o

.|||
o It

Technical Newsletter This Newsletter No. SN34-0635
Date January 22, 1981
Base Publication No. SC34-0312-2
File No. S1-34
Previous Newsletters None

IBM Series/1

Event Driven Executive
System Guide
Program Numbers: 5719-XS1 5719-XS2 5719-MS1
5719-XX2 5719-XX3 5719-AM3
5719-UT3 5719-UT4
5719-LM5 5719-LM6

5719-LM2 5719-LM3

©® IBM Corp. 1979, 1980

This Technical Newsletter provides replécement pages for the subject publication. Pages to be inserted

and/or removed are:

9,10 123,124 191.1,191.2 (added)
23,24 127,128 192

57,58 128.1, 128.2 (added) 193

73,74 139, 140 193.1, 193.2 (added)
77 through 80 145 through 148 194

87,88 148.1, 148.2 (added) 194.1, 194.2 (added)
93 through 98 151 through 156 203 through 206

99 161 221,222

99.1,99.2 (added) 161.1, 161.2 (added) 269,270

100 162 295,296

101,102 165, 166 297

103 167 297.1,297.2 (added)
103.1, 103.2 (added) 167.1, 167.2 (added) 298

104 168 299,300

107 through 110 173,174 307,308

115 187 309

115.1, 115.2 (added)
116

116.1,116.2 (added)
117,118

187.1, 187.2 (added)
188

189,190

191

309.1, 309.2 (added)

310

319 through 326

341,342

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

Corrections and editorial changes have been made throughout this book. These changes are identifiable
by a vertical bar to the left of the change.

Note. Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Systems Publications, Department 27T, P.O. Box 1328, Boca Raton, Florida 33432

Printed in U.,S.A.

Sort/Merge

The Sort/Merge licensed program sorts and merges records from
up to eight input data sets into one output data set in either
ascending or descending order. You can specify one or more
control fields in the records to be sorted. The Sort/Merge
program compares the control fields to determine the relative
sequence of the records.

The Event Driven Executive Sort/Merge program executes under
the Basic Supervisor and Emulator.

Publications:

o IBM Seriess/1 Event Driven Executive Sort/Merge: Program-—
mer's Guide, SL23-0016

. IBM Series/1 Event Driven Executive Sort/Merget Specifica—
tions Sheet Form, GX23-0009

Series/l Macro Assembler

The Macro Assembler converts text data sets containing
machine, assembler, and macro instructions that have been
coded in the Series/1 instruction set into object modules. The
object modules can then be processed by the linkage editor.

When the assembler is used in conjunction with +the Macro
Library, applications coded in the Event Driven Language can
also be processed by the Macro Assembler, including customiz-
ing the supervisor. You can also include in the macro library
vour oWwn macros for commonly used routines. The Macro Assembler
and the Macro Library can be used in place of the Program Prepa-
ration Facility (SEDXASHM).

With the Macro Assembler you can assemble device support mod-
ules or modules that modify supervisor functions. You can also
assemble exit routines written in Seriess/1 Macro Assembler
language. The resulting object module is input to the Program
Preparation Facility linkage editor, together with your appli-
cations generated in Event Driven Language instructions, PL/I1,
FORTRAN IV, and/or COBOL. VYour program will execute under the
Basic Supervisor and Emulator after it has been processed by
the library update utility (SUPDATE).

Publications:

@ IBM Seriess/1 Event Driven Executive Macro Assembler,
GC34-0317

® IBM Series/1 Macro Assembler Reference Summary, SX34-0076

Chapter 1. Overview 9

Page ot SC34-U312-2
As updated January 22, 1981
By TNL SN34-0685

Multiple Terminal Manager

The IBM Seriess/1 Event Driven Executive Multiple Terminal
Manager provides a set of high level functions that simplify
the design, implementation, and maintenance of
transaction-oriented applications. Programs written in COBOL,
PL/I, FORTRAN IV, or Event Driven Language can execute in an
interactive environment, where on2 or more applications can
run concurrently using one or more display devices. Additional
interfaces are provided for indexed or direct files (access to
indexed files requires the Indexed Access Method). An operator
interface for functions such as sign on, connect or
disconnect, terminal status reports, and listing the screens
and programs available are also provided.

Publications: Refer to the Multiple Terminal Manager topics in
the master index of this publication.

Indexed Access Method

The Indexed Access Method provides data management facilities
that support indexed file operations. It allows you to build,
access, and maintain records in indexed data sets via a prede-
termined field called a key. An index of keys provides fast
access to records in an indexed data set. The access method
supports a high degree of insert/delete activity, providing
both direct and sequential access to the data from multiple,
concurrently executing programs. Applications that wuse the
Indexed Access Method can be programmed in the Event Driven
Language, PL/I, or in COBOL. It is supported by the Sort/Merge
licensed program, which will accept Indexed Access Method data
sets as input files. Also provided are utilities to define and
maintain indexed data sets.

The Indexed Access Method provides keyed access to data to
support a variety of applications, ranging from batch process-
ing to interactive applications.

The data file organization provides direct and sequential
processing of files. This is accomplished by using cascading
index techniques for direct processing and by sequence chain-
ing of the data blocks for sequential processing.

The access method supports files which have high add/delete

activity (such as open order files) with nominal performance

degradation. This is accomplished by distributing free space

for additions throughout the file, by updating and inserting

additions in place, and by dynamically reclaiming space after
. deletions.

10 SC34-0312

O

Page of SC34-0312-2
By TNL SN34-0685

- 4979 Display Station

- 3101 Display Terminal or equivalent teletypewriter
device

Minimum Licensed Program Requirements

The programs you require depend upon yvour application and which
language you wWill use to code your applications. The choices
are COBOL, FORTRAN IV, PL/I, Event Driven Language, or Macro
Assembler Language. ’

The first requirement is the Basic Supervisor and Emulator.
Then, based upon your choice of languages and vyour type of
work, the following can be used as guidelines:
U COBOL
Program preparation requires the COBOL Compiler and Resi-
dent Library, the Utilities, and the link editor of either
the Program Preparation Facility or the Series/1 Macro

Assembler. It allows you to:

- Install the COBOL Compiler and Resident Library and
the COBOL Transient Library

- Allocate data sets

- Enter source programs
- Compile

- Link edit

Execution and test require the COBOL Transient Library and
the Utilities. During execution and test, you may:?

- Use diagnostic aids
- Load programs
- Back up and copy data sets
. PL/I
Program preparation requires the PL/I Compiler and Resi-
dent Library, the Utilities, and the link editor of either

the Program Preparation Facility or the Seriess/1 Macro
Assembler; it allows you to:

Chapter 1. Overview 23

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

- Install the PL/I Compiler and Resident Library and the
PL/I Transient Library

- Allocate data sets

- Enter source programs
- Compile

- Link edit

Execution and test require the PL/I Transient Library and
the Utilities. During execution and test, you may:

- Use diagnhostic aids
- Load programs o
- Back up and copy data sets

. FORTRAN 1V
Program preparation requires FORTRAN IV, the Utilities,
the Mathematical and Functional Subroutine Library, and
the link editor of either the Program Preparation Facility

or the Series/1 Macro Assenbler; it allouws you to:

» - Install FORTRAN IV and the Mathematical and Functional
Subroutine Library .

- Allocate data sets

- Enter source programs
- Compile

= Link edit

Execution and test require the the Utilities. During exe-
cution and test, you may:

- Use diagnostic aids
- Load programs
- Back up and copy data sets

. Event Driven Language

24 SC34-0312

@

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

3. When a program is loaded by the $L operator command
4, During execution of some system utility programs

A general data set specification consists of two parts:
1. The data set name (dsname)

2. An optional volume label (volume) which specifies the vol-
ume on which the data set resides

The format for a data set specification is:

dsname,volume

The volume specification is optional and if not specified, the
system assumes that the target data set resides on the primary
volume on the direct access device from which the system was
IPLed.

dsname An alphameric character string of eight characters.
When fewer than eight characters are specified,
blanks are added to the string.

volume An alphameric character string of six characters.
To locate the volume on a disk, it must have been
defined in the VOLSER= parameter of a DISK config-
uration statement in the system I/0 definition. To
locate the volume on a diskette or tape, the TAPE or
DISK statement must be in the system I/0 definition
and the volume name loaded into the system by issuing
the operator command $VARYON, specifying the
diskette or tape device address. The diskette must
have been initialized by $INITDSK. Tapes must be
initialized by the $TAPEUT! utility. When fewer than
six characters are specified, blanks are added to
the right to complete the string.

Two special data set names are known to the system and must be
used with care:?

SSEDXVOL Used to obtain absolute record reference to an
entire volume on disk or diskette.

SSEDXLIB Used to obtain absolute record reference to the
beginning of the volume directory on disk or
diskette within a volume.

Note: Errors may occur if either of these two special data

set names are used to refer to deleted or uninitial-
ized HDR1 (Basic Exchange) records.

Chapter 3. Data Management 57

STORAGE CAPACITIES

Di

sk/Diskette

The following table summarizes storage capacities of the vari-

ous Series/1 direct access storage devices.

type 1 diskettes.
data (001-074) on type 2 diskettes.
2 cylinders are reserved for alternate tracks and 1

cylinder

* % 301 cylinders are available for data
is reserved for alternate sector
is reserved for CE use,

cylinder

assignments;

* X% ¥

while cylinder 358
sectors and cylinder 359

is reserved for IPL and volume

001
302

On both

(000,

‘Device Storage Cyl/dev]lLogical |[Trk/cyl{Volume max
capacity rcds/trk (cyls)
(records)

Single-sided

(type 1)

diskette 949 77 % 13 1 73

Double-sided

(type 2)

diskette 1924 T7% 13 2 74

4962 disk 303%%

-1 36120 60 2 273

-1F 36600 60 2 273

-2 36120 60 2 273

-2F 36600 60 2 273

-3 54180 60 3 182

-4 54180 60 3 182

4963 disk o 360 %%

-23 92160 66 G 128

-29 114560 64 5 102

-58 229632 64 10 51

-64 252032 64 11 46

* 73 cylinders are available for data (001-073) on

74 cylinders are available for

types,

identification.

002-301);

358 cylinders are available for data (0-357),
is reserved for alternate
is reserved for CE use.

58

SC34-0312

Page of SC340312-2
As updated January 22,1981
By TNL SN34-0685

PART TII - SYSTEM GENERATION AND CONFIGURATION

The creation of a customized supervisor is a two step process.
Step 1 is a definition phase. Step 2 is the generation phase.

In step 1, you define the configuration of the system by-
preparing configuration statements which describe the attri-
butes of the devices (such as disks, diskettes, and terminals)
you want your system to support. You also define the number and
size of the partitions that will be available in your system.
Configuration statements are described in "Chapter 6. System
Configuration"™ on page 75.

In step 2, you enter your configuration statements and assenmnble
them. Then vyou modify the system—-supplied INCLUDE file,
$LNKCNTL, ensuring that all the support you require is built
into the supervisor. The linkage editor combines the supervi-
sor definition with the supervisor functions you selected to
create a customized supervisor. ‘

The volume label, tape ID, and the label of a terminal state-
ment must all be uniquely defined. Otherwise, unpredictable
results may occur.

No device (other than disk) can be defined more than once.

The system generation process is described in "Chapter 7. Sys-
tem Generation”™ on page 115,

PART II - SYSTEM GENERATION AND CONFIGURATION 73

76

$C36-0312

O

RETRIES=

MC

END=

Examples:

BSCLINE

MC - The Series/1 is the controlling station on a
multipoint line. The adapter should be jumpered
with DTR permanently enabled and multipoint line
should not be jumpered.

MT - The Series/1 is a tributary station on a multi-
point line. The adapter should be jumpered for
multipoint tributary operation with DTR permanent-—
ly enabled.

The number of attempts which should be made to
recover from common error conditions before posting
a permanent error.

NO - The binary synchronous adapter located at the
address specified in the ADDRESS= operand is either
a medium speed, single line feature card or a high
speed, single line feature card.

YES - The binary synchronous adapter located at the
address specified in the ADDRESS= operand is part
of a multi-line controller feature configuration.
When generating supervisors using multi-line con-
troller attachments, note the following:

° The character string YES must be specified.
Any other character string wWwill be equivalent
to NO.

® All multi-line feature cards must start at a
base address ending with either X'0' or X8, A
BSCLINE statement must exist for the line at
this base address if any of the other lines of
the multi-line attachment are to be used.

YES, for the last BSCLINE statement in the system
definition module.

BSCLINE ADDRESS=28,TYPE=PT,RETRIES=10,MC=NO
BSCLINE ADDRESS=30,TYPE=SM,RETRIES=2,MC=YES,END=YES

Chapter 6. System Configuration 77

1ge of SC34-0312-2
s updated January 22, 1981
y TNL SN34-0685

DISK

DISK ~ Define Direct Access Storage

DISK defines the direct access storage devices and logical
volumes to be supported in the generated system. All DISK
statements must be grouped together. The last DISK statement
must include an END=YES specification.

DISK is only needed in the system generation process. Refer to
"Chapter 3. Data Management™ on page 45 for a general
discussion of direct access storage organization, functions,
and naming conventions.

|The disk Volser name must be unique for the system.

Syntax
blank DISK DEVICE=,ADDRESS=,VOLSER=,VOLORG=,
VOLSIZE=,VERIFY=,BASEVOL=,FHVOL=,
LIBORG=,END=,TASK=
Required:

For 4964, 4966t DEVICE=,ADDRESS=

For 4962, 4963: DEVICE=,ADDRESS=,VOLSER=,VOLSIZE=

For 4962, 6963 (with fixed head): DEVICE=,ADDRESS=

VOLSER=,VOLSIZE,FHVOL=
Defaults: LIBORG=241 for 4962-1 or 4962-2 primary volume

LIBORG=1 for secondary volume
LIBORG=361 for 6962-1F or 4962-2F primary vol
LIBORG=129 for 4963-64 or 4963-58 primary vol
LIBORG=129 for 4963-29 or 49%963-23 primary volum
END=NO, TASK=NO,VERIFY=YES

Operands Description
DEVICE= 4964, to define a 4964 Diskette Drive,
or

one of the following for the six models of the 6962
disk:

78 SC34-0312:

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

DISK

3 megabyte unit
.3 megabyte unit
with fixed heads
6962-2 for a 9.3 megabyte unit

with a diskette unit
4962-2F for a 9.3 megabyte unit

with fixed heads

and a diskette unit
4962-3 for a 13.9 megabyte unit
4962-4 for a 13.9 megabyte unit
with a diskette unit

4962-1 for a 9.
4962~-1F for a 9

or

one of the following fbr the four models of the 4963
disk:

4963-29 for
4963-23 for
4963-64 for
4963-58 for

29 megabyte unit
23 megabyte unit with fixed heads
64 megabyte unit
58 megabyte unit with fixed heads

[I T T I]

or
4966, to define a 4966 Diskette Magazine Unit.

Note: If 4962 or 4963 is specified, VOLSER= must be
specified; LIBORG= may be specified.

ADDRESS= The hexadecimal address of the unit. This parameter
is required for primary volumes only.

IPL devices must be at the following addresses:

Device Address
G962 X'03"
6963 Xt4q8"
G966 X'g2"
4966 X*22' (IPL must occur

from slot 1)

VOLSER= Volume label (1-6 characters) to be assigned to the
unit., This operand is required if the DEVICE=4962-
or DEVICE=4963—- is specified. Otherwise, it is
ignored.

VOLORG= The physical cylinder number of the first cylinder
of the volume. Cylinder numbering begins with zero.
A primary volume must begin at cylinder zero. (Ke-
fer to Figure 9 on page 58.)

Chapter 6. System Configuration 79

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

DISK
VOLSIZE= The size of the volume in physical cylinders. The (;)
minimum value allowed is 2. (Refer to Figure 9 on
page 58.)
VERIFY= NO, to omit the WRITE-with~-verify option. YES, to
cause each WRITE to be verified. YES is the -
default. This parameter is required for primary
volumes only.
Note: You should choose the VERIFY=YES option for
volumes containing critical data. This causes a
slight performance degradation but improves reli-
ability. With the YES option, each WRITE is imme-
diately followed by a READ, thus lengthening the
operation by the time it takes the unit to make one
revolution.
BASEVOL= The volume label of the primary volume if a
secondary volume is being defined.
FHVOL= The volume label to be assigned to the
automatically generated secondary volume if the
DISK statement is defining a primary volume on any
4962 or 4963 having fixed heads.
A
LIBORG= The origin, by number of records, of the directory "
on the volume. Defaults are described under 'Syn-
tax'. This operand is ‘only applicable when
DEVICE=6962 or 4963 and is intended for special use
when the initial portionvof‘the volume is reserved
for other storage.
END= YES, for the last DISK statement in the system
definition module.
. TASK= YES, to cause a new I/70 task to be generated. This

task Wwill be used to service 170 requests for this
and subsequent primary volumes until a new DISK
statement with TASK=YES is encountered. NO, or
omit, if a new task is not required. This operand is
valid only for primary volumes and is optional.

Specifying TASK=YES on a primary volume allocates a Task Con-
trol Block that is used in servicing READ and WRITE requests
for the group of devices being defined. The effect is to allow
READ and WRITE requests to proceed in parallel with requests to
other groups of devices. The resulting overlap may signif-
icantly improve performance when concurrent requests to dif-
ferent groups of devices occur. To achieve maximum flexibility
and performance, you should specify TASK=YES on each primary -
volume, Additional storage required for each TASK=YES is 128 (:;
bytes.

80 SC34-0312

PARTS=

DATEFMT=

SYSTEM

° Processor time requirements
These items vary with each installation.

The number of 2K (1K=1024 bytes) blocks of storage
to be assigned to each partition. Use only if STOR-
AGE= is specified as greater than 64. Enter a list
showing the maximum size of each partition. Up to
eight partitions can be defined for the 4955, up to
two for the 4952, and one for the 4953. The 1list
must contain the same number of entries as the list
coded for MAXPROG=,

The method for calculating the maximum size for
partition one is as follous:

Determine the available storage in the first 64K by
subtracting the size of the supervisor from 64K.
See Appendix A to estimate the supervisor size.

The size of partition one is de{ermined when you
IPL, by using the smaller of:

. The size you define in the PARTS= parameter
° 64K minus the size of the supervisor

The maximum value that can be specified is 32; the
minimum 1is 2. MWhen specifying the size to be
assigned to partition one, you may code 32 rather
than calculating the value, if you wish partition
one to have all storage not used by the supervisor.
Otherwise, you must calculate the size of partition
one.

The Multiple Terminal Manager partition size can be
calculated by using the information in the
Communications and Terminal Applications Guide.

The format to be used when the date is displayed
(PRINDATE or $W) or when entering the date via $T.
A return code is set in response to a GETTIME
request with the DATE option.

Specify MMDDYY for a date format of month.day.vear.

‘Specify DDMMYY for a date format of day.month.year.

MMDDYY is the default.

Note: Timer support must be included in your
supervisor in order to have date support.

Chapter 6. System Configuration 87

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

SYSTEHM

IABUF=

COMMON=

Example 1

The maximum number of interrupts that may be buf-
fered by the task supervisor. The default value is
adequate for most systems. The value should be
increased if the system could be overloaded by a
large number of interrupts. (The system will stop
or enter a continuous run loop.) . Each increment
increases the supervisor storage requirements by
eight bytes.

The label of the last supervisor address to be
mapped in every partition. The value will be auto-
matically rounded upward to a 2K byte boundary. To
map the entire supervisor, specify COMMON=START.
To map only the supervisor data areas, specify
COMMON=EDXSVCX. The default, COMMON=EDXSYS,
implies no mapping. Refer to "$SYSCOM - Define
Optional Common Data Area™ on page 113 for
additional information.

SYSTEM STORAGE=96,MAXPROG=(3,2,3), c
PARTS=(32,6,10)

This three partition system is possible on a 96KB 4955 and maps

as follous:
PARTITION 1
PARTITION 2
PARTITION .3
1. Partiti

concurr

2. Partiti
concurr

3. Partiti
concurr

Note: The 2
poses only.

Example 2

~28KB SUPERVISOR 36KB USER SPACE

12KB USER SPACE

20KB USER SPACE

on 1 is 36KB and can execute ub to three programs
ently.

on 2 is 12KB and can execute up to two programs
ently.

on 3 is 20KB and can execute up to three programs
ently.

8KB supervisor size is used for illustrative pur-

88 SC34-~0312

U

»

SYSTEM

PARTITION 1 28KB SUPERVISOR 32KB USER SPACE
PARTITION 2 36KB USER SPACE
1. Because COMMON=START was specified, the supervisor is

20

3.

mapped in both partition 1 and partition 2, providing
direct addressability to the supervisor for all programs
that execute on this system.

Partition 1 is 32KB and can execute up to three progranms
concurrently.

Partition 2 is 36KB and can execute up to four programs
concurrently.

Note: The 28KB number for the supervisor is used for illustra-
tive purposes only.

Chapter 6. System Configuration 93

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

TAPE

TAPE - Define Tape Device (Version 2 only)

TAPE defines the tape devices on a system. One TAPE statement
is required for each tape device on the system. It is recom-
mended that you group all DISK statements together, followed by
all the TAPE statements. The last TAPE or DISK statement must
include an END=YES specification. The tape ID must be a unique
name.

Syntax

blank TAPE DEVICE=,ADDRESS=,DENSITY=,LABEL=,ID=,
: TASK=,END=
Required: DEVICE=,ADDRESS=,ID=
Defaults: DENSITY=1600,LABEL=SL,TASK=NO,END=NO

Operands Description
DEVICE= Device type (4969 to define IBM 4969 tape unit)

ADDRESS= A two digit hexadecimal number specifying the
address assigned to the unit

DENSITY= Tape. density to be used for this device
(800,1600,DUAL). When DUAL is coded, density
defaults to 1600 BPI.

LABEL= Type of processing to be done on this device. Stand-
ard label (SL), non-label (NL), and bypass label
processing (BLP) are the only types supported.

ID A one-to six-character name that is associated with
the device. This operand is used primarily for

specifying the drive when NL or BLP is used.

TASK= YES, causes a new I/0 task to be generated. This
’ task is used to service I/0 request for this and
subsequent tapes until a new TAPE statement with
TASK=YES 1is encountered. For best performance,
specify TASK=YES for each tape unit that has a con-

troller,

END= YES, for the last statement in the DISK/TAPE
sequence.

94 SC34-0312

TAPE

O

Example

TAPE DEVICE=4969,ADDRESS=4C,DENSITY=1600, X
LABEL=SL,ID=$TAPEL, . X
TASK=YES,END=YES ' '

Note: END=YES is specified only
once for the DISK/TAPE definition statements.

Chapter 6. System Configuration 95

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

TERMINAL

TERMINAL - Define Input/Output Terminals

TERMINAL defines each input/output terminal to be supported in
the generated system. OQutput only devices, such as line
printers, are also specified with TERMINAL statements. All
TERMINAL statements must be grouped together with the last
statement including an END=YES specification.

A TERMINAL statement specifying DEVICE=VIRT can be entered in
an application program provided exactly the same statement is
entered in the system configuration program. All TERMINAL
statements wWwithin the application program are automatically
converted to an IOCB statement. The label on the TERMINAL
statement is used for the label and the operand of the I0CB
statement. Labels on all terminal statements must be unique
for the system.

Before preparing your TERMINAL statements, you need to know the
characteristics of vyour terminals, the way they uwill be
attached to your Series/l, and how you plan to use them in your
application. Review the appropriate hardware manuals, the
topic entitled "Terminal I/0" in the Language Reference, and
the appropriate topics in Communications and Terminal
Applications Guide.

If vyou use the Remote Management Utility and need the PASSTHRU
function, two virtual terminals are required. For a detailed
description of the PASSTHRU function see the Remote Management
Utility chapter in Communications and Terminal Applications
Guide. See Figure 10 on page 107 for a sample configuration.

96 SC34-0312

O

TERMINAL

Syntax

label TERMINAL DEVICE=,ADDRESS=,PAGSIZE=,LINSIZE=,
CODTYPE=, TOPM=,B0TM=,NHIST=, LEFTM=,RIGHTM=
OVFLINE=, LINEDEL=,CHARDEL=,CRDELAY=,ECHO=,
BITRATE=,RANGE=, LMODE=,ADAPTER=,C0D=,CR=,
LF=,HDCOPY=,ATTN=,PF1=,SYNC=,SCREEN=,PART=
DI=,D0=,PI=,END=,TYPE=

Required: DEVICE= ,and one of the following:
. ADDRESS= except for DI/DO terminals
® DI=,D0=,PI= for DI/DO0 terminals

Defaults: PART=1,END=NO

Operands Description

DEVICE= One of the following codes for the indicated
device:
TTY A 3101 Display Terminal or other ASCII

Terminal attached via Teletypeuwriter
Adapter (7850)

4979 4979 display station attached via 3585
Adapter

4978 4978 display station attached via RPQ
D02038

4974 4974 matrix printer attached via 5620
Adapter

4973 4973 line printer attached via 5630
Adapter

2741 2741 communications terminal attached

via 1610 controller

4013 Graphics terminal attached via 1560
adapter (Refer to Communications and

Terminal Applications Guide for hardware
considerations.)

Chapter 6. System Configuration 97

Page of SC34-0312-2

As updated January
By TNL SN34-0685

22,1981

TERMINAL

AD

PA

co

DRESS=

GSIZE=

DTYPE=

LINSIZE=

98

ACCA A 3101 Display Terminal or other ASCII
terminal attached via 1610 controller or
2091 controller with 2092 adapter or 2095
controller with 2096 adapter (Refer to
Communications and Terminal Applications

Guide for hardware considerations.)

PROC Processor—-to-processor communication

VIRT Inter—-program communication. (Refer to
"Chapter 14. Inter-Program
Communications”™ on page 279.)

The address (in hexadecimal) of the device.
to "Chapter 14. Inter-Program Communications" on
page 279 for the use of this parameter in con-
nection with virtual terminal communications,)

(Refer

The physical page size (form
medium. Specify a decimal number between 1 and the
maximum value which is meaningful for the device.
For printers, specify the number of lines per page,
or for screen devices the size of the screen in
lines. This operand is not required for the
497874979 display; its value is forced to 24. For a
printer the default is 6é6.

length) of the 1I/0

The transmission code used by the terminal. Specify
either ASCII, EBCDIC, EBCD (PTTC/EBCD), CRSP
(PTTC/correspondence), or EBASC (8 bit data inter-
change code) as in the following table:

Adapnter

7850 1610 209172092

209572096

DEVICE=TTY ASCII

(default)

N/A N/A N/A

DEVICE=2741 N7A EBCD

or
CRSP

N/7A N/7A

DEVICE=ACCA N/7A EBASC

(default)

EBASC
(default)

ASCII

The maximum length of an input or output line for
the device. The maximum line length cannot exceed
254 characters. The value of this operand can be
less than the maximum which the device can accommo-—

SC34-0312

e

~_

Page of SC34-0312-2
As updated January 22, 198
By TNL SN34-0685

TERMINAL

date (for example, 80 for the 64978/4979 display
station or 132 for the 4974 printer), but the value
is then fixed and cannot be altered dynamically.
For a printer the default is 132.

TOPM= The top margin (a decimal number between zero and
PAGSIZE-1) to indicate the top of the logical page
within the physical page for the device.

NHIST= The number of history lines to be retained when a
page eject is performed on the 497874979 display.
The line at TOPM+NHIST corresponds to logical line
zero for purposes of the terminal I/70 instructions.
When a page eject (LINE=0) is performed, the screen
area from TOPM to TOPM+NHIST-1 will contain lines
from the previous page. This operand is meaningful
for roll screens only. (See the discussion of the
SCREEN operand which follows.)

BOTM= The bottom margin, the last usable line on a page.
Its value must be between TOPM+NHIST and PAGSIZE-1.
If an output instruction would cause the line num-
ber to increase beyond +this value, then a page
eject, or wrap to line zero, is performed before the
operation is continued.

LEFTM= The left margin, the character position at which
input or output will begin. Specify a decimal value
between zero and LINSIZE-1.

RIGHTM= A value (betuween LEFTM and LINSIZE-1) that deter-
mines the last usable character position within a
line. Position numbering begins at zero.

OVFLINE= YES, if output lines that exceed the right margin
are to be continued on the next line. This condi-
tion arises when the system buffer or user buffer,
if provided) becomes full and you have taken no spe-
cific action in your application program (such as
forms control commands) to write the buffer to the
device.

Chapter 6. System Configuration 99

LINEDEL=

CHARDEL=

A two-digit hexadecimal character that defines the
character the operator will enter when he wishes to
restart an input line. In some cases, input of this
character causes a repeat of the previous output
message. Usually, this operand is not meaningful
for devices such as the 4979 display station, whose
input is formatted locally before entry. (For the
ACCA terminals attached via the 1610 or 2091 con-
trollers and the 2092 adapter, code in mirror
image., Refer below for a description of mirror
images.)

A two-digit hexadecimal character which indicates
deletion of the previous input character. It is
meaningful only for devices whose mode of trans-—
mission is one character at a time, as described in
the LINEDEL operand. For the ACCA terminals
attached via the 1610 or 2091 controllers and the
2092 adapter, enter in mirror image.

99.1 sC34-0312.

AN

Chapter 6.

System Configuration

99.2

TERMINAL

CRDELAY=

ECHO=

BITRATE=
RANGE=
LMODE=

ADAPTER=

The number of idle times required for a carriage
return to complete for teletypeuwriter devices. If
printing occurs during the carriage return, CRDELAY
is too small. For interprocessor communications
(DEVICE=PROC), refer to the Communications and

Terminal Applications Guide.

NO, for devices that do not require input charac-
ters to be written back (echoed) by the processor
for printing.

YES (the default) is appropriate for most devices
connected through the teletypewriter adapter. NO
is required for ACCA. See the LF parameter
description regarding suppression of the echo of
the CR character.

The rate (in bits per second) that this terminal
will be operating. (Used with ACCA, 2741 and PROC
support only.)

"Enter HIGH or LOW to match hardware jumper that is

installed on the adapter card. (Used with ACCA,
2741 and PROC support only.)

SWITCHED or PTTOPT. If this line is used with a
suwitched connection, then enter SWITCHED. Other-—
wise, enter PTTOPT. (Used with ACCA support only.)

One of the following to indicate the ACCA type:
SINGLE For the single line controller

TWO For the eight line controller with up to
two lines active

FOUR For the eight line controller with up to
four lines active

SIX For the eight line controller with up to
six lines active

EIGHT For the eight line controller with up to
eight lines active

100 SC34-0312

AN

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

TERMINAL

All multiple line feature cards must start at a base
address ending with with X'0' or X'8'. A terminal
statement with DEVICE=ACCA must exist for the line
at the base address. Furthermore, the terminal
defined as the base address must be specified as the
first terminal for the multiline controller. The
remaining terminals defined on the multiline con-
troller (if any) must immediately follow the base
address terminal and should be in ascending order
by address.

Note: For DEVICE=2741, only SINGLE is allowed.
This should match the jumpers on the controller

cards. (Refer to the Communications and Terminal
Applications Guide for hardware considerations.)

cCOoD= Additional characters, other than the CR=, ATTN=,
and LINEDEL= values, that will terminate a READ
operation. (COD means change of direction, for
example, READ to WRITE.) (Used with ACCA only.)
Code in mirror image as follows:

coD=11
or
COD=(12,B6,42...)

From one to four COD characters may be entered.

CR The single character to be tested to determine if a
new line function is to be performed. (Code in mir-~
ror image for ACCA terminals attached via 1610 or

2091 controllers with a 2092 adapter.)

LF

i}

The character to be sent to the terminal when a new
line function is to be performed. Code in mirror
image for ACCA terminals attached via the 1610 or
2091 controllers with the 2092 adapter. If the same
value is coded for LF= as was coded (or defaulted)
for CR= then the CR character which terminates an
input operation will not be echoed to the terminal;
the terminal is assumed to be an auto-line feed
device.

HDCOPY= Support for the 497874979 display station includes
a means of printing the contents of the display
screen on a hardcopy device for permanent record.
(For an explanation of the hardcopy feature, refer
to Utilities, Operator Commands, Program
Preparation, Messages and Codes). The hardcopy
function is defined by coding:

Chapter 6. System Configuration 101

TERMINAL

ATTN=

HDCOPY=(terminal name, key), -

terminal name The symbolic nanme of the terminal to
which the hardcopy contents will be
directed '

key The code of the program function key
which is to invoke the function. For
example, HDCOPY=($SYSPRTR,4) desig-—-
nates $SYSPRTR as the hardcopy
device and PF4 as the activating key.
If the hardcopy terminal name alone
is specified, as for example in
HDCOPY=6SYSPRTR, then the default is
PF6. Note: The terminal specified
(Terminal name) must not be defined
with ATTN=NO.

NO, if the attention key and the 497874979 PF keys
are to be disabled for the terminal. Such disabling
is then permanent for the generated system. If you
do not specify ATTN=, the default is the ATTN key.

LOCAL, to limit the attention functions to those
defined by ATTNLISTs within programs loaded from
the terminal. '

NOSYS, to exclude only the system functions ($L,
$C, etc.).

NDGLOB,'to exclude only the global ATTNLIST func-
tions. (GLOBAL is the ATTNLIST of all programs in
the same partition at ohe time.)

Note: This operand can also be entered with a two-
digit hexadecimal character for the attention key
if the system default is not desired.

The attention key can be redefined with a tuwo-digit
hexadecimal character for the 497874979 displays or
ASCII terminals.

For terminals attached via the 1610 or 2091 con-
trollers and the 2092 adapter, use mirror image.
(Refer to "Mirror Image"™ on page 109 for a
discussion of mirror image.)

For the 3101 display terminal, enter X'D9' if the
terminal is attached via the 1610 or 2091 control-
lers and X'9B'" if it is attached via the 2095 con-
troller. You may have the Mark Parity Switch set on
(refer to the IBM 3101 Display Terminal Description

102 SC34-0312

O

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

TERMINAL

GA18-2034, for information on switech settings).

The default for ATTN for ASCII terminals is ASCII
X'1B', the ESC key. The mirror image of X'1B' is
X'D8'. Note: If the terminal being defined is spec-—
ified in the HDCOPY= parameter of an other termi-
nal, do not code ATTN=NO.

Note: If the terminal being defined is a teletype-
writer device to be used as $SYSPRTR, do not code
ATTN=NO.

PF1= For the 4978 display, code the two-digit
hexadecimal character which is to be interpreted as
Program Function key 1. Successive values are then
interpreted as PF2 and PF3.

The default for this operand is 2.

SYNC= This keyword applies to virtual terminal
communications. Code SYNC=YES if synchronization
events will be posted to this virtual terminal.

This means that attempted actions over the virtual
channel will be indicated in the task control word.
This allows the two terminals to synchronize their
actions so that when one terminal is writing, the
other is reading.

SYNC=NO is the default.

SCREEN= One of the following to indicate whether the
‘terminal is a hardcopy or screen device:

YES or ROLL for screens which are to be operated
like a typewriter.

For screen devices which are attached through the
teletypewriter adapter, this indicates that a pause
will be performed when a screen-full condition
occurs during continuous output.

NO for hardcopy devices. For 4978 or 4979 devices,
NO results in inhibiting the pause when the screen
fills up (the screen acts as a roll screen).

STATIC for a full—-screen mode of operation, if this
mode is supported for the device.

Chapter 6. System Configuration 103

103.1

Note: The initial terminal configuration should be
STATIC only if the terminal is reserved for data
display and data entry operations. Normal system
operations, such as those directed to $SYSLOG or
those involving the utility programs, assume a roll
screen configuration. The application program can
define the static screen configuration by means of
the ENQT and IOCB instructions described in the
Language Reference.

SC34-0312

c fi\

Chapter 6.

System Configuration

103.2

TERMINAL

PART= A number (1-8) to indicate the partition with which
the terminal is normally associated.

This is valid only if the STORAGE= operand of the
SYSTEM statement was specified to be greater than
64. You can change the partition assignment at exe-
cution time with the $CP Command described in
Utilities, Operator Commands, Program Preparation,

Messages and Codes.

END= YES, for the last TERMINAL statement in a system
definition module. -

TYPE= Specify DSECT to generate a CCB DSECT in your
program. for programs processed by $51ASM. Do not
specify DSECT in programs processed by $EDXASM; use
COPY CCBEQU elsewhere in your program.

The following three operands are for terminals connected via
digital I/0 only?®

Operands Description
DI=(address,termaddr)
address The digital input grodp address.
termaddr The hardware subaddress (0-7) of the
terminal defining the value used to
select the terminal for digital input.
DO=(address,termaddr)

address The digital output group address

termaddr The hardware subaddress (0-7) to define
the digital output subaddress of the ter-

minal
PI=(address,bit)
address The process interrupt group address.
bit The bit (0-15) to define the particular
interrupting point assigned to the ter-
minal.

104 SC34-0312

O

TERMINAL

4013% (DI/D0O Parallel Interface) TERMINAL Statement

TERMINAL DEVICE=4013,D1=(80,01),D0=(87,01),
PI=(84,04),PAGSIZE=35,LINSIZE=72,
CODTYPE=ASCII,TOPM=0,BOTM=34,LEFTMN=0,
RIGHTM=71,SCREEN=NO,OVFLINE=NO,
LINEDEL=7F,CHARDEL=08,CRDELAY=0, ECHO=YES,
CR=0D,LF=0A

OO0

Remote Management Utility using the
PASSTHRU function - TERMINAL Statements

CDRVTA TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB, - C
SYNC=YES,LINSIZE=132 '

CDRVTB TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA, c
SYNC=NO, LINSIZE=132

Note: This example shows a line size of 132. The
maximum line size value is 254,
The names CDRVTA and CDRVTB are required.

The following statements are coded With values that are not
defaults for parameters PAGSIZE, ATTN, CR, CHARDEL, LINEDEL,
ADAPTER, BOTM, SCREEN, BITRATE, RANGE, and MODE. Use these val-
ues if the IBM 3101 Display Terminal is attached to your sys-
tem. For DEVICE=ACCA, you must set the mark parity switch on
(refer to the IBM 3101 Display Terminal Description,
GA18-2033, for information on switch settings).

4 Registered trademark of the Tektronix Corporation.

Chapter 6. System Configuration 107

'age of SC34-0312-2
\s updated January 22, 1981
3y TNL SN34-0685

TERMINAL

IBM 3101 TERMINAL Statement (via 7850 adapter)

TERMINAL

DEVICE=TTY,ADDRESS=00,CRDELAY=4,
PAGSIZE=24,SCREEN=YES

IBM 3101 TERMINAL Statement (via 2095 controller)

TERMINAL

DEVICE=ACCA,ADDRESS=60,BITRATE=110,
PAGSIZE=24,LINSIZE=80,
CODTYPE=ASCII,TOPM=0,B0OTM=23,LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFLINE=NO,
LINEDEL=FF,CHARDEL=88,CRDELAY=0,ECHO=NGO,
RANGE=LOW, LMODE=PTTOPT,
CR=8D,LF=0A,ATTN=9B, ADAPTER=FOUR

OO0

IBM 3101 TERMINAL Statement
_(via 1610 or 2091 controller)

TERMINAL

DEVICE=ACCA, ADDRESS=6B,BITRATE=110,
PAGSIZE=24,LINSIZE=80,

CODTYPE=EBASC, TOPM=0,B0OTM=23,LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFLINE=NO,
LINEDEL=FF,CHARDEL=11,CRDELAY=0,ECHO=NO,
RANGE=LOW, LMODE=SWITCHED,
CR=B1,LF=50,ATTN=D9, ADAPTER=EIGHT

OOOOO0

108 SC34-0312

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

TERMINAL

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL Statement
(via 1610 or 2091 controller)

TERMINAL

DEVICE=ACCA, ADDRESS=08,BITRATE=2400,
PAGSIZE=24, LINSIZE=80,

CODTYPE=EBASC, TOPM=0,B0TM=23,LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFLINE=NO,
LINEDEL=FF,CHARDEL=11,CRDELAY=0,ECHO=NO,
RANGE=HIGH, LMODE=PTTOPT,
CR=B1,LF=50,ATTN=A8, ADAPTER=SINGLE

OOO0OOO0

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL Statement
(via 2095 controller)

TERMINAL

DEVICE=ACCA, ADDRESS=61,BITRATE=2400,
PAGSIZE=264,LINSIZE=80,
CODTYPE=ASCII,TOPM=0,B0TM=23,LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFLINE=NO,
LINEDEL=FF,CHARDEL=88,CRDELAY=0,ECHO=NO,
RANGE=HIGH, LMODE=PTTOPT, ’
CR=8D,LF=0A,ATTN=15, ADAPTER=FOUR

OOOOO0

Mirror Image

Mirror

X'F1!

X'31°

X"8F"

image

is used by ASCII terminals attached via the 1610
or 2091 controllers and the 2092 adapter. Mirror image reverses
the bit pattern for data. For examnple, the EBCDIC character 1
would look as follows:

EBCDIC

ASCII

Mi

rror Image EBCDIC

Chapter 6. System Configuration 109

TERMINAL

X'8cC? Mirror Image ASCII
When using XLATE=NO on Event Driven language instructions

PRINTEXT and READTEXT, the data sent must be in mirror image.
Data received is in mirror image.

ASCII Terminal Codes

Terminals and other devices equivalent to the Teletype ASR
33735 are referred to in this document as "ASCII terminals."
These terminals may be attached to the Series/1 in a variety of
ways. Note that while the bit representation of a character
appearing at the terminal is the same for all the attachments,
two different representations for a given character are used
internally.

One representation is ASCII} in which the characters appeér in
main storage in ASCII code. This code is used by features
#7850, #2095, and #2096.

The other representation is the Eight Bit Data Interchange
Code. It is used by the 1610 and 2091 controllers and the 2092
adapter. This representation is the mirror image within a byte
of the ASCII representation. The bits appear swapped
end-for-end within each byte.

Note 'also that ASCII terminals may use even, odd, or no parity.
The parity bit appears as the high order bit in ASCII code and
as the low order bit in Eight Bit Data Interchange Code. You
must incorporate the proper parity, if any, within the data
characters. You must also incorporate the proper parity, if
any, within the control characters specified by the LINEDEL,
CHARDEL, €COD, CR, and LR parameters of the TERMINAL statement.

Symbolic Reference to Terminals

The optional label on the TERMINAL statement is used to assign
a name to the device for purposes of reference by the applica-
tion program. Three such names have special meaning to the
- supervisor and should be assigned to the appropriate device:

SSYSLOG Names the system logging device or operator station,

and must be defined in every system. In the starter
supervisor, $SYSLOG defines a 4978 display station.

110 SC34-0312

C

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

CHAPTER 7. SYSTEM GENERATION

To generate an Event Driven Executive system, you must have
access to a Series/1 capable of preparing the supervisor pro-
gram and application programs. System generation requires that
the following licensed programs be installed:

. Basic Supervisor and Emulator
. Event Driven Executive Utilities
. Event Driven Executive Program Preparation Facility

(requires 26K bytes of storage)
or
Series/1 Macro Assembler and Macro Library
(requires 16K bytes of storage. This will allow system
generation in a Series/! program preparation configuration
which includes a 4955 processor with a minimum of 48K bytes
of storage.)

The Program Preparation Facility enables vyou to prepare

programs to be executed on any Series/1 that has the required
hardware configuration and licenses.

GENERATING THE SUPERVISOR

Creating a supervisor program tailored to vyour Series/1 hard-
ware configuration requires the use of several of the utilities
and program preparation programs; these include:
. Disk data set management ($DISKUT1)
o Text editor ($EDITIN)
or
Full-screen editor ($FSEDIT)
o Batch job stream processor ($JOBUTIL)
¢ - Event Driven Language compiler ($EDXASM5

or

Series/1 Macro Assembler ($1ASM) and Macro Library

Chapter 7. System Generation 115

. Linkage editor ($LINK)
. Object module conversion ($UPDATE)
You should become familiar with these utilities, especially

the text editors, before attempting to generate the supervi-
sor. These utilities are described in Utilities, Operator

Commands, Program Preparation, Messages and Codes.

The following major steps are required:

115.1 SC34-0312:

U

@

Chapter 7.

System Generation

115.2

Step A. Allocate required data sets.

Step B. Edit S$EDXDEF, the system configuration file, to
match your hardware configuration.,

Step C. Edit SLNKCNTL, the system—-supplied INCLUDE file,
to specify which supervisor program object modules are to
be included in your supervisor.

Step D. Edit $SUPPREP, the system-supplied 3job stream
processor file, to use your allocated data sets.

Step E. Use $JOBUTIL and the prbcedure file created 1in
Step D to:

- Assemble the supervisor definition module created in
Step B

- Link edit the resulting object module with the other
necessary supervisor object modules using the link
edit control data set created in Step C.

- Using SUPDATE, convert the output of the 1link edit
process into an executable supervisor, and store it in
a data set named SEDXNUCT.

Step F. Test the created supervisor on a disk based sys-
tem.

Step 6. Verify the system generation process (optional).

Step A - Allocate Réquired Data Sets

1. IPL the system from disk volume EDX0O02.

2. Load utility program $DISKUT!l and use the AL command to
allocate the following data sets on volume EDX002. All
data sets must be specified as TYPE=DATA.

Data Set MName Number of Records
EDITWORK 200
ASMOBJ 250
ASMKWORK 250
SUPVLINK 450
LEWORK1 400
LEWORK?2 150
116 SC34-0312

N
\W4

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Note: The actual size of the data set depends on the size of
the supervisor being generatad.

If you plan to use the utility $EDITIN to edit $EDXDEF and
$LNKCTRL, vyou must allocate data sets SEDXDEFS (35
records) and $LNKCTRL (50 records) on EDX0O02.

Chapter 7. System Generation 116.1

116.2 SC34-0312

>

Step B - Edit SEDXDEF to Match Hardwuare Configuration

Edit $SEDXDEF to match your hardware configuration:

1. Load wutility program SEDITIN or S$FSEDIT and specify
EDITWORK as the reply to WORKFILE=.

2. Read the supplied data set $EDXDEF from volume ASMLIB.
Figure 11 on page 133 shows a sample configuration of
$SEDXDEF. The supplied configuration can be seen in the Pro-
gram Directory.

The first time you use EDITWORK as a work file for the text
editor, vyou will be asked if you can use the EDITWORK data
set as a work data set; respond YES and continue.

3. Add to or delete from the contents of EDITWORK as necessary
to create a set of system configuration statements. (Sys-
tem configuration statements are described in "Chapter 6.
System Configuration™ on page 75.) Some printer on the
Series/]1 should be designated as $SYSPRTR. When editing
ensure that:

° Continuation indicators in column 72 are not removed.

. If required, a continuation character is placed in
column 72 and the statement is continued in column 16
of the next line

° A field does not extend beyond column 71
The editing prdcess consists of the following procedure:

a. Calculate the total amount of storage available, the
number of partitions desired, and the number of 2K
blocks of storage desired for each partition. This
information is inserted into the SYSTEM statement to
define the characteristics of the processor. Refer to
"Chapter 6. System Configuration™ on page 75 for a
description of the SYSTEM statement.

b. Define the hardware features to be supported, using
the appropriate system configuration statements (TIM-
ER, SENSORIO, HOSTCOMM, BSCLINE, EXIODEV, DISK, TERMI-
NAL, TAPE).

c. Define the direct access storage devices and logical
volumes to be supported in the generated system, using
the DISK system configuration statement. Sample DISK
configuration statements are supplied for each device
in the $EDXDEF data set on ASMLIB. Refer to "Chapter 3.
Data Management™ on page 45 for storage capacities of
the supported direct access storage devices. With
this information, you can define your disk volumes.

Chapter 7. System Generation 117

age of SC34-0312-2

s updated January 22, 1981

y TNL SN34-0685

q.

The only restrictions are (1) that you define the
‘required Event Driven Executive volumes (EDX002,
EDX003, ASMLIB) in addition to your volumes and (2)
that you follow the rules pertaining to library
origins and maximum volume sizes.

Note: Optional software products may require addi-
tional volumes. Volume requirements are supplied with
the product documentation.

d. Define the characteristics of all printers, displays,
and teletypewriters, using the TERMINAL statement.
Examples of various types of TERMINAL statements are
included in the $EDXDEF data set.

Note: Check the speed of your 3101 in the terminal statement.

The speed must match the 3101 switch settings.

Save the final version of the definition statements in the
data set $EDXDEFS on volume EDXOQO02.

Step C — Specify Obiect Modules

Edit S$LNKCNTL to specify which supervisor program object mod-
‘ules are to be included.

118

1. Read data set $LNKCNTL from volume ASMLIB. The supplied
contents of $LNKCNTL are shown in the following tables;
footnotes are provided on required usage. The $LNKCNTL
data set supplied with Version 1 does not include TAPE sup-
port.

§C34-0312

A™

3 I 3 I I K I I 3 K M K I, K K I I I I K H I H I I I K K K I I I I I NI I KW I I K KN AN KK H KN K KN KK

% SYSTEM SUPPORT --

INITIALIZATION

e RS RS EEE TSRS TS ESS SRR TS EEITEE SIS EEIEE SRS S 2

INCLUDE EDXINIT,XS2002 xHx SUPERVISOR INITIALIZATION
INCLUDE DISKINIT,XS2002 xMx DISKCETTE) INITIALIZATION
¥»INCLUDE TAPEINIT,XS2002 *Mx TAPE INITIALIZATION
INCLUDE LOADINIT,XS52002 *Cx PROGRAM LOADER INITIALIZATION
INCLUDE RW&4963ID,XS2002 xMx 4963 FIXED HEAD REFRESH SUPPORT
INCLUDE TERMINIT,XS2002 %1% TERMINAL INITIALIZATION '
INCLUDE INIT4978,XS52002 *Mx 4978 DISPLAY INITIALIZATION
¥*INCLUDE INIT4013,XS52002 xMx DIGITAL I/0 TERMINAL INIT _
*INCLUDE SACCARAM,XS2002 x%3% ACCA MULTI-LINE ADAPTER RAM LOAD
#INCLUDE BSCINIT,XS2002 x7% BISYNC (BSCAM) INITIALIZATION
¥INCLUDE $BSCARAM,XS2002 7% BISYNC MULT-LINE ADAPTER RAM LOAD
*¥*INCLUDE TPINIT,XS2002 *8 % HCF (TPCOM) INITIALIZATION
¥INCLUDE TIMRINIT,XS2002 *6% 4953/4955 TIMER INITIALIZATION
*INCLUDE CLOKINIT,XS2002 x6% 4952 TIMER INITIALIZATION
*INCLUDE SBIOINIT,XS2002 xMx SENSOR I/0 INITIALIZATION
¥INCLUDE EXIOINIT,XS2002 xMx EXIO INITIALIZATION
NOTES
*0 % Must be included first and in this order
*1% Required if any terminals are installed, including 4973
* or 4974
%2 % Required if IOSTTY, 1I0S2741, or IOSACCA is included
* 3% Required if non-2741 terminals are on ACCA
* G X% Required if IOSTTY is included
% 5% Either TREBCD or TRCRSP or both are required if I0S2741
% is included, depending on the code used by the 2741
* terminals — correspondence or ASCII
* 6% Attached TIMERS (feature 7840) and the 4952 native TIMER
¥ are mutually exclusive. Select the TIMER support
* required for your configuration or none if no TIMER
* "support is required.
*7 % Required for binary synchronous communication using
* BSCREAD/BSCHRITE or Remote Management Utility support.
8 Required for communication to a S/370 with the EDX Host
* Communication Facility
%9 Required if any Sensor I/0 support is to be used
* (AI,AO0,DI,DO, or PI1)
*A% One, but not both, of these modules is required
¥B Required if the in storage program check/machine check
* log is to be kept
C Required if programs are to be loaded from disk(ette).
* If not included, an application program must be link
¥ edited with the supervisor.
Dx One, but not both, of these modules is required
*E % Required for data formatting operations (GETEDIT,
% PUTEDIT, FORMAT) :
*F % Required for queueing operations (FIRSTQ, NEXTQ, LASTQ,
¥ DEFINEQ)
*6 % Required for program debugging ($DEBUG)

Chapter 7. System Generation 123

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

%H* Required and must follow all of the previously listed
* modules.
* All other initialization modules must follow EDXINIT.
J For starter supervisor use only
*¥ K% There are two versions of this module. This one is
* for systems that support the address translator
* feature of the 4952 and 4955 processors., Include this
%* version if your system is to support both the function
* the module implements and the address translator
* feature, (XL)
* L% There are two versions of this module. This one is
* for systems that do not support the address translator
* feature of the 4952 and 4955 processors. Include this
* version if your system is to support the function
* the module implements, but not the address translator
* feature. (UN-XL)
*Mx Optional module; required if device or feature is to be
* supported.
*N % Required if using Remote Management Utility with PASSTHRU
* function.

END

Note: You should include DDBFIX and CCBFIX with the other
system intialization modules if you wixh to regenerate the
starter system.

2. Enter an asterisk (%) in column one (1) of each INCLUDE
statement not required to create your supervisor. The
asterisk makes the statement a comment and the module with
the asterisk is not included in your supervisor. Be sure
that the system definition statements created in Step B
agree with the modules you include in this step.

The modules with note L can be used if your generated sys-
tem is to execute either on a Series/1 without the address
translator feature or on a 64KB 64952 processor. These
modules do not support the address translator. The SYSTEM
configuration statement must specify STORAGE as 64 or less
and PARTS may not be specified.

3. Save the edited version of $LNKCNTL in a data set named
LINKCNTL on EDXO0O02.

Step D - Assemble and Link Edit the Supervisor

The $SUPPREP procedure below specifies the use of the $EDXASM
compiler. If the $51ASM assembler is required, the appropriate
procedure statement changes must be made.

Edit $SUPPREP to use your allocated data sets.

1. Read the data set $SUPPREP from volume ASMLIB. Figure 10 on
page 125 shows $SUPPREP.

124 SC34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

3. Test the supervisor by executing utility programs that
exercise the various supervisor components (such as disk
I1/0, sensor 170, etc.)

Notes:

. If the new supervisor fails to operate correctly, you must
restore the original contents of $EDXNUC by IPLing from a
diskette. Use $COPY or $COPYUT! to copy the starter super-—
visor from diskette UT3001 orUT4001 to SEDXNUC on EDX0O0Z2.

. If any errors are encountered, repeat steps B through E of
this procedure.

° If you relocated any volumes in a tailored system gener-
ation (particularly EDX002), copy the new supervisor into
the $EDXNUC data set on a copy of the utility diskette
(UT3001 orUT4001) and perform a complete system installa~-
tion.

° The actual addresses of CSECT and ENTRY point labels in the
SEDXNUCT or $EDXNUC modules stored on disk will be X'100°
greater than those shown on the link edit map. This is
because $UPDATE adds a 256 byte header to all $EDXNUCx mod-
ules.

. If you have a 4966 Diskette Magazine Unit, the door must be
closed during IPL.

Step 6 - Verify the System Generation Process

To verify that the system generation has been performed suc-
cessfully:

1. Assemble and execute the sample program CALCSRC.

Note: CALCDEMO source instructions are located in the data
set CALCSRC on the disk volume EDXQO0Z2. To assemble
CALCDEMO, refer to the procedure for program preparation
described in Utilities, Operator Commands, Program
Preparation, Messages and Codes.

2. When the assembly is complete, load the test program into
storage for execution by using the $L operator command.

3. When you receive the prompts A= and B=, enter any decimal
integer values less than 2 billion, followed by a carriage
return or ENTER after each entry.

A sample of the entries and resulting output follows:

Chapter 7. System Generation 127

Page ot SC34-U312-2
As updated January 22, 1981
By TNL SN34-0685

> $¢L CALCDEMO

CALCDEMO 3P,10:59:55, LP= 7F00
Press ATTENTION and enter CALC or STOP
> CALC
A= 12

= 52
A+ B = 64
A -B = -40
A ¥ B = 624
A/ B = 0 REMAINDER = 12
Press ATTENTION and enter CALC or STOP
> CALC

OTHER CONSIDERATIONS

Control and Image Stores for the 4978

The system includes modules $49781S0, $4978CS0, $4978CS1, and
$4978IS1. These four modules are the 4978 stores for the
D02056 keyboard.

If $4978IS0 and $4978CS0 are present in the IPL volume, the
image store is loaded form $4978IS0 and the control store is
loaded from $4978CS0 for all of the 4978 displays defined in
‘the supervisor.

If a 4978 already has the stores loaded from a previous IPL
sequence, the stores will not be reloaded. Thée combination of
$4978IS0 and $4978CS0 provides an uppercase alphabat. The com-
bination of $4978IS1 and $4978CS1 provides both upper and lower
case alphabets.

If you have a keyboard other than a D02056 (RPQ) as the $SYSLOG
device, the following procedure is necessary for installing
EDX:

1. Using the stand—alone 4978 diskette, load the stores on the:
4978 display (which corresponds to $SYSLOG).

2. IPL the starter supervisor. If the stores have already
been loaded in.the 4978 during a previous IPL sequence, the
D02056 stores will not be reloaded.

3. Run the $TERMUT2 utility. Read the image and control
stores into data sets $4978IS0 and $4978CS0 respectively.
These data sets are on the IPL volume.

4., The starter system is now ready to be used with your key-
board.

128 SC34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Terminal Initialization for the Starter System

If your system includes a 4979 Display Station at device
address 4, the starter system defines the program function keys
as follouws

KEY LABEL FUNCTION
PF1 PF1
PF2 PF3
PF3 PF5
PF& PF2
PF5 PF&
PF6 ‘ PF6

System Generation without the Program Preparation Facility

For Series/1l systems that do not include the Program Prepara-
tion Facility, installation requires the following general
steps:

1. Assemble and link edit the supervisor, for the target
Series/1 on a system that supports program preparation.

2. Assemble application programs for the target Series/1 on a
system that supports program preparation.

3. Use utility program SINITDSK to initialize one or more
diskettes with IPL text, space for the supervisor program,
and a library to contain vyour application programs.

4, Transfer your supervisor to $EDXNUC on diskette(s) with
either $COPY or $COPYUTIL.

5. Copy S$LOADER, any of the utilities, and the application
programs that will be required on the target Series/1, onto
the diskette(s) with $COPYUTL1.

6. Install the diskette(s) on the target machine for
execution.

Chapter 7. System Generation 128.1

i28.2 SC34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

SYSTEM STORAGE=256, c
MAXPROG=(3,1,5,2,2,1,1,4), C
PARTS=(15,4,21,13,17,11,8,23)

DISK DEVICE=4963-64,ADDRESS=48, . c
VOLSER=EDX002,VOLORG=0,VOLSIZE=46, c
LIBORG=129

DISK DEVICE=4963-64,VOLSER=EDXCO03, C
BASEVOL=EDX0G02,VOLORG=46, C
VOLSIZE=66, LIBORG=

DISK DEVICE=4963-64,VOLSER=ASMLIB, c
BASEVOL=EDX002,VOLORG=92, c
VOLSIZE=45, LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX0O04, C
BASEVOL=EDX002,VOLORG=138, C
VOLSIZE=46,LIBORG=1 _

DISK DEVICE=4%63-64,VOLSER=EDXO005, C
BASEVOL=EDX002,V0OL0ORG=184, C.
VOLSIZE=4¢6,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX006, c
BASEVOL=EDX002,VOLORG=230, c
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64%,VOLSER=EDX007, C
BASEVOL=EDXO002,VOLORG=276, : C
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX008, c
BASEVOL=EDX002,VOLORG=322, c
VOLSIZE=36,LIBORG=1

DISK DEVICE=4964, ADDRESS=02,VERIFY=NO

DISK DEVICE=4966, ADDRESS=22,VERIFY=NQO,END=YES

$SYSLOG TERMINAL DEVICE=4379,ADDRESS=04, C
HDCOPY=$SYSPRTR
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4 ‘ C

PAGSIZE=24,B0TM=23,SCREEN=YES
$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES

ENTRY $EDXPTCH

SEDXPTCH DATA 128F'0°" SYSTEM PATCH AREA
STOREMAP
END

Figure 17. Example of S$EDXDEF: Configuration for 4963-64
(64MB disk) with a mapping of all (358) available
cylinders

Chapter 7. System Generation 139

SYSTEM STORAGE=96 ,MAXPROG=(3,4), Cc
PARTS=(16,18),COMMON=START
DISK . DEVICE=64963-58, ADDRESS=48, C
VOLSER=EDX002,VOLORG=0,VOLSIZE=46, C
. LIBORG=129,FHVOL=FHVOL
DISK DEVICE=4963-58,VOLSER=EDX003, c
‘ BASEVOL=EDX002,VOLORG=46, Cc
VOLSIZE=46,LIBORG=1
DISK DEVICE=4963-58, VOLSER=ASMLIB, Cc
BASEVOL=EDX002,VOLORG=92, . Cc
VOLSIZE=46,LIBORG=1 ,
DISK DEVICE=4964, ADDRESS=02
DISK" DEVICE=4966,ADDRESS=22,END=YES
$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04,, ‘ Cc
' HDCOPY=$SYSPRTR ‘
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, C
PAGSIZE=24,B0O0TM=23,SCREEN=YES
SSYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES
ENTRY SEDXPTCH -
SEDXPTCH DATA 128F'0" SYSTEM PATCH AREA
END S
Figure 18. Example of SEDXDEF: Configuration for 496358

140

(58MB fixed-head disk)

§C34-0312

@

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

CHAPTER 8. OVERVIEW OF THE INDEXED ACCESS METHOD

The Indexed Access Method licensed program is a data management
facility that operates under the Event Driven Executive. It
allows you to build, maintain, and access indexed data sets.
In an indexed data set, each of your records is identified by
the contents of a predefined field called a key. The Indexed
Access Method builds into the data set an index of keys that
provides access to your records.

The Indexed Access Method offers the following features:

. Direct and sequential processing. Multiple levels of
indexing are used for direct access, and sequence chaining
of data blocks is used for sequential access.

® Support for high insert and delete activity without sig-
nificant performance degradation. Free space can be dis-—
tributed throughout the data set and in a free pool at the
end of the data set so that new records can be inserted.
The space occupied by a deleted record is immediately
available for new records,. o

° Concurrent access to a single data set by several requests.
These requests can be from one or more programs. Data
integrity is maintained by a file, block, and record level
locking system that prevents other programs from accessing
the portion of the file being modified.

° Implementation as a separate task. A single copy of the
Indexed Access Method executes and coordinates all
requests. A buffer pool supports all requests and opti-
mizes the space required for physical I/70; the only buffer
required in an application program is the one for the
record being processed.

® A utility program ($IAMUT1) which allows you to create,
format, load, unload, and reorganize an indexed data set.

. A utility program (SVERIFY) which verifies the integrity
of an indexed data set and reports on space utilization.

° File compatibility. Data files created by the Event Driven
Executive Indexed Access Method are compatible with those
created by the IBM Series/l1 Realtime Programming System
Indexed Access Method licensed program, 5719-AM1, provided
that the block size is a multiple of 256.

U Data Protection. All input/output operations are performed
by system functions. Therefore, all data protection
facilities offered by the system also apply to indexed
files. The following additional data protection is pro-
vided:

Chapter 8. Overview of the Indexed Access Method 145

- The exclusive option - specifies that the file is for
the exclusive use of a requester.

- Record locking - automatically prevents two reduests
from accessing the same data record at the same time.

- Immediate write back — causes all updated records to be
written back to the file immediately.

- Accidental key modification is prevented — this helps
ensure that your index matches the corresponding datsa.

DEVICES SUPPORTED

The Indexed Access Method supports indexed data sets on the
following direct access devices:

. 4962 Disk Storage Unit

. 4963 Disk Subsysten

. 4964 Diskette Unit

. 4966 Diskette Magazine Unit

FUNCTIONS

Functions available include those that can be called from an
application program and a utility to define and maintain an
indexed data set.

I/0 Requests

I1/0 requests allow you to build an indexed data set and to per-
form direct or sequential processing on that data set. Rou-
tines using these functions are written in Event Driven
- Language and can be included in programs uwritten in any lan-
guage that supports the calling of Event Driven Executive
Language routines.

You request the services of the Indexed Access Method through
the Event Driven Language CALL instruction in the following

general form:

CALL IAM,(func),iacb,(parm3),(parm4),(parmb)

146 SC34-0312

For information on coding the parameters and functions, refer
to the Language Reference.

The following requests can be invoked:

Ogefands

PROCESS

LOAD

GET

GETSEQ

PUT

PUTUP

PUTDE

RELEASE

DELETE

ENDSEQ

Description

Builds an Indexed Access Control Block (IACB) and

~connects it to an indexed data set. You can then use

the IACB to issue requests to that data set to read,
update, insert, and delete records. A program can
issue multiple PROCESS functions to obtain multiple
IACBs for the same data set, enabling the data set
to be accessed by several requests concurrently
Wwithin the same program.

Similar to PROCESS but used to load or extend the
initial collection of records.

Directly retrieves a single record from the data
set. If you specify the update mode, the record is
locked (made unavailable to other requests) and
held for possible modification or deletion,. Use
GET to retrieve a single record from the data set.

Sequentially retrieves a single record from the
data set. If you specify the update mode, the record
is locked (made unavailable to other requests) and
held for possible modification or deletion. Use
GETSEQ when you are performing sequential oper-
ations.,

Loads or inserts a new record depending on whether
the data set was opened with the LOAD or PROCESS
request. Use PUT when you are adding records to a
data set.

Replaces a record that is being held for update.
Use PUTUP to modify a record.

Deletes a record that is being held for update. Use
PUTDE to delete a record.

Releases a record that is being held for update.
Use RELEASE when a record that was retrieved for
update is not'changed.

Deletes a single record, identified by its key,
from the data set. Use DELETE to delete a record;
unlike PUTDE, the record cannot have been retrieved
for update.

Terminates sequential processing.

Chapter 8. Overview of the Indexed Access Method 147

dage of SC34-0312-2
As updated January 22,1981

3y TNL SN34-0685
EXTRACT Provides information about the file (from the File
Control Block).
DISCONN Disconnects an IACB from an indexed data set,

thereby releasing any locks held by that IACB;
writes out all buffers associated with the data
set; and releases the storage used by the IACB.

The SIAMUT1 Utility

The $IAMUTL utility can be used to allocate, format, load,
unload, or reorganize an indexed data set. Indexed Access
Method requests can be used only on data sets defined either by
this utility or by the Realtime Programming System Indexed
Access Method. ($IAMUT1 is described in the Utilities, Opera-
tor Commands. Program Preparation, Messages and Codes manual.)

The SVERIFY Utility

The S$VERIFY utility verifies the integrity of an indexed data
set, and produces a report showing how the data set is defined
and how the space is utilized. $VERIFY is described in the
Utilities, Operator Commands, Program Preparation, Messages
and Codes manual.

OPERATION OF THE INDEXED ACCESS METHOD

The Indexed Access Method performs I/0 operations by using
standard data management requests.

A single copy of the Indexed Access Method load module $IAM
serves the entire system. It can be loaded automatically at IPL
time through the automatic initialization capability (refer to
"Automatic Application Initialization and Restart™ on page
129), or it can be loaded manually by using the $L operator com-
mand. However, since the link module loads $IAM automatically,
$IAM does not need to be loaded before it is used by any pro-
‘gram. Once loaded, the Indexed Access Method remains in storage
until cancelled with the $C operator command.

. $IAM can be loaded into any partition, including partition one.
It can be invoked (through the link module) from any partition,
including the partition it is in. Figure 20 on page 149 shows
an example of a system containing the Indexed Access Method.

148 SC34-0312

O

O

INDEXED DATA SETS - OVERVIEMW

You can organize a collection of data into an indexed data set
if the data consists of fixed-length records and if each record
can be uniquely identified by the contents of a single prede-
fined field called the key. In an indexed data set, the records
are arranged in ascending order by key. Reserved space, called
free space, can be distributed throughout the data set so that
records can be inserted. v

Chapter 8. Overview of the Indexed Access Method 148.1

148.2 SC34-0312

£

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

‘:) The total amount of free space for inserts is specified to the
$IAMUTL utility when the indexed data set is built., This free
space is distriibuted throughout the data set in the form of
free records within each data block, free blocks within each
block grouping, ands/or in a free pool at the end of the data
set.

If you do not have any base records to load into your indexed
data set in LOAD mode, you can define a "dynamic"”™ data set which
does not reserve space for records to be loaded. Such a data
set has a dynamic structure which adjusts itself as required
when records are inserted in PROCESS mode.

Data Set Format

Indexed data sets consist of data blocks which contain records;,
indexes (pointers) to the data blocks, and indexes to the index
blocks. This technique is called a cascading index structure.
The first two blocks in the indexed data set are the file con-
|trol block (FCB), and its extension, which describe the attri-
butes of the data set.

Each data block has the following format:

HEADER

Data Record

Data Record

Data Record

Free space

Each index block has the following format:

. ~ HEADER

RBN KEY

RBN KEY

RBN | KEY

UNUSED

Chapter 8. Overview of the Indexed Access Method 151

A set of data blocks is addressed (described) by a single index
block. Each key in the index block is the highest key in the
data block that its accompanying relative block number {(RBN)
addresses. A block is addressed by its RBN. The primary-level
index block (PIXB) and the data blocks it describes are called
a cluster. :

HEADER

RBN | High key
in 1

RBN | High key
PIXB | | in 2

RBN High key
in 3

RBN High key
1 in 4

HEADER HEADER | | HEADER | | HEADER |

Data
blocks

1 2 3 4

A Sample Cluster

The records in each data block are in ascending order, accord-
ing to the key field in each record,

Each data block header contains the address of the next sequen-—
tial data block, allowing sequential processing.

Each PIXB (or cluster) has an entry in a second-level index
block (SIXB) that contains the address of the PIXB and the
highest key in the cluster. The SIXB has the following struc-
ture:

152 SC34-0312

Page of SC34-0312-2
As updated January 22, 1981

By TNL SN34-0685
HEADER

RBN High key

in PIXB1

RBN High key

SIXB in PIXB2
RBN High key

in PIXB3

RBN High key

in PIXB4

PIXB1 PIXB2 PIXB3 PIXB4

The SIXBs in the data set are described by an index block in the
same manner as the PIXB describes each cluster. There is, of
course, an index block that describes the entire dataset. The
logical structure of the file is as follows:

Chapter 8. Overview of the Indexed Access Method 153

NRRRR

" Data Blocks

Note that only the highest key in any data block is found in a
PIXB entry, a SIXB entry contains only the highest key found in
a PIXB, and so on, to the highest index block. This index tech-
‘nique . is called sparse indexing.

REQUESTING RECORDS

When you request a record from your data set, the access method
uses the index to retrieve the data block that contains the
record, The index blocks and data blocks are read, using EDL
READ instructions, into the central buffer. When the requested
record is found, it is moved to the address you specified and
control is returned to your program.

156 SC34—-0312

FCB
Highest level
index points
to index blocks
- - Next
SIXB SIXB SIXB level
.o ' points
- to
clusters
PIXB }...|PIXB 1PIXB |...{PIXB 1PIXB |...}|PIXB |

@

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

To minimize accesses to the disk, the buffer management algo-
rithm tends to keep in the buffer the most frequently refer-
enced blocks (index or data).

PREPARING TO EXECUTE INDEXED APPLICATIONS

The Indexed Access Method consists of the following compo-
nents:

. A load module, $IAM, that supports the execution of the
programs that contain your Indexed Access Method requests.

d A set of object modules that you may use to generate a cus-
tomized load module. If you use the supplied load module,
$IAM, you do not need the object modules.

The object module, IAM, is called a link module. You
include IAM with your program to provide the interface to
the Indexed Access Method. This link module is sometimes
called a stub. '

. Two copy code modules, IAMEQU and FCBEQU. IAMEQU provides
symbolic parameter values for constructing CALL parameter
lists. FCBEQU provides a map of the file control block
(FCB), and the FCB extension block.

° A load module for each of the Indexed Access Method utili-
ties $IAMUTL and $VERIFY.

Preparing Programs

To prepare an application programs that issues Indexed Access
Method requests, perform the following steps:?

1. Enter the source program, using one of the text editors
(SFSEDIT, $EDIT1l, or SEDITIN).,

2. Create the $LINK control statements required to combine

' your program with IAM (the 1link module) and any other
object modules you may need in your application. These
statements consist of a single OUTPUT statement, at least
two INCLUDE statements - one for your program and one for
IAM (the link module), and a single END statement. Use one
of the text editors to perform this operation.

3. Assemble the source program using:

The EDL compiler, $EDXASM, of the Program Preparation

Chapter 8. Overview of the Indexed Access Method 155

5.

Facility
or

The Series/l1 ma'cro assembler, $S1ASM, in conjunction with
the Macro Library

or
The Serlesll macro assembler supplied by the System/370

Program Preparatlon Fac111ty in conjunction With the Macro
Library/Host

Use the linkage editor, $LINK; to combine the obJect mod-—
ules into a sihgle module, using the control statements
prepared in Step 2.

Use the object program converter, $UPDATE or $UPDATEH, to
convert your module to a loadable program.

When the preceding steps are completed, the program is ready to
be executed.

Establishing the Data Set

Use

the following steps to prepare the input for an indexed

data set:

1.

The
use

156

If your data records are 72 bytes or less use ohé of the
text editors to enter your data or one of the communi-
cations utilities to get the data to vour system. In
either case, you must know the record format used by the
utility. The utilities put two 80-byte records in each
256-byte EDX record. The first record begins at location
1, and the second record begins at location 129. The
$IAMUT1 utility assumes unblocked input. S$IAMUT1 takes
only one logical record, the size of which was specified on
the RECSIZE prompt, from each EDX record. Any record after
the first logical record in each 256-byte EDX record is
ignored. If you use the text editors, you must enter data
on every other line starting with the first line.

If your records have more than 72 bytes of data, you must
create a program that accepts the data records and writes
them to a disk or diskette data set.

data must be in ascending ordér, based upon the field you
as the key. :

SC34-0312

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Only one LOAD request can be issued to a data set at any time.
Other processing requests can be made to a data set that is
being loaded, but an attempt to retrieve a record from the data
block being loaded can result in a no-record-found condition.

It is possible to define a "dynamic" indexed data set into
which data records can never be loaded sequentially. You add
records to such a file by inserting them in PROCESS mode. How-
ever, if you have initial base records, you should not dynamic
file, since loading them sequentially in LOAD mode will result
in a more efficient data sat structure.

PROCESSING

Initiate general purpose access to an indexed data set with a
PROCESS request. After the PROCESS request has been issued, any
of the following functions can be requested:

. Direct reading — Retrieving a single record independently
of any previous request.

o Sequential reading - Retrieving the next logical record
relative to the previous request..

* - Direct updating - Retrieving a single record for update;
complete the update by either replacing or deleting the
record.

° Sequential updating - Retrieving the next logical record

for update; complete the update by either replacing or
deleting the record.

° Inserting - Placing a single record, in its logical key
sequence, into the indexed data set.

° Deleting — Removing a single record from the indexed data
set.

L Extracting — Extracting data that describes the data set.
Note that the update functions require more than one request.,
When a function is complete, another function may be requested,
except that a sequential function may be followed only by
another sequential function. You may terminate processing at

any time by issuing a DISCONN or ENDSEQ request. An end-of-
data condition alsoc terminates sequential processing.

Chapter 9. Planning and Designing Indexed Applications 161

Direct Reading

Use the GET request to read a record using direct access. The
key parameter is required and!must be the‘address cf a field of
full key Yength regardless of the key length specification.

161.1 sSC34-0312.

Chapter 9. Planning and Designing Indexed Applications 161.2

The record retrieved is the first record in the data set that
satisfies the search argument defined by the key and key
relation (krel) parameters. The key field is updated to
reflect the key contained in the record that satisfied the
search,

If the key length is specified as less than the full key length,
only part of the key field is used for comparison when search-
ing the data set. For example, the keys in a data set are AAA,
AAB, ABA, and ABB, the key field contains ABO, and key relation
is EQ. If key length is zero, the search argument is the full
key ABO (the default) and a record-not-found code is returned.
If the key length specification is 2 and the search argument is
AB, the third record is read. If the key length specification
is 1 and the search argument is A, the first record is read.

Direct Updating

To update a record using direct access:

1. Retrieve the record with a GET request, specifying the key
and key relation (krel) parameters.

2. Modify the record in your buffer. Do not change the key
field in the record. Return the updated record to the data
set with a PUTUP request.

You can delete the record with a PUTDE request or leave it
unchanged by issuing a RELEASE request.

The key paraneter must be specified as the address of a field of
full key length. The key cannot be modified during the update.

The only valid requests, other than DISCONN and EXTRACT, that
can follow GET for direct update are PUTUP, PUTDE, and RELEASE.

During the update, the subject record is locked (made unavail-
able) to any other request until the update is complete. Even
if no action is taken after the GET request is issued, the
RELEASE request is required to release the lock on the record.

Sequential Reading

Use the GETSEQ redquest to read a record sequentially. After a
sequential processing request has been initiated, only sequen-
tial functions can be requested until an end-of-data condition
occurs or an ENDSEQ request is issued. Processing is termi-
nated when a DISCONN request is issued or an error or warning is
returned.

162 5SC34-0312

Page of SC340312-2
As updated January 22,1981
By TNL SN34-0685

Deleting

Use DELETE to deléte a record from the data set. The full key
of the record must be specified. If no record exists with the
specified key, an error is indicated.

Deletion can also be performed as part of updating by following
a GET for update with a PUTDE request.

Extracting

The EXTRACT request provides information about a data set from
the file control block (FCB). This includes information such
as key length, key displacement, block size, record size, and
other data regarding the data set structure.

Execution of the EXTRACT request causes the file control block
to be copied to an area that vou provide. The EXTRACT request
can also be used to copy the file control block extension to the
area you provide. The extension contains a copy of the parame-
ters that were used to define the indexed data set. The data set
must have been connected by a LOAD or PROCESS request.

The contents of the FCB and its extension are described by
FCBEQU, a unit of copy code that is supplied by the access meth-
od. Use COPY FCBEQU to include these equates in your program.

MAINTAINING THE INDEXED DATA SET

The Indexed Access Method does not provide specific programs to
perform indexed data set backup and recovery, nor does it
include services to delete the data set or dump it to the print-
er. These procedures are provided by a combination of Event
Driven Executive and Indexed Access Method services as sug-
gested below. The Indexed Access Method utility $IAMUT1 does
provide services to help you reorganize vyour data set as
described below.

Backup_ and Recovery

To protect against the destruction of data, at regular inter-
vals you should make a copy of the indexed data set (or the log-
ical volume in which the data set exists) using the system
$COPY utility. During the interval between making copies, you
should keep a journal file of all transactions made against the
indexed data set.

Chapter 9. Planning and Designing Indexed Applications 165

The journal file can be a consecutive data set containing
records that describe the type of transaction and the pertinent
data. A damaged indexed data set can be recovered by updating
the backup copy from the journal file.

For example, suppose an indexed data set named REPORT is lost
because of physical damage to the disk. The condition that
caused the error has been repaired and the data set must be
recovered. Delete REPORT, copy the backup version of REPORT to
the desired volume, and process the journal file to recreate
the data set.

If a data-set-shut-down condition exists, IPL again. Then
issue a PROCESS to the REPORT data set and, using the journal
file, reprocess the transactions that occurred after the back-
up copy was made,

Recovery Without Backup

If you do not use the backup procedures outlined above and you
encounter a problem with your data set, you still may be able to
recreate your file. However, the status of requests that were
in process at the time of the problem is uncertain.

To recreate your data set, follow the steps in "Reorganization"
to reorganize your data set. After recreating the data set,
verify the status of the requests that were in process at the
time the problem occurred.

Reorganization

An indexed data set must be reorganized when a record cannot be
inserted because of lack of space. The lack—-of-space condition
does not necessarily mean that there is no more space in the
data set; it means that there is no space in the area where the
record would have been placed, Therefore, you may be able to
reorganize without increasing the size of the data set. Perform
the following steps to reorganize a data set:

1. Ensure that all outstanding requests against the data seot
have been completed; issue a DISCONN for every current
IACB.

2. Use the define command (DF) of the $IAMUT1 utility to
define a new indexed data set. Estimate the number of base
records and the amount and mix of free space in order to
minimize the need for future reorganizations. Refer to
"The Indexed Data Set"”™ on page 182 for guidelines for mak-—
ing these estimates.

166 SC34-0312

Q

3. Use the reorganize command (RO) of the $IAMUT1 utility to
load the new indexed data set from the indexed data set to
be reorganized.

Alternatively, you can use the unload command (UN) of the
S$IAMUT] utility to transfer the data from an indexed data
set to a sequential data set, then use the load command
(LO) to load it back into the indexed data set,

4. Use system utilities to delete the o0ld data set and rename
the new data set.

Dumping

To print records, use the DP command of the $DISKUT2 utility.
$DISKUT2 produces a hexadecimal dump of the entire data set
including control information, index blocks, and data blocks.
Information on the $DISKUTZ2 utility can be found in the Utili-
ties, Operator Commands, Program Preparation, Messages and
Codes.

Deleting

Delete an indexed data set the same way you delete any other
data set. From a terminal, use the DE command of the $DISKUT1
utility (refer to Utilities, Operator Commands, Program Prepa-—
ration, Messages and Codes), or from a program use the $DISKUT3
data management utility (refer to "Chapter 16. Advanced
Topics"™ on page 309).

Chapter 9. Planning and Designing Indexed Applications 167

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Verifving

Use the $VERIFY utility to verify the accuracy of an indexed
data set, and to provide information about its structure and
use of free space. With $VERIFY you c¢an?

. Print a formatted File Control Block (FCB)Y lisitng,
including the FCB Extension block. This Extension block
contains the original definition parameters for the
indexed data set. Note that the FCB Extension block does
not exist and definition parameters were not saved in the
FCB prior to Version 1, Modification Level 2 of the Indexed
Access Method

. Validate all pointers in any indexed data set

o Verify that the relationship betueen keys in the entries
in the index blocks, and the high keys in the data blocks is
correct

° Print the amount of free space in your data set, which may

indicate a reorganization is needed

CONCATENATING DATA SETS

The ALTIAM subroutine allows you to concatenate multiple IAM
data sets and to issue normal IAM commands to the concatenated
file. This allows you to have more than 32,767 sectors in an
IAM file or to put parts of a file on different devices to
improve performance. The data sets may reside on the same or
different volumes or devices. The keys of all data sets must
have the same location and length, Each file must be loaded
individually and have a unique range of Keys, with no overlap
of key ranges between the data sets.

To incorporate this function in your application, transcribe
the ALTIAM subroutine using one of the text editors and modify
it to meet your requirenents. Compile it with $EDXASM or the
Series/1 Macro Assembler and add the object program to your

167.1 SC34-0312

e

Chapter 9. Planning and Designing Indexed Applications 167.2

object library. Include the object program when you link edit
your application programs with the IAM link module.

Note: The ALTIAM subroutine is not compatible with the Multi-
ple Terminal Manager.

The ALTIAM subroutine accepts all Indexed Access Method
requests for single files. A special request, CONCAT, is issued
to concatenate files. Only one set of files may be concat-
enated per copy of ALTIAM; when the file. is disconnected,
another set may be concatenated. The parameters to CONCAT are
as follous:

"CALL ALTIAM,(CONCAT),IACB.(bSCBTAB),(OPENTAB),(MODE)
. Equate CONCAT to 14.

. IACB, OPENTAB, and MODE are the same as in the PROCESS
request.,

. DSCBTAB is the address of a list of opened data set control
blocks (DSCBs) with the following format:

DSCBTAB DATA A(DS1)
DATA A(DS2)
DATA A(DS3)
DATA A(BUFFER)

The DSCBs must be in order of increasing key ranges of of the
corresponding files. Three DSCBs is the default but you may
increase or decrease the number. If only two data sets are
needed, word three must be zero. The buffer must be large
enough to hold the largest record in the concatenated file.

The CONCAT function issues PROCESS requests and reads the low
key of each file. The default maximum key size (50 bytes) may
be changed. The address of the IACB that is returned is used by
ALTIAM to issue processing requests against the concatenated
file. ‘

The following requests may be made to a concatenated file:

GET
GETSEQ
PUT
PUTUP
PUTDE
DELETE
EXTRACT
ENDSEQ
RELEASE
DISCONN

168 5C34-0312

O

Page of SC34-0312-2
As updated January 22,1981

By TNL SN34-0685
01390 x
01400 DEL EQU *
01410 %% PROCESS DELETE REQUESTS
01420 MOVE #1,PARM3 POINT AT USERS KEY
01430 MOVE COMPLEN, AKSIZE FULL XEY SUPPLIED
01440 GOT0 CHECK
01450 x
01460 SEQ EQU *
01470 %% PROCESS GET SEQ REQUESTS
01480 IF (ASEQ,EQ,1),G0TO,LAST IF NOT FIRST IN SEQUENCE
01490 MOVE ASEQ,1 SIGNAL SEQUENTIAL MODE
01500 %% PROCESS FIRST SEQUENTIAL AS DIRECT
01510 *
01520 DIR EQU *
01530 %% PROCESS GET REQUESTS
01540 IF (PARM4,EQ,0) IF KEY IS NOT SET
01550 MOVEA IIACB,ALTIACB POINT AT FIRST FILE
01560 GOTO INRANGE SKIP CHECKING
01570 ENDIF
01580 MOVE #1,PARM4 : GET KEY POINTER
01590 MOVE COMPLEN, (-1,481),BYTE GET KEY LENGTH
61600 SHIFTR COMPLEN,8 GET INTO POSITION
01610 x

01620 CHECK EQU ¥ :

DL 6T 0 3656296 3 36 2 296 36 3 3696 6 3K 36 56 2 26 96 36 36 36 36 36 K 36 26 2 6 36 6 36 36 6 3 36 36 96 2 36 26 36 36 36 26 36 36 36 26 3 3 36 36 36 6 36 36 96 56 36 26 36 36 36) % 36
01640 %% LOOP THRU IACB TABLE COMPRING USERS KEY (#1) TO SAVED KEY IN

01650 %» THE TABLE. THE SAVED KEY IS THE LOWEST KEY IN THE NEXT FILE.

D166 0 33X M KHNH MK IK K KKK 53K KK I K H I 5K 5 K K 35636 36 K 36 3K K 36 36 56 36 36 36 3 3 J6 36 36 36 36 36 36 36 36 X 336 36 36 36 36 3¢ ¢

01670 MOVEA #2,ALTIACB POINT AT IACB TABLE

01680 MOVE REGA, #1 SAVE USERS KEY ADDRESS

01690 DO +DSCB#, TIMES LOOP THRU IACBS

017900 IF ((0,#2),EQ,0),G0T0, INRANGE EXIT IF NO MORE
01710 MOVE IIACB, #2 SAVE CURRENT IACB

01720 ADD #2,2 POINT AT SAVED KEY

01730 MOVE COUNT, 0 INITIALIZE STRING COUNTER
01740 * ‘

01750 DO WHILE, (COUNT,LE,COMPLEN) LOOP THRU STRING

01760 IF (C0,#1),LT,(0,#2),BYTE),GOTO, INRANGE CORRECT IACB
01770 IF ((0,#1),67T,(0,#2),BYTE),GOTO,0UTRANGE WRONG IACB
01780 ADD #1,1 INCREMENT POINTERS

01790 ADD #2,1 ¥ IF STRINGS ARE EQUAL

01800 ADD COUNT, 1

01810 ENDDO

01820 x

01830 %% IF STRINGS ARE EQUAL THEN THE KEY IS IN THE NEXT FILE. UNLESS
01840 %% WE ARE USING THE LAST FILE ALREADY.

01850 ADD IIACB,+AENTSIZE,RESULT=#2 POINT AT NEXT

01851 MOVE DOUBLEL, O

01852 MOVE DOUBLEZ, #2

01860 IF (DOUBLEL,LT, ALSTIACB,DWORD) IF NOT THE LAST IACB
01370 MOVE IIACB, #2 STORE NEW POINTER

01880 ' ENDIF

01890 GOT0 INRANGE FOUND THE CORRECT IACB

Chapter 9. Planning and Designing Indexed Applications 173

Page of SC34-0312-2
As updated January 22,1981

By TNL SN34-0685
61900 x
01910 QUTRANGE EQU *
01920 %% KEY IS NOT IN THIS RANGE. CHECK THE NEXT. O
061930 ADD IIACB,+AENTSIZE,RESULT=#2 BUMP THE IACB POINTER '
01940 MOVE #1,REGA RESTORE THE USER KEY POINTER
01950 ENDDO -
01960 *

01970 INRANGE EQUY- % o
01980 %% KEY IS IN THIS RANGE. ISSUE THE IAM CALL.

01990 CALL CALLIAM
02000 ¥
62010 IF .~ (REGA,EQ,-58),AND, (PARM5,GT,+UPEQ) NO RECORD FOUND
020290 ADD ITACB, +AENTSIZE POINT AT NEXT IACB
02021 MOVE DOUBLEL, O
02030 MOVE DOUBLE2,IIACB IN A REGISTER
02031 MOVE #1,DOUBLE2
I 02040 IF (DOUBLEL1,LT, ALSTIACB,DWORD),AND, IN RANGE X
02050 (C0,#%1),NE,0),G0T0, INRANGE ¥ TRY NEXT FILE
02060 ENDIF
02070 GOTO EXIT
02080 EJECT

WPARIER 223332223333 333333333332.33333333233.383.3.3333333.333333333.3.3.3.3833.3333.13.3

02100 %% INVOKE IAM AND SAVE RETURN CODE.
D21 10 3665636563 3 35 3 3 36 36 3 2 3 56 I 3 3 3 36 33 5 326 365 336 36 3 36 36 3 I 56 3 36 3 3696 32 36 3 36 2 2 3 2 56 X 3 336 9 H KX X %

02120 SUBROUT CALLIAM
02130 MOVE ALSTIACB+2,IIACB UPDATE LAST IACB CELL

02140 B CALL~ TIAM,+PROCESS,IACB,(IACB),(IACB),+EQ,P2=1IFUNC, X

02150 P3=IIACB,P4=IBUFF,P5=IKEY,P6=I0PT : ﬂl;b
02160 MOVEA TCW,$TCBCO-$TCB#1 OFFSET TO TASK CONTROL WORD ‘
02170 MOVE REGA, #1,P2=TCW " PICK UP TASK CONTROL WORD

02180 RETURN

02190 SPACE 5

02200 ALTEOD EQU . %
02210 KKK KK KK I K 3 3K 5K KK I 5K K 36 2 2 2 3 K 5 N 36 36 2 36 96 2 36 36 36 36 36 36 6 3 3 56 3 26 36 3 36 36 36 3¢ 36 3% 26 ¢ ¢
02220 %x END OF DATA EXIT. IF NOT THE LAST FILE SWITCH TO THE NEXT ONE.

02230 xx IF THE LAST FILE PASS CONTROL TO USERS EOD EXIT.
B226G0 %3353 HHK X5 K 3 X K 36 393 I 25 H 9 2 H 56 36 56 3 36 56 9 2 56 3 3 3 3 36 K 36 26 36 56 3 36 3 3 3 36 96 3 2 3 36 3 3 % % % X %

02250 ADD IIACB,+AENTSIZE POINT TO THE NEXT IACB
. 02251 MOVE DOUBLE1,0

02252 MOVE DOUBLE2,IIACB IN A REGISTER

02260 MOVE #1,IIACB ‘

02270 IF (DOUBLEL,LT, ALSTIACB,DWORD),AND, IN RANGE X

02280 (€0, #1),NE,0)

02290 MOVE ~ IKEY,O0 GET FIRST KEY IN NEXT FILE

02300 ‘ __GOTO INRANGE ISSUE IAM REQUEST ’
02310 o ENDIF

02320 *

02330 MOVE ASEQ, 0 RESET SEQUENTIAL SWITCH .
02340 IF (AEOD, NE, 0) IF END OF DATA EXIT EXISTS

02350 GOTO (AEOD) GO TO IT

02360 ELSE

02370 GOTO EXIT

02380 ENDIF

02390 SPACE 5 C}D

1764 SC34-0312

@

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

If insert activity is to be primarily into one or more areas or
key ranges, houwever, the space for inserts should be reserved
as reserve blocks and/or reserve indexes. This results in the
most efficient use of space in the data set.

The space for inserts can be divided between free records, free
blocks, reserve blocks, and reserve indexes to suit vyour
requirements.

To determine how many blocks are required for an indexed data
set with a given combination of free records, free blocks,
reserve blocks, reserve index blocks, and free pool size, use
the SE command of the $IAMUT1 utility.

Using Dynamic Data Sets

Estimating free space requires a considerable amount of knou-
ledge about the data that will be placed in your data set, and
careful planning to define the characteristics of the data set.
The estimating free space procedure results in a well struc-
tured file with efficient operation.

1

Defining a Dynamic File

In some cases, you may not be able to predict the type of proc-
essing that will be done on a data set. The Indexed Access
Method has the capability to adjust a data set dynamically
according to the needs of the processing. For this reason you
need not specify the FREEREC, FREEBLK, RSVBLK, RSVIX, or FPOOL
parameters using the SE command of the $IAMUT1 wutility.
Instead, you can specify the actual number of blocks to be
assigned to the free pool by the DYN parameter. This is espe-
cially useful when you have no (or relatively few) base records
to load, but will place all or most records into the data set by
inserting them in random sequence. (When such a data set has
groun to its working size, it should be reorganized for more
efficient operation.)

Defining a Free Pool

You can specify the DYN parameter in conjunction with other
free space parameters. Before vou load base records or reor-
ganize a data set, it is likely that you will want to specify
the FREEREC and FREEBLK parameters to provide structured free
space throughout the data set. You can also specify the DYN
parameter to provide free pool blocks. This allows dynamic
restructuring of those portions of the data set affected if any
part of the structured free space becomes full.

Chapter 9. Planning and Designing Indexed Applications 187

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Defining an Expanded Free Pool

You can also specify the DYN parameter in conjunction with the
RSVBLK, RSVIX, and FPOOL parameters. In this case, the amount
of free pool space specified by the DYN parameter is in addi-
tion to that provided by the FPOOL parameter.

Dynamic Data Set Processing

In order to provide a full dynamic capability, the Indexed
Access Method can restructure a data set in two ways:

. As records are inserted and additional space is needed in
specific areas of the data set, blocks are taken from the
free pool and become data blocks where needed. If addi-

tional index blocks are needed, blocks are taken from the
free pool for this purpose as well. Index blocks can be
added at any level, and the number of levels of index can
increase as needed. This function is performed automat-
ically by the Index Access Method on any data set that has a
free pool associated with it.

* As records are deleted and blocks become empty, they are
returned to the free pool. If index blocks become empty
(because the blocks under them have been returned to the
free pool) they are also returned to the free pool. This
helps maintain a supply of blocks in the free pool, to be
used if other areas of the data set expand.

Converting to a Dynamic Data Set

A data block can become empty only if the delete threshold
(DELTHR) parameter is zero. Previous versions of the Indexed
Access Method would not allow a value of zero, and would
internally reset it to a non—-zero value if zero was specified.
This version (1.2) of the Indexed Access Method allows a value
of zero and retains it internally if specified. The reorganize
(RO) $IAMUTL command can be used to activate all new Indexed
Access Method functions for indexed data sets built with previ-
ous versions of the Indexed Access Method. In this version of
the Indexed Access Method, the DELTHR parameter defaults to
zero if the DYN parameter is specified.

Specifving the DYN parameter

When you specify the number of blocks for the DYN parameter,
remember that the Indexed Access Method can store several of
your data records in a block, depending on the record size and
block size you specify. Each block contains a 16 byte header,
thus the number of records that can be contained in each block
can be calculated by the following formula

Records per block = (BLKSIZF-16)
RECSIZE
(Use integer quotient only; discard remainder)

187.1 SC34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Note that blocks can be taken from the free pool for use as
index blocks as well as for data blocks, so provide some extra
blocks for these. A reasonable estimate of the number of index
blocks required is 10%. Thus, if you know the number of data
records you would like to add to the file, you can calculate the
number of blocks to specify for the DYN parameter as follous

DYN = (Number of records to insert) x 1.1
(Records per block)

Building The Indexed Data Set

The SE and DF commands of the $IAMUT1 utility allouw you to spec—-
ify the size and format of your indexed data set and to format
the data set. Use the SE command to enter those values that
determine the size of the indexed data set and to receive a dis-
play of the size calculation information. Use the DF command to
format the data set, using the values previously specified on
the SE command.

Determining Size and Format

The structure of the data set is determined by the following
parameters of the SE command:

. BASEREC Estimated number of bése records

|

. BLKSIZE - Block size

. RECSIZE

Record size

. KEYSIZE

Key size

. KEYPOS - Key position

4 FREEREC - Number of free records per block

. 'FREEBLK - Percentage of free blocks

. RSVBLK - Percentage of reserved data blocks

. RSVIX - Percentage of reserved primary index blocks

° FPOOL -~ Percentage of free pool

Chapter 9. Planning and Designing Indexed Applicafions 187.2

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

. DELTHR - Percentage delete threshold
|° DYN - Number of blocks to add to free pool

The define (DF) command fixes the size of the data set. There-
fore, BASEREC, FREEREC, FREEBLK, RSVBLK, RSVIX, FPOOL, and DYN
should be large enough to accommodate the maximum number of
records planned for the data set. To calculate the size of the
data set for a given combination of the defined parameters, use
the SE command.

The DF command allows you to select the immediate write-back
option. If you select this option, modified records are urit-
ten to the file immediately; this contributes to the integrity
of the file; however, response time increases.

Defining and Creating the Indexed Data Set

The setparms (SE) command allows you to review the size calcu-
lation information without actually formatting the data set.
$IAMUTL returns to your terminal the size of the data set and
other information. The calculations performed by the SE func-
tion are described in "Data Set Format"™ on page 192.

Use the DF command to format the data set. You are prompted for
the volume and data set names and the immediate write-back
option. (Note: the data set must have been previously created
using the CR command of the $IAMUT1 utility or the AL command of
the $DISKUTL! utility.) The data set is connected and then for-
matted by the define function. If the data set does not contain
sufficient space to support the specified format, S$IAMUT!
returns the amount of space required. Knowing the available
space and using the SE command, you can vary the define parame-
ters to design a data set that fits.

If the specified data set does not exist, a connect error
occurs and $IAMUT1 gives the option to retry. If you retry, the
utility prompts for the volume and data set names, and the
function is attempted again.

|Using the $TAMUT1 Utility — Examples

A data set is to accommodate 10,000 base records with a record
size of 70 bytes. An estimated 5,000 records are to be
inserted.

Selecting a block size of 256 allows three records per block

((256-16)770)) with a remainder of 30 bytes. If the data set
were created with one free record per block, the ratio of tuwo

188 6C€34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

base records to one free record would accurately reflect the
insert activity. Buffer size is minimized. Some space (30
bytes per block) is uasted.

Selecting a block size of 512 allows seven records per block
((512-16)770) with a remainder of six bytes. If the data set
were created with two free records per block, the ratio of five
base records to tuwo free records uwould overestimate the insert -
activity. The larger block size requires a larger buffer but
increases 1/0 efficiency. In addition, fewer bytes are wasted
(six bytes).

Assume that the user has entered the DF subcommand to allocate
the file using the specifications shown in Example 2. Name the
file IDATA and placed it on EDX002.

Example 1

ENTER COMMAND (?): SE :
PARAMETER DEFAULT NEW VALUE

BASEREC NULL :10000

BLKSIZE 0 :256

RECSIZE 0 :70

KEYSIZE 0 :10

KEYPOS 1 =1

FREEREC 0 :1

FREEBLK 0 :0

RSVBLK NULL :0

RSVIX 0 :0

FPOOL NULL :0

DELTHR NULL :0

DYN NULL :0

TOTAL LOGICAL RECORDS/DATA BLOCK: 3
FULL RECORDS/DATA BLOCK: 2
INITIAL ALLOCATED DATA BLOCKS: 5000
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: : 17
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS): 0
FULL ENTRIES/PIXB: 17
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 17
DELETE THRESHOLD ENTRIES: 0
FREE POOL SIZE IN BLOCKS: : 0
OF INDEX BLOCKS AT LEVEL 1: 295
OF INDEX BLOCKS AT LEVEL 21 18
OF INDEX BLOCKS AT LEVEL 3z 2
OF INDEX BLOCKS AT LEVEL 4 1
DATA SET SIZE IN EDX RECORDS: 5318
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

Chapter 9. Planning and Designing Indexed Applications 189

Page of SC34-0312-2

As updated January 22,1981

By TNL SN 34-0685

190

Example 2

ENTER COMMAND (?): SE
PARAMETER DEFAULT NEW VALUE

BASEREC 10000 :

BLKSIZE 256 :512

RECSIZE 70 :

KEYSIZE 10 :

KEYPOS 1

FREEREC 1 :2

FREEBLK g :

RSVBLK 0 :

RSVIX 0 :

FPOOL g

DELTHR 0 :

DYN 0

TOTAL LOGICAL RECORDS/DATA BLOCK: 7
FULL RECORDS/DATA BLOCK: 5
INITIAL ALLOCATED DATA BLOCKS: 2000
INDEX ENTRY SIZE: 16
TOTAL ENTRIES/INDEX BLOCK: 35
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS):]
FULL ENTRIES/PIXB: 35
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 35
DELETE THRESHOLD ENTRIES: 0
FREE POOL SIZE IN BLOCKS: 0
OF INDEX BLOCKS AT LEVEL 1: 58
OF INDEX BLOCKS AT LEVEL 2 2
OF INDEX BLOCKS AT LEVEL 3 1
DATA SET SIZE IN EDX RECORDS: 6126
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

Note: Respond to the prompts
with the values you wish to change.
The utility reuses the values from
previous execution, '

SC34-0312

Page of SC34-0312-2 .
As updated January 22,1981

By TNL SN34-0685
Example 3
ENTER COMMAND (?): DF
DO YOU WANT IMMEDIATE WRITE-BACK? N
ENTER DATA SET (NAME,VOLUME): IDATA,EDX002
TOTAL LOGICAL RECORDS/DATA BLOCK: 7
FULL RECORDS/DATA BLOCK: 5
INITIAL ALLOCATED DATA BLOCKS: 2000
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: 35
FREE ENTRIES/PIXB: , 0
RESERVE ENTRIES/PIXB (BLOCKS): 0
FULL ENTRIES/PIXB: 35
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 35
DELETE THRESHOLD ENTRIES: 0
FREE POOL SIZE IN BLOCKS: 0
OF INDEX BLOCKS AT LEVEL 1: 58
OF INDEX BLOCKS AT LEVEL 23 2
OF INDEX BLOCKS AT LEVEL 3: 1
DATA SET SIZE IN EDX RECORDS: 4126
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: - -1

ENTER COMMAND (?): EN

SIAMUT1 ENDED AT 00:38:47

The key differences between Example 1 and Example 2 are?

. Fewer records (256-byte blocks) are required for Example
2.
U The index in Example 2 is a three-level index, while in

Example 1 it is a four-level index. This eliminates one
disk access, improving performance slightly.

. Each data block has two free records in Example 2. In exam-
ple 1 each data block has one free record.

Chapter 9. Planning and Designing Indexed Applications 191

’age of SC34-0312-2
As updated January 22,1981
3y TNL SN34-0685

Example 4 - Dynamic Data Set

ENTER COMMAND (?): SE

PARAMETER DEFAULT NEW VALUE (:)
BASEREC NULL :

BLKSIZE 0 :256

RECSIZE 0 :70

KEYSIZE 0 :10

KEUPOS 1 :

FREEREC 0 '
FREEBLK 0

RSVBLK NULL ¢

RSVIX o : .
FPOOL NULL :

DELTHR NULL

DYN NULL : 5300

TOTAL LOGICAL RECORDS/DATA BLOCK: 3

FULL RECORDS/DATA BLOCK: 3

INITIAL ALLOCATED DATA BLOCKS: 1

INDEX ENTRY SIZE: 14

TOTAL ENTRIES/INDEX BLOCK: 17

FREE ENTRIES/PIXB: 0

RESERVE ENTRIES/PIXB(BLOCKS): 0

FULL ENTRIES/PIXB: 17

RESERVE ENTRIES/SIXB: 0

FULL ENTRIES/SIXB: 17

DELETE THRESHOLD ENTRIES: 0

FREE POOL SIZE IN BLOCKS: 5300

OF INDEX BLOCKS AT LEVEL 1: 1 A™
DATA SET SIZE IN EDX RECORDS: 5304 WM)/
INDEXED ACCESS METHOD RETURN CODE: -1 ‘
SYSTEM RETURN CODE: -1

191.1 sC34-0312

O

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Example 5 - Dynamic Data Set

ENTER COMMAND (?): DF

DO YOU WANT IMMEDIATE WRITE-BACK? N

ENTER DATA SET (NAME,VOLUME): IDATA,EDX002
TOTAL LOGICAL RECORDS/DATA BLOCK: 3

FULL RECORDS/DATA BLOCK: 3

INITIAL ALLOCATED DATA BLOCKS: 1
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: 17
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS): 0
FULL ENTRIES/PIXB: 17
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 17
DELETE THRESHOLD ENTRIES: 0
FREE POOL SIZE IN BLOCKS: 5300
OF INDEX BLOCKS AT LEVEL 1: 1
DATA SET SIZE IN EDX RECORDS: 5304
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

Examples 4 and 5 show the SE and DF commands used to create a
dynamic indexed data set. Note that the resulting data set has
only one allocated data block and only one index block. The
majority of the space is in the free pool as specified by the
DYN parameter.

Chapter 9. Planning and Designing Indexed Applications 191.2

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Data Set Format

The define command of the $IAMUT1 utility formats and creates
an indexed data set.

Use the DF command to format the data set. You are prompted for
the volume and data set names and the immediate write-back
option. (Note: the data set must have been previously created
using the CR command of the $IAMUT] utility or the AL command of
the $DISKUT! utility.) The data set is connected and then for-
matted by the define function. If the data set does not contain
sufficient space to support the specified format, S$IAMUTIL
returns the amount of space required. Knowing the available
space and using the SE The information required to establish
the format and the number of blocks in a data set is provided by
ten parameters of the SE command.

Parameter Definition

BASEREC Number of base records

BLKSIZE Block size

RECSIZE Record size

KEYSIZE Key size

KEYPOS Key position

FREEREC Number of free records per block

FREEBLK Percentage of free blocks

RSVBLK Percentage of reserved blocks

RSVIX Percentage of reserved index

FPOOL Percentage of free pool

DELTHR Percentage of blocks to retain when deleting
records

DYN Number of blocks to add to free pool

_Blocks

The indexed data set is composed of a number of fixed length
blocks. The block is the unit of data transferred by the
Indexed Access Method. Block size must be a multiple of 256. A
block is addressed by its relative block number (RBN). The
first block in the data set is located at RBN 0.

192 SC34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Note that the RBN is used only in indexed data sets by the
Indexed Access Method. An Indexed Access Method block differs
from an Event Driven Executive record in the following ways:

1. The size of a block is not limited to 256 bytes; its length
can be amultiple of 256.

2. The RBN of the first block in an indexed data set is 0. The
record number of the first Event Driven Executive record in
a data set is 1.

The size, in 256-byte records, of the data set is calculated by
the define command of the $IAMUT1 utility.

Four kinds of blocks exist in an indexed data set: a file con-
trol block (FCB), a file contol block extension, index blocks,
and data blocks. These blocks are all the same length, as
defined by BLKSIZE, but they contain different kinds of infor-
mation. The FCB contains control information, the FCB exten-
sion contains saved file definition input parameters, index
blocks contain index entries and data blocks contain data
records. The control information is also ctontained in block
headers; a description of control information is contained in
Internal Desian Figure 23 also shows examples of the four
block types.

File control block extension

Control Saved
information Parameters
Unused Unused
File control block File control block extension

Figure 23 (Part 1 of 2). Indexed Data Set Block Types

Chapter 9. Planning and Designing Indexed Applications 193

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Header
RBN Key
RBN Key
RBN Key
RBN Key
RBN Key
RBN Key
RBN Key
Unused
Index block

Figure 23 (Part 2 of 2).

193.1 SC34-0312

Header

Data
record

Data
record

Data
record

Data block
Indexed Data Set Block Types

O

Chapter 9.

Planning and Designing Indexed Applications

193.2

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

The File Control Block

The file control block (FCB) is the first block in the data set
(RBN 0); it contains control information. The field names in
the FCB can be seen by examining a listing of FCBEQU, a copy
code module that is supplied as part of the Indexed Access
Method.

The File Control Block Extension

The file control block extension is the second block in the
data set (RBN 1); it contains the saved file definition param-
eters as specified by the user. The field names in the FCB
extension can also be seen by examining a listing of FCBEQU.
The saved parameters can be refered to in either of two ways:

. From a program, via the EXTRACT function, or

. By running the $VERIFY utility, which prints the values.

Index Block

An index block contains a header followed by a number of index
entries. Each index entry consists of a key and a pointer. The
key is the highest key associated with a block; the pointer is
the RBN of that block. The number of entries contained in each
index block depends on block size and key size. The header of
the block is 16 bytes. The RBN field in each entry is 4 bytes.
The key field in each entry must be an even number of bytes in
length; if the key field is an odd number of bytes in length,
the field is padded with one byte to make it even. The number
of index entries in an index block is:

block size — 16
4 + key length

The result is truncated; any remainder represents the number of
unused bytes in the block. For example, if block size is 256 and
key length is 28, then each index entry is 32 bytes, there are 7
entries in a block, and the last 16 bytes of the block are
unused.

194 SC34-0312

Data Block

A data block contains a header followed by a minimum of tuwo
records. The number of records that can be contained in a data
block depends on the size of the data block and the size of the
record. The header of the block is 16 bytes. The number of
record areas in the block is:

block size - 16
record size

The result is truncated; any remainder represents the number of
unused bytes in the block. For example, if block size is 256 and
record size is 80, the data block can accommodate three records
and there is no unused area. The key field of the last record
slot in an index block is the high key for the data block. If.
some records of the data block are not currently used, the key
field of the last record slot is the same as the key field of

Chapter 9. Planning and Designing Indexed Applications 194.1

194.2 SC34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

The tLast Cluster

The last cluster in the data set may be different from the other
clusters. It contains the same number of free blocks as the
other clusters but only enough allocated blocks to accommodate
the records that you have specified with the parameter BASEREC.
Because rounding occurs in calculating the number of clusters,
a few more allocated records than required may exist in the
last allocated block. The last cluster can be a short one
because only the required number of blocks are used.

If the number of allocated blocks divided by the number of
allocated blocks per cluster leaves a remainder, the remainder
represents the number of allocated entries in the
primary-level index block in the last cluster. Unused entries
in the last primary-level index block are treated as reserve
block entries. -

Sequential Chaining

Data blocks in an indexed data set are chained together by for-
ward pointers located in the headers of data blocks. Only allo-
cated data blocks are included in the sequential chain.
Chaining allows sequential processing of the data set with no
need to reference the index. When a free block is converted to
an allocated block, the free block is included in the chain.

Free Pool

If you specify that you want a free pool (with the FPOOL and/or
DYN parameter of the SE command of the $IAMUTL1 utility), vour
indexed data set contains a pool of free blocks. The file con-
trol block contain s a pointer to the first block of the free
pool, and all blocks in the free pool are chained together by
forward pointers.

A block can be taken from the free pool to become either a data
block or a primary-level ‘index block. The block is taken from
the beginning of the chain, and its address (RBN) is placed in
the appropriate primary-level index block (if the new block is
to become a data block) or in the second level index block (if
the new block is to become a primary-level index block). Any
block in the free pool can be used as either a data block or as a
primary-level index block.

When a data block becomes empty because of record deletions,

the data block may return to the free pool (depending on the
delete threshold (DELTHR) parameter). If the data block is

Chapter 9. Planning and Designing Indexed Applications 203

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

returned to the free pool, reference to the block is5 removed
from the primary-level index block, and the block is placed at
the beginning of the free pool chain. Index blocks are never
returned to the free pool.

Calculating the initial size of the free pool consists of the
following steps:

. Each reserve block entry in a primary-level index block
represents a potential data block from the free pool. The
number of data blocks that can be assigned to initial clus-
ters is the number of primary-level index blocks times the
number of reserve block entries 1in each primary-level
index block.

. Each reserve index entry in a second-level index block
represents a potential primary-level index block from the
free pool. The number of primary-level index blocks that
can be assigned from the free pool is the number of
second-level index blocks times the number of reserve
index entries in each second-level index block.

. Each primary-level index block taken from the free pool
consists entirely of empty (reserve block) entries. Neuw
data blocks can be taken from the free pool for the entries
in the new primary—-level index block. The number of data
blocks is the number of entries per index block times the
number of new primary—-level index blocks <(calculated in
the previous step).

. The maximum number of blocks that can be taken from the
free pool is the sum of the above three calculations.

. The actual number of blocks in the free pool is the speci-
fied percentage (FPOOL) of the maximum possible free pool,
with the result rounded up if there is a remainder, plus
the number of blocks specified by the DYN parameter.

STORAGE AND PERFORMANCE

Storage Requirements

The minimum amount of storage required by the Indexed Access
Method to perform all functions is about 15.2KB, not including

.|the link module or any error exit routine you may have written.
The storage estimate is based on the following assumptions:

. A maximum block size of 256 bytes for any indexed data set.
Since the buffer must be large enough for two blocks, a
512-byte buffer is required. If your maximum block size is
larger than 256 bytes, the buffer size is twice your block

204 SC34-0312

size. You can improve performance by making the buffer
larger. The program directory that is shipped with your
PID material contains a description of the size and capaci-
ty of the puffer and information on how to modify it. The
buffer that is defined in $IAM should provide adequzic per-
formance for most applications.

. One user connected to an indexed file at a time. If more
than one user is connected, add about 625 bytes per user.

. The size of the IBM-supplied link module which is included in
your application program is about 250 bytes.

Indexed File Size

The structure of an indexed file is highly dependent on parame-
ters you specify when vyou create the file. These parameters are
described in "Data Set Format" on page 192.

Performance

Performance of the Indexed Access Method is primarily deter-
mined by the structure of the indexed data set being used. This
structure is determined by parameters you specify when vyou
create the data set (refer to "Data Set Format"™ on page 192).
The following factors affect performance:

. File size. A large file spans more cylinders of the direct
access device, so the average seek to get the the record
vou want is longer.

. Number of index levels. A file wWwith many index levels
requires more accesses to get to the desired data record,
thus degrading performance. Factors which influence the
number of index levels are:

- Number of records in data set,.
- Amount and type of free space.
- Block size.

- Key size.

- Data record size.

Chapter 9. Planning and Designing Indexed Applications 205

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

. File organization

The dynamic file capability makes it easy for you to define and
use files without planning the file structure. You should be
aware that heavy use of the free pool (as occurs with a dynamic
file) has an impact on performance.

The best performance from an indexed file is attained when the
file structure is well planned and the free pool is rarely
used, if it exists at all. This is because the high-level index
blocks are concentrated in a single area. Thus, an access to
the file requires only two significant seeks. This file struc-
ture is maintained as long as new records are inserted in the
space provided by the FREEREC and FREEBLK parameters.

However, when the free pool is heavily utilized, the logical
structure of the file is no longer reflected in the physical
positions of the blocks. As a result, every block that must be
read in order to to satisfy a request could result in a signif-
icant seek. This increase in the number of significant seeks
results in an increase in the elapsed time required to process
the request. ‘

Use the $IAMUT1 utility to see the affects of the varicus
parameters on the file structure. (Refer to "Using the $IAMUTL
Utility — An Example™ on page 188 for an example.)

In addition to file structure, the following factors also
influence performance:

. Buffer size. If you provide a large buffer when you install
the Indexed Access Method, it is more likely that blocks
(especially high-level index blocks) needed are already in
storage and need not be recalled from the data set.

. Contention. If many tasks are using the Indexed Access

Method concurrently, resource contention can result, and
performance is degraded.

206 SC34-0312

The FTAB table provides the screen location (line and spaces)
and size (characters) of each parameter field on the menu, in
ascending order. The session manager program $SMCTL uses the
FTAB table to retrieve the parameters it uses to replace the
&PARMNn. fields before passing the procedure to $JOBUTIL. The
parameter &PARMO0O0O. always represents your one to four charac-—
ter logon ID.

The &SAVEmm fields in the parameter part of the procedure point
to fields in the parameter save data set $SMPnnnn (where nnnn
is the logon ID) where the parameters you enter are saved from
session to session. The two digits, mm, are used to index into
the data set.

Note that multiple &PARMnn., fields between PARAMETER and END
are sequential, beginning with $PARMO1.

The following table lists the $SAVEmm fields, the procedure
with which they are associated, and the utility or function
invoked. When assigning values to the index digits (mm) in your
procedure, start with 90 and work backuwards to 61.

FIELD #% PROCEDURE UTILITY/FUNCTION
$SAVEOL1-03 $SMP0201 S$EDXASHM
$SAVEDO4-06 $SMP0202 $S1ASM
$SAVED7-13 $SMP0203 $COBOL
$SAVEL14-16 $SMP0204 $FORT
$SAVEL17-18 $SMP0205 $ LINK
$SAVE19-22 $SMP0206 SUPDATE
$SAVE23-24 $SMP0208 $PREFIND
$SAVE25-26 $SMP0308 $MOVEVOL
$SAVE27 $SMP0405 $FONT
$SAVEZ28 $SMP0501 $DIUTIL
$SAVEZ29 $SMP0502 $DICOMP
$SAVE30 $SMP0503 $DIINTR
$SAVE31-35 $SMPO6 Execute application

program
$SAVE36 $SMP0801 $BSCTRCE
$SAVE3?7 $SMP08B06 $PRT2780
$SAVE3S8 $SMP0807 $PRT3780
$SAVE39 $SMP0808 $HCFUT1
$SAVEGO-41 $SMP0208 $PREFIND
$SAVE42 $SMP0OS01 STRAP
$SAVE43 $SMP0902 $DUMP
$SAVEG4G $SMP0903 $LOG
$SAVE45-49 $SMP0210 $PLI
$SAVES0-60 Reserved

Chapter 10. The Session Manager

221

’age of SC34-0312-2

\s updated January
3y TNL SN34-0685

22,1981

PARAMETER
&PARMOL,&SAVEQ]
&PARMO2,&SAVEOD2

&PARMO3,&SAVEQ3
END
LOG OFF

REMARK JdASSEMBLE &PARMO1. TO &PARMO2. USERID=&PARMOD.
JOB $SMP0O201
PROGRAM $EDXASM,ASMLIB

PARM &PARMO3.

DS &PARMOL.

DS $SM1&PARMOO.,EDX003
DS &PARMO2.

EXEC

EOJ

END

Figure 33. Invoking EDXASHM

Parameters that have been saved are retrieved from the $SMPnnnn
data set according to the relationships in the first part of
the procedure. These parameters are displayed on the terminal.
Then any parameters you enter from the terminal are used to
update the procedure.

ALLOCATING AND DELETING WORK DATA SETS

The session manager allocates work data sets at logon time.
They may be deleted at logoff time with one of the text editors.
Two data sets, $SMALLOC and $SMDELET, are provided which are
used in allocating and deleting data sets. $SMALLOC contains
the data sets to be allocated and $SMDELET contains the data
sets to be deleted. Figure 34 on page 223 lists the contents of
SSMALLOC and Figure 35 on page 224 1lists the contents of
SSMDELET.

You may tailor the work data set allocations and deletions by
modifying the $SMALLOC and $SMDELET data sets via the $FSEDIT
utility. Modifications usually consists of changing the size
or volume of a data set. However, you may allocate and delete
up to four additional data sets. By moving the END terminator
below $SM7 (statement 00120), you may allocate data sets $SM4,
$SM5, $SM6, and $SM7. If you modify $SMALLOC, you should also
modify $SMDELET to be consistent.

222 SC34-0312

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

PROGSTOP instruction.

Using the Task Error Exit Facility in Your Task

Linkage Conventions

To make use of the Task Error Exit facility in your task, vyou
must code a small control block and the error exit routine. In
addition, you must set aside the block of storage that will be
filled with the hardware status when an exception occurs.

The control block, called the task error exit control block
(TEECB), provides the linkage between the supervisor and your
error exit. The TEECB must be aligned on a fullword boundary.

To allow the supervisor to find your TEECB, you should code its
address as the value of the ERRXIT keyword parameter of the
PROGRAM or TASK EDL statement that defines your task.

The format of the TEECB is as follows:

TEECB DS OF TASK ERROR EXIT CONTROL BLOCK
TEECTL DC X'0002' = m-mmmmmmm e
TEESIA DC ACXITRTN) 0 l 2
TEEHSA DC ACHSA) SIA

HSA

In the first word (TEECTL), bits 0 - 7 are reserved and must be
zero. Bits 8-15 state the number of data words that follow.
This value must be two. The second word (TEESIA) contains the
address of the starting instruction of your Error Exit routine.
The last word (TEEHSA) contains the address of the block of
storage you have reserved to receive the hardware status when
an exception occurs. This block is called the Hardware Status
Area (HSA) and is 24 bytes long.

The format of the HSA is:

* HARDWARE STATUS AREA

HSA DS OF ALIGN ON FULL WORD BOUNDARY
HSAPSH DS 1F PROGRAM STATUS WORD

HSALSB EQU * LEVEL STATUS BLOCK

HSAAKR DS 1F INSTRUCTION ADDRESS REGISTER
HSATAR DS 1F ADDRESS KEY REGISTER

HSALSR DS 1F LEVEL STATUS REGISTER
HSAREGS DS 8F GENERAL REGISTERS 0 - 7

The contents of the various HSA locations (PSW,AKR,Etc,) will
contain, at entry to your error exit routine, the values that
were in the corresponding harduare registers at the time of the

Chapter 13. Diagnostic Aids and Facilities 269

exception. Upon entry to your error routine, general registers
1 and 2 will have been set to the SIA of your routine and to the
address of your task's TCB, respectively.

Since entry to your error exit routine is made at the Event

Driven Language level, the contents of the remaining general
registers is dependent upon what instructions are executed.

What Happens When an Exception Occurs

If an exception (machine check, program check or soft exception
trap) occurs during the execution of your task and you have
specified a task error exit, as outlined above, the supervisor
locates your TEECB. It then uses the TEEHSA pointer to locate
your HSA and stores the hardware status information in it,.
Next, it retrieves the TEESIA pointer and sets it to zero to
prevent recursive exceptions. Finally, it starts your task at
the address it retrieved if that address is non-zero. If the
TEESIA is zero or an exception occurs during any of this proc-
essing (if, for example, the TEECB is invalid), the supervisor
treats the error as though no task Error Exit had been speci-
fied. Note that even if the TEESIA is zero, the supervisor
still attempts to store the hardware status.

Since the supervisor zeroes TEESIA prior to starting your task,
yvyour error exit routine only gets control on the first
exception that occurs, unless your routine restores TEESIA to
its original condition. Zeroing TEESIA allows the supervisor
to handle exceptions that occur in error exit routines, thus
preventing recursion in the error handling process. MWhen you
implement a task error exit, do not restore TEESIA until the
error exit routine has completed.

I/0 ERROR LOGGING

The Event Driven Executive provides the capability to record
device I/0 errors into a log data set on disk or diskette and to
display the log data set. The support is provided with a set of
utilities and subroutines. :

Recording the Errors

To activate I/0 logging, the utility $LOG is loaded into any
partition., The logging function can be deactivated, reacti-
vated,; and terminated after it becomes active.

270 SC34-0312

G

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

NOTICE PROGRAM BEGIN

TERMX 10CB SCREEN=STATIC
NAMETAB DATA CL8'TERML?
DATA CLB8'"TERMZ'
DATA CLB'TERM3"
DATA CL8'TERMG?
BEGIN MOVEA #1,NAMETAB
DO 4 ’
MOVE TERMX,(0,#1),(8,BYTES)
ENQT TERMX
PRINTEXT 'SYSTEM ACTIVE',LINE=0
DEQT
ADD #1,8
ENDDO
PROGSTOP
ENDPROG
END

This example illustrates terminal access by using the name of
the terminal. TERM1, TERM2, TERM3, and TERM4 must have been
defined on a TERMINAL configuration statement., The use of the
static screen mode insures that only physical line 0 of each
screen Will be altered. (LINE=0 for roll screens causes a page
eject and erasure of information.)

Note: On a 4979 terminal, unprotected fields should be of
even length.

Modifying the IOCB

Elements of the IOCB which may be modified by an application
program are the terminal name, roll to static, and NHIST. The
structure given here is provided for those special applica-
tions in which other elements may need to be modified; note
that the structure may change with future versions of the Event
Driven Executive.

Chapter 15. Miscellaneous Terminal I/0 Considerations 295

BYTE(S) ELEMENT COMMENTS
0-7 Terminal Name EBCDId, blank filled
8 Flags #CCBFLGS is described in
the Internal Design
manual under "Terminal
170",
Bit 0 off indicates that
the name is the only element
of the IOCB.
9 Top of working Equal to TOPM+NHIST
area
10 Top margin TOPM or zero
11 Bottom margin BOTM, or X'FF' if
unspecified
12 Left margin LEFTM or zero
13 Page s5ize Equal to X'00' if
unspecified
14-15 Line s5ize Equal to X'7FFF' if
unspecified
16 Current line Initialized to TOPM+NHIST
17 Current indent Left margin included
18-19 Buffer address Zero if unspecified

296

5C34-0312

@

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Accessing a Static Screen

Line-oriented input/output instructions provide the most
straightforward means for constructing and reading data from
static screens. However, when individual data fields are
accessed frequently, excessive screen flicker can result. This
problem can be eliminated by transferring an entire screen
image to the display device with one I/70 operation. The follow-
ing program will illustrate this procedure as well as some oth-
er 1important points relating to programming for static
screens.

DISPLAY PROGRAM BEGIN

SCREEN I0C SCREEN=STATIC,BOTM=11, c 2
BUFFER=BUFF,RIGHTM=959
I DATA F'a?
BUFF BUFFER 960,BYTES 5
DATA Xrp202" 6
NULLS DATA X'ooo00" 7
NUMS DATA 48F'0" 3
VALS TEXT LENGTH=254 9
BEGIN ENQT SCREEN 10
ERASE TYPE=ALL,LINE=0 ' 11
*
¥ THIS DO LOOP PLACES THE WORD "FIELD"™ AND THE VALUE
¥ OF "I™ INTO THE TERMINAL BUFFER 96 TIMES. THE
¥ ACTUAL CONTENTS OF THE TERMINAL BUFFER IS PRINTED
¥ WHEN THE "TERMCTRL DISPLAY"™ STATEMENT IS REACHED.
*
DO 96, INDEX=I 12
PRINTEXT 'FIELD',PROTECT=YES 13
PUTEDIT FORMATL,VALS, ((I)),PROTECT=YES 14
PRINTEXT ' ',PROTECT=YES 15
PRINTEXT NULLS,PROTECT=YES 16
ENDO
PRINTEXT LINE=0 18
WRITE PUTEDIT FORMATL1,VALS, ((NUMS,48)), c 19
ACTION=STG
PRINTEXT VALS,MODE=LINE,LINE=0 21
PRINTEXT LINE=6,SPACES=8 22
TERMCTRL DISPLAY 23
WAIT KEY 24
GOTO (TRANSFER,QUIT),DISPLAY+2 25
TRANSFER READTEXT VALS,MODE=LINE,LINE=6 26
GETEDIT FORMATL1,VALS, ((NUMS,483), c 27
ACTIGON=STG
ERASE LINE=6,MODE=SCREEN, TYPE=DATA 29
GOTO WRITE 30
QUIT DEQT 31
PROGSTOP
FORMAT1 FORMAT (I2)
ENDPROG
END

Chapter 15. Miscellaneods Terminal I/0 Considerations 297

This program accesses the top six lines of the screen in static
mode and initially formats it with a sequence of protected
fields. An array of integers is displayed on lines 0-5 and a
pause is executed to allow the operator to enter a new set of
values in corresponding positions of lines 6-11,. The new
values are then displayed on lines 0-5.

297.1 sSC34-0312

@

Chapter 15.

Miscellaneous Terminal

1/0 Considerations

297.2

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

This program accesses the top six lines of a static screen and
initially formats the screen with a sequence of protected
fields. An array of integers is displayed on lines 0-5 of the
screen and a pause is executed to allow the operator to enter a
new set of values in corresponding positions of lines 6-11.
The new values are then displayed on lines 0~-5 of the screen.

The following numbers refer to lines (in the right margin) of
the preceding example program.

2 Define the static screen with the terminal I/0 buff-
er to be in the application program at BUFF, with a
length of 960 bytes (half of the 64%79 display
screen).

5 Allocate storage for the buffer. Note that in this
program the buffer is never accessed directly; the
space is merely allocated here for use by the super-
visor.

6 and 7 Define a TEXT message consisting of two null charac~
ters (EBCDIC code X'00'3}.

8 and 9 Define the array of integers (initially zero) and
the TEXT buffer which will be used for output of the
data in EBCDIC form.

10 and 11 Acquire the terminal, erase all data and establish
the screen position for the first 1I/0 operation.
Since several text strings will be concatenated to
form the first output line, the screen position must
be established in advance.

12 Begin a DO loop to construct the initial screen
image. This will consist of 96 protected fields of
the form FIELDxx, where xx is a sequential field num-
ber, each followed by one protected blank and tuwo
unprotected data positions. Note here the condi-
tions required for forming a concatenated line; the
protection mode of the PRINTEXT instructions must
not change (either all PROTECT=YES or all PROTECT=
No), and no intervening forms control operations can
be executed.

13 Write '"FIELD' to the buffer.

14 Convert the sequence number to two EBCDIC characters
and write it to the buffer.

15 Write a protected separation character.

298 SC34-0312

O

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

16 Write the two null characters to define the data
positions. Null characters will always generate
unprotected positions on the screen; PROTECT=YES is
nevertheless required here in order to maintain con-
catenation.

18 Write the concatenated line to the display. Any con-—
venient line control operation or the DEQT instruc-
tion will accomplish this.

19 Convert the integer array to two-character EBCDIC
values and store the resulting line in the TEXT buff-
er VALS.

21 Write the values into successive unprotected posi-

tions of the display beginning at LINE=0,SPACES=0.
This "scatter write" mode is defined by MODE=LINE;
without MODE=LINE the protected fields of the dis-
play would be overuwritten.

22 Define the cursor to be at the first unprotected
position.

23 Display the cursor at its defined position.
2% Wait for the operator to press an interrupt key.
25 Go to QUIT if PFl1 was pressed. Go to TRANSFER if the

ENTER key or any other key other than PF1 was
pressed.

26 Read the updated values entered by the operator in
lines 6-11. MODE=LINE indicates a "scatter read".

27 Convert the EBCDIC representations to binary and
store the binary values in the arrary NUMS.

29 Erase the unprotected (data) fields in lines 6~11 of
the screen.

30 Repeat

31 Release the terminal. The buffer designated in the

IOCB wWill be released and the screen configuration
restored to that defined by the TERMINAL statement.

In the previously described example program, the terminal I/0
operations were all conviently performed through the concat-
enation of TEXT strings. If the application requires more com—
plex formatting of the screen image, or if input of more than
254 bytes at a time is necessary, then direct access to the
buffer is appropriate. See the PRINTEXT and READTEXT
instructions in the Language Reference for details.

Chapter 15. Miscellaneous Terminal I/0 Considerations 299

Using Formatted Screen Images

Formatted screen images can be created and saved in disk or
diskette data sets with the utility program $IMAGE. The
retrieval and display of such images can be simplified by
employing a set of subroutines. An EXTRN statement must bhe
coded for each subroutine name which 1is referenced, and
AUTO=8AUTO,ASMLIB must be coded on the OUTPUT statement of the
link-edit control data set.

In the calling formats given below, arguments which represent
addresses to be passed to a subroutine must be enclosed within
parentheses as shoun. If the desired address is contained
within a variable, then the name of that variable must be writ-
ten without parentheses.

STMOPEN Subroutine

This subroutine reads the designated image from disk or
diskette into vyour buffer. You can also perform this operation
by using DSOPEN or defining the data set at program load time,
and issuing the disk READ instruction. Refer to the format
description at the end of this section for data set size deter—
mination.

Syntax

label CALL $IMOPEN,(dsname,volume),(buffer),P2=,P3=

Required: dsname,buffer
Defaults: None
Indexable: None

Operands Description
dsname The address of a TEXT statement which contains the

name of the data set. A volume label can be
included, separated from the name by a comma.

buffer The address of a BUFFER statement allocating the
storage into which the image data will be read. The
storage should be allocated in bytes, as in the fol-
lowing example:

300 SC34-0312

Page of SC34-0312-2 :
As updated January 22, 1981
By TNL SN34-0685

End of Forms on 64973 and 4974 Printers

Terminal I/0 goes into a wait state trying to print when one of
the follouwing situations occurs:

. The printer is in DISABLE (4973) or WAIT (4974) mode.

. The printer is out of paper and no terminal error exit is
coded on your TASK/PROGRAM statement.

U] The paper is jammed in the printer and no terminal error
exit is coded on your TASK/PROGRAM statement.

You can correct this problem by doing the following:

. If in DISABLE or WAIT mode, set the switch to ENABLE (on
4973) or to PRINT (on 4974) to resume printing. ’

. If the printer is out of paper or the paper is jammed, set
the mode switch to DISABLE or WAIT, add new paper or fix
paper jam, and reset the mode switch to ENABLE or PRINT.

° If you have a terminal error exit coded on your TASK or pro-
gram statements, you will get control at your error routine
on all error conditions except DISABLE (4973) or WAIT
(4974) modes.

Reading Modified Data on the 4978 Display

Both protected and unprotected fields on the 4978 are defined
as a set of contiguous characters that may span line bounda-
ries. A protected field ends when an unprotected field is
encountered. Similarly, an unprotected field ends when a pro-
tected field is encountered. Neither an unprotected nor a pro-
tected field necessarily ends at an EDX partial screen
boundary.

An unprotected field is considered a modified field when any
character within the field is modified by the operator. The
field may be read by the Event Driven Language READTEXT
instruction with TYPE=MODDATA. Reading the field leaves its
modified status unchanged. A modified field becomes an unmodi-
fied field by either writing or erasing all the characters in
the field. For additional information, refer to IBM Seriess/1
4978-1 Display Station (RPQ DO02055) and Attachment (RPQ
D02038), General Information, GA34-1550.

Chapter 15. Miscellaneous Terminal I/0 Considerations 307

308

SC34-0312

Page of SC34-0312-2 .
As updated January 22, 1981
By TNL SN34-0685

0 CHAPTER 16. ADVANCED TOPICS

TRANSLATING COMPRESSED/NONCOMPRESSED BYTE STRINGS

The following two subroutines are used internally by $IMPROT
and $IMDATA as well as by the utility program $IMAGE. They can

. also, however, be called directly by an application program and
are described here because of their general utility.

The program preparation for applications calling $UNPACK and
$PACK is similar to that when using the $IMAGE subroutines.
That is, an EXTRN statement is required in the application and
the aurocall to $AUTO,ASMLIB is required in the link- control
data set (input to $LINK).

SUNPACK Subroutine

This subroutine moves a compressed byte string and translates
it to noncompressed form.

O Syntax

label CALL sUNPACK,source,dest,P2=,P3=

Required: source,dest
Defaults: None
Indexable! None

Operands Description
. source The label of a fullword containing the address of a

compressed byte string. (See Figure 43 on page 311
for the compressed format.) At completion of the
operation, this parameter is incremented by the
length of the compressed string.

dest - The 1label of a fullword containing the address at
which the expanded string is to be placed. The

, length of the expanded string is placed in the byte
(:) preceding this location. The $UNPACK subroutine
can, therefore, conveniently be used to move and

expand a compressed byte string into a TEXT buffer.

Chapter 16. Advanced Topics 309

rage UL DLOo4-Udl 4~4

As updated January 22, 1981

By TNL SN34-0685

*

*

*

CBUF

OUTAREA
CPOINTER
LINECNT
STRGPTR

STRING

The following example
routine to unpack the compressed protected data of a $IMAGE
screen format:

MOVEA
MOVEA

MOVE

MOVE

DO
CALL

MOVE

ADD
ENDDO

*

DATA
DATA
DATA
DATA
TEXT

BUFFER

SPACK Subroutine

illustrates the use of the $UNPACK sub-

#1,0UTAREA
CPOINTER,CBUF+12

LINCNT,CBUF+4
MOVELNG,CBUF+6

LINECNT

$UNPACK,CPOINTER,STRGPTR

(0,BYTE),P3=MOVELNG
UNPACKED DATA
#1,MOVELNG

cLigz0" °
A'C?
FlO'
A(STRING)

LENGTH=80

1000,WORDS

POINT TO EXPAND BUFFER
POINT TO FIRST BYTE OF
COMPRESSED DATA
INIT DO LOOP CTR
INIT MOVE LENGTH CODE

UNPACK COMPRESSED
DATA
MOVE

WILL CONTAIN ALL OF THE
UNPACKED DATA

POINTER TO COMPRESSED DATA

NBR OF FORMAT LINES TO UNPACK
ADDR OF TEMP LOCATION TO

RECEIVE UNPACKED DATA

TEMP LOCATION TO RECEIVE «;D
UNPACKED DATA

CONTAINS $IMAGE FORMAT WITH

WITH PACKED DATA

This subroutine moves a byte string and translates it to com-
pressed form.

309.1

SC34-03]2

Chapter 16. Advanced Topics 309.2

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Svyntax

| label

Required:
Defaults:

Indexable: None

CALL $PACK,source,dest,P2=,P3=

source,dest
None

Operands

source

dest

Description

The label of a fullword containing the address of
the string to be compressed. The length of the
string is taken from the byte preceding this
location, and the string could, therefore, be the
contents of the TEXT buffer.

The label of a fullword containing the address at
which the compressed string is to be stored. At
completion of the operation, this parameter is
incremented by the length of the compressed string.

310 SC34-0312

)

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

0 SDISKUT3 Return Codes

The first word of the DSCB is posted with a return code to indi-
cate whether the function was performed successfully (-1} or
unsuccessfully. When a list of more than one function is speci-
. fied, each function requested is processed in the sequence pre-
sented. A return code is posted for each function attempted.

R Caution: If more than one function which references the same
DSCB is requested on a single $DISKUT3 invocation, the return
code set reflects only the results of the last function
attempted using that DSCB.

The return codes set by $DISKUT3 and their meanings are as fol-

lous:
Code Condition
| 1 Invalid request code (not 1-6)
2 Volume does not exist (All functions)
4 Insufficient space in library (ALLOCATE)
5 Insufficient space in directory (ALLOCATE)
6 Data set already exists — smaller than the
(:) requested allocation
7 Insufficient contiguous space (ALLOCATE)
8 Disallowed data set name, eg. S$EDXVOL or
SEDXLIB (All functions)
9 Data set not found
| (RENAME, RELEASE, DPEN)
10 New name pointer is zero (RENAME)
11 Disk is busy
(ALLOCATE, DELETE, RENAME, RELEASE)
12 I/0 error writing to disk
(ALLOCATE, DELETE, RENAME, RELEASE)
13 I/0 error reading from disk (All functions)
14 _ Data set name is all blanks (ALLOCATE, RENAME)
15 Invalid size specification (ALLOCATE)
16 Invalid size specification (RELEASE)
17 Mismatched data set type
. (OPEN, RENAME, DELETE, RELEASE)
18 Data set already exists - larger than the
requested allocation
. 19 SETEOD only valid for data set of type 'data'
20 Load of $DISKUT3 failed ($RMU only)
21 Tape data sets not supported

Figure 44, $DISKUT3 return codes

O

Chapter 16. Advanced Topics 319

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Example: The following example illustrates the’ use of
$DISKUT3. The use . of all five functions (OPEN, ALLOCATE,
RENAME, DELETE, and RELEASE) is shown.

TASK PROGRAM GO,DS=((DATA1l,EDX002),(DATA2,EDX003))
COPY DSCBEQU

GO EQU *

¥ LOAD $DISKUT3 IN THE 'NON-OVERLAY' MODE, TO OPEN

¥ DATA SET 'DATA3', ALLOCATE A NEW DATA SET '"DATA4', AND

¥ RENAME AN EXISTING DATA SET 'DATALl'

* LOAD $DISKUT3,LISTPTR1,EVENT=¢DISKUT3
WAIT $DISKUT3

COMPUTE CURRENT SIZE OF THE DATA SET AND USE IT AS A
CALLING PARAMETER FOR A 'RELEASE' RECORDS CALL TO
$DISKUT3.

THE ASSUMPTION IN THIS PROGRAM IS THAT THE DATA

SET HAS BEEN WRITTEN SEQUENTIALLY. THEREFORE,
'$DSCBNEXT® POINTS TO THE NEXT RECORD TO BE USED 1IN

THE DATA SET AND $DSCBNXT-1 IS THE NUMBER OF RECORDS
CURRENTLY IN USE. WHENEVER THE FILE IS OPENED, $DSCBNXT
IS RESET TO X'0001'. THE $DSCBNXT IS AUTOMATICALLY
INCREMENTED BY THE SYSTEM AS THE RECORDS ARE ACCESSED.

K K XK K X X XK X X XK X

SUBTRACT DSX+$DSCBNXT,1,RESULT=REQUEST5+4

¥ LOAD $DISKUT3,; DELETE DATA SET 'DATA2'
¥ AND RELEASE THE UNUSED SPACE IN 'DATA4'.

LOAD $DISKUT3,LISTPTR2,EVENT=$DISKUT3,PART=ANY
WAIT $DISKUT3

.

PROGSTOP

$DISKUT3 ECB 0 SET INITIAL STATE TO ZERO
*

LISTPTR1 DC ACLIST1) POINTER TO LIST OF REQUEST
* BLOCK POINTERS

LISTPTR2 DC ACLIST2) POINTER TO ANOTHER LIST OF
* REQUEST BLOCK POINTERS

320 SC34-0312

Page of SC34-0312-2
As updated January 22, 1981

By TNL SN34-0685
‘:) $DISKUT3 Use Example (Continued)
LIST1 DC A(REQUESTIL)
DC ACREQUEST2)
. DC ACREQUEST3)
DC F'0"' END OF LIST FLAG
*
LIST? DC A(REQUEST4)
* DC A(REQUESTS5)
DC F'0" END OF LIST FLAG
%
REQUEST! DC F'i?® REQUEST IS FOR AN 'OPEN'
DC A(DSY) DSCB FOR 'DATA3!
DC F'0" UNUSED FOR OPEN REQUESTS
DC Fr-1" FOR OPEN REQUESTS
*
REQUEST2 DC Fr2°' REQUEST IS FOR AN 'TALLOCATE?
bC A(DSX) DSCB FOR 'DATAG®
DC F'50°" ALLOCATE 50 RECORDS
DC Frir DATA SET TYPE IS 'DATA'
% .
REQUEST3 DC F'3" REQUEST IS FOR A 'RENAME®
DC A(DS1) DSCB FOR 'DATALl"
DC ACNEWNAME) ADDRESS OF NEW DATA SET NAME
(:? DC Fr-1" FOR RENAME REQUESTS
J ¥
REQUEST4 DC F'4" REQUEST IS TO 'DELETE"'
DC A(DS2) DSCB FOR 'DATA2'
DC F'Q" UNUSED FOR DELETE REQUESTS
DC Fr-1" FOR DELETE REQUESTS
*
REQUESTS DC F'5° REQUEST IS TO 'RELEASE' SPACE
DC A(DSX) DSCB FOR 'DATA4'
DC A(x—=%) NEW SIZE OF DATA SET
DC F'-1" FOR RELEASE REQUESTS
*
DSCB DS#=DSY,DSNAME=DATA3
*
DSCB DS#=DSX,DSNAME=DATA4G
NEWNAME DC CLB8'RENAMED' NEW DATA SET NAME
- ' ENDPROG
END

Chapter 16. Advanced Topics 321

DSOPEN SUBROUTINE

DSOPEN is a subroutine that can be copied into your program. It
opens a disk, diskette, or tape data set for input and/or out-
put operations by initializing a DSCB. Only one DSCB can be
open to a tape at a time. If a tape has been opened, a close must
be issued before another open can be requested. The results of
DSOPEN processing are identical to the implicit open performed
by 8L or LOAD for data sets specified in the PROGRAM statement.

Use DSOPEN to open a data set after the program has begun exe-
cution.

The following functions are performed:

o Verifies that the specified volume is online

i Verifies that the specified data set is in the volume
. Initializes the DSCB

Using DSOPEN adds 1056 bytes to the size of your program.

To use DSOPEN, you must first copy the source code into your
program by coding:

COPY PROGEQU
COPY DDBEQU
COPY DSCBEQU

COPY DSOPEN

During execution, DSOPEN is invoked via the CALL instruction as
follows:

CALL DSOPEN, (dsch)

Four optional parameters are also available. Three are error
return addresses and the fourth is the address of an area in
which DSOPEN saves a directory control entry (DCE) and the
first directory member entry (DME).

322 SC34-0312

(::

rage o1 5C34-0312-2
As updated January 22, 1981
By TNL SN34-0685

The three error exit addresses are:
1. Data set not found

2. Invalid VOLSER

3. I/70 error

Since the exit addresses and the area address lie within your
program, they must be initialized by your program before it
calls DSOPEN. DSOPEN automatically sets them to zero. The
labels of these fields can be found in the beginning of the
DSOPEN copy code. Since the four parameters are addresses
within your program, you must insert (move) them to the begin-
ning of the DSOPEN routine before calling it.

You must have a 256-byte work area labeled DISKBUFR in vyour
program. The DSCB to be opened can be DS1-DS9 or a DSCB defined
in your program via the DSCB statement. The DSCB must be
initialized with a 6-character volume name in $DSCBVOL and an
8-character data set name in $DSCBNAM. To reopen a data set,
the field $DSCBDDB in the DSCB must first be initialized to
zero. Other fields are ignored. The volume name can be speci-
fied as 6 blanks, which causes the IPL volume to be searched for
the data set.

After DSOPEN processing, #1 contains the number of the directo-
ry record containing the member entry and #2 contains the dis-
placement within DISKBUFR to the member entry. The fields
$DSCBR3 and $DSCBR4 contain the next available logical record
data, if any, placed in the directory by SETEOD. Refer to the
comments in the DSOPEN copy-code for additional details.

Only one dataset on any tape volume may be open at any one time.
Multiple datasets, in a program header, or if opened by DSOPEN,
cannot refer to more than one dataset per tape volume. If this
is attempted, the second open attempt fails and takes the "IN-
VALID VOLSER"™ error exit.

Chapter 16. Advanced Topics 323

age of SC34-0312-2
s updated January 22, 1981
y TNL SN34-0685

SETEOD

SETEQOD is a copy code routine that updates the directory member
entry (DME) of a disk directory to reflect the last record
accessed up to the point in time SETEOD is invoked. Information
on the DME can be found in Internal Design. The value in
$DSCBNXT (relative record number to be used for next sequential
READ or WRITE), minus one, is placed in the next available log-
| ical record field of the DME, so that it can be retrieved by
subsequent calls of DSOPEN.

If the value of $DSCBNXT is 1 when SETEQOD. is performed, the DME
is set to indicate that the data set is empty. Subsequent calls
to DSOPEN cause $DSCBEOD to be set to X'FFFF', indicating that
the data set is empty. If $DSCBEOD is zero, the length of the
data set ($DSCBLEN) is used as the end-of-data (EOD) value.

SETEOD is used to indicate a logical end of file on disk. If
your program does not SETEOD when creating or overwriting a
file, the READ end of data exception will occur at either the
physical end, or the logical end set by some previous use of the
data set.

SETEOD can be used before, during or at the end of either input
or output. It does not inhibit further I/0 and can be used more
than once. The only requirement is that the DSCB passed as
input must have been previously opened.

The POINT function modifies the $DSCBNXT field. If SETEOD is
used after a POINT, the relative record number pointed to,
minus one, becomes the value placed in the directory by SETEQOD.

SETEOD requires that the DSOPEN copy code, PROGEQU, and TCBEQU
be included in your program. SETEOD uses the 256-byte DISKBUFR
that is also used by DSOPEN. You invoke SETEQOD as a subroutine
through the Event Driven Language CALL statement, passing the
DSCB and an I/0 error exit routine pointer as parameters.

Using SETEQOD adds 318 bytes to the size of your program.

To use SETEOD, you must first copy the source code into your
program by coding:

324 SC34-0312

O

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

COPY
COPY
COPY
COPY

coPYy
COPY

PROGEQU
TCBEQU
DDBEQU
DSCBEQU

DSOPEN
SETEOD

Calling Sequence

CALL

SETEOD, (DS1), (IOERROR)

where

DSl

IOERROR

Names a previously opened DSCB

Names

the routine in the
which control is passed if an 170 error occurs.

Chapter 16.

application program to

Advanced Topics

325

PROCESSING THE EOV CONDITION

Reading End—-of-Volume (EOV) Labels

The Event Driven Executive does not provide EOV processing.
However, you may elect to add EOV processing to your applica-
tion. To read a multi—-volume data set the following steps can
be used:

1. Vary the tape online (specifying the SL option).
2. Execute the program, reading and processing data records.

When the end of the data set is reached, the END= exit rou-
tine of the READ statement will be entered. (If you do not
use the END option, check for return code 10.)

3. Perform a CONTROL CLSOFF operation in the END= exit or when
return code 10 is encountered.

If the return code from the CONTROL operation is a +33 (EOQOV
encountered), then the close processing has detected an
EOV1I label. This means more data is contained on another
reel. The CONTROL completes by rewinding the tape and set-
ting it offline.

4. Issue a message (PRINTEXT) telling the operator to enter
the volume serial number of the next tape.

5. Read (READTEXT5 the volume serial number supplied by the
operator from the terminal and place it in the $DSCBVOL
field of the DSCB used to READ the data set.

6. Issue a message (PRINTEXT) telling the operator to place
the next volume on an available tape drive and vary it
online using $VARYON.

7. After the new tape has been varied online, call the DSOPEN
subroutine to ready the data set for READ processing.

Note: The new volume must be online ($VARYON) before DSOPEN
is called.

8. Resume reading and processing as soon as the tape is opened
For a sample of the operator console sheet for the reading EQV
process, see "Console Output for EOV Processing”™ on page 327

For a sample of a program to process an EOV condition while
reading,; see "Input EQOV Processing Example™ on page 329.

326 SC34-0312

Support for: Resident Initialization

Program/Machine Check Log 250

Relocating Loader
With Addr Translator 4016 2352
Without Addr Translator 3068 2352

Floating Point Support

Included 610

Not Included 4
Support of GETEDIT/PUTEDIT

With Addr Translator 1602

Without Addr Translator 1330
Queue Processing Support 258
$DEBUG Support 384
Supervisor Patch Area 256

Figure 50. (Part 3 of 3) V2.0 Supervisor Storage Requirements
Note: The transient program loader requires an area

of 3840 bytes uwhich will be overlaid by the loaded
programs.

Appendix A. Storage Estimating 341

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

UTILITY PROGRAMS

The storage (jn bytes rounded up to the next
256 byte increment) required by the Event Driven
Executive utility programs:

$BSCTRCE 1792
$BSCUT1 4864
$BSCUT2 19712
$COMPRES 3584
$COPY 9216
$COPYUT1 9984 .
$DASDI 25600
$DEBUG 6912
$DICOMP 11264
$DIINTR 9728
$DISKUT1 7680
$DISKUTZ 9728 (+1280 if printing error log)
$DIUTIL 9216
$DUMP 5888
$EDITI1 9728
$EDITILIN 11776
$SEDXASHM 18944 (+5632 when assembling
TERMINAL statements)
SEDXLIST 6144
S$FONT 5632
$FSEDIT 22528
$HCFUT1 2304
| STAMUT1 139380
$ IMAGE 9728
$INITDSK 6656
$IOTEST 8960
$JOBUTIL 5376
$ L INK 18688
$L0G 5632
$MOVEVOL 6144
$PDS 1792
$PFMAP 512
$PREFIND 6144
$PRT2780 2304
$PRT3780 2560
$RJE2780 9728
$RJE3780 3984
$TERMUT1 3072
$TERMUT2 8192
$TERMUT3 768
$TRAP 5376
SUPDATE 7936
SUPDATEH 6400
' | SVERIFY 21514

342 SC34-0312

