key zero both for fetching device control blocks and 
for initiating the operating system. 

In cycle steal operations, the device control block must 
reside in the space controlled by the task executing the 
cycle steal command. By convention, the device control 
block is fetched with key zero (this block is the set of seg­
mentation registers allocated to the operating system which 
also uses key zero); consequently, there is no problem in 
accessing the block. The data buffer may reside in any space 
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Direct program control input/output 

The processor 
with storage pro­
tection enabled Operate 1/0 instruction 

The OP2K address key must match 
the storage key of the immediate 
device control block. 

Immediate device control block 

The processor 
with hardware 
address trans­
lator enabled 

The immediate device control block 
is in the space mapped by the stack 
of segmentation registers whose 
number is OP2K. 

~ Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (1 of 4) 
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Cycle steal input/output 

Operate 1/0 instruction 

Immediate device control block 

Start 
Device 
address 

Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (2 of4) 



Device control block 
. I Key I The input/output of actual data , 1 .1 under cycle steal mode uses the 

key stored in the control word of 
the device control block; this key 
must match the key of the data 
buffer area in main storage. 

J 
Data area 

~ 
in storage 

~ 
The device control block words are fetched using 
key zero which implies that they must be in the 
address space mapped by segmentation register 
stack zero. 

IV 
t::l Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (3 of 4) 
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Using the key and segmentation stack zero for accessing device control blocks is a hardware/software conven­
tion of the Series/1. This convention facilitates using the key and the address space for the operating system. 
To insure overall system integrity, the system performs input/output within the operating system. 

Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (4 of 41 



with any key. The particular key used is stored in the first 
word of the device control block. This organization permits 
a user task to initiate a cycle steal transfer into a user task 
data area by calling the operating system to do the actual 
initiation. 

Whether or not the Series/1 is using address translation, 
the user can perform input/output operation in a straight­
forward, fully-protected manner with full use of system 
error checking. The only requirement is that the operating 
system or the supervisor program must maintain the device 
control blocks, safely, within its own area. 

Software Use of Input/Output Hardware 
The Series/1 architecture allows the system great flexibility 

when performing both direct program control and cycle steal 
input/output. Furthermore, storage protection and control 
over interrupts is maintained. To take advantage of this capa­
bility, however, an integrated system of software must be 
available. The Realtime Programming System, the Event 
Driven Executive, and the Control Program Support package 
provide user interfaces to: 

• The input/output hardware integrated with error detection 
software 

• Task management 

• Other features typical of small computer software needs 

Control Program Support of Input/Output 

First, consider the Control Program Support routines for 
input/output operations. This package is a set of routines 
designed as a set of modules which can be used by application 
tasks to perform the basic functions of task management and 
input/output rather than being designed as a stand alone 
operating system. The user's ability to tailor software for a 
dedicated application is an especially important feature of 
the Control Program Support. The simplicity of software 
design makes it easy to understand the basic techniques used 
for task management and input/output in IBM-supplied 
software. 
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For purposes of system integrity, it is advantageous to 
perform all input/output operations in the supervisor mode. 
It is further desirable to isolate application tasks themselves 
from those privileged instructions being used to set up and 
carry out input/output. The special instruction called 
Supervisor Call (SVC) (Figure 10) performs all communica­
tions between tasks and: 1) the operating system (including 
its input/output functions), or 2) the Control Program 
Support package. This instruction includes a parameter field 
which specifies the exact service desired. Execution of this 
instruction causes an internal or class interrupt which is 
handled in the standard fashion described earlier: the level 
status block (registers whose contents must be later restored 
before returning to the user task) is stored in the system 
table. Each type of internal interrupt has a unique hardware 
location which must contain the address of the save area for 
the level status block. In the case of the service internal 
interrupt, this address happens to be location 16. As part 
of the same instruction, interrupts are inhibited and the 
system is changed to supervisor status. 

To be consistent with storage protection, address keys 
are modified as shown rn Figure 70: the source operand key 
OP1 K is replaced by the value of destination operand key 
OP2K; then, OP2K and ISR are set to zero. The former 
permits the system to access the user's area to get informa­
tion in buffers and perform similar operations. The latter 
is the Series/1 hardware/software convention which facili­
tates accessing of buffers and device control blocks in the 
system space (always key zero). 

Finally, (and still part of the single-service instruction), 
the parameter associated with the SVC instruction is loaded 
into register one. Control then passes to the starting-instruc­
tion address of the service routine which is stored next to 
the address of the level status block save area in location 18. 

Notice that this single instruction does the following: 

1. Performs all of the system's housekeeping tasks Ii ke the 
saving of registers 
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2. Sets the system up for the branch to the appropriate 
service routine by loading the parameters of the SVC into 
register one 

The user task takes advantage of this instruction to link 
to a service module as depicted in Figure 71. The Control 
Program Support package assumes that all information trans­
ferred between the user task and the service module(s) is 
done through a block of information called the IOCB: 
input/output control block. To perform an input/output 
operation for a specific device, the address of the control 
block for that device is loaded into register zero. Then, the 
SVC instruction is executed with the parameter set to the 
desired service. Following the hardware functions described 
above and in Figure 70, the system transfers control to the 
service routine module which sets the device status to busy. 
If the device is already busy, the request is queued just as it 
is in the Real time Programming System. The service 
routine then branches to the appropriate module and 
carries out the function indicated using the parameters and 
the data contained in the addressed input/output control 
block. 

For users to maintain full control over the application, 
they must be able to specify whether or not input/output 
is overlapped with further computation of the active task 
or with some other task. To this end, control is immediately 
returned to the user task as soon as the requested input/ 
output operation has been initiated (the system auto­
matically restores the level status block and returns to the 
non-supervisor mode). Register zero is loaded with a code 
indicating success of the SVC, or failure-an error occurrance. 
If successful, the user then has two options: 

1. To continue execution, overlapped with the input/output 
operation 

2. To use the tasking facilities to suspend task execution 
until the system completes the input/output operation 

As part of the input/output control block information, the 
user specifies whether or not a special user task is to be 
executed upon completion of the operation. As shown in 
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The device vector table 
resides at specific 
addresses in main stor­
age and contains: the 
addresses of save areas 
for the level status 
blocks; and starting 
addresses for interrupt 
response routines. 

Instruction: SVC K 

The processor hardware stores 
the level status block at the 
address pointed to at location 
16 in the device vector table. 

All further interrupts are dis­
abled by disabling the summary 
interrupt mask. 

The processor is placed in the 
supervisor state. 

Generates an internal inter­
rupt on the same priority 
level as the current program. 

Figure 70. Communications between a task and the operating system using the Supervisor Call (SVC) convention (1 of 3) 
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If the SVC has to trans­
fer data to a routine, 
the setup of keys in 
the address key register 
facilitates the accessing 
of data from the user 
space. Notice that this 
is consistent with the 
storage protection of 
both mapped and un­
mapped processors. 

Key OP1 K is replaced by the 
value of OP2K; keys ISK and 
OP2K are replaced by zero. 

The parameter Kin the SVC 
instruction is placed in register 
one and used to indicate the 
specific service desired. 

The processor branches to the 
starting instruction address 
associated with the response 
routine for the SVC interrupt; 
this address is also stored at 
location 18 in the device vector 
table. 

~ Figure 70. Communications between a task and the operating system using the Supervisor Call (SVC) convention (2 of 3) 
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Communications between a task and the operating system are through a special instruction-SVC-which gener­
ates an interrupt. 

The entire linkage-from the generation of the SVC interrupt to the branching to the first instruction of the 
interrupt response routine-is done by hardware alone and takes approximately 14.3:microseconds-this in­
cludes the time required for the storage of the registers in the level status block. 

Figure 70. Communications between a task and the operating system using .the S1,1pervisor Call (SVC) convention (3 of 3) 



Figure 71, upon completion of the input/output operation, 
the user can suspend execution and initiate a special task 
which can then continue the su~pended task. Alternatively, 
the user need not supply such a special task. In this case, 
the system indicates completion of the input/output opera­
tion in the control block but takes no further action. If 
users must know whether or not the operation is com­
plete, it is their responsibility to test the indicator in 
the control block. 

Notice that the initiation of a special task is analogous 
to the generation of a user-created internal interrupt and 
gives the user complete control over the execution of tasks 
and input/output operations. 

Input/output functions or services available are shown in 
Figure 72. The connect function sets up a device for subse­
quent input/output operations. Prior to calling for connect, 
the device is attached to a special null interrupt handler 
routine. Disconnect is the inverse function and is carried 
out upon completion of input/output operations-which in 
turn frees the device for use by another task. The read 
and write services input and output data into buffers whose 
addresses are defined in the input/output control block. 
All of these I BM-supplied routines perform extensive error 
checking, including multiple retries when they are appropriate. 
Dependirig on the source of the error, the system maintains 
an error log on a disk or diskette which includes information 
like: 

• Error code 

• The program status word 

• The level status block at the time of the error 

• Interrupt level and status byte 

• Device address 

• Condition codes 

Error recovery is always possible through optional exits to 
user-supplied routines. 

The Control Program Support package is intended to per­
mit the user to tailor efficiently special-purpose, dedicated 
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Class 
interrupt 

Service routine 

Inhibit interrupts. Set device busy. 
is already busy, queue the request. 

If the device I t ~ ~ -: H- I I 

Enable interrupts. 

Perform service K using the parameters supplied 
in the input/output control block. 

I I 
I I 

I 
I 
I 

I 
'-

User task executing 

I 

_i 
Load the address of the input/ 
output control block into 
register zero. 

Service K 
Initiate function K using parameters supplied 
in the input/output control block. Input/out­
put functions are interrupt-controlled and will 
be carried out-once initiated-concurrently 
with other processor actions. 

: Code returned in register zero: 
- - - ...._ 0: successful 

1: error occurred. 
Return immediately to the requesting task 
with a code in register zero indicating whether 
the service function was initiated properly 1-21. 
or not. v 

Figure 71. Overlapping and non-overlapping of input/output control (1 of 2) 
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C9.----------
First-level device handler 

I 
L,.. 

---~~~~~~~--· 

. Upon completion of the in­
put/output operation, the 
user-specified task is initiated J-- ~I 
if it is so indicated in the I L .. 
input/output control block. 

Task checks register zero. If the request was successful, it 
may: 

1. Continue execution, overlapped with the input/output 
operation and test for completion at any time by 
examining the input/output block 

or, 

2_ Stop execution and wait for completion of the operation 
(non-overlapped) by suspending its own operation-this 
suspension is performed by another service. In this case, 
the input/output control block has the address of a user­
supplied task which is initiated upon completion of the 
operation; hence, the input/output block can continue 
the task as the application dictates. 

An input/output request involves specifying: 1) device and details in the input/output control block; and 
2) the specific function as a parameter of the SVC instruction. 

Input/output operations may be overlapped or not at the user's option_ Asynchronous notification of com­
pletion is provided by a separate, user-supplied task. 

8; Figure 11- Overlapping and non-overlapping of input/output control (2 of 2) 
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• Connect-initializes the device vector table (the address of the device descriptor block and the starting 

address of the interrupt response routine). Prior to connect, all interrupts are connected to a dummy 
response routine. 

The device descriptor block is linked to the input/output control block in which all parameters and 
device-specific information is stored. Connect returns a code to the user indicating whether or not the 
request was carried out. 

• Disconnect-breaks the connection between a device and an input/output control block. 

• Read-a service called to input data from a device or file. Parameters in the input/output control block 
are validated, and control is passed to the appropriate device routines to initiate the transfer into the 
caller's buffers. 

• Write-a service called to output data from a user's buffer to a device or file. Parameters in the input/ 
output control block are validated and control is passed to the appropriate device routines to initiate 
the transfer. 

• Error log-a service to connect a file for error logging purposes. Errors are extensively checked and 
recovery tried in all Control Program Support routines. Errors are logged to the file whenever: a null 
interrupt is received; a recoverable error occurs during an input/output operation; or a nonrecoverable 
error occurs. Utilities for displaying the error log are available. 

Figure 72. Input/output functions available in the Control Program Support package (1 of 2) 
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device) 
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control block-
data and param-
eters linking to 
user task 

Figure 72. Input/output functions available in the Control Program Support package (2 of 2) 



applications. This means that the user can conveniently link 
the special error recovery or special event-handling routines 
into the system without modifying the basic code of the 
package. An example of a common, critical small computer 
application need is the efficient handling of disk files. An 
elaborate files capability is available through the Realtime 
Programming System; but sometimes it is desirable for a user 
to lay out special-purpose file areas on disk. These areas 
should be accessible without passing through directories­
with their consequent overhead. 

In certain dedicated small computer applications, the 
security introduced by central file handling is less important 
than speed of access. Figure 73 shows how the Control Pro­
gram Support package does this accessing. The user allocates 
areas to disks-specifying starting and ending, sector address, 
input/output control blocks-one for each special-purpose 
file area. The same functions used for other input/output 
operations are then available for reading and writing in those 
file areas. Because access is by relative sector, the user can 
control any blocking, logical record-length problems, and 
similar considerations in a completely dedicated, application­
dependent manner. Most importantly, the system uses 
standard-access software so that none of the following 
functions are sacrificed: 

• Error detection 

• Error recovery 

• Error logging 

• Self-diagnosis 

• Other Series/1 integrity features 

The use of the Control Program Support package follows 
the general schematic shown in Figure 74. The user prepares 
a system's area module containing all the tables, device 
sector tables, definition of services, and other features 
depicted in Figure 74. The routines making up the control 
package are then present and linked through the tables in the 
system area module. Finally, the system prepares the user 
application tasks-including any special tasks which are 
initiated when events are detected by the control package 
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Disk or diskette -----

IOCB 

File A File A 

IOCB 

File B File B 

-; 
I Ch.;n:u-· 

Any number of files 
on any number of 
disks and diskettes 
are supported. 

Any number of user programs may 
access a given file. Input/output 
control blocks for each user are 
chained together. 

A file is allocated space on the disk by the user, not by the 
system. The file is defined by device address, starting 
sector, and ending sector number. 

Access to the file is through Read or Write input/output 
service calls. The starting sector (relative to the beginning 
of the file) is specified along with the number of bytes to 
be transferred and the address of the user's buffer area. 
Access by relative record is random. 

Input/output control blocks contain a relative sector field. 
Each access updates this field; a user can reference this 
field to use the file in a sequential mode. 

Figure 73. Access to files using Control Program Support 
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All communications between the user 
tasks and the Control Program Support 
modules are through service calls which 
use the data and parameters stored 
within the system area module. 

Main storage 

l 
User's application tasks 

l 
Control Program Support 
routines 

System's area module 

I 

I 
I 
I 
I 
I 
I 

Figure 74. Organization of main storage for a dedicated application utilizing the 
Control Program Support pac;kage (1 of 2) 
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System's area module 

Fixed area Addresses of interrupt routines 
interrupt vectors 

1-- -- ---+------- - --
Device vector Pointers to device description 
table blocks 

1------- -1- - ---------
System communi- Addresses of tables and 
cations' table save areas 

1----- --------------
Stack control 
block 

Service table 

Buffer area 

Dynamic space control for 
device blocks and save areas 

Standard and user defined 
service table of addresses 

Scratch space for input/output 
modules 

Control Program Support modules 

• Task management 

• Basic overlay support 

• Timer support 

• Input/output support for disk, diskette 

• Input/output support of printer and operator station 

• Initial program loading 

• Error logging and reporting 

User modules and services may easily be added to custom­
ize an operating system for a specific application. 

Figure 74. Organization of main storage for a dedicated application utilizing the 
Control Program Support package (2 of 2) 
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modules. The net result is a dedicated task in which the 
combination of Control Program Support modules and the 
user-supplied modules constitutes a tailored operating system. 

Operating System Support of Input/Output 

The Realtime Programming System makes available a 
higher level of software support for input/output operations. 
At the lowest level within the programming system is basic 
access which is essentially equivalent to that of the Control 
Program Support package input/output. This software level 
allows the user as complete a control over input/output 
devices as does the hardware. Furthermore, the system pro­
vides a set of macros, (pre-coded routines), to simplify the 
specification of device descriptor blocks, input/output 
control blocks, and other system tables needed to specify 
input/output at this basic level. These macros facilitate 
special, user-written software for OEM devices. 

The user can also deal with input/output operations at the 
logical file or data set levels of the Realtime Programming 
System input/output software support. A data set or file is a 
collection of records of fixed or variable length, possibly 
grouped into blocks to expedite physical, input/output 
operations. Figure 75 illustrates four data-set organiza-
tions supported under the Realtime Programming System. 
The consecutive organization is simply a set of logical 
records grouped into blocks so the system can access the 
records only in a sequential manner. Physical devices, like 
line printers, can be treated as a consecutive data set if the 
user considers each line to be a logical record. Outputting 
data to a line printer becomes logically equivalent to out­
putting the same information to a consecutive file. 

The random data set organization allows direct access to 
records by name or key using a technique which translates 
the key-for efficiency in locating the record-into an 
address on a direct access device. The index access method 
also provides keyed access to user data. The partitioned data 
set is simply a group of data sets with a directory. A data set 
within the partitioned set may be accessed by name through 
the directory and, once located, by one of the available 

270 



access methods (sequential or direct). Partitioned data sets 
are useful for libraries of routines, data sets, programs, and 
similar items accessed by name. Random data sets are very 
important in online small computer applications where: 
1) access to a record must be rapid, and 2) the user cannot 
control the sequence of accesses. 

When device input/output operations are treated at the 
data set level, the user can write software using logical rather 
than physical device names. Users can assign a physical 
device to a logical device name at execution time which 
provides the system with an economic way to adapt to 
changes in load, configuration, and device failures. Further­
more, the user can more easily debug applications by using 
data sets as sources and destinations of input/output opera­
tions (where the values can be controlled and checked for 
correctness). 

Access to logical data sets (including devices) is at two 
levels: Read/Write and Get/Put. The Read/Write level inputs 
or outputs a physical block of data. The block may contain 
logical records or may be a single record; in either case, it is 
the user's responsibility to handle the block once it is 
obtained. In contrast, the highest level of access is Get/Put 
where reference is to logical records. 

At this higher level, the following questions are handled. 
automatically by the input/output routines within the oper­
ating system and are transparent to the user: 

• All problems of breaking blocks into logical records 

• Saving and restoring partially filled blocks 

• Similar functional problems 

The system provides full queuing of requests for input/output 
at the logical level together with user specification of overlap 
with task execution. 

Generally, the higher the level of input/output support is: 

1. The farther the user task is from the physical hardware of 
the input/output system, and 

2. The source data management is done by the system rather 
than-explicitly-by the user task 
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Figure 75. Four data set organizations supported under the Realtime Programming System (1 of 5) 
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~ Figure 75. Four data set organizations supported under the Realtime Programming System (2 of 5) 
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Indexed data set organization 

Access by 
record key -

The key is trans­
lated into the 
address of the 
index segment. -

The indexed access method uses the record key to locate 
the primary index which is then searched to find the logical 
record number associated with a given record key. This 
record number is used to directly access the physical record. 
The secondary index is used to accommodate insertions and 
additions. Record keys within an index segment are kept 
in logical sequence. 
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Figure 75. Four data set organizations supported under the Realtime Programming System (3 of 5) 
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The Realtime Programming System provides a very general file or data set support with access either: 

• Direct 

• Sequential, or 

• By name 

Data sets may be defined in assembler language programs using a complete set of macros to simplify the 
programming. 

Access to data sets may be by block with Read/Write statements or to the logical record through Get/Put 
calls. 

Data sets may be accessed either from assembly language programs or higher level language programs written 
in PL/I, COBOL, or FORTRAN. 

Figure 75. Four data set organizations supported under the Realtime Programming System (5 of 51 



Each input/output level has its distinct place in the applica­
tions' structures and is necessary in an integrated hardware/ 
software system. It is important to note that access at these 
levels is most compatible with the format of higher-level 
programming languages like PL/I, COBOL, and FORTRAN, 
all of which support the Read/Write and Get/Put levels of 
data set accessing and input/output device management. 

In preparing an application task set, the user defines data 
sets, their characteristics, and the devices to be used. Access 
to these items is then specified according to the application 
need, and the access is programmed in the appropriate level 
language. As a result of these procedures, users gain a wide 
area of freedom in which to implement their applications, 
taking full advantage of the hardware of the input/output 
system and simultaneously utilizing several levels of standard 
software. 
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The Instruction Set 
and Its Use 

Although effective realization of small computer applica­
tions is most sensitive to the organization, structure, and 
management of the processor, main storage, interrupt system, 
and input/output channel, it is also affected in a less obvious 
way by the design of the instruction set of the processor. 
This influence occurs, in part, in a negative way because 
consideration of system and application software needs has 
not been properly considered during the hardware design of 
many small computer systems. 

The Series/1 instruction set was selected to efficiently 
support the integrated hardware/software system organiza­
tion designed to service small computer applications. 

Several areas of the overall system are especially critical 
and need the support of a strong instruction set for efficient 
implementation in the small computer application 
environment. 

High-level Languages. The instruction set must permit 
efficient translation of high-level languages to enable those 
applications-whose programming is most appropriately done 
in FORTRAN, PL/I, COBOL or similar languages-to pro­
duce tasks equally efficient in both storage utilization and 
execution time. Furthermore, programs written in such 
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languages should be able to take efficient advantage of 
modern, structured programming techniques. 

Rea/time Programming System. The instruction set must 
allow the user to realize an efficient operating system that 
both preserves and enforces overall system integrity and pro­
tects shared tasks and data areas in a user environment of 
multiple, cooperating tasks. The instruction set must 
support fast task switching, reentrant programs, error detec­
tion, and other critical areas which the designer has built into 
the system hardware. 

Critical Assembly Language Level Operations. Some applica­
tions are critical either in their throughput needs or in the 
detailed nature of their computations. Many applications 
need similar capabilities in small but critical sections of the 
task set. The instruction set must support these needs, 
including: 

• Individual bit manipulation 

• Logical operation 

• Masking 

• Special arithmetic operations like unsigned or multiple­
precision arithmetic 

Because these needs are difficult to meet in a small instruction 
set, processors with such sets are generally limited in the 
applications and environments they can support. However, 
the Series/1 is a microprogrammed processor which allows the 
implementation of a rather large and complete instruction set 
containing more than 160 instructions. 

Microprogramming is especially powerful when the 
system uses complex instructions. This is so because micro­
programming permits the user to include those instructions 
which are especially valuable in small computer applications 
without attendant increases in hardware costs. For example, 
manipulation of strings of characters is common in small 
computer applications like word processing, direct input of 
data, or CRT display. Large processors like the IBM 
System/370 provide instructions which manipulate these 
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strings efficiently (move the entire string, compare two 
strings, or scan for a specific character). IBM has included 
similar instructions in the Series/1 processor because they are 
important if application tasks are to be compact and 
efficient. However, tasks using these complex instructions 
often have a lower priority than other tasks, and their execu­
tion must not adversely affect the overall system response 
to external events. Using microprogramming, these instruc­
tions are made interruptible on the Series/1 so as not to 
delay the higher priority tasks. This is just one example of 
the integrated hardware/software design of the Series/1 
processor. 

The purpose of this chapter is to discuss the instruction 
set of the Series/1 and its use in system software and 
application software. The appropriate processor manuals 
describe individual instructions in detail; they are not fully 
defined in this book. The user must consult those manuals 
to determine details like: 

• The exact format of an instruction 

• The instruction's effect on registers and indicators 

• The instruction's execution time 

• The effects~on the instruction-of errors detected 

Users should be familiar with the overall structure of the 
instruction set so that they can understand and efficiently 
take advantage of system software and higher-level languages. 

Figure 76 shows five areas into which the instruction set 
can be classified. Data movement, arithmetic and logic 
operations, and status testing instructions form the bulk of 
most application tasks. These instructions are important 
for efficient translation of higher-level languages and for 
efficient realization of critical computational tasks. 

Instructions associated with structured programs and 
control over concurrency become important when: 

• Applications are structured into a set of cooperating tasks 

• The tasks are themselves a structured set of modules which 
are, perhaps, shared among tasks 
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Data movement 

Arithmetic and logic 
operations 

Testing of status of 
operations and 
computations 

Structured programming and 
concurrency control 

Control of processor and multiple 
cooperating tasks 

These areas must be vigorously supported in the instruction 
set to insure the economic realization of small computer 
applications. 

Figure 76. The five areas into which the instruction set can be classified 
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The instructions in this set of cooperating tasks support 
control over shared data and routines, simultaneous access, 
and other entities. 

Finally, the instruction set must exercise control over 
system resources and the set of cooperating tasks competing 
for use of these resources. The last set of instructions is the 
one which controls processor status, registers, storage allo­
cation, and other critical resources. It is this set which per­
mits control over system integrity, response to errors 
detected in a task, and control over concurrent realtime 
events. The operating system is the entity that most often 
uses these instructions. However, critical dedicated applica­
tions may also use them. Clearly, this set of instructions 
primarily affects the efficiency of input/output routines, 
task switching, interrupt response, and servicing of applica­
tion task requests. 

This chapter covers, briefly: 

• Each area of the instruction set 

• The overall format of instructions 

• The implementation of the various addressing modes 
previously introduced 

Instruction Formats 
An instruction is a command encoded in one or more 

words in storage. Depending upon the particular command, 
additional items of information must be supplied along with 
the command. These items include identification of registers 
to be used, data addresses, and/or immediate fields, and 
others. The problems involved in determining which specific 
instructions to include in a machine occur in two areas: 
1) selection of the commands to be included, and 2) packing 
of the information needed for each command into the limited 
space available in a word in storage. 

The format of an instruction is the detailed specification 
of which information is packed into which bit field of the 
instruction. System designers might select a particular 
instruction to enhance simplicity of understanding, reada­
bility of object code, or other esthetic considerations. 

282 



These considerations were not the objectives of the Series/1 
design. The Series/1 instruction set has a variable-length 
design because of: 

1. The variety of instruction commands desired 

2. The variation in number and length of additional informa­
tion items required to specify function, operands, and 
addresses 

This design results in one- two- and three-word instructions. 
Some commands require no operands at all. Examples 

are: instructions which halt the processor (Stop), enable 
interrupts, interchange operand keys, and similar operations. 
In these examples, one word is more than adequate to 
encode the commands. These and other instructions are 
termed parametric because, while they do not refer to data 
operands in storage or registers, they often include a field 
which particularizes the command or selects one specific 
command from a group of commands. 

Commands may include data-called immediate data­
within the command itself. If this data is short enough 
(a byte for example), it might also be stored within one 
instruction word. If the immediate data item is itself a 
word in length, the instruction must occupy a minimum 
of two words. 

Commands which reference operands in storage may do so 
in a variety of ways called addressing modes. If the data 
item itself or its address is in a register, the instruction need 
contain only the register number (a two- or three-bit field); 
this field may be contained within a one-word instruction. 
However, if the operand must be addressed using base relative 
addressing, the displacement from the base register may be 
too long to fit in the instruction word; in this case, the dis­
placement would be stored in a separate, second word of 
the instruction. 

Instructions which reference two operands in main storage 
may then require three-word instructions to contain all 
the addressing information. It is the responsibility of the 
programmer and the program-support software to attempt 
to use addressing modes and program organization which 
minimize instruction lengths. The Series/1 assembler, for 
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example, permits the programmer to reference data items 
by symbolic name. The assembler keeps track of data loca­
tions within a program and determines which registers have 
been set up for use as base registers. When a choice is 
available, the assemb~er determines whether to use direct 
addressing of the data item or base relative addressing, 
depending upon which instruction is shorter. Assembler 
support during program preparation time takes much of 
the decision-making burden away from the programmer. 

Figure 77 shows the general format of those Series/1 
instructions whose length is one word. All instructions, 
regardless of length, use the first five bits of the instruction 
as the operation code. In some cases, this code actually 
defines a group of operations. Each specific member of the 
group is identified in a field within the remaining eleven bits 
of the instruction. In other cases, the remaining eleven bits 
are sufficient to specify either the immediate data required 
by the instruction, the location of one or two operands, or a 
combination of both. All operations involving data in 
registers-or data whose addresses are in registers-can be 
encoded within the single-word instruction format shown 
in Figure 77. 

Additional words are appended to the instruction format 
only if operands in storage are referenced using addressing 
modes that require data too long to fit within the single­
word instruction. Figure 78 lists the addressing modes and 
their additional storage requirements. As noted in Chapter 
4, base relative addressing modes are powerful tools in the 
design of systems; this factor more than compensates for 
the additional storage space required for their use. 

Instructions Used for Data Movement 
Application tasks are very much involved with the crea­

tion and use of data bases. Consequently, a significant 
portion of an application program consists of instructions 
that move data items of various types and lengths from one 
place to another in storage, or between storage and registers. 
Figure 79 lists the Series/1 instructions available for this 
purpose. 
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5-bit field 11-bit fie Id ~ _________ ..... _______ _ 

• 
r 
I 
I 
I 
I 

J_ 

...._ Function modifier and 
operand specification: 

• The parameter or modifier 
field that completes the 
specification of the instruc­
tion operation, or supplies 
a value for a variable param­
eter of the instruction 

• Selects one or two operands 
to be operated upon by the 
instruction 

'- Operation code: specifies 
function or group of func­
tions carried out by the 
instruction 

Most instructions can be written in a single-word format. 

Operand specification includes register specification, 
immediate data, or data in storage referenced with one of 
the many addressing modes. 

Some addressing modes require additional information 
which leads to two- and, sometimes, three-word 
i nstructi ans. 

Figure 77. The basic one-word instruction format 
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(r) Address of the operand 
is in register r. 

Operand itself is in 
register r. 

(r) * Register r contains an 
No additional 
instruction 

address of a storage word needed 
-location in which the for these 
actual address of the addressing 
operand is stored. modes 

(r)+ Address of the oper-
and is in register r. 
Increment the contents 
of register r after using 
it. I 

(r,d) Add the displacement 
d to the contents of 
register r to get the 
address of the operand. 

(r,d)* Add the displacement 
d to the contents of One additional 
register r to get the instruction 
storage address where word needed 
the operand address is for these 
stored. addressing 

modes to con-
d2 (r,d 1 )* Add the displacement tain the full 

d 1 to the contents of address or 
register r to form an displacement 
indirect address; add 
the displacement d2 to 
the contents of that 
storage location to 
determine the operand 
address. 

Some addressing modes require that an additional word be 
added to the instruction to contain the data required to 
calculate the effective storage address. 

Figure 78. Addressing modes and their additional storage requirements 
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Basic Data Movement Instructions 

Most data items are a byte, word, or doubleword in length 
and are widely dispersed in application programs. These 
items may also reside either in registers or in storage requir­
ing that they often be moved to and from these areas. As 
a result, the system provides instructions for moving each 
data type; these instructions support movement from 
registers to storage, storage to registers, and storage to stor­
age for byte, word, or doubleword data items. Instructions 
with more specialized use, like Move Byte Immediate and 
Move Byte and Zero, are less versatile (the former moves 
the byte to a register only and the latter from storage to a 
register only}. This restriction occurs because of the 
internal constraints on available instruction formats and 
the external conventions of their use. Register to register 
data moves are, of course, limited to full words-the 
length of the registers. 

Floating-Point Data Movement Instructions 

It was indicated in Chapter 3 that the format of floating­
point numbers is identical to that in the IBM System/370 
computers and, as a consequence, that conversion from 
integer to floating-point formats was a simple procedure. 
The power of the microprocessor on the floating-point 
optional processor is such that a user can realize additional 
savings in this conversion process. The Floating Move and 
Floating Move Double instructions permit floating-point 
numbers to move between floating-point register pairs, 
and-in both directions-between floating-point registers 
and storage. Because the data must move through the 
microprocessor, the system provides additional instructions 
to convert from integer to floating point or floating point to 
integer during the move. These instructions, Floating Move 
and Convert, and Floating Move and Convert Double, further 
simplify the conversion between number representations. 
As long as all conversions and operations are performed with 
the floating-point instruction set, normalization problems do 
not occur ~fUsers must be aware, however, that the instruction 
processor assumes floating-point numbers in storage are 
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IV 
00 
00 

Data type 

Address 

Byte 

Wocd-{ 
Doubfeword ---{ 

Instructions Modes which can be achieved 
with one or more of these 
instructions 

Move Address (MV A) 

Move Byte (MVB) 

1--------- Storage address to register 

Move Byte Immediate (MVBI) 
Move Byte and Zero (MVBZ) 

Move Word (MVW) 
Move Word Immediate (MVWI) 
Move Word Short (MVWS) 
Interchange Registers (IR) 
Move Word and Zero (MVWZ) 

~.Register to storage 
Storage to register 
Storage to storage 
Immediate field to register 

}-

Register to register 
Register to storage 
Storage to register 
Storage to storage 
Immediate field to register 
Immediate field to storage 

Move Doubleword (MVO) ~ Register to storage 
Move Doubleword and Zero (MVDZ) . Storage to register 

Storage to storage 

Figure 79. Series/1 instructions and modes for data movement (1 of 2) 
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Data type 

Floating-point 
single and double 
precision ---{ 

Instructions 

Floating Move (FMV) 
Floating Move Double (FMVD) 
Floating Move and Convert (FMVC) 
Floating Move and Convert Double 

(FMVCD) 

Move Byte Field and Increment 
(MVFN) 

String Move Byte Field and Decrement 
(MVFD) 

Fill Byte Field and Decrement (FFD) 
Fill Byte Field and Increment (FFN) 

Modes which can be achieved 
with one or more of these 
instructions 

}-
Floating-point register to storage 
Storage to floating-point register 

L Register to storage 
.\ Storage to storage 

Data movement instructions operate on single and complex data types; they move them from various 
sources to various destinations. 

~ Figure 79. Series/1 instructions and modes for data movement (2 of 2) 



already normalized. If the numbers are not normalized, 
errors may occur during the computations. 

String-Data Movement Instructions 

String-data movement involves moving one string in stor­
age into another location or using a character stored in a 
register to initialize a storage string. In either case, movement 
is one byte at a time; the system stores the string's addresses 
in registers and modifies them each time a byte is moved. 
The two variations, increment and decrement, determine 
the end of the string from which the movement begins. At 
the initiation of the movement, the address of the first byte 
to be moved is in a register and changes to point to the next 
successive byte in the string. Register seven contains the 
number of bytes in the string and is decremented each 
time a byte moves. Consequently, the system may interrupt 
these instructions between any pair of successive byte-moves 
without destroying data. The instruction is simply restarted 
using the information currently in the registers. As men­
tioned earlier, very long string-data moves can occur without 
impacting the ability of higher-priority tasks to respond to 
interrupts. 

Special Data-Type Movement Instructions 

Because applications often reference separate data areas 
dynamically, addresses are as common a data type as are 
the more conventional numerical and character data types. 
The Move Address instruction permits the calculation of 
effective addresses and their loading into registers to perform: 

• Base relative addressing 

• Indirect addressing 

• Building tables of pointers to data areas and routines 

• Allocation of internal buffers 

• Similar applications 

The system includes other instructions because: 

1. They are frequently used in practical operations 

2. Their elimination would require replacement with awkward 
sequences of instructions 
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Examples of these instructions are: Interchange Registers, 
and Move Byte and Zero. These instructions are of special 
interest because they perform two operations concurrently; 
they can be used to control concurrent access to critical task 
sections, data areas, and other situations that arise in the 
implementation of applications by a set of cooperating, 
parallel-executing tasks. They are discussed further, from 
this point of view, in the section of this chapter entitled 
"Instructions Associated with Structured Programming and 
Control of Concurrency." 

Instructions Used for Arithmetic 
and Logical Operations 

Just as data types are moved between registers and storage, 
so are they also operated upon arithmetically and logically. 
Figure 80 shows the various data types and the arithmetic 
operations the system can perform on them. Arithmetic 
operations involve combining two operands (by addition, 
subtraction, multiplication, or division) to produce a result. 
The Series/1 instructions generally put the result in the place 
of the second operand. Hence a storage to register addition 
adds the contents of the storage location to the contents of 
the register and then puts the result in the register. The 
opposite is also true: a register to storage addition puts the 
result in the storage location without affecting the register 
contents. As Figure 80 indicates, to obtain the required 
operands and results, the Series/1 supports addition and 
subtraction of various data types for almost all combinations 
of registers and storage locations. 

Storage to storage arithmetic operations-especially when 
they involve doubleword operands-are interesting from the 
point of view of program efficiency. Each doubleword oper­
and stored in registers occupies two successive registers; only 
the instructLon in the lower-numbered register references 
the operand. Because only eight registers are available to 
the user, applications may involve contention for register 
use: for instance, registers may be simultaneously needed 
as base registers and for temporary storage. Performing the 
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tv 
\0 
tv 

Instruction 

Add Byte (AB) 
Subtract Byte (SB) 

Add Byte Immediate (ABI) 

Add Word (AW) 
Add Word Immediate (AWi) 
Add Word with Carry (AWCY) 
Add Carry Indicator (ACY) 
Subtract Word (SW) 
Subtract Word Immediate (SWI) 
Subtract Word with Carry (SWCY) 
Subtract Carry Indicator (SCY) 
Complement Register (CMR) 

Add Doubleword (AD) l 
Subtract Doubleword (SD) !-~ ---

Data types 

Byte ± byte -+byte -------{ 

Modes which can be 
achieved with one or 
more of the instructions 

Register to storage 
Storage to register 

{ 
Register to storage 

Word + (sign extended byte) -+ word Storage to register 
· Storage to storage 

( 
Register to register 

.· Register to storage 
Word ± word -+ word ------ Storage to regist~r 

Storage to storage 

Doubleword ± doubleword -+ ___J. 
doubleword ------i 

Register to storage 
Storage to register 

Figure 80. Arithmetic operations, data types, and modes (1 of 2) 
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Instruction 

Floating Add (FA) 
Floating Add Double (FAD) 
Floating Subtract (FS) 
Floating Subtract Double (FSD) 

Multiply Byte (MB) 
Divide Byte (DB) 

Multiply Word (MW) 
Divide Word (OW) 

Multiply Doubleword (MD) 
Divide Doubleword (DD) 

Floating Multiply (FM) 
Floating Divide (FD) 
Floating Multiply Double (FMD) 
Floating Divide Double (FOO) 

Data types Modes which can be 
achieved with one or 
more of the instructions 

L Floating± floating-+ floating --{ 
) (single or double precision) 

Storage to floating 
register 

Floating register to 
floating register 

}-

Word : byte -+ word Storage to register 

Word : word -+ word Storage to register 

Doubleword ~ word-+ doubleword -{ Storage to register 

Floating : floating-+ floating 

(single or double precision) ~ 
Storage to floating 

register 
Floating register to 
floating register 

~ Figure 80. Arithmetic operations, data types, and modes (2 of 2) 



arithmetic operations storage to storage does not require 
saving and restoring registers frequently throughout a pro­
gram. Storage to storage operations execute faster than 
the procedure of bringing the data into registers, perform­
ing the operation, and then restoring the result to storage. 

Numeric Data Operations 

Multiplication and division assume signed numbers only, 
as mentioned in Chapter 3; but the system has designed 
these functions to accommodate combinations of different 
length operands-a situation that frequently occurs in 
actual practice. However, multiplication of a 16-bit 
operand by an 8-bit or 16-bit operand yields either a 24-
or a 32-bit result; it is then necessary to store this result 
in a pair of registers and manipulate them to produce the 
desired, single word result. 

The Series/1 Multiply Word instruction multiplies a word 
by another word and expects the result to be representable 
by a word. If the product is too large, overflow exists and 
is so noted in the level status register. To retrieve the larger 
product, the user first converts the word to a doubleword 
by sign extension and then employs the Multiply Double­
word instruction. Similarly, the Multiply Byte instruction 
multiplies a register contents (one word) by the value of 
a byte in storage and produces a single word result which 
replaces the register contents. The user chooses specific 
multiply and divide instructions based on observation of 
the most often used, practical combinations. 

Arithmetic operations on floating-point numbers pose 
a different set of problems in the design of a system. 
Frequently, applications which use floating-point numbers 
involve exceptional situations where either an overflow 
or underflow condition invalidates the computation. 
Rather than require the testing of indicators in the level 
status register (as discussed earlier for the arithmetic opera­
tions on integers), the system generates an interrupt when 
the result of an operation overflows, underflows, or an 
attempt to divide by zero occurs. Through the internal 
interrupt mechanism of the Series/1, applications using 
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these operations do not have to test repeatedly for excep­
tional conditions-instead, the conditions are treated as 
events and the system interrupts only when they occur. 
The implementation of this feature is expedited by using an 
input/output slot to house the floating-point processor and 
its internal microprocessor. 

Floating-Point Data Operations 

The floating-point instructions shown in Figure 80 provide 
all four arithmetic operations for both single-precision (32 
bits) and double-precision (64 bit) data formats. Furthermore, 
the instructions permit storage to floating-point register or 
floating-point register to floating-point register versions in all 
cases (recall that four 64-bit floating-point registers are imple­
mented separately from the eight user registers on a per level 
basis) and are located in the optional floating-point hardware 
processor. All instructions refer to these registers and not the 
standard registers in the level status block. 

Logical operations on data items commonly occur in 
applications to: 

• Isolate bit fields 

• Manipulate flags and condition indicators 

• Perform other detailed computations where individual 
bits must be manipulated 

Standard operations are AND, OR, Exclusive OR, and 
Reset. Some processors perform these operations on an 
individual bit basis; the instruction addresses the word and 
a field within the instruction addresses the particular bit of 
interest. This procedure is especially desirable when the 
system tests the status of a particular bit-a very common 
operation. The procedure is less desirable for the previously 
discussed logical operations because it is a common practice 
to store multiple similar flags, bits, or bit fields within a 
word; to perform the operations on a whole word is, then, 
an effici~t operating procedure. 

Logical Data Operations 

The Series/1 processor logical instructions combine 
features of both procedures. The logical operations AND, 
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OR, Exclusive OR, and Reset are performed on multiple 
bits (in bytes, words, or doublewords). The testing 
instructions operate on a specific bit within a data type. 
This choice, again, is made after analyzing common usage 
procedures in application and system programs. Figure 81 
shows the logical instruction set (except for the testing-bit 
instructions which are discussed in this chapter under the 
heading "Instructions Associated with Testing Operations' 
and Computations' Status"). Notice that the OR and 
Exclusive OR instructions operate on bit fields of byte, 
word, and doubleword lengths. Furthermore, all instruc­
tions permit both register to storage and storage to register 
modes. 

The Reset bit shown in Figure 81 operates on bytes, 
words, and doublewords with the same choice of register to 
register, register to storage, and storage to register modes as 
the OR and Exclusive OR groups. These instructions reset 
those bits in the second operand which correspond to one­
bits in the first operand. Other bits in the second operand 
are left unchanged. This selective resetting of bits is useful 
in manipulation of flags and indicators. However, it should 
be noted that this operation is equivalent to an AND opera­
tion with the first operand negated before the operation. 
Hence, to get a complete set of AND operations to parallel 
the other logical operations, the user need only negate the 
first operand. This is a straightforward operation in typical 
AND applications like masking. The instruction Invert 
Register also accomplishes the negation if it cannot be done 
at program preparation ti me. 

Shifting Data Operations 

Shifting instructions perform equally powerful bit manipu­
lation. The system can shift the contents of registers and 

) 

pairs of registers to the left or right and fill the vacated posi-
tions in three different ways: 1) by circular shifts; 2) by 
logical shifts; and 3) by arithmetic shifts. Figure 82 illustrates 
the options. Circular shifts take bits shifted out of one side of 
the register and fnsert them irlthe other. Logical sllifts (right 
and left) replace vacated register bit positions with zero. 
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Arithmetic shifts to the right propagate the sign position 
into vacated register bits. Through combinations of single 
and doubleword length operations, these instructions 
effectively pack fields into words. 

One characteristic of these instructions' format is that the 
user can specify the number of shifted bits that are to be 
coded into the instruction or to be placed in a register. This 
capability-combined with the carry and overflow indicators 
in the case of left-logical shifts-provides information about 
the bits shifted out of the word. Specifically: the system 
loads the last bit shifted out of the left side of the register 
or register pair into the carry indicator. The overflow indi­
cator signals when the shift changes bit zero {the most sig­
nificant bit-the sign bit). These indicators are very useful 
in programming multiple-precision, arithmetic operations. 

A common procedure in small computer applications 
involves using words to contain flags, and testing to deter­
mine which flag has changed. Instead of individually 
examining each successive bit, it is more convenient for the 
system to set up a word which contains a one in the bit posi­
tion of interest and zeros elsewhere. The Series/1 provides a 
special instruction, Shift Left and Test, which shifts left 
until a non-zero bit shifts out of the register. The maximum 
length of the shift is preloaded into another register. When 
the one bit shifts out of the register being tested, shifting 
stops; the register containing the shift count then contains 
the number of bits remaining to be shifted. This translates 
immediately to the bit position of the non-zero bit. In this 
manner, the system can examine multiple bits with one 
instruction. 

In summary, the Series/1 offers a variety of instructions 
to manipulate a variety of data types. Together these 
instructions provide the user with the basis for coding 
critical tasks while retaining control over those exceptional 
conditions which might arise for special data values. The 
testing capability for these conditions is present in the level 
status register condition bits which reflect the result of 
arithmetic and logical operations. The appropriate processor 
manual describes, for each instruction, the specific effects 
of exceptional conditions. 
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IV 
l.O 
00 

AND Word Immediate (NWI) -----------1---+--"-
OR Byte (OB) 

OR Doubleword (OD) I I I : I I : I I : g= ~~~~ i~~~diate (OWi) • 

Exclusive OR Doubleword (XO) : Exclu•I,. OR Byte (XBI I I I ~ I I : 
~~~:~~:~: g= ~~~~ i;~~diate (XWI) 8 

Figure 81. Logical instruction set and modes of use (1 of 21 
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Reset Bits Byte (RBTB) 
Reset Bits Doubleword (RBTD) 
Reset Bits Word ( R BTW) 
Reset Bits Word Immediate (RBTWI) 

Invert Register (VR) 

~ Figure 81. Logical instruction set and modes of use (2 of 2) 



Shift right-arithmetic or logical j 

- --
Shift Right Arithmetic (SRA) 
Shift Right Arithmetic Double (SRAD) 
Shift Right Logical (SRL) 
Shift Right Logical Double (SRLD) 

Replace vacated bits by zeros when shifting right logically. 

_I ---:I.__. __ ___, 
I Register or register pair 

Replace vacated bits by original sign bit if shifting right 
arithmetically. 

Shifting left-circular 

-
Shift Left Circular (SLC) 
Shift Left Circular Double (SLCD) 

0 15 0 15 

L-{ Register K }•·11---11 Register K+1 I-+--' 

Register pair shifting left 

Figure 82. Options for shifting register contents (1 of 2) 
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Shifting left-logical 

~ 

Shift Left Logical (SLL) 
Shift Left Logical Double (SLLD) 

The carry indicator takes 
on the value of the last bit 
shifted out. 

Register or register pair ---:::::t- ! 1--
Carry 

Overflow 
~ 

Shifting left 

The overflow indicator is set 
if bit 0 (sign bit) changes as 
a result of the shift. 

Shifting instructions operate on registers. 

Zeros replace_. 
vacated bits. 

Shift count may be stored in the instruction or in a 
register. 

Single-word shifts permit the shifted result to be placed in 
a separate register without disturbing the contents of the 
register containing the data actually shifted. 

Figure 82. Options for shifting register contents (2 of 2) 

Instructions Associated with Testing 
Operations' and Computations' Status 

Decision making is a major characteristic of computer 
applications. This process involves testing: 
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• Variables 

• Results of computations 

• Results of processor operations; and then performing 
different instruction sequences depending upon the tests' 
results 

As shown in Figure 83, the process occurs in two steps. 
First, the system sets an indicator either by executing a 
special instruction which makes the desired test, or as a by­
product of some other operation. For example, every 
arithmetic operation leaves indicators concerning overflow, 
carry, negative result, zero result, and even result in the level 
status register. Every input/output operation also leaves a 
status code in the level status register. Secondly, the system 
tests the condition flags via Branch or Jump instructions to 
permit the transfer of control to the appropriate location 
shown by the setting of the indicators. Notice that indicators 
are duplicated in level status registers for each level of hard­
ware priority; consequently, the conditions will not be 
inadvertently changed should a higher priority interrupt occur 
before the indicators have been tested. 

Interruptible and Non-Interruptible Testing Instructions 

Specific instructions for testing indicators are also shown 
in Figure 83. The Compare instructions reference two 
bytes, words, doublewords, or byte fields. Comparison is 
equivalent to subtracting the two operands with the indi­
cators set to correspond to the result (zero result means 
the operands were equal). In addition to a comparison of 
these simple data types, a string of bytes can be compared 
to a register byte or another string of bytes. A string is 
specified by: 1) the address of the corresponding byte in 
each string (addresses are stored in two registers); and 2) the 
number of bytes in register seven (Figure 84). The Compare 
Byte Field instructions perform a byte by byte comparison; 
after each comparison, the instructions decrement the 
count in register seven and increment or decrement the 
addresses in the two address registers. The test proceeds 
byte by byte until the comparison asked for in the instruction 
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is found to be true for a specific byte (equal or not equal 
depending upon the instruction selected). At the conclusion 
of the test: 

• Register seven contains the number of bytes not compared 
(or zero) 

• The two registers point to the first uncompared byte-pair, 
or 

• If all the bytes are compared, the two registers point to 
just beyond the last byte 

Notice the system design inherent in this instruction: 
because each byte comparison updates registers, the system 
can interrupt the instructions between comparisons and 
restart them with no loss of data. Once again, this ability 
permits higher-priority levels to respond quickly even wnen 
the system is comparing lengthy byte strings. The compar­
ing procedure could be time consuming and cause delays if 
the instruction had to be executed without allowing 
interrupts. 

Bit and Field Testing Instructions 

In addition to testing or comparing bytes, words, double­
words, and strings, the system can test individual bits. The 
Test Bit instruction addresses the desired bit as a displace­
ment-limited to 63-from the beginning of a byte. With 
this instruction, any bit in an eight-byte data type can be 
individually addressed and tested. The other test bit instruc­
tions in the Series/1 processor permit combinations of test­
ing and setting, inverting, or resetting. These combinations 
are very useful in controlling concurrency. The section of 
this chapter entitled "Instructions Associated with Struc­
tured Programming and Control of Concurrency" discusses 
them. 

The Test Word Immediate instruction provides a masked 
testing of a combination of bits within a word. The instruc­
tion tests only those bits in the mask (the immediate word) 
in the addressed word. Indicators are set depending upon 
whether all the bits to be tested are zero, one, or a combina­
tion of zeros and ones. With this instruction, combinations 
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~ 
Instructions test for 
the desired condition 

r-----------, 
I Floating Compare I 
I Floating Compare Double I 
I Compare Byte I 
I Compare Byte Immediate I 
I Compare Word I 
I Compare Word Immediate I 
I Compare Doubleword I 
I Test Bit I 
I Test Word Immediate I 
L-----------...1 

Figure 83. Operation and computation testing instructions (1 of 3) 

Other operations which 
cause indicators in the 
level status register to 
be set 

r-------- -- -- --1 
I Arithmetic instructions set even, I 
I overflow, carry, zero, and nega- I 
I tive indicators. I 
I Input/output interrupts supply I 
I condition code. I 
I Input/output instructions set I 
I condition code. I 
I Shift Left-Logical instructions I 
I set carry, zero, negative, and I 
L_ __ o~rflo~i~~~:_ ____ J 



A 
Extended 

' 
mnemonic Instruction name 

BE Branch on Equal 
BOFF Branch if Off 
BZ Branch on Zero 
BP Branch on Positive Branch or Jump 
BMIX Branch if Mixed Branch or Jump on Condition 
BN Branch if Negative Branch or Jump on NOT Condition 
BON Branch if On Branch or Jump on Condition Code 
BEV Branch on Even \ 

Branch on Overflow BLT Branch on Arithmetically 
Branch on NOT Overflow Less Than 

BLE Branch on Arithmetically 
Less Than or Equal Extended mnemonics for convenience 

BLLE Branch on Logically Less in symbolic coding of assembly language 
Than or Equal programs 

BCY Branch on Carry 
BLLT Branch on Logically 

Less Than 

w 
5! Figure 83. Operation and, computation testing instructions (2 of 3) 
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Instructions which change the sequence of program execution are dependent upon the setting of indicators 
in the level status register. 

Control over the execution sequence: 
1. Depends upon the results of previous operations or actions 
2. Uses instructions which set conditions in the level status register or Test or Compare instructions. These 

instructions test specific items which are followed by condition-dependent Branch or Jump instructions. 

Branch: permits arbitrary addresses but requires a two-word instruction. 
Jump: is relative to the instruction address register. It is limited to a range of plus or minus 128 words. 

The instruction is one word long. 

Figure 83. Operation and computation testing instructions (3 of 3) 



of flags can be efficiently tested to determine if a combination 
of conditions is true. This is a very practical capability. For 
example, a user might want to make an action dependent 
upon three conditions: 1) a motor running, 2) a valve being 
closed, and 3) a pressure reading greater than some preset 
value. Allowing one bit in a status word to indicate the state 
of each of these three logical conditions permits testing for 
the simultaneous occurrence of the conditions with a single, 
masked test instruction. 

Conditional Transfer Instructions 

Program sequence control is through Branch or Jump 
instructions; the former permits transfer of control to arbi­
trary locations; the latter permits transfer of control to loca­
tions within approximately 256 bytes of the Jump instruc­
tion. The Jump instruction is actually relative to the current 
value of the instruction address register and is only a single 
word long. Almost all Branch instructions have an identical 
Jump instruction; if the range of the jump is short, Jump 
is the instruction preferred. 

The Branch On Condition instruction contains a three-bit 
field which is coded to contain one of the eight different 
conditions. The assembler simplifies coding of these branches 
or jumps by providing different instruction names for each 
specific condition (Figure 83). The instructions can test 
each specific condition. In addition to these conditions, 
Branch and Jump instructions permit a branching operation 
that depends upon the value of the condition code written 
into the instruction. Recall that condition codes are 
reported in the level status register after every input/output 
instruction, and after every input/output interrupt that 
signifies the result of the operation or reason for interrupt. 

The Series/1 provides one additional sequence control 
instruction, Jump On Count, for control of looping within 
programs. As shown in Figure 85, this instruction permits 
a loop to be iterated as many times as is indicated by an 
integer or count set up in a register. Each time through 
the loop, the Jump On Count instruction is executed. This 
instruction tests to see if the register is zero; if it is, the 
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w 
0 
00 

Compare Byte Field Equal and Decrement (CFED) 
Compare Byte Field Equal and Increment (CFEN) 

Scan Byte Field Equal and Decrement (SFED) 
Scan Byte Field Equal and Increment (SFEN) 
Scan Byte Field Not Equal and Decrement (SFNED) 
Scan Byte Field Not Equal and Increment (SFNEN) 

String in storage 

I 1 I 21 31 4 I 5 I 6 f ~ 1 ... 1 ... 1 N] 

Register I Register J 

Figure 84. Comparing a string of bytes (1 of 21 

} . 
}--

Compare two strings, byte by byte, 
for condition. 

Compare, for condition, a byte in 
a register against each byte in one 
string. 

0 
Register 7 

Second string in main storage 

Number of bytes left 
to be operated upon 



w 

Byte pointed to Byte pointed to Count in 
by register I by register J register 7 

1 1 N Interrupt occurs: registers are not 2 2 N-1 
V> 3 3 N-2 changed because each level has its own -c 

registers. Q) - - -- -- - -- -Q) 
u 
0 Instruction resumes when control .... 
0. - -- - - - - - returns to this level. c: 3 3 N-2 0 

·.;::; 4 4 f/ The instruction terminates when the ::I 
u 

count is zero or when a tested-for Q) 

x 
w condition is detected. In the latter case: 

N+1 N+l 0 • The registers point to the next byte 

• The count corresponds to the number 
of bytes not yet operated upon 

Strings, like simple data structures, can be tested and compared. If the strings are long, the instruction can 
be lengthy; however, the system can interrupt the instruction without destroying any data or pointers. 

~ Figure 84. Comparing a string of bytes (2 of 2) 



Jump On Count 

No 

Yes 

Yes 

No jump 

Subtract 1 from 
register contents 

No 

Add the word 
displacement 
to the IAR 

Jump 

The Jump On Count instruction is useful for controlling 
multiple executions of a common set of instructions. 

Figure 85. The Jump On Count instruction (1 of 2) 
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Execute a loop 
N times: 

~ 
( 750 

:D: :7::: I: ~: ':·:: : : ~ 
............... 
Continue 

Set N in register R 1 

! 
..-.-------~·~·············· 

.............. ~ 
"--------- Jump On Count 

1 

FORTRAN 
example 

contains N during the first pass through the instruc­
tions; N-1, the second pass through, and so on. 

is decremented once each pass; the loop terminates 
when R1 eventually reaches zero. 

Figure 85. The Jump On Count instruction (2 of 2) 

311 



instruction continues (exits from the loop). If it is not, the 
count is decremented and the register is tested again in the 
same way. 

Instructions Associated with Structured 
Programming and Control of Concurrency 

Good computational instruction sets cannot stand alone. 
Small computer applications require an environment consist­
ing of a set of cooperating tasks; this environment implies 
structuring a large task into many separate tasks, and 
restructuring the tasks themselves into many small modules­
which may be shared. The sharing of modules or data 
inevitably means contention when two modules attempt to 
use the same resource or update the same data item at the 
same time. These conflicts arise because multiple hardware 
priorities mean that tasks can interrupt other tasks at arbi­
trary points in time. The instruction set must permit both 
efficient structuring of programs and modules and control 
over concurrency. The Series/1 instruction set provides 
many alternatives for the solution of these contention 
problems, as shown in Figure 86. 

Consider first, the problem of concurrency. As men­
tioned earlier, a user can often handle shared routines by 
making them reentrant. The strong set of Series/1 i nstruc­
tions that support stacks (Figure 86) was discussed in detail 
in Chapter 3. As demonstrated there, this set of instructions 
provides detailed solutions to the concurrency problem; this 
support need not be reiterated here. 

Serializing Resource Usage 

However, there are many situations in which the system 
cannot allow concurrency. In these cases, it is necessary to 
"serialize the use of the resource"; that is, to insure that 
only one task at a time uses the data, code, or other resource. 
Figure 87 shows the simplest way to handle this problem: 
disable interrupts upon entering a critical section or routine, 
and enable them again upon exiting. With interrupts d-is­
abled, no task switching can occur; as a result, no other task 
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Enable Interrupts 
Disable Interrupts 

Test and Reset Bits 
Test and Set Bit 
Test Bit and Invert 

Interchange 
Registers 

Move Byte and 
Zero I 

Move Word and \-----t 
Zero \ 

Move Double- ' 
word and Zero 

Enable all interrupts or disable all 
interrupts by setting or resetting 
the summary mask. With the 
proper choice of parameters, these 
instructions can also enable and 
disable storage protection, the 
hardware address translator, and 
the equate operand space. 

Address a specific bit in storage. 
Test the bit (setting the zero or 
negative indicators according to 
whether the bit is zero or one). 
Then, unconditionally reset, set, 
or invert the addressed bit-all 
without interruption. 

Exchange the contents of two 
registers without interruption. 

Move a byte, word, or double­
word from storage to a register 
or register pair. Then zero the 
byte, word, or doubleword in 
storage without interruption. 

All of these instructions cause some data change; they also 
permit the changing task to determine the previous value 
being operated upon without an interrupt occurring between 
the initiation of the test and the determination of status. 
Alternatively, the user can prohibit all such interrupts. 

Figure 86. Instructions which can be used to control concurrency 
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Task 

Critical section of 
task which must 
not be interrupted 

Disable interrupts 

~ --~"" 
/ 

I 
I 

Interrupt 
occurs 
here but 
is not 
recognized. 

Interrupting 
task:----... 

1----' 
' \ 

___ ... ~ .. -
I 
I 

\ 
Enable interrupts I 

Interrupts here I 
I 

If interrupt occurs during the ___ __. I 
I first task's critical section, it 

will not be recognized be­
cause the summary mask is 
set. As soon as the first task 
leaves its critical section, it 
resets the summary mask; 
the pending interrupt is 
recognized and the first task 
is interrupted. 

____ .J 

While interrupts are disabled, the system cannot initiate 
any higher or lower priority tasks. The procedure depicted 
here delays all tasks in order to inhibit those tasks causing 
the concurrency problem. 

Figure 87. Using disabling and enabling interrupts to control concurrency 
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can use the resource until the current task is through with it. 
The disadvantage in this approach is that all other higher 
priority tasks are necessarily delayed during the time the 
interrupts are disabled. This solution, then, is practical only 
if the interrupt-disabling time is very short. 

An alternative solution is shown in Figure 88. Here, a 
flag signals that a routine is busy; the system tests the flag 
before entering the critical section or routine. However, 
the status of the flag might change between the time it is 
tested and found not busy, and the time it is set to busy. 
This change can happen if a higher priority task interrupts 
between the operations at precisely the right moment. 
To prevent this from happening and to prevent the higher 
priority routine from reentering the critical section-where 
reentry causes an error-the system must test and set the 
busy flag in one uninterruptible operation. 

Instead of disabling and enabling interrupts during the 
testing and setting of the flag, the Series/1 makes several 
instructions available to perform the job. As shown in 
Figure 88, Test and Set performs the two operations with a 
single uninterruptible instruction. If the flag is in one of 
the registers, the user can load the busy value into a second 
register, and then interchange the two tasks through a 
single instruction. This procedure is equivalent to the reading 
and testing of the flag that the Test and Set instruction per­
forms. This procedure is not viable if the task attempting 
to reenter the routine is on a different priority level because 
each level has its own set of registers-the two tasks could 
not access on two different levels. The procedure is effective 
for tasks on the same level if the system switches control 
back and forth between them and the user does not want 
to relinquish some piece of code or data from one task to the 
other. The Move and Zero instructions may be used in a 
similar fashion because they also access the value of a data 
item and set its value to zero in one uninterruptible operation. 

Application Software Modularizing 

Structuring of tasks is the second important consideration 
affecting design of an instruction set. The Series/1 
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Bit = ~ 0 ... Not busy 
1 ... Busy , 

' 
Routine which must not be 
re-entered 

or 

Bit in storage indicating 
the busy or not-busy 
status of the resource 

Data items which must not 
be read while another task 
is changing them 

Task wishing to 
use the resource: 

Test the busy flag; 
if busy, branch to 
delay; otherwise 
set it to busy. 

Busy Not-
busy 

Delay 

or 

Any other resource which 
must be used by one task 
at a time 

Use the Test and Set instructions which both test and set 
in one uninterruptible instruction, Testing the busy flag 
status and setting it to busy must be done without inter­
ruption. Otherwise, the task might test it and find it not 
busy, but be interrupted before it can set it to busy. The 
interrupting task might then seize the resource-because 
the task finds the resource not busy. If control returns to 
the first task, it would then consider the resource to be 
available-when, actually, it is not. 

Notice in the Series/1 that each level has its own set of 
registers; consequently, tasks on different levels cannot use 
this technique. 

Figure 88. Serializing the use of a resource using the Test and Set type of 
instruction 
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addressing modes facilitate this common characteristic of 
small computer applications. Separating data from tasks and 
sharing data among many tasks involves complicated address­
ing problems that were explained in the first chapter of this 
book. 

Breaking up programs into modules requires that the 
system be able to: 

• Branch to a module 

• Execute the code in that module 

• Then return-this is the subroutine concept 

The Branch and Link, Branch and Link Short, and Jump and 
Link instructions provide this capability which is similar to 
the one used in the IBM System/370 computer systems 
(Figure 89). These instructions cause the system to store the 
address of the next instruction after the Branch and Link 
instruction in register seven. A branch then occurs to the 
address of the subroutine. Register seven then contains the 
return address. If the routine is reentrant, the routine may 
save the address on a stack. If the address is not needed 
during the execution of the routine, the routine may save 
it within itself or leave it in register seven. By common 
agreement, arguments passed to the subroutine may be 
passed through the registers. Alternatively, the argument 
may be placed in the calling program after the Branch and 
Link instruction. In the latter case, the system uses the 
address in register seven to access the parameters to be 
passed (Figure 90). 

In this latter case-in order to skip over the data being 
passed-the system must change the address in register 
seven before the return occurs. The subroutine facility, in 
one form or another, is available in all higher level 
languages. The Series/1 Realtime Programming System also 
permits the user to- pass a set of parameters from one task 
to another-a further enhancement of intertask 
communications. 

One further technique which aids in structuring multi-task 
applications is the Series/1 ability to cause interrupts under 
program control. That is, one way to initiate a separate 
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Branch and Link Subroutine linkage instructions: 
Jump and Link >----

save the next instruction address 
Branch and Link in a register and branch or jump 
Short to another routine. 

Exit the current level by resetting 
the in-process flag in the level 

Level Exit \_ status register. Control transfers 
f to the highest priority level with 

pending interrupt or to any other 
level which had previously been 
suspende£!~ 

Stores data in the level status 
block of another register. By 
setting its in-process flag, the 

Set Level Block }--- level status block can cause soft-
ware-generated interrupts for 
routines or modules on other 
levels. 

Push Byte 
Push Word 
Push Doubleword 1 Stack instructions facilitate 

re-entrant routines which, in 
>-- turn, simplify the structuring 

Pop Byte I of many applications. 
Pop Word 
Pop Doubleword 

Load Multiple t 
Multiple registers may be stored 

and Branch 
and retrieved. Store multiple 

Store Multiple f registers on a stack and restore 
them with single instructions. 

Structured programming requires efficient linkage between 
modules. Because serializing the use of all shared routines 
slows down the system response time excessively, reentrant 
modules are especially important in realtime environments. 

Figure 89. The subroutine concept 
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Structuring a task or program into modules is practical 
only if there is a mechanism for efficient linkage and 
transfer of the shared data. 

,..._ Return point 

Branch and Link Sub------. 

Parameter 1 } 
Parameter 2 

.p~~~~~~~r-~ --, 

L Sub 

Example of linkage: 

To access parameters and data 
stored in the calling task, use 
the return address in the 
register. 

Return to the saved return 
address after incrementing it 
to point beyond the data area. 

..-1 Sub 

Push parameters onto the 
stack using stack instruc­
tions. 

Branch and Link to Sub• 

r+"" Retrieve data from a sub-

Retrieve parameters from 
the stack. Push parameters 
to be returned onto the 
stack before returning. 

routine by accessing the r-1._ _________ ___. 
stack. 

Communication between a calling program and a subroutine 
may be done by: 

• Using parameter passing techniques 

• Using common areas of main storage 

• Passing addresses of data buffers or stacks 

Figure 90. Structuring a task or program into modules 
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module of a structured design is to attach it to an interrupt 
and then, by executing an instruction, cause the interrupt 
to occur in a second module. 

The Set Level Block instruction is a privileged instruction 
which loads, for a specified level_, a level status block from 
an arbitrary location in storage (Figures 89 and 91 ). This 
instruction is advantageous for the following reason. The level 
status register within the level status block contains an in­
process flag which the program can pre-set to activate that 
level as soon as: 1) its level statu~ block is loaded; and 2) no 
higher priority level is pending. By setting the in-process flag 
to "on" for a higher level, control immediately transfers to that 
level and the current level is set to pending. When the in­
process flag is set to "on" for a lower level, it becomes active 
only when the current level exits by a Level Exit instruction 
which resets the current level 's in-process flag. Thus, inter­
rupts on higher br lower priority levels can be initiated 
under (privileged) instruction control. 

The combination of task sets, partitions for storage man­
agement, subroutines which may be reentrant, and control 
over concurrency via the instructions listed in Figure 86 per-

- -- -

mits response implementations to typical, small computer 
application needs. 

Instructions Associated with 
Management of the Processor 

To control the overall processor, the Series/1 provides a 
set of privileged instructions that read and write those 
registers and variables not available to application tasks. The 
existence of privileged instructions is justified by the 
important need to maintain control over system integrity. 
That is, an application is usually realized as a set of cooper­
ating tasks-with the cooperation consisting of shared 
resources, routines, data areas, and operating system 
facilities. 

To preserve overall system integrity, the tasks must not­
in general-interfere with one another. Consequently, any 
instruction that requires the resources or operation of 
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another task must be privileged so that any attempt to 
execute that instruction-even inadvertently-will cause a 
loss of control by the executing task. When not in the 
supervisor state, an attempt to execute any privileged 
instruction by an application task causes an exception 
interrupt to occur, and returns control to an operating 
system which determines the cause and takes appropriate 
action. This arrangement facilitates input/output: 

• By using central routines 

• By using the control operating system resources-via the 
Supervisor Call instruction (SVC) which causes an excep­
tion interrupt 

In the same consistent manner, the system handles storage 
protect violations, referencing of mapped storage not 
available to the task, and similar errors. 

Figure 92 lists the Copy and Set instructions which permit 
both the setting up and the accessing of data in registers not 
available to users. These instructions involve: 

• Address key registers which control storage protection 
and storage mapping 

• Segmentation registers 

• The interrupt mask register 

• Various level status indicators 

• Similar indicators and registers which control execution 
of tasks and relations among tasks 

The user must first understand the interrupt mechanism, 
the storage protection mechanism, and the storage mapping 
scheme. When the user becomes familiar with these, and 
similar functions, implementation of the Copy and Set 
instructions by an operating system-to initialize storage, set 
up segmentation registers, and other uses-becomes 
conceptually self-evident. Users should reference the appro­
priate processor manual to determine addressing modes, 
exceptional conditions, and other specific information for 
each instruction. 

Most applications need these instructions only as an assur­
ance that they are present to enable the operating system to 
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1-,,) 
1-,,) 

Level status block: 
Each level has its own set 
of registers. 

The level status register 
contains the in-process 
flag which, when set, 
means the level is 
pending (waiting to 
execute). 

IAR 

AKR 

LSR 
Register 0 

Register 1 

Register 2 

Register 3 

Register 4 
Register 5 

Register 6 

Register 7 

*In-process flag (bit 9) 
0 =off 
1 =on 

Figure 91. The level status block and module scheduling (1 of 2) 
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VJ 

Interrupt is caused immediately 
on a higher priority level 

Level 0 (highest priority) 6------- LEX 
L I -+-Set up LSB I 

eve 1 I 1 

Level 2 ---- --- ---SELB 1 1-- SE LB 3 - - - - - LEX 

Level 3 

SELB 1: Set Level Status Block 
on level 1 with in­
process flag set. 

Set up LSB D L ___ _.. 

• Interrupt is pending on a lower 
priority level, and recognized 
when no higher priority level is 
active. 

SELB 3: Set Level Status Block 
on level 3 with in­
processor flag set. 

LEX: Level Exit instruction 
which resets current 
level in-process flag. 

Modules in an application can cause interrupts and, thereby, schedule modules on both higher and lower 
priority levels. The Set Level Status Block instruction is privileged. 

~ Figure 91. The level status block and module scheduling (2 of 2) 



w 
~ Registers which control the processor and which are not referenced by user tasks are read and written with 

privileged instructions to prevent inadvertent error on the part of a task. 

Registers which are critical include: 
• The storage protection register containing the address keys. These keys also select segmentation register 

sets when hardware address translation is used. 
• The segmentation register stacks which map application address spaces into physical storage 
• The level status block registers-like the level status register which is not normally set directly by users 

Set Address Key Register (SEAKR} 
Set Console Data Lights (SECON} 
Set Floating Level Block (SEF LB} 
Set Instruction Space Key (SEISK} 
Set Interrupt Mask Register (SEIMR} 
Set Level Status Block (SELB} 
Set Operand 1 Key (SEOOK} 
Set Operand 2 Key (SEOTK} 
Set Segmentation Register (SESR) 
Set Storage Key (SESK} 
Copy Address Key Register (CPAKR} 
Copy Console Data Buffer (CPCON} 

Copy Current Level (CPCL} 
Copy In-Process Flags (CPIPF} 
Copy Interrupt Mask Register (CPIM R} 
Copy Instruction Space Key (CPISK} 
Copy Floating Level Block (CPFLB} 
Copy Level Status Block (CPLB} 
Copy Operand 1 Key (CPOOK} 
Copy Operand 2 Key (CPOTK} 
Copy Processor Status and Reset (CPPSR} 
Copy Segmentation Register (CPSR) 
Copy Storage Key (CPSK} 

Interchange Operand Keys (IOPK) 

An application may require a system-like function. Normally, to preserve system integrity, it would be 
implemented through a Supervisor Call to the operating system. Critical, dedicated tasks-especially those 
with custom operating systems-may use the privileged instruction set discretely to optimize performance. 

Figure 92. The privileged instructions used to read and write Series/1 system-level registers, and control overall processor performance 



function efficiently. However, some OEM and dedicated 
applications which customize the operating system may 
choose to use these privileged instructions to implement 
some special critical operation, add input/output device 
drivers to the system, or perform other hardware operations. 
Users should be careful to employ the supervisor mode only 
when necessary and, then, in a manner which does not 
damage the carefully-designed system integrity. 
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Interfacing of 
User Devices 

One of the prime application requirements for small com­
puters is the ability to interface special devices to the 
computer system in an integrated fashion. Many applica­
tions require special devices not available from the computer 
system supplier; examples include: 

• Specialized data acquisition devices 

• Process control instruments 

• Special operator consoles 

• Devices selected to be compatible with existing systems 

• Devices which are selected because of cost, maintaina-
bility, availability, or other reasons 

Unless the user can physically attach these devices to the 
computer system and use them just like devices supported 
by the computer vendor, the system loses some of its versa­
tility. Users must have available all input/output capabilities 
including direct program control, cycle steal, and burst 
mode input/output modes. Furthermore, the built in self­
diagnosing and operating system software support must be so 
designed that users can add the appropriate driver and other 
routines to make their devices a part of the integrated 
system. 
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Importance of the Processor 
Input/Output Architecture 

The heart of the Series/1 system design is the processor 
input/output channel itself; the channel is more than just a 
method for transferring data into and out of the processor 
with appropriate handshaking for synchronization. It 
supports: 

• Direct program control operations 

• Cycle steal operations 

• Burst mode 

• Interrupt servicing 

• Initial program load operations 

The channel provides especially comprehensive error check­
ing including timeouts, sequence checking, and parity check­
ing. The system reports errors, exceptions, and status in two 
ways: 1) by recording condition codes in the processor 
during execution of input/output instructions, and 2) by 
recording condition codes and interrupt information byte 
status data in the processor during interrupt acceptance. To 
maintain the level of system integrity, the user-device inter­
faces take advantage of all of these features. The channel 
physically extends along the backplane of the processor 
or input/output expansion unit. Attachments plug directly 
into the backplane sockets. The system connects external 
input/output devices to the attachment cards via additional 
connectors on the tops of the cards. 

Importance of System Software Architecture 
System software is so organized that any device connected 

to the input/output channel can be accessed in the same 
fundamental way. Hence, the primary requirement for soft­
ware support of a given device is a basic driver which can 
interpret the precise data format transmitted to or from a 
user device. Both Realtime Programming System software 
and Control Program Support software facilitate the addi­
tion of such routines to the system. IBM has designed the 
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Series/1 input/output system (hardware and software) to 
permit user attachments to be added to the system in as 
straightforward a manner as possible. Furthermore, Series/1 
system design has stressed the ability of the user to interface 
devices without sacrificing the important self-checking and 
diagnostic features of the system. To make available the 
full capabilities of the system, user devices may be attached 
in a variety of ways (Figure 93): 

• Through specialized use of standard devices (timers are 
the most notable example) 

• Through interfaces compatible with accepted standards 
(Teletype and CRT terminals are the most common 
examples) 

• Through the use of programmable basic interfaces (digital 
input and output with synchronization signals under pro­
gram control) 

• Through hardware interfaces which provide a fully com­
patible subset of the input/output channel itself (customer 
direct program control adapter) 

• Through isolating and non-isolating adapters which permit 
direct connection to the input/output 

• Through the GPIB Adapter which provides an industry­
standard instrumentation link 

• Through the channel and all its control lines (channel re-
power and socket adapter) 

In this list, the complexity of interfacing increases from top 
to bottom. The last item (channel socket adapter) requires a 
detailed design of interface hardware similar to that provided 
for standard Series/1 devices; it is so intimately connected to 
the computer system that it is also responsible for preventing 
interference with the signals present in the rest of the system. 
Concurrently, every capability of the input/output system 
becomes available to the user device including cycle steal and 
burst mode data transfers. 

For slower devices-which can be handled by direct pro­
gram control input/output programming-the user can very 
easily implement the basic interface (integrated digital 
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input/output) in hardware, but to do so in software requires 
more program intervention. In contrast, connecting a device 
to the customer direct program control interface requires 
more external hardware but less internal software because the 
hardware interface uses only a subset of the input/output 
channel signal. In other words, the appropriate level of inter­
facing capability is present and that level depends upon the 
nature of the device or devices to be interfaced to the Series/1 
system. 

The purpose of this chapter is to discuss each interface 
approach individually, and to illustrate its capability and use. 
Detailed discussion of voltage levels, loading restrictions, and 
similar considerations important in the actual design of inter­
face hardware is available in the appropriate Series/1 processor 
User's Attachment Manual. 

Timers and Their Use 
Many applications involve the measurement of time inter­

vals, or the counting of events which occur in a given time 
interval. Manufacturing control applications involving piece 
count, monitoring of machine operations, and control of 
material handling systems are common examples. The IBM 
Series/1 timer feature is a single, printed-circuit card which 
plugs directly into the backpanel of the processor or input/ 
output expansion unit. Each card contains two timers and 
as many cards as desired may be used in a system. 

Connectors on the card-in conjunction with the required 
programming-allow the timers to be used with external 
control signals; the card can then be used as an interval 
timer (with internal or external clock), a pulse counter, or a 
pulse duration counter depending upon the configuration 
of the external signals. Each timer is separately addressable 
as an input/output device and-without stopping the timer­
can be started, read, or set to any value, independently, under 
program control. These characteristics result in a flexible 
interface device which solves many application problems with 
a minimum of special hardware and a maximum of software 
flexibility. 
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Each timer has a mode register which the system uses to 
select the internal time base or to specify an external base. 
Available internal time bases or increments between counts 
are: 1, 5, 25, and 50 microseconds. The system selects a 
time base which provides adequate precision in the desired 
time measurement. The registers are 16-bits wide so that a 
maximum count of 65,535 bytes is available. For the 
internal time bases listed above, this maximum count cor­
responds to time intervals of approximately 65 milliseconds, 
328 milliseconds, 1.6 seconds, and 3.3 seconds. Four pro­
gram selectable running modes are available for each timer: 

Periodic Interrupts-Internal Control. Program control sets 
a 16-bit autoload register to any value. This register auto­
matically reloads the timer when the timer underflows, and 
the system generates an interrupt. 

Aperiodic Interrupts-Internal Control. The system loads 
the timer with a value under program control, and an inter­
rupt occurs when the timer underflows. After the first 
interrupt, the autoload register does not reload the timer. 

Periodic or Aperiodic Interrupts-External Control. The 
timer generates periodic or aperiodic interrupts, but-when 
the timer is in the run state-an external gate signal controls 
timer start and stop. 

Figure 94 shows a block diagram of the timers and their 
connections to the input/output bus. Notice that the address 
portion of the bus is used to address the timers and to trans­
mit specific commands like setting mode and counts. Address 
jumpers permit assignment of an arbitrary address to the pair 
of timers. As depicted in the figure, the system uses the data 
bus to communicate with the mode registers. The interface 
to external signals of the user is through drivers and receivers 
which provide isolation and adequate current for compati­
bility with commonly used external electronic circuitry. 

The external process devices may supply two signals: a 
clock signal and a gate signal. A clock is a source of pulses 
or event signals which may be periodic or aperiodic depend­
ing upon the application. Periodic clock signals provide time 
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Figure 94. Block diagram of the timers showing their input/output channel connections and external signals for special uses (2 of 3) 
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bases which are different from internal bases. Applications 
involving counting of events where one pulse is generated 
for each event that occurs use aperiodic sources. The gate is 
a signal which indicates when to begin and when to stop 
counting. The two output control signals, run and external 
gate enable, indicate to the external device that the timer 
is active and that the external gate has been enabled for use. 
These signals permit synchronization between the internal 
application task using the timer and the external device 
supplying the signals. 

Interval Timing 

Figure 95 shows how the system uses the timer to provide 
interval timing to the processor by using an external, arbi­
trary time base. The external clock is attached. Under pro­
gram control, the system prepares the timer (sets priority 
level and enables device interrupts). Its mode is set to 
external-periodic. This means that the clock pulses come 
from the external source; every time the timer counts 
through zero, an interrupt is generated to indicate the end 
of an interval, and the counter is reset to its original value. 
Finally, the system transmits a command (direct program 
control input/output operation) to start the timer. Using 
the Realtime Programming System, the Event Driven Execu­
tive, or Control Program Support software, the user can 
attach a task to this interrupt which then becomes active 
each time the pre-set interval expires. The external clock 
can be as slow as desired and can be as fast as 20 micro­
seconds (the internal clock permits the maximum precision 
of one microsecond). The timing interval can be changed 
under program control. 

Pulse Rate Measurement 

Another common application is shown in Figure 96 where 
the user needs to measure a pulse rate. This is usually done 
by counting the number of pulses which actually occur in a 
given time interval. As illustrated in the figure, the system 
counts the pulse source in one of the two timers on a card. 
This timer is loaded with a value larger than the maximum 
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!:j Figure 95. Using the timer to provide interval timing to the processor (1 of 3) 
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Figure 95. Using the timer to provide interval timing to the processor (2 of 3) 

Prepare the timer (set interrupt level and 
enable device interrupt mask). 

Set Timer Mode (choose an external time base 
as the clock source and indicate that the 
external gate is not used. 

Set Timer Period (load the timer's autoload 
internal register with one less than the number 
of external, time-base pulses desired in the 
interval). 
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External pulses cause the timer to count down from its initial value N. On 
the (N+1 )st pulse, the timer counts through zero and causes an interrupt 
signaling that the interval is complete. The internal register is automatically 
reloaded with N and counting continues. 

----------­End pulses 
Time 

Four direct program control commands are used to set up the timer as an interval timer with an external, 
customer-supplied time base. Each command is encoded in the immediate device control block together 
with the parameters associated with that command. 

~ Figure 95. Using the timer to provide interval timing to the processor (3 of 3) 



Problem: Measure a pulse rate in an external sequence of 
pulses which may be irregular in separation. 

Solution: Measure the pulse rate as the number of pulses 
per unit time. Use a timer as an interval timer to set the 
basic time period, and a second timer to count the pulses 
occurring in that period. 

Customer clock 
input line 

External pulse source 

Internal clock 

Timer 
number 1 --1 

Timer 
number 2 

I 
I 

8 
Figure 96. Pulse rate measurement using a pair of timers (1 of 21 

number of counts expected in the measurement time inter­
val; as each pulse is received, the timer counts down but does 
not pass through zero or interrupt. When read, this timer 
contains the original value less the number of counts received 
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Figure 96. Pulse rate measurement using a pair of timers (2 of 2) 
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during the interval. Hence, subtracting the value read from 
the initialized value gives the counts received. 

As depicted, a second timer generates the interval used in 
the rate measurement. The second timer is set up to operate 
in the internal-periodic mode which: 1) generates an inter­
rupt each time the base measurement period passes, and 
2) initiates a task that reads the first timer and calculates the 
rate. By choosing the required internal clocks, two timers 
are adequate to meet the needs of most applications of this 
type. 

Pulse Duration Measurement 

Pulse duration measurement is equally straightforward 
using the external gating capability of the timer (Figure 97). 
The system sets up the timer to operate under external gate 
control. In this mode, an interrupt occurs when the external 
gate is turned off-at the end of the pulse being measured. 
Meanwhile, the system sets up the timer counter with a 
value larger than the number of counts expected during the 
pulse. The counter actually starts when the external gate 
signal is turned on; counts as long as the gate signal is 
present; and stops counting when the gate signal is turned 
off. Responding to the interrupt and reading the counter 
value give the number of pulses. Knowing the period or time 
between pulses then yields-with a precision corresponding 
to the time base used-the pulse duration. 

Error Detection 

It is important to be able to detect abnormal timer opera­
tion in applications like these; otherwise, a critical realtime 
application may not function properly under certain circum­
stances. Normally, the timer has decremented through zero 
(counted one more than the initial count set in the register), 
or the external gate signal has been turned off. However, 
an error condition can occur under several situations, 
including: 

Overrun. The interrupt has occurred while the previous inter­
rupt is still pending; this means that the processor has not 
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yet responded to the first interrupt. This situation causes 
loss of data or a mistake in time tracking. 

Counter Zeros with External Gate Enabled. The counter 
decrements through zero-generating an interrupt-while the 
external gate signal is enabled and not yet turned off. In the 
pulse duration application, for example, the count will not 
be the accurate pulse length. The initial value set in the 
counter was too small or an unexpectedly long pulse 
occurred. In either case, the situation must be specially 
handled. 

As part of the self-checking capability of the timer and 
the Series/1, the system reports each condition via a different 
condition code. Consequently, the task responding to the 
interrupt can: 

• Check the condition code 

• Determine whether an error or special case is present 

• If it is, handle it appropriately 

The Teletypewriter Interface 
The teletypewriter adapter is an interface designed to 

attach OEM devices which operate as start-stop devices in full­
duplex mode over a four-wire interface. Data can be trans­
ferred in current loop mode, TTL 1 standard signal mode, or 
EIA2 standard mode. Typical devices designed to interface 
by one or more of these procedures include: 

• Printer keyboards 

• Keyboard displays 

• Keyboard-display printers 

• Printers 

• Tape cassettes 

• Tape drives 

1 A common electronic technology 
2Electronics Industry Association 
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Problem: Measure the length of an external pulse (the 
time it is on). Alternatively, it may be necessary to 
measure-very precisely-the time between two external 
events. 

Solution: If the time interval is long enough, an interrupt 
can be generated at the beginning and at the end; software 
can be used to read the internal system clock. If the 
events are close together, however, this technique has 
limited precision. 

For greater precision, generate an external pulse which is: 

• Off before the start of the pulse or first event 

• Turned on at the start of the pulse or first event 

• Turned off again at the end of the pulse or second event 

Use this signal as an external gating signal to turn the timer 
counter on and off. 

External 
gate signal 

Off 

On 

----~Time 

Start counting here 
counting 
here 

Generate interrupt when the 
gate turns off. 

The pulse length is proportional 
to the initial count minus the 
current count. 

Figure 97. Pulse duration measurement using the external signal and a timer 
(1 of 2) 
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Initialization: 

• Prepare the timer interrupt level and enable interrupts 

• Set the mode to internal clock and enable the external 
gate 

• Set the initial value into a register which is larger than 
the maximum number of pulses expected during the 
duration of the pulse 

If the pulse duration is too long, the timer will count 
through zero and generate an interrupt. Condition code 
specifies that the gate was still enabled and that it must 
be checked to detect errors. 

Figure 97. Pulse duration measurement using the external signal and a timer 
(2 of 21 

• Card readers 

• Badge readers 

• Plotters 

Every application mentioned in Chapter 1 uses devices like 
these; they are available from a very large number of manu­
facturers who specialize in various applications. The tele­
typewriter interface solves many application problems and 
is, consequently, an important hardware entity. 

Asynchronous Data Transmission 

The term start-stop data transmission means that one 
character at a time is transmitted, bit serially, in either direc­
tion. Figure 98 shows the format of the transmission which 
includes a start bit located prior to the eight bits of the 
character, and either one or two stop bits following the 
character. Between characters, the system holds the line in 
one logical condition called "mark" and signals the start of 
a character by the transition to the other logical condition 
called "space", which is also the start bit. Spacing between 
characters is arbitrary, but bits within a character are 
synchronous. Bit rates of 50, 75, 100, 110, 150, 200, 300, 
600, 1200, 2400, 4800, and 9600 bits per second are 
standard and selectable-by jumper pins-on the interface 
card. 
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Figure 98. Start-stop character transmission 



The system performs no error checking on the byte being 
transmitted. The bits of the character are received one at a 
time and assembled into a character. The system generates 
an interrupt and transfers the character into the processor 
by one direct program control operation. Since no error 
checking is done, all 256 possible character combinations 
are legal characters and the support of this device is "code 
transparent;" that is, it is not dependent upon the meaning 
of the characters. This fact is important when using devices 
like those listed at the beginning of this section because many­
manufacturers assign special meanings to certain characters­
especially in CRT devices. The user task can read and trans­
mit arbitrary character sequences from and to these devices, 
but it is also responsible for interpreting the meaning of the 
characters. 

Each time a source receives or transmits a character, the 
system generates an interrupt. An overrun can occur on 
reception of characters but not on transmission. Overrun, 
in this case, means that a source receives a second character 
before it recognizes the previous interrupt. The processor 
has not yet read the previous character. The interface 
detects this condition and signals the processor with an 
exception interrupt (via the condition code presented in the 
level status register). When overrun occurs, the first charac­
ter is not lost but the second is. 

The Asynchronous Interface 

Figure 99 shows a block diagram of the interface and its 
connection to the input/output channel of the Series/1 
processor. Notice that normal reading and writing of 
characters occur only under direct program control, but 
that the system can perform initial program load on a cycle 
steal basis. The latter technique is useful for devices Ii ke 
tape cassettes which can store initial program loads in a safe 
manner and transmit them quickly during startup. The 
initial program load mode is standard in the teletypewriter 
interface. 
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Figure 99. The teletypewriter interface block diagram (1 of 4) 
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Figure 99. The teletypewriter interface block diagram (2 of 4) 
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Figure 99. The teletypewriter interface block diagram (3 of 4) 
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The interface does not interrupt any characters. Each 
character input causes an interrupt. The processor responds 
to the interrupt and reads in the character. 

,All character transfers are one character at a time under 
'direct program control. Initial program load is supported 
:by the interface on a cycle steal basis. 

Abbreviations: 
TTL transistor-transistor logic 
EIA Electronic Industries Association 
SSS solid state switch 
IPL initial program load 

Figure 99. The teletypewriter interface block diagram (4 of 4) 

As in all Series/1 interfaces, jumpers on the interface 
select the device addresses; position on the processor inter­
face or input/output expansion chassis is not relevant to the 
selection. The interface signals to external devices are 
shown under the heading "User's attachment" in Figure 99. 
These connections are made physically through a 16-pin 
connector on the interface board. Jumpers on the interface 
itself select the mode of interconnection along with the bit 
rate and device address. 

To be compatible with the variety of devices available, 
Series/1 supports several input and output modes as shown 
in the figure: 

• Inputs 
- Non-isolated contact sense 
- Isolated contact sense 
- TTL signal levels 
- EIA signal levels 

• Outputs 
- Current driver 
- Solid-state switch with TTL signal levels 
- EIA standard signal levels 

In addition, the interface permits the system to select the 
mark condition at either polarity in the case of voltage level 
inputs, and at either open circuit or short circuit in the case 
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of a non-isolated contact sense. Similarly, outputs which 
use the current mode may select either a presence of current 
condition or a lack of current condition to indicate the mark. 
Solid-state switch or TTL outputs permit either polarity or 
open or short circuit conditions to represent a mark. EIA 
output uses the standard convention of negative voltage 
implying a mark condition. The many different options 
available also eliminate annoying, small hardware "fixes" 
that some systems require to make a terminal or device 
compatible with so-called standard interfaces. 

If it is needed to solve special problems, the synchroniza­
tion signals (solid state switch and TTL write and read con­
trol signals) allow program control of external devices. 

Software Support 

The reader should note again that the code transparency 
of this interface means that-in order to give full software 
support to these devices-user-written tasks must be supplied 
and integrated with either the Control Program Support 
routines, the Event Driven Executive, or the Realtime Pro­
gramming System. Notice further that no error or diagnostic 
information is present on the external interface signal lines. 
The interface itself, of course, is I BM-supplied and contains 
the usual self-diagnostic features mentioned previously. 
Diagnosis of the device itself-once the interface has 
checked itself-is the responsibility of the device and the 
user-written software. For devices which have been designed 
to accept diagnostic commands, the code transparency per­
mits the user to achieve the same high level of device check­
ing for OEM devices as is performed in IBM-supplied devices. 

The Integrated Digital 
Input/Output Interface 

The timer and teletypewriter interfaces discussed in the 
sections "Timers and Their Use" and "The Teletypewriter 
Interface" can handle most of the data transfer, synchroniza­

. tion, and error detection for the devices they support because 
they are designed for very specific device classes. At the 
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circuit level, the system automatically processes sequences 
of events-like data presentation on signal lines and hand­
shake signals-because the system knows the event sequence 
for the class of devices supported. As interfaces become 
more general, event sequences become more varied and un­
certain; and users must handle more and more of the 
procedures by themselves. Basically, all interfaces involve: 

• Transmission and reception of data on signal lines 

• Timing of handshake signals until data has settled, or until 
a signal has been received 

• Similar operations which entail 
- Inputting and outputting of binary or digital data 
- Setting and resetting of control lines 
- Generating interrupts to signal event occurrences 

The integrated, digital input/output interface provides 
the basic interfacing capabilities: groups of digital input 
and output lines, together with control lines which the 
system sets or resets under program control. With this inter­
face, the system can attach any device if the sequencing of 
actions is performed in software using direct program control 
input/output instructions. This interface is similar to those 
previously described except that the user must program the 
detailed operation to conform with the particular device 
attached. 

Structure of the Digital Input/Output Interface 

Figure 100 shows the integrated digital input/output inter­
face in block diagram form. The interface includes two 16-
point groups of non-isolated digital input coupled with 
process interrupt, and two 16 point groups of non-isolated 
digital output. The four groups each have a unique device 
address but are prepared as a group (that is, they are enabled 
or disabled as a group and have a common interrupt level). 
External synchronization signals (external sync and ready 
lines in Figure 100) are available for each group. A single 
card contains the interface which is pluggable into any 
input/output slot. Up to four such interfaces per card file 
may be used. 
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Figure 100. Integrated digital input and output interface (1 of 2) 
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Each of the four 16-bit groups has its own device address. 

The four groups operate on a single interrupt level, and 
have a single device-interrupt control bit. All four groups 
are prepared with a single command. 

Figure 100. Integrated digital input and output interface (2 of 2) 

Digital Output 

Consider first the digital output groups. Each 16-point 
group provides: 

• Non-isolated unipolar current switches or TTL voltage 
switches 

• The two control signals 

• An interrupt capability from the external sync output line 

The system stores data in the digital output register shown in 
Figure 100 using a direct program control Write command. 
Digital output operates in three modes: 1) non-interrupting, 
2) external sync, and 3) diagnostic. In the non-interrupting 
mode, any data present in the digital output register is 
presented to the output lines and consequently to the connec­
ted output device. This mode is useful to signal display 
registers or operate solenoids or electrically operated switches, 
and to signal those lines which do not require handshaking 
between transmission and reception. 

External Device Synchronization 

In the external sync mode, set by an Arm direct program 
control input/output command, the system sets up a hand­
shaking communication using the external sync and ready 
lines associated with each group (Figure 101 ). Under pro­
gram control, the system prepares the digital output group 
(interrupt level and interrupt enabling set), arms the external 
sync mode, and outputs data to the register. The ready line 
is held reset until the external sync line sets, signaling that 
a transfer may take place (this line is set by the external 
device). At this time-after the data written to the output 
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Only one digital output 
group is shown here. 

The device is prepared (the interrupt level set 
and device interrupt control enabled). 

Ready 

The interface is commanded to operate in the 
external sync mode by a direct program con­
trol input/output operation with the Arm 
External Sync Mode command. 

Digital output data (16 bits) is written 
to the address with an output command. 

Program control 

Prepare Arm Write DO I:'\. ----u 
External 
sync 

~ 
~--v Interrupt 

The user device uses the external sync line 
to signal that data has been accepted. It is 
reset to start the handshake. 

Figure 101. The handshake convention used on digital group output (part 1) 
(1 of 2) 
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When the output data has stabilized, the ready 
signal is reset, signaling the user device that data 
is present and may be accepted. 

Upon detecting the setting of the external sync 
line, the interface completes the handshake by 
setting the ready line. The user device must then 
reset the external sync line before another trans­
fer takes place. 

Program control 
~ 

Service Write DO 
Ready 

External 
sync 

Interrupt 

Through control of one line (the external sync line) the 
user device controls the rate at which data is transferred 
from the processor. 

The handshake convention used on digital group output 
involves one signal from the interface (the ready signal), 
and one signal from the user device (the external sync 
signal). 

Figure 101. The handshake convention used on digital group output (part 1) 
(2 of 2) 

register has settled-the ready line is set, signaling the external 
device that the data is ready to be read. When the external 
device has accepted the data, it resets the external sync line, 
signaling the interface that it has received the data. The 
interface then resets the ready line and the system can 
initiate another transfer. The system accomplishes synchroni­
zation with the task, writing the data by generating an inter­
rupt when the resetting of the external sync line is detected; 
this interrupt indicates that the data has been successfully 
transferred. 
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Digital Input 

The digital input groups are more complex in their opera­
tion primarily because they have the ability to latch or 
remember changes at their inputs, and to cause interrupts. 
Each of the two digital input groups has a unique device 
address. The digital input registers in each group track the 
levels of the external points attached to them. This tracking 
does not occur during a read operation or in external sync 
mode when the values are held constant within these param­
eters: after an interrupt is generated, and until the interrupt 
is accepted. The process interrupt registers-also associated 
with each input group-latch or remember any bit transi­
tion from zero to one; such a transition generates an 
interrupt. 

Non-Interrupting Mode 

The digital input groups operate in one of four modes: 
1) non-interrupting, 2) process interrupt, 3) external sync, 
and 4) diagnostic. In the non-interrupting mode, Read 
commands can reference either the digital input or process 
interrupt registers in the group, and simply read their cur­
rent contents (which cannot change during the read opera­
tion). Hence, reading the digital input gives the current 
state of the sixteen input lines; and the Read Process Inter­
rupt command gives the current state of those lines which 
have experienced a zero to one transition at any time since 
the system reset the register. 

Process Interrupt Mode 

The process interrupt mode is entered by a direct pro­
gram control input/output operation-Arm process interrupt. 
Any zero to one transition sets the corresponding bit in the 
digital input group process interrupt register and generates 
an interrupt. Accepting the interrupt, and performing a 
Read Process Interrupt Register input/output command, 
reads the register contents and then resets it. By performing 
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a Shift and Count instruction, the system can determine­
with a single instruction-the particular bit which changed. 
This mode is very useful for implementing multiple inter­
rupts from a device or devices. In such an application, read­
ing the digital input group could be used to test the status of 
the input lines. That is, if more than one line changed, the 
system would generate an interrupt and read the process 
interrupt register. This action, however, resets the whole 
register; whereas the digital input register tracks only the 
input lines that are still set at one, 

External Sync Mode 

External sync mode provides the same kind of handshake 
communication for digital input as it does for digital output 
(Figure 102). This mode is entered with a special input/out­
put command to the interface. When in this mode, the 
system activates the ready control line, indicating that the 
system is ready to receive input data. The external device 
detects the ready signal, puts data on the sixteen input lines, 
and sets the external sync line. This transition: 

• Causes the system to latch the data or hold it constant 

• Reactivates the ready line 

• Causes an interrupt to the processor 

The application task or driver responds to the interrupt, and 
reads the latched digital input group with a normal Read 
Direct Program Control command; this action, in turn, 
causes the system to reactivate the ready line and unlatch 
the input register so the latter is ready to receive more 
input data. Each end of the communications' line signals 
the other with these two control indicators. 

Control over a device, then, usually involves a series of 
program-controlled transfers in and out of the processor. 
The system monitors device control signals so it knows when: 

• Data is ready or data can be accepted 

• Data is transferred in the appropriate direction 

• Status checking is performed 
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Digital input to the processor from a user device is handshaked with two signals in a manner similar to 
digital output. Digital input is interrupt driven. 

Figure 102. The handshake convention used on digital group output (part 2) (1 of 2) 
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A Prepare command must set the interface interrupt level and the interrupt control flag. 

To enforce the handshake communication between the device and the processor, the system 
must enable the external sync mode. A direct program control input/output command per­
forms this function. 

Arming the external sync mode activates the ready line (resets it) to signal that the 
processor is ready to accept data (16 bits of digital input). 

The user device signals the interface that data is present to be read into the processor by 
resetting the external sync signal. This "latches" or freezes the input data and deactivates 
(sets) the ready line. The system generates an interrupt at this time. 

The processor responds to the interrupt and executes a Read Digital Input input/output 
command which reads the register and activates the ready line (resets it) again to signal 
that a second transfer may now follow. 

~ Figure 102. The handshake convention used on digital group output (part 21 (2 of 21 



Instead of the interface performing this function in parallel 
with the processor operation, each step of the operation may 
involve input/output instructions. Although its efficiency is 
lower, the flexibility of the component allows a user to inter­
face complex, slower devices with a minimum of both hard­
ware and software. Such a technique is often economical 
and always versatile. 

Diagnostic Mode 

The integrated digital input/output interface provides a 
full set of diagnostics. The system can set all groups to the 
diagnostic mode with an input/output command. In this 
mode, commands are available to read the registers, and. to 
set external sync. In addition, the system can simulate the 
interrupt on input, using diagnostic commands. The system 
can test the input/output, and interrupt functions of the 
Tnterface in the diagnostic mode~- Notice that this procedure 
permits isolation between the processor, the interface, and 
the external device so the user can quickly and efficiently 
isolate the source of trouble in the system. This capability 
is essential in practical applications. The integrated, digital 
input/output interface permits flexible connection of any 
input/output device with the processor provided the device 
speed of response is compatible with: 1) the processor 
response time to interrupt, and 2) the necessarily slow con­
trol exercised by programmed sequences of operations. 

The Direct Program Control OEM Interface 
The input/output channel of the I BM Series/1 processor 

provides a very general set of commands as discussed in 
Chapter 5. As OEM devices to be interfaced to the processor 
become more complex and require a more rapid response 
time, the previously discussed interfaces become less appro­
priate. What is needed is an interface which permits all the 
various input/output commands to be exercised through 
that interface. Except for that portion used for cycle steal 
transfers, the interface makes available the entire input/out­
put bus. The direct program control OEM interface provides 
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a sufficient subset of the input/output bus to enable a user 
to add hardware to this interface while taking maximum 
advantage of the input/output channel capability. In addi­
tion, the interface provides the previously-discussed self­
checking and diagnostic capability. 

OEM Interface Architecture 

Figure 103 is a block diagram of the OEM interface. As 
with any interface, data input, data output, and interrupt 
request lines are provided together with control lines. Unlike 
the previously discussed interface, the Series/1 does not 
provide buffer registers. The interface is designed to provide 
all direct program control functions for up to sixteen devices 
connected to the buses in Figure 103. The user must provide 
all the external hardware necessary to connect multiple 
devices to these lines, including: 

• Buffer registers 

• Logic to detect which device is addressed 

• Logic to control interrupt request and control lines 

The interface provides only the bus subset. Diagnostic capa­
bility is important in such an interface; without this capability, 
it would be exceedingly difficult and time consuming to 
determine on which side of a user-provided interface an error 
occurred. Self-checking operates within the interface itself. 
In addition-to provide a thorough check of the interface 
operation-diagnostic instructions permit data to be trans­
mitted out through the interface, wrapped around, and read 
back in again. This procedure is discussed further in Chapter 9. 

The OEM Interface Bus 

The direct program control OEM interface bus contains 
75 lines (Figure 104). The functions and need for most of 
these lines are self-evident. For example, 36 of the lines are 
grouped into 18 input lines and 18 output lines (all data trans­
fers are 16 bits in length with two parity bits). Since the inter­
face supports up to 16 devices, the system needs four more 
lines as device address lines. To support all direct program 
control functions, devices must be able to signal their desire 
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User interface functions include: 

• Detecting which of 16 devices is addressed 

• Buffering all data and addresses 

• Controlling handshaking using control signals to and from the direct program control interface 

• Generating interrupt signals and condition codes to be consistent with the Series/1 architecture 

The direct program control interface permits the connection of up to 16 user-supplied special devices to the 
Series/1 processor through a subset of the full input/output channel. All input/output transfers are restricted 
to the direct program control type (one sixteen bit data word transmitted per Operate 1/0 instruction exe­
cuted). The interface allows full use of the input/output system for user-supplied devices including self­
diagnostic features. 

Figure 103. Block diagram of the OEM interface (3 of 3) 



to interrupt. Consequently, 16 of the lines are devoted to 
interrupt request signals from each of the 16 devices (a device 
signals an interrupt and holds that request line until recog­
nized-hence, the 16 interrupt request signal lines cannot 
be coded into 4 lines as device addresses can be). 

Command Lines 

Full support of all input/output commands-including 
sub-functions specified by modifier bits in the command­
requires seven additional lines (as shown in Figure 104) to 
transmit the function and modifier bits contained in the 
immediate device control block command field. Notice that 
it is the responsibility of each device connected to this inter­
face to interpret those fields which require special logic. 
Clearly, as far as the user's design effort is concerned, this 
interface is more complex than any discussed previously; 
this complexity is necessary if the system is to make all 
input/output channel functions available to the attached 
devices. When the system accepts an interrupt, the device 
must supply a condition code which is reported in the level 
status register-this action requires another three bits on the 
bus. 

Control and Timing Lines 

Nine bits remain for control and timing purposes. Five of 
these nine are used to signal specific modes or commands: 

1. System reset 

2. Power-on reset 

3. Diagnostic mode 

4. Diagnostic mode modifier 

5. Processor halt 

Attached devices must respond to each of these special com­
mands in a standard way. For example, system reset 
demands that pending interrupts be reset, and registers and 
buffers be cleared. Refer to the appropriate processor's 
User's Attachment Manual to define the mandatory device 
responses to these special commands. 
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Data bus output: 18 lines (16 plus 2 parity) 
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Figure 104. The direct program control interface bus (1 of 2) 
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The 75-line direct program control bus lines provide all input/output bus control and timing functions 
except those directly associated with cycle steal operations. 

$ Figure 104. The direct program control interface bus (2 of 2) 



Interrupt and Timing 

The system uses the remaining four bus lines-1/0 active, 
interrupt service active, strobe, and select response-for 
timing and handshaking purposes. The 1/0 active line signals 
that a valid command is present; this means that device 
address, function, and modifier lines have been written, have 
settled, and may be read and executed. The interrupt 
service active line signals devices that the interrupt service 
sequence can begin. Devices previously signaling a request 
to interrupt can examine device address lines to see if they 
have been selected, and respond appropriately. Select 
response is a handshake signal from a selected (addressed) 
device. Strobe is a corresponding handshake or timing signal 
from the processor. 

Thus, the system uses most of the 75 lines on the bus to 
transfer data, addresses, condition codes, and similar informa­
tion; only a few control timing. For a device connected to 
the interface, this arrangement greatly simplifies the design 
of the external hardware. In fact-except for the necessity 
to provide service for multiple devices and for the full use of 
all commands-the interface is conceptually similar to the 
simple, integrated digital input/output interface discussed 
earlier. 

Typical Output Sequence 

The architectural simplicity of the interface is illustrated 
by considering typical input, output, and interrupt sequences. 
Figure 105 shows the output sequence: 

------ --

1. The system places the function, modifier, device address 
bits, and data on their appropriate lines. 

2. The 1/0 active tag is skewed (at least 200 nanoseconds), 
and activated on the interface 

3. Upon recognition of address compare and 1/0 active, the 
device raises the select response tag. Once raised, the 
system must hold this tag active at least until the fall of 
the I /0 active tag. The device sets condition code in 
which must remain active until strobe becomes active, or 
until 1/0 active becomes inactive (for the duration of the 
select response tag). 
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4. Strobe is activated and dropped 

5. The I /0 active tag is deactivated 

6. Upon recognition of the absence of the I /0 active tag, the 
device drops select response and condition code in 

7. The system deactivates the function, function modifier, 
device address, and data busses 

Typical Input Sequence 

The input sequence is similar (Figure 106): 

1. The system places function, modifier, and device address 
bits on their appropriate lines 

2. The 1/0 active tag is skewed (at least 200 nanoseconds), 
and activated on the interface 

3. Upon recognition of address compare and 1/0 active, the 
device raises the select response tag. Once raised, the 
system must hold this tag active at least until the fall of 
the 1/0 active tag. Data bus in and condition code in 
must be active until strobe becomes active, or until 1/0 
active becomes inactive (for the duration of the select 
response tag). 

4. Strobe is activated and dropped 

5. The I /0 active tag is deactivated 

6. Upon recognition of the absence of the 1/0 active tag, the 
device drops select response, condition code in, and data 
bus in 

Interrupt Response 

Each interrupting device has a dedicated line which the 
device may raise at any time. The system maintains the 
signal until e_!!her the interrupt is accepted or a reset com­
mand is received. All devices attached to the interface are 
prepared with the same command; they are enabled or 
disabled as a group, and they interrupt on the same hardware 
priority level. The processor recognizes which device inter­
rupts (priority among simultaneously interrupting devices is 
from lower- to higher-numbered addresses on the interface). 
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Function, modifier, device address, and data are 
placed on their appropriate lines by the interface and 
presented to the external device. 

1/0 active is raised to signal the external device that 
it may read and respond to the above information. 

The device accepts the output data and puts a condi-
tion code (3 bits) on those lines. The condition code 
is input to the level status register in the same manner 
as it is for IBM-supplied devices after an input or out-
put operation. 

, 
The interface accepts the condition code data and 
signals completion t.o the device by the strobe signal. 

The external device removes its signals and the 
processor removes its signals to complete the output 
operation. 

Figure 105. Data bus output sequence (1 of 2) 
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An output operation on the direct program control inter­
face follows the same conventions as those for I BM­
supplied devices-including handshaking of the data trans­
fer, and supplying of a condition code for processor testing. 

Figure 105. Data bus output sequence (2 of 2) 

The sequence then proceeds as follows (Figure 107): 

1. The system places the device address bits on their appro­
priate lines 

2. The interrupt service active tag is skewed {at least 200 
nanoseconds) and activated on the interface 

3. Upon recognition of address compare and interrupt service 
active, the device raises the select response tag. Once 
raised, the system must hold this tag active at least until 
the fall of the interrupt service active tag. Condition code 
in and data bus in must be active for the duration of the 
select response tag, or at least remain active until strobe 
becomes active. 
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The Operate 1/0 instruction contains function, modi-
fier, and device address bits which are placed on the 
appropriate bus lines. 

r 

1/0 active control line is raised to signal the external 
devices that they may decode and act upon the 
above information. 

r 
The external device puts its input data to the 
processor, and the three-bit condition code, on the 
input data bus. 

r 
When the input data is stable, the external device 
raises select response to signal the processor that it 
may read the input data bus and the condition code 
bus. 

The processor handshakes the transmission by out-
putting the strobe pulse. 

The external device removes all input signals which in 
turn notify the interface and processor to remove all 
output signals and complete the operation. 

Figure 106. Data bus input sequence (1 of 2) 
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An input operation on the direct program control inter­
face makes use of all the signals on the bus that are used 
for an IBM-supplied device. It is the responsibility of the 
user-supplied external device to detect and respond to all 
information like command and modifier fields, and to 
maintain the conventions of handshaking and condition 
code presentation. 

If all conventions are followed, an OEM device-as com­
pared to an IBM-supplied device-may be interfaced with­
out loss of overall system integrity or loss of system soft­
ware functions. 

Figure 106. Data bus input sequence (2 of 2) 

4. Strobe is activated and dropped. The 1/0 device must 
reset its interrupt request at the leading edge of the strobe. 

5. The interrupt service active tag is deactivated 

6. Upon recognition of the absence of the interrupt service 
active tag, the device drops select response, condition 
code in, and data bus in 

7. The device address is deactivated 
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The direct program control interface permits up to 
16 user-supplied devices to be attached. 

Each device requesting interrupt service raises its own 
interrupt line and holds it raised until recognized or 
reset. 

~ 

If more than one device requests interrupt service and 
outputs a particular address on the device address 
lines, the processor and the interface determine which 
of the 16 devices is to be recognized. The interface 
signals that an interrupt is being recognized by raising 
the interrupt service active control line. 

, 
Devices compare their addresses with the one on the 
address bus and the selected device, after putting its 
interrupt condition code on the condition code 3-line 
bus, raises the select response control line. 

The processor reads the interrupt condition code after 
detecting the select response signal. It handshakes the 
condition code transmission with the strobe pulse, after 
which both input and output signals are removed from 
the bus. 

Figure 107. Data bus interrupt sequence (1 of 2) 
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Individual devices attached to the direct program control 
interface may interrupt-although all 16 devices are on the 
same priority level and share a single device interrupt 
enable flag. Response to the interrupt signals a condition 
code into the level status register just as it does for IBM­
supplied devices. Software handling of the interrupt for 
user-supplied devices is then identical to that for IBM 
devices, and is fully compatible with the overall system 
design. The response to interrupts and transmission of the 
condition code is fully handshaked. 

Figure 107. Data bus interrupt sequence (2 of 2) 

Although designing an interface for one or more devices 
to this bus is not a simple operation, it is not different from 
any other logical design problem. Users should undertake 
such a design assignment only for applications which need 
the quicker response time and greater generality of this 
interface. Such a design is very economical for applications 
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which use many devices either on the same processor or on 
many processors. Obvious examples would be: 

• An interface to a distributed, process control data acquisi­
tion and direct digital control system 

• An interface to machine monitoring and control systems 
for manufacturing plant control 

• Clustered terminals of some special design 

OEM users can insure that all functions of the Series/1 can 
be used, that all functions of their devices can be used, and 
that overall system integrity cannot be compromised. 

Software support of devices attached in this way 
necessarily depends on the functions the devices perform. 
Device drivers and interrupt response routines are not 
conceptually different from those of any standard device; 
they may be integrated into IBM-supplied software. The 
user should consult Control Program Support and Realtime 
Programming System documentation for details of this 
software interfacing. 

Isolated and Directly Connected 
Channel Interfaces 

As long as the direct program control input/output opera­
tions are sufficient for control of the user's device; the direct 
program control OEM interface provides a completely 
generalized interface. Concurrently, it retains the self-diag­
nostic capability inherent in the Series/1 interfaces. If the 
application requires greater speed than the interface can pro­
vide, the user may have to perform cycle steal input/output; 
if so, the interface must be designed to connect as directly 
as possible with the input/output channel hardware. 

Channel Repower 

Because most interfaces are neither standard nor similar, 
the user must assume most of the responsibility for their 
design. Two aids are provided for this purpose. The channel 
repower feature is a printed circuit card consisting of IBM 
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and TTL technology designed to: 1) repower the processor 
input/output channel signal lines, and 2) provide isolation 
between input/output card files or user-interfaced devices 
and the channel. Logically, the repower feature activates 
the full 81-line input/output channel to allow users to do 
with it as they please. It is the user's responsibility to 
respond properly to commands and other system functions: 
for example, the input/output channel is busy once an opera­
tion is initiated-at least until time outs occur. The channel 
is asynchronous, and waits for handshakes. Hence, failure 
to provide the correct handshake signals would tie up the 
channel until monitoring timers take over. 

Socket Adapter 

The second aid, the socket adapter, is an even simpler 
interface than the repower feature. It is a card with one 
connector to plug into the input/output channel backplane 
connectors; this action directly joins the 81 input/output 
signal lines to the corresponding leads in a standard 
connector. In fact, this adapter serves only a single function: 
to enable standard, printed-circuit card connects to be 
utilized on the user-designed interface cards. No isolation 
or electronic capabilities are provided on this adapter. Again, 
it is the user's responsibility to insure that too heavy an elec­
trical load is not placed on the channel drivers or on any of 
the other operations performed which might compromise 
performance of the channel itself. 

User-designed interfaces that are attached directly to the 
input/output channel are normally justified only when a 
large number are required and their speed is absolutely 
critical to the application. Sophisticated designers will find 
that the channel is conventional in its electrical character­
istics and, consequently, can be interfaced in a straight­
forward manner. 

Self-Diagnostic Capability 

It must be emphasized that the direct channel interfaces 
do not include a microprocessor-driven internal interface 
with self-checking and self-diagnostic capability. Therefore, 
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it is the user's responsibility to insure that system integrity 
is not compromised. The self-diagnostic capability can be 
retained if IBM designs a cycle steal interface for the user's 
device. IBM will consider any user's special order (request 
for price quotation) for the design of such an interface. 

The Instrumentation Interface 

One important class of OEM devices often interfaced to 
computers includes instruments of all types used in: 

• Medical laboratories 

• Analytical laboratories 

• Process and manufacturing control systems 

• Research and development laboratories 

These applications are served by a wide variety of special 
purpose instrumentation. The data processing industry has 
long needed a general method of interfacing such instruments 
to computers for data acquisition and control purposes. The 
answer to this need was the adoption of a standard sixteen­
wire parallel bus called the "Digital Interface for Program­
mable Instrumentation" in the Institute of Electrical and 
Electronic Engineers (IEEE) Standard Number 488 (the bus 
is also an international standard). 

The bus devotes eight of its sixteen lines for data transfer 
(one byte at a time), and eight lines for control purposes 
(Figure 108). The standard protocol permits: 

• Polling of devices 

• Communications with one or several devices simultaneously 

• Error detection 

• Other communications' functions 

The design of the bus is especially attractive because of the 
simplicity of the data transfer mechanism and the consequent 
ease with which the bus can be included in most new 
instrumentation. 

As an example of the use of the control lines: the data­
valid, ready-for-data, and data-accepted lines perform the 
handshaking functions needed for each byte of information 
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Data bus 
0101 

D108 

Byte transfer 
DAV - Data valid 
N RFD - Not ready for data 
NDAC- Not data accepted 

Bus management 
I FC - Interface clear 
ATN - Attention 
REN - Remote enable 
SRO - Service request 
EDI - End or identity 

The parallel IEEE-standard instrumentation bus uses eight 
lines for data and command transfer and eight lines for 
control and timing purposes. 

Figure 108. The sixteen-line interface bus 

transmitted across data lines (Figure 109). The receiver 
indicates ability to receive data by raising the ready-for-data 
line. The bus master (or talker) puts data on the data lines 
and signals its presence by raising the data-valid control line. 
The receiver accepts the data and then signals the talker by 
lowering the ready-for-data line and raising the data­
accepted line. 

The talker then removes the data-valid signal and the data; 
the receiver removes the data-accepted signal. There may be 
multiple receivers; the handshake is accomplished by ORing 
the ready-for-data and data-accepted lines in such a way that 
the signal is not actually detected on the bus until all 
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receivers have signals. As a result, the transmission proceeds 
at the speed of the slowest device involved in the data 
transfer. 

The ORing of signals from multiple devices is accomplished 
by permitting: 

• Each device signaling not ready, to hold the ready-for-data 
line at ground potential 

• Each devke signaling ready, to remove the short to ground 
(Figure 110) 

Any one device signaling not ready leaves the bus at the 
ground level. Only when all devices signal ready is there no 
longer a short to ground; consequently, the bus level rises 
from ground level only when all devices have signaled ready. 

Other control lines are important in setting up the current 
bus master (or talker) and the current listeners. 

For example, the attention control line signals all devices 
on the bus to watch for their address. This recognition of its 
own address signals that the device has been selected. Dedica­
tion of control lines to specific functions simplifies the design 
and implementation of the interface for each device. This 
design simplicity has been the major reason why manufac­
turers have included an interface for this bus in much of the 
new instrumentation developed in the last few years. 

The IBM Series/1 GPIB Adapter is an interface which 
couples the Series/1 to this general purpose parallel instru­
mentation bus. The connection is through the cycle steal 
storage channel; the data transfer rate to or from main stor­
age can be as high as 65 K bytes per second. Data transfer 
is asynchronous. Direct cable lengths are limited to 20 
meters in length. 

Like all Series/1 interfaces, the GPIB Adapter is thoroughly 
integrated into the Series/1 architecture. Utilizing read data/ 
write data level commands, the adapter's microprocessor 
manages the IEEE interface protocols without CPU interven­
tion. Not only does it fully utilize the cycle steal input/out­
put system for data transfer, but the adapter also extends 
all of its self-diagnostic capability throughout the interface. 
That is, the interface itself contains a microprocessor which 
performs self-diagnosis of the adapter. 
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Data-accepted signal 
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Data-valid signal 

1. The talker puts data on data lines and signals data-valid 
after receiving the ready-for-data signal. 

2. The listener detects data-valid and resets the ready-for­
data signal while tasking the data. 

3. The. listener completes the handshake by signaling that 
data has been accepted with the data-accepted signal. 

4. The talker can remove the data-valid signal when it is 
perceived that the data has been accepted. 

5. The listener initiates another cycle, when ready, by 
asserting the ready-for-data signal. 

Each data transfer on the parallel bus is asynchronous and 
is handshaked; consequently, each step in the transfer is 
acknowledged by the talker and the listener involved in the 
operation. 

Figure 109. Data transfer coordination 
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Ready-for-data control line 

Open to assert ~ ( 
control Hn• - 1 

Listener 1 
Listener 2 

Control line remains shorted to ground until 
all listeners have asserted. 

Listener 3 

A handshake with multiple listeners AN Os together all 
replies (assertions) so that the talker sees assertion only 
when all of the listeners have asserted the control line. 

Figure 110. Data transfers with multiple listeners 

Upon software command, the interface can wrap back 
internally, thereby testing that inputs and outputs are being 
received and transmitted correctly to various points on the 
system. This process tests the system out to the bus interface 
itself. 

Finally, the sixteen-line cable itself may be wrapped back 
so that the complete system can be tested-except for the 
OEM instrumentation connected to the bus. If the system 
passes all of these tests, signals are being correctly transmit­
ted along the bus and are being correctly received from 
the bus. 

The GPIB Adapter, then, is a very attractive device for 
connecting instrumentation to the Series/1. The adapter 
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extends the use of the Series/1 to laboratory-type applica­
tions without either sacrificing the architectural integrity 
of the system or requiring excessive special purpose 
interfacing. 

To summarize the user device interface discussion: there 
is a wide range of such interfaces available, from standard­
device interfaces to completely do-it-yourself types, each with 
corresponding advantages and disadvantages. This diversity 
of interfaces permits the user to integrate the Series/1 into 
almost any type of system for almost any type of small 
computer application. 
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Distributed 
Processing Support 

The Many Forms of Distributed Processing 
A variety of applications is characterized under the title 

of distributed processing, including: 

• Remote job entry 

• Remote interactive data entry 

• Remote processing 

• Remote data base creation and access 

All of these applications require extensive hardware and soft­
ware communications' support but the structures of the 
systems can vary considerably. In general, three levels of 
distributed systems are considered for these applications as 
shown in Figures 111, 112, and 113. 

Centralized Host 

The first, simplest, and oldest level uses centralized 
processing and involves a central host, possibly a small front­
end processor, and communications' lines connected to remote 
terminals (Figure 111 ). The front-end processor removes the 
load from the host computer; the terminals then perform as 
if they were central, relative to the host. Remote job entry 
and interactive data entry are common commercial applica­
tions of this configuration. In data entry, for example, an 
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Centralized 
host processor Front-end processor 

The data base and all processing 
occurs at the centralized host. 

Q 
Terminals 1 

The simplest level of distributed processing is a centralized host (possibly with a small computer as a front­
end processor) and distributed terminals. 

~ Figure 111. Centralized processing 



operator might signal for a specific transaction to be 
performed. The system codes information into a message 
and transmits it to the host which then activates an applica­
tion task to handle that transaction. 

The interaction continues with the host transmitting a 
template-like form which the CRT displays and into which 
the operator enters and edits the data associated with the 
transaction. After the operator completes this process, the 
system transmits the data to the host which acknowledges 
receipt (perhaps after checking the data). The operator 
then continues with the next desired transaction. Such 
distributed systems have proved to be very economical and 
effective because the terminals can be conveniently located 
near the source or users of the data. 

Remote Processors 

Small computers have made the second level of distributed 
systems economical for and attractive to users. Figure 112 
shows a hierarchical, distributed processing structure. where 
small computers are used remotely to interface and control 
batch and interactive terminals as well as to do some of the 
processing. Without host processor interaction, the small 
computer may: 

• Interact in a data entry situation with the complete setting 
up of a template-form on the CRT terminal 

• Interact with the operator during data entry 

• Edit and validity check the data and, perhaps, maintain a 
local data base 

These capabilities both off-load the host qr front-end 
processor as well as increase the interaction speed at the 
remote location. The local processing may be extensive and 
may be the kind of processing that dramatically decreases 
the load on the communications' network and the host, as 
discussed in Chapter 1. 

Distributed Application Example 

An example of distributed processing that is widely imple­
mented today is the problem of generating a payroll for an 
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Others 

Local data bases may be distributed. Much processing of input data and local data base accessing is 
distributed. 

The second level of distributed processing is the hierarchical distributed system with remote multifunction, 
processors or concentrators. 

~ Figure 112. Remote processing 



organization with plant sites remote from the central account­
ing group, and with differing union contracts. Often these 
union contracts call for incentive pay scales which depend 
upon the day-to-day functions that a specific individual 
performs. In central host machines, payroll-package soft­
ware is effective in performing the complex functions 
involved in taking an individual's gross pay and, after con­
sidering many taxes and deductions, calculating a net pay. 
The calculation of gross pay may involve knowledge of 
detailed production information and may vary from plant to 
plant. It is convenient to use a small, remote computer: 

• To gather production information 

• To keep the information in a data base 

• To generate the gross pay of an individual 

• To transmit this data to the central host 
- For use by the payroll package, and 
..,.. For printing the paychecks 

The remote small computer facilitates creation and mainten­
ance of the local production data base, including correction 
of errors. This procedure enables the system to calculate 
gross pay while using the same data to control production. 

The advantages of the hierarchical distributed processing 
system illustrated in Figure 112 are many; consequently, this 
level is the most common configuration planned and installed 
today. Notice that this structure takes advantage of the varied 
capabilities of the small computer including its higher-level 
languages, communications' interfaces, and bulk storage, but 
is dependent for its success upon all the hardware and soft­
ware needs listed in Chapter 1. A high level of system availa­
bility and maintainability is absolutely critical. Hence, the 
success of the application is very much dependent upon the 
type of small computer chosen by the user. 

Distributed Networks 

The third level of distributed processing is a general dis­
tributed intelligence network shown in Figure 113. Here, 
small or large multiple processors may communicate with one 
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Communications' lines -

----Communications' ,....._ ...... __.___ interfaces 

Processor 

Processor 

Processor 

Each processor may act as a host-like processor, a concen­
trator, or a multifunction terminal. Data base and applica­
tion processing may be arbitrarily distributed. Each 
processor must have communications' software to handle 
message routing from processor to processor in the network. 
The third level of distributed processing is a distributed net­
work of processors communicating in an arbitrary way 
across a variety of links with distributed processing and 
distributed data base. 

Figure 113. A network of processors 
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another. This system distributes processing, the data base, and 
users in a rather arbitrary way. Third-structure systems show 
much promise for the future but are probably several years 
away from widespread use. Small computers will play an 
important part in realizing such networks provided their 
hardware and software architecture is sufficiently generalized. 
Distributed processing applications may use such a network 
for communications' purposes-in which case the actual struc­
ture and protocols of the network itself will be transparent 
to users. Networks of small computers may be used for 
applications like process control where the entire network-
or at least much of it-physically resides within one large 
plant, and where both the network communications' soft­
ware and the multifunction terminal type of application 
software are coresident in the small computers. 

To insure that their small computers will be compatible 
with future developments and applications in distributed 
processing, users must have access to all of the hardware and 
software requirements discussed in Chapter 1. 

First-Level Protocols 

There are several structures for distributed processing, as 
well as several levels of protocols commonly implemented in 
communications' applications; it is important to distinguish 
among them when evaluating communications' support. 
Figure 114 shows three levels of communications' protocols. 
The first level protocol is used to transmit messages back and 
forth between two directly C?nnected physical nodes. This 
level of protocol is responsible for insuring that messages are 
transmitted properly from Node 1 in the figure to Node 2, 
and that Node 2 has received these messages properly. This 
protocol usually involves: 

• Keeping a copy of a transmitted message until its correct 
receipt has been acknowledged by the second node 

• Extensive error detection procedures 

• Other records substantiating the transmission 

A variety of different protocols is used for this very 
important level and is summarized in the section of this 
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chapter entitled "Asynchronous Communications' Protocol 
and its Hardware and Software Support." Notice that many 
common applications need this level when two computers 
are communicating together, or a remote terminal and a 
computer are communicating between themselves. Integrat­
ing this level of protocol into hardware and software is most 
important. As discussed in the remainder of this chapter, 
the Series/1 provides extensive support at this level of 
protocol. 

Second-Level Protocols 

The second level of protocol in Figure 114 involves the 
exchange of messages between two nodes which are not 
directly connected. This level of protocol is responsible for 
setting up the linkage between the two communicating nodes 
and controlling the exchange of messages. It does this by 
using the first level protocol on each "leg" of the communi­
cations' path, as follows: typically, the system transmits a 
message from Node 1 to Node 2; the second level protocol 
determines the message content-involving data like sources 
and destination addresses. As the system passes this message 
from node to node along the communications' path, the first 
level protocol insures its correct transmission and reception. 
This procedure involves imbedding the original message in 
a new message which obeys the first level protocol. Hence, 
the original message is the data portion of the first level 
protocol message; the system transmits th is data portion 
between pairs of adjacent nodes. 

This hierarchical structuring of communications' protocols 
separates functions and permits a more orderly generation of 
communications' network systems. Notice that the second 
level of protocol is not needed in the more common distribu­
ted processing applications where the communicating 
terminals and computers are arranged in a "star" configura­
tion. Most of these applications communicate only from the 
central node (usually the host) to each individual remote 
terminal and computer; consequently, the system need not 
relay the messages across several nodes. The advantage of 
the hierarchical structuring of the communications' protocols 
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Level 1 
The first and lowest communications' protocol level is responsible for transmitting no-error messages 
between adjacent nodes. The system performs error detection on each received message and uses retrans-
mission for error correction. , 

Node 1 ...... Node 2 
(source) Node 3 ~ 

(destination) .... ..... 

Level 2 
The second communications' protocol level is responsible for transmitting no-error messages from a source 
node to a destination node. As the system passes this message from node to node, it is imbedded into the 
first level protocol and transmitted to the next adjacent node with no errors. 

Figure 114. The three communications' protocol levels (1 of 21 
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Level 3 
The third and highest communications' protocol level is responsible for the orderly management of a 
"conversation" or sequence of message exchanges between two tasks. It uses the second level protocol to 
send error-free messages in both directions between source nodes. The second level protocol, in turn, uses 
the first level protocol between adjacent nodes. 

Today, three communications' protocol levels are operative ranging from the simple first level used in most 
distributed processing applications to the three level system used in large computer networks. 

~ Figure 114. The three communications' protocol levels (2 of 2) 



is that if the functions change or grow in the future, the 
second level of protocol can be added to a system without 
changing the first level. This software advantage is just as 
important to a user as is a hardware architecture that can 
absorb future changes in technology. 

Third-Level Protocols 

The third level of communications' protocol shown in 
Figure 114 is implemented only in large systems. This level 
of protocol is responsible for the exchange of messages 
between individual application tasks in separate processors. 
It involves a procedure analogous to a telephone call: one 
task calls or connects to a remote task; the second task 
answers or agrees to exchange messages in an error free, 
interactive manner. This third level of communications' pro­
tocol uses the second level to perform the actual node-to­
node communication of a message which, in turn, uses the 
first level to insure that messages move between adjacent 
nodes correctly. The IBM System/370 SNA (system network 
architecture) is just such a protocol. Small computers are 
ideal front-end processors or stand-alone node processors 
for such complex communications' applications. It is 
important that the protocols be hierarchical so that as applica­
tions develop and standards are adopted, systems are not 
obsoleted. 

The heart of all distributed processing applications and 
the basis of all communications' protocols is the first level 
where two computers or a computer and a terminal com­
municate; consequently, it is very important that the 
communications' hardware be very flexible, general, and inte­
grated into the overall system architecture. Furthermore, 
the support of such hardware must be integrated into 
system software. If these requirements are satisfied, a user 
can develop applications economically and add the more 
advanced, higher levels of distributed processing configura­
tions and protocols if they become necessary in the future. 

The objective of this chapter is to summarize the com­
munications' hardware and software architecture of the Series/1 
in order to demonstrate that it is integrated into the overall 
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system design previously described, and that it can support 
distributed processing effectively. The organization of hard­
ware and software for support of communications-oriented 
applications may vary considerably depending upon the 
number of communications' lines or terminals involved. 
Therefore, it is very important to consider the overall hard­
ware/software architecture. This chapter discusses that 
architecture in detail. Next, the various interfaces appropri­
ate to applications involving a small number of terminals or 
lines-and their software support-are considered. Finally, 
the Programmable Communications Subsystem-a micro­
processor attachment which facilitates applications 
involving large numbers of terminals or communications' 
lines-is discussed. The chapter also reviews the integration 
of these hardware and software elements. 

Structure of Basic Communications' 
Support of the Series/1 

The architecture of the Series/1 is specifically designed so 
that either simple or complex devices may be connected to 
its input/output system. Most interfaces are microprocessor 
controlled to insure self-diagnosis and to provide all the 
features inherent in the input/output command structure. 
Complex devices can be processors themselves. This book 
illustrates that fact in the discussion of the floating-point 
feature which implements the full set of floating-point opera­
tions and conversions. That feature is implemented as a 
printed circuit card which plugs into the input/output bus. 
The system implements communications' features in a similar 
fashion to insure consistency with the overall system design, 
and to provide the complexity needed to support the variety 
of different communications' modes and protocols currently 
used in applications. 

The structure of communications' support is shown in 
Figure 115 where the Series/1 is the primary station and is 
connected to remote stations in three different ways. A 
remote station is either a terminal or another computer. 
Examples of the latter include another Series/1 processor for 
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A point-to-point connection of two communicating stations. The modem is necessary only if the distance 
is long or the telephone communication facilities are used. 

Secondary or remote stations may be connected in several ways, but only one pair of stations communicates 
at any one point in time. Using a communications' protocol, the local station controls which remote station 
sends or receives data. 

Figure 115. The structure of communications' support (1 of 3) 
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A point-to-point switched or dial-up connection of communicating stations. Only one secondary station is 
connected at any time. Both dial-up and responding to the dial-up with Series/1 communications' interfaces 
can be automatic. 

~ Figure 115. The structure of communications' support (2 of 3) 
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In multi-point connection of communicating stations, all secondary stations receive the same information 
across the line or bus. The communications' protocol must call for polling of stations (responding only 
when addressed) and similar functions so that only one tributary station communicates at a time as 
directed by the control station. 

Figure 115. The structure of communications' support (3 of 3) 



small computer to small computer communications, or an 
IBM System/370 operating under one of its teleprocessing 
access methods. A terminal consists of a control unit and 
one or more input/output devices like keyboards and 
printers. The connection between the Series/1 and the 
remote station is via communications' lines which may be 
directly connected to interfaces or driven through modems. 
The latter are necessary for long distances and across tele­
phone networks to provide adequate signal power and 
proper signal forms compatible with established systems. 

Remote Stations' Connections 

Remote stations may be connected in a point to point 
switched or nonswitched manner (Figure 115, parts 1 and 2). 
The latter is most commonly used in conjunction with the 
telephone network which permits connection to a remote 
station on a temporary basis; the user establishes this connec­
tion by literally dialing the number of the remote station. 
Hardware interfaces, of course, provide the necessary control 
signals to respond to dial-up connections (for example, an 
interrupt signal when a ring is detected). In either case, 
(Figure 115 part 1, or 115 part 2), the communication is 
between the Series/1 and a single remote station at any instant 
of time; other remote stations are not connected. Sometimes 
a "bus" or multipoint arrangement is necessary or desirable 
as shown in Figure 115, part 3. Here, several remote stations 
are simultaneously connected to the Series/1. In this case, 
the system must assign an address to each remote station; it is 
the responsibility of the primary station-the Series/I -to 
control which station communicates at any instant of time. 
Again, only one station communicates at any time; the other 
stations are connected but must not respond in any way 
until they are specifically addressed. 

Half- and Full-Duplex Communications 

Connections between local and remote stations may be 
half-duplex or full-duplex. In the half-duplex situation, 
communications can take place in only one direction at a 
time. In the case of full-duplex, communications can take 
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place simultaneously in both directions. If only a single com­
munications' path is physically provided, half-duplex opera­
tion is necessary. The disadvantages of half-duplex include: 

1. Changing of line direction to reverse communications' 
direction often takes a considerable amount of time rela­
tive to the length of transmission (as, for example, when 
the line must be turned around to transmit a single 
acknowledgement character) 

2. Characters transmitted from a remote CRT cannot be 
echoed back as received for display on the CRT; instead, 
they must be displayed as transmitted rather than as 
received 

If two communications' lines are available, they may be 
used in a half-duplex manner by transmitting on only one 
line at a time. This has the advantage that all turn around 
time is eliminated and simplifies the protocols. Full-duplex 
communications involve more complex protocols such as 
SDLC to control transmission of messages in two directions­
especially when the messages are different lengths, and the 
system intermixes outgoing messages with those messages 
which acknowledge receipt of other messages. 

Communications' Protocols 

The control station governs the communications between 
the pair of stations by polling the remote station: in effect, 
asking if it wishes to transmit, or commanding it to receive a 
message. The communications' protocol is the convention or 
agreement on the form which the interchange of information 
will assume so the stations can understand one another. At 
the first level, the primary concern is that a message can be 
transmitted, received, and acknowledged accurately. Depend­
ing upon the type of remote station, several different com­
munications' protocols have been developed, and each one is 
appropriate under different circumstances. Different hard­
ware interfaces are necessary to support each protocol 
because of: 

1. The complexity of these protocols 
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2. The need to make flexible interfaces which perform as 
much of the routine processing of the communications' 
data as possible 

Three protocols are used: asynchronous communications, 
binary synchronous communications, and synchronous data 
link control (SDLC} communications. All three protocols are 
supported with hardware interfaces on the Series/1. The 
following section describes briefly: 

1. The protocols themselves 

2. The hardware interfaces and their capabilities 

Since it is the responsibility of the communications' proto­
col at the first level to guarantee correct transmission of 
information, it is necessary that the system provide the 
receiving station with some means to check for errors, and 
then inform the sending station whether the message was 
received correctly or not. As a result, the following general 
functions must be provided by the communications' protocol: 

1. Synchronization information-a signal which permits the 
receiving station to determine the beginning of a message 
or character; this signal enables both sender and receiver 
to interpret the bit serial sequence the same way 

2. Message component sequencing-agreement on how 
addresses are to be transmitted; this sequencing enables 
multiple secondary stations to determine which one is 
addressed 

3. Error detection information-some means by which the 
receiver may test the received character stream to deter­
mine if noise or error has modified the transmitted 
message 

4. Control conventions-special characters or messages to 
acknowledge correct or incorrect receipt of a message, 
reset a device, or perform other functions 

Vertical and Longitudinal Redundancy Checks 

Error detection can be done by vertical redundancy check­
ing which simply provides a parity bit on each character. 
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When such a bit is available, the procedure permits detection 
of an error involving the change in any one bit in the charac­
ter, and some-but not all-errors involving changes to more 
than one bit. Hardware permits a choice of even or odd 
parity, under program control, to facilitate connections to 
the variety of terminal devices available. Vertical redundancy 
checking is not feasible if eight-bit characters are used, and 
the code uses all eight bits for information. Errors often 
occur in bursts; isolated errors of the type detected by parity 
checking are, consequently, less common. The system 
accomplishes longitudinal redundancy checking (also called 
horizontal redundancy checking) by forming a logical check 
sum of all the characters transmitted in the message. The 
check sum is transmitted with the message, and compared 
to the sum recalculated at the receiver. This procedure per­
mits detection of many more combinations of errors than 
simple parity or vertical redundancy checking. 

Cyclic Redundancy Checks 

Modern cyclic redundancy checks are used to maximize 
the number of different errors that the system can detect 
with a given number of message error check bytes. Cyclic 
redundancy checking is a version of horizontal checking in 
which the check character or characters are generated in 
the following manner: the system takes the remainder after 
dividing-by a base number-all the serialized bits in a block 
of data. Based on elegant information theory concepts, 
cyclic checks guarantee the detection of all burst errors up 
to a specified size, and a very large percentage of errors 
beyond that specified size. With two bytes of error detection 
information appended to each message, the probability of 
an undetected error becomes minute. lfeven this error 
rate is too large for a very critical application, the applica­
tion software can simply echo messages back to the source 
and check them there. The most important fact here is that 
the system performs error recovery at the protocol level with­
out involving the application tasks because, essentially, all 
errors are detected automatically with vertical or cyclic 
redundancy checking-that is, checks which are in the 
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protocol itself and are, consequently, performed by the 
interface hardware. Hence, response and throughput of the 
communications' system is maintained at a very high level. 

Data Transparency 

One other consideration is important in communications' 
protocols. Sometimes, it is necessary to transmit arbitrary 
data items which then comprise a stream of arbitrary 
characters. The difficulty here is that some characters are 
reserved for special or control purposes {end of text, for 
example} and-if detected in the data stream-might pre­
maturely terminate the transmission. When arbitrary data 
is transmitted, the user must adopt some convention to make 
the data "transparent" to control characters. Each communi­
cations' protocol adopts a different solution to this "trans­
parency" problem. 

Asynchronous Communications' Protocol 
and its Hardware and Software Support 

Asynchronous communications between two stations 
involves a sequence of characters which are not synchronized 
with one another. As described in Chapter 7, this form of 
communications is also termed start-stop transmission and 
involves the following conventions: 

1. The two logical levels of the communications' line are 
cal led "mark" and "space" 

2. Between characters, the line is held in the mark condition 

3. Each character consists of a start bit followed by eight 
information bits, followed by either one, one and a half, 
or two stop bits 

4. Bits within a character are synchronous, with the speed 
between the two communicating stations being agreed 
upon in advance 

5. The start bit is the mark-to-space transition which-when 
identified by the receiving station-initiates timing for 
sampling of the information bits 

6. Stop bits put the line in the mark condition 
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Line Turnaround Characters 

Since a message is a sequence of characters, it is necessary 
to transmit one character at a time with the above format. 
The communications' protocol is associated with the meaning 
of special characters and the response of the receiving station 
to them. Different codes are used with different terminals; 
consequently, no standard protocol is employed. All proto­
cols, however, involve transmission of a sequence of charac­
ters. Some protocols have special meaning for the terminal 
or computer and cause a line direction turnaround. Thus, a 
command enabling the terminal to transmit characters is a 
character sequence for a given terminal type. The system con­
cludes this sequence with a control character which causes 
the line direction to reverse, permitting the terminal to trans­
mit characters. Transmission of characters (data for example) 
from the terminal concludes with special characters that 
involve the receiving computer. If they are to be widely 
applicable, the variations from one code to another and from 
one terminal to another call for a very flexible, programmable 
asynchronous communications' interface. 

Asynchronous Interfaces 

Two such interfaces are provided in the Series/1 system. 
The first, the single-line asynchronous communications' con­
trol interface, provides for one half-duplex line operating 
at speeds up to 9,600 bits per second. The same interface 
may be used as a primary or secondary station. The inter­
face itself does not recognize station addresses. As a result, 
the system cannot use this interface as a secondary station 
on a multipoint line unless the system provides software 
within the computer or the device to do the address recogni­
tion. The second interface provided is the multiple-line asyn­
chronous communications' control interface which is similar 
to the single-line interface except that the user may connect 
a maximum of eight lines operating in half~duplex. The 
maximum bit rate for each connected device is 2,400 bits 
per second. 
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The interfaces operate in the cycle steal mode: 

• Accepting bit serial start-stop character sequences 

• Assembling them into a byte 

• Writing the byte directly into Series/1 main storage using 
the cycle steal capability of the input/output channel 

Cycle Steal Capability 

This latter capability is an important consideration when 
multiple lines are connected because each character received 
steals only one main storage cycle from the processor. The 
alternative procedure is to interrupt after each character is 
received and input the character into storage with a direct 
program control command. The difference between pro­
cedures-in processor overhead time-is much more than a 
factor of ten. For example, ten lines each operating at 9,600 
bits per second correspond to slightly less than 10,000 
characters per second (one character transfers in one 660 
-nanosecond cycle on the 4955 processor). On a cycle steal 
basis, this takes about 7 milliseconds of the processor time 
or less than one percent overhead. In contrast, an interrupt 
per character-responded to by a minimal program-would 
take around 25 microseconds per character or about 25 per­
cent of the processor time: a ratio of more than 30 to 1. 

In order to support cycle steal communications, the inter­
face must recognize control characters because they signal 
line turnaround necessity. The Series/1 asynchronous inter­
faces provide for two different character codes which are 
selectable under program control. The system may define 
and load line control characters into the interface under pro­
gram control. Thus, the special control characters may vary, 
depending upon which terminal is communicating, while 
the Series/1 still handles them automatically under program 
control. The user can select the bit rate for the terminal 
under program control. It is a simple operation to connect 
many different special control character codes to these 
interfaces at different bit rates while still providing 
standard software. 
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Software Control 

Like all 1/0 devices, input/output commands are used to 
prepare the interface (select interrupt level and enable inter­
rupts), start the operation, reset the interface, and perform 
other operations. The system transmits control characters 
and code designation using the device control block-the 
eight-word data block addressed in the immediate device 
control block of an input/output cycle steal command. The 
system transmits data in this block, on a cycle steal basis, to 
the channel and then loads it into registers. Each incoming 
character is compared to these control characters to 
determine whether or not an interrupt should be generated 
after the character is loaded into storage. In this way, the 
involvement of the processor is minimized. 

Binary Synchronous Communications' 
Protocols and Support 

The binary synchronous communications' protocol is 
the most common synchronous protocol in use today; the 
Series/1 fully supports both single and multiple line interfaces 
and higher-level languages under the Realtime Programming 
System. Communications involve messages which are com­
posed of a header, a body, and a trailer each of which is 
several characters in length. Figure 116 shows the basic 
message structure. The character sequence is transformed 
to a bit serial sequence and transmitted serially at speeds 
ranging from 600 bits per second to up to 56,000 bits per 
second. Because of the synchronous nature of the trans­
mission, throughput and efficiency are very high. Communi­
cations are restricted to the half-duplex mode. 

l\1essage Structure 

Typically, a message starts with one or more synchroniza­
tion characters (a predefined character(s) which permits the 
receiver to get into sync: that is, to align its received charac­
ter boundaries with the actual characters transmitted). 
Each field begins or ends with special control characters, for 
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Header 
) 

Body or ( 
text 

1 

( 

Trailer ( 

\ 

t-----------

First character transmitted 

Header includes synchroniza­
tion characters, address of 
remote station, and control 
character indicating start of 
text, or request for reply. 

Body contains blocks of text 
each with its own terminating 
control character and block 
check characters. 

The trailer contains the final 
control character indicating 
the end of the message or the 
end of the transmission, and 
the last set of block check 
characters. 

Last character transmitted 

The format of a binary synchronous communications' 
protocol message includes message portions delimited 
by special control characters. 

Figure 116. Basic message structure 
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example start of header, start of test, start of block, end of 
block, end of test. The message may consist of several blocks, 
each of which has its own horizontal or cyclic redundancy 
check characters following the end of block control character. 
Special control characters are also available for acknowledge­
ment, negative acknowledgement, and similar functions. 
Designed to operate in the half-duplex mode, each message is 
acknowledged or negative acknowledged, requiring two line 
turnarounds for each message. 

The system signals transparency by the character sequence 
DLE STX: two control characters in sequence. Once in the 
transparent mode, any DLE character which occurs is auto­
matically duplicated on transmission; the system detects the 
duplication upon reception, deletes the one DLE, and does 
not interpret the other as a special character. Transparent 
mode is halted by the transmission of a sequence without 
a duplicated DLE character. 

Communications' Example 

Figure 117 shows a simple message being transmitted using 
this protocol. Notice that the system includes two blocks 
in the single message but acknowledges only the overall 
message. This procedure reduces the number of line turn­
arounds that occur, in case of error, at the possible expense 
of the retransmission of a larger message as illustrated in 
Figure 118. The illustrated procedure is possible because the 
system defines a multiplicity of control characters whose 
meanings are appropriate for different conditions. In this 
way, end of transmission is different from end of text 
because it is possible for the secondary station to transmit a 
reply. In case of error, the receiving station must detect the 
error during the cyclic or horizontal redundancy check on 
the incoming data, and inform the transmitting station with 
another control character. This control character is called 
negative acknowledge and is used for any "no" answer from 
the receiving station as shown in Figure 119. 
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.j::. ..... 

Primary station: I Text chars. I ~ I BCC 11 Text chars. I E) I BC~ 

Secondary station: 

The ACKO and ACK1 acknowledgement characters are used alternately to signal: 

• Ready to receive 

• Message received correctly 

• Any other "yes" answer 

To minimize the possibility of accepting a lengthy erroneous message, the protocol permits multiple 
breaks-each of which is individually error-checked-in the text portion. 

This message contains two text blocks, each with its own error checking characters. The line is not turned 
around for acknowledgement until the end of text block control character is detected. 

The intermediate text block character signals that error checking should be done at that point, but the line 
is not turned around until the next block. In this way, fewer line turnarounds are required. An error in any 
block, however, requires all blocks since the last ACK to be retransmitted . 

Figure 117. Example of a character sequence for a single message 
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The primary station signals completion of a transmission with an end of transmission control character which 
turns the line around and permits a reply from the secondary station. 

If the secondary station does not wish to reply, it transmits a NAK. Otherwise, it initiates a reply message in 
the same manner as the primary station. 

I STX I Primary station: ACK 

i ~ I ETX I Secondary station: 

Messages may alternate in direction at times determined by control characters like end of transmission. 

Figure 118. Exchange of messages 
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Primary station: 

Secondary station: 

~Repeat~ 

I STX 11 Toxt ch"•· I ~ I BC111 STX 11 Somo toxt I ~ 

~~ 
Error detected during 
longitudinal redundancy 
check 

~ ... 

~ 

Error detection is done with the block check characters and is signaled by a negative acknowledge (NAK) 
rather than a positive acknowledgement (ACK). 

When the receiving station detects an error, the interface hardware performs the block check and detects 
the error. The station's software turns the line around and transmits a NAK. The primary station then 
retransmits the entire message . 

~ Figure 119. Error detection 



Character Stuffing 

For efficiency purposes, the checking of characters for a 
DLE character, the inserting of an extra DLE, and other 
checking procedures are, normally, interface (hardware) func­
tions. This technique for transparency is called "character 
stuffing" because the extra character is inserted into the 
transmitted stream. In contrast, SDLC uses "bit stuffing" 
for the same purpose. 

The Series/1 provides three binary synchronous communi­
cations' interfaces: 

1. Single-line interface-one half-duplex line operating at 
speeds up to 9,600 bits per second with initial program 
load (IPL) capability 

2. Single-line high speed interface-one half-duplex line oper­
ating at speeds up to 56,000 bits per second with initial 
program load capability 

3. Multiple-line interface-up to eight half-duplex lines oper­
ating at an aggregate speed up to 33,600 bits per second. 
No initial program load capability is provided on this 
interface. 

Interface Code Support 

The single and multiple line medium speed interfaces pro­
vide standard EIA and CCITT interfaces for connection to 
common modems. The interfaces support both EBCDIC and 
ASCII codes which are selectable under program control 
(initial program load assumes EBCDIC). Depending upon 
the code selected, the system performs two different types 
of error detection checking. Since ASCII iS a seven bit code, 
the eighth bit can be used as a parity bit. By using ASCII 
transmission, checking is done by parity on each byte received. 
In addition, the system performs a redundancy check (the 
logical sum of all of the bytes). The EBCDIC code uses all 
eight bits for data; consequently, no parity bit is available. 
A more sophisticated error detection is performed in the 
EBCDIC mode using a cyclic redundancy check, which is a 
check over all bytes of the message using a "polynomial" 
error detection procedure. The hardware interface-
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depending on whether it is in the ASCII or EBCDIC mode­
accumulates the error detection information as each byte is 
received and, finally, compares them with the transmitted 
correct values (called block check characters). The interfaces 
can also perform block checking on intermediate blocks 
without processor interaction. 

The interfaces use the cycle steal input/output channel to 
input or output two characters at a time-with a possible 
exception for the last byte. If the system does not 
achieve synchronization within a reasonable time or does 
not receive an acknowledgement within another specific 
interval, the interfaces provide time-out interrupts. 

Figure 120 shows the names and functions of special 
characters interpreted by the Series/1 binary synchronous 
hardware interfaces. User application software sets up 
messages as a character sequence in storage, and then initiates 
the transmission. As discussed later in this chapter, this set 
up can be done from the assembly language level, the 
FORTRAN level, or the PL/I level. The latter two levels 
make transmission of information to a remote terminal 
essentially the same as transmission to a local device. 

Operating Modes 

The primary station controls the transmission and recep­
tion of messages as well as the selection of stations. Figure 
121 shows the various operating modes which the hardware 
binary synchronous communications' interfaces must interpret. 
Control mode is the condition for any interface not being 
communicated with at the moment. In this mode the inter­
face monitors incoming characters until it detects an end-of­
transmission character, after which it monitors, twice in suc­
cession, for its station address-the duplication of the address 
is a precaution procedure in case line noise occurs; the precau­
tion procedure is necessary because secondary stations which 
monitor do not check the station address with cyclic 
redundancy checking. Any device not selected will realize 
this when the system detects the start-of-header or start-of­
text character. Unselected devices then idle until another 
end-of-transmission character places them back in the 
control mode. 
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"""' ...... 
O"I 

I 
Name Mnemonic EBCDIC ASCII Mnemonic Function 

Start of heading SOH SOH SOH SOH Reset control mode and set the adapter 
to text mode. BCC accumulation starts 
with the first character after the first 
SOH or STX. 

Start of text STX STX STX STX Reset control mode and set the adapter 
to text mode. BCC accumulation starts 
with the first character after the first 
SOH or STX. 

End of transmission ETB ETB ETB ETB Reset text mode with block check 
block (note 1) character (BCC) comparison. 

End of text (note 1) ETX ETX ETX ETX Reset text mode with block check 
character (BCC) comparison. 

End of transmission EOT EOT EOT EOT End of transmission. 
(note 1) 

Enquiry (note 1) ENO ENO ENO ENO Reset text mode without BCC trails-
mission and comparison. 

Negative acknowledge NAK NAK NAK NAK Negative response to a request for a 
(note 1) reply, or to a block of heading or a 

block of text in error. 

Figure 120. Names and functions of special characters (1 of 4) 



Name Mnemonic EBCDIC ASCII Mnemonic Function 

Synchronous idle SYN SYN SYN SYN Transmitted automatically by the 
adapter to establish and maintain 
synchronization. 

Data link escape DLE OLE DLE OLE Alert the adapter to test the next 
character for a defined control sequence 
in transparent text mode. In nontrans-
parent text mode, DLE is treated as 
data. 

Intermediate block ITB IUS us ITB Included in the BCC; it causes the BCC 
character to be sent or received. 

Initial program load IPL DC1 DC1 ENO IPL Control characters to initiate an IPL 
(note 2) sequence. 

Even acknowledge ACKO OLE (70) DLEO ACKO Indicate affirmative acknowledgement 
(note 1) to even blocks. 

Odd acknowledge ACK 1 DLE/ DLE 1 ACK 1 Indicate affirmative acknowledgement 
(note 1) to odd blocks. 

Wait before transmit- WACK DLE, DLE; WACK Indicate a temporary not ready to 
ting positive acknowl- continue/receive condition. 
edgement (note 1 l 

I 
~ 

Figure 120. Names and functions of special characters (2 of 4) ...... 
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I 
Name Mnemonic EBCDIC ASCII Mnemonic Function 

Mandatory dis- DISC OLE EOT OLE EOT DISC Used on switched communication 
connect (note 1) facilities only, to initiate a disconnect. 

Reverse interrupt RVI DLE@ OLE< RVI Reverse direction of data transfer. 
(note 1) 

Temporary text delay TTD STX ENQ STX ENQ TTD Alert the receiving station to a tempor-
ary text delay. 

Transparent start of XSTX OLE STX XSTX Turn off control mode and set the 
text (note 3) adapter to transparent text mode. 

Transparent inter- XITB DLEIUS XITB Same as ITB, but also turn off trans-
mediate block (note 3) parent text mode. 

Transparent end of XETX DLE ETX XETX Same as ETB or ETX but also turn off 
text (note 3 I transparent mode. 

Transparent end of XETB DLE ETB XETB Same as ETB or ETX but also turn off 
transmission block transparent mode. 
(note 3) 

Transparent synchronous XSYN DLE SYN XSYN Transmitted automatically by the 
idle (note 3) adapter to establish and maintain 

synchronization in transparent text 
mode. 

Figure 120. Names and functions of special characters (3 of 4) 
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l.O 

Name 

Transparent block 
cancel (note 3) 

Transparent TTD 
(note 3) 

Data OLE in transpar­
ent mode (note 3) 

Notes: 

Mnemonic EBCDIC 

XENO OLE ENO 

XTTD OLE STX 

XDLE OLE OLE 

ASCII Mnemonic Function 

XENO 

XTTD 

XDLE 

Turn off transparent text mode and 
cancel the current block of data. 

Alert the receiving station to a 
temporary text delay in transparent 
text mode. 

In transparent text mode, the trans­
mitter adds a second OLE after each 
data OLE. At the receiver, the first 
OLE is stripped off and does not 
enter storage or the BCC. 

1. These control characters and sequences cause a COD (change of direction) interrupt request after the required action has 
been completed. 

2. Not applicable in ASCII format. 
3. Transparent mode is not available in ASCII. 

The binary synchronous communications' protocol is characterized by a number of control characters which have 
defined meanings and to which connected devices must respond in a predefined manner. 

Figure 120- Names and functions of special characters 14 of 4) 



l 
Control mode 

Enter control mode when 
end-of-transmission character 
is received 

If not selected, wait for 
another end-of-transmission 

L character 
Detect address of 
this station 

Select mode 
IPL command 

Detect start-of-text or 
similar control character 

Text mode 

End-of-text 
character 
received 

Transparent 
text mode 

r-------. 
I 
I 
I 
I 
I 
I 
I 
I 

1 
Initial-program­
load mode 

1---------------1 
Transparent 
text mode 
! T 

I 
I 
I 

L------' 
Unsuccessful IPL 

___________ .....,. 
Successful _IPL terminate 
with processor interrupt 

The binary synchronous interface operates in one of 
several modes depending upon whether it is selected by 
the controlling station for transmission or receiving, for 
initial program load, or for other functions. The mode 
changes are caused by detection of pre-defined control 
characters. 

Figure 121. Binary synchronous interface modes 
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Communications begin once the device recognizes its 
address. The primary station may transmit a message to the 
selected device by placing it in text mode and-if necessary­
transparent text mode. Certain control characters demand 
a response from the secondary station; in this case, the half­
duplex line turns around. For example: after each text 
block, the end-of-transmission block character turns the line 
around so that the receiving terminal can either acknowledge 
or negative acknowledge depending upon whether or not the 
system has verified the block control characters. 

Control Characters 

The system uses control characters to invoke specific 
responses. For example, an enquiry (ENQ) asks if a remote 
station wishes to transmit to the local station. This enquiry 
causes a line turnaround and activates either an acknowledge 
character (ACK) if the system wishes to transmit or a nega­
tive acknowledgement (NAK) if it does not. 

Other control character sequences are similarly interpreted 
as invoking special functions. The system originates the 
Initial Program Load command as shown in Figure 122. The 
address of the device on a multipoint line follows the two 
synchronizing characters. The two DCL characters are, by 
convention, interpreted as an IPL command. The ENQ 
character asks if the down-line processor is ready to receive 
the IPL. The line is turned around and acknowledged with 
the control character ACKO, as shown. The host then puts 
the line into transparent mode by transmitting the D LE 
STX two-character transparency command sequence. 

The IPL message is simply the program transmitted a byte 
at a time (the system must use the transparency mode since 
the bytes of the program can take on any arbitrary value). 
The interface duplicates any byte which happens to be the 
same as DLE and deletes the extra DLE at the receiver. 

Finally, transparency mode is left with the DLE ETX 
sequence in such a way that the transmitting interface does 
not duplicate the DLE. The receiver leaves transparency 
mode and acknowledges the IPL message (provided, of 
course, that it has been received with no error). If the IPL 

421 



First character transmitted 

SYN 
SYN 

All messages start with synchronization 
characters. 

ADDR ~ The device address is repeated for error 
ADDR detection purposes in multi-path 

operations. 

DC1 
DC1 H Initial Program Load command character 

is repeated twice. 

ENO }).----{{ Request permission to IPL. 

ACKO >-(-~ Secondary device interface acknowledges it 
is ready to receive IPL 

DLE 
STX 

DLE 
ETX 

Put remote processor into transparent 
mode because IPL data may contain 
control characters. 

IPL character sequence is loaded into the 
remote processor storage starting at 
location zero. 

H Leave transparent mode and terminate 
the IPL message. 

ACK1 process?r acknowledges wi~h softwa~e; r--{ If the IPL was successful, the remote 

otherwise the processor waits for a time 
out and a repeat of the IPL message. 

Figure 122. Example of a message exchange containing an Initial Program Load 
command and acknowledgement 
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sequence is received correctly, an interrupt occurs in the 
receiving processor to end the I PL mode. If not, the inter­
face returns to the IPL mode hoping to receive a second 
IPL sequence. The host processor waits for an acknowledge­
ment of the IPL sequence; if none is received, it reissues the 
I PL sequence. 

The Synchronous Data Link Control Protocol 
and its Hardwareand Software Support 

Although the binary synchronous communications' protocol 
is common and useful, it has one limitation which requires a 
different protocol: namely, it cannot be used in full-duplex 
mode. Full-duplex lines may be used to avoid the line turn­
around time when simple ACK or NAK one-character 
messages must be returned; but this procedure does not take 
advantage of the available line capacity. Full-duplex com­
munications involve sending messages simultaneously in 
opposite directions. Since these messages are not necessarily 
either the same size or synchronized in time, there is a compli­
cation introduced in acknowledging receipt of correct or 
incorrect messages: the simple ACK and NAK protocol is 
not adequate because it does not identify specific messages. 

Need for SDLC 

IBM introduced the synchronous data link control (SDLC) 
protocol to handle this problem. It permits full-duplex 
transmission in a particularly efficient manner. The protocol 
is rapidly being adopted by other vendors, and is in fact becom­
ing an international standard under the title high level data 
link control (HDLC). SDLC defines a protocol for communi­
cating an arbitrary message between two nodes (possible on a 
multipoint line). For communications with IBM devices, IBM 
has introduced standard definitions for the information part 
of the message. HDLC provides a unique name to differenti­
ate the general term from the IBM particularization. In 
general, when HDLC is used to communicate with any device, 
its manufacturer is free to define the message content in a way 
meaningful to that device. OEM users of the Series/1 will, of 
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course, do the same thing when using SDLC to communicate 
with their devices or processors. 

SDLC Messages 

Figure 123 shows the basic concept of SDLC communica­
tions. Each of the two communicating stations transmits­
simultaneously in opposite directions-a sequence of message 
structures called "frames". The system provides two levels of 
information grouping for error checking: the frame level and 
the frame sequence level. As illustrated in Figure 123, each 
frame contains within it two bytes called the "frame check 
sequence", which is simply a cyclic redundancy check word 
for the frame itself. Using these bytes, the system checks 
each frame received to determine if it was received correctly 
or not. As a result, just as in binary synchronous communi­
cations, the error checking of an individual frame involves: 
1) accumulating the check sequence as bytes are assembled 
from the serial line; 2) finally, comparing the calculated 
check sequence against the transmitted one. 

To acknowledge receipt of a message and to differentiate 
between frames, each frame is identified with a three-bit 
number-zero to seven. In the header of each frame is a con­
trol field shown in Figure 123 and amplified in Figure 124. 
The NS three-bit field carries the number of the frame and 
interprets it as the number of the frame being sent. The 
system provides the NR field (number received) for the 
station to acknowledge successful reception of messages. 
By convention, the receiver keeps track of the number of 
the next frame to be received. 

Message Coordination 

Each time the processor or a device receives a frame, it 
checks the frame first with the error detection word to see 
if it is correct. If it is, the receiver next checks the NS field 
of that frame to see if it agrees with the number of the frame 
the receiver expects to receive. If it does, the frame 
sequence is correct and the frame is accepted. If the error 
detection procedures determine that the frame is received 
incorrectly, it is discarded. If it is received correctly but the 

424 



.;:... 

Frame 0 Frame 7 Frame 6 Frame 0 

······I I I I I I · · · I I 
Primary 
station .-. 

...... Secondary 
station 

······C-1 I l······I I [ - --=i 

Address and control 
plus initial control 
character (flag) 

Frame 0 Frame 1 Frame 7 Frame 0 

Example of one frame 
Header Information field Trailer 
~~~ 

~ Header I Body I Trailer ~ 
Error detection informa· 

Information tion (frame check sequence) 
portion (may and terminating control 
be absent) character (flag) 

The SDLC full-duplex protocol exchanges messages simultaneously in two directions. The basic unit is 
called a "frame" which contains frame check sequence characters for cyclic redundancy error detection. 
Frames are numbered to permit acknowledgement of those received correctly. As many as seven frames 
may be outstanding before an acknowledgement is required . 

~ Figure 123. Basic concept of SDLC 
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Beginning Frame -------------------'..J 

Flag 

Flag 

A 

I Address 
I 
I 
I 
J-8 bits .j 

I 

c 

Control 

I,,. 16 bits • 1 
I 

Variable length 
information 
field (may be 
absent) 

FCS 

Check field I 
I 
I 
I 

I... 16 bits -l 

I l 
I I 

I 
--------Span of CRC and zero insertion -------......;M 
I 

Figure 124. Detailed definition of the SDLC frame format (1 of 2) 

Flag 



~ 

(Sent last) l C (Sent first) J 
Bits I 0 1 2 I 3 I 4 5 I 6 I 7 I 

Information transfer format I NR I P/F I NS I I O 1
1 

Supervisory format I NR I P/F I * I 0 I 1 
Nonsequenced format I ** I P/F I ** I 1 1 I 

I I t I I I 
Poll/final bit 

~··---------­Control field 

One frame is six bytes in length (minimum). Only one control character is used: "flag" which is six sequen­
tial one-bits with a zero bit on each end. 

The frame check sequence character pair is taken across the entire frame with the exception of the initial and 
final flag control characters. 

The control field includes two three-bit fields; these fields indicate the frame number being transmitted and 
the frame number next expected to be received. This numbering convention implies that lower numbered 
frames were received correctly. 

!::'.: Figure 124. Detailed definition of the SDLC frame format (2 of 2) 



frame sequence is incorrect, it is usually discarded although 
the protocol definition does not require this. Whenever the 
receiving station transmits a frame to the primary station, it 
carries the current value of NR; that is, the number of the 
next frame which the receiver expects to get. 

When a station receives a frame, it checks the NR field to 
determine what the receiver expects to get next. Any frame 
previous to this number in the sequence is assumed to have 
been received error free; hence, the buffer space in the send­
ing station is freed. The system must retain messages at 
this point-or beyond-in the sending sequence until a later­
received frame acknowledges their receipt. Notice that this 
procedure allows one station to send more frames than it 
receives because one frame can acknowledge several 
messages. 

Message Acknowledgement 

Because the message count is limited to three bits, a 
maximum of seven messages may be outstanding before the 
system requires acknowledgement. That is, once a station 
has sent seven messages, it must wait until the receiver 
acknowledges reception of some or all of them. For example: 
if the receiver reports an N R of 4, messages 4 through 6 must 
be repeated. If the receiver reports an N R of 7, all seven 
messages (O through 6 inclusive) have been received, and 
message number seven is the next one expected. Notice that 
even though eight message numbers are defined, only seven 
messages can be outstanding and unacknowledged at any time 
if ambiguity is to be avoided. 

This fact is illustrated in the above example if the 
receiver acknowledges with an N R of 0. If the last message 
sent was number six, this acknowledgement clearly means 
that no message was received and the entire set must be 
retransmitted. However, if eight messages were outstanding, 
an NR of zero could have two references: either to the first 
message sent, indicating that none were received; or to the 
next expected message, indicating that all eight were 
received correct! y. 
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It is the responsibility of user software to generate 
messages and pass them to the interfaces for transmission. 
It is the responsibility of the interfaces to handle error detec­
tion at the frame level and to notify the processor about 
control information such as the N R and NS fields. 

The examples above were described as if frames always 
started with zero, but in fact the frame count wraps around 
with zero following seven. The only frame count restric­
tion is that no more than seven messages starting with any 
initial count may be simultaneously outstanding without 
acknowledgement. 

With this simple mechanism, SDLC solves the problem of 
error detection and acknowledgement in a full-duplex 
environment. 

Code lndependency 

SDLC (and HDLC) have one other very important advan­
tage over the binary synchronous protocol: the protocol is 
not code sensitive. Binary synchronous communications are 
character oriented with many different characters having a 
pre-defined meaning as control characters. Hardware inter­
faces must respond to these characters in different ways. 
Since devices may use different codes like ASCII and 
EBCDIC, binary synchronous communications must utilize 
hardware which is complex enough to handle these codes. 
Communications need not be complicated this way because­
at the first level-the system's objective is to pass messages 
in an error free mode. Once received, a device or processor 
may interpret the content of the message in any arbitrary 
way. 

SDLC eliminates code dependence by treating the 
message to be transmitted as a bit stream instead of a charac­
ter stream. Only one control character is used: the flag, 
which is a sequence of six one-bits with a zero at each end. 
Hardware need only count the length of one-bit sequences 
in order to detect the single control character. As shown 
in Figures 123 and 124, the start of a frame is recognized by 
the detection of a flag sequence. The system always treats 
the next 16 bits as address and control information. The 
information field is of arbitrary length and may be absent. 
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Following the information field is the 16-bit frame check 
sequence, and then a flag sequence. The receiver can tell 
where the information field ends, or where the frame 
check sequence begins or ends, simply by detecting the 
terminating flag sequence. This procedure greatly simplifies 
the communications' protocol and allows users to assign 
unrestricted transmission code. The interfaces will: 

• Transmit messages correctly 

• Break up the bit stream into eight-bit characters 

• Pack them into storage 

The user program interprets those bytes in whatever way it 
has been coded to do so. 

Bit Stuffing 

Since there is only one control sequence-the flag sequence 
-it is absolutely necessary that it occur in the frame only as 
the first and last fields; if it appears anywhere else, the 
receiver would incorrectly interpret its occurrence as the end 
of the frame. All fields within the frame, except the begin­
ning and ending flag fields, must be "transparent" to flag 
characters. The particular eight-bit sequence which the system 
uses as the single control character can occur either as address, 
control, data, or check information; hence, the protocol must 
provide for transparency. This is done by "bit stuffing"-an 
operation that is analogous to "character stuffing" used in 
the binary synchronous communications' protocol. 

Bit stuffing in the transmitting interfaces occurs as shown 
in Figure 125. Every time the system detects a sequence of 
five one-bits, it inserts or "stuffs" an extra bit (a zero bit) 
into the bit stream. For example, if a flag character 
sequence were to arise in the information field, it would 
actually be transmitted and received with a zero bit between 
the fifth and sixth one-bits. At the receiver, the system 
checks the incoming bit stream. Whenever five sequential 
one bits followed by a zero are received, the zero bit is 
deleted. 

Figure 125 shows that the transmitter also stuffs the flag 
sequences. After the system deletes the zero bit following 
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the five one-bits, the next sequential bit recognized is a one 
bit. The receiver inserts into storage a flag character occurring 
within a frame-without the character being interpreted as 
the end of a frame. The transmitter is responsible for send­
ing an unstuffed flag at the end of the frame. The system 
performs this transmission easily because the message charac­
ter sequence is passed to the interface which serializes, bit 
stuffs, and simultaneously accumulates frame check 
sequence data for error detection. When the system transmits 
the last character of the frame to the interface, it appends 
the two frame check sequence characters and the flag 
sequence, which end the transmission. Since the interface 
knows when the end of the frame occurs, it then can prevent 
bit stuffing in the terminating flag. As a result, the only flag 
sequence the receiver admits is the terminating flag. 

Station Polling 

Because communications still occur between a primary and 
secondary station using the SDLC protocol, polling must still 
be done. The single P/F (poll/final) bit in the control byte of 
the frame header is used for this purpose as shown in Figure 
126. The polling station sets the poll bit to authorize it to 
transmit messages. The polled station uses the same bit to 
accept or reject the invitation. Control over a multipoint 
line is as orderly as in binary synchronous communications' 
systems. 

The final bit of the control field of a frame was shown 
as zero in Figure 124. Actually, this bit signals that informa­
tion transfers of the type discussed above are actually taking 
place. Notice that the data portion of the frame can be 
absent if a receiver simply wants to acknowledge a message. 
This data absence is signaled by the arrival of the normal 
terminating sequence. 

If the final bit of the control field is one rather than zero, 
the system interprets the frame as either a supervisory for­
mat or nonsequenced format frame. Supervisory format 
frames are used to convey ready or busy conditions and to 
report sequence errors. Nonsequenced format frames are 
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l 
Character sequence 
from storage on a 
cycle steal basis 
(two per storage 
access) 

~ 

Transmitting 
SDLC interface 

The transmitting interface transforms the character 
sequence into a serial bit stream. 

The transmitting interface bit stuffs whenever a 
sequence of five one bits is detected (except in the 
initial flag and the terminating flag of a frame). 
Bit stuffing inserts a ze'ro bit after ,the fifth one bit. 

Figure 125. Bit stuffing (1 of 21 

t 
Character sequence 
inserted into stor-
age on a cycle steal 
basis 

Receiving 
SDLC interface 

The receiving interface transforms the serial bit 
stream back into a character sequence. 

The receiver detects all sequences of five one bits. 
If the next bit is zero, it was stuffed and, hence, is 
removed. If it is a one bit, a flag character has 
been detected which means the start or end of a 
frame. 
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Examples: 

0111110 
Five ones 

01111110 
A flag character 
occurs in the message. 

01111100 .... 
A zero is inserted. 

011111010 ... 
A zero is stuffed after the 
fifth bit. The one bit is 
not affected. 

. .. 0111110 ... 
The zero bit is deleted. 

01111110 ... 
The stuffed zero bit is 
removed and the flag 
character inserted as a data 
character into storage. 

The system maintains transparency of data to the single control character by "bit stuffing": the insertion 
of a iero bit after five one bits-except in the two flag characters which surround the frame. Bit stuffing 
is a hardware function of the transmitting and receiving interfaces . 

~ Figure 125. Bit stuffing (2 of 2) 



The system transmits a 
frame containing infor­
mation with the poll 
bit in the control byte 
reset. 

0 

Polling takes place by set· 
ting the poll bit in the last 
frame transmitted to the 
secondary station. 

2 3 

The primary station sends these frames. 

The secondary station sends these frames. 

0 

The secondary station transmits this frame to acknowledge 
correct reception of frames zero through three (Nr=4). The 
poll/final bit is reset in this frame. 

The secondary station transmits a second frame responding 
to the poll and accepting the invitation to respond by set· 
ting the final bit. 

Figure 126. Polling takes place with the single P/F bit within the control byte 
of aframe 
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important because they are used for data link management 
including: 

• Activating and initializing secondary stations 

• Controlling response mode of stations 

• Handling procedural errors which cannot be resolved by 
retransmission 

SDLC Interfaces 
~. ,···· 

_/' The Series/1 systems support SDLC with one interface 
' which handles one half-duplex line at bit rates up to 9,600 
' bits per second. The system supports communications in the 
\ full~duplex. m .. o.de. via two of these interfaces: one to handle 
~~glr:~_~tion/ In addition to handling the general SDLC 

protocol as described, IBM has built the interface to further 
interpret fields in standard ways so that a variety of conven­
tional terminals can be used directly with this communica­
tions' protocol in exactly the same way they are used with 
the IBM System/370. For other terminal communications, it 
is the responsibility of the processor and the receiving inter­
face to interpret information fields in an agreed upon manner. 
For processor to processor communications, SDLC provides 
a mechanism for full-duplex transmission of varying length 
messages in a particularly efficient manner. 

The Series/1 SDLC interface operates in one of three 
modes: monitor, receive, or transmit. In the monitor mode, 
the interface monitors the line for a flag character. If the 
interface is a primary station, it immediately enters the 
receive mode. If the interface is a secondary station, it 
checks the address following the flag to see if it is the station 
addressed. If so, it enters the receive mode; if not, it 
remains in the monitor mode. In the receive mode, the 
system corrects the incoming bit stream to a byte sequence 
and enters it into storage. The entry begins with either the 
address field or the control field depending upon whether 
the station is acting in a primary or secondary role. A 
primary station needs the address byte to check that the 
message is from the proper secondary station, whereas a 
secondary station uses that byte only to determine which 
station has been addressed. 
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The interface enters transmit mode when commanded 
to do so by the processor (a cycle steal command with the 
specific function specified in the device control block). The 
system then transmits frame-check sequence bytes and a final 
flag byte (not stuffed) to complete the frame. If chaining 
is specified in the device control block, the interface con­
tinues with the next frame. 

Integration of Communications' Support 
Software into the Series/1 

A hardware interface-which uses the cycle steal channel 
to access character sequences in main storage for transmission, 
and to input character sequences into main storage-supports 
each communications' protocol described (asynchronous, 
binary synchronous, and SDLC). An application communi­
cating with a remote device must then set up the character 
sequences it wishes to transmit and, by means of cycle steal 
input/output commands, pass them to the interfaces. 
Similarly, interrupts to the processor terminate messages 
inserted into main storage so that an application program 
can interpret and use the information. 

Dedicated applications often use communications' support 
in just this way because it provides all features and capabilities 
in a simple fashion, and the user can tailor the dedicated 
programs exactly to fit the application. This is especially 
important in applications where the primary purpose of the 
processor is to support communications. However, many 
applications use the communications' system simply to handle 
devices. For these applications, the Realtime Programming 
System provides software support of communications' func­
tions using asynchronous and binary synchronous protocols 
and SDLC. With these protocols, the user can, in effect, 
treat remote devices or processors in the same way as any 
other device connected directly to the processor. 

Communications' Software Organization 

Software use of communications is best organized as 
shown in Figure 127 with an application task: 1) processing 
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data and communicating it to remote processors or devices 
through the communications' task, or 2} processing data 
received from remote processors or devices by way of the 
communications' task. Separating the processing and the 
communications' task simplifies creation, debugging, modifi­
cation, and documentation of these applications. The Real­
time Programming System makes communications among 
tasks very straightforward so that it is feasible to define 
simple intertask interfaces which allow modification of 
either the communications' task alone or the processing task 
alone. 

Because intertask communications are strongly supported at 
all levels in the Realtime Programming System, the process­
ing part of the application task can be written in assembly 
language, FORTRAN, or PL/I as appropriate for the applica­
tion. Notice that PL/I is highly effective for such applications 
because of its extensive character and string manipulation 
capability. This capability is one reason that a modern 
language like PL/I is so appropriate for online small computer 
applications, and is another good example of the integrated 
design of the Series/1 processor, interface hardware, and soft­
ware support. 

One important Realtime Programming System feature is its 
support of the Series/1 as a cluster controller in an SNA 
(system network architecture) IBM System/370 network con­
figuration. Essentially, this means that the Series/1 small 
computer can be used in multi-computer applications similar 
to those for which special purpose devices have been designed 
in the past. In particular, the burden of software support of 
the network is provided under the operating system so that 
users can concentrate on their applications. This fact is very 
important to OEM users who are building application systems 
which must be compatible with host computer systems. 

The communications' portion of the user-written tasks 
involves assembly language statements which define charac­
teristics of the devices and the details of communications. 
The system provides a series of macros to simplify this task. 
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An assembly language program is prepared with Realtime 
Programming System macros to define and control com­
munications' lines and devices. 

Series/1 processor 

Communications 
user's program 

Figure 127. Software use of communications (1 of 2) 

Real time 
Programming 
System 
communications' 
support 

Remote 
processor 

Remote stations 

Communications' 
lines 

Terminals 



~ 

Secondary 
storage 

Processing 
program 

Series/1 processor 

Written in assembly language, FORTRAN, COBOL, or PL/I 
as appropriate. Calls on communications' program-via 
subroutine calls and intertask communications-to read and 
write messages and control devices. 

The processing part 

The organization of communications' software usually separates the application processing program from the 
user's communications' program; this organization enables the appropriate level of programming language to 
be used for the two programs' implementation. 

~ Figure 127. Software use of communications (2 of 21 



These macros support: 

• Definition characteristics of the remote stations and 
associated communications' lines 

• Transmitting and receiving data 

• Breaking of connections 

• Establishing a list of remote station identifiers for com­
munications with dial-up or switched facilities 

It is not appropriate here to describe in detail the macros 
which specify device characteristics. It should be noted that 
these macros exist and that the system can apply all the 
characteristics of any data set in a local file to remote devices 
or processors using either the higher-level language or macro 
assembly language statements like Connect, Disconnect, 
Read/Write, Open, and Close. 

Event-Driven Software 

Communications with a remote processor or terminal are 
not instantaneous. In fact, if the communications' line is 
noisy, multiple transmissions might occur automatically at 
the first level of protocol. Consequently, it is not practical 
for an application task to depend upon precise timing. This 
condition occurs in all realtime, online applications and real­
time programming techniques handle it: scheduling on the 
basis of time, internal events, and external events or inter­
rupts. The Series/1 software architecture includes these 
mechanisms to enable application tasks: 

• Signal the occurrence of an internal event (post the event) 

• Schedule a task to become active when an event occurs 
(wait for event) 

• Be organized to respond to an external interrupt 

The same event and interrupt mechanism is used through­
out the Realtime Programming System and is also available 
for communications' software. An event is associated with 
each message transmitted or requested. The user can desig­
nate tasks to operate in a variety of ways: 

• Wait to receive the message (that is, become inactive but 
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be reinitiated by the operating system when the message 
arrives) 

• Not wait for the message (as in double buffering of input) 

• Operate in any other manner that the program designer 
chooses 

The important consideration is that the system uses the same 
techniques to solve realtime synchronization problems when 
communications are involved as it uses when those problems 
arise elsewhere in the data processing environment. Because 
event and interrupt mechanisms are integrated into the overall 
hardware and software architecture, the system can solve 
these problems expeditiously. 

Dedicated Hardware and Software Support 
for Communications: The Programmable 
Communications Subsystem 

IBM has carefully integrated support of communications­
based applications into the Series/1 hardware and software 
architecture as indicated throughout this chapter. Even at 
the indicated level of support, handling large numbers of 
terminals is difficult because they require considerable 
custom software support and a major portion of the Series/1 
processor's capability. When a communications-oriented 
application reaches a certain size, the user must off-load the 
processor, performing some or many of the required functions 
in dedicated hardware or separate processors. At the same 
time, however, this hardware should retain the integrated 
architectural features of the Series/1. 

Subsystem Architecture 

To handle applications involving large numbers ofter­
minals and communications' lines, IBM has provided the Pro­
grammable Communications Subsystem as part of the over­
all Series/1 architecture. This subsystem is essentially a 
separate processor which handles many of the functions 
required to support a variety of lines, line speeds, terminal 
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types, and protocols. At the same time, the subsystem is 
integrated into the Series/1 hardware and software architec­
ture so that the same measure of self-diagnosis, availability, 
and error recoverability can be achieved with the subsystem 
as with the parent system itself. Furthermore, the subsystem 
is fully compatible with the Series/1 software architecture: 
Realtime Programming System support and Program Prepara­
tion System support are complete. 

Figure 128 lists some of the communications' functions 
which require detailed software design to effectively serve 
large communications-oriented applications. Notice in 
particular that many of these problem areas are unique to 
communications-oriented applications: control of modems, 
telephone call answering and originating, and redundancy 
checking. Although conceptually simple-and able to be 
implemented completely within the main processor-these 
tasks can incur significant overhead when large numbers of 
different communications' lines and terminals are involved. 
The Programmable Communications Subsystem can handle 
all the areas listed in Figure 128 as well as many others which 
may be unique to a particular user or application. 

Communications' Interfaces 

The Programmable Communications Subsystem is a set of 
standard Series/1 boards which plug into the Series/1 units 
just Ii ke other .interfaces and attachments. Figure 129 shows 
the system in block diagram form. At the lowest level are 
a variety of interfaces suitable for attachment to a variety of 
terminals, devices, and telephone lines. Interfaces include: 

• Synchronous and asynchronous EIA data set interfaces 

• Automatic call handling interface 

• Teletype current interface 

• Synchronous and asynchronous integrated modems 

• SDLC data set and direct interfaces 

The common important factors in this list are the variety of 
line speeds and types of interfaces provided, and the fact 
that the user may mix all of them in any arbitrary way within 
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• Buffering 
• CRC checking/generation 
• LRC checking/generation 
• Control character generation/recognition 
• Clocking of direct connect hookups 
• Data chaining to/from storage 
• Auto-answer 
• Break function 
• Case shift 
• Timeouts or interval timer 
• Modem control 
• Auto-poll 
• Auto-call control sequencing 
• Console control 
• Internal self-diagnosing RAS features 
• Trace 

All of these functions are characteristic of communications' 
applications and the system can provide them directly with­
in the Series/1 application software. When the number of 
terminals and the variety of terminals and lines is large, it is 
more efficient to off-load standard communications' func­
tions into a special processor called the Programmable 
Communications Subsystem. 

Figure 128. Basic functions provided by the Programmable Communications 
Subsystem 

the communications' subsystem. Notice that many of these 
interfaces provide facilities similar to those available for 
direct interfacing to the Series/1. Of course, a different 
level of support is available through the communications' 
subsystem. 

The system provides support of these interfaces through 
the scanner portion of the subsystem as shown in Figure 129. 
This hardware scans the interfaces at speeds ranging from 45 
to 1200 bits/second using an internal clock, and up to 9600 
bits/second using the clock in a data set attachment. These 
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figures correspond to the scanning rate of each interface so 
that the combination rate is very much higher. In addition to 
scanning the interfaces to collect or transmit characters 
(deserialize the input or serialize the output), the scanner 
provides many of the capabilities discussed earlier for 
individual communications' interfaces: 

• Programmable synchronization and line turnaround 
characters 

• Programmable selection of bits per character 

• Parity checking 

• Programmable selection of the number of stop bits for 
asynchronous terminals 

Thus, in the single scanner hardware, the communications' sub­
system provides the same communications' support that is 
built into the separate communications' interfaces previously 
discussed. In this way, the Series/1 provides communications' 
support for large numbers of terminals at low cost. 

Subsystem Controller 

The heart of the communications' subsystem is the con­
troller which contains a processor, read-only storage, and a 
writable storage called control storage. It is this controller 
which the end user or OEM user can program to customize 
the communications' subsystem by handling a particular group 
of terminals and a particular application. Figure 130 shows 
the basic organization of the controller. 

The line control block is a user-defined data area; the 
system provides one block for each communications' line 
attached to the subsystem. It contains parameters describ­
ing the line, address of buffer areas, status information, and 
similar information necessary to handle transmission of 
information on the line. In addition, the line control block 
contains a pointer (address) for another block of data-the 
function address table. Essentially, this table is a list of sub­
routines or program segments-called function strings-which 
perform the individual operations appropriate to that parti­
cular line. For example, function strings might be provided 
to support a binary synchronous protocol or a special 
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To Series/1 input/output bus 

+ 
Programmable Communications Subsystem 

r--- - ---- -i------- --, 
Channel interface 

Special processor with both: 

1. Writable storage (control storage) to contain 
user-specified programs appropriate to the 
attached communications' lines and terminals 

2. Read-only storage which contains predefined 
routines used to control the subsystem and 
carry out the user-defined functions 

1 
Scanner to control a variety of interfaces, line speeds, 
and codes 

1 
J 1 1 1 

L. Interfaces appropriate to the attached communications' 
lines and terminals 

L---------------

Figure 129. Hardware organization of the Programmable Communications 
Subsystem 
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Interpreter: operating-system-like software which controls 
the Programmable Communications Subsystem and carries 
out user-defined functions upon command of the Series/1 
processor. 
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I 
I 
I 
I 
I 

Subroutines provided to perform standard operations. 
User-defined functions are defined as a sequence of these 
basic operations. They are similar to assembly language 
instructions but carry out much more complex functions 
appropriate to the communications' application. 

I I I 
I I I 
I I I 
I I I 
J. _J_ _J_ 

Figure 130. Software organization within the Programmable Communications 
Subsystem (1 of 2) 
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Line control block: 
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I ine or attached 
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list of user-defined 
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defined 
routine 
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defined 
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i., routines to perform 
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ated with this line or L 
device 1--
~____, 

Function strings: 
sequence of orders to 
perform one function 
for one communications' 
line or attached device. 
They are user-defined via 
a macro-language under 
the standard Program 
Preparation System. 

User­
defined 
routine 

.... N 

The user defines all functions to be carried out by the sub­
system and builds the necessary tables and function strings 
using Program Preparation Systems supplied by I BM. 

Figure 130. Software organization within the Programmable Communications 
Subsystem (2 of 2) 
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purpose protocol, or function strings might be used to error­
recover when certain conditions are detected. In effect, 
the function address table associated with each line is a list 
of code segments that handle each situation which arises 
when carrying out communications across that line. 

Line Control Software 

The user must define each function to be carried out for 
each line, and produce the subroutines or program segments 
(function strings). The Programmable Communications Sub­
system facilitates preparation of these function strings by 
providing the interpreter shown in Figure 130. The inter­
preter can handle approximately 90 pre-defined operations 
which function like instruction operation codes in a computer. 
Operations include: 

• Transmit or receive data 

• Block check character control 

• Automatic'polling 

• Control of modems 

• Timer control 

• Branch and Link instruction 

It is not appropriate to list all operations in detail here. The 
reader should consult the appropriate Programmable Com­
munications Subsystem programming manuals for this informa­
tion. It is important to indicate here that users prepare their 
programs or function strings in a sequence Ii ke the type of 
high-level instructions listed above. This sequencing facili-
tates the construction of rather elaborate communications' 
support programs in the subsystem. Source code format 
function strings are also available for terminals like the 3270 
family, the 2740, and Teletype Models 33 or 35. 

User-Generated Software 

The programs within the Programmable Communications 
Subsystem are microprogrammed. Instead of requiring the 
user to learn programming techniques at this detailed level, 
IBM provides an elaborate programming support system 
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which runs under the normal Program Preparation System 
software. This support system means that the user can create 
function strings and necessary tables simply by calling macros. 
The user enjoys a dual advantage: program preparation is at 
a high level, while microprogrammed subsystems provide the 
user with all the advantages of an efficient data processing 
operation. 

It is important that the hardware and software architec­
ture of the small computer integrate any subsystem like the 
communications' subsystem. With the Series/1, hardware 
integration is simplified because the architecture of the 
input/output system permits processors to be added to the 
system without sacrificing the communications' rates to the 
main processor and main storage. A previously illustrated 
example of these subsystems was the floating-point sub­
system which has both an objective and an architectural 
structure similar to that of the communications' subsystem. 

Integrated Software Structure 

Figure 131 shows the integration of the software support 
for the communications' subsystem. As previously indicated, 
good programming practice separates communications' soft­
ware support into different modules to support different 
terminals and different application requirements. The com­
munications' subsystem support extends this architecture as 
shown in the illustration. The one module has been com­
pletely off-loaded into the communications' subsystem as 
discussed above. A simple interface remains which drives 
the Programmable Communications Subsystem using normal 
input/output instructions. As shown in the figure, this inter­
face permits an application program to write Execute 1/0 
instructions in which the immediate device control block 
references a device control block-as in all cycle steal input/ 
output operations. Within the device control block, the 
system codes a command which is effectively an index into a 
function address table within the Programmable Communi­
cations Subsystem. The subsystem, in turn, is a pointer to 
a function string which performs the operation. In other 
words, the user supplied 1/0 instruction is equivalent 
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The operating system controls the execution of all applica­
tion programs. 

Realtime 
Programming 
System 

Interface between 
the operating 
system and the 
Programmable 
Communications 
Subsystem 

Communications' 
application 
program 

Programmable Communications Subsystem 
r--~---------------, 
I I 
I I 
I I 
I I 
I I 

I i I 
I I 

I L------------------

Attached lines 
and devices 

The subsystem controller accesses 
the device control block in main 
storage via the cycle steal channel, 
and carries out the appropriate 
function for the appropriate 
communications' line. 

Figure 131. Integrating software support of the Programmable Communications 
Subsystem into the Realtime Programming System operating system 
(1 of 2) 
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All commands to the subsystem are normal Execute 
1/0 commands with the standard immediate device 
control block pointing to a device control block 
which, in turn, contains the actual command the 
Programmable Communications Subsystem is to 
carry out. 

Immediate device control block 

I ~ 

Device control block is accessed 
by the subsystem using the cycle 
steal 1/0 system. 

The command in the device control 
block actually points to a particular 
user~defined function string to be 
carried out for a given communica­
tions' line or attached device, like 
an integrated modem. 

Figure 131. Integrating software support of the Programmable Communications 
Subsystem into the Realtime Programming System operating system 
(2 of 2) 
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to a call to one of the user-defined function strings or sub­
routines within the Programmable Communications Sub­
system. Conceptually, it does not matter whether such 
communkations' subroutines are in the mafn processor or 
in a separate subsystem. The user maintains complete con­
trol over what function strings the system provides and what 
they do. In this manner, users may easily customize their 
communications' systems. Because of the interface within 
the Series/1 Realtime Programming System software, the 
user can construct application programs either in a higher­
level language or in assembly language to perform two 
separate functions: 1) to use information gathered through 
the communications' system; 2) to generate information 
to be transmitted through the system. 

The combination of hardware and software communica­
tions' architecture in the Series/1, then, provides support to 
customize applications at similar levels whether they involve 
a small or large number of terminals. The Series/1 achieves 
this support while combining availability, reliability, software 
support, and compatibility with other systems-all require­
ments listed in Chapter 1 for successful, communications­
oriented small computer applications. 
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Reliability, Availability, 
and Serviceability 
(RAS) 

The success of any small computer application depends 
upon the close cooperation of the hardware, software, and 
maintenance systems. As stressed in earlier chapters of this 
book, if these three components are not fully integrated, the 
overall system will be less successful. Hardware and soft-
ware integration have been discussed earlier, with emphasis on: 

• How hardware is present to support the appropriate 
software for small computer applications 

• How software takes advantage of the hardware 
- To carry out the application efficiently 
- To minimize development and debugging time 

In the same way, hardware and software must be designed 
so that the resulting system will be reliable and maintainable. 
The objective of this chapter is to discuss how maintenance 
is integrated into the overall IBM Series/1 hardware/software 
design. 

The Contribution of Maintainability 
to the Overall System 

The combination of hardware and software designed to 
carry out an application often includes both IBM- and third 
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party-supplied hardware and software components; the 
combination must operate reliably in a realworld environ­
ment. It would be unrealistic to expect such a system to 
operate without problems or failures. Furthermore, it 
would be prohibitively expensive to design every system so 
that the probability of failure would be almost non-existent­
for instance, as low as the failure ratio of manned space 
flights in recent years. The design objective of the Series/1 
was to devise reliable hardware and software while simul­
taneously providing the system with a quick and efficient 
problem response capability to minimize the effects of fail­
ures. Figure 132 shows the various states of a small computer 
system. In normal operation, the system performs its 
intended function. A "soft" error condition-an error which 
the system can detect or bypass without halting operation­
must be identified and responded to rapidly. To do this, 
the hardware and system design must function in a manner 
to detect these errors accurately and easily. 

An example of such an error could be the transmission of 
a noise-corrupted byte of data between a device and storage­
an error which the system might correct by a retransmission. 
The system must detect these soft errors by using: 

• Parity bits on the data 

• Error detection bits, where appropriate 

• Checks sums or cyclic redundancy codes 

• Echoing of data 

• Other procedures depending upon the devices and distances 
involved, and the criticality of the data 

The combination of hardware error detection and software 
error recovery procedures increases the reliability of the 
system. When a "hard" error occurs-an error which is severe 
enough to halt operation of the system-time is required to 
diagnose the source of error and perform the necessary 
maintenance. If the system can reduce the time required to 
diagnose and repair the error, then the effect on the applica­
tion can be minimized. 

Availability of the system is the net time that the system 
is actually available to perform the application; it is, to the 
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user, the most important measurable element in the system. 
A high level of availability implies a minimal response time 
to hard errors and rapid recovery from soft errors. 

It is important to note that every component of the 
system-hardware and software-must be integrated into the 
soft and hard error detection and recovery procedures. This 
integration is essential because it is typical of small computer 
applications that a variety of OEM- and vendor-supplied hard­
ware and software components interact closely to carry out 
the application. It is important to emphasize the distinction 
between the maintenance capability of the Series/1 architec­
ture and the maintenance supplied by IBM itself. IBM has 
designed the Series/1 so that self-diagnosis and maintenance 
can be performed effectively and efficiently. OEM users can 
take advantage of those capabilities in the design and utiliza­
tion of their devices and interfaces so that the systems they 
configure can also be maintained effectively and economi­
cally. IBM-supplied maintenance covers only devices 
supplied by I BM. 

Design and Organization for Reliability 
Design for reliability implies design for low failure proba­

bility. There are two aspects of reliability: 1) low failure 
probability of hardware components, and 2) low probability 
that either noise corruption or hardware failure will cause the 
application to malfunction. For example, failure of a com­
ponent might not cause the system to halt but might cause 
errors in data stored in files, transmitted to devices, and 
in other locations. These errors are just as serious as hard­
ware failures. Consider, first, the hardware reliability. 

Component and Device Reliability 

The Series/1 electronics use extensively the large-scale, 
integrated TTL logic of the type used and proven in other 
IBM products. With proper burn-in, testing, and other quality 
control mechanisms developed in the electronic revolution of 
the past 15 years, such devices are now sufficiently reliable 

455 



-l»­
V'i 

°' 
i--

1 
I 
I 
I 
I 
I 
I 
I L __ _ 

System start 
or restart 

The system is not available during diagnosis and service. 

Repair and 
verify 

Verify the correct operation 
of processor devices, storage, 
and all connections. 

Figure 132. Availability states (1 of 31 

Identify and 
diagnose 
failure. 

--, 
I 
I 



.J:>. 

A I The system is available during normal operation as long 
as error recovery software handles the soft errors . 

.---------

Normal opera­
tion: performing 
application 

Error/failure occurs. 
Detect error 

Software per­
forms error 
recovery. 

"Hard" error 

L---------------------------~ 

~ Figure 132. Availability states (2 of 3) 



~ 
00 

Achievement of high availability requires an integrated system of hardware and software to perform the 
self-checking and self-diagnosing of errors. The integrated system of hardware and software must be 
extended by the user to include OEM and application hardware and software. 

Availability is achieved in three ways: 

1. Reliable hardware minimizes actual failures 

2. Extensive self-checking detects soft errors which may be corrected by error recovery procedures built into 
the system and application software 

3. Extensive self-diagnosing identifies and isolates a hard failure quickly to minimize mean-time-to-repair and 
maximize availability 

Figure 132. Availability states (3 of 3) 



to meet the availability levels demanded by small computer 
applications. 

Reliability is more important in devices that require 
mechanical motion which causes wear and vibration. In this 
area as well, the computer industry has learned to design 
reliable devices. For example, the IBM disk storage unit uses 
a sealed disk enclosure containing the fixed disk and the 
mechanical access mechanism. Sealing the disk eliminates 
operator handling of critical devices, reduces exposure to 
external contaminants, and obviates preventive maintenance 
of heads, disk, and other mechanical devices within the 
enclosure. 

With this design, the probability of the disk's data accur­
acy and availability is greatly increased. Similarly, slower 
devices like the Series/1 diskette unit and the line printer use 
a stepper motor as main drive rather than a continuously 
running motor assisted by a clutch mechanism. Although 
the latter motor is adequate for the task and perhaps lower 
in initial cost, the stepper motor removes a high-maintenance 
item (the clutch) from the system. Such design character­
istics enable IBM to market devices requiring little preventive 
maintenance. 

Attention to details like these are evident in the specifica­
tions of other Series/1 devices. One previously mentioned, 
important detail is that IBM has specifically designed the 
Series/1 hardware and software to be responsive to OEM 
devices. Of course, it is necessary that these devices be as 
well designed as the Series/1 itself to prevent compromise 
of overall system reliability. 

When hardware is reliable, system availability is extended. 
Soft errors will continue to occur, however, because of noise 
on transmission lines, variation in power levels, and human 
fallibility. Detection of these errors is fundamentally 
important to, and a major consideration in, the design of the 
processor and device hardware and software. Error detec­
tion is built into the system at all levels as shown in 
Figure 133. 
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• Specification check 
• Invalid storage address 
• Privilege violate 
• Protect check (4955 only) 
• Invalid function 
• Floating-point exception 

(4955 only) 
• Stack exception 
• Storage parity check 
• CPU control check 
• 1/0 check 
• Power/thermal warning 

• Condition code for each 
input/output operation 

• Interrupt status byte for 
each interrupt 

• Condition code for each 
interrupt 

• Redundancy checking of 
data items and data streams 

• Built-in self-checking of 
data read and written 

• Maintenance of device 
status words 

Error detection is fundamental to high system availability. 
Each device and component in the system must be designed 
to perform appropriate error checks. The system must be 
designed to respond to these detected errors-so that error 
recovery can be accomplished. 

Figure 133. Elements of error detection 
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Processor Error Detection 

At the processor level, some of the built-in error detection 
techniques (most of which have been previously described) 
include: 

Specification Check. An indirect address or a generated 
effective address has violated an even-byte boundary 
requirement. 

Invalid Storage Address. One or more words of the instruc­
tion or an effective address is outside of the installed storage 
size of the system. 

Privilege Violate. A privileged instruction is encountered 
while in the problem state. 

Protect Check. An instruction is being fetched or data is 
being accessed from a storage area not assigned to the 
current operation, or an instruction is attempting to 
change an operand in a storage area assigned as read-only. 

Invalid Function. An illegal operation code or function 
combination has been detected, or a floating-point operation 
was attempted and the floating-point feature is not 
installed. 

Floating-Point Exception. An exception condition is 
detected by the optional, floating-point processor. 

Stack Exception. An attempt has been made to pop an oper­
and from an empty main storage stack or push an operand 
into a full main storage stack; or a stack cannot contain the 
number of words to be stored by a Store Multiple instruction. 

Storage Parity Check. A parity error has been detected 
while data is being read out of storage by the processor. 

CPU Control Check. The hardware has detected a malfunc­
tion of the processor controls (e.g., no level is active but 
execution is continuing). 
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1/0 Check. Hardware error has occurred on an input/output 
interface. 

Power/Thermal Warning. A power failure or thermal overload 
has occurred. 

Note that not all of the conditions listed above pertain to 
all processor models. 

Detection of any of these conditions permits an increase 
in system reliability because error recovery operations can 
be initiated (Figure 134), thereby preventing the system 
from actually halting. Software design must recognize the 
hardware assistance in recovery operations and incorporate 
this assistance within its own performance. Consequently, 
software design is crucial here. An example of recovery 
software design and performance is illustrated in Figure 135 
where the response to a power failure is depicted. 

Battery Backup 

If the source voltage drops below approximately 85 per­
cent of the normal line voltage and the system includes a 
battery backup unit configuration, the system will auto­
matically switch to battery power and will continue to 
power the processor. A class interrupt occurs causing a 
branch to the power/thermal interrupt handler routine 
which can continue to monitor the power/thermal failure 
bit in the processor status word. After mainline voltage is 
restored: 

• The system will automatically switch back to mainline 
power 

• The power/thermal failure bit in the program status word 
will be turned off 

• The system can resume execution of the problem 
program 

No data will be lost from main storage. Equally important 
is the fact that the system will not generate erroneous 
results because of low voltage levels in storage or on the 
input/output channels. Thus, the system protects the applica­
tion from data distortion as well as data loss. 
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If the configuration does not include a battery backup 
unit, the system will power down. Upon restoration of the 
mainline voltage, the system may automatically power itself 
back up and can automatically re-IPL. The user can program 
the IPL bootstrap program to reload any program, and 
resume execution. This automatic restart feature makes the 
system particularly viable for use in a remote or unattended 
location. 

Input/Output Error Detection 

The second level of error detection in Figure 133 is on the 
input/output channel itself. IBM has designed the system so 
that all devices provide the following checks: 

• Condition codes-each time the system issues an Operate 
1/0 instruction, the device, controller, or channel 
immediately reports to the processor a condition code 
pertaining to execution of the 1/0 command 

• Interrupt status byte (ISB)-if an error condition exists 
after an 1/0 operation (for example, a channel parity 
check), the system presents detailed information on the 
nature of the error in the ISB 

• On devices which present interrupts, the system again 
presents the condition codes with the 1/0 interrupt to 
further define the exact status of the 1/0 operation 

With these checks built into each input/output or interrupt 
operation, the user can create software which is not sensitive 
to those infrequent errors which do occur. 

Device Error Detection 

At the device level in Figure 133, each device itself is 
responsible for checking its own operation; each device signals 
its errors using the condition code and interrupt facilities of 
the system. For example: both the disk and diskette units 
generate cyclic redundancy check characters for both the 
sector identification field and the sector data field within 
each sector. Asynchronous communications' interfaces pro­
vide longitudinal and vertical redundancy checking. Binary 
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0 Error recovery involves multiple retries of 
the transmission. Only if these retries are 
unsuccessful is a hard error signaled. 

Main 
storage 

Processor 

!-+-

Error 
notification 

..... 
Input/output 
channel 

Disk or 
diskette 
interface 

: 

~ 

Disk or 
diskette 

Cyclic redundancy checks assist in the detec­
tion of errors due to bad data on the disk or 
noisy transmission. 

e Each surface of the disk or diskette is 
divided into sectors. Each sector has a 
sector-identification field and a data field. 
Cyclic redundancy check characters are 
stored for each field. 

Figure 134. Disk and diskette error detection (1 of 2) 
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A sector identification field insures that data cannot be 
read from or written into the wrong area-such action 
would constitute a major error if it occurred. 

Both system software and user-written software for dedi­
cated systems must provide for the error detection capa­
bilities, and both must have a built-in error recovery 
capability. 

Disk and diskette storage error detection illustrates how 
error checking must be included in the hardware and soft­
ware system design in order to detect errors appropriately. 

Figure 134. Disk and diskette error detection (2 of 2) 

synchronous communications' interfaces offer cyclic redun­
dancy checking. Other devices provide similar appropriate 
checking for the device. The result of this checking is as 
follows: 

• The integrated design of the system identifies detectable 
errors 

• The system notifies the processor of the error 

• If possible, the software will respond to correct the error 

Frequently, retry of a storage read or other operation will 
correct the error. Even if the error is corrected automatically, 
system software maintains a log of the error occurrence for 
later system diagnosis by I BM customer engineering or by 
the user. 

In the past, manufacturers have found it excessively expen­
sive to build such extensive self-checking into the hardware. 
The construction of the microprocessor has reduced these 
costs to the point where this hardware function is now 
economically feasible. The effective use of the powerful 
microprocessor technology to incorporate this self-checking 
hardware capability has made a highly significant contribu­
tion to overall system availability. 
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Power line 
voltage 
monitoring 

Power line 

A class interrupt signals the processor 
to prepare for shut down-if there is 
no battery back-up-or to monitor for 
power restoration. 

If voltage falls below ___ _, 
85% of normal 

Switch to and from 
battery-backup is 
automatic 

Power to system 

Battery backup f=D 

A combination of hardware and software responds to 
power line voltage failures. The hardware monitors the 
line voltage and switches to battery backup if it is present. 
When voltage is restored, switch back is also automatic. 
Interrupts notify the processor of these events so that 
designated software routines can take actions appropriate to 
the particular configuration and the specific application. 

Figure 135. Hardware and software response to a power failure 
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Error Diagnosis: The Key to 
High Availability 

If the system is to maintain its availability at a high level, 
it must diagnose, quickly, any hard error or failure in any 
component of the system. Using microprocessors in inter­
faces and microprogramming in the processor become 
economically significant factors when the system must per­
form a high level of error diagnosis. This is so because a 
system with distributed intelligence capability can contain 
many more extensive self-diagnostics more economically 
than can a system with fixed logic designs. Series/1 devices 
and interfaces use such approaches where it is most 
economical and appropriate. 

Microprocessor Based Self-Diagnosis 

The system includes microverification routines in all 
microprocessors and in the microprogrammed processor it­
self. These routines are executed when the system is 
powered-on, reset, or initial program loaded. As shown in 
Figure 136, the processor is self-checked to assure correct 
operation-including data flow to and from registers-of 
the microprogrammed system. Self-checking involves: 

• Moving data into and out of registers and checking for 
an expected result 

• Performing micro instructions and comparing the results 
to known values or checksums 

• Other similar procedures 

In parallel with the processor's self-checking, the system 
logically isolates each device controller. Each controller per­
forms a similar self-check including a run through all of its 
micro instructions and a compare of an accumulated check­
sum with a preprogrammed checksum. The system then 
checl<s by writing and reading back a specified bit pattern in 
the first 16 kilobytes of storage. Finally, if all modules pass 
these self-diagnostics, the system is integrated and the 
input/output channel itself is checked to insure that data 
can be passed back and forth between main storage and the 
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lill 
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The system: 

Interface 
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micro­
processor 

• Writes prespecified patterns into the first 16K-bytes of 
main storage, and then reads them back 

• Writes into processor registers, and then reads them back 

• Exercises micro instruction data paths and verifies the 
results 

• Verifies transmission between devices and the main stor­
age across the input/output channel 

• Checks the device in a device-dependent manner through 
its microprocessor-controlled interface 

The microprocessor checks for correct control store con­
tents, and verifies data paths. 

The system uses the microprogrammed processor and the 
microprocessor-based interfaces in such a manner that, 
before the start of the application software: 

• The separate operation of each component can be 
checked 

• The combination of devices can be checked 

Figure 136. Processor self-checking 
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device interfaces. Location zero in main storage is used by 
the device interfaces for this purpose. 

If any of these checks do not succeed, the system has 
detected a hard failure. Because of the detailed nature of the 
checking, the failure has probably been isolated to a specific 
printed circuit card. Replacement of the card can usually 
remove the problem. 

If all tests are successful, system operation begins. Detec­
tion of a hard failure halts the system; at that point, the 
diagnostic capabilities of the system are again activated. 

Diagnostic Software 

Series/1 provides diagnostic software which takes 
advantage of the integrated design of the system's hardware 
and software. For example, the system provides a diagnostic 
instruction which enables software to check operation of 
devices at very detailed hardware levels. Storage can be 
checked by loading specific addresses and data into storage 
address and data registers, and then checking the result of 
the storage read or write operation. Similarly, software 
can check those diagnostic device commands which produce 
device-dependent results. 

Devices are specifically designed to be diagnosed this way. 
For example, Series/1 provides diagnostic wrap-back facili­
ties for the teletypewriter: 

• Attachment 

• Timer 

• Communications 

• Integrated digital input/output 

• Sensor input/output units 

Diagnostic wrap-back provides, under program control, 
routing of output signals back into input ports; as a result, 
the system can check the complete operation of interfaces 
by outputting data and reading the same data back in again 
to insure that it is transmitted correctly (Figure 137). In 
addition, this wrap-back feature can be used without remov­
ing cables or attaching special jumpers-further reducing 
diagnostic time. 
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Wrap-back of signals permits the system to read back signals 
being transmitted to an external device; this insures that 
the desired signal is the one actually sent. 

The system must also diagnose the combination of IBM­
supplied interfaces and OEM supplied devices. By wrap­
ping-back signals, operation of each portion of the system 
can be checked without using cables, or disconnecting 
the system. 

Figure 137. External device diagnosis 

Interface Diagnosis 

As an example of the power of this diagnostic approach, 
consider the teletypewriter interface diagnosis, which can 
take place either with or without a device connected to the 
interface (Figure 138). 

The Reset to Diagnostic Wrap command: 1) resets pend­
ing interrupts, condition codes, and all registers in the tele­
typewriter adapter except the prepare register, and 2) dis­
ables the read and write control interface lines. The system 
places the teletypewriter adapter in a diagnostic wrap state. 

In the diagnostic wrap state, commands can be issued to 
the teletypewriter adapter for testing purposes. If a Write 
command is issued, data is sent to the teletypewriter adapter 
transmit data register and to the attached device, if present. 
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Using both diagnostic and input/output commands permits 
both online and offline checking of some devices. The 
system supplies diagnostic software for standard devices 
and interfaces, but user-written software for OEM devices 
can be similarly prepared and used. 

Figure 138. Teletypewriter interface design 

I 
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At the completion of the transmit operation, a device end 
interrupt is reported. The data is also sent to the teletype­
writer adapter received data register; at the completion of 
the receive operation, an attention interrupt is reported. 
For checking purposes, the system can force the teletype­
writer adapter into an overrun condition by: 1) not reading 
the received data register after the attention interrupt is 
accepted, and 2) then issuing another Write command. The 
teletypewriter adapter does not report condition code 1 
(busy) or condition code 5 (interface data check) to this 
command. 

Exit from the diagnostic wrap state is by any of the 
following commands: a Device Reset, Halt 1/0, System 
Reset, or Power-On Reset. 

Diagnostic Commands 

The integrated digital input/output interface provides 
similar capabilities (Figure 139). The system offers two 
commands to thoroughly test the correct operation of this 
interface. 

The Set Test 0 command sets a diagnostic mode that dis­
ables the user inputs, including external sync. The ready line 
is disabled. The command places zero bits into the digital 
input receivers and activates the external sync receiver with 
a pulse. If external sync is armed, an interrupt is posted. 
The digital input data register contains all zeros. The user's 
previous data inputs and intervening commands govern the 
data in the process interrupt data register. If an interrupt is 
pending, condition code 1 (busy) is reported and the com­
mand is not executed. Also, when condition code 5 (inter­
face data check) is reported, the command is not executed. 

The Set Test 1 command sets a diagnostic mode that dis­
ables the user inputs, including external sync. The ready 
line is disabled. The command places one bits into the digital 
input receivers and activates the external sync receiver with 
a pulse. If external sync is armed, an interrupt is posted. 
The DI data register contains all one bits. The data in the Pl 
data register is initially all one bits and, thereafter, is governed 
by intervening commands. If an interrupt is pending, 
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Diagnostic test commands permit: 

• The setting of inputs at either zero or one levels 

• Testing the external synchronization lines 

Using these instructions, diagnostic software can, in effect, 
simulate the operation of an external OEM device; this 
insures that data is transmitted and received correctly, and 
that timing signals are properly armed and recognized. 

The integrated digital input/output interface is used to 
interface OEM and special devices to the Series/1, and is 
fully supported from a diagnostic point of view. Self­
diagnosis of the OEM device itself is the responsibility of 
the device designer or the system integrator. 

Figure 139. The integrated digital input/output interface 

condition code 1 {busy) is reported and the command is not 
executed. Also, when condition code 5 (interface data check) 
is reported, the command is not executed. 

Other features have similar instructions and utilize the 
external wrap connections to improve problem analysis and 
failure diagnosis. 

The reader should note that the diagnostic instructions are 
part of the overall system design. Any OEM device that inter­
faces to the system can have the same self-diagnostic capability 
as the system itself, but the OEM manufacturer must design 
this capability into the device, its interface, and its support­
ing software. This fact is important in those applications 

473 



where the user must add special devices because the system 
can support the added device in both its normal and abnormal 
operations-a major consideration in critical applications. 

Error Logging 

During a normal operation, Series/1 system software 
creates error logs to help in diagnosing problems. Utility 
software furnishes a dump of these logs which alerts 
maintenance and customer personnel to marginally-operating 
equipment. IBM has built other diagnostic aids, like com­
munications' interfaces, into difficult-to-diagnose equipment. 
For example, the input/output and communications' facility 
trace functions are designed to continuously record current 
activity in main storage during normal operation of the 
system. The system uses this facility to reconstruct the 
sequence of events leading up to a system failure; the user 
can then more readily diagnose intermittent failures and 
other difficult system problems. 

The communications' online test capability can test 
attached asynchronous terminals concurrent with user opera­
tion, and determine proper operation of the communications' 
link (lines and modems) as well as the terminal and system 
programming support. 

These Series/1 diagnostic features are far more sophisti­
cated than any previously available on small computers; 
today's demands for system availability require that these 
diagnostics be an integrated part of the system design. The 
extensive service aids provided with the Series/1 enable users 
to determine, by themselves, the source of many system 
problems. 

Support for Maintenance 
Most users are concerned about the support available for 

service and maintenance. The OEM users who provide their 
own processor and devices' support have access to all of the: 

• Training courses 

• Diagnostic software 
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• Maintenance consoles 

• Signal tracing devices 

• Other aids which IBM makes available to its own systems 
and customer engineers 

These aids include full documentation and training in both 
IBM-supplied hardware and software. As discussed in 
Chapter 1, if users are to take responsibility for the system, 
they must have all the available information about the system 
as well as full training on the system. 

For users who do not wish to undertake this responsibility 
themselves, IBM offers various contractual arrangements so 
that trained and available customer engineers can provide 
the proper level of service. This availability of highly trained 
and knowledgeable-hardware and software-service people 
is a very valuable backup to the OEM or third-party system 
integrators who occasionally need in-depth backup to solve a 
particularly critical problem with one of their systems. The 
importance, to users and suppliers, of available, high-quality, 
trained personnel cannot be overestimated. 

In summary: the IBM Series/1 is an integrated design of 
hardware, software, and maintenance designed to provide a 
set of modules or tools which can be combined with user- or 
other vendor-supplied modules to build an economical, 
small computer application. The integrated design of the 
system insures that: 

• Applications can be performed 

• Implementation can be controlled 

• Errors can be diagnosed 

• Overall system availability can be assured 

These capabilities are the primary prerequisites for a satis­
factory application. 
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burst mode 243 
bus, input/output (see also Direct Memory Access; input/output 
channel) 205, 218-220, 233, 363 

carry indicator 302 
CCITT standard 414 
chaining input/output 
channel repower card 
channel socket adapter 
channel switch 78 
channel, System/370 
clock signal 332 

242 
45, 378 

379 

68 

communications 63, 386 
concentrator 11, 15-22 
error checking 37 
interfaces 34, 67, 397, 406, 407, 414, 435, 436, 442-444 
intertask 59-62, 135, 159, 165-168, 171, 175, 177-189 
line cost 15 
networks 15, 24, 392 
programmable system 397 
protocol 63, 67, 392-397, 402, 403 
software 16, 18-22, 68, 415, 436-440, 449-452 
structure 63-66, 397-401, 414 

concurrent 291, 303, 312-320 
condition codes 225-227, 229, 234-235 
connect 261 
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contention 86 
context switching (see task switching) 
Control Program Support 48, 255, 261, 264-270, 336 
control storage (see read only storage) 
controller, cycle steal 233, 238, 239 
current loop 343, 352 
cycle stealing 83, 86, 205, 208-209, 233, 236-248, 407 
cycle stealing channel (see bus, input/output; Direct Memory Access; 

input/output channel) 
cyclic redundancy checking 404, 465 

data acquisition and control 
application 25-33 
hardware 27 
software 30 

data sets 270-277 
DOB (see device descriptor block) 
disconnect 261 
device address 216, 351, 353 
device control block 242-245 
device data block 103 
device descriptor block (DOB) 225 
device identification number 103 
direct addressing mode 136, 138 
disable interrupt (see interrupt) 
diagnosis 

errors 3, 37, 95, 106, 224, 226, 227, 261, 342, 404, 429, 453, 
467-474 

maintenance 3, 50, 53, 362, 453, 473, 474-475 
self 3,4~ 51,5Z 76,83,205, 326,343,358, 37~453 

diagnostic mode, input/output bus 367 
digital input/output 74, 352-362 
direct access storage 39, 43 
Direct Memory Access (OMA) (see also bus, input/output; input/out-

put channel) 5 
direct program control adapter 73, 76, 205, 208 
direct program control, input/output (see input/output, direct 

program control) 
disconnect 261 
diskettes 69, 70 

magazine unit 70, 71 
disks 69 
displacement 141, 283 
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distributed processing 386 
DMA (see Direct Memory Access) 
documentation 

program logic 53 
source code 36, 53 

double buffering 216 
DPC (see input/output, direct program control) 
duplex (half- or full-) 401, 423 
dump device 69, 70 

EBCDIC 90, 91, 414-419 
EIA standard 343, 351, 414 
enable interrupt (see interrupt) 
error detection (see diagnosis) 
error recovery 106 
even indicator 302, 304-306 
Event Driven Executive 48 

fast overlay (see storage overlay) 
flags 297 
floating point 293-295 
front end processor 

application 4, 22-25, 386 
software 22, 25 

function modifier 285 

gate 332-336 
GPI B adapter 76, 242, 328, 382 

handshaked 203, 355, 370 
high-level data link control (see synchronous data link control) 
high limit address {HLA) 111 
horizontal redundancy checking 404 
HDLC (see synchronous data link control) 
HLA (see high limit address) 

I DCB (immediate device control block) 216, 218, 219, 221, 223, 250 
input/output 

active signal 370-375 
channel (see also bus, input/output; Direct Memory Access) 

195-204, 327 
control block 257 
cycle stealing 233-248 
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input/output (cont.) 
direct program control (DPC) 39, 43 
interrupt-driven 208, 211, 332, 34 7 
overlapped 212-215, 262, 263 
polling 208-210 
software support 48, 255 
system 190 

immediate data 283 
immediate device control block (see IDCB) 
indicators 87, 95-97, 302, 321 
indirect addressing mode 136, 139, 142, 144, 145, 290 
initial program load (see IPL) 
interface cycle steal control 86 
interrupt(s) 125, 127-129 

class 103-107, 111, 112, 256 
device mask 131 
enable/disable 312, 315 
identification word 225 
input/output 102, 104-106, 209-216 
mask register 99, 127-131 
multilevel 81, 82 
response 55, 102, 103, 106, 108, 109, 128, 129, 227-232, 303 
service active line 370 
summary mask 99, 127-129, 130 
supervisor call 47, 256 
timer 329, 332-335 

I PL (see also operating systems, I PL) 48, 99, 101, 102, 113, 421, 463 
instruction set 39, 278 
interval timer 329, 332-336 
inventory control 6 

key entry 5 
key 

instruction space 153-164 
operand 1 153-164 
operand 2 153-164, 249-254 

languages 
assembler 79 
COBOL 42, 49, 79, 136, 141, 195, 277, 278 
FORTRAN 42, 49, 79, 95, 136, 141, 195, 277, 278 
higher-level 49, 95, 277, 278 
macro 42 
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languages {cont.) 
PL/I 42, 49, 79, 95, 136, 141, 195, 277, 278 

Level Exit instruction 106, 108, 109, 320, 323 
level status block 87, 153 
LLA (see low limit address) 
Load Multiple and Branch instruction 107, 123, 124 
load multiple instructions 107, 122 
load state 101 
logical instructions 295, 296 
longitudinal redundancy checking 403, 404 
low limit address (LLA) 112 

mapping (see address translation) 
maintainability 453 
mask 99, 321 
mean-time-between-failures 3 
memory (see storage) 
microprocessor 49-50, 203 
microprogramming 39, 49, 83 
multidrop 203 
multifunction terminal 

application 5-11 
hardware 7, 10, 391 
software 1 0-11 

multiplexer (see also communications concentrator) 15 
multipoint 400, 401, 421, 431 
multiprogramming 43, 53-56 

negative indicator 302 
network (see communications networks) 
number storage 

floating 91-95 
signed 91-95 
unsigned 91, 92 

OEM device 
attachments (see user attachments) 
hardware support 3_4, 35 
software support 34, 36 

Operate 1/0 instruction 223, 226, 227, 239 
operating systems 2, 279 

address translation 47 
auxiliary storage resident tasks 183 
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operating systems (cont.) 
data set support 271 
file support 34, 271 
input/output support 194, 209, 212-215, 270, 336, 437 
interrupt handling 106, 108, 109, 224 
IPL 99 
protection 161 
requirements 31, 34, 36, 48 
supervisor and problem states 101-102 
supervisor call 175, 176, 256, 258-260 
task switching support 59-62, 179, 180-182 

order processing 6 
overflow 95, 302 
overlay 186-189 

fast (see storage overlay) 
overrun error 342, 347, 472 

packaging of hardware 
parametric instructions 
parity 404 
partition 

39, 44-45 
283 

dynamic 58, 59, 183, 186 
fixed 56-58, 183-186 

point to point 398, 399, 401 
polling 208-210, 402, 431, 434 
post increment address mode 137 
power fail 113, 462, 463 
power-on reset 367 
Prepare command 221-224 
priority levels (see also interrupt) 87, 103, 106, 108, 109, 224 
privileged instructions 102, 106, 320, 321, 324 
problem state 101, 102 
processor 

architecture 82-87, 195 
requirements 81, 82 
state 95, 98-102 
status word 103, 110-113 

program preparation 49, 78, 79 
Program Preparation System 448 
Programmable Communications Subsystem 397, 441-452 
pulse 

counter 
duration 

329 
342,344, 345 
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pulse (cont.) 
duration counter 329 
rate 342 

Read command 221, 222 
read only storage 83, 84 
ready line 356, 357 
reentrant 134, 135, 177, 178 
register addressing modes 137, 142, 143 
register, segmentation 165, 166 
registers 53-55, 87-90 

floating-point 90 
general purpose 53-55, 82 
instruction address 103 
level status 87, 95-97, 302 
level status block 87-89, 103 
mask 99, 321 
status 82, 153 
storage address 82, 86, 134 
storage data 82, 86 

reliability 455, 459 
relocation hardware 43, 46 
remote job entry 5, 386 

scheduling 6 
SDLC (see synchronous data link control) 
segmentation register 165, 249, 321 
select response signal 370, 377 
sensor based input/output 72-75, 77, 78 
serialize 312, 314-316 
Set Level Block instruction 106 
shifting 296, 300, 301 
software, architecture 48, 255 
stack 107, 111-124 
stack control block 114, 122 
start-stop communications 345 
status flags 113 
stop state 100 
Store Multiple instruction 107, 122, 123 
storage address 

modes 134, 135-141, 147, 151, 177-179, 283 
space 134 
translation (see address translation) 
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storage channel (see bus, input/output; Direct Memory Access; 
input/output channel) 

storage key 152 
storage mapping (see address translation) 
storage management 56-61, 135, 179, 180, 183-189 
storage organization 132-171 
storage overlay 186-189 
storage protection 134, 152, 249-256 
strings 290, 291, 302, 303, 308, 309 
strobe signal 370-377 
structured programming 312 
stuffing, character and bit 414, 430, 432, 433 
subroutine linkage 123-125, 126, 127, 168, 317-319 
Supervisor Call instruction (SVC) 256, 258-260, 321 
supervisor state 101-103 
synchronization 353-357 
synchronous data link control (SDLC) 67, 402, 403, 423-436 
systems 1, 2 
system reset 367 

task(s) 
addressing 43, 46, 47 
communications among 59-62 
definition 56, 57 
management 48 
switching 177, 179 
synchronization 62 
set 31, 56-58 

TEA (see top element address) 
teletypewriter 72, 76, 343, 469 

adapter 72, 76, 343 
timers 329, 332-343 
top element address 112 
transaction processing 5 
transparency in data transmission 405, 410, 421, 430 
trap 11 2, 116 
TTL signal 343, 345, 351, 352 
two-channel switch 78, 202 

user attachments 71-78, 205, 217, 242, 270, 326, 352, 362, 378, 
379, 385,455,473-475 

vertical redundancy checking 403, 404 
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wait state 100, 101 
word length 4 7 
wrap-back 469-4 72 
Write command 221, 354, 355 
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