
Series/ 1

The
Small

Computer
Concept

4

8

c

1

Series/ 1

5 ·7

The A B
Small
Computer·
Concept

D E

IBM Series/1

The
Small

Computer
Concept

by

James D. Schoeffler

Prqfessor and Chairman
Department of Computer and Information Science

Cleveland State University
Cleveland, Ohio

International Business Machines Corporation
General Systems Division

Atlanta, Georgia

Library of Congress Catalog Card Number: 78-61315

IBM Order Number: SH30-0237

Additional copies of this book can be obtained from local IBM Branch
Offices, using the IBM Order Number.

Comments concerning this publication should be addressed to
International Business Machi.nes Corporation, General Systems

Division, Technical Publications, Dept. 796, P.O. Box 2150,
Atlanta, Georgia 30301.

I BM may use and distribute any of the information you supply
in any way it believes appropriate without incurring any obligation

whatever. You may, of course, continue to use the information supplied.

©Copyright International Business Machines Corporation 1978

First edition published August, 1978

Printed in the United States of America

Preface

The trend toward small computers and distributed
systems for a wide variety of applications has been termed a
revolution by some. Although the impressive decrease in the
cost of these systems has certainly made this trend feasible,
the driving force has been the changing nature of computer
use. Applications today tend to be much more interactive
and online and less suitable for batch processing. Because
such applications are critical to the operation of business or
industry, they place stringent demands on system hardware,
application and system software, and system maintenance.

Consequently, the choice of a small computer system is
not totally determined by its price. Unfortunately, too many
small computer systems have been designed to minimize price
rather than to meet such critical specifications. Hence, users
have often been frustrated in their attempts to utilize the
benefits of small computers and distributed applications.

After being exposed to the designers and planners of the
Series/1 following its introduction by IBM in November
1976, I was enthusiastic about writing this book. I believe
that the Series/1 was expressly designed to meet the kinds
of critical applications indicated above. I view it as an
"integrated system" in the sense that the hardware, software,
and maintenance concepts all were designed from the begin­
ning to work closely together so that critical applications can
be realized. Furthermore, the system design is such that non­
IBM devices can be included in the system without sacrificing
performance, use of system software, reliability, or availa­
bility. This aspect of small computer applications is very
important to the original equipment manufacturers design­
ing application systems around such a computer.

For the above reasons, I have organized the book around
this integrated hardware, software, and maintenance concept.
The book is intended for users who wish to critically evaluate
the IBM Series/1 for their applications and want to know
what it does, how it does it, and why it does it that way.
The book is not a handbook or reproduction of the various
system reference manuals. It is not an attempt to describe
every processor, software product, or device in great detail.

iii

Rather, those items which I considered important to the
overall integration of the product into successful applications
have been included.

Throughout this project, I have been aided by useful
suggestions from a variety of IBM people, most of whose
names I do not even know. However, three people in par­
ticular contributed significantly: Mr. Michael I. Davis, one
of the principal architects of the Series/1; Mr. Harry J.
Dewhurst of the marketing group; and Mr. Charles E. Snyder,
my editor for the book. In my many discussions of the
Series/1, its objectives, its realization, and its future, I have
been impressed with their knowledge and insight of small
computers and grateful for the opportunity of knowing
and working with them.

James D. Schoeffler July, 1978

iv

Contents

Chapter 1. Introduction to the Small Computer Concept 1
Small Computer Application Needs . . 2
The Multifunction Terminal Application 5

Hardware Support 7
Software Support 10
Support Needs 11

The Communications' Concentrator Application 11
The Concentrator Function 15
Hardware Support 16
Software Support 16

The Front-End Processor Application 22
Hardware and Software Support. 22

The Data Acquisition and Control Application 25
The Data Base 26
Response Time 26
Hardware and Software Structure 27
Software Support 30

Summary of Application Needs . . 34

Chapter 2. Overview of the IBM Series/1 38
Series/1 Architecture 38

System Architecture 38
The Processors 39
Input/Output . . 39
Main Storage . . 43
Address Translation 43
Software Organization 47
Control Program Support 48
Event Driven Executive 48
Higher-Level Languages 49
Self-Diagnosis 49
Maintenance 50

Hardware and Software Support of Multiple, Cooperating
Application Tasks 53

Interrupt System 55
Multiprogramming and Multitasking 55
Storage Management 58
Intertask Communications 59

Communications with Remote Devices and Computers 63
Communications' Protocols 63
Communications' Software 68
Communications to an I BM System/370 68

v

Auxiliary Storage Devices
Disks.

69
69
69 Diskettes

Large-Volume Diskette . 70
User Attachment Features. 71

Asynchronous Terminals 76
OEM Devices 76
Sensor-Based Devices 77

Multiple Processors and a Shared Input/Output System 78
Program Preparation Facilities 78
The Series/1 and Overall Application Needs 79

Chapter 3. Processor Organization 81
Overall Flow of Information in the Series/1 Processo~s 81
Registers and Their Use by Tasks 87
Storage and Manipulation of Data Types 90

Logical or Flag Variables 90
Character Variables 90
Unsigned and Signed Numbers of Various Precisions 91
Floating-Point Numbers with Two Precisions 91

Processor States and the Interrupt System 95
Initial Program Load (IPL} State 99
Stop State . . 100
Wait State 100
Load State 101
Supervisor and Problem States . 101

Effect of Interrupts on the Processor State . 102
Input/Output Interrupts 102
Internal or Class Interrupts 103
Different Responses to the Two Types of Interrupts . 106

Class Interrupts in the Use of Stacks 107
Data Stacking Description 107
Data Stacking Example-Allocating Fixed Storage Areas . . 116
Linkage Stacking Description 119
Linkage Stacking Example-Reentrant Subroutine . . 123

Interrupt Masking Facilities and the Interrupt Response
Algorithm 125

Summary Mask . . . 127
Disabled (Set to Zero) . 130
Enabled (Set to One) . 130
Interrupt Level Mask Register . 130
Device Mask 131

vi

Chapter 4. Organization and Management of Main Storage . . 132
User Concerns in Main Storage Organization . . 133

Main Storage Addressing Modes . 135
Direct and Indirect . 136
Register Modes 137
Based Addressing. 141
Indirect and Base Relative . . 142
Excluded Modes 151
Main Storage Protection . 152
Address Key Protection . 152
Storage Access Types . . 153
Storage Access Checking . 153
Multiple Task Protection . 159
Main Storage Mapping Systems . 161
Storage Segmentation . . . 161
Mapping Multiple Tasks . 165
Mapped Storage Protection . 168
Segmentation Registers . . 168
User Address Spaces . . . 170
Protection Violations . . 171

Intertask Communications . 171
Tasks and the Operating System . . 175
Tasks and Separate Data . . . 175
Task Switching 177
Auxiliary Storage Management . 179
Storage Overlay Management . . 186

Chapter 5. Organization and Management of the
Input/Output System 190

Important Factors in Computer Input/Output . 190
Processor Level 191
The Basic Software Level 191
The Cooperating Task Set Level . 194

Overview of the Series/1 Input/Output Channel . 195
Input and Output Under Direct Program Control . 205

Polling vs. Interrupt-Driven Input/Output . 208
Effects of Buffering on Task Execution . 209
Direct Program Control Instructions . 216
Error Detection and Reporting 224
Overall Operation of Direct Program Control Input/Output . . 225

Input and Output in the Cycle Stealing Mode 233
Use of Microprocessors in Cycle Steal Controllers . . . 238
Cycle Steal Input/Output _Instructions and Commands . 239

vii

Storage Protection and Address Translation Effects on
Input/Output Operations 249

Storage Protection Without Address Translation . 249
Storage Protection With Address Translation . 250

Software Use of Input/Output Hardware 255
Control Program Support of Input/Output . . 255
Operating System Support of Input/Output . . 270

Chapter 6. The Instruction Set and Its Use . 278
Instruction Formats 282
Instructions Used for Data Movement . . . 284

Basic Data Movement Instructions . . . 287
Floating-Point Data Movement Instructions . 287
String-Data Movement Instructions 290
Special Data-Type Movement Instructions . 290

Instructions Used for Arithmetic and Logical Operations . 291
Numeric Data Operations . . . 294
Floating-Point Data Operations . 295
Logical Data Operations . 295
Shifting Data Operations . . . 296

Instructions Associated with Testing Operations' and
Computations' Status 301

Interruptible and Non-Interruptible Testing Instructions . . 302
Bit and Field Testing Instructions 303
Conditional Transfer Instructions 307

Instructions Associated with Structured Programming and
Control of Concurrency 312

Serializing Resource Usage 312
Application Software Modularizing 315

Instructions Associated with Management of the Processor . 320

Chapter 7. Interfacing of User Devices 326
Importance of the Processor Input/Output Architecture . . 327
Importance of System Software Architecture . 327
Timers and Their Use . . . 329

Interval Timing 336
Pulse Rate Measurement . . . 336
Pulse Duration Measurement . . 342
Error Detection 342

The Teletypewriter Interface . . . 343
Asynchronous Data Transmission . 345
The Asynchronous Interface . 347
Software Support 352

viii

The Integrated Digital Input/Output Interface . . . 352
Structure of the Digital Input/Output Interface . 353
Digital Output 355
External Device Synchronization . 355
Digital Input 358

The Direct Program Control OEM Interface . 362
OEM Interface Architecture . 363
The OEM Interface Bus . 363
Typical Output Sequence . 370
Typical Input Sequence . 371
Interrupt Response . . . 371

Isolated and Directly Connected Channel Interfaces . 378
Channel Repower .378
Socket Adapter 379
Self-Diagnostic Capability . . . 379
The Instrumentation Interface . 380

Chapter 8. Distributed Processing Support . 386
The Many Forms of Distributed Processing . 386

Centralized Host 386
Remote Processors 388
Distributed Application Example . 388
Distributed Networks . . 390
First-Level Protocols . 392
Second-Level Protocols . . 393
Third-Level Protocols . . 396

Structure of Basic Communications' Support of the Series/1 . 397
Remote Stations' Connections 401
Half- and Full-Duplex Communications . . . 401
Communications' Protocols 402
Vertical and Longitudinal Redundancy Checks . 403
Cyclic Redundancy Checks 404
Data Transparency 405

Asynchronous Communications' Protocol and its Hardware
and Software Support 405

Line Turnaround Characters . 406
Asynchronous Interfaces . 406
Cycle Steal Capability . . . 407
Software Control 408

Binary Synchronous Communications' Protocols and Support . 408
Message Structure . 408
Communications' Example . 410
Character Stuffing 414

ix

Interface Code Support . 414
Operating Modes 415
Control Characters . . . 421

The Synchronous Data Link Control Protocol and its Hardware
and Software Support. . 423

Need for SDLC . . . 423
SDLC Messages . . . 424
Message Coordination . 424
Message Acknowledgement . 428
Code I ndependency . . 429
Bit Stuffing . 430
Station Polling . 431
SDLC Interfaces . 435

Integration of Communications' Support Software into
the Series/1 436

Communications' Software Organization 436
Event-Driven Software 440

Dedicated Hardware and Software Support for Communications:
The Programmable Communications Subsystem . 441

Subsystem Architecture . 441
Communications' Interfaces . 442
Subsystem Controller . . 444
Line Control Software . . . 448
User-Generated Software . . 448
Integrated Software Structure . 449

Chapter 9. Reliability, Availability, and Serviceability (RAS) . 453
The Contribution of Maintainability to the Overall System . 453
Design and Organization for Reliability . 455

Component and Device Reliability . 455
Processor Error Detection . . . 461
Battery Backup 462
Input/Output Error Detection . 463
Device Error Detection 463

Error Diagnosis: The Key to High Availability . 467
Microprocessor Based Self-Diagnosis . 467
Diagnostic Software . . 469
Interface Diagnosis . . 470
Diagnostic Commands . 472
Error Logging 474

Support for Maintenance . 474

Index . 476

x

Figures

Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.

Essential ingredients of a small computer system
Common configuration for a multifunction
terminal application
Multiple cooperating programs for the multifunction
terminal application
Concentrator configuration
Concentration of communications
The front-end processor
The data acquisition and control application .
Set of concurrent tasks to carry out data
acquisition and control
IBM Series/l: an integrated system of hardware,
software and maintenance elements
Features of the IBM Series/1 processor family
Address relocation for user programs . . .
Series/1 self-diagnosis . .
Support for multiprogramming of multiple user
tasks

Figure 14. Task sets and the organization of main storage

4

8

12
17
18
23
28

32

40
44
46
51

54

under the Realtime Programming System . 56
Figure 15. Communications among tasks 60
Figure 16. Different data link structures 64
Figure 17. A subsystem can be flexibly configured to

interface with a combination of analog and
digital, input and output devices 72

Figure 18. Overall data flow in the Series/1 processor 84
Figure 19. The level status block 88
Figure 20. Floating-point numbers 92
Figure 21. Indicator set in the level status register 96
Figure 22. Basic processor states and the transitions

among them. 98
Figure 23. Input/output and class interrupts and the response

of the processor 104
Figure 24. Multilevel priority interrupt response . . . 108
Figure 25. The processor status word 110
Figure 26. The relationship of the stack control block to the

data stack 114
Figure 27. Adding and deleting elements from a stack . . 115
Figure 28. Example of stack usage: allocation of storage

areas to concurrent programs 118

xi

Figure 29. Example of hardware and software integrated
design . 122

Figure 30. Example of stack usage: subroutine linkage and
allocation of a work area . 126

Figure 31. The priority interrupt algorithm . 128
Figure 32. Storage addressing modes which do not use

registers . . 138
Figure 33. Storage addressing modes using registers

for address storage . 142
Figure 34. Base relative addressing and its variations . . 144
Figure 35. Base relative addressing of items within a

contiguous base . 146
Figure 36. Combined base relative and indirect addressing

mode solutions to programming problems . 148
Figure 37. Combination of pre· and post·base relative

indirect addressing . 150
Figure 38. Storage key protection of main storage . 154
Figure 39. Operation of storage protection during an access . 156
Figure 40. Use of the three storage protection keys by

various classes of operations . 160
Figure 41. Three examples of address key storage protection . 162
Figure 42. Conceptual basis for storage address translation . 166
Figure 43. Conceptual mapping of main storage for two tasks

sharing common data and subroutine areas . 167
Figure 44. Mapping task address spaces into physical

storage using multiple sets of segmentation
registers . . 169

Figure 45. Multiple address keys for each task . . 172
Figure 46. Communications between an application task and

the operating system via supervisor calls which
generate a class interrupt . 176

Figure 47. Addressing modes facilitate reentrant routines'
use of multiple work areas. . 178

Figure 48. Context switching . 180
Figure 49. The Realtime Programming System storage

management . 184
Figure 50. Overlay methods of storage management . . 187
Figure 51. The levels from which input/output must be

considered . 192
Figure 52. Input/output device combinations . 196
Figure 53. The Series/1 4955 Processor and input/output

attachments . 200

xii

Figure 54. Organization of the microprocessor-controlled
interface between the input/output channel
and devices . . 204

Figure 55. The Series/1 input/output bus: asynchronous
and multidropped . 206

Figure 56. Direct program control of devices . 209
Figure 57. Effect of non-overlapped input/output on task

execution . 212
Figure 58. Direct program control and overlapped input/output . 214
Figure 59. Direct program control performed with a single

instruction-Operate 1/0 . 218
Figure 60. The major input/output commands for direct

program control of devices . 221
Figure 61. Individual devices under program control . . 223
Figure 62. Definition of the eight condition codes which

may be reported after each input/output
instruction . . 226

Figure 63. Condition codes accompanying each
input/output interrupt . 228

Figure 64. A common input/output control routine addressing
different immediate device control blocks . 234

Figure 65. Cycle stealing input/output (part 1) . 236
Figure 66. Cycle stealing input/output (part 2) . 240
Figure 67. The device control block contains the data

necessary to carry out one transfer between
a specific device and main storage . 244

Figure 68. Sequence of operations during cycle stealing
transfers . 246

Figure 69. Input/output is consistent with storage protection
of both mapped and unmapped processors . 251

Figure 70. Communications between a task and the operating
system using the Supervisor Call (SVC)
convention . . 258

Figure 71. Overlapping and non-overlapping of input/output
control . 262

Figure 72. Input/output functions available in the Control
Program Support package . . 264

Figure 73. Access to files using Control Program Support . 267
Figure 74. Organization of main storage for a dedicated

application utilizing the Control Program
Support package . . 268

Figure 75. Four data set organizations supported under the
Realtime Programming System . 272

xiii

Figure 76. The five areas into which the instruction set
can be classified 281

Figure 77. The basic one-word instruction format . 285
Figure 78. Addressing modes and their additional storage

requirements 286
Figure 79. Series/1 instructions and modes for data

movement 288
Figure 80. Arithmetic operations, data types, and modes . 292
Figure 81. Logical instruction set and modes of use . . . 298
Figure 82. Options for shifting register contents . . 300
Figure 83. Operation and computation testing instructions . 304
Figure 84. Comparing a string of bytes . . . 308
Figure 85. The jump On Count instruction 310
Figure 86. Instructions which can be used to control

concurrency 313
Figure 87. Using disabling and enabling interrupts to

control concurrency 314
Figure 88. Serializing the use of a resource using the Test

and Set type of instruction 316
Figure 89. The subroutine concept 318
Figure 90. Structuring a task or program into modules . . 319
Figure 91. The level status block and module scheduling . 322
Figure 92. The privileged instructions used to read and write

Series/1 system-level registers, and control overall
processor performance 324

Figure 93. Options for user attachments to the Series/1 . . . 330
Figure 94. Block diagram of the timers showing their

input/output channel connections and external
signals for special uses 333

Figure 95. Using the timer to provide interval timing to the
processor 337

Figure 96. Pulse rate measurement using a pair of timers . 340
Figure 97. Pulse duration measurement using the external

signal and a timer 344
Figure 98. Start-stop character transmission 346
Figure 99. The teletypewriter interface block diagram . . 348
Figure 100. Integrated digital input and output interface . . 354
Figure 101. The handshake convention used on digital

group output (part 1) 356
Figure 102. The handshake convention used on digital group

output (part 2). 360
Figure 103. Block diagram of the OEM interface . 364
Figure 104. The direct program control interface bus . 368

xiv

Figure 105. Data bus output sequence . . 372
Figure 106. Data bus input sequence . 374
Figure 107. Data bus interrupt sequence . 376
Figure 108. The sixteen-line interface bus . . 381
Figure 109. Data transfer coordination . 383
Figure 110. Data transfers with multiple listeners . 384
Figure 111. Centralized processing . . 387
Figure 11 2. Remote processing . . 389
Figure 11 3. A network of processors . 391
Figure 114. The three communications' protocol levels . 394
Figure 115. The structure of communications' support . 398
Figure 116. Basic message structure 409
Figure 117. Example of a character sequence for a single

message 411
Figure 11 8. Exchange of messages 412
Figure 119. Error detection 413
Figure 120. Names and functions of special characters . 416
Figure 121. Binary synchronous interface modes . 420
Figure 122. Example of a message exchange containing an

Initial Program Load command and
acknowledgement 422

Figure 123. Basic concept of SDLC 425
Figure 124. Detailed definition of the SDLC frame format . 426
Figure 125. Bit stuffing. 432
Figure 126. Polling takes place with the single P/F bit within

the control byte of a frame 434
Figure 127. Software use of communications 438
Figure 128. Basic functions provided by the Programmable

Communications Subsystem 443
Figure 129. Hardware organization of the Programmable

Communications Subsystem 445
Figure 130. Software organization within the Programmable

Communications Subsystem 446
Figure 131. Integrating software support of the Programmable

Communications Subsystem into the Realtime
Programming System operating system . 450

Figure 132. Availability states 456
Figure 133. Elements of error detection 460
Figure 134. Disk and diskette error detection . 464
Figure 135. Hardware and software response to a power

failure 466

xv

Figure 136. Processor self-checking 468
Figure 137. External device diagnosis . . . 470
Figure 138. Teletypewriter interface design . 471
Figure 139. The integrated digital input/output interface. . 473

Tables

Table 1. Integrated system of hardware needs 35
Table 2. Integrated system of software needs 36
Table 3. Integrated system of maintenance and support needs 37

xvi

Introduction to the
Small Computer
Concept

Industry, banking, manufacturing, marketing, health care,
and many other enterprises have achieved increased produc­
tivity in an impressive variety of applications by using small
computer systems. These applications have been and are
successful because users have implemented the total, small
computer system concept instead of relying on the operation
of the small computer by itself.

A system is a set of closely interacting subsystems which,
in turn, have component parts. It is important, however, to
differentiate between the use of the word system when it is
applied to small computers and when it is used in other
contexts. Typically, to create a system in small computer
applications, end users and third party vendors must inte­
grate processors, peripherals, software systems, and applica­
tion software.

Conceptually, we should emphasize that the "tools" or
components made available from a variety of sources must
be integrated into a system that meets the application needs
of the individual user. Frequently, manufacturers design
these components completely independent of one another;
consequently, integrating them into a single system is
neither a straightforward nor a simple task. This chapter
discusses four small computer applications and will serve as
an introduction to computers' systems.

Users, whether they are original equipment manufacturers
imbedding a small computer into their products or are end
users, need computer components that can be integrated as
successfully as if each one were designed by the same vendor
to function solely for the individual user's application.
Consequently, small computer applications are particularly
sensitive to three constituents:

1. An integrated system of hardware components

2. An integrated system of software components

3. An integrated system of maintenance and support

An integrated system, in this context, means that the
design of each particular part of the hardware, software,
maintenance equipment, or maintenance procedures
recognizes that users will later integrate these discrete
components into their application systems. To enable each
user to do this, there must exist a comprehensive and detailed
overall system organization or "architecture" for hardware,
software, and maintenance.

Small Computer Application Needs
The term "architecture" describes the overall organization

and discipline of the interconnections among the integrated
system of hardware and software components and their
maintenance. A modern architecture insures that the user of
these systems can incorporate future developments in mem­
ories, auxiliary storage devices, distributed systems, and

. other peripherals without a complete system hardware and
software redesign. Similarly, an integrated system of software
components-including, for example, operating system soft­
ware and language preparation facilities-is essential if users
are to realize the economic benefits of their systems. More­
over, the software system must utilize the architecture of
the hardware to enable both components to work together
as a system.

Operating systems must anticipate the variety of present
and future application demands so the user does not have to
maintain an excessive number of systems over an extended

2

period of time. Reliable and serviceable hardware not only
gives a long mean-time-between-failures but also facilitates
error diagnosis so repairs can be accomplished quickly when
failures occur. Because small computers often involve a
mixture of special attachments, extensive self-diagnosis is
especially important to pinpoint the source of difficulty to
a printed circuit card or device. Firm vendor commitment
to this diagnostic concept through worldwide maintenance
of hardware and software for the expected lifetime(s) of the
system(s) is necessary if users, in turn, are to make firm
commitments to small computers. Vendor commitments
should include user access to trained analysts and engineers
when subtle problems arise in the hardware or software
during development of a new application. Only when all of
these components are present is a user in a position to attain
an economical use of the small computer over an extended
period of time.

The I BM Series/1 has been expressly designed to serve
these user requirements. It is a family of small computer
hardware components, integrated with an extensive range
of software systems and self-diagnostic capabilities, and
backed up by a strong maintenance force. The IBM Series/1
is a general-purpose family intended to serve many applica­
tion areas.

The name Series/I indicates that the hardware, software,
and maintenance products can be used as components or
"tools" to build small computer application systems
(Figure 1). These components are part of a "system"
because Series/1 has an overall hardware, software, and
maintenance architecture and I BM has designed each com­
ponent to function specifically within this structure. Further­
more, the overall architecture has been composed to permit
non-IBM hardware and software to be fully and successfully
integrated into the final system. This book emphasizes the
overall system concept because successful implementation
of this concept is crucially important to the success of
original equipment manufacturers, system integrators, and
end users of small computer systems.

3

Integrated Integrated Integrated
system of system of system of
hardware software maintenance
components components and support

Figure 1. Essential ingredients of a small computer system

This chapter examines several small computer application
areas, identifying their application-imposed needs in hard­
ware, software, and support. These applications are
presented here in the way that they are currently imple­
mented in the industry and not necessarily as they might be
realized in the IBM Series/1 architecture. Chapter 2 intro­
duces the specific IBM Series/1 hardware and software
architectures which answer these identified needs.

Four diverse but very common small computer applica­
tions are:

1. The multifunction terminal

2. The communications' concentrator

3. The front-end processor

4. Data acquisition and control

These examples illustrate the broad range of applications
for which the small computer is a suitable solution. By
examining typical hardware configurations and software
implementations, it is possible to abstract the hardware,
software, and maintenance requirements for each of these
applications.

4

Terminology usage varies considerably within the industry.
In this chapter, conventional terminology (e.g. Direct Memory
Access [DMA]) is used and related to the standard Series/1
terminology (e.g., processor 1/0 channel). The remainder
of this book and all IBM documentation use the standard
Series/1 terminology.

The Multifunction Terminal Application
Small computers have opened many alternatives to

business data processing. Among the most common and
successful methods of data handling are:

• Key entry-the process of entering data; converting
human-oriented documents into machine-readable
media; formatting, editing, and compacting data; and
finally-entering the data directly or indirectly into a
computer through magnetic tape, diskette, or disk
intermediate storage.

• Remote job entry-a remote terminal controls peripheral
devices such as card, diskette, or tape readers and line
printers. The terminal accepts jobs through the input
devices, transmits them to a remote computer, receives
the output from the computer, and produces reports
locally. Remote job entry terminals permit quick access
to centralized computer systems even when the users are
not physically proximate.

• Transaction processing on a local data base-a small com­
puter system maintains a local data base which the user
frequently accesses and updates. Locally, the system
executes special application programs. Access to a host
computer system for either data storage retrieval or more
extensive computational tasks is a characteristic of this
terminal.

The simplest data entry application provides a key punch
replacement by collecting the characters in one record in the
small computer main storage and transmitting it to an output
program when the record is complete. A more useful form
of data entry permits formatted input; the operator selects

5

one from a number of predesigned formats. If the number
of formats is large, they are stored in auxiliary storage with
only the active formats in main storage at any given time.
Validity checking of data fields, prompting of operators, and
other standard operations can occur with this form of data
entry. Similar functions are desirable in transaction process­
ing applications where the type of transaction determines
the data needed for that transaction.

Typical applications where the multifunction terminal is
desirable include:

Order Processing

• Entering orders

• Inquiring about the status of orders

• Interactive specification of data associated with an order

• Reporting the status of orders and maintenance of the
local order data base

Warehouse Inventory Control

• Maintaining the local data base

• Matching orders against inventory

• Communicating with a remote computer to get orders and
to report the status of orders

• Interactive inquiry into the inventory status

• Reporting of overall orders and the inventory status

Plant Scheduling and Production Data Collection

• Gathering data from operator terminals about production
status

• Maintaining a local data base containing current orders and
the status of in-process inventory

• Inquiring about the status of orders, labor, production,
and machines

• Rescheduling in response to daily events

• Communicating to remote computers for overall plant
control

6

Similar applications occur in many other industrial and
service activities.

Hardware Support

Each of these business data processing applications
requires similar hardware devices and software support.
There is a logical trend in the data processing industry to
combine these functions within the so-called multifunction
terminal. The specific number of keyboard/CRT statiqns,
types of peripherals, speeds and numbers of communications'
ports and volume-auxiliary storage varies with the specific
user; but the application needs can be summarized.

Figure 2 shows the hardware system needed to support
the multifunction terminal application. Terminals generally
provide keyboard and alphameric display capability but they
can be more extensive; for instance, they may provide pro­
grammable displays to guide transaction data entering and
validation. The system must support data storage devices,
especially the simpler ones like diskettes. Communications
to the remote or host computer can be at low, medium, or
high speeds as the application (and costs) dictate. Conse­
quently, the communications' hardware support must incor­
porate these requirements. Frequently, special display
or output devices are needed.

Since no single computer vendor can supply every type of
device for all applications, users must be able to easily
attach other vendors' devices. Otherwise, the multifunction
terminal would have limited application: manufacturers
would have to develop a discrete terminal for each special
application-a costly duplication of effort. From the point
of view of the terminal supplier, this generality of small
computer hardware architecture and support of special
devices permits suppliers to add to their product lines
economically without incurring a "dead end" design. A
general hardware specification for this application can be
identified.

Small computers shou.ld have an architecture com­
patible with both large and small systems.

7

00

Clustered
keyboard/
CRT
devices

Communications' link to host processor

Communi­
cations'
interfaces

Small computer:
processor and
main storage

Figure 2. Common configuration for a multifunction terminal application (1 of 2)

Auxiliary
storage
device
interfaces

Disks

01 I
•

0
I

Diskettes

Printers

Processor

Data processing
device interfaces

Card readers Other
devices

The multifunction terminal combines, on a local data base, common business data processing applications
like key entry, remote job entry, and transaction processing-which have similar hardware, software, and
maintenance needs-into a common terminal with great flexibility and wide applicability.

IO Figure 2. Common configuration for a multifunction terminal application (2 of 2)

The small computer should have an instruction set
capable of supporting both business data processing
and communications-oriented applications.

The hardware system should effectively integrate
communications' interfaces with the small com­
puter itself.

Hardware and software compatibility are requirements for
an economical application. Figure 3 shows a representative
organization of the software needed to execute the multi­
function terminal application. Certain characteristics of this
software-for instance,- its definition as a set of programs that
interact to perform the application-occur repeatedly and
dictate both the types of software needed in a small computer
system environment and the types of hardware needed to
support that software.

For example, user requirements for terminal peripherals
vary widely: an elementary school education application
might require a mark-sense card reader; a research laboratory
application might need a high-speed printer.

The hardware and software systems must support
the user's addition of input/output devices to the
system.

-::-

Partitioning an application into a set of related and inter­
reacting programs is a good way to design and implement
an application. Programs are asynchronous. Typically, they
need different kinds of data, devices, and other system
resources like error recovery procedures. Breaking up the
application into a set of programs structures the application
into units of work-each unit performing a given function .

. Software Support

The integration of the communications' function into the
hardware and software, while it is not as critical in this

10

application as it is for dedicated communications' applica­
tions, is still crucial to the system's maximization of terminal
throughput.

Support Needs

The third element of the computer system design shown
in Figure 1 is the support needs. Multifunction terminals
are often used in office environments where on-site
maintenance personnel are not knowledgeable about
computers. In such instances, the user commonly contracts
service for the computer system and its peripherals from
the computer vendor.

After they are fully operational, applications like multi­
function terminals become essential to a company's perform­
ance. Consequently, it is important that the system be
accessible most of the time and, when it fails, that service
be readily and promptly available. This service must remain
available throughout the extended lifetime of the small
computer because it is not economical for users to redesign
their application software and buy new hardware for their
terminals whenever the computer vendor markets a new
generation of hardware or software.

The multifunction terminal application needs are easily
matched with small system hardware, software, and
maintenance specifications. When these specifications are
explicit, they not only permit users to evaluate a particular
system relative to their application but also provide a guide
as to the best use of the vendor's hardware, software, and
support products.

Chapter 2 matches the multifunction terminal application
needs with the I BM Series/1.

The Communications' Concentrator
Application

Communications involve the transmission and reception
of data, through messages of various formats, between
devices which may be long distances apart. The small com­
puter is especially attractive for this application because

11

IV

Application
programs:

Multiple
keyboard
CRTs

edit,

Terminal
control
program

Transaction processor: interrupts
and initiates application programs

format, compact,

File inquiry
and update
programs

verify ...

Figure 3. Multiple cooperating programs for the multifunction terminal application (1 of 31

Local
files
on
disk

Data
storage
disks

01 I
•

0
I

Data storage
diskettes

Remote job
entry input
devices

Input
control
program

Buffers for trans­
mission to and
from host

Output
control
program

Output
printing
devices

Communications'
program: line
discipline and
control program

w Figure 3. Multiple cooperating programs for the multifunction terminal application (2 of 31

Communications' lines
to host computer

.j::..

Many different programs cooperate to support transaction processing:

• Key entry

• Inquiry from keyboard/CRT devices into data bases

• Remote job entry

• Printing of output

• Communication with the host

Software support, through a general purpose operating system, permits the combining of these business data
processing applications into a single terminal.

Size scaling for various users involves:

• Addition or deletion of processors

• Changing the size of the files

• Changing types of communications' modes

Size scaling does not change the generic application configuration or software organization.

Figure 3. Multiple cooperating programs for the multifunction terminal application (3 of 3)

its programmability permits an interconnection of terminals
and devices which have widely differing characteristics-like
varying transmission and reception speeds. Furthermore,
the small computer system can take advantage of main and
auxiliary storage to buffer various communicating devices;
this insures that the overall system is not sensitive to differ­
ent communications' rates or intermittent unavailability of
lines or devices.

The Concentrator Function

Frequently, the relatively high rental cost of communica­
tions' lines-in many applications accounting for a very
significant part of the total teleprocessing system costs-is a
major barrier to wide acceptance of data communications.
The line costs depend primarily on the type of line used
(leased or switched), the distance of the terminal(s) from
the computer site, line quality, and bandwidth. Using
fewer, high bandwidth lines-a major benefit provided by a
concentrator-instead of many, low bandwidth lines can
reduce line costs considerably.

The primary function of a concentrator is to consolidate
the input from a group of clustered terminals and transmit
their combined data at high speed over a single line (or fewer
lines) to a remote computer (Figure 4). In the past, special
purpose, hardwired, hardware multiplexers have performed
the data concentrator functions. Now, the availability of
programmable, small computers with concentrators adds
new dimensions to, greater flexibility for, and more
economy in data processing applications.

Concentrators are actually multiplexers enhanced with a
buffer and a processor. They are more complex and more
expensive than multiplexers but they can also do more to
reduce line costs. For instance, users may program concen­
trators to perform the following functions:

• Accommodate changes in format, codes, data rates, and
communications' procedures

• "Smooth" traffic

• Compress data

15

• Adapt channel characteristics

• Pre-scan data for unacceptable formats and errors

Hardware Support

In communications' applications, certain hardware and
architectural needs are m~re critical than ~h~_X are in other
types of applications. For example, there is a critical
dependence on efficient communications' interfaces.

To support the variety of transmission modes cur­
rently available, the small computer system must
have extensive communications' interfaces; more­
over, the communications' hardware design must be
efficiently integrated into the system architecture.

This integration requires both a variety of interfaces support­
ing the standard line speeds and communications' disciplines,
and adequate control from the processor so that the system
can test the integrity of these interfaces for diagnostic
purposes. The interface should do more than simply collect
characters and insert them in storage. It should also recog­
nize critical or control characters and-under management of
the processor-interrupt where appropriate. Such flexibility
simplifies the software and is a good example of a carefully
integrated hardware/software system.

Software Support

Figure 5 illustrates the programs necessary for the concen­
trator application. Note those programs that are concurrent
because of the lack of timing control when information
comes from terminals or communications' lines. Effective
programming is critical because programs manipulate data
at the bit and byte level; since the throughput of the system
is usually very high, execution speed is a paramount consider­
ation. Generally, all of the hardware and software character­
istics previously mentioned in this chapter are apparent in
communications' concentrators.

16

Cluster of terminals

cations'
interface

Processor

Auxiliary
storage

High speed
communi­
cations'
interface

High speed
communications'
line

The concentrator consolidates input from a group of
clustered terminals and transmits their combined data, at
high speed, over a single line (or a few lines) to remote
computers.

Users may connect terminals directly or input data through
communication lines which are relatively short in length
compared to the distance between computers.

Auxiliary storage permits message buffering for terminals.

Figure 4. Concentrator configuration

17

.....
00

Higher-speed
devices or more
complex com­
munications'
interfaces

Slow,
character­
asynchronous
device

Slow,
character­
asynchronous
device

Direct Memory
Access channel

Figure 5. Concentration of communications (1 of 3)

Buffers

Buffers
Terminal
control
program

High-speed long-distance,
common carrier communi­
cations' path (messages
concentrated)

Queues of
messages for
various
destinations

IC Figure 5. Concentration of communications (2 of 3)

Buffers

D--Dv------i
o--o~

O--Oo----i
[}---Oo------1

High-speed
communications'
program

Maintenance of
queues of mes­
sages for
terminals and
communications'
lines

N
0

Using the necessary communication modes and speeds, terminal control programs perform all high- and low­
speed, input/output operations with local terminals.

Local data involves queues of messages waiting for transmission to a remote site, or waiting for outputting to
a local terminal.

Messages are formatted and grouped for high-speed transm.ission to remote terminals.

More sophisticated interfaces can remove some of the programs: for example, asynchronous device inter­
faces can input characters through the Direct Memory Access channel and signal via interrupt when a
control character is encountered.

Figure 5. Concentration of communications (3 of 3)

At the lowest level of consideration, a communications'
attachment must be available to provide an interface to the
actual device transmitting and receiving signals (the modem)
across the dedicated or common carrier lines to the com­
puter itself.

Most applications use a variety of low-, medium-, and
high-speed communications' methods and must utilize inter­
faces for all of them. Many communications' methods
identify special characters and use them for control purposes
(e.g., to indicate that the system has received a message
correctly, or that a terminal wishes to transmit data).
Because the particular control characters vary widely, the
user must be able to program the communications' interfaces.
Interface identification of such a control character and sub­
sequent action notification to the small computer itself also
require programmable interfaces. Software support for
communications conditionally involves basic input/output
routines whose functions are:

1. To accept characters into an area in storage (a buffer) until
either a line is complete or a control character has been
received

2. Then, to notify the communications' program, which
a. Interprets the message
b. Handles the communications' protocol with the com­

municating remote device
c. Finally, activates the appropriate program for which the

message is intended

Because the overhead would be intolerable, an application
involving many terminals or high rates of transmission can­
not interrupt the small computer for each character received.
Instead, the communications' interfaces must insert charac­
ters into storage directly through Direct Memory Access
(DMA) and interrupt only when the system detects a control
or critical character.

For example: the system accepts characters transmitted
from a remote terminal and inserts them directly into a
storage buffer until the system detects the end-of-line
character. The computer then receives an interrupt to enable

21

the communications' program to handle this line and set itself
up for the next line to be received.

In this operation, several important needs appear, including:

• Multiple programs cooperating to carry out an application

• Concurrent execution of programs

• Fast response to external events

• Extensive manipulation of information items in bytes and
words

The Front-End Processor Application
Closely related to the concentrator application is the use

of the small computer to relieve the main application com­
puter (whether large or small) from the critical communica­
tions' program. The front-end processor application accom­
plishes this: essentially, by removing much of the data
communications' control function from the central computer.

The user can incorporate complex, computer-network
communications' methods into the front-end processor so
that the applications become completely independent of
the types of communications' terminals, methods, and
the specific communications' codes that are used in the
application.

Front-end processing is potentially the most important
application of communications' processors because it can
increase communications' throughput and processing
efficiency, save programming, reduce equipment and line
costs, and even extend the life of the processing facilities.

Hardware and Software Support

Figure 6 shows a possible configuration for a front-end
processor. Flexible and varied communications' interfaces
are obviously important. As illustrated, the concentrator
and front-end processor organize software in a similar
manner.

Both the front-end processor and concentrator applica­
tions require software that responds rapidly to interrupts

22

Direct
Memory
Access

r channel I I -

Host computer and
its peripherals

~ Figure 6. The front-end processor (1 of 2)

I
I
I
I

Front-end
processor

Processor

Disk

Communi­
cations'
interfaces
and
modems

High speed
communication
line

Remote
terminals

IV
.j:>.

Software organization for the front-end processor is similar to that for the concentrator-a set of programs
to:
• Control specific classes of terminals

• Perform communications' protocol functions

• Maintain buffers and queues

• Control 1/0 to the host computer

The front-end processor removes all data communications' control from the host computer and thereby
reduces its workload considerably.

The front-end processor incorporates all the required communications' protocol, buffering, error recovery,
and formatting of messages.

Communication with the host is through Direct Memory Access channels.

Figure 6. The front-end processor (2 of 2)

and events, and that can switch rapidly from program to pro­
gram in the application software complex. Because speed and
throughput are more critical than generality of operating
system features, communications' application requirements
for the operating system are very different from those in
the multifunction terminal application.

When it is essential to the application, system soft­
ware must permit users to customize their systems.

In critical applications like concentrator or front-end
processing, users must be able to integrate basic system soft­
ware functions (task scheduling, for example) into their
realtime software while retaining control over methods of
error recovery and other operations.

The last of the three application requirements for small
computers described in Figure 1-the need for highly reliable
equipment combined with the availability of good service
even in remote locations-is especially important in com­
munications' applications. Communications' methods which
detect all errors are obviously important. In many of these
applications if the system is unavailable for any substantial
period of time, the user is inconvenienced and important
applications may be jeopardized. Consequently, to insure
the acceptability and integrity of these systems, both the
supplier and the user must provide adequate maintenance
and support of the small computer installation.

The Data Acquisition and
Control Application

Data acquisition is a critical task in many applications.
The general purpose, small computer is an excellent system
to perform this task because of its ability to respond quickly
to external events, its programmability, and its com puta­
tional capability. These applications include:

• Process control

• Laboratory automations

25

• Discrete manufacturing control

• Data collection and online inspection and testing

• Control of materials handling systems, and others

The Data Base

In this application, data is usually gathered from sensors
and instruments which are both unique to the process and
process variable. The computers used must interface to a
variety of instruments and special-purpose devices, and
the software operating system supplied must support these
devices. Often, the user gathers and enters data manually
from special purpose terminals; this is a common practice
in some discrete, manufacturing quality control and
machine-monitoring applications.

The following characteristics of the data base are common
to data acquisition and control applications:

• It is maintained in realtime

• It is shared and operated upon by a variety of programs

• It must often be maintained for long periods of time

• It must be protected from inadvertent destruction

• It is subject to on-demand display, interrogation, and­
sometimes-change by operators

Response Time

For data acquisition and control applications, response
time to events is an important design consideration in
hardware, software, and overall system structure. Data
must be in the right place at the right time. Using dedicated
small computers at the data source is one way to insure that
most of the response requirements are fulfilled; sometimes,
the application needs data from remote computers for a
quick decision. For example: rescheduling an application
when a failure is detected may be time-critical. A key point
in the structuring of the system is how quickly central data
bases or remote data bases can be accessed.

External events may trigger or time some data acquisition
programs. In these cases, the application requires a realtime

26

operating system with rapid scheduling of certain programs.
If the application schedules programs on the basis of

complex events rather than clock time, the system-with
minimal delay-must be able to detect such events, notify
waiting programs, and activate overall system responses.

Concurrently, other applications are not time-critical,
and the system must serve them without introducing the
overhead in software or hardware that is required to
support the time-critical applications. Flexibility and easy
system application tailoring are essential characteristics of
the combined time-critical/non-time-critical environment.
Data acquisition and control-whether in a small OEM
instrumentation system with an imbedded small computer,
or in a large process control system with sensors and
operator communications' devices scattered around a plant­
poses a particularly demanding set of requirements for a
general purpose, small computer system.

Hardware and Software Structure

Figure 7 shows a block diagram of a single computer data
acquisition system. To control precisely the time between
sensor scans, an external signal may trigger the data
acquisition cycle. Such precision control over realtime
programs is a hardware requirement of those small computers
which are suitable for this application.

The data acquisition block is a set of programs which carry
out the following:

• Scanning sensors

• Converting input values to proper engineering units

• Limit checking to detect alarm conditions

• Designating a set of alarm programs to respond-within
specified limits-to these violations

• Data smoothing

• Controlling output to the instrument or process

• Detecting more complex events

27

!'-.)
00

Hardware
timer

Interfaces and
devices:
• Multiplexors
• Analog-to-digital

converters
• Digital 1/0
• Analog out
• Special

instruments

Trigger event signal

Processor sets
up timer - - - - ,

Data acquisition
programs

Event-triggered program to handle
limit violations and other hardware­
or software-detected events

Figure 7. The data acquisition and control application (1 of 21

Operator
communications'
program

Data base:
• Sensor data
• Calibration parameters
• Control data

IV
\0

Data acquisition and control involves sensor-based input and output devices-including special instruments­
together with very time-critical programs. Often, operator communication with the data base (for inquiry,
control over tasks, changing of parameters, and other functions) runs concurrently with the data acquisition
and control.

The result is a critical set of software and hardware needs in an environment which often demands almost
complete availability of the system.

Figure 7. The data acquisition and control application (2 of 21

Operator interaction with this online system is a common
requirement. This interaction involves:

• Inquiry into the data base (status of a variable, history of
a variable)

• Modification of the data base (taking a point off scan,
modifying calibration parameters)

• Invocation of programs that provide reports or useful
computations to the operator

The many programs intermix in time in the sequence of
task executions illustrated in Figure 8.

Where the figure shows methods executing asynchronously,
the small computer operating system is multiprogramming
them. That is, only one program at a time is actually
executing; but when one program is blocked-waiting for
input data or for another program to supply it data-the
system runs another waiting program. Such a multiprogram­
ming operating system simulates parallel program execution.

Software Support

The demands on the software are exacting because
programs are communicating extensively with one another
(e.g., limit checking occurs only after a point has been
scanned; this program in turn notifies alarm programs if the
data scanned exceeds a limit). The control program executes
less often than the data acquisition programs and, further­
more, operates only on certain data points. The supply of
points, for which the system should carry out feedback
control, varies from time to tim~; the data acquisition
and smoothing programs communicate this information to
the control program. In effect, each program is receiving
data from other programs in an unpredictable sequence;
consequently, each program operates asynchronously. The
arrival of data from one program is the event that triggers
the execution of another.

This sequence of transactions imposes the following
requirement on operating system software:

30

The small computer operating system must
support a set of rapidly-responsive, tightly­
coupled programs which can share data, govern
access to data, and control one another's
scheduling.

The set of tightly-coupled programs that carry out this
application is termed a task set. In addition to sharing data,
the tasks control one another in the following manner: in
the process of sharing data from the data base, tasks must
coordinate with each other so that one task does not change
the same data that another task is in the process of reading.
The software operating system must provide the controls
to enable the user to govern these functions efficiently and
effectively.

When the small computer is part of a smaller, dedicated
instrumentation application, the software demands are less
elaborate. Nonetheless, the critical requirements of fast
response, task communications, data sharing, and other func­
tions are still present. To be competitive, the application
and system software must reside in a relatively small main
storage. Economics, then, dictates an additional software
requirement:

In some dedicated small realtime applications, the
operating system's essential components must be
available for imbedding in the dedicated application.

Indirectly, this requirement implies that a small, efficient
operating system will result when the essential features of
task switching, interrupt response, and intertask communica­
tions are built into the system hardware.

Unlike the communications' applications, data acquisition
and control applications often use extensive application
software. In the latter case, the critical requirements must
be imposed on a comparatively general-purpose operating
system.

31

w
IV

Timer-initiated scanning task Reduction of previous input programs.
A series of algorithms processes each
point which, in turn, may initiate
other tasks depending upon present
and past values of the variables.

Scanning of input
points is concurrent
with reduction of
data for previous
points. This is
especially true when
the input multi-
plexor runs at relay
speeds. For example,
thermocouple inputs __
are not scanned at
microsecond rates.

Programs for
scanning cur­
rent input

Engineer­
ing units
conversion

Limit and
alarm
checking

Figure 8. Set of concurrent tasks to carry out data acquisition and control (1 of 2)

Interrupt signaling event

Alarm
programs

Hardware
detected
event
response
program

Q ...
(I>

~ o·
:J
0 ...,
....
~f
(I>

Combinations of values of several points is an
event that may have a special response program.
Detection of such a complex event is a software
responsibility.

Smoothing
and
filtering

Initiate control;
detect and
initiate special
events

----1-
....I.

Control
program

--,
_i

Software­
initiated
event
response
program

Concurrent programs have their own priorities-the Realtime Programming System multiprograms them.

~ Figure 8. Set of concurrent tasks to carry out data acquisition and control (2 of 2)

Summary of Application Needs

Small computer applications vary so widely that it is not
practical to list all of their characteristics and needs. In the
future, the number and types of these applications will
expand further. This chapter has identified some of these
needs and characteristics by examining, in detail, four dis­
crete applications. A summary of these application needs
is listed in Tables 1, 2, and 3.

Although these needs are listed separately, users must inte­
grate them carefully to realize the objectives discussed earlier
in this chapter. For example, users who integrate complex,
realtime software modules into the operating system must be
in a position to maintain that software themselves; conse­
quently, in some instances, they must have operating system
source code available. Conversely, the smaller user may have
vendor-provided maintenance but still require access to the
software to make modifications resulting from the addition of
OEM device routines. This access should be on a continuing
basis to prevent conflicts or difficulties when versions change
or updates are added to the code. Most importantly, users
must know that the system software is so designed and struc­
tured that new operating systems will build on previous ones
and-if they want to take advantage of new features-will
not require them to redesign their application software.

In contemplating installation of a small computer, users
must evaluate the system's ability to meet all of their needs
in the context of their application, however that application
might be defined:

• A single standalone small computer system

• A long-term product line with small computers as only
one component

• A company- or plant-wide application involving many,
communicating small computers

The I BM Series/1 small computers are general purpose
systems designed expressly to meet the needs of a broad
spectrum of applications. The next chapter examines the
architecture of the Series/1 and shows how each feature
responds to a variety of application needs.

34

Hardware Characteristics

• A small computer family whose architecture is economi­
cally compatible with large and small systems

• An extensive instruction set to support bit and byte
manipulations and a variety of data formats

• A storage organization which facilitates multiple tasks

• Good support for switching between multiple tasks
with a minimum of overhead

• Fast and efficient response to external interrupts

• An architecture which can support large, main storage
devices

• Storage protection

• Efficient and general, programmed and direct, main
storage access input/output

• Extensive and flexible communications' interfaces

• Convenient OEM interfaces which preserve system
self-diagnosis

• A variety of data processing peripherals; compatibility
with special-purpose OEM peripherals

• A variety of sensor-based input/output devices; com­
patibility with special-purpose and OEM devices

Table 1. Integrated system of hardware needs

35

Software Characteristics

• System software support for a set of tasks which
cooperate to carry' out the application

• System software support for a set of tasks which have
widely varying response times

• Operating system support which allows efficient realiza­
tion of task sets in either small or large systems

• System software support for creating, accessing, updat­
ing, and protecting data files

• Good control over system resources needed by tasks­
incl uding resolution of conflicts among tasks competing
for the resources

• System software which permits addition of user-written
modules for support of special devices

• Realtime support for scheduling tasks on the basis of
time, internal events, or external events

• Effective support for data communications and
control among tasks

• Support for application software written in assembly
language where efficiency of code or speed of execution
is a paramount consideration

• Support for application software written in higher-level
languages which support structured programming

• Background computational capability, especially for
program preparation

• Ability to mix assembler language routines with
higher-level languages to save storage space and reduce
programming time

Table 2. Integrated system of software needs

36

Maintenance and Support Characteristics

• Modern hardware design and packaging for inherent
reliability and availability

• Readily available maintenance, including remote loca­
tions and other countries

• Variety of maintenance plans to suit the widely differ­
ent applications of small computer systems

• Extensive self-diagnosis to minimize repair time

• Extensive self-checking to permit detection and locali­
zation of hardware problems, especially when multiple
device types or attachments are present or the system
is linked to other systems

• Software maintenance compatible with the needs of
both small- and large-sized users of small computers

• Access to highly-trained software and hardware engi­
neers for support of critical applications

• Explicit long-term maintenance commitment for
available operating systems and hardware

Table 3. Integrated system of maintenance and support needs

37

Overview of
the IBM Series/1

IBM designed the Series/1 specifically to meet the inte­
grated application needs of small computers-hardware, soft­
ware, and maintenance support. This chapter presents an
overview of the IBM Series/1 and demonstrates how that
computer satisfies these requirements.

Series/1 Architecture
Because the IBM Series/1 small computer is a system and

not simply a set of independent products, it is important to
recognize two things:

1. The architectural features of .the system

2. The specific features of those individual components that
are available

System Architecture

The term "architecture" refers to the overall organization
of the Series/1. ·it insures that:

• Individual products in the system integrate closely

• Software systems integrate efficiently with hardware

38

• Users with different software needs can customize the
system and still use the hardware efficiently

• Users with unique hardware devices can integrate them
into the system efficiently without losing the advantages
of self-diagnosis and other features of the system

• Future changes in technology may be more easily incor­
porated into the system without obsoleting existing
system designs

In other words, a good architecture for the computer hard­
ware, software, maintenance, and support insures that the
user will experience a minimum of "future shock".

The overall Series/1 shown in Figure 9 consists of:

• A family of processors and input/output devices integrated
with a family of software support

• Hardware and software error checking and self-diagnosis

• Backup by IBM maintenance and support personnel in
many countries around the world

The Processors

The family of processors is microprogrammed; this per­
mits the user to employ a rich instruction set of over 200
individual instructions facilitating application development
and minimizing program size.

One processor in the Series/1 family, shown in Figure 10,
indicates some of the important characteristics of the entire
family. The processors are rack-mountable and provide slots
or positions into which the user can plug printed circuit
cards. Each card implements storage, input/output interfaces,
or other options. As indicated, the user can extend the
number of slots in a straightforward manner, thereby
economically changing the size of the system. Maintenance­
by exchanging the printed circuit cards-is simple; and, when
coupled with the extensive self-diagnostic capability of
modules in the Series/1, requires a minimum of time.

Input/Output

The input/output system provides a fast channel (which
supports both direct access storage devices and direct

39

~

'Main storage: semiconductor
hardware storage mapping

Processor: Integral pro­
grammed and cycle steal
1/0 channel

Multilevel interrupt system

Internal microprocessor con­
trolled testing and self­
diagnosis

------1

Figure 9. IBM Series/1: an integrated system of hardware, software and maintenance elements (1 of 3)

Programmer
console

Direct program control
devices:

• Slower terminals

• User-attached devices

High-speed cycle steal
devices:

• Disks

• Diskettes

• Communications'
interfaces

Realtime Programming System

Multiprogramming, multitask­
ing, event-driven, disk-based,
with batch processing in
background

Batch and inter­
active Program
Preparation
System

Realtime
program
execution

Realtime application

.__ __ ta_s_k-L_J__ __

Batch program 1---------...,
execution

' -----,
Disk or diskette jobs
..i-.i.__ ll

DI I .
0
I

Printer or
other output
devices

~ Figure 9. IBM Series/1: an integrated system of hardware, software and maintenance elements (2 of 3)

~
IV

ld:

Text editor FORTRAN IV Application
Compiler builder

PL/I Compiler COBOL Macro
Compiler assembler

Figure 9. IBM Series/1: an integrated system of hardware, software and maintenance elements (3 of 3)

Utilities and
libraries

Job stream
processor

program control devices) into the system. Input and output
can be:

• A single item at a time under program control or interrupt
control

• Multi-item transfers in parallel with program execution on
a cycle steal basis, or

• Very fast, high-volume transfers on a "burst mode" basis
at the maximum storage access rate

By duplicating appropriate hardware registers on each
level, the multilevel interrupt system achieves very fast
response to external events.

Main Storage

Semiconductors are used exclusively for the main storage
of the Series/1. Flexibility in addressing main storage is
achieved through a variety of addressing modes in the instruc­
tions. Recognizing the fundamental characteristic of small
computer applications-"a set of cooperating tasks"-the
IBM Series/1 designers deliberately chose an organization of
storage which efficiently supports the needs of individual
tasks. At the same time, this organization permits multiple
tasks to coexist in storage and insures that real time operating
systems support them efficiently.

Address Translation

Individual tasks generate addresses within the task itself;
special address relocation hardware then maps the tasks into
actual main storage hardware addresses. Figure 11 shows
this process. User programs have a 16-bit address space
available to them, and may reference all data and locations
within the program with an address relative to the start of
the program. Since several programs reside simultaneously
in physical storage, typically, an individual program does
not reside at the start of the physical storage. It is the func­
tion of the relocation hardware to translate each address
generated within the program at execution time into the
actual physical storage location of the referenced item.

43

• 19-inch rack mountable

• TTL bipolar LSI logic

• Over 200 instructions on larger processors

• Programmer's console-optional

• 660 nanoseconds or 800 nanoseconds cycle time,
depending upon the model of the processor

• 16-bit word length, one parity bit per byte on data bus;
no parity on address bus

• Storage protection against writing or access on some
models of the processor

• Main storage bit, byte, and word addressable in appro­
priate instructions

• Maximum storage size from 64K bytes to 256K bytes
depending upon the processor model

Figure 10. Features of the IBM Series/1 processor family (1 of 2)

44

One model of the I BM Series/1 processor

ABCDE FGHJ KLMNPQ

Power
supply
300W

tfPr~or~\
1/0 Relocation translator
1/0 or ~required after 64KB
floating point is exceeded)

Channel
repower Input/output interfaces for IBM­

or user-supplied devices

• Storage mapping via relocation translator card to map
multiple user tasks into physical memory space (on
some models of the processor)

• Power supply:
- Battery backup optional
- Power-fail/thermal warning detection

• Input/output expansion units for additional devices:
- Separate power supply
- Channel signal repower unit

• All options can be added in the field with pluggable cards

Figure 10. Features of the IBM Series/1 processor family (2 of 2)

45

Resides in physical
storage starting at
location N

User program:

• All referenced addresses are in
the range of 0 to 64 KB

• Calls the Realtime Programming
System for input/output services
and links to external programs,
files, and data areas

, ~ Address relocation
translator (hardware)

Calls generate hardware
interrupts to which the
operating system responds. I

A physical main storage
address between N and N +
64K is generated for actual
storage accessing. The
generated address is 24-bits
wide.

I
Physical main-storage access

Hardware address translation permits storage size to be
independent of address size within the instructions; it also
facilitates those applications involving a set of cooperating
tasks.

Figure 11. Address relocation for user programs

46

For communications with other programs and input/output
devices, special instructions (called Supervisor Call instruc­
tions) generate hardware interrupts. The operating system
or appropriate control program module responds to these
interrupts.

Without using relocation hardware, users can create
economic small systems whose task addresses are the same as
their physical storage addresses. Larger systems can take
advantage of relocation hardware to combine a number of
tasks cooperating to carry out the application.

Address translation provides the basic hardware method
by which small and large systems can be included within the
same overall hardware, software, and maintenance organiza­
tion or architecture. Software systems (operating systems)
for smaller systems will not support address translation for
two reasons: 1) it is not needed functionally for such
systems, and 2) the size and cost of the software make
address translation uneconomic for these applications. The
architecture of the software itself, however, is consistent
with address translation. Therefore, when creating special
operating system software, users can take advantage of the
hardware architecture, permitting the development of larger
application software systems.

The Series/1 16-bit word length conforms to the general
characteristics of the application. This word length contri­
butes to efficient instruction and data storage, and provides
a convenient address size for application tasks. Because of
the relocation hardware function discussed earlier, the
16-bit word length does not limit physical storage size. In
fact, the relocation hardware generates a 24-bit physical
storage address from each 16-bit address used in an applica­
tion task. Removing the relationship between physical
storage size and the size of instructions and addresses in
application tasks insures that users can economically scale
the size of their Series/1 processors and applications.

Software Organization

The software needs and characteristics listed in Table 2 of
Chapter 1 are, essentially, various aspects of programming

47

support of hardware. Specifically, in this and subsequent
chapters, software discussions will focus on the Realtime
Programming System-the primary operating system for
Series/1-and its supporting program preparation and lan­
guage facilities. Figure 9 indicates this overall Series/1 soft­
ware organization. This organization comprises a general
purpose operating system (the Real time Programming
System) which supports:

1. Realtime task sets of the type needed by applications

2. A batch processing or background mode of operation for
application software preparation

The Realtime Programming System is carefully integrated
with the hardware architecture of the Series/1. In its task
usage, the Realtime Programming System takes full advan­
tage of the hardware storage mapping and addressing
facilities. It cooperates with self-diagnosis by detecting and
logging errors. Its support of a variety of input/output
devices is useful both for applications and for user generation
of software; in the latter case, batch processing or inter­
active terminals are utilized.

Control Program Support

Small dedicated applications may not need the full capa­
bility of the Realtime Programming System. For these
applications, IBM offers a set of modules to provide task
management, data processing input/output support, and
initial program loading for both disks and diskettes. Users
can combine this set of modules, called Control Program
Support, with their own application programs to furnish
facilities similar to the Realtime Programming System but
in a form tailored to each user's dedicated application. Thus,
t_he Control Program Support modules provide the same
type of family-size scaling to software that the storage
management and addressing architecture provides to the
hardware.

Event Driven Executive

A third operating system option exists with the Series/1.
The Event Driven Executive in the Series/1 can apply to a

48

broad range of applications such as data entry, remote job
entry, distributed processing, and other commercial applica­
tions, as well as typical sensor-based functions like data
acquisition, material and component testing, machine and
process control, and shop floor control. The Event Driven
Executive offers low-entry multiprogramming in a diskette­
based system.

Indicative of the integrated nature of the software is the
design of the software preparation capability. This function,
running under the Real time Programming System, produces
object modules which, in turn, run with the Control Program
Support modules in dedicated applications. The user can
then prepare software on a large computer and execute it on
a smaller, dedicated processor. Similarly, Series/1 offers
the user the Basic Program Preparation Facilities which are a
set of standalone programs that provide software preparation
capability on a machine without the Realtime Programming
System.

Higher-Level Languages

The Series/1 gives full support to assembly language pro­
gramming and several higher-level languages. The IBM Series/1
is unique in the small computer marketplace: by offering a
full PL/I compiler, a small computer system has-for the
first time-all the capabilities of a modern, fully-structured
programming language. FORTRAN and COBOL higher-level
languages are also available. This range of programming
languages allows users to select the language most appropriate
for implementation of their application tasks.

Self-Diagnosis

The third element of the small computer design (as dis­
cussed in Chapter 1) is maintenance and support. The IBM
Series/1 processor is microprogrammed. The interface to
almost every module in the system contains a micro­
processor-a stored processor implemented with large-scale,
integrated technology in a single, small package. These

49

microprocessors provide both the logical control and
coordination between the device and the processor as well
as a diagnostic capability for the system itself (Figure 12).

IBM designed the Series/1 architecture to enable each
module to logically disconnect from the system for diag­
nostic purposes. The microprocessor associated with each
feature exercises the functions of that feature to diagnose
any problem to the level of that module. If modules pass
this self-diagnostic test, they then interconnect and the
microprocessors carry out a second level of diagnostics. For
example, the system performs communications back and
forth between appropriate modules to diagnose any problems
associated with the interaction of those modules-again to
the module level.

If module interconnections pass this second-level, self­
diagnostic test, the system interconnects and initial program
load (I PL) occurs. Self-diagnosis then passes from the
hardware level to the software level. Here, modules within
the Realtime Programming System constantly monitor
operations, detect and retry errors, and-optionally-log all
detected errors to disk or diskette for later examination by
maintenance personnel.

Self-diagnosis at the module and system level minimizes
the difficulty in detecting and isolating the source of
difficulties and, in turn, minimizes the mean-time-to-repair
them. The functional and economic importance of this
module by module self-diagnosis cannot be overemphasized.

Maintenance

IBM customer engineer and maintenance support backs
up the self-diagnostic capabilities of Series/1. User
maintenance and support needs vary considerably. For those
users producing products or systems involving the IBM
Series/1 who wish to do their own maintenance of hardware
and software, IBM provides complete hardware and software
documentation together with detailed training courses com­
parable to those supplied IBM customer engineers. Hard­
ware diagnostic terminals and special diagnostic software are
an integral part of the Series/1.

50

Main
storage

Microprocessor­
based interface

IBM-supplied
devices

Series/1 processor
-------with microprocessor­

based 1/0

User-attachment
interface

User-supplied
devices

Figure 12. Seri9$/1 self-diagnosis (1 of 2)

51

Self-diagnosis

The system separates into logically independent
modules.

I
Each microprocessor-based module checks itself
for correct operation.

l
Modules interconnect again and check each inter-
connection for correct operation.

I
System software is started.

I
During operation, the system hardware checks for
errors; hardware also interrupts to the system soft·
ware for error recovery and error logging.

I
During operation, the system software checks for
errors. An error log is generated.

Figure 12. Series/1 self-diagnosis (2 of 2)

52

Software maintenance is always a critical item. IBM­
provided Series/1 software is so structured in its design that
user documentation is extensive, comprehensive, and easily
understandable. I BM Series/1 program logic manuals
provide:

• Detailed descriptions of each software module method-of­
operation, including HI PO charts (a hierarchical structure
of charts that shows the functions of the various programs'
components including their input and output functions}

• Descriptions of each data area

• Diagnostic aids

• Debugging hints

• Detailed logic of the module

If Series/1 users want to do their own maintenance, IBM
will furnish source code for most IBM-supplied software.

However, most users do not, themselves, maintain either
hardware or system software; they need quality maintenance
by competent personnel on a world-wide basis. As an integral
part of the overall Series/1 product-line support offering,
IBM makes available hardware maintenance, software
maintenance, and special customer engineer support for the
Series/1.

Hardware and Software Support of
Multiple, Cooperating Application Tasks

The Series/1 processors provide hardware support for
multi pie tasks through the system's relocation hardware.
Efficient utilization of multiple, cooperating tasks also
requires that the system be able to multiprogram those
tasks. When there are several programs in main storage, each
assigned to one hardware priority level, the processor pro­
vides hardware support for task switching (Figure 13). For
each level, the system provides a separate set of hardware
registers including:

• Eight general purpose registers

• Floating-point registers

53

I

User registers I Current program
for level 3 I on level 3

I
I

User registers I Current program
for level 2 l on level 2

I
I
I

Current program User registers _j_

for level 1 T on level 1

I
I
I Realtime Program-

User registers _J_ ming System users'
for level 0 l level 0

I
Processor

I
I Main storage

Each hardware priority level has its own set of user
registers:

• Eight general purpose registers for data, addresses,
indexing, displacements, and other information

• An instruction address register or program counter for
each level

• A status register for flags and error reporting

• A storage address key register for storage protection

Switching from a program on one level to a program on
another level does not require saving or restoring the
duplicated user-registers. Hence, multiprogramming of
tasks on different priority levels is rapid.

Figure 13. Support for multiprogramming of multiple user tasks

54

• Arithmetic and status indicators

• An instruction counter

• Information for storage protection

Switching from a task on one hardware level to a task on
another level does not require saving or restoring these
register contents; consequently, the switching is very
rapid.

Interrupt System

Normally, the system connects input/output routines to
hardware priority levels which are different from those of
application programs. As program execution switches back
and forth between the application priority level and the
input/output level, this structure permits interrupt-driven

·input/output operations to occur-with a minimum of over­
head-concurrently with application tasks. To facilitate fast
response for critical tasks, application tasks themselves can
reside on different hardware levels.

The combination of hardware memory management and
user registers duplicated on each hardware priority level
allows a fast response to realtime events through cooperating
tasks. A user can, of course, configure such a set of tasks with
the Control Program Support modules or another customized
control program. The Realtime Programming System facili­
tates such applications using the organization shown in
Figure 14.

Multiprogramming and Multitasking

Multiprogramming is the execution of two or more tasks
concurrently. The system accomplishes multiprogramming
by switching the processor use to the higher priority of
two waiting tasks or-when a higher priority task cannot
continue execution, e.g., because it is waiting for input
data-to a lower priority task. The Series/1 Realtime Pro­
gramming System performs multiprogramming among all
tasks in main storage. In addition, it permits multitasking;
this process consists of generating several secondary tasks
from a single main task.

55

Vo
O'I

Task: a single thread of execution through one
or more program modules

Task set: a set of tasks which cooperate very
closely in an application

Tasks within a task set are prepared as a single
load module

A task set

Task
one

Task
four Task

three

-1

I fak two I

Figure 14. Task sets and the organization of main storage under the Realtime Programming System (1 of 2)

Each task in a task set uses the Realtime Pro­
gramming System services to:

• Schedule other tasks

• Perform input or output operations

• Communicate with other tasks

• Call routines in other tasks

Main storage

Task set A
--------1

Task set B
1--------

1
I

1----~ ----1

I
I

------1
Real time
Programming
System

One task set at a time resides
in each partiition. Requests
for execution of other task
sets in this partition are
queued by the Realtime Pro­
gramming System.

A task or task set may reside
on any hardware or software
priority level.

The Realtime Programming System is a multiprogramming, multitasking, event-driven, disk-based system.
It manages all physical resources.

The Realtime Programming System multi programs among task sets in the partitions according to their
priority.

~ Figure 14. Task sets and the organization of main storage under the Realtime Programming System (2 of 2)

The central concept of this system is the "task set" which
is a collection of closely cooperating individual tasks, pro­
grams, and data. At program preparation time, the tasks
within a given task set link together into a single unit for
loading from disk. Once the task set begins execution, the
operating system schedules and multiprograms individual
tasks.

Storage Management

To give the system designer good control over response
time of application tasks, the system uses a fixed partition
organization of storage as shown in Figure 14. A dynamic
partition option is also available. A fixed partition is a
contiguous area of storage in which one task set at a time
can execute. By specifying the priority of tasks and assign­
ing task sets to appropriate partitions, the system designer
can insure that critical tasks will respond when they are
needed. The operating system provides all the facilities
needed for queueing task sets that are waiting to execute.

If a task set requires a fast response to an event, the system
might assign it permanently to a partition so that the task set
need not be loaded from disk when the event occurs. If
several task sets are time-critical-but not so critical that they
must be permanently resident in main storage-the system
may assign them to share exclusively a partition. This
minimizes conflict when the task sets are ready for execution.

The system may assign several less time-critical task sets,
including background program-preparation task sets, to one
partition. With this organization, the Realtime Programming
System gives the application designer fuff control over tasks.

When response time is less critical, it is often converifont
to allow the system itself to determine the size of the parti­
tions; this procedu,re enables the partitions to fit the task set
scheduled to execute without using unneeded space. The
system then has free space that can be used by another task
set. Allocating an area of space in which partitions can be
created on demand is called dynamic storage management
and is supported under the Series/1 Realtime Programming
System. The advantage of this convenience is offset by the

58

additional time required to initiate execution of a task in
such a dynamic partition. Because dynamic partitions are
not fixed, once the system initiates a task, it cannot be
rolled out of main storage for higher priority tasks. Conse­
quently, dynamic storage management is useful only for
tasks that are not time-critical.

Many applications, however, combine time-critical and
non-time-critical tasks. Because the Realtime Programming
System supports both fixed and dynamic partitions, system
implementors can choose those combinations of fixed and
variable partition space which most efficiently support their
applications.

These features are included at system generation time.
Users who do not need dynamic partitions do not incur any
overhead in the size of their operating systems because the
code for the partition function is not added to their gener­
ated systems.

Intertask Communications

Tasks within a task set communicate extensively. In fact,
the system usually combines multiple tasks into a single,
specific task set because they share data and control. In
addition, the related tasks interact so often that they can
respond within the required time frame only if they are in
the same partition. In actual applications, tasks communicate
with one another continuously; this fact is the dominant
consideration when a user designs software for realtime
applications. This communication consists of passing data
items, groups of data, event signals, and control back and
forth among the various cooperating tasks which are
implementing the application.

As illustrated in Figure 15, the Realtime Programming
System provides different methods of communications
among the tasks. Optional parameter lists facilitate passing
control from one task to another. These lists may supply a
limited amount of data needed for the task to begin execution
(files or global areas transmit more extensive amounts of
data).

59

Parameter lists: are passed to programs which are initiated
by a communicating task.

Parameter list to be
.---------. passed to task B---------.

Task A Service call to
initiate task B

~

Initiation of task B

Realtime
Programming
System

J
_l Parameter

..----------. list passed
from task A

Task B

Events: a set of conditions detected by one or more tasks,
the occurrence of which can cause execution of other
tasks. Interacting tasks can easily synchronize with the
event mechanism .
.-------------Tasks are detecting condi-

1.r--------. Post

I ~
I.__ _____ _,

y

tions and signaling the
operating system. A pre­
determined number of
Posts must be received
before the event occurs.

Realtime
Programming
System ' . \ Watt

l LJ \,
\i..._ ______ _, Post Initiate

execution

Task Waiting for
event occurrence

Figure 15. Communications among tasks (1 of 2)

60

Queues: areas defined in main storage or in auxiliary stor­
age. They contain tasks, enter items into the queues, and
remove items from the queues.

First-in-first-out/priority queue

111111
-Item for task B

......
Task A

Item from task A
Task B

Global common area: an area within a partition which may
be used by all tasks within a task set.

Each task set may have its own global common area in its
own partition.

Main storage

1------
1 Common area I

I Task C I One partition
in main storage

I I Task B ~One task set

I Task A I
\ ------

Figure 15. Communications among tasks (2 of 2)

61

Synchronization among tasks in a task set is possible
through:

• Their different priorities

• The scheduling of one another using operating system
service calls, and

• Other facilities of the Real time Programming System:
for instance, Wait/Post

Tasks may invoke their own execution when a certain event
has occurred once or when it has occurred a specified number
of times. Other tasks may detect these events and then
inform the operating system (i.e. post the event).

For many applications, like communications, tasks process
a number of transactions and pass the results on to other
tasks in the task set. Stacks in main storage are a natural
communications' mechanism for these actions; both the basic
instruction set of the processor and services in the operating
system support them.

The operating system also supports sharing of data through
an area common to all tasks in a task set-a very useful tech­
nique in task management. In fact, the operating system
permits task sets themselves to be shared. This means that
the programs within such a shared task set can be "called"
from other task sets; the system can then more readily share
data areas and common subroutines among a variety of real­
time tasks. Communications among tasks is characteristic of
many applications but the most appropriate communications'
procedure varies from one application to another. Conse­
quently, flexibility of communications in the operating
system and control over those communications by the applica­
tion system designer is:

1. An important attribute of the I BM Series/1 hardware and
software

2. A further illustration of the integrated nature of hardware
and software

62

Communications with Remote
Devices and Computers

A general purpose small computer must support-in an
integrated fashion-hardware and software communications
with remote terminals and computers. Figure 16-where
three data link structures are described-indicates how
necessary the generality of hardware and software arch itec­
ture is. The Realtime Programming System supports the
more standard configurations; for nonstandard configura­
tions, OEM users can integrate the software appropriate
to their configuration with the vendor-supplied software.
When the application involves significant physical distances,
dial-up networks or switched data links are usually necessary.
Because of the architecture of the Series/1, customized
software should not be necessary for most of these
ap pl ica ti ons.

Communications' Protocols

A communications' protocol is the convention by which
particular sequences of characters are interpreted and
acknowledged. Both the data link structure itself and the
protocol or form of communications across these data links
vary. Communications' features include:

• Asynchronous communications-single and multiple line
interfaces

• Binary synchronous communications-single and multiple
line interfaces, plus high-speed single line interface, and
IPL capability

• Synchronous data link control communications-single line
interface

For asynchronous communications, these features permit
both slow- and high-speed terminals to be either directly
connected to the Series/1 or connected through modems and
switched networks. The two synchronous communications'
modes also support Series/1-to-Series/1, and Series/1-to-host
communications. The asynchronous communications' attach­
ments provide great program flexibility to the user. Under

63

O'I

"""
A line: is point-to-point when a local station is connected to a single remote station. Such a line is non­
switched when there is a permanent connection between the local station and the remote station through
their respective modems, or when the stations are directly connected.

Local
station Modem Modem

Remote
station

Communications on each type of data link may use different communications' rates and different communi­
cations' protocols like:

• The start-stop asynchronous communications' protocol

• The binary synchronous communications' protocol

• The synchronous data link control communications' protocol

Figure 16. Different data link structures (1 of 3)

The primary station: in a multipoint data link is physically connected to several secondary stations through
their respective modems. The primary station polls the secondary stations using unique station addresses.
Only the addressed station can respond to the poll.

~ Modem Tributary
station

Control
station

Modem I-. Modem ~
Tributary

~

station

i.. Modem
Tributary,.
station

~ Figure 16. Different data link structures (2 of 3)

O'I
O'I

A point-to-point line: can be switched so that one local station can communicate with one of several remote
stations after a link has been established between the local station and the remote station. The connection is
maintained only for the duration of the communication.

.... Modem Remote
station

~

/
/

Local /
Remote ~ ~ Modem i-c(--- _,,...

Modem station ~

station
' ' ' ?

........ Modem Remote
station

Figure 16. Different data link structures (3 of 3)

program control, the user can select both communications'
codes and special control characters to particularize the inter­
face to a specific communications' problem. Under program
control, the user can also select communications' rates-up to
9,600 bits per second, and in some cases even 56,000 bits
per second-to support the common line speeds.

Similarly, the binary synchronous communications' attach­
ments support both EBCDIC and ASCII codes-again,
selected under program control. This modem selects trans­
mission rates by using jumper wires on the interface. The
hardware fully supports:

• The binary synchronous communications' protocol includ­
ing sending and receiving unrestricted binary data (known
as data transparency)

• Intermediate block checking of separate error detection
information

• Remote loading of initial programs for computer startup
or restart. This communications' protocol is most often
used in communications between computers, between
remote job entry terminals and computers, and similar
applications.

The synchronous data link control (SDLC) communica­
tions' protocol operates in half-duplex mode, on either
switched or dedicated lines, at rates up to 9,600 bits per
second. This modern communications' protocol expedites
remote communications between intelligent terminals and
computers. 'All the communications' interfaces operate on a
cycle steal basis so that minimum processor overhead and
interaction are required. Furthermore, software support of
communications is enhanced through availability of all cycle
steal capabilities including command chaining.

The communications' feature interfaces use imbedded
microprocessors for self-diagnostic purposes. The system
can easily perform on line diagnostic tests of terminals-for
example, echoing of test characters.

67

Communications' Software

Different Series/1 users need different kinds of communi­
cations' software support. Some dedicated applications may
need custom software. In most cases, however, users require
operating system support so they can utilize central error
detection and recovery, service calls for input/output, and
similar aids. This support is available through the Realtime
Programming System, which treats a remote station as a
data set-just as it does in other modes of input and output.

Through the operating system, the communications' data
sets are opened to establish communications with a given
remote terminal or computer. Then, the system accomplishes
transmission of data through normal read/write service calls
like any other input/output operation. The combination
of operating system software and interface hardware carries
out the detailed message generation and control functions
appropriate to a particular data link. The operating system
supports on line testing of terminals to insure that com­
munications are proceeding correctly. Because of these
hardware and software interactions, the Series/1 fully
sustains the communications' requirements of the typical
small computer application.

Communications to an IBM System/370

Series/1 can communicate with an IBM System/370 using
synchronous data link control or binary synchronous com­
munications. In addition, a special hardware attachment is
available to interconnect the Series/1 and the System/3 70.
This interface not only permits the direct coupling of the
two systems' channels but also provides the internal logic
that enables the Series/1 to recognize the connection as a
single device address and the System/370 to recognize the
connection as a multiple device address. Software support
for this interconnection permits:

1. The down-line loading of programs and data from the
System/370 to the Series/1, and

2. The implementation of common distributed system
architectures

68

Auxiliary Storage Devices
Among the more important system needs are auxiliary

storage devices suitable for:

• Data storage

• File storage

• Program storage

• File backup

• High-volume, long-term data storage

• Program preparation

• Field modifications

• Other uses

The IBM Series/1 serves these needs with both disk and
diskette storage devices.

Disks

The non-removable disks have capacities ranging up to 64
megabytes, depending upon the model. Their interfaces
operate on a cycle steal basis and use a thousand-byte buffer
which permits instantaneous data transfer rates on the order
of a megabyte per second. The interfaces contain a built-in
initial program load capability. The disks have moving heads
which give a latency time as fast as 9.6 milliseconds, and a
back-to-back access time as fast as 27 milliseconds. Where
speed of response to auxiliary storage is important, a portion
of the disks-on an optional basis-can have fixed heads; this
option adds approximately 125,000 additional bytes of
storage that these heads can access. Because the moving­
head access delay does not affect fixed-head storage, average
access time is no more than the average latency. The reader
should consult the appropriate reference manuals for the
specific maximum storage rates and sizes appropriate to a
given configuration.

Diskettes

The second type of auxiliary storage unit available for the
Series/1 is a diskette unit which uses a removable one- or
two-sided diskette. The diskette unit provides:

69

• Approximately a one-half megabyte of storage (0.6 mega­
byte if a 512-byte sector format is used)

• Track-to-track access time of 40 milliseconds

• A data transfer rate of 31,250 bytes per second through
the cycle steal interface

The interface supports multiple sector transfers and initial
program load capability. As with other devices, the micro­
processor controls the diskette with extensive microdiagnostics
and constantly-operating error checking.

The high-speed disk is essential to rapidly processed appli­
cations; the Realtime Programming System uses the disk
extensively.

On the other hand, the diskette unit represents a very use­
ful device for:

• Distributing software

• Backing up files and software

• Distributing field updates to programs

• Aiding programmers-as a storage medium-during program
preparation

While diskettes provide an advantageous low-cost medium
for removable, permanent data storage, they have limited
capacities. To save backup copies from a large, online disk,
the system would require: ,

1. Many diskettes

2. A time-consuming interaction between an operator and the
system when data must be copied or restored from multiple
disks

Magnetic tape is conventionally used for this purpose because
a single reel offers a large amount of storage. Because of the
sequential nature of tape data storage, it is a suitable and
efficient storage medium only for this type of backup.

Large-Volume Diskette

The IBM 4966 Diskette Magazine Unit is a more conveni­
ent and useful device with which to provide economical,

70

large-volume removable storage. This unit has a special disk­
ette drive with two magazines, each of which contains ten
diskettes plus three individual separate diskettes-a total of
up to 23 diskettes. Users can remove both the magazines
and the three individual diskettes.

The Diskette Magazine Unit is a large-capacity diskette unit
that offers direct access to all data stored in the magazines
or individual diskettes. The unit accommodates any type of
diskette (single or double sided); storage volume can be as
large as 1.2 megabytes per diskette-a maximum capacity of
approximately 27 megabytes. The good performance
characteristics of the unit insure that the system can use it
effectively online and for backing up and copying online
disks. System access time is 3 seconds to move from one
diskette to the next, and a maximum of five seconds to
reach any diskette. These timings total up to a 125,000
byte/second transfer rate after an average random access
latency or delay of approximately 42 milliseconds.

The system requires about 10 seconds to completely load
one, two-sided 1.2 megabyte diskette, and about five
minutes to load the entire 23 diskette system containing
27 megabytes. To back up large data bases for either
historical or error recovery purposes is a practical and econ­
omical procedure with the Diskette Magazine Unit.

User Attachment Features
As stated earlier, small computer applications require an

integrated system of hardware, software, and maintenance;
this often means the integration of special devices into the
system. These special devices may be simple terminals or
they may be complex analytical instruments, machines, or
special hardware interfaces to other systems. Chapter 1
emphasizes how essential it is to integrate these devices into
the hardware, software, and maintenance constituents of
the system.

The Series/1 design pays particular attention to this require­
ment and provides the means to attach such hardware devices
(Figure 17).

71

-...J
IV

Teletypewriter adapter

Electrical interfaces:

Teletypewriter
adapter

Inputs-isolated contact sense, TTL, EIA, current
loop

Outputs-solid state switch/TTL, EIA, current
loop

Communications' options

Full-duplex serial 1/0 device

Initial program
load capability

Selectable bit rate: any one of 12 common rates
from 50 to 9600 bits per second

• Support of synchronous and asynchronous communications

• Support of varied communications' disciplines

• Selectable communications' rates

• Electrical interfaces

Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (1 of 4)

Customer direct program control adapter
75-line bus for

<!
interconnection

> Customer- Special
Series/1 ~ Customer direct program < > designed device 1/0 slot control adapter interface '-._J I<, :>

• Accommodates up to 16 1/0 device addresses

• Provides interrupt vectoring of up to 16 sources

• Allows full use of processor input/output hardware capability

• Convenient bus for interfacing to customer special devices, including:
- Data lines
- Address lines
- Interrupt request lines
- Function and function modifier lines
- Control and response lines

~ Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (2 of 4)

-...J
.j:>.

Integrated digital input/output

User attachment

External sync

16 points DI/Pl

Ready ~

External sync

16 points DO

Ready ::

l
T

::_

I
I
I

!

DI/Pl group 0

DI
Ext sync interrupt

~ data
reg

Process interrupt

~I
Pl
data
reg

· 1
I -

Ext sync interrupt
DO
data
reg

Two groups of 16 inputs and two groups of 16 outputs are available.

Ready and external sync signals permit easy synchronization of external devices.

Series/1 I /0
channel
I"

.>I

->1 v

The subsystem is supported by the Realtime Programming System through its interrupt capability and soft­
ware support of digital input/output.

Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (3 of 4)

Sensor input/output unit

Software support for all analog and digital,
input and output options

A subsystem with internal power supply supports
up to eight input/output cards.

Cards or groups of cards which implement these
functions:

• Analog output

• Analog to digital conversion with relay or solid
state multiplexing

• Digital input/output

The subsystem can be configured--flexibly-to
interface with sensors or devices requiring a com­
bination of analog and digital, input and output
signals.

V! Figure 17. A subsystem can be flexibly configured to interface with a combination of analog and digital, input and output devices (4 of 41

Asynchronous Terminals

The Teletypewriter Adapter provides a means of attaching
Teletype1 ASR 33/35 or equivalent ASCII devices to the
system. Many applications use such devices; this adapter
provides a Series/1 compatibility with most of the terminals
on the market today. Furthermore, original equipment
manufacturers have designed many special-purpose, data
entry devices that have been built to these same standard
interface specifications. The Teletypewijter Adapter is the
simplest user-device attachment because \he software
involved with this feature is minimal.

OEM Devices

The Customer Direct Program Control Adapter is much
more general in its capability. IBM has designed this feature
to perform direct program control for up to 16 user 1/0
-devices. The interface fully integrates into the Series/1 which
permits interrupt vectoring of all 16 sources. These user
devices can then handle their associated interrupt response
tasks like any other task using Control Program Support
modules or the Realtime Programming System. The adapter
is a convenient bus for control ofarbitrary devices or sub­
systems. Interfacing to this adapter-which is similar to
interfacing to any small computer or microprocessor,
general purpose bus-is discussed in a later chapter.

The built-in, self-diagnostic capability of some of the
Series/1 interfaces assists in the maintenance of systems which
mix IBM-supplied devices and user-added devices. This is an
important practical consideration for the Series/1 user.

The variety of communications' interfaces, which are use­
ful for attaching to external devices and other systems, have
already been discussed in this chapter.

The IBM Series/1 GPIB Adapter provides users with a
means to connect to and control a variety of instrumentation
and other devices which have been designed to be compatible
with the Institute of Electrical and Electronic Engineers (IEEE)
standard number 488. This standard is entitled "Digital

1Trademark of the Teletype Corp.

76

Interface for Programmable Instrumentations" and has been
adopted by many device and instrumentation manufacturers.
Consequently, Series/1 users can configure very flexible
instrumentation systems without designing custom interfaces.
Since the adapter operates off the cycle steal channel, the
data rate is relatively high-a maximum of 65,000 bytes
per second.

Sensor-Based Devices

Often the interconnection between a general purpose small
computer and a customer device, subsystem, or process is
through:

• Analog signals

• Digital signals

• Switches and relays

• Similar devices
Interfacing to these signals requires both digital input and

output capability and a sensor-based input/output unit.
Series/1 provides both the capability and the sensor.

Each digital input/output card incorporates 32 points of
digital input and 32 points of digital output, together with
external sync and ready lines for each 16-point group. These
cards offer a convenient interface capability for devices whose
inputs and outputs are in electronic digital registers. Inter­
rupt-driven software support is equally convenient for this
Interface.

The sensor input/output unit has a separate, rack-mount­
able subsystem including a power supply. The subsystem
supports:

• Digital input with process interrupt (either isolated or
non-isolated}

• Digital output (non-isolated}

• Multi-plexer-read relay input

• Multiplexer with solid state digital input

• Analog input with analog-to-digital converter

• Multirange amplifier for use with analog inputs and analog
outputs

77

The system may be configured to support a specific mix
of input and output types.

Software support of these features is standard in the
Realtime Programming System. Users can, confidently,
build their applications around the IBM-provided Series/1
hardware and software and then economically integrate their
own 1/0 devices into the system.

Multiple Processors and a Shared
Input/Output System

Certain critical applications require backup of the processor
in case of system failure. In some of these applications, it is
neither economical nor feasible to duplicate the input/output
system; consequently, both the original processor-or any
other processor backing up the original one-must be able to
access the single input/output system. The Series/1 Two­
Channel Switch control accomplishes this access by permitting
the input/output channel to switch from one processor to
another.

The switch can be operated manually or, through program­
ming, on demand of the backup processor. The primary
processor uses a 'dead-man timer' counter-in the interface
to detect and signal failure. The primary processor periodi­
cally resets the timer. If it fails, the counter times-out and
generates an interrupt to the backup processor which can
then assume control of the input/output channel by com­
manding the Two-Channel Switch. In order to switch back
to the primary processor, manual intervention is required.

Program Preparation Facilities
The Series/1 supports program preparation with either the

Base Program Preparation Facilities (no operating system
needed) or as background under control of the Realtime
Programming System. In either case, source statements can
be entered from interactive consoles or from diskettes pre­
pared on offline key-to-disk units. An interactive or batch

78

text-editor facility permits updates and modifications to the
source program.

Source language may be assembler language (including full
macro capability), FORTRAN IV, PL/I, or COBOL. The
PL/I language supports structured programming. The Series/1
PL/I provides a complete implementation of the standard
language. Such an advanced high-level programming
language has not previously been available on small computers.

FORTRAN, COBOL, and PL/I require extensive program
preparation facilities supplied by the Realtime Programming
System. After translation by the appropriate language trans­
lator, the object modules are combined with control blocks
and tables to form a task set. This task set is used in realtime
with the Realtime Programming System or for immediate
execution in the batch stream: The system can build absolute
or relocatable modules. Absolute modules enable a user­
supplied supervisor to execute like dedicated applications.

Users control the storage of source and object code; there­
by, they can take advantage of the disk storage units and the
diskettes for program entry, storage backup, and distribution.

The Series/1 and Overall Application Needs
Although no single computer is a solution for all applica­

tion and user problems, IBM has designed the Series/1
general purpose, small computer family with an architecture
-an organization for hardware, software, maintenance, and
support-which closely matches the needs listed in Chapter 1.
The following characteristics, features, and specifics work
together to make the Series/1 a long-term, viable solution for
small computer applications:

• Support of cooperating tasks

• Excellent processor computational capability

• General interrupt and input/output system

• Integrated software support for small and large systems

• Substantial software preparation capability

• Ability to attach customer devices

79

• Availability of IBM documentation

• Customer engineering maintenance support in most
countries around the world

In the succeeding chapters, each of the major features of
the Series/1 is discussed in more detail to permit users to
understand how each feature can be used to support their
applications.

80

Processor
Organization

The processor is the key element in a small computer
system because it is responsible for:

• Control of data flow

• Interpretation and execution of instructions

• Response to external events

• Detection of internal events and errors

• Control of nverall system integrity

Individual processors in the Series/1 share a common archi­
tecture but, in order to support applications of varying size
and complexity, they may implement the overall architecture
to differing degrees. This chapter discusses the overall
Series/1 processor architecture and gives specific exam pies
from existing processors. For complete details on any
specific processor, the appropriate processor reference
manual should be consulted.

Overall Flow of Information
in the Series/1 Processors

Figure 18 shows the major elements in the Series/1
processors and the data paths connecting them. All

81

processors have four hardware levels of priority interrupt.
To minimize overhead when responding to interrupts and
switching from one level to another, the hardware imple­
ments a full set of general purpose and status registers for
each priority level.

An important part of the processor is the interface to
main storage. The processor must:

• Fetch instructions from storage

• Interpret these instructions

• Fetch data from main storage

• Carry out the instruction

• In some instances, return data to main storage

Specifically, consider the IBM 4955 processor, as an
example. The processor bus is a 16-bit wide data path over
which instructions, addresses, and data pass among the
processor elements. The processor utilizes two registers for
accessing main storage: the storage address register and the
storage data register. The address of the next instruction
to be fetched or the data item to be retrieved is transmitted
along the processor bus to the storage address register.

Individual programs can address a maximum of 64K bytes
{corresponding to a 16-bit address) at any one time. For
processors without storage address translation, the maximum
addressable main storage is 64K bytes and the address, gener­
ated by a program, is the physical address of the desired item
in storage. For processor models with storage address trans­
lation, the program-generated address is hardware-mapped
before physical memory is accessed. This allows main stor­
age addressing of more than 64K bytes. The accessing of
main storage is important and is discussed in detail in
Chapter 4.

The storage data register contains whatever data, if any,
is to be written into main storage and receives data and
instructions being fetched from main storage. This register
is 16-bits wide {the word length of the Series/1) and inter­
faces to the processor bus for transfer of the information
to or from other registers.

82

All IBM Series/1 processor models are microprogrammed.
That is, the system implements a set of micro instructions
at the basic hardware level which control every register and
data path in the processor. Processor instructions, on the
other hand, are the machine instructions which manipulate
data and perform input/output operations. A group of these
instructions constitutes a program and is stored in main stor­
age. The processor actually interprets and carries out these
instructions by executing a series of micro instructions.
Thus, each user instruction can be thought of as a "sub­
routine" made up of micro instructions, although this is
transparent to the user.

Figure 18 shows an area denoted "Read only storage"
where the system stores the microprograms for interpreting
and executing instructions. The major advantages of a
microprogrammed processor are:

1. A system can realize a very complete and general instruc­
tion set with reduced hardware cost penalties. A micro­
programmed processor reduces the number of instructions
required to perform a particular function; this, in turn,
leads to a more compact system and more compact
application software.

2. Without severe cost penalties, the user can add micro­
programs to the system for self-checking and self-diagnosis.
This ability to detect errors is dependent upon a sophisti­
cated software which can both detect and recover from
errors.

The capability to manipulate the hardware elements at a very
basic and general level means that-in order to isolate mal­
functions-microprograms can be included to test arithmetic
operations, logical operations, communications along data
paths, and the many other hardware elements in a processor.
This capability gives the processor a minimum-repair-time
characteristic.

Figure 18 shows alternative storage address and data
registers for the cycle stealing, input/output system. Cycle
stealing involves the transfer of a series of data items to or
from main storage. The transfer is initiated by the processor

83

00
.j:>.

Level O
Registers used by registers
tasks; they are
duplicated for Le~el 1

, each level of hard- registers
ware priority. Level 2

registers

Processor bus

Processor con­
trol instruction
register, arith­
metic, and logic
unit

Figure 18. Overall data flow in the Series/1 processor (1 of 2)

Read-only
storage

Main storage

Storage address
register

Storage data
register

~

Input/output bus

Floating-point
registers are optional,
but they are dupli­
cated for each level
of hardware priority.

Level 0 float­
ing-point
registers

Level 1 float­
ing-point
registers

B: Figure 18. Overall data flow in the Series/1 processor (2 of 2)

Cycle steal
storage address
register

l --
'

Cycle steal
storage data
register

---·-----,
Device I I

L_ interface __ J -------

The Series/1 processors are microprogrammed. Read-only
storage is accessed, by the control unit only, to fetch and
execute micro instructions.

Cycle steal control resides in each interface.

but then proceeds, until complete, without further interven­
tion. Thus, cycle stealing requires additional control hard­
ware to handle the individual data transfers.

A major strength of the Series/1 architecture is the inclu­
sion of the cycle steal control hardware in the individual
device interfaces rather than in the processor itself. The
microprocessor-controlled interface can perform the required
control; the control can also recognize and handle the
particular device characteristics. Furthermore, the system
interfaces multiple devices on a cycle steal basis simply by
providing the necessary control in the devices' interfaces
themselves. The latter advantage is most apparent when
many terminals or devices are interfaced: the load on the
processor is minimal when the system performs input/output
on a cycle steal basis rather than on a direct, program­
control basis.

The cycle steal storage address and data register are used
in the same way as the processor storage address and data
registers, but the two kinds of registers are separate because
input/output operations and processor operations can take
place concurrently.

The main storage interface resolves any contention for
main storage should both the processor and the cycle steal
channel atcempt simultaneous access. If this occurs, the
channel is given priority, making the processor wait. Hence,
the channel "steals" cycles from the processor. The
input/output bus along which addresses and data are trans­
ferred is discussed in more detail in a later chapter.

The element in Figure 18 labeled "Processor control ...
arithmetic, and logic unit" is that portion of the processor
responsible for controlling the sequence of operations in the
processor, decoding instructions, fetching micro instructions
from read-only storage, and carrying out the appropriate
instruction. The instruction register holds the instruction
fetched from main storage while it is decoded and executed.
Not shown in Figure 18 are those registers used by the hard­
ware but not accessible by user programs.

The arithmetic and logical unit provides hardware for
arithmetic operations (except floating-point operations),

86

logical operations, and shifting operations. This unit is also
the source of result-status information used in those instruc­
tions which test for:

• Result even or odd

• Carry of overflow conditions

• Result zero or negative

Since the arithmetic and logical unit is used by instructions
on all priority levels, the indicators listed above are physically
maintained in that level status register which is appropriate
to the priority level on which the instruction was carried out.
The level status register is one of the registers which is repli­
cated for each priority level and is discussed later in this
chapter. Operands to be processed by the arithmetic and
logical unit are transferred across the common processor data
bus under the control of the microprogrammed control unit.
Processing is then carried out:

1. In the general purpose registers on each interrupt level

2. In processor registers which are not duplicated on each
level but which do determine the level on which the
processor operates

3. Via the interrupt mechanism which is responsible for
controlling the response to internal and external events

Registers and Their Use by Tasks
Each hardware priority level contains a group of eleven

16-bit registers called the level status block as shown in
Figure 19. The contents of these registers determine the
"state" of the program executing on that level. In a sense,
it is this information which the system must protect from
change by other programs and which the system must
restore if the registers on that level are used by another
program. By using special instructions, the hardware design
of the processor helps with this saving and restoring of the
level status block contents. These instructions are illustrated
later in this chapter.

87

00
00

Registers Ro through
R1: eight general pur­
pose registers are used
for data and address
manipulation, main
storage, addressing
modes, and tempor­
ary storage.

Figure 19. The level status block 11 of 2)

High storage
.------------- Bits are numbered from left to

s.

l 0 l~T2 l3 l 4 I············· 1151
: t

I
I

AKR: the address key l ! LSR ; I : t
register is used for main- I LSR: the level status register has one
storage protection in con- AKA I field used for indicators associated with
junction with hardware I arithmetic, logic, and input/output opera-
•dd'"' trnn<l•tion. J. I ' tion" •nd '<0oond flo.ld u<0d In oontml
/AR: the instruction 1 IAR I of the processor on this level.
dd . . I I

a ress register points to I I : I l J
thenextinstructionto L ___________ , I 0-4 I 8--11 l
be fetched and executed. Low storage • •

Indicator field Control field

Four floating-point registers are optionally available but are not part of the level status block.

The eleven 16-bit registers shown here constitute the "state" information necessary to be saved and restored
when programs are interrupted.

Special instructions, together with the design of the Series/1 architecture, provide commands to help soft­
ware manipulate these registers as a single group; in turn, they exercise control over processor priority level
and response to external interrupts.

~ Figure 19. The level status block (2 of 2)

In additiorito the eleven registers in the level status block,
four 64-bit registers for floating-point operations are option­
ally provided. The system uses this total of fifteen registers
in three basic ways:

1. Data storage and manipulation
a. Eight general registers
b. Four floating-point registers

2. Addressing main storage
a. Eight general registers
b. Instruction address register

3. Task control
a. Address key register
b. Level status register

Other registers exist in the processor but are not referenced
explicitly in instructions. For example, the arithmetic and
logic unit shown in Figure 18 contains registers for temporary
storage of data items during the execution of instructions
using that unit. Note that, as shown in Figure 19, individual
bits within any register are numbered from left to right
starting with 0.

Storage and Manipulation of Data Types
Data storage and manipulation is one of the major tasks

of a small computer; consequently, it is important that the
processor support the variety of data types and data struc­
tures commonly used in applications. Data types supported
by the Series/1 include:

Logical or Flag Variables

These are variables which take on the value of true or
false and are denoted by 1 or 0 in storage. Stored 16 to a
word, they may be tested and manipulated either a bit at a
time or as a group. Instructions supporting this data type
are discussed in Chapter 6.

Character Variables

These are variables whose length is eight bits and which
are coded in some standard code format like ASCII or
90

EBCDIC. Characters occupy one byte in storage; a string of
characters occupies sequential bytes in storage. Instructions
for testing and manipulating individual characters and strings
of characters are also discussed in Chapter 6. Input/output
devices help test and manipulate characters-especially
communications' interfaces as discussed in Chapter 8.

Unsigned and Signed Numbers of Various Precisions

Processor instructions support both signed and unsigned
numbers of single precision {16 bits), and double precision
{32 bits). Formats for the numbers are shown in Figure 20
together with the range of numbers permitted in each.

Note: Changing from double precision to single precision
or vice versa is a straightforward operation with these formats.
For example: adding a word whose bits are all zero and append­
ing it to any single-precision variable, automatically extends
it to double precision. This is so because bit 0 {the leftmost
bit) is not treated as a sign bit in the second word of double­
precision variables. With the aid of the level status register,
the system performs arithmetic and logical operations in a
straightforward manner on either signed or unsigned
variables-including detection of exception conditions-as
indicated below.

Not only are the signed and unsigned numbers useful in
applications, but the hardware also supports the use of
higher-precision variables. Certain instructions allow the
addition or subtraction of multi-word operands-taking into
account any carry from similar operations on previous
words, and setting the indicators to reflect the multi-word
result for use in the next stage of the calculation.

Floating-Point Numbers with Two Precisions

Single- and double-precision, floating-point numbers­
which occupy two words or four words-are supported by
the optional floating-point processor and are illustrated
in Figure 20. The format for these variables is identical to
that used in the IBM System/360 and System/370 computers:
an eight-bit exponent considered to be a power of 16 in the
range -64 to +63 and a fractional part, with only the length

91

Unsigned numbers: positive numbers only

• Byte length-range from 0 to 28 -1

• Single precision-range from 0 to 216 -1

• Double precision-range from 0 to 232 -1

• The instruction set supports addition and subtraction
of unsigned numbers

• Extension of precision involves addition of Os to the
most significant byte or word

Unsigned, multiple precision

• Any number of words

• Arithmetic operations are programmed as a series of
operations using special instructions to include carry
resulting from the previous steps

Signed, byte-length numbers

• 8-bit numbers

• Twos complement form

• Bit 0 represents the sign

• Numbers range from -27 to 27 -1

• Byte in storage or the least significant half of a register
(bits 8 through 15)

Signed, single-precision numbers

• 16-bit numbers

• Twos complement form

• Bit 0 represents the sign

• Numbers range from -215 to 2 15 -1

• Word in storage or registers

Figure 20. Floating-point numbers (1 of 3)

of the fractional part differing between single and double
precision. This, again, facilitates conversion back and forth
between the two precisions.

Operations on the various formats of numbers require:

• Instructions for addition, subtraction, multiplication, and
other arithmetic operations

92

Extension of precision

Extending the precision of twos-complement, signed
numbers involves extending the sign (Os if positive and
1s if negative) two additional bits to the left.

Precision number
(one word)

Most significant----.
word is sign

Least significant
word

extension .-------'--...,-------'----...,

Stored at lower
address in storage

Stored in next
higher addresses
in storage

Signed, double-precision numbers

• 32-bit numbers

• Twos complement form

• Bit 0 of the first word represents the sign

• Numbers range from -231 to 231 -1

• Two successive words in storage or two successive
registers

• Most significant part of the word is stored in the lower­
numbered register or storage location

• Least significant part of the word is stored in the higher­
numbered register

• Bit 0 in second word is part of the value and is not
treated in. a special manner as is bit 0 in the first word
(the sign bit)

Signed, multiple-precision numbers

• Any number of words in length

• Arithmetic operations are programmed as a series of
operations using special instructions which include carry
and overflow resulting from the previous steps

Figure 20. Floating-point numbers (2 of 3)

93

Single-precision, floating-point numbers

32-bit numbers in the IBM System/370 format; they are
stored in the most significant 32 bits of the 64-bit, float­
ing-point register or in two successive storage words.

Short floating-point number-used for single precision

~'-S__.l.__C~ha_r_a_c_te_r_is_t_ic~...._~~~-F-ra_c_t_io_n~~~ 1~
0 1 7 8 31

Double precision, floating-point format

64-bit numbers in the IBM System/370 format; they are
stored in the 64-bit, floating-point register or in four
successive words in main storage.

Long floating-point number-used for double precision

~'-S~l.___c_h_a_r_ac_t_e_ri-st_i_c l~~~~F-r_a_ct_i_o_n~~~-l~
01 78 63

Standard, floating-point format

• Sign: stored in bit 0

• Characteristic: seven-bit number indicating a power of
16 and a stored excess of 64. Exponents range from
-64 throu,'Ah +6-3 and correspond approximately to the
range 10- to 1076 •

Fraction

• An unsigned number between 0 and 1. Floating-point
numbers are normalized. This means that the leading
hexadecimal digit of the fraction is nonzero. Hence,
the fraction is actually between 1/16 and 1 at all times.

• The 24-bit, single-precision fraction corresponds to
about 7 significant figures; the 56-bit, double-precision
fraction corresponds to about 16 significant figures

Figure 20. Floating-point numbers (3 of 3)

94

• Testing and comparing instructions

• A method for detecting special results such as arithmetic
overflow

The level status register contains the last listed information
in its indicator bits which provide sufficient information
concerning the operations' result to permit full use of all
number formats. Figure 21 defines the portion of the level
status register used for this purpose. As shown there, each
operation (arithmetic, logical, compare, shift, and comple­
ment) sets the even, carry, overflow, negative, and zero
indicators in the level status register in a way appropriate
to the operation. Instructions for testing and branching on
each condition are provided and discussed in Chapter 6.

Of particular interest is the overflow condition which can
occur in numerical operations. In both signed and unsigned
operations, the system detects and obtains-from the bits
in the level status register-the true value of any result which
is too large to be contained in a register or register pair. For
example: overflow, resulting from the addition of a signed
number-pair, both sets the overflow indicator and puts the
extra bit in the correct result in the carry indicator. The
system provides similar support of unsigned, numerical
operations.

All of the various data types and number formats are
fully supported in all programming languages available on
the Series/1. Because of the extensive hardware support
of these formats by the processor, implementation of
languages in which numerical processing is extensive (such
as FORTRAN and PL/I) is especially efficient.

Processor States and the Interrupt System
IBM has designed the Series/1 processor to be responsive

to external and internal events, especially the detection and
recovery of errors. To accomplish this, the processor has a
number of states or conditions, in each of which the system
performs different functions. Figure 22 shows these states
and the transitions that may occur among them. The non­
running states (power-off, stop, wait, and load) are

95

l.O
O'I

Level status register ILSR)

I E I c I 0 I N I z I -··]
O

1 2~1 Lzero
15

L_. Negative

Overflow

L------ Carry

'----------Even

~ The indicator portion of the level status register saves the
\ "''"'of ope,.,;on, '°' furth" ,.,,;ng.

Figure 21. Indicator set in the level status register (1 of 2)

Arithmetic operations:

Signed numbers:

Unsigned numbers:

Floating-point
numbers:

Input/output operations:

Non-arithmetic
operations:

The even, negative, and zero conditions are set to correspond to the result of
the operation.

1. Use overflow to indicate a result too large to be represented

2. If overflow is indicated, carry is used to contain the extra bit. Carry combined
with the result register is the correct result of an arithmetic addition or sub­
traction which overflows.

Use carry to indicate a result which cannot be represented. Carry combined with
the result is the correct result of an arithmetic addition or subtraction. In the
latter case, the result is in twos-complement form, even though the original
numbers were unsigned.

1. Use overflow to indicate a result too large to be represented, and for under­
flow (too small a result to be represented). and division by zero

2. Carry is used to indicate division by zero, and to indicate underflow. Hence,
all three indicators must be checked to determine which conditions occurred.

The three indicators (even, overflow, and carry) are used as a three-bit condition
code which is set after each input/output operation. This is discussed further
in the section concerning these operations.

The indicators are used for special purposes by various instruction classes. The
appropriate processor reference manuals should be consulted for specific condi­
tions under which indicators are either changed or unaffected by each instruction.

::g Figure 21. Indicator set in the level status register (2 of 2)

l.C
00

No task
ready to
execute

Wait

Running in
supervisor state

1/0
inter­
rupt

Power
off

Supervisor transfers to problem task

Class or 1/0 interrupt; SVC request

Manual
stop

Power on
reset

Auto
IPL

Figure 22. Basic processor states and the transitions among them

Manual
start

Stop

Load

Running in
problem state

Manual or pro­
grammed stop

System
reset

Initial program
load

concerned with start-up of the processor, initialization of
programs, and other functions. Their definitions are:

Initial Program Load (IPL) State

The system provides an initial program load function to:
(1) read an IPL record (set of instructions) from an external
storage media, and (2) automatically execute a start-up
program. An IPL record reads into storage from a local 1/0
device or host system. The 1/0 attachments for the desired
IPL sources are prewired at installation time. The user can
wire two local sources-primary and alternate-and select
either one by using the IPL source switch on the console.

IPL can be started by three methods:

1. Manually, by pressing the load key on the console

2. Automatically, after a power-on condition

3. Automatically, when a host system sends a signal. The
host system can be connected through a communications'
adapter.

The user selects the automatic power-on IPL by a mode
switch on the console. When the mode switch is in the
auto IPL position, IPL occurs whenever power turns on
(either initially or after a power failure). Auto IPL is useful
for unattended systems. A user can initiate a manual IPL
at any time by pressing the load key on the console (even
when in the run state). The mode switch has no effect on
the manual IPL. For auto IPL and manual IPL, the local
IPL source (primary or alternate) is selected.

IPL from a host system can occur at any time; the host
system initiates it. The system transfers the IPL record
through the host-system device-the communications' adapter,
for example. When an automatic IPL occurs, one bit (bit 13)
in the processor status word is turned on so that system soft­
ware can detect this condition. If the source of the IPL is
either a manual command or the host computer system, this
bit sets to zero. Upon successful completion of an I PL, an
1/0 interrupt occurs, forcing the processor to enter the
supervisor state and to begin execution at address zero. The
summary mask and all priority interrupt levels in the mask
register are enabled.

99

The system normally returns control to a routine in the
operating system which reloads all pertinent system tables
and sets up the system to respond properly to interrupts.

Stop State

The stop state is entered when:

1. The stop key on the programmer console is pressed

2. The stop instruction is executed, and
a. The mode switch on the basic console is in the diag­

nostic position, and
b. The optional programmer console is installed

3. An address-compare occurs and the rate control on the
programmer console is in the stop on address position

4. An instruction has completed execution and the rate
control on the programmer console is in the instruction
step position

5. An error occurs and the error control on the programmer
console is in the stop on error position

6. The reset key on the programmer console is pressed

7. Power-on reset occurs

The processor exits the stop state when:

1. The load key on the basic console is pressed

2. The start key on the programmer console is pressed. When
the start key is pressed, the processor returns to the state
that was exited before entering the stop state. If the run
state is entered, one instruction is executed before inter­
rupts are accepted by the processor. If the stop state was
entered because of a reset (power-on reset or reset key),
pressing the start key causes program execution to begin
on level zero with the instruction in location zero of main
storage. If the stop state was entered because of an error,
with the stop on error switch turned on, a system reset
must occur to clear the error condition.

Wait State

The processor enters the wait state when it leaves the
current priority level and there is no task waiting on any

100

level. In this case, there is no task to execute and the
processor waits without executing instructions until an inter­
rupt occurs. While the processor is in the wait state:

1. The wait light on the basic console is on, and

2. The processor accepts interrupts under control of the
system mask register and the summary mask (as defined
by the LSR of the last active level)

The processor exits the wait state when:

1. The stop key on the programmer console is pressed

2. The reset key on the programmer console is pressed

3. An 1/0 interrupt is accepted (the level must be enabled)

4. A class interrupt occurs

Load State

The processor enters the load state when initial program
load (IPL) begins. This occurs:

1. When the load key on the basic console is pressed

2. After a power-on reset if the mode switch is in the auto
I PL position

3. When an I PL signal is received from a host system

While the processor is in the load state, the load light on the
basic console is on. The processor exits the load state and
enters the run state upon successful completion of the IPL.

Supervisor and Problem States

The two running states, supervisor state and problem state,
are similar in that instructions are executed in each. They
differ because the system imposes a restriction on those
instructions that can be legally executed in the problem
state. The purpose of this restriction is to provide a hard­
ware environment for an operating system which can be
fully protected against application program errors. That is,
the system isolates one task from another by preventing the
application program from directly executing:

101

• Input/output instructions

• Instructions associated with the management of registers

• Functions pertinent to the overall system

The supervisor state is normally restricted to the operating
system and its subprograms. Of course, in a customized
operating system or in an application with a special purpose
software system, the supervisor state may be utilized in any
way pertinent to the application.

The supervisor state is entered whenever either an
input/output interrupt or a class interrupt occurs. This pro­
cedure is explained in the next section of this chapter.

In addition, an initial program load causes the processor
to enter the supervisory state. In this manner, the system is
able to control tasks and initialize an operating system
properly after an event occurs. The processor leaves the
supervisory state by executing a privileged instruction which
sets the state bit in the level status register.

Effect of Interrupts on the Processor State
Responding to internal and external events requires:

• Recognition of an interrupt

• Control over priority of the interrupt

• Transfer of control to a responding program

• Eventual return of the system to its pre-interrupt status

Figure 23 shows the two general types of interrupts and the
response that is made to them.

Input/Output Interrupts

The first type of interrupts comes from external sources and
is labeled input/output interrupts. Any external interrupt­
whether it is from a device or a process signal-falls into this
category. Each source has a unique identification which is
used to enter an interrupt branching table in main storage to
find the location of the response routine. When recognized,
the source places its identification number in general register

102

seven on the level of the interrupt. Since an 1/0 interrupt
always occurs on a priority level higher than the currently
executing program, that higher level must be idle; conse­
quently, the contents of the registers are not meaningful at
the time of the interrupt. Therefore, it is not necessary to
save, and later restore, register seven's contents prior to using
it for the device identification.

The processor uses the device identification number to
find a pointer in the interrupt branching table, which in turn
locates an area in main storage called the device data block.
This buffer contains the address of the response routine which
is loaded into the instruction address register of the proper
level to start the response routine. Unique device description
parameters are also automatically loaded.

Internal or Class Interrupts

The second type of interrupts are internal or class inter­
rupts. They come from several sources but, in general, are
related to the task executing on the current priority level of
the processor. Consequently, these interrupts are responded
to on the same priority level. Because a task is currently
executing on that level, all registers are in use; the processor
must save the registers' contents before transferring control
to an interrupt response routine. The processor cooperates
with interrupt response software by making further inter­
rupts during examination of the critical registers. This pro­
cedure is illustrated in Figure 23 where the particular type of
internal interrupt shown is used to select two addresses from
the table:

1. The address of the interrupt response routine

2. The address of a save area for the level status block (i.e.,
the eleven user registers defined in Figure 19)

Following detection of the interrupt, the registers are
saved, the processor enters the supervisor state, and the
system transfers control to the starting instruction of the
response routine. This routine can query the processor
status word to further identify the source of the interrupt.

103

~

Input/output interrupt
from the kth device

Accesses location assigned
to that device number to
get DDB pointer

Main storage
address (hex)

022E

* ,.. 0032
0030
002E
002C
002A
0028
0026
0024
0022
0020
001E

Contents of word

Device FF DDB pointer

~
Devi'Ce 01 DDB pointer
Device 00 DDB pointer
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Soft exception trap SIA
Soft exception trap LSB pointer
Console interrupt SIA

Figure 23. Input/output and class interrupts and the response of the processor (1 of 2)

~
~

The current level status
buffer is not affected
because the interrupt
response is on a higher
priority level with its
own registers.

DDB device data buffer

U1
Address of service
routine

Main storage
address (hex) Contents of word

001C Console interrupt LSB pointer I

001A Trace SIA

Internal or class interrupt
0018 Trace LSB pointer
0016 Power failure SIA

Select starting instruction
0014 Power failure LSB pointer
0012 SVC SIA address according to the
0010 SVC LSB pointer type of internal interrupt. \

~
OOOE Program check SIA
oooc Program check LSB pointer
OOOA Machine check SIA

~ 0008 Machine check LSB pointer ~

r 0006 Reserved Class interrupt

Access table to find the 0004 Reserved

area where the current 0002 Restart instruction word 2 I Pointers to response
level status buffer can be 0000 Restart instruction word 1 routines and the LSB
stored while the interrupt save area.
is serviced on the same The current level status buffer --hardware priority level. must be saved because the -- ------ response is at the same level 1--

of priority.

S:: Figure 23. Input/output and class interrupts and the response of the processor 12 of 2)

Different Responses to the Two Types of Interrupts

The major difference between input/output interrupts and
class interrupts is that class interrupts are responded to on
the same priority level while input/output interrupts are
recognized only if they are on a higher priority level. This
difference is illustrated further in Figure 24 which describes
the effects of priority. Note that once the processor responds
to an interrupt on a given level, it remains on that level until
it deliberately leaves by executing a privileged instruction
such as LEX {Level Exit). As noted previously, class inter­
rupts are responded to on the same level. Following comple­
tion of the interrupt response routine, control is normally
returned to the interrupted task by restoring the saved
registers in the level status block. The special instruction for
this restoration is SELB {Set Level Block). Following recog­
nition of a class interrupt, it is necessary to:

1. Identify the specific source of the event, and

2. Perform the proper error recovery procedure

The processor provides the processor status word (a system
register whose contents are defined in Figure 25) which uses
a set of flags to indicate the specific internal error or event
that occurred. In an error situation, the response routine
examines the processor status word and carries out an error
recovery procedure.

The specific error recovery procedure depends on the
task, the kind of error, and the current circumstances of the
system; the recovery procedure will vary from application
to application. It is important to remember that a user can
design error recovery into an application thereby producing
robust, non-sensitive, application programs. certain high­
level languages like PL/I permit the application programmer
to specify the response to some internal events-a particular
convenience, and one of the major advantages of PL/I as a
programming language.

The Series/1 operating system also permits the user to
attach tasks to these internal events. Thus, without giving
up the generality of the operating system, users can con­
veniently control the error recovery of their applications.

106

Class Interrupts in the Use of Stacks
As an example of the integration of hardware and soft­

ware, consider the stack operations of the Series/1 processor.
The processor takes advantage of the internal interrupt
systems to make often-used software more efficient. In
current operating systems and applications, it is often
important to use a stack data structure for control of re­
entrant software, allocation of storage areas, storage of data,
and other operations.

The processing unit offers two types of stacking
facilities:

Data Stacking. This facility provides an efficient and simple
way to handle last-in-first-out {LIFO) queues of data items
and/or parameters in main stack elements. For a given queue
{or stack), each element is one-, two-, or four-bytes wide.
The system incorporates instructions for each element size
{byte, word or doubleword) to:

1. Add an element to the stack (register to storage). This
is popularly called "pushing" the element onto the stack.

2. Delete the last entered element from the stack. This is
popularly called "popping" the stack.

Linkage Stacking. This facility provides an easy method for
linking subroutines to a calling program. The system uses a
word stack for saving and restoring the status of general
registers, and for allocating dynamic work areas. The Store
Multiple {STM) instruction stores the contents of the registers
in the stack, and reserves a designated number of words in
the stack as a work area. The Load Multiple and Branch
{LMB) instruction reloads the registers, releases the stack
elements, and causes a branch, via register 7, back to the
calling program.

Data Stacking Description

Any contiguous area of main storage can be defined as a
stack. Each stack is defined by a stack control block.

107

0
00

Requests for interrupts

Level 0

Level 1

Level 2

Level 3

Priority level processing

Priority
level 0

Priority
level 1

Priority
level 2

-,,
~~~~~~~~~~~~~~~~~ ' 

' ... ... ... 

• -' ' ' ' ' ' 

I I I I I '- - - - - - - - - - - - - - I I 1--· 1 

' ' ' ' 

Priority 
level 3 

............ -r-r-1r'"T"'f""'ll- - - - - - - - - - - - - - - - - - - - - f 11 (LEXI) 1111 ILEXI 
I I I I I I 11 . ____ - - - - - - - - - - - - - - - - - Wait state 9 

Figure 24. Multilevel priority interrupt response (1 of 2) 



0 

"° 

0 LEX (Level Exit command) causes the processor to exit the current level on which it is executing, and 
transfer control to the highest priority level below the processor which is waiting to execute a task. e A second request on a level must wait until the processor exits 'that level-except for class interrupts, 
which are immediate. 

e If the processor exits the lowest priority level and no interrupt is waiting service, there is no task to 
carry out and the processor enters the wait state. When some priority level receives an interrupt, the 
wait state ends. 

The processor then enters the supervisor state, at that level, to respond to the interrupt. 

Figure 24. Multilevel priority interrupt response (2 of 2) 



Use of ttie processor status word 
The processor status word (PSW) is used to record error 
or exception conditions in the system that may prevent 
further processing. It also contains certain status flags 
related to error recovery. 

The PSW is contained in a 16-bit register with the follow­
ing bit representation: 

Class 
Bit Condition interrupt Remarks 
00 Specification check Program check 
01 Invalid storage address Program check 
02 Privilege violate Program check 
03 Protect check Program check 
04 Invalid function Program check or 

soft exception trap 
05 Floating-point exception Soft exception trap 
06 Stack exception Soft exception trap 
07 Not used Always zero 
08 Storage parity check Machine check 
09 Not used Always zero 
10 CPU control check Machine check 
11 1/0 check Machine check 
12 Sequence indicator None Status flag 
13 Auto-IPL None Status flag 
14 Translator enabled None Status flag 
15 Power/thermal warning Power /thermal 

Error or exception conditions recorded in the processor 
status word cause the following four class interrupts: 

1. Machine check, caused by a hardware error 

2. Program check, caused by a programming error 

3. Power/thermal warning, caused by a power or thermal 
irregularity 

4. Soft exception trap, caused by software 

Other class interrupts not recorded in the processor status 
word are: 

1. Supervisor call, caused by execution of an SVC 
instruction 

2. Trace, caused by instruction execution (trace enabled 
in the current LSR) 

3. Console, caused by a console interrupt when the optional 
programmer console is installed 

Figure 25. The processor status word (1 of 4) 

110 



Examples of definitions of processor status word 
flags and conditions 

Program check conditions 

Bit 00 Specification check. Set to one if the storage 
address violates the boundary requirements of the specified 
data type. 

Bit 01 Invalid storage address. Set to one when an 
attempt is made to access a storage address outside the 
storage size of the system. This can occur on an instruc­
tion fetch, an operand fetch, or an operand store if the 
system is using a translator and the segment register is 
declared invalid. 
Bit 02 Privilege violate. Set to one when a privileged instruc­
tion is attempted in the problem state (supervisor state bit 
in the level status register is not on). 

Bit 03 Protect check. In the problem state, this bit is set 
to one when (1) an instruction is fetched from a storage 
area not assigned to the current operation, (2) the instruc­
tion attempts to access a main storage operand in a stor­
age area not assigned to the current operation, or (3) the 
instruction attempts to change a main storage operand in 
violation of the read-only control. 

Program check or soft exception trap condition 

Bit 04 Invalid function: Set to one by one of the follow­
ing conditions: 

1. An illegal operation code or function combination 

2. The processor attempts to execute an instruction 
associated with an uninstalled feature 

Figure 25. The processor status word (2 of 4) 

Figure 26 shows a data stack and its associated stack 
control block. The user must align stack control blocks on 
a word boundary. The words in the stack control block are 
used as follows: 

High limit Address (HLA}. This word contains the address 
of the first byte beyond the area being used for the stack. All 
data in the stack has a lower address than the contents of the 
HLA. Note that the HLA points to the first byte beyond the 
bottom of an empty stack. 

111 



Soft exception trap condition 

Bit 05 Floating-point exception. Set to one when an 
exception condition is detected by the optional floating­
point processor. The arithmetic indicators (carry, even, 
and overflow) define the specific condition. 

Bit 06 Stack exception. Set to one when an attempt has 
been made to remove (pop) an operand from an empty 
main storage stack or enter (push) an operand into a full 
main storage stack. A stack exception also occurs when 
the stack cannot contain the number of words to be stored 
by a Store Multiple (STM) instruction. 

Machine check conditions 

Bit 08 Storage parity. Set to one when a parity error has 
been detected on data being read out of storage by the 
processor. This error may occur when accessing a storage 
location that has not been validated since power on. 

Bit 10 CPU control check. A control check will occur if 
no levels are active but execution is continuing. This is a 
machine-wide error. 

Bit 111/0 check. Set to one when a hardware error has 
occurred on the 1/0 interface that may prevent further 
communication with any 1/0 device. 

PSW bit 12 (sequence indicator) is a zero if the error 
occurred during an Operate 1/0 instruction and is set to 
one if the error occurred during a non-DPC transfer. 

Figure 25. The processor status word (3 of 4) 

Low Limit Address (LLA). This word designates the lowest 
storage location that can be used for a stack element. Note 
that the LLA points to the top of a stack. 

Top Element Address (TEA}. This word points to the stack 
element that is currently on top of the stack. For empty 
stacks, the TEA points to the same location as the high limit 
address (HLA). 

Notes: 
1. For word, doubleword, and register block operations, the 

high limit address, low limit address, and top element 

112 



Status flags 

Bit 12 Sequence indicator. This bit reflects the last 1/0 
interface sequence to occur after an 1/0 check. 

Bit 13 Auto IPL. Set to one by hardware when an auto­
matic IPL occurs. Set to zero by a power-on reset when 
the mode switch is not in auto-IPL, by pressing the load 
key, or by a host-system IPL. 

Bit 14 Translator enabled. When the Storage Address 
Relocation Translator Feature is installed this bit is set 
to one or zero as follows: 

1. Set to one (enabled) 
a. An Enable (EN) instruction is executed with bit 12 

of the instruction word set to zero and bit 14 set 
to one 

2. Set to zero (disabled) 
a. A Disable (DIS) instruction is executed with bit 

14 of the instruction word set to one 
b. An Enable (EN) instruction is executed with bit 

12 of the instruction word set to one 
c. A processor reset (power-on reset, check restart, 

IPL, or system reset key) 

Power/thermal warning condition 

Bit 15 Power warning and thermal warning. Set to one 
when these conditions occur. The power/thermal class 
interrupt is controlled by the summary mask. 

Figure 25. The processor status word (4 of 4) 

address must all contain an even numbered address to insure 
data alignment on a word boundary. 

2. The high limit address and low limit address define a con­
tiguous range of addresses. These addresses must not cross 
the 64K-byte boundary because that action causes storage 
to wrap around, i.e. correspond to addresses at the begin­
ning of storage. Figure 27 shows how elements are pushed 
into and popped from a stack. Note that each push opera­
tion always places an element at a lower address in the 
stack than the preceding element. 

113 



Main storage 

Address 0000 1 l 
.... Stack control block 

..------ Top element address (TEA) Word 0 

High limit address (HLA) Word 1 

.-- low limit address (LLA) Word 2 

Stack 
Full stack L....,.-------------. 
TEA Stack element ·-1- - - - - - ... __________ -' 

Stack element Empty 
stack TEA 

.._..__~---a 

The TEA for an 
empty stack points 
to the same place 
as the HLA. 

\ 15 

Stack element shown 
is 1 word; element can 
be 1 -, 2-, or 4-bytes wide. 

Notice that elements 
are added at the higher-
address storage loca- ---' 
tions-down toward 
the lower-numbered 
addresses. 

There may be as many stacks in main storage as desired; 
each stack is, essentially, an arbitrary size. Each stack has 
its own stack control block-a three word structure. 

Figure 26. The relationship of the stack control block to the data stack 

114 



Push: add an element to a stack 

LLA--+-1 

Empty 
stack 

TEA 

I 
TEA~ 
and HLA Notice that the addition of elements is 

from the higher addresses toward the 
lower addresses in main storage. 

Pop: delete an element from a stack 

LLA 

TEA 

Pop 

I 

HLA ~ TEA._, 

Empty 
stack 

The Series/1 provides instructions for adding and deleting 
one-, two-, and four-byte size elements. 

The processor handles all pointer updating and error 
detection. 

When allocating main storage for the stack, the user must 
insure that the area allocated is a multiple of the size ele­
ment being utilized. 

Elements are added to the stack at the same end from 
which they are deleted (last-in-first-out-LIFO). 

Figure 27. Adding and deleting elements from a stack 

115 



Push Operation. When a new element is pushed into a stack, 
the address value in the top element address is decremented 
by the length of the element (one, two, or four bytes) and 
compared against the low limit address. If the top element 
address is less than the low limit address, a stack overflow 
exists. An interrupt occurs with the stack exception bit set 
in the program status word. This interrupt is an example of 
an internal or class interrupt discussed earlier in this chapter. 
The top element address is unchanged. If the stack does 
not overflow, the system updates the top element address 
and moves the new element to the top l0<cation defined by 
the top element address. 

Pop Operation. When an element is popped from a stack, the 
top element address is compared against the high limit 
address. If it is equal to or greater than the high limit address, 
an underflow condition exists. An interrupt occurs with the 
stack exception bit set in the program status word. If the 
stack does not underflow, the system moves the stack ele­
ment-defined by the top element address-to the specified 
register, and increments the top element address by the length 
of the element. 

Note: It is possible to pop data from beyond a stack 
boundary if: 

1. The top element address is less than the high limit address, 
and 

2. The operand size is greater than the high limit address minus 
the top element address 

Data Stacking Example-Allocating Fixed Storage Areas 

Many programs require temporary main storage work 
areas. Users find it very economical to be able to assign, 
dynamically, such work-area storage to a program only when 
that storage is needed. Conversely, when work-area storage 
is no longer needed by a program, it is economical to free 
that resource so that other programs can use it. The stacking 
mechanism can assist the user in programming the dynamic 
storage management function. 

116 



The following paragraphs describe how a user cou Id allo­
cate storage areas using the stacking mechanism {Figure 28). 

A stack is initialized with an address that points to a fixed 
area of storage. Each element in the stack represents the 
starting address of a block of storage consisting of 512 bytes 
(e.g., addresses 0200 through 03FF}. As storage is needed, 
the system pops the starting address for a block of storage 
from the stack. When the system no longer needs the block 
of storage, it pushes the starting address back into the stack. 

The stack control block, and the stack and storage areas 
appear initially as shown in Figure 28 (1 of 4). 

Notice that each stack element is one word long; addresses 
of the storage area are synonymous with the stack elements; the 
the top element address {TEA} points to the lowest location 
of the last element because the initialized stack is full. 
Contrast this with an empty stack {Figure 27} in which the 
top element address points to the same location as the high 
limit address. 

Assume that program A requires a block of storage. Pro­
gram A (or a storage management function at the request of 
program A) issues a Pop Word instruction against the stack 
control block. The system updates the top element address 
as shown in Figure 28 (2 of 4). 

The system places the popped-word element in the register 
specified by the Pop Word instruction executed by program 
A. This is the address of the 512-byte storage area beginning 
at address 0200. 

Assume that program B {operating on a different hardware 
level than program A} also requires a storage area as shown in 
Figure 28 (3 of 4). It, too, executes a Pop Word instruction 
against the stack. The next stack element is moved to the 
register specified and points to the next available storage area; 
then, the top element address is updated. 

Before any further requests occur, program A terminates 
its need for a work area. Program A then issues a Push Word 
instruction against the stack and returns the address of the 
area it occupied so other programs can now use that same 
area as shown in Figure 28 (4 of 4). 

117 



Problem: Given a supply of buffer or storage areas of equal 
length-provide them, on a temporary basis, to tasks exe­
cuting at different priority levels. 

Solution: Use the stack as the list of available areas. Use the 
stack manipulation instructions to insure that interrupts of 
different priority cannot interfere with one another by 
interrupting during a crucial time-for instance, when stor­
age areas are being allocated. 

Stack control block 

TEA 

HLA 

LLA 

TEA= 
LLA = 0800 __.,. 

HLA=0808-

0200 

0400 

0600 

0800 

0800 

OBOS 

OBOO 

Full stack 

0200 

0400 

0600 

0800 

Storage areas 

Available storage 

Available storage 

Available storage 

Available storage 

The stack is initialized 
with the addresses of 
the available storage 
areas (in this example, 
assumed to be 512 bytes). 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (1 of 4) 

118 



LLA = OBOO 

TEA= 0802 

HLA=OB08-. 

0400 

Stack 

0600 

0800 

Storage areas 

Available storage 

One storage area address 
has been popped from the 
stack and given to program 

0600 
i---------1 A. Program A keeps this 

Available storage 
address in a register which 
precludes interference 

1--------1 from higher priority tasks. 
osoo-

Available storage 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (2 of 4) 

A similar operation will be performed by program B when 
it releases its storage to the stack, popping address 0400 
into location OBOO. While the addresses are obviously 
shuffled in the stack-the values differ from those initially 
established-no operational problems occur. This is so 
because each program requires only that an area of storage 
be assigned-it is not important where that area is located. 

Linkage Stacking Description 

A word-stack mechanism can be used for subroutine link­
age. This mechanism saves and restores registers and allo­
cates dynamic work areas (Figure 29). 

119 



A higher-priority program-8-interrupts and requests a stor­
age area. A second address is popped from the stack and 
assigned to program 8. Note that an interrupt cannot occur 
in the middle of a stack operation; consequently, one stack 
operation is always complete before another begins. 

Stack control block 

TEA 0804 TEA after 
second pop 

HLA 0808 

LLA 0800 

Stack 

LLA = 0800 

TEA= 0804 0600 

0800 

H LA = 0808--+-

Storage areas 

0200 

Available storage 

0800 
Available storage 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (3 of 4) 

120 



Stack control block 

TEA 0802 TEA after 

HLA 
program A 

0808 push operation 

LLA 0800 

Stack 

LLA = 0800 

TEA= 0802 0200 Program A finishes 

0600 with its storage area 
and returns it to the 

0800 stack. The address 

HLA = 0808--.. 
is pushed onto the 
stack. Notice that Storage areas as areas are allocated 

0200 and returned, the 
order of addresses 
on the stack changes. 

0400 

0600 
Available storage 

0800 
Available storage 

Any program requesting storage may discover that no 
storage is available. An interrupt would then signal an 
empty stack of available addresses. The program must 
then decide whether to abort or wait for the storage to 
become available. 

Figure 28. Example of stack usage: allocation of storage areas to concurrent 
programs (4 of 4) 

121 



Stack control block 

TEA 

HLA 

LLA 

Stack 

NewTEA~ RL N 

0 2 3 

NewRL -

OldTEA­
and HLA 

Dynamic work area 

R7 contents 

RO contents 

RL contents 

15 

Special instructions, Store Multiple and Load Multiple, 
reference a stack control block and specify: 

• The number of registers to be saved 

• The number of registers to be restored 

• An arbitrary-sized area to be stacked (N) 

This figure shows the use of special instructions to push 
and pop arbitrary-sized elements on a stack, and to facili· 
tate reentrant programming. 

Figure 29. Example of hardware and software integrated design 

122 



The Store Multiple (STM) instruction specifies: 

• Stack control block address 

• Limit register (RL) number 

• Number (N) or words to allocate for work areas 

When the STM instruction is executed, the requested block 
size, in words, is the sum of: 

• The allocated value {N), plus 

• The number of registers saved, plus 

• One control word 

The block size (converted to bytes) is used to decrement the 
TEA before making an overflow check. If no overflow 
occurs, the operation proceeds. The link regist~r (R7) and 
register 0 through the specific limit register (RL) are saved, 
sequentially, in the stack. If register 7 is specified as the limit 
register, only register 7 is stored in the stack. The dynamic 
work space is allocated, and a pointer to the work area is 
returned in register RL. If no work area is specified, the 
returned pointer contains the location of R7 in the stack. 
The values of RL and N are also saved as an entry in the stack. 
The TEA is updated to point to the new, top-of-stack 
location. 

When a Load Multiple and Branch (LMB) instruction is 
executed, the values of RL and N are retrieved from the 
stack and the system makes an underflow check. The value 
of RL controls the reloading of the registers; the values of 
RL and N are used to restore the stack pointer (TEA) to its 
former status. The contents of register 7 are then loaded 
into the instruction address register, returning program 
control to the calling routine. 

Linkage Stacking Example-Reentrant Subroutine 

Programs that operate on different interrupt levels may 
use the same subroutine. Instead of providing copies of the 
subroutine (one copy for each program that needs it), the 
subroutine can be made reentrant. That is, only one copy 
of the subroutine is provided and the single copy is used by 

123 



all requesting programs. Two items must be considered in 
the reentrant subroutine code: 

1. Saving the register contents of each calling program. The 
subroutine is then free to use the same registers, restoring 
their contents to the calling-program's values just before 
the subroutine returns to the calling program itself. 

2. Preserving the applicable variable data (generated by the 
subroutine) that is related to each call of the subroutine. 
This is done because data associated with one call must 
not be disturbed when subroutine execution is restarted 
due to another call from a higher priority program. 

By using the STM and LMB instructions, the stacking 
mechanism handles items one and two, above. As an 
example, the operation could proceed as follows (Figure 30): 

1. Program A calls the subroutine by means of a Branch and 
Link instruction (return address is in R7) 

2. The subroutine, in this example, uses registers R3 and R4 
during its execution. The subroutine receives (from pro­
gram A) a parameter list address in RO, and the address 
of the stack control block in R 1. Also, the subroutine 
executes, upon entry, the following store multiple instruc­
tion: 

SUB RT STM 4,(1 ),20 

After execution of the STM, the stack appears as shown 
in Figure 30. The last word contains a value that specifies 
the last register stored (R4 in this example) and the size 
of the dynamic work area (in words). During the STM 
operation, R4 (the last register stored in the stack) is auto­
matically loaded with the address of the work area to be 
used by the subroutine to hold its work data. 

3. When subroutine processing for this call is completed, the 
subroutine executes a single, Load Multiple and Branch 
instruction in order to reload the registers and return (via 
R7) to the calling program. 

If a second call to the subroutine has occurred prior to 
execution of the LMB, action similar to that just stated 
would occur again. However, another stack area would be 

124 



used. To complete processing for the first call, a return 
to the interrupted subroutine would occur when: 
a. Subroutine execution is completed for the second call, 

and 
b. All higher priority, interrupt-level processing is 

completed 

In this way, multiple calls to a single subroutine are 
processed without interfering with the integrity of data 
associated with any other call to the subroutine. 

Efficient use of the stacking mechanism depends on 
processor instructions for adding and deleting information. 
The stack, however, is a finite resource; consequently, 
exceptional conditions may occur which must be detected. 
These include overflowing the allotted stack area or remov­
ing more elements than are on the stack. The Series/1 
instructions used to push and pop bytes, words, and double­
words, and the instruction used to store a group of registers 
and allocate an arbitrarily-sized work area on the stack 
(Load and Store Multiple instructions) contain hardware 
facilities to detect exception conditions and cause class 
interrupts. It is not necessary for user programs to test 
repetitively to determine if the stack has enough room. 
Rather, when the exception occurs, an interrupt response 
task can respond and do the appropriate error recovery 
pertinent to the particular use of the stack. 

The ability to test and detect error conditions like these 
is easy and inexpensive in a microprogrammed processor. 
IBM has carefully designed the instruction set of the Series/1 
to take advantage of this capability to make system software 
and application software as reliable as possible. 

Interrupt Masking Facilities and the 
Interrupt Response Algorithm 

It is usually, but not always, advantageous to respond 
quickly to asynchronous external events. Often application 
tasks or operating systems must update shared data items or 
manipulate other shared resources. If interrupting the opera­
tion might result in erroneous information being stored or 

125 



Problem: Provide an efficient mechanism for: 1) saving 
the registers of a program calling a subroutine, and 2) allo­
cating to the subroutine a work area for its temporary use. 
The latter permits tasks which interrupt one another to 
share subroutines. 

Solution: Use a stack-with special instructions that move 
registers to the stack-and restore register values from the 
stack. The same instructions must permit allocation of an 
arbitrary work area on the stack. Use the hardware-designed 
special instructions of the Series/1 to solve this software 
problem. 

Stack 

LLA ____..,. 

TEA ~ 4 10 

0 2 3 15 
_.,. 

20 bytes 

R4 

} N=10 

R7 

RO 

R1 

R2 

R3 

R4 

HLA--+-

Figure 30. Example of stack usage: subroutine linkage and allocation of a 
work area (1 of 21 

126 



In this example, ten words have been specified for the work 
area. Not all eight registers need be saved in this example. 
Registers 0 through 4 have been specified. Register 7 is 
automatically saved because it is used during the linkage 
process. Arguments of the subroutine are usually trans­
mitted through the registers and, hence, are available to the 
subroutine on the stack. 

Figure 30. Example of stack usage: subroutine linkage and allocation of a 
work area (2 of 2) 

used by another task, the operation is termed critical. Such 
interrupts must be prevented. Usually, the user carefully 
designs such operations so they will execute quickly and 
infrequently to insure that the overall system response is not 
affected. Control over the interrupt mechanism is a useful 
tool for preventing interrupts that would adversely affect 
the system. 

Three degrees of priority interrupt masking are provided 
for control of the interrupt processing: 

1. Summary mask (bit 11 of the level status register) 

2. Interrupt level mask register 

3. Device mask 

These registers, along with the conditions under which the 
processor responds to an interrupt, are shown in Figure 31. 

Summary Mask 

The summary mask supplies a masking facility for priority 
interrupts and certain class interrupts. The state of the 
summary mask (enabled and disabled) is controlled by bit 11 
in the level status register (LSR) of the active priority level. 
When bit 11 is set to zero, the summary mask is disabled 
and prevents: 

1. All priority interrupts regardless of priority level 

2. Power/thermal and console class interrupts 

127 



IV 
00 

Mask register: (one bit per hardware priority level): 

If Lk=1, the level is enabled 

If Lk=O, the level is disabled 

1 4 1 L, I L,TJ 
Each input/output device: 

Device 
interrupt 
mask 

Figure 31. The priority interrupt algorithm (1of2) 

Summary mask: 

Bit 11 in the 
level status 
register 

Each level has its own summary mask for 
disabling all interrupts. 

In-process flag: 

Bit 9 in the level 
status register 



Interrupt 

Yes 
Respond 

~ Figure 31. The priority interrupt algorithm (2 of 2) 

Respond to the interrupt: 

1. If the summary mask is enabled 

2. If the interrupt level corresponding to the interrupt is enabled in 
its corresponding bit in the mask register 

3. If the interrupt is from an input/output device, the device inter­
rupt mask for that device must be enabled 

4. If the interrupt request is the highest priority of the outstand­
ing requests-and either higher than the current level of the 
processor, or at the same level in the case of class interrupts 

5. If the processor is not in the stop state 

No 
If any of these conditions do not hold, the 
interrupt is not lost but is left pending or 
waiting until all the above conditions are 
fulfilled. 



All other class interrupts are enabled. When bit 11 is set to 
one, the mask is enabled and the interrupts are allowed. The 
summary mask is disabled and enabled as follows: 

Disabled (Set to Zero) 

• When a Supervisor Call (SVC) instruction is executed, the 
summary mask for the active level is disabled 

• Execution of a Disable (DIS) instruction-with bit 15 of 
the instruction equal to one-causes the summary mask 
for the active level to be disabled 

• All class interrupts disable the active-level summary mask 

• The summary mask for a selected level is disabled by 
executing a Set Level Block (SELB) instruction with bit 11 
of the LSR to be loaded, equal to zero 

• The summary mask bits for priority levels 1-3 are set to 
zero by a system reset, power-on reset, or I PL 

Enabled (Set to One) 

• Execution of an Enable (EN) instruction-with bit 15 of 
the instruction equal to one-causes the active-level 
summary mask to be enabled 

• The summary mask for a selected level is enabled by 
executing a Set Level Block (SELB) instruction with bit 
11 of the LSR to be loaded, equal to one 

• The level zero summary mask is enabled by a system 
reset, power-on reset, or I PL 

• The summary mask for the interrupted-to level is enabled 
by a priority interrupt 

Notice that the summary mask bit exists independently for 
each priority level. If the processor is in the wait state, the 
summary mask is enabled or disabled as defined by bit 11 
in the LSR of the last active priority level. 

Interrupt Level Mask Register 

The interrupt level mask register is a 4-bit register used 
to control interrupts on specific priority levels. Each level 

130 



is controlled by a separate bit of the mask register as shown 
below: 

Interrupt Level Mask Register 

Bit position 0 1 2 3 
Priority level 0 1 2 3 

With a bit position set to one, the corresponding priority 
level is enabled and permits interrupts. With a bit position 
set to zero, the corresponding priority level is disabled. The 
system uses the Set Interrupt Mask Register (SEIMR) instruc­
tion to control bit settings in the interrupt level mask register. 
The Copy Interrupt Mask Register (CPIMR) instruction may 
be used to interrogate the register. 

Note: All levels are enabled (set to one) by a system reset, 
power-on reset, or IPL. 

Device Mask 

Each interrupting device contains a one-bit mask called 
the device interrupt bit (I-bit). Interrupts by the device are 
permitted when its device mask is enabled (set to one). With 
the device-mask bit disabled (set to zero), the device cannot 
cause an interrupt. The device mask is controlled by a Pre­
pare command in conjunction with an Operate 1/0 
instruction. 

The algorithm for responding to an interrupt, outlined in 
Figure 31, involves the priority of the currently executing 
level and the conditions of the various mask bits. The use of 
these interrupt masking functions is actually carried out with 
privileged instructions. In some dedicated types of applica­
tions, critical user-application tasks may execute in the 
privileged mode and directly manipulate interrupts. More 
often, the operating system maintains complete control over 
interrupts in order to successfully schedule and control 
concurrent sets of cooperating tasks-a condition typical of 
online, realtime applications. 

131 



Organization and 
Management of 
Main Storage 

The objective of this chapter is to discuss the organization 
and management of main storage from the point of view of 
the overall architecture of the Series/1. Some of the capa­
bilities discussed are hardware supported in some processors 
but not in others; some capabilities may not be supported 
in some software systems. Consequently, it is important to 
review the appropriate processor and software reference 
manuals when considering any single device in the Series/1 
family. 

The organization of main storage is central to the effec-
tive use ofsmall computers. The hardware organization 
must both support a set of cooperating tasks and permit the 
use of efficient software for control of those tasks. To 
achieve compactness and speed, the Series/1 main storage 
itself is constructed using solid state FET (field effect tran­
sistor) technology. Supplied in up to 64K-byte increments, 
the maximum main storage supported is 64K bytes without 
hardware relocation translation and 256K bytes with the trans­
lator in the 4955 processor. Main storage speed is 300 nano­
seconds with a restriction that 660 nanoseconds separate 
successive storage accesses. Each byte of main storage con­
tains a parity bit for error detection. Specific details on 
speeds and parity bits vary from one processor model to 
another. The reader should consult the appropriate processor 
reference manuals for more specific information. 

132 



Main storage technology has been changing rapidly for 
the past few years and will probably continue to do so in the 
future. It is probable that main storage speeds, sizes, and 
reliability will continue to increase. As indicated earlier, IBM 
has deliberately designed the architecture of the Series/1 so 
that future technological improvements can more easily be 
incorporated in the system without obsoleting the design. 
The organization and use of Series/1 main storage, in parti­
cular, has been designed to rnake it compatible with these 
potential changes; hence, it is very important to consider 
how hardware and software cooperate in using storage. 

Solid state main storage is volatile; that is, it loses its 
contents if power is lost. For those applications which can­
not tolerate any loss of storage-or where it is difficult to 
checkpoint the application for restart from data kept in 
secondary storage-a battery backup unit is available. This 
unit is normally on stand-by and held at full charge. When a 
power failure is detected, this unit switches in to insure that 
the contents of main storage are not lost. 

Chapter 3 discussed the processor and the input/output 
system access of main storage. It should be noted again, 
however, that in Series/1 processors with translation, all 
main storage addresses are actually 24-bits wide even though 
the largest main storage available is 256K bytes. 

As described in Chapter 2, main storage is extensively self­
checked. During processor power-on, the system checks the 
first 16K bytes of main storage for correct operation-general 
pattern checking also occurs. When using the Realtime Pro­
gramming System, all installed storage is validated. Individual 
modules perform self-checking relevant to each module, and 
then check communications into main storage by uniting with 
and rereading a location. It is highly probable that a main 
storage failure will be discovered promptly. 

User Concerns in Main Storage Organization 
Since small computer applications are usually realized as a 

set of cooperating tasks, several aspects of main storage 
organization become important. They include: 

133 



Storage Addressing. Because multiple programs are co­
resident in main storage, it is desirable to minimize the size of 
each. This minimization further reduces the time required to 
load the program from secondary storage and enhances 
response time of realtime applications. Although mainly 
related to instruction set sophistication, program size also 
relates to main storage word size and addressing. Specifically, 
effective use of registers for addressing purposes results in 
fewer full-word addresses and, consequently, more compact 
programs. 

Address Space. Since small computer applications are usually 
structured as a set of relatively small, cooperating tasks, a 
64K-byte address space (that is, the largest address that may 
be directly generated in an application program) is not often 
a limitation. More important, here, is the ability to use the 
full space for the task (and not share it with a large operating 
system, for example), and to access other tasks and data 
areas each of which may have its own address space. 

Storage Protection. Reliability is the paramount concern in 
applications, but it is not realistic to expect all programs to 
be error free under all conditions. Instead, the user wants to 
be able to detect errors when they occur, trace them to their 
source, and respond in such a way that the application's 
objective_s are still met. Detection of errors and error recovery 
is a function of both the interrupt system discussed in 
Chapter 3 and of the main storage organizaHon. 

Hardware Support for Reentrant Programs. Many software 
routines are shared among tasks. If the routines are reentrant, 
it is not necessary to delay the higher-priority task until the 
lower-priority task has completed its use of the shared 
routine. If suchroutines are to be efficient as reentrant 
routines, the system must provide storage addressing modes 
to permit instructions to reference different data areas at 
different times. 

134 



Efficient Intertask Communications' Capability. The word 
"cooperating" in the description of applications as a set of 
"cooperating tasks" cannot be overemphasized. The tasks 
share data, share routines, schedule one another, and perform 
many other functions. These tasks run concurrently, often 
in unpredictable sequences, as events occur. Main storage 
organization must permit data and routine sharing even 
though-at program preparation time-addresses of data and 
routines are not usually known. As in the case of reentrant 
routines, addressing modes must be present to do this 
effectively. Furthermore, the intertask communications must 
be consistent with the main storage protection mechanism 
so they do not reduce the reliability of the system. 

Storage Management of Tasks. Either the Realtime Program­
ming System or a special-purpose operating system created by 
the user manages the concurrent application tasks. In either 
case, the hardware organization of the main storage must 
facilitate: 1} getting tasks into and out of main storage with 
minimum overhead, and 2) switching execution rapidly from 
task to task. This is especially important in realtime applica­
tions and in processors with large main storage. 

IBM designed the Series/1 main storage architecture with 
these user concerns in mind. Consider first a single task­
involved in all of the aspects described above-when it 
addresses main storage. 

Main Storage Addressing Modes 

The user address space on the Series/1 is 64K bytes in 
length, corresponding to an address size of 16 bits; it is 
treated as an unsigned number. Storage references may be 
to bytes, words (pairs of bytes), doublewords, and quadruple 
words (as for example in double-precision, floating-point 
data}. Bytes may be referenced at any address, but all words 
and multiples of words must start on word boundaries which 
are even-numbered bytes. Reference to a word is by the 
left-hand byte.address. Hence, the left-hand byte of a word 
must reside at an even address and the right-hand byte of a 
word, at an odd address. This arrangement expedites the 

135 



accessing of words from main storage. Part of the instruction 
set's sophistication originates from its knowledge of the data 
type being addressed. For example, if it is known that a 
word is being addressed and hence its address is even, the low 
order bit-which is zero-need not be stored in the instruc­
tion. Of course, language translators for PL/I, FORTRAN, 
COBOL, and the assembler language take this into account 
at program preparation time. 

The Series/1 provides a variety of addressing modes-all 
of which are useful in specific instances-for actually 
referring to main storage addresses. They may be divided 
into three broad categories: 

1. Addressing modes which do not use registers 

2. Register addressing modes 

3. Based addressing modes 

Direct and Indirect 

In the first category of addressing modes, the address of the 
data item or main storage location is: 

• 16-bits long 

• Treated as an unsigned positive number 

• Resides in a word in main storage as indicated in Figure 32 

In that figure, direct addressing indicates a word which itself 
contains the desired address; indirect addressing indicates a 
word that contains a main storage address which, in turn, 
contains the desired address. Notice in the latter case that, 
before the system can access the data, an extra storage 
reference must occur to get the actual address. These modes 
of addressing can be used with many instructions but require 
a full storage word appended to the instruction to contain 
the address. This requirement lengthens the instruction from 
one word to two or, in the case of storage to storage instruc­
tions, to three words. In Figure 32, the examples show 
simple references to names which have been defined else­
where in either assembler language or a compiler language. 
The asterisk symbol after a name means that the location 
named contains the address of the desired data rather than 

136 



the data itself. Direct addressing is useful in those situations 
where locations of routines and data are known at program 
preparation time. 

Even in these cases, however, it is often more efficient to 
load the known addresses into registers and then use one of 
the register and based addressing modes to decrease program 
size. Indirect addressing can obviate the need to know 
addresses at program preparation time. As shown in the 
example in Figure 32, a user might refer to a routine whose 
address is not known by: 1) referring indirectly to a known 
location; 2) then, before the program begins execution, load­
ing the address of the routine into that location. Indirect 
addressing is also used in the other two categories of 
addressing. 

Register Modes 

The second category of addressing modes is the set of 
register addressing modes shown in Figure 33. The first two 
modes illustrated there are similar to the direct and indirect 
modes discussed above because the system uses 16-bit 
addresses to address either the data or a main storage location 
which contains the address of the data. They differ because, 
in the second category, the addresses are in one of the eight 
general purpose registers rather than in a main storage word. 
This placement simplifies the instructions because they have 
to reference only one of the registers {two or three bits, 
depending upon the instruction) rather than a full word 
appended to the instruction. Furthermore, references to a 
data item cite a register containing that item's addresses; to 
move a data item, only that register's contents need be 
changed. This expedites referencing data separate from 
tasks, data in tables, and other data sources. 

The register addressing modes contain one additional 
capability: namely, the post incrementing addressing mode. 
In this mode, denoted by a+ sign after the register number, 
the system accesses the register to find the data address 
stored in that register-just as in register direct addressing; 
but the address in the register is then incremented by the 
length of the data item addressed. As a result, each reference 

137 



w 
00 

0 Direct addressing generates an instruction containing the address of the data item referenced. 

Example: in the table containing counts of pro­
duction for various orders, each location has an 
address and a symbolic name. 

• Direct 
addressing 

~ ADD-ONE-TO 

l ADD-ONE-TO 

ORDER2-- -I 

ORDER1 -- .j 

Figure 32. Storage addressing modes which do not use registers (1 of 3) 

Main storage 

ORDER4 = loc 3026 

ORDER3 = loc 3024 

ORDER2 = loc 3022 

ORDER1 = loc 3020 



G Indirect addressing generates an instruction containing the address of a storage location; this storage location 
actually contains the address of the data item referenced. 

A storage location with a symbolic name is used as a pointer to the order currently being referenced. 

e 
Indirect 
addressing { ADD-ONE-TO TRANS* 

' ' ' ......... 

ORDER1 = loc 3020 

I r--, 
I 
I 
I 
I 
I 

3020 
TRANS= loc 1410 

Indirect addressing allows programs to refer to different data items at different times by changing only the 
contents of TRANS rather than all of the addresses within the program. 
Actual addresses-which appear as part of an instruction or as an indirect address-are a full 16-bits long and 
occupy a full word in storage. 

~ Figure 32. Storage addressing modes which do not use registers (2 of 31 



.j>. 
0 

1-Problem: A program calls subroutines whose locations are not known at program preparation time because 
I they are separate from the program itself-part of another program or operating system. 

I 
I 
I 
I 
I 

Solution: Address the subroutines indirectly using a known location in the calling program itself. - - - -­

The actual addresses of the subroutines must be loaded into these locations just prior to execution of the II 
program. 

I 

.... - - -1 

I 
I 
I 

Call subroutine A 

Call subroutine 8 

Loe A1 * 

Loe 81 * 

Figure 32. Storage addressing modes which do not use registers (3 of 3) 

CALL A1 * 
CALL 81* 

1-------...J 

} 
Loaded with addresses 
of subroutines A and 
8 prior to execution 
of this program. 



to a register with post incrementing mode changes the 
address. This procedure is very useful for sequencing through 
a table of items because it eliminates extra instructions that 
add constants to the register contents. The incrementing 
is totally automatic in the sense that the amount to be incre­
mented (one byte, one word, two words) is determined by 
the instruction involved-because the data type referenced 
is implicit in the instruction. Register addressing modes are 
used extensively to minimize program size. Code generation 
in compilers is carefully designed to take this into considera­
tion enabling application programs written in FORTRAN, 
COBOL, or PL/I to produce efficient object programs. An 
important part of assembler language programming is planning 
to permit use of these addressing modes rather than the 
longer, non-register modes. 

Based Addressing 

Based addressing, the third category of addressing modes, 
provides the real power for intertask communications, sharing 
data, and other functions required by a set of cooperating 
tasks. Figure 34 shows the three modes in this category. 
Base relative addressing uses one of the general registers as a 
base register; that is, a register which contains an address to 
be used in relative addressing. An item is referenced relative 
to that base address by providing its displacement from 
that address. The net address then consists of the base 
register number and the displacement as shown in Figure 34. 
This is the addressing mode used in most large computers 
including the IBM System/370. It permits the referencing 
of a number of data items via displacements; the displace­
ments are usually small because programs are designed to 
be compact. 

Figure 35 shows a data table containing several items of 
information. Base relative referencing of that data involves 
loading the selected base register with the starting address of 
the table (which need not be known at program preparation 
time). Each item is referenced by its known displacement 
from the beginning of the table. Notice that the table could 
be moved without changing the relative addresses of the data 

141 



0 
(r) 

(r)* 

Register direct. Direct addressing where the 
16-bit address is in a register rather than a 
word in storage, 

e 

Register indirect. Indirect addressing where 
the 16-bit address of the storage location con­
taining the address of the data item is stored 
in a register rather than another word of 
storage. 

(r)+ Register post increment. Register direct 
addressing mode-except that the register con­
tents are incremented after its contents are 
used as an address. 

Register addressing modes allow efficient use of main stor­
age: instructions may not need extra storage words contain­
ing addresses. 

Register addressing modes lead to efficient programs: the 
same program code can refer to different data items at 
different times; this is accomplished by changing an address 
in a register rather than changing the addresses within all of 
the instructions in the program. 

Figure 33. Storage addressing modes using registers for address storage (1 of 2) 

within the table; to do so, the user has to change only the 
beginning address of the table in the base register. Certain 
instructions permit registers 1 through 7 to be base registers 
while other instructions restrict the choice to registers 1 
through 3-whichever registers are appropriate for the instruc­
tion under consideration. Other instructions also limit the 
maximum displacement that a user may specify. This limita­
tion is a value appropriate to the particular instruction. 
Maximum displacements range from a low of 31 bytes to a 
high of 32K bytes. 

Indirect and Base Relative 

Indirect addressing in the base relative mode is also per­
mitted as shown in Figure 34. In this case, the user can 
choose when to perform the indirect part of the address 

142 



e TEST-ZERO (R3)+ 

I 
I 
I 
I 
I 
I 
I 
I 
~ 

Loe 1106 

Register 3 
:- ~o~1~4~ 

-r-- - _,, 

0 
0 
e 

User registers 

: Loe 1102 -----1 
·----~ 

The main-storage sequence 
of words to be tested is 
equal to zero. 

r refers to a user register number. 

The amount of the increment depends upon the data 
type referenced (byte, word, and so on). 

Successive executions of this instruction reference 
successive items in the table. 

Figure 33. Storage addressing modes using registers for address storage (2 of 2) 

143 



..... 
t 

Base relative addressing combined with indirect addressing 

Pre-base relative indirect: add the displacement to the base register contents and use the result as an 
indirect address. 

Post-base relative indirect: use the base register contents as the indirect address. Fetch the address in that 
location and then add the displacement to get the final address. 

Pre- and post-base relative indirect: apply one displacement to the base register contents to get the indirect 
address. Add the second displacement to the address found in the indirect location to get the final address. 

(R3,D) ---- ---- --------------- -1 

Displ~cement ·~ t-----------1 
1-....., ------~ 

Loc1+D 
.......... 

............ 
............. 

............. ~ 
Loc1 Loc1+1 

Loc1 

Figure 34. Base relative addressing and its variations (1 of 2) 



Loc2+D2: Data3 D2(R3,D1)* refers to Data3 

R3 Loc1 Loc2: Data1 (R3,D1 )*refers to Data1 

User registers Loc1+D1: Loc2 (R3,D1) refers to this location 

Loc1: Loc3 

Loc3+D1: Data2 01 (R3)* refers to Data2 

Loc3 

..j:l. 
Vi Figure 34. Base relative addressing and its variations (2 of 2) 



..... 
~ 

Base 
register 

Customer number 

Order number 

Item number c 

Item quantity B 

---L _ J Status code I t A I I I 

D 

Symbolic references to any data item in the data base will be transformed, where possible, to a base relative 
reference by program-preparation software. This minimizes instruction lengths and overall program length. 

Reference to another customer's order would entail change to the register to point to the new data area, 
but would require no change to programs referencing items within the area. 

Loading a base register with the address of the first item in the data base allows all other items to be refer­
enced by their relative displacement. 

Figure 35. Base relative addressing of items within a contiguous base 



cyde. As the figure indicates, in pre-base relative indirect 
addressing, the displacement is added to the indicated base 
register contents and that address is used as an indirect 
address. In post-base relative indirect addressing, the dis­
placement is added after the register contents have been used 
as an indirect address. Both addressing modes are very useful 
as the examples in Figure 36 show. Both modes encourage 
the use of tables of addresses and tables of data items; these 
tables, in turn, simplify documentation, program updates, 
and online interaction among tasks. 

Not only are pre- and post-base relative indirect address­
ing useful in themselves, but their combination can be very 
economical. The Series/1 provides that combination mode 
which is illustrated in Figure 34. Two, eight-bit displace­
ments are permitted in this addressing mode; before actually 
accessing the data, the system adds one of them to the 
register contents before the indirect step and adds the other 
to the address resulting from the indirect step. Figure 37 
shows how useful this can be when organizing data tables 
in a directory or hierarchical form. Clearly, the same effect 
could be obtained by loading addresses into registers and 
adding displacements, but those procedures would slow 
program execution and increase program size. A less 
obvious advantage of the combined addressing mode origi­
nates from the fact that all access to items is through dis­
placements rather than addresses; consequently, tasks shar-
ing data do not need to know the addresses of each data 
item-they need to know only the directory. Other tasks 
can modify and move data items provided the user updates 
directories properly. The IBM Series/1 Realtime Programming 
System makes extensive use of these facilities in its data 
management. 

This variety of addressing modes means that there are 
often several choices for addressing a particular location or 
item. The Series/1 assembler can optimize this choice when 
it has the information available to do so. For example, the 
programmer can inform the assembler-symbolically-of the 
contents of the base registers. When a symbol is cited, the 
assembler attempts to reference it with a base relative address 

147 



References to a set of routines-each of which handles one 
elementary function-is common. A table of these routines' 
addresses can be referenced relative to the start of the table; 
it is followed by an indirect access. 

-------

-------1 
displacement = 4 

Go to routine number 4: 

BRANCH (reg,4)* 

reg is the number of 
the base register. 

reg 

Address of 
routine 4 

Figure 36. Combined base relative and indirect addressing mode solutions to 
programming problems (1 of 21 

148 



References to items within a data base are conveniently 
done relative to the beginning of the data base, as shown 
in Figure 35. If multiple, similar data bases are present­
one for each order for example-it is convenient to: 1) use 
indirect addressing to point to the particular data base 
currently being processed; 2) then, reference items relative 
to the start of that data base. 

Access item 3: 

ACCESS 3(reg) * 

,-­
' I 
I 
I 
I 
I 
I 
........ 

........ 

~ 

-

........ 

T 

Multiple, 
similar data 
areas 

Address of data 
base currently 
being processed 

reg ..____.I---'4.___ ___ I~.. ____. 

Figure 36. Combined base relative and indirect addressing mode solutions to 
programming problems (2 of 21 

149 



Problem: Maintain multiple data sets-whose position can 
vary with time-so that users can efficiently access the 
data items within any one set. 

Solution: Provide a directory in which the current address 
of each data set is maintained. Let this directory be refer­
enced relative to its start (displacement). 

Maintain the address of the directory in a register. Let 
users reference the directory using: 

• The register as a base register 

• The displacement within the directory to access the 
starting address of a specific data set 

• Items within the data set, via a displacement from its 
beginning 

Directory Data sets 

ACCESS-ITEM D1 (r,D2)* D 
D 

r 

Displacement D 1 

Using combined addressing mode, all of the above process­
ing may be done within one instruction; consequently, 
there is no problem of concurrency or need for programs 
to access these addresses and store them within the pro­
gram itself-the system maintains control of the entire 
data base and can assure its integrity. 

The illustrated combination of pre- and post-base relative 
indirect addressing permits easy implementation of efficient 
hierarchical files. 

Figure 37. Combination of pre- and post-base relative indirect addressing 

150 



rather than a direct address. The assembler picks the shorter 
instruction. 

Other addressing modes are used in specific instructions 
where appropriate but are not included in the above cate­
gories because of their restricted use. For example, 
Chapter 3 discussed the stack referencing instructions which 
perform complex operations on the addresses. Chapter 6 
discusses special-instruction addressing modes together 
with the specific instruction involved in each. 

Excluded Modes 

It is also important to note that certain addressing 
modes are deliberately not present in the Series/1. For 
example, instruction address register relative addressing is 
not provided in the Series/1. This mode is often called 
relative addressing and, if consistently used, provides for 
position-independent code; that is, object code which can 
be executed at any arbitrary starting location in main storage. 
The Series/1 architecture obviates this addressing mode 
primarily because of its address translation capability which 
provides a more powerful position-independence than would 
be provided by relative addressing. The multiple levels of 
indirect addressing facility is not provided because it lacks 
general utility and it introduces problems of error detection 
and recovery. 

When a user chooses an instruction set and storage address­
ing modes, some compromises in system design must follow. 
However, the integrated development of Series/1 hardware 
and software-both program-preparation software and 
operating-system software-has evolved an efficient set of 
main storage addressing modes consistent with the applica­
tions intended for the system. The precise descriptions 
of instruction formats, and the allocation of fields to those 
instructions, are covered in detail in the Series/1 reference 
manuals for the various processors. In Chapter 6, instruction 
formats are presented and their relationship to the addressing 
modes described here is discussed further. 

151 



Main Storage Protection 

Reliability of the Series/1 is enhanced by an effective 
system for error detection and recovery. Main storage pro­
tection contributes to this system by enabling tasks: 

• To protect critical areas from writing 

• To protect critical areas from any access 

• To connect the internal interrupt system to those tasks 
responsible for responding to violations 

The precise means used for storage protection varies with the 
size of main storage. In particular, a small system with a 
main storage of 64K bytes or less ordinarily does not utilize 
hardware address translation as do systems with more than 
64K bytes of main storage. Therefore, the small system 
needs its own protective mechanism because the built-in 
protection of the translator is not available. Protection 
for the smaller system is discussed in this section; protection 
for larger systems is discussed in the next section of this 
chapter. 

Address Key Protection 

In a 64K-byte (maximum) system, all tasks, data areas, 
and the operating system (the Realtime Programming System 
or a special-purpose operating system) can access the same 
64K-byte address space; consequently, they must be pro­
tected in a way different from the way they would be in an 
environment in which they use different address spaces. For 
this purpose, the address key concept is used as shown in 
Figure 38. Main storage is shown divided into 2K-byte seg­
ments (there are a maximum of 32). Associated with each 
segment is an eight bit storage key register which controls 
access to that segment of storage. The system uses three of 
the eight bits as a key; that is, any integer between 0 and 7 
is used to match a similar key in any task attempting to 
access the storage segment. One bit of the storage key 
register is the read-only flag which is set to the value 0 if 
the segment can perform both reading and writing, and to 
the value 1 if the segment performs reading only. 

152 



Storage Access Types 

The processor uses three types of storage accesses: instruc­
tion fetching, source operand accessing, and destination 
operand accessing. As shown in Figure 38, three separate 
keys, called ISK (instruction space key), operand 1 key 
(OP1 K), and operand 2 key (OP2K) are provided. When the 
processor is accessing main storage, the key appropriate to 
the item being accessed is termed the active address key and 
is used to determine whether or not the system permits access 
to the addressed segment of storage. 

Storage protection is active when its enabling switch has 
been set by execution of a privileged instruction (Enable). 
Protection is automatically disabled: 

• When the processor is in the supervisor mode 

• During initial program loading 

• While storing level status blocks in response to a class 
interrupt 

Storage Access Checking 

Provided storage protection is enabled, the micropro­
grammed hardware goes through the sequence of tests indi­
cated conceptually in Figure 39. If the addressed segment 
key is 7, the user has indicated that no protection is desired 
for the segment and any task may access the area. Even if all 
accesses are permitted, the user can still protect against change 
by setting the read-only bit in the storage key register for that 
segment. For any key except 7, the system checks protec­
tion against the currently active address key. Prott:ction, 
then, depends upon the items being accessed. If there is a 
key match, access is permitted and only the read/write 
option must still be determined. If there is no match, an 
error has occurred (an attempt to access illegally), and a class 
interrupt is responded to on the same priority level as the 
executing task. A level status block is automatically saved 
and the protect check bit in the processor status word is 
set. The interrupt response checks for the cause of the 
interrupt by examining the processor status word register, 

153 



Vi 
.j:o. 

Disabled during supervisory mode 

Enabled and dis­
abled by privileged 
instructions only 

Storage 
protection 
enabling switch 

Automatically disabled during: 
• Initial program load 
• Processor stop state 
• Storage of level status block 

during class interrupt response e 

-

-
-

-
-

! Key l R ·-----·-l Key I R !..+-

I Key I R ,~-

I 1 
I I 

~ 

l Key~ R 
---------..,._ 

] Key I R ·-• • e 
64K main storage is divided into 32 segments; each segment has a 2K-byte length. 

• 
Storage key registers are 8-bits wide. The key field is 3-bits wide. Any storage segment may be 
assigned any 3-bit key using privileged instructions. 

The R-bit (read-only flag): 
• If 1, writing is prohibited 
• If 0, read or write access is permitted 

One storage key register exists for each 2K storage segment. Access to the storage key registers is 
limited to privileged instructions. Both the processor and its input/output system obey the same 
rules-except cycle steal input, which ignores the read-only access control. 

Figure 38. Storage key protection of main storage (1 of 2) 



The three types 
of processor 
storage access 

ln,.cuofon fotoh •I !SK I 

e;c,. opernnd fetoh • [ OP1 K I 

Sooond opernnd fotoh • l OP2K I 

~ Figure 38. Storage key protection of main storage (2 of 2) 

The key being used 
at any time for 
access is called "the 
active address key". 



V'I 
O'\ 

Determine the 
key and read-only 
flag for the selec­
ted main storage 
block 

No 

No 

*Storage key of 7 
means that any 
access is allowed. 

Do not check 
key; ignore 
read-only flag 

Select the key corresponding to the type of access: 
instruction fetch; first operand fetch; second operand 
fetch. Keys are in the address key register for the 
current priority level of the processor. 

Figure 39. Operation of storage protection during an access (1 of 3) 



Any access is 
allowed; do not 
check keys 

Access is OK; 
complete the 
access 

No 

Access is 
allowed 

~ Figure 39. Operation of storage protection during an access (2 of 31 

No Storage protec­
tion violation 

Class interrupt 



V'I 
00 

No 

Yes 

Storage protec­
tion violation 

Figure 39. Operation of storage protection during an access (3 of 3) 



and initiates the error recovery procedure appropriate to 
the application being performed. 

Figure 40 shows how the three address keys are used for 
various classes of operations. For example, a branch instruc­
tion fetches the program instruction and then causes the 
next program instruction to come from the location 
addressed. Both addresses are checked with the instruction 
space key. Similarly, the OP2K key is used alone if only 
one storage operand is referenced {the general registers have 
no storage protection key). Only if two storage operands 
are referenced in the same program instruction is the 
OPl K key used. 

Multiple Task Protection 

The method chosen for storage protection is determined 
by the kind of protection the user desires in an environment 
of cooperating tasks. Figure 41 shows three typical examples. 
First, a task which contains some read-only code; second, 
a data area which should not be changed; and third, a work 
area. In the first example, a key of 6 is assigned to the 
entire task and its data areas. The work area is set to read/ 
write, and the read-only data area and code are set to read­
only in the storage key registers. The address key register 
for this task would set all three keys to the same value: 6, 
in the example. Except for the read/write area, the task 
area is protected against other task access. The first 
example illustrated is an essentially self-contained task. 

The second example in Figure 41 shows two tasks cooper­
ating to update a common data area. Three different keys 
are assigned to each task and to the common data area. The 
address key registers for each task use identical OPl Kand 
OP2K keys; as a result, each task can both read and write 
data in the common area. The instruction key is, of course, 
different for each task. Both tasks can then update and 
reference the common data area, but that area is protected 
against any task which does not have its key. 

The third example in Figure 41 shows an important use 
of cooperating tasks where one task writes data into a 
separate data area and a second task reads that data. By 

159 



Address key register 

I OP1K I I OP2K I I ISK I 
0 5 7 9 11 13 15 

One of the three keys is selected as the active address key. 

Storage/storage 

OP1K t--------...- OP2K 

Address Address 
space ----- space 

I 
I 
I TRegister/ 

Branch/ jump Storage 
r-----, immediate 

I storage 

I ! I 
General I registers 

ISK 1-----1 System 

Address 
registers 

space Register immediate Floating-point 
~------ ...... registers 

Each of the three address keys controls one type of stor­
age access: 

1. OP1 K controls accessing of data from storage 

2. OP2K controls data read into storage 

3. ISK controls instruction fetches 

Instructions which perform several such accesses use more 
than one key. A storage to storage transfer uses all three 
keys. A Branch instruction uses only the ISK key because 
the destination of a branch is an instruction location. 

Key values may be the same or different. A storage key of 
7 implies no storage protection (keys need not match). A 
key of 0 is, by hardware/software convention, considered 
special; it is used during input/output and by the operating 
system. 

Figure 40. Use of the three storage protection keys by various classes of 
operations 

160 



combining read/write control and address keys, the user 
maintains control over the access of each task. Notice 
that the address key registers of each task use three different 
keys because the code is separate from the data areas. 

In a custom-designed operating system, programmers can, 
at will, lay out their storage protection keys and use the 
system's supervisor and problem states to control the pro­
gram's environment, Under the Realtime Programming 
System, the programmer maintains control at program 
preparation time but allows the operating system to control 
the accessing and changing of all keys and registers. 
Normally, the operating system is the only program execut­
ing privileged instructions (exceptions occur in user­
supplied, privileged interrupt-response, and input/output 
programs). For the smaller system, the multiple-key 
approach gives the user genuine control over storage 
protection. 

Main Storage Mapping Systems 

For larger Series/1 systems, it is desirable for the system 
to be able to expand the size of main storage beyond 64K 
bytes. At the same time, it is not desirable to change the 
basic architecture of the system. To maintain continuity, 
IBM has added a mapped storage system which gives each 
task a 64K-byte address space-as in the smaller systems­
but which also translates user-generated addresses to 
correspond to the physical storage address at execution 
time. This procedure initiates a fast responding, fast 
context-switching system, and also greatly improves storage 
protection. 

Storage Segmentation 

Mapping of main storage involves the division of storage 
into relatively short blocks (2K bytes in the Series/1 ), 
together with mapping or assigning each block to correspond 
with a set of addresses that the user generates. Figure 42 
shows, conceptually, how this is done. The user task has 
an address space of 64K bytes and generates any address in 
the range 0 to 64K bytes. As shown in the figure, 11 of the 

161 



..... 
O'I 
t..J 

Example 1 Storage key registers 
Main Storage 

Address key register R 

Io J a J a 1 aJ 
I i I 6 0 ..... Data area 4K I I 

OP1 K OP2K ISK 
I T 
I 6 I 0 ~ (Read/write) I' I 

1 I 

6 I 1 ~ Read only data 2K 
I I 

R=1: writing prohibited I I 
I 6 I 1 ~ 

...,. Program code 4 K 
I I 
I I -- (Read only) : 6 : 1 

Example of a task whose code is ready only and which has two data areas: 1) one read only, and 2) one 
read/write. The same address key is used for all areas. 

Figure 41. Three examples of address key storage protection (1 of 3) 



Example 2 Storage key registers 

Address key register for task 1 Key R 
Main. storage 

I 0 I 6 I 6 I 3 J 6 0 Common data area 

OP1 K OP2K ISK 
Key R 

Address key register for task 2 2 1 Task 2 

~161612] 
OP1 K OP2K ISK 
R=1: writing prohibited 

Key R 

I I I I Task 1 3 1 

Example of two tasks, task 1 and task 2, cooperating in updating a shared data area. Address keys for 
fetching and writing data into the data area must be the same. Program areas use different keys and are 
protected against being overwritten. 

~ Figure 41. Three examples of address key storage protection (2 of 3) 



°' """ I 
Example 3 Storage key registers I Main storage 

Key R 
Address key register for task 1 I I EOS OP1K OP2K ISK 1 I 1 I,. "I Task 1 code 

I 0 I 2 I 3 I 1 I Key R 

If the equate operand spaces (EOS) I I 4 I 1 1~ "I Task 2 code 
flag is 1, OP1 K becomes the same 
as OP2K. 

Key R 

Address key register for task 2 I I 3 I 0 I· ... ~Communicated 
(shared) data 

EOS OP1K OP2K ISK Key R 

I 0 I 3 I ~_[_4 J I I 2 I 1 I,. .. , Source data area 

Example of two tasks communicating. Task 2 writes data from a protected area into an unprotected area for 
reading by task 1. (An example might be a data acquisition task using parameters stored in the area. Key = 2 
inputs and processes data and stores it in the area. Key= 3 is used by an operator communications or control 
task.) 

The equate operand spaces (EOS) flag is useful for tasks like the operating system which must move data 
from area to area. 

Figure 41. Three examples of address key storage protection (3 of 3) 



16 bits of the address are considered to be a displacement on 
a page (i.e., a 2K-byte block). The most significant 5 bits 
remaining are equivalent to the page number. The page­
number portion of the user-generated address accesses one 
of the 32 segmentation registers to find the physical storage 
address of that page. The translator is responsible for: 

• Accessing the segmentation registers 

• Getting the physical page address 

• Adding the displacement to obtain the actual physical 
address corresponding to the user-generated address 

This hardware process executes rapidly and is now used 
widely in small computer technology. 

In the Series/1, translation lengthens the main storage 
access cycle time from 660 nanoseconds to 880 nanoseconds. 
Note, particularly in Figure 42, that the physical segments 
making up what appears to the user to be a 64K-byte con­
tiguous space may actually consist of non-contiguous blocks. 
Mapping frees the system from the necessity of fitting pro­
grams and data areas into contiguous space and the associated 
difficult main storage management that such an operation 
implies. Of even greater importance is a task's ability to 
address an area in main storage containing either shared data 
or shared routines just as though that area were physically 
contiguous with the task itself. This ability is especially 
important when multiple tasks cooperate in an application. 

Mapping Multiple Tasks 

The conceptual mapping of main storage, when multiple 
cooperating tasks reside there, is shown in Figure 43. The 
two tasks residing there may share routines and data areas 
by having the system invoke-in mapping registers belonging 
to each task-the physical segments containing those 
routines and data areas. Mapping provides an efficient 
mechanism for implementing the extensive, intertask com­
munications required from responsive, small computer 
applications. 

The main storage mapping of the IBM Series/1 is more 
complex than indicated above because the system must 

165 



..... 
O"I 
O"I 

Storage 
register 

OT 

Address 
translation 

J 
SAR 

J 
SDR 

e Normal data to be read or written. 

32 Segmentation registers 

SlF 
..... r-+-! 

LJ" ~ 
t--

The appropriate address key is used to select one of the 8 segmentation register stacks. 

Segment Displacement 

The 16-bit user address is issued in two parts: I 5 bits I 11 bits I 

Main storage 

1. The most significant 5 bits are used to select one of the 32 segmentation registers which contain the 
address of a 2K-storage segment 

2. The least significant 11 bits are used as a displacement within the selected 2K-storage segment 

Figure 42. Conceptual basis for storage address translation 

2K-byte 
segments 



Main storage 
Shared data e L I-- Shared data area Reentrant 
shared routines I-

• Task 1 

Code 1 L..r "'- Shared reentrant ,......-. routines 
E> 

L..t+...- ,,. Shared data e 1'-- Code for task 1 
Reentrant 
shared routines h e Code for task 2 Code 2 

0 
Task2 

The actual Series/1 address mapping is both more complex and more general than shown in this illustration. 

0 
e 
e 

Each task can have its own 64K-byte address space, addresses' code, data, and shared routines-just 
as if they were in a contiguous 64K-byte space. 

Segmentation registers relate physical storage locations to corresponding addresses in the user's 
64K-byte address space. 

Setup and manipulation of the mapping addresses is a privileged operation usually performed by the 
operating system. 

E> The same physical areas of main storage may be mapped into each user's 64K-byte address space. 

~ Figure 43. Conceptual mapping of main storage for two tasks sharing common data and subroutine areas 



maximize hardware support of those small computer, soft­
ware application requirements listed at the beginning of 
this chapter: 

• Large, effective program size 

• Fast task switching in response to events 

• Extensive intertask communications 

• Efficient implementation of intertask communications 

• Thorough main storage protection 

Mapped Storage Protection 

To enlarge effective program size and to enhance main 
storage protection capability, the concepts introduced as part 
of key-based, storage protection are extended to the trans­
lator. The Series/1 provides three address spaces to a task: 

• One, for instruction fetching or program storage (con­
trolled by the instruction space key) 

• Two, for data storage (controlled by the operand 1 and 
operand 2 keys) 

Intertask communications are clearly enhanced by the ability 
of multiple tasks to include common routines and data in 
their individual maps. The system increases task-switching 
speeds by using multiple sets of registers. This provision of 
the Series/1 helps prevent bottlenecks in the loading and 
saving of segmentation registers. 

Segmentation Registers 

The mapping process is shown in Figure 44. Main storage 
is segmented into 2K-byte segments. Eight sets of segmenta­
tion registers (3 2 registers per set for a total of 256 segmen­
tation registers) are provided in the translator. Each segmen­
tation register contains a physical, storage page address of 
13-bit length to which is added the 11-bit displacement from 
the user-generated, 16-bit address illustrated in Figure 42. 
The translator then generates a 24-bit main storage address 
(maximum address of 16 megabytes). Notice that the 24-bit 
maximum, main storage address is a feature of the Series/1 

168 



.() 0 o-----o 0 
sta"";;k o Stack 1 Stack 7 

Main storage is Segmentation reg Segmentation reg .......... Segmentation reg 
divided into 0 0 0 
2K-byte segments. Segmentation reg Segmentation reg Segmentation reg 256K-byte storage 
has 128 such 1 1 1 

segments. 

m 0 
Active 
address 
key Segmentation reg Segmentation reg ......... Segmentation reg 

31 31 31 

1 0 15 0 15 0 15 

----- ~ --
0 

G 
One of eight stacks of segmentation registers is selected by the value of the active address key and is 
used to map 64K-byte user address space into actual physical main storage. Selection is made via the 
address keys which are used for storage protection in those processors without address translation. 

G Multiple tasks can be simultaneously mapped in the eight stacks of the segmentation registers. This 
mapping obviates saving and restoring the registers' contents when switching from one task to another. 

$ Figure 44. Mapping task address spaces into physical storage using multiple sets of segmentation registers 



architecture which provides for compatibility with potential 
future developments in storage technology. At present, the 
maximum main storage which may be attached is 256K bytes. 

User Address Spaces 

As indicated in Figure 42, each user has a 64K-byte 
address space which corresponds to a 16-bit address and, 
consequently, needs 32 segmentation registers to cover the 
64K-byte space. The user's 16-bit address is used as follows: 
5 bits for the page address (which selects one of the segmen­
tation registers); and 11 bits for the displacement. The 
system assigns segmentation register sets to user tasks with 
the same mechanism it used for storage protection in the 
smaller processors without main storage mapping. Each of 
the 8 sets of segmentation registers is assigned a 3-bit address 
(0 through 7 in value), and the address keys are used to 
select the currently active segmentation register stack. 

As shown in Figure 44, the currently active address key 
selects one of the eight stacks of segmentation registers 
which, in turn, are used to map main storage into the user 
address space. Since a user has three possible address keys 
for this task (Figure 45), three different 64K-byte address 
spaces can be mapped for one task. 

The storage protection process is, of course, different 
when a Series/1 processor has a translator installed. Through 
a privileged instruction, the system may enable or disable 
the translator. When disabled, the system functions just as 
if the translator were not present. In that state, only 64K 
bytes of main storage may be addressed and storage protec­
tion is identical to that described earlier. When the trans­
lator is enabled, however, all protection proceeds by using 
the segmentation registers and the translator rather than 
by using the storage protection keys. In the enabled state, 
these keys are used to relate the_particular mapping used 
by a task to a set of segmentation registers. 

Segmentation registers are 16-bits long but need only 
13 bits to contain the segment's physical address. Two of 
the remaining three bits are used for access control: one, 
to indicate access or no access to the storage block; one, to 

170 



indicate read-only access or read/write access. These are 
also shown in Figure 45. Since a given task can only access 
those portions of main storage mapped into its segmenta­
tion registers, storage protection-from an access point of 
view-is complete. When the Realtime Programming System 
is used, it prevents application tasks from accessing these 
registers and inadvertently changing their contents. In a 
custom·designed system, the user must carefully control 
access to privileged instructions and the segmentation 
registers. With the read/write control, storage protection in 
the mapped system is just as thorough as in unmapped 
systems, but it is actually more secure because it depends 
less on the address keys for complete protection. 

Protection Violations 

If a task attempts to access a block of storage, a class inter­
rupt occurs and the system indicates the problem by setting 
the invalid storage address bit in the processor status word. 
Similarly, an attempt to change the contents of a block 
marked read-only causes a class interrupt, and the protect 
check bit sets in the processor. In this way the error detec­
tion and recovery process is similar whether or not the 
processor uses the translation capability. 

Input/output devices access main storage through the 1/0 
channel; they are also subject to the translator mechanism. 
This fact is exceedingly important to system performance 
because if the accesses did not operate in this manner, cycle 
steal operations would have to be done in those sections 
which correspond to contiguous main storage. This pro­
cedure is discussed further in Chapter 5. 

Intertask Communications 
Intertask communications of various sorts are a primary 

user concern because the structure of application needs in 
a small computer system consists of a set of cooperating, 
communicating tasks. As indicated earlier in this book, the 
organization and management of main storage is crucial to 
successful applications. These communications occur at 

171 



..... 
-..J 
N Each user task has three access keys: 

1. !SK-instruction fetch space 

2. OP1 K-operand 1 key space 
3. OP2K-operand 2 key space. 
Each access key selects a stack of segmentation registers when it is active. Thus, each user task can actually 
utilize three 64K-byte address spaces. These spaces may be the same or different depending upon the choice 
of key values. 
Address key register 16-bit logical address 0 
I I 0P1 KI I 0P2K I I 11 s~ 1 I ... ,0_0_0_0_1.,.,-0-0_0_0_0_0_0_0_0 _1_0_1 

0 5 7 9 11 13 15 0 4 5 15 

The active address 
key for this example 
is the ISK (instruc­
tion space key). 

Selectstac~Stack7 ~ ~ 
I le Select reg 1 

I VRO 
xxO 
-...-

High-order bits from reg 

Figure 45. Multiple address keys for each task (1 of 3) 



24-bit physical address 

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 

0 12 13 23 

i- .....___ -....-
... 

-
Select byte 

Main storage 
r ---, 

Select 2K block 1 I 

\;:1 Figure 45. Multiple address keys for each task (2 of 31 



-...J 

*'" 
0 Address translation proceeds by: 

G 

1. Selecting a stack of segmentation registers using the value (one of eight) of the active address key 

2. Selecting one of 32 segmentation registers using the five most significant bits of the user's 16-bit 
address; this address has been generated during an access to storage 

3. Generating the physical storage address of the 2K-byte segment from the contents of the selected 
segmentation register 

4. Using the least significant 11 bits of the user-generated address to select the particular byte within 
the physical storage segment 

The 16-bit segmentation registers need only 13 bits for selecting physical storage segment addresses. 
This is so because the total physical address is 24-bits wide-with 11 bits being taken from the displace­
ment within the 2K-byte segment. 

The remaining bits are used for protection as follows: 

V: segment is valid or invalid; if invalid no access is allowed at all which is useful when areas less 
than 64K-bytes in length are to be mapped 

R: read-only flag 

0: not used and must be zero 

Figure 45. Multiple address keys for each task (3 of 3) 



various levels, illustrating how the extensive storage hardware 
of the Series/1 can be integrated with the system software. 

Tasks and the Operating System 

In some applications, input/output operations on a 
specific device or set of devices can be dedicated to only one 
task. More generally, tasks share input/output devices; 
it is the responsibility of the operating system (standard or 
custom-designed) to prioritize contention for the devices, and 
to perform most of the detailed aspects of the input/output 
operation. This might be done by enabling those subroutines, 
which a task calls, to: 

• Request an input/output operation 

• Check the status of a device 

• Perform some code conversion 

• Carry out additional operations 

This approach to task communications can be disadvantageous 
because the subroutines involved are shared and-unless the 
main-storage management is exceptionally well designed-they 
may consume part of the user's address space. As an alterna­
tive method, all input/output operations and other executive 
facilities may reside with the operating system; communica­
tions between the user task and the operating system are per­
formed via an internal interrupt designated as a supervisor 
call. 

As shown in Figure 46, the user executes a Supervisor Call 
instruction which transfers control to the operating system. 
The operating system first analyzes the parameter supplied 
in this instruction to determine the type of request the user 
is making, and then carries it out. 

Because there are so many individual services associated 
with input/output data management and scheduling, the 
user should consult the Realtime Programming System 
documentation for specific details. 

Tasks and Separate Data 

It is a characteristic of realtime, small computer applications 
that tasks access data areas separate from the task itself for 

175 



User task 

SVC 

. 

Class 
interrupt 

Operating system 

Supervisor Call 
response 

0 

Routines e 
~ 

E> 
To invoke any operating system service (including 
input/output), or any operating system routine, a 
Supervisor Call is executed. 

A Supervisor Call generates a class interrupt which is 
responded to on the same, rather than a higher, hard­
ware priority level. The Supervisor Call mechanism 
provides complete system integrity as well as the 
maximum usable address space for the application 
task. 

The interrupt response routine saves the level status 
block of the application task and then carries out the 
routine requested within the address space of the 
operating system. Upon completion, the user's 
registers are restored and control returns to the user's 
application task. 

Routines within the operating system do not have to 
be part of the user's address spaces; this fact allows 
the user to prepare larger application programs. 

Figure 46. Communications between an application task and the operating system 
via supervisor calls which generate a class interrupt 

176 



one of two reasons: 1) the task needs to be reentrant or; 
2) the task needs to share routines or data bases. This access 
is not difficult if addresses are known at program preparation 
time, but it is complex if addresses are not known until exe­
cution time. Using addressing modes for main storage 
simplifies the access operation. 

Figure 4 7 shows a routine accessing several different areas 
using register displacement addressing mode. In the figure, 
the calls to that reentrant routine are assumed to be on 
different hardware priority levels so that each call has its 
own copy of register 3 in hardware (user registers are dupli­
cated on each priority level). Consequently, the code can 
refer to any item by its displacement, relative to the address 
in register 3; depending upon which level is active, the address 
will refer the code to the correct work area. If the calls are 
from the same level, it is necessary to save and restore only 
the contents of register 3 (or whatever register is used). The 
important point in this procedure is that the reentrant code 
itself does not have to be concerned with the location of 
the particular work area. No interrupt disabling or similar 
functions need occur during the execution of reentrant 
tasks. 

Task Switching 

Frequently, the most economic design of small computer 
applications is achieved by dividing the application into 
many concurrent tasks, each of which is relatively small and 
well defined. Similar economic advantages have been demon­
strated by structuring individual programs. If, however, the 
management of these concurrent tasks is cumbersome, the 
advantage of achieving fast and reliable response to events 
is lost; in these circumstances, users might have to combine 
the tasks in one program so they can perform scheduling 
and task switching at program preparation time. 

The Series/1 architecture is designed to expedite task 
switching with minimum overhead. As explained earlier, each 
hardware priority level of the system has its own set of user 
registers whose contents are duplicated in hardware. This 
means that when the system switches from one interrupt 

177 



-...J 
00 

Register set 
level 1 

:I 

• (r,d) 

Reentrant routinei 

G 
J!r,d) 

Register set 
level 2 

::r 
Work area for Work area for 
level 1 task's level 2 task's 

- call e _call e 

(r,d) 

All references to the work area are via the base relative addressing mode. 

e 
Register set 
level 3 

::r 
Work area for 
level 3 task's 

el call I I. The appropriate r is used depending upon the current hardware priority level. 

"Pure" code does not write in this area; all writing is done in the work area. 

A t~sk that calls the reentrant routine supplies a work area for.the routine and places its address in 
register r. 

A shared routine is called by the tasks on different priority levels. The shared routine accesses data within 
the work area using base relative addressing. On each priority level, duplication of registers in hardware 
insures that there is no conflict between multiple calls. 

Figure 47. Addressing modes facilitate reentrant routines' use of multiple work areas 



level to another, it need not either save or restore the 
register contents. In a small system, the designer can insure 
fast response to events by carefully allocating tasks to 
different priority levels. The system responds to internal 
or class events on the same priority level, but, in order to 
make the response more rapid, the hardware itself also 
assumes the responsibility of saving the level status block. 

Generally, context switching becomes more difficult in 
large systems. However, the Series/1, by providing eight 
sets of mapping registers for large storage systems, allows 
a set of tasks-which must respond quickly-to remain 
mapped as shown in Figure 48. When an event occurs 
(priority interrupt, for example) and the interrupt response 
tasks have been previously mapped, the system need not 
change either the level status block registers or the segmenta­
tion registers. This resource gives the Series/1 users an 
important level of control over their systems. By allocating 
tasks to storage and premapping each task's segmentation 
registers, users can control the response time to events 
occurring in their application. 

This control is most valuable to an OEM user customizing 
a software system. To insure that, at execution time, execu­
tion can begin with a minimum of overhead, the user must 
set up in advance the following relationships: 

• Tasks and groups of tasks (task sets) 

• Shared data areas 

• Shared routines 

• Storage addresses 

The Series/1 Realtime Programming System fully supports 
this level of control over tasks, thereby permitting a more 
effective structuring and implementation of small computer 
applications. 

Auxiliary Storage Management 

If all user-application tasks are permanently resident in 
main storage, the system can respond rapidly as outlined 
in the previous section. However, many applications require 

179 



Level 
status 
block 

Active task 

Segmentation 
registers (up 
to 3 sets) 

4 sets of level status block registers 

Figure 48. Context switching 11 of 3) 

secondary or disk storage because the application consists 
of a large number of tasks. Response time of disk-resident 
tasks cannot be as fast as that of tasks resident in main stor­
age; however, the response time must be relatively rapid 
and be carried out under control of the application designer. 

180 



Task which responds 
to the event 

Level 
status 
block 

8 sets of segmentation registers 

Figure 48. Context switching (2 of 3) 

Segmentation 
registers (up 
to 3 sets) 

Pre-mapped 

0 

181 



To respond to the event, it is necessary that the con­
tents of the active task's level status block registers 
and segmentation registers not be destroyed; this 
will insure that the active task can resume executing 
at a later time. 

If the event response task were to use the same 
address keys and need a different mapping from that 
of the active task, it would be necessary to save the 
segmentation register's contents and load them again 
with the mapping addresses for the event response 
task. This is a time-consuming operation (almost 
200 microseconds). 

With eight sets of segmentation registers, however, 
fast response tasks can be permanently mapped into 
the segmentation registers. Consequently, there is no 
mapping overhead when responding to the event. 

If tasks respond on different levels, the level status 
block need not be saved or restored because these 
registers are duplicated on each level. 

The net result: very fast context switching to respond 
to events. 

One of the design problems in small computer appli­
cations is the choice of which tasks are to be resident, 
which are to be mapped, and on which levels they 
are to execute. When these design problems are care­
fully resolved and implemented, the Series/1 hardware 
provides fast response times. 

To start or resume execution, a task must have its registers 
(level status block) initialized or restored to their previous 
status; the registers must also be mapped. 

Segmentation registers associated with each key used by the 
task must be loaded with proper physical storage addresses 
and read/write control information. 

Context switching can be defined as: the change from one 
active task to another in response to some event; the rapid 
response assumes that the overhead involved in the switch 
is not excessive. 

Figure 48. Context switching (3 of 3) 

182 



Storage management in the Series/1 is a user option with 
the Realtime Programming System.1 The system can take 
advantage of hardware address translation to load tasks into 
2K-byte segments-wherever they are available-instead of 
loading them into contiguous locations. Such storage 
management is termed "dynamic" because the system dis­
covers space for data or tasks whenever the task is to be 
loaded and wherever the space is available. The Series/1 
hardware permits this type of management. In fact, once 
the system loads the segmentation registers with the storage 
segment addresses, the cycle stealing, input/output system­
using the translator-can load the program from the disk 
into the non-contiguous storage blocks. 

The Series/1 also offers a partitioned storage management 
because: 

1. Rapid response to inquiry requires residency in main 
storage 

2. The real limitation on response to disk-resident tasks 
usually involves the amount of program code and data 
that the system can transmit to and from disk 

This partition system is essentially fixed in the sense that 
partitions are set up at system generation time. Dynamic 
partitions are useful for those tasks which are not time­
critical and which can remain resident until they are com­
pleted. To prevent interference with the response of the 
tasks in the fixed partitions, the dynamic partitions are kept 
separate from the fixed partitions. 

Figure 49 shows this storage management system. 
Individual partitions contain one task set at a time. A task 
set is a group of tasks which: 

• Execute concurrently 

• Communicate extensively among themselves 

• Are prepared as a group for loading into a partition 

1 Storage management is often termed "memory management" in small computer 
literature. The term "storage management" is used here to differentiate between 
main and auxiliary storage. 

183 



• The Realtime Programming System uses a fixed partition 
organization for main storage in order to expedite: 1) the 
operation of those applications involving a set of cooper­
ating tasks and; 2) user control over event responses. 

• A task set is a group of tasks loaded as a unit from 
auxiliary storage. Only one task set at a time resides in a 
partition. Once resident in a partition, task sets remain 
there until they complete execution. Optionally, a parti­
tion may roll-out one task set in order to bring in a higher 
priority task set; this is usually done only for a background 
task. 

• There may be up to 16 fixed partitions, one of which is 
occupied by the operating system. Partitions may be 
of any size-in 2K-byte increments. 

• Fixed partition main storage management was selected for 
the Realtime Programming System because: 

There is less swapping of tasks; once in main storage, 
most task sets stay there until they complete execution. 
This principle reduces traffic on the disk channel which 
helps prevent a common bottleneck in small computer 
systems. 
There is less overhead involved in saving and restoring 
values in segmentation registers 
There is much more user control over the system and its 
response-time delays; this control permits the user to 
assure adequate response in critical applications through 
proper layout of partitions, tasks, priority levels, and 
access keys 
It is easier for the user to set up and control access to 
shared routines, shared task sets, shared data areas, and 
system-wide data bases 

Figure 49. The Realtime Programming System storage management (1 of 2) 

As indicated earlier, task sets can communicate with the 
operating system through supervisor calls, and can com­
municate with other tasks in other partitions if the user 
indicates this communication at program preparation time. 
Clearly, the ability of the storage management system to 
map non-contiguous areas provides the mechanism for hard­
ware support of the very difficult, intertask communications' 
procedure. 

184 



Queue of task 

l Disk channel sets for 
partition 3 

E::3 0-0 
Queue of task 

Partition 3 sets for 
partition 2 

[IJ DOD 

Partition 2 
r--------.., 

§ 
Auxiliary storage 

Partition 1 

D 
Partition 0 

Main storage 

Dynamic partitions which are used for task sets that are not 
time critical may be specified in addition to the fixed 
partitions. 

Figure 49. The Realtime Programming System storage management (2 of 2) 

185 



Task sets in a partition usually remain there until they 
complete their execution. If they did not do so, the system 
would have to transmit them through the cycle steal 
channel multiple times and, consequently, overload the 
channel. Optionally, however, a partition may permit the 
roll-out of a task set to accommodate a higher priority 
task set waiting to execute. Even in this case, the roll-out 
is limited to one task set. Experience with fast-response, 
large systems indicates that application designers can assign 
task sets to partitions in such a way that response time is 
adequate as long as the disk channel does not saturate the 
system with a long list of requested transfers. An important 
additional consideration is that the application designer 
can control the response time to external events through 
assignments of task set priorities and partitions. 

As needed, dynamic partitions are set up for task sets 
which are not assigned to execute in a given fixed partition. 
This procedure is essentially equivalent to allowing one of 
the partitions in Figure 49 to contain several task sets 
simultaneously. The Realtime Programming System allocates 
space in the partition on a first-come, first-served basis. In 
this way, multiple task sets may occupy the dynamic parti­
tion area. Again, note that this allocation feature increases 
the amount of work required by the operating system to 
initiate a task and, consequently, slows the response time. 
Nonetheless, the combination of fixed partitions, with 
specific task sets assigned to them, and dynamic partitions, 
with their inherent flexibility, provides system implementors 
with the tools needed to create the small computer software 
organizations that best fit their applications. 

Storage Overlay Management 

Often, a dedicated application requires access to a rela­
tively large data area which does not fit well into the address 
space. This can occur even though Series/1 systems with 
hardware address translation have three address spaces 
available. In this case, it is possible to use storage overlay 
to solve this problem. Figure 50 shows a task within which 
is allocated an area for the data base, but the area is not 

186 



The standard overlay scheme permits programs to be larger 
than the allowable address space-provided they fit in 
physical main storage. A program too large for storage or 
address space reserves one area within itself which is used 
tb contain routines or data areas (one at a time, as needed). 
When needed or called, the routine or data area is trans­
ferred from auxiliary storage to the area within the task, 
and "overlays" the routine or data area previously there. 

0 

Standard overlay scheme 

------ e ODE> 
G QD -- ---- l 

0 Task area 

Q Overlay area within a task 

e Disk channel 

E> Overlay segments (routines or data sets) loaded on 
call 

Figure 50. Overlay methods of storage management (1 of 2) 

187 



Storage overlay scheme 

G 
0 

.. 

Task area 

J 

>G 

Mapped 
one 
at a time t-------

t------ Task 
mapping 

Segmentation register s map the 
task area and the overlay area. 

The overlay units reside in physical main storage 
rather than on the disk. 

The overlay area within the task's address space is 
remapped by a call to a special privileged routine 
whenever another overlay segment is desired. The 
time required is the time needed to load several seg­
mentation registers (about 5 microseconds each), 
rather than disk transfer time. 

Storage overlay is effective when the task is too large for the 
address space (even when using three address spaces with 
three different keys); the task will reside in physical main 
storage. 

Figure 50. Overlay methods of storage management (2 of 2) 

188 



large enough to take the entire data base at one time. The 
entire data base is loaded into main storage with the task, 
rather than being transmitted from the disk each time a 
segment is needed. To overlay the program area with a seg­
ment of the data base involves changes only to the mapping 
registers. No movement of the data base occurs. As indicated 
in Figure 50, a privileged routine is called by the task which 
then loads the appropriate addresses into the segmentation 
registers. Custom-designed systems can use this technique 
effectively to control and facilitate larger, data management­
oriented applications. Both the Program Preparation System 
and the Realtime Programming System also support storage 
overlay use of the hardware translation feature. 

The overlay concept can be used for shared routines in the 
same way. Even if fast-response systems do not fit the 
64K-byte multiple address space provided in a mapped 
machine, they can be effectively accommodated by the 
Series/1. The combination of main storage hardware and soft­
ware designed into the IBM Series/1 supports both large and 
small applications in a controlled, responsive manner. 

189 



Organization and 
"'1anagernentof the 
Input/ Output System 

Important Factors in Computer Input/Output 
The organization of input/output is critical in any small 

computer application-especially when throughput, reliability, 
error detection, and compatibility with OEM devices and 
peripherals are considered. Because applications vary so 
much in size and complexity, it is necessary to integrate the 
input/output hardware into both the processor and the soft­
ware. Otherwise, the system cannot, simultaneously, meet 
all of the requirements listed in Chapter 1. Figure 51 shows 
the various levels from which a user can view the input/out­
put system. At the lowest level in the figure-the device 
level-the system concerns itself with: 

• The self-diagnosing capability of the device and its inter­
face and their consequent easy maintenance 

• The ability to perform extensive error detection within 
the device and its interface to the processor 

• The capability of operating under complete processor 
control when input/output volume is low 

• The capability of off-loading the processor when input/ 
output volume is high 

In other words, the system must be so designed that the 
volume of local intelligence placed in the device and its 

190 



interface depends upon the device and the amount of input/ 
output it performs. As indicated earlier, the Series/1 inter­
faces incorporate microprocessors which provide this 
flexibility of data flow together with the self-diagnosing 
feature. Since the functions performed by the interface are 
so device-dependent, they are discussed later in this chapter 
when the devices themselves are considered. 

Processor Level 

The processor level of input/output control varies con­
siderably from computer to computer. It is important 
because it affects interfacing, software at the lowest level, 
and the overall organization of an application. Both the 
direct program control and cycle steal data transfer capa­
bilities are necessary: the former is appropriate for slower 
devices where the low volume of data does not impact 
system throughput; the latter is necessary for high-volume 
and high-speed data transfers. Cycle steal data transfer 
also facilitates the offloading of the processor. As the 
system places more and more input/output control func­
tions in interfaces, it usually transfers more and more data 
before involving the processor. The cycle steal mechanism 
reads and writes this data directly into main storage where 
it is ready for processing when the transfer is complete. 

The Basic Software Level 

The first two levels shown in Figure 51 provide the basic 
capability for input and output in the system hardware. The 
utilization of that capability through software processing is 
vital to the system's operation. The basic software level is 
the interface between application tasks and the input/output 
system. Applications running under control of the Realtime 
Programming System need the same control over devices 
that they would have if they were operating at the processor 
level with completely customized software. Otherwise, 
critical applications could not realize the full machine 
potential. Similarly, applications which do not use the Real­
time Programming System still need control over tasking 
and input/output. 

191 



_. 
IO 
N 

Read/Write and 
Get/Put input/ 
output and 
logical devices 

Data sets and 
higher-level 
languages 

Dedicated applications with a 
customized operating system 
using Control Program Support 

Cycle steal mode 

Basic input/output 
through the Realtime 
Programming System 

Direct program 
control mode 

Figure 51. The levels from which input/output must be considered ( 1 of 21 

Cooperating task set level 

Basic software level 

Processor level 



Interface 

Device 
• Off-load processor 

Error detection 
- Error recovery 
- Self-diagnosis 

• Low, medium, high-speed devices 

• OEM devices 
- Polled and interrupt driven 

Device level 

All devices of hardware and software must be integrated into the small computer architecture. 

~ Figure 51. The levels from which input/output must be considered (2 of 2) 



Users must take into account the limitations in device 
control imposed by software systems which were not 
designed to be integrated with hardware. When hardware/ 
software integration is not accomplished, it is conceptually 
but not practically feasible to write custom software 
because the careful, manufacturer-designed interactions 
between modules of the software are typically unavailable 
to the user. For example, error detection and recovery is 
just as important in a small computer application as is the 
input/output itself. Error detection and recovery is a 
cooperative effort among the hardware and software 
modules; deleting part of this integrated software-and 
replacing it by special purpose software-may solve a 
particular application problem while, simultaneously, losing 
many of the overall advantages the system provides. Both 
the Control Program Support package and the Realtime 
Programming System provide a complete control over input/ 
output that is equivalent to the control obtainable at the 
processor level. As a result-without sacrificing self-di(l~n_os­
tics or extensive error checking-users can devote their time 
and efforts to the application itself rather than to the system 
software design. 

The Cooperating Task Set Level 

Many small computer applications are themselves small, 
with dedicated, critical input/output requirements which 
are completely satisfied at the basic software level discussed 
above. Many other applications, however, need a more 
general level of support provided at the cooperating task set 
level shown in Figure 51. When a number of tasks execute 
concurrently, it is often desirable to provide a less compli­
cated interface to the input/output system from the user 
tasks. The Realtime Programming System provides two 
control levels in addition to the basic software level; they 
are the Read/Write and the Get/Put levels of control. The 
Read/Write level presents a single physical block of data for 
transfer between the application tasks and the named device. 
All details of this transfer are handled by the system input/ 
output software within the Realtime Programming System. 

194 



The Get/Put level is higher than the Read/Write level because 
it provides logical rather than physical block transfers. The 
system handles all transferrals between logical and physical 
blocks and device names. The highest level of input/output 
control is convenient for application tasks written in higher­
level languages like FORTRAN, COBOL, or PL/I because it 
minimizes programming and debugging efforts. 

It is not necessarily true that the higher the level of 
interaction with the input/output system, the less efficient 
is the use of the processor. In fact, the typical Series/1 
application is realized as a set of cooperating tasks using 
application devices and sensors that require detailed control 
over buffer sizes, number of buffers, level of priority, and 
similar areas. The user may program these aspects of an 
application using assembly language macros provided with 
the system software. Once the control over the input/output 
system has been established, the user can access it efficiently 
through commands in the higher-level languages. The net 
result is a structured control over the input/output system. 

This chapter discusses the input/output system and 
illustrates the structured control integrated into the hardware 
and software design. 

Overview of the Series/1 Input/Output Channel 
The Series/1 offers a single channel to which all input/out­

put devices are interfaced including special processors like 
the floating-point feature. Details of the Series/1 in put/output 
system may vary from processor to processor; the user should 
consult the appropriate processor reference manuals for 
exact details. Most of the specific examples used in this 
chapter apply to the larger processors like the 4955. Although 
different applications require different groups of devices, 
Figure 52 illustrates some possible combinations. The figure 
notes that the user may install more than one of each input/ 
output device, if needed. Physically, each device is inter-
faced to the input/output bus via a printed circuit card which 
plugs into either the processor card file or an input/output 
expansion unit (Figure 53 ). The expansion units may require 
a repower card to provide adequate power and isolation. 

195 



l.O 
O'I 

Storage 

Storage 

Processor 

Figure 52. Input/output device combinations (1 of 41 

• The Series/1 input/output channel is a bus to which all devices 
connect, including: 

Those under direct program control 
Those operating under cycle steal mode 

- Those functions implemented as parallel processors (like the 
floating-point feature) 

• Up to 256 devices may attach 

• Multiples of devices may attach 

• The user sets the device address by using jumper selections on the 
device interface rather than by positioning the address within the 
enclosures 



8 
'--

Fl~ating- I H Digital I LJ Asyn-
point input/output chronou~ 

commun1-
cations 

' ' ' ' 
Input/output 
channel 

11 I I I I 
Digital H mn.,, Timer input syn-

Sensor chronou~ 

1/0 comm uni-
cations sub-

system. 
Digital 

Teletype I II " I I I output 

(OEM) 

~ Figure 52. Input/output device combinations (2 of 41 



l.O 
00 

Diskette 

Figure 52. Input/output device combinations (3 of 4) 

Sensor 
1/0 
sub­
system! 

Analog 
input 

Analog 
output 

OEM interface 
attachment 

~ 

SDLC 
communi­
cations 

Program­
mable 
Communi­
cations 
Subsystem 

Two channel 
switch 

Another 
Series/1 
processor 



"' Q) 

::2: .!::! 
w> 
o~ 

.:.:. 
"' cs 

... 
Q) ..... 
c: 

·;:: 
c.. 

~ 
0 
:! 
"' c 
0 
+: 
I! 
:.ci 
E 
8 
8 
'i ,, .. 
:I 
Cl. .. 
:I 

..g .. 
:I 
Cl. 
.: 
N 
in 
CD .. 
:I 
.!2' 
IL. 

199 



200 

'M 
0 



0 
:::::-~ 
(ij ·c: 
c :::i 
.~ c 
:g ·~ 
"O c 
<ti <ti 
0 c. 
I- ~ 

... -. 
Ill 
"i 
(/) 
Q) 
.c 
I-

ra 
! 
:I en 

u:: 

201 



IV 

2 
All interfaces and attachments occur via printed circuit cards which plug into slot~. These interfaces and 
attachments include: 

• The optional relocation translator 

• The floating-point processor 

• The channel repower feature 

• The two-channel switch 

Figure 53. The Series/1 4955 Processor and input/output attachments (3 of 3) 



Most of the interfaces between the input/output bus and 
the devices are microprocessor controlled as shown in Figure 
54. Notice that the interface becomes specific to the 
attached device only beyond the microprocessor level. It is 
this commonality in interface design that integrates self­
diagnosis, error detection, and error recovery into the hard­
ware and software system. In the power-on state, the device 
may be logically disconnected from the input/output 
channel-under microprocessor control-and fully tested 
before being reconnected. Furthermore, the system checks 
the interface itself by passing signals back and forth across 
the bus prior to the startup of the application. The system 
attempts to isolate problems in this way-whether the device 
is IBM-supplied or user-supplied. 

During the execution, the microprocessor performs check­
ing in a device-dependent way-a capability allowed by the 
programability of the interface. Time outs, sequence check­
ing, and parity checking are performed as appropriate. 
Errors detected are reported in standard form through the 
level status register (even, carry, and overflow) for use by 
either: 

• The user's custom software 

• The error recovery software of the Realtime Programming 
System 

• The Event Driven Executive 

• The Control Program Support package 

Errors are also signaled by interrupts to the processor as 
explained later in this chapter. 

The input/output bus itself is called an asynchronous 
multidropped channel. It is termed asynchronous because 
operations on the channel are always "hand-shaked" to 
assure correct transfer. That is, the system acknowledges 
each command or reply through an agreed-upon set of proto­
cols. Such handshaking is actually contained in a set of 
timing and control signals passed back and forth on a subset 
of the bus lines as indicated in Figure 55. The channel is 
termed multidropped because all transfers are accompanied 

203 



IV 

~ 
Device-dependent circuitry which customizes 
the interface hardware to a specific device or 
class of device. 

The microprocessor interfaces to the bus and device logic 
in a standard hardware manner. 

Standard microprocessor software is present for self-
. diagnosing the interface and the microprocessor; it also 
· tests the communication with the input/output bus. 

Device-dependent software is present for self-diagnosis 
and error recovery of the attached device. 

(Device interface) 

* Device logic 
(Design interface) 

t 
Micro controller 

Interface common 
logic 

t 
(1/0 interface) 

channel 

Figure 54. Organization of the microprocessor-controlled interface between the input/output channel and devices 



by device addresses; all interfaces read these addresses, but 
only the addressed interface responds. 

Transfer of data takes place on the bidirectional data bus. 
The device communicating with the processor is the one 
whose address (a number between 0 and 255) is placed on 
the address lines of the bus. 

A transfer to a device involves passing an address and a 
command-together with data-in the appropriate direction. 
Handshakes and control signals pass on the control lines of 
the channel. High-speed devices transfer data directly into 
main storage without processor intervention. Cycle steal 
transfers must pass a main storage address along with the 
data. The 17-bit address bus permits full 16-bit main storage 
addresses to be passed. The 17th bit indicates either cycle 
stealing or a direct program control operation. For 
processors with main storage translation, this address is fully 
translated. This procedure is discussed further in this 
chapter under the section entitled "Input and Output in the 
Cycle Stealing Mode." 

It is not appropriate to discuss here specific characteristics 
of the Series/1 input/output channel Ii ke signal levels and 
timing constraints. Users typically need knowledge of these 
characteristics when they design custom interfaces to most 
small computer systems. The Series/1, however, provides an 
OEM interface for this purpose; this interface presents a set 
of bus lines (simpler than the one provided by the input/ 
output channel) to which users interface their devices. 
Details of this interfacing are covered in Chapter 9. By not 
interfacing directly to the input/output bus, system diag­
nostic capability is preserved. 

Detailed input/output at the processor level involves 
control over device priority, interrupts from devices, and 
mode of transfer. Input/output at the processor level 
is discussed in the following two sections. 

Input and Output Under 
Direct Program Control 

Direct program control of input and output requires an 
explicit processor intervention in each data item transferred 

205 



~ 
O'I 

Series/1 processor and storage 

:--C;l;s;al - - - Cyde~t~I- - - - - - - - - - - - -: 

1 storage address storage data I 
1 register register I 

; D D Control , 

~---rr--- --fr--:.::"~ --rr----_! 

_________ __.I I Control and timing 

Figure 55. The Series/1 input/output bus: asynchronous and multidropped (1 of 21 

Data bus 

• 16 bits, plus two parity bits 

• A bidirectional bus used to pass 
data and control information to 
and from devices 

• During interrupt acceptance, device­
address information and interrupt 
information is passed along this bus 

Address bus 

• 16-bit, bidirectional bus 

• Used for device selection and pass­
ing commands to devices during 
input/output instructions 



Control and timing 

• During cycle steal operations, main storage addresses are passed along the address bus 

• These addresses are fully mapped or translated in processors with hardware, storage address translation 

Control lines 

A set of unidirectional lines used for: 

• Interrupt and cycle steal requests 

• Condition code and status reporting 

• Reset commands 

• Basic timing and control of bus operations' sequences 

Figure 55. The Series/1 input/output bus: asynchronous and multidropped (2 of 2) 

t...:i s 



across the channel. Under some conditions, it might be 
desirable to transfer a series of characters to or from a device. 
An example of this data transfer is depicted in Figure 56. 

Polling vs. Interrupt-Driven Input/Output 

There are two methods of software organization: polling, 
and interrupt-driven. Polling involves the repetitive testing 
of each device's status and the transmission of data when the 
device is available as shown in Figure 56 (2 of 3). This 
approach is not used in operating systems or applications­
except in situations where special, very fast devices are 
present. Usually, it is much more efficient to use the 
interrupt-driven, input/output method of operation which 
involves the processor in the data transfer operation only 
when the device signals that it is ready to receive or transmit 
data. 

Figure 56 (3 of 3) shows this process, indicating that the 
only time the processor is actually involved with the transfer 
of data to the device is when the device signals it is ready 
to receive a character. Normally, the processor is busy at 
some task level. The system periodically interrupts the 
processor to transfer a character, and then resumes execu­
tion of the interrupted task. In the Series/1, the interrupt 
occurs on a different priority level which has its own 
registers; consequently, there is little overhead expended in 
saving and restoring the state of the interrupted process. 
Direct program control operations take a very small portion 
of the processor's time for each input/output. Assuming 
moderate data rates, the interrupt-driven method is an 
efficient way to transfer data between devices. At fifteen 
characters per second, the overhead is negligible. However, 
devices transferring data at one thousand characters per 
second or higher begin to impact the throughput of the 
processor and increase the overhead of the operation. 

A large number of devices with slow data transfer times 
will also use a significant amount of the processor's time. 
In these cases, the devices are more effectively connected 
in a cycle steal mode; such a connection decreases the 
processor's involvement significantly by putting much of the 

208 



An example of interrupt and polling organizations 
for a simple output task. 

The buffer contains N characters to be 
output, one at a time, to a printing 
device. 

R E s T A R T 

• • 
I 

I 
Last t--- __ J 

I 

'- ---- - Next 

1 
Initialized to point to first 
character 

Figure 56. Direct program control of devices (1 of 3) 

input/output control function into the interface. The 
Series/1 communications' interfaces are good examples of 
this method. Input and output in the cycle steal mode 
are discussed in the next section. 

Effects of Buffering on Task Execution 

Direct program control of a device affects the task initiat­
ing the input/output operation as indicated in Figures 57 
and 58. A task which calls for a buffer to be filled from a 
specific device initiates a series of transfers. Each of these 
transfers takes only a short span of processor time to 

209 



Polling input/output under program control 

Possible delay Read status 
or check other 

~ 
--.- of device 

devices 

T 
Yes ..... Is it busy? 

I No 
Performed by an 
input/output Output the next 
operation. The character and 
interface responds update next 
with busy /not 
busy status. T 

No 
Buffer completely ~ 

output? 

l Yes 

Return and notify 
originating task 

Because of the difference between the processor and the 
device speeds, this form of polling ties up the processor 
completely doing what is, essentially, a small task. By 
comparison, interrupt-driven input/output of this type 
operates with a very economical overhead. 

Figure 56. Direct program control of devices (2 of 31 

210 



Interrupt-driven input/output under program control 

Device-ready interrupt 

}_ 

Output one character from location 
next to the device. 

I 
Update next to point to the next 
character to be printed. 

l 

If next is past last, signal the task 
that initiated the output operation 
that the job is done, or return to the 
interrupted task. 

Device priority 
level (higher) 

Output R 

Overhead is less than half of one percent if: 

Output E ... 

• 50 microseconds are used to respond to the interrupt 
and to output one character, as above 

• The device accepts 100 characters per second 

Figure 56. Direct program control of devices (3 of 3) 

211 



~ ...... 
~ 

Task A (on priority level 2) 

Command: fill buffer - - - - - - - - - - - - - ~ 

L __ - -- -

Device handler 
(priority level 0) r----------------, 

....... ~~-.-~~~~---..~~---..1 
Return when input 
operation is complete 

Figure 57. Effect of non-overlapped input/output on task execution (1 of 2) 

t 

Data flow to and 
from the device 



I 

IV 

Level 3 

Level 2 

Task A 

Level 1 

Level 0 

[ 

c::::J 

A level 3 task might execute while task A is 
blocked on level 2. 

Task A calls for non-overlapped 
input operation here. 

Task A is blocked until input is 
completed here. 

Task A 

Level 2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Input complete 

c:::::::J c::::J c:::::::J 
Interrupt-driven input/output proceeds concurrently. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_,..Time 

~ Figure 57. Effect of non-overlapped input/output on task execution (2 of 2)

N
"""'

Task

~Command: fill buffer A
(Task proceeds, processing data in buffer B).

Command: fill buffer B

(Task proceeds, processing data in buffer A) .

I Device handler J
[Buffer A J
I Buffer B f

----Buffer A is filled by this time.

... , Buffer Bis filled by this time.

Returns to task as soon as input/output operation is initiated.

Figure 58. Direct program control and overlapped input/output (1 of 2)

"'

Level 3
Level 2

Task executes on level 2, periodically interrupted for a brief interval by the device
handler on level 0.

Level 1 UUU1JU
LevelO ~~

Device handler fills buffer A. Device handler fills buffer 8.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.Time 

A user can design a task with well-defined, input/output needs to execute concurrently with the input/out­
put operation. In this example, two buffers perform that operation. 

Before initiating the next task or processing the previous task, a task must determine that a requested, con­
current input operation is completed. 

Series/1 software returns control to the initiating task immediately. The task then decides whether to 
continue execution-overlapped with input/output-or to block execution until the operation is complete. 

V: Figure 58. Direct program control and overlapped input/output (2 of 21 



respond to the device interrupt {Figure 57). The processor 
may be busy in performing some other task in between 
data item transfers, but the task asking for the input opera­
tion may still be blocked throughout the duration of the 
data transfer. If the task needs the block of information 
before it can continue, it must wait for the completion 
of the data transfer. In this circumstance, overlapping the 
direct, program control input/output operations of one 
task with the execution of a different task {as in Figure 57) 
is an efficient way to use the processor. Sometimes the 
task initiating the input/output operation can actually 
proceed without waiting for the operation to complete 
{Figure 58). When that occurs a "double buffering" mechan­
ism is deliberately set up by which the task initiates an input 
operation to fill one buffer while processing the other. The 
system, then, overlaps the input operation with the execu­
tion of the same task. Commonly, those input/output 
operations that arise in data acquisition and similar dedicated, 
small computer applications accomplish this double buffer­
ing. Direct program control is an efficient way to handle 
such situations; in critical applications, it also gives the pro­
grammer direct control over timing and response of the 
system. Software systems must permit the programmer to 
decide whether the processor should return to the task 
initiating the input/output operation immediately or only 
after completing the input/output. This programming option 
is discussed later in this chapter. 

Direct Program Control Instructions 

The actual involvement of the Series/1 processor in direct, 
program control input/output operations is straightforward: it 
involves only one instruction whose fields are coded with the 
specific operation desired. Figure 59 shows the Operate 1/0 
instruction: a two-word instruction whose effective address 
points to a two-word package, the immediate device control 
block {IDCB). The immediate device control block, in turn, 
contains all the information specific to an input/output opera­
tion including the device address (eight bits indicating one 
of 256 devices), and a command. The full-word, immediate 

216 



field within the device control block is the source of data 
for an output operation and the destination of data for an 
input operation. For a transfer involving a byte instead of 
a full word-the length of the data transfer depends upon 
the particular device being addressed-the transfer is to and 
from the last significant half of the immediate field. 

Notice in Figure 59 how the input/output channel trans­
fers the command and device address along the channel 
address bus for recognition and interpretation by the 
appropriate device interface. The control information is 
not depicted. 

Various commands are necessary for complete device 
control, especially when special devices are interfaced to the 
processor. Figure 60 lists these commands. The command 
portion of the immediate device control block is eight-bits 
wide: four bits identify the generic command; four bits 
are available as sub-commands. For example, in addition 
to the expected read and write commands, there exists a 
read identification (Read ID) command. This command 
causes the addressed device to return a sixteen-bit identifi­
cation word to the immediate field of the immediate device 
control block. The identification word contains: 

• A unique identification code for the device so the 
processor can determine physical characteristics and 
input/output requirements for the device 

• An indication of whether the device runs under direct 
program control or cycle steal mode 

• An indication of whether the device is a standard IBM 
device or an OEM device 

• An indication of whether the device is controller-inter-
facing several devices or not 

This information could, of course, be programmed into the 
system rather than being available under software control. 
However, making this information available to programs 
insures that: 

• Error checking can be done 

• Error recovery and startup can be expedited 

217 



~ 
00 

Operate 1/0 instruction (two words) 

• The first word contains: 
- Code for the instruction (12 bits) 
- Register designation (3 bits) 
- Direct/indirect addressing mode flag (1 bit) 

• The second word contains: 
- A 16-bit address (if register 0 is designated), or 
- A 16-bit displacement to be added to the con-

tents of the designated register 

------------- --__ J_I I The effective address points to 
the immediate device control 
block (two words long). 

8------
Figure 59. Direct jJrogram control performed with a single instruction-Operate 1/0 (1 of 3) 



I\.) 

~ Spec;t;c commond• .,. p\oced ;n 
\ the immediate device control 
\ block rather than in the instruc-

Command and device address are output on 
the address bus. 

\ tion itself. ,...- __ 
1 

\ 

T 
{ 

Command device address 1- - - +1< > 
wo I 1 Address bus 

words I 
Immediate field ,- - - .-:<:: >1110 

t 1 Input/output bus\ device 
Immediate device I 1 

.- - -T - - - ----------to--
control block I I I Condition code 

I '---! 
: I /0 control 

I 
I 
I 

CV 
On output, data from the immediate field is 
output to the designated device on the data 
bus. On input, data from the device is input 
to the immediate field. 

'\O Figure 59. Direct program control performed with a single instruction-Operate 1/0 (2 of 3} 



IV 
IV 
0 

Level status register CV I I -- -J 
I £ ______________ _! 

Every input/output operation results in a status code called the condition 
code. This code contains one of eight values which is stored, automatically, 
in the most significant three bits of the level status register-on the level at 
which input/output occurs. These three bits are identical to the bits used 
to hold even, carry, and overflow indicators after arithmetic and logic 
operations are concluded. 

Figure 59. Direct program control performed with a single instruction-Operate 1/0 (3 of 3) 



Immediate device control block (two words) 

1/0 command 
(eight bits) 

I 
I 

l 
Device address 
(eight bits) 

Immediate field for data (16 pits) 

i.. Direct program control commands 

• Read-Transfers a word of data or a byte of data from 
the addressed device into the immediate field of the 
immediate device control block. If a byte transfers, it 
occupies the least significant byte of the immediate 
field, and the other byte is zeroed. 

• Write-Transfers a word or byte of data from the 
immediate field of the immediate device control block 
to the addressed device. If a byte transfers, it is the 
least significant byte of the immediate field. 

• Read ID-Transfers an identification word from the 
addressed device to the immediate field of the device 
control block. The device identification word contains 
information about the device and may be used-either 
during startup or as part of error checking-to determine 
the devices that are attached to the system. 

• Read Status-Transfers a word of current device status 
information from the addressed device to the immediate 
field of the device control block. Interpretation of the 
bits and fields depends upon the specific device. 

• Prepare-Transfers a word to the addressed device from 
the immediate field of the immediate device control 
block. The transferred word controls the device's inter­
rupt level and enabling flag (see Figure 61 ). 

• Device Reset-Resets the addressed device including 
clear, any pending interrupt, or busy condition 

Figure 60. The major input/output commands for direct program control 
of devices 

221 



• Proper operation of devices can be performed from 
common, system software 

For example, knowledge of whether or not a device is IBM­
supplied determines whether or not certain levels of self­
diagnosis will be performed. 

The Read Status command transfers a word from the 
device interface to the immediate field of the immediate 
device control block. The same process occurs during a Read 
or Read Identification (Read ID) command but in the latter 
case, the data codes the status of the particular device. This 
coding might include a busy indication, error detection 
information, or a power status indication depending upon 
the device. Similar commands to the interface from the 
immediate field of the immediate device are: Control, 
Reset, and Prepare. 

Control passes a word from the device control block 
immediate field to the device interface. What the interface 
does with the word depends upon the device itself. Among 
the actions initiated are the following: 

• To abort an operation in process 

• To send a device to some standard state 

• To position an electromechanical system 

• Any other operation: 
- Which must be treated differently from data transfers, 

and 
- Which the interface designer builds into the system 

The availability of the Control command is clearly important 
to OEM device interface designers. Reset is a special kind of 
control which also resets the common, system state including 
any pending interrupt. 

The Prepare command controls the interrupt level of a 
device and the basis on which a device generates interrupts 
(Figure 61 ). As stated earlier in this chapter, interrupts may 
be masked on a system wide basis, on a level basis, or on an 
individual device basis. The hardware priority level for a 
device is not determined by its location in the processor 
or input/output expansion units. This determination is made 
by information stored within the device interface itself and 

222 



Operate 1/0 instruction 

r------------~ 
Prepare Device N 

The address points to 
the immediate device 
control block. 

------...J...-------' Immediate device 

Interrupt parameter word 
control block 

Data transmitted 
on input/output bus 

Input/output bus 

Zero Level 

Interrupt parameter register 
in interface 

Interface for 
device N 

Device N 

Level: A four-bit area designating on which of the 16 
priority levels the device should respond. Although 
Series/1 architecture supports up to 16 levels, only four 
levels are recognized on current processors. 

I: Device mask. When set to 1, the device interrupt is 
enabled; when set to 0, disabled. These settings provide: 

• Control over specific, individual device interrupts (device 
mask) 

• Control over individual levels of priority interrupt (level 
mask) 

• Control over all interrupts on all levels (summary mask) 

Individual devices may have their priority level set under 
program control, and be individually enabled or inhibited 
under program control. 

Figure 61. Individual devices under program control 

223 



subject to change under program control. The Prepare 
command transfers a single word to the device. The trans­
ferred word contains the levels of priority on which the 
device acts (note that the Series/1 architecture allows up 
to 16 levels of priority but that currently available processors 
recognize only four levels). One bit is used to indicate 
whether the device is permitted to interrupt or not, in 
exactly the same fashion as the determination is made by 
the interrupt control information built into each level of 
the processor. IBM has designed the interfaces to accept 
the Prepare command at any time; this enables a user to 
change the level and interrupt status of any device at any 
time under program control. 

Normally the system software, like the Realtime Program­
ming System, carries out all control over interrupt level, 
interrupt inhibiting, and similar functions. In custom­
tailored applications, however, users might assume this 
control on their own. The flexibility and generality of the 
direct, program control commands give the user the power 
to run special devices in whatever way the applicatiOn 
dictates. 

Error Detection and Reporting 

This book has repeatedly emphasized that robust 
system design requires good error detection. Without this 
detection, thorough error recovery cannot be built into the 
software system. For this purpose, each input/output 
operation inputs status information to the processor. A 
condition code is a three-bit code used to indicate the 
result of an input/output instruction or the reason for an 
interrupt (Figure 62). The three-bit condition code is 
stored within the level status register in the three bits used 
for even, carry, and overflow information. There is no 
conflict in dual use of the level status register because: 

1. Interrupts and input/output are normally performed on 
priority levels different from those used by tasks 

2. Registers are duplicated on each priority level 

Depending upon the actions of the device, interface, and 
hardware, the condition code is set as indicated in Figure 62; 

224 



a variety of conditional branching instructions can then inter­
rogate the code. With this system design, software can: 

• Perform an operation 

• Check to determine whether or not the operation was 
carried out satisfactorily 

• Determine the source of difficulty if the operation was 
not satisfactory 

• Handle all special cases 

Overall Operation of Direct Program Control Input/Output 

Overall operation of direct program control, input/output 
transfers involves several steps. First the system prepares 
the device, setting the interrupt priority level and interrupt 
mask with the Prepare command. Secondly, each time the 
device is ready to input or accept data, an interrupt is 
generated (subject, of course, to masks and current processor 
level control). As shown in Figure 63, the interrupt then 
causes a condition code to be placed in the level status 
register on the level of the device. As explained in the 
discussion of interrupts, an interrupt identification word is 
input to register seven on the device priority level. The 
least significant byte of register seven contains the device 
address which the interrupt hardware uses to branch to the 
interrupt response routine. The other byte contains either 
device-dependent information needed by the responding 
software routine or more detailed error information. Figure 
64 defines the interrupt identification word and the addi­
tional error information detected by the interrupt. 

Assuming no error occurred, the processor uses the device 
address in register seven to access a table which contains the 
addresses of blocks of information related to the devices. 
In IBM-supplied software, this block is called a device 
descriptor block (DDB) and includes many parameters 
related to error recovery, buffers, and storage locations. 
The first word of the device descriptor block is the address 
of the interrupt response routine itself; it is this address that 
the system fetches and uses as the starting address for pro­
gram execution. 

225 



Operate 1/0 
instruction 

1 
Device reports 
condition code 

1/0 instruction condition codes 

1-------------1 

CC 0 Device not attached 
1 Busy 
2 Busy after reset 
3 Command reject 
4 Intervention required 
5 Interface data check 
6 Controller busy 
7 Satisfactory 

The condition code is reported in the 
appropriate level status register. 

CC=O Device not attached Reported by the channel 
when the addressed device is not attached to the 
system. 

CC=l Busy. Reported by the device when it is unable 
to execute a command because it is in the busy 
state. The device enters the busy state upon 
acceptance of a command that requires an inter­
rupt for termination. It exits the busy state when 
the processor accepts the interrupt. Certain 
devices also enter the busy state when an external 
event occurs that results in an interrupt. When 
this condition code is reported, a subsequent 
priority interrupt from the addressed device 
always occurs. 

CC=2 Busy after reset. Reported by the device when it 
is unable to execute a command because of a 
reset and the device has not had sufficient time 
to return to the quiescent state. No interrupt 
occurs to indicate termination of this condition. 

Figure 62. Definition of the eight condition codes which may be reported after 
each input/output instruction (1 of 2) 

226 



CC=3 Command reject Reported by the device or 
channel when: 

1. A command is issued that is outside the device 
command set 

2. The device is in an improper state to execute 
the command 

3. An incorrect parameter was. supplied to the 
1/0 command 

CC=4 Intervention required. Reported by the device 
when it is unable to execute a command due to 
a condition requiring manual intervention to 
correct. 

CC=5 Interface data check. Reported by the device or 
the channel when a parity error is detected on the 
1/0 data bus during a data transfer. 

CC=6 Controller busy. This condition is reported by a 
device controller, not the addressed device, when 
the controller is busy. It is reported only by 
controllers that have two or more devices attached 
(each device having a unique address). When this 
condition code is reported, a subsequent controller­
end interrupt always occurs. 

CC=7 Satisfactory. Reported by the device or channel 
when it accepts the command. 

Condition codes reported after an Operate 1/0 instruction 
are different from the condition codes reported after an 
input/output interrupt. 

Figure 62. Definition of the eight condition codes which may be reported after 
each input/output instruction (2 of 2) 

Series/1 hardware performs all of these operations, mini­
mizing the overhead expended in responding to interrupts. It 
is the interrupt response routine which actually performs 
the direct program control input/output operations, error­
checks the results, and sets up for the next transfer. Soft­
ware handles most of the complex input/output activity. 
The logical and physical buffer sizes described here are only 

227 



Example: Device 15 interrupts in level 2 

The device irlterface assembles error data and 
other information into the interrupt status 
word and transmits it to the processor. The 
device interface also generates a condition code 
describing the reason for the interrupt, and 
transmits this information across the channel. 

The interrupt status word is loaded into register 
7 of level 2. The condition code is loaded into 
the level 2, level status register. 

The device address is used to index into the 
main storage device vector table to fetch the 
address of the device description block for the 
interrupting device. 

The address of the device description block is 
stored by the hardware in register 1 for use by 
the interrupt response routine. 

The hardware accesses the first word of the 
device description block to determine the start­
ing address of the interrupt response routine 
for this device. That address is loaded into the 
instruction address register causing an immedi­
ate branch to the response routine. 

Figure 63. Condition codes eccompanying each input/output interrupt (1 of 5) 

simple examples of additional information needed at the 
higher levels. This book, in a later section, briefly discusses 
software for control of input/output at the higher levels. 
The more complex examples are covered there. 

Of special interest to small computer applications is the 
structure of the direct program control command in 
Figure 56. Because the immediate device control block 

228 



@---------~-, 
@-1 The interrupt status wo~ contains two bytes: 

I 1. The device address 

2. The interrupt information byte 

I The interrupt status byte is the most significant 
iJ byte of the interrupt word; it remains in register 

7 for use by the interrupt response routine. 

The interrupt status byte is normally device 
dependent except when the condition code indi­
cates that an error has occurred. The byte is 
then used to transmit error information which 
cannot be reported by a condition code. 
Generally, the detailed error reporting is device 
dependent, and is defined in Series/1 device 
descriptions. 

Figure 63. Condition codes accompanying each input/output interrupt (2 of 5) 

is separate from the Operate 1/0 command, it is possible 
to write input/output software which can control multiple, 
identical or similar devices in a very efficient manner. 
Figure 64 shows a common input/output control routine 
which addresses different immediate device control blocks 
(perhaps, depending upon a number in a register) each 
time it executes. Because the control-word device 
addresses and immediate data fields are separate from the 
input/output command, the same code can control multiple 
devices without interference. Similarly, input/output 
commands-which prepare devices for operation-address 
different control blocks with different information. 

229 



Device 

1/0 interrupt 

Device reports 
interrupt 
condition code. 

cc 

... 

Device dependent interrupt 
information byte is trans­
ferred in the interrupt 
identification word. 

Interrupt condition codes 

0 Controller end 
1 PCI 
2 Exception 
3 Device end 
4 Attention 
5 Attention and PCI 
6 Attention and exception 
7 Attention and device end 

*Error condition with inter­
rupt caused by external event 

Figure 63. Condition codes accompanying each input/output interrupt (3 of 5) 

230 



c 

Interrupt status byte (ISB) 

1-- - ----- -- - - --

Bit 0 Device status available 
1 Delayed command reject 
2 Incorrect length record 

~ 
Cycle steal 

f.I 3 DCB specification check 
device 4 Storage data check 

5 Invalid storage address 
6 Protect check 
7 Interface data check 

Interrupt status byte (ISB) 

-------------
Bit 0 Device status available 

~ 
Direct program 

~ 1 Delayed command reject 
control device 2-7 Device dependent 

CC=O Controller end. Reported by a controller when 
controller busy (1/0 instruction condition code) 
has been previously reported one or more times. 
It signifies that the controller is now free to 
accept 1/0 commands for devices under its con­
trol. The device address reported with controller 
end is always the lowest address (numerical 
value) of the group of devices serviced by the 
controller. The interrupt information byte, in 
the interrupt ID word, is set to zero. 

CC=1 Program controlled interrupt. Reported when 
the interrupt indicates that a DCB with the PCI 
bit set to one has been transferred by cycle steal 
to the device and no error or exception condi­
tion has occurred. 

Figure 63. Condition codes accompanying each input/output interrupt (4 of 5) 

231 



CC=2 Exception. Reported when an error or exception 
condition is associated with the interrupt. The ... 
condition is described in the interrupt status byte 
(ISB) or in device dependent status words. 

CC=3 Device end. Reported when no error, exception, 
or attention condition has occurred during the 
1/0 operation, and the interrupt is not the result 
of a PCI. For example: an operation has termin­
ated normally. 

CC=4 Attention. Reported when the interrupt was 
caused by an external event rather than execution 
of an Operate 1/0 instruction. Additional status 
information is not provided unless the event 
,requires further definition: for example, code bits 
for a keyboard function. 

CC=5 Attention and PC/. Reported when attention and 
PCI are both present. 

CC=6 Attention and exception. Reported when atten­
tion and exception are both present. 

CC=7 Attention and device end. Reported when atten­
tion and device end are both present. 

The advantages of the microprocessor-controlled interfaces 
and channels are apparent here: 

• The hardware carries out a complex series of operations 
to facilitate low overhead and rapid event response 

• The hardware error-checks every operation 

• The hardware provides extensive diagnostics in an inte­
grated, consistent manner 

Each input/output code is accompanied by a condition code 
reported in the level status register. The condition code 
defines the reason for the interrupt and may be tested to 
guide the interrupt response routine. 

Figure 63. Condition codes accompanying each input/output interrupt (5 of 5) 

232 



In fact, the common code might address a device with a 
Read Identification command and use the results to deter­
mine which device control block to use in the remainder of the 
code; this procedure would allow one routine to control 
multiple, dissimilar devices. 

Input and Output in the Cycle Stealing Mode 
Cycle stealing, in contrast to direct program control, 

involves much less explicit interaction on the part of the 
processor during the transfer of a block of information 
between main storage and a device. This has been accom­
plished in the Series/1 by building a great deal of processing 
capability in the input/output channel controller. As a 
result, the channel controller can handle many of the func­
tions which the processor handles during a direct, program­
controlled operation. Figure 65 illustrates this procedure­
the processor executes a task whose code is stored in main 
storage. Execution involves many things, including: 

• Fetching instructions from storage 

• Fetching data items 

• Performing computation using the arithmetic and logic 
unit 

• Putting results back into storage 

In other words, the processor uses the storage repeatedly. 
Each read or write storage action takes a length of time 
called a memory cycle; during this time nothing else can use 
the main storage. 

Simultaneous with the execution of a task, the input/out­
put channel cycle steals data between main storage and a 
device. Each such transfer involves many of the same physi­
cal operations discussed in the introduction to this chapter: 
addresses and commands on the bus, handshaking, error 
checking, and data transfer. However, during a cycle steal 
data transfer, the channel controller is responsible for all 
these functions. The only interaction with the processor 
is through contention for main storage. Each time a data 
item has been obtained from a device during an input 

233 



IV w 
~ 

Common input/output routine 
for multiple devices 

Table of immediate device 
control blocks 

Command device address 

Operate 1/0 w::::::: I ~I A 
I 
t 
I 
I 

Operate 1/0 

I 

Operate 1/0 

B 

c 

D 

Figure 64. A common input/output control routine addressing different immediate device control blocks (1 of 2) 

Device A 

Device B 

Device C 

Device D 



1-.J 
w 
VI 

Each call on the input/output routine indexes to access the appropriate immediate device control block. 

Separating the device address, the command, and the data area from the Operate 1/0 instruction itself 
creates practical input/output routines. These routines control multiple devices of different types and 
decrease the size of the overall system software. 

Figure 64. A common input/output control routine addressing different immediate device control blocks 12 of 21 



IV 
VJ 
O'I 

Main storage 

Active 
Buffer ~ task 

~ 

r 

Processor 

Figure 65. Cycle stealing input/output (pal't 1) (1 of 2) 



!-,,) 

Main storage access cycles are "stolen" by the 
channel to read or write data to or from the 
buffer. The interruption of the active task is 
not significant enough to illustrate here. 

Active task 

Set up cycle steal ·stolen cycle 

Interrupt the task upon completion 
of the input/output request. 

Task continues 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ....... ~Time 
Input/output
request

Cycle stealing input/output is set up via direct program control input/output operations; it is performed with
only one storage access time required per word transferred.

~ Figure 65. Cycle stealing input/output (part 1 I (2 of 2)

operation, the channel controller must present the data­
together with a main storage address-to main storage in
exactly the same way the processor presents an address
and data when it wishes to write in main storage. As indi­
cated during the discussion of the processor in Chapter 3,
both the processor and the channel have registers for access­
ing storage. A storage controller acts as a traffic policeman
or priority arbitrator when both the processor and controller
simultaneously contend for storage. Because the channel
inputs data periodically and because each such data transfer
has exclusive access to the main storage for one cycle during
the transfer, the processor periodically finds the main stor­
age busy and must wait-hence, the name cycle stealing for
this mode of data transfer.

Once initiated, cycle stealing entails little overhead on the
part of the processor. Consequently, cycle stealing is an
economic process for faster devices whose servicing under
direct program control would considerably decrease the
throughput of the system.

Use of Microprocessors in Cycle Steal Controllers

The Series/1 technology uses a microprocessor-whose
power resembles that of a small computer-in most device
interfaces. In the current iterations of the Series/1, it is
economically attractive to use cycle stealing interfaces even
for relatively low-speed, input/output devices. One signifi­
cant advantage of this technology is that the microprocessor
can be programmed to.perform the basic input/output opera­
tion as well as error checking, error recovery, self-diagnosing,
and those special functions pertinent to a particular device.
Communications-device data management in the Series/1 is
an excellent example of this advantage. The interface can
both transfer characters from a terminal-type device to main
storage, and also check each character to see if it is a special
control character requiring a special response from the
processor.

An example of this ability occurs when a character signals
the user who wants to backspace and overwrite something
already typed on the terminal. The user wants an immediate

238

response to this command; the system must make the correc­
tion before a complete line is input. The programmed
communications' interface could perform this backspace func­
tion or, alternatively, allow the processor to respond by
interrupting it when the interface detects the backspace
character. As a result, the processor is not engaged for most
characters except when they occur at the end of an input
line. In a communications' and terminal oriented application,
this method of operation off-loads the processor very signifi­
cantly and is a good example of the integrated hardware,
software, and system design prevalent in the Series/1.

Cycle Steal Input/Output Instructions and Commands

The user must supply multiple parameters in the input/out­
put command because cycle stealing operations transfer more
than one data item without processor intervention. Figure 66
shows the form of the cycle steal, input/output command; it
is identical to the command used in direct program control
except for the interpretation of the immediate data field. As
with direct program control, the system uses the same
Operate 1/0 command with an address pointing to an
immediate device control block. The command field,
however, is specific for cycle stealing-Start 1/0. This com­
mand field is a signal to the channel that the immediate field
is actually the address of another block of information-the
device control block-which contains the parameters
necessary to carry out the transfer. These parameters
include:

• An address in main storage where a data buffer resides

• A count of the number of bytes to be transferred

• A control word which is, essentially, a command to its
cycle stealing controller

The command is part of the device control block rather
than the immediate device control block because the system
may often perform long sequences of cycle stealing opera­
tions without processor intervention. The system can
accomplish this operation by having the following:

239

IV

~

Operate 1/0 instruction

The effective address points
to the immediate device
control block.

Start 1/0 N

Figure 66. Cycle stealing input/output (part 21 (1 of 2)

Cycle steal input/output and direct program con­
trol use the same instruction.

The immediate device control block is identical to
the block used for direct program control with
one exception: the command field signals the
processor that cycle steal input is called for; conse­
quently, the data is not in the immediate field.

N is the device number.

Command is standard-details are in the device
control block.

The immediate field points to the device control
block.

~
Cycle steal input/output is controlled
through an eight word data structure.

Direct program control input/output instructions set up the cycle steal input/output which the Start 1/0
command initiates. The command has a format similar to the direct program control command with one
exception: the immediate data field actually points to ~mother eight-word control block.

l>J

:!:: Figure 66. Cycle stealing input/output (part 2) (2 of 2)

• One intervention to start the process-by pointing to an
immediate device control block containing the Start
1/0 command

• A sequence of device control blocks chained together with
internal pointers. Each block contains a channel command
and is read as needed by the device controller using the
cycle steal channel.

In a sense, a sequence of device control blocks chained
together is a program which controls a sequence of opera­
tions and transfers on the cycle steal channel. The channel
controller is functioning much like a processor itself-and in
fact it is a microprocessor.

The device control block is an eight-word information
block whose contents are partially standard and partially
device dependent as shown in Figure 67. Words one through
five are dependent upon the particular device and the
particular command within the control block. For example,
a transfer to a disk would require cylinder and sector
addresses as well as a main storage address and a byte count.
The interface designer allocates the information needed by
each device to these words in the control block. OEM cycle
steal interfaces may be requested-to user specification-on a
special order basis, that is a request price quotation (RPQ),
from IBM. The GPIB Adapter card is a cycle stealing feature
for OEM attachment.

The first word of the device control block is the control
word whose fields are defined in Figure 67. Notice that
the individual bits:

• Signal the controller commands, like interrupt, upon
completion of data transfer

• Operate in burst (channel-dedicated) mode

• Chain to another device control block upon completion
of this transfer

• Direct the transfer

• Perform error control

The seven-bit modifier is available as a device-dependent
command field. The system uses the cycle steal address key

242

field during the transfer as part of storage protection and
address translation as indicated in the section of this chapter
entitled "Storage Protection and Address Translation Effects
on Input/Output Operations". Notice again that this
information field, along with others in the device control
block, constitutes a complex command to the channel.

Burst mode means that the channel is dedicated to the
data transfer during the entire time the transfer occurs. In
burst mode, the processor and all other devices are com­
pletely locked out of the channel. If the transferring device
is fast enough-the burst mode can accommodate very fast
devices-data transfers occur at the maximum rate that the
main storage can accommodate. Burst mode might be useful
where the remote device is another computer {computer to
computer communications) and the user wants control over
concurrent accesses to a data base or critical data area. By
locking the channel during a transfer, a computer can trans­
fer data and assure the user that the processor will not
simultaneously update the data. This procedure permits
communications' software to resolve contention problems
which arise in networking applications of small computers.
The technique is analogous to the processor inhibiting or
masking interrupts to prevent simultaneous access to a
critical data area by other tasks within the processor itself.

The device control block resides in main storage itself.
When the channel receives a Start 1/0 command, it interacts
with the addressed device controller and fetches those words
in the device control block needed by the interface to
initiate and carry out the command. In this way, fetching
the command itself uses storage accesses and cycles stolen
from the processor. The system does not necessarily have to
fetch all eight words contained in the device control block;
it fetches only those words needed by the device. The exact
number is then device dependent-in fact, it may depend
upon the particular modifier field. For effective control over
concurrency of task execution and input/output, the cycle
steal operation, optionally, interrupts upon completion of
each block transfer.

The operation of a cycle stealing device involves initiation
by direct program control operations as indicated in Figure 68.

243

Control word format (DCB word 0)

I 'Add, ·t~d~I~ ~~ ---:-~ '
0 ·1 2 3 4 5 7 8 14 1J

LBurst mode
Suppress exception (SE)

Reserved

Input flag

'------Program controlled interrupt (PCI)

,__-----Chaining flag

Word
0

DCB (device control block)

Control word i...J

I

1 Device parameter word 1

2 Device parameter word 2

3 Device parameter word 3

4 Device parameter word 4

5 Device parameter word 5

6 Count

r--') 7 Data address

Byte count and main storage address are
'---I the minimum data requirements in a

cycle steal transfer.

Device control block words are accessed by the device
interface. Only those words needed for a specific device
are actually transferred to the device interface.

Figure 67. The device control block contains the data necessary to carry out one
transfer between a specific device and main storage (1 of 2)

244

Bit 0 Chaining flag. If this bit is equal to one, a DCB
chaining operation is indicated. After complet­
ing the current DCB operation, the device does
not interrupt unless a program-controlled inter­
rupt has been requested. Instead, the device
fetches the next DCB in the chain.

Bit 1 Programmed controlled interrupt (PC!). If this
bit is equal to one, the device presents a pro­
grammed controlled interrupt (PCI) at the com­
pletion of the DCB fetch. Data transfers associ­
ated with the DCB may commence even if the
PCI is pending.

Bit 2 Input flag. The setting of this bit tells the device
the direction of data transfer.

0 = Output (main storage to device or no
transfer)

1 = Input (device to main storage)

For bidirectional data transfers under one DCB
operation, this bit must be set to one. For con­
trol operations involving no data transfer, this
bit must be set to zero.

Bit 3 Reserved. This bit must be set to zero to avoid
future code obsolescence.

Bit 4 Suppress exception (SE). If this bit is equal to
one, reporting of device specified exception
conditions are suppressed. The device contin­
ues the operation. The classes of exception
conditions that can be suppressed are devi.ce
dependent. For example: an incorrect-length­
record condition could be suppressed. An
exception that occurs during a DCB fetch opera­
tion cannot be suppressed. Refer to the indivi­
dual device publications.

Bits 5-7 Cycle steal address key. This key is presented
by the device during data transfers. It is used
to ascertain storage access authorization.

Bits 8-14 Modifier. These bits may be used to describe
functions unique to a particular device.

Bit 15 Burst mode. If this bit is equal to one, the
transfer of data takes place in burst mode. This
mode dedicates the channel to the device until
the last data transfer associated with this DCB
is completed. This bit is device dependent if
burst mode is not supported by the device.

Figure 67. The device control block contains the data necessary t.o carry out one
transfer between a specific device and main storage (2 of 2)

245

~

The processor is involved
in setting up the transfer
and initiating the channel,

Transfer takes place con­
currently with processor
execution of other tasks.

Cycle steal
major steps

Prepare 1/0
device

Start cycle
steal

Device fetches
DCB

Data transfer

Figure 68. Sequence of operations during cycle stealing transfers (1 of 31

Remarks
1. Execute 1/0 instruction.
2. I DCB contains Prepare command and interrupt

parameters.
3. Device presents condition code 7 (satisfactory).
1. Execute 1/0 instruction.
2. IDCB contains Start command and points to a

DCB.
3. Device presents condition code 7.

1. Device uses cycle steal mechanism to fetch
DCB.

2. Cycle steal address key of zero is used.
1. Data is transferred to or from the device in

word or byte format.
2. Transfer continues until count in DCB is

exhausted or error occurs.
3. DCB specifies cycle steal address key for data

area.

1-..)

By responding to the inter­
rupt, the processor becomes
involved again upon comple­
tion of the transfer.

Cycle steal
major steps

Termination
(no error
condition)

Termination
(exception
condition)

~ Figure 68. Sequence of operations during cycle stealing transfers (2 of 3)

Remarks

1. Device presents interrupt request.
2. Channel polls 1/0 interface and accepts

requests.
3. Device sends interrupt ID word and interrupt

condition code 3 (device end).

1. Device presents interrupt request.
2. Channel polls 1/0 attachment feature and

accepts request.
3. Device sends interrupt ID word and interrupt

condition code 2 (exception).

~
00

Note: Other events that might occur during the cycle steal opera­
tion are:

Cycle steal
major steps

Chaining

Program
controlled
interrupt

DCB: device control block (see Figure 66)

IDCB: immediate device control block (see Figure 66)

Interrupt 1/0 word: (see Figure 63)

PCI: program controlled interrupt

Figure 68. Sequence of operations during cycle stealing transfers (3 of 3)

Remarks

l. Device completes the current DCB operation
but does not present an interrupt request.

2. Device fetches next DCB in the chain.

1. Device fetches DCB (PCI bit= 1).
2. Device initiates an interrupt and sends an inter­

rupt ID word and interrupt condition code 1
(PCI).

Storage Protection and Address Translation
Effects on Input/Output Operations

Storage protection on the Series/1 is performed in two
basic ways: 1) in systems without address translation, by
access keys associated with each 2K-block of storage transla­
tion; and 2) in systems with address translation, by access
keys which address different stacks of segmentation
registers. The input/output system is fully integrated into
this system of storage protection {Figure 69).

Storage Protection Without Address Translation

For Series/1 systems without address translation (or those
in which address translation is disabled), access is controlled
as it is for any other instruction type which accesses storage:
through the same address key register of the level on which
the direct program control instruction is executed. Input
and output operations use the operand 2 key to fetch the
device control block. Cycle stealing, input/output opera­
tions are more complex because they involve fetching the
device control block as well as reading or writing data in
another area of main storage.

Reading and writing data in main storage during a cycle
stealing operation requires a match between the address key
of the block in storage and the address key stored in the
control work of the device control block. This procedure
is consistent with the conventional non-mapped storage
protection procedure with one exception: the read/write
protection bit is ignored during a cycle steal operation.

Both Series/1 hardware and software adopt a system-wide
convention to handle the problem of accessing the device
control block without violating storage protection. The key
zero is used during access of the device control blocks (recall
that a key of zero has no other special characteristics and
that the no-protection key is key seven). With this conven­
tion, the hardware can set the address key register when an
interrupt occurs because the system knows that key zero
will be used to access the device blocks. In addition, input/
output hardware and software can remain consistent with
the storage protection objectives of the system.

249

Storage Protection With Address Translation

With address translation present and enabled, the accessing
procedure is different. Tasks are protected from one another
because their access keys determine sets of segmentation
registers; these registers, in turn, map the task's 64K-byte
address space into the physical main storage which is larger
than 64K bytes. For operational efficiency and data protec­
tion, tasks performing input/output instructions need the
same, consistent relationship as those accessing the device
control block. For example, to ignore storage mapping and
protection during an input/output operation would clearly
limit how much error detection could be incorporated into
the overall system-an unacceptable compromise in today's
data processing_ world. If the available space is not contigu­
ous, cycle stealing input/output operations into physical
storage might require multipJe commands to transfer data
and program code. Such a procedure would be inefficient
and unacceptable in a modern small computer.

A direct program control, input/output operation poses
no additional address translation and protection problems.
All the addresses a:re checked by the same mechanism that
handles other-purpose storage requests from the processor.
Because it is addressed by the 1/0 instruction and fetched,
the immediate device control block must reside in the space
mapped by the operand 2 key stack of segmentation registers.
This structuring usually presents no problem because-except
for special customized systems-all actual input/output
instructions are carried out by the operating system, and all
device control blocks reside within its space. This arrange­
ment is consistent with the hardware convention of using
address key zero both for fetching device control blocks and
for initiating the operating system.

In cycle steal operations, the device control block must
reside in the space controlled by the task executing the
cycle steal command. By convention, the device control
block is fetched with key zero (this block is the set of seg­
mentation registers allocated to the operating system which
also uses key zero); consequently, there is no problem in
accessing the block. The data buffer may reside in any space

250

IV

Direct program control input/output

The processor
with storage pro­
tection enabled Operate 1/0 instruction

The OP2K address key must match
the storage key of the immediate
device control block.

Immediate device control block

The processor
with hardware
address trans­
lator enabled

The immediate device control block
is in the space mapped by the stack
of segmentation registers whose
number is OP2K.

~ Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (1 of 4)

N
Vi
N

cY

Cycle steal input/output

Operate 1/0 instruction

Immediate device control block

Start
Device
address

Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (2 of4)

Device control block
. I Key I The input/output of actual data , 1 .1 under cycle steal mode uses the

key stored in the control word of
the device control block; this key
must match the key of the data
buffer area in main storage.

J
Data area

~
in storage

~
The device control block words are fetched using
key zero which implies that they must be in the
address space mapped by segmentation register
stack zero.

IV
t::l Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (3 of 4)

IV
Vl
.j::.

Using the key and segmentation stack zero for accessing device control blocks is a hardware/software conven­
tion of the Series/1. This convention facilitates using the key and the address space for the operating system.
To insure overall system integrity, the system performs input/output within the operating system.

Figure 69. Input/output is consistent with storage protection of both mapped and unmapped processors (4 of 41

with any key. The particular key used is stored in the first
word of the device control block. This organization permits
a user task to initiate a cycle steal transfer into a user task
data area by calling the operating system to do the actual
initiation.

Whether or not the Series/1 is using address translation,
the user can perform input/output operation in a straight­
forward, fully-protected manner with full use of system
error checking. The only requirement is that the operating
system or the supervisor program must maintain the device
control blocks, safely, within its own area.

Software Use of Input/Output Hardware
The Series/1 architecture allows the system great flexibility

when performing both direct program control and cycle steal
input/output. Furthermore, storage protection and control
over interrupts is maintained. To take advantage of this capa­
bility, however, an integrated system of software must be
available. The Realtime Programming System, the Event
Driven Executive, and the Control Program Support package
provide user interfaces to:

• The input/output hardware integrated with error detection
software

• Task management

• Other features typical of small computer software needs

Control Program Support of Input/Output

First, consider the Control Program Support routines for
input/output operations. This package is a set of routines
designed as a set of modules which can be used by application
tasks to perform the basic functions of task management and
input/output rather than being designed as a stand alone
operating system. The user's ability to tailor software for a
dedicated application is an especially important feature of
the Control Program Support. The simplicity of software
design makes it easy to understand the basic techniques used
for task management and input/output in IBM-supplied
software.

255

For purposes of system integrity, it is advantageous to
perform all input/output operations in the supervisor mode.
It is further desirable to isolate application tasks themselves
from those privileged instructions being used to set up and
carry out input/output. The special instruction called
Supervisor Call (SVC) (Figure 10) performs all communica­
tions between tasks and: 1) the operating system (including
its input/output functions), or 2) the Control Program
Support package. This instruction includes a parameter field
which specifies the exact service desired. Execution of this
instruction causes an internal or class interrupt which is
handled in the standard fashion described earlier: the level
status block (registers whose contents must be later restored
before returning to the user task) is stored in the system
table. Each type of internal interrupt has a unique hardware
location which must contain the address of the save area for
the level status block. In the case of the service internal
interrupt, this address happens to be location 16. As part
of the same instruction, interrupts are inhibited and the
system is changed to supervisor status.

To be consistent with storage protection, address keys
are modified as shown rn Figure 70: the source operand key
OP1 K is replaced by the value of destination operand key
OP2K; then, OP2K and ISR are set to zero. The former
permits the system to access the user's area to get informa­
tion in buffers and perform similar operations. The latter
is the Series/1 hardware/software convention which facili­
tates accessing of buffers and device control blocks in the
system space (always key zero).

Finally, (and still part of the single-service instruction),
the parameter associated with the SVC instruction is loaded
into register one. Control then passes to the starting-instruc­
tion address of the service routine which is stored next to
the address of the level status block save area in location 18.

Notice that this single instruction does the following:

1. Performs all of the system's housekeeping tasks Ii ke the
saving of registers

256

2. Sets the system up for the branch to the appropriate
service routine by loading the parameters of the SVC into
register one

The user task takes advantage of this instruction to link
to a service module as depicted in Figure 71. The Control
Program Support package assumes that all information trans­
ferred between the user task and the service module(s) is
done through a block of information called the IOCB:
input/output control block. To perform an input/output
operation for a specific device, the address of the control
block for that device is loaded into register zero. Then, the
SVC instruction is executed with the parameter set to the
desired service. Following the hardware functions described
above and in Figure 70, the system transfers control to the
service routine module which sets the device status to busy.
If the device is already busy, the request is queued just as it
is in the Real time Programming System. The service
routine then branches to the appropriate module and
carries out the function indicated using the parameters and
the data contained in the addressed input/output control
block.

For users to maintain full control over the application,
they must be able to specify whether or not input/output
is overlapped with further computation of the active task
or with some other task. To this end, control is immediately
returned to the user task as soon as the requested input/
output operation has been initiated (the system auto­
matically restores the level status block and returns to the
non-supervisor mode). Register zero is loaded with a code
indicating success of the SVC, or failure-an error occurrance.
If successful, the user then has two options:

1. To continue execution, overlapped with the input/output
operation

2. To use the tasking facilities to suspend task execution
until the system completes the input/output operation

As part of the input/output control block information, the
user specifies whether or not a special user task is to be
executed upon completion of the operation. As shown in

257

N
VI
00

The device vector table
resides at specific
addresses in main stor­
age and contains: the
addresses of save areas
for the level status
blocks; and starting
addresses for interrupt
response routines.

Instruction: SVC K

The processor hardware stores
the level status block at the
address pointed to at location
16 in the device vector table.

All further interrupts are dis­
abled by disabling the summary
interrupt mask.

The processor is placed in the
supervisor state.

Generates an internal inter­
rupt on the same priority
level as the current program.

Figure 70. Communications between a task and the operating system using the Supervisor Call (SVC) convention (1 of 3)

IV

If the SVC has to trans­
fer data to a routine,
the setup of keys in
the address key register
facilitates the accessing
of data from the user
space. Notice that this
is consistent with the
storage protection of
both mapped and un­
mapped processors.

Key OP1 K is replaced by the
value of OP2K; keys ISK and
OP2K are replaced by zero.

The parameter Kin the SVC
instruction is placed in register
one and used to indicate the
specific service desired.

The processor branches to the
starting instruction address
associated with the response
routine for the SVC interrupt;
this address is also stored at
location 18 in the device vector
table.

~ Figure 70. Communications between a task and the operating system using the Supervisor Call (SVC) convention (2 of 3)

~
0

Communications between a task and the operating system are through a special instruction-SVC-which gener­
ates an interrupt.

The entire linkage-from the generation of the SVC interrupt to the branching to the first instruction of the
interrupt response routine-is done by hardware alone and takes approximately 14.3:microseconds-this in­
cludes the time required for the storage of the registers in the level status block.

Figure 70. Communications between a task and the operating system using .the S1,1pervisor Call (SVC) convention (3 of 3)

Figure 71, upon completion of the input/output operation,
the user can suspend execution and initiate a special task
which can then continue the su~pended task. Alternatively,
the user need not supply such a special task. In this case,
the system indicates completion of the input/output opera­
tion in the control block but takes no further action. If
users must know whether or not the operation is com­
plete, it is their responsibility to test the indicator in
the control block.

Notice that the initiation of a special task is analogous
to the generation of a user-created internal interrupt and
gives the user complete control over the execution of tasks
and input/output operations.

Input/output functions or services available are shown in
Figure 72. The connect function sets up a device for subse­
quent input/output operations. Prior to calling for connect,
the device is attached to a special null interrupt handler
routine. Disconnect is the inverse function and is carried
out upon completion of input/output operations-which in
turn frees the device for use by another task. The read
and write services input and output data into buffers whose
addresses are defined in the input/output control block.
All of these I BM-supplied routines perform extensive error
checking, including multiple retries when they are appropriate.
Dependirig on the source of the error, the system maintains
an error log on a disk or diskette which includes information
like:

• Error code

• The program status word

• The level status block at the time of the error

• Interrupt level and status byte

• Device address

• Condition codes

Error recovery is always possible through optional exits to
user-supplied routines.

The Control Program Support package is intended to per­
mit the user to tailor efficiently special-purpose, dedicated

261

~
IV

Class
interrupt

Service routine

Inhibit interrupts. Set device busy.
is already busy, queue the request.

If the device I t ~ ~ -: H- I I

Enable interrupts.

Perform service K using the parameters supplied
in the input/output control block.

I I
I I

I
I
I

I
'-

User task executing

I

_i
Load the address of the input/
output control block into
register zero.

Service K
Initiate function K using parameters supplied
in the input/output control block. Input/out­
put functions are interrupt-controlled and will
be carried out-once initiated-concurrently
with other processor actions.

: Code returned in register zero:
- - -_ 0: successful

1: error occurred.
Return immediately to the requesting task
with a code in register zero indicating whether
the service function was initiated properly 1-21.
or not. v

Figure 71. Overlapping and non-overlapping of input/output control (1 of 2)

IV

C9.----------
First-level device handler

I
L,..

---~~~~~~~--·

. Upon completion of the in­
put/output operation, the
user-specified task is initiated J-- ~I
if it is so indicated in the I L ..
input/output control block.

Task checks register zero. If the request was successful, it
may:

1. Continue execution, overlapped with the input/output
operation and test for completion at any time by
examining the input/output block

or,

2_ Stop execution and wait for completion of the operation
(non-overlapped) by suspending its own operation-this
suspension is performed by another service. In this case,
the input/output control block has the address of a user­
supplied task which is initiated upon completion of the
operation; hence, the input/output block can continue
the task as the application dictates.

An input/output request involves specifying: 1) device and details in the input/output control block; and
2) the specific function as a parameter of the SVC instruction.

Input/output operations may be overlapped or not at the user's option_ Asynchronous notification of com­
pletion is provided by a separate, user-supplied task.

8; Figure 11- Overlapping and non-overlapping of input/output control (2 of 2)

~

""'"
• Connect-initializes the device vector table (the address of the device descriptor block and the starting

address of the interrupt response routine). Prior to connect, all interrupts are connected to a dummy
response routine.

The device descriptor block is linked to the input/output control block in which all parameters and
device-specific information is stored. Connect returns a code to the user indicating whether or not the
request was carried out.

• Disconnect-breaks the connection between a device and an input/output control block.

• Read-a service called to input data from a device or file. Parameters in the input/output control block
are validated, and control is passed to the appropriate device routines to initiate the transfer into the
caller's buffers.

• Write-a service called to output data from a user's buffer to a device or file. Parameters in the input/
output control block are validated and control is passed to the appropriate device routines to initiate
the transfer.

• Error log-a service to connect a file for error logging purposes. Errors are extensively checked and
recovery tried in all Control Program Support routines. Errors are logged to the file whenever: a null
interrupt is received; a recoverable error occurs during an input/output operation; or a nonrecoverable
error occurs. Utilities for displaying the error log are available.

Figure 72. Input/output functions available in the Control Program Support package (1 of 2)

IV
0\
VI

First-level handler
......

routine
J Device

Device vector descriptor t.. Error and status table (one block - information entry per
device)

~ Input/output
control block-
data and param-
eters linking to
user task

Figure 72. Input/output functions available in the Control Program Support package (2 of 2)

applications. This means that the user can conveniently link
the special error recovery or special event-handling routines
into the system without modifying the basic code of the
package. An example of a common, critical small computer
application need is the efficient handling of disk files. An
elaborate files capability is available through the Realtime
Programming System; but sometimes it is desirable for a user
to lay out special-purpose file areas on disk. These areas
should be accessible without passing through directories­
with their consequent overhead.

In certain dedicated small computer applications, the
security introduced by central file handling is less important
than speed of access. Figure 73 shows how the Control Pro­
gram Support package does this accessing. The user allocates
areas to disks-specifying starting and ending, sector address,
input/output control blocks-one for each special-purpose
file area. The same functions used for other input/output
operations are then available for reading and writing in those
file areas. Because access is by relative sector, the user can
control any blocking, logical record-length problems, and
similar considerations in a completely dedicated, application­
dependent manner. Most importantly, the system uses
standard-access software so that none of the following
functions are sacrificed:

• Error detection

• Error recovery

• Error logging

• Self-diagnosis

• Other Series/1 integrity features

The use of the Control Program Support package follows
the general schematic shown in Figure 74. The user prepares
a system's area module containing all the tables, device
sector tables, definition of services, and other features
depicted in Figure 74. The routines making up the control
package are then present and linked through the tables in the
system area module. Finally, the system prepares the user
application tasks-including any special tasks which are
initiated when events are detected by the control package

266

Disk or diskette -----

IOCB

File A File A

IOCB

File B File B

-;
I Ch.;n:u-·

Any number of files
on any number of
disks and diskettes
are supported.

Any number of user programs may
access a given file. Input/output
control blocks for each user are
chained together.

A file is allocated space on the disk by the user, not by the
system. The file is defined by device address, starting
sector, and ending sector number.

Access to the file is through Read or Write input/output
service calls. The starting sector (relative to the beginning
of the file) is specified along with the number of bytes to
be transferred and the address of the user's buffer area.
Access by relative record is random.

Input/output control blocks contain a relative sector field.
Each access updates this field; a user can reference this
field to use the file in a sequential mode.

Figure 73. Access to files using Control Program Support

267

All communications between the user
tasks and the Control Program Support
modules are through service calls which
use the data and parameters stored
within the system area module.

Main storage

l
User's application tasks

l
Control Program Support
routines

System's area module

I

I
I
I
I
I
I

Figure 74. Organization of main storage for a dedicated application utilizing the
Control Program Support pac;kage (1 of 2)

268

System's area module

Fixed area Addresses of interrupt routines
interrupt vectors

1-- -- ---+------- - --
Device vector Pointers to device description
table blocks

1------- -1- - ---------
System communi- Addresses of tables and
cations' table save areas

1----- --------------
Stack control
block

Service table

Buffer area

Dynamic space control for
device blocks and save areas

Standard and user defined
service table of addresses

Scratch space for input/output
modules

Control Program Support modules

• Task management

• Basic overlay support

• Timer support

• Input/output support for disk, diskette

• Input/output support of printer and operator station

• Initial program loading

• Error logging and reporting

User modules and services may easily be added to custom­
ize an operating system for a specific application.

Figure 74. Organization of main storage for a dedicated application utilizing the
Control Program Support package (2 of 2)

269

modules. The net result is a dedicated task in which the
combination of Control Program Support modules and the
user-supplied modules constitutes a tailored operating system.

Operating System Support of Input/Output

The Realtime Programming System makes available a
higher level of software support for input/output operations.
At the lowest level within the programming system is basic
access which is essentially equivalent to that of the Control
Program Support package input/output. This software level
allows the user as complete a control over input/output
devices as does the hardware. Furthermore, the system pro­
vides a set of macros, (pre-coded routines), to simplify the
specification of device descriptor blocks, input/output
control blocks, and other system tables needed to specify
input/output at this basic level. These macros facilitate
special, user-written software for OEM devices.

The user can also deal with input/output operations at the
logical file or data set levels of the Realtime Programming
System input/output software support. A data set or file is a
collection of records of fixed or variable length, possibly
grouped into blocks to expedite physical, input/output
operations. Figure 75 illustrates four data-set organiza-
tions supported under the Realtime Programming System.
The consecutive organization is simply a set of logical
records grouped into blocks so the system can access the
records only in a sequential manner. Physical devices, like
line printers, can be treated as a consecutive data set if the
user considers each line to be a logical record. Outputting
data to a line printer becomes logically equivalent to out­
putting the same information to a consecutive file.

The random data set organization allows direct access to
records by name or key using a technique which translates
the key-for efficiency in locating the record-into an
address on a direct access device. The index access method
also provides keyed access to user data. The partitioned data
set is simply a group of data sets with a directory. A data set
within the partitioned set may be accessed by name through
the directory and, once located, by one of the available

270

access methods (sequential or direct). Partitioned data sets
are useful for libraries of routines, data sets, programs, and
similar items accessed by name. Random data sets are very
important in online small computer applications where:
1) access to a record must be rapid, and 2) the user cannot
control the sequence of accesses.

When device input/output operations are treated at the
data set level, the user can write software using logical rather
than physical device names. Users can assign a physical
device to a logical device name at execution time which
provides the system with an economic way to adapt to
changes in load, configuration, and device failures. Further­
more, the user can more easily debug applications by using
data sets as sources and destinations of input/output opera­
tions (where the values can be controlled and checked for
correctness).

Access to logical data sets (including devices) is at two
levels: Read/Write and Get/Put. The Read/Write level inputs
or outputs a physical block of data. The block may contain
logical records or may be a single record; in either case, it is
the user's responsibility to handle the block once it is
obtained. In contrast, the highest level of access is Get/Put
where reference is to logical records.

At this higher level, the following questions are handled.
automatically by the input/output routines within the oper­
ating system and are transparent to the user:

• All problems of breaking blocks into logical records

• Saving and restoring partially filled blocks

• Similar functional problems

The system provides full queuing of requests for input/output
at the logical level together with user specification of overlap
with task execution.

Generally, the higher the level of input/output support is:

1. The farther the user task is from the physical hardware of
the input/output system, and

2. The source data management is done by the system rather
than-explicitly-by the user task

271

N
-..J
N

Consecutive data set organization

0 • I r--

Block of logical records ~
I
I _______ J

Next record to be accessed

~

Records may be
blocked or not

......

Figure 75. Four data set organizations supported under the Realtime Programming System (1 of 5)

Random data set organization Block of logical records

The key is trans- Each record
lated into the has a key
address.

Access by record key

IV

~ Figure 75. Four data set organizations supported under the Realtime Programming System (2 of 5)

IV
~

Indexed data set organization

Access by
record key -

The key is trans­
lated into the
address of the
index segment. -

The indexed access method uses the record key to locate
the primary index which is then searched to find the logical
record number associated with a given record key. This
record number is used to directly access the physical record.
The secondary index is used to accommodate insertions and
additions. Record keys within an index segment are kept
in logical sequence.

Key Logical record I number

Physical records
I

I

I

I

I

I

I

I

J ~
' - '°-$ &O'

I
I

r J ' .f'.r/c to /o
'<J/ /': ('"" '&o. &

......._o/-0' I
Primary ' I

index l I
I
I

m Secondary p
index Fixed length records

b.
placed at ar 1trary
locations called
"logical record number"

Figure 75. Four data set organizations supported under the Realtime Programming System (3 of 5)

Partitioned data set organization

Directory of
data set t------1

partitions

Access is by name of data set

IV

---+----A partition

A partition contains
multiple data sets

~ Figure 75. Four data set organizations supported under the Realtime Programming System (4 of 5)

N
.......
O'I

The Realtime Programming System provides a very general file or data set support with access either:

• Direct

• Sequential, or

• By name

Data sets may be defined in assembler language programs using a complete set of macros to simplify the
programming.

Access to data sets may be by block with Read/Write statements or to the logical record through Get/Put
calls.

Data sets may be accessed either from assembly language programs or higher level language programs written
in PL/I, COBOL, or FORTRAN.

Figure 75. Four data set organizations supported under the Realtime Programming System (5 of 51

Each input/output level has its distinct place in the applica­
tions' structures and is necessary in an integrated hardware/
software system. It is important to note that access at these
levels is most compatible with the format of higher-level
programming languages like PL/I, COBOL, and FORTRAN,
all of which support the Read/Write and Get/Put levels of
data set accessing and input/output device management.

In preparing an application task set, the user defines data
sets, their characteristics, and the devices to be used. Access
to these items is then specified according to the application
need, and the access is programmed in the appropriate level
language. As a result of these procedures, users gain a wide
area of freedom in which to implement their applications,
taking full advantage of the hardware of the input/output
system and simultaneously utilizing several levels of standard
software.

277

The Instruction Set
and Its Use

Although effective realization of small computer applica­
tions is most sensitive to the organization, structure, and
management of the processor, main storage, interrupt system,
and input/output channel, it is also affected in a less obvious
way by the design of the instruction set of the processor.
This influence occurs, in part, in a negative way because
consideration of system and application software needs has
not been properly considered during the hardware design of
many small computer systems.

The Series/1 instruction set was selected to efficiently
support the integrated hardware/software system organiza­
tion designed to service small computer applications.

Several areas of the overall system are especially critical
and need the support of a strong instruction set for efficient
implementation in the small computer application
environment.

High-level Languages. The instruction set must permit
efficient translation of high-level languages to enable those
applications-whose programming is most appropriately done
in FORTRAN, PL/I, COBOL or similar languages-to pro­
duce tasks equally efficient in both storage utilization and
execution time. Furthermore, programs written in such

278

languages should be able to take efficient advantage of
modern, structured programming techniques.

Rea/time Programming System. The instruction set must
allow the user to realize an efficient operating system that
both preserves and enforces overall system integrity and pro­
tects shared tasks and data areas in a user environment of
multiple, cooperating tasks. The instruction set must
support fast task switching, reentrant programs, error detec­
tion, and other critical areas which the designer has built into
the system hardware.

Critical Assembly Language Level Operations. Some applica­
tions are critical either in their throughput needs or in the
detailed nature of their computations. Many applications
need similar capabilities in small but critical sections of the
task set. The instruction set must support these needs,
including:

• Individual bit manipulation

• Logical operation

• Masking

• Special arithmetic operations like unsigned or multiple­
precision arithmetic

Because these needs are difficult to meet in a small instruction
set, processors with such sets are generally limited in the
applications and environments they can support. However,
the Series/1 is a microprogrammed processor which allows the
implementation of a rather large and complete instruction set
containing more than 160 instructions.

Microprogramming is especially powerful when the
system uses complex instructions. This is so because micro­
programming permits the user to include those instructions
which are especially valuable in small computer applications
without attendant increases in hardware costs. For example,
manipulation of strings of characters is common in small
computer applications like word processing, direct input of
data, or CRT display. Large processors like the IBM
System/370 provide instructions which manipulate these

279

strings efficiently (move the entire string, compare two
strings, or scan for a specific character). IBM has included
similar instructions in the Series/1 processor because they are
important if application tasks are to be compact and
efficient. However, tasks using these complex instructions
often have a lower priority than other tasks, and their execu­
tion must not adversely affect the overall system response
to external events. Using microprogramming, these instruc­
tions are made interruptible on the Series/1 so as not to
delay the higher priority tasks. This is just one example of
the integrated hardware/software design of the Series/1
processor.

The purpose of this chapter is to discuss the instruction
set of the Series/1 and its use in system software and
application software. The appropriate processor manuals
describe individual instructions in detail; they are not fully
defined in this book. The user must consult those manuals
to determine details like:

• The exact format of an instruction

• The instruction's effect on registers and indicators

• The instruction's execution time

• The effects~on the instruction-of errors detected

Users should be familiar with the overall structure of the
instruction set so that they can understand and efficiently
take advantage of system software and higher-level languages.

Figure 76 shows five areas into which the instruction set
can be classified. Data movement, arithmetic and logic
operations, and status testing instructions form the bulk of
most application tasks. These instructions are important
for efficient translation of higher-level languages and for
efficient realization of critical computational tasks.

Instructions associated with structured programs and
control over concurrency become important when:

• Applications are structured into a set of cooperating tasks

• The tasks are themselves a structured set of modules which
are, perhaps, shared among tasks

280

Data movement

Arithmetic and logic
operations

Testing of status of
operations and
computations

Structured programming and
concurrency control

Control of processor and multiple
cooperating tasks

These areas must be vigorously supported in the instruction
set to insure the economic realization of small computer
applications.

Figure 76. The five areas into which the instruction set can be classified

281

The instructions in this set of cooperating tasks support
control over shared data and routines, simultaneous access,
and other entities.

Finally, the instruction set must exercise control over
system resources and the set of cooperating tasks competing
for use of these resources. The last set of instructions is the
one which controls processor status, registers, storage allo­
cation, and other critical resources. It is this set which per­
mits control over system integrity, response to errors
detected in a task, and control over concurrent realtime
events. The operating system is the entity that most often
uses these instructions. However, critical dedicated applica­
tions may also use them. Clearly, this set of instructions
primarily affects the efficiency of input/output routines,
task switching, interrupt response, and servicing of applica­
tion task requests.

This chapter covers, briefly:

• Each area of the instruction set

• The overall format of instructions

• The implementation of the various addressing modes
previously introduced

Instruction Formats
An instruction is a command encoded in one or more

words in storage. Depending upon the particular command,
additional items of information must be supplied along with
the command. These items include identification of registers
to be used, data addresses, and/or immediate fields, and
others. The problems involved in determining which specific
instructions to include in a machine occur in two areas:
1) selection of the commands to be included, and 2) packing
of the information needed for each command into the limited
space available in a word in storage.

The format of an instruction is the detailed specification
of which information is packed into which bit field of the
instruction. System designers might select a particular
instruction to enhance simplicity of understanding, reada­
bility of object code, or other esthetic considerations.

282

These considerations were not the objectives of the Series/1
design. The Series/1 instruction set has a variable-length
design because of:

1. The variety of instruction commands desired

2. The variation in number and length of additional informa­
tion items required to specify function, operands, and
addresses

This design results in one- two- and three-word instructions.
Some commands require no operands at all. Examples

are: instructions which halt the processor (Stop), enable
interrupts, interchange operand keys, and similar operations.
In these examples, one word is more than adequate to
encode the commands. These and other instructions are
termed parametric because, while they do not refer to data
operands in storage or registers, they often include a field
which particularizes the command or selects one specific
command from a group of commands.

Commands may include data-called immediate data­
within the command itself. If this data is short enough
(a byte for example), it might also be stored within one
instruction word. If the immediate data item is itself a
word in length, the instruction must occupy a minimum
of two words.

Commands which reference operands in storage may do so
in a variety of ways called addressing modes. If the data
item itself or its address is in a register, the instruction need
contain only the register number (a two- or three-bit field);
this field may be contained within a one-word instruction.
However, if the operand must be addressed using base relative
addressing, the displacement from the base register may be
too long to fit in the instruction word; in this case, the dis­
placement would be stored in a separate, second word of
the instruction.

Instructions which reference two operands in main storage
may then require three-word instructions to contain all
the addressing information. It is the responsibility of the
programmer and the program-support software to attempt
to use addressing modes and program organization which
minimize instruction lengths. The Series/1 assembler, for

283

example, permits the programmer to reference data items
by symbolic name. The assembler keeps track of data loca­
tions within a program and determines which registers have
been set up for use as base registers. When a choice is
available, the assemb~er determines whether to use direct
addressing of the data item or base relative addressing,
depending upon which instruction is shorter. Assembler
support during program preparation time takes much of
the decision-making burden away from the programmer.

Figure 77 shows the general format of those Series/1
instructions whose length is one word. All instructions,
regardless of length, use the first five bits of the instruction
as the operation code. In some cases, this code actually
defines a group of operations. Each specific member of the
group is identified in a field within the remaining eleven bits
of the instruction. In other cases, the remaining eleven bits
are sufficient to specify either the immediate data required
by the instruction, the location of one or two operands, or a
combination of both. All operations involving data in
registers-or data whose addresses are in registers-can be
encoded within the single-word instruction format shown
in Figure 77.

Additional words are appended to the instruction format
only if operands in storage are referenced using addressing
modes that require data too long to fit within the single­
word instruction. Figure 78 lists the addressing modes and
their additional storage requirements. As noted in Chapter
4, base relative addressing modes are powerful tools in the
design of systems; this factor more than compensates for
the additional storage space required for their use.

Instructions Used for Data Movement
Application tasks are very much involved with the crea­

tion and use of data bases. Consequently, a significant
portion of an application program consists of instructions
that move data items of various types and lengths from one
place to another in storage, or between storage and registers.
Figure 79 lists the Series/1 instructions available for this
purpose.

284

5-bit field 11-bit fie Id ~ _________ _______ _

•
r
I
I
I
I

J_

...._ Function modifier and
operand specification:

• The parameter or modifier
field that completes the
specification of the instruc­
tion operation, or supplies
a value for a variable param­
eter of the instruction

• Selects one or two operands
to be operated upon by the
instruction

'- Operation code: specifies
function or group of func­
tions carried out by the
instruction

Most instructions can be written in a single-word format.

Operand specification includes register specification,
immediate data, or data in storage referenced with one of
the many addressing modes.

Some addressing modes require additional information
which leads to two- and, sometimes, three-word
i nstructi ans.

Figure 77. The basic one-word instruction format

285

(r) Address of the operand
is in register r.

Operand itself is in
register r.

(r) * Register r contains an
No additional
instruction

address of a storage word needed
-location in which the for these
actual address of the addressing
operand is stored. modes

(r)+ Address of the oper-
and is in register r.
Increment the contents
of register r after using
it. I

(r,d) Add the displacement
d to the contents of
register r to get the
address of the operand.

(r,d)* Add the displacement
d to the contents of One additional
register r to get the instruction
storage address where word needed
the operand address is for these
stored. addressing

modes to con-
d2 (r,d 1)* Add the displacement tain the full

d 1 to the contents of address or
register r to form an displacement
indirect address; add
the displacement d2 to
the contents of that
storage location to
determine the operand
address.

Some addressing modes require that an additional word be
added to the instruction to contain the data required to
calculate the effective storage address.

Figure 78. Addressing modes and their additional storage requirements

286

Basic Data Movement Instructions

Most data items are a byte, word, or doubleword in length
and are widely dispersed in application programs. These
items may also reside either in registers or in storage requir­
ing that they often be moved to and from these areas. As
a result, the system provides instructions for moving each
data type; these instructions support movement from
registers to storage, storage to registers, and storage to stor­
age for byte, word, or doubleword data items. Instructions
with more specialized use, like Move Byte Immediate and
Move Byte and Zero, are less versatile (the former moves
the byte to a register only and the latter from storage to a
register only}. This restriction occurs because of the
internal constraints on available instruction formats and
the external conventions of their use. Register to register
data moves are, of course, limited to full words-the
length of the registers.

Floating-Point Data Movement Instructions

It was indicated in Chapter 3 that the format of floating­
point numbers is identical to that in the IBM System/370
computers and, as a consequence, that conversion from
integer to floating-point formats was a simple procedure.
The power of the microprocessor on the floating-point
optional processor is such that a user can realize additional
savings in this conversion process. The Floating Move and
Floating Move Double instructions permit floating-point
numbers to move between floating-point register pairs,
and-in both directions-between floating-point registers
and storage. Because the data must move through the
microprocessor, the system provides additional instructions
to convert from integer to floating point or floating point to
integer during the move. These instructions, Floating Move
and Convert, and Floating Move and Convert Double, further
simplify the conversion between number representations.
As long as all conversions and operations are performed with
the floating-point instruction set, normalization problems do
not occur ~fUsers must be aware, however, that the instruction
processor assumes floating-point numbers in storage are

287

IV
00
00

Data type

Address

Byte

Wocd-{
Doubfeword ---{

Instructions Modes which can be achieved
with one or more of these
instructions

Move Address (MV A)

Move Byte (MVB)

1--------- Storage address to register

Move Byte Immediate (MVBI)
Move Byte and Zero (MVBZ)

Move Word (MVW)
Move Word Immediate (MVWI)
Move Word Short (MVWS)
Interchange Registers (IR)
Move Word and Zero (MVWZ)

~.Register to storage
Storage to register
Storage to storage
Immediate field to register

}-

Register to register
Register to storage
Storage to register
Storage to storage
Immediate field to register
Immediate field to storage

Move Doubleword (MVO) ~ Register to storage
Move Doubleword and Zero (MVDZ) . Storage to register

Storage to storage

Figure 79. Series/1 instructions and modes for data movement (1 of 2)

~

Data type

Floating-point
single and double
precision ---{

Instructions

Floating Move (FMV)
Floating Move Double (FMVD)
Floating Move and Convert (FMVC)
Floating Move and Convert Double

(FMVCD)

Move Byte Field and Increment
(MVFN)

String Move Byte Field and Decrement
(MVFD)

Fill Byte Field and Decrement (FFD)
Fill Byte Field and Increment (FFN)

Modes which can be achieved
with one or more of these
instructions

}-
Floating-point register to storage
Storage to floating-point register

L Register to storage
.\ Storage to storage

Data movement instructions operate on single and complex data types; they move them from various
sources to various destinations.

~ Figure 79. Series/1 instructions and modes for data movement (2 of 2)

already normalized. If the numbers are not normalized,
errors may occur during the computations.

String-Data Movement Instructions

String-data movement involves moving one string in stor­
age into another location or using a character stored in a
register to initialize a storage string. In either case, movement
is one byte at a time; the system stores the string's addresses
in registers and modifies them each time a byte is moved.
The two variations, increment and decrement, determine
the end of the string from which the movement begins. At
the initiation of the movement, the address of the first byte
to be moved is in a register and changes to point to the next
successive byte in the string. Register seven contains the
number of bytes in the string and is decremented each
time a byte moves. Consequently, the system may interrupt
these instructions between any pair of successive byte-moves
without destroying data. The instruction is simply restarted
using the information currently in the registers. As men­
tioned earlier, very long string-data moves can occur without
impacting the ability of higher-priority tasks to respond to
interrupts.

Special Data-Type Movement Instructions

Because applications often reference separate data areas
dynamically, addresses are as common a data type as are
the more conventional numerical and character data types.
The Move Address instruction permits the calculation of
effective addresses and their loading into registers to perform:

• Base relative addressing

• Indirect addressing

• Building tables of pointers to data areas and routines

• Allocation of internal buffers

• Similar applications

The system includes other instructions because:

1. They are frequently used in practical operations

2. Their elimination would require replacement with awkward
sequences of instructions

290

Examples of these instructions are: Interchange Registers,
and Move Byte and Zero. These instructions are of special
interest because they perform two operations concurrently;
they can be used to control concurrent access to critical task
sections, data areas, and other situations that arise in the
implementation of applications by a set of cooperating,
parallel-executing tasks. They are discussed further, from
this point of view, in the section of this chapter entitled
"Instructions Associated with Structured Programming and
Control of Concurrency."

Instructions Used for Arithmetic
and Logical Operations

Just as data types are moved between registers and storage,
so are they also operated upon arithmetically and logically.
Figure 80 shows the various data types and the arithmetic
operations the system can perform on them. Arithmetic
operations involve combining two operands (by addition,
subtraction, multiplication, or division) to produce a result.
The Series/1 instructions generally put the result in the place
of the second operand. Hence a storage to register addition
adds the contents of the storage location to the contents of
the register and then puts the result in the register. The
opposite is also true: a register to storage addition puts the
result in the storage location without affecting the register
contents. As Figure 80 indicates, to obtain the required
operands and results, the Series/1 supports addition and
subtraction of various data types for almost all combinations
of registers and storage locations.

Storage to storage arithmetic operations-especially when
they involve doubleword operands-are interesting from the
point of view of program efficiency. Each doubleword oper­
and stored in registers occupies two successive registers; only
the instructLon in the lower-numbered register references
the operand. Because only eight registers are available to
the user, applications may involve contention for register
use: for instance, registers may be simultaneously needed
as base registers and for temporary storage. Performing the

291

tv
\0
tv

Instruction

Add Byte (AB)
Subtract Byte (SB)

Add Byte Immediate (ABI)

Add Word (AW)
Add Word Immediate (AWi)
Add Word with Carry (AWCY)
Add Carry Indicator (ACY)
Subtract Word (SW)
Subtract Word Immediate (SWI)
Subtract Word with Carry (SWCY)
Subtract Carry Indicator (SCY)
Complement Register (CMR)

Add Doubleword (AD) l
Subtract Doubleword (SD) !-~ ---

Data types

Byte ± byte -+byte -------{

Modes which can be
achieved with one or
more of the instructions

Register to storage
Storage to register

{
Register to storage

Word + (sign extended byte) -+ word Storage to register
· Storage to storage

(
Register to register

.· Register to storage
Word ± word -+ word ------ Storage to regist~r

Storage to storage

Doubleword ± doubleword -+ ___J.
doubleword ------i

Register to storage
Storage to register

Figure 80. Arithmetic operations, data types, and modes (1 of 2)

1-.)

Instruction

Floating Add (FA)
Floating Add Double (FAD)
Floating Subtract (FS)
Floating Subtract Double (FSD)

Multiply Byte (MB)
Divide Byte (DB)

Multiply Word (MW)
Divide Word (OW)

Multiply Doubleword (MD)
Divide Doubleword (DD)

Floating Multiply (FM)
Floating Divide (FD)
Floating Multiply Double (FMD)
Floating Divide Double (FOO)

Data types Modes which can be
achieved with one or
more of the instructions

L Floating± floating-+ floating --{
) (single or double precision)

Storage to floating
register

Floating register to
floating register

}-

Word : byte -+ word Storage to register

Word : word -+ word Storage to register

Doubleword ~ word-+ doubleword -{ Storage to register

Floating : floating-+ floating

(single or double precision) ~
Storage to floating

register
Floating register to
floating register

~ Figure 80. Arithmetic operations, data types, and modes (2 of 2)

arithmetic operations storage to storage does not require
saving and restoring registers frequently throughout a pro­
gram. Storage to storage operations execute faster than
the procedure of bringing the data into registers, perform­
ing the operation, and then restoring the result to storage.

Numeric Data Operations

Multiplication and division assume signed numbers only,
as mentioned in Chapter 3; but the system has designed
these functions to accommodate combinations of different
length operands-a situation that frequently occurs in
actual practice. However, multiplication of a 16-bit
operand by an 8-bit or 16-bit operand yields either a 24-
or a 32-bit result; it is then necessary to store this result
in a pair of registers and manipulate them to produce the
desired, single word result.

The Series/1 Multiply Word instruction multiplies a word
by another word and expects the result to be representable
by a word. If the product is too large, overflow exists and
is so noted in the level status register. To retrieve the larger
product, the user first converts the word to a doubleword
by sign extension and then employs the Multiply Double­
word instruction. Similarly, the Multiply Byte instruction
multiplies a register contents (one word) by the value of
a byte in storage and produces a single word result which
replaces the register contents. The user chooses specific
multiply and divide instructions based on observation of
the most often used, practical combinations.

Arithmetic operations on floating-point numbers pose
a different set of problems in the design of a system.
Frequently, applications which use floating-point numbers
involve exceptional situations where either an overflow
or underflow condition invalidates the computation.
Rather than require the testing of indicators in the level
status register (as discussed earlier for the arithmetic opera­
tions on integers), the system generates an interrupt when
the result of an operation overflows, underflows, or an
attempt to divide by zero occurs. Through the internal
interrupt mechanism of the Series/1, applications using

294

these operations do not have to test repeatedly for excep­
tional conditions-instead, the conditions are treated as
events and the system interrupts only when they occur.
The implementation of this feature is expedited by using an
input/output slot to house the floating-point processor and
its internal microprocessor.

Floating-Point Data Operations

The floating-point instructions shown in Figure 80 provide
all four arithmetic operations for both single-precision (32
bits) and double-precision (64 bit) data formats. Furthermore,
the instructions permit storage to floating-point register or
floating-point register to floating-point register versions in all
cases (recall that four 64-bit floating-point registers are imple­
mented separately from the eight user registers on a per level
basis) and are located in the optional floating-point hardware
processor. All instructions refer to these registers and not the
standard registers in the level status block.

Logical operations on data items commonly occur in
applications to:

• Isolate bit fields

• Manipulate flags and condition indicators

• Perform other detailed computations where individual
bits must be manipulated

Standard operations are AND, OR, Exclusive OR, and
Reset. Some processors perform these operations on an
individual bit basis; the instruction addresses the word and
a field within the instruction addresses the particular bit of
interest. This procedure is especially desirable when the
system tests the status of a particular bit-a very common
operation. The procedure is less desirable for the previously
discussed logical operations because it is a common practice
to store multiple similar flags, bits, or bit fields within a
word; to perform the operations on a whole word is, then,
an effici~t operating procedure.

Logical Data Operations

The Series/1 processor logical instructions combine
features of both procedures. The logical operations AND,

295

OR, Exclusive OR, and Reset are performed on multiple
bits (in bytes, words, or doublewords). The testing
instructions operate on a specific bit within a data type.
This choice, again, is made after analyzing common usage
procedures in application and system programs. Figure 81
shows the logical instruction set (except for the testing-bit
instructions which are discussed in this chapter under the
heading "Instructions Associated with Testing Operations'
and Computations' Status"). Notice that the OR and
Exclusive OR instructions operate on bit fields of byte,
word, and doubleword lengths. Furthermore, all instruc­
tions permit both register to storage and storage to register
modes.

The Reset bit shown in Figure 81 operates on bytes,
words, and doublewords with the same choice of register to
register, register to storage, and storage to register modes as
the OR and Exclusive OR groups. These instructions reset
those bits in the second operand which correspond to one­
bits in the first operand. Other bits in the second operand
are left unchanged. This selective resetting of bits is useful
in manipulation of flags and indicators. However, it should
be noted that this operation is equivalent to an AND opera­
tion with the first operand negated before the operation.
Hence, to get a complete set of AND operations to parallel
the other logical operations, the user need only negate the
first operand. This is a straightforward operation in typical
AND applications like masking. The instruction Invert
Register also accomplishes the negation if it cannot be done
at program preparation ti me.

Shifting Data Operations

Shifting instructions perform equally powerful bit manipu­
lation. The system can shift the contents of registers and

)

pairs of registers to the left or right and fill the vacated posi-
tions in three different ways: 1) by circular shifts; 2) by
logical shifts; and 3) by arithmetic shifts. Figure 82 illustrates
the options. Circular shifts take bits shifted out of one side of
the register and fnsert them irlthe other. Logical sllifts (right
and left) replace vacated register bit positions with zero.

296

Arithmetic shifts to the right propagate the sign position
into vacated register bits. Through combinations of single
and doubleword length operations, these instructions
effectively pack fields into words.

One characteristic of these instructions' format is that the
user can specify the number of shifted bits that are to be
coded into the instruction or to be placed in a register. This
capability-combined with the carry and overflow indicators
in the case of left-logical shifts-provides information about
the bits shifted out of the word. Specifically: the system
loads the last bit shifted out of the left side of the register
or register pair into the carry indicator. The overflow indi­
cator signals when the shift changes bit zero {the most sig­
nificant bit-the sign bit). These indicators are very useful
in programming multiple-precision, arithmetic operations.

A common procedure in small computer applications
involves using words to contain flags, and testing to deter­
mine which flag has changed. Instead of individually
examining each successive bit, it is more convenient for the
system to set up a word which contains a one in the bit posi­
tion of interest and zeros elsewhere. The Series/1 provides a
special instruction, Shift Left and Test, which shifts left
until a non-zero bit shifts out of the register. The maximum
length of the shift is preloaded into another register. When
the one bit shifts out of the register being tested, shifting
stops; the register containing the shift count then contains
the number of bits remaining to be shifted. This translates
immediately to the bit position of the non-zero bit. In this
manner, the system can examine multiple bits with one
instruction.

In summary, the Series/1 offers a variety of instructions
to manipulate a variety of data types. Together these
instructions provide the user with the basis for coding
critical tasks while retaining control over those exceptional
conditions which might arise for special data values. The
testing capability for these conditions is present in the level
status register condition bits which reflect the result of
arithmetic and logical operations. The appropriate processor
manual describes, for each instruction, the specific effects
of exceptional conditions.

297

IV
l.O
00

AND Word Immediate (NWI) -----------1---+--"-
OR Byte (OB)

OR Doubleword (OD) I I I : I I : I I : g= ~~~~ i~~~diate (OWi) •

Exclusive OR Doubleword (XO) : Exclu•I,. OR Byte (XBI I I I ~ I I :
~~~:~~:~: g= ~~~~ i;~~diate (XWI) 8 

Figure 81. Logical instruction set and modes of use (1 of 21 



N 

Reset Bits Byte (RBTB) 
Reset Bits Doubleword (RBTD) 
Reset Bits Word ( R BTW) 
Reset Bits Word Immediate (RBTWI) 

Invert Register (VR) 

~ Figure 81. Logical instruction set and modes of use (2 of 2) 



Shift right-arithmetic or logical j 

- --
Shift Right Arithmetic (SRA) 
Shift Right Arithmetic Double (SRAD) 
Shift Right Logical (SRL) 
Shift Right Logical Double (SRLD) 

Replace vacated bits by zeros when shifting right logically. 

_I ---:I.__. __ ___, 
I Register or register pair 

Replace vacated bits by original sign bit if shifting right 
arithmetically. 

Shifting left-circular 

-
Shift Left Circular (SLC) 
Shift Left Circular Double (SLCD) 

0 15 0 15 

L-{ Register K }•·11---11 Register K+1 I-+--' 

Register pair shifting left 

Figure 82. Options for shifting register contents (1 of 2) 

300 



Shifting left-logical 

~ 

Shift Left Logical (SLL) 
Shift Left Logical Double (SLLD) 

The carry indicator takes 
on the value of the last bit 
shifted out. 

Register or register pair ---:::::t- ! 1--
Carry 

Overflow 
~ 

Shifting left 

The overflow indicator is set 
if bit 0 (sign bit) changes as 
a result of the shift. 

Shifting instructions operate on registers. 

Zeros replace_. 
vacated bits. 

Shift count may be stored in the instruction or in a 
register. 

Single-word shifts permit the shifted result to be placed in 
a separate register without disturbing the contents of the 
register containing the data actually shifted. 

Figure 82. Options for shifting register contents (2 of 2) 

Instructions Associated with Testing 
Operations' and Computations' Status 

Decision making is a major characteristic of computer 
applications. This process involves testing: 

301 



• Variables 

• Results of computations 

• Results of processor operations; and then performing 
different instruction sequences depending upon the tests' 
results 

As shown in Figure 83, the process occurs in two steps. 
First, the system sets an indicator either by executing a 
special instruction which makes the desired test, or as a by­
product of some other operation. For example, every 
arithmetic operation leaves indicators concerning overflow, 
carry, negative result, zero result, and even result in the level 
status register. Every input/output operation also leaves a 
status code in the level status register. Secondly, the system 
tests the condition flags via Branch or Jump instructions to 
permit the transfer of control to the appropriate location 
shown by the setting of the indicators. Notice that indicators 
are duplicated in level status registers for each level of hard­
ware priority; consequently, the conditions will not be 
inadvertently changed should a higher priority interrupt occur 
before the indicators have been tested. 

Interruptible and Non-Interruptible Testing Instructions 

Specific instructions for testing indicators are also shown 
in Figure 83. The Compare instructions reference two 
bytes, words, doublewords, or byte fields. Comparison is 
equivalent to subtracting the two operands with the indi­
cators set to correspond to the result (zero result means 
the operands were equal). In addition to a comparison of 
these simple data types, a string of bytes can be compared 
to a register byte or another string of bytes. A string is 
specified by: 1) the address of the corresponding byte in 
each string (addresses are stored in two registers); and 2) the 
number of bytes in register seven (Figure 84). The Compare 
Byte Field instructions perform a byte by byte comparison; 
after each comparison, the instructions decrement the 
count in register seven and increment or decrement the 
addresses in the two address registers. The test proceeds 
byte by byte until the comparison asked for in the instruction 

302 



is found to be true for a specific byte (equal or not equal 
depending upon the instruction selected). At the conclusion 
of the test: 

• Register seven contains the number of bytes not compared 
(or zero) 

• The two registers point to the first uncompared byte-pair, 
or 

• If all the bytes are compared, the two registers point to 
just beyond the last byte 

Notice the system design inherent in this instruction: 
because each byte comparison updates registers, the system 
can interrupt the instructions between comparisons and 
restart them with no loss of data. Once again, this ability 
permits higher-priority levels to respond quickly even wnen 
the system is comparing lengthy byte strings. The compar­
ing procedure could be time consuming and cause delays if 
the instruction had to be executed without allowing 
interrupts. 

Bit and Field Testing Instructions 

In addition to testing or comparing bytes, words, double­
words, and strings, the system can test individual bits. The 
Test Bit instruction addresses the desired bit as a displace­
ment-limited to 63-from the beginning of a byte. With 
this instruction, any bit in an eight-byte data type can be 
individually addressed and tested. The other test bit instruc­
tions in the Series/1 processor permit combinations of test­
ing and setting, inverting, or resetting. These combinations 
are very useful in controlling concurrency. The section of 
this chapter entitled "Instructions Associated with Struc­
tured Programming and Control of Concurrency" discusses 
them. 

The Test Word Immediate instruction provides a masked 
testing of a combination of bits within a word. The instruc­
tion tests only those bits in the mask (the immediate word) 
in the addressed word. Indicators are set depending upon 
whether all the bits to be tested are zero, one, or a combina­
tion of zeros and ones. With this instruction, combinations 

303 



l.>J 

~ 
Instructions test for 
the desired condition 

r-----------, 
I Floating Compare I 
I Floating Compare Double I 
I Compare Byte I 
I Compare Byte Immediate I 
I Compare Word I 
I Compare Word Immediate I 
I Compare Doubleword I 
I Test Bit I 
I Test Word Immediate I 
L-----------...1 

Figure 83. Operation and computation testing instructions (1 of 3) 

Other operations which 
cause indicators in the 
level status register to 
be set 

r-------- -- -- --1 
I Arithmetic instructions set even, I 
I overflow, carry, zero, and nega- I 
I tive indicators. I 
I Input/output interrupts supply I 
I condition code. I 
I Input/output instructions set I 
I condition code. I 
I Shift Left-Logical instructions I 
I set carry, zero, negative, and I 
L_ __ o~rflo~i~~~:_ ____ J 



A 
Extended 

' 
mnemonic Instruction name 

BE Branch on Equal 
BOFF Branch if Off 
BZ Branch on Zero 
BP Branch on Positive Branch or Jump 
BMIX Branch if Mixed Branch or Jump on Condition 
BN Branch if Negative Branch or Jump on NOT Condition 
BON Branch if On Branch or Jump on Condition Code 
BEV Branch on Even \ 

Branch on Overflow BLT Branch on Arithmetically 
Branch on NOT Overflow Less Than 

BLE Branch on Arithmetically 
Less Than or Equal Extended mnemonics for convenience 

BLLE Branch on Logically Less in symbolic coding of assembly language 
Than or Equal programs 

BCY Branch on Carry 
BLLT Branch on Logically 

Less Than 

w 
5! Figure 83. Operation and, computation testing instructions (2 of 3) 



w 
~ 

Instructions which change the sequence of program execution are dependent upon the setting of indicators 
in the level status register. 

Control over the execution sequence: 
1. Depends upon the results of previous operations or actions 
2. Uses instructions which set conditions in the level status register or Test or Compare instructions. These 

instructions test specific items which are followed by condition-dependent Branch or Jump instructions. 

Branch: permits arbitrary addresses but requires a two-word instruction. 
Jump: is relative to the instruction address register. It is limited to a range of plus or minus 128 words. 

The instruction is one word long. 

Figure 83. Operation and computation testing instructions (3 of 3) 



of flags can be efficiently tested to determine if a combination 
of conditions is true. This is a very practical capability. For 
example, a user might want to make an action dependent 
upon three conditions: 1) a motor running, 2) a valve being 
closed, and 3) a pressure reading greater than some preset 
value. Allowing one bit in a status word to indicate the state 
of each of these three logical conditions permits testing for 
the simultaneous occurrence of the conditions with a single, 
masked test instruction. 

Conditional Transfer Instructions 

Program sequence control is through Branch or Jump 
instructions; the former permits transfer of control to arbi­
trary locations; the latter permits transfer of control to loca­
tions within approximately 256 bytes of the Jump instruc­
tion. The Jump instruction is actually relative to the current 
value of the instruction address register and is only a single 
word long. Almost all Branch instructions have an identical 
Jump instruction; if the range of the jump is short, Jump 
is the instruction preferred. 

The Branch On Condition instruction contains a three-bit 
field which is coded to contain one of the eight different 
conditions. The assembler simplifies coding of these branches 
or jumps by providing different instruction names for each 
specific condition (Figure 83). The instructions can test 
each specific condition. In addition to these conditions, 
Branch and Jump instructions permit a branching operation 
that depends upon the value of the condition code written 
into the instruction. Recall that condition codes are 
reported in the level status register after every input/output 
instruction, and after every input/output interrupt that 
signifies the result of the operation or reason for interrupt. 

The Series/1 provides one additional sequence control 
instruction, Jump On Count, for control of looping within 
programs. As shown in Figure 85, this instruction permits 
a loop to be iterated as many times as is indicated by an 
integer or count set up in a register. Each time through 
the loop, the Jump On Count instruction is executed. This 
instruction tests to see if the register is zero; if it is, the 

307 



w 
0 
00 

Compare Byte Field Equal and Decrement (CFED) 
Compare Byte Field Equal and Increment (CFEN) 

Scan Byte Field Equal and Decrement (SFED) 
Scan Byte Field Equal and Increment (SFEN) 
Scan Byte Field Not Equal and Decrement (SFNED) 
Scan Byte Field Not Equal and Increment (SFNEN) 

String in storage 

I 1 I 21 31 4 I 5 I 6 f ~ 1 ... 1 ... 1 N] 

Register I Register J 

Figure 84. Comparing a string of bytes (1 of 21 

} . 
}--

Compare two strings, byte by byte, 
for condition. 

Compare, for condition, a byte in 
a register against each byte in one 
string. 

0 
Register 7 

Second string in main storage 

Number of bytes left 
to be operated upon 



w 

Byte pointed to Byte pointed to Count in 
by register I by register J register 7 

1 1 N Interrupt occurs: registers are not 2 2 N-1 
V> 3 3 N-2 changed because each level has its own -c 

registers. Q) - - -- -- - -- -Q) 
u 
0 Instruction resumes when control .... 
0. - -- - - - - - returns to this level. c: 3 3 N-2 0 

·.;::; 4 4 f/ The instruction terminates when the ::I 
u 

count is zero or when a tested-for Q) 

x 
w condition is detected. In the latter case: 

N+1 N+l 0 • The registers point to the next byte 

• The count corresponds to the number 
of bytes not yet operated upon 

Strings, like simple data structures, can be tested and compared. If the strings are long, the instruction can 
be lengthy; however, the system can interrupt the instruction without destroying any data or pointers. 

~ Figure 84. Comparing a string of bytes (2 of 2) 



Jump On Count 

No 

Yes 

Yes 

No jump 

Subtract 1 from 
register contents 

No 

Add the word 
displacement 
to the IAR 

Jump 

The Jump On Count instruction is useful for controlling 
multiple executions of a common set of instructions. 

Figure 85. The Jump On Count instruction (1 of 2) 

310 



Execute a loop 
N times: 

~ 
( 750 

:D: :7::: I: ~: ':·:: : : ~ 
............... 
Continue 

Set N in register R 1 

! 
..-.-------~·~·············· 

.............. ~ 
"--------- Jump On Count 

1 

FORTRAN 
example 

contains N during the first pass through the instruc­
tions; N-1, the second pass through, and so on. 

is decremented once each pass; the loop terminates 
when R1 eventually reaches zero. 

Figure 85. The Jump On Count instruction (2 of 2) 

311 



instruction continues (exits from the loop). If it is not, the 
count is decremented and the register is tested again in the 
same way. 

Instructions Associated with Structured 
Programming and Control of Concurrency 

Good computational instruction sets cannot stand alone. 
Small computer applications require an environment consist­
ing of a set of cooperating tasks; this environment implies 
structuring a large task into many separate tasks, and 
restructuring the tasks themselves into many small modules­
which may be shared. The sharing of modules or data 
inevitably means contention when two modules attempt to 
use the same resource or update the same data item at the 
same time. These conflicts arise because multiple hardware 
priorities mean that tasks can interrupt other tasks at arbi­
trary points in time. The instruction set must permit both 
efficient structuring of programs and modules and control 
over concurrency. The Series/1 instruction set provides 
many alternatives for the solution of these contention 
problems, as shown in Figure 86. 

Consider first, the problem of concurrency. As men­
tioned earlier, a user can often handle shared routines by 
making them reentrant. The strong set of Series/1 i nstruc­
tions that support stacks (Figure 86) was discussed in detail 
in Chapter 3. As demonstrated there, this set of instructions 
provides detailed solutions to the concurrency problem; this 
support need not be reiterated here. 

Serializing Resource Usage 

However, there are many situations in which the system 
cannot allow concurrency. In these cases, it is necessary to 
"serialize the use of the resource"; that is, to insure that 
only one task at a time uses the data, code, or other resource. 
Figure 87 shows the simplest way to handle this problem: 
disable interrupts upon entering a critical section or routine, 
and enable them again upon exiting. With interrupts d-is­
abled, no task switching can occur; as a result, no other task 

312 



Enable Interrupts 
Disable Interrupts 

Test and Reset Bits 
Test and Set Bit 
Test Bit and Invert 

Interchange 
Registers 

Move Byte and 
Zero I 

Move Word and \-----t 
Zero \ 

Move Double- ' 
word and Zero 

Enable all interrupts or disable all 
interrupts by setting or resetting 
the summary mask. With the 
proper choice of parameters, these 
instructions can also enable and 
disable storage protection, the 
hardware address translator, and 
the equate operand space. 

Address a specific bit in storage. 
Test the bit (setting the zero or 
negative indicators according to 
whether the bit is zero or one). 
Then, unconditionally reset, set, 
or invert the addressed bit-all 
without interruption. 

Exchange the contents of two 
registers without interruption. 

Move a byte, word, or double­
word from storage to a register 
or register pair. Then zero the 
byte, word, or doubleword in 
storage without interruption. 

All of these instructions cause some data change; they also 
permit the changing task to determine the previous value 
being operated upon without an interrupt occurring between 
the initiation of the test and the determination of status. 
Alternatively, the user can prohibit all such interrupts. 

Figure 86. Instructions which can be used to control concurrency 

313 



Task 

Critical section of 
task which must 
not be interrupted 

Disable interrupts 

~ --~"" 
/ 

I 
I 

Interrupt 
occurs 
here but 
is not 
recognized. 

Interrupting 
task:----... 

1----' 
' \ 

___ ... ~ .. -
I 
I 

\ 
Enable interrupts I 

Interrupts here I 
I 

If interrupt occurs during the ___ __. I 
I first task's critical section, it 

will not be recognized be­
cause the summary mask is 
set. As soon as the first task 
leaves its critical section, it 
resets the summary mask; 
the pending interrupt is 
recognized and the first task 
is interrupted. 

____ .J 

While interrupts are disabled, the system cannot initiate 
any higher or lower priority tasks. The procedure depicted 
here delays all tasks in order to inhibit those tasks causing 
the concurrency problem. 

Figure 87. Using disabling and enabling interrupts to control concurrency 

314 



can use the resource until the current task is through with it. 
The disadvantage in this approach is that all other higher 
priority tasks are necessarily delayed during the time the 
interrupts are disabled. This solution, then, is practical only 
if the interrupt-disabling time is very short. 

An alternative solution is shown in Figure 88. Here, a 
flag signals that a routine is busy; the system tests the flag 
before entering the critical section or routine. However, 
the status of the flag might change between the time it is 
tested and found not busy, and the time it is set to busy. 
This change can happen if a higher priority task interrupts 
between the operations at precisely the right moment. 
To prevent this from happening and to prevent the higher 
priority routine from reentering the critical section-where 
reentry causes an error-the system must test and set the 
busy flag in one uninterruptible operation. 

Instead of disabling and enabling interrupts during the 
testing and setting of the flag, the Series/1 makes several 
instructions available to perform the job. As shown in 
Figure 88, Test and Set performs the two operations with a 
single uninterruptible instruction. If the flag is in one of 
the registers, the user can load the busy value into a second 
register, and then interchange the two tasks through a 
single instruction. This procedure is equivalent to the reading 
and testing of the flag that the Test and Set instruction per­
forms. This procedure is not viable if the task attempting 
to reenter the routine is on a different priority level because 
each level has its own set of registers-the two tasks could 
not access on two different levels. The procedure is effective 
for tasks on the same level if the system switches control 
back and forth between them and the user does not want 
to relinquish some piece of code or data from one task to the 
other. The Move and Zero instructions may be used in a 
similar fashion because they also access the value of a data 
item and set its value to zero in one uninterruptible operation. 

Application Software Modularizing 

Structuring of tasks is the second important consideration 
affecting design of an instruction set. The Series/1 

315 



Bit = ~ 0 ... Not busy 
1 ... Busy , 

' 
Routine which must not be 
re-entered 

or 

Bit in storage indicating 
the busy or not-busy 
status of the resource 

Data items which must not 
be read while another task 
is changing them 

Task wishing to 
use the resource: 

Test the busy flag; 
if busy, branch to 
delay; otherwise 
set it to busy. 

Busy Not-
busy 

Delay 

or 

Any other resource which 
must be used by one task 
at a time 

Use the Test and Set instructions which both test and set 
in one uninterruptible instruction, Testing the busy flag 
status and setting it to busy must be done without inter­
ruption. Otherwise, the task might test it and find it not 
busy, but be interrupted before it can set it to busy. The 
interrupting task might then seize the resource-because 
the task finds the resource not busy. If control returns to 
the first task, it would then consider the resource to be 
available-when, actually, it is not. 

Notice in the Series/1 that each level has its own set of 
registers; consequently, tasks on different levels cannot use 
this technique. 

Figure 88. Serializing the use of a resource using the Test and Set type of 
instruction 

316 



addressing modes facilitate this common characteristic of 
small computer applications. Separating data from tasks and 
sharing data among many tasks involves complicated address­
ing problems that were explained in the first chapter of this 
book. 

Breaking up programs into modules requires that the 
system be able to: 

• Branch to a module 

• Execute the code in that module 

• Then return-this is the subroutine concept 

The Branch and Link, Branch and Link Short, and Jump and 
Link instructions provide this capability which is similar to 
the one used in the IBM System/370 computer systems 
(Figure 89). These instructions cause the system to store the 
address of the next instruction after the Branch and Link 
instruction in register seven. A branch then occurs to the 
address of the subroutine. Register seven then contains the 
return address. If the routine is reentrant, the routine may 
save the address on a stack. If the address is not needed 
during the execution of the routine, the routine may save 
it within itself or leave it in register seven. By common 
agreement, arguments passed to the subroutine may be 
passed through the registers. Alternatively, the argument 
may be placed in the calling program after the Branch and 
Link instruction. In the latter case, the system uses the 
address in register seven to access the parameters to be 
passed (Figure 90). 

In this latter case-in order to skip over the data being 
passed-the system must change the address in register 
seven before the return occurs. The subroutine facility, in 
one form or another, is available in all higher level 
languages. The Series/1 Realtime Programming System also 
permits the user to- pass a set of parameters from one task 
to another-a further enhancement of intertask 
communications. 

One further technique which aids in structuring multi-task 
applications is the Series/1 ability to cause interrupts under 
program control. That is, one way to initiate a separate 

317 



Branch and Link Subroutine linkage instructions: 
Jump and Link >----

save the next instruction address 
Branch and Link in a register and branch or jump 
Short to another routine. 

Exit the current level by resetting 
the in-process flag in the level 

Level Exit \_ status register. Control transfers 
f to the highest priority level with 

pending interrupt or to any other 
level which had previously been 
suspende£!~ 

Stores data in the level status 
block of another register. By 
setting its in-process flag, the 

Set Level Block }--- level status block can cause soft-
ware-generated interrupts for 
routines or modules on other 
levels. 

Push Byte 
Push Word 
Push Doubleword 1 Stack instructions facilitate 

re-entrant routines which, in 
>-- turn, simplify the structuring 

Pop Byte I of many applications. 
Pop Word 
Pop Doubleword 

Load Multiple t 
Multiple registers may be stored 

and Branch 
and retrieved. Store multiple 

Store Multiple f registers on a stack and restore 
them with single instructions. 

Structured programming requires efficient linkage between 
modules. Because serializing the use of all shared routines 
slows down the system response time excessively, reentrant 
modules are especially important in realtime environments. 

Figure 89. The subroutine concept 

318 



Structuring a task or program into modules is practical 
only if there is a mechanism for efficient linkage and 
transfer of the shared data. 

,..._ Return point 

Branch and Link Sub------. 

Parameter 1 } 
Parameter 2 

.p~~~~~~~r-~ --, 

L Sub 

Example of linkage: 

To access parameters and data 
stored in the calling task, use 
the return address in the 
register. 

Return to the saved return 
address after incrementing it 
to point beyond the data area. 

..-1 Sub 

Push parameters onto the 
stack using stack instruc­
tions. 

Branch and Link to Sub• 

r+"" Retrieve data from a sub-

Retrieve parameters from 
the stack. Push parameters 
to be returned onto the 
stack before returning. 

routine by accessing the r-1._ _________ ___. 
stack. 

Communication between a calling program and a subroutine 
may be done by: 

• Using parameter passing techniques 

• Using common areas of main storage 

• Passing addresses of data buffers or stacks 

Figure 90. Structuring a task or program into modules 

319 



module of a structured design is to attach it to an interrupt 
and then, by executing an instruction, cause the interrupt 
to occur in a second module. 

The Set Level Block instruction is a privileged instruction 
which loads, for a specified level_, a level status block from 
an arbitrary location in storage (Figures 89 and 91 ). This 
instruction is advantageous for the following reason. The level 
status register within the level status block contains an in­
process flag which the program can pre-set to activate that 
level as soon as: 1) its level statu~ block is loaded; and 2) no 
higher priority level is pending. By setting the in-process flag 
to "on" for a higher level, control immediately transfers to that 
level and the current level is set to pending. When the in­
process flag is set to "on" for a lower level, it becomes active 
only when the current level exits by a Level Exit instruction 
which resets the current level 's in-process flag. Thus, inter­
rupts on higher br lower priority levels can be initiated 
under (privileged) instruction control. 

The combination of task sets, partitions for storage man­
agement, subroutines which may be reentrant, and control 
over concurrency via the instructions listed in Figure 86 per-

- -- -

mits response implementations to typical, small computer 
application needs. 

Instructions Associated with 
Management of the Processor 

To control the overall processor, the Series/1 provides a 
set of privileged instructions that read and write those 
registers and variables not available to application tasks. The 
existence of privileged instructions is justified by the 
important need to maintain control over system integrity. 
That is, an application is usually realized as a set of cooper­
ating tasks-with the cooperation consisting of shared 
resources, routines, data areas, and operating system 
facilities. 

To preserve overall system integrity, the tasks must not­
in general-interfere with one another. Consequently, any 
instruction that requires the resources or operation of 

320 



another task must be privileged so that any attempt to 
execute that instruction-even inadvertently-will cause a 
loss of control by the executing task. When not in the 
supervisor state, an attempt to execute any privileged 
instruction by an application task causes an exception 
interrupt to occur, and returns control to an operating 
system which determines the cause and takes appropriate 
action. This arrangement facilitates input/output: 

• By using central routines 

• By using the control operating system resources-via the 
Supervisor Call instruction (SVC) which causes an excep­
tion interrupt 

In the same consistent manner, the system handles storage 
protect violations, referencing of mapped storage not 
available to the task, and similar errors. 

Figure 92 lists the Copy and Set instructions which permit 
both the setting up and the accessing of data in registers not 
available to users. These instructions involve: 

• Address key registers which control storage protection 
and storage mapping 

• Segmentation registers 

• The interrupt mask register 

• Various level status indicators 

• Similar indicators and registers which control execution 
of tasks and relations among tasks 

The user must first understand the interrupt mechanism, 
the storage protection mechanism, and the storage mapping 
scheme. When the user becomes familiar with these, and 
similar functions, implementation of the Copy and Set 
instructions by an operating system-to initialize storage, set 
up segmentation registers, and other uses-becomes 
conceptually self-evident. Users should reference the appro­
priate processor manual to determine addressing modes, 
exceptional conditions, and other specific information for 
each instruction. 

Most applications need these instructions only as an assur­
ance that they are present to enable the operating system to 

321 



w 
1-,,) 
1-,,) 

Level status block: 
Each level has its own set 
of registers. 

The level status register 
contains the in-process 
flag which, when set, 
means the level is 
pending (waiting to 
execute). 

IAR 

AKR 

LSR 
Register 0 

Register 1 

Register 2 

Register 3 

Register 4 
Register 5 

Register 6 

Register 7 

*In-process flag (bit 9) 
0 =off 
1 =on 

Figure 91. The level status block and module scheduling (1 of 2) 

I*I 



VJ 

Interrupt is caused immediately 
on a higher priority level 

Level 0 (highest priority) 6------- LEX 
L I -+-Set up LSB I 

eve 1 I 1 

Level 2 ---- --- ---SELB 1 1-- SE LB 3 - - - - - LEX 

Level 3 

SELB 1: Set Level Status Block 
on level 1 with in­
process flag set. 

Set up LSB D L ___ _.. 

• Interrupt is pending on a lower 
priority level, and recognized 
when no higher priority level is 
active. 

SELB 3: Set Level Status Block 
on level 3 with in­
processor flag set. 

LEX: Level Exit instruction 
which resets current 
level in-process flag. 

Modules in an application can cause interrupts and, thereby, schedule modules on both higher and lower 
priority levels. The Set Level Status Block instruction is privileged. 

~ Figure 91. The level status block and module scheduling (2 of 2) 



w 
~ Registers which control the processor and which are not referenced by user tasks are read and written with 

privileged instructions to prevent inadvertent error on the part of a task. 

Registers which are critical include: 
• The storage protection register containing the address keys. These keys also select segmentation register 

sets when hardware address translation is used. 
• The segmentation register stacks which map application address spaces into physical storage 
• The level status block registers-like the level status register which is not normally set directly by users 

Set Address Key Register (SEAKR} 
Set Console Data Lights (SECON} 
Set Floating Level Block (SEF LB} 
Set Instruction Space Key (SEISK} 
Set Interrupt Mask Register (SEIMR} 
Set Level Status Block (SELB} 
Set Operand 1 Key (SEOOK} 
Set Operand 2 Key (SEOTK} 
Set Segmentation Register (SESR) 
Set Storage Key (SESK} 
Copy Address Key Register (CPAKR} 
Copy Console Data Buffer (CPCON} 

Copy Current Level (CPCL} 
Copy In-Process Flags (CPIPF} 
Copy Interrupt Mask Register (CPIM R} 
Copy Instruction Space Key (CPISK} 
Copy Floating Level Block (CPFLB} 
Copy Level Status Block (CPLB} 
Copy Operand 1 Key (CPOOK} 
Copy Operand 2 Key (CPOTK} 
Copy Processor Status and Reset (CPPSR} 
Copy Segmentation Register (CPSR) 
Copy Storage Key (CPSK} 

Interchange Operand Keys (IOPK) 

An application may require a system-like function. Normally, to preserve system integrity, it would be 
implemented through a Supervisor Call to the operating system. Critical, dedicated tasks-especially those 
with custom operating systems-may use the privileged instruction set discretely to optimize performance. 

Figure 92. The privileged instructions used to read and write Series/1 system-level registers, and control overall processor performance 



function efficiently. However, some OEM and dedicated 
applications which customize the operating system may 
choose to use these privileged instructions to implement 
some special critical operation, add input/output device 
drivers to the system, or perform other hardware operations. 
Users should be careful to employ the supervisor mode only 
when necessary and, then, in a manner which does not 
damage the carefully-designed system integrity. 

325 



Interfacing of 
User Devices 

One of the prime application requirements for small com­
puters is the ability to interface special devices to the 
computer system in an integrated fashion. Many applica­
tions require special devices not available from the computer 
system supplier; examples include: 

• Specialized data acquisition devices 

• Process control instruments 

• Special operator consoles 

• Devices selected to be compatible with existing systems 

• Devices which are selected because of cost, maintaina-
bility, availability, or other reasons 

Unless the user can physically attach these devices to the 
computer system and use them just like devices supported 
by the computer vendor, the system loses some of its versa­
tility. Users must have available all input/output capabilities 
including direct program control, cycle steal, and burst 
mode input/output modes. Furthermore, the built in self­
diagnosing and operating system software support must be so 
designed that users can add the appropriate driver and other 
routines to make their devices a part of the integrated 
system. 

326 



Importance of the Processor 
Input/Output Architecture 

The heart of the Series/1 system design is the processor 
input/output channel itself; the channel is more than just a 
method for transferring data into and out of the processor 
with appropriate handshaking for synchronization. It 
supports: 

• Direct program control operations 

• Cycle steal operations 

• Burst mode 

• Interrupt servicing 

• Initial program load operations 

The channel provides especially comprehensive error check­
ing including timeouts, sequence checking, and parity check­
ing. The system reports errors, exceptions, and status in two 
ways: 1) by recording condition codes in the processor 
during execution of input/output instructions, and 2) by 
recording condition codes and interrupt information byte 
status data in the processor during interrupt acceptance. To 
maintain the level of system integrity, the user-device inter­
faces take advantage of all of these features. The channel 
physically extends along the backplane of the processor 
or input/output expansion unit. Attachments plug directly 
into the backplane sockets. The system connects external 
input/output devices to the attachment cards via additional 
connectors on the tops of the cards. 

Importance of System Software Architecture 
System software is so organized that any device connected 

to the input/output channel can be accessed in the same 
fundamental way. Hence, the primary requirement for soft­
ware support of a given device is a basic driver which can 
interpret the precise data format transmitted to or from a 
user device. Both Realtime Programming System software 
and Control Program Support software facilitate the addi­
tion of such routines to the system. IBM has designed the 

327 



Series/1 input/output system (hardware and software) to 
permit user attachments to be added to the system in as 
straightforward a manner as possible. Furthermore, Series/1 
system design has stressed the ability of the user to interface 
devices without sacrificing the important self-checking and 
diagnostic features of the system. To make available the 
full capabilities of the system, user devices may be attached 
in a variety of ways (Figure 93): 

• Through specialized use of standard devices (timers are 
the most notable example) 

• Through interfaces compatible with accepted standards 
(Teletype and CRT terminals are the most common 
examples) 

• Through the use of programmable basic interfaces (digital 
input and output with synchronization signals under pro­
gram control) 

• Through hardware interfaces which provide a fully com­
patible subset of the input/output channel itself (customer 
direct program control adapter) 

• Through isolating and non-isolating adapters which permit 
direct connection to the input/output 

• Through the GPIB Adapter which provides an industry­
standard instrumentation link 

• Through the channel and all its control lines (channel re-
power and socket adapter) 

In this list, the complexity of interfacing increases from top 
to bottom. The last item (channel socket adapter) requires a 
detailed design of interface hardware similar to that provided 
for standard Series/1 devices; it is so intimately connected to 
the computer system that it is also responsible for preventing 
interference with the signals present in the rest of the system. 
Concurrently, every capability of the input/output system 
becomes available to the user device including cycle steal and 
burst mode data transfers. 

For slower devices-which can be handled by direct pro­
gram control input/output programming-the user can very 
easily implement the basic interface (integrated digital 

328 



input/output) in hardware, but to do so in software requires 
more program intervention. In contrast, connecting a device 
to the customer direct program control interface requires 
more external hardware but less internal software because the 
hardware interface uses only a subset of the input/output 
channel signal. In other words, the appropriate level of inter­
facing capability is present and that level depends upon the 
nature of the device or devices to be interfaced to the Series/1 
system. 

The purpose of this chapter is to discuss each interface 
approach individually, and to illustrate its capability and use. 
Detailed discussion of voltage levels, loading restrictions, and 
similar considerations important in the actual design of inter­
face hardware is available in the appropriate Series/1 processor 
User's Attachment Manual. 

Timers and Their Use 
Many applications involve the measurement of time inter­

vals, or the counting of events which occur in a given time 
interval. Manufacturing control applications involving piece 
count, monitoring of machine operations, and control of 
material handling systems are common examples. The IBM 
Series/1 timer feature is a single, printed-circuit card which 
plugs directly into the backpanel of the processor or input/ 
output expansion unit. Each card contains two timers and 
as many cards as desired may be used in a system. 

Connectors on the card-in conjunction with the required 
programming-allow the timers to be used with external 
control signals; the card can then be used as an interval 
timer (with internal or external clock), a pulse counter, or a 
pulse duration counter depending upon the configuration 
of the external signals. Each timer is separately addressable 
as an input/output device and-without stopping the timer­
can be started, read, or set to any value, independently, under 
program control. These characteristics result in a flexible 
interface device which solves many application problems with 
a minimum of special hardware and a maximum of software 
flexibility. 

329 



w 
w 
0 

Direct program control device interfaces 

Processor 

Channel 
controls 

ru7er's - ..., 
II time or I 

count f 
I dependent I 
~i~a~_.J 

Timer 
feature 

Figure 93. Options for user attachmentS to the Series/1 (1 of 21 

r ----, 
User's f 

I instru- I 
I ment(s)/ I 
I device(s) I L ____ J 

Integrated 
digital 1/0 
non-isolated 
feature 

1/0 channel 

r----, 
I User's l 
: device I 
L---....J 

Teletypewriter 
adapter feature 

.-----, 
I I 
I User's I 

device I 
I I l_ ____ J 
r----1 
I I 
I User's I 

device I 
I I L ___ ....J 

Customer DPC 
adapter feature 



w 

Channel socket 
adapter feature 

I 
I User's attach- I 

ment card I 
I I 
L __ I __ ....J 

,- -, 
I User's I 
I device I 
I I L ___ _J 

Channel 
re power 
feature 

To other 
1/0 adapters 

r------, 
I I 

User's 1/0 I 
adapter I 

I I 
L------J 

r-J-...., 
I I 
I User's I 
I device I 
I I L ___ _J 

Adapters to permit user-designed 
cycle steal interfaces 

~ Figure 93. Options for user attachments to the Series/1 (2 of 2) 



Each timer has a mode register which the system uses to 
select the internal time base or to specify an external base. 
Available internal time bases or increments between counts 
are: 1, 5, 25, and 50 microseconds. The system selects a 
time base which provides adequate precision in the desired 
time measurement. The registers are 16-bits wide so that a 
maximum count of 65,535 bytes is available. For the 
internal time bases listed above, this maximum count cor­
responds to time intervals of approximately 65 milliseconds, 
328 milliseconds, 1.6 seconds, and 3.3 seconds. Four pro­
gram selectable running modes are available for each timer: 

Periodic Interrupts-Internal Control. Program control sets 
a 16-bit autoload register to any value. This register auto­
matically reloads the timer when the timer underflows, and 
the system generates an interrupt. 

Aperiodic Interrupts-Internal Control. The system loads 
the timer with a value under program control, and an inter­
rupt occurs when the timer underflows. After the first 
interrupt, the autoload register does not reload the timer. 

Periodic or Aperiodic Interrupts-External Control. The 
timer generates periodic or aperiodic interrupts, but-when 
the timer is in the run state-an external gate signal controls 
timer start and stop. 

Figure 94 shows a block diagram of the timers and their 
connections to the input/output bus. Notice that the address 
portion of the bus is used to address the timers and to trans­
mit specific commands like setting mode and counts. Address 
jumpers permit assignment of an arbitrary address to the pair 
of timers. As depicted in the figure, the system uses the data 
bus to communicate with the mode registers. The interface 
to external signals of the user is through drivers and receivers 
which provide isolation and adequate current for compati­
bility with commonly used external electronic circuitry. 

The external process devices may supply two signals: a 
clock signal and a gate signal. A clock is a source of pulses 
or event signals which may be periodic or aperiodic depend­
ing upon the application. Periodic clock signals provide time 

332 



Timer feature 1/0 channel 

I 
I 

Receivers I 
Address bus I 

I 
I 
I 
I 
I Address Address Command I jumpers decode decode I (7) 

Ii 
~ 

I 
Timer 0 'I 

Timer 1 

w 
~ Figure 94. Block diagram of the timers showing their input/output channel connections and external signals for special uses (1 of 3) 



w 
w 
~ I User's attachment 

TimerO 

Customer clock 

External gate 

Run state 

External gate enable 

Customer signal ground! .,. 1 

Timer 1 

Customer clock 

External gate 

Run state 

External gate enable 

User signal ground 

Frame ground .---------.-

Drivers 
and 
receivers 

Figure 94. Block diagram of the timers showing their input/output channel connections and external signals for special uses (2 of 3) 



I 
I 
I 

~ ~ 
I 
I 

Auto load Auto load 
I 

and mode ~ and mode I 

>...._ registers 0 registers 1 I 

] Drivers, I 

0 TI receivers, I Data bus 

and bus 
assembler I..-

I 

Timer 0 Timer 1 
I 

,. 
t-j I 

I 
I 
I 

\ I 
I 

--:> I ..,... 
I 

w 
~ Figure 94. Block diagram of the timers showing their input/output channel connections and external signals for special uses (3 of 3) 



bases which are different from internal bases. Applications 
involving counting of events where one pulse is generated 
for each event that occurs use aperiodic sources. The gate is 
a signal which indicates when to begin and when to stop 
counting. The two output control signals, run and external 
gate enable, indicate to the external device that the timer 
is active and that the external gate has been enabled for use. 
These signals permit synchronization between the internal 
application task using the timer and the external device 
supplying the signals. 

Interval Timing 

Figure 95 shows how the system uses the timer to provide 
interval timing to the processor by using an external, arbi­
trary time base. The external clock is attached. Under pro­
gram control, the system prepares the timer (sets priority 
level and enables device interrupts). Its mode is set to 
external-periodic. This means that the clock pulses come 
from the external source; every time the timer counts 
through zero, an interrupt is generated to indicate the end 
of an interval, and the counter is reset to its original value. 
Finally, the system transmits a command (direct program 
control input/output operation) to start the timer. Using 
the Realtime Programming System, the Event Driven Execu­
tive, or Control Program Support software, the user can 
attach a task to this interrupt which then becomes active 
each time the pre-set interval expires. The external clock 
can be as slow as desired and can be as fast as 20 micro­
seconds (the internal clock permits the maximum precision 
of one microsecond). The timing interval can be changed 
under program control. 

Pulse Rate Measurement 

Another common application is shown in Figure 96 where 
the user needs to measure a pulse rate. This is usually done 
by counting the number of pulses which actually occur in a 
given time interval. As illustrated in the figure, the system 
counts the pulse source in one of the two timers on a card. 
This timer is loaded with a value larger than the maximum 

336 



mm ·71 I 
User-supplied 
external pulse Timer 
train of desired 
frequency I 

Customer clock input 
signal line (grounds 
not shown) 

Clock frequency can be as arbitrarily slow or as 
fast as 50,000 pulses per second. Faster clocks up 
to 1,000,000 pulses per second are available 
internally in the timer if the filter is inactive. 

w 
!:j Figure 95. Using the timer to provide interval timing to the processor (1 of 3) 



v..> 
v..> 
00 

Operate 1/0 r-+1 

Operate 1/0 r-+1 

Operate 1/0 ~ 

IDCB 
I 

Prepare I Timer address I 
I 

I 

Interrupt level I I 
l 

Enable interrupt____.,,,, 
IDCB 

I 
Set Timer I Timer address 
Mode I 

I 
I 

External time base I Disable 
L gate 

IDCB 
Set Timer I 
Period and I 
Initial Value 1 

Timer address 

Time interval, N 

Figure 95. Using the timer to provide interval timing to the processor (2 of 3) 

Prepare the timer (set interrupt level and 
enable device interrupt mask). 

Set Timer Mode (choose an external time base 
as the clock source and indicate that the 
external gate is not used. 

Set Timer Period (load the timer's autoload 
internal register with one less than the number 
of external, time-base pulses desired in the 
interval). 



VJ 

IDCB 
I 

Start Timer Operate 1/0 ~ I Timer address 
Periodic l 

.... 
Cl> 

E 
i= 

0 

Start Timer (start the timer counting down 
each time an external pulse is received) 

External pulses cause the timer to count down from its initial value N. On 
the (N+1 )st pulse, the timer counts through zero and causes an interrupt 
signaling that the interval is complete. The internal register is automatically 
reloaded with N and counting continues. 

----------­End pulses 
Time 

Four direct program control commands are used to set up the timer as an interval timer with an external, 
customer-supplied time base. Each command is encoded in the immediate device control block together 
with the parameters associated with that command. 

~ Figure 95. Using the timer to provide interval timing to the processor (3 of 3) 



Problem: Measure a pulse rate in an external sequence of 
pulses which may be irregular in separation. 

Solution: Measure the pulse rate as the number of pulses 
per unit time. Use a timer as an interval timer to set the 
basic time period, and a second timer to count the pulses 
occurring in that period. 

Customer clock 
input line 

External pulse source 

Internal clock 

Timer 
number 1 --1 

Timer 
number 2 

I 
I 

8 
Figure 96. Pulse rate measurement using a pair of timers (1 of 21 

number of counts expected in the measurement time inter­
val; as each pulse is received, the timer counts down but does 
not pass through zero or interrupt. When read, this timer 
contains the original value less the number of counts received 

340 



A 

Read timer 
number 1. 

The count in 
_ this interval 

11•1111 ..... ~. is the initial 
Generate an interrupt each basic value minus 
timer period. the current 

value. 

The basic timer period is set via the __ __.• __ _ 
internal clock, and is automatically 
reset to the initial value after 
interrupt. 

Initialize: 

Reset the 
count in 
timer 
number 1 
to the 
initial 
value. 

• Timer number 1 to a value larger than the maximum 
expected pulse-count-in 

• Set mode to the external time base 

• Timer number 2 to the internal time base, periodic 
mode; and initialize the count to the correct basic 
period 

Figure 96. Pulse rate measurement using a pair of timers (2 of 2) 

341 



during the interval. Hence, subtracting the value read from 
the initialized value gives the counts received. 

As depicted, a second timer generates the interval used in 
the rate measurement. The second timer is set up to operate 
in the internal-periodic mode which: 1) generates an inter­
rupt each time the base measurement period passes, and 
2) initiates a task that reads the first timer and calculates the 
rate. By choosing the required internal clocks, two timers 
are adequate to meet the needs of most applications of this 
type. 

Pulse Duration Measurement 

Pulse duration measurement is equally straightforward 
using the external gating capability of the timer (Figure 97). 
The system sets up the timer to operate under external gate 
control. In this mode, an interrupt occurs when the external 
gate is turned off-at the end of the pulse being measured. 
Meanwhile, the system sets up the timer counter with a 
value larger than the number of counts expected during the 
pulse. The counter actually starts when the external gate 
signal is turned on; counts as long as the gate signal is 
present; and stops counting when the gate signal is turned 
off. Responding to the interrupt and reading the counter 
value give the number of pulses. Knowing the period or time 
between pulses then yields-with a precision corresponding 
to the time base used-the pulse duration. 

Error Detection 

It is important to be able to detect abnormal timer opera­
tion in applications like these; otherwise, a critical realtime 
application may not function properly under certain circum­
stances. Normally, the timer has decremented through zero 
(counted one more than the initial count set in the register), 
or the external gate signal has been turned off. However, 
an error condition can occur under several situations, 
including: 

Overrun. The interrupt has occurred while the previous inter­
rupt is still pending; this means that the processor has not 

342 



yet responded to the first interrupt. This situation causes 
loss of data or a mistake in time tracking. 

Counter Zeros with External Gate Enabled. The counter 
decrements through zero-generating an interrupt-while the 
external gate signal is enabled and not yet turned off. In the 
pulse duration application, for example, the count will not 
be the accurate pulse length. The initial value set in the 
counter was too small or an unexpectedly long pulse 
occurred. In either case, the situation must be specially 
handled. 

As part of the self-checking capability of the timer and 
the Series/1, the system reports each condition via a different 
condition code. Consequently, the task responding to the 
interrupt can: 

• Check the condition code 

• Determine whether an error or special case is present 

• If it is, handle it appropriately 

The Teletypewriter Interface 
The teletypewriter adapter is an interface designed to 

attach OEM devices which operate as start-stop devices in full­
duplex mode over a four-wire interface. Data can be trans­
ferred in current loop mode, TTL 1 standard signal mode, or 
EIA2 standard mode. Typical devices designed to interface 
by one or more of these procedures include: 

• Printer keyboards 

• Keyboard displays 

• Keyboard-display printers 

• Printers 

• Tape cassettes 

• Tape drives 

1 A common electronic technology 
2Electronics Industry Association 

343 



Problem: Measure the length of an external pulse (the 
time it is on). Alternatively, it may be necessary to 
measure-very precisely-the time between two external 
events. 

Solution: If the time interval is long enough, an interrupt 
can be generated at the beginning and at the end; software 
can be used to read the internal system clock. If the 
events are close together, however, this technique has 
limited precision. 

For greater precision, generate an external pulse which is: 

• Off before the start of the pulse or first event 

• Turned on at the start of the pulse or first event 

• Turned off again at the end of the pulse or second event 

Use this signal as an external gating signal to turn the timer 
counter on and off. 

External 
gate signal 

Off 

On 

----~Time 

Start counting here 
counting 
here 

Generate interrupt when the 
gate turns off. 

The pulse length is proportional 
to the initial count minus the 
current count. 

Figure 97. Pulse duration measurement using the external signal and a timer 
(1 of 2) 

344 



Initialization: 

• Prepare the timer interrupt level and enable interrupts 

• Set the mode to internal clock and enable the external 
gate 

• Set the initial value into a register which is larger than 
the maximum number of pulses expected during the 
duration of the pulse 

If the pulse duration is too long, the timer will count 
through zero and generate an interrupt. Condition code 
specifies that the gate was still enabled and that it must 
be checked to detect errors. 

Figure 97. Pulse duration measurement using the external signal and a timer 
(2 of 21 

• Card readers 

• Badge readers 

• Plotters 

Every application mentioned in Chapter 1 uses devices like 
these; they are available from a very large number of manu­
facturers who specialize in various applications. The tele­
typewriter interface solves many application problems and 
is, consequently, an important hardware entity. 

Asynchronous Data Transmission 

The term start-stop data transmission means that one 
character at a time is transmitted, bit serially, in either direc­
tion. Figure 98 shows the format of the transmission which 
includes a start bit located prior to the eight bits of the 
character, and either one or two stop bits following the 
character. Between characters, the system holds the line in 
one logical condition called "mark" and signals the start of 
a character by the transition to the other logical condition 
called "space", which is also the start bit. Spacing between 
characters is arbitrary, but bits within a character are 
synchronous. Bit rates of 50, 75, 100, 110, 150, 200, 300, 
600, 1200, 2400, 4800, and 9600 bits per second are 
standard and selectable-by jumper pins-on the interface 
card. 

345 



w 
~ 

The start of the character is 
detected by the first transition 
from the "mark" to the "space" 
condition. 

~Mark 
! rrrTTTTTlJ 
1111111111 
L.L..l. . J_LLL L 

I fll I -r-1 o:-i lJ 
•11a15r13121110• 
LLL LLL.L 

Space 

Time 
One character contains: 

...... • Eight information bits 

• One start bit 

• Up to two stop bits 

Start-stop transmission transmits characters asynchronously (non-fixed spacing between characters). Bits 
within one character are synchronous; however, the selected maximum character rate determines the spacing. 

Figure 98. Start-stop character transmission 



The system performs no error checking on the byte being 
transmitted. The bits of the character are received one at a 
time and assembled into a character. The system generates 
an interrupt and transfers the character into the processor 
by one direct program control operation. Since no error 
checking is done, all 256 possible character combinations 
are legal characters and the support of this device is "code 
transparent;" that is, it is not dependent upon the meaning 
of the characters. This fact is important when using devices 
like those listed at the beginning of this section because many­
manufacturers assign special meanings to certain characters­
especially in CRT devices. The user task can read and trans­
mit arbitrary character sequences from and to these devices, 
but it is also responsible for interpreting the meaning of the 
characters. 

Each time a source receives or transmits a character, the 
system generates an interrupt. An overrun can occur on 
reception of characters but not on transmission. Overrun, 
in this case, means that a source receives a second character 
before it recognizes the previous interrupt. The processor 
has not yet read the previous character. The interface 
detects this condition and signals the processor with an 
exception interrupt (via the condition code presented in the 
level status register). When overrun occurs, the first charac­
ter is not lost but the second is. 

The Asynchronous Interface 

Figure 99 shows a block diagram of the interface and its 
connection to the input/output channel of the Series/1 
processor. Notice that normal reading and writing of 
characters occur only under direct program control, but 
that the system can perform initial program load on a cycle 
steal basis. The latter technique is useful for devices Ii ke 
tape cassettes which can store initial program loads in a safe 
manner and transmit them quickly during startup. The 
initial program load mode is standard in the teletypewriter 
interface. 

347 



User's attachment 

Isolated receive input + 
or 

Non-isolated receive input -

Input 
options EIA received data in 

TTL received data in 

Signal ground 

SSS closed = data mark or 
- TTL data out Re-

ceivers 
SSS open = data mark or and 
+TTL data out drivers 

Output EIA transmitted data 
options 
with EIA data terminal ready 
select-
able 

SSS/TTL write control mark 
and 
sense SSS/TTL read control 
polarity 

Current driver, 
current = mark 

Current driver, 
current = space 

Frame ground L.-
I 
I 
I 

Figure 99. The teletypewriter interface block diagram (1 of 4) 

348 



Receive 
data 
register 

Transmit 
data 
register 

Command 
decode 

Address 
decode 

Address 
jumpers 

(8) 

<,...__--g 

IPL 
control 

Figure 99. The teletypewriter interface block diagram (2 of 4) 

349 



Drivers 
and 
receivers 

Drivers 
and 
receivers 

Primary/ 
alternate 
jumpers 

1/0 channel 

Data bus 

Interrupt signals 

l Interrupt signals 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I Address bus 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

l Cycle steal status bus 

Figure 99. The teletypewriter interface block diagram (3 of 4) 

350 



The interface does not interrupt any characters. Each 
character input causes an interrupt. The processor responds 
to the interrupt and reads in the character. 

,All character transfers are one character at a time under 
'direct program control. Initial program load is supported 
:by the interface on a cycle steal basis. 

Abbreviations: 
TTL transistor-transistor logic 
EIA Electronic Industries Association 
SSS solid state switch 
IPL initial program load 

Figure 99. The teletypewriter interface block diagram (4 of 4) 

As in all Series/1 interfaces, jumpers on the interface 
select the device addresses; position on the processor inter­
face or input/output expansion chassis is not relevant to the 
selection. The interface signals to external devices are 
shown under the heading "User's attachment" in Figure 99. 
These connections are made physically through a 16-pin 
connector on the interface board. Jumpers on the interface 
itself select the mode of interconnection along with the bit 
rate and device address. 

To be compatible with the variety of devices available, 
Series/1 supports several input and output modes as shown 
in the figure: 

• Inputs 
- Non-isolated contact sense 
- Isolated contact sense 
- TTL signal levels 
- EIA signal levels 

• Outputs 
- Current driver 
- Solid-state switch with TTL signal levels 
- EIA standard signal levels 

In addition, the interface permits the system to select the 
mark condition at either polarity in the case of voltage level 
inputs, and at either open circuit or short circuit in the case 

351 



of a non-isolated contact sense. Similarly, outputs which 
use the current mode may select either a presence of current 
condition or a lack of current condition to indicate the mark. 
Solid-state switch or TTL outputs permit either polarity or 
open or short circuit conditions to represent a mark. EIA 
output uses the standard convention of negative voltage 
implying a mark condition. The many different options 
available also eliminate annoying, small hardware "fixes" 
that some systems require to make a terminal or device 
compatible with so-called standard interfaces. 

If it is needed to solve special problems, the synchroniza­
tion signals (solid state switch and TTL write and read con­
trol signals) allow program control of external devices. 

Software Support 

The reader should note again that the code transparency 
of this interface means that-in order to give full software 
support to these devices-user-written tasks must be supplied 
and integrated with either the Control Program Support 
routines, the Event Driven Executive, or the Realtime Pro­
gramming System. Notice further that no error or diagnostic 
information is present on the external interface signal lines. 
The interface itself, of course, is I BM-supplied and contains 
the usual self-diagnostic features mentioned previously. 
Diagnosis of the device itself-once the interface has 
checked itself-is the responsibility of the device and the 
user-written software. For devices which have been designed 
to accept diagnostic commands, the code transparency per­
mits the user to achieve the same high level of device check­
ing for OEM devices as is performed in IBM-supplied devices. 

The Integrated Digital 
Input/Output Interface 

The timer and teletypewriter interfaces discussed in the 
sections "Timers and Their Use" and "The Teletypewriter 
Interface" can handle most of the data transfer, synchroniza­

. tion, and error detection for the devices they support because 
they are designed for very specific device classes. At the 

352 



circuit level, the system automatically processes sequences 
of events-like data presentation on signal lines and hand­
shake signals-because the system knows the event sequence 
for the class of devices supported. As interfaces become 
more general, event sequences become more varied and un­
certain; and users must handle more and more of the 
procedures by themselves. Basically, all interfaces involve: 

• Transmission and reception of data on signal lines 

• Timing of handshake signals until data has settled, or until 
a signal has been received 

• Similar operations which entail 
- Inputting and outputting of binary or digital data 
- Setting and resetting of control lines 
- Generating interrupts to signal event occurrences 

The integrated, digital input/output interface provides 
the basic interfacing capabilities: groups of digital input 
and output lines, together with control lines which the 
system sets or resets under program control. With this inter­
face, the system can attach any device if the sequencing of 
actions is performed in software using direct program control 
input/output instructions. This interface is similar to those 
previously described except that the user must program the 
detailed operation to conform with the particular device 
attached. 

Structure of the Digital Input/Output Interface 

Figure 100 shows the integrated digital input/output inter­
face in block diagram form. The interface includes two 16-
point groups of non-isolated digital input coupled with 
process interrupt, and two 16 point groups of non-isolated 
digital output. The four groups each have a unique device 
address but are prepared as a group (that is, they are enabled 
or disabled as a group and have a common interrupt level). 
External synchronization signals (external sync and ready 
lines in Figure 100) are available for each group. A single 
card contains the interface which is pluggable into any 
input/output slot. Up to four such interfaces per card file 
may be used. 

353 



User attachment ' Integrated digital 1/0 interface Channel 

I Group 0 r--"I 

External sync 
..... 1-Ext sync interrupt-.! 

16 points 
I _.....,,, DI 

-":> data DI/Pl ready .-v' ... 
I reg ..... t---I 
l 
I 1-Process interrupt___.., 
I Pl 
I ~ data / 
I 

...... 
reg 

.... 
I 
I 
I Group 1 
I 

_L 1-Ext sync interrupt_, 
External sync I DI 

~ 16 points ~ data 
DI/Pl ready I reg 

~T i---

I 
I Pl 

1-Process interrupt--+-! 

I ~ data ~ .... 
I reg 

I 
I 
I Group 2 
I Ext sync interrupt-, External sync ,.,_ I DO 

i< 16 points DO I< I data 
ready 

~ 

reg 
~T 

I 

I Group 3 
I 

Ext sync interrupt-+-
External sync .-... I DO 
16 points DO l<.-T data K'" 
ready reg ....,-

T 

I 
'--

Figure 100. Integrated digital input and output interface (1 of 2) 

354 



Each of the four 16-bit groups has its own device address. 

The four groups operate on a single interrupt level, and 
have a single device-interrupt control bit. All four groups 
are prepared with a single command. 

Figure 100. Integrated digital input and output interface (2 of 2) 

Digital Output 

Consider first the digital output groups. Each 16-point 
group provides: 

• Non-isolated unipolar current switches or TTL voltage 
switches 

• The two control signals 

• An interrupt capability from the external sync output line 

The system stores data in the digital output register shown in 
Figure 100 using a direct program control Write command. 
Digital output operates in three modes: 1) non-interrupting, 
2) external sync, and 3) diagnostic. In the non-interrupting 
mode, any data present in the digital output register is 
presented to the output lines and consequently to the connec­
ted output device. This mode is useful to signal display 
registers or operate solenoids or electrically operated switches, 
and to signal those lines which do not require handshaking 
between transmission and reception. 

External Device Synchronization 

In the external sync mode, set by an Arm direct program 
control input/output command, the system sets up a hand­
shaking communication using the external sync and ready 
lines associated with each group (Figure 101 ). Under pro­
gram control, the system prepares the digital output group 
(interrupt level and interrupt enabling set), arms the external 
sync mode, and outputs data to the register. The ready line 
is held reset until the external sync line sets, signaling that 
a transfer may take place (this line is set by the external 
device). At this time-after the data written to the output 

355 



User 
device 

Series/1 
processor 

,,,,__ 16 digital output lines 

~ 
..._ 

Integrated 
Ready line digital 

input/output External sync 
line interface 

Only one digital output 
group is shown here. 

The device is prepared (the interrupt level set 
and device interrupt control enabled). 

Ready 

The interface is commanded to operate in the 
external sync mode by a direct program con­
trol input/output operation with the Arm 
External Sync Mode command. 

Digital output data (16 bits) is written 
to the address with an output command. 

Program control 

Prepare Arm Write DO I:'\. ----u 
External 
sync 

~ 
~--v Interrupt 

The user device uses the external sync line 
to signal that data has been accepted. It is 
reset to start the handshake. 

Figure 101. The handshake convention used on digital group output (part 1) 
(1 of 2) 

356 



When the output data has stabilized, the ready 
signal is reset, signaling the user device that data 
is present and may be accepted. 

Upon detecting the setting of the external sync 
line, the interface completes the handshake by 
setting the ready line. The user device must then 
reset the external sync line before another trans­
fer takes place. 

Program control 
~ 

Service Write DO 
Ready 

External 
sync 

Interrupt 

Through control of one line (the external sync line) the 
user device controls the rate at which data is transferred 
from the processor. 

The handshake convention used on digital group output 
involves one signal from the interface (the ready signal), 
and one signal from the user device (the external sync 
signal). 

Figure 101. The handshake convention used on digital group output (part 1) 
(2 of 2) 

register has settled-the ready line is set, signaling the external 
device that the data is ready to be read. When the external 
device has accepted the data, it resets the external sync line, 
signaling the interface that it has received the data. The 
interface then resets the ready line and the system can 
initiate another transfer. The system accomplishes synchroni­
zation with the task, writing the data by generating an inter­
rupt when the resetting of the external sync line is detected; 
this interrupt indicates that the data has been successfully 
transferred. 

357 



Digital Input 

The digital input groups are more complex in their opera­
tion primarily because they have the ability to latch or 
remember changes at their inputs, and to cause interrupts. 
Each of the two digital input groups has a unique device 
address. The digital input registers in each group track the 
levels of the external points attached to them. This tracking 
does not occur during a read operation or in external sync 
mode when the values are held constant within these param­
eters: after an interrupt is generated, and until the interrupt 
is accepted. The process interrupt registers-also associated 
with each input group-latch or remember any bit transi­
tion from zero to one; such a transition generates an 
interrupt. 

Non-Interrupting Mode 

The digital input groups operate in one of four modes: 
1) non-interrupting, 2) process interrupt, 3) external sync, 
and 4) diagnostic. In the non-interrupting mode, Read 
commands can reference either the digital input or process 
interrupt registers in the group, and simply read their cur­
rent contents (which cannot change during the read opera­
tion). Hence, reading the digital input gives the current 
state of the sixteen input lines; and the Read Process Inter­
rupt command gives the current state of those lines which 
have experienced a zero to one transition at any time since 
the system reset the register. 

Process Interrupt Mode 

The process interrupt mode is entered by a direct pro­
gram control input/output operation-Arm process interrupt. 
Any zero to one transition sets the corresponding bit in the 
digital input group process interrupt register and generates 
an interrupt. Accepting the interrupt, and performing a 
Read Process Interrupt Register input/output command, 
reads the register contents and then resets it. By performing 

358 



a Shift and Count instruction, the system can determine­
with a single instruction-the particular bit which changed. 
This mode is very useful for implementing multiple inter­
rupts from a device or devices. In such an application, read­
ing the digital input group could be used to test the status of 
the input lines. That is, if more than one line changed, the 
system would generate an interrupt and read the process 
interrupt register. This action, however, resets the whole 
register; whereas the digital input register tracks only the 
input lines that are still set at one, 

External Sync Mode 

External sync mode provides the same kind of handshake 
communication for digital input as it does for digital output 
(Figure 102). This mode is entered with a special input/out­
put command to the interface. When in this mode, the 
system activates the ready control line, indicating that the 
system is ready to receive input data. The external device 
detects the ready signal, puts data on the sixteen input lines, 
and sets the external sync line. This transition: 

• Causes the system to latch the data or hold it constant 

• Reactivates the ready line 

• Causes an interrupt to the processor 

The application task or driver responds to the interrupt, and 
reads the latched digital input group with a normal Read 
Direct Program Control command; this action, in turn, 
causes the system to reactivate the ready line and unlatch 
the input register so the latter is ready to receive more 
input data. Each end of the communications' line signals 
the other with these two control indicators. 

Control over a device, then, usually involves a series of 
program-controlled transfers in and out of the processor. 
The system monitors device control signals so it knows when: 

• Data is ready or data can be accepted 

• Data is transferred in the appropriate direction 

• Status checking is performed 

359 



w 
O'\ 
0 

Program control Program control 

~ --------------Prepare Arm Service Read with reset 

Ready ~ I : I 
I 
I 

External 1 1 
I 

sync I I 
I 
I 
I Interrupt_. ____ _ 
I I 
I I 

Digital input to the processor from a user device is handshaked with two signals in a manner similar to 
digital output. Digital input is interrupt driven. 

Figure 102. The handshake convention used on digital group output (part 2) (1 of 2) 



w 

A Prepare command must set the interface interrupt level and the interrupt control flag. 

To enforce the handshake communication between the device and the processor, the system 
must enable the external sync mode. A direct program control input/output command per­
forms this function. 

Arming the external sync mode activates the ready line (resets it) to signal that the 
processor is ready to accept data (16 bits of digital input). 

The user device signals the interface that data is present to be read into the processor by 
resetting the external sync signal. This "latches" or freezes the input data and deactivates 
(sets) the ready line. The system generates an interrupt at this time. 

The processor responds to the interrupt and executes a Read Digital Input input/output 
command which reads the register and activates the ready line (resets it) again to signal 
that a second transfer may now follow. 

~ Figure 102. The handshake convention used on digital group output (part 21 (2 of 21 



Instead of the interface performing this function in parallel 
with the processor operation, each step of the operation may 
involve input/output instructions. Although its efficiency is 
lower, the flexibility of the component allows a user to inter­
face complex, slower devices with a minimum of both hard­
ware and software. Such a technique is often economical 
and always versatile. 

Diagnostic Mode 

The integrated digital input/output interface provides a 
full set of diagnostics. The system can set all groups to the 
diagnostic mode with an input/output command. In this 
mode, commands are available to read the registers, and. to 
set external sync. In addition, the system can simulate the 
interrupt on input, using diagnostic commands. The system 
can test the input/output, and interrupt functions of the 
Tnterface in the diagnostic mode~- Notice that this procedure 
permits isolation between the processor, the interface, and 
the external device so the user can quickly and efficiently 
isolate the source of trouble in the system. This capability 
is essential in practical applications. The integrated, digital 
input/output interface permits flexible connection of any 
input/output device with the processor provided the device 
speed of response is compatible with: 1) the processor 
response time to interrupt, and 2) the necessarily slow con­
trol exercised by programmed sequences of operations. 

The Direct Program Control OEM Interface 
The input/output channel of the I BM Series/1 processor 

provides a very general set of commands as discussed in 
Chapter 5. As OEM devices to be interfaced to the processor 
become more complex and require a more rapid response 
time, the previously discussed interfaces become less appro­
priate. What is needed is an interface which permits all the 
various input/output commands to be exercised through 
that interface. Except for that portion used for cycle steal 
transfers, the interface makes available the entire input/out­
put bus. The direct program control OEM interface provides 

362 



a sufficient subset of the input/output bus to enable a user 
to add hardware to this interface while taking maximum 
advantage of the input/output channel capability. In addi­
tion, the interface provides the previously-discussed self­
checking and diagnostic capability. 

OEM Interface Architecture 

Figure 103 is a block diagram of the OEM interface. As 
with any interface, data input, data output, and interrupt 
request lines are provided together with control lines. Unlike 
the previously discussed interface, the Series/1 does not 
provide buffer registers. The interface is designed to provide 
all direct program control functions for up to sixteen devices 
connected to the buses in Figure 103. The user must provide 
all the external hardware necessary to connect multiple 
devices to these lines, including: 

• Buffer registers 

• Logic to detect which device is addressed 

• Logic to control interrupt request and control lines 

The interface provides only the bus subset. Diagnostic capa­
bility is important in such an interface; without this capability, 
it would be exceedingly difficult and time consuming to 
determine on which side of a user-provided interface an error 
occurred. Self-checking operates within the interface itself. 
In addition-to provide a thorough check of the interface 
operation-diagnostic instructions permit data to be trans­
mitted out through the interface, wrapped around, and read 
back in again. This procedure is discussed further in Chapter 9. 

The OEM Interface Bus 

The direct program control OEM interface bus contains 
75 lines (Figure 104). The functions and need for most of 
these lines are self-evident. For example, 36 of the lines are 
grouped into 18 input lines and 18 output lines (all data trans­
fers are 16 bits in length with two parity bits). Since the inter­
face supports up to 16 devices, the system needs four more 
lines as device address lines. To support all direct program 
control functions, devices must be able to signal their desire 

363 



w 
O'I 
.J:>. 

User 
device 

1 

User designed 
interface 

Data 
bus out 

Output 
drivers 

Input 

Direct program 
control interface 

User 
device 

2 

Data 
bus in I /I terminators I • • • • • 

Figure 103. Block diagram of the OEM interface (1 of 3) 

Diagnostic 
register 

Bus drivers 
and 
bus receivers 

1/0 channel 

Data bus 



~ontrol I< I 
Output 

~ Imes drivers 
I I 

User 
device 

16 r'-/"V I Inter-

rupt ~ I request . , Termi~at?rs 
in and priority 

w 
0\ 
Vt Figure 103. Block diagram of the OEM interface (2 of 3) 

I 

I 
Control 

I 
I Address bus 

logic , ... 

~ Interrupt I ! Request in bus 

control 
I i 



\.I.) 

°' °' 
User interface functions include: 

• Detecting which of 16 devices is addressed 

• Buffering all data and addresses 

• Controlling handshaking using control signals to and from the direct program control interface 

• Generating interrupt signals and condition codes to be consistent with the Series/1 architecture 

The direct program control interface permits the connection of up to 16 user-supplied special devices to the 
Series/1 processor through a subset of the full input/output channel. All input/output transfers are restricted 
to the direct program control type (one sixteen bit data word transmitted per Operate 1/0 instruction exe­
cuted). The interface allows full use of the input/output system for user-supplied devices including self­
diagnostic features. 

Figure 103. Block diagram of the OEM interface (3 of 3) 



to interrupt. Consequently, 16 of the lines are devoted to 
interrupt request signals from each of the 16 devices (a device 
signals an interrupt and holds that request line until recog­
nized-hence, the 16 interrupt request signal lines cannot 
be coded into 4 lines as device addresses can be). 

Command Lines 

Full support of all input/output commands-including 
sub-functions specified by modifier bits in the command­
requires seven additional lines (as shown in Figure 104) to 
transmit the function and modifier bits contained in the 
immediate device control block command field. Notice that 
it is the responsibility of each device connected to this inter­
face to interpret those fields which require special logic. 
Clearly, as far as the user's design effort is concerned, this 
interface is more complex than any discussed previously; 
this complexity is necessary if the system is to make all 
input/output channel functions available to the attached 
devices. When the system accepts an interrupt, the device 
must supply a condition code which is reported in the level 
status register-this action requires another three bits on the 
bus. 

Control and Timing Lines 

Nine bits remain for control and timing purposes. Five of 
these nine are used to signal specific modes or commands: 

1. System reset 

2. Power-on reset 

3. Diagnostic mode 

4. Diagnostic mode modifier 

5. Processor halt 

Attached devices must respond to each of these special com­
mands in a standard way. For example, system reset 
demands that pending interrupts be reset, and registers and 
buffers be cleared. Refer to the appropriate processor's 
User's Attachment Manual to define the mandatory device 
responses to these special commands. 

367 



w 

°' 00 

Data and 
device control 

(41) 

Interrupt 
control 

(21) 

< 
[ 

l 
[ 

• 

Data bus output: 18 lines (16 plus 2 parity) 

Data bus input: 18 lines (16 plus 2 parity) 

Device address: 4 lines 

Strobe: 1 line, timing line for handshaking 

Interrupt lines: 16 lines, one per device 

Condition code: 3 lines 

Select response: 1 line (interrupt handshaking) 

Interrupt service active: 1 line (interrupt handshaking) 

Figure 104. The direct program control interface bus (1 of 2) 

' 
Direct 
program 
!Control 

) interface 

' _J 

..... 



w 

1/0 command 
(8) 

Special (5) 

---
I 

( Input/output function: 3 lines 

~ Input/output modifier: 4 lines . 

(data in 1/0 command) Direct 
program 

1/0 active control line: 1 line ~otntrfol 
~-;=.========================================================l'n er ace 

,.. 

Special command lines: 5 lines 

(halt, reset, power-on reset, diagnostic mode, 
diagnostic mode modifier) 

The 75-line direct program control bus lines provide all input/output bus control and timing functions 
except those directly associated with cycle steal operations. 

$ Figure 104. The direct program control interface bus (2 of 2) 



Interrupt and Timing 

The system uses the remaining four bus lines-1/0 active, 
interrupt service active, strobe, and select response-for 
timing and handshaking purposes. The 1/0 active line signals 
that a valid command is present; this means that device 
address, function, and modifier lines have been written, have 
settled, and may be read and executed. The interrupt 
service active line signals devices that the interrupt service 
sequence can begin. Devices previously signaling a request 
to interrupt can examine device address lines to see if they 
have been selected, and respond appropriately. Select 
response is a handshake signal from a selected (addressed) 
device. Strobe is a corresponding handshake or timing signal 
from the processor. 

Thus, the system uses most of the 75 lines on the bus to 
transfer data, addresses, condition codes, and similar informa­
tion; only a few control timing. For a device connected to 
the interface, this arrangement greatly simplifies the design 
of the external hardware. In fact-except for the necessity 
to provide service for multiple devices and for the full use of 
all commands-the interface is conceptually similar to the 
simple, integrated digital input/output interface discussed 
earlier. 

Typical Output Sequence 

The architectural simplicity of the interface is illustrated 
by considering typical input, output, and interrupt sequences. 
Figure 105 shows the output sequence: 

------ --

1. The system places the function, modifier, device address 
bits, and data on their appropriate lines. 

2. The 1/0 active tag is skewed (at least 200 nanoseconds), 
and activated on the interface 

3. Upon recognition of address compare and 1/0 active, the 
device raises the select response tag. Once raised, the 
system must hold this tag active at least until the fall of 
the I /0 active tag. The device sets condition code in 
which must remain active until strobe becomes active, or 
until 1/0 active becomes inactive (for the duration of the 
select response tag). 

370 



4. Strobe is activated and dropped 

5. The I /0 active tag is deactivated 

6. Upon recognition of the absence of the I /0 active tag, the 
device drops select response and condition code in 

7. The system deactivates the function, function modifier, 
device address, and data busses 

Typical Input Sequence 

The input sequence is similar (Figure 106): 

1. The system places function, modifier, and device address 
bits on their appropriate lines 

2. The 1/0 active tag is skewed (at least 200 nanoseconds), 
and activated on the interface 

3. Upon recognition of address compare and 1/0 active, the 
device raises the select response tag. Once raised, the 
system must hold this tag active at least until the fall of 
the 1/0 active tag. Data bus in and condition code in 
must be active until strobe becomes active, or until 1/0 
active becomes inactive (for the duration of the select 
response tag). 

4. Strobe is activated and dropped 

5. The I /0 active tag is deactivated 

6. Upon recognition of the absence of the 1/0 active tag, the 
device drops select response, condition code in, and data 
bus in 

Interrupt Response 

Each interrupting device has a dedicated line which the 
device may raise at any time. The system maintains the 
signal until e_!!her the interrupt is accepted or a reset com­
mand is received. All devices attached to the interface are 
prepared with the same command; they are enabled or 
disabled as a group, and they interrupt on the same hardware 
priority level. The processor recognizes which device inter­
rupts (priority among simultaneously interrupting devices is 
from lower- to higher-numbered addresses on the interface). 

371 



Function, modifier, device address, and data are 
placed on their appropriate lines by the interface and 
presented to the external device. 

1/0 active is raised to signal the external device that 
it may read and respond to the above information. 

The device accepts the output data and puts a condi-
tion code (3 bits) on those lines. The condition code 
is input to the level status register in the same manner 
as it is for IBM-supplied devices after an input or out-
put operation. 

, 
The interface accepts the condition code data and 
signals completion t.o the device by the strobe signal. 

The external device removes its signals and the 
processor removes its signals to complete the output 
operation. 

Figure 105. Data bus output sequence (1 of 2) 

372 



An output operation on the direct program control inter­
face follows the same conventions as those for I BM­
supplied devices-including handshaking of the data trans­
fer, and supplying of a condition code for processor testing. 

Figure 105. Data bus output sequence (2 of 2) 

The sequence then proceeds as follows (Figure 107): 

1. The system places the device address bits on their appro­
priate lines 

2. The interrupt service active tag is skewed {at least 200 
nanoseconds) and activated on the interface 

3. Upon recognition of address compare and interrupt service 
active, the device raises the select response tag. Once 
raised, the system must hold this tag active at least until 
the fall of the interrupt service active tag. Condition code 
in and data bus in must be active for the duration of the 
select response tag, or at least remain active until strobe 
becomes active. 

373 



The Operate 1/0 instruction contains function, modi-
fier, and device address bits which are placed on the 
appropriate bus lines. 

r 

1/0 active control line is raised to signal the external 
devices that they may decode and act upon the 
above information. 

r 
The external device puts its input data to the 
processor, and the three-bit condition code, on the 
input data bus. 

r 
When the input data is stable, the external device 
raises select response to signal the processor that it 
may read the input data bus and the condition code 
bus. 

The processor handshakes the transmission by out-
putting the strobe pulse. 

The external device removes all input signals which in 
turn notify the interface and processor to remove all 
output signals and complete the operation. 

Figure 106. Data bus input sequence (1 of 2) 

374 



Control lines _J L 

1/0 active I l 
Strobe (device) n 
Select response J l 
Condition code in J 1 
and data bus in 

Time 

An input operation on the direct program control inter­
face makes use of all the signals on the bus that are used 
for an IBM-supplied device. It is the responsibility of the 
user-supplied external device to detect and respond to all 
information like command and modifier fields, and to 
maintain the conventions of handshaking and condition 
code presentation. 

If all conventions are followed, an OEM device-as com­
pared to an IBM-supplied device-may be interfaced with­
out loss of overall system integrity or loss of system soft­
ware functions. 

Figure 106. Data bus input sequence (2 of 2) 

4. Strobe is activated and dropped. The 1/0 device must 
reset its interrupt request at the leading edge of the strobe. 

5. The interrupt service active tag is deactivated 

6. Upon recognition of the absence of the interrupt service 
active tag, the device drops select response, condition 
code in, and data bus in 

7. The device address is deactivated 

375 



The direct program control interface permits up to 
16 user-supplied devices to be attached. 

Each device requesting interrupt service raises its own 
interrupt line and holds it raised until recognized or 
reset. 

~ 

If more than one device requests interrupt service and 
outputs a particular address on the device address 
lines, the processor and the interface determine which 
of the 16 devices is to be recognized. The interface 
signals that an interrupt is being recognized by raising 
the interrupt service active control line. 

, 
Devices compare their addresses with the one on the 
address bus and the selected device, after putting its 
interrupt condition code on the condition code 3-line 
bus, raises the select response control line. 

The processor reads the interrupt condition code after 
detecting the select response signal. It handshakes the 
condition code transmission with the strobe pulse, after 
which both input and output signals are removed from 
the bus. 

Figure 107. Data bus interrupt sequence (1 of 2) 

376 



Individual devices attached to the direct program control 
interface may interrupt-although all 16 devices are on the 
same priority level and share a single device interrupt 
enable flag. Response to the interrupt signals a condition 
code into the level status register just as it does for IBM­
supplied devices. Software handling of the interrupt for 
user-supplied devices is then identical to that for IBM 
devices, and is fully compatible with the overall system 
design. The response to interrupts and transmission of the 
condition code is fully handshaked. 

Figure 107. Data bus interrupt sequence (2 of 2) 

Although designing an interface for one or more devices 
to this bus is not a simple operation, it is not different from 
any other logical design problem. Users should undertake 
such a design assignment only for applications which need 
the quicker response time and greater generality of this 
interface. Such a design is very economical for applications 

377 



which use many devices either on the same processor or on 
many processors. Obvious examples would be: 

• An interface to a distributed, process control data acquisi­
tion and direct digital control system 

• An interface to machine monitoring and control systems 
for manufacturing plant control 

• Clustered terminals of some special design 

OEM users can insure that all functions of the Series/1 can 
be used, that all functions of their devices can be used, and 
that overall system integrity cannot be compromised. 

Software support of devices attached in this way 
necessarily depends on the functions the devices perform. 
Device drivers and interrupt response routines are not 
conceptually different from those of any standard device; 
they may be integrated into IBM-supplied software. The 
user should consult Control Program Support and Realtime 
Programming System documentation for details of this 
software interfacing. 

Isolated and Directly Connected 
Channel Interfaces 

As long as the direct program control input/output opera­
tions are sufficient for control of the user's device; the direct 
program control OEM interface provides a completely 
generalized interface. Concurrently, it retains the self-diag­
nostic capability inherent in the Series/1 interfaces. If the 
application requires greater speed than the interface can pro­
vide, the user may have to perform cycle steal input/output; 
if so, the interface must be designed to connect as directly 
as possible with the input/output channel hardware. 

Channel Repower 

Because most interfaces are neither standard nor similar, 
the user must assume most of the responsibility for their 
design. Two aids are provided for this purpose. The channel 
repower feature is a printed circuit card consisting of IBM 

378 



and TTL technology designed to: 1) repower the processor 
input/output channel signal lines, and 2) provide isolation 
between input/output card files or user-interfaced devices 
and the channel. Logically, the repower feature activates 
the full 81-line input/output channel to allow users to do 
with it as they please. It is the user's responsibility to 
respond properly to commands and other system functions: 
for example, the input/output channel is busy once an opera­
tion is initiated-at least until time outs occur. The channel 
is asynchronous, and waits for handshakes. Hence, failure 
to provide the correct handshake signals would tie up the 
channel until monitoring timers take over. 

Socket Adapter 

The second aid, the socket adapter, is an even simpler 
interface than the repower feature. It is a card with one 
connector to plug into the input/output channel backplane 
connectors; this action directly joins the 81 input/output 
signal lines to the corresponding leads in a standard 
connector. In fact, this adapter serves only a single function: 
to enable standard, printed-circuit card connects to be 
utilized on the user-designed interface cards. No isolation 
or electronic capabilities are provided on this adapter. Again, 
it is the user's responsibility to insure that too heavy an elec­
trical load is not placed on the channel drivers or on any of 
the other operations performed which might compromise 
performance of the channel itself. 

User-designed interfaces that are attached directly to the 
input/output channel are normally justified only when a 
large number are required and their speed is absolutely 
critical to the application. Sophisticated designers will find 
that the channel is conventional in its electrical character­
istics and, consequently, can be interfaced in a straight­
forward manner. 

Self-Diagnostic Capability 

It must be emphasized that the direct channel interfaces 
do not include a microprocessor-driven internal interface 
with self-checking and self-diagnostic capability. Therefore, 

379 



it is the user's responsibility to insure that system integrity 
is not compromised. The self-diagnostic capability can be 
retained if IBM designs a cycle steal interface for the user's 
device. IBM will consider any user's special order (request 
for price quotation) for the design of such an interface. 

The Instrumentation Interface 

One important class of OEM devices often interfaced to 
computers includes instruments of all types used in: 

• Medical laboratories 

• Analytical laboratories 

• Process and manufacturing control systems 

• Research and development laboratories 

These applications are served by a wide variety of special 
purpose instrumentation. The data processing industry has 
long needed a general method of interfacing such instruments 
to computers for data acquisition and control purposes. The 
answer to this need was the adoption of a standard sixteen­
wire parallel bus called the "Digital Interface for Program­
mable Instrumentation" in the Institute of Electrical and 
Electronic Engineers (IEEE) Standard Number 488 (the bus 
is also an international standard). 

The bus devotes eight of its sixteen lines for data transfer 
(one byte at a time), and eight lines for control purposes 
(Figure 108). The standard protocol permits: 

• Polling of devices 

• Communications with one or several devices simultaneously 

• Error detection 

• Other communications' functions 

The design of the bus is especially attractive because of the 
simplicity of the data transfer mechanism and the consequent 
ease with which the bus can be included in most new 
instrumentation. 

As an example of the use of the control lines: the data­
valid, ready-for-data, and data-accepted lines perform the 
handshaking functions needed for each byte of information 

380 



Data bus 
0101 

D108 

Byte transfer 
DAV - Data valid 
N RFD - Not ready for data 
NDAC- Not data accepted 

Bus management 
I FC - Interface clear 
ATN - Attention 
REN - Remote enable 
SRO - Service request 
EDI - End or identity 

The parallel IEEE-standard instrumentation bus uses eight 
lines for data and command transfer and eight lines for 
control and timing purposes. 

Figure 108. The sixteen-line interface bus 

transmitted across data lines (Figure 109). The receiver 
indicates ability to receive data by raising the ready-for-data 
line. The bus master (or talker) puts data on the data lines 
and signals its presence by raising the data-valid control line. 
The receiver accepts the data and then signals the talker by 
lowering the ready-for-data line and raising the data­
accepted line. 

The talker then removes the data-valid signal and the data; 
the receiver removes the data-accepted signal. There may be 
multiple receivers; the handshake is accomplished by ORing 
the ready-for-data and data-accepted lines in such a way that 
the signal is not actually detected on the bus until all 

381 



receivers have signals. As a result, the transmission proceeds 
at the speed of the slowest device involved in the data 
transfer. 

The ORing of signals from multiple devices is accomplished 
by permitting: 

• Each device signaling not ready, to hold the ready-for-data 
line at ground potential 

• Each devke signaling ready, to remove the short to ground 
(Figure 110) 

Any one device signaling not ready leaves the bus at the 
ground level. Only when all devices signal ready is there no 
longer a short to ground; consequently, the bus level rises 
from ground level only when all devices have signaled ready. 

Other control lines are important in setting up the current 
bus master (or talker) and the current listeners. 

For example, the attention control line signals all devices 
on the bus to watch for their address. This recognition of its 
own address signals that the device has been selected. Dedica­
tion of control lines to specific functions simplifies the design 
and implementation of the interface for each device. This 
design simplicity has been the major reason why manufac­
turers have included an interface for this bus in much of the 
new instrumentation developed in the last few years. 

The IBM Series/1 GPIB Adapter is an interface which 
couples the Series/1 to this general purpose parallel instru­
mentation bus. The connection is through the cycle steal 
storage channel; the data transfer rate to or from main stor­
age can be as high as 65 K bytes per second. Data transfer 
is asynchronous. Direct cable lengths are limited to 20 
meters in length. 

Like all Series/1 interfaces, the GPIB Adapter is thoroughly 
integrated into the Series/1 architecture. Utilizing read data/ 
write data level commands, the adapter's microprocessor 
manages the IEEE interface protocols without CPU interven­
tion. Not only does it fully utilize the cycle steal input/out­
put system for data transfer, but the adapter also extends 
all of its self-diagnostic capability throughout the interface. 
That is, the interface itself contains a microprocessor which 
performs self-diagnosis of the adapter. 

382 



True 

~ .___ __ I 
Ready-for-data signal 

True 

False L 
Data-accepted signal 

True 

False 

Data-valid signal 

1. The talker puts data on data lines and signals data-valid 
after receiving the ready-for-data signal. 

2. The listener detects data-valid and resets the ready-for­
data signal while tasking the data. 

3. The. listener completes the handshake by signaling that 
data has been accepted with the data-accepted signal. 

4. The talker can remove the data-valid signal when it is 
perceived that the data has been accepted. 

5. The listener initiates another cycle, when ready, by 
asserting the ready-for-data signal. 

Each data transfer on the parallel bus is asynchronous and 
is handshaked; consequently, each step in the transfer is 
acknowledged by the talker and the listener involved in the 
operation. 

Figure 109. Data transfer coordination 

383 



Ready-for-data control line 

Open to assert ~ ( 
control Hn• - 1 

Listener 1 
Listener 2 

Control line remains shorted to ground until 
all listeners have asserted. 

Listener 3 

A handshake with multiple listeners AN Os together all 
replies (assertions) so that the talker sees assertion only 
when all of the listeners have asserted the control line. 

Figure 110. Data transfers with multiple listeners 

Upon software command, the interface can wrap back 
internally, thereby testing that inputs and outputs are being 
received and transmitted correctly to various points on the 
system. This process tests the system out to the bus interface 
itself. 

Finally, the sixteen-line cable itself may be wrapped back 
so that the complete system can be tested-except for the 
OEM instrumentation connected to the bus. If the system 
passes all of these tests, signals are being correctly transmit­
ted along the bus and are being correctly received from 
the bus. 

The GPIB Adapter, then, is a very attractive device for 
connecting instrumentation to the Series/1. The adapter 

384 



extends the use of the Series/1 to laboratory-type applica­
tions without either sacrificing the architectural integrity 
of the system or requiring excessive special purpose 
interfacing. 

To summarize the user device interface discussion: there 
is a wide range of such interfaces available, from standard­
device interfaces to completely do-it-yourself types, each with 
corresponding advantages and disadvantages. This diversity 
of interfaces permits the user to integrate the Series/1 into 
almost any type of system for almost any type of small 
computer application. 

385 



Distributed 
Processing Support 

The Many Forms of Distributed Processing 
A variety of applications is characterized under the title 

of distributed processing, including: 

• Remote job entry 

• Remote interactive data entry 

• Remote processing 

• Remote data base creation and access 

All of these applications require extensive hardware and soft­
ware communications' support but the structures of the 
systems can vary considerably. In general, three levels of 
distributed systems are considered for these applications as 
shown in Figures 111, 112, and 113. 

Centralized Host 

The first, simplest, and oldest level uses centralized 
processing and involves a central host, possibly a small front­
end processor, and communications' lines connected to remote 
terminals (Figure 111 ). The front-end processor removes the 
load from the host computer; the terminals then perform as 
if they were central, relative to the host. Remote job entry 
and interactive data entry are common commercial applica­
tions of this configuration. In data entry, for example, an 

386 



w 

Communications' lines c;------0...c:...._-::c--_=i~--"T'""--_!:i: :::c I :::c I 

Centralized 
host processor Front-end processor 

The data base and all processing 
occurs at the centralized host. 

Q 
Terminals 1 

The simplest level of distributed processing is a centralized host (possibly with a small computer as a front­
end processor) and distributed terminals. 

~ Figure 111. Centralized processing 



operator might signal for a specific transaction to be 
performed. The system codes information into a message 
and transmits it to the host which then activates an applica­
tion task to handle that transaction. 

The interaction continues with the host transmitting a 
template-like form which the CRT displays and into which 
the operator enters and edits the data associated with the 
transaction. After the operator completes this process, the 
system transmits the data to the host which acknowledges 
receipt (perhaps after checking the data). The operator 
then continues with the next desired transaction. Such 
distributed systems have proved to be very economical and 
effective because the terminals can be conveniently located 
near the source or users of the data. 

Remote Processors 

Small computers have made the second level of distributed 
systems economical for and attractive to users. Figure 112 
shows a hierarchical, distributed processing structure. where 
small computers are used remotely to interface and control 
batch and interactive terminals as well as to do some of the 
processing. Without host processor interaction, the small 
computer may: 

• Interact in a data entry situation with the complete setting 
up of a template-form on the CRT terminal 

• Interact with the operator during data entry 

• Edit and validity check the data and, perhaps, maintain a 
local data base 

These capabilities both off-load the host qr front-end 
processor as well as increase the interaction speed at the 
remote location. The local processing may be extensive and 
may be the kind of processing that dramatically decreases 
the load on the communications' network and the host, as 
discussed in Chapter 1. 

Distributed Application Example 

An example of distributed processing that is widely imple­
mented today is the problem of generating a payroll for an 

388 



VJ 

Centralized host processor 

Small computer front-end processor 

M Communications' lines .,. I 

•----Communications'---~ 
-----~----. interfaces ----.... --''---. ---. 

Concentrator Mult1funct1on 
processor terminal 

Terminals Terminals 
Bulk storage 
and devices 

Others 

Local data bases may be distributed. Much processing of input data and local data base accessing is 
distributed. 

The second level of distributed processing is the hierarchical distributed system with remote multifunction, 
processors or concentrators. 

~ Figure 112. Remote processing 



organization with plant sites remote from the central account­
ing group, and with differing union contracts. Often these 
union contracts call for incentive pay scales which depend 
upon the day-to-day functions that a specific individual 
performs. In central host machines, payroll-package soft­
ware is effective in performing the complex functions 
involved in taking an individual's gross pay and, after con­
sidering many taxes and deductions, calculating a net pay. 
The calculation of gross pay may involve knowledge of 
detailed production information and may vary from plant to 
plant. It is convenient to use a small, remote computer: 

• To gather production information 

• To keep the information in a data base 

• To generate the gross pay of an individual 

• To transmit this data to the central host 
- For use by the payroll package, and 
..,.. For printing the paychecks 

The remote small computer facilitates creation and mainten­
ance of the local production data base, including correction 
of errors. This procedure enables the system to calculate 
gross pay while using the same data to control production. 

The advantages of the hierarchical distributed processing 
system illustrated in Figure 112 are many; consequently, this 
level is the most common configuration planned and installed 
today. Notice that this structure takes advantage of the varied 
capabilities of the small computer including its higher-level 
languages, communications' interfaces, and bulk storage, but 
is dependent for its success upon all the hardware and soft­
ware needs listed in Chapter 1. A high level of system availa­
bility and maintainability is absolutely critical. Hence, the 
success of the application is very much dependent upon the 
type of small computer chosen by the user. 

Distributed Networks 

The third level of distributed processing is a general dis­
tributed intelligence network shown in Figure 113. Here, 
small or large multiple processors may communicate with one 

390 



Processor 

Communications' lines -

----Communications' ,....._ ...... __.___ interfaces 

Processor 

Processor 

Processor 

Each processor may act as a host-like processor, a concen­
trator, or a multifunction terminal. Data base and applica­
tion processing may be arbitrarily distributed. Each 
processor must have communications' software to handle 
message routing from processor to processor in the network. 
The third level of distributed processing is a distributed net­
work of processors communicating in an arbitrary way 
across a variety of links with distributed processing and 
distributed data base. 

Figure 113. A network of processors 

391 



another. This system distributes processing, the data base, and 
users in a rather arbitrary way. Third-structure systems show 
much promise for the future but are probably several years 
away from widespread use. Small computers will play an 
important part in realizing such networks provided their 
hardware and software architecture is sufficiently generalized. 
Distributed processing applications may use such a network 
for communications' purposes-in which case the actual struc­
ture and protocols of the network itself will be transparent 
to users. Networks of small computers may be used for 
applications like process control where the entire network-
or at least much of it-physically resides within one large 
plant, and where both the network communications' soft­
ware and the multifunction terminal type of application 
software are coresident in the small computers. 

To insure that their small computers will be compatible 
with future developments and applications in distributed 
processing, users must have access to all of the hardware and 
software requirements discussed in Chapter 1. 

First-Level Protocols 

There are several structures for distributed processing, as 
well as several levels of protocols commonly implemented in 
communications' applications; it is important to distinguish 
among them when evaluating communications' support. 
Figure 114 shows three levels of communications' protocols. 
The first level protocol is used to transmit messages back and 
forth between two directly C?nnected physical nodes. This 
level of protocol is responsible for insuring that messages are 
transmitted properly from Node 1 in the figure to Node 2, 
and that Node 2 has received these messages properly. This 
protocol usually involves: 

• Keeping a copy of a transmitted message until its correct 
receipt has been acknowledged by the second node 

• Extensive error detection procedures 

• Other records substantiating the transmission 

A variety of different protocols is used for this very 
important level and is summarized in the section of this 

392 



chapter entitled "Asynchronous Communications' Protocol 
and its Hardware and Software Support." Notice that many 
common applications need this level when two computers 
are communicating together, or a remote terminal and a 
computer are communicating between themselves. Integrat­
ing this level of protocol into hardware and software is most 
important. As discussed in the remainder of this chapter, 
the Series/1 provides extensive support at this level of 
protocol. 

Second-Level Protocols 

The second level of protocol in Figure 114 involves the 
exchange of messages between two nodes which are not 
directly connected. This level of protocol is responsible for 
setting up the linkage between the two communicating nodes 
and controlling the exchange of messages. It does this by 
using the first level protocol on each "leg" of the communi­
cations' path, as follows: typically, the system transmits a 
message from Node 1 to Node 2; the second level protocol 
determines the message content-involving data like sources 
and destination addresses. As the system passes this message 
from node to node along the communications' path, the first 
level protocol insures its correct transmission and reception. 
This procedure involves imbedding the original message in 
a new message which obeys the first level protocol. Hence, 
the original message is the data portion of the first level 
protocol message; the system transmits th is data portion 
between pairs of adjacent nodes. 

This hierarchical structuring of communications' protocols 
separates functions and permits a more orderly generation of 
communications' network systems. Notice that the second 
level of protocol is not needed in the more common distribu­
ted processing applications where the communicating 
terminals and computers are arranged in a "star" configura­
tion. Most of these applications communicate only from the 
central node (usually the host) to each individual remote 
terminal and computer; consequently, the system need not 
relay the messages across several nodes. The advantage of 
the hierarchical structuring of the communications' protocols 

393 



w 
':f 

!=--, [-=l 
Level 1 
The first and lowest communications' protocol level is responsible for transmitting no-error messages 
between adjacent nodes. The system performs error detection on each received message and uses retrans-
mission for error correction. , 

Node 1 ...... Node 2 
(source) Node 3 ~ 

(destination) .... ..... 

Level 2 
The second communications' protocol level is responsible for transmitting no-error messages from a source 
node to a destination node. As the system passes this message from node to node, it is imbedded into the 
first level protocol and transmitted to the next adjacent node with no errors. 

Figure 114. The three communications' protocol levels (1 of 21 



w 

Node 1 Node 3 Node 2 

User process User process 

Level 3 
The third and highest communications' protocol level is responsible for the orderly management of a 
"conversation" or sequence of message exchanges between two tasks. It uses the second level protocol to 
send error-free messages in both directions between source nodes. The second level protocol, in turn, uses 
the first level protocol between adjacent nodes. 

Today, three communications' protocol levels are operative ranging from the simple first level used in most 
distributed processing applications to the three level system used in large computer networks. 

~ Figure 114. The three communications' protocol levels (2 of 2) 



is that if the functions change or grow in the future, the 
second level of protocol can be added to a system without 
changing the first level. This software advantage is just as 
important to a user as is a hardware architecture that can 
absorb future changes in technology. 

Third-Level Protocols 

The third level of communications' protocol shown in 
Figure 114 is implemented only in large systems. This level 
of protocol is responsible for the exchange of messages 
between individual application tasks in separate processors. 
It involves a procedure analogous to a telephone call: one 
task calls or connects to a remote task; the second task 
answers or agrees to exchange messages in an error free, 
interactive manner. This third level of communications' pro­
tocol uses the second level to perform the actual node-to­
node communication of a message which, in turn, uses the 
first level to insure that messages move between adjacent 
nodes correctly. The IBM System/370 SNA (system network 
architecture) is just such a protocol. Small computers are 
ideal front-end processors or stand-alone node processors 
for such complex communications' applications. It is 
important that the protocols be hierarchical so that as applica­
tions develop and standards are adopted, systems are not 
obsoleted. 

The heart of all distributed processing applications and 
the basis of all communications' protocols is the first level 
where two computers or a computer and a terminal com­
municate; consequently, it is very important that the 
communications' hardware be very flexible, general, and inte­
grated into the overall system architecture. Furthermore, 
the support of such hardware must be integrated into 
system software. If these requirements are satisfied, a user 
can develop applications economically and add the more 
advanced, higher levels of distributed processing configura­
tions and protocols if they become necessary in the future. 

The objective of this chapter is to summarize the com­
munications' hardware and software architecture of the Series/1 
in order to demonstrate that it is integrated into the overall 

396 



system design previously described, and that it can support 
distributed processing effectively. The organization of hard­
ware and software for support of communications-oriented 
applications may vary considerably depending upon the 
number of communications' lines or terminals involved. 
Therefore, it is very important to consider the overall hard­
ware/software architecture. This chapter discusses that 
architecture in detail. Next, the various interfaces appropri­
ate to applications involving a small number of terminals or 
lines-and their software support-are considered. Finally, 
the Programmable Communications Subsystem-a micro­
processor attachment which facilitates applications 
involving large numbers of terminals or communications' 
lines-is discussed. The chapter also reviews the integration 
of these hardware and software elements. 

Structure of Basic Communications' 
Support of the Series/1 

The architecture of the Series/1 is specifically designed so 
that either simple or complex devices may be connected to 
its input/output system. Most interfaces are microprocessor 
controlled to insure self-diagnosis and to provide all the 
features inherent in the input/output command structure. 
Complex devices can be processors themselves. This book 
illustrates that fact in the discussion of the floating-point 
feature which implements the full set of floating-point opera­
tions and conversions. That feature is implemented as a 
printed circuit card which plugs into the input/output bus. 
The system implements communications' features in a similar 
fashion to insure consistency with the overall system design, 
and to provide the complexity needed to support the variety 
of different communications' modes and protocols currently 
used in applications. 

The structure of communications' support is shown in 
Figure 115 where the Series/1 is the primary station and is 
connected to remote stations in three different ways. A 
remote station is either a terminal or another computer. 
Examples of the latter include another Series/1 processor for 

397 



w 
\0 
00 

Local 
station ...-- Modem ... ...... Modem Remote 

station 

A point-to-point connection of two communicating stations. The modem is necessary only if the distance 
is long or the telephone communication facilities are used. 

Secondary or remote stations may be connected in several ways, but only one pair of stations communicates 
at any one point in time. Using a communications' protocol, the local station controls which remote station 
sends or receives data. 

Figure 115. The structure of communications' support (1 of 3) 



\J.) 

Local 
station 

Modem 
/ 

/' 

..... -...... 

\ 

Modem 

Modem ..,. 

Modem 

Remote 
station 

Remote 
station 

Remote 
station 

A point-to-point switched or dial-up connection of communicating stations. Only one secondary station is 
connected at any time. Both dial-up and responding to the dial-up with Series/1 communications' interfaces 
can be automatic. 

~ Figure 115. The structure of communications' support (2 of 3) 



..j:>. 
0 
0 

~ Modem Tributary 
~ 

station 

Control 
~ Modem 

station 
Modem Tributary ..,.. 

station 

i...-... Modem Tributary 
station 

In multi-point connection of communicating stations, all secondary stations receive the same information 
across the line or bus. The communications' protocol must call for polling of stations (responding only 
when addressed) and similar functions so that only one tributary station communicates at a time as 
directed by the control station. 

Figure 115. The structure of communications' support (3 of 3) 



small computer to small computer communications, or an 
IBM System/370 operating under one of its teleprocessing 
access methods. A terminal consists of a control unit and 
one or more input/output devices like keyboards and 
printers. The connection between the Series/1 and the 
remote station is via communications' lines which may be 
directly connected to interfaces or driven through modems. 
The latter are necessary for long distances and across tele­
phone networks to provide adequate signal power and 
proper signal forms compatible with established systems. 

Remote Stations' Connections 

Remote stations may be connected in a point to point 
switched or nonswitched manner (Figure 115, parts 1 and 2). 
The latter is most commonly used in conjunction with the 
telephone network which permits connection to a remote 
station on a temporary basis; the user establishes this connec­
tion by literally dialing the number of the remote station. 
Hardware interfaces, of course, provide the necessary control 
signals to respond to dial-up connections (for example, an 
interrupt signal when a ring is detected). In either case, 
(Figure 115 part 1, or 115 part 2), the communication is 
between the Series/1 and a single remote station at any instant 
of time; other remote stations are not connected. Sometimes 
a "bus" or multipoint arrangement is necessary or desirable 
as shown in Figure 115, part 3. Here, several remote stations 
are simultaneously connected to the Series/1. In this case, 
the system must assign an address to each remote station; it is 
the responsibility of the primary station-the Series/I -to 
control which station communicates at any instant of time. 
Again, only one station communicates at any time; the other 
stations are connected but must not respond in any way 
until they are specifically addressed. 

Half- and Full-Duplex Communications 

Connections between local and remote stations may be 
half-duplex or full-duplex. In the half-duplex situation, 
communications can take place in only one direction at a 
time. In the case of full-duplex, communications can take 

401 



place simultaneously in both directions. If only a single com­
munications' path is physically provided, half-duplex opera­
tion is necessary. The disadvantages of half-duplex include: 

1. Changing of line direction to reverse communications' 
direction often takes a considerable amount of time rela­
tive to the length of transmission (as, for example, when 
the line must be turned around to transmit a single 
acknowledgement character) 

2. Characters transmitted from a remote CRT cannot be 
echoed back as received for display on the CRT; instead, 
they must be displayed as transmitted rather than as 
received 

If two communications' lines are available, they may be 
used in a half-duplex manner by transmitting on only one 
line at a time. This has the advantage that all turn around 
time is eliminated and simplifies the protocols. Full-duplex 
communications involve more complex protocols such as 
SDLC to control transmission of messages in two directions­
especially when the messages are different lengths, and the 
system intermixes outgoing messages with those messages 
which acknowledge receipt of other messages. 

Communications' Protocols 

The control station governs the communications between 
the pair of stations by polling the remote station: in effect, 
asking if it wishes to transmit, or commanding it to receive a 
message. The communications' protocol is the convention or 
agreement on the form which the interchange of information 
will assume so the stations can understand one another. At 
the first level, the primary concern is that a message can be 
transmitted, received, and acknowledged accurately. Depend­
ing upon the type of remote station, several different com­
munications' protocols have been developed, and each one is 
appropriate under different circumstances. Different hard­
ware interfaces are necessary to support each protocol 
because of: 

1. The complexity of these protocols 

402 



2. The need to make flexible interfaces which perform as 
much of the routine processing of the communications' 
data as possible 

Three protocols are used: asynchronous communications, 
binary synchronous communications, and synchronous data 
link control (SDLC} communications. All three protocols are 
supported with hardware interfaces on the Series/1. The 
following section describes briefly: 

1. The protocols themselves 

2. The hardware interfaces and their capabilities 

Since it is the responsibility of the communications' proto­
col at the first level to guarantee correct transmission of 
information, it is necessary that the system provide the 
receiving station with some means to check for errors, and 
then inform the sending station whether the message was 
received correctly or not. As a result, the following general 
functions must be provided by the communications' protocol: 

1. Synchronization information-a signal which permits the 
receiving station to determine the beginning of a message 
or character; this signal enables both sender and receiver 
to interpret the bit serial sequence the same way 

2. Message component sequencing-agreement on how 
addresses are to be transmitted; this sequencing enables 
multiple secondary stations to determine which one is 
addressed 

3. Error detection information-some means by which the 
receiver may test the received character stream to deter­
mine if noise or error has modified the transmitted 
message 

4. Control conventions-special characters or messages to 
acknowledge correct or incorrect receipt of a message, 
reset a device, or perform other functions 

Vertical and Longitudinal Redundancy Checks 

Error detection can be done by vertical redundancy check­
ing which simply provides a parity bit on each character. 

403 



When such a bit is available, the procedure permits detection 
of an error involving the change in any one bit in the charac­
ter, and some-but not all-errors involving changes to more 
than one bit. Hardware permits a choice of even or odd 
parity, under program control, to facilitate connections to 
the variety of terminal devices available. Vertical redundancy 
checking is not feasible if eight-bit characters are used, and 
the code uses all eight bits for information. Errors often 
occur in bursts; isolated errors of the type detected by parity 
checking are, consequently, less common. The system 
accomplishes longitudinal redundancy checking (also called 
horizontal redundancy checking) by forming a logical check 
sum of all the characters transmitted in the message. The 
check sum is transmitted with the message, and compared 
to the sum recalculated at the receiver. This procedure per­
mits detection of many more combinations of errors than 
simple parity or vertical redundancy checking. 

Cyclic Redundancy Checks 

Modern cyclic redundancy checks are used to maximize 
the number of different errors that the system can detect 
with a given number of message error check bytes. Cyclic 
redundancy checking is a version of horizontal checking in 
which the check character or characters are generated in 
the following manner: the system takes the remainder after 
dividing-by a base number-all the serialized bits in a block 
of data. Based on elegant information theory concepts, 
cyclic checks guarantee the detection of all burst errors up 
to a specified size, and a very large percentage of errors 
beyond that specified size. With two bytes of error detection 
information appended to each message, the probability of 
an undetected error becomes minute. lfeven this error 
rate is too large for a very critical application, the applica­
tion software can simply echo messages back to the source 
and check them there. The most important fact here is that 
the system performs error recovery at the protocol level with­
out involving the application tasks because, essentially, all 
errors are detected automatically with vertical or cyclic 
redundancy checking-that is, checks which are in the 

404 



protocol itself and are, consequently, performed by the 
interface hardware. Hence, response and throughput of the 
communications' system is maintained at a very high level. 

Data Transparency 

One other consideration is important in communications' 
protocols. Sometimes, it is necessary to transmit arbitrary 
data items which then comprise a stream of arbitrary 
characters. The difficulty here is that some characters are 
reserved for special or control purposes {end of text, for 
example} and-if detected in the data stream-might pre­
maturely terminate the transmission. When arbitrary data 
is transmitted, the user must adopt some convention to make 
the data "transparent" to control characters. Each communi­
cations' protocol adopts a different solution to this "trans­
parency" problem. 

Asynchronous Communications' Protocol 
and its Hardware and Software Support 

Asynchronous communications between two stations 
involves a sequence of characters which are not synchronized 
with one another. As described in Chapter 7, this form of 
communications is also termed start-stop transmission and 
involves the following conventions: 

1. The two logical levels of the communications' line are 
cal led "mark" and "space" 

2. Between characters, the line is held in the mark condition 

3. Each character consists of a start bit followed by eight 
information bits, followed by either one, one and a half, 
or two stop bits 

4. Bits within a character are synchronous, with the speed 
between the two communicating stations being agreed 
upon in advance 

5. The start bit is the mark-to-space transition which-when 
identified by the receiving station-initiates timing for 
sampling of the information bits 

6. Stop bits put the line in the mark condition 

405 



Line Turnaround Characters 

Since a message is a sequence of characters, it is necessary 
to transmit one character at a time with the above format. 
The communications' protocol is associated with the meaning 
of special characters and the response of the receiving station 
to them. Different codes are used with different terminals; 
consequently, no standard protocol is employed. All proto­
cols, however, involve transmission of a sequence of charac­
ters. Some protocols have special meaning for the terminal 
or computer and cause a line direction turnaround. Thus, a 
command enabling the terminal to transmit characters is a 
character sequence for a given terminal type. The system con­
cludes this sequence with a control character which causes 
the line direction to reverse, permitting the terminal to trans­
mit characters. Transmission of characters (data for example) 
from the terminal concludes with special characters that 
involve the receiving computer. If they are to be widely 
applicable, the variations from one code to another and from 
one terminal to another call for a very flexible, programmable 
asynchronous communications' interface. 

Asynchronous Interfaces 

Two such interfaces are provided in the Series/1 system. 
The first, the single-line asynchronous communications' con­
trol interface, provides for one half-duplex line operating 
at speeds up to 9,600 bits per second. The same interface 
may be used as a primary or secondary station. The inter­
face itself does not recognize station addresses. As a result, 
the system cannot use this interface as a secondary station 
on a multipoint line unless the system provides software 
within the computer or the device to do the address recogni­
tion. The second interface provided is the multiple-line asyn­
chronous communications' control interface which is similar 
to the single-line interface except that the user may connect 
a maximum of eight lines operating in half~duplex. The 
maximum bit rate for each connected device is 2,400 bits 
per second. 

406 



The interfaces operate in the cycle steal mode: 

• Accepting bit serial start-stop character sequences 

• Assembling them into a byte 

• Writing the byte directly into Series/1 main storage using 
the cycle steal capability of the input/output channel 

Cycle Steal Capability 

This latter capability is an important consideration when 
multiple lines are connected because each character received 
steals only one main storage cycle from the processor. The 
alternative procedure is to interrupt after each character is 
received and input the character into storage with a direct 
program control command. The difference between pro­
cedures-in processor overhead time-is much more than a 
factor of ten. For example, ten lines each operating at 9,600 
bits per second correspond to slightly less than 10,000 
characters per second (one character transfers in one 660 
-nanosecond cycle on the 4955 processor). On a cycle steal 
basis, this takes about 7 milliseconds of the processor time 
or less than one percent overhead. In contrast, an interrupt 
per character-responded to by a minimal program-would 
take around 25 microseconds per character or about 25 per­
cent of the processor time: a ratio of more than 30 to 1. 

In order to support cycle steal communications, the inter­
face must recognize control characters because they signal 
line turnaround necessity. The Series/1 asynchronous inter­
faces provide for two different character codes which are 
selectable under program control. The system may define 
and load line control characters into the interface under pro­
gram control. Thus, the special control characters may vary, 
depending upon which terminal is communicating, while 
the Series/1 still handles them automatically under program 
control. The user can select the bit rate for the terminal 
under program control. It is a simple operation to connect 
many different special control character codes to these 
interfaces at different bit rates while still providing 
standard software. 

407 



Software Control 

Like all 1/0 devices, input/output commands are used to 
prepare the interface (select interrupt level and enable inter­
rupts), start the operation, reset the interface, and perform 
other operations. The system transmits control characters 
and code designation using the device control block-the 
eight-word data block addressed in the immediate device 
control block of an input/output cycle steal command. The 
system transmits data in this block, on a cycle steal basis, to 
the channel and then loads it into registers. Each incoming 
character is compared to these control characters to 
determine whether or not an interrupt should be generated 
after the character is loaded into storage. In this way, the 
involvement of the processor is minimized. 

Binary Synchronous Communications' 
Protocols and Support 

The binary synchronous communications' protocol is 
the most common synchronous protocol in use today; the 
Series/1 fully supports both single and multiple line interfaces 
and higher-level languages under the Realtime Programming 
System. Communications involve messages which are com­
posed of a header, a body, and a trailer each of which is 
several characters in length. Figure 116 shows the basic 
message structure. The character sequence is transformed 
to a bit serial sequence and transmitted serially at speeds 
ranging from 600 bits per second to up to 56,000 bits per 
second. Because of the synchronous nature of the trans­
mission, throughput and efficiency are very high. Communi­
cations are restricted to the half-duplex mode. 

l\1essage Structure 

Typically, a message starts with one or more synchroniza­
tion characters (a predefined character(s) which permits the 
receiver to get into sync: that is, to align its received charac­
ter boundaries with the actual characters transmitted). 
Each field begins or ends with special control characters, for 

408 



Header 
) 

Body or ( 
text 

1 

( 

Trailer ( 

\ 

t-----------

First character transmitted 

Header includes synchroniza­
tion characters, address of 
remote station, and control 
character indicating start of 
text, or request for reply. 

Body contains blocks of text 
each with its own terminating 
control character and block 
check characters. 

The trailer contains the final 
control character indicating 
the end of the message or the 
end of the transmission, and 
the last set of block check 
characters. 

Last character transmitted 

The format of a binary synchronous communications' 
protocol message includes message portions delimited 
by special control characters. 

Figure 116. Basic message structure 

409 



example start of header, start of test, start of block, end of 
block, end of test. The message may consist of several blocks, 
each of which has its own horizontal or cyclic redundancy 
check characters following the end of block control character. 
Special control characters are also available for acknowledge­
ment, negative acknowledgement, and similar functions. 
Designed to operate in the half-duplex mode, each message is 
acknowledged or negative acknowledged, requiring two line 
turnarounds for each message. 

The system signals transparency by the character sequence 
DLE STX: two control characters in sequence. Once in the 
transparent mode, any DLE character which occurs is auto­
matically duplicated on transmission; the system detects the 
duplication upon reception, deletes the one DLE, and does 
not interpret the other as a special character. Transparent 
mode is halted by the transmission of a sequence without 
a duplicated DLE character. 

Communications' Example 

Figure 117 shows a simple message being transmitted using 
this protocol. Notice that the system includes two blocks 
in the single message but acknowledges only the overall 
message. This procedure reduces the number of line turn­
arounds that occur, in case of error, at the possible expense 
of the retransmission of a larger message as illustrated in 
Figure 118. The illustrated procedure is possible because the 
system defines a multiplicity of control characters whose 
meanings are appropriate for different conditions. In this 
way, end of transmission is different from end of text 
because it is possible for the secondary station to transmit a 
reply. In case of error, the receiving station must detect the 
error during the cyclic or horizontal redundancy check on 
the incoming data, and inform the transmitting station with 
another control character. This control character is called 
negative acknowledge and is used for any "no" answer from 
the receiving station as shown in Figure 119. 

410 



.j::. ..... 

Primary station: I Text chars. I ~ I BCC 11 Text chars. I E) I BC~ 

Secondary station: 

The ACKO and ACK1 acknowledgement characters are used alternately to signal: 

• Ready to receive 

• Message received correctly 

• Any other "yes" answer 

To minimize the possibility of accepting a lengthy erroneous message, the protocol permits multiple 
breaks-each of which is individually error-checked-in the text portion. 

This message contains two text blocks, each with its own error checking characters. The line is not turned 
around for acknowledgement until the end of text block control character is detected. 

The intermediate text block character signals that error checking should be done at that point, but the line 
is not turned around until the next block. In this way, fewer line turnarounds are required. An error in any 
block, however, requires all blocks since the last ACK to be retransmitted . 

Figure 117. Example of a character sequence for a single message 



.j:>. ..... 
"-> 

The primary station signals completion of a transmission with an end of transmission control character which 
turns the line around and permits a reply from the secondary station. 

If the secondary station does not wish to reply, it transmits a NAK. Otherwise, it initiates a reply message in 
the same manner as the primary station. 

I STX I Primary station: ACK 

i ~ I ETX I Secondary station: 

Messages may alternate in direction at times determined by control characters like end of transmission. 

Figure 118. Exchange of messages 



..j:>. 

Primary station: 

Secondary station: 

~Repeat~ 

I STX 11 Toxt ch"•· I ~ I BC111 STX 11 Somo toxt I ~ 

~~ 
Error detected during 
longitudinal redundancy 
check 

~ ... 

~ 

Error detection is done with the block check characters and is signaled by a negative acknowledge (NAK) 
rather than a positive acknowledgement (ACK). 

When the receiving station detects an error, the interface hardware performs the block check and detects 
the error. The station's software turns the line around and transmits a NAK. The primary station then 
retransmits the entire message . 

~ Figure 119. Error detection 



Character Stuffing 

For efficiency purposes, the checking of characters for a 
DLE character, the inserting of an extra DLE, and other 
checking procedures are, normally, interface (hardware) func­
tions. This technique for transparency is called "character 
stuffing" because the extra character is inserted into the 
transmitted stream. In contrast, SDLC uses "bit stuffing" 
for the same purpose. 

The Series/1 provides three binary synchronous communi­
cations' interfaces: 

1. Single-line interface-one half-duplex line operating at 
speeds up to 9,600 bits per second with initial program 
load (IPL) capability 

2. Single-line high speed interface-one half-duplex line oper­
ating at speeds up to 56,000 bits per second with initial 
program load capability 

3. Multiple-line interface-up to eight half-duplex lines oper­
ating at an aggregate speed up to 33,600 bits per second. 
No initial program load capability is provided on this 
interface. 

Interface Code Support 

The single and multiple line medium speed interfaces pro­
vide standard EIA and CCITT interfaces for connection to 
common modems. The interfaces support both EBCDIC and 
ASCII codes which are selectable under program control 
(initial program load assumes EBCDIC). Depending upon 
the code selected, the system performs two different types 
of error detection checking. Since ASCII iS a seven bit code, 
the eighth bit can be used as a parity bit. By using ASCII 
transmission, checking is done by parity on each byte received. 
In addition, the system performs a redundancy check (the 
logical sum of all of the bytes). The EBCDIC code uses all 
eight bits for data; consequently, no parity bit is available. 
A more sophisticated error detection is performed in the 
EBCDIC mode using a cyclic redundancy check, which is a 
check over all bytes of the message using a "polynomial" 
error detection procedure. The hardware interface-

414 



depending on whether it is in the ASCII or EBCDIC mode­
accumulates the error detection information as each byte is 
received and, finally, compares them with the transmitted 
correct values (called block check characters). The interfaces 
can also perform block checking on intermediate blocks 
without processor interaction. 

The interfaces use the cycle steal input/output channel to 
input or output two characters at a time-with a possible 
exception for the last byte. If the system does not 
achieve synchronization within a reasonable time or does 
not receive an acknowledgement within another specific 
interval, the interfaces provide time-out interrupts. 

Figure 120 shows the names and functions of special 
characters interpreted by the Series/1 binary synchronous 
hardware interfaces. User application software sets up 
messages as a character sequence in storage, and then initiates 
the transmission. As discussed later in this chapter, this set 
up can be done from the assembly language level, the 
FORTRAN level, or the PL/I level. The latter two levels 
make transmission of information to a remote terminal 
essentially the same as transmission to a local device. 

Operating Modes 

The primary station controls the transmission and recep­
tion of messages as well as the selection of stations. Figure 
121 shows the various operating modes which the hardware 
binary synchronous communications' interfaces must interpret. 
Control mode is the condition for any interface not being 
communicated with at the moment. In this mode the inter­
face monitors incoming characters until it detects an end-of­
transmission character, after which it monitors, twice in suc­
cession, for its station address-the duplication of the address 
is a precaution procedure in case line noise occurs; the precau­
tion procedure is necessary because secondary stations which 
monitor do not check the station address with cyclic 
redundancy checking. Any device not selected will realize 
this when the system detects the start-of-header or start-of­
text character. Unselected devices then idle until another 
end-of-transmission character places them back in the 
control mode. 

415 



"""' ...... 
O"I 

I 
Name Mnemonic EBCDIC ASCII Mnemonic Function 

Start of heading SOH SOH SOH SOH Reset control mode and set the adapter 
to text mode. BCC accumulation starts 
with the first character after the first 
SOH or STX. 

Start of text STX STX STX STX Reset control mode and set the adapter 
to text mode. BCC accumulation starts 
with the first character after the first 
SOH or STX. 

End of transmission ETB ETB ETB ETB Reset text mode with block check 
block (note 1) character (BCC) comparison. 

End of text (note 1) ETX ETX ETX ETX Reset text mode with block check 
character (BCC) comparison. 

End of transmission EOT EOT EOT EOT End of transmission. 
(note 1) 

Enquiry (note 1) ENO ENO ENO ENO Reset text mode without BCC trails-
mission and comparison. 

Negative acknowledge NAK NAK NAK NAK Negative response to a request for a 
(note 1) reply, or to a block of heading or a 

block of text in error. 

Figure 120. Names and functions of special characters (1 of 4) 



Name Mnemonic EBCDIC ASCII Mnemonic Function 

Synchronous idle SYN SYN SYN SYN Transmitted automatically by the 
adapter to establish and maintain 
synchronization. 

Data link escape DLE OLE DLE OLE Alert the adapter to test the next 
character for a defined control sequence 
in transparent text mode. In nontrans-
parent text mode, DLE is treated as 
data. 

Intermediate block ITB IUS us ITB Included in the BCC; it causes the BCC 
character to be sent or received. 

Initial program load IPL DC1 DC1 ENO IPL Control characters to initiate an IPL 
(note 2) sequence. 

Even acknowledge ACKO OLE (70) DLEO ACKO Indicate affirmative acknowledgement 
(note 1) to even blocks. 

Odd acknowledge ACK 1 DLE/ DLE 1 ACK 1 Indicate affirmative acknowledgement 
(note 1) to odd blocks. 

Wait before transmit- WACK DLE, DLE; WACK Indicate a temporary not ready to 
ting positive acknowl- continue/receive condition. 
edgement (note 1 l 

I 
~ 

Figure 120. Names and functions of special characters (2 of 4) ...... 



~ 
00 

I 
Name Mnemonic EBCDIC ASCII Mnemonic Function 

Mandatory dis- DISC OLE EOT OLE EOT DISC Used on switched communication 
connect (note 1) facilities only, to initiate a disconnect. 

Reverse interrupt RVI DLE@ OLE< RVI Reverse direction of data transfer. 
(note 1) 

Temporary text delay TTD STX ENQ STX ENQ TTD Alert the receiving station to a tempor-
ary text delay. 

Transparent start of XSTX OLE STX XSTX Turn off control mode and set the 
text (note 3) adapter to transparent text mode. 

Transparent inter- XITB DLEIUS XITB Same as ITB, but also turn off trans-
mediate block (note 3) parent text mode. 

Transparent end of XETX DLE ETX XETX Same as ETB or ETX but also turn off 
text (note 3 I transparent mode. 

Transparent end of XETB DLE ETB XETB Same as ETB or ETX but also turn off 
transmission block transparent mode. 
(note 3) 

Transparent synchronous XSYN DLE SYN XSYN Transmitted automatically by the 
idle (note 3) adapter to establish and maintain 

synchronization in transparent text 
mode. 

Figure 120. Names and functions of special characters (3 of 4) 



""" __. 
l.O 

Name 

Transparent block 
cancel (note 3) 

Transparent TTD 
(note 3) 

Data OLE in transpar­
ent mode (note 3) 

Notes: 

Mnemonic EBCDIC 

XENO OLE ENO 

XTTD OLE STX 

XDLE OLE OLE 

ASCII Mnemonic Function 

XENO 

XTTD 

XDLE 

Turn off transparent text mode and 
cancel the current block of data. 

Alert the receiving station to a 
temporary text delay in transparent 
text mode. 

In transparent text mode, the trans­
mitter adds a second OLE after each 
data OLE. At the receiver, the first 
OLE is stripped off and does not 
enter storage or the BCC. 

1. These control characters and sequences cause a COD (change of direction) interrupt request after the required action has 
been completed. 

2. Not applicable in ASCII format. 
3. Transparent mode is not available in ASCII. 

The binary synchronous communications' protocol is characterized by a number of control characters which have 
defined meanings and to which connected devices must respond in a predefined manner. 

Figure 120- Names and functions of special characters 14 of 4) 



l 
Control mode 

Enter control mode when 
end-of-transmission character 
is received 

If not selected, wait for 
another end-of-transmission 

L character 
Detect address of 
this station 

Select mode 
IPL command 

Detect start-of-text or 
similar control character 

Text mode 

End-of-text 
character 
received 

Transparent 
text mode 

r-------. 
I 
I 
I 
I 
I 
I 
I 
I 

1 
Initial-program­
load mode 

1---------------1 
Transparent 
text mode 
! T 

I 
I 
I 

L------' 
Unsuccessful IPL 

___________ .....,. 
Successful _IPL terminate 
with processor interrupt 

The binary synchronous interface operates in one of 
several modes depending upon whether it is selected by 
the controlling station for transmission or receiving, for 
initial program load, or for other functions. The mode 
changes are caused by detection of pre-defined control 
characters. 

Figure 121. Binary synchronous interface modes 

420 



Communications begin once the device recognizes its 
address. The primary station may transmit a message to the 
selected device by placing it in text mode and-if necessary­
transparent text mode. Certain control characters demand 
a response from the secondary station; in this case, the half­
duplex line turns around. For example: after each text 
block, the end-of-transmission block character turns the line 
around so that the receiving terminal can either acknowledge 
or negative acknowledge depending upon whether or not the 
system has verified the block control characters. 

Control Characters 

The system uses control characters to invoke specific 
responses. For example, an enquiry (ENQ) asks if a remote 
station wishes to transmit to the local station. This enquiry 
causes a line turnaround and activates either an acknowledge 
character (ACK) if the system wishes to transmit or a nega­
tive acknowledgement (NAK) if it does not. 

Other control character sequences are similarly interpreted 
as invoking special functions. The system originates the 
Initial Program Load command as shown in Figure 122. The 
address of the device on a multipoint line follows the two 
synchronizing characters. The two DCL characters are, by 
convention, interpreted as an IPL command. The ENQ 
character asks if the down-line processor is ready to receive 
the IPL. The line is turned around and acknowledged with 
the control character ACKO, as shown. The host then puts 
the line into transparent mode by transmitting the D LE 
STX two-character transparency command sequence. 

The IPL message is simply the program transmitted a byte 
at a time (the system must use the transparency mode since 
the bytes of the program can take on any arbitrary value). 
The interface duplicates any byte which happens to be the 
same as DLE and deletes the extra DLE at the receiver. 

Finally, transparency mode is left with the DLE ETX 
sequence in such a way that the transmitting interface does 
not duplicate the DLE. The receiver leaves transparency 
mode and acknowledges the IPL message (provided, of 
course, that it has been received with no error). If the IPL 

421 



First character transmitted 

SYN 
SYN 

All messages start with synchronization 
characters. 

ADDR ~ The device address is repeated for error 
ADDR detection purposes in multi-path 

operations. 

DC1 
DC1 H Initial Program Load command character 

is repeated twice. 

ENO }).----{{ Request permission to IPL. 

ACKO >-(-~ Secondary device interface acknowledges it 
is ready to receive IPL 

DLE 
STX 

DLE 
ETX 

Put remote processor into transparent 
mode because IPL data may contain 
control characters. 

IPL character sequence is loaded into the 
remote processor storage starting at 
location zero. 

H Leave transparent mode and terminate 
the IPL message. 

ACK1 process?r acknowledges wi~h softwa~e; r--{ If the IPL was successful, the remote 

otherwise the processor waits for a time 
out and a repeat of the IPL message. 

Figure 122. Example of a message exchange containing an Initial Program Load 
command and acknowledgement 

422 



sequence is received correctly, an interrupt occurs in the 
receiving processor to end the I PL mode. If not, the inter­
face returns to the IPL mode hoping to receive a second 
IPL sequence. The host processor waits for an acknowledge­
ment of the IPL sequence; if none is received, it reissues the 
I PL sequence. 

The Synchronous Data Link Control Protocol 
and its Hardwareand Software Support 

Although the binary synchronous communications' protocol 
is common and useful, it has one limitation which requires a 
different protocol: namely, it cannot be used in full-duplex 
mode. Full-duplex lines may be used to avoid the line turn­
around time when simple ACK or NAK one-character 
messages must be returned; but this procedure does not take 
advantage of the available line capacity. Full-duplex com­
munications involve sending messages simultaneously in 
opposite directions. Since these messages are not necessarily 
either the same size or synchronized in time, there is a compli­
cation introduced in acknowledging receipt of correct or 
incorrect messages: the simple ACK and NAK protocol is 
not adequate because it does not identify specific messages. 

Need for SDLC 

IBM introduced the synchronous data link control (SDLC) 
protocol to handle this problem. It permits full-duplex 
transmission in a particularly efficient manner. The protocol 
is rapidly being adopted by other vendors, and is in fact becom­
ing an international standard under the title high level data 
link control (HDLC). SDLC defines a protocol for communi­
cating an arbitrary message between two nodes (possible on a 
multipoint line). For communications with IBM devices, IBM 
has introduced standard definitions for the information part 
of the message. HDLC provides a unique name to differenti­
ate the general term from the IBM particularization. In 
general, when HDLC is used to communicate with any device, 
its manufacturer is free to define the message content in a way 
meaningful to that device. OEM users of the Series/1 will, of 

423 



course, do the same thing when using SDLC to communicate 
with their devices or processors. 

SDLC Messages 

Figure 123 shows the basic concept of SDLC communica­
tions. Each of the two communicating stations transmits­
simultaneously in opposite directions-a sequence of message 
structures called "frames". The system provides two levels of 
information grouping for error checking: the frame level and 
the frame sequence level. As illustrated in Figure 123, each 
frame contains within it two bytes called the "frame check 
sequence", which is simply a cyclic redundancy check word 
for the frame itself. Using these bytes, the system checks 
each frame received to determine if it was received correctly 
or not. As a result, just as in binary synchronous communi­
cations, the error checking of an individual frame involves: 
1) accumulating the check sequence as bytes are assembled 
from the serial line; 2) finally, comparing the calculated 
check sequence against the transmitted one. 

To acknowledge receipt of a message and to differentiate 
between frames, each frame is identified with a three-bit 
number-zero to seven. In the header of each frame is a con­
trol field shown in Figure 123 and amplified in Figure 124. 
The NS three-bit field carries the number of the frame and 
interprets it as the number of the frame being sent. The 
system provides the NR field (number received) for the 
station to acknowledge successful reception of messages. 
By convention, the receiver keeps track of the number of 
the next frame to be received. 

Message Coordination 

Each time the processor or a device receives a frame, it 
checks the frame first with the error detection word to see 
if it is correct. If it is, the receiver next checks the NS field 
of that frame to see if it agrees with the number of the frame 
the receiver expects to receive. If it does, the frame 
sequence is correct and the frame is accepted. If the error 
detection procedures determine that the frame is received 
incorrectly, it is discarded. If it is received correctly but the 

424 



.;:... 

Frame 0 Frame 7 Frame 6 Frame 0 

······I I I I I I · · · I I 
Primary 
station .-. 

...... Secondary 
station 

······C-1 I l······I I [ - --=i 

Address and control 
plus initial control 
character (flag) 

Frame 0 Frame 1 Frame 7 Frame 0 

Example of one frame 
Header Information field Trailer 
~~~ 

~ Header I Body I Trailer ~
Error detection informa·

Information tion (frame check sequence)
portion (may and terminating control
be absent) character (flag)

The SDLC full-duplex protocol exchanges messages simultaneously in two directions. The basic unit is
called a "frame" which contains frame check sequence characters for cyclic redundancy error detection.
Frames are numbered to permit acknowledgement of those received correctly. As many as seven frames
may be outstanding before an acknowledgement is required .

~ Figure 123. Basic concept of SDLC

.;..

~

Beginning Frame -------------------'..J

Flag

Flag

A

I Address
I
I
I
J-8 bits .j

I

c

Control

I,,. 16 bits • 1
I

Variable length
information
field (may be
absent)

FCS

Check field I
I
I
I

I... 16 bits -l

I l
I I

I
--------Span of CRC and zero insertion -------......;M
I

Figure 124. Detailed definition of the SDLC frame format (1 of 2)

Flag

~

(Sent last) l C (Sent first) J
Bits I 0 1 2 I 3 I 4 5 I 6 I 7 I

Information transfer format I NR I P/F I NS I I O 1
1

Supervisory format I NR I P/F I * I 0 I 1
Nonsequenced format I ** I P/F I ** I 1 1 I

I I t I I I
Poll/final bit

~··---------­Control field

One frame is six bytes in length (minimum). Only one control character is used: "flag" which is six sequen­
tial one-bits with a zero bit on each end.

The frame check sequence character pair is taken across the entire frame with the exception of the initial and
final flag control characters.

The control field includes two three-bit fields; these fields indicate the frame number being transmitted and
the frame number next expected to be received. This numbering convention implies that lower numbered
frames were received correctly.

!::'.: Figure 124. Detailed definition of the SDLC frame format (2 of 2)

frame sequence is incorrect, it is usually discarded although
the protocol definition does not require this. Whenever the
receiving station transmits a frame to the primary station, it
carries the current value of NR; that is, the number of the
next frame which the receiver expects to get.

When a station receives a frame, it checks the NR field to
determine what the receiver expects to get next. Any frame
previous to this number in the sequence is assumed to have
been received error free; hence, the buffer space in the send­
ing station is freed. The system must retain messages at
this point-or beyond-in the sending sequence until a later­
received frame acknowledges their receipt. Notice that this
procedure allows one station to send more frames than it
receives because one frame can acknowledge several
messages.

Message Acknowledgement

Because the message count is limited to three bits, a
maximum of seven messages may be outstanding before the
system requires acknowledgement. That is, once a station
has sent seven messages, it must wait until the receiver
acknowledges reception of some or all of them. For example:
if the receiver reports an N R of 4, messages 4 through 6 must
be repeated. If the receiver reports an N R of 7, all seven
messages (O through 6 inclusive) have been received, and
message number seven is the next one expected. Notice that
even though eight message numbers are defined, only seven
messages can be outstanding and unacknowledged at any time
if ambiguity is to be avoided.

This fact is illustrated in the above example if the
receiver acknowledges with an N R of 0. If the last message
sent was number six, this acknowledgement clearly means
that no message was received and the entire set must be
retransmitted. However, if eight messages were outstanding,
an NR of zero could have two references: either to the first
message sent, indicating that none were received; or to the
next expected message, indicating that all eight were
received correct! y.

428

It is the responsibility of user software to generate
messages and pass them to the interfaces for transmission.
It is the responsibility of the interfaces to handle error detec­
tion at the frame level and to notify the processor about
control information such as the N R and NS fields.

The examples above were described as if frames always
started with zero, but in fact the frame count wraps around
with zero following seven. The only frame count restric­
tion is that no more than seven messages starting with any
initial count may be simultaneously outstanding without
acknowledgement.

With this simple mechanism, SDLC solves the problem of
error detection and acknowledgement in a full-duplex
environment.

Code lndependency

SDLC (and HDLC) have one other very important advan­
tage over the binary synchronous protocol: the protocol is
not code sensitive. Binary synchronous communications are
character oriented with many different characters having a
pre-defined meaning as control characters. Hardware inter­
faces must respond to these characters in different ways.
Since devices may use different codes like ASCII and
EBCDIC, binary synchronous communications must utilize
hardware which is complex enough to handle these codes.
Communications need not be complicated this way because­
at the first level-the system's objective is to pass messages
in an error free mode. Once received, a device or processor
may interpret the content of the message in any arbitrary
way.

SDLC eliminates code dependence by treating the
message to be transmitted as a bit stream instead of a charac­
ter stream. Only one control character is used: the flag,
which is a sequence of six one-bits with a zero at each end.
Hardware need only count the length of one-bit sequences
in order to detect the single control character. As shown
in Figures 123 and 124, the start of a frame is recognized by
the detection of a flag sequence. The system always treats
the next 16 bits as address and control information. The
information field is of arbitrary length and may be absent.

429

Following the information field is the 16-bit frame check
sequence, and then a flag sequence. The receiver can tell
where the information field ends, or where the frame
check sequence begins or ends, simply by detecting the
terminating flag sequence. This procedure greatly simplifies
the communications' protocol and allows users to assign
unrestricted transmission code. The interfaces will:

• Transmit messages correctly

• Break up the bit stream into eight-bit characters

• Pack them into storage

The user program interprets those bytes in whatever way it
has been coded to do so.

Bit Stuffing

Since there is only one control sequence-the flag sequence
-it is absolutely necessary that it occur in the frame only as
the first and last fields; if it appears anywhere else, the
receiver would incorrectly interpret its occurrence as the end
of the frame. All fields within the frame, except the begin­
ning and ending flag fields, must be "transparent" to flag
characters. The particular eight-bit sequence which the system
uses as the single control character can occur either as address,
control, data, or check information; hence, the protocol must
provide for transparency. This is done by "bit stuffing"-an
operation that is analogous to "character stuffing" used in
the binary synchronous communications' protocol.

Bit stuffing in the transmitting interfaces occurs as shown
in Figure 125. Every time the system detects a sequence of
five one-bits, it inserts or "stuffs" an extra bit (a zero bit)
into the bit stream. For example, if a flag character
sequence were to arise in the information field, it would
actually be transmitted and received with a zero bit between
the fifth and sixth one-bits. At the receiver, the system
checks the incoming bit stream. Whenever five sequential
one bits followed by a zero are received, the zero bit is
deleted.

Figure 125 shows that the transmitter also stuffs the flag
sequences. After the system deletes the zero bit following

430

the five one-bits, the next sequential bit recognized is a one
bit. The receiver inserts into storage a flag character occurring
within a frame-without the character being interpreted as
the end of a frame. The transmitter is responsible for send­
ing an unstuffed flag at the end of the frame. The system
performs this transmission easily because the message charac­
ter sequence is passed to the interface which serializes, bit
stuffs, and simultaneously accumulates frame check
sequence data for error detection. When the system transmits
the last character of the frame to the interface, it appends
the two frame check sequence characters and the flag
sequence, which end the transmission. Since the interface
knows when the end of the frame occurs, it then can prevent
bit stuffing in the terminating flag. As a result, the only flag
sequence the receiver admits is the terminating flag.

Station Polling

Because communications still occur between a primary and
secondary station using the SDLC protocol, polling must still
be done. The single P/F (poll/final) bit in the control byte of
the frame header is used for this purpose as shown in Figure
126. The polling station sets the poll bit to authorize it to
transmit messages. The polled station uses the same bit to
accept or reject the invitation. Control over a multipoint
line is as orderly as in binary synchronous communications'
systems.

The final bit of the control field of a frame was shown
as zero in Figure 124. Actually, this bit signals that informa­
tion transfers of the type discussed above are actually taking
place. Notice that the data portion of the frame can be
absent if a receiver simply wants to acknowledge a message.
This data absence is signaled by the arrival of the normal
terminating sequence.

If the final bit of the control field is one rather than zero,
the system interprets the frame as either a supervisory for­
mat or nonsequenced format frame. Supervisory format
frames are used to convey ready or busy conditions and to
report sequence errors. Nonsequenced format frames are

431

..j:>.
w
l\J

l
Character sequence
from storage on a
cycle steal basis
(two per storage
access)

~

Transmitting
SDLC interface

The transmitting interface transforms the character
sequence into a serial bit stream.

The transmitting interface bit stuffs whenever a
sequence of five one bits is detected (except in the
initial flag and the terminating flag of a frame).
Bit stuffing inserts a ze'ro bit after ,the fifth one bit.

Figure 125. Bit stuffing (1 of 21

t
Character sequence
inserted into stor-
age on a cycle steal
basis

Receiving
SDLC interface

The receiving interface transforms the serial bit
stream back into a character sequence.

The receiver detects all sequences of five one bits.
If the next bit is zero, it was stuffed and, hence, is
removed. If it is a one bit, a flag character has
been detected which means the start or end of a
frame.

.j:>.

Examples:

0111110
Five ones

01111110
A flag character
occurs in the message.

01111100
A zero is inserted.

011111010 ...
A zero is stuffed after the
fifth bit. The one bit is
not affected.

. .. 0111110 ...
The zero bit is deleted.

01111110 ...
The stuffed zero bit is
removed and the flag
character inserted as a data
character into storage.

The system maintains transparency of data to the single control character by "bit stuffing": the insertion
of a iero bit after five one bits-except in the two flag characters which surround the frame. Bit stuffing
is a hardware function of the transmitting and receiving interfaces .

~ Figure 125. Bit stuffing (2 of 2)

The system transmits a
frame containing infor­
mation with the poll
bit in the control byte
reset.

0

Polling takes place by set·
ting the poll bit in the last
frame transmitted to the
secondary station.

2 3

The primary station sends these frames.

The secondary station sends these frames.

0

The secondary station transmits this frame to acknowledge
correct reception of frames zero through three (Nr=4). The
poll/final bit is reset in this frame.

The secondary station transmits a second frame responding
to the poll and accepting the invitation to respond by set·
ting the final bit.

Figure 126. Polling takes place with the single P/F bit within the control byte
of aframe

434

important because they are used for data link management
including:

• Activating and initializing secondary stations

• Controlling response mode of stations

• Handling procedural errors which cannot be resolved by
retransmission

SDLC Interfaces
~. ,····

_/' The Series/1 systems support SDLC with one interface
' which handles one half-duplex line at bit rates up to 9,600
' bits per second. The system supports communications in the
\ full~duplex. m .. o.de. via two of these interfaces: one to handle
~~glr:~_~tion/ In addition to handling the general SDLC

protocol as described, IBM has built the interface to further
interpret fields in standard ways so that a variety of conven­
tional terminals can be used directly with this communica­
tions' protocol in exactly the same way they are used with
the IBM System/370. For other terminal communications, it
is the responsibility of the processor and the receiving inter­
face to interpret information fields in an agreed upon manner.
For processor to processor communications, SDLC provides
a mechanism for full-duplex transmission of varying length
messages in a particularly efficient manner.

The Series/1 SDLC interface operates in one of three
modes: monitor, receive, or transmit. In the monitor mode,
the interface monitors the line for a flag character. If the
interface is a primary station, it immediately enters the
receive mode. If the interface is a secondary station, it
checks the address following the flag to see if it is the station
addressed. If so, it enters the receive mode; if not, it
remains in the monitor mode. In the receive mode, the
system corrects the incoming bit stream to a byte sequence
and enters it into storage. The entry begins with either the
address field or the control field depending upon whether
the station is acting in a primary or secondary role. A
primary station needs the address byte to check that the
message is from the proper secondary station, whereas a
secondary station uses that byte only to determine which
station has been addressed.

435

The interface enters transmit mode when commanded
to do so by the processor (a cycle steal command with the
specific function specified in the device control block). The
system then transmits frame-check sequence bytes and a final
flag byte (not stuffed) to complete the frame. If chaining
is specified in the device control block, the interface con­
tinues with the next frame.

Integration of Communications' Support
Software into the Series/1

A hardware interface-which uses the cycle steal channel
to access character sequences in main storage for transmission,
and to input character sequences into main storage-supports
each communications' protocol described (asynchronous,
binary synchronous, and SDLC). An application communi­
cating with a remote device must then set up the character
sequences it wishes to transmit and, by means of cycle steal
input/output commands, pass them to the interfaces.
Similarly, interrupts to the processor terminate messages
inserted into main storage so that an application program
can interpret and use the information.

Dedicated applications often use communications' support
in just this way because it provides all features and capabilities
in a simple fashion, and the user can tailor the dedicated
programs exactly to fit the application. This is especially
important in applications where the primary purpose of the
processor is to support communications. However, many
applications use the communications' system simply to handle
devices. For these applications, the Realtime Programming
System provides software support of communications' func­
tions using asynchronous and binary synchronous protocols
and SDLC. With these protocols, the user can, in effect,
treat remote devices or processors in the same way as any
other device connected directly to the processor.

Communications' Software Organization

Software use of communications is best organized as
shown in Figure 127 with an application task: 1) processing

436

data and communicating it to remote processors or devices
through the communications' task, or 2} processing data
received from remote processors or devices by way of the
communications' task. Separating the processing and the
communications' task simplifies creation, debugging, modifi­
cation, and documentation of these applications. The Real­
time Programming System makes communications among
tasks very straightforward so that it is feasible to define
simple intertask interfaces which allow modification of
either the communications' task alone or the processing task
alone.

Because intertask communications are strongly supported at
all levels in the Realtime Programming System, the process­
ing part of the application task can be written in assembly
language, FORTRAN, or PL/I as appropriate for the applica­
tion. Notice that PL/I is highly effective for such applications
because of its extensive character and string manipulation
capability. This capability is one reason that a modern
language like PL/I is so appropriate for online small computer
applications, and is another good example of the integrated
design of the Series/1 processor, interface hardware, and soft­
ware support.

One important Realtime Programming System feature is its
support of the Series/1 as a cluster controller in an SNA
(system network architecture) IBM System/370 network con­
figuration. Essentially, this means that the Series/1 small
computer can be used in multi-computer applications similar
to those for which special purpose devices have been designed
in the past. In particular, the burden of software support of
the network is provided under the operating system so that
users can concentrate on their applications. This fact is very
important to OEM users who are building application systems
which must be compatible with host computer systems.

The communications' portion of the user-written tasks
involves assembly language statements which define charac­
teristics of the devices and the details of communications.
The system provides a series of macros to simplify this task.

437

.j:>.
w
00

An assembly language program is prepared with Realtime
Programming System macros to define and control com­
munications' lines and devices.

Series/1 processor

Communications
user's program

Figure 127. Software use of communications (1 of 2)

Real time
Programming
System
communications'
support

Remote
processor

Remote stations

Communications'
lines

Terminals

~

Secondary
storage

Processing
program

Series/1 processor

Written in assembly language, FORTRAN, COBOL, or PL/I
as appropriate. Calls on communications' program-via
subroutine calls and intertask communications-to read and
write messages and control devices.

The processing part

The organization of communications' software usually separates the application processing program from the
user's communications' program; this organization enables the appropriate level of programming language to
be used for the two programs' implementation.

~ Figure 127. Software use of communications (2 of 21

These macros support:

• Definition characteristics of the remote stations and
associated communications' lines

• Transmitting and receiving data

• Breaking of connections

• Establishing a list of remote station identifiers for com­
munications with dial-up or switched facilities

It is not appropriate here to describe in detail the macros
which specify device characteristics. It should be noted that
these macros exist and that the system can apply all the
characteristics of any data set in a local file to remote devices
or processors using either the higher-level language or macro
assembly language statements like Connect, Disconnect,
Read/Write, Open, and Close.

Event-Driven Software

Communications with a remote processor or terminal are
not instantaneous. In fact, if the communications' line is
noisy, multiple transmissions might occur automatically at
the first level of protocol. Consequently, it is not practical
for an application task to depend upon precise timing. This
condition occurs in all realtime, online applications and real­
time programming techniques handle it: scheduling on the
basis of time, internal events, and external events or inter­
rupts. The Series/1 software architecture includes these
mechanisms to enable application tasks:

• Signal the occurrence of an internal event (post the event)

• Schedule a task to become active when an event occurs
(wait for event)

• Be organized to respond to an external interrupt

The same event and interrupt mechanism is used through­
out the Realtime Programming System and is also available
for communications' software. An event is associated with
each message transmitted or requested. The user can desig­
nate tasks to operate in a variety of ways:

• Wait to receive the message (that is, become inactive but

440

be reinitiated by the operating system when the message
arrives)

• Not wait for the message (as in double buffering of input)

• Operate in any other manner that the program designer
chooses

The important consideration is that the system uses the same
techniques to solve realtime synchronization problems when
communications are involved as it uses when those problems
arise elsewhere in the data processing environment. Because
event and interrupt mechanisms are integrated into the overall
hardware and software architecture, the system can solve
these problems expeditiously.

Dedicated Hardware and Software Support
for Communications: The Programmable
Communications Subsystem

IBM has carefully integrated support of communications­
based applications into the Series/1 hardware and software
architecture as indicated throughout this chapter. Even at
the indicated level of support, handling large numbers of
terminals is difficult because they require considerable
custom software support and a major portion of the Series/1
processor's capability. When a communications-oriented
application reaches a certain size, the user must off-load the
processor, performing some or many of the required functions
in dedicated hardware or separate processors. At the same
time, however, this hardware should retain the integrated
architectural features of the Series/1.

Subsystem Architecture

To handle applications involving large numbers ofter­
minals and communications' lines, IBM has provided the Pro­
grammable Communications Subsystem as part of the over­
all Series/1 architecture. This subsystem is essentially a
separate processor which handles many of the functions
required to support a variety of lines, line speeds, terminal

441

types, and protocols. At the same time, the subsystem is
integrated into the Series/1 hardware and software architec­
ture so that the same measure of self-diagnosis, availability,
and error recoverability can be achieved with the subsystem
as with the parent system itself. Furthermore, the subsystem
is fully compatible with the Series/1 software architecture:
Realtime Programming System support and Program Prepara­
tion System support are complete.

Figure 128 lists some of the communications' functions
which require detailed software design to effectively serve
large communications-oriented applications. Notice in
particular that many of these problem areas are unique to
communications-oriented applications: control of modems,
telephone call answering and originating, and redundancy
checking. Although conceptually simple-and able to be
implemented completely within the main processor-these
tasks can incur significant overhead when large numbers of
different communications' lines and terminals are involved.
The Programmable Communications Subsystem can handle
all the areas listed in Figure 128 as well as many others which
may be unique to a particular user or application.

Communications' Interfaces

The Programmable Communications Subsystem is a set of
standard Series/1 boards which plug into the Series/1 units
just Ii ke other .interfaces and attachments. Figure 129 shows
the system in block diagram form. At the lowest level are
a variety of interfaces suitable for attachment to a variety of
terminals, devices, and telephone lines. Interfaces include:

• Synchronous and asynchronous EIA data set interfaces

• Automatic call handling interface

• Teletype current interface

• Synchronous and asynchronous integrated modems

• SDLC data set and direct interfaces

The common important factors in this list are the variety of
line speeds and types of interfaces provided, and the fact
that the user may mix all of them in any arbitrary way within

442

• Buffering
• CRC checking/generation
• LRC checking/generation
• Control character generation/recognition
• Clocking of direct connect hookups
• Data chaining to/from storage
• Auto-answer
• Break function
• Case shift
• Timeouts or interval timer
• Modem control
• Auto-poll
• Auto-call control sequencing
• Console control
• Internal self-diagnosing RAS features
• Trace

All of these functions are characteristic of communications'
applications and the system can provide them directly with­
in the Series/1 application software. When the number of
terminals and the variety of terminals and lines is large, it is
more efficient to off-load standard communications' func­
tions into a special processor called the Programmable
Communications Subsystem.

Figure 128. Basic functions provided by the Programmable Communications
Subsystem

the communications' subsystem. Notice that many of these
interfaces provide facilities similar to those available for
direct interfacing to the Series/1. Of course, a different
level of support is available through the communications'
subsystem.

The system provides support of these interfaces through
the scanner portion of the subsystem as shown in Figure 129.
This hardware scans the interfaces at speeds ranging from 45
to 1200 bits/second using an internal clock, and up to 9600
bits/second using the clock in a data set attachment. These

443

figures correspond to the scanning rate of each interface so
that the combination rate is very much higher. In addition to
scanning the interfaces to collect or transmit characters
(deserialize the input or serialize the output), the scanner
provides many of the capabilities discussed earlier for
individual communications' interfaces:

• Programmable synchronization and line turnaround
characters

• Programmable selection of bits per character

• Parity checking

• Programmable selection of the number of stop bits for
asynchronous terminals

Thus, in the single scanner hardware, the communications' sub­
system provides the same communications' support that is
built into the separate communications' interfaces previously
discussed. In this way, the Series/1 provides communications'
support for large numbers of terminals at low cost.

Subsystem Controller

The heart of the communications' subsystem is the con­
troller which contains a processor, read-only storage, and a
writable storage called control storage. It is this controller
which the end user or OEM user can program to customize
the communications' subsystem by handling a particular group
of terminals and a particular application. Figure 130 shows
the basic organization of the controller.

The line control block is a user-defined data area; the
system provides one block for each communications' line
attached to the subsystem. It contains parameters describ­
ing the line, address of buffer areas, status information, and
similar information necessary to handle transmission of
information on the line. In addition, the line control block
contains a pointer (address) for another block of data-the
function address table. Essentially, this table is a list of sub­
routines or program segments-called function strings-which
perform the individual operations appropriate to that parti­
cular line. For example, function strings might be provided
to support a binary synchronous protocol or a special

444

To Series/1 input/output bus

+
Programmable Communications Subsystem

r--- - ---- -i------- --,
Channel interface

Special processor with both:

1. Writable storage (control storage) to contain
user-specified programs appropriate to the
attached communications' lines and terminals

2. Read-only storage which contains predefined
routines used to control the subsystem and
carry out the user-defined functions

1
Scanner to control a variety of interfaces, line speeds,
and codes

1
J 1 1 1

L. Interfaces appropriate to the attached communications'
lines and terminals

L---------------

Figure 129. Hardware organization of the Programmable Communications
Subsystem

445

Interpreter: operating-system-like software which controls
the Programmable Communications Subsystem and carries
out user-defined functions upon command of the Series/1
processor.

I
I
I
I
I

T
I
I
I
I

I
I
I
I
I

Subroutines provided to perform standard operations.
User-defined functions are defined as a sequence of these
basic operations. They are similar to assembly language
instructions but carry out much more complex functions
appropriate to the communications' application.

I I I
I I I
I I I
I I I
J. _J_ _J_

Figure 130. Software organization within the Programmable Communications
Subsystem (1 of 2)

446

Line control block:
parameters unique to

r- each communications'
I ine or attached
device

Function address table:i-­
list of user-defined

User­
defined
routine
1

User­
defined
routine
2

i., routines to perform
each function associ-
ated with this line or L
device 1--
~____,

Function strings:
sequence of orders to
perform one function
for one communications'
line or attached device.
They are user-defined via
a macro-language under
the standard Program
Preparation System.

User­
defined
routine

.... N

The user defines all functions to be carried out by the sub­
system and builds the necessary tables and function strings
using Program Preparation Systems supplied by I BM.

Figure 130. Software organization within the Programmable Communications
Subsystem (2 of 2)

447

purpose protocol, or function strings might be used to error­
recover when certain conditions are detected. In effect,
the function address table associated with each line is a list
of code segments that handle each situation which arises
when carrying out communications across that line.

Line Control Software

The user must define each function to be carried out for
each line, and produce the subroutines or program segments
(function strings). The Programmable Communications Sub­
system facilitates preparation of these function strings by
providing the interpreter shown in Figure 130. The inter­
preter can handle approximately 90 pre-defined operations
which function like instruction operation codes in a computer.
Operations include:

• Transmit or receive data

• Block check character control

• Automatic'polling

• Control of modems

• Timer control

• Branch and Link instruction

It is not appropriate to list all operations in detail here. The
reader should consult the appropriate Programmable Com­
munications Subsystem programming manuals for this informa­
tion. It is important to indicate here that users prepare their
programs or function strings in a sequence Ii ke the type of
high-level instructions listed above. This sequencing facili-
tates the construction of rather elaborate communications'
support programs in the subsystem. Source code format
function strings are also available for terminals like the 3270
family, the 2740, and Teletype Models 33 or 35.

User-Generated Software

The programs within the Programmable Communications
Subsystem are microprogrammed. Instead of requiring the
user to learn programming techniques at this detailed level,
IBM provides an elaborate programming support system

448

which runs under the normal Program Preparation System
software. This support system means that the user can create
function strings and necessary tables simply by calling macros.
The user enjoys a dual advantage: program preparation is at
a high level, while microprogrammed subsystems provide the
user with all the advantages of an efficient data processing
operation.

It is important that the hardware and software architec­
ture of the small computer integrate any subsystem like the
communications' subsystem. With the Series/1, hardware
integration is simplified because the architecture of the
input/output system permits processors to be added to the
system without sacrificing the communications' rates to the
main processor and main storage. A previously illustrated
example of these subsystems was the floating-point sub­
system which has both an objective and an architectural
structure similar to that of the communications' subsystem.

Integrated Software Structure

Figure 131 shows the integration of the software support
for the communications' subsystem. As previously indicated,
good programming practice separates communications' soft­
ware support into different modules to support different
terminals and different application requirements. The com­
munications' subsystem support extends this architecture as
shown in the illustration. The one module has been com­
pletely off-loaded into the communications' subsystem as
discussed above. A simple interface remains which drives
the Programmable Communications Subsystem using normal
input/output instructions. As shown in the figure, this inter­
face permits an application program to write Execute 1/0
instructions in which the immediate device control block
references a device control block-as in all cycle steal input/
output operations. Within the device control block, the
system codes a command which is effectively an index into a
function address table within the Programmable Communi­
cations Subsystem. The subsystem, in turn, is a pointer to
a function string which performs the operation. In other
words, the user supplied 1/0 instruction is equivalent

449

The operating system controls the execution of all applica­
tion programs.

Realtime
Programming
System

Interface between
the operating
system and the
Programmable
Communications
Subsystem

Communications'
application
program

Programmable Communications Subsystem
r--~---------------,
I I
I I
I I
I I
I I

I i I
I I

I L------------------

Attached lines
and devices

The subsystem controller accesses
the device control block in main
storage via the cycle steal channel,
and carries out the appropriate
function for the appropriate
communications' line.

Figure 131. Integrating software support of the Programmable Communications
Subsystem into the Realtime Programming System operating system
(1 of 2)

450

All commands to the subsystem are normal Execute
1/0 commands with the standard immediate device
control block pointing to a device control block
which, in turn, contains the actual command the
Programmable Communications Subsystem is to
carry out.

Immediate device control block

I ~

Device control block is accessed
by the subsystem using the cycle
steal 1/0 system.

The command in the device control
block actually points to a particular
user~defined function string to be
carried out for a given communica­
tions' line or attached device, like
an integrated modem.

Figure 131. Integrating software support of the Programmable Communications
Subsystem into the Realtime Programming System operating system
(2 of 2)

451

to a call to one of the user-defined function strings or sub­
routines within the Programmable Communications Sub­
system. Conceptually, it does not matter whether such
communkations' subroutines are in the mafn processor or
in a separate subsystem. The user maintains complete con­
trol over what function strings the system provides and what
they do. In this manner, users may easily customize their
communications' systems. Because of the interface within
the Series/1 Realtime Programming System software, the
user can construct application programs either in a higher­
level language or in assembly language to perform two
separate functions: 1) to use information gathered through
the communications' system; 2) to generate information
to be transmitted through the system.

The combination of hardware and software communica­
tions' architecture in the Series/1, then, provides support to
customize applications at similar levels whether they involve
a small or large number of terminals. The Series/1 achieves
this support while combining availability, reliability, software
support, and compatibility with other systems-all require­
ments listed in Chapter 1 for successful, communications­
oriented small computer applications.

452

Reliability, Availability,
and Serviceability
(RAS)

The success of any small computer application depends
upon the close cooperation of the hardware, software, and
maintenance systems. As stressed in earlier chapters of this
book, if these three components are not fully integrated, the
overall system will be less successful. Hardware and soft-
ware integration have been discussed earlier, with emphasis on:

• How hardware is present to support the appropriate
software for small computer applications

• How software takes advantage of the hardware
- To carry out the application efficiently
- To minimize development and debugging time

In the same way, hardware and software must be designed
so that the resulting system will be reliable and maintainable.
The objective of this chapter is to discuss how maintenance
is integrated into the overall IBM Series/1 hardware/software
design.

The Contribution of Maintainability
to the Overall System

The combination of hardware and software designed to
carry out an application often includes both IBM- and third

453

party-supplied hardware and software components; the
combination must operate reliably in a realworld environ­
ment. It would be unrealistic to expect such a system to
operate without problems or failures. Furthermore, it
would be prohibitively expensive to design every system so
that the probability of failure would be almost non-existent­
for instance, as low as the failure ratio of manned space
flights in recent years. The design objective of the Series/1
was to devise reliable hardware and software while simul­
taneously providing the system with a quick and efficient
problem response capability to minimize the effects of fail­
ures. Figure 132 shows the various states of a small computer
system. In normal operation, the system performs its
intended function. A "soft" error condition-an error which
the system can detect or bypass without halting operation­
must be identified and responded to rapidly. To do this,
the hardware and system design must function in a manner
to detect these errors accurately and easily.

An example of such an error could be the transmission of
a noise-corrupted byte of data between a device and storage­
an error which the system might correct by a retransmission.
The system must detect these soft errors by using:

• Parity bits on the data

• Error detection bits, where appropriate

• Checks sums or cyclic redundancy codes

• Echoing of data

• Other procedures depending upon the devices and distances
involved, and the criticality of the data

The combination of hardware error detection and software
error recovery procedures increases the reliability of the
system. When a "hard" error occurs-an error which is severe
enough to halt operation of the system-time is required to
diagnose the source of error and perform the necessary
maintenance. If the system can reduce the time required to
diagnose and repair the error, then the effect on the applica­
tion can be minimized.

Availability of the system is the net time that the system
is actually available to perform the application; it is, to the

454

user, the most important measurable element in the system.
A high level of availability implies a minimal response time
to hard errors and rapid recovery from soft errors.

It is important to note that every component of the
system-hardware and software-must be integrated into the
soft and hard error detection and recovery procedures. This
integration is essential because it is typical of small computer
applications that a variety of OEM- and vendor-supplied hard­
ware and software components interact closely to carry out
the application. It is important to emphasize the distinction
between the maintenance capability of the Series/1 architec­
ture and the maintenance supplied by IBM itself. IBM has
designed the Series/1 so that self-diagnosis and maintenance
can be performed effectively and efficiently. OEM users can
take advantage of those capabilities in the design and utiliza­
tion of their devices and interfaces so that the systems they
configure can also be maintained effectively and economi­
cally. IBM-supplied maintenance covers only devices
supplied by I BM.

Design and Organization for Reliability
Design for reliability implies design for low failure proba­

bility. There are two aspects of reliability: 1) low failure
probability of hardware components, and 2) low probability
that either noise corruption or hardware failure will cause the
application to malfunction. For example, failure of a com­
ponent might not cause the system to halt but might cause
errors in data stored in files, transmitted to devices, and
in other locations. These errors are just as serious as hard­
ware failures. Consider, first, the hardware reliability.

Component and Device Reliability

The Series/1 electronics use extensively the large-scale,
integrated TTL logic of the type used and proven in other
IBM products. With proper burn-in, testing, and other quality
control mechanisms developed in the electronic revolution of
the past 15 years, such devices are now sufficiently reliable

455

-l»­
V'i

°'
i--

1
I
I
I
I
I
I
I L __ _

System start
or restart

The system is not available during diagnosis and service.

Repair and
verify

Verify the correct operation
of processor devices, storage,
and all connections.

Figure 132. Availability states (1 of 31

Identify and
diagnose
failure.

--,
I
I

.J:>.

A I The system is available during normal operation as long
as error recovery software handles the soft errors .

.---------

Normal opera­
tion: performing
application

Error/failure occurs.
Detect error

Software per­
forms error
recovery.

"Hard" error

L---------------------------~

~ Figure 132. Availability states (2 of 3)

~
00

Achievement of high availability requires an integrated system of hardware and software to perform the
self-checking and self-diagnosing of errors. The integrated system of hardware and software must be
extended by the user to include OEM and application hardware and software.

Availability is achieved in three ways:

1. Reliable hardware minimizes actual failures

2. Extensive self-checking detects soft errors which may be corrected by error recovery procedures built into
the system and application software

3. Extensive self-diagnosing identifies and isolates a hard failure quickly to minimize mean-time-to-repair and
maximize availability

Figure 132. Availability states (3 of 3)

to meet the availability levels demanded by small computer
applications.

Reliability is more important in devices that require
mechanical motion which causes wear and vibration. In this
area as well, the computer industry has learned to design
reliable devices. For example, the IBM disk storage unit uses
a sealed disk enclosure containing the fixed disk and the
mechanical access mechanism. Sealing the disk eliminates
operator handling of critical devices, reduces exposure to
external contaminants, and obviates preventive maintenance
of heads, disk, and other mechanical devices within the
enclosure.

With this design, the probability of the disk's data accur­
acy and availability is greatly increased. Similarly, slower
devices like the Series/1 diskette unit and the line printer use
a stepper motor as main drive rather than a continuously
running motor assisted by a clutch mechanism. Although
the latter motor is adequate for the task and perhaps lower
in initial cost, the stepper motor removes a high-maintenance
item (the clutch) from the system. Such design character­
istics enable IBM to market devices requiring little preventive
maintenance.

Attention to details like these are evident in the specifica­
tions of other Series/1 devices. One previously mentioned,
important detail is that IBM has specifically designed the
Series/1 hardware and software to be responsive to OEM
devices. Of course, it is necessary that these devices be as
well designed as the Series/1 itself to prevent compromise
of overall system reliability.

When hardware is reliable, system availability is extended.
Soft errors will continue to occur, however, because of noise
on transmission lines, variation in power levels, and human
fallibility. Detection of these errors is fundamentally
important to, and a major consideration in, the design of the
processor and device hardware and software. Error detec­
tion is built into the system at all levels as shown in
Figure 133.

459

Processor
level

Input/
output
attachment

Device
level

\

(
)

(

(
1

'

• Specification check
• Invalid storage address
• Privilege violate
• Protect check (4955 only)
• Invalid function
• Floating-point exception

(4955 only)
• Stack exception
• Storage parity check
• CPU control check
• 1/0 check
• Power/thermal warning

• Condition code for each
input/output operation

• Interrupt status byte for
each interrupt

• Condition code for each
interrupt

• Redundancy checking of
data items and data streams

• Built-in self-checking of
data read and written

• Maintenance of device
status words

Error detection is fundamental to high system availability.
Each device and component in the system must be designed
to perform appropriate error checks. The system must be
designed to respond to these detected errors-so that error
recovery can be accomplished.

Figure 133. Elements of error detection

460

Processor Error Detection

At the processor level, some of the built-in error detection
techniques (most of which have been previously described)
include:

Specification Check. An indirect address or a generated
effective address has violated an even-byte boundary
requirement.

Invalid Storage Address. One or more words of the instruc­
tion or an effective address is outside of the installed storage
size of the system.

Privilege Violate. A privileged instruction is encountered
while in the problem state.

Protect Check. An instruction is being fetched or data is
being accessed from a storage area not assigned to the
current operation, or an instruction is attempting to
change an operand in a storage area assigned as read-only.

Invalid Function. An illegal operation code or function
combination has been detected, or a floating-point operation
was attempted and the floating-point feature is not
installed.

Floating-Point Exception. An exception condition is
detected by the optional, floating-point processor.

Stack Exception. An attempt has been made to pop an oper­
and from an empty main storage stack or push an operand
into a full main storage stack; or a stack cannot contain the
number of words to be stored by a Store Multiple instruction.

Storage Parity Check. A parity error has been detected
while data is being read out of storage by the processor.

CPU Control Check. The hardware has detected a malfunc­
tion of the processor controls (e.g., no level is active but
execution is continuing).

461

1/0 Check. Hardware error has occurred on an input/output
interface.

Power/Thermal Warning. A power failure or thermal overload
has occurred.

Note that not all of the conditions listed above pertain to
all processor models.

Detection of any of these conditions permits an increase
in system reliability because error recovery operations can
be initiated (Figure 134), thereby preventing the system
from actually halting. Software design must recognize the
hardware assistance in recovery operations and incorporate
this assistance within its own performance. Consequently,
software design is crucial here. An example of recovery
software design and performance is illustrated in Figure 135
where the response to a power failure is depicted.

Battery Backup

If the source voltage drops below approximately 85 per­
cent of the normal line voltage and the system includes a
battery backup unit configuration, the system will auto­
matically switch to battery power and will continue to
power the processor. A class interrupt occurs causing a
branch to the power/thermal interrupt handler routine
which can continue to monitor the power/thermal failure
bit in the processor status word. After mainline voltage is
restored:

• The system will automatically switch back to mainline
power

• The power/thermal failure bit in the program status word
will be turned off

• The system can resume execution of the problem
program

No data will be lost from main storage. Equally important
is the fact that the system will not generate erroneous
results because of low voltage levels in storage or on the
input/output channels. Thus, the system protects the applica­
tion from data distortion as well as data loss.

462

If the configuration does not include a battery backup
unit, the system will power down. Upon restoration of the
mainline voltage, the system may automatically power itself
back up and can automatically re-IPL. The user can program
the IPL bootstrap program to reload any program, and
resume execution. This automatic restart feature makes the
system particularly viable for use in a remote or unattended
location.

Input/Output Error Detection

The second level of error detection in Figure 133 is on the
input/output channel itself. IBM has designed the system so
that all devices provide the following checks:

• Condition codes-each time the system issues an Operate
1/0 instruction, the device, controller, or channel
immediately reports to the processor a condition code
pertaining to execution of the 1/0 command

• Interrupt status byte (ISB)-if an error condition exists
after an 1/0 operation (for example, a channel parity
check), the system presents detailed information on the
nature of the error in the ISB

• On devices which present interrupts, the system again
presents the condition codes with the 1/0 interrupt to
further define the exact status of the 1/0 operation

With these checks built into each input/output or interrupt
operation, the user can create software which is not sensitive
to those infrequent errors which do occur.

Device Error Detection

At the device level in Figure 133, each device itself is
responsible for checking its own operation; each device signals
its errors using the condition code and interrupt facilities of
the system. For example: both the disk and diskette units
generate cyclic redundancy check characters for both the
sector identification field and the sector data field within
each sector. Asynchronous communications' interfaces pro­
vide longitudinal and vertical redundancy checking. Binary

463

.

0 Error recovery involves multiple retries of
the transmission. Only if these retries are
unsuccessful is a hard error signaled.

Main
storage

Processor

!-+-

Error
notification

.....
Input/output
channel

Disk or
diskette
interface

:

~

Disk or
diskette

Cyclic redundancy checks assist in the detec­
tion of errors due to bad data on the disk or
noisy transmission.

e Each surface of the disk or diskette is
divided into sectors. Each sector has a
sector-identification field and a data field.
Cyclic redundancy check characters are
stored for each field.

Figure 134. Disk and diskette error detection (1 of 2)

464

A sector identification field insures that data cannot be
read from or written into the wrong area-such action
would constitute a major error if it occurred.

Both system software and user-written software for dedi­
cated systems must provide for the error detection capa­
bilities, and both must have a built-in error recovery
capability.

Disk and diskette storage error detection illustrates how
error checking must be included in the hardware and soft­
ware system design in order to detect errors appropriately.

Figure 134. Disk and diskette error detection (2 of 2)

synchronous communications' interfaces offer cyclic redun­
dancy checking. Other devices provide similar appropriate
checking for the device. The result of this checking is as
follows:

• The integrated design of the system identifies detectable
errors

• The system notifies the processor of the error

• If possible, the software will respond to correct the error

Frequently, retry of a storage read or other operation will
correct the error. Even if the error is corrected automatically,
system software maintains a log of the error occurrence for
later system diagnosis by I BM customer engineering or by
the user.

In the past, manufacturers have found it excessively expen­
sive to build such extensive self-checking into the hardware.
The construction of the microprocessor has reduced these
costs to the point where this hardware function is now
economically feasible. The effective use of the powerful
microprocessor technology to incorporate this self-checking
hardware capability has made a highly significant contribu­
tion to overall system availability.

465

Power line
voltage
monitoring

Power line

A class interrupt signals the processor
to prepare for shut down-if there is
no battery back-up-or to monitor for
power restoration.

If voltage falls below ___ _,
85% of normal

Switch to and from
battery-backup is
automatic

Power to system

Battery backup f=D

A combination of hardware and software responds to
power line voltage failures. The hardware monitors the
line voltage and switches to battery backup if it is present.
When voltage is restored, switch back is also automatic.
Interrupts notify the processor of these events so that
designated software routines can take actions appropriate to
the particular configuration and the specific application.

Figure 135. Hardware and software response to a power failure

466

Error Diagnosis: The Key to
High Availability

If the system is to maintain its availability at a high level,
it must diagnose, quickly, any hard error or failure in any
component of the system. Using microprocessors in inter­
faces and microprogramming in the processor become
economically significant factors when the system must per­
form a high level of error diagnosis. This is so because a
system with distributed intelligence capability can contain
many more extensive self-diagnostics more economically
than can a system with fixed logic designs. Series/1 devices
and interfaces use such approaches where it is most
economical and appropriate.

Microprocessor Based Self-Diagnosis

The system includes microverification routines in all
microprocessors and in the microprogrammed processor it­
self. These routines are executed when the system is
powered-on, reset, or initial program loaded. As shown in
Figure 136, the processor is self-checked to assure correct
operation-including data flow to and from registers-of
the microprogrammed system. Self-checking involves:

• Moving data into and out of registers and checking for
an expected result

• Performing micro instructions and comparing the results
to known values or checksums

• Other similar procedures

In parallel with the processor's self-checking, the system
logically isolates each device controller. Each controller per­
forms a similar self-check including a run through all of its
micro instructions and a compare of an accumulated check­
sum with a preprogrammed checksum. The system then
checl<s by writing and reading back a specified bit pattern in
the first 16 kilobytes of storage. Finally, if all modules pass
these self-diagnostics, the system is integrated and the
input/output channel itself is checked to insure that data
can be passed back and forth between main storage and the

467

Main
storage

lill
Processor

Device

The system:

Interface
with the
micro­
processor

• Writes prespecified patterns into the first 16K-bytes of
main storage, and then reads them back

• Writes into processor registers, and then reads them back

• Exercises micro instruction data paths and verifies the
results

• Verifies transmission between devices and the main stor­
age across the input/output channel

• Checks the device in a device-dependent manner through
its microprocessor-controlled interface

The microprocessor checks for correct control store con­
tents, and verifies data paths.

The system uses the microprogrammed processor and the
microprocessor-based interfaces in such a manner that,
before the start of the application software:

• The separate operation of each component can be
checked

• The combination of devices can be checked

Figure 136. Processor self-checking

468

device interfaces. Location zero in main storage is used by
the device interfaces for this purpose.

If any of these checks do not succeed, the system has
detected a hard failure. Because of the detailed nature of the
checking, the failure has probably been isolated to a specific
printed circuit card. Replacement of the card can usually
remove the problem.

If all tests are successful, system operation begins. Detec­
tion of a hard failure halts the system; at that point, the
diagnostic capabilities of the system are again activated.

Diagnostic Software

Series/1 provides diagnostic software which takes
advantage of the integrated design of the system's hardware
and software. For example, the system provides a diagnostic
instruction which enables software to check operation of
devices at very detailed hardware levels. Storage can be
checked by loading specific addresses and data into storage
address and data registers, and then checking the result of
the storage read or write operation. Similarly, software
can check those diagnostic device commands which produce
device-dependent results.

Devices are specifically designed to be diagnosed this way.
For example, Series/1 provides diagnostic wrap-back facili­
ties for the teletypewriter:

• Attachment

• Timer

• Communications

• Integrated digital input/output

• Sensor input/output units

Diagnostic wrap-back provides, under program control,
routing of output signals back into input ports; as a result,
the system can check the complete operation of interfaces
by outputting data and reading the same data back in again
to insure that it is transmitted correctly (Figure 137). In
addition, this wrap-back feature can be used without remov­
ing cables or attaching special jumpers-further reducing
diagnostic time.

469

Output signals from the interface to the device

Device
interface

..._ _____ __,

I I
I I

/I. - ...l I
!Ci 1-- _J

External
device

Wrap-back of signals permits the system to read back signals
being transmitted to an external device; this insures that
the desired signal is the one actually sent.

The system must also diagnose the combination of IBM­
supplied interfaces and OEM supplied devices. By wrap­
ping-back signals, operation of each portion of the system
can be checked without using cables, or disconnecting
the system.

Figure 137. External device diagnosis

Interface Diagnosis

As an example of the power of this diagnostic approach,
consider the teletypewriter interface diagnosis, which can
take place either with or without a device connected to the
interface (Figure 138).

The Reset to Diagnostic Wrap command: 1) resets pend­
ing interrupts, condition codes, and all registers in the tele­
typewriter adapter except the prepare register, and 2) dis­
ables the read and write control interface lines. The system
places the teletypewriter adapter in a diagnostic wrap state.

In the diagnostic wrap state, commands can be issued to
the teletypewriter adapter for testing purposes. If a Write
command is issued, data is sent to the teletypewriter adapter
transmit data register and to the attached device, if present.

470

Processor
Channel

TTY
interface

Processor diagnostic software
may execute online or offline.

CRT
device

Issue Diagnostic­
Wrap command
(input/output
command).

Reset pending interrupts.
Disable read and write

....._ ___ ::t:..,...... ___ _, control interface lines.

Use input/output
----.J commands to send
1 -------i test data to the

teletypewriter
device.

Data is wrapped­
back, and gener­
ates an interrupt.

1
Read data back
in, and verify.

Using both diagnostic and input/output commands permits
both online and offline checking of some devices. The
system supplies diagnostic software for standard devices
and interfaces, but user-written software for OEM devices
can be similarly prepared and used.

Figure 138. Teletypewriter interface design

I

471

At the completion of the transmit operation, a device end
interrupt is reported. The data is also sent to the teletype­
writer adapter received data register; at the completion of
the receive operation, an attention interrupt is reported.
For checking purposes, the system can force the teletype­
writer adapter into an overrun condition by: 1) not reading
the received data register after the attention interrupt is
accepted, and 2) then issuing another Write command. The
teletypewriter adapter does not report condition code 1
(busy) or condition code 5 (interface data check) to this
command.

Exit from the diagnostic wrap state is by any of the
following commands: a Device Reset, Halt 1/0, System
Reset, or Power-On Reset.

Diagnostic Commands

The integrated digital input/output interface provides
similar capabilities (Figure 139). The system offers two
commands to thoroughly test the correct operation of this
interface.

The Set Test 0 command sets a diagnostic mode that dis­
ables the user inputs, including external sync. The ready line
is disabled. The command places zero bits into the digital
input receivers and activates the external sync receiver with
a pulse. If external sync is armed, an interrupt is posted.
The digital input data register contains all zeros. The user's
previous data inputs and intervening commands govern the
data in the process interrupt data register. If an interrupt is
pending, condition code 1 (busy) is reported and the com­
mand is not executed. Also, when condition code 5 (inter­
face data check) is reported, the command is not executed.

The Set Test 1 command sets a diagnostic mode that dis­
ables the user inputs, including external sync. The ready
line is disabled. The command places one bits into the digital
input receivers and activates the external sync receiver with
a pulse. If external sync is armed, an interrupt is posted.
The DI data register contains all one bits. The data in the Pl
data register is initially all one bits and, thereafter, is governed
by intervening commands. If an interrupt is pending,

472

.Y
Integrated

I
I

digital I
input/output 1< I

OEM
device interface .._,. I I

I _L

I I External sync
Built·in I- _I I
diagnostic - __ I

hardware ---!

Diagnostic test commands permit:

• The setting of inputs at either zero or one levels

• Testing the external synchronization lines

Using these instructions, diagnostic software can, in effect,
simulate the operation of an external OEM device; this
insures that data is transmitted and received correctly, and
that timing signals are properly armed and recognized.

The integrated digital input/output interface is used to
interface OEM and special devices to the Series/1, and is
fully supported from a diagnostic point of view. Self­
diagnosis of the OEM device itself is the responsibility of
the device designer or the system integrator.

Figure 139. The integrated digital input/output interface

condition code 1 {busy) is reported and the command is not
executed. Also, when condition code 5 (interface data check)
is reported, the command is not executed.

Other features have similar instructions and utilize the
external wrap connections to improve problem analysis and
failure diagnosis.

The reader should note that the diagnostic instructions are
part of the overall system design. Any OEM device that inter­
faces to the system can have the same self-diagnostic capability
as the system itself, but the OEM manufacturer must design
this capability into the device, its interface, and its support­
ing software. This fact is important in those applications

473

where the user must add special devices because the system
can support the added device in both its normal and abnormal
operations-a major consideration in critical applications.

Error Logging

During a normal operation, Series/1 system software
creates error logs to help in diagnosing problems. Utility
software furnishes a dump of these logs which alerts
maintenance and customer personnel to marginally-operating
equipment. IBM has built other diagnostic aids, like com­
munications' interfaces, into difficult-to-diagnose equipment.
For example, the input/output and communications' facility
trace functions are designed to continuously record current
activity in main storage during normal operation of the
system. The system uses this facility to reconstruct the
sequence of events leading up to a system failure; the user
can then more readily diagnose intermittent failures and
other difficult system problems.

The communications' online test capability can test
attached asynchronous terminals concurrent with user opera­
tion, and determine proper operation of the communications'
link (lines and modems) as well as the terminal and system
programming support.

These Series/1 diagnostic features are far more sophisti­
cated than any previously available on small computers;
today's demands for system availability require that these
diagnostics be an integrated part of the system design. The
extensive service aids provided with the Series/1 enable users
to determine, by themselves, the source of many system
problems.

Support for Maintenance
Most users are concerned about the support available for

service and maintenance. The OEM users who provide their
own processor and devices' support have access to all of the:

• Training courses

• Diagnostic software

474

• Maintenance consoles

• Signal tracing devices

• Other aids which IBM makes available to its own systems
and customer engineers

These aids include full documentation and training in both
IBM-supplied hardware and software. As discussed in
Chapter 1, if users are to take responsibility for the system,
they must have all the available information about the system
as well as full training on the system.

For users who do not wish to undertake this responsibility
themselves, IBM offers various contractual arrangements so
that trained and available customer engineers can provide
the proper level of service. This availability of highly trained
and knowledgeable-hardware and software-service people
is a very valuable backup to the OEM or third-party system
integrators who occasionally need in-depth backup to solve a
particularly critical problem with one of their systems. The
importance, to users and suppliers, of available, high-quality,
trained personnel cannot be overestimated.

In summary: the IBM Series/1 is an integrated design of
hardware, software, and maintenance designed to provide a
set of modules or tools which can be combined with user- or
other vendor-supplied modules to build an economical,
small computer application. The integrated design of the
system insures that:

• Applications can be performed

• Implementation can be controlled

• Errors can be diagnosed

• Overall system availability can be assured

These capabilities are the primary prerequisites for a satis­
factory application.

475

Index
address (see storage address)
address key 152
address translation 47, 82, 161, 205, 249
architecture 2, 4, 38, 39, 40-42, 132, 370, 441, 442, 449
arithmetic and logic unit 86, 87
Arm command 355, 356
Arm External Sync Mode (see Arm command)
ASCII 90, 414
asynchronous communications 63, 345, 392, 393, 403, 405
auxiliary storage devices 69, 70
availability 454, 455

base relative addressing 141, 290
battery backup 462
binary synchronous communications 63, 67, 403, 408
burst mode 243
bus, input/output (see also Direct Memory Access; input/output
channel) 205, 218-220, 233, 363

carry indicator 302
CCITT standard 414
chaining input/output
channel repower card
channel socket adapter
channel switch 78
channel, System/370
clock signal 332

242
45, 378

379

68

communications 63, 386
concentrator 11, 15-22
error checking 37
interfaces 34, 67, 397, 406, 407, 414, 435, 436, 442-444
intertask 59-62, 135, 159, 165-168, 171, 175, 177-189
line cost 15
networks 15, 24, 392
programmable system 397
protocol 63, 67, 392-397, 402, 403
software 16, 18-22, 68, 415, 436-440, 449-452
structure 63-66, 397-401, 414

concurrent 291, 303, 312-320
condition codes 225-227, 229, 234-235
connect 261

476

contention 86
context switching (see task switching)
Control Program Support 48, 255, 261, 264-270, 336
control storage (see read only storage)
controller, cycle steal 233, 238, 239
current loop 343, 352
cycle stealing 83, 86, 205, 208-209, 233, 236-248, 407
cycle stealing channel (see bus, input/output; Direct Memory Access;

input/output channel)
cyclic redundancy checking 404, 465

data acquisition and control
application 25-33
hardware 27
software 30

data sets 270-277
DOB (see device descriptor block)
disconnect 261
device address 216, 351, 353
device control block 242-245
device data block 103
device descriptor block (DOB) 225
device identification number 103
direct addressing mode 136, 138
disable interrupt (see interrupt)
diagnosis

errors 3, 37, 95, 106, 224, 226, 227, 261, 342, 404, 429, 453,
467-474

maintenance 3, 50, 53, 362, 453, 473, 474-475
self 3,4~ 51,5Z 76,83,205, 326,343,358, 37~453

diagnostic mode, input/output bus 367
digital input/output 74, 352-362
direct access storage 39, 43
Direct Memory Access (OMA) (see also bus, input/output; input/out-

put channel) 5
direct program control adapter 73, 76, 205, 208
direct program control, input/output (see input/output, direct

program control)
disconnect 261
diskettes 69, 70

magazine unit 70, 71
disks 69
displacement 141, 283

477

distributed processing 386
DMA (see Direct Memory Access)
documentation

program logic 53
source code 36, 53

double buffering 216
DPC (see input/output, direct program control)
duplex (half- or full-) 401, 423
dump device 69, 70

EBCDIC 90, 91, 414-419
EIA standard 343, 351, 414
enable interrupt (see interrupt)
error detection (see diagnosis)
error recovery 106
even indicator 302, 304-306
Event Driven Executive 48

fast overlay (see storage overlay)
flags 297
floating point 293-295
front end processor

application 4, 22-25, 386
software 22, 25

function modifier 285

gate 332-336
GPI B adapter 76, 242, 328, 382

handshaked 203, 355, 370
high-level data link control (see synchronous data link control)
high limit address {HLA) 111
horizontal redundancy checking 404
HDLC (see synchronous data link control)
HLA (see high limit address)

I DCB (immediate device control block) 216, 218, 219, 221, 223, 250
input/output

active signal 370-375
channel (see also bus, input/output; Direct Memory Access)

195-204, 327
control block 257
cycle stealing 233-248

478

input/output (cont.)
direct program control (DPC) 39, 43
interrupt-driven 208, 211, 332, 34 7
overlapped 212-215, 262, 263
polling 208-210
software support 48, 255
system 190

immediate data 283
immediate device control block (see IDCB)
indicators 87, 95-97, 302, 321
indirect addressing mode 136, 139, 142, 144, 145, 290
initial program load (see IPL)
interface cycle steal control 86
interrupt(s) 125, 127-129

class 103-107, 111, 112, 256
device mask 131
enable/disable 312, 315
identification word 225
input/output 102, 104-106, 209-216
mask register 99, 127-131
multilevel 81, 82
response 55, 102, 103, 106, 108, 109, 128, 129, 227-232, 303
service active line 370
summary mask 99, 127-129, 130
supervisor call 47, 256
timer 329, 332-335

I PL (see also operating systems, I PL) 48, 99, 101, 102, 113, 421, 463
instruction set 39, 278
interval timer 329, 332-336
inventory control 6

key entry 5
key

instruction space 153-164
operand 1 153-164
operand 2 153-164, 249-254

languages
assembler 79
COBOL 42, 49, 79, 136, 141, 195, 277, 278
FORTRAN 42, 49, 79, 95, 136, 141, 195, 277, 278
higher-level 49, 95, 277, 278
macro 42

479

languages {cont.)
PL/I 42, 49, 79, 95, 136, 141, 195, 277, 278

Level Exit instruction 106, 108, 109, 320, 323
level status block 87, 153
LLA (see low limit address)
Load Multiple and Branch instruction 107, 123, 124
load multiple instructions 107, 122
load state 101
logical instructions 295, 296
longitudinal redundancy checking 403, 404
low limit address (LLA) 112

mapping (see address translation)
maintainability 453
mask 99, 321
mean-time-between-failures 3
memory (see storage)
microprocessor 49-50, 203
microprogramming 39, 49, 83
multidrop 203
multifunction terminal

application 5-11
hardware 7, 10, 391
software 1 0-11

multiplexer (see also communications concentrator) 15
multipoint 400, 401, 421, 431
multiprogramming 43, 53-56

negative indicator 302
network (see communications networks)
number storage

floating 91-95
signed 91-95
unsigned 91, 92

OEM device
attachments (see user attachments)
hardware support 3_4, 35
software support 34, 36

Operate 1/0 instruction 223, 226, 227, 239
operating systems 2, 279

address translation 47
auxiliary storage resident tasks 183

480

operating systems (cont.)
data set support 271
file support 34, 271
input/output support 194, 209, 212-215, 270, 336, 437
interrupt handling 106, 108, 109, 224
IPL 99
protection 161
requirements 31, 34, 36, 48
supervisor and problem states 101-102
supervisor call 175, 176, 256, 258-260
task switching support 59-62, 179, 180-182

order processing 6
overflow 95, 302
overlay 186-189

fast (see storage overlay)
overrun error 342, 347, 472

packaging of hardware
parametric instructions
parity 404
partition

39, 44-45
283

dynamic 58, 59, 183, 186
fixed 56-58, 183-186

point to point 398, 399, 401
polling 208-210, 402, 431, 434
post increment address mode 137
power fail 113, 462, 463
power-on reset 367
Prepare command 221-224
priority levels (see also interrupt) 87, 103, 106, 108, 109, 224
privileged instructions 102, 106, 320, 321, 324
problem state 101, 102
processor

architecture 82-87, 195
requirements 81, 82
state 95, 98-102
status word 103, 110-113

program preparation 49, 78, 79
Program Preparation System 448
Programmable Communications Subsystem 397, 441-452
pulse

counter
duration

329
342,344, 345

481

pulse (cont.)
duration counter 329
rate 342

Read command 221, 222
read only storage 83, 84
ready line 356, 357
reentrant 134, 135, 177, 178
register addressing modes 137, 142, 143
register, segmentation 165, 166
registers 53-55, 87-90

floating-point 90
general purpose 53-55, 82
instruction address 103
level status 87, 95-97, 302
level status block 87-89, 103
mask 99, 321
status 82, 153
storage address 82, 86, 134
storage data 82, 86

reliability 455, 459
relocation hardware 43, 46
remote job entry 5, 386

scheduling 6
SDLC (see synchronous data link control)
segmentation register 165, 249, 321
select response signal 370, 377
sensor based input/output 72-75, 77, 78
serialize 312, 314-316
Set Level Block instruction 106
shifting 296, 300, 301
software, architecture 48, 255
stack 107, 111-124
stack control block 114, 122
start-stop communications 345
status flags 113
stop state 100
Store Multiple instruction 107, 122, 123
storage address

modes 134, 135-141, 147, 151, 177-179, 283
space 134
translation (see address translation)

482

storage channel (see bus, input/output; Direct Memory Access;
input/output channel)

storage key 152
storage mapping (see address translation)
storage management 56-61, 135, 179, 180, 183-189
storage organization 132-171
storage overlay 186-189
storage protection 134, 152, 249-256
strings 290, 291, 302, 303, 308, 309
strobe signal 370-377
structured programming 312
stuffing, character and bit 414, 430, 432, 433
subroutine linkage 123-125, 126, 127, 168, 317-319
Supervisor Call instruction (SVC) 256, 258-260, 321
supervisor state 101-103
synchronization 353-357
synchronous data link control (SDLC) 67, 402, 403, 423-436
systems 1, 2
system reset 367

task(s)
addressing 43, 46, 47
communications among 59-62
definition 56, 57
management 48
switching 177, 179
synchronization 62
set 31, 56-58

TEA (see top element address)
teletypewriter 72, 76, 343, 469

adapter 72, 76, 343
timers 329, 332-343
top element address 112
transaction processing 5
transparency in data transmission 405, 410, 421, 430
trap 11 2, 116
TTL signal 343, 345, 351, 352
two-channel switch 78, 202

user attachments 71-78, 205, 217, 242, 270, 326, 352, 362, 378,
379, 385,455,473-475

vertical redundancy checking 403, 404

483

wait state 100, 101
word length 4 7
wrap-back 469-4 72
Write command 221, 354, 355

484

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N .W.
P.O. Box 2150
Atlanta , Georgia 30301
(U.S.A . only)

General Business Group/ International
44 South Broadway
White Plains, New York 10601
(International I

