
§ ';';,s,;,i !,.eChnical Newsletter ~/ I
This Newsletter No.

Date

SN34-0685

January 22, 1981

o

I

o

I

o

Base Publication No.

File No.

SC34-0312-2

Sl-34

IBM Series!1
Event Driven Executive

System Gu ide

Previous Newsletters

Program Numbers: 5719-XS1 5719-XS2 5719-MS1
5719-XX2 5719-XX3 5719-AM3
5719-UT3 5719·UT4
5719·LM5 5719·LM6
5719-LM2 5719·LM3

© IBM Corp. 1979, 1980

None

This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

9,10
23,24
57,58
73,74
77 through 80
87,88
93 through 98
99
99.1,99.2 (added)
100
101,102
103
103.1, 103.2 (added)
104
107 through 110
115
115.1, 115.2 (added)
116
116.1, 116.2 (added)
117,118

123, 124
127, 128
128.1,128.2 (added)
139,140
145 through 148
148.1, 148.2 (added)
151 thrqugh 156
161
161.1, 161.2 (added)
162
165,166
167
167.1,167.2 (added)
168
173,174
187
187.1,187.2 (added)
188
189,190
191

191.1,191.2 (added)
192
193
193.1,193.2 (added)
194
194.1, 194.2 (added)
203 through 206
221,222
269,270
295,296
297
297.1 , 297 .2 (added)
298
299,300
307,308
309
309.1 , 309 .2 (added)
310
319 through 326
341,342

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

Corrections and editorial changes have been made throughout this book. These changes are identifiable
by a vertical bar to the left of the change.

Note. Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Systems Publications, Department 27T, P.O. Box 1328, Boca Raton, florida 33432

Printed in U.S.A.

o

o

o

o

o

Sort/Merge

The Sort/Merge licensed program sorts and merges records from
up to eight input data sets into one output d~ta set in either
ascending or descending order. You can specify one or more
control fields in the records to be sorted. The Sort/Merge
program compares the control fields to determine the relative
sequence of the records.

The Event Driven Executive Sort/Merge program executes under
the Basic Supervisor and Emulator.

Publications:

• IBM Series/l Event Driven Executive Sort/Merge: Program­
mer's Guide, Sl23-0016

• IBM Ser'i es/1 Event Dr i ven Execut i ve Sort/Merge: Spec if i ca­
tions Sheet Form, GX23-0009

Ser;es/l Macro Assembler

The Macro Assembler converts text data sets containing
machine, assembler, and macro instructions that have been
coded in the Series/l instruction set into object modules. The
object modules can then be processed by the linkage editor.

When the assemb ler is used in conj unct ion with "the Macro
library, applications coded in the Event Driven language can
also be processed by the Macro Assembler, including customiz­
ing the supervisor. You can also include in the macro library
your own macros for commonly used routines. The Macro Assembler
and the Macro Library can be used in place of the Program Prepa­
ration Faei lity ($EDXASM).

With the Macro Assembler you can assemble device support mod­
ules or modules that modi fy supervisor functions. You can also
assemble exit routines written in Series/1 Macro Assembler
languageo The resulting object module is input to the Program
Preparation Facility linkage editor, together with your appli­
cations generated in Event Driven Language instructions, Pl/I,
FORTRAN IV, and/or COBOL. Your program will execute under the
Basic Supervisor and Emulator after it has been processed by
the 1 i brary update ut iIi ty ($UPDATE).

Publications:

• IBM Ser i e5/1 Event Dr i ven Execut i ve Macro Assembler,
GC34-0317

IBM Series/l Macro Assembler Reference Summary, SX34-0076

Chapter 1. Overview 9

Page or SCJ4-UJ12-2
As updated January 22, 1981
By TNL SN34-0685

Mult;ple Terminal Manager

The IBM Series/l Event Driven Executive Multiple Terminal
Manager provides 'a set of high level functions that simplify
the design, implementation, and maintenance of
transact ion-or i ented app I i cat ions. Programs wr i tten in COBOL,
Pl/I, FORTRAN IV, or Event Driven language can execute in an
interactive environment, where one or more applications can
run concurrently using one or more display devices. Additional
interfaces are provided for indexed or direct files (access to
indexed fi les requires the Indexed Access Nethod). An operCltor
interfClce for functions such ClS sign on, connect or
disconnect, terminCll StCltU5 reports, and listing the screens
and progrClms available Clre Cliso provided.

Publications: Refer to the Multiple Terminal Manager topics in
the master index of this publicCltion.

Indexed Access Method

The Indexed Access Method provides data management facilities
that support indexed fi Ie operations. It allows you to bui ld,
access, and maintain records in indexed dClta sets via a prede­
termined field called a key. An index of keys provides fast
access to records in an indexed data set. The Clccess method
supports a high degree of insert/delete activity, providing
both direct and sequential access to the data from multiple,
concurrently executing programs. Applications that use the
Indexed Access Method can be programmed in the Event Dri ven
language, PL/I, or in COBOL. It is .supported by the Sort/Merge
licensed program, which will accept Indexed Access Method data
sets as input files. Also prov i ded are uti lit; es to def i ne and
ma i nta ; n indexed data sets.

The Indexed Access Method provides keyed access to data to
support a variety of applications, ranging from batch process­
ing to interactive applications.

The data file orgCln i zat ion prov ides direct and sequent i a I
processing of files. This is accomplished by using cascClding
index techniques for direct processing and by sequence chClin­
ing of the datCl blocks for sequentiClI processing.

The access method supports fi les which have high add/delete
Clctivity (such as open order files) with nominal performance
degradCltion. This is accomplished by distributing free space
for additions throughout the file, by updating and inserting
additions in place, and by dynamically reclaiming space after
deletions.

10 SC34-0312

C'
, I

o

o

o

o

o

4979 Display Station

Page of SC34-0312-2
As·updated January 22, 1981
By TNL SN34-0685

3101 Display Terminal or equivalent teletypewriter
device

Minimum Licensed Program Requirements

The programs you require depend upon your application and which
language you will use to code your applications. The choices
are COBOL, FORTRAN IV, PL/I, Event Driven Language, or Macro
Assembler Language.

The first requirement is the Basic Supervisor
Then, based upon your choice of languages and
work, the following can be used as guidelines:

and Emu lator.
your type of

• COBOL

•

Program preparation requires the COBOL Compiler and Resi­
dent Library, the Uti lities, and the link editor of either
the Program Preparation Facility or th~ Series/l Macro
Assembler. It allows you to:

Install the COBOL Compiler and Resident ·Library and
the COBOL Transient Library

Allocate data sets

Enter source programs

Compile

Link edit

Execution and test require the COBOL Transient Library and
the Ut i 11 ties. Dur i ng execut i on and test, you may:

Use diagnostic aids

Load programs

Back up and copy data sets

PL/!

Program preparation requires the PL/! Compiler and Resi­
dent Library, the Utilities, and the link editor of either
the Program Preparation Facility or the Series/l Macro
Assembler; it allows you to:

Chapter 1. Overview 23

Page of SC34'()312-2
As updated January 22,1981
By TNL SN34-0685

Install the PL/I Compi ler and Resident Library and the
PL/I Transient Library

Allocate data sets

Enter source programs

Compile

Link edit

Execution and test require the PL/I Transient Library and
the Ut iIi ties. Dur i ng execut i on and test, you may:

Use diagnostic aids

Load programs :f

Back up and copy data sets

• FORTRAN IV

Program preparat i on requ i res FORTRAN IV, the Ut iIi ties,
the Mathematical and Functional Subroutine Library, and
the link editor of either the Program Preparation Facility
or the Series/l Macro Assembler; it allows you to:

Install FORTRAN IV and the MathemCltical and Functional
Subroutine Library

Allocate data sets

Enter source programs

Compile

~ Link edit

Execution and test require the the Utilities. During exe­
cut i on and test, you mClY:

Use diagnostic aids

Load programs

Back up and copy data sets

• Event Dr i ven Language

24 SC34-03.12

o

c

o

o

o

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

3. When a program is loaded by the $L operator command

4. Dur i ng execut i on of some system ut iii ty pt:'ograms

A genera I data set spec i f i cat i on cons i sts of two parts:

1. The data set name (dsname)

2. An optional volume label (volume) which specifies the vol­
ume on which the data set resides

The format for a data set spec if i cat i on is:

I dsname,volume

The volume specification is optional and if not specified, the
system assumes that the target data set resides on the primary
volume on the direct access device from which the system was
IPLed.

dsname

volume

An alphameric character string of 'eight characters.
When fewer than eight characters are spec if i ed,
blanks are added to the string.

An alphameric character string of six characters.
To locate the volume on a disk, it must have been
defined in the VOLSER= parameter of a DISK config­
uration statement in the system I/O definition. To
locate the volume on a diskette or tape, the TAPE or
DISK statement must be in the system I/O definition
and the vo lume name loaded into the system by i ssu i ng
the operator command $VARYON, speci fying the
diskette or tape de·vice address. The diskette must
have been initialized by $INITDSK. Tapes must be
initialized by the $TAPEUTI utility. When fewer than
six characters are specified, blanks are added to
the right to complete the string.

Two special data set names are known to the system and must be
used wi th care:

$$EDXVOL Used to obtain absolute record reference to an
entire volume on disk or diskette.

$$EDXLIB

Note:

Used to obtain absolute
beginning of the volume
diskette within a volume.

record reference to
directory on disk

the
or

Errors may occur if either of these two special data
set names are used to refer to deleted or uninitial­
i zed H D R 1 (B as i. c Ex c han 9 e) r e cor d 5 •

Chapter 3. Data Management 57

STORAGE CAPACITIES

D;sk/D;skette

The following table summarizes storage capacities of the vari­
ous Ser i es/1 direct access storage dev ices.

'" Device Storage Cy!/dev Logical Trk/cyl Volume max
capacity rcds/trk (cyls)
(records)

Single-sided
(type 1)
diskette 949 77* 13 1 73

Double-sided
(type 2)
diskette 1924 77* 13 2 74

4962 disk 303**
-1 36120 60 2 273
-IF 36600 60 2 273
-2 36120 60 2 273
-2F 36600 60 2 273
-3 54180 60 3 182
-4 54180 60 3 182

4963 disk 360***
-23 92160 64 4 128
-29 114560 64 5 102
-58 229632 64 10 51
-64 252032 64 11 46

* 73 cylinders are available for data (001-073) on
type 1 diskettes. 74 cylinders are available for
data (001-074) on type 2 diskettes. On both types,
2 cylinders are reserved for alternate tracks and 1
cylinder i s reserved for IPL and volume identification.

** 301 cylinders are available for data (000, 002-301);
cylinder 001 i s reserved for alternate sector
assignments; 302 i s reserved for CE use.

*** 358 cylinders are available for data (0-357),
while cylinder 358 i s reserved for alternate
sectors and cylinder 359 i s reserved for CE use.

58 SC34-03l2

o

o

o

C'
I ,)

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

PART II - SYSTEM GENERATION AND CONFIGURATION

The creation of a customized supervisor is a two step process.
Step 1 is a def i nit i on phase. Step 2 is the gene rat i on phase.

In step 1, you def i ne the conf 1 gurat i on of the system by·
preparing configuration statements which describe the attri­
butes of the devices (such as disks, diskettes, and terminals)
you want your system to support. You also define the number and
size of the partitions that will be available in your system.
Configuration statements are described in "Chapter 6. System
Configuration" on page 75.

In step 2, you enter your canf i gurat i on statements and assemb Ie
them. Then you modify the system-supplied INCLUDE file,
$LNKCNTL, ensuring that all the support you require is buil't
into the supervisor. The linkage editor combines the supervi­
sor definition with the supervisor functions you selected to
create a customi zed supervi sor.

The volume label, tape ID, and the label of a terminal state­
ment must all be uniquely defined. Other~ise, unpredictable
results may occur.

No device (other than disk) can be defined more than once.

The system generat i on process is descr i bed in "Chapter 7. Sys­
tem Generat i on" on page 115.

PART II - SYSTEM GENERATION AND CONFIGURATION 73

o

o
74 SC34-0312

o

o

o

RETRIES=

MC=

END=

BSCLINE

MC - The Series/l is the controlling station on a
multipoint line. The adapter should be jumpered
with DTR permanently enabled and multipoint line
should not be jumpered.

MT - The Series/l is a tributary station on a multi­
po i nt line. The adapter should be j umpered for
multipoint tributary operation with DTR permanent­
lyenabled.

The number of attempts which should be made to
recover from common error conditions before posting
a permanent error.

NO - The binary synchronous adapter located at the
address spec if i ed in the ADDRESS= operand is either
a medium speed, single line feature card or a high
speed, single line feature card.

YES - The binary synchronous adapter located at the
address specified in the ADDRE·S5= operand is part
of a multi-line controller feature configuration.
When generating supervisors using multi-line con­
troller attachments, note the following:

• The character string YES must be
Any other character string will be
to NO.

specified.
equivalent

• All multi-line feature cards mllst start at a
.b a sea d d res sen din g wit h e i the r X' 0' 0 r X' 8 v. A
BSCLINE statement must ex i st for the line at
this base address if any of the other lines of
the multi-line attachment are to be used.

YES, for the last BSCLINE statement in the system
definition module.

Examples:

BSCLINE ADDRESS=28,TVPE=PT,RETRIES=10,MC=NO
BSCLINE ADDRESS=30,TVPE=SM,RETRIES=2,MC=VES,END=VES

Chapter 6. System Configuration 77

1ge of SC34-0312-2
s updated January 22, 1981
y TNL SN34-0685

I DISK

DISK - Define Direct Access Storage

DISK defines the direct access storage devices and logical
volumes to be supported in the generated system. All DISK
statements must be grouped together. The last DISK statement
must inc I ude an END=VES spec if i cat i on.

DISK is only needed in the system generat i on process. Refer to
"Chapter 3. Data Management" on page 45 for a genera 1
discussion of direct access storage organization, functions,
and nam i ng convent ions.

I The disk Volser name must be unique for the system.

Syntax

blank

Required:

DISK DEVICE=,ADDRESS=,VOLSER=,VOLORG=,
VOLSIZE=,VERIFV=,BASEVOL=,FHVOL=,
LIBORG=,END=,TASK=

For 4964, 4966: DEVICE=,ADDRESS=
For 4962, 4963: DEVICE=,ADDRESS=,VOLSER=,VOLSIZE=
For 4962, 4963 (with fixed head): DEVICE=,ADDRESS=

VOLSER=,VOLSIZE,FHVOL=
Defaults: LIBORG=241 for 4962-1 or 4962-2 primary volume

LIBORG=l for secondary volume

Operands

DEVICE=

LIBORG=361 for 4962-1F or 4962-2F primary vol
LIBORG=129 for 4963-64 or 4963-58 primary vol
LIBORG=129 for 4963-29 or 4963-23 primary volum
END=NO,TASK=NO,VERIFY=YES

Description

4964, to def i ne a 4964 Diskette Dr i ve,

or

one of the following for the six models of the 4962
disk:

78 SC34-0312·

o

o

o

C~

o

ADDRESS=

4962-1 for a 9 . 3
4962-1F for a 9 . 3

4962-2 for a 9.3

4962-2F for a 9.3

4962-3 for a 13.9
4962-4 for a 13.9

or

megabyte unit
meQClbyte unit
with fixed heads
megabyte unit
with a diskette
megabyte unit
with fixed heads

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

DISK

unit

and a diskette unit
megabyte unit
megabyte unit
with a diskette unit

one of the following for the four models of the 4963
disk:

4963-29 for a 29 megabyte unit
4963-23 for a 23 megabyte unit with fixed heads
4963-64 for a 64 megabyte unit
4963-58 for a 58 megabyte unit with fixed heads

or

4966, to def i ne a 4966 Diskette Magazine Unit.

Note: If 4962 or 4963 is specified, VOLSER= must be
specified; LIBORG= may be specified.

The hexadecimal address of the unit. This parameter
is required for primary volumes only.

IPL devices must be at the following addresses:

VOLSER=

VOLORG=

Device Add~es5

4962
4963
4964
4966

X'03'
X'48'
X'02'
X'22' (IPl must occur

from slot 1)

Volume label (1-6 characters) to be assigned to the
unit. This operand is required if the DEVICE=4962-
or DEVICE=4963- is specified. Otherwise, it is
ignored.

The physical cylinder number of the first cylinder
of the volume. Cyl i nder number i ng beg i ns wi th zero.
A primary volume must begin at cylinder zero. (Re­
fer to Figure 9 on page 58.)

Chapter 6. System Configuration 79

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

I DISK I
VOLSIZE=

VERIFY=

BASEVOL=

FHVOL=

LIBORG=

END=

. TASK=

The size of the volume in physical cylinders. The
minimum value allowed is 2. (Refer to Figure 9 on
page 58.)

NO, to omit the WRITE-with-verify option. YES, to
cause each WR ITE to be ver if i ed. YES is the
default. This parameter is required for primary
volumes only.

Note: You should choose the VERIFY=YES option for
volumes containing critical data. This causes a
slight performance degradation but improves reli­
ability. With the YES option, each WRITE is imme­
diately followed by a READ, thus lengthening the
operation by the time it takes the unit to make one
revolution.

The volume label of the primary volume if
secondary vo lume is be; ng def i ned.

a

The volume label to be assigned to the
automaticallY generated secondary volume if the
DISK statement is defining a primary volume on any
4962 or 4963 hav i ng fixed heads.

The origin, by number of records, of the directory
on the volume. Defaults are described under 'Syn­
tax'. This operand is only applicable when
DEVICE=4962 or 4963 and is intended for special use
when tbe initial portion of the volume is reserved
for other storage.

YES, for the last DISK statement in the system
definition module.

YES, to cause a new I/O task to be generated. This
task will be used to service I/O requests for this
and subsequent primary volumes until a new DISK
statement with TASK=YES is encountered. NO, or
omit, if a new task is not required. This operand is
valid only for primary volumes and is optional.

Specifying TASK=VES on a primary volume allocates a Task Con­
trol Block that is used in servicing READ and WRITE requests
for the group of devices being defined. Thee f f e c tis t 0 a I low
READ and WRITE requests to proceed in parallel with requests to
other groups of devices. The resulting overlap may signif­
icantly improve performance when concurrent requests to dif­
ferent groups of devices occur. To achieve maximum flexibi lity
and performance, you should specify TASK=YES on each primary
volume. Additional storage required for each TASK=YES is 128
bytes.

80 SC34-0312

o

o

c

o
PARTS=

o

DATEFMT=

o

SYSTEM

• Processor time requirements

These i terns vary with each i nsta llat i on.

The number of 2K (lK=1024 bytes) blocks of storage
to be assigned to each partition. Use only if STOR­
AGE= is specified as greater than 64. Enter a list
showing the maximum size of each partition. Up to
eight partitions can be defined for the 4955, up to
two for the 4952, and one for the 4953. The list
must contain the same number of entries as the list
coded for MAXPROG=.

The method for calculating the maximum size for,
partition one is as follows:

Determine the available storage in the first 64K by
subtract i ng the size of the superv i sor from 64K e

See Append i x A to est i mate the superv i sor size.

The size of partition one is determined when you
IPL, by using the smaller of:

• The size you def i ne in the PARTS= parameter

• 64K minus the size of the supervisor

The m a x i mum va-I u e t hat can b e s p e c i fie d i, 5 3 2; the
minimum is 2. When specifying the size to be
assigned to partition one, you may code 32 rather
than calculating the value, if you wish partition
one to have all storage not used by the supervisor.
Otherwise, you must calculate the size of partition
one.

The Multiple Terminal Manager partition size can be
calculated by using the information in the
Communications and Terminal Applications Guide.

The format to be used when the date is d i sp layed
(PRINDATE or $W) or when entering the date via $T.
A return code is set in response to a GETTIME
request with the DATE option.

Spec i fy MMDDVV for a date format of month. day. year.
'Spec i fy DDMMVV for a date format of day. month. year.
MMDDYY is the default.

Note: Timer support must be included
superv i sor in order to have date support.

i n your

Chapter 6. System Configuration 87

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

I SYSTEM

IABUF=

COMMON=

Example 1

The maxfmum number of interrupts that may be buf­
fered by the task supervisor. The default value is
adequate for most systems. The value should be
increased if the system could be overloaded by a
large number of interrupts. (The system wi 11 stop
or enter a cont i nuous run loop.) Each increment
increases the superv i sor storage requ i rements by
eight bytes.

The labe I of the last superv i sor address to be
mapped in every partition. The value will be auto­
matically rounded upward to a 2K byte boundary. To
map the entire supervisor, specify COMMON=START.
To map on 1 y the sup e r vis 0 r d a t a are as, spec i f y
COMMON=EDXSVCX. The default, COMMON=EDXSYS,
implies no mapping. Refer to "$SYSCOM Define
Optional Common Data Area" on page 113 for
additional information·.

SYSTEM STORAGE=96,MAXPROG=(3,2,3), C
PARTS=(32,6,lO)

This three partition system is possible on a 96KB 4955 and maps
as follows:

PARTITION 1 28KB SUPERVISOR 36KB USER SPACE

PARTITION 2 .12KB USER SPACE

PARTITION·3 20KB USER SPACE

1. Partition 1 is 36KB and can execute up to three programs
concurrently.

2. Partition 2 is 12KB and can execute up to two programs
concurrently.

3. Partition 3 is 20KB and can execute up to three programs
concurrently.

Nota: The 28KB supervisor size is used for illustrative pur­
poses only.

Example 2

88 SC34-0312

o

c

o

o

o

[SYSTEM

PARTITION 1 28KB SUPERVISOR 32KB USER SPACE

PARTITION 2 36KB USER SPACE

1. Because COMMON=START was spec if i ed, the superv i sor is
mapped in both part i t i on 1 and part i t i on 2, prov i di n9
direct addressability to the supervisor for all programs
that execute on this system.

2. Partition 1 is 32KB and can execute up to three programs
concurrently.

3. Part i t i on 2 is 36KB and can execute up to four programs
concurrently.

Note: The 28KB number for the supervisor is used for illustra­
ti ve purposes only.

Chapter 6. System Configuration 93

Page of SC34-0312-2
As updated January 22.1981
By TNL SN 34-0685

I TAPE

TAPE - Def;ne Tape Dev;ce (Version 2 only)

TAPE defines the tape devices on a system. One TAPE statement
is required for each tape device on the system. It is recom­
mended that you group all DISK statements together, followed by
all the TAPE statements., The last TAPE or DISK statement must
include an END=VES specification. The tape ID must be a unique
name.

Syntax

blank TAPE DEVICE=,ADDRESS=,DENSITV=,LABEL=,ID=,
TASK=,END=

Required: DEVICE=,ADDRESS=,ID=
Defaults: DENSITV=1600,LABEL=SL,TASK=NO,END=NO

Operands

DEVICE=

ADDRESS=

DENSITY=

LABEL=

ID=

TASK=

END=

Description

Device type (4969 to define IBM 4969 tape unit)

A two dig i t he xadec i rna 1 number spec i fy i ng the
address ass i gned to the un it

Tape density to be
(800,1600,DUAL). When
defaults to 1600 BPI.

used
DUAL

for this
is coded,

device
density

Type of process i ng to be done on th is dey ice. Stand­
ard label (SL), non-label (NL), and bypass label
processing (B L P) are t h eo n 1 y types supported.

A one-to six-character name that is assoc i ated wi th
the device. This operand is used primarily for
s p e c i f yin 9 the d r i ve w hen N Lor B L Pi sus e d •

YES, causes a new I/O task to be generated. Th is
task is used to serv ice I/O request for th i sand
subsequent tapes unti I a new TAPE statement with
T ASK = YES i sen c 0 un t e red. For best per for man c e ,
s p e ci f y T ASK = V E S for each tape un i t that has a con­
troller.

YES, for the last statement in th.e DISK/TAPE
sequence.

94 SC34-0312

o

o

o

o

o

o

Example

TAPE DEVICE=4969,ADDRESS=4C,DENSITY=1600,
LABEL=SL,ID=$TAPEl,
TASK=YES,END=YES

Note: END=YES is specified only
once for the DISK/TAPE definition statements.

x
X

TAPE

Chapter 6. System Configuration 95

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

I TERMINAL

TERMINAL - Define Input/Output Terminals

TERMINAL defines each input/output terminal to be supported in
the generated system. Output only devices, such as line
printers, are also specified with TERMINAL statements. All
TERMINAL statements must be grouped together with the last
statement inc Iud i ng an END=VES spec if i cat i on.

A TERMINAL statement specifying DEVICE=VIRT can be entered in
an application program provided exactly the same statement is
entered in the system conf i gurat i on program. All TERMINAL
statements within the application program are automatically
converted to an IOCB statement. The label on the TERMINAL
statement is used for the label and the operand of the IOCB

I statement. Labels on all terminal statements must be unique
for the system.

Before prepar i ng your TERMINAL statements, you need to know the
characteristics of your terminals, the way they will be
attached to your Series/1, and how you plan to use them in your
application. Review the appropriate hardware manuals, the
topic entitled "Terminal I/O" in the Language Reference, and
the appropriate topics in Communications and Terminal
Apglications Guide.

If you use the Remote Management Utility and need the PASSTHRU
function, two virtual terminals are required. For a detailed
description of the PASSTHRU function see the Remote Management
Utility chapter in Communications and Terminal Applications
Guide. See Figure 10 on page 107 for a sample configuration.

96 SC34-0312

o

r(--~\.

'0

.,

o

o

0

TERt1INAL

Syntax

label TERMINAL DEVICE=,ADDRESS=,PAGSIZE=,LINSIZE=,
CODTVPE=,TOPM=,BDTM=,NHIST=,LEFTM=,RIGHTM=
DVFLINE=,LINEDEL=,CHARDEL=,CRDELAY=,ECHO=,
BITRATE=,RANGE=,LMODE=,ADAPTER=,COD=,CR=.
LF=,HDCOPV=,ATTN=,PF1=,SVNC=,SCREEN=,PART=
DI=,DO=,PI=,END=,TVPE=

Required: DEVICE= ,and one of the following:

• ADDRESS= except for Dl/DO terminal"s

• DI=,DO=,PI= for Dl/DO terminals

Defaults: PART=1,END=NO

Operands

DEVICE=

Description

One of the following codes for the
device:

indicated

TTY

4979

4978

4974

4973

2741

4013

A 3101 Display Terminal
Terminal attached via
Adapter (7850 >

or other ASCII
Teletypewriter

4979 display station attached via 3585
Adapter

4978 display station attached via RPQ
D02038

4974 matrix printer attached via 5620
Adapter

4973 line printer attached via 5630
Adapter

2741 communications terminal attached
via 1610 controller

Graphics terminal attached via 1560
adapter (Refer to Commun i cat ions and
Terminal Applications Guide for hardware
considerations.>

Chapter 6. System Configuration 97

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-D685

TERftlINAL

ADDRESS=

PAGSIZE=

CODTVPE=

LINSIZE=

ACCA

PROC

VIRT

A 3101 Display Terminal or other ASCII
terminal attached via 1610 controller or
2091 controller with 2092 adapter or 2095
controller with 2096 ad,apter (Refer to
Communications and Terminal Applications
G u ide for h a r d war e con side rat ion s •)

Processor-to-processor communication

Inter-program commun i cat ion. (Refer to
"Chapter 14. Inter-Program
Commun i cat ions" on page 279.)

The address (in hexadecimal) of the device. (Refer
to "Chapter 14. Inter-Program Commun i cat ions" on
page 279 for the use of th i s parameter in con­
nection with virtual terminal communications.)

The physical page size (form length) of the I/O
medium. Specify a decimal number between 1 and the
maximum value which is meaningful for the device.
For pr inters, spec i fy the number of lines per page,
or for screen devices the si ze of the screen in
lines. Th is operand is not requ i red for the
4978/4979 display; its value is forced to 24. For a
printer the default is 66.

The transm iss i on code used by the term ina I. Spec i fy
either ASC I I, EBCDIC, EBCD (PTTC/EBCD) , CRSP
(PTTC/c~rre5Pondence), or EBASC (8 bit data inter­
change code) as in the following table:

Adapter

7850 1610 2091/2092 2095/2096

DEVICE=TTV ASCII N/A N/A N/A
(default)

DEVICE=2741 N/A EBCD N/A N/A
or

CRSP

DEVICE=ACCA N/A EBASC EBASC ASCII
(default) (default)

The maximum length of an input or output line for
the device. The maximum line length cannot exceed
254 characters. The value of this operand can be
less than the max i mum wh i ch the dev i ce can accommo-

98 SC34-0312

o

o

o

TOPM=

NHIST=

BOTM=

o
LEFTM=

RIGHTM=

OVFLINE=

o

Page of SC34-0312-2
As updated January 22, 198
By TNL SN34-0685

TERMINAL I
date (for example, 80 for the 4978/4979 display
station or 132 for the 4974 print.er), but the value
is then fixed and cannot be altered dynamically.
For a printer the default is 132.

The top margin (a decimal number between zero and
PAGSIZE-l) to indicate the top of the logical page
within the physical page for the device.

The number of history lines to be retained when a
page eject is performed on the 4978/4979 display.
The line at TOPM+NHIST corresponds to logical line
zero for purposes of the terminal I/O instructions.
When a page eject (LINE=O) is performed, the screen
area from TOPM to TOPM+NHIST-l will contain lin~s
from the previous page. This operand is meaningful
for roll screens only. (See the discussion of the
SCREEN operand wh i ch follows.)

The bottom margin, the last usable line on a page.
Its value must be between TOPM+NHIST and PAGSIZE-l.
If an output instruction would cause the line num­
ber to increase beyond this value, then a page
eject, or wrap to line zero, is performed before the
ope rat i on is cont i nued.

The left margin, the character position at which
input or output will begin. Specify a decimal value
between zero and LINSIZE-l.

A value (between LEFTM and LINSIZE-l) that deter­
mines the last usable character position within a
line. Position numbering begins at zero.

YES, if output lines that exceed the right margin
are to be continued on the next line. This condi­
tion arises when the system buffer or user buffer,
if pro vi ded) becomes fu 11 and you ha ve taken no spe­
cific action in your application program (such as
forms control commands) to write the buffer to the
device.

Chapter 6. System Configuration 99

LINEDEL=

CHARDEL=

A two-digit hexadecimal character that defines the
character the operator will enter when he wishes to
restart an input line. In some cases, input of th i s
character causes a repeat of the prev i ous output
message. Usually, this operand is not meaningful
for devices such as the 4979 display station, whose
input is formatted loea 11 y before entry. (For the
ACCA terminals attached via the 1610 or 2091 con­
trollers and the 2092 adapter, code in mirror
image. Refer below for a description of mirror
images.)

A two-digit hexadecimal character which indicates
deletion of the previous input character. It is
meaningful only for devices whose mode of trans­
mission is one character at a time, as described in
the LINEDEL operand. For the ACCA terminals
attached via the 1610 or 2091 controllers and the
20?2 adapter, enter in mi rror image.

99.1 5C34-0312.

o

(~(--\

i~,1

o

o

o
Chapter 6. System Configuration 99.2

TERMINAL

CRDELAV=

ECHO=

BITRATE=

RANGE=

LMODE=

ADAPTER=

The number of idle times requ i red for a carr i age
return to complete for teletypewriter devices. If
pr j nt i ng occurs dur i ng the carr i age return, CRDELAY
is too sma 11. For i nterprocessor commun i cat j ons
(DEVICE=PROC), refer to the Communications and
Terminal Applications Guide.

NO, for devices that do not require input charac­
ters to be written back (echoed) by the processor
for printing.

YES (the default) is appropriate for most devices
connected through the teletypewriter adapter. NO
i s r e q ui red for A C CA. See the L F parameter
description regarding suppression of the echo of
the CR character.

The rate (i n bits per second) that th i s term ina 1
wi 11 be operating. (Used with ACCA, 2741 and PROC
support only.)

. Enter HIGH or LOW to match hardware jumper that is
installed on the adapter card. (Used with ACCA,
2741 and PROC support only.)

SWITCHED or PTTOPT. If this line is used with a
switched connection, then enter SWITCHED. Other­
wise, enter PTTOPT. (Used with ACCA support only.)

One of the fo llow i ng to i nd i cate the ACCA type:

SINGLE

TWO

FOUR

SIX

EIGHT

For the single line controller

For the eight line controller with up to
two 1 i n e sac t i ve

For the eight line controller with up to
four lines act i ve

For the eight line controller with up to
six lines active

For the eight line controller with up to
eight lines active

100 SC34-03l2

o

o

o

COD=

o
CR=

IF=

HDCOPY=

o

Page of SC34-Q312-2
As updated January 22, 1981
By TNL SN34-Q685

TERMINAL I
All multiple line feature cards must start at a base
address ending with with X'D' or:- X'B'. A termillal
statement with DEVICE=ACCA must exist for the line
at the base address. Furthermore, the terminal
def i ned as the base address must be spec if i ed as the
first terminal for the multiline controller. 'The
remaining terminals defined on the multiline con­
troller (if any) must immediately follow the ~ase
address terminal and should be in ascending order
by address.

Note: For DEVICE=2741, only SINGLE is allowed.

This should match the jumpers on the controller
cards. (Refer to the Communications and Terminal
Applications Guide for hardware considerations.)

Additional characters, other than the CR=, ATTN=,
and LINEDEL= values, that will terminate a READ
operation. (COD means change of direction, for'
example, READ to WRITE.) (Used with ACCA only.)
Code in mirror image as follows:

COD=!!
or
COD=(12,B6,42 •• o)

From one to fou~ COD characters may be entered.

The single character to be tested to determine if a
new line function is to be performed. (Code in mir­
ror image for ACCA terminals attached via 1610 or
2091 controllers with a 2092 adapter.)

The character to be sent to the terminal when a new
line function is to be performed. Code in mirror
image for ACCA terminals attached via the 1610 or
2091 controllers with the 2092 adapter. If the same
value is coded for IF= as was coded (or defaulted)
for CR= then the CR character which terminates an
input operation wi 11 not be echoed to the terminal;
the terminal is assumed to be an auto-line feed
device.

Support for the 4978/4979 display station includes
a means of printing the contents of the display
screen on a hardcopy device for permanent record.
(For an ex~lanation of the hardcopy feature, refer
to Utilities, Operator Commands, Program
Preparat i on, Messages and Codes). The hardcopy
function is defined by coding:

Chapter 6. System Configuration 101

TERMINAL

ATTN=

HDCOPV=(terminal name, k~y),'

terminal name The symbolic name of the terminal to
which the hardcopy contents will be
directed

key The code of the program function key
which 1S to invoke the function. For
example, HDCOPV=($SVSPRTR,4) desig­
nates $SYSPRTR as the hardcopy
dev i ce and PF4 as the act i vat i ng key.
If the h~rdcopy terminal name alone
is specified, as for example in
HDCOPY=$SYSPRTR, then the default is
PF6. Note: The terminal specified
(Terminal name) must not be defined
with ATTN=NO.

NO, if the attention key and the 4978/4979 PF keys
are t 0 bed i s a b I e df 0 r the t e r min a I. S u c h dis a b 1 i n g
is then permanent for the generated system. If you
do not spec i fy ATTN=, the defau 1 tis t he ATTN key.

LOCAL, to Ii mi t the attent i on fUl1ct ions to those
defined by ATTNLISTs within programs loaded from
the termi nal.

NOSYS, to exclude only the system functions ($L,
$C, etc.).

NOGLOB,· to exclude only the global ATTNLIST func­
tions. (GLOBAL is the ATTNLIST of all programs in
the same partition at one time.)

Note: This operand can also be entered with a two­
digit hexadecimal character for the attention key
if the system default is not desired.

The attention key can be redefined with a two-digit
hex a· dec i m a I c h a r act e r for the 4 9 78/4 9 7 9 dis p I a y s 0 r
ASCII terminals.

For terminals attached via the 1610 or 2091 con­
trollers and the 2092 adapter, use mirror image.
(Refer to "Mi rror Image" on page 109 for a
discussion of mirror image.)

For the 3101 display terminal, enter X'D9' if the
terminal is attached via the 1610 or 2091 control­
lers and X' 9B' if it is attached v i a the 2095 con­
troller. You may have the Mark Parity Switch set on
(refer to the IBM 3101 Display Terminal Description

102 SC34-0312

o

01·

o

o

o

PFl=

SYNC=

SCREEN=

o

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

TERMINAL

GAI8-2034, for information on switch settings).

The default for ATTN for ASCII terminals is ASCII
X'IB', the ESC key. The mirror image of X'lB' is
X'08'. Note: If the terminal being defined is spec­
ified in the HDCOPY= parameter of an other termi­
na I, do not code ATTN=NO.

Note: If the terminal being defined is a teletype­
writer device to be used as $SYSPRTR, do not code
ATTN=NO.

For the 4978 display, code the two-digit
hexadecimal character which is to be interpreted Cl?
Program Funct i on key 1. Success i ve values are then
interpreted as PF2 and PF3.

The default for this operand is 2.

This keyword applies to virtual terminal
commun i cat ions. Code SYNC=YES if synchron i zat 1 on
events will be posted to this virtual terminal.

This means that attempted actions over the virtual
c han n e I w i I I be i n d i cat e d j nth eta s k con t r 0 I wo rd.
This allows the two terminals to synchronize their
actions so that when one terminal is writing, the
other is read i ng.

SYNC=NO is the default.

One of the following to indicate whether the
terminal is a hardcopy or screen device:

YES or ROLL for screens L.Jhich are to be operated
like a typewriter.

For screen devices which are attached through the
teletypewr iter adapter, th is; nd i cates that a pause
wi 11 be performed when a screen-full condition
occurs dur i ng cont i nuous output.

NO for hardcopy devices. For 4978 or 4979 devices,
NO results in inhibiting the pause when the screen
fi lIs up (the screen acts as a roll screen).

STATIC for a full-screen mode of operation, if this
mode is supported for the device~

Chapter 6. System Configuration 103

Note: The initial terminal configuration should be
STATIC only if the terminal is reserved for data
display and data entry operatio~s. Normal system
operat ions, such as those directed to $SYSLOG or
tho se i n v 0' I v i n g the uti 1 i t y pro g ram s, ass u me a roll
screen configuration. The application program can
define the static screen configuration by means of
the ENQT and IOCB instructions described in the
Language Reference.

103. 1 SC34-0312

o

o

o

o
Chapter 6. System Configuration 103.2

TERMINAL

PART=

END=

TYPE=

A number (1-8) to indicate the partition with which
the terminal is normally associated.

Th.is is valid only if the STORAGE= operand of the
SYSTEM statement was specified to be greater than
64. You can change the part i t i on ass i gnment at exe­
cut i on time wi th the $CP Command descr i bed in
Utilities, Operator Commands, Program Preparation,
Messages and Codes.

YES, for the last TERMINAL statement ina system
definition module.

Spec i fy DSECT to generate a CCB DSECT in your
program. for programs processed by $S1ASM. Do not
specify DSECT in programs processed by $EDXASM; use
COPY CCBEQU elsewhere in your program.

The following three operands are for terminals connected via
digital I/O only:

Operands Description

DI=(address,termaddr)

address

termaddr

DO=(address,termaddr)

The dig i tal input group address.

The hardware subaddress (0-7) of
terminal defining the value used
select the terminal for digital input.

the
to

address The dig i ta I output group address

termaddr The hardware subaddress (0-7) to define
the dig i tal output subaddress of the ter­
minal

PI=(address,bit)

address

bit

104 SC34-0312

The process interrupt group address.

The bit (0-15) to define the particular
interrupting point assigned to the ter­
minal.

o

o

o

'0')
"

o

TERMINAL

4013 4 (DI/DO Parallel Interface) TERMINAL statement

TERMINAL DEVICE=4013,DI=(80,01),DO=(87,01), C
PI=(84,04),PAGSIZE=35,lINSIZE=72, C
CODTVPE=ASCII,TOPM=O,BOTM=34,lEFTM=0, C
RIGHTM=71,SCREEN=NO,OVFlINE=NO, C
lINEDEL=7F,CHARDEl=08,CRDElAV=0,ECHO=YES, C
CR=OD,LF=OA

Remote Management Utility using the
PASSTHRU function - TERMINAL Statements

CDRVTA TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,
SYNC=VES,lINSIZE=132

CDRVTB TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA,
SYNC=NO,lINSIZE=132

Note: This example shows a line size of 132. Th~

maximum line size value is 254.
The names CDRVTA and CDRVTB are required.

. C

C

The following statements are coded with values that are not
defaults for parameters PAGSIZE, ATTN, CR, CHARDEl, LINEDEl,
ADAPTER, BOTM, SCREEN, BITRATE, RANGE, and MODE. Use these val­
ues if the IBM 3101 Display Terminal is attached to your sys­
tem. For DEVICE=ACCA, you must set the mark parity switch on
(refer to the IBM 3101 Display Terminal Description,
GA18-2033, for information on switch settings).

4 Reg i stered trademark of the Tektron i x Corporat i on.

Chapter 6. System Configuration 107

'age of SC34-0312-2
~s updated January 22, 1981
~y TNL SN34-0685

TERMlt~AL

IBM 3101 TERMINAL Statement (via 7850 adapter)

TERMINAL DEVICE=TTV,ADDRESS=00,CRDELAV=4, C
PAGSIZE=24,SCREEN=VES

IBM 3101 TERMINAL Statement (via 2095 controller)

TERMINAL DEVICE=ACCA,ADDRESS=60,BITRATE=110, C
PAGSIZE=24,lINSIZE=80, C
CODTVPE=ASCII,TOPM=0,BOTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=VES,OVFLINE=NO, C
lINEDEL=FF,CHARDEl=88,CRDELAV=0,ECHO=NO, C
RANGE=LOW,LMODE=PTTOPT, C
CR=8D,LF=OA,ATTN=9B,ADAPTER=FOUR

IBM 3101 TERMINAL Statement
(via 1610 o~ 2091 controller>

TERMINAL DEVICE=ACCA,ADDRESS=6B,BITRATE=110, C
PAGSIZE=24,lINSIZE=80, C
CODTVPE=EBASC,TOPM=O,BQTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=VES,OVFLINE=NO, C
LINEDEL=FF,CHARDEl=ll,CRDELAV=O,ECHO=NO, C
RANGE=LOW,LMODE=SWITCHED, C
CR=Bl,LF=50,ATTN=D9,ADAPTER=EIGHT

108 SC34-03i2

o

c

o

o

o

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL Statement
(via 1610 or 2091 controller)

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

TERr~INAL

TERMINAL DEVICE=ACCA,ADDRESS=08,BITRATE=2400, C
PAGSIZE=24,LINSIZE=80, C
CODTVPE=EBASC,TOPM=0,BOTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=YES,QVFLINE=NO, C
LINEDEl=FF,CHARDEl=11,CRDELAY=0,ECHO=NO, C
RANGE=HIGH,LMODE=PTTOPT, C
CR=Bl,LF=50,ATTN=A8,ADAPTER=SINGLE

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL Statement
(via 2095 controller)

TERMINAL DEVICE=ACCA,ADDRESS=61,BITRATE=2400, C
C
C
C

PAGSIZE=24,lINSIZE=80,
CODTVPE=ASCII,TOPM=0,BOTM=23,LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFlINE=NO,
lINEDEl=FF,CHARDEl=88,CRDElAY=0,ECHO=NO,
RANGE=HIGH,LMODE=PTTOPT,
CR=8D,LF=OA,ATTN=15,ADAPTER=FOUR

c
C

Mirror Image

Mirror image ;s used by ASCII terminals attached via the 1610
or 2091 controllers and the 2092 adapter. Mi rror ; mage reverses
the bit pattern for data. For example, the EBCDIC character 1
would look as follows:

X'Fl' EBCDIC

X'31' ASCII

X'SF" Mi rror Image EBCDIC

Chapter 6. System Configuration 109

TERr-1INAL

X'8C' Mirror Image ASCII

W hen u sin g X l AT E = NO 0 n Eve n t D r i v e n 1 a n g u age ins t r u c t ions
PRINTEXT and READTEXT, the data sent must be in mirror image.
Data received is in mirror image.

ASCII Terminal Codes

Terminals and other devices equivalent to the Teletype ASR
33/35 are referred to in this document as "ASCII terminals."
These t e r min a 1 sm a y be attached to the S e r i e s / 1 in a variety of
ways. Note that while the bit representation of a character
appearing at the terminal is the same for all the attachments,
two different representations for a given character are used
internally.

One representation is ASCII, in which the characters appear in
main storage in ASCII code. This code is used by fe'atures
#7850, #2095, and #2096.

The 0 the r rep res e n tat ion i s the E i g:'h t Bit 0 a t a I n t e r c han g e
Code. It is used by the 1610 and 2091 controllers and the 2092
adapter. Th is representat i on is the m i r ror image with ina byte
of the ASCII representation. The bits appear swapped
end-for-end ·wi th i n each byte.

Note 'also that ASCII terminals may use even, odd, or no parity.
The parity bit appears as the high order bit in ASCII code and
as the low order bit in Eight Bit Data Interchange Code. You
must incorporate the proper par i ty, if any, wi th i n the data
characters. You must also incorporate the proper parity, if
any, within the control characters specified by the lINEDEL,
CHARDEl, COD, CR, and lR parameters of the TERMINAL statement.

Symbolic Reference to Terminals

The optional label on the TERMINAL statement is used to assign
a name to th~ device for purposes of reference by the ~pplica­
tion program. Three such names have special meaning to the
supervisor and should be assigned to the appropriate device:

$SYSLOG Names the system logg i ng dey ice or operator stat ion,
and must be def i ned in every system. In the starter
supervisor,. $SYSlOG defines a 4978 display station.

110 SC34-0312

o

c

o

o

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

CHAPTER 7. SYSTEM GENERATION

To generate an Event Driven Executive system, you must have
access to a Series/l capable of preparing the supervisor pro­
gram and appl i cat i on programs. System generat ion requ i res that
the following licensed programs be installed:

• Basic Supervisor and Emulator

• Event Driven Executive Utilities

• Event Driven Executive Program Preparation Facility
(requi res 26K bytes of storage)

or

Series/I Macro Assembler and Macro Library
(requires 16K bytes of storage. This will allow system
gene rat ion ina Ser i es/l program preparat ion conf i gurat ion
~.Jhich includes a 4955 processor with a minimum of 48K bytes
of storage.)

The Program Preparation Faci lity enables you to prepare
programs to be executed on any Series/l that has the required
hardware configuration and licenses.

GENERATING THE SUPERVISOR

Creating a supervisor program tailored to your 5eries/l hard­
ware configuration requires the use of several of the uti lities
and program preparation programs; these include:

• Dlsk data set management ($DISKUTl)

• Text editor ($EDITIN)

or

Full-screen editor ("$FSEDIT)

• Batch job stream processor ($JOBUTIL)

• Event Dr i ven Language compi ler ($EDXASM)

or

Series/l Macro Assembler ($lASM) and Macro Library

Chapter 7. System Generation 115

• Linkage editor ($LINK)

• Object module conversion ($UPDATE)

You should become familiar with these utilities, especially
the text editors, before attempting to generate the supervi­
sor. These utilities are described in Utilities, Operator
Commands, Program Preparation, Messages and Codes.

The fo llow i ng maj or steps are requ ired:

1 1 5. 1 S C 3 4- 03 1 2

o

o

o

o

o
Chapter 7. System Generation 115.2

• Step A. Allocate requ i red data sets.

• Step B. Ed it $EDXDEF, the system conf i gurat i on file, to
match your hardware conf i gurat ion ••

• Step C. Edit $LNKCNTL, the system-supplied INCLUDE file,
to specify which supervisor program object modules are to
be included in your supervisor.

• Step D. Edit' $SUPPREP, the system-supplied job stream
processor file, to use your a llocated data sets.

• Step E. Use $JOBUTI L and the procedure file created in
Step D to:

Assemble the supervisor definition module created in
Step B

Link edit the resulting object module with the other
necessary supervisor object modules using the link
edit control data set created in Step C.

Using $UPDATE, convert the output of the link edit
process into an executable supervisor, and store it in
a data set named $EDXNUCT.

• Step F. Test the created supervisor on a disk based sys­
tem.

• Step G. Ver i fy the system generat i on process (opt i ona l) •

step A - Allocate Requ;red Data s~ts

1. IPL the system from di sk volume EDX002.

2 ., Load utility program $DISKUT1 and use the AL command
allocate the following data sets on volume EDX002.
d a t a sets must b e spec i fie d as TV P E = D A T A .

Data Set Name

EDITWORK
ASMOBJ
ASM~JORK

SUPVLINK
LEWORK1
LEWORK2

Number of Records

200
250
250
450
400
150

116 SC34-0312

to
All

o

o

o

o

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Note: The actual size of the data set depends on the size of
the supervisor being generated.

If you plan to use the utility $EDITIN to edit $EDXDEF and
$LNKCTRL, you must allocate data sets $EDXDEFS (35
records) and $LNKCTRL (50 records) on EDX002.

Chapter 7. System Generation 116. 1

o

o

o
116.2 5C34-0312

o

o

o

step B - Edit SEOXOEF to Match Hardware Configuration

Ed it $EDXDEF to match your hardware conf 1 gurat 1 on:

1 • Load utility program $EDITIN or $FSEDIT and
EDITWORK as the reply to WORKFILE=.

specify

2. Read the supplied data set $EDXDEF from volume ASMLIB.
F 1 gure lIon page 133 shows a samp Ie conf i gurat ion 0 f
$EDXDEF. The supplied configuration can be seen in the Pro­
gram Di rectory.

The fi rst time you use EDITWORK as a work fi Ie for the text
editor, you will be asked if you can use the EDITWORK data
set as a work data set; respond YES and cont i nue.

3. Add to or delete from the contents of EDIT~JORK as necessar'y
to create a set of system configuration statements. (Sys­
tem configuration statements are described in "Chapter 6.
System Configuration" on page 75.) Some printer on the
Series/l should be designated as $SYSPRTR. When editing
ensure that:

• Cont i nuat ion i nd i cators in co I umn 72 are not removed.

• If requlred, a continuation character is placed in
column 72 and the statement is continued in column 16
of the next line

o A field does not extend beyond column 71

The editing process consists of the following procedure:

a. Calculate the total amount of storage available, the
number of partitions desired, and the number of 2K
blocks of storage desired for each partition. This
information is inserted into the SYSTEM statement to
define the characteristics of the processor. Refer to
"Chapter 6. System Configuration" on page 75 for a
descr i pt i on of the SYSTEM statement.

b. Def i ne the hardware features to be supported, us i ng
the appropriate system configuration statements (TIM­
ER, SENSORIO, HOSTCOMM, BSCLINE, EXIODEV, DISK, TERMI­
NAL, TAPE).

c • Define the direct access storage devices and logical
vo I umes to be supported in the generated system, us i ng
the DISK system configuration statement. Sample DISK
configuration statements are supplied for each device
in the $EDXDEF data set on ASMLIB. Refer to "Chapter 3.
Data Management" on page 45 for storage capacities of
the supported direct access storage devices. With
this information, you can define your disk volumes.

Chapter 7. System Generation 117

age of SC34-0312-2
,8 updated January 22, 1981
y TNL SN34-0685

The only restrictions are (1) that you define the
required Event Driven Executive volumes (EDX002,
EDX003, ASMLIB) in addition to your volumes and (2)
that you follow the rules pertaining to library
origins and maximum volume sizes.

,Note: Optional software products may require addi­
tional volurnes. Volume requirements are supplied with
the product documentation.

d. Define the characteristics of all printers, displays,
and te letypewr i ters, us i ng the TERMINAL statement.
Examples of various types of TERMINAL statements are
included in the $EDXDEF data set.

Note: Check the speed of your 3101 in the terminal statement.
The speed must match the 3101 switch settings.

4. Save the final version of the definition statements in the
data set $EDXDEFS on volume EDX002.

step C - Specify Object Modules

Edit $LNKCNTL to specify which supervisor program object mod­
ules are to be included.

1. Read data set $lNKCNTL from volume ASMLIB. The supplied
contents of $LNKCNTL are shown in the following tables;
footnotes are provided on required usage. The $LNKCNTL
data set supplied with Version 1 does not include TAPE sup­
port.

118 SC34-0312

o

o

o

o

**
* SYSTEM SUPPORT -- INITIALIZATION
**

INCLUDE EDXI~IT,XS2002 *H*
INCLUDE DISKINIT,XS2002 *M*

~UPER~ISOR INITIALIZATION
DISKCETTE) INITIALIZATION
TAPE INITIALIZATION *INCLUDE TAPEINIT,XS2002 *M*

INCLUDE LOADINIT,XS2002 *C*
INCLUDE RW4963ID,XS2002 *M*
INCLUDE TERMINIT,XS2002 *1*
INCLUDE INIT4978,XS2002 *M*

PROGRAM LOADER INITIALIZATION
4963 FIXED HEAD REFRESH SUPPOR~

TERMINAL INITIALIZATION
4978 DISPLAY INITIALIZATION
DIGITAL I/O TERMINAL INIT *INCLUDE INIT4013,XS2002 *M*

*INCLUDE $ACCARAM,XS2002 *3*
*INCLUDE BSCINIT,XS2002 *7*
*INCLUDE $BSCARAM,XS2002 *7*
*INCLUDE TPINIT,XS2002 *8*
*INCLUDE TIMRINIT,XS2002 *6*
*INCLUDE CLOKINIT,XS2002 *6*
*INCLUDE SBIOINIT,XS2002 *M*
*INCLUDE EXIOINIT,XS2002 *M*

ACCA MULTI-LINE ADAPTER RAM LOAD
BISYNC (BSCAM) INITIALIZATION
BISYNC MULT-LINE ADAPTER RAM LOAD
HCF (TPCOM) INITIALIZATION
4953/4955 TIMER INITIALIZATION
4952 TIMER INITIALIZATION
SENSOR I/O INITIALIZATION
EXIO INITIALIZATION

NOTES

0
1
*
2
3
4
5

*

Must be included first and in this order
Required if any terminals are insta.l~ed, including 4973
or 4974
R e qui red Lf lOS TTY, lOS 2 74 1, 0 rIO SAC C A i sin c 1 u d e d
Required if non-2741 terminals are on ACCA
Required if IOSTTY is included
Either TREBCD or TRCRSP or both are required if 1052741
is included, depending on the code used by the 2741

* terminals - correspondence or ASCII
6 Attached TIMERS (feature 7840) and the 4952 native TIMER

*
*
*
7

*
8
*
9

* *A*
B
* *C*
*
*
D
E

*
F

* *G*

are mutually exclusive. Select the TIMER support
required for your configuration or none if no TIMER
support is required.
Required for binary synchronous communication using
BSCREAD/BSCWRITE or Remote Management Utility support.
Required for communication to a S/370 with the EDX Host
Communication Facility
Required if any Sensor I/O support is to be used
(AI,AO,DI,DO, or PI)
One, but not both, of these modules is required
Required if the in storage program check/machine check
log is to be kept
Required if programs are to be loaded from diskCette).
If not included, an application program must be link
edited with the supervisor.
One, but not both, of these modules is required
Required for data formatting operations (GETEDIT,
PUTEDIT, FORMAT)
Required for queueing operations (FIRSTQ, NEXTQ, LASTQ,
DEFINEQ)
R e qui ,r e d for pro g ram deb u g gin g C $ DEB U G)

Chapter 7. System Generation 123

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

H Required and must follow all of the previously 'listed
* modules.

*
J
K

*
*
*
*
*
L

*
*
*
*
* *M*
* *N*
*

All other initialization modules must follow EDXINIT.
For starter supervisor use only
There are two versions of this module. This one is
for systems that support the address translator
feature of the 4952 and 4955 processors. Include this
version if your system is to support both the fUnction
the moduie implements and the address translatbr
feature. (XL)
There are two versions of this module. This one is
for systems that do not support the address translator
feature of the 4952 and 4955 processors. Include this
version if your system is to support the function
the module implements, but not the address translator
feature. (UN-XL)
Optional module; required if device or feature is to be
supported.
Required if using Remote Management Utility with PASSTHRU
function.

END

Note: You should include DDBFIX and CCBFIX
system intialization modules if you wixh to
starter system.

with the other
regenerate the

2. Enter an asterisk (*) in column one (1) of each INCLUDE
statement not requ i red to create your superv i sor. The
ast~risk makes the statement a comment and the module with
the asterisk is not included in your supervisor. Be sure
that the system def i nit i on statements created inStep B
agree with the modules you include in this step.

The modules with note L can be used if your generated sys­
tem is to execute either on a Series/l without the address
translator feature or on a 64KB 4952 processor. These
modules do not support the address translator. The SYSTEM
configuration statement must specify STORAGE as 64 or less
and PARTS may not be spec if i ed.

3. Save the edit~d version of eLNKCNTL in a dat~ set namad
LINKCNTL on EDX002.

step 0 - Assemble and Link Edit the Supervisor

The eSUPPREP procedure below specifies the use of the eEDXASM
compi ler. If the eS1ASM assembler is requi red, the appropriate
procedure statement changes must be made.

Ed i t eSUPPREP to use your allocated data sets.

1 • Read the data set eSUPPREP from volume ASMLIB. Figure 10 on
page 125 shows eSUPPREP.

124 SC34-0312

o

,

o

o

o

o

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

3. Test the supervisor by ex~cuting utility programs that
exercise the various supervisor components (such as disk
I/O, sensor I/O, etc.)

Notes:

• If the new supervisor fai Is .to operate corr.ectly, YOlJ must
restore the original contents of $EDXNUC by IPLing from a
diskette. Use $COPY or $COPYUTl to copy the starter super­
visor from diskette UT300l orUT4001 to $EDXNUC on EDX002.

• If any errors are encountered, repeat steps B through E of
this procedure.

• If you relocated any volumes in a tailored system gener­
ation (particularly EDX002), copy the new supervisor into
the $EDXNUC data set on a copy of the utility diskette
(UT3001 orUT400l) and perform a complete system installa~
tion.

• The actual addresses of CSECT and ENTRY point labels in the
$EDXNUCT or $EDXNUC modules stored on disk will be X'lOO'
greater than those shown on the link ed i t map. Th is is
because $UPDATE adds a 256 byte header to all $EDXNUCx mod­
ules.

• If you have a 4966 Diskette Magazine Unit, the door must be
closed during IPL.

step G - Verify the System Generation Process

To verify that the system generation has been performed suc­
cessfully:

1. Assemble and execute the sample program CALCSRC.

Note: CALCDEMO source instructions are located in the data
set CALCSRC on the disk volume EDX002. To assemble
CALCDEMO, refer to the procedure for program preparation
descr i bed in Ut iii ties, Operator Commands, Program
Preparation, Messages and Codes.

2. When the assembly is complete, load the test program into
storage for execution by using the $L operator command.

3. When you receive the prompts A= and B=, enter any decimal
integer values less than 2 bi Ilion, followed by a carri'age
return or ENTER after each entry.

A sample of the entries and resulting output follows:

Chap'l:er 7. System Generation 127

Page at :SC.:S4-U.Hl-l
As updated January 22, 1981
By TNL SN34-0685

> $L CALCDEMO

CALCDEMo 3P,10:59:55~ LP= 7FOO
Press ATTENTION and enter CALC or 5TO~
> CALC

A = 12
B = 52

A + B
A - B
A * B
A / B
Press
> CALC

=
=
=
=
ATTENTION

OTHER CONSIDERATIONS

64
-40
624

0 REMAINDER
and enter CALC

Control and Image stores for the 4978

=
or STOP

12

The system includes modules $4978150, $4978C50, $4978C51, and
$4978151. These four modules are the 4978 stores for the
002056 keyboard •.

If $4978150 and $4978C50 are present in the IPL volume, the
image store is loaded form $4978150 and the control store is
loaded from $4978C50 for all of the 4978 displays defined in
the supervisor.

If a 4978 alr~ady has the sto~es loaded from a ptevious IPL
sequence, the stores will not be r~loaded. Th~ combination of
$4978150 and $4978CSO provides an uppercase alphabet. The com­
bination of $4978151 and $4978C51 provides both upper and lower
case alphabets.

If you have a keyboard other than a D02056 (RPQ) as the $SYSLOG
d e vic e , the f a I I ow i n g p r oc e d u rei s nee e s s a r y for ins tal 1 i n g

EDX:

1. Using the stand-alone 4978 diskette, load the stores on the
4978 display (which corresponds to $SY5LOG).

2. IPL the starter supervisor. If the stores have already
been loaded in.the 4978 during a previous IPL sequence, the
D02056 stores wi 11 not be reloaded.

3. Run the $TERMUT2 utility. Read the image and control
stores into data sets $4978150 and $4978C50 respectively.
These data sets are on the IPL volume.

4. The starter system is now ready to be used with your key­
board.

128 SC34-0312

o

..

o

o

o

o

Page of SC34~312-2
As updated January 22, 1981
By TNL SN34~685

Term; nal In; t; ~l i zat i on for the starter System

If your system includes a 4979 Display Station at device
address 4, the starter system defines the program function keys
as follows

KEY LABEL FUNCTION

PFI PFI
PF2 PF3
PF3 PF.5
PF4 PF2
PF5 PF4
PF6 PF6

System Generation without the Program Preparation Facility

For Series/l systems that do not include the Program Prepara­
tion Facility, installation requires the following general
steps:

1 •

2 •

Assemble and link edit the supervisor, for the target
Series/Ion a system that supports program preparation.

Assemble application programs for the target Series/Ion a
system that supports program preparation.

3. Use utility program SINITDSK to initialize one or more
diskettes with IPL text, space for the supervisor program,
and ali brary to conta in your appl i cat i on programs.

4. Transfer your supervisor to SEDXNUC on disketteCs) with
either SCOPY or SCOPYUTI.

5. Copy SLOADER, any of the utilities, and the application
programs that will be required on the target Series/1, onto
the diskette C s) with SCOPYUT 1.

6 • Install the disketteCs) on
execution.

the target machine

Chapter 7. System Generation

for

128. 1

o

o
128.2 SC34-0312

o

o

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

SYSTEM STORAGE=256,
MAXPROG=(3,1,5,2,2,1,1,4),
PARTS=(15,4,21,13,17,11,8,23)

DISK DEVICE=4963-64,ADDRESS=48,
VOLSER=EDX002,VOLORG=O,VOLSIZE=46,
LIBORG=129

DISK DEVICE=4963-64,VOLSER=EDX003,
BASEVDL=EDX002,VDLORG=46,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=ASMLIB,
BASEVOL=EDX002,VOLORG=92,
VOLSIZE=45,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX004,
BASEVOL=EDX002,VOLORG=138,
VOLSIZE=46,LIBORG=(

DISK DEVICE=4963-64,VOLSER=EDX005,
BASEVOL=EDX002,VOLORG=184,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX006,
BASEVDL=EDX002,VDLORG=23D,
VDLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VDLSER=EDX007,
BASEVOL=EDXD02,VDLORG=276,
VDLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX008,
BASEVOL=EDXD02,VDLORG=322,
VOLSIZE=36,LIBDRG=1

DISK DEVICE=4964,ADDRESS=02,VERIFY=ND
DISK DEVICE=4966,ADDRESS=22,VERIFY=ND,END=YES

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=D4,
HDCOPY=$SYSPRTR

$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4
PAGSIZE=24,BDTM=23,SCREEN=YES

$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=Ol,END=YES
ENTRY $EDXPTCH

$EDXPTCH DATA 128F'O' SYSTEM PATCH AREA
STOREMAP
END

Fig u r e 1 7. E)(a. m pIe 0 f $ E D X D E F : Con fig u rat ion for 4 9 6 3 - 6 4
(64MB disk) with a mapping of all (358) available
cylinders

C
C

C
C

C
C

C
C

C
C

C
C.

C
C

c
C

C
C

C

c

Chapter 7. System Generation 139

SYSTEM STORAGE=96,MAXPROG=(3,4),
PARTS=(16,18),COMMON=START

DISK DEVICE=4963-58,ADDRESS=48,
VOLSER=EDXQ02,VOLORG=O,VOLSIZ.E=46,
LIBORG=129,FHVOL=FHVOL

DISK DEVICE=4963-58,VOLSER=EDX003,
BASEVOL=EDX002,VOLORG=46,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-58,VOLSER=ASMLIB,
BASEVOL=EDXQ02,VOLORG=92,
VOLSIZE=46,LIBORG=1

DISK D~VICE=4964,ADDRESS=02
DISK· DEVICE=4966,ADDRESS=22,END=YES

eSYSLOG TERMINAL DEVICE=4979,ADDRESS=04,
HDCOPY=$SYSPRTR

eSYSLOGA TERMINAL DEVICE=TTy,ADDRESS=O~,CRDELAY=4,

PAGSIZE=24,BOTM=23,SCREEN=YES
eSYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES

ENTRY eEDXPTCH
eEDXPTCH DATA 128F'O~ SYSTEM PATCH AREA

END

c

c
C

C
C

c
c

c

c

Figure 18. Example of $EDXDEF: Configuration for 4963-58
(58MB fixed-head disk)

140 SC34-0312

o

o

o

o

o

CHAPTER 8.

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

OVERVIEW OF THE INDEXED ACCESS METHOD

The Indexed Access Method licensed program is a data management
fac iIi ty that operates under the Event Dr i ven Execut i ve. It
allows you to build, maintain, and access indexed data sets.
In an indexed data set, each of your records is identified by
the contents of a predefined field called a k?~. The Indexed
Access Method builds into the data set an index of keys that
prov i des access to your records.

The Indexed Access Method offers the following features:

• Direct and sequential processing. Multiple levels of
indexing are used for direct access, and sequence chaining
of data blocks is used for sequent i a 1 access.

• Support for high insert and delete activity without sig­
nificant performance degradation. Free space can be dis­
tributed throughout the data set and in a free pool at the
end of the data set so that new records can be inserted.
The space occupied, by a deleted record is immediately
avai lable for new records.

•

•

•

•

•

Concurrent access to a single data set by several requests.
These requests can be from one or more programs. Data
integrity is maintained by a file, block, and record level
locking system that prevents other programs from accessing
the portion of the file being modified.

Implementation as a separate task. A single copy of the
Indexed Access Method executes and coordinates all
requests. A buffer pool supports all requests and opti­
mizes the space required for physical I/O; the only buffer
requ ired in an app 1 i cat i on program is the one for the
record be i ng processed.

A utility program ($IAMUT1) which allows you to create,
format, load, unload, and reorganize an indexed data set.

A utility program ($VERIFY) which verifies the integrity
of an i nde xed data set and reports on space ut i 1 i zat ion.

F i Ie compat i b iIi ty. Data files created by the Event Dr i ven
Executive Indexed Access Method are compatible with those
created by the IBM Series/1 Realtime Programming System
Indexed Access Method licensed program, 5719-AMl, provided
that the block size is a multiple of 256.

Data Protect i on. All input/output operat ions are performed
by system functions. Therefore, all data protection
facilities offered by the system also apply to indexed
files. The following additional data protection is pro­
vided:

Chapter 8. Overview of the Indexed Access Method 145

The exclusive option - specifies that the file is for
the exclusive use of a requester.

Record locking - automatically prevents two requests
from accessi rig the same data record at the same t i rile.

Immed i ate wr i te back - causes a 11 updated records to be
wr;tten back to the file ;minediately.

Accidental key modification is prevented - this helps
ensure that your index matches the correspondihg data.

DEVICES SUPPORTEb

The Indexed Access M~thod supports indexed data sets orl the
following direct access devices:

• 4962 Di sk storage Uni t

• 4963 Disk Subsystem

• 4964 Diskette Un it

• 4966 Diskette Magaz; ne Un; t

FUNCTIONS

Functions available include those that can be called fro~ an
application program and a uti lity to define and maintain an
indexed data set.

Iio Requests

I/O requests allow you to bui ld an indexed data set and to per­
form direct or sequential processing on that data set. Rou­
tines us i ng these funct ions are wr i tten in Event Dr i ven
language and can be included in programs written in any lan­
guage that supports the calling of Event Driven Executive
language routines.

You request the services of the Indexed Access Method through
the Event Driven language CA.ll instruction in the following
general form:

CALL IAM,(func),iacb,(parm3),(patm4),(p~rm5)

146 SC34-0312

o

o

o

."

o

o

For ·information on coding the parameters and functions, refer
to the Language Reference.

The f 0 I low i n g r e que s t s can be ·i n v 0 ked :

Operands

PROCESS

LOAD

GET

GETSEQ

PUT

PUTUP

PUTDE

RELEASE

DELETE

ENDSEQ

Description

Builds an Indexed Access Control Block (IACB) and
connects it to an indexed data set. You can then use
the I A C B t 0 j s sue r e que s t s tot hat d a t a s· e t tor e ad,
update, insert, and delete records. A program can
issue multiple PROCESS functions to obtain multiple
IACBs for the same data set, enabling the data set
to be accessed by several requests concurrently
within the same program.

Similar to PROCESS but used to load or extend the
initial collection of records.

Directly retrieves a single record from the data
set. If you specify the update mode, the record is
locked (made unavailable to other requests) and
h~ld for possible modification·dr deletion. Use
GET to retrieve a single record from the data set.

Sequentially retrieves a single record from the
data set. I f you spec i fy the update mode, the record
is locked (made unavailable to other requests) and
held for possible modification or deletion. Use
GETSEQ when you are performing sequential oper­
at i·ons.

Loads or inserts a new record depending on whether
the data set was opened with the LUAD or PROCESS
request. Use PUT when you are adding records to a
data set.

Replaces a record that is being held for· update.
Use PUTUP to mod i fy a record.

De letes a record that is be i ng he ld for update. Use
PUT D E to del e te are cor d .

Releases a. record that is being held for update.
Use RE LEASE when a record that was retr i eved for
update is not changed.

Deletes a single record, identified by its key,
f r om _ t he d a t a set • Use DE LET E to de let ear e cor d ;
un like PUTDE, the record cannot have been retr i eved
for update.

Terminates sequential processing.

Chapter 8. Overview of the Indexed Access Method 147

)age of SC34..Q312-2
\s updated January 22,1981
3y TNL SN34-0685

EXTRACT Provides information about the file (from the File
Control Block).

DISCONN Disconnects an IACB from an indexed data
thereby releasing any locks held by that
writes out all buffers associated with the
set; and releases the storage used by the IACB.

The $IAMUTl utility

set,
IACB;
data

The $ IAMUT 1 ut iii ty can be used to allocate, format, load,
unload, or reorgani ze an indexed data set. Indexed Access
Method requests can be used only on data sets defined either by
this utility or by the Realtime Programming System Indexed
Access Method. ($ IAMUT1 is descr i bed in the Uti 1 i ties, Opera­
tor Commands. Program Preparat i on t Messages and Codes manual.)

The $VERIFY ut; 1; ty

The $VERIFY utility verifies the integrity of an indexed data
set, and produces a report showing how the data set is defined
and how the space is ut iii zed. $VERIFV is descr i bed in the
Uti 1 it; es, Operator Commands, Program Preparat ion, Messages
and Codes manual.

OPERATION OF THE INDEXED ACCESS METHOD

The Indexed Access Method performs I/O operations by using
standard data management requests.

A single copy of the Indexed Access Method load module $IAM
serves the entire system. It can be loaded automaticallY at IPl
time through the automatic initialization capability (refer to
"Automatic Application Initialization and Restart" on page
129), or it can be loaded manua 11 y by us i ng the $ L operator com­
mand. However, since the link module loads $IAM automatically,
$IAM does not need to be loaded before it is used by any pro­
gram. Once loaded, the Indexed Access Method remains in storage
unt i I cancelled wi th the $C operator command.

$IAM can be loaded into any partition, including partition one.
It can be invoked (through the 1 i nk modu Ie) from any part it i On,
including the partition it is in. Figure 20 on page 149 shows
an example of a system containing the Indexed Access Method.

148 SC34-0312

o

o

o

o

o

" .

o

INDEXED DATA SETS - OVERVIEW

You can organize a collection of data into an indexed data set
if the data consists of fi xed-length records and if each record
can be uniquely identified by the contents of a single prede­
fined field called the key. In an indexed data set, the records
are arranged in ascending order by key. Reserved space, called
free space, can be distributed throughout the data set so that
records can be inserted.

Chapter 8. Overview of the Indexed Access Method 148. 1

o

o
148.2 SC34-0l12

o

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

The total amount of free space for inserts is specified to the
$IAMUTI utility when the indexed data set is built. This free
spa c e i s dis t r, i but edt h r 0 ugh 0 u t the d a t a set i nth e for m 0 f
free records within each data bl~ck, 'free blocks within each
block grouping, and/or in a free pool at the end of the data
set.

If you do not have any base records to load into your indexed
data set in LOAD mode, you can define a "dynamic" data set which
does not reserve space for records to be loaded. Such a data
set has a dynamic structure which adjusts itself as required
when records are inserted in PROCESS mode.

Data Set Format

Indexed data sets consist of data blocks which contain records,
indexes (pointers) to the data blocks, and indexes to the index
blocks. This technique is called a cascading index structure.
The first two blocks in the indexed data set are the file con­
trol block (FCB), and its extension, which describe the attri­
butes of the data set.

Each data block has the following format:

HEADER

Data Record

Data Record

Data Record

Free space

Each index block has the following format:

HEADER

RBN KEY

RBN KEY

RBN KEY

UNUSED

Chapter 8. Overview of the Indexed Access Method 151

A set of data blocks is addressed (described) by a single index
block. Each key in the index block is the highest key in the
data block that its accompanying relative bl~ck number (RBN)
addresses. A block is addressed by its RBN. The prjm~ry-level
index block (PIXB) and the data blocks it describes are ~alled
a cluster.

Data
blocks

PIXB

HEADER

1

RBN

RBN

RBN

RBN

HEADER

High key
in 1

High key
in 2

High key
1 n 3

High key
i n 4

HEADER HEADER

2 3 4

A Sample Cluster

The records in each data block are in ascending order, accord­
i ng to the key f i eldi n each record •

E a c h d a tab lac k he a d e r con t a ins t he add res s 0 f t he ne x t 5 e qu·e n­
t i al data block, allow; ng sequ,ent i al proc.essi ng.

E a c h P I X B (or c 1 u s t e r) has an en try ina second-Ie vel in de x
block (SIXB) that contains the a~dress of the PIXB ~nd the
highest key in the cluster. The SIXB has the foilowin9 struc­
ture:

152 SC34-0312

o

c

o

o

o

HEADER

RBN High key
in PIXBl

RBN High key
SIXB i n PIXB2

RBN High key
in PIXB3

RBN High key
in PIXB4

PIXBl PIXB2 PIXB3

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34'()685

PIXB4

The SIXBs in the data set are described by an index block in the
same manner as the PIXB describes each cluster. There is, of

lcourse, an index block that describes the entire dataset. The
logical structure of the file is as follows:

Chapter 8. Overview of the Indexed Access Method 153

FCB

SIXB SIXB

I II II
Data Blocks

Highest level
index points
to index blocks

SIXB
Next
level
points
to
clusters

Note that only the highest key in any data block is found in a
P I X B entry, a S I X B . e n try contains only the highest key f 0 un di n
a P I X B , and so on, to the h i 9 h es tin d e x b lock. T his i n d ext e c h -

. nique·is called sparse indexing.

REQUESTING RECORDS

When you request a record from your dataset, t:he acc.es's '"H~thod
uses the index to retrieve the data ,block that c:ontains the
record. The index blocks ~nd data blncks are read~ using EDl
REA Di n s t r u c t ion s , into the central bu f f e·'" • When the requested
record is found, it is moved to the address you specifi~d and
control i sreturned to your prog,ram.

1 54 S C 34-'0 3 1 2

o

o

o

o

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-{)685

To minimize accesses to the disk, the buffer management algo­
rithm tends to keep in the buffer the most frequently refer­
enced blocks (i ndex or data).

PREPARING TO EXECUTE INDEXED APPLICATIONS

The Indexed Access Method consists of the following compo­
nents:

• A load module, SIAM, that supports the execution of the
programs that conta i n your, Indexed Access Method requests.

• A set of object modules that you may use to generate a cus­
tomized load module. If you use the supplied load module,
SIAM, you do not need the object modules.

•

The object module, lAM, is called a .J.ink module. You
include lAM with your program to prov~de the interface to
the Indexed Access Method. This link module is sometimes
called a stUb.

Two copy code modules, IAMEQU and FCBEQU. IAMEQU provides
symbolic parameter values for constructing CALL parameter
lists. FCBEQU provides a map of the file control block
(FeB), and the FCB extension block.

• A load module for each of the Indexed Access Method utili­
ties SIAMUTl and $VERIFY.

Preparing Programs

To prepare an application programs that issues Indexed Access
Method requests, perform the following steps:

1. Enter the source program, using one of the text editors
($FSEDIT, SEDITl, or $EDIT1N).

2. Create the $LINK control statements required to combine
your program with lAM (the link modu Ie) and any other
object modules you may need in your application. These
statements consist of a single OUTPUT statement, at least
two INCLUDE statements - one for your progr~m and one for
lAM (the link module), and a single END statement. Use one
of the text editors to perform this operation.

3. Assemb Ie the source program us i ng:

The EDL comp i ler, $EDXASM, of the Program Preparat i on

Chapter 8. Overview of the Indexed Access Method 155

Facility

or

The Serie~jl ~~~~d ~~s~mble~~ .~i.~~. ~n cdnjuric~ibh with
the Macro Library

or

The 5eries/l macro assembler supplied by the Systeh1/370
Program P~eparatlon F~cility in conjunction with the Macro
Library/Host

4. Use the linkage editor, $lINK; to combihe the object mod­
ules intci a single module, using the control stat~mehts
prepared in step 2.

5. Use the objec~ ~rografu 6drivert~r~ $UPDATE or $UPDATEH, to
convert your module to a loadable program.

When the preceding steps are completed, the program is ready to
be executed.

Est~blishing the ~ata set

Use the followin~ steps to prepare the input fOr ~ri indexed
data set:

1. If your data. ~ecords afe 72 bytes or less uj~ one 0+ the
text editors to ~nter your dat~ or one oj tHe cbmmuni­
cat i 6r,s ut iii ties to get the data to your system. In
either case, you mu~t know the record form~t used by the
utility. The utilities put ~wo BO-byte r~cords in ea~h
256~byte ED~ record. The first record begins at loc~tion
1, and the second record begins at location 129. The
$IAMUTI uti lity assumes unblocked input. $IAMUTI takes
only one logical record, the size of which was specified on
the RECSIZE prompt, from each EDX record., Any record after
the fi rst logical record in each 256-byte EDX record is
ignored. If you use the text editors, you must enter data
on every other 1 i ne start i ng wi th the first 1 i ne.

2. If your reco~ds have more than 72 bytes of data, you must
create a progra~ that accept~ the data records and writes
them to a disk or diskette data set.

The data must be in ascending order~ based upori the field you
use as the key.

156 SC34-0312

o

c

o

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-D685

Only one LOAD request can be issued to a data set at any time.
Other process i ng requests can be made to a data set that is
being loaded, but an attem"pt to retrieve a record from the data
b lock be i ng loaded can resu It ina no-record-found cond i t i on.

It is possible to define a "dynamic" indexed data set into
which data records can never be loaded sequentially. You add
records to such a fi Ie by inserting them in PROCESS mode. How­
ever, if you have initial base records, you should not dynamic
file, since" loading them sequentially in LOAD mode will result
ina more eff i c i ent data set structure.

PROCESSING

Initiate general purpose access to an indexed data set with a"
PROCESS request. After the PROCESS request has been issued, any
of the following functions can be requested:

• Direct reading - Retrieving a single record independently
of any prev i ous request.

•

•

Sequential reading - Retrieving the next logical record
relati ve to the previous request .•

Direct updating - Retrieving a single record for update;
com pIe t e the u p d ate b 'y e i the r rep 1 a c i n gar del e tin g the
record.

• Sequential updating - Retrieving the next logical record
for update; complete the update by either replacing or
deleting the record.

• Inserting - Placing a single record, in its logical key
sequence, 1 nto the indexed data set.

• Deleting - Removing a single record from the indexed data
set.

• Extract i ng - Extract i ng data that descr i bes the data set.

Note that the update funct ions requ ire more than one request.

When a function is complete, another function may be requested,
except that a sequential function may be followed only by
another sequential function. You may terminate processing at
any time by i ssu i ng a DISCONN or ENDSEQ request. An end-of­
data cond it i on a Iso term i nates sequent i a I process i ng. "

Chapter 9. Planning and Designing Indexed Applications 161

D j r e c t Rea d i n'9

Use t he GET request to read a re'co rd us lng d;j:r ect acces:s'. The
key parameter is requj:red and must be th'e' a'd'dress crf a fi'eld' c'f
full key length reg:ardless of the key i:en'g:th' speci fi"'ca',ti'on.

1 6 1. 1 SC 34-031 2 .

o

(-~.
I ' \

"

C"
' •••• 1"

o

o

o
Chapter 9. Planning and Designing Indexed Appl ications 161 .2

The record retrieved is the first record in the data set that
satisfies the search argument defined by the key and key
relation (krel) parameters. The key field is' updated to
reflect the key contained in the record that satisfied the
search.

If the key length is specified as less than the full key length,
only part of the key field is used for compari~on when search­
ing the data set. For example, the keys in a data set are AAA,
AAB, ABA, and ABB, the key field contains ABO, and key relation
is EQ. If key length is zero, the se~rch ~rgument is the full
key ABO (the default) and a record-hot-found code is returned.
I f the key length spec if i cat ion is 2 and the search argument is
AB, the third record is read. If the key length specification
is 1 and the search argument is A, the first record is read.

Direct Updating

To update a record us i ng direct access:

1. Retrieve the record with a GET request, specifying the key
and key relation (krel) parameters.

2. Modify the record .in your buffer. Do not change the key
field in the record. Return the updated record to the data
set with a PUTUP request.

You can delete the record with a PUTDE request or leave it
unchanged by issuing a RELEASE request.

The key parameter must be spec if i ed as the address of a field of
full key length. The key cannot be mod if i ed dur i ng the update.

The only valid requests, other than DISCONN and EXTRACT, that
can follOW GET for direct update are PUTUP, PUTDE, and RELEASE.

During the update, the subject record is locked (made unavail­
able) to any other request until the update is complete. Even
if no act ion is taken after the GET request is issued, the
RELEASE request is required to release the lock on the record.

Sequential Reading

Use the GETSEQ request to read a record sequentially. After a
sequential processing request has been initiated, only sequen­
tial functions can be requested until an end-of-data condition
occurs or an ENDSEQ request is issued. Processing is termi­
nated when a DISCONN request is issued or an error or warn i ng is
returned.

162 SC34-0312

o

o

o

o

o

o

peleting

Page of SC34~312-2
As updated January 22,1981
By TNL SN34~685

Use DELETE to delete a record from the data set. The full key
of the record must be specified. If no record exists with the
specified key, an error is indicated.

Deletion can also be performed as part of updating by following
a GET for update wi th a PUTDE request.

Extracting

The EXTRACT request provides information about a data set from
the file control block (FCB). This includes information such
as key length, key displacement, block size, record size, and
other data regarding the data set structure.

Execution of the EXTRACT request causes the file control block
to be copied to an area that you provide. The EXTRACT request
can also be used to copy the fi Ie control block extensi on to the
are a you pro v ide. The ext ens ion con t a ins a 'c 0 p y 0 f the par a m e -
ters that were used to define the indexed data set. The data set
must have been connected by a LOAD or PROCESS request.

The con ten t s 0 f the F C Ban d its ext e.n s ion are des c rib e d by
FCBEQU, a un it of copy code that is suppl i ed by the access meth­
od. Use COPY FCBEQU to include these equates in your program.

MAINTAINING THE INDEXED DATA SET

The Indexed Access Method does not provide specific programs to
perform indexed data set backup and recovery, nor does it
include services to delete the data set or dump it to the print­
er. These procedures are provided by a c~mbination of Event
Dr i ven Execut i ve and Indexed Access Method serv ices as sug­
gested below. The Indexed Access Method utility $IAMUTI does
provide services to help you reorganize your data set as
descr i bed below.

Backup and Recovery

To protect against the "destruction of data, at regular inter­
vals you should make a copy of the indexed data set (or the log­
ical volume in which the data set exists) using the system
$COPY utility. During the interval between making copies, you
should keep a journal fi Ie of all transactions made against the
indexed data set.

Chapter 9. Planning and Designing Indexed Applications 165

The journal file can be a c9n~eGutive data set ~ontaining
records that descr i t;?,e the type of transact i on and the pert i nent
data. A dam~ged inde¥ed data set can be recovered by updatinQ
the backup COpy from the journal fj Ie.

For example, s4PPOse an indexed data set nawed ~EPPRT is lost
because of phy~ical damage to the disk. The condition that
caused the error has been repa i red and, the data set must be
recovered. Delete R~PORT, cOpy the ba~kup version of REPORT to
the desired volume, and process the journal file to recreate
the data set.

If a data-set-shut-down cpndition exists, IPL ag~in. Then
issue a PROCESS to the R~PORT data s,t and, ~sing the j04rnal
fi Ie, reprocess the transactions that occurred after the i:>ack­
up copy was made.

Recovery Without Backup

If you do npt use the b~ckup procedures outlined above and you
encounter a problem with your data set, you sti 11 may be able to
recreate your file. However, the status of requests that were
in process at the time of the problem is uncertain.

To recreate your data set, follow the steps in "Reorganizatio l1 "
to reorgan i ze your data set. After recreat i ng the data set,
verify the status of the requests that were in process at the
time the problem occ~rred.

Reorganization

An indexed data set must be reorgan i zed when a record cannot be
in,s e r ted b e c a use 0 f I a c k 0 f spa c e. The I a c k - 0 f - spa c e con d i t ion
does not necessarily mean that there is no more space in the
data set; it means th~t there is no space in the area ~here the
record would have been placed. Therefore, you may be able to
reorganize without increasing the size of the data set,. Perform
the following steps to reorgani ze a data set:

1. Ensure that all outstanding requests against the data sst
have been completed; issue a DISCONN for every current
lACB.

2. Use the define command (OF) of the $IAMUT1 utility to
def i ne a new indexed data set. Est i mate the number of base
records and the amount and mix of free space in order to
minimize the need for future reorganizations. Refer to
"The Indexed Data Set" on page 182 for guidelines for mak­
i ng these est i mates.

166 SC34-0312'

o

(. '. C~·

c

o

0 ',
,I

o

3. Use the reorganize command (RO) of the $IAMUTI utility to
load the new indexed data set from the indexed data set to
be reorgan i zed.

Alternatively, you can use the unload command (UN) of the
$IAMUTI utility to transfer the data from an indexed data
set to a sequential data set, then use the load command
(LO) to load it back into the indexed data set.

4. Use system utilities to delete the old data set and rename
the new data set.

Dumping

To print records, use the DP command of the $DISKUT2 utility.
$DISKUT2 produces a hexadecimal dump of the entire data set
including control information, index blocks, and data blocks.
Information on the $DISKUT2 utility can be found in the Utili­
ties, Operator Commands, Program Preparation, Messages and
Codes.

Deleting

Delete an indexed data set the same way you delete any other
data set. From a terminal, use the DE command of the $DISKUTI
utility (refer to Utilities, Operator Commands, Program Prepa­
ration, Messages and Codes), or from a program use the $DISKUT3
data management ut iii ty (refer to "Chapter 16. Advanced
Top i cs" on page 309).

Chapter 9. Planning and Designing Indexed Applications 167

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Verifying

Use the $VERIFY ut i Iffy to ver i'fy the accura'cy of an in'd'Efxed
d~ta seti and to ~rovtde i~formation about its stf~etora ~nd
use of free spa'ce. Wi'th $VERlFV you can:

• P r i n t a for mat ted F i 1 e C on t r 0' 1 B1 oe k (FeB l lis i t n g ,
including th~ FCB Ext~nsiOri &ldck. This E~t~nsidri block
contains the original definition Param~ters f~r the
indexed data' set. Note that the FCB Extension block does
not e xis tan d d a f in i t ion par arne t e r 5 we reno t sa ve'd in the
FeB p rio r t 0 Va r 5 ion 1, M'o d i fie a t i 0 h Level 2 0 f the I n d e x a d
A c c e s s Met hod

• Validate all pointers in any indexed' data s'et

• Verify that the telationship between keys in the entries
i n t he i n de x b 1 0 C k s, and t he h i g h key s i h the d a tab 10 c k sis
correct

• Pr i nt the amount of free space in your data set, wh i ch may
i nd i cate a reorgan i zat ion is needed

CONCATENATIN~ DATA SeTS

The ALTIAM subroutine allows you to concatenate multiple lAM
data sets and to issue normal lAM commands to the c()ncatenated
file. This allow~ you to have mOre th~n 32,767 sectors in an
lAM file Dr to put parts of a file on different d~vices to
improve performance .• The data· sets may reside on the s~fm~ or
different vdlu~es or devices. The keys of arl d*t~ ~ets ~ust
have the same location and length. Each file must be loaded
individually and have a unique range of keys, with nb ove,rlap
of key ranges between the data sets.

To incorporate this function in yo~r application, transcribe
the A L T I A M sub rout i ne u 5 i n g' 0 n e 0 f the t e)(ted ito r 5 and mod i f y
it to meet your requirements. Compile it with $EDXASM br the
Series/l Macro Assembler and ~dd the object prOgram to your

167. 1 SC34-0J12

o

O·I .• '~ (

o

o

o

o
Chapter 9. Planning and Designing Indexed Applications 167.2

nbject library. Include the object program when you link edit
your app I i cat i on programs with the lAM link modu Ie.

Note: The ALTIAM subroutine is not compatible with the Multi­
ple Terminal Manager.

The ALTIAM subroutine accepts all Indexed Access Method
requests for single f1 lese A special request, CONCAT, is issued
to concatenate files. Only one set of files may be concat­
enated per copy of AL T lAM; when the file is disconnected,
another set may be concatenated. The parameters to CONCAT are
as follows:

CALL ALTIAM,(CONCAT),IACB,(DSCBTAB),(OPENTAB),(MODE)

• Equate CONCAT to 14.

• IACB, OPENTAB, and MODE are the same as in the PROCESS
request.

• DSCBTAB is the address of a list of opened data set control
blocks eDSCBs) with the following format:

DSCBTAB DATA
DATA
DATA
DATA

ACDS1)
A(DS2)
A(DS3)
ACBUFFER)

The DSCB~ ~ust be in order of increasing key ranges of of the
corresponding files. Three DSCBs is the default but you may
increase or decrease the number. If only two data sets are
needed, word three must be zero. The buffer must be large
enough to hold the largest record in the concatenated file.

The CONCAT function issues PROCESS requests and reads the low
key of each file. The default maximum key size (50 bytes) may
be changed. The address of the IACB that is returned is used by
ALTIAM to issue processing requests against the concatenated
f i 1 e .

The following requests may be made to a concatenated fi Ie:

GET
GETSEQ
PUT
PUTUP
PUTDE
DELETE
EXTRACT
ENDSEQ
RELEASE
DISCONN

168 SC34-0312

o

o

0

0

0

01390 * 01400 DEL
01410 ** 01420
01430
01440
01450 *
01460 SEQ
01470 **
01480
01490
01500 **
01510 *
01520 DIR
01530 **
01540
01550
01560
01570
01580
01590
01600

EQU * PROCESS DELETE REQUESTS
MOVE 11,PARM3
MOVE COMPLEN,AKSIZE
GOTO CHECK

EQU *
PROCESS GET SEQ REQUESTS

POINT AT
FULL KEY

USERS KEY
SUPPLIED

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

IF (ASEQ,EQ,l),GOTO,LAST IF NOT FIRST IN SEQUENCE
MOVE ASEQ,l SIGNAL SEQUENTIAL MODE

PROCESS FIRST SEQUENTIAL AS DIRECT

EQU *
PROCESS GET REQUESTS

IF (PARM4,EQ,O)
MOVEA IIACB,ALTIACB
GOTO INRANGE

ENDIF

IF KEY IS NOT SET
POINT AT FIRST FILE
SKIP CHECKING

MOVE Il,PARM4 GET KEY POINTER
MOVE COMPLEN,(-l,11),BYTE GET KEY LENGTH
SHIFTR COMPLEN,8 GET INTO POSITION

01610 *
01620 CHECK EQU *
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730

**
** LOOP THRU IACB TABLE COMPRING USERS KEY (II) TO SAVED KEY IN
** THE TABLE. THE SAVED KEY IS THE LOWEST KEY IN THE NEXT FILE.
**

MOVEA 12,ALTIACB POINT AT IACB TABLE
MOVE REGA,11 SAVE USERS KEY ADDRESS
DO +DSCBI,TIMES LOOP THRU IACBS

IF «0,12),EQ,0),GOTO,INRANGE EXIT IF NO MORE
MOVE IIACB,12 SAVE CURRENT IACB
ADD
MOVE

12,2
COUNT,O

POINT AT SAVED KEY
INITIALIZE STRING COUNTER

01740 *
01750
01760
01770
01780
01790
01800
01810
01820 *
01830 ** IF
01840 ** WE
01850
01851
01852

I 01860
01870
01880
01890

DO WHILE,(COUNT,lE,COMPLEH) lOOP THRU STRING
IF «0,ll),LT,(0,12),BYTE),GOTO,INRANGE CORRECT IACB
IF «O,11),GT,(O,12),BYTE),GOTO,OUTRANGE WRONG IACB
ADD 11,1 INCREMENT POINTERS
ADD
ADD

ENDDO

#2,1
COUNT,l

* IF STRINGS ARE EQUAL

STRINGS ARE EQUAL THEN THE KEY IS IN THE NEXT FILE. UNLESS
ARE USING THE LAST FILE ALREADY.

ADD IIACB,+AENTSIZE,RESUlT=12 POINT AT NEXT
MOVE DOUBLE1,O
MOVE DOUBLE2,12
IF (DOUBLE1,lT, ALSTIACB,DWORD) IF NOT THE LAST IACB

MOVE IIACB,12 STORE NEW POINTER
ENDIF
GOTO INRANGE FOUND THE CORRECT IACB

Chapter 9. Planning and Designing Indexed Applications 173

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

01900 *
01910 OUT RANGE EQU *
01920 ** KEY IS NOT IN THIS RANGE. CHECK THE NEXT.
01930
01940
01950
01960 *

ADD
MOVE

ENDDO

IIACB,+AENTSIZE,RESULT=#2 BUMP THE IACB PBINTER
#1,REGA RESTORE THE USER KEY POINTER

01970 INRANGE EQU' *
01980 ** KEY IS IN THIS RANGE. ISSUE THE lAM CALL.
01990 CALL CALLIAM
02000 *
02010
02020
02021
02030
02031
02040
02050
02060
02070
02080

IF .-- (REGA,EQ,-58),AND,(PARM5,GT,+UPEQ) NO RECORD FOUND
ADD IIACB,+AENTSIZE POINT AT NEXT IAtB
MOVE DOUBLEl,O
MOVE DOUBLE2,IIACB IN A REGISTER
MOVE #1,DOUBLE2
IF (DOUBLE1,LT, ALSTIACB,DWORD),AND, IN RANGE

(O,#l),NE,O),GOTO,INRANGE * TRY NEXT FILE
ENDIF
GOTO EXIT
EJECT

02090 ***
02100 ** INVOKE lAM AND SAVE RETURN CODE.
02110 ***
02120 SUBROUT CAblIAM
021~0 MOVE ALSTIACB+2,IIACB UPDATE LAST IACB CELL

x

02140 tAIL~ IAM,+PROCESS,IACB,(IACB),(IACB),+EQ,P2=IFUNC, X
02150 P3=IIACB,P4=IBUFF,P5=IKEY,P6=IOPT
02160 MOVEA TCW,$TCBCO-$TCB#l OFFSET TO TASK CONTROL WORD
02170 MOVE REGA,#1,P2=TCW PICK UP TASK CONTROL WORD
02180
02190
02200 ALTEOD

RETltRH
SPACE 5
EQU . *

02210 ***
02220 ** END OF DATA EXIT. IF NOT THE LAST FILE SWITCH TO THE NEXT ONE.
02230 ** IF THE LAST FILE PASS CONTROL TO USERS EOD EXIT.
02240 ***
02250 ADD IIACB,+AENTSIZE POINT TO THE NEXT IACB

.02251 MOVE DOUBtEl,O
02252 MOVE DOUBLE2,IIACB IN A REGISTER
02260 MOVE #1,IIACB

102270 IF (DOUBLEl,LT, ALSlIACB,DWORD),AND, IN RANGE X
02280 ((O,ffl),NE,O)
02290 MOVE - IKEY,O GET FIRST KEY IN NEXT FILE
02300 GOTO INRANGE ISSUE lAM REQUEST
02310
02320 *
02330
02340
02350
02360
02370
02380
02390

,~, ,"~ ':' <.

END'IF

MOVE ASEQ,O
IF (AEOD,NE,O)

GOTO (AEOD)
ELSE

GOlO EXIT
ENDIF

SPACE 5

174 SC34-0312

RESET SEQUENTIAL SWITCH
IF END OF DATA EXIT EXISTS
GO TO IT

o

o

o

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

If insert act i vi ty is to be pr i mar i 1 y ; nto one Qr more areas or
key ranges, however, the space for inserts should be reserved
as reserve blocks and/or reserve indexes. This results in the
most eff i c i ent use of space in the data set.

The space for inserts can be divided between free records, free
blocks, reserve blocks, and reserve indexes to suit your
requirements.

To determine how many blocks are required for an indexed data
set with a given combination of free records, free blocks,
reserve blocks, reserve index blocks, and free pool size, use
the SE command of the $IAMUTI utility.

Estimating free space requires a considerable amount of know­
ledge about the data that will be placed in your data set, and
ca ref u I p 1 ann i n g t 0 de fin e t he c h a r act e r i s tic s 0 f t he data set.
The estimating free space procedure results in a well struc­
tured file with efficient operation.

Defining a Dynamic Fi Ie

In some cases, you may not be able to pred i ct the type of proc­
ess i ng that wi 11 be done on a data set. The Indexed Access
Method has the capab iIi ty to adj ust a data set dynam i ca 11 y
according to the needs of the processing. For this reason you
need not specify the FREEREC, FREEBLK, RSVBLK, RSVIX, or FPOOL
parameters using the SE command of the $IAMUTl utility.
Instead, you can speci fy the actual number of blocks to be
assigned to the free pool by the DYN parameter. This is espe­
cially useful when you have no (or relatively few) base records
t 0 loa d, but w ill "p 1 ace all 0 r m 0 s t r e cor d sin tot h e d a t a set b y
inserting them in random sequence. (When such a data set has
grown to its working size, it should be reorganized for more
efficient operation.)

Defining a Free Pool

You can specify the DYN parameter in conjunction with other
free space parameters. Before you load base records or reor­
ganize a data set, it is likely that you will want to specify
the FREEREC and FREEBLK parameters to provide structured free
space throughout the data set. You can also specify the DYN
parameter to provide free pool blocks. This allows dynamic
"r est r u c t uri n g 0 f tho s e p 0 r t ion s 0 f the d a t a set a f f e c ted i fan y
part of the structured free space becomes fu 11.

Chapter 9. Planning and Designing Indexed Applications 187

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Definin~ an Expanded Free Pool

You can also specify the DYN parameter in conjunction with the
RSVBlK, RSVIX, and FPOOl parameters. In this case, the amount
of free pool space specified by the DYN parameter is in addi­
tion to that provided by the FPOOl parameter.

Dynami c Data Set Process i no

In order to provide a full dynamic capability, the Indexed
Access Method can restructure a data set in two ways:

• As records are inserted and additional space is needed in
specific areas of the data set, blocks are taken from the
free pool and become data blocks where needed • If a d di -
tional index blocks are needed, blocks are taken from the
free pool for this purpose as well. Index blocks can be
added at any level, and the number of levels of index can
increase as needed. This function is performed automat­
i cally by the Index Access Method on any data set that has a
free poo I assoc i ated with it.

• As records are deleted and blocks become empty, they are
returned to the free pool. If index blocks become empty
(because the blocks under them have been returned to the
free pool) they are also returned to the free pool. This
helps maintain a supply of blocks in the free pool, to be
used if other areas of the data set expand.

Convert i ng to a Dynami c Data Set

A data block can become empty only if the delete threshold
(DElTHR) paramete~ is zero. Previous versions of the Indexed
Access Method would not allow a 'value of zero, and would
internally reset it to a non-zero value if zero was specified.
This version (1.2) of the Indexed Access Method allows a value
o f z e r 0 and' ret a ins i tin t ern a 11 y i f s p e c i fie d. The reo r 9 ~ n i z e
eRO) $IAMUT1 command can be used to activate all new Indexed
Access Method functions for indexed data sets bui It with previ­
ous versions of the Indexed Access Method. In this version of
the Indexed Access Method, the DEL THR parameter defaults to
zero if the DYN parameter is spec if i ed.

Specifying the DYN parameter

When you specify the number of blocks for the DYN parameter,
remember that the Indexed Access Method can store several of
your data records in a block, depending on the record size and
block size you specify. Each block contains a 16 byte header,
thus the number of records that can be contained in each block
can be calculated by the following formula

Records per block = (BlKSIZE-16)
RECSIZE

(Use integer quotient only; discard remainder)

187. 1 SC34-0312

o

o

o

o

o

o

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Note that blocks can be taken from the free pool for use as
index blocks as well as for data blocks, so provide some extra
b locks for these. A reasonab Ie est i mate of the number of index
blocks requ ired is 10%. Thus, if you know the number of data
records you would like to add to the fi Ie, you can calculate the
number of b locks to spec i fy for the DYN parameter as fa llows

OYN = (Number of records to insert) x 1.1
(Records per block)

Building The Indexed Data set

The SE and DF commands of the $IAMUTl uti lity allow you to spec­
ify the size and format of your indexed data set and to format
the data set. Use the SE command to enter those values that
determine the size of the indexed data set and to receive a dis­
play of the size calculation information. Use the OF command to
format the data set, using the values previously specified on
the SE command 0

Determining Size and Format

The structure of the data set is determined by the following
parameters of the SE command:

• BASEREC - Est i mated number of base records

• BlKSIZE·- Block size

• RECSIZE - Record size

• KEYSIZE - Key S1 ze

• KEYPOS - Key pas i t i on

• FREEREC - Number of free records per block

• FREEBlK - Percentage of free blocks

• RSVBlK - Percentage of reserved data blocks

• RSVIX - Percentage of reserved primary index blocks

• FPOOl - Percentage of free pool

Chapter 9. Planning and Designing Indexed Applications 187.2

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

• DEL THR - Percentage delete threshold

DYN - Number of blocks to add to free pool

The define (DF) command fixes the si~e of the data set. There­
fore, BASEREC, FREEREC, FREEBLK, RSVBLK, RSVIX, FPOOL, and DYN
should be large enough to accommodate the maximum number of
records planned for the data set. To calculate the size of the
data set for a given comb i nat i on of the def i ned parameters, use
the SE command.

The DF command allows you to select the immediate write-back
option. If you select this option, modified records are writ­
ten to the file immediately; this contributes to the integrity
of the file; however, response time increases.

Defining and Creating the Indexed Data Set

The setparms (SE) command allows you to review the size calcu­
lation information without actuallY formatting the data set.
$IAMUTI returns to your terminal the size of the data set and
other information. The calculations performed by the SE func­
t i on are descr i bed in "Data Set Format" on page 192.

Use the D F com man d to' for mat the d a t a set. Yo u are pro m pte d for
the volume and data set names and the immed.iate write-back
option. (Note: the data set must have been previously created
using the CR command of the $IAMUTI uti lity or the AL command of
the $DISKUTI utility.) The data set is connected and then for­
matted by the def i ne funct i on. I f the data set does not conta in
sufficient space fo support the specified format, $IA~1UTl
returns the amount of space required. Knowing the available
space and us i ng the SE command, yqu can vary the def i ne parame­
ters to des i gn a data set that fits.

If the specified data set does not exist, a connect error
occurs and $IAMUTI gi ves the option to retry. If you retry, the
utility prompts f~r the volume and data set names, and the
function is attempted again.

IUsing the $IAMUTI Utility - Examples

A data set is to accommodate 10,000 base records with a record
size of 70 bytes. An est i mated 5,000 records are to be
inserted.

Selecting a block size of 256 allows three records per block
((256-16)/70» with a remainder of 30 bytes. If the data set
were created with one free record per block, the ratio of two

188 SC34-0312

o

o

o

o

o

o

Page of SC34-0312~2
As updated January 22t 1981
By TNL SN34-0685

base records to one free record would accurately reflect the
insert activity. Buffer size is minimized. Some space (30
bytes per block) is wasted.

Selecting a block size of 512 allows seven records per block
«512-16)/70) with a remainder of six bytes. If the data set
we r e c r e.a ted wit h two f r e ere cor d s per b 1 0 c k, the rat i 0 off i ve
base records to two free records would overestimate the insert
activity. The larger block size requires a lar~er buffer but
increases I/O eff i c i ency. In add it ion, fewer bytes are wasted
(six bytes).

Assume that the user has entered the DF subcommand to allocate
the file using the specifications shown in Example 2. Name the
file IDATA and placed it on EDX002.

Example 1

ENTER COMMAND (?): SE
PARAMETER DEFAULT NEW VALUE
BASEREC NULL :10000
BLKSIZE 0 :256
RECSIZE 0 :70
KEYSIZE 0 :10
KEYPOS 1 :1
FREEREC 0 :1
FREEBLK 0 :0
RSVBLK NULL :0
RSVIX 0 :0
FPOOl NULL :0
DElTHR NULL :0
DYN NULL :0
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
i OF INDEX BLOCKS AT LEVEL 1:
i OF INDEX BLOCKS AT LEVEL 2:
i OF INDEX BLOCKS AT LEVEL 3:
OF INDEX BLOCKS AT LEVEL 4:
DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

3
2

5000
14
17
o
o

17
o

17
o
o

295
18

2
1

5318
-1
-1

Chapter 9. Planning and Designing Indexed Applications 189

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

Example 2

ENTER COMMAND (?): SE
PARAMETER DEFAULT NEW VALUE
BASEREC 10000
BLKSIZE 256 :512
RECSIZE 70
KEYSIZE 10
KEYPOS 1
FREEREC 1 :2
FREEBLK 0
RSVBLK 0
RSVIX 0
FPOOL 0
DELTHR 0
DYN 0
TOTAL LOGICAL RECORDS/DAT~ BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB=
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2:
t OF INDEX BLOCKS AT LEVEL 3:
DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN 'CODE:

Note: Respond to the prompts

190 SC34-0312

with the values you wish to change.
The utility reuses the values from
previous execution.

7
5

2000
14
35
o
o

35
o

35
o
o

58
2
1

4126
-1
-1

o

o

o

o

o

o

Example 3

ENTER COMMAND (?): DF
DO YOU WANT IMMEDIATE WRITE-BACK? N
ENTER DATA SET (NAME,VOLUME): IDATA,EDX002
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXB (BLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
i OF INDEX BLOCKS AT LEVEL 1:
i OF INDEX BLOCKS AT LEVEL 2:
i OF INDEX BLOCKS AT LEVEL 3:
DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

ENTER COMMAND (?): EN

$IAMUT1 ENDED AT 00:38:47

The key di fferences between Example 1 and Example 2 are:

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

7
5

2000-
14
35
a
o

35
a

35
a
o

58
2
1

4126
-1
-1

• Fewer records (256-byte blocks) are required for Example
2 •

• The index in Example 2 is a three-level index, while in
Example 1 it is a four-level index. Th i s el i mi nates one
disk access, i mprov i ng performance s light I y.

• Each data block has two free records in Example 2. In exam­
ple 1 each data block has one free record.

Chapter 9. Planning and Designing Indexed Applications 191

)age of SC34-0312·2
\s updated January 22,1981
3y TNL SN34-0685

Example 4 - Dynamic Data Set

ENTER COMMAND (1): SE
PARAMETER DEFAULT NEW VALUE
BASEREC NULL
BLKSIZE 0 :256
RECSIZE 0 :70
KEYSIZE 0 : 10
KEUPOS 1
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN NULL 5300
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:
DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

191.1 SC34-0312

3
3
1

14
17
o
o

17
o

17
o

5300
1

5304
-1
-1

o

o

o

o

Example 5 - Dynamic Data Set

ENTER COMMAND (?): DF
DO YOU WANT IMMEDIATE WRITE-BACK? N
ENTER DATA SET CNAME,VOLUME): IDATA,EDX002
TOTAL LOGICAL RECORDS/DATA BLOCK: 3
FULL RECORDS/DATA BLOCK: 3
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS: * OF INDEX BLOCKS AT LEVEL 1:
DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

1
14
17

o
o

17
o

17
o

5300
1

5304
-1
-1

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Examples 4 and 5 show the SE and OF commands used to create a
d y n ami c i n d e xed d a t a set. Not e t hat the res u ft i n 9 d a t a set has
only one allocated data block and only one index block. The
majority of the space is in the free pool as specified by the
DYN parameter.

Chapter 9. Planning and Designing Indexed Applications 191 .2

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Data Set Format

The define command of the $IAMUTI utility formats and creates
an indexed data set.

Use the OF command to format the data set. You are prompted for
the volume and data set names and the immediate write-back
option. (Note: the data set must have been previously created
us i ng the CR command of the $ IAMUTI ut i 11 ty or the AL command of
the $OISKUTI uti lity.) The data set is connected and then for­
matted by the def i ne funct ion. I f the data set does not conta i n
sufficient space to support the specified format, $IAMUTI
returns the amount of space required. Knowing the available
space and using the SE The information required to establish
the format and the number of blocks in a data set is provided by
ten parameters of the SE command.

Parameter

BASEREC

BLKSIZE

RECSIZE

KEYSIZE

KEVPOS

FREEREC

FREEBLK

RSVBLK

RSVIX

FPOOL

DELTHR

IDVN

Blocks

Definition

Number of base records

Block size

Record size

Key size

Key position

Number of free records per block

Percentage of free blocks

Percentage of reserved blocks

Percentage of reserved index

Percentage of free pool

Percentage of blocks to retain when deleting
records

Number of blocks to add to free pool

The indexed data set is composed of a number of fixed length
blocks. The block is the unit of data transferred by the
Indexed Access Method. Block size must be a multiple of 256. A
block is addressed by its relative block number (RBN). The
first block in the data set is located at RBN O.

192 SC34-0312

o

()

o

o

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-D685

Note that the RBN is used only in indexed data sets by the
Indexed Access Method. An Indexed Access Method block differs
from an Event Driven Executive record in the following ways:

1. The size of a block is not limited to 256 bytes; its length
can be a multiple of 256.

2. The RBN of the first block in an indexed data set is o. The
record number of the first Event Driven Executive record in
a data set is 1.

The size, in 256-byte records, of the data set is calculated by
the define command of the $IAMUTI uti lity.

Four kinds of blocks exist in an indexed data set: a fi Ie con­
trol block (FCB), a file contol block extension, index blocks,
and data blocks. These blocks are all the same length, as
defined by BLKSIZE, but they contain different kinds of infor­
mation. The FCB contains control information, the FCB exten­
sion contains saved file definition input parameters, index
blocks contain index entries and data blocks contain data
records. The control information is also contained in block
headers; a description of control informat.ion is contained in
Internal Design Figure 23 also shows examples of the four
block types.

F i Ie contra 1 block extens ion

Control Saved
information Parameters

Unused Unused

File control block File control block extension

Figure 23 (Part 1 of 2). Indexed Data Set Block Types

Chapter 9. Planning and Designing Indexed Applications 193

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

RBN

RBN

RBN

RBN

RBN

RBN

RBN

Header

Key

Key

Key

Key

Key

Key

Key

Unused

Header

Data
record

Data
record

Data
record

Index block Data block

Figure 23 (Part 2 of 2). Indexed Data Set Block Types

193.1 SC34-0312

o

o

o

o

o
Chapter 9. Planning and Designing Indexed Applications 193.2

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

The File Control Block

The file control block (FCB) is the first block in the data set
(RBN 0); it contains control information. The field names in
the FCB can be seen by examining a listing of FCBEQU, a copy
code module that is supplied as part of the Indexed Access
Method.

The Fi Ie Control Block Extension

The file control block extension is the second block in the
data set (RBN 1); it contains the saved file definition param­
eters as spec if i ed by the user. The fie Id names in the FeB
extension can also be seen by examining a listing of FCBEQU.
The saved parameters can be refered to in either of two ways:

• From a program, via the EXTRACT function, or

• By running the $VERIFY utility, which prints the values.

Index Block

An index block contains a header followed by a number of index
entr i es. Each index entry cons i sts of a key and a po inter. The
key is the highest key associated with a block; the pointer is
the RBN of that block. The number of entr i es conta i ned in each
index block depends on block size and key size. The header of
the block is 16 bytes. The RBN field in each entry is 4 bytes.
The key field in each entry must be an even number of bytes in
length; if the key field is an odd number of bytes in length,
the field is p~dded with one byte to make it even. The number
of index entr i es in an index block is:

block size - 16
4 + key length

The result is truncated; any remainder represents the number of
unused bytes in the block. For example, if block size is 256 and
key length is 28, then each index entry is 32 bytes, there are 7
entries in a block, and the last 16 bytes of the block are
unused.

194 SC34-0312

o

,

o

o

o

Data Block

A data block contains a header followed by a minimum of
records. The number of records that can be conta i ned ina
block depends on the si ze of the data block and the si ze of
record. The header of the block is 16 bytes. The number
record areas in the block is:

block size - 16
record size

two
data
the
of

The result is truncated; any remainder represents the number of
unused bytes in the block. For example, if block size is 256 and
record si ze is 80, the data block can accommodate three records
and there is no unused area. The key field of the last record
slot in an index block is the high key for the data block. If.
some records of the data block are not currently used, the key
field of the last record slot is the same as the key field of

Chapter 9. Planning and Designing Indexed Applications 194. 1

o

o
194.2 5C34-0312

o

o

•

o

The Last Cluster

Page of SC34{1312-2
As updated January 22,1981
By TNL SN34-0685

The last cluster in the data set may be di fferent from the other
clusters. It contains the same number of free blocks as the
other clusters but only enough allocated blocks to accommodate
the records that you have spec if i ed wi th the parameter BASEREC.
Be ca use r 0 u n din g a c cur sin c a I cuI at 1 n g t he n u m b era f c Ius t e r s ,
a few more allocated records than required,may exist in the
last allocated block. The last cluster can be a short one
because only the required number of blocks are used.

If the number of allocated blocks divided by the number of
allocated blocks per cluster leaves a remainder, the remainder
represents the number of allocated entries in the
primary-level index block in the last cluster. Unused entries
in the last primary-level index block are treated as reserve
block entries.

Sequential Chaining

Data blocks in an indexed data set are chained together by for­
ward pointers located in the headers of data blocks. Only allo­
cated data blocks are included in the sequential chain.
Chain,ing allows sequential processing of the data set with no
need to reference the index. When a free block is converted to
an allocated block, the free block is included in the chain.

Free Pool

I f you spec i fy that you want a free poo I (w i th the FPOOL and/or
DYN parameter of the SE command of the $IAMUTI utility), your
indexed data set contains a pool of free blocks. The fi Ie con­
trol block contain s a pointer to the first block of the free
pool, and all blocks in the free pool are chained together by
forward pointers .

A block can be taken from the free pool to become either a data
block or a primary-level index block. The block is taken from
the beginning of the chain, and its address (RBN) is placed in
the appropriate primary-level index block (if the new block is
to become a data block) or in the second level index block (if
the new block is to become a primary-level index block). Any
block in the free pool can be used as either a data block or as a
primary-level index block.

When a data block becomes empty because of record deletions,
the data block may return to the free pool (depending on the
delete threshold (DELTHR) parameter). If the data block is

Chapter 9. Planning and Designing Indexed Applications 203

Page of SC34-Q312-2
As updated January 22,1981
By TNL SN34-Q685

returned to the free pool, reference to the block is removed
from the primary-level index block, and the block 1S placed at
the beginning of the free pool chain. Index blocks are never
returned to the free POD 1.

Calculating the initial size of the free pool consists of the
following steps:

• Each reserve block entry in a primary-level index block
represents a potential data block from the free pool. The
number of data blocks that can be assigned to initial clus­
ters is the number of primary-level index blocks times the
number of reserve block entries in each primary-level
index block.

• Each reserve index entry in a second-level index block
represents a potential primary-level index block from the
free pool~ The number of primary-level index blocks that
can be assigned from the free pool is the number of
second-level index blocks times the number of reserve
index entries in each second-level index block.

• Each primary-level index block taken from the free pool
consists entirely of empty (reserve block) entries. New
data blocks can be taken from the free pool for the entries
in the new primary-level index block. The number of data
blocks is the number of entries per index block times the
number of new primary-level index blocks (calculated in
the prev i OllS step).

• The maximum number of blocks that can be taken from the
free pool is the sum of the above three calculations.

• The actual nu~ber of blocks in the free pool is the speci­
f i ed percentage (FPOOl) of the max i mum poss i ble free pool,
with the result rounded up if there is a remainder, plus
the number of blocks spec if i ed by the DYN parameter.

STORAGE AND PERFORMANCE

storage Requirements

The minimum amount of storage required by the Indexed Access
Method to perform all functions is about lS.2KB, not including
the lirik module or any error exit routine you may have written.
The storage est i mate is based on t he fa 11 ow i ng assumpt ions:

• A maximum block size of 256 bytes for any indexed data set •
Since the buffer must be large enough for two blocks, a
S12-byte buffer is required. If your maximum block size is
larger than 256 bytes, the buffer size is twice your block

204 SC34-03.12

o

()

o

o

o

o

size. You can improve performance by making the buffer
larger. The program directory that is shipped with your
PID material contains a description of the size and capaci­
ty of the puffer and information on how to modify it. The
buffer that is defined in $IAM should provide adeqlJ:'~~ per­
formance for most applications.

• One user connected to an indexed file at a time. If more
than one user is connected, add about 625 bytes per user.

The size of the IBM-supplied link module which is included in
your appl i cat i on program is about 250 bytes.

Indexed F;le Size

The structure of an indexed fi Ie is highly dependent on parame­
ters you specify when you create the fi Ie. These parameters are
described in "Data Set Format" on page 192.

Performance

Performance of the Indexed Access Method is primarily deter­
mined by the structure of the indexed data set being used. This
structure is determined by parameters you specify when you
create the data set (refer to "Data Set Format" on page 192).
The following factors affect performance:

• File size. A large file spans more cYlinders of the direct
access device, 50 the average seek to get the the record
you want is longer.

• Number of index levels. A fi Ie with many index levels
requires more accesses to get to the desired data record,
thus degrading performance. Factors which influence the
number of index levels are:

Number of records in data set.

Amount and type of free space.

Block size.

Ke y size.

Data record size.

Chapter 9. Planning and Designing Indexed Applications 205

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

• File organization

The dynamic file capability makes it easy for you to define and
use files without planning the file structure. You should be
aware that heavy use of the free pool (as occurs with a dynamic
file) has an impact on performance.

The best performance from an indexed file is attained when the
fi Ie structure is well planned and the free pool is rarely
used, if it exists at all. This is because the high-level index
blocks are concentrated in a single area. Thus, an access to
the file requires only two s;gnific<lnt seeks. This file struc­
ture is maintained as long as new records are inserted in the
space prov i ded by the FREEREC and FREEBlK parameters.

However, when the free pool is he<lvily utilized, the logical
structure of the file is no longer reflected in the physical
positions of the blocks. As a result, every block that must be
rea din 0 r d e r toto sat i sf y are q II est co u I d res u It ina s i g n i f­
icant seek. This increase in the number of significant seeks
res u Its ina n i.n c rea s e i nth eel a p sed tim ere qui red top roc e s s
the request.

Use the $IAMUTI uti lity to see the affects of the varic\Js
parameters on the file structure. (Refer to "Using the $IAMUTI
Uti lity - An Example" on page 188 for an example.)

In addition to file structure, the following factors also
influence performance:

• Buffer size. If you provide a large buffer when you install
the Indexed Access Method, it is more likely that blocks
(especially hi.9h-Ievel index blocks) needed are already in
storage and need not be reca lIed from the data set.

• Contention. If many tasks are using the Indexed Access
Method concurrently, resource contention can result, and
performance is degraded.

206 SC34-03.12

o

o

o

o

0

a

0

The FTAB table provides the screen location (line and spaces)
and size (characters) of each parameter field on the menu, in
ascending order. The session manager program $SMCTL uses the
FTAB table to retrieve the parameters it uses to replace the
&PARMnn. fields before passing the procedure to $JOBUTIL. The
parameter &PARMOO. always represents your one to four charac­
ter logon 10.

The &SAVEmm fie Ids in the parameter part of the procedure po i nt
to fields in the parameter save data set $SMPnnnn (where nnnn
is the logon 10) where the parameters you enter are saved from
sess i on to sess i on. The two dig its, mm, are used to index into
the data set.

Note that multiple &PARMnn. fields between PARAMETER and END
are sequential, beginning with $PARMOI.

The following table lists the $SAVEmm fields, the procedure
with which they are associated, and the utility or function
invoked. When assigning values to the index digits (mm) in your
procedure, start with 90 and work backwards to 61.

FIELD * PROCEDURE UTILITY/FUNCTION

$SAVEOI-03 $SMP0201 $EDXASM
$ 5 A V E 04'- 0 6 $SMP0202 $SlASM
$SAVE07-13 $SMP0203 $COBOL
$SAVE14-16 $SMP0204 $FORT
$SAVE17-18 $SMP0205 $LINK
$SAVE19-22 $SMP0206 $UPDATE
$SAVE23-24 $SMP0208 $PREFIND
$SAVE25-26 $SMP0308 $MOVEVOL
$SAVE27 $SMP0405 $FONT
$SAVE28 $SMP0501 $DIUTIL
$SAVE29 $SMP0502 $DICOMP
$SAVE30 $SMP0503 $DIINTR
$SAVE31-35 $SMP06 Execute application

program
$SAVE36 $SMP0801 $BSCTRCE
$SAVE37 $SMP0806 $PRT2780
$SAVE38 $SMP0807 $PRT3780
$SAVE39 $SMP0808 $HCFUTI
$SAVE40-41 $SMP0208 $PREFIND
$SAVE42 $Sf'1P0901 $TRAP
$SAVE43 $SMP0902 $DUMP
$SAVE44 $SMP0903 $LOG
$SAVE45-49 $SMP0210 $PLI
$SAVE50-60 Reserved

Chapter 10. The Session Manager 221

)age of SC34-0312-2
\.S updated January 22, 1981
ly TNL SN34-{)685

PARAMETER
&PARMOl,&SAVE01
&PARM02,&SAVE02
&PARM03,&SAVE03
END
LOG
REf1ARK
JOB
PROGRAM
PARM
DS
DS
DS
EXEC
EOJ
END

OFF
~ASSEMBLE &PARM01. TO &PARM02. USERID=&PARMOO.

$SNP0201
$EDXASM,ASMLIB
&PARN03.
&PARM01.
$SMl&PARMOO.,EDX003
&PARM02.

Figure 33. Invoking EDXASM

Parameters that have been saved are retrieved from the $SMPnnnn
data set according to the relationships in the first part of
the procedure. These parameters are displayed on the terminal.
Then any parameters you enter from the terminal are used to
update the procedure.

ALLOCATING AND DELETING WORK DATA SETS

The session manager allocates work data sets at logon time.
They may be deleted at logoff time with one of the text editors.
Two data set£, $SMALLOC and $SMDELET, are provided which are
used in allocating and deleting data sets. $SMALLOC contains
the data sets to be allocated and $SMDELET contains the data
sets to be deleted. Figure 34 on page 223 lists the contents of
$SMALLOC and Figure 35 on page 224 lists the contents of
$SMDELET.

You may tailor the work data set allocations and deletions by
modifying the $SMALLOC and $SMDELET data sets via the $FSEDIT
utility. Modifications usually consists of changing the size
or volume of a data set. However, you may aliocate and delete
up to four additional data sets. By moving the END terminator
below $SM7 (statement 00120), you may allocate data sets $SM4,
$SM5, $SM6, and $SM7. If you modify $SMALLOC, you should also
modi fy $SMDELET to be consistent.

222 SC34-0312

o

()

o

o

o

?ROGSTOP instruction.

Page of SC34-Q312-2
As updated January 22, 1981
By TNL SN34-0685

Using the Task Error Exit Fac;lity in Your Task

Linkage Conventions

To make use of the Task Error Exit facility in your task, you
must code a small control block and the error exit routine. In
addition, you must set aside the block of storage that will be
fi lIed with the hardware status when an exception occurs.

The control block, called the task error exit control block
(TEECB), provides the linkage between the supervisor and your'
error exit. The TEECB must be aligned on a fullword boundary.

To allow the supervisor to find your TEECB, you should code its
address as the value of the ERRXIT keyword parameter of the
PROGRAM or TASK EDL statement that def i nes your task.

The format of the TEECB is as follows:

TEECB
TEECTL
TEESIA
TEEHSA

DS OF
DC X'0002'
DC A(XITRTN)
DC A(HSA)

TASK ERROR EXIT CONTROL BLOCK

______ 0 _______ 1 ______ 2 ____ __
SIA _____ _

__________ HSA ____________ _

In the first word (TEECTL), bits 0 - 7 are reserved and must be
zero. Bits 8-15 state the number of data words that follow.
This value must be two. The second word (TEESIA) contains the
address of the starting instruction of your Error Exit routine.
The last word (TEEHSA) contains the address of the block of
storage you have reserved to receive the hardware status when
an exception occurs. This block is called the Hardware Status
Area (HSA) and is 24 bytes long.

The format of the HSA is:

* HARDWARE STATUS AREA
HSA DS OF ALIGN ON FULL WORD BOUNDARY
HSAPSW DS IF PROGRAM STATUS WORD
HSALSB EQU * LEVEL STATUS BLOCK
HSAAKR DS IF INSTRUCTION ADDRESS REGISTER
HSAIAR OS IF ADDRESS KEY REGISTER
HSALSR OS IF LEVEL STATUS REGISTER
HSAREGS OS 8F GENERAL REGISTERS 0 - 7

The contents of the various HSA locations (PSW,AKR,Etc,) will
contain, at entry to your error exit routine, the values that
were in the corresponding hardware registers at the time of the

Chapter 13. Diagnostic Aids and Facilities 269

exception. Upon entry to your error routine, general registers
1 and 2 will have been set to the SIA of your rout i ne and to the
address of your task's TCB, respectively.

Since entry to your error exit routine is made at the Event
Driven Language level, the contents of the remaining general
reg i sters is dependent upon what instruct ions are executed.

What Happens When an Exception Occurs

If an exception (machine check, program check or soft exception
trap) occurs during the execution of your task and you have
specified a task error exit, as outlined above, the supervisor
locates your TEECB. It then uses the TEEHSA pointer to locate
your HSA and stores the hardware status information in it.
Next, it retrieves the TEESIA pointer and sets it to zero to
prevent recursive exceptions. Finally, it starts your task at
the address it retrieved if that address is non-zero. If the
TEESIA is zero or an exception occurs during any of this proc­
essing (if, for example, the TEECB is invalid), the supervisor
treats the error as though no task Error Exit had been speci­
fied. Note that even if the TEESIA is zero, the supervisor
st ill attempts to store the hardware status.

Since the supervisor zeroes TEESIA prior to starting your task,
your error exit routine only gets control on the first
exception that occurs, unless your routine restores TEESIA to
its original condition. Zeroing TEESIA allows the supervisor
to handle exceptions that occur in error exit routines, thus
preventing recursion in the error handling process. When you
implement a task e~ror exit, do not restore TEESIA until the
error exit routine has completed.

I/O ERROR LOGGING

The Event Driven Executive provides the capability to record
de vic e I/O err 0 r sin t 0 a log d a t a set 0 n dis k 0 r dis k e t tea n d to
display the log data set. The support is provided with a set of
utilities and subroutines.

Recording the Errors

To activate I/O logging, the utility $LOG is loaded into any
partition. The logging function can be deactivated, reacti­
vated, and terminated after it becomes active.

270 SC34-0312

o

(I G
-~

o

o

o

NOTICE
TERMX
NAMETAB

BEGIN

PROGRAM
IOCB
DATA
DATA
DATA
DATA
MOVEA
DO
MOVE
ENQT
PRINTEXT
DEQT
ADD
ENDDO
PROGSTOP
ENDPROG
END

BEGIN
SCREEN=STATIC
Cl8'TERM1'
CL8'TERM2'
Cl8'TERM3'
Cl8'TERM4'
#1, NA~lETAB
4
TERMX,(O,#I),(8,BYTES)
TERMX
'SYSTEM ACTlVE',lINE=O

#1,8

Page of SC34-0312-2
As updated January 22,1981
By TNL SN34-0685

This example illustrates terminal access by using the name of
the terminal. TERM!, TERM2, TERM3, and TERM4 must have been
defined on a TERMINAL configuration statement. The use of the
static screen mode insures that only physical line 0 of each
screen wi 11 be altered. (lINE=O for roll screens causes a page
eject and erasure of information.)

I Note: On a 4979 terminal, unprotected fields should be of
even length.

Modifying the IOCB

Elements of the IOCB which may be modified by an application
program are the terminal name, roll to static, and NHIST. The
structure given here is provided for those special applica­
tions in which other elements may need to be modified; note
that the structure may change with future versions of the Event
Driven Executive.

Chapter 15. Miscellaneous Terminal I/O Considerations 295

BYTECS) ELEMENT COMMENTS o .
0-7 Terminal Name EBCDIC, blank filled

8 Flags #CCBFLGS i s described in
the Intcrnml Des;gn
manual under "Terminal
I/O".
Bit 0 off indicates that
the name i s the only element
of the IOCB.

9 Top of working Equal to TOPM+NHIST
area

10 Top margin TOPM or zero

11 Bottom margin BOTM, or X'FF' i f
unspecified

12 Left margin LEFTM or zero

13 Page size Equal to X' 00' i f
unspecified

14-15 line size Equal to X'7FFF' i f
unspecified o

16 Current line Initialized to TOPM+NHIST

17 Current indent Left margin included

18-19 Buffer address Zero i f unspecified

o
296 SC34-0312

o

o

o

Page of SC34-0312·2
As updated January 22, 1981
By TNL SN34·0685

Accessing a Stat;c Screen

Line-oriented input/output instructions provide the most
straightforward means for constructing and reading data from
static screens. However, when individual data fields are
accessed frequently, excessive screen flicker can result. This
problem can be eliminated by transferring an entire screen
i mage to the d i sp lay dev ice with one I/O operat ion. The fo Ilow­
ing program wi 11 illustrate this procedure as well as some oth­
er important points relating to programming for static
screens.

DISPLAY PROGRA~1 BEGIN
SCREEN IOC SCREEN=STATIC,BOTM=ll,

BUFFER=BUFF,RIGHTM=959
I DATA F ' 0 '
BUFF BUFFER 960,BYTES

DATA X'0202'
NULLS DATA X'OOOO'
NUMS DATA 48F'0'
VALS TEXT LENGTH=254
BEGIN ENQT SCREEN

ERASE TYPE=ALL,LINE=O

* * THIS DO LOOP PLACES THE WORD "FIELD" AND THE VALUE
* OF "I" INTO THE TERMINAL BUFFER 96 TIMES. THE
* ACTUAL CONTENTS OF THE TERMINAL BUFFER IS PRINTED
* WHEN THE "TERMCTRL DISPLAY" STATEMENT IS REACHED.

* DO 96,INDEX=I
PRINTEXT 'FIELD',PROTECT=YES
PUTEDIT FORMATl,VALS,CCI»,PROTECT=YES
PRINTEXT ",PROTECT=YES
PRINTEXT NULLS,PROTECT=YES

ENDO
PRINTEXT LINE=O

WRITE PUTEDIT FORMAT1,VALS,CCNUMS,48»,
ACTION=STG

PRINTEXT VALS,MODE=LINE,LINE=O
PRINTEXT LINE=6,SPACES=8
TERMCTRL DISPLAY
WAIT KEY
GOTO (TRANSFER,QUIT),DISPLAY+2

TRANSFER READTEXT VALS,MODE=LINE,LINE=6
GETEDIT FORMATl,VALS,CCNUMS,48»,

ACTION=STG
ERASE LINE=6,MODE=SCREEN,TYPE=DATA
GOTO WRITE

QUIT DEQT
PROGSTOP

FORMATl FORMAT (12)
ENDPROG
END

C 2

5'
6
7
8
9

10
11

12
13
14
15
16

18
C 19

21
22
23
24
25
26

C 27

29
30
31

Chapter 15. Miscellaneous Terminal I/O Considerations 297

This program accesses the top six lines of the screen in static
mode and initially formats it with a sequence of protected
fields. An array of integers is displayed on lines 0-5 and a
pause is executed to allow the operator to enter a new set of
values in corresponding positions of lines 6-11. The new
values are then displayed on lines 0-5.

297.1 SC34-031"2

o

o

o

o
Chapter 15. Miscellaneous Terminal I/O Considerations 297.2

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

This program accesses the top six lines of a static screen and
initially. formats the screen with a sequence of protected
fields. An array of integers is displayed on lines 0-5 of the
screen and a pause is executed to allow the operator to enter a
new set of values in corresponding positions of lines 6-11.
The new values are then displayed on lines 0-5 of the screen.

The following numbers refer to lines (in the right margin) of
the preceding example program.

2

5

6 and 7

8 and 9

Define the static screen with the terminal I/O buff­
er to be in the application program at BUFF, with a
length of 960 bytes (half of the 4979 display
screen).

Allocate storage for the buffer. Note that in this
program the buffer is never accessed directly; the
space is merely allocated here for use by the super­
visor.

Define a TEXT message consisting of two null charac­
ters (EBCDIC code X'OO').

Define the array of integers (initially zero) and
the TEXT buffer which will be used for output of the
data in EBCDIC form.

10 and 11 Acquire the terminal, erase all data and establish
the screen pos i t i on for the first I/O operat i on.
Since several text strings will be concatenated to
form the first output line, the screen position must
be estab I i shed in ad vance.

12

13

14

15

Begin <l DO loop to construct the initial screen
image. This will consist of 96 protected fields of
the form FIELDxx, where xx is a sequential field num­
ber, each followed by one protected blank and two
unprotected data pas it ions. Note here the cond i­
tions required for forming a concatenated line; the
protection mode of the PRINTEXT instructions must
not change (either all PROTECT=YES or all PROTECT=
No), and no intervening forms control operations can
be executed.

Write 'FIELD' to the buffer.

Convert the sequence number to two EBCDIC characters
and wr i te it to the buffer.

Wr i te a protected separat i on character.

298 SC34-0312

o

c

o

o

o

o

16

18

19

21

22

23

24

25

26

27

29

30

31

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Write the two null characters to define the data
positions. Null characters wi 11 always generate
unprotected positions on the screen; PROTECT=YES is
nevertheless required here in order to maintain con­
catenation.

Wr i te the concatenated 1 i ne to the d i sp lay. Any con­
venient line control operation or the DEQT instruc­
tion will accomplish this.

Convert the integer array to two-character EBCDIC
values and store the resulting line in the TEXT buff­
er VALS.

Write the values into successive unprotected posi­
tions of the display beginning at LINE=O,SPACES=O.
This "scatter write" mode is defined by MODE=LINE;
without MODE=LINE the protected fields of the dis­
play would be overwritten.

Define the cursor to be at the first unprotected
position.

Display the cursor at its defined position.

Wait for the operator to press an interrupt key.

Go to QUIT if PF1 was pressed.
ENTER key or any other key
pressed.

Go to TRANSFER if the
other than PF1 was

Read the updated values entered by the operator in
lines 6-11. MODE=LINE indicates a "scc.tter read".

Convert the EBCDIC representations to binary and
store the bindry values in the arrary NUMS.

Erase the unprotected (data) fields in lines 6-11 of
the screen.

Repeat

Release the terminal. The buffer designated in the
IOCB will be released and the screen configuration
restored to that defined by the TERMINAL statement.

In the previously described example program, the terminal I/O
operations were all conviently performed through the concat­
enat i on of TEXT str i ng5. If the appl i cat ion requ i res more com­
plex formatting of the screen image, or if input of more than
254 bytes at a time is necessary, then direct access to the
buffer is appropriate. See the PRINTEXT and READTEXT
instructions in the Languagp Reference for detCll 15.

Chapter 15. Miscellaneous Terminal I/O Considerations 299

Using Formatted Screen Images

Formatted screen images can be created and saved in disk or
diskette data sets with the uti lity program $IMAGE. The
retrieval and display of such images can be simplified by
employing a set of subroutines. An EXTRN statement must be
coded for each subrout i ne name wh i ch is referenced, and
AUTO=$AUTO,ASMLIB must be coded on the OUTPUT statement of the
1 i nk-ed it contro 1 data set.

In the calling formats given below, arguments which represent
addresses to be passed to a subroutine must be enclosed within
parentheses as shown. I f the des i red address is conta i ned
within a variable, then the name of that variable must be writ­
ten without parentheses.

$IMOPEN Subroutine

This subroutine reads the designated image from dlsk or
diskette into your buffer. You can also perform this operation
by using DSOPEN or defining the data set at program load time,
and issuing the disk READ instruction. Refer to the format
descr i pt i on at the end of th i s sect i on for data set size deter­
min a t i'o n •

Syntax

label

Required:
Defaults:

CALL $IMOPEN,(dsname,volume),(buffer),P2=,P3=

dsname,buffer
None

Indexable: None

Operands

dsname

buffer

Description

The address of a TEXT statement which contains the
name of the data set. A volume label can be
inc 1 uded, separated from the name by a comma.

The address of a BUFFER statement allocating the
storage into which the image data wi 11 be read. The
storage should be allocated in bytes, as in the fol­
lowing example:

300 SC34-03l2

o

o

o

o

o

Page of SC34.Q312-2
As updated January 22, 1981
By TNL SN34-0685

End of Forms on 4973 and 4974 Printers

Terminal I/O goes into a wait state trying to print when one of
the following situations occurs:

• The printer is in DISABLE (4973) or WAIT (4974) mode.

• The printer is out of paper and no terminal error exit is
coded on your TASK/PROGRAM statement.

• The paper is jammed in the printer and no terminal error
ex i tis coded on your TASK/PROGRAM statement.

You can correct this problem by doing the following:

•

•

•

If in DISABLE or WAIT mode, set the switch to ENABLE (on
4973) or to PR INT (on 4974) to resume pr i nt i ng.

If the printer is out of paper or the paper is jammed, set
the mode switch to DISABLE or WAIT, add new paper or fix
paper jam, and reset the mode switch to ENABLE or PRINT.

If you have a termi nal error exi t coded on your TASK or pro­
gram statements, you wi 11 get control at your error routine
on all error conditions except DISABLE (4973) or WAIT
(4974) modes.

Reading Modified Data on the 4978 Display

Both protected and unprotected fields on the 4978 are defined
as a set of contiguous characters that may span line bounda­
ries. A protected field ends when an unprotected field is
encountered. Similarly, an unprotected field ends when a pro­
tected field is encountered. Ne i ther an unprotected nor a pro­
tected field necessari ly ends at an EDX partial screen
boundary.

An unprotected field is considered a modified field when any
character within the field is modified by the operator. The
fie ld may be read by the Event Dr i ven Language READTEXT
instruction with TVPE=MODDATA. Reading the field leaves its
modified status unchanged. A modified field becomes an unmodi­
fied field by either writing or erasing all the characters in
the field. For additional information, refer to IBM Series/1
4978-1 Display Station (RPQ D02055) and Attachment (RPQ
002038), General Information, GA34-1550.

Chapter 15. Miscellaneous Terminal I/O Considerations 307

o

o

o
308 SC34-0312

o

o

Page of SC34-0312-2 '
As updated January 22, 1981
By TNL SN34-0685

CHAPTER 16. ADVANCED TOPICS

TRANSLATING COMPRESSED/NONCOMPRESSED BYTE STRIUGS

The following two subroutines are used internally by $IMPROT
and $IMDATA as well as by the uti lity program $IMAGE. They can
also, however, be called directly by an application program and
are described here because of their general utility.

The program preparation for applications calling $UNPACK and
$PACK is similar to that when using the $IMAGE subroutines.
That is, an EXTRN statement is required in the application and
the aurocall to $AUTO,ASMLIB is required in the link- control
data set (input to $LINK).

$UNPACK Subroutine

This subroutine moves a compressed byte str"ing and translates
it to noncompressed form.

Syntax

label

Required:
Defaults:

CAll $UNPACK,source,dest,P2=,P3=

source,dest
None

Indexable: None

.Q.e..e ran d s

source

dest

Description

The label of a fullword containing the address of a
compressed byte string. (See Figure 43 on page 311
for the compressed format.) At completion of the
operat i on, th is parameter is incremented by the
length of the compressed str i ng.

The label of a fullword containing the address at
w hie h the e x pan d e d s t r i n g i s "t 0 b e pIa c e d . The
length of the expanded string is placed in the byte
preced i ng t his locat i on. The $UNPACK subrout i ne
can, the ref 0 r e , con v e n i e n t 1 y b e us edt 0 m 0 v e and
expand a compressed byte string into a TEXT buffer:

Chapter 16. Advanced Topics 309

eel!;t: VI 03~')'t-U').l ~-~

As updated January 22, 1981
By TNL SN34-0685

The following example illustrates the use of the $UNPACK sub­
routine to unpack ~he compressed protected data of a $IMAGE
screen format:

*

*

*

OUTAREA

* CPOINTER
LINECNT
STRGPTR

* STRING

* CBUF

•
•
•

MOVEA
MOVEA

MOVE
MOVE
DO

CALL

MOVE

ADD
ENDDO

•
•
•

DATA

DATA
DATA
DATA

TEXT

BUFFER

SPACK Subroutine

#l,OUTAREA
CPOINTER,CBUF+12

LINCNT,CBUF+4
MOVELNG,CBUF+6
LINECNT

POINT TO EXPAND BUFFER
POINT TO FIRST BYTE OF
COMPRESSED DATA
INIT DO LOOP CTR
INIT MOVE LENGTH CODE

$UNPACK,CPOINTER,STRGPTR UNPACK COMPRESSED
DATA

(O,BYTE),P3=MOVELNG MOVE
UNPACKED DATA

#l,MOVELNG

CL1920' ,

A ' 0 '
F ' 0 '
A(STRING)

LENGTH=80

lOOO,WORDS

WILL CONTAIN ALL OF THE
UNPACKED DATA
POINTER TO COMPRESSED DATA
NBR OF FORMAT LINES TO UNPACK
ADDR OF TEMP LOCATION TO
RECEIVE UNPACKED DATA
TEMP LOCATION TO RECEIVE
UNPACKED DATA
CONTAINS $IMAGE FORMAT WITH
WITH PACKED DATA

This subroutine moves a byte string and translates it to com­
·pressed form.

o

o

o
309.1 5C34-0312

o

o

o
Chapter 16. Advanced Topics 309.2

~age of SC34-0312-2
<\.8 updated January 22, 1981
By TNL SN34-0685

Syntax

label

Required:
Defaults:

CALL $PACK,source,dest,P2=,P3=

source,dest
None

Indexable: None

Operands

source

dest

Description

The label of a fullword containing the address of
the string to be compressed. The length of the
str i ng is taken from the byte preced i ng th is
location, and the string could, therefore, be the
contents of the TEXT buffer.

The label of a fullword containing the address at
which the compressed string is to be stored. At
completion of the operation, this parameter is
incremented by the length of the compressed string.

310 SC34-0312

o

o

o

C

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

$DISKUT3 Return Codes

The first word of the DSCB is posted with a return code to indi­
cate whether the function was performed successfully (-1) or
unsuccessfully. When a list of more than one function is speci­
fied, each function requested is processed in the sequence pre­
sented. A return code is posted for each funct i on attempted.

Caution: If more than one function which references the same
DSCB is requested on a single eDISKUT3 invocation, the return
code set reflects only the results of the last functi on
attempted using that DSCB.

The ret urn ·c 0 des set b y $ 0 I SKU T 3 and the i r mea n i n gsa rea s f a I -
lows:

Code

1
2
4
5
6

7
8

9

10
11

12

13
14
15
16
17

18

19
20
21

Condition

Inval i d request code (not 1-6)
Volume does not exist (All functions)
Insufficient space in library (ALLOCATE)
Insufficient space in directory (ALLOCATE)
Data set already exists - smaller than the
requested allocation
Insufficient contiguous space (ALLOCATE)
Disallowed data set name, ego eEDXVOL or
eEDXLIB (All functions)
Data set not found
(RENAME, RELEASE, OPEN)
New name pointer is zero (RENAME)
Disk is busy
(ALLOCATE, DELETE, RENAME, RELEASE)
I/O error writing to disk
(ALLOCATE, DELETE, RENAME, RELEASE)
I/O error reading from disk (All functions)
Data set name is all blanks (ALLOCATE, RENAME)
Invalid size specification (ALLOCATE)
Invalid size specification (RELEASE)
Mismatched data set type
(OPEN, RENAME, DELETE, RELEASE)
Data set already exists - larger than the
requested allocation
SETEOD only valid for dataset of type 'data'
Load of $DISKUT3 failed ($RMU only)
Tape data sets not supported

Figure 44. eDISKUT3 return codes

Chapter 16. Advanced Topics 319

Page of SC34-0312~2
As updated January 22, 1981
By TNL SN34-0685

Example: The following example illustrates the use of
$DISKUT3. The use of all five functions COPEN, ALLOCATE,
RENAME, DELETE, and RELEASE) is shown.

TASK PROGRAM GO,DS=C(DATAl,EDX002),(DATA2,EDX003»
COPY DSCBEQU

GO EQU *

* LOAD $DISKUT3 IN THE 'NON-OVERLAY' MODE, TO OPEN
* DATA SET 'DATA3', ALLOCATE A NEW DATA SET 'DATA4', AND
* RENAME AN EXISTING DATA SET 'DATAl'
* LOAD $DISKUT3,LISTPTR1,EVENT=$DISKUT3

WAIT $DISKUT3

* COMPUTE CURRENT SIZE OF THE DATA SET AND USE IT AS A
* CALLING PARAMETER FOR A 'RELEASE' RECORDS CALL TO
* $DISKUT3.
* THE ASSUMPTION IN THIS PROGRAM IS THAT THE DATA
* SET HAS BEEN WRITTEN SEQUENTIALLY. THEREFORE,
* '$DSCBNEXT' POINTS TO THE NEXT RECORD TO BE USED IN
* THE DATA SET AND $DSCBNXT-l IS THE NUMBER OF RECORDS
* CURRENTLY IN USE. WHENEVER THE FILE IS OPENED, $DSCBNXT
* IS RESET TO X'OOOl'. THE $DSCBNXT IS AUTOMATICALLY
* INCREMENTED BY THE SYSTEM AS THE RECORDS ARE ACCESSED.

* SUBTRACT DSX+$DSCBNXT,1,RESULT=REQUEST5+4

* LOAD $DISKUT3; DELETE DATA SET 'DATA2'
* AND RELEASE THE UNUSED SPACE IN 'DATA4'.

* LOAD $DISKUT3,LISTPTR2,EVENT=$DISKUT3,PART=ANY
WAIT $DISKUT3

PROGSTOP

$DISKUT3 ECB

* LISTPTRI DC

* LISTPTR2 DC

*

320 SC34-0312

o

A(LISTl)

ACLIST2)

SET INITIAL STATE TO ZERO

POINTER TO LIST OF REQUEST
BLOCK POINTERS

POINTER TO ANOTHER LIST OF
REQUEST BLOCK POINTERS

o

c

o

C;

o

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

$DISKUT3 Use Example (Cont;nued)

LIST1 DC A(REQUEST1)
DC ACREQUEST2)
DC ACREQUEST3)
DC F ' 0 ' END OF LIST FLAG

*
LIST2 DC ACREQUEST4)

DC ACREQUESTS)
DC F ' 0 ' END OF LIST FLAG

*
REQUEST1 DC F ' 1 ' REQUEST IS FOR AN 'OPEN'

DC ACDSY) DSCB FOR 'DATA3'
DC F ' 0 ' UNUSED FOR OPEN REQUESTS
DC F ' -1 ' FOR OPEN REQUESTS

* REQUEST2 DC F ' 2 ' REQUEST IS FOR AN 'ALLOCATE'
DC ACDSX) DSCB FOR 'DATA4'
DC F ' 50' ALLOCATE SO RECORDS
DC F ' 1 ' DATA SET TYPE IS 'DATA'

* REQUEST3 DC F ' 3 ' REQUEST IS FOR A 'RENAME'
DC ACDS1) DSCB FOR 'DATAl'
DC ACNEWNAME) ADDRESS OF NEW DATA SET NAME
DC F '-1 ' FOR RENAME REQUESTS

* REQUEST4 DC F ' 4 ' REQUEST IS TO 'DELETE'
DC A(DS2) OSCB FOR 'DATA2'
DC F ' 0 ' UNUSED FOR DELETE REQUESTS
DC F '-1 ' FOR DELETE REQUESTS

* REQUESTS DC F ' S' REQUEST IS TO 'RELEASE' SPACE
DC ACDSX) DSCB FOR 'DATA4'
OC A(*-*) NEW SIZE OF DATA SET
DC F ' -1 ' FOR RELEASE REQUESTS

*
DSCB DSi=DSY,DSNAME=DATA3

*
DSCB DSi=DSX,DSNAME=DATA4

NEWNAME DC CL8'RENAMED' NEW DATA SET NAME
ENDPROG
END

Chapter 16. Advanced Topics 321

DSOPEN SUBROUTINE

DSOPEN is a subrout i ne that can be cop i ed into your program. It
opens a disk, diskette, or tape data set for input and/or out­
put operations by initializing a DSCB. Only one DSCB can be
open to a tape at a time. I f a tape has been opened, a c lose must
be issued before another open can be requested. The results of
DSOPEN processing are identical to the implicit open performed
by $L or LOAD for data sets specified in the PROGRAM statement.

Use DSOPEN to open a data set after the program has begun exe­
cution.

The following functions are performed:

• Verifies that the specified volume is online

• Verifies that the specified data set is in the volume

• Initializes the DSCB

Us i ng DSOPEN adds 1056 bytes to the size of your program.

To use DSOPEN, you must first copy the source code into your
program by cod i ng:

COpy
COpy
COpy

COpy

PROGEQU
DDBEQU
DSCBEQU

DSOPEN

During execution, DSOPEN is invoked via the CALL instruction as
follows:

CALL DSOPEN,(dscb)

Four optional parameters are also available. Three are error
return addresses and the fourth is the address of an area in
which DSOPEN saves a directory control entry (DCE) and the
first directory member entry (DME).

322 SC34-0312

o

o

0

o

o

The three error ex it addresses

1 • Data set not found

2 • Inval i d VOLSER

3. I/O error

are:

rage 01 :sC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

Since the exit addresses and the area address lie within your
program, they must be initialized by your program before it
calls DSOPEN. DSOPEN automatically sets them to zero. The
labels of these fields can be found in the beginning of the
DSOPEN copy code. Si nce the four parameters are addresses
within your program, you must insert (move) them to the begin­
ning of the DSOPEN routine before calling it.

You must have Cl 256-byte work area labeled DISKBUFR in your
program. The DSCB to be opened can be DSI-DS9 or a DSCB defined
in your program v i a the DSCB statement. The DSCB must be
initialized with a 6-character volume name in $DSCBVOL and an
8-character data set name in $DSCBNAM. To reopen a data set,
the field $DSCBDDB in the DSCB must first be initialized to
zero. Other fields are ignored. The volume name can be spec i­
fi ed as 6 blanks, whi ch causes the IPL volume to be searched for
the data set.

After DSOPEN processing, #1 contains the number of the directo­
ry record containing the member entry and #2 contains the dis­
placement within DISKBUFR to the member entry. The fields
$DSCBR3 and $DSCBR4 contain the next available logical record
data, if any, placed in the directory by SETEOD. Refer to the
comments in the DSOPEN copy-code for additional detai Is.

Only one dataset on any tape volume may be open at anyone time.
Multiple datasets, in a program header, or if opened by DSOPEN,
cannot refer to more than one dataset per tape volume. If this
is attempted, the second open attempt fa i Is and takes the" IN­
VALID VOLSER" error exit.

Chapter 16. Advanced Topics 323

1ge of SC34-0312-2
s updated January 22, 1981
y TNL SN34-0685

SETEOD

SETEOD is a c·opy code rout i ne that upda.tes the directory member
e n try (D ME) 0 fad i s K\ d ire c tor y tor e fIe c t the 1 a s t r e cor d
accessed up to the po i nt in time SETEOD is invoked. Informat i on
on the DME can be found in Internal Design. The value in
$DSCBNXT (relati ve record number to be used for next sequential
READ or WRITE), minus one, is placed in the next ava; lable log­
ical record field of the OME, so that it can be retrieved by
subsequent calls of DSOPEN.

If the value of $DSCBNXT is 1 when SETEOD is performed, the DME
is set to i nd i cate t hat the data set is empty. Subsequent ca lIs
to DSOPEN cause $DSCBEOD to be set to X'FFFF', indicating that
the data set is empty. If $OSCBEOD is zero, the length of the
data set ($DSCBLEN) is used as the end-of-data (EOD) value.

SETEOO is used to indicate a logical end of file on disk. If
your program does not SETEOD when creat i ng or overwr i t i ng a
file, the READ end of data exception will occur at either the
physical end, or the logical end set by some previous use of the
data set.

SETEOD can be used before, dur i ng or at the end of either input
or output. It does not inhibit further I/O and can be used more
than once. The only requirement is that the DSCB passed as
input must have been previously oP,~ned.

The POINT function modifies the $DSCBNXT field. If SETEOD is

I used after a POINT, the relative record number pointed to,
minus one, becomes the value placed in the directory by SETEOD.

SETEOD requires that the DSOPEN copy code, PROGEQU, and TCBEQU
be included in your program. SETEOD uses the 256-byte DISKBUFR
that is also used by DSOPEN. You invoke SETEOO as a subroutine
through the Event Driven Lang~age CALL statement, passing the
DSCB and an I/O error ex i trout i ne po inter as parameters.

Us i ng SETEOD adds 318 bytes to the size of your program.

To use SETEOD, you must first copy the source code into your
program by cod i ng:

324 SC34-0312

o

o

o

o

o

COpy
COpy
COpy
COpy

COpy
COpy

PROGEQU
TCBEQU
DDBEQU
DSCBEQU

DSOPEN
SETEOO

Page of SC34-0312-2
As updated January 22, 198]
By TNL SN34-0685

Calling Sequence

where

OSl

IOERROR

CALL SETEOD,(OSl),(IOERROR)

Names a previously opened DSCB

Names the rout i ne in the app I i cat i on program to
which control is passed if an I/O error occurs.

Chapter 16. Advanced Topics 325

PROCESSING THE EOV CONDITION

Reading End-of-Volume CEOV) labels

The Event Dr i ven Execut i ve does not prov i de EOV process i ng.
However, you may elect to add EOV processing to your applica­
tion. To read a multi-volume data set the following steps can
be used:

1. Vary the tape online (specifying the SL option).

2. Execute the program, read i ng and process i ng data records.

When the end of the data set is reached, the END= exit rou­
tine of the READ statement will be entered. (If you do not
use the END option, check for return code 10.)

3. Perform a CONTROL CLSOFF operation in the END= exit or when
return code 10 is encountered.

If the return code from the CONTROL operation is a +33 (EOV
encountered), then the close processing has detected an
EOVI label. This means more data is contained on another
reel. The CONTROL completes by rewinding the tape and set­
ting it offline.

4. Issue a message (PRINTEXT) telling the operator to enter
the volume serial number of the next tape.

5. Read (READTEXT) the volume serial number supplied by the
operator from the terminal and place it in the $DSCBVOL
fie ld 0 f the DSCB used to READ the data set.

6. Issue a message (PRINTEXT) telling the operator to place
the next volume on an available tape drive and vary it
online using $VARYON.

7. After the new tape has been var i ed onl i ne, call the DSOPEN
subrout i ne to ready the data set for READ process i ng 0

Note: The new vo 1 ume must be on line ($VARYON) before DSOPEN
is called.

8. Resu.me read i ng and process i ng as soon as the tape is opened

For a sample of the operator console sheet for the reading Eay
process, see "Console Output for EOV Processing" on page 327
For a sample of a progrClm to process Cln EOV condition whi Ie
reading, see "Input EOV Processing Example" on page 329.

326 SC34-0312

o

"0"'1 l '

o

o

o

o

Support for: Resident Initiali zation

Program/Machine Check Log 250

Relocating Loader
With Addr Translator 4016 2352
Without Addr Translator 3068 2352

Floating Point Support
Included 610
Not Included 4

Support of GETEDIT/PUTEDIT
With Addr Translator 1602
Without Addr Translator 1330

Queue Processing Support 258

$DEBUG Support 384

Supervisor Patch Area 256

Figure 50. (Part 3 of 3) V2.0 Supervisor Storage Requirements

Note: The trans i ent program loader requ i res an area
of 3840 bytes which will be overlaid by the loaded
programs.

Appendix A. Storage Estimating 341

Page of SC34-0312-2
As updated January 22, 1981
By TNL SN34-0685

, I

UTILITY PROGRAMS

The storage (in bytes rounded up to the next
256 byte increment) required by the Event Driven
Executive
$BSCTRCE
$BSCUT1
$BSCUT2
$COMPRES
$COPY
$COPYUT1
$DASDI
$DEBUG
$DICOMP
$DIINTR
$DISKUT1
$DISKUT2
$DIUTIL
$ DU~' P
$EDITI
$EDIT1N
$EDXASM

$EDXLIST
$.FONT
$FSEDIT
$HCFUT1
$IAMUTI
$IMAGE
$INITDSK
$lOTEST
$JOBUTIL
$LINK
$LOG
$MOVEVOL
$PDS
$PFMAP
$PREFIND
$PRT2780
$PRT3780
$RJE2780
$RJE3780
$TERt1UT1
$TERMUT2
$TERMUT3
$TRAP
$UPDATE
$UPDATEH
$VER-IFY

utility programs:
1792
4864

19712
3584
9216
9984.

25600
6912

11264
9728
7680
9728 (+1280 if printing error log)
9216
5888
9728

11776
18944 (+5632 when assembling

TERMINAL statements)
6144
5632

22528
2304

13980
9728
6656
8960
5376

186"88
5632
6144

" 1792
512

6144
2304
2560
9728
9984
3072
8192

768
5376
7936
6400
21514

342 SC34-0312

o

c

o

o

o

o

o

SN34-0685-0 c

