
--------- ----- ---- - ---- - - ----------_ .-

SC34-0635-0

Event Driven Executive
Customization Guide
Version 5.0

Library Guide and
Common Index

SC34·0645

language
Reference

SC34-0643

Operation Guide

SC34-0642

Problem
Determination
Guide

SC34-0639

Installation and
System Generation
Guide

SC34-0646

Communications
Guide

SC34-0638

Event Driven
language
Programming Guide

SC34-0637

Customization
Guide

SC34·0635

Series/1

Operator Commands
and
Utilities Reference

SC34-0644

Messages and
Codes

SC34-0636

Reference
Cards

SBOF-1625

Internal
Design

LY34-0354

l

--------- - ------- - ---- - - ----------_.-

SC34-0635-0

Event Driven Executive
Customization Guide
Version 5.0

c

Customization
Guide

SC34-0635

Series/1

First Edition (December 1984)

Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers' comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1984

o

(

c

c

Summary of Changes for Version 5.0

The following additions and changes have been made to this document:

Chapter 3, Customizing the Session Manager has been updated to include changes to the
Session Manager screens.

Chapter 8, Techniques for Improving Performance has been updated to include new
performance tips using the $MEMDISK utility.

Summary of Changes for Version 5.0 iii

iv SC34-0635

I~
\ .1

(

"

c

Audience

c

About This Book

This book describes how to extend or enhance some of the EDX software facilities to meet your
own requirements. None of the modifications you make are required to use the facilities as
distributed.

This book is intended for application programmers who write and maintain programs using the
Event Driven Language. Readers should be familiar with the language before using this book.
You can learn the Event Driven Language by using the Event Driven Executive Language
Programming Guide.

The Internal Design can assist you in understanding some of the topics presented. Other topics
will require you to be familiar with assembler language programming and hardware control
blocks.

About This Book v

About This Book
How This Book Is Organized

This book contains eight chapters:

Chapter 1. What is Customization overviews the facilities you can enhance or extend and
presents some ideas you could implement.

Chapter 2. Adding Your Own Operator Command describes how to create a new operator
command. It explains design considerations and several coding examples.

Chapter 3. Customizing the Session Manager shows how to add options and build menus that
run under the session manager. This chapter also presents several different techniques you
can use when adding an option.

Chapter 4. Adding Your Own Task Error Exit Routine describes how you can pass control
from a main program to an error-handling routine when a program check occurs.

Chapter 5. Running Programs and Initialization Routines at IPL shows three different
methods that execute your code as part of the IPL process.

Chapter 6. Adding Your Own Device Support shows an approach to 110 level programming
through the use of EXIO. This chapter shows a technique that can extend the function of a
supported device to meet your needs.

Chapter 7. Creating Your Own EDL Instruction explains how to build and add an EDL
instruction to the EDL instruction set.

Chapter 8. Techniques for Improving Performance presents several topics and hints to
increase performance on your system.

Aids In Using This Book

vi SC34-0635

Several aids are provided to assist you in using this book:

A Glossary that defines terms and acronyms used in this book and in other EDX library
publications

An Index of topics covered in this book.

(­, "

c

c

A Guide To The Library

Refer to the Library Guide and Common Index for information on the design and structure of the
Event Driven Executive library and for a bibliography of related publications.

Contacting IBM About Problems

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader's Comment Form provided in the back of the book.

If you have a problem with the Series/l Event Driven Executive services, you should fill out an
authorized program analysis report (APAR) form as described in the IBM Series/l Software
Service Guide, GC34-0099.

About This Book vii

viii SC34-0635

(-,

\. j

(
\ ~

c

(

c

Chapter 1. \Vhat is Customization'! CU-l
What You Can Customize CU-2

Operator Commands CU -2
Session Manager CU-2
Task Error Exits CU-2
Initialization Routines CU-2
Device Support CU-3
ED L Instructions CU -3

Improving Performance CU-3

Chapll'r 2. Adding Your O'Wn Operator Lommand CU-5
Designing and Coding Your Routine CU-5

Some Features You Can Include CU-7
Testing Your Routine CU-9
Including Your Routine in the Supervisor CU -10

Editing Your System INCLUDE Data Set CU-IO
Operator Command Examples CU-II

Message Broadcast Routine CU -11
Display Terminal Name and Address Routine CU-I2

<.hap:cr 3. (u:~wmiziili! the Srs,>iofl :\landgcr CU-13
How Big Should the Partition Be? CU-I3
How to Name New Menus and Procedures CU-I4
Adding an Option to the Primary Option Menu CU -16

Do You Require Additional Menus? CU-I7
Modifying or Creating a Secondary Option Menu CU-I8

Adding an Option to a Secondary Option Menu CU -18
Creating a Secondary Option Menu CU-20
Do You Require a Parameter Input Menu? CU-2I

Contents

Contents ix

Contents

x SC34-0635

Creating a Parameter Input Menu CU-22
Writing a Procedure to Pass Parameters CU-25

Writing the PARAMETER Section CU-25
Writing the $JOBUTIL Control Statements CU-29
Saving the Procedure CU-29
Examples of Procedures CU-30

Updating the Primary Procedure CU-33
Entering Changes to the Primary Procedure CU-33
Saving the Primary Procedure CU-37

Updating or Creating a Secondary Procedure CU-38
Updating an Existing Secondary Procedure CU-38
Saving an Existing Secondary Procedure CU-39
Creating a Secondary Procedure CU-40
Saving a New Secondary Procedure CU-40

Using an Alternate Session Menu CU-41
How to Modify Data Set Allocation and Deletion CU-42

Allocating Data Sets CU-43
Deleting Data Sets CU -44

Chapter 4. Adding Your Own Task Error Exit Routinc CU-45

Extending the System-Supplied Task Error Exit Routine CU-46
How to Code the Task Error Exit Extension CU-47
Link-Editing the Task Error Exit Extension CU-47

Creating Your Own Task Error Exit Routine CU-48
Defining the Task Error Exit Control Block CU -48

Considerations on the Use of Task Error Exit Routines CU-52
What Happens When an Exception Occurs? CU-53

Chapter 5. Running Programs and Initialization Routine~ at (PI. CU-55

How to Specify $INITIAL Programs CU-56
Things You Should Know About $INITIAL CU-56
Sample $INITIAL Programs CU-57

How to Use $PROG 1 at IPL CU-58
Link-Editing $PROG 1 with the Supervisor CU-59
What Happens When $PROGI Executes? CU-60

How to Specify Initialization Routines CU-60
Designing and Coding the Routine CU-60
Link-Editing the Routine with the Supervisor CU-61
Specifying the Routine on the SYSTEM Statement CU-62

('haJlter 6. Adding Your Own Dcvice Support CU-63

How You Can Use EXIO CU-63
Planning for Your Device Support CU-64

Do You Understand the Hardware Control Block Functions? CU-64
What Types of Device Interrupts Should You Plan For? CU-64
Does the Device Have Any Special Timing Considerations? CU-65
Do You Have to Detect and Handle Errors? CU-65
How Many Devices Will You Support? CU-65

(\
\;

(

c

(

c

How Many Applications Will Use the Device? CU-65
Do You Have to Initialize the Device? CU-65

Defining the Device at System Generation CU -66
Writing the EXIO Code CU-66

Preparing the Device for Interrupts CU-67
Establishing the Transmission Mode CU-70
Writing Data to the Terminal CU-72
Reading Data from the Terminal CU-73
Reporting Error Return Codes CU-76

Sample EXIO Program CU-77

Chapter 7. Creating Your Own EDL Instruction CU-83
Defining the Instruction Requirements CU-84
Creating an Overlay Program to Build the Instruction CU-85

Building the Model Instruction CU-86
Checking the Source Statement Syntax CU-87
Building Object Text CU-91
Sample Overlay Program for NEWCMD CU-96

Creating a Language Control Data Set Extension CU-97
Entering the Syntax Error Messages CU-97
Specifying the Overlay and Instruction Names CU-98
Control Statements CU-99

Defining the Instruction Operation Code CU-I 0 I
Writing the Assembler Code for NEWCMD CU-I02

Coding Considerations CU-I02
Testing the New Instruction CU-I04

System Generation Requirements CU-I04
Coding a Test Program CU-I05

Debugging Overlay Programs CU-I06
Creating Unique Labels Within the Overlay Program CU-I07
Generating Source Statements CU-I08

Creating a Source Statement - No Continuation Line CU-I09
Creating a Source Statement - With Continuation Line CU-IIO

Overlay Program Statements CU-III
$IDEF Statement - Build Model EDL Instruction CU-III
ASMERROR Statement - Generate Syntax Error Messages CU-II2
OTE Statement - Build Object Text Element CU-II3
SLE Statement - Build Sublist Element CU-II6

Overlay Program Subroutines CU-II7
$INDEX Subroutine - Indicate Index Register Usage CU-II7
BLDTXT Subroutine - Build Object Text CU-II9
GETV AL Subroutine - Evaluate Character String CU-I20
LABELS Subroutine - Define or Resolve Labels CU-I21
MOVEBYTE Subroutine - Move a Byte String CU-I23
OPCHECK Subroutine - Check Statement Syntax CU-I24
SLPARSE Subroutine - Parse Input String CU-I26

Contents xi

Contents

xii SC34-0635

Chapter 8. Techniques for Improving Performance CU-127
How to Get Faster Access to Data Sets CU-127
How to Get Faster Access to Volumes CU-128

How You Should Define DISK Statements CU-128
Specifying Performance Volumes CU-128
Specifying a Fixed-Head Volume CU-128

Improving Disk and Tape I/O Performance CU-129
How to Speed Up $COMPRES and $COPYUTI CU-129
Decreasing $EDXASM Compilation Time CU-130
How to Reduce Program Load Time CU-130

Glossary of Terms and Abbreviations CU-131

Index CU-141

(.~

\ J

(

c

1.
2.
3.
4.
5.

(
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

c

Naming convention example CU-14
Paths through the session manager CU-1S
Updated session manager primary option menu CU-17
Existing secondary option menus CU-18
Updated program preparation secondary option menu CU-19
Sample secondary option menu CU-21
Sample parameter input menu CU-23
$EDXASM and $UPDA TE parameter input menu CU-24
&SA VEnn numbers of EDX utilities/functions CU-28
Procedure to invoke $EDXASM CU-30
Procedure to invoke PAYCHK CU-31
Procedure to invoke $EDXASM/$UPDATE CU-32
Example of a program added with no parameters CU-33
Example of a program added with parameter input menu CU-3S
Example of program added using secondary option menu CU-36
Example of adding $EDXASM/$UPDATE option CU-37
Updated $SMP02 secondary procedure CU-39
New secondary procedure for PAYROLL CU-40
Session manager logon screen with alternate menu CU-41
Data sets created by the session manager CU-42
$SMALLOC data set CU-43
$SMDELET data set CU-44
Sample output from $$EDXIT CU-46
Format of the task error exit control block (TEECB) CU-48
Format of the hardware status area (HSA) CU-49
Sample task error exit routine CU-SO
Sample EXIO program CU-77
Source Statement Parsing Example CU-88
Flag bit meanings (bits 0-3) CU-91
Flag bit meanings (bits 4-7) CU-92
Sample overlay program CU-96
Register flag bits from $INDEX CU-118

Figures

Figures xiii

xiv SC34-0635

,..' .'\
\ ;

(

c

Chapter 1. What is Customization?

The Event Driven Executive consists of a variety of software support you can use in your
application. In addition, you can use tools such as utilities to assist you in your operating
environment. However, this IBM-supplied software may not provide all the features you require
for your application. You can extend or modify the function of several of these facilities to meet
your specific operational or application requirements. Extending or modifying these facilities is
called customization.

This book describes how you can customize some of the EDX software. It also includes a
discussion on techniques to improve performance on your Series/I.

Whenever you customize any of the facilities, you should always copy the changes onto a
diskette or tape. A subsequent release of EDX or a program temporary fix (PTF) could possibly
overlay any customization changes you make to your current release of EDX.

This chapter introduces the facilities you can customize and overviews the performance
information presented in this book.

Chapter 1. What is Customization? CU-l

What is Customization?
What You Can Customize

You can customize the following facilities to meet your needs. This book presents some
examples of when you might consider customization also.

Operator Commands

You can create your own operator command to perform a function not available with the
existing operator commands. For example, you could create an operator command that displays
your terminal name and hardware address. On a Series/l with many terminals attached, this
information could be useful.

Chapter 2, "Adding Your Own Operator Command" on page CU-5 contains detailed
information on how to create your own operator command.

Session Manager

Task Error Exits

You can add your application as a new option on an option menu. Further, you can create your
own menu screens and procedures to invoke your application.

Chapter 3, "Customizing the Session Manager" on page CU-13 discusses this type of
customization.

You might consider adding your own task error exit routine to an EDL program. For example,
you could do this if the system-supplied routine does not yield all the information you need.

Chapter 4, "Adding Your Own Task Error Exit Routine" on page CU-45 explains how you can
perform this type of customization.

! ni tiali.lation Routines

CU-2 SC34-0635

You can add initialization routines to your system to perform various tasks when you IPL the
Series/I. For example, you could have "program A" loaded in partition 1 and the session
manager loaded in partition 2. In addition, you could supply a routine to initialize new devices
attached to the Series/I.

Chapter 5, "Running Programs and Initialization Routines at IPL" on page CU-55 discusses this
type of customization.

c

(

c

What You Can Customize (continued)

Device Support

You can extend the system's I/O interface by supplying your own device support. Thus, you
can access additional devices not supported under EDX or you can extend the device support
EDX does provide.

Chapter 6, "Adding Your Own Device Support" on page CU-63 explains the procedures
required to implement such device support.

EDL Instructions

You can create your own Event Driven Language (EDL) instruction to perform operations not
available with the existing EDL instruction set.

Chapter 7, "Creating Your Own EDL Instruction" on page CU-83 discusses the details of how
to do this.

Improving Performance

You can increase the performance of your system or application in various ways. For example,
you can decrease the time it takes the supervisor to access a volume. You can also decrease the
compilation time for $EDXASM.

Chapter 8, "Techniques for Improving Performance" on page CU-127 discusses these topics.

Chapter 1. What is Customization? CU-3

Notes

CU-4 SC34-0635

r··"
\. f

"

(

c

c

Chapter 2. Adding Your Own Operator
Command

If you need a function that is not supported by the existing operator commands, you can create
your own routine to perform that function. The Event Driven Executive provides you with an
interface that enables you to include your routine in the supervisor. The $U command is
reserved for your use. When you add your routine and issue $U, the system invokes the new
function.

This chapter explains the steps required to add your own operator command.

Designing and Coding Your Routine

Operator commands run as an ATTNLIST program. Therefore, you must adhere to certain
design considerations when you code the routine. A discussion of these design considerations
follows.

You must specify MAIN=NO on the PROGRAM statement of your routine.

Code an ENTRY statement specifying $USRCMD following the PROGRAM statement. This
statement identifies the entry point to which control is passed when your routine is invoked.
Optionally, you can specify a CSECT statement following the PROGRAM statement. The label
you specify can be 1-8 characters.

Note: You can omit the ENTRY statement if you use $USRCMD as the label of the CSECT
statement.

Chapter 2. Adding Your Own Operator Command CU-S

Adding Your Own Operator Command
Designing and Coding Your Routine (continued)

CU-6 SC34-0635

Specify the name $USRCMD as the label of your routine. The executable code you provide
begins at this label.

You should design your routine so that it executes quickly. Doing this can avoid possible
degradation in execution of other tasks. The following instructions are not recommended for
use in your routine:

ENQT/DEQT
READ/WRITE
STIMER
WAIT
LOAD
DETACH
ENDTASK
TP
PROGSTOP.

You must code an END A TTN instruction following the last executable statement in your
routine.

Finally, the END statement must be the last statement in your routine.

The source code would look as follows:

NEWCMD PROGRAM
ENTRY

$USRCMD EQU
•

MAIN=NO
$USRCMD

*
• (source code for your routine)
•
ENDATTN
END

(,

c

c

Designing and Coding Your Routine (continued)

Some Features You Can Include

You can provide various features in your operator command. The following examples illustrate
two features you could provide.

Operator Command for a Specific Terminal

You may want to restrict the function of the operator command to a specific terminal, such as
$SYSLOG. By obtaining the terminal name (located in the CCB) from which the command is
issued, you could compare the name from the CCB against "$SYSLOG" and branch to an exit
upon a "no match" condition.

A cross-partition MOVE, with FKEY =0, is required because the CCB information resides in
address space 0 (partition 1).

The following example illustrates how you can obtain and compare terminal names:

FETCH

$USRCMD

EXIT
TNAME
SYSLOG

PROGRAM
ENTRY
PRINT
COPY
PRINT
TCBGET
MOVE
IF
•
•
•
ENDATTN
TEXT
TEXT
END

MAIN=NO
$USRCMD
OFF
CCBEQU CCB EQUATES
ON
#l,$TCBCCB GET ADDR OF CCB
TNAME, ($CCBNAME,#l), (8,BYTES) ,FKEY=O
(TNAME,NE,SYSLOG,8) ,GOTO,EXIT

(perform function)

LENGTH=8
'$SYSLOG' ,LENGTH=8

GET NAME
$SYSLOG?

Chapter 2. Adding Your Own Operator Command CU -7

Adding Your Own Operator Command
Designing and Coding Your Routine (continued)

Multifunction Operator Command

CU-8 SC34-0635

You might want to have an operator command that provides more than one function. The
function executed could depend on the operator input when the command is issued. For
example, the operator could enter $U A and the code at label RTNA would be executed.
Similarly, if $U B is entered, RTNB is executed; RTNC is executed when you enter $U C.
Because no message text is coded on the READ TEXT , you must specify A, B, or C when you
issue the command.

An example of a how you could develop a multifunction operator command (three routines)
follows:

MULTI PROGRAM
ENTRY

MAIN=NO
$USRCMD

$USRCMD READTEXT
IF

CMD,PROMPT=COND GET OPER REQUEST
(CMD,EQ,C'A' ,BYTE) ,GOTO,RTNA
(CMD,EQ,C'B' ,BYTE) ,GOTO,RTNB
(CMD,EQ,C'C' ,BYTE) ,GOTO,RTNC

IF
IF
GOTO

RTNA EQU

RTNB

RTNC

EXIT
CMD

•
•
GOTO
EQU
•
•
GOTO
EQU
•
•
ENDATTN
TEXT
END

EXIT INVALID REQUEST

*
(perform routine A)

EXIT

*
(perform routine B)

EXIT

*
(perform routine C)

LENGTH=2

o

c

Testing Your Routine

After you design and code your routine, you should test it. By testing your routine first and
verifying that it gives you the desired results, you can avoid including an erroneous routine in
your supervisor.

You can use the following sample program to verify that your routine meets your requirements:

CMDTST PROGRAM
EXTRN
ATTNLIST

START WAIT
PROGSTOP

ATTNECB ECB
STOP POST

ENDATTN
ENDPROG
END

START
$USRCMD
(GO,$USRCMD,STOP,STOP)
ATTNECB,RESET

ATTNECB

POINTS TO YOUR RTN

TELL IT WHEN TO QUIT

To test your routine using the sample program, you must do the following:

1. Assemble the sample program (CMDTST) using $EDXASM. The assembled output from
this step will be used in step 3.

2. Assemble your routine using $EDXASM. The assembled output from this step will be used
in step 3.

3. Link-edit the assembled output from steps 1 and 2 using $EDXLINK. The assembled
output from step 1 must be specified on the first INCLUDE statement.

4. Upon a successful link-edit (-1 completion code), you can load the program you specified
during link-editing.

5. Invoke your routine by pressing the attention key and entering GO. Press the attention key
and enter STOP to end the program.

After running the test program, you can determine whether your routine executed as you
expected. If the test is successful, you must include your routine in the supervisor.

Chapter 2. Adding Your Own Operator Command CU-9

Adding Your Own Operator Command
Including Your Routine in the Supervisor

After a successful test of your new operator command routine, you must link-edit your routine
into the supervisor. This section explains how to do this.

Editing Your System INCLUDE Data Set

CU-IO SC34-0635

If you performed a tailored system generation, edit the data set that defines the supervisor
modules currently in your supervisor (normally LINKCNTL on EDX002). Otherwise, you must
edit $LNKCNTL. Insert the name of the data set and volume containing your routine's
assembled output (from step 2 of testing section) just before the module EDXINIT. For
example, if your assembled output module is named CMDOBJ on volume EDX002, the
INCLUDE statement would be as follows:

•
•
•

INCLUDE CMDOBJ,EDX002
INCLUDE EDXINIT
INCLUDE $OVLMGRO

*INCLUDE RW4963ID
•
•
•

YOUR NEW OPERATOR COMMAND
24 SUPERVISOR INITIALIZATION
25 OVERLAY MANAGER
3 4963 FIXED HEAD REFRESH SUPPORT

After inserting the new INCLUDE statement, save the edited data set in LINKCNTL on
EDX002. Next, load $JOBUTIL and specify SUPPREPS when prompted for a data set.
SUPPREPS will generate a new supervisor containing your operator command.

Upon completion of the system generation, check the link map listing. The link map will contain
the entry and address of $USRCMD if your routine is contained in the supervisor. In addition,
if you specified $USRCMD as the label on a CSECT statement, this address will appear also.
Initialize your new supervisor (II command of $INITDSK) and IPL the system. You can now
invoke your routine using $U as a new operator command.

If $USRCMD appears as an unresolved EXTRN, the ENTRY or CSECT statement specifying
$USRCMD was omitted in your routine. You must compile and test the routine again, then
perform another system generation.

(

c

c

Operator Command Examples

The following are examples of routines you could use as operator commands:

Message Broadcast Routine

This routine sends a broadcast message to three terminals. The routine is restricted to
$SYSLOG. The message text can be up to 60 characters in length. If any of the terminals are
in use when the message is sent, the operator is notified. Terminals in use do not receive the
broadcast message. You supply the message text when you issue the $U command. For
example: "$U SYSTEM IPL IN 5 MINUTES OPER"

BCAST PROGRAM MAIN=NO
ENTRY $USRCMD
PRINT OFF
COPY CCBEQU CCB EQUATES
PRINT ON

$USRCMD EQU *
TCBGET #l,$TCBCCB GET CCB ADDR
MOVE TNAME, ($CCBNAME,#l), (8,BYTES) ,FKEY=O GET NAME
IF (TNAME,NE,SYSLOG,8),GOTO,EXIT $SYSLOG
READTEXT MSG,PROMPT=COND,MODE=LINE READ MESSAGE
MOVEA #2,LIST+2 POINT TO NAMES
DO 3,TIMES

MOVE TNAME, (0,#2) , (8,BYTES) MOVE NAME FROM LIST
ENQT TNAME,BUSY=BSYRTN ENQT TERM
PRINT EXT MSG SEND MESSAGE
DEQT
ADD #2,10 INCREMENT INDEX
GOTO NDU BRANCH AROUND BUSY

BSYRTN EQU * BUSY ROUTINE
ENQT $SYSLOG NOTIFY OPER. WHICH
PRINTEXT (0,#2) TERMINAL IS BUSY
PRINTEXT ' IS BUSY'
DEQT
ADD #2,10 INCREMENT INDEX

NDU ENDDO
EXIT ENDATTN
LIST EQU * LIST OF TERM NAMES

TEXT 'TERM1' ,LENGTH=8
TEXT 'TERM2' ,LENGTH=8
TEXT 'TERM3',LENGTH=8

SYSLOG TEXT '$SYSLOG',LENGTH=8
MSG TEXT LENGTH=60 MSG HOLD AREA
TNAME IOCB

END

Chapter 2. Adding Your Own Operator Command CU -11

Adding Your Own Operator Command
Operator Command Examples (continued)

Display Terminal Name and Address Routine

The following routine displays the terminal name and its address on the terminal from which you
issue the command:

CU-12 SC34-0635

TERMID

$USRCMD

TNAME
TADDR

PROGRAM
ENTRY
PRINT
COPY
PRINT
EQU
TCBGET
MOVE
MOVE
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
ENDATTN
TEXT
DATA
END

MAIN=NO
$USRCMD
OFF
CCBEQU
ON

*
#l,$TCBCCB

CCB EQUATES

TNAME, ($CCBNAME,#l), (8,BYTES) ,FKEY=O
TADDR+l, ($CCBPREP+l,#l), (l,BYTES) ,FKEY=O
'@TERM ID ADDR@'
TNAME PRINT NAME
TADDR,MODE=HEX PRINT ADDR
I @I

LENGTH=8
F'O'

NAME
ADDR

r'\
_ l

c

c'

o

Chapter 3. Customizing the Session Manager

The session manager provides a set of menu screens and procedures that make EDX utilities
available for your use. The menu screens enable you to select options (programs) or enter
parameters. The procedures invoke the programs you select. By customizing the session
manager, you can make a commonly used program a part of a session manager menu. You can
do this by modifying existing menus or by creating new menus.

This chapter describes how you customize the session manager. Throughout this chapter, a
hypothetical application named PAYROLL is used to show you how to run a program from a
newly created menu.

Before you add an application to the session manager, you must ensure the partition in which
you load the session manager has enough storage. In addition, you must understand the naming
conventions of session manager menus and procedures. You must adhere to these conventions
when you add menus and procedures.

How Big Should the Partition Be?

The session manager requires a minimum partition of 16K bytes of storage. When a program,
invoked by the session manager, begins execution, the session manager frees 14K bytes of
storage. The program you invoke through the session manager must not require more than the
partition size minus 2K bytes of storage. For example, if your program requires 34K bytes of
storage, the partition must contain at least 36K bytes of available storage.

Chapter 3. Customizing the Session Manager CU -13

Customizing the Session Manager
How to Name New Menus and Procedures

CU-14 SC34-0635

Session manager menus and procedures are structured in a hierarchy. The names used for these
menus and procedures reflect their level within the hierarchy. Three levels exist:

Primary Loads programs or presents secondary option menus.

Secondary Loads programs or presents parameter input menus.

Tertiary Passes parameters and loads programs.

Menu names must begin with the prefix $SMM. Each menu must have a corresponding
procedure. Procedure names must begin with the prefix $SMP.

The menu and procedure names also contain numbers. These numbers are used to indicate the
level and option number of the menu. For example, a menu or procedure name containing two
numbers indicates the secondary level. Menus or procedures with four numbers indicate the
tertiary level.

An example of the naming convention hierarchy follows. The program preparation option along
with the $EDXASM option is used:

Primary Secondary Secondary
option option Secondary option Parm Procedure
menu menu procedure menu menu ($JOBUTIL)
number name name number name name

Option 2 $SMM02 $SMP02 Option 2 $SMM0202 $SMP0202

Figure 1. Naming convention example

c

c

How to Name New Menus and Procedures (continued)

Figure 2 illustrates the various paths through which you can invoke programs under the session
manager. You can choose any of these paths to invoke programs when you add a new option.

Alternate
Menu

Parameter
Selection
Menu

Execute
Required
Function

Logon Menu

Primary
Option
Menu

Execute
Requested
Function

I
Execute
Requested
Function

Secondary
Option
Menu

Parameter
Selection
Menu

Execute
Requested
Function

Figure 2. Paths through the session manager

Chapter 3. Customizing the Session Manager CU-IS

Customizing the Session Manager
Adding an Option to the Primary Option Menu

CU-16 SC34-0635

The primary option menu $SMMPRIM is the first menu presented after you enter your session
manager logon ID. You can update this menu to add your program as an option.

This section describes how you can add a program name PAYROLL to the primary option
menu. All the steps described are performed using EDX utilities under the session manager.

To add PA YROLL to the primary option menu:

1. Select option 4.4 from the primary option menu. This option loads the $IMAGE utility.

2. Define a null character when the COMMAND(?) prompt appears by entering:

NULL@

Note: You may define any character as the null character.

3. Specify the menu to edit when the COMMAND(?) prompt appears by entering:

EDIT $SMMPRIM,EDX002

The primary option menu $SMMPRIM appears next on the terminal screen.

4. Press the PFI key to cause the protected fields of menu $SMMPRIM to be displayed as
unprotected fields. Doing this enables you to modify the menu. The input data fields are
represented by the null character, @, defined in step 2.

5. Position the cursor under the last option number and add the text for the new option, option
II-PAYROLL.

o

c

c

Adding an Option to the Primary Option Menu (continued)

6. Press the enter key. The enter key takes you out of edit mode. The newly-defined menu
image appears as shown in Figure 3.

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU----------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

SELECT OPTION ==>

1 - TEXT EDITING
2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT UTILITIES
4 - TERMINAL UTILITIES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTILITY
7 - EXEC $JOBUTIL PROC
8 - COMMUNICATION UTILITIES
9 - DIAGNOSTICS AIDS

10 - BACKGROUND JOB CONTROL UTILITIES
11 - PAYROLL

Figure 3. Updated session manager primary option menu

7. Press the PF3 key to return to the $IMAGE command mode. In response to the
COMMAND(?) prompt, enter:

SAVE $SMMPRIM,EDX002

8. In response to the message:

SHOULD THE 3101 DATA STREAM BE SAVED?

reply ~ Reply Yto this message if you use the ATTR command of $IMAGE for a 3101
screen image. Refer to the Operator Commands and Utilities Reference for details on the
A TTR command of $IMAGE.

At this point, the system saves the updated primary option menu. End the $IMAGE utility (EN
command). The primary option menu with PAYROLL is displayed.

Do You Require Additional Nlenus?

If you are loading a program directly from the primary option menu, you must update the
session manager primary procedure. The section "Updating the Primary Procedure" on page
CU-33 describes how you can do this.

You can design your new option on the primary option menu so that it consists of several
options. To do this, you must create a secondary option menu. The section "Modifying or
Creating a Secondary Option Menu" on page CU-18 describes how you can do this.

Chapter 3. Customizing the Session Manager CU-17

Customizing the Session Manager
Adding an Option to the Primary Option Menu (continued)

If your program requires input parameters at execution time, you must create a parameter input
menu to pass the parameters. The section "Creating a Parameter Input Menu" on page CU-22
describes how you can do this.

Modifying or Creating a Secondary Option Menu

This section describes how you can add a new option to an existing secondary option menu or
create your own menu with options. The method you use to add options is similar.

Adding an Option to a Secondary Option Menu

CU-18 SC34-0635

If you want to add your program as an option to a category of programs, you must update an
existing secondary option menu.

The following list shows the existing secondary option menus you can update and their
categories:

Menu
Name Category

$SMM02 Program preparation

$SMM03 Data management

$SMM04 Terminal utilities

$SMM05 Graphics utilities

$SMM08 Communication utilities

$SMM09 Diagnostic aids

$SMM10 Background Job Control

Figure 4. Existing secondary option menus

Note: All these menus reside on EDX002.

If, for example, you want to add an option that combines both $EDXASM and $UPDATE into
one option to the program preparation secondary option menu ($SMM02), you must do the
following:

1. Select option 4.4 from the primary option menu. This option loads the $IMAGE utility.

I

('

o

c

Modifying or Creating a Secondary Option Menu (continued)

2. Define a null character when the COMMAND(?) prompt appears by entering:

NULL@

Note: You may define any character as the null character.

3. Specify the menu to edit when the COMMAND(?) prompt appears by entering:

EDIT $SMM02,EDX002

The secondary option menu $SMM02 appears next on the terminal screen.

4. Press the PFI key to cause the protected fields of menu $SMM02 to be displayed as
unprotected fields. Doing this enables you to modify the menu. The input data fields are
represented by the null character, @, defined in step 2.

5. Position the cursor under the last option number and add the text for the new option, option
15 - $EDXASM/$UPDATE.

6. Press the enter key. The enter key takes you out of edit mode. The newly-defined menu
image appears as shown in Figure 5.

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU--
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==>

1 - $EDXASM COMPILER
2 - $EDXASM/$EDXLINK
3 - $SlASM ASSEMBLER
4 - $COBOL COMPILER
5 - $FORT FORTRAN COMPILER
6 - $PLI COMPILER/$EDXLINK
7 - $EDXLINK LINKAGE EDITOR
8 - $XPSLINK LINKAGE EDITOR FOR SUPERVISOR
9 - $UPDATE

10 - $UPDATEH (HOST)
11 - $PREFIND
12 - $PASCAL COMPILER/$EDXLINK
13 - $EDXASM/$XPSLINK FOR SUPERVISORS
14 - $MSGUT1 MESSAGE SOURCE PROCESSING UTILITY
15 - $EDXASM/$UPDATE

Figure S. Updated program preparation secondary option menu

7. Press the PF3 key to return to the $IMAGE command mode. In response to the
COMMAND(?) prompt, enter:

SAVE $SMM02,EDX002

Chapter 3. Customizing the Session Manager CU-19

Customizing the Session Manager
Modifying or Creating a Secondary Option Menu (continued)

8. In response to the message:

SHOULD THE 3101 DATASTREAM BE SAVED?

reply N. Reply Y to this message if you use the ATTR command of $IMAGE for a 3101
screen image. Refer to the Operator Commands and Utilities Reference for details on the
ATTR command of $IMAGE.

At this point, the system saves the updated secondary option menu. End the $IMAGE utility
(EN command).

Creating a Secondary Option Menu

CU-20 SC34-0635

This section describes how you can create a new secondary option menu.

Assume the newly-defined PAYROLL application (option 11 of primary option menu) consists
of a mailing list program and a program to print paychecks. To create a menu with these
programs as options:

1. Select option 4.4 from the primary option menu. This option loads the $IMAGE utility.

2. Define a null character when the COMMAND(?) prompt appears by entering:

NULL@

Note: You may define any character as the null character.

3. Define the screen dimensions as 24 by 80 (full screen) by entering:

DIMS 2480

4. Enter the command EDIT. A blank screen appears.

5. Press the PF 1 key.

I

C~ .-

o

Modifying or Creating a Secondary Option Menu (continued)

6. Enter the text for your menu. You must use the null character (defined in step 2) to specify
input data fields. Enter eight null characters following the SELECT OPTION text. The
secondary option menu for the PAYROLL looks as follows:

$SMMll PAYROLL APPLICATION SECONDARY OPTION MENU--
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> @@@@@@@@

1 - MA I LLI ST
2 - PAYCHK

Figure 6. Sample secondary option menu

7. Press the enter key after you complete the design of your menu. The enter key takes you
out of edit mode.

8. Press the PF3 key to return to the $IMAGE command mode.

9. Save your new menu when the COMMAND(?) prompt appears by entering:

SAVE $SMMIO,EDX002

Note: Use the option number in the name of all related menus. For example, secondary
option menu $SMM11 corresponds to option 11 of the primary option menu. Refer to the
section "How to Name New Menus and Procedures" on page CU-14 for an explanation of
how to name menus.

10. In response to the message:

SHOULD THE 3101 DATASTREAM BE SAVED?

reply N Reply \' to this message if you use the A TTR command of $IMAGE for a 3101
screen image. Refer to the Operator Commands and Utilities Reference for details on the
ATTR command of $IMAGE.

At this point, the system saves the new secondary option menu. End the $IMAGE utility (EN
command).

Do You Require a Parameter Input Menu?

If you are loading a program directly from a secondary option menu, you must update the
session manager primary and secondary procedure. The section "Updating the Primary
Procedure" on page CU-33 describes how you can do this.

If your program requires input parameters at execution time, you must create a parameter input
menu to pass the parameters. The section "Creating a Parameter Input Menu" on page CU-22
describes how you can do this.

Chapter 3. Customizing the Session Manager CU-21

Customizing the Session Manager
Creating a Parameter Input Menu

CU-22 SC34-0635

A parameter input menu enables you to pass parameters to the program you want to use. You
can use these menus to specify and pass parameters such as data set names, program options, or
an output device.

This section shows how to create a parameter input menu for the PAYROLL option and the
combined $EDXASM and $UPDATE option.

Assume that the P A YCHK program from the PAYROLL secondary option menu requires three
parameters at execution time. The parameters are an input data set, an output data set, and the
period end date. To create a menu to pass these parameters:

1. Select option 4.4 from the primary option menu. This option loads the $IMAGE utility.

2. Define a null character when the COMMAND(?) prompt appears by entering:

NULL@

Note: You may define any character as the null character.

3. Define the screen dimensions as 24 by 80 (full screen) by entering:

DIMS 24 80

4. Enter the command EDIT. A blank screen appears.

5. Press the PF 1 key.

("
\j

c Creating a Parameter Input Menu (continued)

6. Enter the text for your menu. The input data fields are represented by the null character,
@, defined in step 2. Note that the menu allows for 15 null characters for the data set and
volume name separated by a comma. The parameter input menu for P A YCHK looks as
follows:

$SMMll02: PAYCHK PARAMETER INPUT MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

INPUT DATA SET (NAME,VOLUME) ==> @@@@@@@@@@@@@@@

OUTPUT DATA SET (NAME,VOLUME) ==> @@@@@@@@@@@@@@@

PERIOD ENDING (MM/DD/YY) ==> @@@@@@@@

Figure 7. Sample parameter input menu

7. Press the enter key after you complete the design of your menu. The enter key takes you
out of edit mode.

8. Press the PF3 key to return to the $IMAGE command mode.

9. Save your new menu by entering:

SAVE $SMMII02,EDX002

Note: Use the option number in the name of all related menus. For example, parameter
input menu $SMMII02 corresponds to option 2 of the secondary option menu ($SMMll).
If your program does not use a secondary option menu, you would name this menu
$SMMll. Refer to the section "How to Name New Menus and Procedures" on page
CU-14 for an explanation of how to name menus.

10. In response to the message:

SHOULD THE 3101 DATA STREAM BE SAVED?

reply N. Reply Y to this message if you use the ATTR command of $IMAGE for a 3101
screen image. Refer to the Operator Commands and Utilities Reference for details on the
ATTR command of $IMAGE.

At this point, the system saves the new parameter input menu. End the $IMAGE utility (EN
command).

The next step is to write a procedure to pass parameters. See "Writing a Procedure to Pass
Parameters" on page CU-25.

Chapter 3. Customizing the Session Manager CU-23

Customizing the Session Manager
Creating a Parameter Input Menu (continued)

CU-24 SC34-0635

The same steps are required to create a parameter input menu for the $EDXASM/$UPDATE
option discussed in the section "Adding an Option to a Secondary Option Menu" on page
CU-18. You can design the menu as shown in Figure 8. You must save this menu in a data set
named $SMM02I5.

$SMM0215 SESSION MANAGER $EDXASM PARAMETER INPUT MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> @@@@@@@@@@@@@@@

OBJECT OUTPUT (NAME<VOLUME) ==> @@@@@@@@@@@@@@@

OPTIONAL PARAMETERS ==> @@@@@@@@@@@@@@@@@@
(SELECT FROM LIST BELOW)

PARAMETERS: DESCRIPTION:
NOLIST SUPPRESS LISTING

(up to 64 @s)

LIST TERMINAL-NAME
ERRORS TERMINAL-NAME
CONTROL DATASET,VOLUME
OVERLAV #

USE LIST * FOR THIS TERMINAL
USE ERRORS * FOR THIS TERMINAL
$EDXASM LANG. CTRL DATA SET
IS NUMBER OF AREAS FROM 1 TO 6

$UPDATE PARAMETER INPUT MENU

PROGRAM OUTPUT (NAME,VOLUME) ==> @@@@@@@@@@@@@@@
REPLACE (VES IF PGM EXISTS) ==> @@@
LISTING (TERMINAL NAME/*) ==> @@@@@@@@

Figure 8. $EDXASM and $UPDATE parameter input menu

£""'\
\, J

o Writing a Procedure to Pass Parameters

You must write a procedure whenever you pass parameters to your program from a parameter
input menu. A procedure consists of two parts:

PARAMETER section

$JOBUTIL control statements

To begin writing the procedure:

1. Select option 1, text editing, from the primary option menu. This invokes the $FSEDIT
utility.

2. Select option 2 and enter the statements you require for your application.

Writing the PARAMETER Section

The PARAMETER section of the procedure consists of statements unique to the session
manager. The PARAMETER statement must be the first statement of your procedure. This
section must end with an END statement.

Contained within the PARAMETER section are &P ARMnn and &SA VEnn statements. The
&P ARMnn statements enable your procedure to refer to parameters entered on the menu. The
optional &SA VEnn statements save the parameters you enter from session to session.

C. & PARMnn Statements

o

To refer to parameters entered on the parameter input menu, you assign a &PARMnn name to
each parameter, where nn is the parameter's position number on the menu. You use these
names on your $JOBUTIL control statements. Each input field on the menu represents a
parameter. For example, MYDS,MYVOL in the field below represents a single parameter and
would be assigned the name &P ARMO 1.

DATA SET,VOLUME ==> MYDS,MYVOL

You assign numbers to parameters in ascending order, from left to right, top to bottom. For
example, if a menu contains two parameter entries, you assign the names &PARM01 (first) and
&PARM02 (second). The session manager always assigns the name &PARMOO to the 1-4
character session logon ID.

You must end a &PARMnn statement with a period whenever blanks immediately follow that
statement.

Chapter 3. Customizing the Session Manager CU-2S

Customizing the Session Manager
Writing a Procedure to Pass Parameters (continued)

The statements of a procedure that reference two menu entries would look as follows:

PARAMETER
&PARM01.
&PARM02.
END

The session manager substitutes the &P ARMnn names with the actual parameters you enter on
the menu. You can use the &P ARMnn statements in conjunction with the &SA VEnn
statements.

& SAVEnn Statements

CU-26 SC34-0635

The &SA VEnn statements in the procedure enable you to save parameters entered on the menu
from session to session. The session manager substitutes &SA VEnn statements with the actual
parameters entered on the menu. You can use these statements to save parameters for the
menus you create. Once you save a parameter from a menu, the parameter will reappear the
next time you access that menu.

The statements of a procedure that reference and save two menu entries would look as follows:

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02
END

The statement numbers &SA VE61-&SA VE90 are reserved for your use. Use these statement
numbers to save parameters from parameter input menus you create.

An example of how to use these statement numbers for the P A YCHK parameter input menu
(Figure 7 on page CU-23) follows:

PARAMETER
&PARM01,&SAVE61
&PARM02,&SAVE62
&PARM03,&SAVE63
END

(input data set)
(output data set)
(period end date)

The menu input fields for EDX utilities have preassigned &SA VE statement numbers (1-60).
If you create menus for these utilities and save the input parameters, you must use the
preassigned numbers on the &SAVEnn statements. See Figure 9 on page CU-28 for the
numbers assigned to the EDX utilities.

o

(,

c

c

Writing a Procedure to Pass Parameters (continued)

An example of the statements for the combined $EDXASM/$UPDATE parameter input menu
(Figure 8 on page CU-24) follows:

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02,&SAVE19
&PARM03,&SAVE03
&PARM04,&SAVE20
&PARM05,&SAVE21
&PARM06,&SAVE22
END

(source input)
(object output)
(compiler options)
(pgm name)
(replace?)
(terminal)

You can determine which &SA VE statement the session manager assigns to a particular
parameter input field by:

1. Using $FSEDIT to list the $SMPxxxx procedure for the utility.

2. Comparing the &P ARM and &SA VE statements from the listing with the parameter input
menu the session manager uses for that utility.

The procedure you write must pass parameters to each utility in the order shown in the
$SMPxxxx procedure.

Chapter 3. Customizing the Session Manager CU-27

Customizing the Session Manager
Writing a Procedure to Pass Parameters (continued) (}

The following figure shows the preassigned numbers for the EDX utilities:

Statement Procedure Utility / Function

&SAVE01-03 $SMP0201 $EDXASM

&SAVE04-06 $SMP0203 $S1ASM

&SAVE07-13 $SMP0204 $COBOL

&SAVE14-16 $SMP0205 $FORT

&SAVE17-18 $SMP0208 $EDXlINK, $XPSlINK

&SAVE19-22 $SMP0209 $UPDATE

&SAVE23-24 $SMP0211 $PREFIND

&SAVE25-26 $SMP0308 $MOVEVOL

&SAVE27 $SMP0405 $FONT

&SAVE28 $SMP0501 $DIUTIL

&SAVE29 $SMP0502 $DICOMP

&SAVE30 $SMP0503 $DIINTR

&SAVE31-35 $SMP06 Execute application Qrogram

&SAVE36 $SMP0801 $BSCTRCE

&SAVE37 $SMP0806 $PRT2780

&SAVE38 $SMP0807 $PRT3780

&SAVE39 $SMP0808 $HCFUT1

&SAVE40-41 $SMP0211 $PREFIND

&SAVE42 $SMP0207 $EDXlINK

&SAVE43 $SMP0901 $DUMP

&SAVE44 $SMP0208 $XSPLINK I

&SAVE45-49 $SMP0206 $PlI , ,

&SAVE45-50 $SMP0212 $PASCAL

&SAVE51 $SMP8101 $ARJE

&SAVE52-58 $SMP0904 $VERIFY

&SAVE59 $SMP0204 $COBOL

&SAVE60 Reserved

Figure 9. &SA VEnn numbers of EDX utilities/functions

CU-28 SC34-0635

c

L ..

o

Writing a Procedure to Pass Parameters (continued)

Writing the $JOBUTIL Control Statements

The procedure you write must use $JOBUTIL control statements. The session manager passes
the statements in this part of the procedure to $JOBUTIL, which then loads and executes the
program. The $JOBUTIL control statements are described in detail in the Operator Commands
and Utilities Reference.

This section shows examples of $JOBUTIL control statements used in conjunction with
&P ARMnn statements. Use the examples presented as a guide as you write your procedure.

Three examples are shown. The first example is the procedure required to invoke $EDXASM.
The remaining examples show the procedures for the new options, P A YCHK and
$EDXASM/$UPDATE.

You must enter $JOBUTIL control statements in the following format:

Command Position 1 to 8

Operand Position 10 to 17

Comment Position 18 to 71

Saving the Procedure

After you enter the statements, do the following:

1. Return to the $FSEDIT primary option menu by entering MENU on the command line.

2. Select option 4 and specify the data set name in which the new procedure is to be saved.
Specify EDX002 as the volume name.

Procedure names can be a maximum of eight characters in length ($SMPxxxx) and must
have the prefix $SMP. The "xxxx" portion of the name should contain the numbers that
reflect the option number on the primary option menu and the option number on the
secondary option menu (if you use one).

However, procedure names must correspond with the name of the parameter input menu.
For example, you name the procedure for the PAYCHK program $SMPI102. This name
corresponds to the name of the parameter input menu $SMMII02. Similarly, you name the
procedure for the $EDXASM/$UPDATE option $SMP0215. This name corresponds to
the parameter input menu $SMM0215. Refer to the section "How to Name New Menus
and Procedures" on page CU-14 for an explanation of how to name procedures.

Chapter 3. Customizing the Session Manager CU-29

Customizing the Session Manager
Writing a Procedure to Pass Parameters (continued)

3. After you save the procedure, enter option 8 to exit $FSEDIT and return to the session
manager.

The next step is updating the session manager's primary and/or secondary procedure. The
section "Updating the Primary Procedure" on page CU-33 explains how you can do this.

Examples of Procedures

Use the examples shown in this section as a guide for the procedures you write.

The session manager uses many different procedure formats. You can write more sophisticated
procedures by copying existing session manager procedures and updating them with the
$PSEDIT utility to invoke different programs and save parameters.

$EDXASM ProcedurH

CU-30 SC34-0635

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02
&PARM03,&SAVE03
END

OFF

(source input)
(object output)
(compiler options)

LOG
REMARK
JOB
PROGRAM
PARM

@ASSEMBLE &PARM01. TO &PARM02. USERID=&PARMOO.
$SMP0201

DS
DS
DS
EXEC
EOJ
END

$EDXASM,ASMLIB
&PARM03.
&PARMO 1 .
$SM1&PARMOO.,EDX003
&PARM02.

Figure 10. Procedure to invoke $EDXASM

(work data set)

r" tJ

I ' ,)

c

o

Writing a Procedure to Pass Parameters (continued)

PAYCHK Procedure

Note that the parameters passed are saved in &SA VE61-&SA VE63. The parameter input
menu for this procedure is shown in Figure 7 on page CU-23.

PARAMETER
&PARM01,&SAVE61
&PARM02,&SAVE62
&PARM03,&SAVE63
END
LOG
REMARK
JOB
PROGRAM
PARM
DS
DS
EXEC
EOJ
END

OFF
@PAYROLL PAYCHECK

$SMP1102
PAYCHK,MYVOL
&PARM03.
&PARMO 1 .
&PARM02.

Figure 11. Procedure to invoke PAY CHK

(input data set)
(output data set)
(period end date)

PROCEDURE USERID=&PARMOO.

Chapter 3. Customizing the Session Manager CU -31

Customizing the Session Manager
Writing a Procedure to Pass Parameters (continued)

$EDXASM/$UPDATE Procedure

CU-32 SC34-0635

This procedure combines the session manager procedure for $EDXASM and $UPDATE into
one procedure. Note that &PARM02 is saved to &SAVE02 and &SAVE19 in one statement.
The parameter input menu for this procedure is shown in Figure 8 on page CU-24.

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02,&SAVE19
&PARM03,&SAVE03
&PARM04,&SAVE20
&PARM05,&SAVE21
&PARM06,&SAVE22
END

OFF

(source input)
(object output)
(compiler options)
(pgm name)
(replace?)
(terminal)

LOG
REMARK
JOB
PROGRAM
PARM

@ASSEMBLE &PARM01. TO &PARM02. USERID=&PARMOO.
$SMP0215

DS
DS
DS
EXEC
JUMP
REMARK
PROGRAM
PARM
EXEC
LABEL
EOJ
END

$EDXASM,ASMLIB
&PARM03.
&PARMO 1 .
$SM1&PARMOO.,EDX003
&PARM02.

EXIT,NE,-1

(work data set)

@CREATE LOAD MODULE &PARM02. TO &PARM04.
$UPDATE,EDX002
&PARM06. &PARM02. &PARM04. &PARM05.

EXIT

Figure 12. Procedure to invoke $EDXASM/$UPDATE

" "-~j

I ,

o

c

Updating the Primary Procedure

You must update the session manager primary procedure ($SMPPRIM) whenever you add an
option to the primary option menu or to a secondary option menu. The primary procedure
contains all option numbers as well as menu and program names associated with all options.

This section explains how you can update the primary procedure for options you add.

Perform the following steps to update the primary procedure ($SMPPRIM) for a new option:

1. Select option 1 (text editing) on the primary option menu and press the enter key. The next
menu to appear on the terminal screen is the primary option menu for $FSEDIT.

2. Select option 3 (read) and specify $SMPPRIM as the data set name. Specify EDX002 as
the volume name. Press the enter key.

3. After the utility reads $SMPPRIM into your work data set, enter option 2 (edit) to update
$SMPPRIM.

Entering Changes to the Prirnary Procedure

The option number you specify can be either a number or a letter. Follow the format of
$SMPPRIM as you enter option numbers, program, and menu names.

Prng~·nnl ... lvith No PararnetHrs

Assume the new option (11 - PAYROLL) on the primary option menu is a program that does
not require parameters (can be loaded directly). To update $SMPPRIM, scroll to the bottom
(PF3 key) and add the new option number and program name. You would update $SMPPRIM
to look like the following:

'9 ',$SMM09 DIAGNOSTICS SECONDARY OPTION MENU
'9.1 ',$SMM0901 $DUMP PARM INPUT MENU
'9.2 ',*$DISKUT2EDX002 EXECUTE $DISKUT2
'9.3 ',*$IOTEST EDX002 EXECUTE $IOTEST
'9.4 ',$SMM0904 $VERIFY PARM INPUT MENU
'10 ',$SMM10 $JOBQUT/$SUBMIT OPTION MENU
'10.1 ',*$JOBQUT EDX002 EXECUTE $JOBQUT
'10.2 ',*$SUBMIT EDX002 EXECUTE $SUBMIT l

\ '11 ',*PAYROLL EDX002 EXECUTE PAYROLL PROGRAM)
,.~~-._ .. £'>~. ~_ ••• c~"'r.~,~",~,~ .. _._~", ___ _ . ..,. ______ ,.,.....-_~ __ .. _ .. _ ... V"-.....~ _ mr;,_.'_. _ --., ,_"."..,., ,., __ --. ~., __ !i 4""I'f'

Figure 13. Example of a program added with no parameters

The asterisk before the program name indicates the program does not require parameters when
loaded.

Chapter 3. Customizing the Session Manager CU-33

Customizing the Session Manager
Updating the Primary Procedure (continued)

CU-34 SC34-0635

Optionally, you could pass a data set and volume name to a program. You might want to do this
if your program normally prompts you for a data set after you load the program. For example,
$FSEDIT and $EDXLINK prompt you for a work data set when you load them. ,You can pass
your program one of the session manager work data sets or a data set you create. An asterisk
must precede and follow the data set name (padded to eight characters in length).

The following example shows how to use a session manager work data set:

'1 ',*$FSEDIT EDX002*$SME& *EDXOO3

$FSEDIT uses the session manager work data set $SMEuser, where "user" is your 1-4
character logon ID.

If you append an & to the data set name $SME, the session manager replaces the & with your
logon ID.

The next example shows how. to pass a program the data set WORKDS.l on volume MYVOL:

'1 ',*$FSEDIT EDX002*WORKDS1 *MYVOL

At this point, you must save $SMPPRIM. Refer to the section "Saving the Primary Procedure"
on page CU-37 for information on saving $SMPPRIM. After you save $SMPPRIM, you can
invoke your new option from the primary option menu.

,
,

o

c

Updating the Primary Procedure (continued)

Program Using Parameter Input Menu Only

If the new option (11 - PAYROLL) required only a parameter input menu, you would update
$SMPPRIM as shown in Figure 14. To update $SMPPRIM in this case, scroll to the bottom
(PF3 key) and add the new option number and the name of the parameter input menu.

Note: The session manager searches for a procedure on EDX002 that corresponds to the name
of the parameter input menu. For example, to load the program for $SMMII02, the session
manager would search EDX002 for a procedure named $SMPII02 .

.....

19
1 9 . 1
1 9. 2
1 9 . 3
19.4
1 10
1 10 . 1
1 10 . 2
111

•
•

',$SMM09
',$SMM0901
',*$DISKUT2EDX002
I ,*$IOTEST EDX002
',$SMM0904
',$SMM10
',*$JOBQUT EDX002
I ,*$SUBMIT EDX002
',$SMMll02

DIAGNOSTICS SECONDARY OPTION MENU
$DUMP PARM INPUT MENU
EXECUTE $DISKUT2
EXECUTE $IOTEST
$VERIFY PARM INPUT MENU
$JOBQUT/$SUBMIT OPTION MENU
EXECUTE $JOBQUT
EXECUTE $SUBMIT
EXECUTE PAYROLL PROGRAM

Figure 14. Example of a program added with parameter input menu

After you make the entry, you must save $SMPPRIM. Refer to the section "Saving the Primary
Procedure" on page CU-37 for information on saving $SMPPRIM. After you save $SMPPRIM,
you can invoke your new option from the primary option menu.

Chapter 3. Customizing the Session Manager CU-35

Customizing the Session Manager
Updating the Primary Procedure (continued)

Program Using Secondary Option Menu

CU-36 SC34-063S

The PAYROLL example shown throughout this chapter is a new option on the primary option
menu but also uses a secondary option menu. To update $SMPPRIM, scroll to the bottom (PF3
key) and make the entries as shown in Figure 15. An explanation of the entries follows the
figure.

19
19.1
1 9 .2
1 9.3
19.4
110
110.1
110.2
111
111. 1
111.2

•
I ,$SMM09
',$SMM0901
',*$DISKUT2EDX002
I ,*$IOTEST EDX002
',$SMM0904
',$SMM10
',*$JOBQUT EDX002
',*$SUBMIT EDX002
',$SMM11
I, *MAI LL I STMYVOL
',$SMM1102

DIAGNOSTICS SECONDARY OPTION MENU
$DUMP PARM INPUT MENU
EXECUTE $DISKUT2
EXECUTE $IOTEST
$VERIFY PARM INPUT MENU
$JOBQUT/$SUBMIT OPTION MENU
EXECUTE $JOBQUT
EXECUTE $SUBMIT
PAYROLL SECONDARY OPTION MENU
EXECUTE MAILING LIST PROGRAM
PAYCHECK PARM INPUT MENU

Figure 15. Example of program added using secondary option menu

The entry for option 11 points to the secondary option menu $SMMII (Figure 6 on page
CU-21). The entry for option 11.1 points to the program MAILLIST on volume MYVOL.
MAILLIST requires no parameters when the session manager loads it. The entry for option
11.2 points to the parameter input menu $SMMII02 (Figure 7 on page CU-23) for the
P A YCHK program.

Note: The session manager searches for a procedure on EDX002 that corresponds to the name
of the parameter input menu. For example, to load the program for $SMMII02, the session
manager would search EDX002 for a procedure named $SMPII02.

(-"
\._J

o

c

o

Updating the Primary Procedure (continued)

You would perform similar update steps to add the $EDXASM/$UPDATE example discussed
in "Adding an Option to a Secondary Option Menu" on page CU-18. For this example, you
enter option number 2.15 and the menu name $SMM0215 as shown in Figure 16 .

12.11
12.12
1 2. 13
12.14

~~

1,$SMM0211
1,$SMM0212
1,$SMM0213
1,*$MSGUTl
1,$SMM0215

$PREFIND PARM INPUT MENU
$PASCAL/$EDXLINK PARM INPUT MENU
$EDXASM/$XPSLINK PARM INPUT MENU

EDX002*$SM1& *EDX003
NEW $EDXASM/$UPDATE OPTION ____ ~ _________________________ J

Figure 16. Example of adding $EDXASM/$UPDATE option

At this point, you must save $SMPPRIM. Refer to the section "Saving the Primary Procedure"
for information on saving $SMPPRIM. After you save $SMPPRIM, you must update or create
a secondary procedure. The section "Updating or Creating a Secondary Procedure" on page
CU-38 explains how to do this.

Saving the Prinlary Procedure

When you complete the updating of $SMPPRIM, do the following:

1. Enter MF"-iU in the command field to return to the $FSEDIT menu.

2. Select option 4 from the $FSEDIT primary option menu. Respond YES to the prompt
message to write the updated procedure back to $SMPPRIM on volume EDX002.

3. Enter option 8 to end $FSEDIT and return to the session manager primary option menu.

Chapter 3. Customizing the Session Manager CU-37

Customizing the Session Manager
Updating or Creating a Secondary Procedure

You must update a secondary procedure when~ver you add an option to an existipg secondary
option menu. Further,· if you create a new secondary option menu you must create a secondary
procedure for that option menu.

The format of a secondary procedure is almost identical to the format of the primary procedure
($SMPPRIM). A secondary procedure contains option numbers and menu and program names
that pertain only to a specific secondary option menu.

All secondary procedures begin with the name $SMPxx, where xx is the number from the
primary option menu. For example, $SMP04 is the secondary procedure for terminal utilities
(option 4).

Updating an Existing Secondary Procedure

CU-38 SC34-0635

To show you how to add an option to an existing secondary procedure ($SMP02), the
$EDXASM/$UPDATE example (Figure 5 on page CU-19) is used.

Perform the following steps to update $SMP02:

1. Select option 1 (text editing) on the primary option menu and press the enter key. The next
menu to appear on the terminal screen is the primary option menu for $FSEDIT.

2. Select option 3 (read) and and specify $S:YIPOl as the data set name. Specify EDX002 as
the volume name.

3. After the utility reads $SMP02 into your work data set, enter option 2 (edit) to update
$SMP02.

(;

c

Updating or Creating a Secondary Procedure (continued)

4. Scroll to the bottom (PF3 key) and enter the new option number and the name of the
parameter input menu (Figure 8 on page CU-24).

The following is an example of the updated $SMP02 procedure:

SELECTION $SMP02
11
12
13
14
15
16
17
18
19
1 10
111
112

',$SMM0201
',$SMM0202
',$SMM0203
',$SMM0204
',$SMM0205
',$SMM0206
',$SMM0207
',$SMM0208
I ,$SMM0209
',*$UPDATEHEDX002
',$SMM0211
',$SMM0212

$EDXASM PARM INPUT MENU
$EDXASM/$EDXLINK PARM INPUT MENU
$SlASM PARM INPUT MENU
$COBOL PARM INPUT MENU
$FORT PARM INPUT MENU
$PLI/$EDXLINK PARM INPUT MENU
$EDXLINK PARM INPUT MENU
$XPSLINK FOR SUPERVISORS PARM INPUT MENU
$UPDATE PARM INPUT MENU
EXECUTE $UPDATEH
$PREFIND PARM INPUT MENU
$PASCAL/$EDXLINK PARM INPUT MENU
$EDXASM/$XPSLINK PARM INPUT MENU

EDX002*$SM1& *EDX003

i

I
(
f

I 113
I 114
I 115

lEND

',$SMM0213
',*$MSGUTl
',$SMM0215 NEW $EDXASM/$UPDATE OPTION

~)
------------------------.---------------

Figure 17. Updated $SMP02 secondary procedure

When you complete the updating of $SMP02, do the following:

1. Enter \IF:\ [in the command field to return to the $FSEDIT menu.

2. Select option 4 from the $FSEDIT primary option menu. Respond Y FS to the prompt to
write the updated procedure back to $SMP02 on volume EDX002.

3. Enter option 8 to end $FSEDIT and return to the session manager primary option menu.

After completing these steps, you can invoke the new option from either the primary or
secondary option menu.

Chapter 3. Customizing the Session Manager CU-39

Customizing the Session Manager
Updating or Creating a Secondary Procedure (continued)

Creating a Secondary Procedure

To show you how to create a new secondary procedure, the PAYROLL example (Figure 6 on
page CU -21) is used.

A simple way to create a new secondary procedure is to edit an existing secondary procedure.
You can add the appropriate entries you need for your program and delete the entries you do
not need. By editing an existing secondary procedure, you can ensure that the required format
remains correct. All existing secondary procedures are named $SMPxx, where xx is an option
number.

Perform the following steps to create a new secondary procedure:

1. Select option 1 (text editing) on the primary option menu and press the enter key. The next
menu to appear on the terminal screen is the primary option menu for $FSEDIT.

2. Select option 3 (read) and specify the data set name of an existing secondary procedure, for
example $SMP02. Specify EDX002 as the volume name.

3. After the utility reads $SMP02 into your edit work data set, enter option 2 (edit) to edit
$SMP02.

4. Keeping the same format, replace the entries in $SMP02 with the entries for PAYROLL.

The following is an example of the secondary procedure for PAYROLL:

SELECTION $SMP11
11 ',*MAILLIST
I 2 I ,$ SMM 11 02
END

MAILING LIST PROGRAM
PAYCHK PARM INPUT MENU

Figure 18. New secondary procedure for PAYROLL

Saving a New Secondary Procedure

CU -40 SC34-0635

When you complete the updating, do the following:

1. Enter MENU in the command field to return to the $FSEDIT menu.

2. Select option 4 from the $FSEDIT primary option menu. Specify the new data set name
which will contain the secondary procedure. For this example, enter $SMPll as the new
data set name. $FSEDIT will create this data set for you. Specify EDX002 as the volume
name. Respond YES to the prompt message after you specify the new data set name.

3. Enter option 8 to end $FSEDIT and return to the session manager primary option menu.

After completing these steps, you can invoke the new option from the primary option menu.

r' \.J'

o

c

c

Using an Alternate Session Menu

When you log on to the session manager, you can override the menu presentation by specifying
an option menu that you have created. You might consider this method to provide menus
tailored to your system.

You can use the ALTERNATE SESSION MENU prompt below the user ID prompt if you
create your own menus and procedures. Entering the name of your menu as an alternate causes
your menu to appear instead of the session manager primary option menu.

When you use this method of customizing the session manager:

1. Adhere to the naming conventions discussed in the section "How to Name New Menus and
Procedures" on page CU-14.

2. Ensure the menus and associated procedures reside on volume EDX002.

3. Design the menus and procedures as discussed throughout this chapter.

The following example shows the logon menu with the name of an alternate menu, $SM9901,
specified:

$SMMLOG: THIS TERMINAL IS LOGGED ON TO THE SESSION MANAGER
17: 55: 31

ENTER 1-4 CHAR USER 10 ==> MYID 12/11/83
(ENTER LOGOFF TO EXIT)

ALTERNATE SESSION MENU ==> $SM9901
(OPTIONAL)

Figure 19. Session manager logon screen with alternate menu

Chapter 3. Customizing the Session Manager CU-41

Customizing the Session Manager
How to Modify Data Set Allocation and Deletion

CU-42 SC34-0635

The session manager allocates and deletes temporary data sets when you logon and logoff
respectively. The session manager uses these data sets as work data sets for the various
programs it invokes. Two session manager data sets control allocation and deletion.
$SMALLOC controls the data sets to be allocated. $SMDELET controls the data sets to be
deleted.

You can tailor the work data set allocations and deletions by modifying the $SMALLOC and
$SMDELET data sets with $FSEDIT or $EDITIN. Modifications usually consist of changing
the size or volume name of a data set. However, you can also allocate and delete up to four
additional data sets.

You can use these additional temporary data sets for programs you use. For example, if your
program needed to write data to a temporary data set then later retrieve data from that data set,
you could run your program under the session manager and have the session manager create that
data set.

Figure 20 lists all the session manager data sets with sizes and functions.

Data set Size in 256
name EDX records Function

$SMEuser 400 Used by $FSEDIT as a work data set.

$SMPuser 30 Used by session manager to save input
parameters from session to session. This
data set is not deleted at logoff.

$SMWuser 30 Used by session manager to submit
procedures to $JOBUTIL.

$SMluser 400 1 Used by $SlASM, $EDXASM, $COBOL,
$PASCAL, $PLI, and $FORT as a work data
set.

$SM2user 400 1 Used by $EDXLlNK, $SlASM, $EDXASM,
$COBOL, $PLI, and $FORT as a work data
set.

$SM3user 250 1 Used by $SlASM, $COBOL, $PASCAL, and
$PLI as a work data set.

Figure 20. Data sets created by the session manager

Note: The session manager substitutes your logon ID for "user" and appends your logon ID to
the data set name.

Using the assemblers and compilers noted may require that you delete and reallocate these data sets to a
larger size. Recommended sizes are 2000 for $SMl and $SM2, and 800 for $SM3.

o

o

How to Modify Data Set Allocation and Deletion (continued)

Allocating Data Sets

In addition to allocating data sets $SMI through $SM3, you can allocate data sets $SM4
through $SM7. The default size of these data sets is 100 records.

The following is an example of how $SMALLOC looks:

$SMP 00 EDX003 NAME AND VOLME FOR OPEN
$SMP 30 EDX003 SIZE AND VOLUME TO ALLOCATE
$SMW 30 EDX003 SIZE AND VOLUME TO ALLOCATE
$SME 400 EDX003 SIZE AND VOLUME TO ALLOCATE
$SMl 400 EDX003 SIZE AND VOLUME TO ALLOCATE
$SM2 400 EDX003 SIZE AND VOLUME TO ALLOCATE
$SM3 400 EDX003 SIZE AND VOLUME TO ALLOCATE
END ~~~ TERMINATOR - INDICATES END OF ALLOCATED DATASETS ~~~
$SM4 100 EDX003 SIZE AND VOLUME TO ALLOCATE
$SM5 100 EDX003 SIZE AND VOLUME TO ALLOCATE
$SM6 100 EDX003 SIZE AND VOLUME TO ALLOCATE

;;~~*****!~~*******;~~~~~****;~~;*~~~*~~;~~;*!~*~;;~~~!;**********
~~ $SMLOG WORK DATASET PARAMETER VALUES FOR ALLOCATE FUNCTION ~~

NOTE: THE DATASETS $SMW AND $SMP MUST RESIDE ON
THE VOLUME EDX003. ALL OTHERS MAY BE REASSIGNED ~~

NOTE: THE FIRST ENTRY IN THIS LIST IS USED TO TEST FOR ~~
THE EXISTENCE OF THE $SMP DATASET. DON'T DELETE. ~~
5719-UT5 COPYRIGHT IBM CORP 1980

**
**

END
**

FlgUl"e 21. SSMALLOC data set

If you want $SM4 allocated, move the END statement (in column 1) to follow $SM4. The END
statement indicates the end of the list of data sets to be allocated. If you add data sets to the list
in $SMALLOC, you should also add names of the data sets to $SMDELET. If you change the
volume name of a work data set in the $SMALLOC and $SMDELET data sets, then you have
to change all the session manager procedures that use that work data set. After you complete
your modifications, you must save the updated $SMALLOC data set.

The only required data sets are $SMP and $SMW. You must allocate these data sets on volume
EDX003.

Chapter 3. Customizing the Session Manager CU-43

Customizing the Session Manager
How to Modify Data Set Allocation and Deletion (continued)

Deleting Data Sets

CU-44 SC34-0635

Before you end the session manager, the session manager prompts you for the disposition of the
data sets. The data sets to be deleted are normally the data sets that were allocated at the start
of the session. Enter a Y to save the data sets or an N to delete the data sets.

Note: Abnormal termination of the session manager prevents the deletion of the temporary data
sets.

If you add data set names in $SMALLOC, you must also update $SMDELET with those data
set names. Update $SMDELET in a similar manner to $SMALLOC. The END statement (in
column 1) indicates the last data set to be deleted. After you complete your modifications, you
must save the updated $SMDELET data set.

Figure 22 lists the contents of $SMDELET.

$SME EDX003 PREFIX NAME AND VOLUME TO DELETE
$SM1 EDX003 PREFIX NAME AND VOLUME TO DELETE
$SM2 EDX003 PREFIX NAME AND VOLUME TO DELETE
$SM3 EDX003 PREFIX NAME AND VOLUME TO DELETE
$SMW EDX003 PREFIX NAME AND VOLUME TO DELETE
END ~~~ TERMINATOR - INDICATES END OF DATA SETS TO BE DELETED
$SM4 EDX003 PREFIX NAME AND VOLUME TO DELETE
$SMS EDX003 PREFIX NAME AND VOLUME TO DELETE
$SM6 EDX003 PREFIX NAME AND VOLUME TO DELETE
$SM7 EDX003 PREFIX NAME AND VOLUME TO DELETE

~~ $SMEND WORK DATASET PARAMETER VALUES FOR DELETE FUNCTION **
~~ S719-UTS COPYRIGHT IBM CORP 1980 **

END

Figure 22. $SMDELET data set

o

t ' ,

o

c

o

Chapter 4. Adding Your Own Task Error Exit
Routine

When a program is executing, an exception condition may occur either in the program itself or in
the Series/l processor. If an exception occurs, the supervisor invokes its error handling routine,
displays diagnostic information in the form of a program check message on $SYSLOG, and
cancels the program. You can provide your own exception handling routine by writing a task
error exit routine.

When you provide a task error exit routine in your program, the supervisor passes control to
your EDL routine when an exception occurs. Your routine can then capture and format status
information specific to your program.

Some of the processing your task error exit routine could perform is:

Releasing any enqueued resources such as event control blocks (ECBs) or queue control
blocks (QCBs).

Displaying, on all terminals currently being used by the program, a message that would
inform the operator(s) of a malfunction and the appropriate action to be taken.

Printing the data set control blocks (DSCBs) from the program header and the program.

Printing the input/output control blocks (IOCBs), terminal control blocks (CCBs), and task
control blocks (TCBs) in your application.

Printing any sensor based I/O control blocks (SBIOCBs) or any other data special to your
application.

Reloading your program or loading another program.

Chapter 4. Adding Your Own Task Error Exit Routine CU-4S

Adding Your Own Task Error Exit Routine

You can:

Extend the system-supplied task error exit routine ($$EDXIT).

Provide your own routine independent of $$EDXIT.

You specify the EDL entry point name of the task error exit routine on the ERRXIT= operand
of the PROGRAM or TASK statement.

This chapter describes how to extend the system-supplied task error exit routine or create your
own task error exit routine.

Extending the System-Supplied Task Error Exit Routine

CU-46 SC34-0635

The system-supplied task error exit routine ($$EDXIT) prints and displays general information
regarding an exception check. An example of the output you get is shown in Figure 23. The
Problem Determination Guide discusses this exception output in detail.

**
* WARNING!! AN EXCEPTION HAS OCCURRED!! *
**

PROGRAM NAME PCHECK PSW 8002
PROGRAM VOLUME EDXWRK IAR 2AD6
PROGRAM LOAD POINT 0000 AKR a 11 a
ADDRESS OF ACTIVE TCB 0120 LSR 80DO
ADDRESS OF CCB aPSE RO (WORK REGISTER)
NUMBER OF DATA SETS 1 Rl (EDL INSTR ADDR)
NUMBER OF OVERLAYS a R2 (EDL TCB ADDR)
$TCBADS 0001 R3 (EDL OPl ADDR)
ADDRESS OF FAILURE R4 (EDL OP2 ADDR)

(REL.TO PGM LOAD POINT) 010A R5 (EDL COMMAND)
DUMP OF FAIL ADDRESS R6 (WORK REGISTER)

010A: 015C 0000 0034 8332 R7 (WORK REGISTER)
$TCBCO -1 DEC; FFFF HEX #1 0037
$TCBC02 = a DEC; 0000 HEX #2 0000

PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

Figure 23. Sample output from $$EDXIT

0064
010A
0120
0037
0034
01SC
0000
0000

" \. J

(
\.

o

o

Extending the System-Supplied Task Error Exit Routine (continued)

How to Code the Task Error Exit Extension

$$EDXIT contains a WXTRN statement for a routine called PCHKRTN. If PCHKRTN exists,
$$EDXIT passes control to PCHKRTN after printing the exception check data on $SYSPRTR.
Use PCHKRTN as the extension to $$EDXIT.

To provide your routine as an extension to $$EDXIT, you must:

Specify MAIN=NO on the PROGRAM statement of your routine.

Code an ENTRY statement specifying PCHKRTN.

Specify PCHKRTN as the label of your routine. The executable code you provide begins at
this label.

Specify a PROGSTOP statement following the executable code.

Specify the END statement as the last statement of your routine.

For example:

ERRRTN PROGRAM MAIN=NO
ENTRY PCHKRTN

PCHKRTN EQU *
•
• (source code for your routine)
•
PROGSTOP
END

Link-Editing the Task Error Exit Extension

After you assemble your routine, link-edit the assembled output with your main program and
$$EDXIT. The system includes $$EDXIT in the link-edit when you specify an AUTO CALL
statement referencing $AUTO,ASMLIB. The following is an example of the link control
statements you pass to $EDXLINK.

INCLUDE
AUTOCALL
INCLUDE
LINK

MAINOBJ,MYVOL
$AUTO,ASMLIB
PCHKOBJ,MYVOL
MAINPGM,MYVOL REPLACE END

(includes main pgm)
(includes $$EDXIT)
(includes your routine)

Chapter 4. Adding Your Own Task Error Exit Routine CU -4 7

Adding Your Own Task Error Exit Routine
Creating Your Own Task Error Exit Routine

This section explains how you can create your task error exit routine. A sample program is also
shown to assist you in coding the routine.

Defining the Task Error Exit Control Block

CU-48 SC34-0635

When you create your own task error exit routine, you must define an area of storage called a
task error exit control block (TEECB). The TEECB provides the linkage between the
supervisor and your routine. The supervisor stores hardware status information in the TEECB
when an exception occurs. You must define the TEECB area even if your routine does not use
the status information.

You must align the TEECB on a fullword boundary. The TEECB has the following format:

TEECB
TEECTL
TEESIA
TEEHSA

ALIGN
EQU
DC
DC
DC

WORD

*
X'0002'
A(EXITRTN)
A(HSA)

ALIGN ON FULLWORD BOUNDARY

CONTROL WORD
ADDRESS OF STARTING INSTRUCTION
ADDRESS OF HARDWARE STATUS AREA

Figure 24. Format of the task error exit control block (TEECB)

In the first word (TEECTL), bits 0-7 are reserved and must be'zero. Bits 8-15 specify the
number of data words that follow. Always code X'0002' as the value of this word.

The second word (TEESIA) contains the starting instruction address (SIA) of your task error
exit routine.

The last word (TEEHSA) contains the address of a storage area you reserve to receive the
hardware status information. This storage area, called the hardware status area (HSA), is 24
bytes in length.

C)

o
Creating Your Own Task Error Exit Routine (continued)

You must align the HSA on a fullword boundary. The HSA has the following format:

ALIGN WORD
HSA EQU *
HSAPSW DC F'O'
HSALSB EQU *
HSAIAR DC F'O'
HSAAKR DC F'O'
HSALSR DC F'O'
HSAREGS DC BF'O'

Figure 25. Format of the hardware status area (HSA)

ALIGN ON FULLWORD BOUNDARY

PROGRAM STATUS WORD
11 WORD LEVEL STATUS BLOCK
INSTRUCTION ADDRESS REGISTER
ADDRESS KEY REGISTER
LEVEL STATUS REGISTER
GENERAL REGISTERS 0-7

The contents of the various HSA locations (for example PSW and AKR) contain, upon entry to
your routine, the values that were in the corresponding hardware registers at the time of the
exception. Also, general register 1 contains the starting instruction address (SIA) of your
routine. General register 2 contains the address of your task's TCB. Your routine can examine
this status information to determine whether to continue or end execution. The Problem
Determination Guide can assist you in interpreting the information returned from an exception.

Since entry to your routine is made at the Event Driven Language level, the contents of the
remaining general registers are dependent upon what instructions your program executed when
the exception occurred.

Chapter 4. Adding Your Own Task Error Exit Routine CU-49

Adding Your Own Task Error Exit Routine
Creating Your Own Task Error Exit Routine (continued)

Sample Task Error Exit Routine

CU-50 SC34-0635

An example of a task error exit routine follows. The sample program examines the processor
status word (PSW) for the type of exception and displays the contents of some selected fields
upon the loading terminal.

PRINT OFF
COPY PROGEQU
PRINT ON
ENTRY TSKEXIT

ERRXT PROGRAM MAIN=NO
TSKEXIT EQU *

ALIGN WORD
TEECB EQU * TASK ERROR EXIT CONTROL BLOCK
TEECTL DC X'0002' NUMBER OF DATA WORDS IN TEECB
TEESIA DC A (EXITRTN) ADDRESS OF ERROR EXIT ROUTINE
TEEHSA DC A(HSA) ADDRESS OF HARDWARE STATUS AREA

ALIGN WORD
HSA EQU * HARDWARE STATUS AREA
HSAPSW DC F'O' PROGRAM STATUS WORD
HSALSB EQU * 11 WORD LEVEL STATUS BLOCK
HSAIAR DC F'O' INSTRUCTION ADDRESS REGISTER
HSAAKR DC F'O' ADDRESS KEY REGISTER
HSALSR DC F'O' LEVEL STATUS REGISTER
HSAREGS DC BF'O' GENERAL REGISTERS 07
PCHKPLP DATA F'O' PGM LOAD POINT
FAILADDR DATA F'O' FAILING ADDR
ADDRTBL EQU *

DC A(BITO)
DC A (BIT1)
DC A(BIT2)
DC A (BIT3)
DC A(BIT4)
DC A(BIT5)
DC A(BIT6)
DC A(BIT7)
DC A(BITB)
DC A (BIT9)
DC A(BIT10)
DC A(BIT11)
DC A(BIT12)
DC A(BIT13)
DC A(BIT14)
DC A(BIT15)

Figure 26 (Part 1 of 2). Sample task error exit routine

,~

'- j

('

o

c

o

C.:reating Your Own Task Error Exit Routine (continued)

PSWTBL
BITO
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
BIT9
BIT10
BIT11
BIT12
BIT13
BIT14
BIT15
BITCNT
PSWORK
MSGREC
EXITRTN

EQU
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
DATA
DATA
TEXT
EQU
TCBGET
SUBTRACT
MOVE
PRINT EXT
PRINTEXT
PRINT EXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINT EXT
MOVE
MOVEA
DO

IF
SHIFTL

ENDIF
IF

MOVE
PRINTEXT

ENDIF
ADD

ENDDO
PROGSTOP
END

*
'SPECIFICATION CHECK'
'INVALID STORAGE ADDRESS'
'PRIVILEGE VIOLATE'
'PROTECT CHECK'
'INVALID FUNCTION'
'FLOATING POINT EXCEPTION'
'STACK EXCEPTION'
'BIT 7 NOT USED'
'STORAGE PARITY CHECK'
'BIT 9 NOT USED'
'CPU CONTROL CHECK'
'I/O CHECK'
'SEQUENCE INDICATOR'
'AUTO IPL'
'TRANSLATOR ENABLED'
'POWER/THERMAL WARNING'
F'O'
F'O'
LENGTH=80

*
PCHKPLP,$TCBPLP GET PGM LOAD PT
HSAREGS+2,PCHKPLP,RESULT=FAILADDR FAIL ADDR
#1,PCHKPLP
'@PROGRAM NAME
($PRGNAM,#1) PRINT PGM NAME
'@PSW = '
HSA,MODE=HEX PRINT HSA VALUE
'@IAR = '
HSA+2,MODE=HEX PRINT INST ADDR REG

'@PSW ANALYSIS: @'
PSWORK,HSAPSW
#1,ADDRTBL MOVE MSG LIST ADDR
16,TIMES,INDEX=BITCNT
(BITCNT,GT,1)
HSAPSW,1

(HSAPSW,LT,O)
PSWMSG, (0, # 1)
MSGREC,P1=PSWMSG,SKIP=1

1 ,2

POINT TO ERR MSG

INCREMENT INDEX

Figure 26 (Part 2 of 2). Sample task error exit routine

Chapter 4. Adding Your Own Task Error Exit Routine CU-51

Addirlg YOl,Jr Ovvr'. Task Err()r E~xjt Rout~ne

'Cr(.;:ating Your OV'v'nTask Error [Kit Rout~ne (continued I

CU-52 SC34-0635

You must compile the task error exit routine and link-edit the assembled output with the main
task. Specify the entry point name of the routine on the ERRXIT = operand of the main task.

An example of the main task that specifies the previous routine follows:

MAINPGM PROGRAM
EXTRN

START EQU
•
•
•
PROGSTOP
ENDPROG
END

START,ERRXIT=TSKEXIT
TSKEXIT

*

You should understand the following items when you use a task error exit routine:

A task error exit routine is a part of the task it serves. The supervisor passes control to it at
the task level; it is not a subroutine of the supervisor's error handler.

If your main program attaches multiple tasks, you should specify the ERRXIT = operand on
each TASK statement.

The registers (including the EDL software registers #1 and #2) used by the error exit routine
are those normally used by the task.

To resume task execution after the task error exit routine, you must issue a branch
instruction (for Series/1 assembler) or a GOTO instruction (for EDL) to the appropriate
location.

If the task error exit routine is unable to recover from the exception, it should issue a
PROGSTOP instruction.

o

o

VVhat ?1appens VVhen an Exception Occurs?

If an exception (machine check, program check, or soft exception trap) occurs during the
execution of your task and you have specified a task error exit, the supervisor locates your
TEECB. It then uses the TEEHSA pointer to locate your HSA and stores the hardware status
information in it. Next, the supervisor retrieves the TEESIA pointer and sets it to zero to
prevent recursive exceptions. Finally, the supervisor starts your task at the address it retrieved if
that address is nonzero. If the TEESIA is zero or an exception occurs during any of this
processing (if, for example, the TEECB is invalid), the supervisor treats the error as if you did
not specify a task error exit routine. Note that even if the TEESIA is zero, the supervisor still
attempts to store the hardware status.

Since the supervisor zeroes TEESIA prior to starting your task, your task error exit routine only
gets control on the first exception that occurs, unless your routine restores TEESIA to its
original condition. Zeroing TEESIA allows the supervisor to handle exceptions that occur in
task error exit routines, thus preventing recursion in the error handling process. When you write
a task error exit routine, do not restore TEESIA until the error exit routine has completed.

Chapter 4. Adding Your Own Task Error Exit Routine CU-53

Notes

CU-54 SC34-0635

r'\
'--}

o

c

o

Chapter 5. Running Programs and Initialization
Routines at I PL

You can design your system so that your programs and initialization routines are run as part of
the IPL process. You can do this by:

naming your program $INITIAL.

creating a program named $PROG 1 linked with the supervisor.

coding the INITMOD operand on the SYSTEM statement.

Using $INITIAL to run programs at IPL is the simplest method. Programs invoked through this
method do not require link-editing with the supervisor. As a result, the programs loaded can
reside on disk.

When you use $PROG 1 or specify initialization routines on the INITMOD operand, you must
link-edit these routines to the supervisor during system generation.

The programs or routines that run could perform various functions. For example, using
$INITIAL, you could have the session manager loaded in a particular partition and printer
spooling in another.

Assume your Series/l has no disk/diskette but communicates with a host over a BSC line. The
host could IPL the Series/l by transmitting the supervisor (with $PROGl). $PROGI would
run after IPL.

If you always run a program that sets up an area of storage to some value, you could specify this
program as an initialization routine. You do this by coding the INITMOD operand on the
SYSTEM statement.

Chapter 5. Running Programs and Initialization Routines at IPL CU-55

Running Programs and Initialization Routines at IPL

This chapter describes how you can supply programs and routines to be run at IPL using either
of these methods.

How to Specify $INITIAL Programs

To have your programs loaded at IPL, you must name a program $INITIAL. Two ways you can
assign the name $INITIAL to a program are as follows:

Using $DISKUTI to rename (RE command) an existing program.

Specifying the name $INITIAL as your program name when you prepare the program using
$UPDATE or $EDXLINK.

The $INITIAL program must reside on the IPL volume.

Your $INITIAL program can issue LOADs to other programs. You have complete control of
the function performed by this program.

After all system and user-written initialization routines execute, the supervisor issues a LOAD
for $INITIAL.

Thing::, 'You Should Know About $INITIAL

CU-56 SC34-0635

Effectively, you can use any program as a $INITIAL program. However, consider the following
when you create a $INITIAL program:

You cannot use the "??" option to specify data sets (DS=) or overlays (PGMS=) on the
PROGRAM statement.

No "program load" message is displayed when $INITIAL is loaded.

Any errors that occur when $INITIAL is loaded are not displayed; you should check all
return codes.

If you want to prevent the supervisor from loading $INITIAL, rename the program using
$DISKUTI.

• You can use the INITPRT operand of the SYSTEM statement to specify the partition into
which $INITIAL is loaded.

You can code the PARM= operand on the PROGRAM statement to receive a parameter at
load time. The system passes a I-word parameter that indicates the type of IPL - manual
or auto.

(

o

C

How to Specify $INITIAL Programs (continued)

Sample $INITIAL Progranls

The following examples show some of the functions you could use for $INITIAL:

l.oading Programs in Three Partitions.

The following sample program loads three programs. The session manager is loaded in partition
1, printer spooling in partition 2, and Indexed Access Method in partition 3. The return code is
checked for load errors.

INIT PROGRAM LOADPGM
LOADPGM EQU *
Ll LOAD $SMMAIN,PART=l,ERROR=NOSMGR
L2 LOAD $SPOOL,PART=2,ERROR=NOSPL
L3 LOAD $IAM,PART=3,ERROR=NOIAM

GOTO ALLDONE
NOSMGR MOVE RCODE,INIT

PRINTEXT '@LOAD ERROR FOR $SMMAIN, RC= ,
PRINTNUM RCODE
GOTO L2 NEXT LOAD

NOSPL MOVE RCODE,INIT
PRINTEXT '@LOAD ERROR FOR $SPOOL, RC= ,
PRINTNUM RCODE
GOTO L3 NEXT LOAD

NOIAM MOVE RCODE,INIT
PRINTEXT '@LOAD ERROR FOR $IAM, RC= ,
PRINTNUM RCODE

ALLDONE PROGSTOP
RCODE DATA F'O'

ENDPROG
END

Jetennining the Tvpe of !PL

The following sample code shows how you can determine the type of IPL based on the IPL
Mode switch setting. The system passes the parameter upon IPL. Y Qur $INITIAL program
could decide what routine to invoke based on the parameter value. A zero indicates manual
IPL; a one indicates auto IPL. You must code the PARM operand on the PROGRAM
statement to receive this parameter. Your program must refer to this parameter as $PARMl.

If, for example, your system had an external battery-operated clock (connected via a digital
input feature) or kept the date and time on a disk data set, the program could read the time and
date upon an auto IPL. $INITIAL could then load the time and date into the system time and
date table ($TIMRTBL).

Chapter 5. Running Programs and Initialization Routines at IPL CU-57

Rurlning Programs and Initialization Routines at IPL

How to Specify $INITIAl Programs (continued)

CU-58 SC34-0635

The following example shows how you could read the time and date from disk. The time is set
to 13:24:05 and the date to December 25, 1983.

INIT PROGRAM
COpy

START EQU
IF

MANIPL PRINTEXT
•
•
•
GOTO

AUTOIPL EQU
PRINTEXT
READ
•
•
MOVE
MOVE
•
•
•

EXIT PROGSTOP
TIMRDATA DC

DC
DC
DC
DC
DC
ENDPROG
END

Notes:

START,PARM=1,DS=«TIMDAT,MYVOL))
PROGEQU RESOLVE $TIMRTBL REFERENCE

*
($PARM1,EQ,1) , GOTO,AUTOIPL
'@MANUAL IPL DONE ... '

(routine for manual IPL)

EXIT

*
'@AUTO IPL DONE ... '
DS1,TIMRDATA READ TIME/DATE FROM DISK

#1,$TIMRTBL,FKEY=O
(8,#1) ,TIMRDATA,6,TKEY=O

X'OOOD'
X'0018'
X'0005'
X'OOOC'
X'0019'
x'0053'

HOUR
MINUTE
SECOND
MONTH
DAY
YEAR

LOAD TIME/DATE

1. Under $EDXASM, you must include a COpy PROGEQU statement to resolve the
reference to $TIMRTBL.

2. TIMRDA T A is a 6-word table containing the time and date in hexadecimal.

·"'t,;j"J

~ .. -., ~"":tl

You can have an application program run at IPL by link-editing it with the supervisor. Doing
this makes your program always resident in storage. Using $PROG 1 could be useful if your
system does not have a disk or diskette device from which to load programs.

After all system and user-written initialization routines execute, the supervisor issues an
ATTACH for a $PROGI.

" ,

(T

c

c

o

To use $PROG 1, you must code the program as follows. The program must contain a CSECT
statement with a label name of $PROG 1.

$PROG1 CSECT
•
• (source code)
•
PROGSTOP
ENDPROG
END

After you assemble your program, you must link-edit the assembled output with the supervisor.
If you performed a tailored system generation, edit the data set that defines the supervisor
modules currently in your supervisor (normally LINKCNTL on EDX002). Otherwise, you edit
$LNKCNTL. An INCLUDE statement for $PROG 1 on volume XS4002 exists in the
link-control data set. You must blank out the asterisk preceding the INCLUDE statement and
indicate on which volume your $PROG 1 resides.

An example of the link-control data set with an INCLUDE statement for $PROGI (on volume
USRVOL) follows:

•
•
•

*--
* SYSTEM INITIALIZATION - MUST BE IN PARTITION 1
*--

INCLUDE $PROG1,USRVOL
*INCLUDE 101024

•
•
•

22
21

USER MODULE INCLUDED IN NUCLEUS GEN
1024 IPL SUPPORT

After changing the INCLUDE statement, save the edited data set in LINKCNTL on EDX002.
Next, you load $JOBUTIL and specify SUPPREPS when prompted for a data set. SUPPREPS
will generate a new supervisor containing your $PROG 1 program.

After you receive a -1 completion code, load $INITDSK and issue the II command to point to
the new supervisor. IPL the new supervisor.

Chapter 5. Running Programs and Initialization Routines at IPL CU-59

Runl1i,lg Programs and Initializatioll Routines at IPl
Hovv to lJse $PROG1 at IPl (continued)

VVh::11 Happens When SPROG1 Executes?

t

, 1 ~

CU-60 SC34-0635

When the supervisor attaches $PROG 1, all of the storage in partition 1 is assigned to $PROG 1.
If you issue the $A operator command, the system will show $PROG 1 in storage. Because all of
partition 1 is assigned to $PROG 1, you cannot load any other programs until $PROG 1 issues a
PROGSTOP.

You can supply initialization routines that are run as part of the IPL. These routines are
invoked after the system initialization routines execute. This section describes how you can do
this.

The routine you supply can be written in EDL or Series/1 assembler. However, the first
instruction of the routine must be an EDL instruction. You must also consider the following:

The routine must be written to receive and return control in EDL.

You must use the USER instruction to switch from EDL to assembler.

You must preserve the contents of register 2.

You must preserve the task control block (TCB) pointer.

LOAD and PROGSTOP instructions are not allowed.

Upon exit, the routine must return control to the label INITEXIT. INITEXIT is an entry
point in the supervisor.

The following coding examples show how you should code your routine. The first example uses
EDL only; the second uses EDL and Series/1 assembler.

o

c

o

How to Specify Initialization Routines (continued)

Routine using EDl

INITRTN PROGRAM MAIN=NO
EXTRN INITEXIT
ENTRY INIT

INIT EQU *
•
• (EDL code)
•
GOTO INITEXIT

Routine using EDL and Series;'l Assembler

INITRTN CSECT
EXTRN INITEXIT
USER INIT

INIT EQU *
•
• (assembler code)
•
MVA INITEXIT,R1
BX CMDSETUP BACK TO EDL

After you assemble your routine, you must link-edit the assembled output with the supervisor. If
you performed a tailored system generation, edit the data set that defines the supervisor modules
currently in your supervisor (normally LINKCNTL on EDX002). Otherwise, you edit
$LNKCNTL. Insert an INCLUDE statement specifying the name of the assembled output in
the area designated for user initialization modules. For example, if your assembled output
module is named INITOBJ on volume MYVOL, the INCLUDE statement would be as follows:

•
•
•

*--
* INSERT USER INITIALIZATION MODULES HERE
*--

INCLUDE INITOBJ,MYVOL
•
•
•

YOUR NEW INIT ROUTINE

After inserting the new INCLUDE statement, save the edited data set in LINKCNTL on
EDX002. Optionally, you can include the initialization routine as an overlay to save storage.

Chapter 5. Running Programs and Initialization Routines at IPL CU-61

Running Programs alld Initialization Routines at IPL

How to Specify Initialization Routines (continued)

CU-62 SC34-0635

The Installation and System Generation Guide describes how to specify and use the overlay
feature. If you do not use the overlay feature, go to the section "Specifying the Routine on the
SYSTEM Statement" on page CU-62.

You must edit the data set which defines your system to specify the routine. This data set is
normally $EDXDEFS on volume EDX002. Code the INITMOD operand on the SYSTEM
statement to specify the entry point name of your routine. You can specify one or more
routines. If you do, specify each entry-point name separated by a comma and enclose the name
list in parentheses. The routines are executed in the order you specify.

An example of the SYSTEM statement with the INITMOD operand coded follows. Two
initialization routines are specified.

SYSTEM STORAGE=64, INITMOD= (INIT,RTNA)
•
•
•

After you edit and save $EDXDEFS, load $JOBUTIL and specify SUPPREPS when prompted
for a data set. SUPPREPS will generate a new supervisor containing your initialization routine.

Upon receiving a -1 completion code, load $INITDSK and issue the II command to point to the
new supervisor. IPL the new supervisor.

" ,

(

o

c

If you have a need to use a device or device feature not supported under EDX, you can provide
support for that device or feature through the use of EXIO. The system's EXIO support enables
you to control, from your programs, any device that meets the hardware channel architecture
(such as plug compatibility and device control blocks) of the Series/1. These devices can be
IBM or original equipment manufacturer (OEM) devices.

This chapter describes how you can provide your own device support using EXIO. In addition,
a sample program using EXIO is shown. The sample program illustrates an approach you could
use to support a device attached to the 2095/2096 Feature Programmable Multiline
Controller / Adapter using expanded mode (with continuous receive) and one stop bit.

The system's EXIO support enables you to do I/O level programming for a device attached to
the Series/1. Further, with EXIO you can do the following:

Gain closer control of an EDX-supported device. With EXIO, you control every aspect of
the device's operation. For example, you can provide a more extensive error-handling and
error-recovery procedure than EDX provides for that device.

Issue I/O from a program in any partition.

• Provide support for a device without adding any new supervisor code. The device support
resides in your program.

Chapter 6. Adding Your Own Device Support CU-63

Adding Your Own Device Support

How You Can Use EXIO (continued)

CU-64 SC34-0635

Write the support as reentrant code or as subroutines you link to each program using the
device(s).

Provide I/O level programming in EDL without using Series/l assembler. However, some
device operations may require the speed of execution that Series/ 1 assembler provides. You
can mix the two languages and assemble with $SlASM.

The next section discusses several considerations you need to think about before you implement
the device support. The topics presented can assist you when you actually start writing the
device support code.

Because you must contro] every operation the device performs when you use EXIO, you must be
fami1iar with the device you intend to support. The IBM Series/l Principles of Operation,
GA34-0l52 manual presents a general overview of the Series/l I/O architecture.

The following topics describe some of the device requirements with which you should be
familiar.

To properly control the device, you must understand the function of the hardware control
blocks. In particular, you must understand the immediate device control block (lDCB) and the
optional device control block (DCB). These control blocks contain the I/O operation code and
other information the attachment needs to issue I/O to the device.

The hardware description manual for the device or attachment you support normally contains
information on these control blocks and how you use them.

·i l

If the device produces interrupts, your device support must supply all required information
needed to service the interrupts. In addition, your device support must prepare the device for
interrupts as well as disable interrupts when the task ends.

You would typically have separate tasks in your program to handle device interrupts and post
events.

Normally, you obtain information on device interrupts from the hardware device description
manual.

o

o

c

o

: '. "'.' ' .:) .~ r

You must determine if your device has any unique timing requirements. For example, the
amount of time in which an interrupt must be serviced or a data transfer completed. If timing is
critical for the device, you may have to establish task priorities. You may also have to consider
performance differences using EXIO versus Series/l assembler code.

The attachment reports status at the start of and after the completion of an I/O operation. This
information is returned as status words and condition codes. You must design your device
support to detect and handle any errors it encounters.

All possible error conditions should be described in the hardware device description manual.

The device description manual describes the possible errors you could encounter and how they
are reported.

The number of devices you support may determine how you design the support. Normally, if
you only support one device from one program, the EXIO code and much of the data and device
control information can reside in that program.

When you support multiple devices, you must provide a copy of the data and device control
information for each device.

If multiple applications will request the use of the support at the same time, you must serialize
the support's use. You provide serial use through the ENQ/DEQ instructions. Further, if these
applications reside in different partitions, you must use the system's cross-partition services to
move data and device control information across the partitions.

Some attachments and/or devices require special initialization or a random access memory load
prior to their use. EDX does not initialize devices you define as an EXIO device. Device
initialization is your responsibility.

You must also know the engineering change (Ee) level of your device. Different device EC
levels may require that you select from various random access memory load modules at
initialization. The EC level and initialization code must match for the device.

Chapter 6. Adding Your Own Device Support CU-65

r)(;fin~ng the Device at Systenl Generation

CU-66 SC34-0635

You use the EXIODEV statement to define your device at system generation. The device you
define must not be defined in the system by any other configuration statement.

If your device support performs cycle steal operations or requires chained DCBs to complete an
operation, you must specify the MAXDCB= operand. In addition, cycle steal operations return
residual status information. You must specify the RSB= operand to indicate the number of
residual status bytes returned from the operation.

The EXIODEV statement is discussed in the Installation and System Generation Guide.

The supervisor must also contain EXIO support modules. You must specify INCLUDE
statements for the modules 10SEXIO and EXIOINIT in your link control data set.

This section explains a sample program that uses EXIO to control a device. The 3101 Model 1
terminal (character mode) is the device used and is connected to the 2095/2096 Feature
Programmable multiline attachment. The program provides support for expanded mode (with
continuous receive) and one stop bit during data transmission.

Controlling a device with continuous receive enables a receive channel for the device to be open
at all times. You would use this feature under EXIO when a device requires input at a speed at
which EDL terminal I/O instructions cannot provide.

The sample program, when loaded, prompts for input, loops to receive ten lines of input, and
prints the input on the printer.

The instructions and statements the program uses to perform I/O operations to the device are:
EXIO, EXOPEN, IDCB, and DCB. Refer to the Language Reference for the coding syntax and
description of these instructions and statements.

The EXIODEV statement for this device follows:

EXIODEV ADDRESS=60,MAXDCB=1,RSB=6,END=YES

As with any support you provide using EXIO, you must understand the characteristics of the
device or attachment. The IBM Series/l Communications Features Description, GA34-0028 can
assist you in understanding the I/O operations to the attachment used in the sample program.

t

" ..

o

c

o

"0 --:1-°,

Before the program issues any I/O operations to the device, it must initiate all interrupt handling
tasks, open the device, and prepare the device for interrupts.

The interrupt handling tasks are separate tasks which the (main) program attaches. Each task
waits for the hardware to post an ECB indicating an interrupt has occurred. When the hardware
posts the ECB, the task does some processing and posts an ECB in the main program to indicate
the interrupt has been serviced. After the task posts the main program, the interrupt handling
task waits again for the next interrupt.

The interrupt handling tasks in this program service the following interrupts:

Device end interrupts

Controller end interrupts

Exception interrupts.

The descriptions and code for the interrupt handling tasks follow:

This program uses the task DEVINT to wait on and service device end interrupts. A device end
interrupt indicates that the device was able to successfully complete the program's I/O request.

This task waits for the hardware to post the event control block DEVEND. The main program
waits for this task to post DONEECB.

The code that handles device end interrupts follows:

DEVINT TASK
DEVSTART WAIT

RESET
POST
GOTO
ENDTASK

DEVSTART
DEVEND
DEVEND
DONEECB,-l
DEVSTART

WAIT FOR DEVICE END INTERRUPT

Chapter 6. Adding Your Own Device Support CU-67

This program uses the task ENDINT to wait on and service controller end interrupts. A
controller end interrupt indicates that the attachment can now accept an 110 request (no longer
busy).

This task waits for the hardware to post the event control block CENDECB. The main program
waits for this task to post CTLREND.

The code that handles controller end interrupts follows:

ENDINT TASK
CTLSTART WAIT

RESET
POST
RESET
GOTO
ENDTASK

CU-68 SC34-0635

CTLSTART
CENDECB
CENDECB
CTLREND,-1
CTLREND
CTLSTART

WAIT FOR CONTROLLER END INTERRUPT

o

I

\.

o

c

o

This program uses the task EXCINT to wait on and service exception interrupts. An exception
interrupt indicates that the device was unable to perform the I/O request successfully.

When an exception occurs, this task examines the hardware status information and prints the
information on the printer.

This task also examines word 1, bit 15 of the cycle steal status. When bit 15 is on, a buffer
overrun condition exists. This task signals a buffer overrun condition by posting DONEECB
with a value of 2. The main program must then issue a "read adapter buffer" operation.

The code that handles exception interrupts follows:

EXCINT TASK
EXCSTART WAIT

RESET

EXCSTART
EXCEPT WAIT FOR EXCEPTION INTERRUPT
EXCEPT

(INTWORD,EQ,X'AO' ,BYTE) ,THEN
DONEECB,-l

IF
POST

ELSE
IF (INTWORD,EQ,X'20' ,BYTE) ,THEN

PRINTEXT '@LONG RECORD@'
ELSE

SHORT RECORD
POST GOOD RETURN

LONG RECORD

IF (INTWORD,EQ,X'80' ,BYTE) ,AND, ((SCSSDATA+2) ,EQ, C
X'40' ,BYTE) ,THEN TIME-OUT
PRINTEXT '@TIME-OUT@'

ELSE
PRINTEXT '@OTHER EXCEPTION INTERRUPT, ,

ENDIF
ENDIF

ENQT $SYSPRTR
PRINTEXT 'CSS = '
PRINTNUM SCSSDATA,3,MODE=HEX CYCLE STEAL STATUS
PRINTEXT '@INTWORD,LSR,ECB ADDR
PRINTNUM INTWORD,3,MODE=HEX
PRINTEXT SKIP=1
DEQT
MOVE WD1,SCSSDATA+2
SHIFTL WD1,1S ISOLATE BIT 1S
IF (WD1,EQ,X'8000') BIT 1S = 1 ?

ENDIF
POST

ENDIF
GOTO
ENDTASK

POST DONEECB,2 INDICATE READ ADAPTER BUFFER
GOTO EXCSTART

DONEECB,1 POST ERROR RETURN

EXCSTART

Chapter 6. Adding Your Own Device Support CU-69

Adding VOllr OV\lll Device SlJPiJOrt

~,Nrit2ng the EXIO Code {continued}

EXIOREC
EXSTART

*
*
*
*

*
*
*
*

After the program attaches the interrupt handling tasks, the program opens and prepares the
device. The code that performs these functions follows:

PROGRAM
EQU
ATTACH
ATTACH
ATTACH
EXOPEN
EXIO
PRINTEXT
•
•
•

CALL

EXSTART

*
DEVINT DEVICE END
EXCINT EXCEPTION
ENDINT CONTROLLER END

INTERRUPT HANDLING TASK
INTERRUPT HANDLING TASK
INTERRUPT HANDLING TASK

60,INTWORK,ERROR=OPENERR
PREIDCB,ERROR=PREPERR
'@DEVICE OPEN AND PREPARED@'

OPEN BASE LINE
ENABLE INTERRUPT

SETMODE

Next the program must establish the mode of transmission. The next section explains how this is
done.

The program calls a subroutine (SETMODE) to establish the transmission mode. SETMODE
establishes the transmission mode as being expanded mode (with continuous receive) using one
stop bit.

The code for the SETMODE subroutine follows:

SUBROUT
EXIO

RESET
EXIO
WAIT

RESET
EXIO
WAIT
RETURN

SETMODE
RESET

ISSUE SET MODE DCB TO CHANGE
NUMBER OF STOP BITS TO ONE

DONEECB
SETIDCB,ERROR=SETERR
DONEECB

ISSUE SET EXPANDED MODE DCB
TO SET CONTINUOUS RECEIVE

DONEECB
EXPIDCB,ERROR=EXPERR
DONEECB

DEVICE RESET

CU-70 SC34-0635

(j

(,

~-0·"

c

o

SETIDCB IDCB

*
*
SETDCB DCB

EXPIDCB IDCB

*
*
EXPDCB DCB

SETIDCB is the label of an IDCB statement and points to the label of the DCB statement,
SETDCB. These two statements define one stop bit:

COMMAND=START,ADDRESS=60,DCB=SETDCB
DEVMOD SETUP FOR SET MODE 1 STOP BIT

9600BPS=07 CR=OD LF=OA
DEVMOD=B4,DVPARM1=070D,DVPARM2=OAOO

On the DCB statement, the value for the DEVMOD= operand is B4. This value sets word 0
(bits 8-15) of the device control block to the binary value 10110100. These bit settings
indicate the following:

Set mode
Asynchronous operation
Eight bits per character
One stop bit
Odd parity
Parity disabled.

EXPIDCB is also the label of an IDCB statement and points to the label of the DCB statement,
EXPDCB. These two statements define expanded mode with continuous receive:

COMMAND=START,ADDRESS=60,DCB=EXPDCB,MOD4=C
SET CONTINUOUS RECV MODE ** 15 BYTE BUFFER **

* IN DEVICE ADAPTER *
DEVMOD=01,DVPARM3=0001

Note that the operand MOD4=C is coded on the IDCB statement. This operand alters the
IDCB and requests a "start control" operation.

The DVPARM3=OOOI operand on the DCB statement sets word 3 (bit 15) of of the device
control block to indicate continuous receive.

After the program establishes the mode of transmission, the program writes a prompt message to
the terminal. This sequence is described next.

Chapter 6. Adding Your Own Device Support CU-71

Adding Your Own Device Support
Writing the EXIO Code (continued)

Writing Data to the Terminal

EXIOREC
EXSTART

LOOPl

*
*
*
*
WRITE

*

The program requests input by writing the message "ENTER OAT A:" to the terminal. After
writing the message, the program checks for a -1 return code and also a controller (attachment)
busy condition.

Note: For this program, only one port on the attachment is active, however, if multiple ports
were active, a controller busy condition could occur. This program detects and handles
controller busy conditions.

If the controller is busy when the program issues an I/O request to the device, the EXlO
operation fails. When the EXlO operation fails, you must reset the attachment. However, the
reset also resets the continuous receive. The program calls the SETMODE subroutine to
reenable continuous receive.

The code for the program at this point looks like the following:

PROGRAM
EQU
ATTACH
ATTACH
ATTACH
EXOPEN
EXIO
PRINTEXT
CALL
EQU

RESET
EXIO
MOVE
IF

WAIT
CALL
GOTO

ENDIF
IF
WAIT
IF

INSERT
ENDIF
•
•
•

EXSTART

*
DEVINT DEVICE END
EXCINT EXCEPTION
ENDINT CONTROLLER END

INTERRUPT HANDLING TASK
INTERRUPT HANDLING TASK
INTERRUPT HANDLING TASK

60,INTWORK,ERROR=OPENERR
PREIDCB,ERROR=PREPERR
'@DEVICE OPEN AND PREPARED@'
SETMODE

*
ISSUE TRANSMIT END DCB
TO WRITE MESSAGE TO TERMINAL

DONEECB
WR1IDCB TRANSMIT END
RC,EXIOREC

OPEN BASE LINE
ENABLE INTERRUPT

(RC,EQ,7) TEST FOR CONTROLLER BUSY
CTLREND
SETMODE
WRITE

(RC,NE,-l) , GOTO,WRERR
DONEECB WAIT FOR COMPLETION OF WRITE
(DONEECB,NE,-l),THEN CHECK FOR GOOD WRITE

USER ERROR ROUTINE

The lDCB statement for WRlIDCB points to the DCB labeled WR1DCB. This DCB contains
the address of the message data (WRDATA). The message data is ASCII code and is 16 bytes
in length.

CU-72 SC34-0635

I

(

o

o

\/Vriting the EXiO Code (continued)

WR1lDCB lDCB
WR1DCB DCB

*

*
WRDATA DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA

The IDCB and DCB statements for the write operation follow:

COMMAND=START,ADDRESS=60,DCB=WR1DCB
DEVMOD=01,DVPARM2=0003,COUNT=16,DATADDR=WRDATA

TlMER1=10MS

The following code defines the message data area:

X'ODOA' CR/LF
X'454E' EN
X'5445' TE
X'5220' R
X' 4441 ' DA
X' 5441 ' TA
X'203A'
X'2020'

The next section describes how the program reads input data from the terminal.

The program sets up to do a read operation (with time-out) by issuing an EXIO instruction to
the IDCB labeled RD 1 IDCB. The DCB associated with this read operation indicates 12 bytes
of data will be stored beginning at address REDA T A.

The IDCB and DCB statements for the read operation follow:

RD1lDCB lDCB COMMAND=START,ADDRESS=60,DCB=RD1DCB
RD1DCB DCB IOTYPE=INPUT,DEVMOD=05,DVPARM2=1000,COUNT=12, C

DATADDR=REDATA
* TlMER1=13.6SEC

The program enters a DO loop that reads a line of input and writes the input (REDA T A) to the
printer. The program loops 10 times and then prompts for input again. If during the loop you
enter "END," the program ends.

Also within the loop, the program checks for a "buffer overrun" condition. The program
indicates a buffer overrun condition when DONEECB equals 2. The program calls the
RDBUFF subroutine to handle buffer overrun conditions.

Chapter 6. Adding Your Own Device Support CU-73

*
*
*
READ

*

RDEND

END

The code to perform the read operation within the DO loop follows:

•
•
•
DO
MOVE

RESET
EXIO
MOVE
IF

WAIT
CALL
GO TO

ENDIF

10,TIMES
REDATA,C' " (40,BYTES)

ISSUE RECEIVE WITH TIME-OUT DCB
TO READ DATA FROM TERMINAL

DONEECB
RD1 IDCB
RC,EXIOREC
(RC,EQ,7)

CTLREND
SETMODE
READ

RECEIVE WITH TIME-OUT

TEST FOR CONTROLLER BUSY

IF (RC,NE,-1) ,GOTO,RDERR
WAIT DONEECB WAIT FOR COMPLETION OF READ
IF (DONEECB,EQ,2)

CALL RDBUFF
GOTO RDEND

ENDIF
IF

INSERT
ENDIF
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
EQU
IF
ENDDO
GOTO
PROGSTOP
•
•
•

(DONEECB,NE,-1) ,THEN
USER ERROR ROUTINE

$SYSPRTR
'@INPUT DATA FROM TERMINAL: '
REDATA,10,MODE=HEX
SKIP=1

*
(REDATA,EQ,ENDDATA,3) ,GOTO,END

LOOP1

CHECK FOR GOOD READ

TEST FOR "END"

CU-74 SC34-0635

(. ,

(

c

The RDBUFF subroutine performs a "read adapter buffer" operation followed by a "start cycle
steal status" operation. Both operations must be done to reset a buffer overrun condition.

The RDBUFF subroutine follows:

SUBROUT
RESET
EXIO
WAIT
PRINTEXT
PRINTNUM
PRINTEXT
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
RESET
EXIO
PRINTEXT
WAIT
PRINTEXT
PRINTNUM
PRINTEXT
RETURN

RDBUFF SUBRTN FOR BUFFER OVERRUN
DONEECB
RDAIDCB,ERROR=RABERR
DONEECB WAIT FOR COMPLETION OF WRITE
ICC = I PRINT COMPLETION CODE
DONEECB
SKIP=1
$SYSPRTR
'@READ ADAPTER BUFFER: I
REDATA,10,MODE=HEX
SKIP=1

DONEECB
CSSIDCB,ERROR=CSSERR
'@READ CYCLE STEAL STATUS DCB ISSUED, I
DONEECB
ICC = I
DONEECB
SKIP=1

PRINT COMPLETION CODE

Chapter 6. Adding Your Own Device Support CU-7S

Adding Your Own Device Support
Writing the EXIO Code (continued)

Reporting Error Return Codes

*
*
*
OPENERR

PREP ERR

SETERR

EXPERR

RABERR

CSSERR

WRERR

RDERR

ERREND

All EXIO programs should do extensive error checking and reporting. Use the ERROR=
operand on the EXIO instruction to set up an error exit. The system passes control to the label
you specify on this operand. The error exits in the sample program follow:

ERROR EXIT SECTION

EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
PRINTEXT
GOTO
EQU
PRINTEXT
EQU
PRINTEXT
PRINTNUM
PRINTEXT
GOTO

*
RC,EXIOREC
'@OPEN FAILED, '
ERREND

*
RC,EXIOREC
'@PREPARE FAILED, '
ERREND

*
RC,EXIOREC
'@SET MODE FAILED, '
ERREND

*
RC,EXIOREC
'@SET EXPANDED MODE FAILED, '
ERREND

*
RC,EXIOREC
'@READ ADAPTER BUFFER FAILED, '
ERREND

*
RC,EXIOREC
'@READ CYCLE STEAL STATUS FAILED, '
ERREND

*
'@WRITE ERROR, '
ERREND

*
'@READ ERROR, '

*
'RETURN CODE = '
RC
SKIP=l
END

CU-76 SC34-0635

(,

o

c

o

Sample EXIO Program

EXIOREC
EXSTART

LOOP 1

*
*
*
*
WRITE

*

*
*
*
READ

The coding segments throughout this chapter showed you can create your own device support.
The following is the sample program in its entirety:

PROGRAM
EQU
ATTACH
ATTACH
ATTACH
EXOPEN
EXIO
PRINTEXT
CALL
EQU

EXSTART

*
DEVINT DEVICE END INTERRUPT HANDLING TASK
EXCINT EXCEPTION INTERRUPT HANDLING TASK
ENDINT CONTROLLER END INTERRUPT HANDLING TASK
60,INTWORK,ERROR=OPENERR OPEN BASE LINE
PREIDCB,ERROR=PREPERR ENABLE INTERRUPT
'@DEVICE OPEN AND PREPARED@'
SETMODE

*
ISSUE TRANSMIT END DCB
TO WRITE MESSAGE TO TERMINAL

RESET DONEECB
EXIO WR1IDCB TRANSMIT END
MOVE RC,EXIOREC
IF (RC,EQ,7) TEST FOR CONTROLLER BUSY

WAIT CTLREND
CALL SETMODE
GOTO WRITE

ENDIF
IF (RC,NE,-1) ,GOTO,WRERR
WAIT DONEECB WAIT FOR COMPLETION OF WRITE
IF (DONEECB,NE,-1) ,THEN CHECK FOR GOOD WRITE

INSERT USER ERROR ROUTINE
ENDIF
DO
MOVE

RESET
EXIO
MOVE
IF

WAIT
CALL
GOTO

ENDIF
IF
WAIT
IF

CALL
GOTO

ENDIF

10,TIMES
REDATA,C' " (40,BYTES)

ISSUE RECEIVE WITH TIME-OUT DCB
TO READ DATA FROM TERMINAL

DONEECB
RD1IDCB RECEIVE WITH TIME-OUT
RC,EXIOREC
(RC,EQ,7) TEST FOR CONTROLLER BUSY

CTLREND
SETMODE
READ

(RC,NE,-1) ,GOTO,RDERR
DONEECB WAIT FOR COMPLETION OF READ
(DONEECB,EQ,2)

RDBUFF
RDEND

Figure 27 (Part 1 of 6). Sample EXIO program

Chapter 6. Adding Your Own Device Support CU-77

Adding Your OWll Device SlJpr)()rt

San~lple EXIO Progranl (continued)

*

RDEND

END

*

IF
INSERT

ENDIF
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
EQU
IF
ENDDO
GOTO
PROGSTOP

(DONEECB,NE,-1) ,THEN
USER ERROR ROUTINE

$SYSPRTR
'@INPUT DATA FROM TERMINAL: '
REDATA,10,MODE=HEX
SKIP=l

*
(REDATA,EQ,ENDDATA,3) ,GOTO,END

LOOP1

CHECK FOR GOOD READ

TEST FOR' 'END' ,

* INTERRUPT TASKS

*
DEVINT TASK DEVSTART
DEVSTART WAIT DEVEND WAIT FOR DEVICE END INTERRUPT

RESET DEVEND
POST DONEECB,-l
GOTO DEVSTART
ENDTASK

*
ENDINT TASK CTLSTART
CTLSTART WAIT CENDECB WAIT FOR CONTROLLER END INTERRUPT

RESET CENDECB
POST CTLREND,-1
RESET CTLREND
GO TO CTLSTART
ENDTASK

*
EXCINT TASK EXCSTART
EXCSTART WAIT EXCEPT WAIT FOR EXCEPTION INTERRUPT

RESET EXCEPT
IF (INTWORD,EQ,X'AO' ,BYTE) ,THEN SHORT RECORD

POST DONEECB,-l POST GOOD RETURN
ELSE

IF (INTWORD,EQ,X'20' ,BYTE),THEN LONG RECORD
PRINTEXT '@LONG RECORD@'

ELSE
IF (INTWORD,EQ,X'80' ,BYTE) ,AND, ((SCSSDATA+2) ,EQ, C

x'40' ,BYTE) ,THEN TIME-OUT
PRINTEXT '@TIME-OUT@'

ELSE
PRINTEXT '@OTHER EXCEPTION INTERRUPT, ,

ENDIF
ENDIF

Figure 27 (Part 2 of 6). Sample EXIO program

CU-78 SC34-0635

o Sample EXIO Program (continued)

*

ENQT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
MOVE
SHIFTL
IF

POST
GOTO

ENDIF
POST

ENDIF

$SYSPRTR
'CSS = '
SCSSDATA,3,MODE=HEX
'@INTWORD,LSR,ECB ADDR
INTWORD,3,MODE=HEX
SKIP=1

WD1,SCSSDATA+2
WD1,15

CYCLE STEAL STATUS

ISOLATE BIT 15
BIT 15 = 1 ? (WD1 ,EQ,X'8000')

DONEECB,2
EXCSTART

INDICATE READ ADAPTER BUFFER

DONEECB,1 POST ERROR RETURN

GOTO EXCSTART
ENDTASK

* ERROR EXIT SECTION

*
OPEN ERR

PREPERR

SETERR

EXPERR

RABERR

CSSERR

WRERR

RDERR

ERREND

EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
MOVE
PRINTEXT
GOTO
EQU
PRINT EXT
GOTO
EQU
PRINTEXT
EQU
PRINTEXT
PRINTNUM
PRINTEXT
GOTO

*
RC,EXIOREC
'@OPEN FAILED, ,
ERREND

*
RC,EXIOREC
'@PREPARE FAILED, ,
ERREND

*
RC,EXIOREC
'@SET MODE FAILED, ,
ERREND

*
RC,EXIOREC
'@SET EXPANDED MODE FAILED, ,
ERREND

*
RC,EXIOREC
'@READ ADAPTER BUFFER FAILED, ,
ERREND

*
RC,EXIOREC
'@READ CYCLE STEAL STATUS FAILED, ,
ERREND

* '@WRITE ERROR, ,
ERREND

*
'@READ ERROR, ,

*
'RETURN CODE = '
RC
SKIP=1
END

Figure 27 (Part 3 of 6). Sample EXIO program

Chapter 6. Adding Your Own Device Support CU -79

Addiflg Your O'Nll Device SlJpport
Sanlpie E.XIO Progran·~ {conti!1u(~d)

*
* SUBROUTINES

*
SUBROUT
EXIO

*
*
*
*

RESET
EXIO
WAIT

*
*
*
*

RESET
EXIO
WAIT
RETURN

*
SUBROUT
RESET
EXIO
WAIT
PRINTEXT
PRINTNUM
PRINTEXT
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
RESET
EXIO
PRINTEXT
WAIT
PRINTEXT
PRINTNUM
PRINTEXT
RETURN

SETMODE
RESET

ISSUE SET MODE DCB TO CHANGE
NUMBER OF STOP BITS TO ONE

DONEECB
SETIDCB,ERROR=SETERR
DONEECB

ISSUE SET EXPANDED MODE DCB
TO SET CONTINUOUS RECEIVE

DONEECB
EXPIDCB,ERROR=EXPERR
DONEECB

DEVICE RESET

RDBUFF SUBRTN FOR BUFFER OVERRUN
DONEECB
RDAIDCB, ERROR=RABERR
DONEECB WAIT FOR COMPLETION OF WRITE
'CC = I PRINT COMPLETION CODE
DONEECB
SKIP=1
$SYSPRTR
'@READ ADAPTER BUFFER: I

REDATA,10,MODE=HEX
SKIP=1

DONEECB
CSSIDCB,ERROR=CSSERR
'@READ CYCLE STEAL STATUS DCB ISSUED, I

DONEECB
'CC = I

DONEECB
SKIP=1

PRINT COMPLETION CODE

Figure 27 (Part 4 of 6). Sample EXIO program

CU-80 SC34-0635

c

(

,"",

~: '
t;. _: <:~ ~'"'(~ , " '- ~ ~

0
*
* DATA BUFFERS

*
WRDATA DATA X'ODOA'

DATA X'454E'
DATA X'5445'
DATA X'5220'
DATA X' 4441 '
DATA X' 5441 '
DATA X'203A'
DATA X'2020'

REDATA DATA 20F'O'
ENDDATA DATA X'454E4400'
SCSSDATA DATA 3F'O'
RC DATA F'O'
WD1 DATA F'O'

*
* INTERRUPT DEFINE INFORMATION

*
INTWORK DC A (INTWORD)

DC A (INTECB)
DC A(SCSSDCB)

INTWORD DATA F'O'
DATA F'O'
DATA F'O'

INTECB DATA A (CENDECB)
DATA A(NA)
DATA A(EXCEPT)
DATA A(DEVEND)
DATA A(NA)
DATA A(NA)
DATA A(NA)
DATA A(NA)

Figure 27 (Part 5 of 6). Sample EXIO program

o

CR/LF
EN
TE
R
DA
TA

ASCII END
6 BYTE OF CYCLE STEAL STATUS

INTERRUPT BYTE AND ADDRESS SAVE AREA
INTERRUPT CONDITION CODE ECB
START CYCLE STEAL STATUS DCB
INTERRUPT STATUS / DEVICE ADDRESS
LSR AT TIME OF INTERRUPT
ADDRESS OF ECB POSTED
CC=O
CC=l
CC=2 EXCEPTION
CC=3 DEVICE END
CC=4
CC=5
CC=6
CC=7

Chapter 6. Adding Your Own Device Support CD -81

Adding ~(our Own Device Support

Sarr;,ple EXIO Prograrn (continued)

* * IMMEDIATE DEVICE CONTROL BLOCKS

*
RESET
PREIDCB
SETIDCB
EXPIDCB
WR1IDCB
RD1IDCB
RDAIDCB
CSSIDCB

*

IDCB
IDCB
IDCB
IDCB
IDCB
IDCB
IDCB
IDCB

COMMAND=RESET,ADDRESS=60
COMMAND=PREPARE,ADDRESS=60,LEVEL=1,IBIT=ON
COMMAND=START,ADDRESS=60,DCB=SETDCB
COMMAND=START,ADDRESS=60,DCB=EXPDCB,MOD4=C
COMMAND=START,ADDRESS=60,DCB=WR1DCB
COMMAND=START,ADDRESS=60,DCB=RD1DCB
COMMAND=START,ADDRESS=60,DCB=RDADCB
COMMAND=START,ADDRESS=60,DCB=SCSSDCB,MOD4=F

* DEVICE CONTROL BLOCKS

*
SETDCB

*
*
EXPDCB

*
*
WR1DCB

*
RD1DCB

*
*
*
*
RDADCB

*
*

DCB

DCB

DCB

DCB

DEVMOD=B4,DVPARM1=070D,DVPARM2=OAOO
DEVMOD SETUP FOR SET MODE 1 STOP BIT
9600BPS=07 CR=OD LF=OA

DEVMOD=01,DVPARM3=0001
SET CONTINUOUS RECEIVE MODE ** 15 BYTE BUFFER **

* IN DEVICE ADAPTER *
DEVMOD=01,DVPARM2=0003,COUNT=16,DATADDR=WRDATA

TIMER1=10MS
IOTYPE=INPUT,DEVMOD=05,DVPARM2=1000,COUNT=12, C

DATADDR=REDATA
TIMER1=13.6SEC

READ ADAPTER BUFFER DCB

DCB IOTYPE=INPUT,DEVMOD=74,COUNT=14,DATADDR=REDATA

SCSSDCB DCB IOTYPE=INPUT,COUNT=6,DATADDR=SCSSDATA

*
* EVENT

*
CENDECB
EXCEPT
DEVEND
NA
DONEECB
CTLREND

*
*
*
*
*
*

CONTROL

ECB
ECB
ECB
ECB
ECB
ECB

BLOCKS

0
0
0
0
0
0

INTERRUPT CONDITION CODE 0
INTERRUPT CONDITION CODE 2
INTERRUPT CONDITION CODE 3
NOT USED, PAPER WORK ONLY
OPERATION
CONTROLLER END ECB

THIS ECB WILL BE WAITED ON BY ANY LINE
ATTACHED TO THE CONTROLLER AT ADDRESS 60
WHEN THE LINE GETS A CONTROLLER BUSY
CONDITION. THE CONTROLLER END INTERRUPT
WILL COME BACK ON THE BASE ADDRESS 60 FOR
ANY LINE ATTACHED TO THE CONTROLLER.

ENDPROG
END

Figure 27 (Part 6 of 6). Sample EXIO program

CU-82 SC34-0635

(j

,
"

o

c

Chapter 7. Creating Your Own EDL Instruction

If the Event Driven Language (EDL) does not provide an instruction that performs a function
you need, you can create your own instruction to provide that function. This chapter explains
how you can build an instruction that you can compile using $EDXASM.

The Internal Design provides a detailed discussion of how $EDXASM processes EDL
instructions.

One of the steps to implement a new EDL instruction will require you to write some Series/ 1
assembler code. You will need the Series/l Macro Assembler ($SlASM) in that step.

Chapter 7. Creating Your Own EDL Instruction CU-83

Creating Your Own EDL Instruction
Defining the Instruction Requirements

CU-84 SC34-0635

The first step in creating a new instruction is defining what function the instruction is to
perform. The function the instruction performs determines the coding syntax such as the use of:

positional operands

keyword operands

indexable operands.

This chapter explains how to create a sample EDL instruction called NEWCMD. NEWCMD
has the following characteristics:

one positional operand

two optional keyword operands (one of which is PI =)

two index able operands

adds the value 1 to operand one, or

adds the value of the keyword parameter to operand one

generates a new operation code.

The system reserves two operation codes for your use - 01 and 02. The NEWCMD
instruction will use 01 as the new operation code.

Using the above syntax definition, you could code NEWCMD any of the following ways:

LABELl
LABEL2
LABEL3
LABEL4

NEWCMD
NEWCMD
NEWCMD
NEWCMD

X
X, KWD=Y
X,KWD=Y,Pl=Z
X,KWD=(4,#1)

ADD 1 TO X
ADD VALUE OF Y TO X
ADD VALUE OF Y TO X
ADD VALUE AT (4,#1) TO X

After you define the function and syntax of the instruction, you must define a model of the
instruction in an overlay program. This is discussed next.

I

,

o

o

Creating an Overlay Program to Build the Instruction

You define a model of the instruction in an overlay program. In addition, the overlay program
contains statements and subroutines that check syntax and build object code for the new
instruction.

Note: The overlay program you supply is unique to $EDXASM. Do not confuse the overlay
program discussed in this chapter with EDL or $EDXLINK overlays.

A brief description of the statements you can use follows. These statements are described in
detail in the section "Overlay Program Statements" on page CU-III.

$IDEF Defines a model or prototype instruction.

ASMERROR Generates syntax error messages.

OTE Defines an object text element.

SLE Defines a sub list element.

The subroutines you can use follow. These are described in detail in the section "Overlay
Program Subroutines" on page CU-117.

$INDEX Examines operands for index register usage.

BLDTXT Builds object text from object text elements.

GETVAL Evaluates character strings from a sublist element.

LABELS Defines or resolves labels for symbol table entries.

MOVEBYTE Moves a byte string to a target location.

OPCHECK Checks instruction syntax and builds object code for each operand.

SLPARSE Divides (parses) an input string into sublist elements.

You may use any or all of these statements and subroutines in the overlay program you create.
The overlay program for the NEWCMD instruction uses $IDEF, $INDEX, ASMERROR, and
OTE.

Chapter 7. Creating Your Own EDL Instruction CU-85

Creating Your Own EDL Instruction
Creating an Overlay Program to Build the Instruction (continued)

Building the Model Instruction

You use the $IDEF statement to build a model of the instruction. When you code $IDEF, you
specify the positional operands and keywords of the instruction. The number of positional and
keyword operands for an instruction must not exceed 50.

You can optionally specify error exits on $IDEF for invalid syntax. These error exits are used in
conjunction with the ASMERROR statement.

Coding $IDEF for the NEWCMD Instruction

CU-86 SC34-0635

In the following example, the instruction NEWCMD is defined with one positional (OPt) and
two keyword (KWD and PI) operands. The error exits are at labels ERROR2 and ERROR3.

The $IDEF statement coded for NEWCMD in the overlay program looks like:

ASMOLAYX PROGRAM BEGIN
•

BEGIN EQU *
•

NEWLIST $IDEF OP1, (KWD,P1) ,PERR=ERROR2,KERR=ERROR3
•

ERROR2 •
ERROR3 •

(l
'- J

f

c

c

Creating an Overlay Program to Build the Instruction (continued)

Checking the Source Statement Syntax

When $EDXASM parses the NEWCMD instruction, it builds tables and pointers and stores this
data in the compiler common area. $EDXASM passes the address of this area as a I-word
parameter. Your overlay program must refer to this parameter as $PARMI and then move it to
either software register #1 or #2. Using the ASMCOMM equates, you can then access the fields
in the common area. You use these fields to check syntax and build object text.

To illustrate how $EDXASM parses an instruction, Figure 28 on page CU-88 shows an example
of the parsed output if you coded the NEWCMD instruction as follows:

SAMPLE NEWCMD A,KWD=(4,#1) ,P1=X

An explanation of the parsing example follows Figure 28 .

Chapter 7. Creating Your Own EDL Instruction CU-87

CU-88 SC34-0635

o 1 234
1234567890123456789012345678901234567890

--SAMPLE NEWCMD

OLEl

OLEDATA 0020

OLELENG 0001

OLESLE A(SLEl)

OLESLE# 0001

OLEKEYWD 0000

SLEl

SLEDATA 0020

SLELENG 0001

SLETYPE o

SLECHAIN 0

L.-____ ~ (ALABEL,#l) r A(SLEOI

'----1.~ SLED

SLEDATA 0001

SLELENG 0006

SLETYPE 0

SLECHAIN 0

Figure 28. Source Statement Parsing Example

A,KWD=(4,#1) ,P1=X

O~E2~ OLE3 ~
0026 0036

0006 0001

A(SLE2) I- A(SLE4) I-

0002 0001

A(KEYl) I- A(KEY2) ",""I-

~ r---

SLE2 SLE4

0027 0036

0001 0001

SELFDEF 0

A(SLE3) 0

• KWD

Pl ~

SLE3~
Keyword

0029 table

0002

0

0 (OPCODE,#l)

NEWCMD Operation name

" k

c

o

c

o

Creating an Overlay Program to Build the Instruction (continued)

In this example, software register #1 points to the compiler common area, ASMCOMM.
$EDXASM begins the parsing operation with the label SAMPLE and stores the results in the
location (ALABEL,#l). $EDXASM creates a sub list element (SLE) for the label. A sublist
element has four fields: SLEDATA, SLELENG, SLETYPE, and SLECHAIN. SLEDATA
points to the first character of a label or operand. SLELENG is the number of characters in the
label or operand. SLETYPE is the type of sublist element. SLECHAIN is used internally for
creating chained sub list elements.

The SLETYPE field can have the value 0 (undefined), 1 (self-defining term), or 2 (string).

Self-defining terms are decimal constants (for example, 5, 1000, and -32000), hexadecimal
constants (for example, X'I234', X'FF', and X'AOBO'), EBCDIC constants (for example, C'A'
and C'I2'), or symbols preceded by a + or - sign (for example, +LABEL1, +$DSCBLEN, and
-LABEL2).

SLETYPE is "string" if the entire operand is enclosed in quotes. In this case, $EDXASM scans
the entire data string for embedded double quotes which signify an apostrophe. If double quotes
are found, $EDXASM changes them to single quotes and adjusts the SLE length field
(SLELENG) accordingly.

In Figure 28 on page CU-88, the SLED AT A pointer for the label is 1, the field length is 6, and
the type is undefined. If the source statement has no label, the compiler sets (ALABEL,#I)
to O.

$EDXASM enters the operation name (EDL instruction) in the field (OPCODE,#l). The
compiler also generates a table of operand list elements that describe the coded operands. The
word (AOPT ABLE,#l) is the pointer to this table.

The table has a 10-byte header. Each operand list element (OLE) in the table is also 10-bytes
in length. One OLE describes each operand.

An OLE has five fields: OLEDATA, OLELENG, OLESLE, OLESLE#, and OLEKEYWD.
OLEDAT A points to the first character of the operand. OLELENG is the number of characters
in the operand. OLESLE points to the first sublist element (SLE) of the operand. The compiler
generates at least one SLE for every operand. OLESLE# is the number of SLEs in the operand.
If you coded a keyword operand, OLEKEYWD points to the keyword table that contains the
the 1-7 character name of the keyword operand.

The sample NEWCMD source statement has three operands. The positional operand is A. The
operand list element OLE 1 describes this positional operand. The keyword operands are
KWD= and PI =. These keyword operands are described by OLE2 and OLE3, respectively.

OLEI indicates a I-character operand at relative address 0020, with one SLE (SLEl). The
operand type is undefined. OLE2 shows a 6-character operand beginning at 0026, with two
SLEs (SLE2 and SLE3). SLE2 points to the constant 4 and SLE3 points to #1. OLE3 shows a
I-character operand at 0036, with one SLE (SLE4). SLE4 points to the X, whose type is
undefined. $EDXASM stores the names of the keywords (KWD and PI) in the keyword table.

Chapter 7. Creating Your Own EDL Instruction CU-89

Creating Your Own EDL Instruction
Creating an Overlay Program to Build the Instruction (continued)

CU-90 SC34-0635

The following code shows how to receive the address of the compiler common area and check
for a valid instruction name. Control passes to label #NEWCMD upon a match; otherwise,
control passes to label ERROR!.

ASMOLAYX PROGRAM BEGIN,300,PARM=1
COPY ASMCOMM COPY CODE FOR EQUATES

BEGIN EQU *
MOVE #1,$PARM1 GET ADDR OF COMMON AREA
IF ((OPCODE,#1) ,EQ,CNEWCMD,8) ,GOTO,#NEWCMD CODE OK?

ERROR 1 •
•
•

CNEWCMD DC CL8'NEWCMD'
#NEWCMD EQU *

You must now write the code to check syntax and handle syntax errors. You use the
OPCHECK subroutine to check syntax against the model instruction. You use the
ASMERROR statement to issue syntax error messages.

Using the sample overlay program, the code to check syntax and issue syntax error messages is
shown:

ASMOLAYX PROGRAM BEGIN,300,PARM=1
COPY ASMCOMM COPY CODE FOR EQUATES

BEGIN EQU *
MOVE #1,$PARM1 GET ADDR OF COMMON AREA
IF ((OPCODE,#1) ,EQ,CNEWCMD,8) ,GOTO,#NEWCMD CODE OK?

ERROR 1 ASMERROR 1,$EDXLUSR INVALID INSTRUCTION
ENDTASK EQU * SET UP EXIT

DETACH
GOTO BEGIN

ERROR2 ASMERROR 2,$EDXLUSR INVALID POSITIONAL OPERAND
ERROR3 ASMERROR 3,$EDXLUSR INVALID KEYWORD
ERROR4 ASMERROR 4,$EDXLUSR OPERAND ONE MISSING

ASMERROR GENERATE
CNEWCMD DC CL8'NEWCMD'
NEWLIST $IDEF OP1, (KWD,P1) ,PERR=ERROR2,KERR=ERROR3 MODEL

•
•
•

#NEWCMD EQU *
CALL OPCHECK, (NEWLIST) CHECK SYNTAX

In the previous example, if the instruction name is not NEWCMD, you issue error message 1
(invalid instruction) and exit the program. To exit the program, you must code the label
ENDT ASK. ASMERROR statements branch to this label. In addition, you must end the
overlay program with a DETACH followed by a GOTO to the first executable instruction in the
overlay program. If the instruction name is NEWCMD, control passes to the label #NEWCMD.

(,

(:

o

c

Creating an Overlay Program to Build the Instruction (continued)

At label #NEWCMD, you call the OPCHECK subroutine. The OPCHECK subroutine
compares the instruction syntax and fills in the tables and pointers of the compiler common area.
Upon encountering syntax errors, control passes to the appropriate label you define on the
$IDEF statement. In this example, ERROR2 and ERROR3 are the error exits.

Building Object Text

After OPCHECK executes, the tables and pointers in the compiler area contain the addresses of
the operand list elements (OLEs) and sub list elements (SLEs). You use this data to build object
text. The object text you build is called an object text element (OTE). You use the OTE
statement to do this. $EDXASM uses OTEs to build object code for further processing.

Before you build OTEs, you must understand the format of the expanded object code. This is
described next.

Expanded Object Code Format

The object code $EDXASM generates for NEWCMD will be either 2 or 3 words, depending on
whether KWD is specified. This is illustrated in the next three examples. The label you code on
NEWCMD is the label on the first word of the object code.

The first word is the operation code word and contains a flag byte (bits 0-7) and an operation
code byte (bits 8-15). The operation code byte for NEWCMD contains a value of 1.

Figure 29 and Figure 30 on page CU-92 show the possible flag bit meanings for NEWCMD:

Bit Meaning

0 This bit is on if operand 2 (KWD) is a constant

1 Keyword operand is specified (KWD)

2&3 Not used

Figure 29. Flag bit meanings (bits 0-3)

Chapter 7. Creating Your Own EDL Instruction CU-91

Creating Your Own EDL Instruction
Creating an Overlay Program to Build the Instruction (continued)

CU-92 SC34-0635

Bits 4-7 indicate software register usage for operands 1 and 2 as follows:

#1 or #2
Register #1 used #2 used used as

Bits/operand not used as (x.#1) as (x.#2) operand

4 & 5 for op2 00 01 10 11

6 & 7 for op1 00 01 10 11

Figure 30. Flag bit meanings (bits 4-7)

The second and third words are the address of the OPl and KWD operands respectively. Both
OPl and KWD may be indexed and KWD may also be a self-defining term. If you code KWD,
the object code is three words in length. Also, bit 1 of the operation code word is set to 1 (on).
If you specify P l, P 1 will be the label on the second word.

The next three examples show the expansion depending on how you code NEWCMD:

F or example, if you code:

LABELl NEWCMD x

$EDXASM generates the following object code:

LABELl

If you code:

LABEL2

DC
DC

NEWCMD

X'OOOl'
A(X)

(bits 0-7

Y,KWD=Z,Pl=AY

$EDXASM generates the following object code:

LABEL2
AY

If you code:

LABEL3

DC
DC
DC

NEWCMD

X'4001'
A(Y)
A(Z)

(bits 0-7

(4,#1) ,KWD=7,Pl=OP1ADDR

$EDXASM generates the following object code:

LABEL3 DC
OP1ADDR DC

DC

X'Cl0l '
F'4'
F'7'

(bits 0-7

0000 0000)

0100 0000)

1100 0001)

I ,

c

o

Creating an Overla'l Progranl to Build the Instruct~on (;~t)ntinu0dl

Oehn!ng the Object lext Elements

Upon completion of the OPCHECK subroutine, you must define and build the object text
elements. The sample overlay program defines three OTEs for NEWCMD. The first OTE
definition (NEWOTEl) builds an operation code OTE with a code of 1. You use the other two
OTEs (NEWOTE2 and NEWOTE3) to build object text for the OPI and KWD operands.

The following code defines the OTEs. In addition, the operation code and label from
NEWCMD are placed in NEWOTE I:

NEWLIST
NEWOTE
NEWOTE1
NEWOTE2
NEWOTE3
#NEWCMD

•
•
•
$IDEF
DC
OTE
OTE
OTE
EQU

*
CALL

INITIALIZE
MOVE
MOVE

OP1, (KWD,P1),PERR=ERROR2,KERR=ERROR3
F'3' NUMBER OF OTES
TYPE=OPCODE,SLEDATA=1 SET OP CODE TO
TYPE=ADDRESS OTE FOR "OP1"
TYPE=ADDRESS OTE FOR "KWD"

*
OPCHECK, (NEWLIST) CHECK SYNTAX

"OP CODE" OTE

MODEL

NEWOTE1+0TEDATAP,1 RESET OP CODE TO 1
NEWOTE1+0TEDATAL, (ALABEL,#1) INSERT LABEL

If a label does not exist on NEWCMD, (ALABEL,#l) is zero and $EDXASM does not
generate a label. Note that although the operation code for NEWOTEI is defined as I
(SLEDAT A= I), the operation code is reset to I on the MOVE instruction. Throughout your
overlay program, you must reset any data fields that might change. This is because $EDXASM
could invoke the program again without ever reloading it.

You must now process the operands of NEWCMD and build object text. The next section
describes how you process the OPI operand.

You process the OPI operand first by storing the sublist element (SLE) for the PI operand in
the label field of NEWOTE2. This moves the address of the SLE which defines the label on
PI = (if specified) into NEWOTE2. Processing the OPt operand in this manner causes the label
for operand t to be created.

Because NEWOTE2 is defined as an address OTE, you must store the sublist element (SLE)
address that defines the label to be generated. In this case, OPt + 2 contains the SLE address
that defines the label.

Since OPt is indexable, you must also indicate whether an index register is used for OP1. The
flag bit settings in the operation code word indicate register usage. You use the $INDEX
subroutine to store this information in the object text element for NEWOTE1.

Chapter 7. Creating Your Own EDL Instruction CU-93

Creating Your Own EDllnstruction
Creating an Overlay Program to Build the Instruction (continued)

The following code processes OP1 and stores register usage information. If OP1 is missing, an
error message is issued and the program exits:

NEWOTE1
NEWOTE2
NEWOTE3
#NEWCMD

•
•
•
OTE
OTE
OTE
EQU
CALL

TYPE=OPCODE,SLEDATA=1
TYPE=ADDRESS
TYPE=ADDRESS

*
OPCHECK, (NEWLIST)

SET OP CODE TO
OTE FOR "OP1"
OTE FOR "KWD"

CHECK SYNTAX

* INITIALIZE "OP CODE" OTE

*

MOVE
MOVE

PROCESS "OP1"
IF
MOVE
MOVE
CALL

NEWOTE1+0TEDATAP,1 RESET OP CODE TO 1
NEWOTE1+0TEDATAL, (ALABEL,#1) INSERT LABEL
OPERAND
(OP1+2,EQ,O) ,GOTO,ERROR4 OP1 MISSING?
NEWOTE2+0TEDATAL,P1+2 STORE ADDR OF P1 SLE
NEWOTE2+0TEDATAP,OP1+2 STORE ADDR OF OP1 SLE
$INDEX,OP1,NEWOTE+OTEDATAP, (NEWOTE2),1

Now you must write the code to process the KWD operand. The next section describes how you
do this.

Processing the KWD Operand

CU-94 SC34-0635

When you process the KWD operand, you must first determine whether it was coded on
NEWCMD. If KWD is not coded, you must set the type field of NEWOTE3 to #NULL. This
causes $EDXASM to ignore this OTE.

If KWD is coded, you must reset the type field of NEWOTE3 to #ADDRESS. Next, you must
set flag bit 1 to 1 in the operation code word. This indicates that KWD is specified. You do this
by lORing X'4000' into the operation code word.

Because NEWOTE3 is defined as an address OTE, you must store the sublist element (SLE)
address that defines the data to be generated. In this case, KWD+2 contains the SLE address
which defines the data.

Similar to the OP1 operand, KWD is also indexable. Again, you use the $INDEX subroutine to
store the appropriate bits in NEWOTE 1.

()

c

o

c

o

Creating an Overlay Program to Build the Instruction (continued)

The code you use to process the KWD operand follows:

* PROCESS "KWD"
IF

MOVE
ELSE

MOVE
lOR
MOVE
CALL

ENDIF

OPERAND
(KWD,EQ,O)
NEWOTE3+0TETYPE,+#NULL

KWD SPECIFIED?
SET OTE TYPE TO NULL

NEWOTE3+0TETYPE,+#ADDRESS RESET TYPE TO ADDRESS
NEWOTE1+0TEDATAP,X'4000' SET FLAG BIT 1 ON
NEWOTE3+0TEDATAP,KWD+2 STORE ADDR OF KWD
$INDEX,KWD,NEWOTE1+0TEDATAP, (NEWOTE3),2

You must now write the code to exit the overlay program and return control back to
$EDXASM. This is described next.

Ending the Overlay Program

After you process all the operands, you must store the number of OTEs built in the overlay
program. You do this by passing the address of the OTE count word, in this case NEWOTE.
You must then issue a GOTO to the label ENDT ASK. $EDXASM generates the object code
for NEWCMD when the ENDTASK exit is taken.

The code you use to exit the overlay program follows:

* SET UP EXIT
MOVEA
GOTO

(AMACDATA,#1),NEWOTE
ENDTASK

STORE OTE COUNT

COpy COP CHECK
COpy C$INDEX
ENDPROG
END

COpy CODE FOR OPCHECK SUBRTN
COpy CODE FOR $INDEX SUBRTN

Chapter 7. Creating Your Own EDL Instruction CU-95

C:rE>atinfj ar'~ Overlay Progran) to Build the Instruction (continued)

S('lrnofe Overlay Progran-i for NEWCMD

CU-96 SC34-0635

The coding segments throughout this section showed you how to create an overlay program.
The following is the overlay program in its entirety:

ASMOLAYX PROGRAM
COPY

BEGIN

ERROR 1
ENDTASK

ERROR2
ERROR3
ERROR4

CNEWCMD
NEWLIST
NEWOTE
NEWOTE1
NEWOTE2
NEWOTE3
#NEWCMD

EQU
MOVE
IF
ASMERROR
EQU
DETACH
GOTO
ASMERROR
ASMERROR
ASMERROR
ASMERROR
DC
$IDEF
DC
OTE
OTE
OTE
EQU
CALL

BEGIN,300,PARM=1
ASMCOMM

*
COPY CODE FOR EQUATES

#1,$PARM1 GET ADDR OF COMMON AREA
((OPCODE,#l) ,EQ,CNEWCMD,8) ,GOTO,#NEWCMD CODE OK?
1,$EDXLUSR INVALID INSTRUCTION
* SET UP EXIT

BEGIN
2,$EDXLUSR
3,$EDXLUSR
4,$EDXLUSR
GENERATE

INVALID POSITIONAL OPERAND
INVALID KEYWORD
OPERAND ONE MISSING

CL8'NEWCMD'
OP1, (KWD,P1) ,PERR=ERROR2,KERR=ERROR3
F'3' NUMBER OF OTES
TYPE=OPCODE,SLEDATA=l SET OP CODE TO
TYPE=ADDRESS OTE FOR "OP1"
TYPE=ADDRESS OTE FOR "KWD"

*
OPCHECK, (NEWLIST) CHECK SYNTAX

MODEL

* INITIALIZE
MOVE
MOVE

"OP CODE" OTE

*

*

*

PROCESS "OP1"
IF
MOVE
MOVE
CALL

PROCESS "KWD"
IF

MOVE
ELSE

MOVE
lOR
MOVE
CALL

ENDIF
SET UP EXIT

MOVEA
GOTO
COPY
COPY
ENDPROG
END

NEWOTE1+0TEDATAP,1 RESET OP CODE TO 1
NEWOTE1+0TEDATAL, (ALABEL,#l) INSERT LABEL
OPERAND
(OP1+2,EQ,O) ,GOTO,ERROR4 OP1 MISSING?
NEWOTE2+0TEDATAL,P1+2 STORE ADDR OF P1 SLE
NEWOTE2+0TEDATAP,OP1+2 STORE ADDR OF OP1 SLE
$INDEX,OP1,NEWOTE+OTEDATAP, (NEWOTE2),1
OPERAND
(KWD,EQ,O)
NEWOTE3+0TETYPE,+#NULL

KWD SPECIFIED?
SET OTE TYPE TO NULL

NEWOTE3+0TETYPE,+#ADDRESS RESET TYPE TO ADDRESS
NEWOTE1+0TEDATAP,X'4000' SET FLAG BIT 1 ON
NEWOTE3+0TEDATAP,KWD+2 STORE ADDR OF KWD
$INDEX,KWD,NEWOTE1+0TEDATAP, (NEWOTE3),2

(AMACDATA,#l),NEWOTE STORE OTE COUNT
ENDTASK
COPCHECK COPY CODE FOR OPCHECK SUBRTN
C$INDEX COPY CODE FOR $INDEX SUBRTN

Figure 31. Sample overlay program

(,

0.··"" :¥

c

o

Creating an Overlay Program to Build the Instruction (continued)

After you complete the coding of the overlay program, you must compile it using $EDXASM.
You must create a load module by using either $UPDATE or $EDXLINK. You must specify
the name of the load module in a language control data set extension. How and why you do this
is described in the section "Creating a Language Control Data Set Extension."

Creating a Language Control Data Set Extension

$EDXASM uses a language control data set to generate syntax error messages and to locate
overlay programs. The $EDXL data set contains this information. You create an extension to
$EDXL to contain your error messages and overlays. Creating an extension to $EDXL
minimizes the changes you would have to make if you receive a new version of $EDXL or
$EDXASM.

A language control data set is divided into two logical parts. The first part contains the syntax
error messages. The second part contains the names of overlay programs and instructions.
Each overlay has a corresponding instruction which it processes. The second part also contains
the names of the copy code modules that you might reference in an assembly. The extension
you create has this same format.

There are five control statements you can use in a language control data set. The following is a
brief description of these control statements:

*COMMENT Indicates a comment

*COPYCOD Defines a copy code library

*EXTLIB Defines a language control data set extension

*OVERLAY Defines an overlay program and the instruction(s) it processes

STOP Indicates the end of a language control data set

The format and description of the control statements are in the section "Control Statements" on
page CU-99.

This section shows how to create an extension for the NEWCMD instruction. You use a text
editor to create the extension.

Entering the Syntax Error Messages

In the sample overlay program, four syntax messages were defined. The ASMERROR
statement was used to indicate the message number (1-4). The messages you enter in this data
set and their line numbers must correspond to the ASMERROR message numbers.

Chapter 7. Creating Your Own EDL Instruction CU-97

Creating Your Own EDL Instruction
Creating a Language Control Data Set Extension (continued)

You begin the message in column 2. The numbers you enter in columns 2 and 3 indicate the
completion code. $EDXASM does not generate object code if you specify a completion code
greater than 8.

The messages for NEWCMD look like the following:

08 *** INVALID OR UNDEFINED OPERATION CODE
08 *** AN INVALID POSITIONAL OPERAND WAS SPECIFIED
08 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
08 *** OPERAND ONE IS MISSING

Following the syntax messages, you must specify the overlay program and instruction names.

Specifying the Overlay and Instruction Names

CU-98 SC34-0635

You use the *OVERLA Y statement to define the name of the overlay program, the volume it
resides on, and the instructionCs) the overlay processes. This statement must begin in column 1.

Assuming the load module for the sample overlay program is in data set NEWOLA Y on volume
ASMLIB, the *OVERLA Y statement would look like:

08 *** INVALID OR UNDEFINED OPERATION CODE
08 *** AN INVALID POSITIONAL OPERAND WAS SPECIFIED
08 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
08 *** OPERAND ONE IS MISSING

*OVERLAY NEWOLAY ASMLIB NEWCMD

You must enter a statement to indicate the end of the extension data set. You enter the
STOP statement beginning in column 1 to do this. The complete extension data set now
looks like:

08 *** INVALID OR UNDEFINED OPERATION CODE
08 *** AN INVALID POSITIONAL OPERAND WAS SPECIFIED
08 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
08 *** OPERAND ONE IS MISSING

*OVERLAY NEWOLAY ASMLIB NEWCMD
STOP

Because the name $EDXLUSR is specified on the ASMERROR statements in the overlay
program, you must save the extension with that name.

t

"

0-
""

c

o

Creating a Language Control Data Set Extension (continued)

After you save the language control data set extension, you must specify its name and volume in
$EDXL. You do this by editing $EDXL and entering an *EXTLIB statement beginning in
column 1.

An example of what $EDXL would look like with the *EXTLIB statement follows:

08 *** TOO MANY POSITIONAL OPERANDS WERE SPECIFIED
08 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED

•
•
•

08 *** PART NOT ALLOWED WITH DSX SPECIFICATIONS
*OVERLAY $ASM0008 ASMLIB MOVE MOVEA AND lOR EOR
*OVERLAY $ASM0009 ASMLIB WAIT POST ENQ DEQ
* COMMENT
*OVERLAY $ASM0003 ASMLIB PROGRAM LOAD DSCB
*EXTLIB $EDXLUSR ASMLIB
*COPYCOD ASMLIB
*COPYCOD EDX002
STOP

After you create the language control data set extension and update $EDXL, the next step is to
add the operation code for NEWCMD. The procedure for doing this is described in "Defining
the Instruction Operation Code" on page CU -101.

Control Statements

This section describes the control statements you can use in a language control data set.

*OVERLAY Statement

You use the *OVERLA Y statement to define the name of the overlay program, the volume that
it resides on, and the instructions that it processes.

The *OVERLA Y statement has the following format:

Column
1-8
10-17
19-24
28-35
37-44
46-53
55-62
64-71

Contents
* OVERLAY
Program name
Volume name (blank indicates IPL volume)
Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5.

Chapter 7. Creating Your Own EDL Instruction CU-99

Creating Your Own EDL Instruction
Creating a Language Control Data Set Extension (continued)

If an overlay program processes more than five instructions, you continue the instruction names
in column 1 on the next line. You can specify up to eight instruction names on the continued
line. Each instruction is allowed eight columns and one blank. Instructions would begin, for
example, in columns 1, 10, and 19.

*EX TUB Statement

You use the *EXTLIB statement to define a language control data set extension. This data set
contains additional error message text, overlay and instruction names, and copy code volume
names. The extension data set has the same format and characteristics as the primary language
control data set ($EDXL).

The *EXTLIB statement has the following format:

Column
1-7
10-17
19-24

Contents
*EXTLIB
Language extension data set name
Volume name (blank indicates the IPL volume).

You should always insert this statement before any *COPYCOD statements in the primary
language control data set.

You use the *COPYCOD statement to define a copy code library. The volume you specify
contains source code modules you reference on the compiler COPY statement.

The *COPYCOD statement has the following format:

Column
1-8
10-17

Contents
*COPYCOD
Volume name.

The language control data set or its extensions may contain up to five different *COPYCOD
statements. When $EDXASM processes compiler COPY statements, it searches the defined
*COPYCOD volumes in the order in which the *COPYCOD statements occur in the language
control data set.

You use the *COMMENT statement to insert optional comments in the language control data
set. $EDXASM ignores the text you specify on this statement.

You use the **STOP** statement to indicate the end of the language control data set. You can
add additional error messages, overlay programs, and copy code modules after this point. The
number of additional modules is limited by the size of the operation code table (OPCTABLE).

CU-100 SC34-0635

o

I ,,,

c

c

c

o

Every EDL instruction must have its operation code defined in the emulator command table.
This section explains how you can define the operation code for NEWCMD through the use of
an initialization routine. This routine will execute every time you IPL.

The following code inserts the operation code into the emulator command table. An explanation
of this routine follows the example.

PROGRAM
COPY
EXTRN
ENTRY

CMDINIT EQU
MOVE
MOVEA
GO TO
ENDPROG
END

MAIN=NO
PROGEQU
INITEXIT,MYRTN
CMDINIT

*
#1,$CMDTABL
(2,#1) , MYRTN
INITEXIT

PROGRAM HDR EQUATES
DEFINE EXTERNAL ENTRY PTS

EMULATOR COMMAND TABLE
DEFINE OP CODE 01 PROCESS RTN
BRANCH TO SUPV INIT RTN

The routine includes the PROGEQU equates. Doing this resolves references to $CMDT ABL.
$CMDT ABL contains the addresses of the routines that do the processing for EDL instructions.
Next, the routine defines two external entry points: INITEXIT and MYRTN. INITEXIT is an
entry point in the supervisor to which your routine must return control upon exit. MYR TN is
the entry point of the Series/1 assembler program that processes the NEWCMD instruction.
This routine is described later.

The code beginning at entry point CMDINIT places the address of MYRTN in the emulator
command table. The MOVE instruction moves the starting address of the emulator command
table ($CMDT ABL) into software register 1. The MOVEA instruction moves the address of
MYRTN two bytes into the table. Hence, when the emulator encounters operation code 01, the
emulator passes control to MYRTN.

Note: Operation codes 01 and 02 are reserved for your use. To define operation code 02, move
the address of the routine four bytes into the emulator command table.

You exit the routine by branching to label INITEXIT.

You must assemble and link-edit this routine with the supervisor. You specify the entry point
name CMDINIT on the INITMOD= operand of the SYSTEM statement at system generation.

The entry point MYRTN, defined as an external, must be the entry point of the routine that
processes NEWCMD. The Series/1 assembler code required for this routine is described next.

Chapter 7. Creating Your Own EDL Instruction CU-101

Creating Your Own EDL Instruction
Writing the Assembler Code for NEWCMD

This section shows the Series/ 1 assembler code that performs the function of NEWCMD. For
the instruction you create, you must also write the Series/ 1 assembler code that performs the
function you need. Refer to the IBM Series/l Event Driven Executive Macro Assembler,
GC34-03l7 for details on how to code in Series/ 1 assembler.

You will need the Series/l Macro Assembler ($SlASM) to perform this step.

Coding Considerations

When you code your Series/ 1 assembler routine, adhere to the following:

Write the routine in Series/l assembler code only.

Follow the register conventions used by CMDSETUP.

• Ensure the routine is reentrant:

CU-102 SC34-0635

no subroutines are used.
no parameter naming operands (Px=) are coded.
data areas are unique to each task.
always test R5 for the operation code.
ensure R2 contains the TCB address upon exit.
ensure Rl is incremented by the instruction length (in bytes) upon exit.

o

t
\. ,

o

c

Writing the Assembler Code for NEWCMD (continued)

Description of Sample Program

Again, if you code one operand on the NEWCMD instruction, it adds 1 to the value of operand
1. If you code two operands, the value of operand 2 is added to the value of operand 1. The
following description explains how this is done:

At the entry point MYRTN, the routine begins by checking the flag bits of the operation code in
register 5 (R5). The flag bits indicate whether one or two operands were specified. If bit 1
equals 1, only one operand was coded on NEWCMD. The routine branches to label OPNDI to
process operand 1. Here, the routine adds the value 1 to the value of operand 1 (R3). Next,
register 1 (R 1) is incremented by the length of NEWCMD with one operand coded. In this
case, NEWCMD is four bytes in length. After R 1 is incremented, the routine branches to
CMDSETUP. CMDSETUP then processes the next source statement in the source program.
The function of CMDSETUP is described in detail in the Internal Design.

The code at label OPND2 is executed when bit 1 of the operation code equals O. This bit
indicates both operand 1 and operand 2 were coded. The value of operand 2 (R4) is added to
the value of operand 1 (R3). Next, register 1 (Rl) is incremented by six bytes. After Rl is
incremented, the routine branches to CMDSETUP.

MYRTN

*

ENTRY
EQU

MYRTN

*
* CMDSETUP REGISTER CONVENTIONS:

==> OP CODE *
*
*
*
*
*
*
CHKBITS

*
OPND2

OPND1

R1
R2 ==> TCB
R3 ==> OP1 ADDRESS
R4
R5

==> OP2 ADDRESS OR DATA (IF IT EXISTS)
==> OP CODE

TWI

JOFF
AW
AWl
BX
EQU
AWl
AWl
BX
END

X' 4000' ,R5

OPND1
(R4), (R3)
6,R1
CMDSETUP

*
1, (R3)
4,R1
CMDSETUP

TEST IF BIT 1 OFF; IF OFF
THERE IS ONLY ONE OPERAND
LABEL FOR ONLY ONE OPERAND
ADD OP2 TO OP1
SET UP R1 FOR NEXT INSTRUCTION
BRANCH BACK TO EMULATOR

ADD 1 TO OP1
SET UP R1 FOR NEXT INSTRUCTION
BRANCH BACK TO EMULATOR

Use $SIASM to assemble this routine. You must link-edit the assembled output from this
routine and the output from the initialization routine with the supervisor.

Chapter 7. Creating Your Own EDL Instruction CU-I03

You should write a small program containing the new instruction to test it. Testing the new
instruction will indicate if the overlay program, initialization routine, and assembler routine work
properly.

Before you test the instruction, make sure you do the following:

1. Use a text editor to read in the link-control data set that defines the modules currently in
your supervisor (normally LINKCNTL on EDX002).

2. Specify INCLUDE statements for the assembled output from the initialization routine and
the assembler routine. You specify the names of these data sets.

3. Write (save) the updated link-control data set back to LINKCNTL.

4. Use a text editor to read in the data set that defines your current system configuration
(normally $EDXDEFS on EDX002).

5. Code the INITMOD= operand on the SYSTEM statement. You must specify the entry
point name of your initialization routine. For the NEWCMD instruction, specify the entry
point name CMDINIT.

6. Write (save) the updated data set back to $EDXDEFS.

7. Perform a system generation.

8. After the system generation completes, initialize (II command of $INITDSK) the new
supervisor and IPL the system.

When you complete these steps, you can test your instruction.

CU-I04 SC34-0635

o

o

C

o

Testing the New Instruction (continued)

Coding a Test Progranl

When you test the instruction, you should code all the possible variations of the instruction's
syntax. You should also test for invalid syntax.

You can use the following sample program to test the NEWCMD instruction:

TEST PROGRAM BEGIN
BEGIN EQU *

NEWCMD A ADD TO A (1)
NEWCMD A, KWD=B ADD B (2) TO A (2)
PRINTEXT '@THE RESULT IS: I

PRINTNUM A A = 4
MOVEA # 1 , VALUES SET UP INDEX
NEWCMD C,KWD=(4,#1) ADD D (5) TO C (3)
PRINTEXT '@THE RESULT IS: I

PRINTNUM C C = 8
MOVEA AY,X SET ADDR OF X
NEWCMD A,Pl=AY USE X AND ADD
PRINTEXT '@THE RESULT IS: I

PRINTNUM X X =

*
* INVALID SYNTAX - THESE GENERATE ERROR MESSAGES

*
NEWCMD X,KWDD
NEWCMD X,P2=ERR

*
*

PROGSTOP
A DATA F 11 I

VALUES EQU *
B DATA F'21
C DATA F ' 3 1

D DATA F'S'
X DATA F'O'

ENDPROG
END

If the overlay program is correct, the compiler listing for the test program will show the object
code generated for the valid statements. Further, $EDXASM should issue error messages for
the statements with invalid syntax.

Upon receiving a -1 completion code from $EDXASM, create a load module using $UPDATE
or $EDXLINK. Load the program via the $L command to execute the program. The output
from your program should yield the expected results.

Chapter 7. Creating Your Own EDL Instruction CU-IOS

Creating Your Own EDL Instruction
Debugging Overlay Programs

You can use $DEBUG to debug an overlay program. To do this, you must:

1. Code a READTEXT, QUESTION, or WAIT KEY instruction as the first executable
instruction of the overlay program. When the overlay program is loaded, it will stop at this
instruction and wait for input from the terminal.

2. Load $EDXASM and specify one overlay area (OV option) when you compile the source
program containing your new EDL instruction.

3. Load $DEBUG in the same partition as $EDXASM when $EDXASM loads your overlay
program and the overlay program stops at the READTEXT, QUESTION, or WAIT KEY.

4. Enter $ASMOPCD when $DEBUG prompts you for the program name. If $ASMOPCD is
already in storage, do not request a new copy to be loaded.

Once the overlay program is in storage, you can examine data areas and set breakpoints with
$DEBUG.

If a program check occurs in the overlay program, the system cancels the overlay program and
issues a program check message. The error message may not give the correct displacement into
the overlay program for the failing instruction (Rl) and the TCB address (R2). If these
addresses appear to be outside the program, you can calculate the correct addresses by
subtracting the program load point address from the address of R 1 and R2. The resulting
addresses may be in either $EDXASM or in one of the overlay programs.

CU-I06 SC34-0635

o

o

o

Creating Unique Labels Within the Overlay Program

Instructions may require unique labels which do not conflict with labels you create from a
previous call to your overlay program or labels define in an application program. For example,
$EDXASM creates a unique label (internally) for each ENDIF statement when multiple
IF-ENDIF statements are coded in a program.

$EDXASM provides a method for you to create unique labels when you use the field $SYSNDX
in an overlay program. $SYSNDX is a I-word field in the compiler common area. You
reference this field through the ASMCOMM equates.

$EDXASM sets up a 4-digit counter for this field. You must add 1 to this counter to generate a
unique label each time you use $SYSNDX. You can convert the binary value of $SYSNDX to a
4-character EBCDIC representation of the number using the CONVTB instruction. The
following example shows how to convert the value of $SYSNDX. Assume that #1 points to the
compiler common area and that $SYSNDX contains the value 2. After the conversion, INDEX
contains the character value "0002".

INDEX

CONVTB
•
•
•
DC

INDEX, ($SYSNDX,#1) ,FORMAT=(4,O,I)

CL4'OOOO'

After conversion, you append the four characters to a 1- to 4- character prefix to form a unique
label. For example, the following code shows how to define a unique label with the prefix $$LI
using the value in INDEX from the previous example:

OTE1
SLE1
LAB 1
INDEX

•
•
•
MOVE LAB1+4,INDEX,(4,BYTES)
ADD ($SYSNDX,#1),1
•
•
•
OTE
SLE
DC
DC

TYPE=ADDRESS,SLENAME=SLE1
ADDRESS=LAB1,LENGTH=8
CL8'$$LI'
CL4'OOOO'

The name on the label created would have the text $$LI0002. You could then refer to this label
in other object text elements.

Chapter 7. Creating Your Own EDL Instruction CU-I07

Creating Your Own EDL Instruction
Generating Source Statements

An overlay program can generate one source statement which $EDXASM processes after the
generating overlay ends. $EDXASM processes this source statement before processing the next
statement in the source data set. One instance where this feature is used, is when you specify
T ASK= YES on a DISK statement. The overlay program $ASMOOOS, which processes the
DISK statement, creates a TASK statement for the device's disk task. The overlay program
$ASMOOOT, which processes the TERM IN AL statement, also uses this feature to generate
keyboard tasks for terminals.

You can use this feature in your overlay program to generate a source statement and optionally
create a continuation line for that statement.

Notes:

1. If you built an instruction in the overlay program, the source statement must also be an
instruction. If you built a statement in the overlay program, the source statement must also
be a statement (nonexecutable).

2. The source statement you create does not appear in the compiler listing; however, the object
code generated does appear if the source statement is an instruction.

3. If a compilation error occurs with the source statement you create, the error message
appears after the instruction or statement you built in the overlay program.

CU-108 SC34-0635

(

'-

(

o

c

c

Generating Source Staternents (continued)

Creating a Source Statement -- No Continuation Line

To create a source statement (with no continuation line), do the following:

1. Define an 80-byte area in the overlay program which contains the text of the source
statement. For example, the following statement:

TRMNL IOCB SCREEN=ROLL

looks as follows when defined in the overlay program:

SRCSTMT DATA CL80'TRMNL IOCB SCREEN=ROLL'

2. Move the field #AINBUF to a software register. This field is defined in ASMCOMM and
contains an address of a storage area. The address to which #AINBUF is pointing is where
you move the source statement. For example, if #1 points to ASMCOMM, the following
code shows what you must do to move the source statement to #2:

MOVE
MOVE

#2, (#AlNBUF,#l)
(0,#2) ,SRCSTMT, (80,BYTES)

GET ADDR OF STORAGE AREA
MOVE SOURCE STATEMENT

3. Move the value X'FFFF' to #AINBUF. This move indicates that the overlay program is
creating a source statement and that $EDXASM must process it before the next statement
in the source data set. After moving X'FFFF' to #AINBUF, store the number of object text
elements created in the overlay, and return control to label ENDT ASK to exit the overlay
program. The following example shows how to set #AINBUF and exit the overlay program:

MOVE
MOVEA
GOTO

(#AlNBUF,#l) ,X'FFFF'
(AMACDATA,#l),NEWOTE
ENDTASK

GENERATE SOURCE FLAG
PASS OTE COUNT

Chapter 7. Creating Your Own ED L Instruction CU -109

Creating Your Own EDL Instruction
Generating Source Statements (continued)

Creating a Source Statement - With Continuation Line

To create a source statement with a continuation line, you do the same steps previously
discussed plus some additional steps. These additional steps are explained in this section.

After you define the source statement within the 80-byte area, do the following:

1. Insert a non blank character in column 72 of the source statement.

2. Move the address, to column 77 of the source statement, of a subroutine that will append
the continuation line to the source statement.

The subroutine, which you must write and define in the overlay program, must be written to
receive the address of a storage area. $EDXASM calls the subroutine (after the overlay
program branches to ENDT ASK) and passes the subroutine an address. Because $EDXASM
defines the storage area for you, do not define this area in the overlay program. The subroutine
must use the buffer area at that address to construct the continued source statement.

The following is an example of how you can do this:

•
•
•

#2, (#AINBUF, #1)
(0,#2) ,SRCSTMT, (80,BYTES)
(71 , # 2) , C ' X' , (1 , BYTE)
(76,#2) ,CONTSUB
(#AINBUF,#1) ,X'FFFF'
(AMACDATA,#1) ,NEWOTE
ENDTASK

GET ADDR OF STORAGE AREA
MOVE SOURCE STATEMENT
SET CONTINUATION FLAG
MOVE ADDR OF SUBRTN
GENERATE SOURCE FLAG
PASS OTE COUNT

SRCSTMT
CONTSRC
CONTSAVE

MOVE
MOVE
MOVE
MOVEA
MOVE
MOVEA
GOTO
DATA
DATA
DATA
SUBROUT
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
RETURN

CL80'TRMNL IOCB SCREEN=ROLL,'
CL80'PAGSIZE=60,NHIST=6'
F'O'
CONTSUB,CONTBUF
CONTSAVE,#2
#2,CONTBUF
(0,#2) ,C' " (80,BYTES)
(15,#2) ,CONTSRC, (18,BYTES)
(71 , # 2) , C ' " (1 , BYTE)
#2,CONTSAVE

SAVE AREA ADDR

SAVE CONTENTS OF #2
GET BUFFER ADDR
SET BUFFER TO BLANKS
BUILD NEXT LINE
CLEAR CONTINUE COLUMN
RESTORE #2

The source statement created in the previous example and passed to $EDXASM looks like the
following:

TRMNL IOCB SCREEN=ROLL,
PAGSIZE=60,NHIST=6

CU-IIO SC34-0635

X

n
\,j

,
"

o

c

o

Overlay Program Statements

This section describes in detail the overlay program statements you can use and their coding
syntax.

$IDEF Statement - Build Model EDllnstruction

You use the $IDEF statement to build a model of the instruction. When you code $IDEF, you
specify the positional operands and keywords of the instruction. The number of positional and
keyword operands for an instruction must not exceed 50.

You can optionally specify error exits on $IDEF for invalid syntax. These error exits are used in
conjunction with the ASMERROR statement.

The following is the syntax for the $IDEF statement:

Syntax:

label
Required:
Defaults:
Indexable:

Operand

posits

kwds

PERR=

KERR =

Examples of $IDEF

$IDEF posits, kwds, PER R=, K E R R=
none
PERR=INVALPOS,KERR=INVALKWD
none

Description

The list of allowable positional operands.

The list of allowable keyword operands. The keywords can be 1-7 characters in
length. The keyword you specify is the actual keyword coded for the new
instruction.

The label of an instruction to branch to if more positional operands are coded in
the instruction than defined by the instruction model. If omitted, control is
passed to label INV ALPOS, which you must code.

The label of an instruction to branch to if a keyword operand is coded in the
instruction which is not listed in the instruction model. If omitted, control is
passed to label INV ALKWD, which you must code.

The following are examples of how to code the $IDEF statement:

MODEL 1
MODEL2
MODEL3

$IDEF
$IDEF
$IDEF

(POS 1 ,POS2) ,KWD
POS, (MODE,LINE,SKIP,SPACES)
POS,KWD,PERR=BADPOS,KERR=BADKWD

Chapter 7. Creating Your Own EDL Instruction CU -111

Creating Your Own EDllnstruction

Overlav Progranl Statements (continued)

ASMERROR Statement - Generate Syntax Error Messages

The ASMERROR statement generates a syntax error message for the input statement currently
being processed if you code that statement incorrectly. ASMERROR is used in conjunction
with the $IDEF statement. $EDXASM passes control to the label ENDT ASK after the message
is issued.

Note: A control block is required in the overlay program for you to use ASMERROR
statement. You create the control block by coding:

ASMERROR GENERATE

You code ASMERROR GENERATE only once in a program.

Syntax:

!ubc!
Required:
Defaults:
Indexable:

Operand

number

extlib

/\SiV1ERROFi ~l~lnJl)u,c\~!:L,~:)l::
number
extlib - $EDXL
none

Description

Code a decimal number representing the error message number to be generated.
This number corresponds to a line number in the language control data set
($EDXL or extension). If this number is greater than the maximum error text
line number, a general error message is printed.

The data set $EDXL or the name of the language control data set extension in
which the error message text is located. This name must correspond to the data
set name on an *EXTLIB control entry when you invoke $EDXASM. If the
specified data set is not included as an extension to the primary language control
data set ($EDXL), a general error message with asterisks for the data set name is
printed. This data set is not used for an error message in the primary language
control data set.

The following are examples of the ASMERROR statement:

INVALPOS ASMERROR 1
I NVALKWD ASMERROR 2

ASMERROR 17,$EDXLUSR

Note: You can use the first two examples for the default error exits on the $IDEF statement.
Messages 1 and 2 produce messages appropriate to these errors.

CU-112 SC34-0635

t ,

o

c

o

Overlay Program Statements (continued)

aTE Statement - Build Object Text Element

The OTE statement defines an object text element. You can use an object text element to do
the following:

Define a label

• Generate one or more bytes of object code

• Generate error messages

Define external references and entry points.

The compiler aligns the object code on an even-byte address for TYPE=OPCODE, ADDRESS,
and FCON.

Syntax:

label
Required:
Defaults:
Indexable:

Operand

TYPE =

OT E TY P E=, 0 U PFAC=, S LE DA T A=, S LENA M E=
TYPE=
DUPFAC=1,SLEDATA=O,SLENAME=O
none

Description

The type of object text element to be defined. The ASMCOMM equate field
OTETYPE defines this operand. The following types are valid:

NULL OTE is to be ignored.

OPCODE Data is an operation code. The SLEDAT A operand contains the
2-byte operation code.

ADDRESS Data is an address. The SLEDATA operand must point to the
sublist element (SLE) defining the address constant.

ERROR

FCON

Generate an error message. The SLEDAT A operand defines the
numerical error message to be printed. This number corresponds to
a line number in the primary language control data set ($EDXL).

Data is a fullword constant. The SLEDA T A operand contains the
two bytes of data to be generated.

Chapter 7. Creating Your Own EDL Instruction CU -113

Creating Your Own EDllnstruction
Overlay Program Statements (continued)

DUPFAC=

DATA Define untranslated data. The SLEDAT A operand must point to a
sublist element defining the data.

EQUATE A label at the current location counter (for example LOCI EQU *).
The SLENAME operand must point to the SLE of the label. The
SLEDAT A operand should point to an SLE which points to the
asterisk. Note that if you require an equate for other purposes, you
can use the LABELS subroutine.

EXTRN An external reference. The SLED AT A operand points to the SLE
defining the name of the external symbol.

WXTRN A weak external reference. The SLED A T A operand points to the
SLE defining the name of the external symbol.

ENTRY An entry point. The SLEDA T A operand points to the SLE defining
the symbol which is to be an entry point.

Specifies the duplication factor for the object text element, or the number of
times $EDXASM is to duplicate the object text in the object file. Only the first
byte of text has the label defined by SLEN AME.

You use this operand primarily for duplicating data definition fields, for example
128F'O'.

I

If you specify DUPFAC=O, $EDXASM does not generate object text, but does "
do boundary alignment. This is equivalent to coding:

ALIGN WORD

The ASMCOMM equate field OTEDAT AC defines this operand.

SLEDATA= If TYPE=OPCODE or FCON, SLEDATA defines the data to be entered into
the object file. If TYPE=ERROR, it defines the error message number to be
printed. If TYPE=ADDRESS, DATA, EXTRN, WXTRN, or ENTRY, it must
contain the address of the sublist element (SLE) defining the data to be
processed.

The ASMCOMM equate field OTEDAT AP defines this operand.

CU-114 SC34-0635

c:

c

c

o

Overlay Program Statements (continued)

Examples of OTE

SLENAME= The label assigned to the first byte of object text generated by the current OTE.
If this field contains a 0, no label is assigned. Otherwise, it must contain the
address of the SLE defining the label to be defined.

The ASMCOMM equate field OTEDAT AL defines this operand.

The following are examples of the OTE statement:

OTE1 OTE
OTE
OTE

TYPE=ADDRESS
TYPE=FCON,SLEDATA=O
TYPE=EXTRN,SLEDATA=SLE1

Chapter 7. Creating Your Own EDL Instruction CD-lIS

Creating Your Own EDL Instruction
Overlay Program Statements (continued)

SLE Statement - Build Sublist Element

The SLE statement enables you to define a sublist element in the same format as a sublist
element generated by $EDXASM. You must use the SLE statement to generate a label or a
data string that does not appear in the original input data.

Syntax:

labe!
Required:
Defaults:
Indexable:

Operand

SLE ADDRESS=::,.LENGTH=,TYPE=;;:
ADDRESS=,LENGTH=
TYPE=O (address)
none

Description

ADDRESS= The address of the text string defining the data. The ASMCOMM equate field
SLEDAT A defines this operand.

LENGTH = The number of characters in the text string. The ASMCOMM equate field
SLELENG defines this operand.

TYPE = Omit this operand if the data defines an address; otherwise, specify either
SELFDEF or STRING. The ASMCOMM equate field SLELENG defines this
operand.

SELFDEF Specify a self-defining term (for example, decimal or hexadecimal
constants) .

STRING Specify string data. You must process this data by coding an OTE
with TYPE = DATA specified.

The following are examples of the SLE statement:

SLE1
SLE2
SLE3

SLE
SLE
SLE

NAME 1 DC
NAME 2 DC
ASTERISK DC

CU-116 SC34-0635

ADDRESS=NAME1,LENGTH=3
ADDRESS=NAME2,LENGTH=1,TYPE=SELFDEF
ADDRESS=ASTERISK,LENGTH=1

CL3'XYZ'
CL1'5'
CL1'*'

label XYZ
constant 5
current location counter

t

\,

o

C

o

This section describes in detail the overlay program subroutines you can use and their coding
syntax.

.. .. -"';.,'

The $INDEX subroutine examines an operand field for index register specification. It also
stores control information in the operation code word and in the object text element for the
operand being processed.

The $INDEX subroutine is in the form of copy code. You must include a COpy C$INDEX
statement in your program to use it.

The CALL to the $INDEX subroutine has the following syntax:

Syntax:

Operand

$INDEX

ole

opword

ote

posit

Description

Code $INDEX as the first operand on the CALL instruction.

The address of the operand list element (OLE) of the operand being processed.

The address of the operation code word into which index register usage
indicators may be set.

The address of the object text element (aTE) that indicates the type of input.

The position number (I, 2, or 3) of the input operand on the source statement.

You must store the SLE address of the operand being processed in the appropriate aTE before
you call $INDEX.

How the "ole" operand is presented to $INDEX determines how the register flag bits are set in
"opword." The flag bit settings are shown in Figure 32.

Chapter 7. Creating Your Own EDL Instruction CU-It?

Creating Your Own EDL Instruction
Overlay Program Subroutines (continued)

#1 or #2
Register #1 used #2 used used as

Bits/operand not used as (x,#1) as (x,#2) operand

6 & 7 for op1 00 01 10 11

4 & 5 for op2 00 01 10 11

2 & 3 for op3 00 01 10 11

Figure 32. Register flag bits from $INDEX

Error message No.4 is issued if the number of operand sub list elements is not 1 or 2. Error
message No.5 is issued if an index register other than #1 or #2 is specified.

Registers Used

Software register #2 is used.

CU-118 SC34-0635

O~<
.~~:

c

o

Overlay Progran1 Subroutines (continued)

BLDTXT Subroutine - Build Object Text

ConJitions

Ex: t Conditions

The BLDTXT subroutine builds object text based on a list of object text elements (OTEs). You
use the OTE statement to build the object text element.

The BLDTXT subroutine is in the form of copy code. You must include a COPY CBLDTXT
statement in your program to use it.

The CALL to the BLDTXT subroutine has the following syntax:

Syntax:

I" ..
. 0.),;1

Operand Description

BLDTXT Code BLDTXT as the operand on the CALL instruction.

The AMACDAT A field in compiler common area must point to a I-word count of the number
of object text elements. You must include the ASMCOMM equates in your program to access
the compiler common area. The AMACDAT A field must be followed by the object text
elements. The length of each OTE is defined by the equate LOTE.

None

None

Chapter 7. Creating Your Own EDL Instruction CU -119

Creating Your Own EDL Instruction
Overlay Program Subroutines (continued)

GETVAl Subroutine - Evaluate Character String

Entry Conditions

Exit Conditions

The GETVAL subroutine evaluates a character string which is a self-defining term. A
self-defining term is a fixed-decimal constant, a hexadecimal constant, or a 1- or 2- byte
EBCDIC character string.

Examples of data handled by GETVAL:

Decimal constants 1, 100, -300, 32767, -12345

Hexadecimal constants X'12', X'ABCD', X'FFFF', X'1'

EBCDIC constants C'A', C'XY', C'Ol', C'E'

The GETVAL subroutine is in the form of copy code. You must include a COpy CGETVAL
statement in your program to use it.

The CALL to the GETV AL subroutine has the following syntax:

Syntax:

I label

Operand

GETVAL

sle

value

errexit

None

CALL G ETVAL, sle, value, err exit

Description

Code GETVAL as the first operand on the CALL instruction.

The address of the sub list element (SLE) which points to the string to be
evaluated.

A word to receive the result of the evaluation.

The address of an error routine to be branched to if invalid syntax is encountered
in the evaluation.

If an error exit is taken, "value" contains the result computed at the time of the error. For
example, if the string 123X is evaluated, the result at the time of the error exit is 123.

CU-120 SC34-0635

o

(~

o

c

Overlay Program Subroutines (continued)

LABELS Subroutine - Define or Resolve Labels

Defining Labels

You use the LABELS subroutine to define or resolve a label for a sublist element (SLE). You
can define or resolve the following label types:

ADDRESS

EQUATE

EXTRN

• WXTRN

ENTRY.

The LABELS subroutine is in the form of copy code. You must include a COPY CLABELS
statement in your program to use it.

You code the CALL for the LABELS subroutine differently for label definition and label
resolution.

The CALL for the LABELS subroutine for label definition puts the label you define into the
symbol table with the type and value you specify.

The CALL to the LABELS subroutine for label definition has the following syntax:

Syntax:

label C.AL~ L!~BE.LS#value.#type .. l

Operand Description

LABELS Code LABELS as the first operand on the CALL instruction.

#value The address of the label value to be put into the symbol table.

#type Label type to be put into the symbol table.

1 Indicates label definition.

Chapter 7. Creating Your Own EDL Instruction CU -121

Creating Your Own EDL Instruction

Overlay Program Subroutines (continued)

Resolving Labels

Register s Used

If you call the LABELS subroutine to resolve a label and the label is defined, the label type and
value are returned in #type and #value, respectively. If the label is undefined, an entry is made
in the symbol table, and type and value are set to ° in the symbol table. The #type operand is
set to 0, and #value is set to the symbol table pointer index for the symbol.

The CALL for the LABELS subroutine for label resolution has the following syntax:

Syntax:

lahel

Operand

LABELS

#value

#type

o

CALL

Description

Code LABELS as the first operand on the CALL instruction.

The label value is returned here if label is defined; otherwise, the symbol table
pointer index for the symbol is returned.

The label type is returned here if label is defined; otherwise, a zero is returned.

Indicates label resolution.

Software register #1 must point to the SLE of the label to be processed.

If a duplicate symbol is encountered in label definition, an error message is issued. You
reference the error message number through the #ERRMSG field in the compiler common area.
You must include the ASMCOMM equates to refer to this field.

None

CU-122 SC34-0635

(J

f ,

c

c

o

(}VCdC~'i p~ (}D:rarn Subrout~nes (continued)

"J10VEBVTE Sl.!~pout!np ---- IVlo\}e a Byte String

The MOVEBYTE subroutine moves a variable-length byte string to a target location and right
pads with blanks.

The MOVEBYTE subroutine is in the form of copy code. You must include a COPY
MOVEBYTE statement in your program to use it.

The CALL to the MOVEBYTE subroutine has the following syntax:

Syntax:

Operand Description

MOVEBYTE Code MOVEBYTE as the first operand on the CALL instruction.

fromsle The address of the sublist element (SLE) defining the source data.

toaddr The address of the target location.

count The size of the target field.

None

If the number of characters in the SLE is greater than "count", control is passed to
ASMERROR. If "fromsle" or the number of characters in the SLE equals zero, the target field
is filled with blanks.

None

Chapter 7. Creating Your Own EDL Instruction CU-123

Creating Your Own EDL Instruction
Overlay Program Subroutines (continued)

OPCHECK Subroutine - Check Statement Syntax

Entry Conditions

Exit Conditions

You use the OPCHECK subroutine for source statement syntax checking. OPCHECK does the
following:

Compares the number of positional operands in the source statement against the allowable
number of positional operands.

Matches keywords specified in the source against the allowable keywords.

Stores the operand list element (OLE) and sublist element (SLE) addresses in the $IDEF
expansion for each operand coded in the source statement.

The OPCHECK subroutine is in the form of copy code. You must include a COpy
COPCHECK statement in your program to use it.

The CALL to the OPCHECK subroutine has the following syntax:

Syntax:

label CALL OPCHECK,(opllst)

Operand Description

OPCHECK Code OPCHECK as the first operand on the CALL instruction.

oplist The oplist operand is the label on a $IDEF statement defining the model for an
instruction.

None

Each positional and keyword operand specified in the source statement has its entry in the
$IDEF expansion filled in with its OLE and SLE address. If the operand is missing, the
corresponding entry in $IDEF is O.

CU-124 SC34-0635

o

c

o

Overlay Program Subroutines (continued)

Registers Used

If an invalid number of positional operands is coded, control passes to the error exit for
positional operand errors. This is the label specified (or default) for PERR= on $IDEF. If an
invalid keyword is coded, control passes to the error exit for keyword operand errors. This is
the label specified (or default) for KERR= on $IDEF.

Software register #2 is used.

Chapter 7. Creating Your Own EDL Instruction CU -125

Creating Your Own EDL Instruction

Overlay Program Subroutines (continued)

SlPARSE Subroutine - Parse Input String

The SLPARSE subroutine divides (parses) an input string into one or more sublist elements
(SLEs). The SLEs are separated by commas.

The CALL to the SLP ARSE subroutine has the following syntax:

Syntax:

C:\L:'-

Operand Description

SLPARSE Code SLP ARSE as the first operand on the CALL instruction.

ops The address of the input string.

opl The number of characters in the input string.

optbl The address of the output table to receive the results of the parse routine.

tblng The length of the table (in bytes) to be generated.

n The address of an area to receive the number of elements found.

None

The value of the "n" operand is negative if unbalanced parentheses are encountered in the input
string.

None

CU-126 SC34-0635

i ,

o

c

This chapter describes some of the techniques you can use to increase performance on the
Series/I.

Whenever you reference a data set on a volume, the system searches the data set directory to
find the location of that data set on the volume. Assume the volume has several hundred data
sets and the data set you need is near the end of the directory. The system has to read each data
set directory entry until it finds the data set you need. This searching requires processor time.
You can, however, reduce the amount of time it takes the system to search the directory. You
do this by arranging the directory to have the frequently used data sets placed at the beginning
of the directory. You can use the $DIRECT utility (UT or UD commands) to arrange data sets
in the directory. Details on how you use the $DIRECT utility are in the Operator Commands
and Utilities Reference.

Chapter 8. Techniques for Improving Performance CU-127

Techniques for Improving Performance
How to Get Faster Access to Volumes

Several factors can determine how fast the system can access a volume:

The order in which you define your DISK statements at system generation

Whether you define a volume as a "performance" volume

Whether you define a fixed-head volume on a fixed-head disk.

How and why you might consider using these techniques is described in this section.

How You Should Define DISK Statements

When you define DISK statements at system generation, you should always define (first) the
device containing volumes you access frequently.

Each device has a volume descriptor entry (VDE) and the VDEs are chained in the order you
define the DISK statements. Thus, the system has to read through the VDE chain to locate a
volume. If the volume you need resides on the first device disk device you define, the system
only has to read the first VDE in the chain.

Specifying Performance Volurnes

The system can access a volume designated as a "performance" volume faster than a
"nonperformance" volume. You specify performance volumes by coding the VOLNAME=
operand on the DISK or TAPE statements at system generation.

Specifying performance volumes saves time because the system records the address of the
volume in the volume descriptor entry (VDE) for that device at IPL time. For nonperformance
volumes, the system records the volume address in the volume descriptor entry when you load
the program.

Each performance volume requires an additional 46 bytes in the supervisor.

Specifying a Fixed-Head Volun1e

If you have a fixed-head disk, you should always allocate the volume you frequently use in the
fixed-head area. Because no "disk seek" operations are required on a fixed-head disk, the
system can directly access the volume you need.

You allocate a fixed-head volume by using the $INITDSK utility (AF command). You can
allocate one volume in the fixed-head area of the device.

CU-128 SC34-0635

c

Improving Disk and Tape I/O Perfonnance

You can increase performance for disk and tape I/O operations by coding TASK=YES on each
DISK and TAPE statement at system generation. This causes each device to have its own task
to service I/O requests as opposed to one task servicing all I/O requests for devices of the same
type.

Each DISK or TAPE statement with T ASK= YES specified requires an additional 128 bytes in
the supervisor.

You can improve I/O performance by using $MEMDISK to allocate all or a portion of
unmapped storage to use as a "disk." This disk resembles a single-volume diskette with the
volume name of MEMDSK. By placing temporary work data sets on MEMDSK you reduce the
amount of time required to access work data sets.

Operator Commands and Utilities Reference describes how to use $MEMDISK in more detail.

How to Speed Up $COMPRES and $COPYUT1

You can reduce the time it takes for $COMPRES or $COPYUTI operations by requesting
dynamic storage. You specify the amount of dynamic storage when you load these utilities. The
dynamic storage you specify is the amount of contiguous storage in the partition minus the size
of the program(s).

The following is an example of how you request dynamic storage for these utilities:

> $L $COMPRES,,2048
> $L $COPYUT1,,2048

(2048 bytes requested)

For $COMPRES, maximum performance is reached when you specify dynamic storage as the
number of data sets times 32. You can determine the number of data sets by loading
$DISKUTI and issuing the LS command.

For $COPYUT1, the more dynamic storage you request, the greater the performance
improvement.

Chapter 8. Techniques for Improving Performance CU-129

TechniqlJeS for Improvin~ Performance

Decreasing $EDXASM Cornpiiation Time

! ",-,

You can reduce the amount of time needed to compile a $EDXASM program by requesting the
maximum number of overlays (6) when you load $EDXASM. The default is 4. Specifying the
maximum reduces the number of storage loads required by $EDXASM. Use the OVERLAY
(OV) option to specify the number of overlays.

You can also reduce the amount of time required to compile or assemble programs by creating
temporary work data sets for $EDXASM, $SlASM, and $EDXLINK. The $MEMDISK utility
enables you to create these data sets on the MEMDSK volume. In addition, you can further
decrease assembly or compilation time by copying the entire assembler or compiler and all
associated overlays onto the MEMDSK volume.

Note: Since MEMDSK is part of the memory system, you will lose the volume in the event of a
power failure. Use it only for work data sets, programs, and other files that you can recover if a
power failure does occur.

~ '.

You can reduce the amount of time it takes the system to load programs by using the
$PREFIND utility. You should use $PREFIND in the following instances:

The program references a large number of data sets or overlays.

You frequently load the program from disk or diskette.

The program's environment (data sets/volumes) is not subject to frequent changes.

The $PREFIND utility stores the physical address of all referenced data sets and overlays into
the program header. Thus, when you load the program for execution, the system does not have
to search volume and data set directories to find the data sets or overlays. For a program
requiring a large number of data sets or overlays, the time saving could be significant.

Operator Commands and Utilities Reference describes the use of $PREFIND in detail.

You can use $MEMDISK to reduce the amount of time needed to load programs by placing
executable programs and $LOADER on the volume MEMDSK.

Operator Commands and Utilities Reference describes the use of $MEMDISK.

CU-130 SC34-0635

(;

o

c

c

Glossary o·f Terms arld Abbreviatjofls

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and
hardware terms pertain to EDK This glossary also serves as a supplement to the IBM Data Processing Glossary, GC20-1699.

$SYSLOGA, $SYSLOGB. The name of the alternate system
logging device. This device is optional but, if defined, should be
a terminal with keyboard capability, not just a printer.

$SYSLOG. The name of the system logging device or operator
station; must be defined for every system. It should be a terminal
with keyboard capability, not just a printer.

$SYSPRTR. The name of the system printer.

abend. Abnormal end-of-task. Termination of a task prior to its
completion because of an error condition that cannot be resolved
by recovery facilities while the task is executing.

ACCA. See asynchronous communications control adapter.

address key. Identifies a set of Series/1 segmentation registers
and represents an address space. It is one less than the partition
number.

address space. The logical storage identified by an address key.
An address space is the storage for a partition.

application program manager. The component of the Multiple
Terminal Manager that provides the program management
facilities required to process user requests. It controls the
contents of a program area and the execution of programs within
the area.

application program stub. A collection of subroutines that are
appended to a program by the linkage editor to provide the link
from the application program to the Multiple Terminal Manager
facilities.

asynchronous communications control adapter. An ASCII
terminal attached via #1610, #2091 with #2092, or #2095 with
#2096 adapters.

attention key. The key on the display terminal keyboard that, if
pressed, tells the operating system that you are entering a
command.

attention list. A series of pairs of 1 to 8 byte EBCDIC strings
and addresses pointing to EDL instructions. When the attention
key is pressed on the terminal, the operator can enter one of the
strings to cause the associated EDL instructions to be executed.

backup. A copy of data to be used in the event the original data
is lost or damaged.

base record slots. Space in an indexed file that is reserved for
based records to be placed.

base records. Records are placed into an indexed file while in
load mode or inserted in process mode with a new high key.

basic exchange format. A standard format for exchanging data
on diskettes between systems or devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series /1
Binary Synchronous Adapter. It determines the line
characteristics and provides dedicated storage for that line.

Glossary of Terms and Abbreviations CU-13I

Glossary of Terms and Abbreviations

block. (1) See data block or index block. (2) In the Indexed
Method, the unit of space used by the access method to contain
indexes and data.

block mode. The transmission mode in which the 3101 Display
Station transmits a data data stream, which has been edited and
stored, when the SEND key is pressed.

BSCAM. See binary synchronous communications access
method.

binary synchronous communications access method. A form
of binary synchronous I/O control used by the Series /1 to
perform data communications between local or remote stations.

BSCOOB. See binary synchronous device data block.

buffer. An area of storage that is temporarily reserved for use in
performing an input/output operation, into which data is read or
from which data is written. See input buffer and output buffer.

bypass label processing. Access of a tape without any label
processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method
for all transfers of information between main storage and indexed
files.

character image. An alphabetic, numeric, or special character
defined for an IBM 4978 Display Station. Each character image
is defined by a dot matrix that is coded into eight bytes.

character image table. An area containing the 256 character
images that can be defined for an IBM 4978 Display Station.
Each character image is coded into eight bytes, the entire table of
codes requiring 2048 bytes of storage.

character mode. The transmission mode in which the 3101
Display Station immediately sends a character when a keyboard
key is pressed.

cluster. In an indexed file, a group of data blocks that is pointed
to from the same primary-level index block, and includes the
primary-level index block. The data records and blocks
contained in a cluster are logically contiguous, but are not
necessarily physically contiguous.

COO (change of direction). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spool facility by erasing any spooled jobs
remaining in the spool data set from any previous spool session.

command. A character string from a source external to the
system that represents a request for action by the system.

common area. A user-defined data area that is mapped into the
partitions specified on the SYSTEM definition statement. It can

CU-132 SC34-0635

be used to contain control blocks or data that will be accessed by
more than one program.

completion code. An indicator that reflects the status of the
execution of a program. The completion code is displayed or
printed on the program's output device.

constant. A value or address that remains unchanged thoughout
program execution.

controller. A device that has the capability of configuring the
GPIB bus by designating which devices are active, which devices
are listeners, and which device is the talker. I n Series /1 G PI B
implementation, the Series/ 1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that
supervises a multipoint connection, and performs polling and
selection of its tributary stations. The status of control station is
assigned to a BSC line during system generation.

cross-partition service. A function that accesses data in two
partitions.

cross-partition supervisor. A supervisor in which one or more
supervisor modules reside outside of partition 1 (address space
0).

data block. In an indexed file, an area that contains control
information and data records. These blocks are a multiple of 256
bytes.

data record. In an indexed file, the records containing customer
data.

data set. A group of records within a volume pointed to by a
directory member entry in the directory for the volume.

data set control block (OSCB). A control block that provides
the information required to access a data set, volume or directory
using READ and WRITE.

data set shut down. An indexed data set that has been marked
(in main storage only) as unusable due to an error.

OCE. See directory control entry.

device data block (OOB). A control block that describes a disk
or diskette volume.

direct access. (1) The access method used to READ or WRITE
records on a disk or diskette device by specifying their location
relative the beginning of the data set or volume. (2) In the
Indexed Access Method, locating any record via its key without
respect to the previous operation. (3) A condition in terminal I/O
where a READTEXT or a PRINTEXT is directed to a buffer which
was previously enqueued upon by an IOCB.

C .. ' J

o

c

c

directory. (1) A series of contiguous records in a volume that
describe the contents in terms of allocated data sets and free
space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free
space. (3) For the Indexed Access Method Version 2, a data set
that defines the relationship between primary and secondary
indexed files (secondary index support).

directory control entry (DCE). The first 32 bytes of the first
record of a directory in which a description of the directory is
stored.

directory member entry (OM E). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978,4979, or 3101 display terminal or
similar terminal with a keyboard and a video display.

DME. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of storage that is appended to a
program when it is loaded.

end-of-data indicator. A code that signals that the last record of
a data set has been read or written. End-of-data is determined
by an end-of-data pointer in the DME or by the physical end of
the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor
that interprets EDL instructions and performs the function
specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The marker signals that the tape
is nearly full.

enter key. The key on the display terminal keyboard that, if
pressed, tells the operating system to read the information you
entered.

event control block (ECB). A control block used to record the
status (occurred or not occurred) of an event; often used to
synchronize the execution of tasks. ECBs are used in conjunction
with the WAIT and POST instructions.

Event Driven language (EDl). The language for input to the
Event Driven Executive compiler ($EDXASMj, or the Macro and
Host assemblers in conjunction with the Event Driven Executive
macro libraries. The output is interpreted by the Event Driven
Executive emulator.

EXIO (execute input or output). An EDL facility that provides
user controlled access to Series/1 input/output devices.

external label. A label attached to the outside of a tape that
identifies the tape visually. It usually contains items of
identification such as file name and number, creation data,
number of volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic
EBCDIC name for an entry point or data field that is not defined
within the module that references the name.

FCA. See file control area.

FCB. See file control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with data set, it usually refers to
an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describes a file access request.

file control block (FCB). The first block of an indexed file. It
contains descriptive information about the data contained in the
file.

file control block extension. The second block of an indexed
file. It contains the file definition parameters used to define the
file.

file manager. A collection of subroutines contained within the
program manager of the Multiple Terminal Manager that provides
common support for all disk data transfer operations as needed
for transaction-oriented application programs. It supports
indexed and direct files under the control of a single callable
function.

floating point. A positive or negative number that can have a
decimal point.

formatted screen image. A collection of display elements or
display groups (such as operator prompts and field input names
and areas) that are presented together at one time on a display
device.

free pool. In an indexed data set, a group of blocks that can be
used for either data blocks or index blocks. These differ from
other free blocks in that these are not initially assigned to specific
logical positions in the file.

free space. In an indexed file, records blocks that do not
currently contain data, and are available for use.

free space entry (FSE). An 8-byte directory entry defining an
area of free space within a volume or a device.

FSE. See free space entry.

general purpose interface bus. The IEEE Standard 488-1975
that allows various interconnected devices to be attached to the
GPIB adapter (RPQ 002118).

Glossary of Terms and Abbreviations CU-133

Glossary of Terms and Abbreviations

GPIB. See general purpose interface bus.

group. A unit of 100 records in the spool data set allocated to a
spool job.

H exchange format. A standard format for exchanging data on
diskettes between systems or devices.

host assembler. The assembler licensed program that executes
in a 370 (host) system and produces object output for the
Series /1. The source input to the host assembler is coded in
Event Driven Language or Series/1 assembler language. The
host assembler refers to the System/370 Program Preparation
Facility (5798-NNQ).

host system. Any system whose resources are used to perform
services such as program preparation for a Series/1. It can be
connected to a Series/1 by a communications link.

IACB. See indexed access control block.

IAR. See instruction address register.

ICB. See indexed access control block.

liB. See interrupt information byte.

image store. The area in a 4978 that contains the character
image table.

immediate data. A self-defining term used as the operand of an
instruction. It consists of numbers, messages or values which
are processed directly by the computer and which do not serve as
addresses or pointers to other data in storage.

index. In an indexed file, an ordered collection of pairs of keys
and pointers, used to sequence and locate records.

index block. In an indexed file, an area that contains control
information and index entries. These blocks are a multiple of 256
bytes.

indexed access control block (IACB/ICB). The control block
that relates an application program to an indexed file.

indexed access method. An access method for direct or
sequential processing of fixed-length records by use of a
record's key.

indexed data set. Synonym for indexed file.

indexed file. A file specifically created, formatted and used by
the Indexed Access Method. An indexed file is sometimes called
an indexed data set.

index entry. In an indexed file, a key-pointer pair, where the
pointer is used to locate a lower-level index block or a data block.

CU-134 SC34-0635

index register (#1, #2). Two words defined in EDL and
contained in the task control block for each task. They are used
to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (I0CB). A control block containing
information about a terminal such as the symbolic name, size and
shape of screen, the size of the forms in a printer, or an optional
reference to a user provided buffer.

instruction address register (lAR). The pointer that identifies
the machine instruction currently being executed. The Series/1
maintains a hardware IAR to determine the Series/1 assembler
instruction being executed. It is located in the level status block
(LSB).

integer. A positive or negative number that has no decimal
point.

interactive. The mode in which a program conducts a
continuous dialogue between the user and the system.

internal label. An area on tape used to record identifying
information (similar to the identifying information placed on an
external label). Internal labels are checked by the system to
ensure that the correct volume is mounted.

interrupt information byte (liB). In the Multiple Terminal
Manager, a word containing the status of a previous input/ output
request to or from a terminal.

invoke. To load and activate a program, utility, procedure, or
subroutine into storage so it can run.

job. A collection of related program execution requests
presented in the form of job control statements, identified to the
jobstream processor by a JOB statement.

job control statement. A statement in a job that specifies
requests for program execution, program parameters, data set
definitions, sequence of execution, and, in general, describes the
environment required to execute the program.

job stream processor. The job processing facility that reads job
control statements and processes the requests made by these
statements. The Event Driven Executive job stream processor is
$JOBUTIL.

jumper. (1) A wire or pair of wires which are used for the
arbitrary connection between two circuits or pins in an
attachment card. (2) To connect wire(s) to an attachment card or
to connect two circuits.

key. In the Indexed Access Method, one or more consecutive
characters used to identify a record and establish its order with
respect to other records. See also key field.

"

c

c

o

key field. A field, located in the same position in each record of
an indexed file, whose content is used for the key of a record.

level status block (LSB). A Series/ 1 hardware data area that
contains processor status. This area is eleven words in length.

library. A set of contiguous records within a volume. It contains
a directory, data sets and / or available space.

line. A string of characters accepted by the system as a single
input from a terminal; for example, all characters entered before
the carriage return on the teletypewriter or the ENTER key on the
display station is pressed.

link edit. The process of resolving external symbols in one or
more object modules. A link edit is performed with $EDXLlNK
whose output is a loadable program.

listener. A controller or active device on a GPIB bus that is
configured to accept information from the bus.

load mode. In the Indexed Access Method, the mode in which
records are loaded into base record slots in an indexed file.

load module. A single module having cross references resolved
and prepared for loading into storage for execution. The module
is the output of the $UPDATE or $UPDATEH utility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate where the first record is written.

lock. In the Indexed Access Method, a method of indicating that
a record or block is in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the
TOPM, BOTM, LEFTM and RIGHTM parameters of the
TERMINAL or IOCB statement.

LSB. See level status block.

mapped storage. The processor storage that you defined on the
SYSTEM statement during system generation.

member. A term used to identify a named portion of a
partitioned data set (PDS). Sometimes member is also used as a
synonym for a data set. See data set.

menu. A formatted screen image containing a list of options.
The user selects an option to invoke a program.

menu-driven. The mode of processing in which input consists of
the responses to prompting from an option menu.

message. In data communications, the data sent from one
station to another in a single transmission. Stations
communication with a series of exchanged messages.

multifile volume. A unit of recording media, such as tape reel or
disk pack, that contains more than one data file.

multiple terminal manager. An Event Driven Executive licensed
program that provides support for transaction-oriented
applications on a Series/1. It provides the capability to define
transactions and manage the programs that support those
transactions. It also manages multiple terminals as needed to
support these transactions.

multivolume file. A data file that, due to its size, requires more
than one unit of recording media (such as tape reel or disk pack)
to contain the entire file.

new high key. A key higher than any other key in an indexed
file.

nonlabeled tapes. Tapes that do not contain identifying labels
(as in standard labeled tapes) and contain only files separated by
tapemarks.

null character. A user-defined character used to define the
unprotected fields of a formatted screen.

option selection menu. A full screen display used by the
Session Manager to point to other menus or system functions,
one of which is to be selected by the operator. (See primary
option menu and secondary option menu.)

output buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to
subsequent transaction programs.

overlay. The technique of reusing a single storage area allocated
to a program during execution. The storage area can be reused
by loading it with overlay programs that have been specified in
the PROGRAM statement of the program or by calling overlay
segments that have been specified in the OVERLAY statement of
$EDXLlNK.

overlay area. A storage area within a program reserved for
overlay programs specified in the PROGRAM statement or
overlay segments specified in the OVERLAY statement in
$EDXLlNK.

overlay program. A program in which certain control sections
can use the same storage location at different times during
execution. An overlay program can execute concurrently as an
asynchronous task with other programs and is specified in the
EDL PROGRAM statement in the main program.

overlay segment. A self-contained portion of a program that is
called and sequentially executes as a synchronous task. The
entire program that calls the overlay segment need not be
maintained in storage while the overlay segment is executing. An
overlay segment is specified in the OVERLAY statement of
$EDXLlNK or $XPSLlNK (for initialization modules).

overlay segment area. A storage area within a program or
supervisor reserved for overlay segments. An overlay segment
area is specified with the OVLAREA statement of $EDXLlNK.

Glossary of Terms and Abbreviations CU-135

Glossary of Terms and Abbreviations

parameter selection menu. A full screen display used by the
Session Manager to indicate the parameters to be passed to a
program.

partition. A contiguous fixed-sized area of storage. Each
partition is a separate address space.

performance volume. A volume whose name is specified on
the DISK definition statement so that its address is found during
I PL, increasing system performance when a program accesses
the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a
multipoint control station asks a tributary if it can receive
messages.

precISion. The number of words in storage needed to contain a
value in an operation.

prefind. To locate the data sets or overlay programs to be used
by a program and to store the necessary information so that the
time required to load the prefound items is reduced.

r rimary file. An indexed file containing the data records and
primary index.

primary file entry. For the Indexed Access Method Version 2,
an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used
to access data records when the primary key is specified.

primary key. In an indexed file, the key used to uniquely identify
a data record.

primary-level index block. In an indexed file, the lowest level
index block. It contains the relative block numbers (RBNs) and
high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first full screen display provided by
the Session Manager.

primary station. I n a Series /1 to Series /1 attachment, the
processor that control communication between the two
computers. Contrast with secondary station.

primary task. The first task executed by the supervisor when a
program is loaded into storage. It is identified by the PROGRAM
statement.

priority. A combination of hardware interrupt level priority and a
software ranking within a level. Both primary and secondary
tasks will execute asynchronously within the system according to
the priority assigned to them.

CU-136 SC34-0635

process mode. In the Indexed Access Method, the mode in
which records can be retrieved, updated, inserted or deleted.

processor status word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further
processing and (2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more
tasks defined by a PROGRAM statement; the unit that is loaded
into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a
program that identifies the primary task, data sets, storage
requirements and other resources required by a program.

program/storage manager. A component of the Multiple
Terminal Manager that controls the execution and flow of
application programs within a single program area and contains
the support needed to allow multiple operations and sharing of
the program area.

protected field. A field in which the operator cannot use the
keyboard to enter, modify, or erase data.

PSW. See processor status word.

aCB. See queue control block.

aD. See queue descriptor.

aE. See queue element.

queue control block (aCB). A data area used to serialize access
to resources that cannot be shared. See serially reusable
resource.

queue descriptor (aD). A control block describing a queue built
by the DEFINEQ instruction.

queue element (aE). An entry in the queue defined by the
queue descriptor.

quiesce. To bring a device or a system to a halt by rejection of
new requests for work.

quiesce protocol. A method of communication in one direction
at a time. When sending node wants to receive, it releases the
other node from its quiesced state.

record. (1) The smallest unit of direct access storage that can be
accessed by an application program on a disk or diskette using
READ and WRITE. Records are 256 bytes in length. (2) In the
Indexed Access Method, the logical unit that is transferred
between $IAM and the user's buffer. The length of the buffer is
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,
message length) can be variable.

recovery. The use of backup data to re-create data that has
been lost or damaged.

o

o

o

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.
Normally, two reflective markers are used on each reel of tape.
One indicates the beginning of the recording area on the tape
(load point), and the other indicates the proximity to the end of
the recording area (EOT) on the reel.

relative block address (RBA). The location of a block of data on
a 4967 disk relative to the start of the device.

relative record number. An integer value identifying the
position of a record in a data set relative to the beginning of the
data set. The first record of a data set is record one, the second
is record two, the third is record three.

relocation dictionary (RlD). The part of an object module or
load module that is used to identify address and name constants
that must be adjusted by the relocating loader.

remote management utility control block (RCB). A control
block that provides information for the execution of remote
management utility functions.

reorganize. The process of copying the data in an indexed file to
another indexed file in a manner that rearranges the data for more
optimum processing and free space distribution.

restart. Starting the spool facility w the spool data set contains
jobs from a previous session. The jobs in the spool data set can
be either deleted or printed when the spool facility is restarted.

return code. An indicator that reflects the results of the
execution of an instruction or subroutine. The return code is
usually placed in the task code word (at the beginning of the task
control block).

roll screen. A display screen which is logically segmented into
an optional history area and a work area. Output directed to the
screen starts display at the beginning of the work area and
continues on down in a line-by-line sequence. When the work
area gets full, the operator presses ENTER/SEND and its contents
are shifted into the optional history area and the work area itself
is erased. Output now starts again at the beginning of the work
area.

SBIOCB. See sensor based I/O control block.

second-level index block. In an indexed data set, the
second-lowest level index block. It contains the addresses and
high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an
indexed file used to access data records by their secondary keys.
Sometimes called a secondary file.

secondary index entry. For the Indexed Access Method
Version 2, this an an entry in the directory describing a secondary
index.

secondary key. For the Indexed Access Method Version 2, the
key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the second in
a series of predefined procedures grouped together in a
hierarchical structure of menus. Secondary option menus provide
a breakdown of the functions available under the session
manager as specified on the primary option menu.

secondary task. Any task other than the primary task. A
secondary task must be attached by a primary task or another
secondary task.

secondary station. In a Series/1 to Series/1 attachment, the
processor that is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or
diskette. A sector on a 4962 or 4963 disk is equivalent to an
Event Driven Executive record. On a 4964 or 4966 diskette, two
sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the
multipoint control station asks a tributary station if it is ready to
send messages.

self-defining term. A decimal, integer, or character that the
computer treats as a decimal, integer, or character and not as an
address or pointer to data in storage.

sensor based I/O control block (SBIOCB). A control block
containing information related to sensor I/O operations.

sequential access. The processing of a data set in order of
occurrence of the records in the data set. (1) In the Indexed
Access Method, the processing of records in ascending collating
sequence order of the keys. (2) When using READ/WRITE, the
processing of records in ascending relative record number
sequence.

serially reusable resource (SRR). A resource that can only be
accessed by one task at a time. Serially reusable resources are
usually managed via (1) a QCB and ENQ/DEO statements or (2) an
ECB and WAIT/POST statements.

service request. A device generated signal used to inform the
GPIB controller that service is required by the issuing device.

session manager. A series of predefined procedures grouped
together as a hierarchical structure of menus from which you
select the utility functions, program preparation facilities, and
language processors needed to prepare and execute application
programs. The menus consist of a primary option menu that
displays functional groupings and secondary option menus that
display a breakdown of these functional groupings.

shared resource. A resource that can be used by more than one
task at the same time.

Glossary of Terms and Abbreviations CU-I37

Giossary of Terms and Abbreviations

shut down. See data set shut down.

source module/program. A collection of instructions and
statements that constitute the input to a compiler or assembler.
Statements may be created or modified using one of the text
editing facilities.

spool job. The set of print records generated by a program
(including any overlays) while engueued to a printer designated as
a spool device.

spool session. An invocation and termination of the spool
facility.

spooling. The reading of input data streams and the writing of
output data streams on storage devices, concurrently with job
execution, in a format convenient for later processing or output
operations.

SRQ. See service request.

stand-alone dump. An image of processor storage written to a
diskette.

stand-alone dump diskette. A diskette supplied by IBM or
created by the $DASDI utility.

standard labels. Fixed length 80-character records on tape
containing specific fields of information (a volume label
identifying the tape volume, a header label preceding the data
records, and a trailer label following the data records).

static screen. A display screen formatted with predetermined
protected and unprotected areas. Areas defined as operator
prompts or input field names are protected to prevent accidental
overlay by input data. Areas defined as input areas are not
protected and are usually filled in by an operator. The entire
screen is treated as a page of information.

station. In BSCAM communications, a BSe line attached to the
Series /1 and functioning in a point-to- point or multipoint
connection. Also, any other terminal or processor with which the
Series/1 communicates.

subroutine. A sequence of instructions that may be accessed
from one or more points in a program.

supervisor. The component of the Event Driven Executive
capable of controlling execution of both system and application
programs.

system configuration. The process of defining devices and
features attached to the Series/1.

SYSGEN. See system generation.

system generation. The processing of defining I/O devices and
selecting software options to create a supervisor tailored to the
needs of a specific Series/ 1 hardware configuration and
application.

CU-138 SC34-0635

system partition. The partition that contains the root segment
of the supervisor (partition number 1, address space 0).

talker. A controller or active device on a GPIB bus that is
configured to be the source of information (the sender) on the
bus.

tape device data block (TOB). A resident supervisor control
block which describes a tape volume.

tapemark. A control character recorded on tape used to
separate files.

task. The basic executable unit of work for the supervisor. Each
task is assigned its own priority and processor time is allocated
according to this priority. Tasks run independently of each other
and compete for the system resources. The first task of a
program is the primary task. All tasks attached by the primary
task are secondary tasks.

task code word. The first two words (32 bits) of a task's TCB;
used by the emulator to pass information from system to task
regarding the outcome of various operations, such as event
completion or arithmetic operations.

task control block (TeB). A control block that contains
information for a task. The information consists of pointers, save
areas, work areas, and indicators required by the supervisor for
controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that
manages the dispatching and switching of tasks.

TeB. See task control block.

terminal. A physical device defined to the EDX system using the
TERMINAL configuration statement. EDX terminals include
directly attached IBM displays, printers and devices that
communicate with the Series/ 1 in an asynchronous manner.

terminal control block (eeB). A control block that defines the
device characteristics, provides temporary storage, and contains
links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal's attributes and the program
manager operating under the Multiple Terminal Manager. It is
used for processing requests between the terminal servers and
the program manager.

terminal screen manager. The component of the Multiple
Terminal Manager that controls the presentation of screens and
communications between terminals and transaction programs.

terminal server. A group of programs that perform all the
input/output and interrupt handling functions for terminal devices
under control of the Multiple Terminal Manager.

o

o

terminal support. The support provided by EDX to manage and
control terminals. See terminal.

timer. The timer features available with the Series/1 processors.
Specifically, the 7840 Timer Feature card (4955 only) or the native
timer (4952, 4954, and 4956). Only one or the other is supported
by the Event Driven Executive.

trace range. A specified number of instruction addresses within
which the flow of execution can be traced.

transaction oriented applications. Program execution driven by
operator actions, such as responses to prompts from the system.
Specifically, applications executed under control of the Multiple
Terminal Manager.

transaction program. See transaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager
display screen (menu) offering the user a choice of functions,
such as reading from a data file, displaying data on a terminal, or
waiting for a response. Based upon the choice of option, the
application program performs the requested processing
operation.

tributary station. In BSCAM communications, the stations
under the supervision of a control station in a multipoint
connection. They respond to the control station's polling and
selection.

unmapped storage. The processor storage in your processor
that you did not define on the SYSTEM statement during system
generation.

unprotected field. A field in which the operator can use the
keyboard to enter, modify or erase data. Also called
non-protected field.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly
or compilation, or the output of the linkage editor, into a form that
can be loaded into storage for program execution and to update
the directory of the volume on which the loadable program is
stored.

user exit. (1) Assembly language instructions included as part of
an EDL program and invoked via the USER instruction. (2) A
point in an IBM-supplied program where a user written routine
can be given control.

variable. An area in storage, referred to by a label, that can
contain any value during program execution.

vary offline. (1) To change the status of a device from online to
offline. When a device is offline, no data set can be accessed on
that device. (2) To place a disk or diskette in a state where it is
unknown by the system.

vary online. To place a device in a state where it is available for
use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using
$INITDSK or $TAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume on a disk or diskette.

volume label. A label that uniquely identifies a single unit of
storage media.

Glossary of Terms and Abbreviations CU-139

c

CU-140 SC34-0635

o

c

o

Index

The following index contains entries for this book only. See the Library Guide and Common Index for a Common
Index to all Event Driven Executive books.

Special Characters

&PARMnn statements, session manager CU-25
&SAVEnn statements, session manager CU-26, CU-28
$$EDXIT task error exit routine

extending CU-46
$CMDTABL, emulator command table CU-101
$COMPRES utility

how to speed up CU-129
$COPYUT1 utility

how to speed up CU-129
$EDXASM Event Driven Language compiler

accessing the common area CU-87
control statements

STOP statement CU-100
*COMMENT statement CU-100
*COPYCOD statement CU-100
*EXTLIB statement CU-100
*OVERLAY statement CU-99

creating an overlay program CU-85
debugging overlay programs CU-106
instruction parsing CU-88
language-control data set CU-97

$EDXL language control data set
creating an extension CU-97
in ASMTERROR statement CU-112

$IDEF statement, syntax CU-111
$INDEX subroutine, syntax CU-117
$INITIAL programs

coding considerations CU-56
how to create CU-56
sample programs CU-57

how to determine IPL type CU-57
loading three programs CU-57
setting time and date CU-57

$JOBUTIL utility
writing statements for session manager CU-29

$MEMDISK utility
performance techniques CU-129

$PROG1, program linked to supervisor
coding considerations CU-59
how to link-edit CU-59

$SMMPRIM primary option menu
adding new options CU-16

$SMPPRIM primary procedure CU-33
$U operator command

creating CU-5
designing and coding CU-5
examples CU-7, CU-8, CU-11, CU-12
link-editing with supervisor CU-10
testing CU-9

STOP statement CU-100
*COMMENT statement CU-100
*COPYCOD statement CU-100
*EXTLIB statement CU-100
*OVERLAY statement CU-99

Index CU-141

A

address, storing sublist element CU-94
allocate

data set
using session manager CU-43

alternate session menu, session manager
how to create CU-41

ASMCOMM, compiler common area CU-87
ASMERROR statement, syntax CU-112
assembler program for NEWCMD CU-103

bit settings

bits
instruction flag CU-91, CU-117

defining stop (EXIO) CU-71
storing for new EDL instruction CU-93
storing with $INDEX subroutine CU-117

BLDTXT subroutine, syntax CU -119
branch

to CMDSETUP CU-61, CU-103
buffer overrun conditions

detecting CU-69
handling CU-73
resetting CU-75

building object text element CU-119
byte string, moving CU-123

character string
evaluating CU-120

CMDSETUP emulator entry point
branching to CU-61, CU-103
register conventions CU -103

code, defining operation CU-101
coding considerations, Series /1 assembler CU -102
command table, emulator

add EDL operation code CU-101
reserved operation codes CU-84

command, creating an operator CU-5
common area, accessing compiler CU-87
compile

$EDXASM overlay program CU-97
new EDL instructions CU-104
speeding up CU-130

compiler common area, accessing CU-87
compress, faster volume CU -129
continuous receive, defining CU-70, CU-71
control data set, language CU-97
controller busy, handling CU-72
controller end interrupt, handling CU-68

CU-142 SC34-0635

copy code data set, defining CU-100
copy code, $EDXASM overlay

C$INDEX CU-117
CBLDTXT CU-119
CLABELS CU-121
COPCHECK CU-124
MOVEBYTE CU-123

copy, faster data set CU-129
create

$U operator command CU-5
EDL instruction CU-83
session manager menus/options CU-13

customization, definition of CU-1

data set
allocate

session manager CU-43
creating language control CU-97
delete

session manager CU-44
gaining faster access to CU -127

data set copy, faster CU-129
data set directory

sorting CU-127
debugging $EDXASM overlay programs CU-106
define

EDL operation code CU-101
labels CU-121

delete
session manager data sets CU-44

design
$U operator commands CU-7
parameter input menus CU-23

designing operator commands CU-8
device end interrupt, handling CU-67
device interrupt handling

preparing for CU-67
device support, EXIO

how to add CU-63
planning

control blocks CU-64
device interrupts CU-64
error detection CU-65
initialization CU-65
mUltiple applications CU-65
multiple devices CU-65
preparing EXIO CU-64
timing CU-65

sample program CU-77
system generation requirements CU-66

directory entry, sorting CU-127
disk

improving performance CU-129

()

f ,

(:

o

c

o

EDL (Event Driven Language)
instruction processor CU-103

EDL instructions, creating
creating language control data set extension CU-97
creating the overlay program

building model instruction CU-86
building object text CU-91
syntax checking CU-87

creating unique labels CU-107
debugging overlay programs CU-106
defining the operation code CU -101
defining the requirements CU-84
generating a source statement CU-108
testing the instruction CU -1 04

element
object text CU-91, CU-113
operand list CU-89, CU-91
sublist CU-91, CU-116

emulator command table
accessing CU-101

end
an overlay program CU-95
language control data set CU-100

error messages
entering EDL instruction syntax CU-97
issuing EDL instruction syntax CU-90, CU-112

errors
reporting exception CU-45
reporting EXIO CU-76

event
posting (ECBs) CU-67

exception interrupt
handling CU-69

EXIO device support
interrupt handler CU-67
open a device CU - 70
planning

exit

control blocks CU-64
device interrupts CU-64
error detection CU-65
initialization CU-65
multiple applications CU-65
multiple devices CU-65
timing CU-65

preparing a device CU-70
reading data CU-73
reasons for using CU-63
sample program CU-77
system generation requirements CU-66
writing data CU-72

creating a task error CU-45
from $EDXASM overlay program CU-95

expanded mode, defining CU-70
extension data set, defining CU-100
extension, language control data set CU-98

fixed-head
volume, specifying CU-128

flag bits, EDL instruction
register usage CU-117
sample EDL instruction CU-91
storing CU-93,CU-117

GETVAL subroutine, syntax CU-120

handling EXIO device interrupts CU-67
hardware status area, defining CU-48

I/O (input/ output)
improving disk CU-129
improving tape CU-129

IDCB statement
read operation CU-73
write operation CU-73

index registers
indicating usage CU -93, CU -117

indexable operands, indicating CU-93
initialization routines, adding

designing and coding CU-60
EDL example CU-60
link-editing CU-61
new EDL operation code CU-101
Series/1 assembler example CU-61
system generation requirements CU-62

input string, parsing CU-126
instructions

building model EDL CU-86, CU-111
checking syntax CU-90, CU-124
compiling new EDL CU-104
creating new EDL CU-83
processor, CMDSETUP CU-103
storing the length CU -103
testing new EDL CU-104

interrupt
attaching interrupt tasks CU-70
coding tasks to handle EXIO CU-67
handling

controller end CU-68
device end CU-67
exception CU-69

handling tasks CU-67
preparing for device CU-67

IPL (initial program load)
determining type of CU-57

Index CU-143

Index

running programs at CU-55

K

keyword operand
defining CU-86
processing CU -94

L

label types, sublist element CU-121
LABELS subroutine

label definition CU-121
label resolution CU -122
syntax CU-121

language control data set
contents CU-97
control statements CU-99
creating CU-97
ending CU-100

length, storing instruction CU-103
load time, reducing program CU-130
loading programs

at IPL with $INITIAL CU-56
with parameters CU-33

M

menus, session manager
naming conventions CU-14
parameter input

creating CU-22
example CU-23
saving CU-23

primary option
example CU-17
saving CU-17
updating CU -16

secondary option
creating CU-20
example CU-19
names CU-18
saving CU-19, CU-21
updating CU-18

message numbers, syntax error CU-97
mode

expanded CU-70
setting transmission CU-70

model, building instruction CU-86, CU-111
MOVEBYTE subroutine, syntax CU-123

CU-144 SC34-0635

N

null object text elements, storing CU-94

o

object list element, address CU -124
object text element

building CU-91, CU-119
defining CU-93, CU-113
storing null CU-94
storing the count CU-95
types CU-94, CU-113

OPCHECK subroutine, syntax CU-124
open

EXIO device CU-70
operand

defining keyword CU-86
defining positional CU-86
indicating indexable CU-93
maximum number of CU-111
processing keyword CU-94
processing positional CU-93

operand list element CU-91
operation codes

defining new EDL CU-101
flag bit meanings for CU-91
reserved EDL CU-84

operator commands
$U - user

adding new CU-5
designing and coding CU-5
examples CU-7, CU--8, CU-11
link-editing with supervisor CU-10
testing CU-9

examples CU-12
option menu

primary
example CU-17
saving CU-17
updating CU-16

secondary
creating CU-20
example CU-19, CU-21
saving CU-19, CU-21
updating CU-18

OTE statement, syntax CU-113
overlay program, $EDXASM

compiling CU-97
creating CU-85
creating unique labels CU-107
debugging CU-106
defining the name CU-99
ending the CU-95
generating source statements CU-108
sample CU-96
statements CU-111
subroutines CU-117

c

f

\.

0 ;" ~.

o

p

parameter input menu
creating CU-22
example CU-23, CU-24
saving CU-23
specifying programs that use CU-35
statements used to retrieve input from CU-25

parameter passing
&PARMnn CU-25

parameter saving, &SAVEnn CU-26
PARAMETER section, session manager CU-25
parameters

referring to CU-25
parsing input strings CU-126
parsing, instruction CU-87
performance techniques

$MEMDISK utility CU-129
compressing a volume CU-129
copying data sets CU-129
faster data set access C U -127
faster volume access CU -128

defining DISK statements CU-128
specifying fixed-head volumes CU-128
specifyi ng performa nce vol u me C U -1 28

improving disk I/O CU-129
improving tape I/O CU-129
reducing compilation time CU-130
reducing program load time CU -130

performance volume
specifying CU -128

positional operand
defining CU-86
processing CU-93

post
events (ECBs) CU-67

primary option menu, session manager
adding options to CU-16
example CU-17
saving CU-17

primary procedure, updating CU-33
procedure, session manager

examples CU-30
naming conventions CU-14
primary

program with no parameters CU-33
programs using parameter input menu CU-35
programs using secondary option menu CU-36
saving CU-37
updating CU-33

saving CU-29
secondary

creating CU-40
example CU-39, CU-40
saving CU-21, CU-39, CU-40
updating CU-38

writing to pass parameters CU-25
program

execution at IPL CU-55
reducing load time CU-130

R

read
operation, EXIO CU-73

receive
continuous CU-70

registers
conventions

CMDSETUP CU-103
flag bits CU-117
usage, indicating index CU-93

resolving
labels, LABELS subroutine CU -122

save
a procedure CU-29
parameters, session manager CU-26

secondary option menu
examples CU-19, CU-21
how to create with $IMAGE CU-20
saving CU-19, CU-21
updating with $IMAGE CU-18

secondary procedure, updating/creating CU-38
session manager

allocating data sets CU-42, CU-43
alternate session menu

considerations CU-41
creating CU-41

deleting data sets CU-42, CU-44
naming conventions CU-14
parameter input menu

creating CU-22
example CU-23, CU-24
saving CU-23

primary option menu
adding options to CU -16
example CU-17
saving CU-17

primary procedure, updating
no parameters used CU-33
parameter input menu only CU-35
reading in $SMPPRIM CU-33
saving CU-37
secondary option menu used CU-36

procedure, how to write
&PARMnn statements CU-25
&SAVEnn statements CU-26
$JOBUTIL statements CU-29
examples CU-30, CU-31, CU-32
PARAMETER section CU-25

secondary option menu
adding options to CU-18
creating CU-20
example CU-19, CU-21
saving CU -19

Index CU-14S

secondary procedure
creating CU -40
example CU-39, CU-40
saving CU-39, CU-40
updating CU-38

storage requirements CU-13
SLE sublist element, $EDXASM

format CU-88
instruction parsing CU-88
syntax CU-116

SLPARSE subroutine, syntax CU -126
source statement

parsing CU-87
syntax checking CU -124

statements
$EDXASM overlay program CU-111
language control data set CU-97

stop bits, defining CU-71
store

instruction length C U -1 03
new instruction flag bits CU-93
object text element type CU-94
sublist element CU-93
sublist element address CU-94

string evaluation, character CU-120
sublist element

after$IDEF expansion CU-124
contents CU-88
defining CU -116
label types CU-121
output of OPCHECK subroutine CU-91
output of SLPARSE subroutine CU-126
storing the address CU-93, CU-94
types CU-116

subroutines
$EDXASM overlay program CU-117
setting continuous receive CU-70

syntax
checking CU-90,CU-124
error exit, $IDEF CU-111
error messages, entering CU-97
error messages, issuing CU -112

system
improving performance CU-127

system generation
$PROG1 routines CU-59

CU-146 SC34-0635

tape

EXIO device CU-66
new EDL instruction CU-104
new operator command CU-10

improving performance CU -129
task

interrupt handling CU-67
task error exit routine

considerations CU-52
creating your own CU-48
defining task error exit control block (TEECB) CU-48
extending the routine $$EDXIT

coding considerations CU-47
link-editing CU-47
sample output CU-46

how it works CU-53
sample program CU-50

TEECB, task error exit control block CU-48
text

building object CU-91
time and date

obtain with $INITIAL CU-57
transmission mode, setting CU - 70
type, object text element CU-94

volume
access, faster C U -128
compress, faster CU -129
specifying fixed-head CU-128
specifying performance CU-128

write
EXIO operation CU-72

writing assembler code for instructions CU-102

o

c

o

-=--=-- --=.. =-
= - -:E~~ Series/1 Event Driven Executive

Publications Order Form

Instructions:

1. Complete the order form, supplying all of the

requested information. (Please print or type.)

2. If you are placing the order by phone, dial

'-SOO-IBM-246S.

3. If you are mailing your order, fold the order

form as indicated, seal with tape, and mail.
We pay the postage.

Ship to:

Name:

Address:

City:

State: Zip:

Bill to:

Customer number:

Name:

Address:

City:

State: Zip:

Your Purchase Order No.:

Phone: (

Signature:

Date:

Order:

Description

He~('rence bock::,

Set of the following six books. To order

individual copies, use the following order

numbers.

Communications Guide

Extended Address Mode and
Performance Analyzer User Guide

Installation and System Generation Guide

Language Reference

Library Guide and Common Index

Messages and Codes

Operator Commands and Utilities Reference

Set of the following four books and reference
cards. To order individual copies, use the
following order numbers.

Customization Guide

Event Driven Language Programming Guide

Operation Guide

Problem Determination Guide

Language Reference Card

Operator Commands and Utilities

Reference Card

Conversion Charts Reference Card

Reference Card Envelope

Set of three reference cards and storage

envelope. (One set is included with order

number S BO F-1627)

Binders:

3-ring easel binder with 1 inch rings

3-ring easel binder with 2 inch rings

Standard 3-ring binder with 1 inch rings

Standard 3-ring binder with 1 1/2 inch rings

Standard 3-ring binder with 2 inch rings

Diskette binder (Holds eight 8-inch diskettes.)

Order
number

SBOF-1627

SC34-0638

SC34-0591

SC34-0646

SC34-0643

SC34-0645

SC34-0636

SC34-0644

SBOF-1628

SC34-0635

SC34-0637

SC34-0642

SC34-0639

SX34-0165

SX34-0164

SX34-0163

SX34-0166

SBOF~1629

SR30-0324

SR30-0327

SR30-0329

SR30-0330

SR30-0331

SB30-0479

Oty.

I
I

Publications Order Form I
I
(j

~
~

" 0
Ci
:P
0
:I
\C

r:
:I
/D

Fold and tape Please Do Not Staple Fold and tape

.. ~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
1 Culver Road
Dayton, New Jersey 08810

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

.. J
Fold and tape Please Do Not Staple Fold and tape

--------- - ------- - ---- - - -----------,-
®

International Business Machines Corporation

()

c

....;
c
OJ

E
Q.

::l
0-
OJ

O'l
C
+-'

~
C1J

E
\J

~
C1J

E
0
+-'
::l
C1J

C
-:5
~
IJ)

E
OJ

..0
0

0.
~
::l
C1J
U

C
C1J
U
IJ)

OJ

Q.
C1J

ci1

OJ
+-'
0

Z

o

E
0

'+-
IJ)

.c
+-'

ro
~
0
+-'

OJ
Q.
C1J
+-'

\J
OJ

E
E
::l
O'l
....
OJ
.c
+-'
0

0
OJ
>

'';:;
IJ)

C

~
~
::l
~
~
Q.

~
::l

~
C1J
OJ

Ci:

IBM Series/l Event Driven Executive
Customization Guide

Order No. SC34-0635-0

READER'S
COMMENT
FORM

This Illanual is part of a library that serves as a reference source for systellls analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemcd
appropria tc.

Note: Copies offBIIf pllhlicatiollS are lIot stocked at the locatioll to which this jr>rln is addressed.
Please dircc tallY re(/lics ts f()r copies of pu hlica tiOIlS, or f()r assis tallcc ill llsing your f BM sys tem, ta
your IBM representative or to the IBM hrallc/z office sen'ingyollr locality .

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0635-0
Printed in U.S.A.

Reader's Comment Form

Fold and tape Please Do Not Staple

I" II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WI LL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

................. L .. .
Fold and tape Please Do Not Staple Fold and tape

--------- - ------- - ---- - - ----------_.-
®

I

I
I
I
I
(")
c

c

(,

(

I

--------= :...: == - - ---
=~=';'=

(!)

International Business Machines Corporation

SC34-0635-0
Program Numbers: 5719-XS5,5719-ASA

File Number: S1-40
Pr inted in U .S.A .

•

SC34-063S-0

