
!~F,;,1: 4echnlcal Newsletter ®/I
This Newsletter No.

Date

SN34-0686

January 22, 1981

o

I

o

o

Base Publication No.

IBM Series/1
Event Driven Executive

Language Reference
Program Numbers: 5719-LM5 5719-LM6 5719-AM3

5719-XX2 5719-XX3 5719-MS1
5740-LM2 5719-LM3

© IBM Corp. 1979,1980

File No.

SC34-0314-2

SI-35

This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

3,4
4.1,4.2 (added)
11,12
27,28
33,34
34.1,34.2 (added)
37,38
43,44
44.1,44.2 (added)
45,46
49,50
61,62
65 through 68
68.1,68.2 (added)
69, 70
79,80
81
81.1,81.2 (added)
82
82.1,82.2 (added)
83,84
84.1,84.2 (added)
85
85.1,85.2 (added)

86
89,90
93,94
97,98
105 through 108
111,112
115,116
119 through 122
127
127.1, 127.2 (added)
128
149,150
163,164
169 through 172
177 through 180
183, 184
184.1, 184.2 (added)
185, 186
193,194
197,198
201,202
202.1,202.2 (added)
203 through 206
217,218

218.1,218.2 (added)
221 through 228
237,238
243 through 246
249,250
251
251.1,251.2 (added)
252
252.1,252.2 (added)
253,254
259,260
281,282
293,294
305,306
313,314
317,318
335,336
336.1,336.2 (added)
337 through 340
343,344
351 through 354
413,414
437,438

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

Corrections and editorial changes have been made throughout this book. These changes are identifiable
by a vertical bar to the left of the change.

Note. Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Systems Publications, Department 27T, P.O. Box 1328, Boca Raton, Florida 33432

Printed in U.S.A.

o

I

o

o

•

o

gram.

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

A user application program has the following basic structure:

PROGRAM
other I/O definitions

application program instructions

application program data

ENDPROG
END

A complete source program starts with a PROGRAM statement and
ends with the ENDPROG and END statements.

GENERAL INSTRUCTION FORMAT

Beginning with "Chapter 3. Instruction and Statement
Descriptions" on page 51, each instruction is described in
detail with brief remarks about the function, the syntax to be
used to invoke a particular operation, the requi red parame­
ters, and the defaults used if parameters are not specified.
Each operand (or parameter) is listed and descr i bed.

Event Driven Language instructions have the following struc­
ture:

label operation operands

The operands field in many cases has multiple entries, as indi­
cated by the following example:

label

label

operation

operands

op

The label field, containing a symbolic label with
a maximum of 8 characters. In most cases the label
is optional. If used it must start in column 1.

The operation field (or
instruct i on or statement.

op)

The operands field, containing
parameters for the instruction.
254 characters.

containing the

the operands or
Maximum length is

Chapter 1. Introduction 3

Pl=,P2=,Pn= The parameter-naming operands used to allow
mod i f i cat i on of the instruct i on parameters at exe­
cution time.

, SYNTAX RULES

Syntactical coding rules are the same as those for the IBM
Series/l Macro Assembler. Some specific rules are as follows:

• An alphabetic string is 1 or more alphabetic characters (A
- Z) or $, i, and 0), the special characters.

• An alphameric string is 1 or more alphabetic characters or
numer i c characters (0 - 9).

• All upper case letters shown in the syntax descriptions
starting in "Chapter 3. Instruction and Statement
Descriptions" on page 51 must be coded as shown. This also
applies to the comma immediately preceding the parameter
and the equal sign (=) following. For example:

,PREC=

• Ellipses (•••) indicate that a parameter may be repeated a
variable (n) number of times.

• The vertical bar (I) between two operands indicates mutu­
ally exclusive operands; one or the other can be used but
not both.

• All labels, instruction mnemonics, and parameter names
must be alphameric strings of 1 to 8 characters in length,
the first being alphabetic.

• Statement labels must begin in column 1. To continue a
statement on another line, code a symbol in column 72, for
example an asterisk (*), and begin the next line in column
16. Examples shown in this manual may not conform to the
column spacing conventions due to limitations in the
length of printed lines.

• Several instructions allow the use of immediate data or
constants. These are called self-defining terms and
improve the flexibility and ease of programming.

• Variable names, which are defined elsewhere by means of the
EQU statement, must be coded with a leading plus sign (+)

for proper compiler operation.

4· SC34-0314

o

()

c

o •

•

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Maximum number of delimeters for the operands field is 70.
Del imiters are () or , or

The following labels are reserved for system use:

Chapter 1. Introduction 4.1

o

..

o

o
4.2 SC34-0314

o

•

o

o

CONTROL BLOCK AND PARAMETER EQUATE TABLES

Application programmers sometimes wish to obtain data directly
from system control blocks when coding specialized functions
such as terminal commands (ATTNlIST exits), error exits (TASK
ERRXIT or TERMERR) or a binary synchronous commun i cat ion
application. Many parameter lists and control blocks have
equate tables which provide symbolic names for various values
and the offset of each field relative to the beginning of the
control block. Symbolic field names can be used in conjunction
with index registers (see the "Address Indexing Feature" topic
in this manual) to address the data in the control blocks. The
symbolic values are often used as parameters •

These equate tables are:

BSCEQU
CCBEQU
CMDEQU
DDBEQU

DSCBEQU
ERRORDEF
FCBEQU
IAMEQU

PROGEQU
TCBEQU
TDBEQU

Each equate table consists of a series of EQU statements which
can be included in your program using the COpy statement.
Although EQUs can be placed anywhere in a program, they are
usually grouped together at either the beginning or the end.
Some of the commonly used copy-code tables are briefly
explained in the following sections. The control blocks them­
selves are described in Internal Design.

When compiling programs with the host or Seri~s/l Macro Assem­
biers, many equate tab les are automat i ca 11 y inc 1 uded when a
PROGRAM instruction is assembled. Tables included this way are
P~OGEQU, TCBEQU, DDBEQU, CMDEQU, and DSCBEQU.

BSCEQU

The BSCEQU equate table provides a map of the control block
but It by the BSClINE system configuration statement.

BSCEQU is also the name of a macro in the macro libraries used
with the host or Series/l macro assembler. Do not attempt to
COpy BSCEQU when us i ng either macro assembler.

CCBEQU

The C.C BE QUe qua t eta b 1 e pro v ide sam a p 0 f the con t r 0 1 b I 0 c k
(CCB) bui It by the TERMINAL system configuration statement.

Chapter 1. Introduction 11

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

The CMDEQU equate tab Ie prov i des a map of the superv 1 sor' s emu­
lator command table.

DDBEQU

The DDBEQU equate tab Ie prov i des a map of the dey i ce data block
(DDB) bu i 1 t by the DISK system conf i gurat i on statement.

DSCBEQU

The DSCBEQU equate table provides a map of the data set control
block (OSCB) but It by either the PROGRAM or DSCB statements.

ilRORDEF

The ERRORDEF equate table provides symbolic values for use in
checking the return codes from the LOAD, READ, WRITE, and S8IO
instructions.

FCBEQU

The FCBEQU equate table provides a map of an Indexed Access

IMethod file control block (FCB) and its extension for use with
the EXTRACT function .

.IAMEQU

The IAMEQU equate table provides a set of symbolic parameter
values for use in constructing parameter lists for CALLs to
Indexed Access Method funct ions.

12 SC34-031 ft

o

Ii.

o

o

C)

•

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

INDEXED ACCESS METHOD INSTRUCTIONS

DELETE
DISCONN
ENDSEQ
EXTRACT

GET
GETSEQ
LOAD
PUT

PUTDE
PUTUP
PROCESS
RELEASE

The Indexed Access Method is a data management system that
operates under the IBM Series/l Event Driven Executive. It
provides callable interfaces to build and maintain indexed
data sets and to access, by key or sequentially, the records in
that data set. In an indexed data set, each of the records is
identified by the contents of a predefined field called a key.
The Indexed Access Method builds into the data set an index of
keys that provides fast access to the records. Features of the
Indexed Access Method include:

• Direct and sequential processing. Multiple levels of
indexing are used for direct access; sequence chaining of
data blocks is used for sequent i a 1 access.

•

•

•

Support for high insert and delete activity.without sig­
nificant performance degradation. Free space is distrib­
uted both throughout the data set and in a free pool at the
end so that inserts can be made in place; space provided by
deletes can be immediately reclaimed.

Concurrent access to a single data set by several request­
ers. These requests can come from either the same or dif­
ferent programs. Data integrity is maintained by a file,
block, and record level lock i ng system that prevents
access to that port i on of the file that is be i ng mod if i ed.

Implementation as an independent task. A single copy of
the Indexed Access Method serves and coordinates all
requests. The buffer pool supports all requests and opti­
mizes the space required for physical I/O; in the user pro­
gram, the only buffer required is the one for the record
currently being processed.

• An Indexed Access Method utility program which provides
the capabi lity to create, format, load, unload and reor­
gan i ze an indexed data set.

• An Indexed Access Method uti Ii ty program that ver i fi es the
status of an indexed data set and provides information con­
cerning file structure and free space distribution.

The callable functions that comprise the Indexed Access Method
are described in "Chapter 4. Indexed Access Method" on page 327
of this manual. They appear in alphabetic sequence· by their
function name, such as DELETE, DISCONN, and so on.

Chapter 2. Instructions and Statements - Overview 27

"Example 14: Use of Indexed Access Method" on page 414 is a
complete program which illustrates many of the "Indexed Access
Method services. This example should help you understand the
use of these services.

The Event Driven Executive Indexed Access Method licensed Pro­
gram (S719-AM3) is required to use these facilities.

LISTING CONTROL STATEMENTS

EJECT
PRINT
SPACE
TITLE

listing control statements are used to identify program output
listings, to provide blank lines in an assembly listing, and to
designate how much detail is to be included in the listing. In
no case are instructions or constants generated in the object
program. With the exception of PRINT, listing control state­
ments are not printed in the listing itself.

The format used to describe these instructions is the same as
that used for describing the Event Driven Executive
instruction set. However, they are part of the assembler faci 1-
ity itself and are not elements of the Event Driven Executive
instruction set.

28 SC34-0314

o

o

•

o

o

o

o

PROGRAM MODULE SECTIONING STATEMENTS

COPY
CSECT
ENTRY
EXTRN
WXTRN

The COPY statement allows you to copy into the your program a
predefined source-program module from a data set.

ll·

The CSECT statement allows you to give names to the separately
assembled modules of a program. These modules are then link­
edi ted together to form a complete program.

The ENTRY, EXTRN, and WXTRN statements prov i de the i nformat i on
which allows the linkage editor ($LINK) to resolve symbolic
address references among separately assembled program modules
during link-edit processing.

Labels defined by CSECT and ENTRY statements, along with their
addresses in the link-edited program are listed in the MAP
portion of $LINK output.

Chapter 2. Instructions and statements - Overview 33

PROGRAM SEQUENCING INSTRUCTIONS

DO
ELSE
ENDIF
ENDDO

FIND
FINDNOT
GOTO
IF

The IF, DO, and GOTO instructions provide the means for
sequencing a program through the correct logic path based on
the data and conditions generated during the execution of the
program. IF Clnd DO involve the use of relational statements
which, based on a true or false condition, determine the next
instruction to be executed. That next instruction must begin on
a full-word boundary. Relational statements consist of a com­
bination of data elements and ar-eof the following:

EQ Equal
NE Not equal
GT Greater than
LT Less than
GE Greater than or equal
LE Less than or equal

The comparison is always arithmetic. A relational statement
has the general format:

(datal,relcond,data2,width)

where:

width is optional,

relcond is one of the relational condition mnemonics,

datal and data2 are data elements coded with the same
syntax as other Event Dr i ven Language instruct ion
operands. Only data2 can contain immediate data. The
immediate data can be decimal, hexadecimal, or EBCDIC
data, must be an integer between -32768 and +32767,
and will be converted to floating-point if necessary.

34 SC34-0314

o

o

o

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I All hexadecimal constants must have a length that agrees with
the width specification.

The default data width is 1 word (16 bits). The following table
shows the allowed width specifications.

Specification

BYTE
WORD
D~'JORD

FLOAT
DFLOAT
n

Data Element Width

1 byte (8 bits)
1 word (16 bits) (integer)
Doubleword (32 bits) (integer)
Single-precision floating-point (32 bits)
Extended-precision floating-point (64 bits)
n bytes (relcond may only be EQ or NE)

Chapter 2. Instructions and Statements - Overview 34.1

o

()

o
34.2 5£34-0314

o

o

QUEUE PROCESSING

DEFINEQ
FIRSTQ
LASTQ
NEXTQ

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

FIRSTQ, LASTQ, and NEXTQ provide the user with the capability
to add entries to, or delete entries from a queue (defined by
DEFINEQ) on a first-in-first-out or last-in-first-out basis.
Entries are logically chained together and no associated data
movement ;s required in the process. An entry 1S a 16-bit word
which may, for exampl~, be a data item, a record number in a
data set, or the address of an assoc i ated data buffer. A queue
is composed of a queue descriptor (QD) and one or more queue
entries (QEs).

A QD is created by DEFINEQ and is 3 words in length. Word 1 is a
po inter to the most recent entry on a cha i n of act i ve QEs. Word
2 is a poi~ter to the oldest entry on a chain of active QEs.
Word 3 ;s a pointer to the first QE on a chain of free QEs. If a
queue is empty, words 1 and 2 contain the address of the queue
(the address of the QD). If the queue is full, word 3 contains
the address of the queue.

QEs are also created by DEFINEQ and are also 3 words in length.
I Word 1 is a pointer to the next most recent entry on a chain of
active QEs. Word 1 of the most recent entry points to the QD.

I Word 2 is a pointer to the next oldest entry on a chain of
active QEs. Word 2 of the oldest entry points to the QD. Word 3
of a free QE is a pointer to the next element in the free chain
of QEs. Word 3 of the last QE in the free chain is a pointer to
the QD. Word 3 of an act i ve QE is the queue entry as descr i bed
above.

Figure 2 on page 38 shows how a group of QEs are chained from a
QD.

Chapter 2. Instructions and Statements - Overview 37

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

QD
CHAIN

ACTIVE QE
BUFFER POOL OPTIONAL

L> r 1 "-1 ---> 1 I I '-1 ---,
.>0500130001, 1 .> 100010500 I..-JOldestr>1

r> I I I I I I entry II 1----1

11000 1- --.J r-1---12000 I I I
I I I 1 I I II r----I
1400011 I I IQueuel I I
I 1 I 1 lentryl 11-----1

I I I I 1

I I ~I ---~
I

'1..-_> 1 I I r-I -----, .> 200011000 I..-J r-> I
1 1-----1 II r----I

r-I 13000 I I 1
I I ~ I I r-I---I
I 1 IQueuel 1 I

I I I I entry I 11-----1
I I 1 I I I
I I I I IL..--_----'

I L-_> I 1 I r-I ---,
I 1 L ____ > 300012000 I..-JMost r>1
! I I I recentl
I I 10500 I,entry I
I I I I I I
1 I IQueuel-1 I

I I lentryl I'
I I I I I
IL-----I I

I I
1 I
I L>

I
I

FREE QE CHAIU
1 I

40001 I

1

I I
I I
I I
15000 1-,
11.-_---11 I

I

I
L->

1 1
50001 I

I I
I I
I I
I 0500 I~
IL..--_----J' I

I

Figure 2. The Control Mechanism of Queue Processing

38 SC34-0314

o

O~,I
IJI,'

o

o

o

Storage LOAD

PRIMTASK PROGRAM

• • •
ATTACH TASK1

• • •
PROGSTOP

i-~ TASK1 TASK

• • •
ATTACH TASK2

• • •
ENDTASK

'-~ TASK2 TASK

• • •
LOAD PROGL

• • •
ENDTASK

I
ENDPROG
END

PROGL PROGRAM

• • •
ATTACH TASKA

• • •
PROGSTOP

~ ~ TASKA TASK

• • •
ENDTASK

I
ENDPROG
END

I

I
-

Overview of the functions

A

B

C

PROGRAM
TASK
ATTACH
LOAD
ENDTASK
PROGSTOP
ENDPROG
END

B~ PROGL

I

D

Concu rrent execution

Ref. PRIMTASK TASK1

A- -

B- -

C- -

D- -

TASK2

Figure 3. The Concurrent Execution of Multlple Tasks

PROGL TASKA

Chapter 2. Instructions and Statements - Overview 43

ge of SC34-0314-2
AS updated January 22, 1981
By TNL SN34-0686

TERMINAL I/O INSTRUCTIONS

DEQT
ENQT

.ERASE
GETVALUE

IOCB
PRINTEXT
PRINTIME
PRINDATE
PRINTNUM

READTEXT
RDCURSOR
QUESTION
TERMCTRL

With few exceptions, you can write the terminal I/O
instructions in an application program without concern for the
type of terminal used or its hardware address. The terminal
used by a program is assigned dynamically by the system as the
one used to invoke the program and may vary from one invocation
to the next without program change. Exceptions to this rule may
exist with terminals which use special control characters or
wh i ch have un i que hardware capab iii ties such as graph i cs oper­
ations. Certain screen-oriented instructions are applicable
only to the IBM 4978/4979 display.

The Event Driven Executive provides facilities to prevent con­
flicts amon~ multiple programs using the same terminal. Each
individual operation <read, write, or control) acquires exclu­
sive control of the terminal for its duration. If you desire
e xc I us i v e con t r 0 I for the d u r at i on 0 f a seq u e n ceo f
instructions, for example to print a report, you can use the
ENQT and DEQT instruct ions.

Error Handling

The application program can provide response to errors by means
of the TERMERR oprand in the PROGRAM and TASK statements. In
programs or tasks for which the TERMERR operand is coded with
the label of an instruction, control is given to that instruc­
tion when an unrecoverable terminal I/O occurs. At that point
the task code word, whose label is the task name, contains the
error code, and the following word contains the address of the
instruction during which the error occurred. If TERNERR is not
coded, the error code is available in the task code word but
program flo~." 1'S not interrupted. Error codes are shown with
the READTEXT and PRINTEXT instructions in this manual and in
the ut iii ties, Operator Commands, Program Pr~at i on, Mes­
saqes and Codes. Use of TERMERR is the recommended method for
detecting errors because the task code word is subject to mod­
if i cat i on by numerous system funct ions and may not always
reflect the true status of the terminal I/O operations.

44 SC34-0314

o

o

o

o

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Because TERMERR recei ves control only when an actual I/O error
occurs, it is important to note the way a PRINTEXT statement
executes. A PRINTEXT statement does not result in immediate
I/O operation or possible I/O error unless the TEXT statement
contains an @ character or, the SKIP oprand is specified in a
subsequent PRINTEXT statement. This information should be
cons i dered when cod i ng a TER~lERR rout i ne.

Note that any I/O error that occurs during the execution of the
PRINTNUM instruction does not cause control to be passed to
TERMERR.

End 0 f For m 5 : I f y 0 1I h a vec.o d edt h e T E R MER R 0 per and 0 n you r
PROGRAM or TASK statement, your error routine wi 11 get control
on an end-of-forms condition or a paper jam condition. If you
have not coded tile TERMERR operand then on end-of-forms or a
paper jam condition the terminal I/O task ~Jill enter a wait
state.

TERMERR will not get control under the following two
conditions: Ca) a 4973 printer is switched to the Disable
position, or (b) a 4974 printer is switched to the Wait posi­
tion. These conditions cause the terminal I/O task to enter a
w a 1 t s t Cl t e wit h nor ega r d for -T E R t1 ERR cod i n 9 •

Chapter 2. Instructions and Statements - Overview 44.1

o

()

o
44 2 . SC34-0314

o

0"',
'/

o

Data Representation

output: Normally, alphameric text data to be written to a ter­
minal is represented internally as a string of EBCDIC charac­
ters. The system translates the data to the code expected by
the device. Means are also provided for writing untranslated
data to the device for special purposes.

Integer numeric data is represented internally as binary inte­
gers of single-precision (2 byte) or double-precision (4
byte), or as floating-point numbers of single-precision (4
byte) or extended-precision (8 byte). You can specify trans­
lation to a designated external graphic form with numeric out­
put instructions.

In put: Pro g ram sma y r e que s t, en try 0 f "t ext d a t a i n w 0 r d mod e
without imbedded blanks. When several words are entered on a
line, they must be separated from each other, and from any
numeric entries on the same line, by one or more blanks. Pro­
grams such as the text-editor uti lity wi 11 also expect data
entry in line mode, in loJhich case the entire input line is
stored internally as a string of EBCDIC characters. The ENTER
key terminates an input operation in either word mode or line
mode.

Integer numeric entries may be either decimal or hexadecimal,
depend i ng upon the pr ogram reque,st. Dec i ma I entr i es may
include a plus (+) or minus (-) sign. When multiple numeric
entries are made on the same lin~, the entries may be separated
by blanks or by the delimiters comma (,) or slash (/). In con­
junction with this rule, there are two means of indicating
omitted values in a numeric sequence, namely the use of an
asterisk (*) or two consecutive delimiters. Omitted values
result in no change to the corresponding internal values, and
their interpretation depends upon the utility or application
program requesting the input. Allowable ranges for integer
numeric input are given with the DATA instruction description
in" C hap t e r 3. Ins t r u c t ion and S ta t e men t De s c rip t ion s" 0 n p age
51 .

Forms Control

In order to ~chieve a high degree of device independence, all
terminals, whether their display media be perforated paper,
paper rolls, or electronic display screens, are treated
according to line printer conventions. This means that within
the limits imposed by differing page sizes and margins, the

Chapter 2. Instructions and Statements - Overview 45

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

output frow an application program will be identical in format
for all terminal types. It is also possible to exercise direct
control of forms movement by using the direct I/O capabilities
of terminCll I/O at the expense of device independence.

The forms control keyword pClrameters are common to several of
the termi n13l I/O instruct ions. The values spec if i ed for Clny of
the forms control pClraineter's (SKIP, LINE, or SPACES) mClY be
either constants or variables, and they may be indexed. Note
that when forms parameters are speci fied on an I/O instruction,
the forms operation always takes place before the data trans­
fer.

Output L; ne Buffer; n9: Two success i ve output instruct ions
without the occurrence of the SKIP or LINE options, or the new
line chClracter @, result in concatenation of the data to form a
single output line. The line is not displayed until a new line
is indicated or the terminal is released through an explicit
DEQT command, or the program terminates, or an input operation
is performed. The default on TERMINAL and IOCB statements is
o V F LIN E = NO. ~J hen 0 V F L I t~ E = t~ 0 i sin e f f e c tan d con cat e nat e d 0 u t -
put exceeds the line-buffer capac i ty, subsequent output is
lost until a new line indication is given or PRINTNUt1 issued.
HO~-Jever, you can allow the generation of overflow lines by cod­
i n g 0 V F L I I~ E = YES .

Forms Interpretation for Electronic Display Screens: The
PAGSIZE parameter for the IBM 4978/4979 Display is forced to
24, The margin settings TOPM,BOTM,LEFTM and RIGHTM delimit a
logical screen which may be accessed independently of other
logical screens. Onc~ a logical screen has been defined and
accessed, all I/O and forms control operations are defined rel­
at i VE? to the marg ins of that screen. See the TERMCTL, ENQT, and
lOeB statements in "Chapter 3. Instruction and St()tement
Descriptions" on page 51. Screen operations are described more
fully under "Screen Management" on page 48.

Burst Output With Electronic Display Screens: Whenever the
number of consecutive output lines r~aches the logical screen
s i z e (B 0 T M - TOP~' + 1), the s y s tern will sus pen d fur the r o'u t put,
allowing the terminal operator to view the display. Upon oper­
ator signal (pressing the ENTER key on the 4978 or 4979), out­
put continues until the screen is ~gain filled or a pause for
input occurs.

Prompting and Advanc~ Input

As a terminal user, your interacti.ve response with an applica­
tion or uti lity program is generally conducted through prompt­
ing messages which request you to enter data. Once you have
become fami liar with the dialogue sequence, however, prompting
becomes less necessary. The instructions READTEXT and
GETVALUE include a conditional prompting option which enables

46 SC34-0314

o

()

o

o

C",~ ~,
)

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

entire screen image before data entry.
therefore distinguished from roll screens
ways:

stat i c screens are
in the following

"

• Forms control operations which would cause a page-eject
for roll screens simply wrap around to the top for static
screens. No automatic erasure is performed; selected
portions of the screen are erased with the ERASE command.

• Protected fie Ids may be wri tten; th i s funct ion is not
available for roll screens.

• The cursor position, relative to th~ logical screen mar­
gins, may be sensed by the app I i cat i on program through the
RDCURSOR command.

• Input operations di rected to static screens normally do
not cause a task suspension wait for the ENTER key; they
are executed immediately. This allows the program to read
selected fields from the screen after the entire display
has been modified locally without program interaction by
the operator. Operator/program signaling is provided
through the program function keys and a special
instruction, WAIT KEY.

• In order to allow convenient operator/program interaction
to take place on a static screen, the QUESTION, READTEXT,
and GETVALUE instructions are executed as if they were
directed to a roll screen (automatic task suspension for
input). READTEXT and GETVALUE are treated this way only
when a prompt message is spec i f i ed in the instruct i on.

• The character 0.' is treated as a normal data character. It
does not i nd i cate new line.

The utility program $IMAGE (see Utilities, Operator Commands,
Pro.9.l:E.m Preparation, Messaoes and Codes) can be used to
construct formatted screen images in a user-interactive mode
and save them in disk or diskette data sets. In add it i on, the
images may be retrieved and displayed by application programs
through the use of system prov i ded subrout i nes. See "Formatted
Screen Images", in the System Gu i d~ for deta i Is.

Operator Signals: An application program may wait at any point
for a 4978/4979 terminal operator to press the ENTER key or one
of the program function keys. This is done by issuing the WAIT
KEY instruction.

When a key is pressed and the program operation resumes, the
key is identified in the second task code word at taskname+2
(see "Attention Handling" on page 47). The code value for the
ENTER key is 0, which is converted to a -1 by EDX. For the pro­
gram function keys, the value is the integer corresponding to
the the assigned function code; 1 for $PFl, 2 for $PF2, and so
on.

Chapter 2. Instructions and Statements - Overview 49

The program function keys do not generate attention interrupts
during execution of the WAIT KEY instruction. They only cause
that instruction to terminate, allowing subsequent
instructions to be executed.

TIMING INSTRUCTIONS

GETTIME
INTIME
PRINDATE
PRINTIME
STINER

The timing functions are used in many different ways in the
Event Driven language programs. The time-of-day clock can be
displaye~ or it can be stored for data collection purposes. It
can also be used to start and stop the execut i on of tasks.

Interval timers are also avai lable for use by user programs and
have a minimum time increment of 1 millisecond. The 4952
clock/comparator and the 4953/4955 timer feature #7840 are
supported.

50 SC34-0314

o

o

o

o

ATTNlIST

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

ATTNLIST

Task Control

The ATTNLIST statement provides entry to one or more user writ­
ten asynchronous attention interrupt handling routines. When
the attention key is pressed on a user terminal, the system
wi 11 query the user for a 1-8 character command. By con­
vention, commands beginning with $ are reserved for system use.
All other character combinations are allowed.

The ATTNLIST statement produces a list of command names and
associated routine entry points. Therefore, do not place the
ATTNLIST statement between executable instructions. If the
command entered matches one that is spec if i ed in the list, con­
trol passes to the associatE~d user routine. However, if a
user-routine entry point is not found, no action occurs, just
as if the system query response had not matched any entry in the
ATTNLIST.

The ATTNLIST allows you to control programs interactively from
a terminal. These routines should be short because they are
executed on hardware interrupt levelland may interfere with
the execution of any other application programs. These rou­
tines must end with an ENDATTN instruction. Your program and
the ATTNLIST r'out i ne execute asynchronously.

The next instruction to be executed will be the one following
the instruction that was being executed when the ATTNLIST rou­
tine was entered.

The ATTNLIST statf'ment can have only one list coded. The list
can be up to 254 characters long and can contain a total of 24
ATTNLIST entries. A program may contain one LOCAL ATTNLIST
statement and one GLOBAL ATTNLIST statement.

Coding of a LOCAL or a GLOBAL ATTNLIST causes a special
ATTNLIST task control block (named $ATTASK) to be generated
within your program. Routines invoked by ATTNLIST statements
operate under the ATTNLIST task asynchronously with the other
user or system tasks. System operator commands, however, oper­
ate as part of the system keyboard task within the supervisor.
The following instructions are not recommended for use in an
ATTNLIST routine: DETACH, ENDTASK, PROGSTOP, LOAD, STIMER,
WAIT, TP, READ, WRITE, ENQT, and DEQT.

If the $ DEB U G uti Ii t y program i s to be used to test your
program, then the $DEBUG commands, listed in the utilities,
Operator Commands, Program Preparation, Messages and Codes
cannot also be defined in an ATTNLIST in the program to be
tested.

Chapter 3. Instruction ~nd statement Descriptions 61

ATTNLIST

Syntax

label

SCOPE=

Required:
Defaults:

ATTNLIST (ccl,locl,cc2,loc2, ••• ,ccn,locn),
SCOPE=

Indexable:

ccltloc!
SCOPE=LOCAL
none

Operands Description

eel

loci

The command i dent if i cat i on requ i ring 1- to 8-
alphameric characters. One exception is that $ is
reserved for system use as a first character,
except as noted under "Attention Handling" on page
47. The use of the 4979/4978 terminal program func­
tion keys to invoke ATTNlIST routines are defined
there. Also see use of $DEBUG commands in ut ili­
ties, Operator Commands, Program Preparation, Mes­
~s and Codes.

Name of the rout i ne to be invoked.

SCOPE= An indicator of where the ATTNLIST is invoked from,
either GLOBAL or LOCAL. GLOBAL allows the ATTNLIST
command routines to be invoked from any termi nal
assigned to the same storage partition. LOCAL lim­
its the invoking of the commands to the speci fic
terminal (assigned to the same partition) from
wh i ch the program conta in i ng the command was
loaded. This is based on the premise that the parti­
tion assignment of the terminal has not been dynam­
ically changed by a $CP command. A program may have
one LOCAL ATTNLIST and one GLOBAL ATTNLIST.

Note: The following conditions apply to the ATTNLIST:

1. The $EDXASM compiler allows only one list with a maximum of
254 characters.

2 • The Series/l macro assembler and host assemblers allow
multiple lists but with a maximum of 125 characters per
1 i st •

62 SC34-0314

o

o

o

o

o

BUFFER

Page of SC34-0314-2
As updated January 22", 1981
By TNL SN34-0686

BUFFER I

Data Definition

The BUFFER statement defines a data storage area. The standard
buffer contains an index, a length, and a data buffer. The
index may be used to indicate the current total number of words
stored in the buffer. Both the index and the data buffer are
initialized to O.

C e r t a i n ins t r l.1 c t ion s, for e x a In pIe I NT I ~1 E and S BID , h a v e a n
optional ind£x~ng facility wherein they can be used to add new
entries sequ~l"Itially to a buffer by implicitly referencing and
incrementing the index word. The index can be thought of as a
subscript to a one dimensional array. If a buffer becomes full
and i 5 t 0 b e (' e use d, the i n d e x W 0 r d m u 5 t b ere set toO. E x ami n a -
tion of the index word also indicates hOl-·J many entries are cur­
rently in use in a buffer. You may assign a name to the index
word in the BUFFER statement to provide for .such program refer­
ences.

BUFFER can be used to define the speciali zed storage area
needed for use wi th the Host Commun i cat i on Fac iIi ty TP
READ/\·JRITE instruction, and can also be used with the Terminal
I/n instructions. Use of BUFFER for terminals is explained
under the IOCB statement.

For a physical layout of a buffer see Figure 5 on page 67.

Syntax

label

Required: I O;faults:
~dexable:

Operands

count

BUFFER

count
item=WORD
none

count,item,INDEX=

Description

The length of the buffer in terms of the item spec­
ified. In addition to the buffer itself, 2 words
of control information are allocated.
program includes a READ instruction,
area should be a multiple of 256 bytes.

If the l:fser
the buffer

Chapter 3. Instruction and statement Descriptions 65

BUFFER

item

INDEX=

Buffer type i nd i cator. Code BYTE or BYTES if the
buffer length is defined in terms of bytes. Code
WORD or WORDS if the buffer length is defined in
terms of words. The default for this operand is
WORD.

Code TPBSC to generate a buffer for use with the TP
READ and WRITE statements (Host Communications
Fac i 1 i ty). BUFFER length must be spec if i ed in
bytes if TPBSC is used.

A symbolic name assigned to the buffer index word.
The parameter cannot be used if the item parameter
is coded as TPBSC.

Note: Count and INDEX are maintained in terms of the number of
data items (words or bytes) which the buffer can contain (total
size) or currently contains, respectively. Index m~y also be
regarded as the displacement of the next avai lable location
relati ve to the start of the buffer.

66 SC34-0314

o

o

o

o

o

Standard BUFFER

label BUFFER count,item,INDEX=name

TPBSC BUFFER

label BUFFER

J I
name index

count

label x

x

x

x

0

0

0

0

0

count, TPBSC

Lcount

pad

request

'--------... label

data

pad

Figure 5. BUFFER Statement

I

} 2 words

index-

size in bytes

Count in
bytes or
words

1 word

DLE/STX 1 word

TP request block 8 words

'count'
bytes

ETX 1 word

Chapter 3. Instruction and Statement Descrip~ions 67

rage 01 ;:)L')"-U')JLt-~

As updated January 22, 1981
By TNL SN34-0686

I CALL

CALL

Program Control

The CAll instruction executes a user-written or system subrou­
tine. Up to five parameters may be passed as arguments to the
subroutine. The fir~st instruction of the subroutine is identi­
fied by a SUBROUT statement. If the called subroutine 1s a sep­
arate object module to be link-edited with your program, the~
you must also code an EXTRN statement for the subroutine name
in the calling program.

Syntax

label CALL name,parl, ••• ,par5,P!=, ••• ,P6=

Required: name
Defaults: none
Indexable: none

Operands

name

parn

Description

The name of the subroutine to be executed.

The parameters assoc i ated wi th the subrout i ne. The
following ure passed to the subroutine:

• up to five, explicit, single precision, integer
constants

or

• symbolic label of single precision, integer
constants

or

• null parameters

The actual constant or the value at the named
location is moved to the corresponding subroutine
parameter. Updated values of these parameters are
returned by the subroutine.

68 SC34-0314

o

o

o

o

o

o

If the parameter name is enclosed in parentheses,
for example, (parI), the address of the var i able is
passed to the subroutine parameter. Such an
address may be the label of the f i rst- word of any
type of data item or data array. Within the subrou­
tine it wi 11 be necessary to move the passed address
of the data item into one of the index registers, #1
or #2, in order to refer to the actual data item
location in the calling program.

If the parameter name enclosed in parentheses is a
symbol def i ned by an EQU statement, the value of the
symbol is passed as the parameter.

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Chapter 3. Instruction and Statement Descriptions 68.1

o

c

o
68.2 SC34-0314

o

c

o

Px=

Example

Page of SC34-0314-2
As updated January 22,1981
By TNL SN34-0686

CALL

If the parameter to be passed is the value of a sym­
bol defined by an EQU statement, it can also be pre­
ceded by a plus (+) sign. This causes the value of
the EQU to be passed to the subroutine. If not
preceded by a +, the EQU is assumed to represent an
address and the data at that address is passed as
the parameter.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

CALL

CALL

PROG,5, The value 5 and the null parameter
o is passed to PROG

SUBROUT,PARMl,(PARM2),+FIVE

The parameters passed to SUBROUT
are the contents of PARMI, the
address of PARM2 and the value
of the EQU symbol FIVE

Figure 6 shows the contro I f low when us i ng a CAL L statement.

•
•
•

CALL name1 SUB ROUT name1
• • ...-
• •

• CALL name2 SUB ROUT name2

• ~ •
• •

- RETURN •
•

~ RETURN

Figure 6. Execut i on of Subrout i nes

Chapter 3. Instruction and Statement Descriptions 69

CALLFORT

CALLFORT

Program Control

The CALLFORT instruction calls a FORTRAN program or subroutine
from an Event Driven Executive program. If a FORTRAN main pro­
gram is called, the name you specify on the name parameter is
the name coded in the FORTRAN PROGRAM statement or the default
name MAIN if no PROGRAM statement was coded. If a FORTRAN sub­
routine is called, specify the subroutine name. Parameters may
be passed to FORTRAN subroutines. Standard FORTRAN subroutine
conventions apply to the use of CALLFORT.

For a more complete description of the use of the CALLFORT
statement, see the IBM Series/! FORTRAN IV Licensed Program
5719-FOl, F03, User's Guide, SC34-0134.

Syntax

label CALLFORT name,(al,a2, ••• ,an),P=(pl,p2, •• pn)

Requ ired:. name
Defaults: none
Indexable: none

Operands Description

name

P=

The name of a FORTRAN program which consists of 1 to
6 alphabetic or numeric characters, the first of
which must be alphabetic. This name, or entry
po i nt, must a I so be coded in an EXTRN statement.

Each a is an actual argument that is be i ng suppl i ed
to the subrout i ne. The argument may be a constant, a
variable, or the name of a buffer.

Parameter naming operands (See "Use of The
Parameter Naming Operands (Px=)" 011 page 8 for fur­
ther descriptions). A list of names of up to 8
characters each can be provided. These names are
ass i gned to the parameter 1 i st entr i es for the
arguments specified in the a operand in the order
specified.

70 SC34-0314

o

o

o

o

CONVTB

CONVTB

Data Formatting

The CONVTB instruction converts a binary value to an EBCDIC
string. Both integer and floating-point formats are provided.
In addition, both the normal floating-point notation and E
notat i on are prov i ded.

label

Required:
Defaults:

CONVTB

opndl,opnd2
PREC=S,FORMAT=(6,Q,I)

Indexable: opndl,opnd2

Operands

opndl

opnd2

PREC=

Description

The name of an area in storage where the converted
results will be placed. The address must be the
leftmost byte of the area. The converted results
will be in EBCDIC.

The name of the variable to be converted to EBCDIC.
You must know the format of the data. The following
opnd2 types are supported:

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

1 word
2 words
2 words
4 words

The PREC keyword is used to specify the form of
opnd2. The allowable values are:

S - Single-precision integer
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

FORMAT=(W,D,T) The format of the value converted.

Chapter 3. Instruction and Statement Descriptions 79

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I CONVTB

W = Field width in bytes of EBCDIC field

o = Number of digits to the right of decimal point.
Valid for floating-point variables only. For
integer values, code a 0 here.

T = Type of EBCDIC Data as follows:

1- Integer XXXX

F- Real number XXXX.XXX

E- Real number of exponent (E) notation

This notation uses the form:

SX.XXESYY

where:

5 = Optional sign character (+ or -), default = (+)
X = Characteristic, 1 to 6+ digits (for PREC=E, or

15 digits for PREC=l.)
Note: Some but not all 7 digit characteristics

o

can be represented by a 4 byte '(-
flo a tin g - poi nt, bin a r y n u III b e r . 1\.)

Px=

= Decimal point anyplace within characteristic
E = Designation of E notation
YV = Mantissa,' range -85 to +75. The base is 10.

Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions.

Following are the return codes returned at taskname (See
PROGRAM/TASK statements).

Return Codes

Code

-1
3

Description

Successful completion
Conversion error

~rat ion: The Convert Binary to EBCDIC instruct i on accepts
both integer and floating-point variables and converts them
into an EBCDIC character str i ng. The format of the EBCDIC

80 SC34-0314

o

o

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

CONVTB I
character str i ng is def i ned by the use of the operands PREC and
FORMAT. The following examples should help define the capabi 1-
ities of this instruction.

Ex~mples:

This example demonstrates a use of the CONVTB instruction.

HEADER

* CONVERT

EQU *
READTEXT TITLE,TITLEMSG
PRINTEXT SK"IP=4

EQU *
CONVTB ENUMEXP,BNUMEXP
PRINTEXT '@NUMBER OF EXPERIMENTS CONDUCTED: ' X

SKIP=l
PRINTEXT ENUMEXP

* CONVTB EMANHRS,BMANHRS,PREC=F,FORMAT=(10,2,F)
PRINTEXT '~TOTAL MANHOURS EXPENDED X

ON PROJECT: ',SKIP=!

* PRINTEXT EMANHRS

* CONVTB EAVERAGE,BAVERAGE,PREC=L, X
FORMAT=(20,!4,E)

PRINTEXT '~AVERAGE PENETRATION IN CONCRETE X
(MILLIMETERS) : '

*
PRINTEXT EAVERAGE

•
•
•

BNUMEXP DATA F ' 0 ' BINARY VALUE - # EXPERIMENTS
ENUt1E XP TEXT LENGTH=6 EBCDIC VALUE - # EXPERIMENTS
BMANHRS DATA 0' 0 ' BINARY VALUE - MAN-HOURS USED
EMANHRS TEXT LENGTH=8 EBCDIC VALUE - MAN-HOURS USED
BAVERAGE DATA D' 0 ' BINARY VALUE - AVERAGE RESULT
EAVERAGE TEXT LENGTH=20 EBCDIC VALUE - AVERAGE RESULT
TITLE TEXT LENGTH=40
TITLEMSG TEXT 'ENTER A 40 CHARACTER TITLE FOR YOUR

REPORTS'

If the initial value of BNUMEXP is X'0038', the BMANHRS value
is X'431BOCOO', and BAVERAGE is X'4087915E8CA84482', the above
section of code will produce the following lines of output:

FINAL STATISTICS FOR THIS PROJECT FOLLOW : '

Chapter 3. Instruction and Statement Descriptions 81

X

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

NUMBER OF EXPERIMENTS CONDUCTED : 56

TOTAL MAN-HOURS EXPENDED ON PROJECT

AVERAGE PENETRATION IN CONCRETE
(MILLIMETERS) : .52956191000000E+00

432.75

The following are prototype statements of the CONVTB instruc­
tion.

Integer Example

CONVTB TEXTA,VAlUE,PREC=S,FORMAT=(8,O,I)

VALUE
TEXTA

DATA
TEXT

F'12345'
LENGTH=8

The value 12345 in the variable VALUE will be converted to
EBCDIC at TEXTA in the following format:

bbb12345

If conversion of double-precision integers is required, then
PREC=D is coded.

Floating-Point Example

VALUE
VALUEl
TEXTB
TEXTl

CONVTB
CONVTB

DATA
DATA
TEXT
TEXT

TEXTB,VAlUE,PREC=F,FORMAT=(15,4,F)
TEXTl,VALUEl,PREC=L,FORMAT=(20:14,E)

E'62421.16'
L'4926139.2916'
LENGTH=15
LENGTH=20

The following EBCDIC character strings would result (b repres­
ents blanks):

TEXTB=bbbbb62421.1600

TEXTl=b.49261392916000Eb07

Remember that the conversion routines assume that the type of
variable to be converted is as specified by the PREC operand.
If the internal format of the variable is something other than
speci fied by the PREC operand, incorrect results wi 11 occur.

81 . 1 SC34-0314

o

o

o

c

o
Chapter 3. Instruction and Statement Descriptions 81.2

CONVTD

CONVTD

Data For'matt i ng

The CONVTD instruct i on converts an EBCDIC character str i ng to a
binary arithmetic value. Both integer and floating-point var­
iables are allowed.

label

Required:
Defaults:

CONVTD opndl,opnd2,PREC=,FORMAT=,Pl=,P2=

opndl,opnd2
PREC=5,FORMAT=(6,Q,I)

Indexable: opndl,opnd2

Operands

opndl

Description

The name of a variable where the result of the
convers ion is to be stored. You must insure that
enough space is reserved to accommodate the
results.

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

1 Word
2 Words
2 Words
4 Words

82 5C34-0314

o

o

opnd2

o

..

c

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

The address of the first character of the EBCDIC
character string.

Allowable ranges for data values

Single-precision integer
Double-precision integer

Single-precision floating-point

Extended-precision floating-point

are:

-32768 to 32767
-2147483648 to
2147483647

6+ decimal
digits*

15 decimal
digits*

Note: Some but not all 7 digit characteristics can
be represented by a 4 byte, floating-point, binary
number.

*Exponent range is
from 10 to the
-85th through 10
to the 75th.

Chapter 3. Instruction and Statement Descriptions 82.1

o

()

o
82.2 5C34-0314

o

•

o

•

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

CONVTD

PREC= The form of opndl.

S Indicates single-precision integer
D Indicates dotible-precis~on integer
F Indicates single-precision floating-point
L Indicates extended-precision floating-point

I FORMAT=(W,D,T) The format of the value being converted.

w = Field width in bytes of EDCDIC field

D = Number of implied decimal positions i f no
decimal point i s i n input (valid for floating

Px=

point only). For integer values code a o .

T = Type of EBCDIC data as follows:

I Integer xxxxx

F Real number xxx.xx

E Real number in E notation (see CONVTB for
a description of E notation)

Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions.

Following are the return codes returned at taskname (See
PROGRAM/TASK statements).

Return Codes

Code

-1
1
2
3

Description

Successful completion
Inval i d data encountered dur i ng convers i on
Field omitted
Conversion error

Operation: The Convert EBCDIC to Binary instruction accepts a
variety of input formats. The following examples will help to
def i ne the var i ous types accepted.

Chapter 3. Instruction and statement Descriptions 83

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

CONVTD

Integer E)(amQ.J..g,

VALUE
TEXT

CONVTD

DATA
TEXT

VALUE,TEXT,PREC=S,FORMAT=(8,0,I)

F ' 0 '
'12345',LENGTH=8

The value in EBCDIC, 12345, will be converted to a single pre­
cision binary value and stored at VALUE as X'3039'. Double­
precision integers can also be converted by using the PREC=D
parameter and using a 2 word variable at VALUE.

Floating-Point E)(a~

VALUE
VALUEl
TEXTI
TEXT2

CONVTD
CONVTD

DATA
DATA
TEXT
TEXT

VALUE,TEXTl,PREC=F,FORMAT=(10,2,F)
VALUEl,TEXT2,PREC=L,FORMAT=(15,0,E)

2 F ' 0 '
4F'O'
'100.5',LENGTH=lO
'O.1005E3',LENGTH=15

Both values shown in the TEXT statements result in the same
binary data values being stored in the two DATA statements.
The only difference is that at VALUEl an e)(tended-precision
value is stored.

The following example demonstrates a use of the CONVTD instruction:

CONVERT

*

*

*
*
* UNIT
BUNIT
~1ILES

BMILES
RESPONSE
BRESPONS

EQU *
READTEXT UNIT,@ENTER UNIT NUMBER
CONVTD BUNIT,UNIT,PREC=S,FORMAT=(6,0,I)

READTEXT
CONVTD

READTEXT
CONVTD

•
•
•

TEXT
DATA
TEXT
DATA
TEXT
DATA

MILES, 'dENTER MILES FROM FIRE'
BMILES,MILES,PREC=F,FORMAT=(10,4,F)

RESPONSE,'@ENTER UNIT RESPONSE TIME'
BRESPONS,RESPONSE,PREC=L,FORMAT=(15,8,E)

LENGTH=6
F ' 0 '
LENGTH =10
D' 0 '
LENGTH=15
2 D' 0'

EBCDIC VALUE/UNIT 1.0.
BINARY VALUE/UNIT 1.0.
EBCDIC VALUE/MILES FROM FIRE
BINARY VALUE/MILES FROM FIRE
EBCDIC VALUE/RESPONSE TIME
BINARY VALUE/RESPONSE TIME

84 SC34-0314

o

o

•

o

o

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Assuming that unit i 6553 took 42.45292378 minutes to respond
to an alClrm for Cl fire 41.5429 miles from the station, the val­
ues would be:

UNIT
BUt~IT

t·n L E S
B~lI L ES
RESPONSE
BRESPONS

.E.Itc Ql~
6553bb

N/A
41.5429bbb

N/A
42.45292378bbbb

N/A

HJ; X~.lt~C I M A.h
X'F6F5F5F34040'
X'1999'
X'F4F14BF5F4F2F9404040'
X'{t2298AFB'
X'F4F24BF4F5F2F9F2F3F7F840404040'
X'422A73F2D016AE42'

The EBCDIC field should contain only those characters that are
valid for the operation being performed. For example:

• Integers

Leading blanks
Sign character + or -
Digits 0 through 9
Tra iii ng blanks

• Floating-point

Lead i ng blanks
Si gn character + or -
Digits 0 through 9
Decimal-point
The character E, if E notation, followed by a sign
character, + or -, or the digits 0 through 9.

Chapter 3. Instruction and Statement Descriptions 84.1

o

o
84.2 SC34-0314

o

c

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

COI~VTD I
The following deal with integer and floating-point characters
as previously defined.

• A comma (,) or slash (/) is treated as a delimiter. The
remainder of the field is not scanned

If the data was found preceding the delimiter, the value is
returned in the target field and "successful completion"
(-1) is indicated

If no data was found preceding the delimiter, the target
field is unchanged and "field omitted" (2) is indicated

• . An asterisk (*) or period (.) in an integer field:

•

is treated as an invalid character if preceded by data.
The value is returned to the target field and "invalid data
occured during conversion" (1) is indicated

is treated as a del imi ter if not preceded by data

The target field is unchanged and "field omitted" (2) is
indicated

Any other character
treated as invalid,
trailing blanks

(like an
including

alphabetic chClrClcter) is
characters that follow

If data was found preceding the invalid character, the val­
ue is returned in the target field and "invalid elata
occured during conversion" (1) is indicated

If no dClta was found preceding the invalid character, the
target field is unchanged and "conversion error" (3) is
indicated

If the field contains only blanks, or only blanks and a sign,
the value zero is returned in the target field and "successful
completion" (-1) is indicated.

If the value is outside the allowable range, the value of the
target field is unknown and "conversion error" (3) is
indicated.

If the field contains a decimal point, the target field remains
unchanged and "field omitted" (2) is indicated. The decimal
point in a floating-point field must be preceded by blanks and
followed by a blank. A sign preceding the decimal point yields
a target value of zero and "successful completion" (-1) is
indicated.

Chapter 3. Instruction and statement Descriptions 85

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

For example, using the default format (6,0,1) produces the
results shown by the following table:

R E TU ~ ~~
INPUT COD:: OUT?UT

12 -1 12
12, -1 12·
12/ -1 12

-1 0
12C 1 12
12.B 1 12
12 C 1 12

2 v (target fi'eld unchanged) A

/ 2 X (target field uncnClnged)

* 2 X (tGjrget field unchanged)
2 v (tCJrget field unchtinged) A

A 3 X (target field unchanged)
1234567 3 ?? (vCllue of target field unknown)

85.1 5C34-0314

o

o

o

o
Chapter 3. Instruction and Statement Descriptions 85.2

COpy

COpy

Program Module Sectioning

The COpy instruction copies a predefined source program module
into your program. The module to be cop i ed mllst ex i st ina disk
or diskette data set. The spec if i ed source statements ar e
copied immediately following the COpy statement. The program
module to be copied must not contain a COpy statement.

Syntax

blank COpy symbol

Required: symbol
Defaults: none
Indexable: none

Operands Description

symbol The symbolic name of the source module on disk
diskette that is to be cop i ed into your program.

or

• The assembler program $EDXASM provides a restricted imple­
mentation of the COPY statement. The names of the volumes
which may contain modules which may be referenced must be
in the control list $EDXL. See the description of $EDXASM
in the Utilities, Opera~or Commands, Program Preparation,
Mess~es and Codes for detai Is on how you can add your own
'*COPYCOD' de fin it ions to those supp lied as standard def i­
nitions in $EDXl.

• The Series/l macro assembler provides a full implementa­
t i on of the COPY statement as part of the Event Dr i ven
Executive Macro Library (S719-LM5 or 5719-LM6). See the
IBM Ser i es/l Event Dr i ven Execut i ve Macro Assembler
(5719-ASA) for deta i Is on us i ng th i s COPY statement.

• The System/370macro assembler also provides a full imple­
mentation of the COpy statement as part of the IBM
System/370 Program Preparat ion Fac iIi ty FDP (5798-NNQ).
See the IBM System/370 Program Preparation Facility,
S830-1072 for detai Is on using this COpy statement.

86 SC34-0314

o

o

o

o

o

o

DATA/DC

Valid codes for type are:

Code

C
X
B

F
H
D
E
l
A

Type Constant

EBCDIC
Hexadecimal
Binary

Fixed-point
Fixed-point
Fixed-point
Floating-point
Floating-point
Address

Storage Format

8-bit code for each character
4-bit code for each digit
I-bit for each digit (not allowed
with $EDXASM)
Signed, fixed-point binary; 2 bytes
Signed, fixed-point binary; 1 byte
Signed, fixed-point binary; 4 bytes
Floating-point binary; 4 bytes
Floating-point binary; 8 bytes
Value of address or expression;
2 bytes

Allowable ranges for data values are:

Single-precision integer
Double-precision integer

Single-precision floating-point
Extended-precision floating-point

-32768 to 32767
-2147483648 to

2147483647
6+ decimal digits*

15 decimal digits*

*Exponent range is
from 10 to the -85th
to 10 to the 75th

Floating point constants can be expressed as real numbers with
decimal points, for example 1.234, or can be expressed in expo­
nent (E) notat i on. E notat i on uses the form:

SX.XXESVV

where:

S = Optional sign character (+ or -); default = (+)
X = Characteristic 1 to 6+ digits (for PREC=E, or 15 digits

for PREC=L)
Note: Some but not all 7 digit characteristics can be
represented ina 4 byte, float i ng-po i nt, binary number •

. = Decimal point anyplace within characteristic
E = Designation of E notation
VV = Mantissa, range -85 to +75. The base is 10.
(for example, 3.1415E-2 = .031415)

Character constants (e) can include an explicit length spec­
ification for the field by specifying the type as CLn where n is
the length of the field. If the value operand is smaller than
the field length, the balance of the field is filled with
blanks.

Chapter 3. Instruction and Statement Descriptions 89

DATA/DC

_Example

BINCON DATA 8'001100001111' Hexadecimal 30F in
binary

A DATA F'l'

BUF DC 128F'0'

CHAR DATA C'XYZ'

BLANK DC BOC'

C8 DC CLB'$'

HEXV DATA X'00F1'

ADDR DATA A(BUF),

DBL DATA D'100000'

FI DATA E'I.234'

F2 DATA 4E'0.123'

L2 DATA 4L'12345678.9'

L3 DATA L'.123456E-40'

MANY DATA F'1',D'2'

90 SC34-0314

Decimal constant 1

128 words of a

EBCDIC String 'XYZ'

80 EBCDIC blanks

$ followed by 7 blanks

Decimal 241 in
hexadecimal

Address of 'BUF'

2-word decimal constant
100,000

Floating-point value 1.234

Four Floating-point values of
0.123 (4 bytes each value)

Four Extended-precision
Floating-point values of
12345678.9 (8 bytes each
value

Extended-precision float­
ing point in exponent form

A word of 1 and a double
word of 2

o

o

o

o

o

o

Example:

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

WRIDCB DCB SE=YES,DVPARMl=0300,DVPARM2=3048, C
DVPARM3=1100,DVPARM4=RESTAT, C
CHAINAD=WR2DCB,COUNT=120,DATADDR=MSGl

IWR2DCB DCB SE=YES,DVPARMl=20AO,DEVMOD=6F, C

MSGI
RESTAT

DVPARM4=RESTAT

DATA 120X'OO'
DATA 2F'O'

Chapter 3. Instruction and statement Descriptions 93

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

.. , DEFINEQ

DEFINEQ

Queue Processing

The DEFINEQ statement defines the queue descriptor (QD) and the
set of queue elements (QEs) used by FIRSTQ, LASTQ, and NEXTQ.
DEF'INEQ can optionally define a pool of data storage areas or
data buffers. For additional information refer to the dis­
cussion of queue processing in Chapter 2 of this manual.

Syntax

label DEFINEQ COUNT=,SIZE=

Required: label, COUNT=
Defaults: none
Indexable: none

Operands

COUNT=

SIZE=

,Pescription

The number of 3-word queue elements to be
generated. An additional 3-word QD will be gener­
ated and the first word will be assigned the name
speci fied in the label on the DEFINEQ statement.
The COUNT operand must be specified using a
self-defining term. An equated value is not
allowed. This operand must also be a positive num­
ber greater than O.

The 5i ze, in bytes, of each buffer (data area) to be
included in the buffer pool in the initial queue.
As many sllch buffers wi 11 be generated as speci fied
in the COUNT operand. Each such buffer is initial­
ized to binary zeros. Each QE in the queue will
contain the address of an associated buffer in the
buffer pool.

If the SIZE operand is not specified, all QEs will
be generated to be in the free chain and the queue
will be defined as empty. If SIZE is specified, all
QEs wi 11 be included in the acti ve chain and the
queue will be defined as full.

Example: See the example following the NEXTQ instruction.

94 SC34-0314

o

o

o

o

0

0

DEQT

DEQT

Terminal I/O

The DEQT statement releases the terminal which was previously
acquired with an ENQT instruction. A task may issue successive
ENQTs directed to the same terminal before issuing a DEQT.
Unti 1 DEQT is executed, however, ENQTs directed to other termi­
nals are ignored. If a terminal configuration was established
by ENQT, then DEQT restores the configuration to that defined
by the TERMINAL system configuration statement. DEQT also
forces partially full buffers to be written to the terminal and
completes all pending I/O.

Syntax

label DEQT

Required: none
Defaults: none
Indexable: none

Operands Description

none none

E)(a~ of ENQT and DEQT

ENQT SSVSPRTR

DEQT
ENQT TERMl,BUSV=ALTERN

DEQT

ALTE~N ENQT SSVSLOG

TERMl IOCB TTVl,PAGSIZE=24

Chapter 3. Instruction and Statement Descriptions 97

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

~ETACH

DETACH

Task Control

The DETACH instruction removes a task from operational status.
A task may only detach itself. If a task is reattached, exe­
cution proceeds with the next instruction after the DETACH in
the reattached task.

Syntax

label DETACH code,P1=

Required: none
Defaults: code = -1
Indexable: none

Op'erands

code

PI=

Description

The posting code to be inserted in the terminating
ECB (sTCBEEC) of the task being detached. Addi­
tional information on this statement can be found
in the Internal Design manual (LY34-0I68).

Parameter naming operands. See "Use of
Parameter Nam i ng Operands (Px=)" on page 8
further descriptions.

The
for

98 SC34-0314

o

o

o

o

o

o

DSCB

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

DSCB

Disk/Tape I/O

The DSCB statement generates a data set control block (OSCB).
A OSeB provides the information ,required to access a data set
within a particular volume. One DSCB is generated in the pro­
gram header for each data set specified in the DS parameter of
the PROGRAM statement. The name of each DSCB so generated is
D51, 052, ... , DS9, corresponding to the order af specification
of'the data set. The name DSx is ass i gned to the first word 0 f
the DSCB, the event conrol block. Fields within these DSCBs
may be referenced symbolicCllly with the expression:

OSx+name

where name is a label def i ned in the OSCB equate table,
OSCBEQU.

When over lay programs have been spec if i ed in the PROGRAM state­
ment of an application program, a DSCB is created in the pro­
gram header for each such overlay. Each of these can be
referred to by the name PGMx where xis a number from 1 to 9 cor­
responding to the order of specification of the program name.
Fields wi th in these DSCBs .!.ay be referenced as PGMx+name where
name i,5 a label defined in the DSCB equate table, DSCBEQU.

D5CBs are automatically generated for data sets referenced by
\ the DS and PGMS operands of the PROGRAM statement.

It is also possible to generate and use additional DSCBs within

\
your program by coding OSCB statements. These OSCBs are nClmed

.with the DS:ft: operand.

Syntax

label DSCB OS#=,OSNAME=,VOLSER=,DSLEN=

Required: OS#=,DSNAME=
Defaults: VOLSER=null, D5LEN=O
Indexable: none

Chapter 3. Instruction and Statement Descriptions 105

DSCB

Operands

DS:ft:=

DSNAME=

VOLSER=

DSLEN=

Description

The alphameric name which is used to refer to a DSeB
in disk or tape I/O instruct ions. Th is name wi 11 be
assigned to the first word (ECB) of the generated
DSeB. Spec i fy 1 to 8 characters.

The data set name field within the DSCB. Specify 1
to 8 characters.

The volume label to be ~ssigned to the volume label
field of the DSeB. Specify 1 to 6 characters. A null
entry (blanks) will be generated if VOLSER is not
specified. Note, however, that if the DSCB is for a
tape data set, VOLSE R must be spec if i ed pr i or to
DSOPEt·L Also for tape data sets, if there is no vol­
ume label, then the 1 - 6 d j g it tape dr i ve ID must be
supplied. The tape drive 10 is assigned with the
TAPE configuration statement during system gener­
ation.

The size of the referenced direct access space. If
no number is specified, this value will be set to O.
Th i s parameter is not used if the DSOPEN rout i ne
will be used to open the DseB.

When a data set is defined using the OSeB statement it must be
opened before attempting disk or tape I/O operations such as
READ or WRITE. The routines DSOPEN and $OISKUT3 are provided
for th is purpose. DSOPEN must be cop i ed into your program with
the COpy instruction' and then invoked with the CALL
instruction. The $DISKUT3 1s invoked with the LOAD
instruction. For more information on DSOPEN refer to the
System Gu i de "Advanced Top i cs" sect ion.

Example

DseB

106 SC34-0314

DS:ft:=INDATA,DSNAME=MASTER,
VOlSER=EDX003

o

o

o

o

o

ECB

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Task Control

The ECB statement generates a 3-word event control block CECB).

Normally this statement is not needed to write application pro­
grams if the program is to be assembled by the host or Ser i es/1
macro assemblers. In th i s case Event Control Blocks are auto­
matically generated for you as a consequence of your naming an
event in a POST instruction. However, it may be used for spe­
cial purposes such as controlling their location within a
program. You must explicitly code necessary ECBs in programs
to be assembled by $EDXASM, except for those created by speci­
fying EVENT in a PROGRAM or TASK statement. Also, when coding
an ECB instruction the label of the ECB must be the same as the
event name.

A maximum of 25 ECB statements may be coded in a program. If
more than 25 ECBs are required, they must be coded using the
DATA statement. (See the example following the syntax
description.)

Syntax

label

Required:
Defaults:

ECB code

label
code = -1

Indexable: none

Operands Descript"ion

code Initial value of the code field (word 1). If this
word is non-zero when a WAIT is issued, no wait
occurs unless the WAIT has RESET coded.

Chapter 3. Instruction and Statement Descriptions 107

Example

ECB! ECB

is equivalent to coding,

ECBl DATA
DATA

F ' -1 '
2 F ' 0 '

Note that ECB is not an executable statement and should
not be placed between executable instructions.

108 SC34-0314

o

o

o

o

o

END

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Task Control

The END statement must be the last statement coded in your pro-

I grdrn.UnpredictablE~ results may occur when the END statement is
not coded.

Syntax

blank END

Required: none
Defaults: none
Indexable: none

Operands Description

none none

Chapter 3. Instruction and Statement Descriptions 111

ENDATTN

ENDATTN

Task Control

The ENDATTN statement ends an attention interrupt handling
rout i ne, as descr i bed under ATTNl 1ST, and is the last statement
of that rout i ne.

An attention interrupt handler should be a short routine used
to provide an operator with terminal keyboard initiation or
control of application routines.

Syntax

label ENDATTN

Required: none
Defaults: none
Indexable: none

Operands Description

none none

Example: See ATTNlIST instruction and also "Example 7: A Two
Task Program With ATTNlIST" on page 395.

112 SC34-0314

o

o

o

o

o

ENDPROG

ENDPROG

Task Control

The ENDPROG statement must be the next to the last statement in
a user program. The last statement must be END.

Syntax

blank ENDPROG

Required:
Defaults:
Indexable:

none
none
none

Operands Description

none none

Chapter 3. Instruction and statement Descriptions 115

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I ENDTASK

ENDTASK

Task Control

The ENDTASK statement defines the end of a block of
instructions associated with a task. Each task, except the
initial task, requires one ENDTASK as its final statement.
When this instruction is executed, the task will be detathed.
If another ATTACH is issued, execution will resume at the ini­
tial instruction of the task.

ENDTASK actually generates two instructions: DETACH and GO TO
start where start is the label of the first instruction to be
executed when the task is first attached.

Syntax

label

Required:
Defaults:

ENDTASK

none
code=-1

code,Pl=

Indexable: none

Operands

code

Pl=

Description

The posting code to be inserted in the terminating
ECB ($TCBEEC) of the task be i ng detached. Add i­
tional information on this statement can be found
in the Internal Design manual (LY34-0168).

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

116 SC34-0314

o

o

o

o

o

o

ENQT

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

ENQT

Term ina I I/O

The ENQT instruction acquires exclusive access to a terminal
unti I a DEQT is executed. ENQT is also used to establish termi­
nal configuration parameters, such as the limits and mode of a
logical screen, which will be in effect during the period of
exclusive access.

Note: As part of the LOAD function, a DEQT of the terminal
currently in use by the loading program is performed. You
should allow for this circumstance in coding the program which
issues the LOAD instruction.

Syntax

label

Required:
Defaults:

ENQT name,BUSY=,P1=

none
name=terminal from which the issuing program

was loaded
Indexable: none

Operands Description

name In general, this parameter is the label of an IOCB
statement defining the terminal to be accessed, and
this form would be used to establish temporary ter­
mi nal conf i gurat i on parameters. However, two
spec i al names are recogn i zed: $SYSlOG and $SYSPRTR.
When one of these names is used, the terminal
acqu ired is the one whose TERMINAL statement has
that label. If this parameter is not specified, or
if no terminal with the indicated name exists, then
access defaults to the terminal fr,om which the pro­
gram was loaded.

If this operand is an IOCB with asscociated logical
screen limits, internal terminal I/O counters are
reset to start output at the top of the work i ng
area. The output starts at the top of the working
area although the cursor is not immediately moved
to th is pos it i on. Before do i ng any input, the cur­
sor can be moved by issuing TERMCTRL DISPLAY.

Chapter 3. Instruction and Statement Descriptions 119

ENQT

BUSY=

PI=

The term ina I to wh i ch the ENQT instruct i on is
directed may have been acquired by another task or
may be in use by a supervisor utility function. The
requesting task is then placed in a queue, waiting
for the dev 1 ce, and its operat Ion is suspended
until all other users preceding it have been serv­
iced. The BUSY operand allows the program to detect
such a busy cond it Ion before it is placed in the
queue. Code BUSY with the label of the instruction
where execution IS to proceed to if the terminal is
in use.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use
on page

of
8

The
for

120 SC34-0314

o

o

o

o

o

ENTRY

ENTRY

Program Module Sectioning

The ENTRY statement defines one or more labels as being entry
points within a program module. These entry point labels may
be referenced by instructions in other program modules that are
link-edited with the module which defines the entry label. The
program modules which reference the label must contain either a
EXTRN or WXTRN statement for the label.

Syntax

blank ENTRY one or more relocatable symbols
separated by commas

Required: one symbol
Defaults: none
Indexable: none

Operands Description

One or more symbols that appear as statement labels
with 1 n the program modu Ie.

Chapter 3. Instruction and Statement Descriptions 121

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

EOR

Data Manipulation

The EOR instruction (exclusive OR) makes a logical comparison
of two bit-strings and provides a result, bit by bit, of 1 or O.
If the inputs are the same, the result is O. If the inputs are
not alike, the result is 1. If the entire input fields are
identical, the entire resulting field will be o. If one or more
bits differ, the resulting field will contain a mixture ~f Os
and Is.

Syntax

label EOR opndl,opnd2,count,RESULT=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=(1,WORD),RE5ULT=,opndl
Indexable: opnd1,opnd2,RESULT

Operands

opndl

opnd2

count

Description

The name of the variable to which t~e operation
app lies; it cannot be a constant.

The value to be compared to the first operand.
Either the name of a variable or an explicit con­
stant may be specified. Opnd2 can only be a BYTE,
~~ORD, or DWORD.

The number of consecutive variables upon which the
operation is to be performed. The maximum value
allowed is 32767.

The count operand can include the precision of the
data. Because these operat ions are para lIe I (the
two operands and the result are implicitly of like
precision), only one precision specification is
required. That specification may take one of the
following forms:

BYTE -- Byte precision
WORD -- Word precision
DWORD -- Doubleword precision

122 SC34-0314

o

o

o

o

TYPE=

SKIP=

LINE=

SPACES=

The type of data to be erased.

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

ERASE

TYPE=DATA: Only unprotected characters are erased.

TYPE=ALL: Both protected and unprotected charac­
ters are erased.

The ~umber of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line •. If the value specified is greater than
or equal to the logical page size
CBOTM-TOPM-NHIST), it is divided by the page size,
and the rema i nder is the number of 1 i nes sk i pped.

This operand is used to specify the line at which
the next I/O ope rat i on wi 11 take place. Code a num­
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwise to that line on the current
page. For stat i c screens, the I/O operat i on wi 11
take place on the line spec if i ed. In any case, if
the value exceeds the last usable line number, it i.:.i
divided by the logical page size, and the remainder
is used as the 1 i ne number.

The I/O position for a terminal or logical screen is
defined by the line number and the position, within
that 1 i ne, of the typ i ng element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. If the specified value positions the cur­
sor beyond the logical screen limits, the cursor is
moved the excess number of spaces onto the next
line.

Chapter 3. Instruction and Statement Descriptions 127

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Whenever LINE or SKIP is specified on ~n instruc­
tion, the current indent is reset to zero (carriage
return). For static screens in particular, spec~

ification of both LINE and SPACES designates a
character pas it i on in two-coord i nate form. If
SPACES is specified without LINE or SKIP, then the
indent value is increased by the value speci fied.

Example

ERASE
ERASE
ERASE

4,MODE=FIELD,TVPE=DATA
LINE=O,SPACES=O,MODE=SCREEN,TVPE=ALL
LINE=l,MODE=LINE,TVPE=ALL

127.1 SC34-0314

o

o

o

o

c

o
Chapter 3. Instruction and Statement Descriptions 127.2

EXIO

EXIO

EXIO Control

EXIt.J is used to request execut i on of
user-defined lOeB.

a command in a

Syntax

label EXIO idcbaddr,ERROR=,Pl=

Required: idcbaddr
Defaults: none
Indexable: i dcbaddr

Operands Description

idcbaddr

ERROR=

Pl=

The address of an IDCB.

The label of the first instruction executed if an
error occurs during execution of this command.
This instruction will not be executed if an error is
detected at the occurrence of an interrupt caused
by the command. The cond it i on code (ccode)
returned at interrupt time is posted in an ECB (see
the EXOPEN instruction).

A 'Device Busy' bit is set on by the EXIO
instruction if a START command is executed. It is
reset after the device interrupts if the operation
is complete. If a device fai Is to interrupt or com­
plete an operation, it will be necessary to reset
the' Dev ice Busy' bit so that another command may be
executed. The device busy bit can be reset by issu­
ing an EXIO instruction to the appropriate IDCB
followed by an IDCB instruction with COMMAND=RESET.

Parameter naming operands. See "Use of
Parameter Naming Operands (Px=)" on page 8
further descriptions.

The
for

Note: For a list of instruction and interrupt condition codes,
see the EXOPEN instruct i on and Figure 7 on page 131 and
Figure 8 on page 132.

128 SC34-0314

o

o

o

o

o

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

FORMAT

requ ire a pas it i on for the sign. I f the number has less than w
digits, the leftmost print positions are filled with blanks.
If the quantity is negative, the position preceding the left­
most digit contains a minus sign.

The following examples show how each of the quantities on the
left is converted, according to the specification '13':

Internal Value Value i n the Buffer

721 721
-721 *** -12 -12
8114 ***

0 0
-5 -5

9 9

Note that all error fields are stored and printed as asterisks.

Floating Point Numeric Conversion

Genera I form: Fw. d

For F-type conversion, w 1.s the total field length and d is the
number of places to the right of the decimal point. For output,
the total field length must include positions for a sign, if
any, and a decimal point. The sign, if negative, is also
loaded. For output, w should be at least equal to d + 2.

If insufficient positions are reserved by d, the number is
rounded up. If excessive positions are reserved by d, zeros
are filled in from the right for the insignificant digits.

If the integer portion of the number has less than w-d-1 dig­
its, the leftmost print positions are filled with blanks. If
the number is negat i ve, the pos it i on preced i ng the leftmost
digit contains a minus sign.

The following examples show how quantities are conve~ted

according to the specification F5.2:

Chapter 3. Instruction and Statement Descriptions 149

[FORMAT

Internal Value

12 . 1 7
-41.16

-.2
7.3542

-1.
9.03

187.64

Value in the Buffer

12.17

-0.20
b7.35
-1.00
b9.03

Notes:

1. 'b' represents a blank character stored in the text buffer.

2. Internal values are shown as thei r equi valent decimal val­
ue, although actually stored in floating-point binary
notat i on requ i ring 2 or 4 words of storage.

3. All error fields are stored and pr i nted as aster i sks.

4. Numbers for F-convers i on input need not have the i r dec i ma 1
points appearing in the input fields (in the text buffer).
If no decimal point appears, space need not be allocated
for it. The decimal point is supplied when the number is
converted to an internal equivalent; the position of the
decimal point is determined by the format specification.
However, if the position of the decimal point within the
field is different from the position in the format specifi­
cation, the position in the field overrides the format
specification. For example, for a specification of F5.2,
the following conversions would be performed:

Text Buffer Characters

12.17
b1217
121.7

Converted
Internal Value

12.17
12.17
121.7

Floating Point Number Conv~rs;on (E-notation)

General form: Ew.d

For E-type con vers ion, w is the tota If; e ld length and dis the
number of places to the right of the decimal point. For output,
the total field length must include sufficient positions for a
sign, a decimal point, and space for the E notation (4 digits).
For output, w should be at least equal to d + 6. For input, d is
used f~r the default decimal position if no decimal is found in

150 SC34-0314

o

o

o

o

o

o

format list

ERROR=

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686 .

GETEDIT

((variable,count,type),-----)
or
(variable,-----)
or
((variable,count),-----)
or
((variable,type),-----)

where:

variable:

count:

type:

is the name of a variable or
group of variables to be
included.
is the number of variables
that are to be converted.
is the type of variable to
be converted.

S - Single-precision integer (default)
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

The type will default to S for integer
format data and to F for floating-point
format data

If you wish to refer to this format statement from
another GETEDIT instruction, then both the format
and format 1 i st operands must be coded. Refer to
the FORMAT statement for cod i ng instruct 1 ons. Th i s
operand 15 not allowed if the program is compiled
with $EDXASM.

The name of a user's routine to branch to if an
error is detected during the GETEDIT execution.
Errors that might occur causing this action to take
place are:

• Use of an incorrect format list.

• Field omitted (attempt is made to convert the
rest)

• Not enough data in input text buffer to sat i sfy
the Data List.

Chapter 3. Instruction ancl Statement Descriptions 163

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

GETEDIT

ACTION=

SCAN=

SKIP=

LINE=

• Conversion error (value too large) •

• Only the highest value return code is returned to you.

The error indicCltors (return codes) are listed in the
description of the CONVTD instruction.

An error indicator is returned to you, whether or not
you coded the ERROR parameter.

10 causes a READTEXT instruction to be executed
prior to conversion.

STG causes the conversion of a text buffer that has
been previously obtained. The data must be in
EBCDIC.

FIXED - Data elements in the input text buffer must
be in the format descr i bed in the format statement.
That is, if a field width is specified as 6, then
there are 6 EBCDIC characters used for the conver­
sion. Leading and trai ling blanks are ignored.

FREE - Data elements in the input text buffer must
be separated by delimiters: blank, comma, or slash.
If A format type items are included, they must be
enclosed in apostrophes, for example, 'x y z '. T his
allows the inclusion of any alphameric characters
except the apostrophe.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page
size and the rema i nder is the number of 1 i nes
skipped.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable 1 i ne
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms wi 11 mo·ve to the spec if i ed line on the
next page, otherwise to that line on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used as the
line number.

164 SC34-0314

o

o

o

C~
'I

o

GETVALUE

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

GETVALUE

Terminal I/O

GETVALUE is used to read one or more integer numeric values, or
a single floating-point value, entered by the terminal opera­
tor. The values may be decimal or hexadecimal, of single or
double-precision or floating-point. If an invalid character
is entered, it acts as a delimiter. The printing of an associ­
ated prompt may be unconditional, or it may be conditional upon
t he a b sen c e of ad vance i n put .

Syntax

label

Required:
Defaults:

GETVALUE

loc

loc,pmsg,count,MODE=,PROMPT=,
FORMAT=,TVPE=,SKIP=,LINE=,
SPACES=,P1=,P2=,P3=

MODE=DEC,PROMPT=UNCOND,count=1 (word)
FORMAT=(6,O,I),TVPE=S
SKIP=O,lINE=current line,SPACES=O

Indexable: 10c,pmsg,SKIP,lINE,SPACES

Operands Description

loc

pmsg

count

Name of the variable to receive the input value. If
the number of values requested is greater than one,
then successive values are stored in successive
words or doublewords.

Name of a TEXT statement or an expl i cit text message
enclosed in apostrophes. This defines the prompt­
ing message which will be issued according to the
value of the PROMPT keyword.

Spec i fy the number of integer values to be entered.
The prec 1S i on spec if i cat i on may be subst i tuted for
the count spec if i Celt i on, in wh i ch case the count
defaults to 1, or it may accompany the count in the
for m 0 f a 5 ubi i 5·~ : (c 0 u nt, pre cis ion). Pre cis ion
melY be either WORD (the default) or DWORD
Cd 0 ubI e w 0 r d) .

Chapter 3. Instruction and Statement Descriptions 169

[GETVAlUE

MODE=

PROMPT=

FORMAT=

TVPE=

SKIP=

With conditional prompting in effect, the absence
of advance input causes the prompt message to be
issued. Once a prompt message has been issued,· how­
ever, zero or more values may be entered. Omitted
values leave the cor·responding internal variables
unchanged. Permitted delimiters between values are
the characters slash, comma, period, or blank. At
completion of the instruction, the number of values
entered is stored at taskname+2.

Use MODE=HEX for hexadecimal input.
(MODE=DEC) is decimal.

The default

Code PROMPT=COND or PROMPT=UNCOND (PROMPT=UNCOND
is the default)

This parameter is used to specify external
formatting for the input of a single value. The
count parameter is ignored. The format is spec i­
fied as a 3-element list (w,d,f), defined as fol­
lows:

w A decimal value equal to the maximum field
width in bytes expected from the terminal.

d A decimal value equal to the number of bytes
to the right 0 fa n ass u m e d dec i m a I poi n t • (An
actual decimal point in the input will over­
ride this specification.) For integer vari­
ables, code this value as zero.

f Format of the input data

I integer

F floating-point F format

E floating-point E format

Use this operand only in conjunction with FORMAT=.

S Single-precision integer (1 word)
o Double-precision integer (2 words)
F Single-precision floating-point (2 words)
L Extended-precision floating-point (4 words)

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page

170 SC34-0314

o

o

o

o

c

o

LINE=

SPACES=

Px=

Example

MESSAGE
MSG
DATA
DATA2
DATA3

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

GETVAlUE]

size, and the rema i nder is the number of lines
skipped.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable 1 i ne
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwi se to that 1 i ne on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used as the
1 i ne number.

These parameters may be used to spec i fy the
location within the logical page at which input is
to beg in, if that locat i on differs from the current
line and indent. If the specified value positions
the cursor beyond the logical screen limits, the
cursor is moved the excess number of spaces onto the
next line.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

DATA,MESSAGE

"Use of
on page 8

GETVALUE
GETVALUE
GETVALUE

DATA2, 'Q)ENTER A: " PROMPT=COND
DATA3,MSG,S,MODE=HEX

TEXT 'ENTER YOUR AGE'
TEXT 'DATA:
DATA F ' 0 '
DATA F ' 0 '
DATA SF'O'

The
for

Chapter 3. Instruction and Statement Descriptions 171

GIN

Graphics

GIN provides interactive graphical input. It rings the bell,
displays cross-hairs, waits for the ·operator to position the
cross-hairs and key in any single character, returns the coor-'
dinates of the cross-hair cursor, and optionally returns the
character entered by the user. Cursor coord i nates are
unsealed. The PlOTGIN instruction obtains coordinates scaled
by the use of a PLOTCB control block. (See "PlOTGIN" on page 210
for the format of a PlOTCB).

Syntax

label GIN

Required: x,y
Defaults: no character returned
Indexable: none

Operands

x,y

char

Px=

Description

locations for storage of coordinates of the cursor.

locat i on where charac-ter is to be stored. The
character is stored in the right-hand byte; the
left byte wi 11 be set to zero. If omitted, the char­
acter is not stored.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

172 SC34-0314

o

G

o

o

1,'"1 C'
,)

o

IF

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Program Sequencing

IF determines whether a relational statement or statement
string is true or false, and then branches to a user specified
address or passes control to true code or false code within the
IF-ELSE structure.

Note: Because IF, ELSE, and ENDIF are usuallY,coded' together,
the ELSE and ENDIF instructions are repeated here for your con­
venience.

The use of parameters is not allowed on the IF statement.

Syntax

label IF statement

label IF statement,GOTO,loc

Required: one relational statement
Defaults: none
Indexable: datal and data2 in each statement

Operands Description

statement A relat i onal statement or statement str i ng

GOTO

indicating the relationship(s) to be tested. Each
statement is enclosed in parentheses. If GOTO is
coded and the statement is true, the next
instruction executed is defined by loco If GOTO is
not coded, THEN is assumed and the next instruct i on
is determined by the IF-ELSE-ENDIF structure. If
the condition is true, execution proceeds sequen­
tially. The various forms of relational statements
are fully described following "Program Sequencing
Instructions" on page 34 and a number of examples
are shown below.

If the statement is true and GOTO is coded, control
is passed to the instruction at lac. If the state­
ment is false, execution proceeds sequentially.

Chapter 3. Instruction and Statement Descriptions 177

loc

ELSE

Used with GOTO to spec i fy the address of the
instruct i on to be executed if the statement is
true. The instruction must be on a full-word bound­
ary.

Note: THEN can be coded after statement. This may
be desired to comment the instruction for program
readability.

ELSE defines the start of the false code associated with the
preceding IF instruction. The end of the false code is the next
ENDIF instruction.

Syntax

label ELSE

Required: none
Defaults: none
Indexable: none

ENDIF

ENDIF indicates the end of an IF-ELSE structure. If ELSE is
cod ed, END I Fin d i cat est he end 0 f t he f a Is e cod e a s so cia ted
with the preceding IF instruction. If ELSE was not coded,
ENDIF indicates the end of the true code associated with the
preceding IF instruction.

178 SC34-0314

o

c

o

o

Syntax

label ENDIF

Requ ired: none
Defaults: none
Indexable: none

Examples of IF, ELSE, and ENDIF

1. IF with GOTO

IF (A,EQ,B),GOTO,ANEB

2. Single IF

IF (C,NE,D) or

(execute if C NE D)

ENDIF

3. IF with ELSE

IF (#I,EQ,l)

(execute if 11 EQ 1)
ELSE

: (execute if 11 NE 1)
ENDIF

4. Double IF with ELSE

IF

IF (A,EQ,B),AND,(C,EQ,D)

(C,NE,D),THEN

(execute if A EQ Band C EQ D)
ELSE

: (execute if either A NE B or C NE D)
ENDIF

Chapter 3. Instruction and Statement Descriptions 179

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

5. IF with nesting

IF (A,EQ,B)
xl

IF (X,GT,Y)
x2

ENDIF
x3

ELSE
x4

ENDIF

If A equals B and X is
greater than Y, instructions
xl, x2, and x3 will be executed.
If A equals B, but X is not
greater than Y, instructions xl
and x3 are executed. If A does
not equal B, only instruction x4
is executed.

Examples of relational statements

Relational statement

(A,EQ,O)
(A,EQ,X'0022')
(A,NE,B)
(DATAl,LT,DATA2,WORD)
(CHAR,EQ,C'A',BYTE)
(XVAL,GT,Y,DWORD)
(A,il),EQ,l)
«Al,ll),LE,(Bl,12»
(il,EQ,l)
(ll,GT,i2)
«(C,12),EQ,CHAR,BYTE)
(A,EQ,B,8)
«BUF,il),NE,DATA,3)
(Fl,GT,O,FLOAT)
(L2,LT,L3,DFlOAT)
«BUF,il),LE,l,FLOAT)

Comments

A equal to 0, WORD
A equal to hex 22, WORD
A not equal to B, WORD
DATAl less than DATA2, WORD
CHAR equal to 'A', BYTE
XVAL greater than Y, DWORD
(A,i1) equal to 1, WORD
(Al,#l) LE (Bl,#2), WORD
II equal to 1, WORD
II greater than 12, WORD
(C,12) equal to CHAR, BYTE
A equal to B, 8 bytes
(BUF,11) not equal to DATA, 3 bytes
Fl greater than 0, FLOAT
L2 less than L3, EXTENDED FLOAT
(BUF,i1) less than or equal 1, FLOAT

Examples of relational statement strings

(A,EQ,B),AND,(A,EQ,C)
(A,NE,1),OR,(D,EQ,E,DWORD),AND,(11,NE,14)
(F,EQ,G,8),AND,(ll,EQ,12),AND,(X,EQ,1),OR,(RESULT,GT,O)
(OATA,EQ,C'/',BYTE),OR,(DATA,EQ,C'*',BYTE)
«BUF,11),NE,(BUF,i2»,OR,(i1,EQ,i2)

180 SC34-03l4

o

o

o

C',
, ~

,I

o

IOCB

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

IOCB

Terminal I/O

IOCB defines a terminal name and configuration parameters for
use with the ENQT instruction. Additional information on the
configuration parameters can be found under the TERMINAL sys­
tem conf i gurat i on statement in the System Gu ide

Syntax

label IOCB name,PAGSIZE=,TOPM=,BOTM=,lEfTM=,
RIGHTM=,SCREEN=,NHIST=,OVFlINE=,BUFFER=

Required: none
Defaults:
Indexable:

see discussion below
none

Operands

name

PAGSIZE=

TOPM=

BOTM=

LEFTM=

Description

The name of a terminal as defined by the label on a
TERMINAL statement. See the System Configuration
section of the System Guide for a description of
the TERMINAL statement. This operand generates an
8-character EBCDIC string, padded as necessary with
blanks, whose label is the label on the IOCB state­
ment. It may therefore be mod if i ed by the program.
If unspecified, the string is blank and implicitly
refers to the terminal from which the program was
loaded.

This operand is as defined for the TERMINAL state­
ment. Its default is the value assigned in that
statement. If this parumeter is modified, BOTM=
must be between TOPM= plus NHIST=, and PAGSIZE-l.
Otherwise, unpredictable results wi 11 occur.

As def i ned for TERMINAL. The defau It is o.

As defined for TERMINAL. The default is PAGSIZE-1.

As defined for TERMINAL. The default is O.

Chapter 3. Instruction and Statement Descriptions 183

Page of SC34-0314-2
As updated January 22,1981
By TNL SN34-0686

I IOCB

RIGHTM=

SCREEN=

NHIST=

OVFlINE=

BUFFER=

As def i ned for TERMINAL. I f the BUFFER statement is
not specified, the default is LINSIZE-l. If the
BUFFER stCltement is spec if i ed, the value you spec i­
fy should be one less than the buffer size value.

Either SCREEN=ROll or SCREEN=STATIC, as defined for
TERMINAL. The default is ROll.

As def i ned for TERMINAL. The defau It is o.

As defined for TERMINAL. The default is NO.

If the application requires a temporary I/O buffer
different than that defined by the LINSIZE parame­
ter on the TERMINAL statement, then set this oper­
and with the label of a BUFFER statement allocating
the des i red number by bytes. The buffer size tempo­
rarily replaces the LINSIZE value and is also the
max i mum amount that can be read or wr i tten at a
time. For data entry applications which require
full screen data transfers, for example, this obvi­
ates the need for allocation of a large buffer
within the resident supervisor.

Note that when the buffer size is greater than the
80-byte line size of the 4978/4979 display, all
data transfers take place as if successive lines of
the display were concatenated. Screen positions
are still designated, however, by the LINE and
SPACES parameter wi th respect to an 80-byte line.

If the buffer size is less than the 80-byte linesize
of the 4978/4979 display, the logical screen bound­
ar i es are adj usted accord i ng I y. The log i ca I sc reen
refers to the part of the physical screen from which
you can read or wr i te.

If RIGHTM is not specified or has a value greater
than the buffer size, it is adj usted to one less
than the buffer si ze value. Portions of the screen
outs i de t his range are not access i b Ie by the app li­
cat i on program.

184 SC34-0314

o

o

o

o

o

Page of SC34-0314-2
As updated January 22,1981
By TNL SN34-0686

If the temporary buffer is not directly addressed
by a terminal I/O instruction, then it acts as a
normal system buffer of size RIGHTM+l; it may also
be used, however, for direct terminal I/O. Direct
terminal I/O occurs when the buffer defined by an
active IOCB is directly addressed by a PRINTEXT or
REA D T EXT instruction; the d a t a i st ran s fer red i m m e -
d i ate I y and the new line character is not recog­
n i zed. When per form i ng direct output operat ions the
user must insert the output character count in the
index word of the BUFFER pr i or to the PR INTEXT (out­
put) instruct ion. Th is mode of ope rat i on a llows the
t ran s fer 0 f I a r 9 e b I 0 c k s (I a'r 9 e r t han can be a c com­
modated by a TEXT buffer) of data to and from buf­
fered devices such as the 4978/4979 Display or
buffered teletypewriter terminals. Upon execution
of DEQT, the buffer defined by the TERMINAL state­
ment is restored.

Chapter 3. Instruction and Statement Descriptions 184. 1

o

o
184 2 . SC34-0314

o

o

o

IODEF

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

IODEF

Sensor Based I/O

IODEF is used to provide addressability for the Sensor Based
I/O facilities which are referenced symbolically in an appli­
cation program. The specific form used varies with the type of
I/O being specified as shown below.

All IODEF statements of the same form (AI, AD, DI, DO, or PI)
must be grouped together in the program and must be placed
ahead of the SBIO instructions that reference them.

Each IODEF statement creates an SBIOCB control block. The con­
tents of the SBIOeB is descr i bed in the Internal Des i gn.

The IODEF statement generates a location into/from which data
is read/written. You must create a separate IODEF for each
task; di fferent tasks cannot use the same IODEF statement.

The remainder of this description is divided into five parts to
show the syntax for PI,DO,DI,AO, and AI. Because the operand
definitions are common they are shown only once following the
AI syntax.

Syntax

Process Interrupt

label IODEF Plx,ADDRESS=,BIT=,SPECPI=
or ADDRESS=,TVPE=BIT,BIT=,SPECPI=
or ADDRESS=,TVPE=GROUP,SPECPI=

Chapter 3. Instruction and Statement Descriptions 185

IODEF

Digital Output

label IODEF DOx,TVPE=GROUP,ADDRESS=
or TVPE=SUBGROUP,ADDRESS=,BITS=(u,v)

Syntax

Digital Input

label IODEF DIx,TYPE=GROUP,ADDRESS=

Analog Output

label

or TVPE=SUBGROUP,ADDRESS=,BITS=(u,v)
or TVPE=EXTSYNC,ADDRESS=

IODEF AOx,ADDRESS=,POINT=

Defaults: POINT=O

186 SC34-0314

o

()

o

o

o

o

LASTQ

LASTQ

Queue Processing

LASTQ acquires entries from a queue, defined by DEFINEQ, on a
last-in-first-out (LIFO) basis. Each time LASTQ is used, the
last (most recent) entry is removed from the specified queue
and returned to the user. The queue entry (QE) wi 11 then be
added to the free cha in of the queue.

Syntax

label lASTQ qname,10c,EMPTY=,Pl=,P2=

Required: qname,loc
Default: none
Indexable: qname,loc

Operands

qname

loc

EMPTY=

Px=

Description

The name of the queue from which the entry is to be
fetched. The queue name is the label on the DEFINEQ
instruct i on used to create the queue.

The address of one word of storage where the entry
is placed .. 11 or 12 can be used.

Use this operand to specify the first instruction
of the rout i ne to be invoked if "queue empty" cond i­
t ion is detected dur i ng the execut i on of th i s
instruction. If this operand is not specified,
control will be returned to the next instruction
after the LASTQ and the user may test the task code
word for a -1 indicating successful completion of
the operation or a +1 if the queue is empty.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Example: See the example following the NEXTQ instructions.

Chapter 3. Instruction and Statement Descriptions 193

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I LOAD

LOAD

Task Control

Note: Indexed Access Method LOAD is located under "LOAD" on
page 344.

The LOAD 1 nstruct 1 on 1 s used 1 n one program to 1 n 1 t 1 ate the
loading of another main program or program overlay from the
program library on disk or diskette. The loaded program will
run in parallel with, and independently of, the loading pro­
gram, regardless of whether it is a main program or an overlay.

Data parameters and data set names may be passed to the loaded
program. Also, the load i ng program may synchron i ze its own exe-

I cution with that of the loaded program. Overlays must not contain
TASK statements.

A program may be loaded in two ways:

• As an independent program in its own cont i guous storage
area

• As an overlay program within the storage area allocated for
the load i ng program

The advantages of the independent LOAD ope rat i on are:

• Ma in storage is a llocated on 1 y when requ ired

• More than one program may be loaded for simultaneous exe­
cution

The advantages of the overlay LOAD operation are:

• The availability of main storage can be guaranteed by the
loading program since it is within its own storage area

• The loaded program wi 11 be brought into storage more quick-
1 y than by an independent LOAD

The task code word of the loading task may be tested to deter­
mine the result of the program load operation. The code word is
refered to by the task name. The label of the task code word of
the initial task is the name of the program. If this word is -1
the operation was successful. For the definition of error
codes returned dur i ng the load process, see "Return Codes" lat­
er in this description.

194 SC34-0314

o

o

o

•

o

EVENT=

PART=

ERROR=

STORAGE=

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

LOAD I
Th is is the symbo 1 i c name· of an event (ECB
statement) which is to be posted complete when the
loa d e d pro g ram iss u e saP R 0 G S TOp· •

By i ssu i ng a LOAD and a subsequent WAIT for th i s
event, the loading program may synchronize its own
execution with that of the loaded program. The ECB
must not be reset by either a WAIT (with RESET) or a
RESET instruction.

Figure 10 on page 200 shows the flow of control in
the two ways of loading a program.

Note: If this operand is specified, the loading
program must ultimately WAIT for completion of the
loaded program. If this is not done, a POST wi 11 be
issued when the loaded program terminates even
though the loading program may no longer be active,
and unpredictable results can occur.

This optional operand is used to specify cross
partition loading of a program in a system contain­
ing more than 64K of storage. If PART is not coded,
the program wi 11 be loaded in the same part i t i on as
the loading program.

Code PART='n' to specify the partition number into
which to load the new program (n = 1 to 8).

Code PART=ANY to load the new program in any avai 1-
able partition.

Code PART='label' to point to a word in storage
which contains the partition number in which to
load the new program. Zero in the word pointed to
by labe 1 is the same as PART=ANY.

PGMx is not val i d wi th PART •

Use this operand to specify the label of the first
instruct i on of the rout i ne to be invoked if an error
cond it i on occurs dur i ng the load process. I f not
specified, control is returned to the instruction
following the LOAD instruction and the user may
test for errors by testing the return code stored at
the taskname (see PROGRAM/TASK).

Use this operand to override the value specified in
the STORAGE operand coded on the PROGRAM statement
of the program to be loaded. Some application pro­
grams will have a minimum dynami.c storage require­
ment; be sure you know what it is before using this

Chapter 3. Instruction and Statement Descriptions 197

LOAD

P2=

override. A value of 0 means that the STORAGE value
spec if i ed in the loaded programs header is not to be
overridden. STORAGE=O is the default.

If the total storage required for the program and
the dynamic increment is not available the LOAD
request will fa i 1. See the PROGRAM statement STOR­
AGE operand for additional information on dynamic
storage.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

198 SC34-0314

o

o

o

o

o

MOVE

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

MOVE

Data Manipulation

Operand 2 is moved to operand 1. If operand 2 is" i mmed i ate
data", it must be an integer between -32768 and +32767 which
wi 11 be converted to float i ng po i nt, if necessary.

Syntax

label

Required:
Defaults:

MOVE opndl,opnd2,count,FKEY=,TKEY=,
P 1 = , P 2 = , P'3 =

opndl,opnd2
count=(I,WORD)

Indexable: opndl,opnd2

Operands

opndl

opnd2

count

Description

The name of the variable to which the operation
app lies; it cannot be a constant.

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit constant can be specified.

Opnd2 is moved to opndl. If opnd2 is immediate
data, it must be an integer between -32768' and
+32767 which will be converted to floating point,
if necessary.

If opnd2 is immediate data, and byte precision is
spec if i ed, on I y the low order byte of the i mmed i ate
data is moved.

Spec i fy the number of consecut i ve var i abIes upon
which the operation is to·be performed. A symbol
cannot be used for count. The max i mum va lue allowed
for the count operand is 32767.

Note: For all precisions other than BYTE, opndl and
opnd2 must spec i fy even addresses.

Chapter 3. Instruction and Statement Descriptions 201

MOVE

FKEV=

TKEV=

The count operand can include the precision of the
data. Since these operations are parallel (the two
operands and the result are implicitly of like pre­
cision) only one precision specification is
requ ired. That spec if i cat i on may take one of the
fa llow i ng forms:

BVTE
WORD
DWORD
FLOAT
DFLOAT

Byte precision
Word precision
Doubleword precision
Single-precision floating-point
Extended-precision floating-point

The default precision is WORD.

The precision specification may be substituted for
the count spec if i cat i on, in wh i ch case the count
defaults to 1, or it may accompany the count in the
form of a sublist: (count,precision). For exam­
ple, MOVE A,B,BVTE and MOVE A,B,(l,BVTE) are equiv­
alent.

This operand provides a cross partition capability
for opnd2 of MOVE. FKEV designates the address key
of the partition containing opnd2 (The address key
is one less than the part it i on number). FKEV can
spec i fy either an i mmed i ate value from 0 to 7 or the
label of a word containing a value from 0 to 7. If
FKEV is not specified, opnd2 is in the same parti­
tion as the MOVE instruction. If FKEV is specified,
opnd2 cannot be immediate data or an index regis­
ter. However, it can conta i n an index reg i ster if in
the (parameter,ir) format.

This operand provides a cross partition capability
for opndl of MOVE. TKEV designates the address key
of the partition containing opndl (the address key
is one less than the part i t i on number). TKEV can
spec i fy either an i mmed i ate va 1 ue from 0 to 7 or the
label of a word containing a value from 0 to 7. If
TKEV is not specified, opndl must be in the same
part it i on as the MOVE instruct ion. If TKEV is spec­
ified, opndl cannot be an index register. However,
opndl can contain an index register if it is of the
format (parameter,ir).

1fT K E Vis s p e c i fie dan d 0 p n d 2 i s i m me d i a t,e d a t a ,
the j mmed i ate data is always 1 word in length
regardless of any precision specification. Howev­
er, a precision specification plus length is used
in determining the total amount of data to be moved.
Refer to Address Indexing Feature for further
information.

202 SC34-0314

o

o

o

o

o

Note: Refer to the System Guide topic on
"Cross-Partition Services" for additional informa­
t i on on the use of cross-part it ions funct ions.

Chapter 3. Instruction and Statement Descriptions 202.1

o

o
202 2 . SC34-0314

o

C .)

•

o

Px=

Example

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I MOVE I
Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Note: P3= will only alter the count operand. The
precision specification will not be altered.

A,B

TEXT,c' ',(64,BYTE)

Vl,V2,16

SAVE,il

i2,INDEX

D,C,(4,DWORD)

F2,Fl, (I,FLOAT)

LR,LI, (6,DFLOAT)

move word, B ~o A

move EBCDIC blank to
64-byte field

move V2 to VI, 16 words

index register 1 to SAVE

set index register 2
from INDEX

C to 0, 4 doublewords

FI to F2, single-precision
floating-point

LI to LR, 6 extended float­
ing point numbers (24 words)

(BUF,tl),0,(10,FLOAT) 10 floating-point zero values
to starting address (BUF,i!)

HERE,$STARTtFKEY=Q move one word from $START i n
partition one to HERE

(0,il),#2,TKEY=KEY move contents of #2 to a
word i n another partition
at the address specified
by #1

($NAME,#l),C' moves blanks into $NAME field
(8,BYTES),TKEY=0 i n partition 1 (opnd2 must be

a word immediate value)

Chapter 3. Instruction and Statement Descriptions 203

MOVEA

MOVEA

Data Manipulation

The address of operand 2 is moved to operand 1.

Syntax

label MOVEA opnd1,opnd2,P1=,P2=

Required: opnd1,opnd2
Defaults: none
Indexable: opnd1

Operands

opnd1

opnd2

Px=

Example

MOVEA
MOVEA

Description

The name of the variable in which the address of
opnd2 is stored.

This operand determines the address value that is
placed in opnd1.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

PTR,A
PTR,B+4

move address of A into PTR
move address of (B)+4 into PTR

The
for

204 SC34-0314

o

\~)

o

o

o

o

MULTIPLY

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I MULTIPLY

Data Manipulation

Signed multiplication of operand 1 by
instruct i on may be abbrev i at€d MUL T.

operand 2 • The

INote: An overflow condition in the MULIPLY instruction stores a
hexadecimal value of 8000 in the task code word.

Syntax

label MULTIPLY opndl,opnd2,count,RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=l,RESULT=opndl,PREC=S
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

RESULT=

PREC=XYZ

Description

The name of the variable to which the operation
appl i es; it cannot be a constant.

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit constant may be specified.

Specify the number of consecutive variables upon
wh i ch the operat i on is to be performed. The max i mum
value allowed is 32767.

This operand may optionally be coded with the name
of a variable or vector in which the result is to be
placed. In this case the variable specified by the
first operand is not modified.

Where X applies to opndl, Y to opnd2, and Z to the
result. The value may be either S (single-
prec i s i on) or D (doub le-prec is ion) • 3-operand
specification may be abbreviated according to the
following rules:

Chapter 3. Instruction and Statement Descriptions 205

MULTIPLY

Px=

• If no precision is specified, then all operands
are single-precision.

• If a single letter (S or D) is specified, then
it applies to the first operand and result,
with the" second operand defaulted to single­
precision.

• If two letters are specified, then the first
appl i es to the first operand and result, and
the second to the second operand.

Parameter nami ng operands. See
Parameter NaMing Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Mixed-precision Operations: Allowable precision combinations
for multiply operations are listed in the following table:

opndl

S
S
D
D

Example

MULT
MULl

MULl

J opnd2 1 Result

S S
S D
S D
D D

C,D,RESULl=E,PREC=SSD
A,lO,PREC=D

X,10,2

206 SC34-0314

I Abbrev;at;on
'-

Remarks

S default
SSD
D
DD

double-precision product
double precision variable A
is multiplied by 10

the single-precision variables
at X and X+2 are each
multiplied by 10.

o

()

o

o

o

o

PRINTEXT

PRINTEXT

Terminal I/O

PRINTEXT is used to write a message to the terminal and to con­
trol forms movement. Forms control is always executed before
the message is written.

Syntax

label PRINTEXT msg,SKIP=,LINE=,SPACES=,XLATE=,
MODE=,PROTECT=,P1=

Required: At least one operand other than XLATE=,
MODE= or PROTECT=

Defaults: SKIP=O,LINE=(current line),SPACES=O,
XlATE=VES,PROTECT=NO

Indexable: msg,LINE,SKIP,SPACES

Operands

msg

SKIP=

Description

The name of a TEXT statement wh i ch def i nes the
message to be printed or an explicit text message
enclosed in apostrophes. If msg is the label of a
BUFFER statement referenced by an act i ve IOCB, then
the output is direct, for examp Ie, the count is tak­
en from the buffer index word at ms.g-4, the new line
character is not recognized, and the operation is
executed immediately. The direct I/O feature is
useful for full control over a device, for example,
to cause overstr i king on a pr inter.

The maximum line size of the terminal is estab-
1 i shed by the TERMINAL statement used to def i ne the
terminal when the system was configured. Refer to
the TERMINAL statement in the System Gu i de for
information on default sizes.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page

Chapter 3. Instruction and Statement Descriptions 217

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-o686

PRINTEXT

LINE=

SPACES=

XLATE=

size, and the remainder is used in place of the
specified value.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usab Ie 1 i ne
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms wi 11 move to the spec if i ed 1 i ne on the
next page, otherwi se to that 1 i ne on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O position for a terminal or logical screen is
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor position. It does not imply
over-pr i nt i ng with b lank characters on d i sp lay
screens. If the specified value positions the cur­
s 0 r bey () n d t ,h e log i cal s c r e e n 1 i mit s, the cur s 0 r i s
moved the excess number of spaces onto the next
Ii ne.

Whenever LINE or SkIP is specified on an instruc­
tion, the current indent is reset to zero (carriage
return). For static screens in particular, spec­
ification of both LINE and SPACES designates a
character position in 2-coordinate form. If SPACES
is specified without LINE or SKIP, then the indent
value is incremented by the value specified.

To send character codes to the device as is, without
translation by the system, code XLATE=NO. This
option might be used, for example, to transmit
graphic control characters and data. XLATE=YES
causes translation of characters from EBCDIC to the
terminals code.

Note: If the terminal requires that characters be
sent in "mirror image", it is the user's responsi­
bility to provide the proper bit representation if
XLATE=NO is used.

218 SC34-0314

o

()

o

o

o

•

o

MODE= Code MODE=lINE if the text includes imbedded Q)

characters which are not to be interpreted as new
line. For screens accessed in STATIC mode,
MODE=LINE causes protected fields to be skipped
over as the data is transferred to the screen. Pro­
tected pes it ions do not contr i bute to the count. Do
not code this parameter if Q) characters are to be
interpreted as new 1 i ne.

Chapter 3. Instruction and Statement Descriptions 218. 1

o

•

o
218.2 SC34-0314

o

o

PRINTIME

PRINTIME

Terminal I/O

PRINTIME prints the time of day on the terminal. The value
printed is in the form HH:MM:SS, according to a 24-hour clock,
and is based upon the time value entered during the last $T
entry of time.

Syntax

label PRINTIME

Required: none
Defaults: none
I n d e x a b I e -: non e

Operands Description

none none

Chapter 3. Instruction and Statement Descriptions 221

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I PRINTNUM

PRINTNUM

Terminal I/O

PRINTNUM is used to convert a floating point variable or one or
more numeric integer variables to printable decimal or
hexadecimal format and write them to the terminal with optional
format control. Format specification can include, for integer
data, the number of elements per line and the spacing between
elements can be spec if i ed.

If the system buffer cannot accommodate the entire PRINTNUM
value then any concatenated output is forced to the terminal
before any other terminal I/O is executed.

Syntax

label

Required:
Defaults:

PRINTNUM loc,count,nline,nspace,MODE=,FORMAT=
TVPE=,SKIP=,LINE=,SPACES=,PROTECT=
Pl=,P2=,P3=,P4=

loc
count=l,nspace=I,MODE=DEC,PROTECT=NO,
FORMAT=(6,O,I),TVPE=S,
SKIP=O,LINE=current line,SPACES=O
If nline is not specified, then it is
determined by the terminal margin settings.

Indexable: loc,SKIP,LINE,SPACES

Operands

loc

count

n Ii ne

nspace

Description

Address of the first value to be printed.
Successive values are taken from successive words
or doublewords.

The number of values to be printed. The precision
specification may be substituted for the count
specification, in which case the count defaults to
1, or it may accompany the count in the form of a
sublist: (count,precision). Precision may be
either WORD (the default) or DWORD (double word).

The number of values to be pr i nted per 1 i ne.

The number of spaces by wh i ch pr i nted va 1 ues will be
separated.

222 SC34-0314

o

o

o

o

MODE=

FORMAT=

TYPE=

SKIP=

LINE=

PRINTNUM

Code MODE=HEX for hexadecimal output. The default
is decimal (MODE=DEC).

This operand is used to specify, in the form of a
three-element list (w,d,f), the external format of
a single variable to be printed. If this operand is
spec if i ed integer or float i ng-po i nt, then count,
nline, nspace, and MODE are ignored. The format is
defined as follows:

w A decimal value equal to the field width in
bytes of the data to be pr i nted.

d A decimal value equal to the number of
significant digits to the right of the decimal
point. For the integer format this value must
be zero; for the float i ng-po i nt F format it
must be less than or equal to w-2, and for the
floating-point E format less than or equal to
w-6.

f Format of the output data

I Integer

F Float i ng-po i nt F format

E Float i ng-po i nt E format

Th is operand is used to spec i fy the type of the
internal variable to be printed. Used only in con­
j unct i on with the FORMAT operand.

S Single-precision integer (1 word)
D Double-precision integer (2 words)
F Single-precision floating-point (2 words)
L Extended~precision floating-point (4 words)

The number of lines to be skipped before the
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page
size, and the remainder is used in place of the
specified value.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is

Chapter 3. Instruction and Statement Descriptions 223

Page of SC34-o314-2
As updated January 22, 1981
By TNL SN34-0686

PRINTNUM

SPACES=

PROTECT=

Px=

Example

less than or equal to the cu~rent line number, then
the forms will move to the specified line on the
next page, otherwise to that line on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size and the remainder is used in place of
the value.

The I/O position for a terminal or logical screen is
def i ned by the line number and the pos it i on, wi th i n
that line, of the typing element or cursor. The
SPACES parameter is used to specify an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. If the specified value positions the cur­
sor beyond the logical screen limits, the cursor is
moved the excess number of spaces onto the next
line. ~~henever LINE or SKIP is specified on an
instruction, the current indent is reset to zero
(carriage return). For static screens in partic­
ular, specification of both LINE and SPACES
des i gnates a character pos it i on in 2-coord i nate
form. If SPACES is specified without LINE or SKIP,
then the indent value is incremented by the value
specified.

Code PROTECT=YES to write protected characters to a
dey i ce for wh i ch th is feature is supported.

Par'ameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

PRINTNUM A

PRINTNUM BUFl,lO

PRINTNUM AX,MODE=HEX

PRINTNUM BUF2,lO,5,3

PRINTNUM BZ,(lO,DWORD),MODE=HEX

224 SC34-0314

o

c

o

•

o

PROGRAM

PROGRAM

Task Control

PROGRAM is used to define basic parameters of a user program.
PROGRAM is the first statement of every user program. When
program assembly is to be done by $EDXASM, the PROGRAM state­
ment may be omitted when assembling a subprogram. (See the MAIN
operand for the definition of a subprogram.) When program
assembly is to be done by the Host or Series/l macro assem­
blers, the PROGRAM statement must be coded even for subpro­
grams.

Syntax

task name

Required:
Defaults:

PROGRAM start,priority,EVENT=,
DS=(dsnamel, .•• ,dsname9),PARM=n,
PGMS=(pgmnamel, •.. ,pgmname9),TERMERR=,
FLOAT=,MAIN=,ERRXIT=,STORAGE=,WXTRN=

taskname,start (except when MAIN=NO)
priority=150,PARM=O,FLOAT=NO,MAIN=VES,
STORAGE=O,WXTRN=VES

Indexable: none

Operands Description

taskname

start

The name to be assigned to the primary task of the
program. A system control block is ge~erated for
each task in an application program. This is known
as the Task Control Block or TCB. The first word of
the TCB is ass i gned the name spec if i ed in the
taskname operand. This word is known as the 'task
code word' and has a special significance in pro­
gram operation. For example, in I/O operations it
is used for storing a return code for the user.
Thus, the task name may be used in an IF instruct ion
to test for a successful completion of an I/O oper­
ation.

The label of the first instruction to be executed in
your program. The instruction must be on a full word
boundary.

Chapter 3. Instruction and Statement Descriptions 225

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I PROGRAM

pr i or i ty The pr i or i ty of the program's pr i mary task.

EVENT=

DS=

Priorities separate tasks according to. their rela­
tive critical real time needs for processor time.
The range is from 1 (highest priority) to 510 (low­
est p rio r i t y) • P rio r i tie s 1- 255 i mp I y for e g r 0 un d
and are executed on hardware interrupt level 2.
Priorities 256-510 imply background and are exe­
cuted on interrupt level 3.

EVENT=name is used to name the event which will be
posted when the initial task is detached. It must
be defined only if another task will issue a WAIT
for this event. This event name must not be defined
explicitly by an ECB because it is generated auto­
matically. An error message is printed at the end
of the program if the event name is def i ned more
than once.

Names of 1-9 disk, diskette, or tape data sets to be
used by this program. Each name is composed of 1-8
alphameric characters, the first of which must be
alphabetic.

One OSCB is generated in the program header for each
data set specified in the OS parameter of the PRO­
GRAM statement. The name of each OSCB so generated
is OSl, OS2, ••• , OS9, correspond i ng to the order of
spec if i cat i on of the data set. The name OSx is
assigned to the first word of the OSCB, the event
control block. Fields within the OSCB may be refer­
enced symbo Ii ca 11 y with the express i on:

OSx+name

where name is a labe I def i ned in the DSCB equate
tab Ie, OSCBEQU.

All tape data sets are of the form (OSN,VOLUME). The
specification of tape data sets is dependent upon
the type of label processing being done.

For standard label (SL) processing the OSN is the
data set name as it is specified in the HOR1 label.
VOLUME is the volume serial as it is specified in
the VOL1 label.

When doing no label (Nl) processing or bypass label
processing (BlP) the volume must be specified as
the 1 - 6 digits that represent the tape unit 10.
The tape unit 10 was assigned at system generation

226 SC34-0314

o

o

o

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

PROGRAM I
time. The DSN j s ignored dur i ng Nl or BlP process i ng
but it must be supplied for syntax checking pur­
poses. It also provides identification of the data
set for th i ngs like error logg i ng.

If more than one disk or diskette logical volume is
being used, a volume label must be specified if the
data set resides. on other than the IPL volume. The
data set name and volume are separated by a comma
and enc losed in parentheses. In add it i on-, the
entire list of data set/volume names are enclosed
in a second set of parentheses. For example:

••• ,DS=«ACTPAY,EDXOOl),(DSDATA2,EDX003))

references the data set ACT PAY on volume EDXOOI and
DSDATA2 on volume EDX003. If a volume is not speci­
fied, the default is the IPL volume.

When one data set is used and it is in the IPL vol­
ume, no parentheses are requ ired. For example:

DS=CUSTFIL

When more than one data set is used and they reside
in the IPL volume, the data set names are sep~rated
by commas and enclosed in parentheses. For exam­
ple:

DS=(CUSTFIL,VENDFIL)

Four special data set names are recognized: ??,
$$EDXLIB, and $$ or $$EDXVOL. A data set control
block (DSCB) is created just as for any other data
set name. However, special processsing occurs when
the program is loaded for execution.

If the sequence' ??' is used as a data set name, the
final data set name and volume specification is
done at program load time. If the program is loaded
by another program, this information must be
conta i ned in the DS operand of the LOAD
ins t rue t ion. 1ft he pro 9 ram i s loa d e d u sin 9 t he
system command '$ L', the system will query the
operator for these names. I f the spec if i ed
sequence is of the form

DS = «string,??»

where 'string' is 1-8 alphanumeric characters the
user will be given a prompt message:

string(NAME,VOLUME)

Chapter 3. Instruction and Statement Descriptions 227

Page of SC34-Q314-2
As updated January 22, 1981
By TNL SN34-0686

PROGRAM

PARM=

I f the spec if i ed sequence is of the form

os = ??

the user wi 11 then be gi ven a prompt message

OSn(NAME,VOLUME):

where 'n' is a digit from 1 to 9.

If '$$EDXLIB is used as a data set name, the library
directory of the specified volume is opened for
process i ng. Note that record 1 conta i ns a directory
control entry and the first seven directory member
entries. This is useful for the creation of utility
programs or for "do it yourself" data set access.
Update of the directory by user programs is not
recommended since doing 50 incorrectly could cause
the 1055 of some or all of the data sets in the vol­
ume.

If $$EDXVOL or $$ is used as a data set name, the
entire volume is opened for processing as if it were
a single data set. The library directory and any
data sets on the volume are accessible. Note that
record number 1 and 2, of a primary volume, can con­
tain IPL text, and record number 4, of a diskette,
contains the volume label. This is useful if the
DISK statement defining the volume did not assign
all available space to a library. $$EDXVOL or $$

can also be used if the appl i cat i on program does not
use Event Driven Executive data set facilities at
all. Additionally, it can be used to reserve a DSCB
in the program header 50 that it can be filled in
and opened (using DSOPEN) after execution begins.

In this operand, n is a word count specifying the
length of a parameter list to be passed to this pro­
gram at load time. Each word in the list may be ref­
erenced by the symbolic name $PARMx where x is the
word position number in the list beginning with 1.
The max i mum length of th is list is 368 words less 19
for each data set name specified in the DS operand
and each program overlay name specified in the PGMS
operand.

This parameter is valid for programs to be loaded by
a LOAD instruction. The list address is specified
as an operand of that instruction. The list would
be filled in by the load i ng program and there are no

228 SC34-0314

o

o

o

C
, ...
)

o

list

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-D686

PUTEDIT I
A description of the variables or locations which
conta in the input data, hav i ng the form:

«variable,count,type),----)
or
(variable,----)
or
«variable,count),----)
or
«variable,type),----)

where:

variable - is the name of a variable or gr~up of
variables that are to be converted to EBCDIC.

count - is the number of variables that are to be
converted.

type - is the type of the variable to be converted

S - Single-precision integer (Default)
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

Type will default to S for integer format data
and to F for floating-point format data.

format list A FORMAT list. If you wish to refer to this format
statement from another PUTEDIT instruction, then
both the format and format list operands must be
coded. Refer to the FORMAT statement for coding
instruct ions. Th i s operand is not allowed if the
program is assembled with $EDXASM.

ERROR= The name of a user's routine to branch to if an
error is detected during the PUTEDIT execution.
Errors that might occur that will cause this action
~o take place are:

• Use of incorrect format list

• Not enough space 'in text buffer to satisfy the
data list

• Only the highest value return code is returned
to you.

The error i nd i cators (return codes) fo llow:

Chapter 3. Instruction and Statement Descriptions 237

Page of SC34-o314-2
As updated January 22, 1981
By TNL SN34-o686

I PUTEDIT

Return Codes

Code Description

-1 Successful completion

3 Conversion error

ACTION= 10 causes a PRINTEXT to be executed following the
data convers i on.

SKIP=

LINE=

SPACES=

STG causes the conversion and movement of data
i n't 0 ate x t b u f fer. No I /0 t a k e s p I ace •

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been wr i tten, then the first sk i p causes output 0 f
that line. If the value specified is greater than
or equal to the logical page si ze (BOTM-TOPM­
NHIST), then it is divided by the page size, and
the remainder is used in place of the specified
value.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a
number between 0 and the number of the last usable
line on the page (BOTM-TOPM-NHIST). For hardcopy
de vic e s 0 r roll s ere en s, i f t he va 1 u e spec i fie dis
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwise to that line on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O position for a terminal or logical screen
i s de fin e d by the lin e n u m be r and the po sit i on ,
within that line, of the typing element or cursor.
The SPACES parameter is used to specify an incre­
ment to the cursor pos it i on. It does not imply
over-printing with blank characters on display
screens. Whenever LINE or SKIP is specified O~ an
instruction, the current indent is reset to zero

238 SC34-0314

o

o

o
LINE=

SPACES=

PI=

Example

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

QUESTION

(BOTM-TOPM-NHIST), then it is divided by the page
size, and the remainder is used in place of the
specified value.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable 1 i ne
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the spec if i ed 1 i ne on the
next page, otherwise to that line on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O pos it i on for a termi nal or log i cal screen is
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. If the specified value positions the cur­
sor beyond the logical screen limits, the cursor is
moved the excess number of spaces onto the next
line.

Whenever LINE or SKIP is specified on an instruc­
tion, the current indent is reset to zero (carriage
return). For static screens in particular, spec­
ification of both LINE and SPACES designates a
character position in 2 coordinate form. If SPACES
is specified without LINE or SKIP, then the indent
value is incremented by the value specified.

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

QUESTION
QUESTION
QUESTION

TEXT3,YES=POINTI
'DO IT AGAIN?',NO=EXIT
'RESTART?',YES=INITIAL,NO=ENDP

TEXT3 TEXT 'GO TO POINTl?'

Chapter 3. Instruction and Statement Descriptions 243

RDCURSOR

RDCURSOR

Terminal I/O

RDCURSOR is effective only for IBM 4978/4979 terminals
accessed in STATIC mode. It is used to store the cursor posi­
tion (line number and indent relative to the logical screen
margins) in user-specified variables. For more information on
STATIC screens refer to -"Terminal I/O Instructions" on page 44.

Syntax

label RDCURSOR line, indent

Required: line,indent
Defaults: none
Indexable: line,indent

Operands

line

indent

Example

Description

The name of the var i ab Ie in wh i ch the cursor
position, relative to the top margin of the logical
screen accessed, is to be stored. If the cursor
lies outside the line range of the logical screen,
then -1 is stored.

The name of the variable in which the cursor
position, relative to the left margin of the log­
ical screen, is to be stored. If the cursor posi­
tion is not within the left and right margins of the
logical screen, then -1 is stored.

RDCURSOR LN,SP
RDCURSOR (Y,il),(X,il)

244 SC34-0314

o

o

o

o

READ

READ

Disk/Tape I/O

READ is used to retrieve one or more records from a direct
access or tape data set into a user storage buffer. It is your
responsibility to ensure that sufficient buffer space has been
defined. Direct access data sets can be read either sequen­
tially or roandomlY. These data sets are read in 256-byte record
increments.

Tape data sets are read sequent i all y on I y. A tape READ
retr i eves a record from 18 to 32767 bytes long, as spec if i ed by
the blksl ze parameter.

Syntax

label READ DSx,loc,count,relrecnolblksize,
END=,ERROR=,WAIT=,P2=,P3=,P4=

Required: DSx,loc
Defaults: count=l,relrecno=O or blksize=256,WAIT=YES
Indexable: loc,count,relrecno or blksize

Operands

DSx

loc

count

Description

x specifies the relative data set number in a list
of data sets defined by the user on the PROGRAM
statement. It must be in the range of 1 to n, where
n is the number of data sets def i ned in the 1 i st. A
DSCB name def i ned by a DSCB statement can be subst i­
tuted for DSx.

The label of the area into which the data is read.

The number of contiguous records to be read. If
this field is set to 0 by the program, no I/O oper­
ation wi 11 be performed. A count of the actual num­
ber of records transferred will be returned in the
second word of the task control block if WAIT=YES is
coded. Note, however, if the incorrect blocks i ze
was specified, the actual blocksize will be stored
in the second word of the TCB, not the number of
records transferred. If an end-of-data condition

Chapter 3. Instruction and statement Descriptions 245

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

READ

relrecno

blksize

occurs (fewer records remaining in the data set
than specified by the count field) the system will
fi rst read the remainder and then an end-of-data
return code wi 11 be set.

Th is operand spec if i es the number of the record,
relative to the origin of the data set, to be read.
Numbering begins with 1. This parameter may be a
constant or the label of the value to be used. A
specification of 0 or default to 0 indicates a
sequential READ. Note however, if 0 is specified,
the end-of-data will be the physical end-of-data,
but if relrecno defaults to 0 end-of-data will be
the logical end-of-data.

This disk READ operand cannot be used in the same
instruction with the tape READ blksize operand. If
the relrecno operand is specified, the READ
instruct i on is cons i de red a direct I/O operat i,on.
End-of data is recognized only at the physical end
of the data set, not at the logical end.

Sequential READs and WRITEs start with relative
record 1 or the record number specified by a POINT
instruction. The supervisor keeps track of sequen­
tial READs and WRITEs and increments an internal
next record pointer for each record read or written
in sequential mode (relrecno is 0). Direct READs
and WR I TEs (re I recno is not 0) may be i nterm i xed
with sequential operations, but these do not alter
the next sequential record pointer used by sequen­
t i al operat i o'ns.

This operand determines the number of bytes to be
read from a tape data set. The range is from 18 to
32767. The value can either be a constant or the
label of the value to be used. If this operand is
not coded, or if 0 is coded, the default value of
256 bytes wi 11 be subst i tuted.

The first word of the TCB will contain the return
code for the READ operation. If the specified
blksi ze does not equal the actual blksi ze, the
ERROR path wi 11 be taken and the second word of the
TCB will contain the actual blksize. Note, however,
that the blksize is only stored in the second word
of the TCB if WAIT=YES is coded, or WAIT is not
coded and allowed to default to YES. If you code
WAIT=NO and the blsksize specification is incor­
rect, you can check the $DSCBR3 field in the DSCB
for the actual number of records read or the actual
blksize.

246 SC34-0314

o

o

o

o

•

o

Disk/diskette Return Codes

READ/WRITE return codes are returned in two places:

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

READ

• The Event Contra I Block (ECB) named DSn, where n is the
number of the data set be i ng referenced.

• The task code word referred to by taskname.

The poss i b Ie return codes and the i r mean i ng are shown in
Figure 18 on page 321.

If further information concerning an error is required, it may
be obtained by printing all or part of the contents of the Disk
Data Blocks (DDBs) located in the Superv i 50r. The start i ng
address of the DDBs may be obta i ned from the linkage ed i tor map
of the supervisor. The contents of the DDBs are described in
the Internal Design. Of particular value are the Cycle Steal
Status Words and the Interrupt Status Word save areas, along
with the contents of the word which contains the address of the
next DDB in storage.

Code Description

-1 Successful completion.
1 I/O error and no device status present

(This code may be caused by the I/O area starting
at an odd byte address).

2 I/O error trying to read device status.
3 I/O error retry count exhausted.
4 Error on issuing I/O instruction to read device

status.
5
6
7

9
10

Unrecoverable I/O error.
Error on issuing I/O instruction for normal I/O.
A 'no record found' condition occurred, a seek
for an alternate sector was performed, and another
'no record found' occurred i.e., no alternate is
assigned.
Device was 'offline' when I/O was requested.
Record number out of range of data set--may be an
end-of-file (data set) condition.

11 Device marked 'unusable' when I/O was requested.
12 DSeB was not open; DDB address = 0

Figure 12. READ/WRITE return codes

Chapter 3. Instruction and statement Descriptions 249

[READ]

Tape Return Codes

Code Description

-1
1
2
4
5
6

10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
76

ABC
STARTI

Successful completion
Exception but no status
Error reading STATUS
Error issuing STATUS READ
Unrecoverable I/O error
Error issuing I/O command
Tape mark (EOD)
Device in use or offline
Wrong length record
Not ready
File protect
EDT
load point
Uncorrected I/O error
Attempt WRITE to unexpired data set
Invalid blksize
Data set not open
Incorrect device type
Incorrect request type on close request
Block count error during close
EOVI label encountered during close
DSN not found

PROGRAM
READ

STARTl,DS=((MYDATA,234567»
DS1,BUFF,I,327,END=ENDI,ERROR=ERR,WAIT=YES

This statement reads a single 327-byte record from a
standard labeled (SL) tape. If an end of data set tapemark
is detected, control is transferred to the statement named
ENDI. If an error occurred, control transfers to the
statement named ERR.

ABCD
START2

PROGRAM
READ

START2,DS=(CMVDATA,234567»
DSI,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES

This statement performs the same as the previous example
except that 2 records are read into your storage buffer
(BUFF2). BUFF2 must be 654 bytes in length.

250 SC34-0314

o

o

o

•

o

READTEXT

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

[READTEXT

Terminal I/O

READTEXT is used to read an alphameric text string entered by
the terminal operator. The printing of an aS50ciated prompting
message may be either unconditional or conditional depending
upon the absence of advance input.

Input keyed in before the program has requested it (advance
i n put) 1\ 0 r mal 1 y. r f~ 5 ide 5 i nth e s y 5 t e m b u f fer. The ref 0 r e, w hen
a READTEXT is issued, the advance lnput is read immediately
frolT! the buffer. However, if an explicit or implicit terminal
output operation occurs, the advance input is lost because the
system buffer i5 used for terminal output.

An example of implicit terminal output could be the SPACES
operand coded on a READTEXT statement. This could be the same
READTEXT statement that you intended the advance input for.

label

Required:
Defaults:

READTEXT loc,pmsg,PROMPT=,ECHO=,TVPE=,
MODE=,XLATE=,SKIP=,LINE=,SPACES=

loc
PROMPT=UNCOND,ECHO=YES,TVPE=DATA,MODE=WORD,
XlATE=YES,SKIP=O,LINE=current line,SPACES=O

Indexable: loc,pmsg,SKIP,LINE,SPACES

,Jpe rand s

loc

Description

This operand is normally the label of a TEXT
statement defining the storage area which is to
receive the data; the storage area may be defined by
DATA or DC statements as well, but the format
produced by the TEXT statement must be adhered to.
In order to satisfy the length specification, the
input will be either truncated or padded to the
r; ght with blanks as necessary.

Chapter 3. Instruction and statement Descriptions 251

If the length specification is greater than the
system buffer size, then the length will be limited
to the buffer size. If a user buffer is spec if i ed on
the IOCB statement and you have issued an ENQT to
the corresponding terminal, then the user buffer
size will apply to the input length.

This operand may also be the label of a BUFFER
statement referenced by an active IOCB statement.
In this case the input is "direct;" the maximum
input count is taken from the word at loc-2, i mbed­
ded blanks are allowed, elnd the f i nell input count is
plelced in the buffer index word at loc-4.

251.1 SC34-0314

o

•

o

o

o
Chapter 3. Instruction and Statement Descriptions 251.2

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

READTEXTJ

pmsg

PROMPT=

ECHO=

MODE=

The max i mum line size for the term ina lis estab­
lished by the TERMINAL statement used to define the
terminal· when the system was configured. Refer to
the TERM~NAl statement in the System Guide for
information on the default sizes.

The name of a TEXT statement or an explicit text
message enclosed in apostrophes. This defines the
prompting message which wi 11 be issued according to
the value of the PROMPT operand.

Code PROMPT=COND (conditional)
PROMPT=UNCOND (unconditional).

or
If

the default
conditional

prompting is specified and the terminal user enters
advance input, the message def i ned by the pmsg
operand is not displayed. Unconditional prompting
causes the message to be displayed without regard
to the presence of advance input.

Note: If PROMPT=COND is coded without
specification of a prompt message, then the system
wi 11 not wa it for user input if advance input is not
presented; instead, the rece i vi ng TEXT buffer is
fi lIed with blanks and its input count is set to O.

Code ECHO=NO if the input text is not to be printed
on the terminal. This operand is effective only for
devices which require the processor to 'echo' input
data for printing.

Note: The spec if i cat ion PROTECT=YES is equ i va lent.

Code MODE=WORD : f the input operat i on is to be
terminated by the entry of a blank character
(space). lower case input is automat i ea 11 y changed
into upper case.

Code MODE=lINE if the string to be read can include
imbedded blanks. Lower case characters are left in
lower case.

Any portion of the input which extends beyond the
count indicated in the receiving TEXT statement
wi 11 be ignored and wi 11 not be retained as advance
input.

252 SC34-0314

o

o

o

c

o

When READTEXT is directed to a static logical
screen, the input operation is normally terminated
by the count being decremented to zero (the input
buffer size), by the beginning of a protected
field, or by the end of the logical line. However,
if MODE=LINE, the TYPE operand will determine
whether protected fields are skipped and whether
they contribute to the count, and the input oper-

Chapter 3. Instruction and Statement Descriptions 252.1

o

o
252.2 SC34-0314

o

o

oj

o

TYPE

XLATE=

SKIP=

LINE=

READTEXT

at i on may cont i nue beyond the log i ca 1 screen bound­
ary to the end of the physical screen. In this
case, input continues from the end of each physical
screen 1 i ne to the beg i nn i ng of the next 1 i ne.

This parameter is used to specify the type of data
to be transferred from 4978/4979 terminals.

The default is TYPE=DATA.
transferred.

Only data fields are

Code TYPE=ALL to transfer both protected and data
(non-protected) fields.

TYPE=MODDATA is used to transfer only those data
fields which have been modified by the terminal
operator (4978 only).

Code TYPE=MODALL to transfer, along with each modi­
fied data field, the protected fields which precede
it.

Code XLATE=NO if the input line is not to be
translated to EBCDIC. Note that the character
delete and line deJete codes lose their special
functions under this option, and that MODE=LINE is
implied.

Note: If the terminal is of the type that transmits
characters in "mi rror i mage" format, the characters
will be placed in storage in that format if XLATE=NO
is used. XLATE=YES causes the supervisor to trans­
late the terminal's binary code to EBCDIC, the
standard Ser i es/l representat i on of data.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page
size, and the remainder is used in place of the
s p e c i fie dv a 1 u e •

This operand is used to specify the line at which
the n ext I /0 0 pe rat i on w ill t a k e p lac e • Co de a n u m -
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwi se to that line on the current

Chapter 3. Instruction and Statement Descriptions 253

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

[iEADTEXT

SPACES=

page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O position for a terminal or logical screen is
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to specify an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. If the specified value positions the cur­
sor beyond the logical scr~en limits, the cursor is
moved the excess number of spaces onto the next
line. Whenever LINE or SKIP is specified on an
instruction, the current indent is rest to zero
(carr i age return). For stat i c screens in part i c­
ular, specification of both LINE and SPACES
des i gnates a character pas it i on in 2-coord i nate
form. If SPACES is specified without LINE or SKIP,
then the indent value is increased by the value
specified.

254 SC34-0314

o

o

o

o

RETURN

RETURN

Program Control

RETURN is used in a subroutine to provide linkage back to the
calling program. A subroutine can contain more than one RETURN
instruction.

Syntax

label RETURN

Required: none
Defaults: none
Indexable: none

Operands Description

none none

Chapter 3. Instruction and statement Descriptions 259

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I SBIO

S810

Sensor Based I/O

5810 provides communication using analog and digital I/O. Many
options provide flexibility. Optional automatic indexing is
provided using the previously defined BUFFER statement. A
buffer address in the SBIO instruction can be automatically
updated after each operation. A short form of the instruction,
om itt i ng loc (data locat i on) is prov i ded. When used, a data
address within the SBIOCB is implied. Options available with
digital input and output provide PULSE output and the manipu­
lation of portions of a group ·with the BITS=(u,v) keyword
parameter.

SBIO instructions are hardware address independent. The actual
operation performed is determined by the definition of the sen­
sor address in the referenced IOOEF statement.

I

The IODEF statement generates a location into/from which data
is read/wr i tten. You must create a separate IODEF for each
task; different tasks cannot use the same IODEF statement.

An INPUT/OUTPUT CONTROL BLOCK (SBIOeB) is automatically
inserted into the user's program for each referenced sensor I/O
device. It supplies necessary information to the supervisor.
These control blocks each contain two items, a data I/O area
and an ECB. When an SBIO instruction is executed, the supervi­
sor either stores (AI and 01 operations) or fetches (AD and DO
operations) data from a location in the IOCB with the label
equivalent to the referenced I/O point (for example, All, DI2,
0033, AOl). These locations may be referenced in the applica­
tion program in the same manner as any other variable. This
allows the user to use the short form of the SBIO instruction
(for example, SBIO 011), and subsequently reference 011 in
other instruct ions. It may also be conven i ent to equate a more
des c rip t i vel a b .~ Ito the 5 y m b 0 I i c n arne s (f 0 rex amp I e S WIT C H E Q U
0115). However, the SBIO instruction must use the symbolic name
as descr i bed above.

E a c h con t r 0 I b I 0 c k a Iso con t a ins a n E C B t o. b e use d b y tho s e
operations which require the supervisor to service an inter­
rupt and 'post' an operation complete. These include analog
input (AI), process interrupt (PI), and digital I/O with
external sync (01/00). For process interrupt, the label on the
ECB is the same as the symbol ic I/O point (for example PIx). For
analog and digital I/O the label is the same as the symbolic I/O
point with the suffix 'END' (for example OIxENO).

For brevity, operands
described here and
descriptions.

260 SC34-0314

common
not in

to a I i
the

versions
individual

of SBIO are
instruction

o

o

o

o

o

SUB ROUT

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

[SUBROUT I

Program Control

SUBROUT is used to define the entry point of a subroutine. Up
to five parameters may be spec if i ed as arguments in the subrou­
tine. The subrout i ne must have a RETURN instruct i on to prov ide
linkage back to the calling .task. Nested subroutines are
allowed, and a maximum of 99 subroutines are permitted per
Event Driven Executive program. If a subroutine is to be
assembled as an object module which can be link-edited, an
ENTRY statement must be coded for the subroutine entry point
name.

A subroutine may be called from more than one
called, the subroutine will execute as part of

task. When
the calling

I
task. Since subroutines are not re-entrant, it may be desira­
ble to enforce serial usage of the subroutine using ENQ/DEQ
instructions.

The TASK statement must not be coded in a subroutine.

Syntax

label SUBROUT name,parl, .•. ,par5

Required: name
Defaults: none
Indexable: none

Operands Description

name

parI, •••

Name of the subrout i ne.

Names used within the subroutine for arguments or
parameters passed from the calling program. These
names must be unique to the whole program. All
parameters defined outside the subroutine are known
within the subroutine. Thus, only parameters which
m~y vary with each call to a subroutine need to be
defined in the SUBROUT instruction. These parame­
ters are defined automatically as single precision
values.

Chapter 3. Instruction and Statement Descriptions 281

SUB ROUT

For instance, assume two calls to the same subrou­
tine. At the first, parameters A and C are to be
passed, wh i Ie at the second, Band C are to be
passed. Because Cis common to both, it need not be
def i ned in the SUBROUT statement. However, a new
parameter 0 would be specified to account for pass­
ing either A or B.

282 SC34-0314

o

o

o

o

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

TERMCTRL I

2, to indicate that the 4974 wire image buffer is to
be in i t i al i zed wi th the standard 64-character
EBCDIC set. If the count operand is zero, no data
is transferred. If the count is 8 or less, each bit
of the data string indicates replacement (1) or
non-replacement (0) of the corresponding character
in the standard set with the alternate character as
defined in the attachment. If 2 is specified, func­
t i on must be PUTSTORE.

Example 1: Initialize a 4974 wire image buffer

TERMCTRL PUTSTORE,*,*,O,TYPE=2

Example 2: Initialize the 4974 wire image buffer to the stand­
ard EBCDIC character set and replace the standard dollar sign
($) with its alternate, the English sterling symbol (hex code
5B) and the standard cent sign (¢) with its alternate, dollar
sign ($), (hex code 4A).

REPLACE
TERMCRTL
DATA

PUTSTORE,REPLACE,*,2,TYPE=2
X'1200'

Chapter 3. Instru~tion and Statement Descriptions 293

TERMCTRL

4978 Di splay

Syntax

label TERMCTRL function,opl,op2,count,TYPE=,ATTN=

Required: function
Defau 1 ts: none
Indexable: opl,op2

Operands Description

function:

BLANK

DISPLAY

TONE

BLINK

UNBLINK

LOCK

UNLOCK

294 SC34-0314

Inhibits display of the
contents of the 4978 screen.
The contents of the internal
buffer remain unchanged. If
specified, no other operands
are required.

Causes the screen contents
to be displayed if previously
blanked by the BLANK function.
Any buffered output is also
displayed and the cursor
position is updated
accordingly.

Causes the audible alarm to
be sounded if the audible
alarm is installed.

Sets the cursor to the blinking
state.

Sets the cursor to the
non-blinking state.

Locks the keyboard.

Unlocks the keyboard.

o

o

o

o

C'~'
,)

o

TEXT

Page of SC34-0314-2
As updated January 22, 1981'
By TNL SN34-0686

TEXT

Data Definition

TEXT is used to define a standard text message or text buffer.
The characters are stored in EBCDIC or ASCII code. The PRINTEXT
instruction may be used to print this message buffer on a ter­
minal. READTEXT may be used to read a character string from a
terminal into the TEXT buffer. A count field is maintained as
part of the TEXT buffer and indicates the number of characters
in the message received or to be printed. The contents of the
buffer will be:

BYTE
o
1
2

CONTENT
Length
Count
First byte of text (addressed by 'label')

For a diagram of a buffer layout see Figure 16 on page 307.

Syntax

label TEXT 'message',LENGTH=,CODE=

Required: 'message' or LENGTH=
Defaults: CODE=E EBCDIC is the standard internal

representation of all character
data

Indexable: none

Operands Description

label

'message'

Refers to the address of first byte of text. Used in
GET E,D IT, PUT E D IT, REA D T EXT, and P R I NT EXT •

Any text string defined between apostrophes. If
th is operand is not coded, LENGTH must be coded and
the buffer will be filled with EBCDIC spaces. The
count field wi 11 equal the actual number of charac-

. ters between apostrophes. If the LENGTH operand is
not coded, and the count value is even,
LENGTH=count. However, if the count value is odd,
LENGTH=count+l.

Chapter 3. Instruction and Statement Descriptions 305

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-Q686

TEXT

LENGTH=

CODE=

Example

MSGI

MSG2

MSGI

Use two apostrophes to represent each printable
apostrophe

The symbol 'a' will cause a carriage return return
or line feed to occur for nonstatic screen termi­
nals only.

Defines the maximum size (in bytes) of the text
buffer. If th i s operand is not coded, 'message'
must be coded and LENGTH equals the actual number of
characters between apostrophes. The message is
truncated if LENGTH is exceeded. The maximum value
1S 254. (Note that for $SlASM the maximum length is
98 with a default of 64.)

If 'message' is not coded, the text area wi 11 be
initialized to EBCDIC blanks and the count byte
wi 11 be equal to the length byte.

If th i s operand is coded for a text buffer whose
initial use will be for input, then the 'message'

,p a ram e t e r s h 0 u I d not be cod e dan d the de fin e d b u f f­
er will initially contain EBCDIC blanks.

Defines the data type. Code E for EBCDIC, or A for
ASCII. E is the default.

TEXT 'A MESSAGE'

TEXT 'ABC',LENGTH=lO,CODE=A

TEXT LENGTH=20

306 SC34-0314

o

o

o

o

WAIT

WAIT

Task Control

WAIT is used to wa i t for the occurrence of an event such as the
completion of an I/O operation or a process interrupt. An
event has an assoc i ated name spec if i ed by you. The in it i a 1 sta­
tus of any event defined by you is "event occurred" unless you
explicitly reset the event with the RESET instruction before
i ssu i ng the WAIT or reset the event in the WAIT instruct i on.

Syntax

label WAIT event,RESET,P1=

Required: event
Defaults: event not reset before wait
Indexable: event

Operands

event

RESET

Description

The symbolic name of the event being waited upon.

For process interrupt, use PIx, where x is a user
process interrupt number in the range 1-99.

For time intervals set by STIMER, use TIMER as the
event name. Do not code RESET with TIMER.

For disk I/O events, use OSn or the OSCB name from a
DSCB statement as the event name. For terminals,
use KEY to cause the task to wa i t for an operator to
press the ENTER key or any PF key. Do not code RESET
with KEY. Cod i ng KEY with asynchronous supported
terminals will give unpredictable results.

R es e t (c 1 ear) t he eve n t b e for e wa i tin g • U sin g
RESET will force the wa it to occur even if the event
has occurred and been posted complete.

This parameter must not be specified when the WAIT
is to be performed for the event specified in the
EVENT operand of either a PROGRAM or a TASK state­
ment.

Ch~pter 3. Instruction and Statement Descriptions 313

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

I WAIT

Pl= Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

WAIT normally assumes the event is in the same partition as the
currently executing program. However, it is possible to wait
on an event in another partition using the cross-partition
capab i 1 i ty of WAIT. See the System Gu i de sect i on on
Cross-Partition Services.

When comp iIi ng programs wi th $SlASM or the host assembler, ECBs
are generated automaticallY by the POST instruction when
needed. When using $EDXASM, ECBs must be explicity coded
unless one of the system event names listed above is used.

When the WAIT is satisfied by way of a POST command, the post
code is stored in both the event control block and in the wait­
i ng task's TeB code locat i on.

314 SC34-0314

o

o

o

o

WRITE

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-D686

WRITE

Disk/Tape I/O

Note: The Multiple Terminal Manager WRITE function is located
in "WRITE" on page 381

WRITE is used to transfer one or more records from a storage
buffer into a data set. For disk or diskette data sets you can
write data either sequentially or randomly by relative record.
The records are 256 bytes in length.

For tape data sets you can write data sequentially only. Tape
records Celn be any length from 18 to 32767 bytes.

Syntax

label

Required:
Defaults:

WRITE

DSx,loc

DSx,loc,count,relrecnolblksize,
END=,ERROR=,WAIT=, P2=,P3=,P4=

count=!, relrecno=O or blksize=256, WAIT=YES
Indexable: loc, count, relrecno or blksize

Operands Description

DSx

loc

count

x specifies the relative data set number in a list
of data sets defined by the user in the OS parameter
of the PROGRAM statement. It must be in the range
of ! to n, where n is the number of data sets defined
in the list. A DSCB name defined by a DSCB state­
ment can be subst i tuted for DSx.

The symbolic name of the ~rea from which data is to
be transferred.

Spec if i es the number of cont i guous records to be
written. The maximum value for this field is 255.
If you code 0 for this field, no I/O operation will
be performed. A count of the actual number of
records transferred will be returned in the second
word of the task control block. If an end of data
set condition occurs (fewer records remaining in
the data set than specified by the count field) the

Chapter 3. Instruction and Statement Descriptions 317

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

WRITE

relrecno

blksize

END=

system will first write as many records as there is
space rema i n i ng ina disk data set and then an
end-of-data-set return code wi 11 be set.

The number of the record, relative to the origin of
the data set, which is to be written. Numbering
begins with 1. This parameter may be either a con­
stant or the label of the value to be used. A spec­
ification of 0 for relrecno indicates a sequential
WRITE.

Sequential READs and WRITEs start with relative
record one or the record number speci fied by a POINT
ins t r u c t i on. The supervisor keeps track of seq u e n -
tial READs and WRITEs and increments an internal
ne xt record, po inter for each record read or wr i tten
in sequent i a I mode (re I recno -parameter is 0).
Direct READs and WRITEs (relrecno parameter i~ not
0) may be intermixed with sequential operations,
but these do not alter the next sequential record
pointer used by sequential operations.

This disk WRITE operand cannot be used in the same
instruction with the tape WRITE blksize operand.

This optional parameter specifies the size. in
bytes, of the record to be written to a tape data
set. The range is 18 to 32767 bytes. The value can
be expressed as either a constant or as the label of
the value to be used. If this operand is not coded,
or if 0 is coded, the default value of 256 bytes is
substituted.

This tape WRITE operand cannot be used in the same
instruction with the disk WRITE relrecno operand.

For disk or diskette, use this optional operand to
specify the first instruction of the routine to be
invoked if an end-of-data-set cond it ion is detected
(Return Code=10). If this operand is not speci­
fied, an EOD will be treated as an error. This
operand must not be used if WAIT=NO is coded.

For tape, if an end-of-tape (EOT) condition is
detected, the EOT path wi 11 be taken with return
code 24, even though the block was successfully
written. See the CONTROL statement for setting the
proper end-of-data (EOD) indicators for an output
tape. Multiple blo~ks (if specified by the count
field) might not have been successfully written.
The second word of the TCB contains the actual num­
b e r 0 fbi 0 c k s w r itt en. T his par am e t er i s not va lid

318 SC34-0314

o

o

o

•

o

ENDSEQ

Return Codes

Code

-1
7
8

10
12
13
22

Condition

Successful
Link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid IACB address

Chapter 4. Indexed Access Method 335

Page of SC34-Q314-2
As updated January 22, 1981
By TNL SN34-0686

I EXTRACT

EXTRACT

Indexed Access Method

The EXTRACT request returns information from a File Control
Block to the user's area. The FCB contains such things as the
blocksi ze, key length, and data set and volume names of the
indexed file. The FCBEQU copycode module contains a set of
equates to map the File Control Block.

Syntax

label CALL IAM,(EXTRACT),iacb,(buff),(size),(type)

Required: iacb, buff
Defaults: size = full FCB (or FCB extension)

type = FCBNRM
Indexable: None

Ope~~nds Description

(buff)

(size)

The labe 1 of the word conta i n i ng the IACB address
returned by PROCESS or LOAD.

The label of the user area into which the File Con­
trol Block (or FCB Extension) is copied. The area
must be large enough to contain the requested por­
tion of the FCB. Use the COPY statement to include
FCBEQU in your program so the FCB and/or FeB Exten­
sion fields can be referenced by symbolic names.

The number of bytes of the FCB or FeB Extension to be
copied into your ·buffer area. The size of the File
Control Block is the value of the symbol FCBSIZE in
the F C B E Q Uta b I.e. The act u a 1 s i z e 0 f the F C B Ext e n­
sion is the value of the symbol FCBXSIZ in the FCBEQU
equate table. Either of these symbols can be coded
for the size parameter.

336 SC34-0314

o

o

o

o (type)

o

•

0 ,,\
• I, ~ ,

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Type of extract to perform. Code one of the follow­
i n 9 :

FCBNRM

FCBEXT

Extract Fi Ie Control Block

Extract File Control Block Extension

Note: FCBEXT is invalid for indexed data
sets defined with a version of the Indexed
Access Method prior to Version 1, Modifi­
cation Level 2. (FCB Extension does not
exist.)

Chapter 4. Indexed Access Method 336.1

o

o
336.2 SC34-0314

o

o

Return Codes

Code

-1
7
8

12
13
22

100
122

Condition

Successful
Link module in use
Unable to load $IAM
Data set shutdown
Module not included in load module
Invalid lACB address
I/O error reading FeB extension
Invalid file for type FCBEXT

Page of SC34-Q314-2
As updated January 22, 1981
By TNL SN34-Q686

EXTRACT

Chapter 4. Indexed Access Method 337

GET

Indexed Access Method

The GET request retr i eves a sing Ie record from the indexed data
set and places the record in a user area. The data set must be
opened in the PROCESS mode.

The requested record is located by key. The search may be mod i­
fied by a key relation (krel) or a key length (klen). The first
record in the data set that satisfies the key condition is the
one that is retr i eved.

Retr i eve for update can be spec if i ed if the requested record is
intended for possible modification or deletion. The record is
locked and remains unavailable to any other requests until the
upd;te is completed by a PUTUP, PUTDE or by a RELEASE. The
record is also released if an error occurs or process i ng is
ended wi th a DISCONN.

During an update, you should not change the key field in the
record or the fie ld addressed by the key parameter. The
Indexed Access Method checks for and prohibits key modifica­
tion.

Syntax

label CALL IAM,(GET),iacb,(buff),(key),
(mode/krel)

Required: all
Defaults: mode/krel=EQ
Indexable: none

Operands Description

iacb

(buff)

The label of a word containing the IACB address
returned by PROCESS.

The label of the user area into which the requested
record is placed.

338 SC34-0314

o

o

o

o

"

C'\
I

/

0

(key) The label of your key area containing the key
identifying the record to be retrieved and preceded
by the lengths of the key and area. This area has
the standard TEXT format and may be declared using
the TEXT statement. Th is format is as fo llows:

Offset
key -2
key -1
key

length

klen

key area

Field
LENGTH (1 byte)
KLEN (1 byte)
Key area ("LENGTH" bytes)

The length of the key area.
equal to or greater than the
length for the file in use.

It must
full

be
key

The actual length of the key in the key
area to be used as the search argument
for the operat ion. It must be less than
or equal to the full length of the keys in
the file in use. If klen is 0, the full
key length is assumed. If klen is
between 0 and the full key length, a
gener i c key search is performed.

A gener i c key search is performed when
klen is less than the full key size. The
first n bytes (as specified by klen) of
the key area are matched aga i nst the
first n bytes of the keys in the file.
The first matching key determines the
record to be accessed. The full key of
the record is returned in the key area.

The area conta i n i ng the key to be used as
a generic search argument. After a suc­
cessful generic key search, this area
conta i ns the full key of the record
accessed.

(mode/krel) Retrieval type and key relational operator to be
used. The following are defined:

EQ Retrieve only key equal
GT Retrieve only key greater than
GE Retrieve only key greater than or equal
UPEQ Retrieve for update key equal
UPGT Retrieve for update key greater than
UPGE Retrieve for update key greater than or equal

Chapter 4. Indexed Access Method 339

Page of SC34-0314-2
As updated January 22, 1981
By TNL SN34-0686

Return Codes

Code

-1
-58
-80

7
8

10
12
13
14
22

100
101

Condition

Successful
Record not found
End of data
link module in use
Unable to load SIAM
Invalid request
Data set shut down
Module not included in load module
Invalid index block found
Invalid IACB address
Read error
Write error

340 SC34-0314

o

•

c

0

r

•

C~j\
/

•

•

o

EQ Retrieve only
GT Retrieve only
GE Retrieve only
UPEQ Retrieve for
UPGT Retrieve for
UPGE Retrieve for

key equal
key greater than
key greater than

update key equal
update key greater
update key greater

Page of SC34-Q314-2
As updated January 22, 1981
By TNL SN34-Q686

GETSEQ

or equal

than
than or equal

After the first GETSEQ of a sequence only the retrieval type is
meaningful. The keys are not checked for equal or greater than
relationship.

Return Codes

Code Condition

-1 Successful
-58 Record not found
-80 End of data

7 Link module in use
8 Unable to load $IAM

10 Invalid request
12 Data set shut down
13 Module not included in load module
14 Invalid index block found
22 Invalid lACB a-dd ress

100 Read error
101 Write error

Chapter 4. Indexed Access Method 343

LOAD

LOAD

Indexed Access Method

Note: Task contro I LOAD is located under" LOAD" on page 194.

The LOAD request builds an indexed access control block (IACB)
associated with the data set specified by dscb. The address
returned in the iacb variable is the address used to connect
requests under th is LOAD to th is data set.

LOAD opens the data set for loading base records; the only
acceptable processing requests in this mode are PUT, EXTRACT
and OISCONN. Only one user of a data set can use the LOAD func­
tion at one time.

If an error exit is specified, the error exit routine is exe­
cuted whenever any Indexed Access Method request under th is
LOAD term i nates with a pos it i ve return code.

Syntax

label

Required:
Defaults:

CALL IAM,(LOAD),iacb,Cdscb),(opentab),
(mode)

Indexable:

all
mode=CSHARE)
none

Operands

iacb

(dscb)

Description

The label of a I-word variable into which the
address of the indexed access control block CIACB)
is returned.

The name of a valid DSCB. This name is OSn, where n
is a number from 1 - 9, corresponding to a data set
defined by the PROGRAM statement. It can also be a
name suppl i ed by a DSCB statement. In the latter
case yoU must have previously ~pened the OSCB with
either the $OISKUT3 ut iIi ty or wi th a OSOPEN state­
ment.

344 SC34-0314

o

..

•

o

o

r

•

C)

•

o

Page of SC34-Q314-2
As updated January 22, 1981
By TNL SN34-0686

Return Codes

Code Condition

-1 Successful
7 Link module in use
8 Unable to load $IAM

10 Invalid request
12 Data set shut down
13 Module not included in load module
14 Invalid index block found
22 Invalid lACS address
60 Out of sequence or duplicate key

(LOAD only)
61 End of file
62 Duplicate key found (PROCESS only)
70 No space for insert

100 Read error
101 Write error

Chapter 4. Indexed Access Method 351

PUTDE

PUTDE

Indexed Access Method

PUTDE deletes a record from an indexed data set. The record
must have been previously retrieved by a GET or GETSEQ in
update mode. De let i ng the record creates free space in the data
set. The PUTDE releases the lock placed on the record by the
GET or GETSEQ.

Syntax

label CALL IAM,(PUTDE),iacb,(buff)

Required: all
Defau Its: none
Indexable: none

Operands

iacb

(buff)

Description

The label of a word containing the IACB address
returned by PROCESS.

The name of the area conta i n i ng the record
previously retrieved by GET or GETSEQ.

352 SC34-0314

o

•

«

o

o

•

o

Page of SC34"'()314·2
As updated January 22. 1981
By TNL SN34"'()686

PUTDE

Return Codes

Code

-1
7
8

10
12
13
14
22
85

100
101

Condition

Successful
link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid index block found
Invalid lACS address
Key was modified by user
Read error
Write error

Chapter 4. Indexed Access Method 353

PUTUP

PUTUP

Indexed Access Method

The record in your buffer (buff) rep laces the record in the
data set. The record must have been retr i eved by a GET or
GETSEQ in update mode. You must not change the key field in the
record or the contents of the key variable in the GET request.
The Indexed Access Method checks for and prohibits key modifi­
cation. The PUTUP releases the lock placed on the record by the
GET or GETSEQ.

Syntax

label CAll IAM,(PUTUp),iacb,(buff)

Required: all
Defaults: none
Indexable: none

Operands

iacb

(buff)

Description

The label of a word containing the IACB address
returned by PROCESS.

The label of the user area conta i n i ng the record to
replace the one previously retrieved.

354 SC34-0314

o

•

c.·) ,.

o

t

•

o

ENTEF: C I r;:CnUFF FNTF~:Y PO 1 NT:: 62E[:

MACHINE/PROGRAM CHECK STATUS REPORT

~:;:r(ICE IF-I... :1.0 ~:;Tt,TUS FNTF~IEE; Ht,',,'[BEEN F:ECDF.:I:IED

::3 ,/ E ~:, t< leBA p~~; I,) ~;{',F;: 1 (',F: j:~KF;: L. ':::; F: 0 :I. ::2 :3 4

0 :I. 00 0 1 ~.~; F.~ 0 () ():? {:')[~3 1 :I. E 6f::, c) c)() () f~ 13n () t,c 30 (:;.B ",l F i:'C ~)E: f.:.C ~3 :I. .. , C 3 ... 00 ~j(': "
., F:;J (.., .. I II C I

U 1. () 0 0 1 :) B B () () :.~ (;. c· 3 1. :l Ft.) I-~ Ct()()() ~::: E~ D () ,~':. C :3 () c.') B 7E () C :: ("', 6 C :~:; 1 {, C :3 ::: 00 r.:"' (: II () 13 E: ".
I "')

() C ! <::. • ••• 1 "

() 1 0 0 ()t:! t:' '-', () f~ () :.:~ () c' () () ()OOO ()i)()() Ej E~ Ii () bE .:':-1.) f.)I::~)il ~? ~~: ~:.:.~ :.:~ {.Ii F i~'l E~.:.;
(", E;: () :2~:\ () ("I I..: t~ () i . .,.' (.. , I C I '._' .. :.: \.,' C)

() 1. () 0 0 :!. 38 D () 0 :2 () c:: 3 1. :J. [6 f~' (> 000 [~ t~ no () c .. ~ 0 B 7'[0 C 3 E: ,~.C ~~: 1 (~) C .':.-
r,

CI() c:' C () C I F: E: II (} I 'i(." ..] '-, ~) ol.:.I

() :I. () () (:, 1 ~::!:~ E:: () () ::.~ (:) C ~; :J. J E.f.:.(~, O()OO E: E: DO C ~It) t:. [(/' E 6 C ~~;f!. 6[: 2:: :i. I~') C :':) :.:.~ () () IS C: 0 II :C:F. C I I
.,

I III I
\ .. '

C· 1. () 0 () [: :.i;.:: 0 ::~ CI~~ () () () 0 0 00 () (I C' 0 () ~:! t~ D 0 .~=:.E ::; () C') F I::' 4 ." ..
:,':'i t:""\ (':- DF {) t')E~5 ::l C: II 2 \:' I,) () .£} t· , I (. . () () \ •• 1 \."~.:.

(:1 :I. c· 0 C! 1 ?:c E: (:1 (:1 :: (::. C3 :1. J t:. (:;. i'~ () (:1 () () DnD 0 ,~;,C .. ~-t.' f::. B)'[(:. C ?:::3 .~·)C .;) :I. (';') C ,,~,
r, () C'!j c: () 0 n(: () ,. 'J '",II,,} ~'.

() 1. "'-'-',,) () 1. ~~; E~ :J () CI::.: t.';.C ~::; 1 :I. E" {)~~ Go (;'(i 0 ,.",,", DO 6 C 3 0 (;')B)'[6 C \:':' E: 6C 3 :f. c) C ,,~:, 2 () () c: C' (, u 1:: f~ C:' I ! .:. I
."

\:- c;. .1 "

Figure 20. Format and Display Trace Data: This figure shows
the result of the preceding program •

Chapter 6. Programming Examples 413

Page pf SC34-Q314-2
As updated January 22, 1981
By T~L SN34-0686

EXAMPLE 14: USE OF INDEXED ACCESS METHOD

This program gives an example for each of the Indexed Access
Method function calls. The indexed data set is opened first
in LOAD mode and ten base records are loaded followed by a
DISCONNECT. Next the same data set is opened for process i ng.
A GET request is performed for the first record whose key is
greater than • JONES PW'. Two more records are retr i eyed
seq u e n t i a I I y a n'd the nth e END SEQ cal Ire 1 e a s est h e f i I e fro m
sequential mode. A record is then retrieved directly by key
and updated. Another record is retrieved sequentially and
deleted. A new record is inserted and another one is deleted
by their unique keys. Finally, an example of extracting
information from the file control block is shown. Upon suc­
cessful completion the message "Verification Complete" will
be displayed upon the console. This program requires that an
Indexed Access Method data set has been defined with the
$IAMUTI utility according to the following specifications:

BASEREC 10
BLKSIZE 256
RECSIZE 80
KEYSIZE 28
KEYPOS 1
FREEREC 1
FREEBLK 10
RSVBlK 0
RSVIX 0
FPOOl 0
DELTHR 0
DYN 0

414 SC34-0314

o

1

f~
"-'

c

o

I

0

o

Page of SC34-Q314-2
As updated January 22, 1981
By TNL SN34-0686

INDEXED ACCESS METHOD

Instruction Operands

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

IAM,(DELETE),iacb,(key)

IAM,(DISCONN),iacb

IAM,(ENDSEQ),iacb

IAM,(EXTRACT),iacb,(buff-addr) [,(size
E.!:!..!:..!:: I byte-va 1 ue)) [, (type-FCBNRM I FCBEXT))

IAM,(GET),iacb,(buff-addr),(key)[,(SHARE)1
(EXCLUSV)/(EQ) I (GT) I (GE) I (UPEQ) I (UPGT) I (UPGEl]

IAM,(GETSEQ),iacb,(buff-addr),(key)[(SHARE)1
(EXCLUSV)/(EQ) I (GT) I (GE) I (UPEQ) I (UPGT) I (UPGE)]

IAM,(LOAD),iacb,(dscb-addrIDSn),(opentab-addrl
[,(SHAREll(EXCLUSV)]

IAM,(PROCESS)(dscb-addr),(opentab-addr)
[,(SHARE)I(EXCLUSV)]

IAM,(PUT),iacb,(buff-addr)

IAM,(PUTDEL),iacb

IAM,(PUTUP),iacb,(buff-addr)

IAM,(RELEASE),iacb

Appendix A: Instruction and Statement List 437

MULTIPLE TERMINAL MANAGER o
Instruction Operands

CALL ACTION[,(buffer-addr),(length),(crlf addr)]

CALL BEEP

CALL CDATA,(type),(userid),(userclass),
(termname),(buffersize)

CALL CHGPAN

CALL CYCLE

CALL FAN

CALL FILEIO,(FCA-addr),(buffer-addr),(return-code-addr)

CALL FTAB,(table),(size),(return-code-addr)

CALL LINK,(pgmname)

CALL LINKON,(pgmname)

CALL MENU

CALL SETCUR,(row-addr),(column-addr)

CALL SETPAN,(dsname-addr),(return-code-addr)

CALL WRITE,(buffer-addr),(length),(crlf addr)

o
438 SC34-0314

