Series/1

SC34-0771-0

File No. S1-30

IBM Series/ 1
Event Driven Executive
Indexed Access Method
User’s Guide

Series/1

SC34-0771-0

File No. §1-30

IBM Series/ 1
Event Driven Executive
Indexed Access Method
User’s Guide

First Edition (May 1986)

This edition applies to the Event Driven Executive Indexed
Access Method, Version 2, Modification Level 1 (Program Number
5719-AM4) until otherwise indicated by new editions or technical
newsletters. Technical changes to the text for Version 2.1 are
indicated by vertical lines to the left of the changes.

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any
such changes will be reported in subsequent revisions or Techni-
cal Newsletters.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), pro-
gramming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address below. Requests for
copies of IBM publications should be made to your IBM represen-
tative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or
typographical errors. A form for reader comments is provided at
the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Information Develop-
ment, Department 28B (3405) , P. 0. Box 1328, Boca Raton,
Florida 33429-1328. IBM may use or distribute any of the infor-
mation you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue
to use the information you supply.

(c) Copyright International Business Machines Corporation 1986

GES ION

This document reflects the following changes.

Record Level Block I/0 and High Speed Block Reads -

On data block reads, you can instruct $IAM to bypass its own
buffer and read data into a buffer you specify in your applica-
tion program. Changes to the text for this addition appear
throughout the document.

Allocation of an indexed file with an application program -

You can now allocate and format a primary or secondary indexed
file from an application program using the new load module,
$IAMUT3. Changes to the text for this addition appear in a new
Chapter 6.

A vertical line in the left margin indicates new or changed material.

-lo
-e

iv

5C364-0771

AN

S

©

PREFACE

The material in this section is a guide to using this book. It defines
the purpose, audience, and content of the book as well as listing back-
ground materials and aids for using the book.

PURPOSE

This publication describes how to use the Indexed Access Method Version

2.1,

how to set up indexed files and how to develop application programs

using indexed files.

AUDIENCE

This manual is intended for use by:

Application designers who design applications that use the Indexed
Access Method Version 2.1.

Application programmers who develop applications that use the
Indexed Access Method Version 2.1.

Applications for the Series/l can be developed in several languages.
Unless otherwise noted in this section, material in this book is
intended for use in the development of applications in any of the fol-
lowing languages: COBOL, the Event Driven Language (EDL), and PL/1.

HOW THIS BOOK_ IS ORGANIZED

This book describes the Indexed Access Method in the following order:

Chapter 1, "Introduction"™ provides an overview of the Indexed
Access Method.

Chapter 2, "Using the Indexed Access Method,™ provides a brief
description of what indexed files are, how to set up an indexed
file, and application program request statements.

Chapter 3, "Defining Primary Index Files," describes the format of
the primary index file and how to use the $IAMUT1 utility to set up
your indexed files.

Chapter %, "Loading the Primary Index File," describes loading data
records into a primary index file using an application program.

Chapter 5, "Building a Secondary Index,"™ provides information on
using secondary keys, what a secondary index is and does, and how to
set up and load a secondary index.

Chapter 6, "Allocating Indexed Files from an Application Program,"
describes how to use $IAMUT3 to allocate and format primary and sec-
ondary indexed files from an application program.

Chapter 7, "Processing the Indexed File," describes how to process
the indexed file with an application program.

Chapter 8, "Coding The Indexed Access Method Requests,™ provides
information needed to code EDL applications which use the Indexed
Access Method. This chapter is intended only for EDL application
developers.

Preface v

. Chapter 9, "The $IAMUT1 Utility," provides information needed to use
$IAMUT1, including the completion codes it generates.

1 Chapter 10, "The $VERIFY Utility,"™ provides information needed to
use SVERIFY.

. Chapter 11, "Storage and Performance Considerations™ describes the
storage and performance characteristics of the Indexed Access Method
and how to tailor the Indexed Access Method to the processing
requirements of your installation.

. Chapter 12, "Error Recovery" describes some of the error recovery
procedures available for use with Indexed Access Method
applications.

. Chapter 13, "Installing the Indexed Access Method,"™ provides an
overview of the installation process.

. Appendix A, "Summary of Calculations,"”" provides a summary of calcu-
#gfions for calculating the various blocks which make up indexed
iles.

e Appendix B, "Preparing Indexed Access Method Programs,”™ provides an
overview of preparing an Indexed Access Method application and a
sample $JOBUTIL procedure for an EDL application.

. Appendix C, "Coding Examples," provides comprehensive examples of
Indexed Access Method programs. This appendix is for application
developers using EDL, COBOL, or PL/I as their application program-
ming language.

Al USING THIS PUBLICAY

Illustrations in this book are enclosed in boxes. Many illustrations
display screens generated while using the Event Driven Executive system.
In those cases where the actual data exceeds the size of the box, the
information may be illustrated in a modified format.

In display screens appearing in this manual, operator input is shown in

bold type. This highlighting is for illustrative purposes only, to dis-
tinguish data entered by the operator from that generated by the system.

CONTACTING IBM ABOUT PROBLEMS

You can inform IBM of any inaccuracies or problems you find when using
this book by completing and mailing the Reader's Comment Form provided
in the back of the book.

If you have a problem with the IBM Series/l Event Driven Executive ser-

vices, refer to the IBM Series/l Software Service Guide, GC34-0099.

vi $C364-0771

O

Chapter 1. Introduction 1-1

What The Indexed Access Method Does 1-1
Indexed Access Method Features 1-1

Languages Compatible With Indexed Access Method
Components of Indexed Access Method 1-3

Chapter 2. Using the Indexed Access Method 2-1
Your Data Record 2-1
Setting Up An Indexed File Using $IAMUT1L 2-2
Processing The Indexed File 2-6

Summary 2-8

Chapter 3. Defining Primary Index Files 3-1
Primary Index Files 3-1
Data Record Primary Key 3-2
Random and Clustered Record Inserts 3-3
Defining The File Structure With SIAMUTYL 3-4
Designing Indexed Files Using $IAMUT1 - Option 1
Option 1 3-5
Designing Indexed Files Using $IAMUT1 - Option 2
Option 2 3-7
Indexed Access Method Blocks 3-7
Data Blocks 3-9
Free Space 3-10
Index Blocks 3-13
Primary Index Blocks (PIXB) 3-13
Second-level Index Blocks (SIXB) 3-17
Higher-level Index Block (HIXB) 3-19
Frea Pool 3-20
File Control Block 3-21
File Structure Types 3-21
Option 2 Examples 3-23
Example 1: Allocating Free Records 3-24

1-3

3-5
3-7

Example 2: Allocating Free Records and Free Blocks

Example 3: Allocating Reserved Data Blocks 3-
Example 4: Allocating Reserved Index Entries
Example 5 - Defining a Totally Dynamic File 3
Designing Indexed Files Using $IAMUT1 - Option 3
$IAMUTY - Option 3 3-36
Defining, Creating, and Loading a File - Summary

Chapter 4. Loading The Primary Index File 6-1
Loading the Primary Index File 6-1
Loading Base Records using $IAMUT1 6-3

28

3-30

-33
3-35

3-37

3-26

Loading Base Records From An Application Program 4-5

Loading Base Records From a Sequential File in Random Order

Chapter 5. Building a Secondary Index 5-1
Secondary Keys 5-1
The Directory 5-2

Allocating and Inserting Entries in a Directory 5-3

Secondary Index 5-7
Defining and Loading A Secondary Index 5-8

Example '1: Defining A Secondary Index Using $IAMUT1 5

Option 1 5-10
Option 2 5-12
Option 3 5-14 .

-10

Loading a Secondary File With an Application Program 5-16

CONTENTS

6-5

Chapter 6. Allocating Indexed Files from an Application Program 6-1

Call Load Module $IAMUT3 6-1
$IAMUT3 Sample Program 6-2

Chapter 7. Processing Tha Indexed File 7-1

Task Priorities 7-1

Connecting and Disconnacting the Indaxed Fila 7
Connecting 7-2
Disconnecting 7-2

Accessing tha Indexed File 7-4
Direct Reading 7-4%

-1

Contants vii

viii

Direct Updating 7-5

Sequential Reading 7-5

Sequential Updating 7-6

Inserting Records 7-7

Deleting Records 7-7

Extracting Indexed File Information 7-7

Direct Block Reading 7-8
Maintaining the Indexed File 7-9

File Backup and Recovery 7-9

Recovery Without Backup 7-10

Reorganizing an Indexed File 7-10

Dumping an Indexed File 7-10

Deleting an Indexed File 7-11

Verifying an Indexed File 7-11

Chapter 8. Coding the Indexed Access Method Requests
Request Functions Overview 8-2
Coding Indexed Access Method Requests 8-3
CALL Function Descriptions 8-5
DELETE - Delete Record 8-5
DISCONN - Close File 8-7
ENDSEQ - End Sequential Processing 8-9
EXTRACT - Get File Information 8-11
GET - Get Record 8-1%
GETB - Get Block 8-17
GETNB - Get Next Block 8-20
GETSEQ - Get Record (Sequential Mode) 8-22
LOAD - Open File for Record Loading 8-25
PROCESS - Open File 8-29
PUT - Put Record into File 8-34
PUTDE - Delete Previously Read Record 8-36
PUTUP - Update Record 8-38
RELEASE - Release Record 8-40
EDL CALL Functions Syntax Summary 8-641
Indexed Access Method Return Codes Summary 8-42

Chapter 9. The $IAMUT1 Utility 9-1

$TAMUTL 9-2

$IAMUT! Commands 9-3]
BF—Tailor the Indexed Access Method Buffers 9-4
DF—Define Indexed File 9-6
DI—Display Parameter Values 9-9

DR—Invoke Secondary Index Directory Functions 9-10

AL—Allocate Directory 9-11
DE—Delete Directory Entry 9-12
EN—End Directory Function 9-13
IE—Insert Entry 9-146
LE—List Entries 9-15
UE—Update Directory Entry 9-17
EC—Control Echo Mode 9-19
EF—Display Existing Indexed File Characteristics
LO0—Load Indexed File 9-22
NP—Deactivate Paging 9-25
PG—Select Paging 9-26
PP—Define Paging Partitions 9-27
PS—Get Paging Statistics 9-28
RE—Reset Parameters 9-29
RO0—Reorganize Indexed File 9-30
SE—Set Parameters 9-32
UN—Unload Indexed File 9-41
S$IAMUT1 Completion Codes 9-43

Chapter 10. The $VERIFY Utility 10~1
SVERIFY Functions 10-1
Invoking $VERIFY 10-2
SVERIFY Input 10-2
Invoking $VERIFY From a Terminal 10-3
Invoking $VERIFY From a Program 10-3
$VERIFY Example 10-5
FCB Report 10-6
FCB Extension Report 10-8
Free Space Report 10-9
$VERIFY Messages 10-11
File Error Messages 10-11

$C34-0771

9-20

Error recovery procedure 10-12

SVERIFY Storage Requirements 10-12
Using Default Working Storage Requirements 10-12
Modifying Working Storage Requirements 10-13
Summary 10-13

Chapter 11. Storage and Performance Considerations 11-1
Determining Storage Requirements 11-1

The Indexed Access Method Packages 11-1

Indexed Access Method Storage Environment 11-2
Performance 11-3

Data Paging 11-3

Other Performance Considerations 11-6

Using Block Mode 11-8

Chapter 12. Error Handling and Recovery 12-1
Return Codes 12-1
System Function Return Codes 12-1
Error Exits 12-2
Task Error Exit 12-2
Error Exit 12-3
$1IAM Task Error Exit 12-3
Aids for Analyzing Problems 12-3
Using $ILOG - Error Logging Facility 12-4
Using the System Dump and the $EDXLINK Map 12-5
Application Program Considerations 12-9
Verifying Requests and Files 12-9
The Data-Set-Shut-Down Condition 12-10
Deadlocks and the Long-Lock-Time Condition 12-10

Chapter 13. Installing the Indexed Access Method 13-1
Installation Procedures 13-1
Installing The Indexed Access Method 13-1
Assembling And Executing The Installation Verification Program 13-2

Appendix A. summary of Calculations A-1

Appendix B. Preparing Indexed Access Method Programs B-1
A Sample‘$JOBUTIL Procedure and Link-Edit Control Data Set B-2

Appendix C. Coding Examples C-1

EDL Indexed Access Method Coding Example C-1
EDL Indexed Access Method Coding Example C€-2
COBOL Indexed Access Method Coding Example C-7
PL/I Indexed Access Method Coding Example C-14

Index X-1

Contents

ix

x 9C364-0771

C

CHAPTER 1. INTRODUCTION

The Indexed Access Method licensed program is a data management facility
that executes on an IBM Series/1 processor under the Event Driven Execu-
tive Supervisor and Emulator, Version 5 or later. The Indexed Access
Method provides keyed access to each of your individual data records.

HHAT _THE INDEXED ACCESS METHOD DOES

This licensed program builds, maintains, and accesses a data structure

called an indexed file.

Your data records can be loaded by the Indexed Access Method utility,
$IAMUT1, or they can be loaded using an application program. Data
records can then be added, deleted, modified, or accessed quickly and
efficiently for processing by vour application program. When reorgan-
ization of an indexed file is required the utility can be used to unload
and reorganize the file.

When this licensed program is used, each of vour records is identified
by the contents of a predefined field called a key. The Indexed Access
Method builds and maintains an index for those keys and through this
index fast access to each record is provided. Your data records can be
accessed either by key, or sequentially in ascending key sequence, using
Indexed Access Method requests.

INDEXED ACCESS METHOD FEATURES

The Indexed Access Method offers the following features:

Record access by a primary key or secondary keys - You can access
records in an indexed file by one or more keys. Secondary keys use
a separate index and Indexed Access Method provides the connection
between the primary index files and secondary indexes. Duplication
of secondary key fields is permitted.

Support for high insert and delete activity - Free space can be dis-
tributed throughout the file and in a free-pool at the end of the
file so that new records can be inserted. The space occupied by a
deleted record is immediately available for inserting a new record.

Direct and sequential access - You can access records either random-
ly by key, or sequentially in ascending key sequence.

Data paging - You can improve Indexed Access Method performance by
using data paging. With this feature active, the Indexed Access
M:thod retains recently-used blocks of data records resident in main
storage. .

Dynamic file structure - A dynamic file structure adjusts itself as
needed to handle record additions and deletions. This provides a
quick and easy method of designing an indexed file.

Concurrent access to a single file by several requests - These
requests can be from one or more programs. Data integrity is main-
tained by a file-, block-, and record-level locking system that pre-
vca@:'ogher programs from accessing the portion of the file being
modi fied.

Implementation as a separate task - A single copy of the Indexed
Accass Maethod executes and coordinates all requaests. A buffer pool
supports all requaests and optimizes the space required for physical
170; the only buffer required in an application program is the one
for the record being processed.

Chapter 1. Introduction 1-1

. Block I/0 - On data block reads, vou can instruct $IAM to bypass its
own buffer and read data into a buffer you specify in your applica-
tion program. This allows you to process blocks of data in an ﬁ*"
application program instead of individual data records, and thus ‘
reduce the number of accesses to $IAM. Applications that use block
I/0 support can be coded in Event Driven Executive language or
Series/l Assembler language.

. Input records - Either blocked or unblocked input records are
accepted.

. S$IAMUT1 - A utility program that allows you to maintain a secondary
index directory, create, format, load, unload, and reorganize an
indexed file. The load and unload functions accept either blocked
or unblocked records.

. S$IAMUT3 - A load module that allows you to allocate and format a
primary or secondary indexed file from an application program.

. SVERIFY - A utility program that allows you to check the integrity
of the index structure, print control blocks, and print a free space
report for an indexed file.

. Error logging - If multiple error return codes occur, errors are
logged in the system error log.

[$IL0G - The error log entries can be printed by using the $IL0G
utility.

L4 File compatibility - Files created by the Event Driven Executive
Indexed Access Method are compatible with those created by the IBM
Series/1l Realtime Programming System Indexed Access Method licensed
program, 5719-AM1 and 5719-AM2 provided that the block size is a
multiple of 256.

tem functions. Therefore, all data protection facilities offered by
the system also apply to indexed files. The following additional
data protection is provided:

U Data protection - All input/output operations are performed by sys- Q;;

- The exclusive option specifies that the file is for the exclu-
sive use of a requester.

- File-level, block-level, and record-level locking automatically
prevents two requests from accessing the same file, the same
block, or the same data record simultaneously.

- The immediate write back option causes all file modifications
(delete, insert, update) to be written back to the file imme-
diately.

- Accidental key modification for primary keys is prevented to
help ensure that your index matches the corresponding data.

L Distribution packaging - The Indexed Access Method is distributed
with the following variations available:

- A full function package that is intended to be totally resident.
- A full function package which uses an overlay structure.
- A totally resident package without data paging.

- A package without data paging which uses an overlay structure.

1-2 SC34-0771

C

LANGUAGES COMPATIBLE WITH INDEXED ACCESS METHOD

The following programming languages can be used to code Indexed Access
Method programs:

. COBOL
. EDL
. PL/I.

In addition, the Transaction Processing System, which is an application
development tool, can be used to code Indexed Access Method programs.

Note: Block mode support is not available for applications using COBOL,
PL/1, and the Transaction Processing System.

COMPONENTS OF INDEXED ACCESS METHOD

The Indexed Access Method consists of the following components:

. Four load modules from which you can select to support yvour applica-
tion program Indexed Access Method requests. These load modules are
named:

- $IAM (full function with overlay)

- $IAMRS (full function resident)

- SIAMNP (overlay without data paging)

- SIAMRSNP (resident without data paging).

The module you select will be named $IAM after installation.

. A load module, $IAMSTGM, which is used to obtain the data paging
area, if the data paging feature is redquested.

. A set of object modules that vou may use to generate a customized
load module. If you use one of the four supplied load modules, you
do not need the object modules.

. Two object modules, IAM and IAMFR, that are link modules. You
include IAM with your application program, using the linkage editor,
to provide the interface to the Indexed Access Method. If you are
going to take advantage of the block I/0 features of the Indexed
Access Method, you also include IAMFR. Related performance consid-
erations are covered under "Other Performance Considerations™ on
page 11-6 in chapter 11.

° Three copy code modules for inclusion in EDL programs, IAMEQU,
FCBEQU, and IDEFEQU. IAMEQU provides symbolic parameter values for
constructing CALL parameter lists. FCBEQU provides a map of the
file control block. IDEFEQU provides a map of the parameter list
required for $IAMUT3.

. Load modules for each of the Indexed Access Method utilities
SIAMUTLY, S$IAMUT3, SVERIFY, and $ILOG.

Chapter 1. Introduction 1-3

1-4 SC34-0771

®

CHAPTER 2. USING THE INDEXED ACCESS METHOD

The purpose of this chapter is to familiarize you with some fundamentals
of the Indexed Access Method. Some of the features mentioned in the
previous chapter will be described only in part here so that a basic
example can be constructed. The purpose of this example is to demon-
strate the ease with which you can establish an indexed file and to help
you select which parts of the book apply directly to your application
requirements.

YOUR DATA RECORD

The data records you wish to process with the Indexed Access Method have
the following specific requirements:

. Thekrecords must contain a common field that can ba used as a prima-
ry Kay

. Each record must have a uniquae primary key

. Tha initial records to ba loadad must be in ascending order by thae
primary key

L All records that make up an indexed file must be of the same length.

The primary key is any fiald you designate within your data records.
The key field must begin at the samae location in each record. Each key
field must have the same length. The key in each record must be unique
Wwithin the file (data set).

Tha data records that you will initially load must be in ascending
order, based upon the field you use as the key. If your data records
are not ready to be loaded when you define your primary indexed file,
the records can be loaded later by an application program or with the LO
(load) command of $IAMUTL.

Your application might use an employee number as the primary key in an
indexed file for some applications. You might want to define secondary
keys, such as employee name, for the same file for other applications.
Using secondary keys requires a secondary index to be defined. Defining
a secondary index and using secondary keys is described in Chapter

5, "Building a Secondary Index."”

Whether you use the $IAMUT1 utility to load vour data records into an
indexed file from a sequential file, or load them with an application
program, you must know the format of vour input data record.

Following is a sample record layout. Although the primary key is shoun
starting in position 1, it could have been anyuwhere in the record.

< 80 byte data record // >
/7
Empl. Employee Address Zip
Number Name Code
//
< > < > <L > < > L<—//
6—Byte 24—Byte 24-Byte 5-Byte 21-Byte
Primary Secondary Address Data
Key Key Field

Chapter 2. Using the Indexed Access Method 2-1

SETTING

The records used for our example have the following attributes:
U Block size 256 bytes

. Record size 80 bytes

. Primary key length 6 bytes

. Key position 1.

UP_AN INDEXED FILE USING $IAMUTIL

Use the Indexed Access Method utility program, $IAMUT1, to set up an
indexed file. After this utility is loaded into the system for exe-
cution, the utility displays a sequence of prompts. The prompts are
questions displayed on a terminal one at a time to which you can reply
using the terminal keyboard. Responding to the questions causes the
utility to perform the required steps to:

1. Set up the structure of the file (space for records to be loaded,
free space for inserts, and an index).

2. Allocate a data set (the utility prompts vou for a data set and vol~-
ume name and calls $DISKUT3 to allocate space for the indexed file).

3. Define and format the indexed file.
4. Load the data records into the indexed file.

Loading and using the SE (set parameter) command of the $IAMUT1 utility
is described here for the purpose of our example, however, for a com-
plete description of $IAMUT1 see Chapter 9, "The $IAMUT1 Utility."

The responses for our example are shown in bold face type inside the
box. The bold bracketed numbers at the left, outside the box, identify
explanatory remarks that we have written below the box using the same
bracketed numbers. O0f course these brackets and explanations do not
appear on the screen when $IAMUT1 is being used.

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L S$IAMUTIL.

When $IAMUT1 is loaded the first prompt is displayed as follows:

[11|ENTER COMMAND (?): SE

[1] Entering the letters SE (set parameters), followed by pressing the
ENTER key, causes four options to be displayed:

SEY FILE DEFINITION PARAMETERS
0 = EXIT

211 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATASET

ENTER OPTION: 1

2-2 5C34-0771

&

131

[4]
[5]

bl

[l]
ot kot et et O
DN O
Gl et Gl Gonll Gl

[2) The response digit '1', causes prompts to follow which allows vou to
define an indexed file with a minimum of information. This response
causes a one line prompt to be displayed.

Note: Although the following prompts are displayed one line at a time
when using the utility, the prompts and responses are listed here in
logical groups for simplicity in describing them.

SECONDARY INDEX (Y/N)>:? N

RECORD SIZE

KEY SIZE 0

KEY POSITION 1

BLOCKING FACTOR (RECORDS PER BLOCK) 1

NUMBER OF BASE RECORDS 0:
6
c

DEFAULT NEW VALUE

-

<

X 1O UT W = O 00
o

ESTIMATED TOTAL RECORDS

TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM)
DATA SET SIZE IN EDX RECORDS: 15
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1
CREATE/DEFINE FILE (Y/N)?: Y

[3] The first prompt, "SECONDARY INDEX (Y/N)?:™ asks if you are specify-
ing a secondary index. The response was N for no, because we are defin-
ing the parameters for a primary indexed file.

[4] The second prompt, "RECORD SIZE" requests the length that the
records are to be in the indexed file which you are defining.

Note that there are two columns near the right-hand edge of the display.
The column on the left is headed by the word "DEFAULT". 1In the default
column the values are listed that will be used in setting up the file if
no value is supplied in the response (only the ENTER key is pressed).
The column on the right, headed "NEW VALUE"™ is where the decimal value
is placed from your keyboard response, followed by pressing the ENTER
key.

In this example we are using a record length of 80.

[51 The "KEY SIZE"™ prompt is for the length of the primary key in the
data record. In this example we are using a key which is 6 bytes long.

[6] Our key field begins in position 1 of the data record.

[7] We are requesting that our indexed file be blocked with 3 records in
each 256-byte block.

[8] The number of base record slots to be defined is 5. This number is
based on the number of data records we plan to load. You cannot load
more records than this value, however, it does not restrict you from
inserting new data records in the freg (empty) slots later.

[9] The total number of records that we anticipate that this resultant
indexed file will ever contain is 20.

[10] The type of record insert activity is to be R (random). The
records added to this file will be inserted by an application program
when those records are available.

The choice of random or clustered is based on the type of record addi-
tions that are anticipated. Random is chosen when the records to be
added are expected to be evenly distributed throughout the file.

Clustered is chosen when the records to be added are expected to be in
groups, relative to their range in key value.

Chapter 2. Using the Indexed Access Method 2-3

[11] Following the previous response the system will display the number
of records required to contain an indexed file using the parameters you

have supplied. @
[12) The Indexed Access Method return code (-1) indicates that the -
parameters you supplied are acceptable; no Indexed Access Method rules

have been violated.

[13] The system return code (-1) should always be -1 if the Indexed
Access Method return code is -1. If any errors are encountered, the
return code may provide additional information.

[14]1 If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records is acceptable, and the return
codes are both -1, you can reply Y and the file will be defined and cre-
ated.

If you wish to change any of the parameter values that vou previously
supplied, respond N to this prompt and vou will be prompted for the next
command. To re-enter your responses, reply SE and the prompt sequence
will be repeated.

A Y in response to this prompt causes the next prompt sequence to begin.

[151{ENTER DATA SET (NAME,VOLUME): IAMFILE,EDX003
[16]1]DYNAMIC DATA SET EXTENTS ON FILE (Y/N) N
NEW DATA SET IS ALLOCATED
[171{D0 YOU WANT IMMEDIATE WRITE-BACK? Y .
[181)INVOKE LOAD(L), REORGANIZE(R) OR END(E) AFTER CURRENT FUNCTION L
DEFINE IN PROGRESS
DATA SET SIZE IN EDX RECORDS: 15
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

[191|{PROCEED WITH LOAD/REORGANIZE (Y/N) ?Y

LOAD ACTIVE @

[15]1 The data set and volume name you reply to this prompt is what
$DISKUT3 uses to allocate a data set for your file. A successful allo-
cation results in the information message "NEW DATA SET IS ALLOCATED".

[161 If you do not want the file allocated with data set extents, reply
'N' to this prompt. This feature is supported with EDX Version 5.1 and
subsequent releases.

[17] The immediate write back option is recommended for most applica-
tions. It means that we want any record in the indexed file that we
process with our application program to be written back to the indexed
file immediately. Otherwise, the record will be held in a buffer until
that buffer is needed by the Indexed Access Method.

[18] The action to be taken after the file is defined.

. Load base records (as shown in this example)

L Reorganize an existing indexed file for loading into the file being
defined

. End the current SE command session.

[19] Because of the L response to the previous prompt, this prompt is to
verify the action to be taken.

We are going to load records during this session so the response is Y.
Following the 'LOAD ACTIVE' information message, the prompts continue.

O

2-6¢ 5C34-0771

®)

O

[203 | SFSEDIT FILE RECSIZE = 128

[211|INPUT RECORD ASSUMED TO BE 80 BYTES. 0K?: N

[22] |ENTER RECORD SIZE: 128 ,

[231]ENTER INPUT BLOCKSIZE (NULL = UNBLOCKED): 256

[24]1|ENTER INPUT DATA SET (NAME,VOLUME): SEQO1l,EDX003
INPUT REC GT OUTPUT REC. TRUNCATION WILL OCCUR

[251]0K TO PROCEED:? Y

LOAD IN PROCESS

END OF INPUT DATA SET

1261 | ANY MORE DATA TO BE LOADED?: N
5 RECORDS LOADED

LOAD SUCCESSFUL

The next sequence of prompts refers to the input data set containing the
data records that are going to be loaded into the indexed file.

[20] The utility accepts input records which have been prepared by the
Event Driven Executive utility $FSEDIT. The $FSEDIT record size is 128.

[21] Because the output data set (indexed file) records are 80 bytes,
this prompt determines whether the input sequential data set is also an
830 byte record data set.

If you use the Event Driven Executive edit utilities to prepare your
data records for input to the Indexed Access Method, remember that these
utilities place one 80-byte line from $FSEDIT in a 128-byte record. The
first record begins at location 1, and the second record begins at
locat;on 129, Two of these 128-byte records make one 256-byte EDX
record.

Because we used $FSEDIT, we responded N.
[22] This prompt requests the input data record attributes.

Because our input data records were created by $FSEDIT, our 80-byte
records were converted to 128-byte records. Therefore, our response is

128.

[23] The Indexed Access Method utility, $IAMUT1 accepts your records as
either unblocked (one record per block) or blocked (more than one record
per block) input. The utility prompts you for the block size of the
input data set being loaded. If the input data set is unblocked, reply
to the block size prompt by pressing the Enter Key. See "Blocked and
Unblocked Sequential Data Sets™ on page 9-23 for a description of
blocked and unblocked sequential data sets.

If your input data records are unblocked sequential, reply by pressing
the Enter Key. If your input is blocked sequential, reply with the
actual blocksize that was used to prepare your input data records.

Our example uses blocked sequential records, created on every line by
$FSEDIT, with a blocksize of 256.

[24] Reply to this prompt with your input data record data set and vol-
ume name. Our response was SEQ01,EDX003.

[25]1 This prompt verifies whether truncation of the input records is
acceptable. Because our record size specified is actually 80 bytes
long, but we responded 128 because $FSEDIT converts the records to 128
bytes, the following warning message is displayed. "INPUT REC GT QUTPUT
REC. TRUNCATION WILL OCCUR™ This means that the extra bytes attached by
$FSEDIT to our 80-byte data records will now be removed. The response
is Y.

The information message "LOAD IN PROCESS" tells us that $IAMUT1 is read-
ing the input data set and loading the input data records into the base
record slots. The information message MEND OF INPUT DATA SET" indicates
thag the end-of-file condition, on the input data set, has been encount-
ered.

Chapter 2. Using the Indexed Access Method 2-5

[26] This prompt allows vou to specify another input data set, if more
data records are to be loaded from another data set. In this example,
only 1 data set is being used and the response of N caused the records
loaded statistics to be displayed, followed by the "LOAD SUCCESSFUL"
message.

The design of an indexed file varies according to your application. A
comprehensive approach to designing your indexed files begins with "De-
fining The File Structure With $IAMUT1"™ on page 3-%.

PROCESSING THE INDEXED FILE

Now that the indexed file has been defined, formatted, and loaded with
data records, the file is ready for an application program to access any
of the records in the indexed file for processing. An application pro-
gram might use the following EDL coded requests to open the indexed file
and retrieve a record.

*
% OPEN THE INDEXED FILE FOR PROCESSING
*
(1] CALL IAM,(PROCESS),IACB,(DS1),(OPENTAB), (SHARE)
*
x PERFORM A DIRECT RETRIEVAL OF THE RECORD WHOSE KEY IS JONES PW
*
(21 CALL 1AM, (GET),IACB, (BUFF),(KEY1)
KEY1 TEXT 'JONES PW'
OPENTAB DATA F'0'
DATA A(IAMERR)
DATA F'0°
IACB DATA F'0"

[1] This Indexed Access Method request opens the primary index file in
process mode so that other requests can be issued for processing records
in the indexed file.

[2] This Indexed Access Method request retrieves a record from the
;ndexed file. The primary key of this record contains the name *JONES
We.

2-6 SC34-0771

Functions of the Requests

Following is a list of functions that you can perform using the Indexed
Access Method requests in your application program:

Initiate general purpose access to an indexed file with a PROCESS
request. After the PROCESS request has been issued, any of the follow-
ing functions can be requested:

. Direct reading - Retrieving a single record independently of any
previous request.

. Direct updating - Retrieving a single record for update; complete
the update by either replacing or deleting the record.

. Sequential reading - Retrieving the next logical record relative to
the previous sequential request.

The first sequential request can access the first record in the file
or any other record in the file.

. Sequential updating - Retrieving the next logical record for update;
complete the update by either replacing or deleting the record.

. Inserting - Placing a single record, in its logical key sequence,
into the indexed file.

. Deleting - Removing a single record from the indexed file.
[Extracting - Extracting data that describes the file.
Note that the update functions require more than one request.

When a function is complete, another function may be requested, except
that a sequential processing function can be followed only by another
sequential function. You can terminate sequential processing at any
time by issuing a DISCONN or ENDSEQ request. An end-of-data condition
also terminates sequential processing.

A complete list of the Indexed Access Method requests, the operand
descriptions, and correct syntax is described in Chapter 8, "Coding the
Indexed Access Method Requests"™ on page 8-1. There are also coding
examples using the Indexed Access Method requests in three programming
languages in Appendix C, "Coding Examples.™ The languages used in the
examples are Event Driven Language, COBOL, and PL/I. The purpose of
these examples is not to show any particular application, but to help
vou when planning and writing your application program.

Chapter 2. Using the Indexed Access Method 2-7

SUMMARY

This chapter has introduced some fundamentals of using the Indexed
Access Method. The references in this chapter to other chapters in this
manual were placed there to help you select the specific information you
need for your application. A list of those references is repeated here
go :ssist you in locating the detailed information on the listed sub-
jects.

. For a complete description of $IAMUT1 see Chapter 9, "The $IAMUT1
Utility"

o A comprehensive approach to designing your indexed files is
described in Chapter 3, "Defining Primary Index Files"

. Defining a secondary index for using secondary keys is described in
Chapter 5, "Building a Secondary Index™

. Description of blocked and unblocked sequential data sets is
described in "Blocked and Unblocked Sequential Data Sets"™ on page
9-23

. The complete list of Indexed Access Method requests, the operand
descriptions, and correct syntax is described in Chapter 8, "Coding
the Indexed Access Method Requests™

. Guide line information on processing the indexed file is located in
Chapter 8, "Coding the Indexed Access Method Requests.”™ This guide-
line information should be read prior to planning and coding your
application program.

2-8 SC36-0771

O

PRIMARY

CHAPTER 3. DEFINING PRIMARY INDEX FILES

This chapter presents the following major topics:
. Primary Indexed Files
. Designing Indexed Files Using $IAMUT1 - option 1
. Designing Indexed Files Using $IAMUT1 - option 2

- Indexed Access Method Blocks

- Index Blocks

- File Control Block

- File Structure Types

- Option 2 Examples
L Designing Indexed Files Using $IAMUT1 - option 3
. Defining/Creating, and Loading A File - Summary.
This chapter provides information for defining indexed files and is
arranged according to your option selection when using $IAMUTL. The
beginning of the chapter has information which applies to any type of
primary index file design. That general information section is followed
immediately with an example using $IAMUT1, option 1. The option 2 sec-
tion is next and contains information that you will need to know prior

to designing an index file with $IAMUT1, option 2. The fourth section
applies to using $IAMUT1, option 3.

INDEX FILES

A primary index file contains data records, a multilevel index, control
information, and it can optionally contain free space.

Free space can be distributed throughout the file and at the end of the
file. Free space provides areas for inserting new records and is
described later.

In an indexed file, the records are arranged in ascending order by key.

Chapter 3. Defining Primary Index Files 3-1

DATA RECORD PRIMARY KEY

The primary key can be any field within your data record that vou
select, however, it must meet the following requirements:

. The selected field must start at the same location in each record
. All portions of the key field must be contiguous
. The primary key length cannot exceed 254 bytes

. The field must contain data that is unique within the data set.

pefining the Key

Define a single key field by specifying its size and position in the
record when you select the file formatting parameters using the SE (set
parameter) command of the $IAMUT1 utility. The longer the key, the
larger the index. The key should not be longer than necessary but long
Tnough to ensure uniqueness. A shorter key is more efficient than a
ong key.

ENSURING UNIQUENESS OF THE KEY: To identify each record in an indexed
file, each primary key must be unique. If key duplication is possible,
the key field must be expanded to ensure that it is unique.

For example, customer name is a key which may involve duplicates. To
avoid duplication, lengthen the key field to include other characters
such as part of the customer address or the account number. Because the
characters in the key must be contiguous, you may need to rearrange the
fields in the record.

Another way to eliminate duplication is for you to modify new records
dynamically whenever a duplication occurs during loading or processing.
One or more characters at the end of the key field can be reserved for a
suffix code. Whenever a duplicate occurs, add a value to the suffix and
make another attempt to add the record to the file. The result is a
file that can contain a sequence of keys such as SMITH, SMITH1l, and
SMITH2. If you add a suffix, vou must use the entire unique key when
accessing a record directly.

Providing Access by More Than Oone Key

To provide good performance with both direct and sequential access, each
indexed file is indexed by a single primary key. At times, however, it
may be useful to locate records by a secondary key. For example, in a
customer file indexed by account number, vou might want to locate a
record by customer name.

To provide access by a secondary key, you must build a secondary index

(a separate file). For a description of setting up secondary indexes,
see Chapter 5, "Building a Secondary Index"™ on page 5-1.

3-2 5C34-0771

O

C

C

RANDOM AND CLUSTERED RECORD INSERTS

The Indexed Access Method permits records to be added to an existing
file. The records are inserted by the Indexed Access Method in the
proper locations according to their key value. This keeps the keys
throughout the indexed file in ascending sequence.

Records toc be inserted are sometimes required to be distributed through-
9ut the file rather evenly, other times the records to be inserted are
in groups.

When there are more individual records to be inserted throughout the
file, based on their key value, than there are groups of records to be
inserted, this is called random record inserts. The following diagram
represents random inserted records among existing records.

Existing
Records
Inserts cee o .o . vee oo e ce eew
(Each bullet indicates an inserted record)

Record inserts are considered clustered if most of the inserts occur at .
only certain places in the file. The following diagram represents clus-
tered inserts by vertically stacked bullets.

Existing
Records

Inserts . .o . . .

Chapter 3. Defining Primary Index Files 3-3

DEFINING THE FILE STRUCTURE WITH $IAMUT1

Defining an indexed file structure is the process of analyzing the file ".’”
requirements and selecting the appropriate file parameters. This allows

you to either precisely define your indexed file or, by proper option

selection, $IAMUT1 will define most of the parameters for vou.

SIAMUTL is a prompt driven utility. When it is loaded, messages are
displaved requesting information to be entered on a keyboard. The
responses vou enter through the keyboard determine how the utility will
operate.

The SE command of the $IAMUTL utility permits you to select one of three
options for defining your indexed file. The parameter selections are
made using the SE command of the $IAMUT1 utility. The SE (set parame-~
ters) command of $IAMUT1 provides three options for vou to choose from
to define vour indexed file as follows:

1. Option 1 significant parameters - allows vou to define an indexed
file by supplying a minimum of information. The description of vour
data records is required and whether you expect random or clustered
record insert activity.

2. Option 2 all parameters - allows more flexibility in precisely
defining vour indexed file but requires more parameters to be sup-
plied.

3. Option 3 parameters from existing indexed data set - can be used
when you have an existing indexed file and you wish to use the same
parameters for a new indexed file.

$IAMUT1 Option Selection Guide Q;:D

Having read the preceding material, you are probably ready to make a
choice as to which option you want to use in defining vour indexed file.
The following table will help vou to find the appropriate information,
based on your indexed file defining objectives.

Your ochjective option Information locatiaon

You want the Indexed Access 1 See "Designing Indexed Files
Method to calculate and Using SIAMUT1 - Option 1™ on
structure your file page 3-5

You want to structure a file 2 See "Designing Indexed Files
and provide specific informa- Using SIAMUT1 - Option 2" on
tion for the parameters page 3-7

You want the Indexed Access 3 See "Designing Indexed Files
Method to structure a file Using $IAMUT1 - Option 3™ on
using the parameters of an page 3-35

existing file

/

3-4 S5C34-0771

Q

O

NING_INDEXED FILES USING $YAMUT1 - OPTION

Option 1 is used if yvyou need to set up vour indexed file quickly and
easily. You specify only the necessary information and the utility
determines the proper values for other parameters. An indexed file gen-
erated with this option may not be optimum in terms of storage space
performance.

If you want to supply more parameters than are available with this
option, or you wish to set up a totally dynamic indexed file, you should
see "Designing Indexed Files Using $IAMUT1 - Option 2™ on page 3-7. If
you already have an indexed file established and you wish to use those
same parameters, yvou should see "Designing Indexed Files Using $IAMUT1 -
Option 3" on page 3-35.

OPTION 1

The Indexed Access Method utility, $IAMUT1, option 1 of the SE (set
parameters) command, provides vou with the opportunity to select only
those parameters necessary to set up an indexed file.

The SIAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUTL.

When $IAMUT! is loaded the first prompt displayed is as follows:

[1]1{ENTER COMMAND (?): SE

[1] Entering SE causes the following option list prompt to be displayed.

ET FILE DEFINITION PARAMETERS

= EXIT

= SIGNIFICANT PARAMETERS

= ALL PARAMETERS

= PARAMETERS FROM EXISTING INDEXED DATA SET
TER OPTION: 1

S
0
2111
2
3
EN

{2] Respond to this prompt by entering the digit '1'. This response
causes a one line prompt from the next prompt sequence to be displayed.

Note: Although the following prompts are displaved one line at a time

when using the utility, the entire prompt list is showun for simplicity
in describing the parameters.

Chapter 3. Defining Primary Index Filaes 3-5

[31 SECONDARY INDEX (Y/N)?: N
DEFAULT NEW VALUE ‘

[64] RECORD SIZE 0:80
[51 KEY SIZE 0:40
[61 KEY POSITION 1:1
[71 BLOCKING FACTOR (RECORDS PER BLOCK) 1:3
[8] NUMBER OF BASE RECORDS 0:5
[9] ESTIMATED TOTAL RECORDS 6:20
[101 TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM) C:R

DATA SET SIZE IN EDX RECORDS: 11

INDEXED ACCESS METHOD RETURN CODE: -1

SYSTEM RETURN CODE: -1
[111 CREATE/DEFINE FILE (Y/N)?:

[31 The first line asks, are vou specifying a secondary index. The
response should be N for no, because you are defining the parameters for
a primary index file.

[4] The record length shown is 80, however, the entry you will make is
the actual record length you want your indexed file records.

[5] Enter the length of your data record field that you are using as the
key field. The maximum primary key length is 2564.

[6] Enter the position where your primary key field begins. Your data
record begins with 1.

[7]1 Specify the blocking factor (number of records per block) you want
vour indexed file to have. Remember that when a record is accessed, an
entire block is actually read into the system buffer.

[8] Enter the number of base record slots to be defined. This value is
the number of records vou will load initially. You cannot load more ~
records than this value specifies. QhJJ
[9] Enter the total number of records you expect this file to contain. -
This includes records that you plan to insert during processing.

[10] Enter the type of record insert activity vou expect to have

[11] If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records is acceptable, and the return
codes are both -1, you can reply Y and you can create and define the
file. If you wish to change any of the parameters, reply N and you can
reenter the SE command and enter any new values for the parameters.

Replying N terminates the SE function and you can return to this point

by reentering the SE command or the DF command (within the same session
of $IAMUT1). The DF command of $IAMUT1l is described under "DF—Define

Indexed File" on page 9-6.

To review the prompts that occur when Y is replied at this point return
to the example in Chapter 2, "Using the Indexed Access Method.™

3-6 $SC34-0771

C

DESIGNING INDEXED FILES USING $IAMUT1 - OPTION 2

Option 2 is used if yvyou have performed an analysis of your file require-
ments and you want to precisely define your primary indexed file. This
option provides a wide range of parameters to allow you to specify vour
file structure in detail. You can optimize the file structure according
to your application requirements for the best strrage use and perform-
ance.

If you want to supply only the minimum parameters you might want to use
option 1 which is described earlier in this chapter under "Designing
Indexed Files Using $IAMUT1 - Option 1™ on page 3-5. If you already
have an indexed file established and you wish to use those same parame-
ters, you should see "Designing Indexed Files Using $IAMUT1 - Option 3"
on page 3-35.

OPTION 2

The following information is provided so that you can supply the
required information to the prompts when defining a primary index file
using option 2 of $IAMUT1. The information is organized in levels of
Indexed Access Method blocks. The material should be read sequentially
because it provides the information which must be understood in order to
apzly_i; to the examples which are placed near the end of this option 2
material.

INDEXED ACCESS METHOD BLOCKS

Indexed files consist of three kinds of blocks:
. Data blocks, which contain records

. Index blocks, which contain pointers to data blocks or lower-level
index blocks

. File control blocks, which contain control information.

Following is an overview diagram showing the tvpes of blocks and their
general relationships to each other in an indexed file.

Chapter 3. Defining Primary Index Filaes 3-7

File
Control
Blocks

Index
Blocks

Data
Blocks

Free
Pool

Figure 3-1. Indexed File Logical Structure

- 3-8 SC34-0771

O

The indexed file is composed of a number of fixed length blocks. The
block is the unit of data transferred by the Indexed Access Method
between disk/diskette and the central buffer. Block size must be a mul-
tiple of 256. A block is addressed by its relative block number (RBN).
The first block in the file is located at RBN 0.

Note that the RBN is used only in indexed files by the Indexed Access
Method. An Indexed Access Method block differs from an Event Driven
Executive record in the following ways:

1. The size of arblock is not limited to 256 bytes; its length can be a
multiple of 256.

2. The RBN of the first block in an indexed file is 0. The record num-
ber of the first Event Driven Executive record in a file is 1.

The size, in 256-byte records, of the file is calculated by the SE com-
mand of the $IAMUT1 utility.

As stated initially, three kinds of blocks exist in an indexed file:

data blocks, index blocks, and file control blocks. These blocks are

all the same length, as defined by BLKSIZE, but they contain different

kinds of information. Data blocks contain data records, index blocks

ggntain index entries, and file control blocks contain control informa-
ion.

DATA BLOCKS

Each data block contains a header, one or more data records, and it can
contain free space for additional data records.

The records in each data block are in ascending order, according to the
key field in each record.

Each data block header contains the address of the next sequential data
block, providing sequential processing capability.

A data block contains a header followed by data records. The number of
records that can be contained in a data block depends on the size of the
data block and the size of the record. The header of the block is 16
bytes.

The number of record areas in the block is:

block size - 16
record size

The result is truncated; any remainder represents the number of unused

. bytes in the block. For example, if block size is 256 and record size
is 80, the data block can accommodate three records and there is no
unused area. The key field of the last record slot in an index block is
the high key for the data block even if the block is not full.

Chapter 3. Defining Primary Index Files 3-9

However, if the last record of the block has been deleted, the key field
of the last record slot will contain a key higher than that of any other
record in the block. Deletion of a record does not reduce the key range
for the block unless the block is emptied. Figure 3-2 , shows the for-
mat of a data block.

FREE SPACE

3-10

When an indexed file is loaded with base records, free space is reserved
for records that may be inserted during processing. There are four
kinds of free space: free records, free blocks, reserve blocks, and
reserve index entries.

FREE RECORDS: Free records are areas reserved at the end of each data
block. The FREEREC parameter of the SE command of S$IAMUT1, specifies
the number of free records that are reserved in each data block. The
remaining record areas are called allocated records.

For example, if a block contains three data record areas and you specify
one free record per block, then there are two allocated records per
block. For the lavout of a data block containing two allocated records
and one free record, see Figure 3-2. :

When records are loaded (file is open in load mode), the allocated
records are filled, and the free records are skipped. When additional
records are inserted (file is open in process mode), free records are
used to hold inserted records.

HEADER

Data Record

Data Record

Free space

Figure 3-2. Data Block Format Example

For an example of specifying FREEREC, see "Example 1: Allocating Free
Records™ on page 3-24.

FREE BLOCKS: Free blocks follow the allocated data blocks within each
cluster. Free blocks have all of their records marked as free records.
The FREEBLK parameter of option 2 is used to specify the percentage of
blocks that are to be marked as free blocks.

When records are loaded, the allocated record areas in the allocated
data blocks are filled, and the free blocks are skipped. During proc-
essing, as data blocks become full, a free block provides space for
insertions.

For an example of specifying FREEBLK, see "Example 2: Allocating Free
Records and Free Blocks™ on page 3-26.

$C364-0771

O

SEQUENTIAL CHAINING: Data blocks in an indexed file are chained together
by forward pointers located in the headers of data blocks. Only allo-
cated data blocks are included in the sequential chain. Chaining pro-
vides for sequential processing of the file with no need to reference
the index. When a free block is converted to an allocated block, the
free block is included in the chain.

Reserving Space For Record Inserts

If base records are to be loaded and record insertions are expected in
random locations throughout the file, use BASEREC to reserve the number
of base records. Use some combination of the following parameters:
FREEREC to reserve free records in each data block, FREEBLK to reserve
freg blocks in each cluster (group of blocks), and DYN to provide a free
pool.

For example, consider a file with 5 records per block, and 10 data
blocks per cluster. Suppose that the file consists of 300 base records
and 200 inserts.

If the inserts are distributed evenly throughout the file, the pattern
of inserts is:

Blocks

Insertst ie ce ee e .

(Each bullet indicates an inserted record)

With this kind of distribution you can specify 2 free records per block
to absorb the inserts; no free blocks or free pool are needed.

O0f course inserts do not usually occur in such an even pattern. Free
blocks help to absorb a concentration of inserts. The more uneven the
expected distribution, the greater the free block specification should
be.

Suppose the same number of inserts is distributed in this pattern:

Blocks

Inserts e eee e . e e

With this distribution, specify either 3 free records per block, or 20%
free blocks with 2 free records per block.

Chapter 3. Defining Primary Index Files 3-11

Now suppose the distribution were more uneven:

Blocks

Inserts . .

In this case a satisfactory mix of free space is 1 free record per block
and 40% free blocks. An alternative is to use 1 free record per block
and the DYN parameter to hold those record inserts of more than 1 record
per block.

Calculating Data Blocks

This calculating information is provided for your convenience if you
choose to calculate the number of blocks for a specific file. For ref-
erence later there is a summary of all calculations in Appendix

A, "Summary of Calculations”™ on page A-1. However, $IAMUT1 automat-
ically calculates the required data blocks based on the parameters you
provide. The utility also lists at file definition time (when using the
SE command) the number of blocks required according to vour parameter
values.

The number of allocated data blocks in a file is the specified number of
base records (BASEREC) divided by the number of allocated records per @:\\
data block, with the result rounded up if there is a remainder. - g

For example, suppose you intend to load 1000 records in an indexed file
that is formatted for two allocated records and one free record per
block and five allocated blocks and one free block per cluster. The
number of allocated blocks in a file is:

number of base records
number of allocated records per block

The number of allocated blocks in this example is 1000/2 or 500 blocks.

®

3-12 SC34-0771

C

INDEX BLOCKS

PRIMARY

An index block contains a header followed by a number of index entries.
Each index entry consists of a key and a pointer. The key is the high=
est key associated with a lower level block; the pointer is the RBN of
that block. The number of entries contained in each index block depends
on block size and key size. The header of the block is 16 bytes. The
RBN field in each entry is ¢ bytes. The key field in each entry must be
an even number of bytes in length; if the key field is an odd number of
bytes in length, the field is padded with one byte to make it even. The
number of index entries in an index block is:

block size - 16
4 + key length

The result is truncated; any remainder represents the number of unused
bvtes in the block.

For example, if block size is 256 and key length is 28, then each index
entry is 32 bytes, there are 7 entries in a block, and the last 16 bytes
of the block are unused.

INDEX BLOCKS (PIXB)

A set of data blocks is addressed (described) by a single primary index
block (PIXB). Each key in the index block is the highest key 1n the
data block that its accompanying relative block number (RBN) addresses.
A block is addressed by its RBN. The PIXB and the data blocks it
describes are called a cluster.

Clusters

Primary-level index blocks and data blocks are stored together in the
file in groups called clusters. Each cluster consists of a
primary-level index block and as many data blocks and free blocks as it
points to. For example, if there are seven entries in an index block,
there are eight blocks in a cluster: one primary-level index block and
up to 7 data/free blocks. If reserve blocks have been specified, the
blocks represented by the reserve block entries are not included until
insert activity has taken place and the required blocks have been .
obtained from the free pool. For example, if there are seven entries in
an index block and one of the entries is a reserve block entry, the
cluster consists of seven blocks (one index block and six data blocks).
See Figure 3-3 on page 3-14 for a cluster example.

Chapter 3. Defining Primary Index Files 3-13

HEADER

RBN of High key <K:;
block 1} in block 1 g
RBN of High key

PIXB block 2] in block 2

RBN of High key
block 3| in block 3

NN
N

RBN of High key
block 7] in block 7

Data * o e
blocks

Figure 3-3. Cluster Example

-~
Primary-Level Index Blocks) W g

DN

Entries in a primary-level index block point to data blocks. Each entry
in a primary-level index block is one of three possible types:

. Allocated entry
. Free block entry
. Reserve block entry.

ALLOCATED ENTRY: An allocated entry points to an active data block. The
key portion of the entry is initialized to binary ones by the $IAMUT1
utility. After records have been loaded or written to a data block, the
key portion of the entry which points to the data block contains the
highest key from the data block.

The pointer portion contains the RBN of the data block. Allocated
entries are the first entries in an index block. The number of index
entries allocated, when the indexed file is initially created, is the
total number of entries per index block, less the number of entries of
the other two types (free block entry and reserve block entry).

3-14 SC36-0771

FREE BLOCK ENTRY: A free block entry points to a free data block. The
key portion of the entry contains binary zeros. The pointer portion
contains the RBN of the free block. Free block entries follow the allo-
cated entries in the index block. The number of index entries formatted
as free entries when the indexed file is initially created is the speci-
fied percentage (FREEBLK) of the total number of entries in an indexed
block, with the result rounded up if there is a remainder.

RESERVE BLOCK ENTRY: A reserve block entry does not point to a block but
is reserved for later use as a pointer to a data block which can be tak-
en from the free pool. Both the key and pointer portions of a reserve
block entry are binary zeros. Reserve block entries are at the end of
the index block. When a reserve block entry is converted to a used
entry, the index block is reformatted to move the entry to the allocated
entry area of the block.

Reserve blocks do not exist in the cluster. When all data blocks in a
cluster are used and another data block is needed, a data block can be
created from the free pool. If the primary-level index block contains a
reserve block entry, it is used to point to the record from the free
pool. The reserve block entry in the primary-level index block points
to the block, and the data block becomes an allocated data block.

The number of index entries initially formatted as reserve block entries
is the specified percentage (RSVBLK) of the total number of entries,
with the result rounded up if there is a remainder. However, if the
number of free block entries plus the number of reserve block entries
require all index entries, the number of reserve block entries is
reduced by 1, providing at least one allocated entry per index block.

To calculate the number of primary-level index blocks in an indexed
fiée, vou must know the initial number of data blocks allocated in the
indexed file.

Calculating Clusters

This calculating information is provided for your convenience if vou
choose to calculate the number of blocks for a specific file. However,
$IAMUT1 automatically calculates the required data blocks based on the
parameter values you provide. The utility also lists at file definition
time (when using the SE command) the number of blocks required according
to vour parameter values.

The number of clusters in a file is the number of allocated data blocks
divided by the number of allocated entries in each primary-level index
block, with the result rounded up if there is a remainder.

allocated blocks

allocated entries in each PIXB

Note that in the calculation, if the quotient is not an integer, it is
rounded up (rather than truncated) in order to accommodate all of the
base records.

Chapter 3. Defining Primary Index Files 3-15

The number of free blocks in the file (not including the free pool) is
the number of clusters in the file multiplied by the number of free
entries in each primary-level index block.

The Last Cluster

The last cluster in the file may be different from the other clusters.
It contains the same number of free blocks as the other clusters but
only enough allocated blocks to accommodate the records that you have
specified with the parameter BASEREC. Because rounding occurs in calcu-
lating the number of clusters, a few more allocated records than
required may exist in the last allocated block. The last cluster can be
a short one because only the required number of blocks are used.

If the number of allocated blocks divided by the number of allocated
blocks per cluster leaves a remainder, the remainder represents the num-
ber of allocated entries in the primary~level index block in the last
cluster. Unused entries in the last primary-level index block are
treated as reserve block entries.

The initial number of data blocks is the specified number of base
records (BASEREC) divided by the number of allocated records in a data
block, with the result rounded up if there is a remainder.

BASEREC
data records per block

The number of primary-level index blocks is the initial number of allo-
cated data blocks divided by the number of allocated entries per
prim@rg—level index block, with the result rounded up if there is a
remainder.

allocated data blocks
allocated entries per primary-level index block

3-16 SC34-0771

C

C

SECOND-LEVEL INDEX BLOCKS (SIXB)

If the file is large enough to require more than one cluster, each PIXB
(or cluster) has an entry in a second-level index block (SIXB). The
entry in a SIXB contains the address of the PIXB and the highest key in
the cluster. The SIXB has the following structure:

HEADER
RBN of High key
PIXB1 in PIXB1
RBN of High key
SIXB PIXB2 in PIXB2
RBN of High key
PIXB3 in PIXB3
RBN of High key
PIXB4 in PIXBé4
PIXB1 PIXB2 PiXB3 PIXB4

Entries in a second-level index block point to primary-level index

blocks. Each entry in a second-level index block is one of two possible
types:

L Allocated entry
. Reserve index entry.

ALLOCATED ENTRY: An allocated entry points to an existing primary-level
index block. The key portion of the entry is initialized to binary ones
by the S$IAMUT1 utility. After records have been loaded or written, the
key portion of the entry contains the highest key from the primary-level
index block. The pointer portion contains the RBN of the primary-level
index block. Allocated entries are the first entries in the index
block. The number of index entries allocated when the indexed file is
loaded is calculated as the total number of entries per index block,
less the number of reserve index entries.

Chapter 3. Defining Primary Index Files 3-17

RESERVE INDEX ENTRY: A reserve index entry does not point to a block but

is reserved for later use as a pointer to a primary-level index block

that can be taken from the free pool. Both the key and pointer portions @::D
of a reserve index entry are binary zeros.

Reserve index entries, in second-level index blocks, provide index space
for the index structure to be expanded by adding new primary-level index
blocks. These, in turn, can have data blocks associated with them, thus
forming new clusters. This process of forming a new cluster is called a
cluster split.

For an example of using RSVIX, refer to "Example 4: Allocating Reserved
Index Entries™ on page 3-30.

Reserve index entries are at the end of the index block. The number of
index entries initially formatted as reserve index entries is the speci-
fied percentage (RSVIX) of the total number of entries, with the result
rounded up if there is a remainder. However, if the number of reserve
index entries is the same as the total number of entries in an index
block, the number of reserve index entries is reduced by 1, providing at
least one allocated entry per second-level index block.

The number of second-level index blocks is the number of primary-level
index blocks divided by the number of allocated entries per second-level
index block, with the result rounded up if there is a remainder.

number of PIXBs
allocated entries per SIXB

3-18 SC34-0771

C

HIGHER-LEVEL INDEX BLOCK (HIXB)

If the file is large enough to require more than one SIXB, the SIXBs in
the file are described by one or more higher-level index blocks (HIXB)
in the same manner as the SIXB describes PIXBs. There is always one
index block that describes the entire file.

The index of an indexed file is constructed in several levels so that,
given a key, there is a single path (one index block per level) cascad-
ing through the index levels that leads to the data block associated
with that key. The index is built from the bottom up. At the lowest
level are the primary-level index blocks. At the second level are index
blocks containing entries that point to the primary-level index blocks.
The highest level of the index structure consists of a single index
block.

Entries in a higher-level index block point to index blocks at the next
lower level. All entries in higher-level index blocks are allocated
entries. The key portion of the entry contains the highest key from the
index block of the next lower level. The pointer portion contains the
RBN of the next lower level index block. The number of blocks at any
higher index level is the number of index blocks at the next lower level
divided by the total number of entries per index block, with the result
rounded up if there is a remainder.

If the number of index blocks at any level is one, that level is the top
level of the index. Although the Indexed Access Method is capable of
initially defining and supporting 17 levels of index, an indexed file is
formatted with only as many index levels as are required for the number
of records. If an indexed file has not been fully loaded and one or
more higher index levels have not yet been required, the unnecessary
higher levels are not used, even though they exist in the file
structure.

INDEX EXAMPLE: Assume that 500 data blocks are allocated to a file and
that each primary-level index block contains one free block entry, one
reserve block entry, and five allocated entries. Therefore, the total
number of primary-level index blocks is 100. Each second-level index
block contains one reserve index entry and six allocated entries; there-
fore, the number of second-level index blocks is 17. The number of
entries in higher level index blocks is seven, resulting in three index
blocks at the third level and one at the fourth level.

Therefore the file contains a total of 121 index blocks of which 100 are
primary-level index blocks, 17 are second-level index blocks, 3 are
third-level index blocks, and 1 is a fourth-level index block. This
distinction is important because high-level index blocks are located
contiguously at the beginning of the file (after the FCB), while
primary-level index blocks are scattered throughout the file with the
gata blocks. Figure 3-% shows the structure of the higher-level index
locks.

Fourth

(top)
[] level
index

[]] (] iedd

hhto Booobtd bod

Figure 3-4. High-level Index Structure

Chapter 3. Defining Primary Index Files 3-19

FREE POOL

3-20

If you specify that vou want a free pool, your indexed file contains a MZ:D
pool of free blocks at the end of the indexed file. The file control

block contains a pointer to the first block of the free pool, and all

blocks in the free pool are chained together by forward pointers.

A block can be taken from the free pool to become either a data block or
an index block. The block is taken from the beginning of the chain, and
its address (RBN) is placed in the appropriate primary-level index block
(if the new block is to become a data block) or in the second level
index block (if the new block is to become a primary-level index block),
and so on. Any block in the free pool can be used as either a data
block or as an index block.

When a data block becomes empty because of record deletions, the data
block may return to the free pool (depending on the delete threshold
(DELTHR) parameter). If the data block is returned to the free pool,
reference to the block is removed from the primary-level index block,
and the block is placed at the beginning of the free pool chain.

Calculating the initial size of the free pool consists of the following
steps:

. Each reserve block entry in a primary-level index block represents a
potential data block from the free pool. The number of data blocks
that can be assigned to initial clusters is the number of
primary-level index blocks times the number of reserve block entries
in each primary-level index block.

. Each reserve index entry in a second-level index block represents a
potential primary-level index block from the free pool. The number
of primary-level index blocks that can be assigned from the free
pool into the index structure set up at file definition time is the
number of second-level index blocks multiplied by the number of ’ \
reserve index entries in each second-level index block. . Y

. Each primary-level index block taken from the free pool consists
entirely of empty (reserve block) entries. HNew data blocks can be
taken from the free pool for the entries in the new primary-level
index block. The number of data blocks is the number of entries per
index block multiplied by the number of new primary-level index
blocks (calculated in the previous step).

. The maximum number of blocks that can be taken from the free pool
and placed into the index structure set up at file definition time
is the sum of the previous three calculations.

. The actual number of blocks in the free pool is determined in one of
two ways:

- The percentage (FPOOL) of the maximum possible free pool as
specified by the RSVIX and RSVBLK parameters. The result is
rounded up if there is a remainder. If the DYN parameter is
also used, its value is added to the sum.

- The DYN parameter, if specified with no other free space parame-
ters, allocates a free pool of the specified number of blocks.

DELTHR - DELETE THRESHOLD: The percentage (0-99) of blocks to retain in
a cluster as records are deleted and blocks made available. This is
known as the delete threshold DELTHR. When a block becomes empty, this
parameter, i1f supplied, determines if the block should be returned to
the free pool.

$C34-0771

@

EILE CONTROL ELOCK

The file control block (FCB) is the first block in the filae (RBN 0); it
contains control information.

Indexed files have an FCB Extension as the second block. The FCB Exten-
sion contains the parameters used to define the file.

Note: Indexed files built with a version of the Indexed Access Method
prior to version 2 do not contain an FCB extension.

You can access the FCB and FCB Extension by either of the following
methods:

. Using the EXTRACT function in an EDL program
o Using the $VERIFY utility.

You can locate the field names in the FCB and FCB Extension by examining
a listing of FCBEQU, a copy code module that is supplied as part of the
Indexed Access Method. The FCB Extension contains the parameters that
were used to set up the file using the $IAMUT1 SE command. Control
information is also contained in block headers; a description of control
information is contained in "FCB Extension Report" on page 10-8.

FILE STRUCTURE TYPES

A wide range of file structure is available. You can set up files that
vary from the totally dynamic to the highly structured. Whether a file
is :tructured or dynamic depends on the degree to which it uses a free

pool.

A free pool is an area in vour indexed file which contains a pool of
free blocks. The file control block contains a pointer to the first
block of the free pool, and all blocks in the free pool arae chained
together by forward pointers. A block can be taken from the free pool
to become either a data block or an index block.

Dynamic files offer the advantage of easy file design and good space
gtilization. They have the disadvantage of a potential performance
ecrease.

Structured files offer the advantage of good performance. They have the
dis:dvantage of a more complex file design and greater space require-
ments.

Either method can result in a need to reorganize the file; the struc-
tured approach because the file can run out of space for inserts, and
the dynamic approach because of performance considerations.

The type of indexed file to be defined, structured or dynamic,
therefore, depends on the file requirements and the efficiency required.

Structured File

A structured file has its base record slots, free space, and the index
structure needed to support them built at file definition time by the
Indexed Access Method utility using the file structure parameters you
specify. The structured file uses little, if any, free pool. The
structured file offers better performance than the dynamic file but can
result in unused space.

Chapter 3. Defining Primary Index Files 3-21

Whether or not a structured file has a free pool depends on whether or

not you supply a value for the DYN parameter when the file is defined.

When the DYN parameter is used, the FREEREC, FREEBLK, RSVBLK, RSVIX, and diﬁm
FPOOL parameters, if supplied, are also used in establishing the struc- J
tured free space. The number and types of blocks in a structured file

are the result of calculated values you supply as parameters when defin-

ing the file. Most of the blocks are not taken dynamically from the

f(:e po:} as they are needed because they are established at file defi-

niction mme.

Dynamic File

The higher the degree to which a file uses a free pool, the more dynamic
it ;s; the system builds index and data blocks for you as they are
needed.

The Indexed Access Method provides a dynamic file restructuring capabil-
ity. It makes use of any free pool space the file has, even if the file
is mostly structured.

The Indexed Access Method can restructure a file in two ways:

. As records are inserted and additional space is needed in specific
areas of the file, blocks are taken from the free pool and become
data blocks where needed. If additional index blocks are needed,
blocks are taken from the free pool for this purpose as well. Index
blocks can be added at any level, and the number of levels of index
can increase as needed. This function is performed automatically by
t?edInquethccess Method on any file that has a free pool associ-
ated wi it.

the free pool. If index blocks become empty (because the blocks
under them have been returned to the free pool) they are also
returned to the free pool. This helps to maintain a supply of
blockz in the free pool to be used if other areas of the file
expand.

e . As records are deleted and blocks become empty, they are returned to Q;::

For an example of defining a totally dynamic file, see "Example 5 -
Defining a Totally Dynamic File™ on page 3-33.

USING THE DYN PARAMETER: The DYN parameter can be used to adjust how
guch the free pool is used. This adjustment varies how dvnamic a struc-
ured file is.

In a totally dynamic file, the initial file defined consists of only the
file control blocks, one primary index block and one data block. The
rest of the file is in the free pool.

To define a totally dynamic file, you need to only supply a value for
ihe DYN ?arameter to allow the rest of the file to be assigned to the
ree pool.

A dynamic file can be used when the records you want to add to the file
are not sorted into ascending key sequence. In that case, you can place
the records in the file by inserting them in random sequence. The
Indexed Access Method will place them in their proper sequence within
the indexed file.

If base records are to be loaded initially and they are sorted in
ascending key sequence but insert activity is unknown, you can use a
totally dynamic file design. Use the BASEREC parameter to reserve the
number of base record slots required. Use the DYN parameter to provide
the free pool needed for record inserts.

Note: When a dynamic file has grown to its working size, it should be
reorganized for more efficient operation. 0

3-22 5C34-0771

C

C

0PT1O0

EXAMPLE

The examples which follow are provided to show the option 2 prompts and
the effects of certain parameter values. Although the values used are
small for simplicity of explanation, they are usually much larger in an
actual application. Also a given example does not represent a complete
primary index file but addresses a particular part of a file and its

associated parameters which we wish to describe at that place in the
chapter.

Chapter 3. Defining Primary Index Files 3-23

EXAMPLE 1:

The indexed file created using these parameters has only one type of

ALLOCATING FREE RECORDS

free space, called free records:

[1l

ENTER COMMAND (?): SE

SET F§%E DEFINITION PARAMETERS

0 = EXIT

1 = SIGNIFICANT PARAMETERS

2 = ALL PARAMETERS

3 = PARAMETERS FROM EXISTING INDEXED DATASET

ENTER OPTION: 2
SECONDARY INDEX (Y/N)?: N
PARAMETER DEFAULT NEW VALUE

BASEREC NULL:10
BLKSIZE 0:256
RECSIZE 0:80
KEYSIZE 0:40
KEYPOS 1:1
FREEREC 0:1
FREEBLK 0:0
RSVBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTHR NULL:
DYN NULL:

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:

TOTAL ENTRIES/INDEX BLOCK:

FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB:

DELETE THRESHOLD ENTRIES:

FREE POOL SIZE IN BLOCKS:

OF INDEX BLOCKS AT LEVEL 1:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE (Y/N)?: N

ENTER COMMAND (?2):

F-J

=0 eOoUIVIoOUIOOWUNHUVINW

3-26 SC364-0771

O

(

\"\.

s

[1] Because record size was specified as 80 and block size was specified
as 256, there are (256-16)/80 = 3 records per block. Because FREEREC
was specified as 1, there are 2 full (base) records per block and 1 free
record per block. Because BASEREC was specified as 10, there are 10/(2
base records per block) or 5 initial allocated data blocks (blocks that
contain base records). Because FREEBLK, RSVYBLK, RSVIX, FPOOL, and DYN
were not specified, there are no free blocks or free pool blocks allo-
cated. One primary index block is needed.

The number of free blocks is calculated as follows: Free entries ber
PIXB times the number of index blocks at level 1.

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 0
Free pool blocks 0
Index blocks 1
File control block + 2

8 Total

Figure 3-5 illustrates the format of the indexed file that would result
from these SE command parameters.

1
2
3
PIXB ==> 4
5
6
2 3 % 5 6
Data
blocks
Free Free Free Free Free

Figure 3-5. Indexed File with Free Records

Chapter 3. Defining Primary Index Files 3-25

EXAMPLE 2: ALLOCATING FREE RECORDS AND FREE BLOCKS

3-26

These parameter specifications will generate an indexed file with two
types of free space—free records and free blocks:

ENTER COMMAND (%): SE

gET E§§$ DEFINITION PARAMETERS
1 SIGNIFICANT PARAMETERS

2 ALL PARAMETERS

3 = PARAMETERS FROM EXISTING INDEXED DATASET

ENTER OPTION: 2

SECONDARY INDEX (Y/N)?: N

PARAMETER DEFAULT NEW VALUE

BASEREC NULL:10

BLKSIZE 0:256

RECSIZE 0:80

KEYSIZE 0:40

KEYPOS 1:1

FREEREC 0:1

[11 FREEBLK 0:10

RSVBLK NULL:

RSVIX 0:

FPOOL NULL:

DELTHR NULL:

DYN NULL:

TOTAL LOGICAL RECORDS/DATA BLOCK:

FULL RECORDS/DATA BLOCK:

INITIAL ALLOCATED DATA BLOCKS:

INDEX ENTRY SIZE: 4
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB:

DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:

OF INDEX BLOCKS AT LEVEL 1
OF INDEX BLOCKS AT LEVEL 2:

DATA SET SIZE IN EDX RECORDS: 12
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (?):

i Hi

-
.

=NouuiVioHMOFUAUINW

[1] The FREEBLK parameter of 10 causes 10% of the total entries in each
index block to point to free blocks. Because KEYSIZE was specified as
40, the index entry size = 40 + 4 (RBN pointer) and the total entries
per index klock is (256-16)/44 = 5. Thus, 10% of this total rounded up
is the number of free entries/PIXB (1). Because there are 5 initial
allocated data blocks, one free entry and only 5 total entries per index
block, 2 primary index blocks are needed. This causes a second-level
index block to be allocated.

$C34-0771

O

The total blocks allocated:

Initial allocated data blocks 5
Free blocks 2
Free pool blocks 0
Index blocks 3
File control block + 2
12 Total

Figure 3-6 illustrates the format of the indexed file that would result
from these SE command parameters.

2
3
SIXB ==> 9
Unused
3 9
4 10
5 11 Free
PIXBs ==>
6 Unused
7
8 Free
4 5 6 7 8 10 11
Data
blocks
Free Free Free Free Free
Free Free
block block

Figure 3-6. Indexed File with Free Records/Blocks

Chapter 3. Defining Primary Index Files 3-27

EXAMPLE 3: ALLOCATING RESERVED DATA BLOCKS

Reserve blocks are allocated using the RSVBLK and FPOOL parameters of
the SE command. The following SE command example shows the specifica-
tion of an indexed file with reserved data blocks.

ENTER COMMAND (?): SE

SET Ei%; DEFINITION PARAMETERS
1 SIGNIFICANT PARAMETERS
2 ALL PARAMETERS
3 PARAMETERS FROM EXISTING INDEXED DATASET
SECONDARY INDEX (Y/N)?: N
ENTER OPTION: 2
PARAMETER DEFAULT NEW VALUE
BASEREC NULL:10
BLKSIZE 0:256
RECSIZE 0:80
KEYSIZE 0:40
KEYPOS 1:1
FREEREC 0:1
FREEBLK 0:10
(1] RSVBLK NULL:10

RSVIX 6:
[2] FPOOL NULL:50
DELTHR NULL:
DYN NULL:
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE: 4
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (?):

PN DU N NTDUTN W

11
ot AN

[1] In this example RSVBLK was specified as 10. Thus 10% of the total
entries in each PIXB will initially be reserved.

[2) Because the total entries per PIXB is 5, 10% of 5 rounded up will
cause 1 entry in each PIXB to be reserved. Because there are 2 PIXBs,
each with 1 reserve entry, a maximum of 2 free pool blocks can be used.
However, since FPOOL was specified as 50%, only half of these blocks (1
block) will be allocated for the free pool.

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 2
Free pool blocks 1
Index blocks 3
File control block +1%

Figure 3-7 on page 3-29 illustrates the format of the indexed file that
would result from these SE command parameters.

Total

3-28 $SC364-0771

O

C

O

2
3
SIXB == 8
Unused
3 8
4 9
. 5 10
PIXBs ==>
6 11 Free
7 Free Reserved
Reserved Unused
4 5 6 7 9 10 11
Data
blocks
Free Free Free Free Free
Free Free
block block
12
Free pool
block

Figure 3-7. Indexed File with Reserved Data Blocks

Chapter 3. Defining Primary Index Files 3-29

EXAMPLE 4: ALLOCATING RESERVED INDEX ENTRIES

In the following example, the index structure is set up to use free pool
blocks for index blocks by allocating reserve index entries using the
RSVIX parameter.

" ENTER COMMAND (?): SE

SET FILE DEFINITION PARAMETERS
0 = EXIT

1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATASET

ENTER OPTION: 2 ,
SECONDARY INDEX (Y/N)?: N
PARAMETER DEFAULT NEW VALUE
BASEREC NULL:10

BLKSIZE 0:256
RECSIZE 0:80

KEYSIZE 0:40

KEYPOS 1:1

FREEREC 0:1

FREEBLK 0:10

RSVBLK NULL:10

(11| RSVIX 0:10

FPOOL NULL:50

t21| DELTHR NULL : 40

DYN NULL : 25

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:

TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB:

DELETE THRESHOLD ENTRIES:

FREE POOL SIZE IN BLOCKS: 2
OF INDEX BLOCKS AT LEVEL 1:

OF INDEX BLOCKS AT LEVEL 2:

DATA SET SIZE IN EDX RECORDS: 41
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (?):

E

=NOND WA W

[1] In this example there are still 5 total entries per index block.
The 10 RSVIX parameter causes 10% X 5 (rounded up to 1) of the
second-level index block (SIXB) entries to be reserved.

In this case, 1 reserve entry is allocated in the SIXB leaving 4 full
entries. Because the block pointed to by a SIXB is also an index block
(PIXB), blocks in the free pool are allocated for the PIXB and the total
number of data blocks it can point to. Thus the total free pool size
for these parameters is 1 (reserve entry) + 5 (total entries/PIXB) + 2
(reserve block entries) = 8. Because only 50% of the total possible
free pool was requested, 4 of the total free pool blocks plus the 25
blocks specified on the DYN parameter for a total of 29 blocks would be
allocated to the free pool.

3-30 5C34-0771

-

o

Tha total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 2
Free pool blocks 29
Index blocks 3
File control block + 2
41 Total

[2] The percentage (0-99) of blocks to retain in the cluster as records
are deleted and blocks made available. This is known as the delete
threshold (DELTHR). When a block becomes empty, it is first determined
if the block should be given up to the free pool by checking the
response to this prompt. If the block is not given up to the free pool,
it is retained in the cluster, either as a free block or as an active
empty block. The result of this calculation is rounded up so that any
non-zero specification indicates at least one block. The calculation is
adjusted to ensure that the cluster always contains at least one block.
In this example, the delete threshold was specified as 40%Z. This
results in at least 2 blocks always being retained in each cluster.

If the DELTHR parameter is specified as null (&) and DYN is not speci-
fied, DELTHR defaults to the number of allocated blocks in the cluster
plus one half of the value calculated by the FREEBLK prompt.

If the DELTHR parameter is specified as null and a value is specified
for the DYN parameter, DELTHR defaults to zero.

Figure 3-8 on page 3-32 illustrates the format of the indexed file that
would result from these SE command parameters.

Chapter 3. Defining Primary Index Files 3-31

2
3
8
SIXB ==>
Reserved
Unused
3 8
4 9
5 10
PIXBs ==> 6 11 Free
7 Free Reserved
Reserved Unused
4 5 6 7 9 10 11
Data
blocks
Free Free Free Free Free
Free Free
block block
12 13 14 15
> —— —_
Free pool
blocks
Free Free Freel Free
Figure 3-8. Indexed File with Reserved Index Entries

3-32 5C34-0771

b
)

C

EXAMPLE 5 - DEFINING A TOTALLY DYNAMIC FILE

To define a totally dynamic file you need only supply the parameters
which describe the format of your records within blocks: BLKSIZE,
RECSIZE, KEYSIZE. If the your keys do not begin in position 1 of your
records, the KEYP0OS parameter must be supplied. The DYN parameter must
then be specified in the number of blocks to assign to the free pool.

The following display shows the use of the SE commands of the $IAMUT1
utility to define a totally dynamic indexed file. Note that the result-
ing file has only one allocated data block and one index block. The
rest of the space is in the free pool as specified by the DYN parameter.

ENTER COMMAND (?): SE

SET F§LE DEFINITION PARAMETERS

= EXIT

1 SIGNIFICANT PARAMETERS

2 ALL PARAMETERS

3 PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: 2

SECONDARY INDEX (Y/N)?: N

PARAMETER DEFAULT NEW VALUE

BASEREC NULL:
BLKSIZE 0:256
RECSIZE 0:70
KEYSIZE 0:490
KEYPOS 1:
FREEREC 0:
FREEBLK 0:
RSVBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTHR NULL:
DYN NULL:5300

TOTAL LOGICAL RECORDS/BLOCK: 3
FULL RECORDS/DATA BLOCK: 3
INITIAL ALLOCATED DATA BLOCKS: 1
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: 17
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB (BLOCKS): 0
FULL ENTRIES/PIXB: 17
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 17
DELETE THRESHOLD ENTRIES: ¢

FREE POOL SIZE IN BLOCKS: 5300
§ OF INDEX BLOCKS AT LEVEL 1: 1
DATA SET SIZE IN EDX RECORDS: 5304
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (?):

The total blocks allocated for this file is:
Initial allocated data blocks 1

Free blocks 0
Free pool blocks 5300
Index blocks 1

File control block 2
5304 Total

Chapter 3. Defining Primary Index Files 3-33

Figure 3-9 jllustrates the format of the indexed file that would result
from these SE command parameters.

2
Primary index
block (PIXB) => 3
3
Data
block =>
Free
4 5 6 5303
—_> —_> —_—
Free pool
blocks =>

Figure 3-9. Totally Dynamic Indexed File

3-34 S5C34-0771

Q

DESIGNING INDEXED FILES USING $IAMUTI - OPTION 3

Option 3 allows you to define a new file, using the same parameters that
were used to create an existing file. Using this option you are not
required to manually enter any parameters. You are prompted for the
data set name and volume of the existing indexed file followed by the
prompt "NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N) 7™,

The effects of these two possibilities are described below:

Y

The new file to be defined is to appear exactly like the existing
file when it was created. In other words, the parameters to be used
for defining the new file will be exactly like those of the existing
file.

An example of this situation is where you are satisfied with the
structure of a currently existing file and now you want to build a
similar file and you expect the same type of insert/delete activity.

The growth of the existing file is to be taken into account in defin-
ing the new file. If the total number of records in the existing
file do not exceed the number of base records when the file was
defined, the existing file parameters will be used without change to
define the new file. However, if the number of records in the exist-
ing file exceed the number of base records, the parameters for the
new file will be adjusted as follows:

. BASEREC will be set as the current number of records in the
existing file.

L FPOOL will be set to null.

L DYN will be set to the current number of free pool blocks in the
existing file.

U All other parameters will be the same as the corresponding exist-
ing file parameters.

Replying N to the prompt "NEW PARAMETERS EXACTLY SAME AS ORIGINAL
PARAMETERS (Y/N)?", causes the file size to be adjusted to allow
at least as many records to be loaded in the new file as appear
in the existing file. This reduces the free pool amount based
upon free pool depletion in the existing file.

An example of this situation is where you wish to reorganize a file.
The new file should be able to handle as many records as exist in the
old file.

Note: The parameters for a primary file must be set from another prima-
ry file and parameters for a secondary file must be set from another
secondary file.

Chapter 3. Defining Primary Index Files 3-35

$IAMUT1 ~ OPTION 3

3-36

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUTL.

When $IAMUT1 is loaded the first prompt displayed is as follows:

[1]1 [ENTER COMMAND (?): SE

[1] Entering SE causes the next prompt to be displayed.

SET FILE DEFINITION PARAMETERS
0 = EXIT

1l = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
[2] |3 = PARAMETERS FROM EXISTING INDEXED DATA SET

ENTER OPTION: 3

[2] Respond to this prompt by entering the digit '3'. This response
causes the following prompts to be displayed.

SECONDARY INDEX (Y/N)?: N

[31 |NAME OF EXISTING INDEXED DATASET (NAME,VOLUME):EMPLFILE,EDX003
{4] |NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N)? Y
DATA SET SIZE IN EDX RECORDS: 15
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

[5] |CREATE/DEFINE FILE (Y/N)?: N

[3] Enter the name of the data set and volume whose values you wish this
data set to copy.

[4] If all of the parameter values used to define the existing file ini-
tially are satisfactory, reply Y. However, if you want to change any of
the parameters, based on current file status, or you want to reorganize
the existing file, reply N. Replying N will cause the parameter values
for BASEREC and FPOOL to be adjusted so that you can load as many
records into the new file as are now contained in the existing file.

[51 If vou have verified that the parameters you entered are correct,
the data set (file) size in EDX records is acceptable, and the return
codes are both -1, you can reply Y and the file can be defined and cre-
ated. If you wish to change any of the parameters, reply N and you can
reenter the SE command and enter any new values for the parameters.

-5C34-0771

O

C

O

DEFINING, CREATING, AND LOADING A FILE - SUMMARY

This chapter has presented the structure, content and principles of pri-
mary index files. Several examples have been used to show what results
given parameter values have when defining a primary index file.

In those examples the SE command of $IAMUT1 was used extensively. In
replving to the SE prompt "DEFINE/CREATE FILE (Y/N)?:", N was used in
this chapter. This allows you to reenter the SE command and go through
the prompt sequence again, changing any parameter values as required.

To see the result of replying Y, see the example used in Chapter

2, "Using the Indexed Access Method™ on page 2-1. When vou reply Y to
the DEFINE/CREATE prompt, you enter the function called defining the
file. You can enter the define file directly anytime that $IAMUTL is
loaded by responding with DF to the prompt "ENTER COMMAND (?):." Using
the DF (define file) command is described in detail under "DF—Define
Indexed File"™ on page 9-6.

When you reply Y to the prompt, "INVOKE LOAD(L), REORGANIZE(R) OR END(E)
AFTER CURRENT FUNCTION ?:", you are given the opportunity to enter the
$IAMUT! functions of load, reorganize, or end. While in the SE
function, load, reorganize, and end can be entered by replvying with the
letters L, R, or E, respectively. Houever, these functions can be
entered directly from the prompt "ENTER COMMAND (?):" with LO for load,
RO for reorganize, or EN for end.

Using the L0 (load) command is described in detail under "LO—Lload
Indexed File™ on page 9-22.

Using the RO (reorganize) command is described in detail under
"RO—Reorganize Indexed File"™ on page 9-30.

Entering EN (end) terminates the current session of the SE command of

$IAMUT1. Entering EN to the prompt MENTER COMMAND (?):"™ will then ter-
minate the $IAMUT1 utility.

Chapter 3. Defining Primary Index Files 3-37

3-38 5C364-0771

O

CHAPTER 6. LOADING THE PRIMARY INDEX FILE

This section describes the process and methods of loading a file.
You can use two methods to load base records:

1. The $IAMUTL utility

2. An application program.

The methods are described in the following sections.

OAD I

The Indexed Access Mathod usaes two modaes to place records into an
indexed fila:

1. Load mode: records are loaded sequentially in ascending order by
key, skipping any free space. The records loaded are called base
records. Each record loaded must have a key higher than any key
already in the file.

2. Process mode: records are inserted in their proper key position
relative to records already in the file. Records are inserted using
the free space that was skipped during loading or, if a record has a
new high key, it is placed in a base record after the last loaded
record. If no base records are available, it is placed in the free
space after the last loaded record.

The total number of base records that can be loaded is established when
the indexed file is defined by the $IAMUT1 utility. It is not necessary,
however, to load all (or any) base records before processing can begin.
The file can be opened for loading some of the base records, closed and
then reopened for processing (including inserts), and later opened for
loading more base records. Figure 4-1 on page 4-2 illustrates this
sequence.

Note: Programs written in COBOL are an exception to this; COBOL pro-
grams can use load mode only once for any given indexed file.

Therefore, all base records loaded in load mode must be loaded together.
Base records loaded later must be inserted in process mode (with slower
performance).

Chaptar 4. Loading The Primary Index File 6-1

Step 1.
Load a portlon of
the base records

High key
after step 1

Step 3.
Load more
base records

High key
after step 3

Figure 4-1. Loading and Inserting Records

MODE PROCESS MODE
< First record has
lowest key
<
<
<
<
< —— Step 2.
_ b - - = < Insert new records
<
e - - - - - - 4 < —High key after
step 2
—_— . - - - - - < Last record has
highest key
Unused
space

The amount of free space for inserts (if any) is specified using the
$IAMUT]1 utility when the indexed file is built. This free space can be

distributed throughout the file in the form of free records within each N
data block, free blocks within each cluster, and in a free pool at the ()
end of the file. W

o

6-2 5C36-0771

LOADING BASE RECORDS USING $IAMUTL

After the indexed file has been defined by the $IAMUT1 DF command, you
can load base records from a sequential file into the indexed file.
Loading the file can be done directly by responding Y to the prompt "IN-
VOKE LOAD(L), REORGANIZE(R) OR END(E) AFTER CURRENT FUNCTION?", when
defining the file, or by using the LO command after the file has been
defined. The data in the sequential file must be in ascending order by
key.

To load base records using $IAMUT1, do the following:
1. Prepare a sequential file for input to the indexed file

2. Load the sequential file into the indexed file.

Preparing Input for the Indexed File

Select one of the following methods to prepare the input in a sequential
file to be loaded into an indexed file:

. If your data records are 72 bytes or less, use one of the text edi-
tors to enter yvour data or one of the communications utilities to
get the data into an Event Driven Executive sequential file. In

either case, you must know the record format used by the utility.
The utilities put two 80-byte records in each 256-byte Event Driven
Executive record. The first record begins at location 1, and the
second record begins at location 129. This results in a blocked
sequential file which can be used to load the indexed file uwhen
using the LO command of $IAMUT1. (A detailed description of the LO
command is under "LO0—Load Indexed File"™ on page 9-22.) Specify 128
for the input record length and 256 for the input block size.

. If your records have more than 72 bytes of data, you must create a
program that accepts the data records and writes them to a disk,
diskette, or magnetic tape file.

The data must be in ascending order, based upon the field you use as the
key.

Chapter 4. Loading The Primary Index File 6-3

Loading an Indexed File from a Sequential File

The procedure for loading an indexed file from a sequential file is:

1. Invoke $IAMUT1 using the system command $L.

2. If you want a hard copy of the terminal prompts and responses, enter
an EC command. Respond to the prompt with a Y. This will print all
further prompts and responses of $IAMUT1 on the $SYSPRTR device and
your terminal. If a hard copy is not required, omit this step.

3. Enter the LO command.

Respond to the following prompts with your data set information.

ENTER COMMAND (?): LO

LOAD ACTIVE

ENTER OUTPUT DATASET (NAME,VYOLUME):

SFSEDIT FILE RECSIZE = 128

INPUT RECORD ASSUMED TO BE 30 BYTES. OK?:
ENTER INPUT BLOCKSIZE (NULL = UNBLOCKED):
ENTER INPUT DATASET (NAME,VOLUME):

LOAD IN PROCESS

END OF INPUT DATASET

ANY MORE DATA TO BE LOADED?: N
6 RECORDS LOADED

LOAD SUCCESSFUL

4. Enter the EN command to end $IAMUT1. Your program is now loaded and
vou can process the data with your application program. AN

4-4¢ SC36-0771

C

C

LOADING BASE RECORDS FROM AN APPLICATION PROGRAM

LOADING

Base records are records placed into an indexed file in ascending new
high key sequence. That is, if a record added to the file has a key
higher than any other record in the file, it is placed in a base record
slot. Base records are placed in the base record slots reserved for
them by use of the BASEREC parameter. You can use either the $IAMUT1 LO
command or an application program to load the base records.

Base records must be loaded in ascending order by key. If you are writ-
ing vour own program to load the file, use a LOAD request to connect the
file to load base records. Then issue a PUT for each record. When the
desired records have been loaded, issue a DISCONN request to terminate
the load procedure. The only requests that can follow a LOAD request
are: PUT, EXTRACT, and DISCONN.

You can also insert base records in process mode by using a PROCESS
request to connect the file, followed by a PUT request for each record
to be loaded. Loading records in process mode with an application pro-
gram is discouraged because of slower performance.

Unless the base record loading program is written in COBOL, it need not

load all base records at one time. A file that already contains records
can be reconnected to load more records, but the key of each new record

must be higher than any key already in the file.

COBOL programs must either load all the base records in load mode at
once (because only one use of load mode is allowed on a given file) or
insert the records in process mode as needed.

The limit on base records as specified on the SE command of the Indexed
Access Method utility program ($IAMUT1) cannot be exceeded. If vou
attempt to load a record after the last allocated record area has been
filled, an end-of-file condition occurs.

BASE RECORDS FROM A SEQUENTIAL FILE IN RANDOM ORDER

In order to load base records from a sequential file where keys are in
random order, code an EDL program to open the indexed file in load mode.
Load the SORT/MERGE program mith an output exit routine specified.

Write (PUT) each record to the indexed file as it is received in the
output exit routine from SORT/MERGE. The output exit routine can also
screen out duplicates or other unwanted records. For information on
using the SORT/MERGE Program Product, refer to IBM Series/1 Event Driven
Executive Sort/Merqge Programmer's Guide, SL23-0016.

Chapter 4. Loading The Primary Index File 4-5

4-6 SC34-0771

O

CHAPTER 5. BUILDING A SECONDARY INDEX

Indexed files, like most data record files, can be a common base for
many applications. You can assign secondary keys in your indexed files
for greater flexibility in accessing records in indexed files.

Secondary keys are accessed through a secondary index (a separate file).
Your application program requests records by their secondary key and
secondary index file name. The secondary index is used to retrieve the
record by its secondary key from the primary index file.

You can have more than one secondary index for a given primary index
file. In order for the Indexed Access Method to know the relationships
between secondary indexes and primary index files, you must create and
maintain a directory with that information.

SECONDARY KEYS

Secondary keys are not required to be unique; different records in an
indexed file can have the same key values in their secondary key field.

The secondary key can be any field within your data record that you
select, however, 1t must meet the following requirements:

. The selected field must start at the same location in each record.
. All portions of the key field must be contiguous.

L The secondary key length cannot exceed 250 bytes.

In a secondary index, the Indexed Access Method assigns a sequence num-
ber to each secondary key. The sequence number shows the sequence of

loading or inserting secondary index entries.

A sample layout of a secondary index record follows:

Relative
Secondary Sequence Primary Block
Key Number Key Number
SMITH 0001 12345AB RBN

Chapter 5. Building a Secondary Index 5-1

JYHE DIRECTORY

SN
In order for the Indexed Access Method to know the relationships between q&)ﬁ
secondary indexes and primary index files, you must create and maintain =
a directory with that information. The directory describes all indexed

files in the system which are either secondary indexes, or primaries

which have secondary indexes associated with them. Primary index files

which do not have secondary indexes associated with them are not in the

directory. Use the $IAMUT1 utility to create and maintain the

directory.

The directory name is $IAMDIR and it resides on the IPL volume.

The directory contains one or more groups of entries. Each group begins
with an entry for the primary file and is followed by an entry for each
saecondary index which references that primary file.

You have the raesponsibility of maintaining the directory using the
$IAMUTY utility.

Each entry in the directory contains the following information:
. File name

. Volume name

4 Primary file or secondary index indicator

. Independent indicator

. Invalid index indicator (secondary entry only)

. Automatic update indicator (secondary entry only).

FILE NAME: The file name is the data set name supplied when the primary
index file or secondary index entry is inserted in the directory.

VOLUME NAME: The file location is the volume label name where the index
resides that this entry is for.

INDEPENDENT PROCESSING INDICATOR: Each entry in the directory contains
an independent indicator. Independent means that the file is to be
treated as an independent file without regard to associated primary or
secondary files. If the independent indicator is set on for a file that
is explicitly opened, the automatic update indicator is ignored.

In the case of a secondary index, this means that records retrieved are
internal secondary index records, not data records from the primary
file. In addition, independent means that any modification to the file
(either primary or secondary) will not be reflected in its associated
files. Also any changes made in a secondary index will not be reflected
in the associated primary or other secondary index files.

In the case of a primary entry, any modification to the primary file
will not be reflected in the associated secondary index files.

5-2 SC34-0771

INVALID INDICATOR: The invalid indicator is initially turned on in the
directory, by the directory function of $IAMUT1, when the secondary
entry is inserted in the directory.

A secondary index entry is marked invalid until the secondary index has
been loaded.

The load function of the utility turns off the invalid indicator.

If you build the secondary index with an application program, vou must
also turn off the indicator. The UE subcommand of the DR function in
$IAMUTY is used to turn off the invalid indicator, after you have suc-
cessfully loaded yvour secondary index.

AUTOMATIC UPDATE INDICATOR: Each secondary index entry in the directory
contains an automatic update indicator. Any modification to the primary
file (either directly or through any secondary index activity) results
in an automatic update to all secondary indexes whose automatic update
indicator in thae directory was specified with Y. Thus, a secondary
index flaggaed as auto-update can be thought of as "dynamic." Each sec-
ondary index ramains open until all users of it hava closed. However,
if tha independent indicator is set on for a fila that is explicitly
opened, the automatic update indicator is ignored.

If the automatic update indicator was specified as N, changes are not
reflected in that secondary index. This would be a "static" index. The
assump:iog is that a static index would be rebuilt periodically to bring
it up to date.

ALLOCATING AND INSERTING ENTRIES IN A DIRECTORY

Although the Indexed Access Method references the directory, it never
modi fies the directory. The one function that is performed on the
directory automatically is that the secondary load option sets the
invalid indicator off following successful completion.

To define the existence of a secondary index, use $IAMUT1 to perform the
following two steps:

1. Allocate a directory using the DR (directory function) of $IAMUTI
2. Establish tha fact that a secondary index will exist by making an
entry in the directory using the IE (insert entry) command of

SIAMUTL.
Remember that primary index file entries precede their associated sec-

ondary index entries. The S$IAMUT1 Indexed Access Method utility can be
loaded with the Event Driven Executive operator command $L $IAMUTIL.

Chapter 5. Building a Secondary Index 5-3

When $IAMUT1 is loaded, the first prompt displayed is as follows:

[11|ENTER COMMAND (?): DR d;:?

[1] Entering DR causes the following prompt sequence.

ENTER DIRECTORY COMMAND (?): AL
MAX # OF DIRECTORY ENTRIES: 10
THE DIRECTORY DS REQUIRES 1 EDX RECORDS, CONTINUE (Y|N|EN)? Y

[5]1|DIRECTORY DATA SET ALLOCATED: $IAMDIR,EDX002

-
SHWN
PPy

[2] Responding to this prompt with AL (allocate) causes a directory
allocation sequence to begin.

Note: The allocation‘sequence is only required the first time you set
up secondary indexes. Future entries can be added using (IE) insert
directory function.

[3] Reply with maximum number of directory entries you want allocated
for the directory. You will need one entry for each secondary index and
onhe entry for each primary that has a secondary index associated with
it. A null response will allocate the maximum (default) of 47 entries.

[4] Based on your previous response, the size of the required directory
is calculated and you are informed of the number of EDX records required
to allocate vour requested directory. You are also given three options
as follows: P

W

1. Y - the opportunity to continue the directory allocation

2. N - do not allocate the directory; allow me to change the size of
- the directory

3. EN - end the allocate function; return to [1] of the DR function of
$IAMUT1 to enter another command.

[5) Because [Y) was replied, the directory is allocated. If the direc-
tory is allocated successfully, vou are informed that it has been allo-
cated, the name of the directory of course is $IAMDIR, and the IPL
volume where it is always allocated is displayed.

Note: The allocation sequence is only required the first time you set
up secondary indexes.

‘54 $C34-0771

The prompt sequence continues.

[61 ENTER DIRECTORY COMMAND (?): 1IE

£71 (DSNAME, VOLUME) : EMP#,EDX002
[81 IS THIS A SECONDARY ENTRY (Y/N) N

[91 DIRECTORY INSERT SUCCESSFUL
[101 |ENTER DIRECTORY COMMAND (?): IE

[6] Replying IE (insert entry) allows you to insert entries into the
directory. A primary entry must be inserted before its associated sec-
ondary index entries.

Note: Primary files may exist at this time, however, secondary indexes
zannot be created until an entry for it has been inserted in the direc-
ory.

[7] Your data set name and volume name where your primary index file or
secondary index resides. The volume name is not required if the data
set is on system volume such as EDX002.

[8]1 This prompt lets $IAMUT1 know whether to set the primary or second-
ary entry indicator. Reply Y for a secondary index entry, or N for a
primary index entry.

[9] This message informs you that the entry has been successfully
inserted into the directory.

[10] At this point you can end the directory function by responding to
the prompt with EN, or reply any other directory function.

Because this was a primary entry we can now respond with IE and insert
secondary directory entries. In this case, secondary entries are being
made and that is why we responded with IE and caused the prompts to con-
tinue as follows:

[111} (DSNAME,VOLUME): NAME,EDX002

[121]1IS THIS A SECONDARY ENTRY (Y/N)? Y

[13)|ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): EMP#®,EDX002
[14]1]AUTO-UPDATE (Y/N)? Y '

[15]1}DIRECTORY INSERT SUCCESSFUL
[16]|ENTER DIRECTORY COMMAND (?): IE

[11] The secondary index data set name is NAME on volume EDX002 and
therefore, the volume name could have been omitted.

[12) Because this is an entry for a secondary index, the correct reply
is Y. At this point in the prompt sequence the prompts change from the
previous sequence because of the positive reply, Y.

[13] The associated primary entry data set name, which the previous
entry sequence (5 - 9) was for, is EMP#,EDX002. This is the point uwhere
the secondary indexes establish their association to the primary index
files for which the secondary index is built.

[14] The response to this prompt establishes whether automatic update
option is to be effective for this secondary index. For a description
of automatic update, see "Automatic Update Indicator™ on page 5-3. The
yecgm?endsd response is Y, also if a null entry is supplied, the default
is ves).

Chapter 5. Building a Secondary Index 5-5

[15] You are informed when the insert is successfully completed.

[16] As seen previously, you again have the option of selecting another
directory function. In this description, IE was again selected to
insert the following two secondary index entries.

A second secondary index entry named CITY,EDX002, is inserted for the
associated primary index file named EMP#.

(DSNAME,VOLUME)>: CITY,EDX002
IS THIS A SECONDARY ENTRY (Y/N) Y

ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): EMP#,EDX002
AUTO-UPDATE (Y/N)? Y

DIRECTORY INSERT SUCCESSFUL
ENTER DIRECTORY COMMAND (?): IE

A third secondary index entry named LEVEL,EDX002, is inserted for the
associated primary index file named EMP§.

(DSNAME,VOLUME): LEVEL,EDX002
IS THIS A SECONDARY ENTRY (Y/N) Y

ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): EMP#,EDX002
AUTO-UPDATE (Y/N)? N

DIRECTORY INSERT SUCCESSFUL

The following example uses a different directory function: LE (list
directory entries). This example shows the directory which was just
allocated and four entries inserted; one primary and three secondaries.

[LI|ENTER DIRECTORY COMMAND (?): LE
[2Y[ENTRY (DSNAME,VOLUME) BLANK=ALL:

[31 PRIMARY INDE- AUTO

DSNAME VOLUME DATA SET PENDENT INVALID UPDATE
(41 EMP & EDX002 YES NO % 3 % X% % %
[5] NAME EDX002 NO NO YES YES
{6l CITY EDX0062 NO NO YES YES
[71 LEVEL EDX002 NO NO YES NO
[81|NUMBER OF DIRECTORY ENTRIES USED = 4
[91|NUMBER OF AVAILABLE ENTRY SLOTS = 6

DIRECTORY LIST COMPLETED

5-6 S5C34-0771

O

{11 The DR (directory) subcommand LE prints specified directory statis-
tics.

[2] Respond to this prompt with the specific data set name and volume
vou wish the statistics listed for, or press the Enter key mith no
DSNAME or VOLUME name specified to list the entire directory. This
request is for all entries in the directory which was just allocated and
inserts made in the previous examples.

[3] Column headings for the listed information from the directory shou-
ing the following information:

] Data set name that the statistics are for

. Volume name where the data set resides

. Whether this is a primary or secondary index

. Is the independent indicator on for the named data set (yes or no)

L Is the invalid index indicator on for the named data set (yes or no)
. Is the auto-update indicator on for the named data set (yes or no)d.
[4] For the primary index file (data set) named EMP#, on volume EDX002,
the independent indicator is off, there is no invalid indicator for a
primary file, there is no auto-update indicator for a primary file.
Modifications are always made to the primary index file if the independ-
ent indicator is not on.

[5] For the secondary index named NAME, on volume EDX002, the independ-
ent indicator is off, the invalid index indicator is on because the
index has not been loaded, the auto-update indicator is on as requested
when the entry for this secondary index was inserted.

[6] Same statistics as previous data set.

[7]1 For the secondary index named LEVEL, on volume EDX002, the inde-
pendent indicator is off, the invalid indicator is on (index is not
loaded), and the auto-update indicator is off.

[8]1 There were 10 entries allocated and & inserts (one primary and
three secondaries).

[9] The resulting empty directory slots for additional inserts is six.

SECONDARY INDEX

Depending upon your need, you may have one or several secondary indexes
for a given primary index file. A secondary index is built for a spe-

cific primary index file and cannot be used with any other file. Each

secondary index is a separate Indexed Access Method file.

Application programs accessing indexed records by their secondary key
are required to open the secondary index and access the records using
the secondary key. When primary index records are updated, inserted or
deleted, some or all secondary indexes associated with that primary
index file can be updated automatically by the Indexed Access Method,
according to the options selected when the secondary index directory is
set up.

Chapter 5. Building a Secondary Index 5-7

setting up a Secondary Index

C

To provide access by a secondary key, yvou must build a secondary index.
The secondary index must have a unique file name.

To set up a secondary index, you must do the following using $IAMUT1:
1. Create the secondary index

2. Load the secondary index.

DEFINING AND LOADING A SECONDARY INDEX

Your secondary index should be structured so that the base records
parameter is aqual to or greater than the number of records in the pri-
mary index file. This will assure that when you build your secondary
index, it will be large enough to hold at least as many records as there
are in the primary index file.

Note: If the associated primary index file, for which the secondary is
being defined, is an existing Version 1 created file, you must use SVER-
IFY to update the record counts before defining the secondary file.

The key size and key position specified for the secondary index must be
the key size and starting position of the secondary key within the pri-
mary index record.

You can create a secondary index the same way you create a primary index

file, using the $IAMUT1 utility SE (and DF) commands. The utility

prompts vou requesting whether the secondary index being defined is also

to be loaded. If YES is specified, the utility does the following: Q;ZD

1. Creates the secondary index but does not format it

2. Opens the primary file, reads the records sequentially, and extracts
the primary and secondary keys from each record, retaining the rela-
tive data block address (RBN) of each record

3. Invokes the Sort/Merge Proéram Product to sort by secondary key (and
by primary key uwithin secondary)

4. Opens the secondary index, formats the sorted keys, their sequence
numbers which are now assigned, and the relative data block
addresses of the primary file data records into blocks

5. MWrites the blocks into the secondary index.

Before a secondary index can be loaded, it must have been defined using
$IAMUT1. A secondary index can be deleted, then created and loaded
again at any time. If a primary file has more than one secondary index,
each must be created and loaded separately.

O

5-8 5C34-0771

$IAMUT1 Option Selection Guide

Having read the preceding material, you are probably ready to makae a
choica as to which option yvou want to use in defining your secondary
index. The following table will help you to find the appropriate infor-
mation, based on your secondary index defining objectives.

Your objective option Information location

You want the Indexed Access Option 1 See "Option 1™ on page 5-10
Method to calculate and
structure your index

You want to structure your Option 2 See "Option 2" on page 5-12
secondary index using specif-
ic parameters

You want to structure your Option 3 See "Option 3™ on page 5-14
secondary index using the
parameters of an existing
secondary index

Chapter 5. Building a Secondary Index 5-9

E H FINING A SECONDAR N SI IAM

The Indexed Access Method utility, $IAMUT1, option 1, provides you with
the opportunity to select only those parameters necessary to set up a
secondary index.

OPTION 1

The S$IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUTL.

When $IAMUT1 is loaded the first prompt displaved is as follows:

[11|ENTER COMMAND (?): SE

[1] Entering SE causes the following option list prompt to be displayed.

SET FILE DEFINITION PARAMETERS
0 = EXIT

[21]1 = SIGNIFICANT PARAMETERS
§ = ALL PARAMETERS

PARAMETERS FROM EXISTING INDEXED DATA SET
ENTER OPTION: 1

[2] Respond to this prompt by entering the digit "1'. This response
causes a one line prompt from the next prompt sequence to be displayed.

5-10 5C34-0771

Note: Although the following prompts are displayed onae lina at a time
when using the utility, all the prompts are listed here in logical
groups for simplicity in describing the parameters.

[31|SECONDARY INDEX (Y/N)?: Y
[4]{ENTER SECONDARY DATASET (NAME,VOLUME): CITY,EDX002

[51|SECONDARY KEY SIZE 14

[6]1}SECONDARY KEY POSITION :5
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: Y

DYNAMIC DATA SET EXTENTS ON FILE (Y/N): N

DO YOU WANT IMMEDIATE WRITE-BACK? N

INVOKE LOAD(L), REORGANIZE(R) OR END(E) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)? Y
[71|SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET $SORTWRK
[81|SORT WORK DATASET (DSNAME,VOLUME):
SORT WORK DATASET REQUIRES 20 EDX RECORDS
5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[31 Reply Y to this prompt because vou are defining a secondary index.

[4] Enter the data set name and volume where this index is being
defined.

[5] Specify the length of the secondary key within the primary index
record for which this index is being defined.

[6] Specify the starting position of the secondary key within the prima-
ry index file record. The first byte of the record is number 1.

[71 The secondary index load function is active.
[81 At this point there are four possible responses:

1. A load error may occur while trying to load $SORT due to a lack of
sufficient main storage in the partition. If this happens, you can
either change to another partition or end one or more programs in
the current partition. However, do not cancel $IAM.

2. A null response, just pressing the enter key, will cause $SORTWRK to
be allocated on the IPL volume if space is available. The size of
the data set is calculated by the utility. If $SORTWRK already
exists, this indicates that another user is using the default work
data set and you will be prompted again for a work data set name.

3. Entering a comma (,) followed immediately with a volume name, then
pressing the enter key, causes the utility to try to allocate
$SORTUWRK on the specified volume.

4. Entering a data set name and optionally a volume name (no volume
name entered causes the IPL volume to be used) causes the utility to
calculate the size of data set required and allocate it according to
your response.

Chapter 5. Building a Secondary Index 5-11

Notes:
1. If SIAMUT1 allocates the data set for you, the data set will be

automatically deleted at the end of the sort operation. However, if

vou provide either the name of an already existing data set (other
than $SORTUWRK) or a data set name you want $IAMUT1l to allocate, the
data set will not be deleted at the end of the sort.

2. The sort work data set cannot always be calculated precisely because

the size is dependent on several variables related to the input
file. In most cases the calculated size will be adequate. However,
if the size calculated is too small, the sort will end prematurely.
If this happens you can preallocate a data set with a larger size
than that calculated by $IAMUT]1 and execute the sort again.

OPTION 2

The $IAMUT1 Indexed Access Method utility can be loaded with the Event

Driven Executive operator command $L SIAMUTL.

ldhen $IAMUT1 is loaded the first prompt displaved is as follows:

[1I{ENTER COMMAND (?): SE

[1] Entering SE causes the following option list prompt to be displaved.

SET FILE DEFINITION PARAMETERS
0 = EXIT
1 = SIGNIFICANT PARAMETERS
[2)]2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATA SET

ENTER OPTION: 2

[2] Respond to this prompt by entering the digit *2'. This response
causes a one line prompt from the next prompt sequence to be displaved.

Note: Although the following prompts are displayed one line at a

time when using the utility, the entire prompt list is shown for
simplicity in presentation.

5-12 S5C34-0771

O

1:?§

SECONDARY INDEX (Y/N)?: Y
ENTER SECONDARY DATASET (NAME,VOLUME): NAME,EDX002
PARAMETER DEFAULT NEW VALUE

e lalal
naw
ek ot ek

BASEREC 20:20

BLKSIZE 256:

KEYSIZE 4

KEYPOS 5:

FREEREC 0:

FREEBLK 0:

RSVBLK NULL:

RSVIX 0:

FPOOL NULL:

DELTHR NULL:

DYN NULL:05

TOTAL LOGICAL RECORDS/DATA BLOCK: 15
FULL RECORDS/DATA BLOCK: 15
INITIAL ALLOCATED DATA BLOCKS: 2
INDEX ENTRY SIZE: 12
TOTAL ENTRIES/INDEX BLOCK: 20
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS): 0
FULL ENTRIES/PIXB: 20
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 20
DELETE THRESHOLD ENTRIES 0
FREE POOL SIZE IN BLOCKS 5
OF INDEX BLOCKS AT LEVEL 1: 1
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: ¥

DYNAMIC DATA SET EXTENTS ON FILE? (Y/N): N

DATA SET ALREADY EXISTS

DELETE AND REALLOCATE (Y/N): Y

DELETE AND REALLOCATE COMPLETED

DO YOU WANT IMMEDIATE WRITE-BACK? N

INVOKE LOAD(L), REORGANIZE(R) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)? Y
[61| SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET $SORTWRK
[71] SORT WORK DATASET (DSNAME,VOLUME):
SORT WORK DATASET REQUIRES 20 EDX RECORDS
5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because you are defining a secondary index.

[64) Enter the data set name and volume where this index is being
defined.

[5] The following parameter list allows you to precisely define the sec-
ondary index structure.

[6] The secondary index load function is active.
[7]1 If the name of a data set and volume are entered, Sort/Merge will
use it for the work data set. If a null response is made, the utility

will calculate the size data set required and allocate it with the name
$SORTWRK on the IPL volume.

Chapter 5. Building a Secondary Index 5-13

Notes:

1. For a more complete description of the responses available and the
possible conditions that could exist, see step 8 description under

"Option 1.

2. The following messages are from the IBM Sort/Merge Program Product,
program number 5719-5M2. The following message list is the result
of the secondary load function calling and executing Sort/Merge.
For a description of the Sort/Merge program and its messages refer
to IBM Seriess/l Event Driven Executive Sort/Merge Programmer's

Guide, SL23-0016.

SORTO99N ————+---

A B e B

SORT000% LOSSYSPRTR
SORT001P SORT/MERGE SPECIFICATION PHASE STARTED

SORT000% HSORTR

12A0DP

SORT000% DW $SORTWRKTVOL

SORT000X% FNCO0O1
SORT000% FR

12

SORTO075P SPECIFICATION PHASE ENDED

SORTO076P INPUT PHASE STARTED

SORT082P INPUT PHASE ENDED 5 1 1
SORTO085P FINAL MERGE PHASE STARTED 1 4 5
SORT086P FINAL MERGE PHASE ENDED

SORT088P RECORDS
SORTO089N RECORDS
SORTO090N RECORDS
SORT091N RECORDS
SORT092N RECORDS
SORT093N RECORDS

SORTO094N I/0 ERRORS ACCEPTED:
SORTO95N 1/0 ERRORS SKIPPED:

SORT149N RECORDS

READ FROM INPUT DATA SET(S):
INSERTED BY INPUT EXIT ROUTINE:
DELETED BY INPUT EXIT ROUTINE:
INSERTED BY OUTPUT EXIT ROUTINE:
DELETED BY OUTPUT EXIT ROUTINE:
WRITTEN TO OUTPUT DATA SET:

Voooooouo

SORTED OR MERGED:

SORTO097P NORMAL ENDING FOR SORT/MERGE PROCESSING

OPTION 3

5-14

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L SIAMUTL.

When $IAMUTI

is loaded the first prompt displaved is as follows:

[11|ENTER COMMAND (?): SE

[1] Entering SE causes the following option list prompt to be displayed.

E
EXIT

0w a -

S
0
1
2
I21)3
E

FILE DEFINITION PARAMETERS

SIGNIFICANT PARAMETERS

ALL PARAMETERS

PARAMETERS FROM EXISTING INDEXED DATA SET
NTER OPTION: 3

$C34-0771

C

[2] Respond to this prompt by entering the digit '3'. This response
causes a one line prompt from the next prompt sequence to be displayed.

Note: Although the following prompts are displayed one line at a time
when using the utility, the entire prompt list is shown for simplicity
in describing the parameters.

[31]SECONDARY INDEX (Y/N)?: ¥
[4]|ENTER SECONDARY DATASET (NAME,VOLUME): LEVEL,EDX002
[51|NAME OF EXISTING INDEXED DATA SET (NAME,VOLUME): CITY,EDX002
[6]1jNEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N)? Y
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: Y

DYNAMIC DATA SET EXTENTS ON FILE (Y/N): N

NEW DATASET IS ALLOCATED

DO YOU WANT IMMEDIATE WRITE-BACK? Y

INVOKE LOAD(L), REORGANIZE(R) OR END(E) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)? Y
SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET $SORTHRK
[71]SORT WORK DATASET (DSNAME,VOLUME):
SORT WORK DATASET REQUIRES 20 RECORDS
5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because you are defining a secondary index.

[4] Enter the data set name and volume where this index is being
defined.

[5] Enter the data set name and volume of the secondary index whose
parameters are to be used for this index.

[6] If all parameters are to be the same as those initially set for the
data set name entered in prompt [3], reply Y. However, if you want the
parameters adjusted, based on current file status, reply N.

[7)1 If the name of a data set and volume are entered, Sort/Merge will
use it for the work data set. If a null response is made, the utility
will calculate the size data set required and allocate it with the name
$SORTWRK on the IPL volume.

Note: For a more complete description of the responses available and

the possible conditions that could exist, see step 8 description under
"Option 1.7

Chapter 5. Building a Secondary Index 5-15

LOADING A SECONDARY FILE WITH AN APPLICATION PROGRAM

You have the option of allowing $IAMUT1 to load vour secondary file at Q:;D
the time it is created, as was demonstrated in "Option 2" on page 5-12,

or you can load it with an application program. The sequence of opera-

tion for loading vour secondary index with an application program is

described here.

A secondary file has the following format:

Relative
Secondary Sequence Primary Block
Key Number Key Number
SMITH 0001 12345AB RBN

L—Q bytes—J L—4 byteSHJ

In preparation for loading your secondary index, allocate the following
sort data sets:

. Sort input data set

U Sort output déta set

. Sort work data set.

The size of the records in the input and output data sets is calculated

using the lengths of keys from the primary index file record plus four
bytes for the sequence numbaer and four bytes for the RBN.

Secondary key length + primary key length + 8 bytes

If you have the Sort/Merge licensed program product, program number
5719-SM2, refer to the IBM Series/l Event Driven Executive Sort/Merge
Programmer's Guide, SL23-0016, for details of the sort work data set and
sort specification data sets. Otherwise, use your own sort program.

Loading your secondary index requires the following sequence:
1. Open the primary index file in process mode.

2. Retrieve a primary index file reéord with a GETSEQR request (re-
trieves the primary record plus the RBN).

a. MWhen end-of-data condition is reached, go to step 6.

5-16 SC34-0771

3.

Using values from the retrieved record, build a saecondary record
Wwith the following format:

Saecondary Double word Primary Primary
Key of X'00°' Key RBN
0000
L—-Q bytes——J L~—4 bytes——J

4. Move the neily built secondary record into the sort input data set.
5. Return to step 2 and repeat the sequence.
6. Sort the records in the sort input data set using the following sort

specifications.

a. Sort the input records on position 1 through n-% into ascending
sequence (n= the length of the records as calculated previously
for the sort data sets).

7. Open the secondary index, which is to be loaded, in load mode.

If your program is written in Event Driven Language (EDL), specify

the independent option when you open the secondary index. If you

are using a high level language, use $IAMUT1 to turn on the inde-
pendent indicator.
8. Read a record from the sorted output.

a. When end-of-file is reached, go to step 14.

9. Move a sequence number into the retrieved record's sequence number
field (use X'0000' for the first record).

10. Increment the sequence number by a value of 1.

11. Use a PUT request to load the record into the secondary Tile.

12. Return to step 8 and repeat the sequence.

13. Issue a DISCONNECT to the primary index file and secondary index.

14. Using the $IAMUT1 utility, turn off the invalid indicator for this

secondary index entry in your directory. Also, turn off the inde-
pendent indicator if you turned it on in step 7.

Chapter 5. Building a Secondary Index 5-17

5-18 SC34-0771

CHAPTER 6. ALLOCATING INDEXED FILES FROM AN APPLICATION PROGRAM

This chapter describes how to allocate and format primary or secondary
indexed files from an application program using the Indexed Access Meth-
od. Related performance considerations are covered under "Other Per-
formance Considerations™ on page 1l1-6 in Chapter 11.

Use the load module, $IAMUT3, to allocate and format a primary or sec-
ondary indexed file. The parameters you must supply to $IAMUT3 are sim-
jlar to those required when using option 2 of the SET parameters command
(SE) for $IAMUT1. $DISKUT3 must exist on the IPL volume before you can
successfully allocate a file.

If you want to define a secondary indexed file using $IAMUT3, you must:
® Verify that IAMQCB has been included in your system.

® Be sure the related primary file already exists on the volume speci-
fied in its entry in directory data set $IAMDIR.

. Use the $IAMUT1 utility to create an entry for the new secondary
file in the directory data set $IAMDIR.

The data set to be allocated and formatted as an indexed file must not
already exist on the specified volume. If it does, $IAMUT3 sets an error
return code in the IDEFIAMR return code field of the parameter list.

Load module $IAMUT3 requires approximately 11K bytes of storage for exe-
cution. This includes 2K bytes of dynamic storage that $IAMUT3 requires
for the default maximum block size. For a block size that is greater
than 2K (2048 decimal bytes), you can allocate the necessary dynamic
storage in $IAMUT3 by one of two methods:

o Set the "STORAGE=" parameter of the LOAD instruction that loads
S$IAMUT3 to the desired number of decimal bytes (the block size of
the file).

. Use the 55 (Set Storage) command of $DISKUT2 to set the dynamic
storage for $IAMUT3 to the desired number of decimal bytes before
loading $IAMUT3 from your program.

CALL LOAD MODULE $IAMUT3

Use the LOAD instruction to load $IAMUT3 into storage for execution.
Your program can load $IAMUT3I into any partition. If the LOAD operation
is successful, your program should issue a WAIT instruction to wait for
$IAMUT3 to end.

The following example illustrates the use of the LOAD instruction to
call $IAMUT3:

LOAD $IAMUT3, IDEFADDR, EVENT=IDEFECB,LOGMSG=NO,PART=ANY

This example, assumes that $IAMUT3 exists on the IPL volume.

IDEFADDR is the parameter that you pass to $IAMUT3. It is the address
of the parameter list that contains the file definition parameters.
This parameter list is mapped by the IDEFEQU copy code. See "S$IAMUT3
Parameter List"™ on page 6-6 for further information.

IDEFECB is an event control block in your program. It is posted when
SIAMUT3 completes.

Chapter 6. Allocating Indexed Files from an Application Program 6-1

LOGMSG=NDO specifies that the "Program Loaded™ message is not to be dis-
played or printed on the terminal.

PART=ANY spaecifies that $IAMUT3 can ba loaded into any partition that
has enough storage for it.

The sample program following this saection illustrates the use of thea
LOAD and WAIT instructions in a program that loads $IAMUTS3.

$IAMUT3 SAMPLE PROGRAM

The following sample program uses the load module $IAMUT3 to allocate
and format a primary indexed file named IAMPRIO1 on volume EDX003.

The first TCBGET instruction places the TCB address of the user task
into the parameter list. The second TCBGET instruction places the
address space of the user task into the parameter list.

The second LOAD instruction attempts to load S$IAMUT3 into any partition.

If the LOAD operation is successful, the WAIT instruction is issued to
wait for $IAMUT3 to finish. The sample program then displays the
Indexed Access Method return code and the system return code from the
parameter list.

An Indexed Access Method return code of -1, in this case, would indicate

that the indexed file has been successfully allocated and formatted for
50 base records with immediate write-back of data blocks to the file.

6-2 SC364-0771

SAMPLE PROGRAM START

START EQU *
*
%*
TCBGET DEFUTCB,$TCBVER A(TCB OF USER TASK)
TCBGET DEFUADS,S$TCBADS ADDRESS SPACE OF USER TASK
%*
* LOAD SIAMUT3 INTO ANY PARTITION
%*
LOAD $IAMUT3,IDEFADDR,EVENT=IDEFECB,LOGMSG=NO,PART=ANY
%*
MOVE RTCODE,SAMPLE SAVE SYSTEM RET CODE OF LOAD
%*
IF (RTCODE, NE, +SUCCESS) IF LOAD WAS NOT SUCCESSFUL
PRINTEXT 'LOAD FAILED FOR $IAMUT3, RETURN CODE = ',SKIP=2
PRINTNUM RTCODE,TYPE=S, FORMAT=(4,0,1)
GOTO ENDIT END THE TEST CASE
ENDIF END TEST FOR UNSUCCESSFUL LOAD
WAIT IDEFECB WAIT FOR SIAMUT3 TO FINISH
%*
PRINTEXT '$IAMUT3 HAS COMPLETED PROCESSING',SKIP=2
PRINTEXT 'INDEXED ACCESS METHOD RETURN CODE = ',SKIP=1
PRINTNUM DEFIAMR,TYPE=S,FORMAT=(4,0,1I) IAM RET CODE
PRINTEXT 'SYSTEM RETURN CODE = ',SKIP=1
PRINTNUM DEFSYSR,TYPE=S,FORMAT=(4,0,1I) SYSTEM RET CODE
ENDIT EQU *
PROGSTOP
%
* DATA DEFINITION AND STORAGE AREAS:
%*
SUCCESS EQU -1 SUCCESSFUL COMPLETION RETURN CODE
RTCODE DATA F'0' : SYSTEM RETURN CODE OF LOAD
IDEFADDR DATA A(CIDEFLIST) A(USER IDEF PARAMETER LIST)
IDEFECB ECB 0 POSTED WHEN $IAMUT3 ENDS
*
¥ IDEF PARAMETER LIST
*
IDEFLIST EQU * USER IDEF PARAMETER LIST
DEFCNTR DATA X'0002°' NO EXTENTS, PRIMARY FILE, IMMED. WRITE-BACK
DEFBSRC DATA D'50' NUMBER OF BASE RECORDS
DEFBKSZ DATA F'256" BLOCK SIZE IN BYTES
DEFRCSZ DATA F'80' RECORD SIZE IN BYTES
DEFKYPS DATA F'1l°' KEY POSITION IN RECORD
* ¥ FIRST BYTE OF RECORD IS 1
DEFFRER DATA F'0’ FREE RECORDS PER DATA BLOCK
DEFFREB DATA H'0' FREE BLOCK (%). (DEFAULT)
DEFKYSZ DATA H'8' KEY SIZE IN BYTES
*
DEFRSYB DATA H'-1? RESERVE BLOCK (X%). (DEFAULT)
DEFRSVI DATA H'0' RESERVE INDEX (%). (DEFAULT)
DEFFREP DATA H'-1" FREE POOL (%). (DEFAULT)
DEFDLTH DATA H'-1" DELETE THRESHOLD (%). (DEFAULT)
DEFDYN DATA D'-1° NUM. OF DYNAMIC FREE POOL BLOCKS (DEFAULT)
DEFIAMR DATA F'0’ IAM RETURN CODE WILL BE PLACED HERE
DEFSYSR DATA F'0? SYSTEM RETURN CODE WILL BE PLACED HERE
DEFUTCB DATA F'0' ADDRESS OF TCB OF USER TASK
DEFUADS ~ DATA F'0! ADDRESS SPACE OF USER TASK
DEFSIZX DATA F'0' SIZE OF EXTENTS
DEFRES2 DATA F'0' RESERVED, MUST BE 0
*
DEFDSNM DATA CL8'IAMPRIOL® NAME OF DATA SET TO ALLOCATE
DEFVOLN DATA CL6'EDX003' VOLUME NAME FOR DATA SET
*
ENDPROG
END

Chapter 6. Aliocating Indexed Files from an Application Program

$IAMUT3 Return Codes

$IAMUT3 places the system return code into the word labeled IDEFSYSR in @:}D
your parameter list. This is the return code from any system function
(such as READ or WRITE) that did not complete properly.

If the system functions completed properly, or if no system functions
were processed while $IAMUT3 was loaded, the IDEFSYSR word contains a
return code of -1 (successful).

After SIAMUT3 has completed processing, check the Indexed Access Method
return code field (IDEFIAMR) before vou check the system return code
field.

6-4 5C34~-0771

$IAMUT3 places The following Indexed Access Method return codes in the
word labeled IDEFIAMR in your parameter list.

Code Condition

-1 Successful completion

13 A required module is not included in load module $IAMUT3

30 Inconsistent free space parameters were specified

31 FCB urite error occurred during IDEF processing; check system
return code

32 Block size is not a multiple of 256

36 Invalid block size during file definition processing

37 Invalid record size

38 Invalid index size

39 Record size is greater than block size

40 Invalid number of free records

41 Invalid number of clusters

42 Invalid key size

43 Invalid reserve index value

1 Invalid reserve block value

45 Invalid free pool value

46 Invalid delete threshold value
47 Invalid free block value

%8 Invalid number of base records

49 Invalid key position

101 Write error occurred; check system return code
130 No dynamic storage allocated for $IAMUT3

131 Base records parameter is out of range

132 Block size parameter is out of range

133 Record size parameter is out of range

134 Key position parameter is out of range

135 Free records per data block parameter is out of renge
136 Dynamic blocks parameter is out of range

137 Data set already exists

| 138 Open failed in $DISKUT3 (other than Data Set Not Found);
check system return code

139 Allocate failed in $DISKUT3. Check system return code

201 The primary file for this secondary file could not be
opened; Check system return code

210 $DISKUT3 could not be loaded; check system return code

®

230 Directory read error for $IAMDIR; Check system return
code and verify that the directory exists
231 $IAMQCB not found; Check operating system generation

listing for $IAMQCB include statement.
232 Open failed for directory data set $IAMDIR; check system
return code and verify that the directory exists

233 Directory related primary request is a primary entry

234 Data set name and volume name not found in directory
data set S$IAMDIR

248 I/0 error on primary file during a secondary request;

check system return code

Chapter 6. Allocating Indexed Files from an Application Program 6-5

Error LO99ing and Reporting

S$IAMUT3 logs all positive Indexed Access Method return codes (errors) @::D
returned by the indexed file allocation function. -

The $LO0G utility should be loaded on vour system before you execute the
program that loads SIAMUT3.

To list the Indexed Access Method error log entries currently in the
system error log data set, load the $ILOG utility program using the $L
system command. Respond to the prompt "(DSNAME,VOLUME):" with the system
error log data set name and volume name.

$IAMUT3 error conditions are recorded on the log report with a function
code of "IDEF™.

The following is a sample of the $IL0OG error report showing two error
records from $IAMUT3:

INDEXED ACCESS METHOD LOG REPORT PROGRAM ACTIVE

TCB ORIG CURR S$IAM SYSTEM
PTN ADDR DSNAME VoL FNCTN FNCTN RTCODE RTCODE DATE TIME
8 0680 IAMSECO05 EDX003 IDEF IDEF 31 5 067227864 11:52:10
2 0530 IAMPRIOZ EDX003 IDEF IDEF 137 -1 06722784 11:20:55

2 INDEXED ACCESS METHOD LOG ENTRIES LOCATED
$ILOG ENDED

Load module $IAMUT3 also includes the system task error exit routine uLgd
$$EDXIT. This routine:

. Captures relevant data from the program header, task control block,
and hardware status area when an exception occurs.

® Formats and prints this data on $SYSLOG and $SYSPRTR.

. Displays an error message on the loading terminal.

Most of $IAMUT3 is written in Series/1 assembler language, so the con-
tents of general registers R0 through R7 may not correspond to their
headings in the printout that $$EDXIT creates.

ggfer to the EDX library publications for additional information about
EDXIT.

$IAMUT3 Parameter List

When your program loads $IAMUT3 into storage, it passes the address of a
parameter list that defines the characteristics of the indexed file you
want to allocate and format. This parameter list must be in the same
partition as the program that loads $IAMUT3. The IDEFEQU copy code maps
this parameter list.

Refer to "Option 2" on page 9-3% for information on the SE command of

the $IAMUT1 utility program. It describes the parameters that define an
indexed file.

C

6-6 SC364-0771

The following chart shows each field in the IDEFEQU parameter list,

whether it is set by the user (U) or by $IAMUT3 (S), its corresponding

parameter name from option 2 of the SE command of $IAMUT1, and a brief
0) description of the field:

IDEFEQU Set SE Option 2

Field Name By Parameter Description

IDEFCNTR U None Flag bits for primary or secondary file,
and immediate write-back of data blocks.
See figure below for equates.

IDEFBSRC U BASEREC Number of base records. For default, code
D'-1' (when IDEFDYN is not D'-1').

IDEFBKSZ U BLKSIZE Block size in bytes.

IDEFRCSZ u RECSIZE Rgc%rg'gize in bytes. For a secondary file,
coD .

IDEFKYPS U KEYPOS Key position in record. First byte of
record is 1. For a secondary file, this is
the position of the secondary key in the
primary record. For default, code F'1"'.

IDEFFRER u FREEREC Number of free records per data block. For
default, code F'0'.

IDEFFREB u FREEBLK Free block (%). Can be 0-99. For default,
code H'0"'.

IDEFKYSZ U KEYSIZE Key size in bytes. For a primary file, can
be 1-254. For a secondary file, can be
1-250 (size of the secondary key in the
primary record).

IDEFRSVB U RSVBLK Reserve block (%). Sum of IDEFFREB and
IDEFRSVB. Must be less than 100.

For default, code H'-1"'.
IDEFRSVI U RSVIX Reserve index (%). Can be 0-99.
For default, code H'0'.
IDEFFREP U FPOOL Free pool (%). Can be 0-100. For default,
™ code H'-1"'.
/ IDEFDLTH U DELTHR Delete threshold (%). Can be 0-99. For
default, code H'-1"'.
IDEFDYN U DYN Number of dynamic free pool blocks. For
: default, code D'-1"'.

IDEFIAMR S None IAM return code will be placed here.

IDEFSYSR S None System return code will be placed here.

IDEFUTCB U None Address of TCB of user task.

IDEFUADS U None Address space of user task.

IDEFSIZX u None Size of extents.

IDEFRES2 U None Reserved (must be 0).

IDEFDSNM u None Name of data set to allocate.

IDEFVOLN U None Volume name for data set.

]
IDEFEQU Bit Description
IDEFEXT % Data set type
If 1, data set is extendable
If 0, data set is not extendable
IDEFSEC 12 File type flag
If 1, file is secondary
If 0, file is primary
IDEFIMDW 14 Data block write back flag
If 1, immediate write back
If 0, no immediate write back

Chapter 6. Allocating Indexed Files from an Application Program

6-8 5C34-0771

O

C

CHAPTER 7. PROCESSING THE INDEXED FILE

This chapter provides information for designing applications that use
the Indexed Access Method. It contains information gbout=

. Task priorities

. Connecting and disconnecting the indexed file

. Accessing the indexed file

] Maintaining the indexed file.

Chapter 8, "Coding the Indexed Access Method Requests™ on page 8-1 con-
tains a detailed description of the EDL coding syntax of each Indexed

Access Method request. You may wish to refer to it while reading this
chapter.

JASK PRIORITIES

$IAM executes at a priority of 100. Applications that issue requests to
$IAM must execute at a priority equal to or below that of $IAM. Unpre-

dictable results can occur if a user task is executing at a higher pri-

ority.

CONNECTING AND DISCONNECTING THE INDEXED FILE

An indexed file must be defined and formatted by using the $IAMUTL util-
ity set parms (SE) and define (DF) commands before issuing a LOAD or
PROCESS request to the file.

Prior to using an indexed file, you must issue either a LOAD or PROCESS
request to connect it to vour program. The file must be defined in your
PROGRAM statement or by a DSCB statement. A CALL statement specifying
either LOAD or PROCESS automatically opens the Indexed Access Method
file. If you have an already open DSCB for the Indexed Access Method
file you can pass it as a parameter, but that is not required.

However, if the indexed file has already been connected to any program
by a LOAD or PROCESS request, make sure that the DSCB passed on any sub-
sequent LOAD or PROCESS request for this indexed file contains the data
set name and volume name before you issue the request.

Chapter 7. Processing The Indexed File 7-1

CONNECTING

A LOAD or PROCESS request builds an indexed access control block (IACB)
:hat if associated with an indexed file. The IACB connects a request to
he file.

In load mode, data records are placed in the file sequentially (free
records and blocks are skipped). When in process mode, data records are
placed in the first appropriate slot in the file (free space is used)
unless the record has a new high key. In the case of a new high key,
the record is placed in the next available base record slot.

Only one LOAD request can be active for a given file. However, process-
ing can take place concurrently with loading.

Multiple IACBs can be associated with the same file. Data integrity is
maintained by a locking system that assigns file locks, record locks, or
block locks to the requesting IACB. This prevents concurrent modifica-
tion of index or data records, thereby avoiding the possibility of a
double update situation.

Some applications will need to wait for a lock to be released on a
record, block, or buffer. In these situations vou might want to use the
conditional requests available for some Indexed Access Method functions.
The conditional function requests allow control to be returned imme-
diately to the requesting program for other processing, then return lat-
er to attempt to retrieve the record which was locked. The conditional
requests are described in Chapter 8, "Coding the Indexed Access Method
Requests™ on page 8-1.

An IACB can hold only one lock at a time; if your application requires

concurrent execution of functions that obtain locks (direct update or

sequential update - see "Accessing the Indexed File™ on page 7-%¢ for a

description of these functions), you must issue multiple PROCESS

requests to build multiple IACBs. N

DISCONNECTING

A DISCONN request disconnects an IACB from the file, releases the stor-
age for that IACB, releases locked blocks or records being held by that
IACB, and writes out to disk any blocks that are being held in the buff-
er. The DISCONN request can be issued at any time during loading or
processing.

There is no automatic DISCONN on task termination. Failure to discon-
nect your indexed files prior to task termination may prevent resources
that were allocated to your task from being allocated to other tasks and
updated records from being written to vour file.

7-2 5C36-0771

Using Secondary Keys

To access a file by a secondary key, you issue either a LOAD or PROCESS
request, specifying the file name of the secondary index and specifying
sacondary keys when referencing data records. The Indexed Access Method
determines the relationships among the files by using the directory and
automatically opens the primary file. All subsequent operations done
under this LOAD or PROCESS access the file using the secondary index.
zou must open a file by the primary name to access it by the primary
eys.

Direct retrievals use the secondary index, and sequential retrievals
return records in order by secondary key. Records within a group which
have the same secondary key are returned in the order which the records
were written into the file. Each application must determine whether the
correct record has been retrieved when duplicate keys are possible; the
Indexed Access Method provides no facility for that determination.

When records are updated, inserted, or deleted, in primary index files,
some or all secondary indexes can be updated automatically according to
the options you selected in the directory entries. These options are:
auto-update and independent processing.

If the auto-update indicator is on in the directory entry for a second-
ary index and you open the associated primary file to insert, delete, or
update records:

. the associated secondary index will be updated automatically. There
is no consideration for whether the independent indicator is on for
the secondary. However, if the invalid indicator for the secondary
entry is on, the secondary index is not updated.

. use only conditional requests. To do this, code those requests that
modify the file as DELETEC, PUTC, PUTDEC, or PUTUPC. Conditional
requests are described in Chapter 8, "Coding the Indexed Access
Method Requests" on page 8-1.

The independent indicator is used when a secondary index is opened in
load mode to add new entries to the file.

Note: When records are accessed by their secondary key, you must

ascertain through your application program that you have retrieved
the correct record because of the possibility of duplicate keys.

Chapter 7. Processing The Indexed File 7-3

ACCESSING THE INDEXED FILE

Issue a PROCESS request to access an indexed file. After the PROCESS
request has been issued, any of the following functions can be
requested:

* Direct reading - Retrieving a single record independently of any
previous request.

. Direct updating - Retrieving a single record for update; complete
the update by either replacing, deleting, or releasing the record.

. Sequential reading - Retrieving the next logical record relative to
the previous sequential request.

The first sequential request can access the first record in the file
or any other record in the file by key (except COBOL applications).

. Sequential updating - Retrieving the next logical record for update;
complgte the update by either replacing, deleting, or releasing the
record.

. Inserting - Placing a single record, in its logical key sequence,
into the indexed file.

. Deleting ~ Removing a single record from the indexed file.
. Extracting - Extracting data that describes the file.

. Direct Block Reading - Retrieving a data block independent of any
previous request.

. Sequential Block Reading - Retrieving the next logical data block
relative to the previous direct or sequential block-read request.

Note that the update functions require more than one request.

When a function is complete, another function may be requested, except
that a sequential processing function may be followed only by another
sequential function. You can terminate sequential processing at any
time by issuing a DISCONN or ENDSEQ request. An end-of-data condition
also terminates sequential processing.

DIRECT READING

Use the GET request to read a record using direct access. The key
parameter is required and must be the address of a field of full key
length regardless of the key length specification.

The record retrieved is the first record in the file that satisfies the
search argument defined by the key and key relation (krel) parameters.
The key field in your program is updated to reflect the key contained in
the record that satisfied the search.

If the key length is specified as less than the full key length, only
part of the key field is used for comparison when searching the file.
For example, the keys in a file are AAA, AAB, ABA, and ABB, the key
field contains ABO, and key relation is EQ. If key length is zero, the
search argument defaults to the full key ABO and a record-not-found code
is returned. If the key length specification is 2 and the search argu-
ment is AB, the third record is returned. If the key length
sp:cifigation is 1 and the search argument is A, the first record is
returned.

7-6¢ S5C34-0771

O

C

Cu

DIRECT UPDATING

To update a record using direct access:

1. Retrieve the record with a GET request, specifying the key and key
relation (krel) parameters.

2. Complete the update by doing one of the following:

. If you want to change the record, modify the record in your
buffer (do not change the key field of the record). Issue a
PUTUP request to return the updated record to the file.

. If vou do not want to change the record, issue a RELEASE
request.

. If you want to delete the record, issue a PUTDE request.

The key parameter must be specified as the address of a field of full
key length. The primary key cannot be modified during the update; a
secondary key can.

The only valid requests, other than DISCONN and EXTRACT, that can follow
GET for direct update are PUTUP, PUTDE, and RELEASE.

During the update, the subject record is locked (made unavailable) to
any other request until the update is complete. Even if no action is
taken after the GET request is issued, the RELEASE request is required
to release the lock on the record. You may wish to use the conditional
option on your requests to avoid unnecessary wait for locks. For condi-
tional request coding see Chapter 8, "Coding the Indexed Access Method
Requests™ on page 8-1. For details on long lock time or dead lock con-
dition, see "Deadlocks and the Long-Lock-Time Condition™ on page 12-10.

SEQUENTIAL READING

Use the GETSEQ request for sequential access to records. After a
sequential processing request has been initiated, only sequential func-
tions can be requested until an end-of-data condition occurs or an
ENDSEQ request is issued. Processing is terminated when a DISCONN
request is issued or an error or warning is returned.

-- Fig 'prot' unknown —- summarizes the protocol for sequential process-
ing.

Note: You can sequentially process a file more than once.

To begin sequential access with the first record in a file, set the key
address to zero. To start with any other record, specify a search argu-
ment by specifying the key and key relation (krel) parameters.

If you specify a search argument, the key field is modified to reflect
the key of the first record found.

After the first retrieval, a GETSEQ retrieves the next sequential record
regardless of any key or key relation specification. Therefore, you can
use the same GETSEQ statement to retrieve all records. A search argu-
ment on succeeding retrievals is ignored and the key field is not modi-
fied.

Chapter 7. Processing The Indexed File 7-5

When using secondary keys, you access the duplicate keys with a sequen-
tial get request. For example:

GETSEQ SMITH

Issuing the same request repeatedly will return- all of the secondary
keys whose value is SMITH. You must check to determine when the key
changes, or when you have retrieved the particular record you want with-
in that sequence of keys.

Specify ENDSEQ to stop reading before the end of data is reached. Read-
ing ends automatically at the end of data. The end-of-data condition
occurs when an attempt is made to retrieve a record after the last
record in the file.

If vou specify the end-of-data exit (EODEXIT) parameter on the PROCESS
request, control is transferred to the address specified by the EODEXIT
parameter when the end-of-data condition occurs.

During sequential reading, the block that contains the record is locked,
making all records in the block unavailable to other requesters until
the last record of the block is processed or sequential processing is
ended. For details on long lock time or dead lock condition, see "Dead-
locks and the Long-Lock-Time Condition™ on page 12-10.

SEQUENTIAL UPDATING

7-6

To update a record using sequential access:

1. Retrieve the record with a GETSEQ request for update, specifying the
key and one of the update key relation (krel) parameters. The key
is used only on the first retrieval. Do not specify a key if proc-
essing is to begin with the first record in the file.

2. Complete the update by doing one of the following:

. If yvou want to change the record, modify the record in vour
buffer (do not attempt to change the primary key field of the
;ﬁcord;. Issue a PUTUP request to return the updated record to

e file.

. If vou do not want to change the record, issue a RELEASE
request.

. If you want to delete the record, issue a PUTDE request.

During sequential updating, the block that contains the record is
locked, making all records in the block unavailable to other requesters
until the last record of the block is processed or sequential processing
is ended.

$C34-0771

C

Terminate processing with an ENDSEQ request or a DISCONN request either
before or after completing the update. Processing is also terminated on
an end-of-data condition.

INSERTING RECORDS

To insert a new record in a file, issue a PUT request after the file has
been connected with a PROCESS. The Indexed Access Method uses the pri-
mary key of the record to insert the record into the file.

The primary key of the inserted record must be different from any key in
the file; otherwise, a duplicate key error occurs. The key can be high-
er than any key in the file.

If you are not loading base records, and want to insert records into the
file in random order, the following should be satisfied:

.. For files defined by option 1, ensure that random (R) was specified

. For files defined by option 2, ensure that sufficient free pool
space was specified.

DELETING RECORDS

Use DELETE to delete a record from the file. Specify the full key of
the record. If no record exists with the specified key, a warning
return code is returned.

EXTRACTING INDEXED FILE INFORMATION

The EXTRACT request provides information about a file from the file con-
trol block (FCB) or FCB Extension. It can also return data paging sta-
tistics to the calling program with an option to reset the counters.
Data paging is described under "Data Paging™ on page 11-3.

The FCB includes information such as key length, key displacement, block
size, record size, and other data regarding the file structure. The FCB
Extension contains the $IAMUT1 utility SE command parameters that were
used to define the file.

The EXTRACT request copies the file control block or the FCB Extension
to an area that vou provide. The file must have been connected by a
LOAD or PROCESS request.

The contents of the FCB block and the FCB Extension are described by
FCBEQU, a unit of copy code that is supplied with the Indexed Access
Method. Use COPY FCBEQU to include these equates in an EDL program.

An EXTRACT issued for a secondary file returns the primary FCB with the
secondary key size and position of the secondary key. If you want the
actual FCB of the secondary file, you must open the secondary file inde-
pendently and then the secondary index FCB will be returned for the
EX{RACI request. The FCB extension returned is always the secondary FCB
extension.

Chapter 7. Processing The Indexed File 7-7

DIRECT BLOCK READING

The Block I/0 functions can help improve program performance. To use q;:p
these features, you must supply a buffer area in your program and speci- -
fy on the PROCESS call that the file is to be opened in Block Mode.

This causes data blocks to be read into the program's buffer instead of

into the $IAM buffer pool. Subsequent record-level commands (such as

GET, GETSEQ, and PUT) first check to see if the data record they want is

in the block in the buffer, and if so IAMFR (the IAM link module) per-

forms the function. In many applications, this reduces the number of

calls to $IAM.

Two Block Mode commands are provided to allow even faster processing in
some applications. The GETB request is similar to the GET request, but
it returns to the program the entire block of data containing the record
specified by the key. GETNB returns the next block of data (sequential-
ly by key). By using these requests, vour application program can read
quickly through the data file sequentially, limiting direct and
time-consuming use of the $IAM resource to call records already con-
tained in the blocks obtained.

7-8 S5C34-0771

C

MAINTAINING THE INDEXED FILE

This section describes how to maintain Indexed Access Method files. The
following topics are discussed:

. File backup and recovery

. File recovery without backup
L Reorganizing the file

. Dumping the file

L Deleting the file

. Verifying an indexed file.

FILE BACKUP AND RECOVERY

To protect against the destruction of data, copy the indexed file (or
the volume in which the file exists) at regular intervals using the
$COPY utility. See the Operator Commands and Utilities Reference manual
i2 the EDX library for instructions on using the Event Driven Executive
utilities.

To obtain a sequential dump of an indexed file, use the $IAMUT1 utility
UN command. During the interval between making copies, vou should keep
a journal file of all transactions made against the indexed file.

The journal file can be a consecutive file containing records that
describe the type of transaction and the pertinent data. A damaged
inde¥ed file can be recovered by updating the backup copy from the jour-
nal file.

For example, suppose an indexed file named REPORT is lost because of
physical damage to the disk. The condition that caused the error has
been repaired and the file must be recovered. Delete REPORT, copy the
backup version of REPORT to the desired volume, and process the journal
file to recreate the file.

If a data-set-shut-down condition exists, cancel $IAM and reload it.
Then issue a PROCESS to the REPORT file and, using the journal file,
reprocess the transactions that occurred after the backup copy was made.
{grlgore information, see "The Data-Set-Shut-Down Condition™ on page

Backing Up A Secondary Index

A secondary index can be backed up the same as primary index files.
However, if your primary file is backed up you can rebuild your second-
ary from the backup copy of the primary indexed file.

Duplicate secondary keys are maintained in the order they are inserted
by a secondary key sequence number. This sequence number is incremented
with each new insert. When a secondary index is reloaded the secondary
key sequence numbers are reassigned. Therefore, the history of which
records were written to the file first is lost.

Note: If your application is dependent on the secondary key sequence

number history, yvou would not want to rebuild vour secondary index
because the sequence numbers are reset.

Chapter 7. Processing The Indexed File 7-9

RECOVERY HITHOUT BACKUP

If vou do not use the backup procedures as described previously under @::D
"File Backup and Recovery™ on page 7-9, and vou encounter a problem with y
vour file, vou still may be able to recreate your file. However, the

statu: of requests that were in process at the time of the problem is

uncertain.

To recreate your file, follow the steps in "Reorganizing an Indexed
File™ to reorganize your file. After recreating the file, verify the
status of the requests that were in process when the problem occurred.

REORGANIZING AN INDEXED FILE

DUMPING

An indexed file must be reorganized when a record cannot be inserted
because of lack of space. This condition does not necessarily mean that
there is no more space in the file; it means that there is no space in
the area where the record would have been placed. Therefore, you may be
able to reorganize without increasing the size of the file. Perform the
following steps to reorganize a file:

1. Ensure that all outstanding requests against the file have been com-
pleted; issue a DISCONN for every current IACB.

2. Use the set parms (SE) or define (DF) commands of the $IAMUT1 utili-
ty to define a new indexed file. Estimate the number of base
records and the amount and mix of free space in order to minimize
the need for future reorganizations. See Chapter 3, "Defining Pri-
mary Index Files"™ for guidelines for making these estimates.

You can use Option 3 of the SE command to define the new file like P
the original indexed file. '

3. Use the reorganize command (RO) of the $IAMUT1 utility to load the
new indexed file from the indexed file to be reorganized.

Alternatively, vou can use the unload command (UN) of the $IAMUTI
utility to transfer the data from an indexed file to a sequential
file, then use the load command (LO) to load it back into the
indexed file.

%. 259 the $DISKUT1 utility to delete the old file and rename the new
ile.

REORGANIZING A SECONDARY INDEX: Reorganizing a secondary index does not
reset the secondary key sequence numbers during the reorganization. The
records are placed in another Indexed Access Method file without any
modi fication within the individual records. The secondary key sequence
numbers will be reset however, when the index is loaded.

AN INDEXED FILE

To produce a hexadecimal dump of an indexed file, use the DP command of
the $DISKUT2 utility. The dump includes control information, index
blocks, and data blocks. For information on the $DISKUT2 utility, refer

to the Operator Commands and Utilities Reference manual in the EDX
library.

7-10 SC34-0771

DELETING AN INDEXED FILE

‘::D Delete an indexed file the same way you delete any other file. From a
terminal, use the DE command of the $DISKUT1 utility; from a program,
use the $DISKUT3 data management utility. (Refer to the Operator Com-
mands _and Utilities Reference for a description of $DISKUT1, and to the
Installation and System Generation Guide for a description of $DISKUT3.
Both of these manuals are EDX library publications.)

VERIFYING AN INDEXED FILE
SVERIFY helps yvou check the validity of an indexed file and prints con-
trol block and free space information about the file on $SYSPRTR.
With $VERIFY you can:

J Verify that all pointers in an indexed file are valid and that the
records are in ascending sequence by key.

L Print a formatted File Control Block (FCB) listing, including the
FCB Extension block. The FCB Extension block contains the original
file definition parameters.

. Print a report showing the distribution of free space in your file.

. Verify secondary files against primary files.

For ditails on using $VERIFY, see Chapter 10, "The $VERIFY Utility" on
page 10-1.

. ‘.m

Chapter 7. Processing The Indexed.File 7-11

7-12 SC34-0771

CHAPTER 8. CODING THE INDEXED ACCESS METHOD REQUESTS

This chapter describes the syntax used to code Event Driven Language
requests for the Indexed Access Method.

The information in this chapter is intended for use as a reference when
coding EDL application programs that use the Indexed Access Method. For
information on coding Indexed Access Method applications in other lan-
guages, refer to the appropriate language manual.

Included for each request is a description of the purpose of the
request, the detailed coding syntax, a description of each parameter,
and all of the return codes associated with using these requests.

At the end of this chapter is a summary of the syntax of the EDL CALL
instructions used to invoke the functions provided by the Indexed Access
Method.

For a complete example of using the Indexed Access Method requests,
raefer to Appendix C, "Coding Examples™ on page C-1.

Chapter 8. Coding the Indexed Access Method Requests 8-1

REQUEST FUNCTIONS OVERVIEMW

This section provides an overview of the Indexed Access Method requests
and how to code them. The Indexed Access Method callable requests are:

Requast
DELETE

DISCONN

ENDSEQ
EXTRACT

GET

GETB

GETNB

GETSEQ

LOAD

PROCESS

PUT

PUTDE

PUTUP

RELEASE

8-2 S5C34-0771

Description

Deletes a single record, identified by its key, from the file.
Use DELETE to delete a record; the record cannot have been
retrieved for update.

Disconnects an IACB from an indexed file, thereby releasing
any locks held by that IACB; writes out all buffers associated
with the file; and releases the storage used by the IACB.

Terminates sequential processing.

Provides information about the file from the File Control
Block, File Control Block Extension, and data paging statis-
tics.

Directly retrieves a single record from the file. If you
specify the update mode, the record is locked (made unavail-
able to other requests) and held for possible modification or
deletion. Use GET to retrieve a single record from the file.

Directly retrieves a block of data from a file that is opened
in block mode, and puts it into a program buffer area. The
block is locked until a request that requires another block is
issued, or until a DISCONN request is made.

Sequentially retrieves a block of data from a file that is
opened in block mode, and puts it into a program buffer area.
The block is locked until a requaest that requires another
block is issued, or until a DISCONN request is made.

Sequentially retriaeves a single record from the file. If you
specify update mode, the block containing the record is locked
(made unavailable to other requests) and held for possible
modification or deletion. Use GETSEQ when you are performing
sequential operations.

Builds an Indexed Access Control Block (IACB) and connects it
to an indexed file. You can then use the IACB to issue LOAD
requests to that file to load records.

Builds an Indexed Access Control Block (IACB) and connects it
to an indexed file. You can then use the IACB to issue
requests to that file to read, update, insert, and delete
records. A program can issue multiple PROCESS functions to
obtain more than one IACB for the same file, enabling the file
to be accessed by several requests concurrently within the
same program.

Loads or inserts a new record depending on whether the file
was opened with the LOAD or PROCESS request. Use PUT when you
are adding records to a file.

Deletes a record that is being held for update. Use PUTDE to
delete a record that has been retrieved in update mode.

Replaces a record that is being held for update. Use PUTUP to
modify a record. .

Releases a record that is being held for update. Use RELEASE
when a record that was retrieved for update is not changed.

C

O

C

CODING INDEXED ACCESS METHOD REQUESTS

All Indexed Access Method servicaes are raquested by using the CALL
;nstruction. Paramaeters on the CALL instructions can hava the following
orms:

NAME: passas the value of tha variable with the label 'NAME'

(NAME): passes the address of the variable 'NAME' or the value of a sym-
bol defined using an EQU statement

For additional information, refer to the description of the CALL
instruction in the Language Reference.

General Statement Format

The general form of all Indexed Access Method calls is as follows:

CALL IAM, (func),iacb,(parm3),(parmé), (parm5)

The request type is determined by the operand 'func'. In addition to
the function request, you will notice that some functions allow a suffix
of C, R, or CR. The C means perform the function requested condi-
tionally. The condition is that the function is to be executed only if
the record, the block containing the record, or the buffer containing
the record is not locked. If any of those three items are locked for
the record being requested, control is to be returned to the requesting
program immediately. A return code is set to indicate that a lock was
encountered. A conditional request can still wait on a resource if it
is during the process of updating an index for a delete or insert.

The appended character, R, means return the record and the relative
block number (RBN) of the record being requested. Again this can be a
conditional redquest by preceding the letter R with the letter C. The
combination CR, indicates that the record and RBN is to be returned con-
ditionally; return the record and RBN only if the record, block, or
buffer is not locked by another request.

If the RBN is requested and the record, block, and buffer are free, the
RBN is returned as a 4-byte value. The 4-byte RBN value is returned at
the end of the retrieved record. Therefore, when using the suffix R,
ensure that your buffer is large enough to accommodate the record
length, plus the 4-byte RBN value.

The RBN can be used if you are building or maintaining your own second-
ary index. However, because records in an indexed file are subject to
being moved to different locations (RBNs) due to insert and delete
activity, the RBN is not guaranteed to remain accurate if insert and
delete activity to the primary index file occur.

The option of C, R, or CR is indicated in the boxed instructions with a
vertical bar (|). The presence of this bar indicates that a choice must
be made. Only one of the requests can be used in any one statement.

For eximple. PUT|PUTC, you must choose one or the other when coding the
request.

Depending on the type of function the remaining parameters may or may
not be required. The symbols used for func and parm5 are provided by
EQU statements in the IAMEQU copy code module and are coded as shown in
the syntax descriptions. These symbols are treated as addresses; there-
fore the MOVEA instruction should be used if it is necessary to move
them into a parameter list.

Chapter 8. Coding the Indexed Access Method Requests 8-3

Since these symbols are equated to constants, they may also be manipu-
lated using other instructions by prefixing them with a plus (+) sign.
Use the COPY statement to include IAMEQU in your program.

Note: You can not use the software registers (#1 and #2) on Indexed
Access Method calls.

Using Program Variables

If you use variables for parameters parm3, parm%, and parm5 (that is,
vou code them without parentheses or a plus sign), they are set to zero
by the Indexed Access Method before returning. Those parameters must be
reinitialized before executing the CALL instruction again.

Link~edit Considerations

Programs which call the Indexed Access Method must be processed by
S$EDXLINK to include the subroutine module IAM. IAMEQU has an EXTRN
statement for IAM. In addition, programs which use the block I/0 fea-
tures of this product must include another link module: $IAMFR. Refer
to the Installation and Svstem Generation Guide for information on
SEDXLINK and how to perform the link-edit process. Refer also to the
Operator Commands and Utilities manual for a description of the $EDXLINK
utility. Both of these manuals are EDX library publications.

Return Codes

All Indexed Access Method requests pass a return code reflecting a con-
dition that prevailed when the request completed. This code is passed
in the task code word (referred to by task name) of the TCB associated
with the requesting task. These return codes fall into three
categories:

-1 = Successful completion
Positive = Error
Negative = Warning (other than -1)

Note: Return codes 1, 7, 8, and 22 are positive value return codes but
they do not cause the error exit routine to be entered, even when
ERREXIT is coded. Also the negative (warning) return codes do not cause
error exits. For details on coding ERREXIT, see "LOAD - Open File for
Record Loading™ on page 8-25, or "PROCESS - Open File™ on page 8-29.

The return codes associated with each request are included with the
description of the request.

The Indexed Access Method also has the capability of logging errors in
the system error log. Automatic updates for secondary indexes could
encounter several errors within one request. These errors will be
logged in the system error log if $LOG is active. This may provide
additional information when analyzing errors.

8-4 5C34-0771

C

CALL FUNCTION DESCRIPTIONS

‘:}> The Indexed Access Method CALL functions are described on the following
pages and are arranged in alphabetic order.

DELETE - DELETE RECORD

The DELETE request deletes a specific record from the file. The record
to be deleted is identified by its key. The deletion makes space avail-
able for a future insert. The file must be opened in the PROCESS mode.

The DELETE/DELETEC request obtains a block lock to delete a record from

a block.

In order to obtain a block lock without waiting, there can be

no other block lock or record locks in effect for the block.

The DELETEC request deletes a specific record from the file only if the
record, block, or buffer is not locked.

Syntax:

label CALL

Required: all
Defaults: none

IAM, (DELETE|DELETEC), iach, (key)

Operands
O jach

(key)

Dascription

The label of a word containing the IACB address returned by
PROCESS.

The label of your key area containing the full key identifying
the record to be deleted.

Chapter 8. Coding the Indexed Access Method ﬁequests 8-5

DELETE Example

The following axample daletas the racord whose key is 'KEY0001' from thae
fila. The file is identified by the field named "FILELl'.

CALL IAM, (DELETE),FILEL, (KEY)

.

FILEL DATA F'Q’ IACB ADDRESS FROM PROCESS
KEY TEXT 'KEY0001',LENGTH=7

DELETE Return Codes

Code Condition
-1 Successful
- -58 Record not found
-85 Record not found
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
7 Link module in use, synchronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 12,
'"Error Recovery '
13 A required module is not included in $IAM
14 Invalid index block found - during processing an
incorrect index block type was found, recreate the file
22 Address supplied by your program is not a valid IACB
76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 170 error
80 Write error - FCB. See system return code
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for $IAMDIR - check system return code
242 Secondary index is out of sync with primary file.
Must rebuild file to get back in sync
2644 Error in opening auto-update file on secondary modification
request
245 Auto update PUTDE to a secondary failed,
Auto-update processing continues
247 During auto-update processing a GETSEQ to a secondary
failed, auto-update processing continues
8-6 SC34-0771

40

<

0

DISCONN ~ CLOSE FILE

The DISCONN request disconnects an IACB from an indexed file and
releases the storage used for the IACB. It releases any locks held by
that IACB and writes out any modified blocks from the file that are

being held in the system buffer. Other users connected to this file are
not affected.

Syntax:

label CALL IAM, (DISCONN), iach

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS or LOAD.

DISCONN Example

IE?LEg%lowing example closes the file identified by the field named

CALL IAM, (DISCONN), FILEL

.

FILEL DATA F'0° IACB ADDRESS FROM PROCESS

Chapter 8. Coding the Indexed Access Method Requests 8-7

DISCONN Return Codes

Code Condition
-1 Successful
7 Link module in use, synchronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
12 Data set shut down due to error; see Chapter 12,
"Error Recovery ! :
13 Module not included in load module $IAM
22 Address supplied by your program is not a valid IACB
100 Read error - check system return code
101 Write error ~ check system return code
110 Write error, file closed

8-8 SC34-0771

C

@

ENDSEQ - END SEQUENTIAL PROCESSING

The ENDSEQ request ends sequential processing, during which a block is
locked and fixed in the system buffer. Sequential processing is
normally terminated by an end-of-data condition. The ENDSEQ request is
useful for freeing the locked block when the sequence need not be com-
pleted. ENDSEQ is valid only during sequential processing.

Note: After sequential processing has been terminated, it can be
restarted again anywhere in the file.

Svyntax:

label CALL IAM, (ENDSEQ),iach

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS.

ENDSEQ Example

The following example ends sequential processing for the file identified
by the field named 'FILEl1l'.

CALL IAM, (ENDSEQ),FILEL

FILEL DATA F'0' IACB ADDRESS FROM PROCESS

Chapter 8. Coding the Indexed Access Method Requests 8-9

8-10

ENDSEQ Return codes

Code Condition
-1 Successful
7 Link module in use, synchronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to lead it
10 Invalid request
12 Data set shut douwn due to error; see Chapter 12,
'Error Recovery !
13 A required module is not included in SIAM
22 Address ‘supplied by your program is not a valid IACB

15C34-0771

o

w

EXTRACT - GET FILE INFORMATION

The

EXTRACT function returns information to the calling program. On a

specific call, it performs one of the following:

Returns information from a File Control Block (FCB). The FCB con-
tains such things as the block size, key length, and data set and
volume names of the indexed file. The FCBEQU copy code module con-
tains a set of equates to map the File Control Block.

An EXTRACT request issued for a secondary file returns the primary
FCB with the secondary key size and key position for the secondary
index. If you want the FCB of the secondary file, you must open the
secondary index with the independent option then the secondary index
FCB will be returned. The FCB extension returned is always the FCB
extension for the secondary index.

Returns information from a File Control Block Extension. The FCB
Extension contains the parameters used to define the file. The
ECEEQU_copy code module contains a set of equates to map the FCB
xtension.

Returns data paging statistics. These can be used to calculate page
"hit" ratios.

Returns data paging statistics, then resets them to begin accumulat-
ing new statistics.

Syntax

la
Re
De

bel CALL IAM, (EXTRACT), iacb, (buff),(size), (type)
quired: iacbh (only if type is FCBNRM or FCBEXT)

buff
faults: size Full FCB
FCBNRM

tvpe

Hiau

Operands Description

iach

The label of a word containing the IACB address returned by
PROCESS or LOAD. Required only if type=FCBNRM or FCBEXT; oth-
erwise ignored.

(buff) The label of the user area into which the data is returned.

If type=FCBNRM or FCBEXT, the File Control Block is returned
in this area. The area must be large enough to contain the
requested portion of the FCB. Use the COPY statement to
include FCBEQU in vour program so that the FCB and FCB Exten-
sion fields can be referenced by symbolic names.

If type=PAGST or PAGSTR, the paging statistics are returned in
this area. In this case, the size parameter is ignored, and
this area must be 16 bytes in length to accommodate the sta-
tistics. The paging statistics are returned in four
double-word fields:

1. Write Miss Count
2. Write Hit Count

3. Read Miss Count

4. Read Hit Count

Chapter 8. Coding the Indexed Access Method Requests 8-11

(size)

(type)

Used only if typa=FCBNRM or FCBEXT; otherwise ignored. The
number of bytes of the FCB or FCB Extension to be copied. The
size of the FCB is the value of the symbol FCBSIZE in the
FCBEQU equate table. The size of the FCB Extension is the
value of the symbol FCBXSIZ in the FCBEQU equate table.

Either of these symbols can be coded as the size parameter.

Type of data to be returned. The following are defined:
FCBNRM Extract the FCB.
FCBEXT Extract the FCB Extension.

PAGST Returns data paging statistics to the buffer. It
always returns 16 bytes.

PAGSTR Same as PAGST, except the data paging statistics are
raeset to zero after being copied to the buffer. This
allows a new set of statistics to be accumulated.

EXTRACT Examples

The following example retrieves the current paging statistics and places
then into the four double words provided.

WRMIS
WRHIT
RDMIS
RDHIT

CALL IAM, (EXTRACT), 0, (WRMIS),0, (PAGST)

-

DATA D'0" WRITE MISS COUNT
DATA D'0’ WRITE HIT COUNT
DATA D'0" READ MISS COUNT
DATA D'0° READ HIT COUNT

The following example gets the attributes of the file identified by the
field named FILE1l from the FCB and places them into an area called WORK.

FILE
WORK

CALL IAM, CEXTRACT),FILEL, (WORK), (FCBSIZE)

.

DATA D'0' IACB ADDRESS FROM PROCESS
DATA 256F'0" FCB COPY AREA
COPY FCBEQU FCB EQUATES

8-12 SC34-0771

O

C

EXTRACT Return

Codes

Code Condition
-1 Successful
7 Link module in use, synchronize use of link module with the
program
8 Load error for $IAM, verify $IAM exists and enough storage
is available to load it
12 Data set shut down due to error; see Chapter 12,
'"Error Recovery !
13 A required module is not included in $IAM
22 Address supplied by your program is not a valid IACB
100 Read error - check system return code
120 Invalid extract type
122 File does not contain FCB extension
123 Cannot extract paging statistics. Data paging not active

Chapter 8. Coding the Indexed Access Method Requests 8-13

GET - GET RECORD

The GET request retrieves a single record from the indexed file and MZZD
places the record in a user area. The file must have been opened using
the PROCESS request before the GET request is issued.

The requested record is located by key. The search may be modified by a
key relation (krel) or a key length (klen). The first record in the
file that satisfies the key condition is the one that is retrieved.

Retrieve for update can be specified if the requested record is intended
for possible modification or deletion. The record is locked and remains
unavailable to any other requests until the update is completed by a
PUTUP, PUTDE or by a RELEASE. The record is also released if an error
occurs or processing is ended with a DISCONN.

During an update, you must not change the primary key field in the
record or the field addressed by the key parameter. The Indexed Access
Method checks for and prohibits primary key modification.

The GETC request retrieves a single record from the indexed file and
plicis thg record in a user area only if the record, block, or buffer is
no ocked.

The GETR request retrieves the RBN of a specified record from the
indexed file and places the record and RBN in a user area.

The GETCR request retrieves the RBN of a specified record from the
indexed file and places the record and RBN in a user area only if the
record, block, or buffer is not locked.

Syntax:

N
label CALL IAM, (GET|GETC|GETR|GETCR), iach, (buff), (key), @LJQ
(modeskrel)

Required: iacb,buff,key
Defaults: mode/krel-EQ

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS.

(buff) The label of the user area into which the requested record

is placed. When the RBN is requested, the RBN is returned
at the end of the record. The user buffer must be four
bytes longer than the record length to accommodate the RBN.

(key) The label of your key area containing the key identifying
. the record to be retrieved and preceded by the lengths of
the key and area. This area has the standard TEXT format
and may be declared using the TEXT statement. If you do not
use the TEXT statement for this field, you must code it in
the same format as the TEXT statement generates.

®

8-14 5C36-0771

(modeskrel)

The TEXT statement format is as follows:

O0ffset Field

key - 2 LENGTH (1 byte)
key - 1 KLEN (1 byte)
key Key area ("LENGTH"™ bytes)

length

klen

key area

The length of the key area. It must be equal to
or greater than the full key length for the file
in use.

The actual length of the key in the key area to
be used as the search argument for the
operation. It must be less than or equal to the
full length of the keys in the file in use. If
klen is 0, the full key length is assumed.

A generic key search is performed when klen is
less than the full key size. The first n bytes
(as specified by klen) of the key area are
matched against the first n bytes of the keys in
the file. The first matching key determines the
record to be accessed. The full key of the
record is returned in the key area.

The area containing the key to be used as a

search argument. If you are using a generic
key, after a successful GET request this area
contains the full key of the record accessed.

Retrieval type and key relational operator to be used.
The following are defined:

EQ Retrieve only key equal
GT Retrieve only key greater than
GE Retrieve only key greater than or equal

UPEQ Retrieve for update key equal

UPGT Retrieve for update key greater than

UPGE Retrieve for update key greater than or equal

Chapter 8. Coding the Indexed Access Method Requests 8-15

GET Example

The following example gets a record whose key is "JONES'. The file
records are 80 bytes in length and the key length is 20 bytes. The
record is returned in the area named RECORD, and because this is a GETR
request, the RBN is also returned in the area named RBN, which must fol-
low immediately after the record area.

CALL IAM, (GETR),FILE1,(RECORD), (KEY)

FILE1 DATA F'0" IACB ADDRESS FROM PROCESS
KEY TEXT "JONES',LENGTH=20 RECORD KEY

RECORD DATA 128F'0’ RECORD AREA

RBN DATA D'0’ RBN

GET Return Codes

Code Condition
-90 Request cancelled because the request was conditional and a
wait on a lock or buffer would be required
-58 Record not found
-1 Successful
7 Link module in use, synchronize use of link module with the
program
8 Load error for $IAM, verify $IAM exists and enough storage is
available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 12,
'Error Recovery'
13 A required module is not included in $IAM
22 Address supplied by your program is not a valid IACB
100 Read error - check system return code
101 Write error - check system return code
200 Error occurred while accessing the primary flle
242 Secondary index is out of sync with primary file
267 During auto-update processing a GETSEQ to a secondary file
failed, auto-update processing continues
248 I/0 error on primary file during a secondary request
249 GET UPDATE error occurred trying to update a bad RBN

8-16 S5C364-0771

C

O

GETB - GET BLOCK

The GETB request retrieves a block of data from the indexed file and
places the block in a user buffer area. The third parameter of the call
points to the record in the block that matched the key search. The file
must have been opened using the PROCESS request before the GETB request
is issued, and the process call must have specified block mode.

The requested record is located by key. The search may be modified by a
key relation (krel) or a key length (klen). The block containing the
first record in the file that satisfies the key condition is the one
that is retrieved.

The block that is retrieved is locked to prevent other users from
accessing it. The lock remains in place until another block is accessed
or a DISCONN is issued.

THE GETBC request performs the same function as the GETB, but it does
not wait for the locked block to become unlocked. If the block that it
needs is locked, a code of -90 is returned.

Syntax:

label CALL IAM, (GETB|GETBC),iacb,(recptr),
(key),(mode|krel)

Required: iacb,recptr,key
Defaults: mode/krel=EQ

Operands Description

iach The label of a word containing the IACB address returned by
: PROCESS.

(recptr) The label of a word that will contain the address of the
record that satisfied the key condition. This is an address
in the user buffer that contains the data block that was
retrieved.

(key) The label of your key area containing the key identifying
the record to be retrieved and preceded by the lengths of
the key area. This area has the standard TEXT format and
may be declared using the TEXT statement. If you do not use
the TEXT statement for this field, you must code it in the
same format that the TEXT statement generates.

The TEXT statement format is as follows:

Offset Field

key - 2 LENGTH (1 byte)
key - 1 KLEN (1 byte)
key Key area ("LENGTH" bytes)

length The length of the key area. It must be equal to or
greater than the full key length for the file in use.

klen The actual length of the key in the key area to be
used as the search argument for the operation. It
must be less than or equal to the full length of the
keys of the file in use. If klen is 0, the full key
length is assumed.

A generic key search is performed when klen is less

than the full key size. The first n bytes (as speci-
fied by klen) of the key area are matched against the

Chapter 8. Coding the Indexed Access Method Requests 8-17

(mode/krel)

8-18 S5C36-0771

first n bytes of the keys in the file. The first
matching key determines the record to be accessed.
The full key of the record is returned in the key
area.

key area The area containing the key to be used as a
search argument. If you are using a generic key,
after a successful GET request this area contains the
full key of the record accessed.

Retrieval type and the key relational operator to be used.
The following are defined:

EQ Retrieve only key equal
GT Retrieve only key greater than
GE Retrieve only key greater than or equal

Note: Blocks may not be retrieved for update.

GETB Example

The following example retrieves the data block that contains a record
whose key is 'JONES'. The file records are 80 bytes in length, the key
length is 20 bytes and the block size is 512. A pointer to the record
is returned in the area named RECP. The block is read into BLK, which
has be:n identified to $IAM as the block mode user buffer by a PROCESS
request. .

Note: The buffer is specified on the PROCESS request.

CALL IAM, (GETB)Y,FILE1, (RECP), (KEY)
FILEL DATA F'0° IACB ADDRESS FROM PROCESS
KEY TEXT "JONES',LENGTH=20 RECORD KEY
RECP DATA F'o’ ADDRESS OF RECORD IN DATA BLOCK
BLK BUFFER 548,BYTES BLOCK MODE BUFFER
(BLKSIZE + 36 BYTES)

GETB Return Codes

Code Condition

®

-90 Request cancelled because the request was conditional and a
wait on a locked buffer would be required
~58 Record not found
-1 Successful
7 Link module in use; synchronize use of link module with
the program
8 Load error for $IAM; verify $IAM exists and that
enough storage is available to load it

10 Invalid request

12 Data set closed due to error; see chapter 11

13 A required module is not included in $IAM

22 Address supplied by your program is not a valid IACB
100 Read error - check system return code

101 Write error - check system return code
200 Error occurred while accessing the primary file

Chapter 8. Coding the Indexed Access Method Requests 8-19

GETNB - GET NEXT BLOCK

The GETNB request retrieves the next block of data from an indexed file
and places it into a user buffer area. The file must be opened in block
mode by the PROCESS request.

If there is a locked block in the user buffer area when the GETNB
request is issued, the block logically folleowing this block is read into
the buffer area. If no block is in the user buffer area (for example,
this is the first request after a PROCESS or another request has caused
the current block to be unlocked), then the first block of the file is
read into the user buffer area.

The block is locked to prevent other users from accessing it. The block
remains in place until another block is read in or a DISCONN is issued.

The GETNBC request performs the same function as GETNB but it does not

wait for a locked block to become unlocked. If the block that it needs
is locked a code of -90 is returned.

Syntax:

label CALL IAM, (GETNB|GETNBC), iacb, (recptr), (key)

Required: IACB,((recptr), only if no previous GETB issued.)
Defaults: None

Operands Description
iach The label of a word containing the IACB address returned by
PROCESS.

(recptr) The label of a word that will contain the address of the
record that satisfied the key condition. This is an address
in the user buffer that contains the data block that was
retrieved.

(key) The label of your key area. GETNB uses the key area if it
has to go to $IAM to get the first block in the file. The
contents of the key area before the call are of no impor-
tance, and the contents afterwards should not be depended
upon by the application. It is used only as a work area.
This area has the standard TEXT format and may be declared
using the TEXT statement. If you do not use the TEXT state-
ment for this field, you must code it in the same format
that the TEXT statement generates.

The TEXT statement format is as follows:

Offset Field

key - 2 LENGTH (1 byte)
key - 1 KLEN (1 byte)
key Key area ("LENGTH™ bytes)

length The length of the key area. It must be equal to or
greater than the full key length for the file in use.

klen Any positiva value less than or equal to the length.

kay area The area containing the key to be used as a
search argument. If you are using a generic key,
after a successful GET request this area contains the
full key of the record accessed.

8-20 SC34-0771

O

GETNB Example

The following example gets the next block from the file. The file has a
key length of 20. Upon return RECP will contain the address of the
first record in the block. The PROCESS request specified block mode.

CALL IAM, (GETNB),FILE
FILE DATA F'o* IACB ADDRESS FROM PROCESS
RECP DATA F'0’ ADDRESS OF RECORD IN DATA BLOCK
KEY TEXT LENGTH=20 RECORD KEY

GETNB Return Codes

Code Condition

o

-90 Request cancelled because the request was conditional and a
wait on a lock or buffer would be required
-80 End of data.
-1 Successful
7 Link module in use, Synchronize use of link module with
the program.
8 Load error for $IAM, verify $IAM exists and
enough storage is available to load it.

10 Invalid request.
12 Data set shut down due to error; see chapter 12.
regarding error recovery.

13 A required module is not included in $IAM.

22 Address supplied by your program is not a valid IACB.
100 Read error - check system return code.

101 Write error - check system return code.
200 Error occurred while accessing the primary file

Secondary index is out of sync with primary file.
I/0 error on primary file during a secondary request.
GET UPDATE error occurred trying to update a bad RBN.

Chapter 8. Coding tha Indexed Access Method Requaests 8-21

GETSEQ - GET RECORD (SEQUENTIAL MODE)

The GETSEQ request retrieves a single record from the indexed file and
places the record in a user area (buff). The file must be opened in the
PROCESS mode.

The first GETSEQ of a sequence is performed like a GET; the first record
in the file that satisfies the key condition is the one that is
retrieved. If key is zero, the first record in the file is retrieved.
Subsequent requests in the sequence locate the next sequential record in
the file and the key parameter is ignored if specified. The sequence is
terminated by an end-of-data condition, by an ENDSEQ, by a DISCONN, or
by an error. During the sequence, direct-access requests are invalid.

Retrieval for update can be specified if the requested record is
intended for possible modification or deletion. If update is used the
record is locked and remains unavailable to any other requests until the
update is completed by a PUTUP, PUTDE or RELEASE. The record is also
released by ending the sequence with an ENDSEQ or by ending processing
with a DISCONN or by an error.

During an update, the user must no*t change the primary key field in the
record or the field addressed by the primary key parameter. The Indexed
Access Method checks for and prohibits key modification.

The GETSEQC request retrieves a single record from the indexed file and
places the record in a user area only if the record, block, or buffer is
not locked. The file must be opened in the PROCESS mode.

The GETSEQCR request retrieves the RBN of the specified record from the
indexed file and places the record in a user area only if the record,
block, or buffer is not locked. The file must be opened in the PROCESS
mode.

Note: Performance considerations regarding sequential processing can be
found in "Other Performance Considerations™ on page 11-6.

Syntax:

label CALL 1AM, (GETSEQ|GETSEQC|GETSEQR|GETSEQCR), iacb,
(buff), (key), (modes/krel)

Required: iJacb,buff,key
Defaults: modeskrel=EQ

operand Description

iach The label of a word containing the IACB address returned By
PROCESS.

(buff) The label of the user area into which the requested record

is placed. When the RBN is requested, the RBN is returned
at the end of the record. The user buffer must be four
bytes longer than the record length to accommodate the RBN.

(key) The label of the user key area containing the key identify-
"ing the record to be retrieved and preceded by the lengths
of the key and area. If the first record of the file is to
be retrieved, this field as specified should be 0.

8~22 $SC34-0771

O

»

The key field, if specified, has the standard TEXT format
and may be declared using the TEXT statement. If vou do not
use the TEXT statement for this field, vou must code it in
the same format as the TEXT statement generates.

The TEXT statement format is as follows:

Offset Field

key - 2 LENGTH (1 byte)
key - 1 KLEN (1 byte)

key Key area ("LENGTH™ bytes)
length The length of the key area. It must be equal to
or greater than the full key length for the file
in use.
klen The actual length of the key in the key area to

be used as the search argument for the
operation. It must be less than or equal to the
full length of the keys in the file in use. If
klen is 0, the full key length is assumed.

A generic key search is performed when klen is
less than the full key size. The first n bytes
(as specified by klen) of the key area are
matched against the first n bytes of the keys in
the file. The first matching key determines the
record to be accessed. The full key of the
record is returned in the key area.

key area The area containing the key to be used as a
search argument. If vou are using a generic
key, after the first successful GETSEQ request
this area contains the full key of the record
accessed.

(mode/krel) Retrieval type and key relational operator to be used.
The following are defined:

EQ Retrieve only key equal
GT Retrieve only key greater than
GE Retrieve only key greater than or equal

UPEQ Retrieve for update key equal
UPGT Retrieve for update key greater than
UPGE Retrieve for update key greater than or equal

After the first GETSEQ of a sequence only the retrieval type is meaning-
ful. The keys are not checked for equal or greater than relationship.

Chapter 8. Coding the Indexed Access Method Requests 8-23

GETSEQ Example

The following example gets the record whose key is 'KEY0001' and places
it in an area called '"BUFFER'. The file is identified by the field

named "FILEl'. Subsequent GETSEQ requests result in the next sequential

record being returned.

FILE]
BUFFER
KEY

CALL IAM, (GETSEQ),FILELl, (BUFFER), (KEY)

-

DATA F'0° IACB ADDRESS FROM PROCESS
DATA 256F'0" I7/0 BUFFER
TEXT 'KEY0001',LENGTH=7 RECORD KEY

GETSEQ Return Codes

Code

Condition

-90

-80
-58
-1

10
12

13

100
101
200
242
248
249

Request cancelled because the request was conditional
and a wait on a lock or buffer would be required

End of data

Record not found

Successful

Link module in use, synchronize use of link

module with the program

Load error for $IAM, verify $IAM exists and enough
storage is available to load it

Invalid request

Data set shut down due to error; see Chapter 12,
"Error Recovery'

A required module is not included in $IAM

Address supplied by your program is not a valid IACB
Read error - check system return code

Write error - check system return code

Error occurred while accessing the primary file
Secondary index is out of sync with primary file.

I/0 error on primary file during a secondary request.
GET UPDATE error occurred trying to update a bad RBN.

8-24 SC34-0771

C

C

o

LOAD - OPEN FILE FOR RECORD LOADING

The LOAD request builds an indexed access control block (IACB) associ-
ated with the file specified by the DSCB parameter. The address
returned in the iacb variable is the address used to connect requests
under this LOAD to this file.

To access the file by primary key, specify the primary file name as the
DSCB parameter. On all subsequent requests, specify a primary key.

To access the file by secondary key, specify the secondary file name as
the DSCB parameter. On all subsequent requests, specify a secondary
key. The Indexed Access Method automatically opens the primary file
when you specify a secondary file.

Note: The directory must be set up to reflect the relationship among
the primary file and any secondary files.

LOAD opens the file for loading base records; the only acceptable proc-
essing requests in this mode are PUT, EXTRACT and DISCONN. Only one
user of a file can use the LOAD function at one time.

If an error exit is specified, the error exit routine is executed when-
ever any Indexed Access Method request under this LOAD terminates with a
positive return code.

Note: Return codes 1, 7, 8, and 22 are positive value return codes but
they do not cause the error exit routine to be entered, even when
ERREXIT is coded. The negative (warning) return codes also do not cause
error exits.

Syntax:

label CALL IAM, (LOAD),iachb, (dscb), (opentab), (mode)

Required: iacb,dscb,opentab
Defaults: mode=(SHARE)

Operands Description

iach The label of a l-word variable into which the address of the
indexed access control block (IACB) is returned.

(dsch) The name of a valid DSCB. This name is DSn, where n is a num-
ber from 1-9, corresponding to a file defined by the PROGRAM
statement. It can also be a name supplied by a DSCB state-
ment. The CALL statement specifying LOAD causes the Indexed
Access Method to open the index file in load mode.

Chapter 8. Coding the Indexed Access Method Requests 8-25

(opentab)

{(mode)

8-26 5C34-0771

The label

of a 3 word open table. The open table contains

information used during this LOAD. The format of this table

is as follows:

Offset Field

0 SYSRTCD
2 ERREXIT
4 (0) reserved

Field
SYSRTCD

ERREXIT

RESERVED

Specifies

SHARE

ISHARE

EXCLUSV

IEXCLUSY

Description

A 1-word variable into which the return code from
any system function (such as READ and WRITE) is
placed when requested under this LOAD by the
Indexed Access Method.

Your error exit routine address. If this address
is zero, the error exit will not be taken. Note
that error exits handle only positive return codes.

Note: Return codes 1, 7, 8, and 22 are positive
return codes which do not cause the error exit rou-
tine to be entered, even if ERREXIT is coded.

Must be 0 for LOAD requests.
shared or exclusive use of the file.

Allows shared read/write access by PROCESS
requests.

Allows shared read/write access by PROCESS requests
with the independent processing flag on.

The I prefix on SHARE mode prevents any automatic Ql;b
update functions on any associated secondary }
indexes, even if the auto-update flag is on in the

directory entry for those associated secondary

indexes.

For a sacondary index, the index is opened as an
independent file and the records returned are sec-
ondary index records, not user data records.

You can access the file in exclusive mode (EXCLUSV)
only if there are no outstanding PROCESS or LOAD
requests. No other user can access the file while
exclusive use is in effect.

You can access the file only if there are no out-
standing PROCESS or LOAD requests. No other user
can access the file while independent exclusive
(IEXCLUSVY) use is in effect.

The I prefix on EXCLUSV mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
directory entry for those associated secondary
indexes.

For a secondary index, the index is opened as an
independent file and the records returned are sec-
ondary index records, not user data records.

LOAD Example

The following exa@ple opens the file identified by '"DS3' for record
loading in exclusive mode. The field named 'IACB' is set to the address
of the IACB for this open. Subsequent requests use this field to refer
to this file. The system return code is placed in the field named
YOPEN'. An error opening the file results in the routine named 'ERROR'
being executed.

CALL IAM, (LOAD),IACB, (DS3), (OPEN), (EXCLUSV)

.

IACB DATA F'0°

OPEN DATA F'o! RETURN CODES
DATA A'ERROR' ERROR EXIT ROUTINE ADDRESS
DATA F'o" NOT USED

Chaptar 8. Coding the Indexed Access Method Requests

8-27

LOAD Return Codes

Code Condition
-79 Warning - File was opened and not closed during the
last session. Normal processing continues
-75 Warning - File has either not been formatted, or the
invalid indicator is on in the directory for that file
-57 Data set has been loaded
-1 Successful
7 Link module in use, synchronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
12 Data set shut down due to error; see Chapter 12,
'"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing of an index
block, an incorrect block type was found.
17 IAM is inactive - not enough storage available. Use
$IAMUT1 BF command to readjust storage size.
23 Insufficient number of IACBs, use BF command of
$IAMUT1 to allocate more
50 File opened exclusively
51 Data set already opened in load mode
52 File in use, cannot open exclusively
54 $IAM buffer too small to process a file with this block size
Use the BF command of $IAMUT1 to increase the buffer size
55 Insufficient FCBs
56 Read error - FCB. Refer to system return code
76 DSOPEN error occurred - The system error field in the
open table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - I/0 error
77 Record save area nhot large enough - use $IAMUT1 BF
command to set maximum record size for secondary
index processing
78 Attempted to open a secondary file for LOAD, file is not
opened independently
230 Directory READ error for $SIAMDIR. Check system return code
234 Directory error - DSNAME,VOL not found in $IAMDIR
243 Primary file failed to open on a secondary OPEN request

8-28 5C34-0771

PROCESS - OPEN FILE

The PROCESS request builds an indexed access control block (IACB) asso-
ciated with the file specified by the DSCB parameter. The address
returned in the IACB variable is the address used to connect requests
under this PROCESS to this file.

To access the file by primary key, specify the primary file name as the
DSCB parameter. On all subsequent requests, specify a primary key.

To access the file by secondary key, specify the secondary file name as
the DSCB parameter. On all subsequent requests, specify a secondary
key. The Indexed Access Method automatically opens the primary file
when you specify a secondary file.

Either primary or secondary files may be accessed in block mode. Sec-
ondary files, however, may be directly accessed in block mode only if
they were opened as independent files.

Note: The directory must be set up to reflect the relationship between
the primary file and any secondary files.

PROCESS opens the file for retrievals, updates, insertions, and
deletions. Multiple users can PROCESS the same file. However, only one
user at a time can use the LOAD function for a given file.

If ERREXIT is specified, the error exit routine is executed whenever any
Indexed Access Method request under this PROCESS terminates with a posi-
tive return code.

Note: Return codes 1, 7, 8, and 22 are positive value return
codes but they do not cause the error exit routine to be entered,
aven when ERREXIT is coded. Also the negative (warning) return
codes do not cause error exits.

If EODEXIT is specified, the end-of-data exit routine is executed when-
ever a GETSEQ associated with PROCESS attempts to access a record after
the last record in the file.

Syntax:

label CALL IAM,(PROCESS),iacb,(dsch),(opentab), (mode)

Required: iacb,dscb,opentab
Defaults: mode=(SHARE)

Operands Description

iach The label of a 1-word variable into which the address of the
indexed access control block (IACB) is returned.

(dsch) The name of a valid DSCB. This name is DSn, where n is a num-
ber from 1 - 9, corresponding to a file defined by the PRO-
GRAM statement. It can also be a name supplied by a DSCB
statement. The CALL statement specifying PROCESS causes the
Indexed Access Method to open the index file in process mode.

Chaptar 8. Coding the Indexed Access Method Requests 8-29

8-30

(opentab)

(mode)

$C34-0771

The label of a 3- or 4-word table that contains information
used during this PROCESS request. If the mode does not spec-

ify block mode, the format of this table is as follows:
C
O0ffset Field
0 SYSRTCD
2 ERREXIT
4 EODEXIT

If the mode does specify block mode, the format of the table
is as follous:

Offset Field
0 SYSRTCD
2 ERREXIT
% EODEXIT
6 UBUFFAD
Field Description

SYSRTCD A 1-word variable into which the return code from
any system function (such as a READ or WRITE) is
placed when requested under this PROCESS by the
Indexed Access Method.

ERREXIT Your error exit routine address. If this address
is 0, the error will not be issued. Note that
error exits handle only positive return codes.

EODEXIT Your end-of-data exit routine address. If this
address is 0, the end-of-data exit will not be Ar;b

used. k{

UBUFFAD The address of the buffer area to be used in block
170 mode. This area has the standard BUFFER format
and may be declared using the EDL BUFFER statement.
If vou do not use the BUFFER statement for this
field, you must code it in the same format the
BUFFER statement generates. The buffer statement
format is as follows:

Offset Field
Buffer - 6 Zero
Buffer - 1 LENGTH
Buffer Buffer area

Block size + 36
("LENGTH" bytes)

The buffer area must be at least the block size of
the file plus 36 bytes in length.

Specifies the shared or exclusive access to the file, and if
it is being opened in block mode.

SHARE Allows shared READ/WRITE access by multiple PROCESS
or LOAD requests.

SHAREB Same as SHARE, but open in block mode.

ISHARE

ISHAREB
EXCLUSV

EXCLUSB
IEXCLUSV

IEXCLUSB

Allows shared READ/WRITE access by PROCESS requests
with the independent processing flag on.

The I prefix on share mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
directory entry for those secondary indexes.

For a secondary index, the index is opened as a
secondary file, and the records returned are sec-
ondary index records, not user data records.

Same as ISHARE, but open in block mode.

The user can access the file only if there are no
outstanding PROCESS or LOAD requests. No other
user can access the file while EXCLUSV (exclusive
access) is in effect.

Same as EXCLUSV, but open in block mode.

You can access the file only if there are no out-
standing PROCESS or LOAD requests. No other user
can access the file while IEXCLUSV (independent
exclusive access) is in effect.

The I prefix on EXCLUSY mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
Qigectory entry for those associated secondary
indexes.

For a secondary index, the index is opened as an
independent file, and the records returned are sec-
ondary index records, not user data records.

Same as IEXCLUSVYV, but open in block mode.

Chapter 8. Coding the Indexed Access Method Requests 8-31

PROCESS Example

The following example opens the file identified by '"DS1' for general @:W\
access in shared access mode. The field named "IACB' is set to the e
address of the IACB for this open. Subsequent requests use this field

to refer to this file. The system return code is placed in the field

named "OPENTAB'. An error opening the file results in the routine named

'ERROR' being executed. An end-of-data condition on a subsequent

request results in the transfer of control to the code at the label

YEND'.
CALL IAM, (PROCESS), IACB, (DS1), (OPENTAB), (SHARE)
OPENTAB DATA F'o’ RETURN CODES
DATA A(CERROR) ADDRESS OF ERROR EXIT ROUTINE
DATA ACEND) ADDRESS OF EOD EXIT ROUTINE

IACB DATA Fro’

Block Mode PROCESS Example

The following example opens a file identified as 'DS2' for general

access in shared access block mode. The field named 'IACB2' is set to

the address of the IACB for this file by $IAM during the execution of

the PROCESS request. Subsequent requests use this field to refer to

this file. The system return code is placed in the field '"OPENTAB2'.

In this example both the ERROR and END routine addresses are coded F'0°' ‘
to indicate that no routines are supplied and control should return to Jy
the instruction following the call to IAM if an error or EOD condition

occurs. These exits can be coded for block mode. The fourth entry under

OPENTAB2 is the address of the buffer area to be used by $IAM. The

buffer length must be at least the block size of the file plus 36.

CALL IAM, (PROCESS),IACB2,(DS2), (OPENTABZ), (SHAREB)
OPENTAB2 DATA F'o* RETURN CODES
DATA F'o’ NO ERROR EXIT ROUTINE
DATA F'o’ NO EOD EXIT ROUTINE
DATA A(BUF) ADDRESS OF BLOCK I/0 BUFFER
OPENTAB2 DATA F'o' RETURN CODES
IACB2 DATA F'o’
BUF BUFFER 1060,bytes BLOCK SIZE + 36

8-32 $5C34-0771

PROCESS Return Codes

Code -Condition
-79 Warning - File was opened and not closed during the
last session. Normal processing continues
-75 Warning - File has either not been formatted, or the
invalid indicator is on in the directory for that file

auto-update secondaries. Do not issue PUTUP or PUTDE

| -56 Your file has been opened in block mode, but it has
against it.

-1 Successful

7 Link module in use, synchronize use of link
module with the program

8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it

12 Data set shut down due to error; see Chapter 12,
*Error Recovery'

13 A required module is not included in $IAM

17 IAM is inactive - not enough storage available. Use
$IAMUT1 BF command to readjust storage size.

23 Insufficient number of IACBs, use BF command of
$IAMUT1 to allocate more

26 Invalid user buffer address

25 Invalid user buffer length

26 Invalid header information in block in user area.

50 File opened exclusively

52 File in use, cannot open exclusively

54 SIAM buffer too small to process a file with this block size
Use the BF command of $IAMUT1 to increase the buffer size

55 Insufficient FCBs

56 Read error - FCB. Refer to system return code

0 76 DSOPEN error occurred - The system error field in the

open table contains the DSOPEN error:

21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 1/0 error
77 Record save area not large enough - use $IAMUT1 BF
command to set maximum record size for secondary
index processing

230 Directory READ error for $IAMDIR. Check system return code
234 Directory error - DSNAME,VOL not found in $IAMDIR
243 Primary file failed to open on a secondary OPEN request

Chapter 8. Coding the Indexed Access Method Requests 8-33

PUT - PUT RECORD INTO FILE

The PUT request processes the record that is in your buffer (buff) «::D
according to the way the file was opened (LOAD or PROCESS).

If the current open is for LOAD, the record must have a higher key than
the highest key already in the file and only base record slots are used
(refer to "lLoading Base Records From An Application Program™ on page 4-5
for a description of load mode). If the current open is for PROCESS,
the record may have any key and is placed in key order in either a base
record or in a free slot in the appropriate place in the file.

The PUTC request requires a block lock. The request processes the

record in your buffer (buff) according to the way the file was opened
(LOAD or PROCESS). 1In order to obtain a block lock without waiting,

gherﬁ can be no other block lock or record locks in effect for the
lock.

Syntax:

label CALL IAM, (PUT|PUTC), iach, (buf¥f)

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS or LOAD. q[i)
(buff) The label of the user area containing the record to be added -

to the file.

8-364 5C34-0771

PUT Example

The following example puts the record in the area named '"BUFFER' into
the file. The file is identified by the field named 'FILEl"'.

CALL IAM, (PUT),FILE1l, (BUFFER)

FILE1 DATA F'0" IACB ADDRESS RETURNED HERE
BUFFER DATA 256F'0’ 170 BUFFER

PUT Return Codes

Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
-1 Successful
7 Link module in use, synchronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 12,
"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing an
incorrect index block type was found, recreate the file
22 Address supplied by yvour program is not a valid IACB
60 Out of sequence or duplicate key (LOAD mode only)
61 End of file (in LOAD mode)
62 Duplicate key found (PROCESS mode only)
70 No space for insert; reorganize the file
76 DSOPEN error occurred - The system error field in the

OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 170 error

90 Internal key save area temporarily in use by another request
100 Read error - check system return code

101 Write error - check system return code
230 Directory read error for $IAMDIR. Check system return code
2644 Error in opening auto-update on modification request
246 Auto-update processing an INSERT to a secondary

file failed, auto-update processing continues

2648 I7/0 error on primary file during a secondary request

Chapter 8. Coding the Indexed Access Method Requests 8-35

PUTDE ~ DELETE PREVIOUSLY READ RECORD

The PUTDE request deletes a record from an indexed file. The record @[:D
must have been previously retrieved by a GET or GETSEQ in update mode.

Deleting the record creates free space in the file. The PUTDE releases

the lock placed on the record by the GET or GETSEQ.

The PUTDEC request deletes a record from an indexed file only if the
block or buffer is not locked.

Svntax:

label CALL IAM, (PUTDE|PUTDEC),iacb, (buff)

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS.
(buff) The name of the area containing the record previously

retrieved by GET or GETSEQ.

PUTDE Example

Ny

The following example deletes the record in the area named 'BUFFER' from
the file. The record was read with either a GET or GETSEQ request in
update mode. The file is identified by the field named 'FILE1l'.

CALL IAM, (PUTDE),FILEl, (BUFFER)

FILEl DATA F'0' TACB ADDRESS FROM PROCESS
BUFFER DATA 256F'0" I70 BUFFER

Note: 1If vou are processing primary $IAM files that have associated
auto-update secondary indexes, do not issue a PUTDE in block mode.
Issue a DELETE command instead.

8-36 SC34-0771

PUTDE Return Codes

Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
-85 Record not found
-1 Successful
7 Link module in use, synchronize use of link
module with the program
8 Load error for SIAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 12,
'Error Recovery!'
13 A required module is not included in $IAM
14 Invalid index block found - during processing an incorrect
index block was found. Recreate the file
22 Address supplied by your program is not a valid IACB
27 PUTDE is invalid against block mode files with
auto-update secondary index files.
76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - I/0 error
85 Key was modified by user
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for $IAMDIR. Check system return code
242 Secondary index is out of sync with primary file.
Must rebuild file to get back in sync.
264 Error in opening auto-update on modification request
245 Auto update PUTDE to a secondary file failed,
auto-update processing continues.
247 During auto-update processing a GETSEQ to a secondary
file failed, auto-update processing continues.
2648 170 error on primary file during a secondary request.

Chapter 8. Coding the Indexed Access Method Requests

8-37

PUTUP -~ UPDATE RECORD

The PUTUP request replaces the record in the file with the record in

your buffer.
update mode.

The record must have been retrieved by a GET or GETSEQ in
You must not change the primary key field in the record or

the contents of the key area in your program returned by the GET or

GETSEQ request.

mary key modification.
by the GET or GETSEQ.

The Indexed Access Method checks for and prohibits pri-

The PUTUP releases the lock placed on the record

The PUTUPC request replaces the record in the file with the record in
your buffer only if the record, block, or buffer is not locked.

Syntax:

label

CALL IAM, (PUTUP |PUTUPC), i acb, (buff)

Required: all
Defaults: none

Operands Description

iach

(buff)

The label of a word containing the IACB address returned by

PROCESS.

The label of the user area containing the record to replace
the one previously retrieved.

PUTUP Example

The following example puts the updated record in the area named "BUFFER'

back into the file.

request in update mode.

'FILE1".

The record was read with either a GET or GETSEQ

The file is identified by the field named

FILElL
BUFFER

CALL IAM, (PUTUP),FILEl, (BUFFER)

DATA F'0'
DATA 256F'0"

IACB ADDRESS FROM PROCESS
I/0 BUFFER

Note: If vou are processing primary $IAM files that have associated
auto-update secondary indexes, do not issue a PUTUP in block mode.
Issue a combination of DELETE and PUT requests to simulate the function.

8-38 S5C34-0771

PUTUPYReturn Codes

Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
-1 Successful
7 Link module in use, synchronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 12,
"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing an incorrect
index block was found. Recreate the file
22 Address supplied by vour program is not a valid IACB
27 PUTUP is invalid against block mode files with
auto-update secondary index files.
76 DSOPEN error occurred - The system error field in the

OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 1/0 error

85 Key was modified by user
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for $IAMDIR. Check system return code
242 Secondary index is out of sync with primary file.
Must rebuild file to get back in sync.
244 Error in opening auto-update on modification request
245 Auto update PUTDE to a secondary file failed,
auto-update processing continues.
246 Auto-update processing an INSERT to a secondary file failed,
auto-update processing continues
2647 During auto-update processing a GETSEQ to a secondary
file failed, auto-update processing continues.
248 I/0 error on primary file during a secondary request.

Chapter 8. Coding the Indexed Access Method Requests 8-39

RELEASE - RELEASE RECORD

The RELEASE reguest frees a record that has been locked by a GET or
GETSEQ for update. A record lock is normally released by a PUTUP or
PUTDE. The RELEASE request is useful for freeing the locked record when
the update need not be completed. RELEASE is valid only when a record
is locked for update.

Syntax:

label CALL IAM, (RELEASE), iachb

Required: all
Defaults: none

Operands Description

jach The label of a word containing the IACB address returned by
PROCESS.

RELEASE Example

The following example releases the record that was read with either a
GET or GETSEQ request in update mode. The file is identified by the
field named "FILELl'.

CALL IAM, (RELEASE),FILEl

FILE1 DATA F'0" IACB ADDRESS FROM PROCESS

RELEASE Return Codes

Code Condition

-1 Successful

7 Link module in use, synchronize use of link
module with the program

8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it

10 Invalid request

12 Data set shut down due to error; see Chapter 12,
'Error Recovery'

13 A required module is not included in $IAM

22 Address supplied by vour program is not a valid IACB

8-40 SC36-0771

C

EDL CALL FUNCTIONS SYNTAX SUMMARY

‘::m Following is a summary of the syntax of the EDL CALL instructions used
to invoke the functions provided by the Indexed Access Method.

label CALL IAM,(DELETE|DELETC),iach, (key)

label CALL TIAM, (DISCONN),iachb

label CALL 1IAM, (ENDSEQ),iach

label CALL IAM, (EXTRACT),iacb,(buff),(size), (type)

label CALL IAM, (GET|GETC|GETR|GETCR),iach, (buff), (key),(mode’/krel)

label CALL TIAM,(GETSEQ|GETSEQC|GETSEQCR|GETSEQR),iach, (buff),
(key), (mode/krel)

label CALL IAM,(GETB|GETBC),iacb,(RECPTR), (key), (modeskrel)

label CALL IAM,(GETNB|GETNBC),iacb, (RECPTR), (key)

label CALL IAM,(LOAD),iacb,(dscb), (opentab), (mode)

label CALL IAM, (PROCESS),iach,(dsch), (opentab), (mode)

label CALL IAM,(PUT}PUTC),iach, (buff)

label CALL IAM, (PUTDE|PUTDEC),iach, (buff)

label CALL IAM, (PUTUP|PUTUPC),iach, (buff)

label CALL IAM, (RELEASE),iach

Chapter 8. Coding the Indexed Access Method Requests 8-41

INDEXED ACCESS METHOD RETURN CODES SUMMARY

Return
Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required.
Any locks obtained by this IACB were released.
-85 Record to be deleted not found
-80 End of data
-79 Warning - File was opened and not closed during
the last session, normal processing continues
~75 Warning - File has either not been formatted or
the invalid indicator is on in the directory for
that file
-58 Record not found
-57 Data set has been loaded
-56 Your file has been opened in block mode, but it has
auto-update secondaries. Do not issue PUTUP or PUTDE
against it.
-1 Successful completion
01 Invalid function specified on CALL to $IAM
07 Link module in use, synchronize use of link
module with the program
08 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 12,
'"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing an
incorrect index block type was found, recreate the file
17 IAM is inactive - not enough storage available
Use S$IAMUT1 BF command to readjust storage size
22 Address supplied by your program is not a valid IACB
23 Insufficient number of IACBs, use BF command of
S$IAMUT1 to allocate more
24 Invalid user buffer address
25 Invalid user buffer length
26 Invalid header information in block in user area.
27 PUTUP and PUTDE are invalid against block mode files
with auto-update secondaries.
50 Data set is opened for exclusive use,
cannot be opened by another user
51 Data set already opened in load mode
52 Data set is opened, cannot be opened exclusively
54 SIAM buffer too small to process a file with this block size
Use the BF command of $IAMUT1 to increase the buffer size
55 Get storage error - FCB
56 READ error - FCB, refer to system return code
60 Out of sequence or duplicate key in LOAD mode
61 End of file in LOAD mode
62 Duplicate key found in PROCESS mode
70 No space for insert. Reorganize the file

8-42 5C34-0771

Return

Code Condition
76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 1/0 error
17 Record save area not large enough - use $IAMUT1 BF command
to set maximum record size for secondary file processing
78 Attempted to open a secondary file for LOAD, file is not
opened independently
80 FCB WRITE error during DELETE processing - see system
return code
85 Key field modified by user
90 Internal key save area temporarily in use by another
request
100 READ error - check system return code
101 WRITE error - check system return code
110 WRITE error - data set closed
120 Invalid EXTRACT type
122 File does not contain FCB extension
123 Cannot extract paging statistics. Data paging is not active
150 Not enough storage available for data paging
200 Error occurred while accessing the primary file
230 Directory read error for $IAMDIR
231 $IAMQCB not found. Check sysgen for include of $IAMQCB
234 Directory error - DSNAME,VOL not found in S$IAMDIR
242 Secondary index is out of sync with primary file.
Must rebuild file to get back in sync.
243 Primary file failed to open on secondary open request
244 Error in opening an auto-update file on a modification
request
245 Auto-update PUTDE to a secondary file failed; auto-update
processing continues
246 Auto-update processing an INSERT to a secondary
file failed, auto-update processing continues
267 During auto-update processing a GETSEQ to a secondary
file failed, auto-update processing continues
2648 I1/0 error on primary file during a secondary request
249 GET UPDATE error occurred trying to update a bad RBN

Note: For return codes 243 through 249, multiple errors may have
occurred. Use $ILOG to display the errors.

Chapter 8. Coding the Indexed Access Method Requests

8-43

8-44 SC36-0771

C

CHAPTE HE

This chapter describes how to use the $IAMUT1 utility to build and main-
tain vour indexed files. Each command is described, including its func-
tion, parameters, and an example of how to use it. Thae fila definition
parameters arae also described. '
This chapter is arranged in alphabaetical order as follows:

"BF—Tailor the Indexed Access Method Buffers™ on pagae 9-4

"DF—Define Indexed File" on page 9-6

"DI—Display Parameter Values™ on page 9-9

"DR—Invoke Secondary Index Directory Functions™ on page 9-10

"EC—Control Echo Mode™ on page 9-19

"EF—Display Existing Indexed File Characteristics” on page 9-20

"L0—Lload Indexed File™ on page 9-22

"NP—Deactivate Paging™ on page 9-25

"PG—Select Paging™ on page 9-26

"PP—Define Paging Partitions™ on page 9-27

"pPS—Get Paging Statistics™ on page 9-28

"RE—Reset Parameters" on page 9-29

"RO—Reorganize Indexed File"™ on page 9-30

"SE—Set Parameters"™ on page 9-32

"UN—Unload Indexed File™ on page 9-41

Chapter 9. The $IAMUTL Utility 9-1

$IAMUT]

$IAMUT] can be invoked using the $L command, $JOBUTIL, or the Session ﬁ'
Manager. S$IAMUT1 functions use dynamic storage for work and buffer
areas. The $IAMUTL1 utility is shipped with sufficient dynamic storage
to handle input and output block sizes of up to 512 bytes. This enables
you to define an indexed file with a maximum block size of 512 bytes,
and to load, unload, and reorganize indexed files with a maximum block
size of 512 bytes. $IAMUT]1 determines if enough dynamic storage has
been provided. If sufficient storage has not been provided, SIAMUT1
displays a message. In order to handle large blocks of data, a larger
dynamic storage area will have to be provided to $IAMUT1. Additional
dynamic storage can be provided by one of two ways: provide the storage
p:rameter on the $L command, or use the S5 command of the $DISKUT2 util-
ity.

The load, unload and reorganize functions use the entire dynamic storage
available to minimize the number of disk I/0 operations. Improved per-
formance, therefore, can be obtained by specifying as large a dynamic
area as possible.

S$IAMUT1 updates data set $IAM when it executes certain commands, such as
PG, NP, PP, and BF. S$IAMUT1 searches for data set $IAM in the following
sequence:

1. The volume from which $IAMUT1 was loaded.

2. The IPL volume.

When using these commands, $IAMUT1 updates the first occurrence of data
set $IAM that it finds.

$IAMUT]1 updates directory data set $IAMDIR when it executes some direc-
tory commands, such as Al, IE, DE, and UE. Directory data set $IAMDIR

resides on the IPL volume. Q::>

9-2 SC34-0771

$IAMUT1 COMMANDS

The commands available under $IAMUT1 are listed below. To display this
list at your terminal, enter a question mark in response to the prompt-
ing message ENTER COMMAND (?):.

The command descriptions in this chapter are arranged in alphabetic
order.

ENTER COMMAND (?): ?

EC - SET/RESET ECHO MODE

EF - DISPLAY EXISTING FILE CHARACTERISTICS
DR - SECONDARY INDEX DIRECTORY FUNCTIONS
EN - END THE PROGRAM

SE - SET DEFINE PARAMETERS

DF - DEFINE AN INDEXED FILE

DI - DISPLAY CURRENT SE PARAMETERS

RE - RESET CURRENT VALUES FOR DEFINE

LO - LOAD INDEXED FILE FROM SEQUENTIAL FILE
RO REORGANIZE INDEXED FILE
UN - UNLOAD INDEXED FILE TO SEQUENTIAL FILE

PG - SELECT DATA PAGING

NP - DESELECT DATA PAGING

PP - DEFINE PAGING PARTITIONS
PS - DATA PAGING STATISTICS
BF - SET BUFFER SIZES

ENTER COMMAND (?):

After the commands are displaved, vou are again prompted with ENTER COM-
MAND (?):. Respond with the command vou wish to use.

O

Chapter 9. The $IAMUT1 Utility 9-3

BF

BF——TAILOR THE INDEXED ACCESS METHOD BUFFERS @::D

The BF command specifies the amount of storage that the Indexed Access
Method ($IAM) is to use for buffers and control blocks and the maximum
record size for any file with a secondary index.

BF prompts you for each of the following parameters by displaying the
current value and accepting new settings.

BUFFER SIZE

Indicates the amount of storage (in bytes) to be
used for the central buffer. Use the following
formula to calculate your minimum buffer size:

where: blocksize
n

Buffer Size = (2 x blocksize) + (28 x blocksizes256)
+ (n x blocksize) + (n x 28 x blocksizes256)

maximum block size

maximum number of PUT operations (in LOAD
mode) and GETSEQ operations that can be
in effect at any point in time

NUMBER OF IACBS

NUMBER OF FCBS

MAXIMUM RECORD SIZE

Indicates the number of the IACBs. The maximum
number of IACBs is 300. There is an IACB associ-
ated with each PROCESS or LOAD that is issued.
When calculating the number of IACBs you should
consider the number of concurrent users you may

have at any one time.

Indicates the number of FCBs. The maximum number @[:D
of FCBs is 64. There is one FCB for every file

that is open. When calculating the number of FCBs

you should consider the maximum number files that

might be open at a given time.

Indicates the maximum record size of any file with
an associated secondary index. If no files have a
secondary index, this value can be zero. The
actual amount of storage reserved as a result of
this parameter is twice the value specified plus 8
bytes.

None of these take effect until the next time the Indexed Access Method

is loaded.

9-4 SC34-0771

C

BF

BF Command Example

This example sets the central buffer size to 540 bytes, leaves the num-
ber of IACBs at 3, leaves the number of FCBs at 3, and sets the maximum
record size of any file with a secondary index to 120 bytes.

ENTER COMMAND (?): BF

PARAMETER DEFAULT NEW VALUE
BUFFER SIZE 1080 : 540
NUMBER OF IACBs 3

NUMBER OF FCBS 3

MAXIMUM RECORD SIZE 256 : 120

VALUE(S) SET
STORAGE FOR $IAM HAS BEEN SET TO 2048
BECOMES EFFECTIVE ON NEXT LOAD OF $IAM

ENTER COMMAND (?):

Chapter 9. The $IAMUT1 Utility 9-5

DF—DEFINE INDEXED FILE

The DF command allocates, defines, and formats an indexed file. The DF
function will optionally invoke the load or reorganize function for you.
Before entering DF, you must use the SE command to set up parameters
that determine the size and format of the indexed file. The DF command
uses those SE parameters to optionally allocate and format the file.

The DF function can be invoked at the end of the SE function.

The allocate step consists of using the file size computed during the SE
step to dynamically allocate the file. If the file already exists, the
size is verified to ensure that it is large enough. The define step
consists of writing the file control block (FCB) and its extension to
the indexed file. Finally, the optional format step initializes all
records in the indexed file to provide an empty structured file.

INVOKING THE LOAD AND REORGANIZE FUNCTIONS FROH DF: You can invoke the
LOAD or REORGANIZE functions directly from the DF (or SE) command. If
yvou invoke these functions, DF does not format the file because LOAD and
REORGANIZE will format the file. If you do not invoke the LOAD or REOR-
GANIZE function, DF formats the file so yvou can load the file using an
application program or the L0 command.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
vou do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the file
is actually defined.

4. A secondary index file cannot be loaded with the L0 command, though
it can be reorganized using the RO function.

pDefining the File

The define function prompts for the file to be allocated. If the file
already exists, its size is checked. If the size is at least as large
asl?eeded, DF prompts vou as to whether the file should be reused as
follows:

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : IAMFILE,EDX003
DATA SET ALREADY EXISTS

DELETE AND REALLOCATE (Y,N)? : Y

DELETE AND REALLOCATE COMPLETED

If the file exists, but it is not as large as needed, you have the
option of deleting and reallocating it as shown in the following
example:

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : MASTER,VOL123
DATA SET ALREADY EXISTS

DELETE AND REALLOCATE (Y,N)? : ¥

DELETE AND REALLOCATE COMPLETED

9-6 SC34-0771

DF

If the file does not exist, it is allocated either with or without data
set extents as follows:

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : MASTER,VOL123
DYNAMIC DATA SET EXTENTS ON FILE (Y/N): Y
SIZE OF DISK EXTENTS? 2

NEW DATA SET IS ALLOCATED

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : MASTER,VOL123
DYNAMIC DATA SET EXTENTS ON FILE (Y/N): N
NEW DATA SET IS ALLOCATED

Using Immediate WUrite-Back

DF prompts vou to select whether or not vou want to use the immediate
write-back option. Immediate write-back has the same effect on primary
or secondary indexed files.

Each request to insert, delete, or update a data record causes the
affected blocks to be read into the Indexed Access Method buffer. The
actual modification to the block is performed in the buffer.

If vou enter N to the immediate write-back prompt, file modifications
are held in the main storage buffer and not written back to the indexed
file until the buffer space is needed for another block or until the
file is closed. If the device where the file resides was powered off
before the block was written back to the file, the modification to the
file would not have been performed.

If yvou enter Y to the immediate write-back prompt, you are assured that
the changed block is written back to the file immediately.

The prompt is as follows:

DO YOU WANT IMMEDIATE WRITE-BACK? Y

Chapter 9. The $IAMUTL Utility 9-7

DF

DF Command Example

The following example shows a use of the DF command to define a file
named MASTER on volume VOL123. Immediate write-back is selected and the

request to invoke LOAD or REORGANIZE is indicated.

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : MASTER,VOL123
DYNAMIC DATA SET EXTENTS ON FILE (Y/N): N

NEW DATA SET IS ALLOCATED

DO YOU WANT IMMEDIATE WRITE-BACK? Y

DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)

INVOKE LOAD(L), REORGANIZE(R) OR ENDCE) AFTER CURRENT FUNCTION? L

9-8 $C34-0771

O

DI—DISPLAY PARAMETER VALUES

DI displays the current parameter values entered during the current ses-
sion of SIAMUTL SE command. The parameter values can be used to format
a filedusing the DF command or they can be modified by reusing the SE
command.

Note: You can also use the EF command to display the parameters of an
existing file.

The following example shows a use of the DI command.

ENTER COMMAND (?): DI
CURRENT VALUES FOR SE COMMAND ARE:
FILE TYPE = PRIMARY
BASEREC 100
BLKSIZE 256
RECSIZE 80
KEYSIZE 28
KEYPOS 1
FREEREC 1
FREEBLK 10
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN NULL

For a secondary file, the record size is not displayed.

Chaptaer 9. The $IAMUT1 Utility 9-9

DR-—INVOKE SECONDARY INDEX DIRECTORY FUNCTIONS

The DR command provides access to secondary index directory functions.
Those functions are made available by replving DR when $IAMUT! requests
"ENTER COMMAND (?2):"™. You can then respond to the "ENTER DIRECTORY COM-
MAND (?2):"™ with a subcommand. To obtain a list of the available subcom-
mands, reply with a question mark (?) as follows:

ENTER COMMAND (?): DR
ENTER DIRECTORY COMMAND (?): 2

AL - ALLOCATE/REALLOCATE DIRECTORY
LE - LIST ENTRIES

IE - INSERT ENTRY

DE - DELETE ENTRY

UE - UPDATE ENTRY

EN - END DIRECTORY FUNCTION

ENTER DIRECTORY COMMAND (?):

The directory function commands are arranged in alphabetical order as
follows:

"AL—Allocate Directory™ on page 9-11
"DE—Delete Directory Entry™ on page 9-12
"EN—End Directory Function™ on page 9-13
"IE—Insert Entry" on page 9-16¢

"LE—List Entries"™ on page 9-15

"UE—Update Directory Entry"™ on page 9-17

9-10 5C34-0771

P

C

DR - AL

AL—ALLOCATE DIRECTORY

The AL subcommand allocates a directory for secondary indexes. If a
directory already exists, this subcommand gives the option to delete and
reallocate it.

Note: To use this subcommand, you must first use the DR command.

You are prompted to enter the maximum number of directory entries.
Enter the number of entries you want the directory to be able to hold.
Each entry describes a primary file or secondary index. The maximum
number of entries defaults to 47.

The directory, S$IAMDIR, is always allocated on the IPL volume.

The following example shows a use of the AL subcommand to allocate a new
directory with a capacity of 10 entries:

ENTER DIRECTORY COMMAND (?): AL

MAX # OF DIRECTORY ENTRIES: 10

THE DIRECTORY DATA SET REQUIRES 1 EDX RECORDS, CONTINUE (Y/N/EN)? Y
DIRECTORY DATA SET ALLOCATED: SIAMDIR,EDX002

The next example assumes a directory already exists and allocates a new
one.

ENTER DIRECTORY COMMAND (?): AL
DIRECTORY EXISTS, OPTIONS ARE:
BN - BUILD NEW DIRECTORY

AS - ADJUST SIZE

EN - END DIRECTORY ALLOCATE

ENTER OPTION: BN

ALL DIRECTORY ENTRIES WILL BE DELETED, CONTINUE (Y/N)? Y

MAX & OF DIRECTORY ENTRIES: 20

THE DIRECTORY DS REQUIRES 2 EDX RECORDS, CONTINUE (Y/N/EN) 7?7 Y

DIRECTORY DATA SET ALLOCATED: S$IAMDIR,EDX002

The following example, adjusts the size of the directory data set. All
existing entries will be retained.

ENTER DIRECTORY COMMAND (?): AL
DIRECTORY EXISTS, OPTIONS ARE:
BN - BUILD NEW DIRECTORY

AS - ADJUST SIZE

EN - END DIRECTORY ALLOCATE

ENTER OPTION: AS
MAX & OF DIRECTORY ENTRIES: 1
THE DIRECTORY DS REQUIRES 1 EDX RECORDS, CONTINUE (Y/N/EN) ? Y

DIRECTORY DATA SET ALLOCATED: $IAMDIR,EDX002

Chapter 9. The S$IAMUT1 Utility 9-11

DR - DE

DE—DELETE DIRECTORY ENTRY

The DE subcommand deletes an entry from the directory. If you delete a
primary entry, all associated secondary index entries are also deleted.

Note: To use this subcommand, vou must first use the DR command.
The following example shows the deletion of the directory entry for the

file named MASTER on the volume named VOL123. MASTER is a primary index
file entry which has secondary indexes associated with it.

ENTER DIRECTORY COMMAND (?): DE

ENTRY (DSNAME,VOLUME): MASTER,VOL123

ASSOCIATED SECONDARY ENTRIES WILL BE DELETED, CONTINUE (Y/N)? Y
DELETE SUCCESSFUL, NUMBER OF ENTRIES DELETED: 2

The following example shows the deletion of the directory entry for a
file named MASTER, on the volume named VOL123. MASTER is a primary
index file entry which no longer has any secondary indexes associated
with it.

ENTER DIRECTORY COMMAND (?): DE

ENTRY (DSNAME,VOLUME): MASTER

ENTRY FOR MASTER ,EDX002 WILL BE DELETED, CONTINUE (Y/N)? Y
DELETE SUCCESSFUL, NUMBER OF ENTRIES DELETED: 1

9-12 S5C34-0771

DR - EN

@ EN—END DIRECTORY FUNCTION

The EN subcommand ends the directory functions (DR) and returns to
SIAMUT1 for your next command.

Chapter 9. The $IAMUT1 Utility 9-13

DR - IE

IE—INSERT ENTRY (O

The IE subcommand inserts a new entry into the secondary index
directory. It is used to insert either a primary or secondary entry.
However, the primary entry must be inserted before any of its secondary
entries can be inserted.

For a primary entry, enter the data set name and volume of the file for
which the entry is being inserted. Specify N when asked "IS THIS A SEC-
ONDARY ENTRY (Y/N)?.™

For secondary entries, enter the data set name and volume of the second-
ary index for which the entry is being inserted and specify that it is a
secondary index. You are then prompted for additional information.

Specify the name of the primary index file which the secondary index is
to be associated with. You can select automatic update, which indicates
that any change to a primary file is to be reflected in the secondary
index. The default for automatic update is ves.

The following example inserts a directory entry for a primary index
file:

ENTER DIRECTORY COMMAND (?): IE
ENTRY (DSNAME,VOLUME): TOMPRI,EDX002
IS THIS A SECONDARY ENTRY (Y/N)? N

DIRECTORY INSERT SUCCESSFUL

The following example inserts a directory entry for a secondary index
named 'TOMSECL1,EDX002' which is to be associated with the primary index
file '"TOMPRI,EDX002'. Automatic update is selected.

ENTER DIRECTORY COMMAND (?): IE
ENTRY (DSNAME,VOLUME) TOMSECL,EDX002
IS THIS A SECONDARY ENTRY? Y

ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): TOMPRI,EDX002
AUTO-UPDATE (Y/N)? Y

Note: To use this subcommand, vou must first use the DR command.

9-14 SC34-0771

O

DR - LE

LE——LIST ENTRIES

The LE subcommand lists the contents of one or more directory entries.
Specify the name of a primary indexed file to get information about that
file and its secondary indexes. Specify the name of a secondary index
to get information about only that secondary index. To obtain a com-
plete list of all information in the directory, just press the Enter Key
without supplying any data set name or volume.

Note: To use this subcommand, you must first use the DR command.

The following example lists the directory entries related to the primary
file named 'TOMPRI' on volume 'EDX002'.

ENTER DIRECTORY COMMAND (?): LE
ENTRY (DSMANE,VOLUME) BLANK=ALL: TOMPRI

PRIMARY INDE- AUTO
DSNAME VOLUME DATA SET PENDENT INVALID UPDATE

TOMPRI EDX002 YES NO * 3% % % %% %
TOMSEC1 EDX002 NO NO YES YES
TOMSEC2 EDX002 NO NO YES NO
NUMBER OF DIRECTORY ENTRIES USED = 5
NUMBER OF AVAILABLE ENTRY SLOTS = 42

DIRECTORY LIST COMPLETED

Chapter 9. The $IAMUTL Utility 9-15

DR - LE

The following example lists all directory entries.

ENTER DIRECTORY COMMAND (?): LE
ENTRY (DSNAME,VOLUME) BLANK=ALL:

PRIMARY ~ INDE-
DSNAME VOLUME DATA SET PENDENT

EDXIAM EDX003 YES NO
EDXIAMS1 EDX003 NO NO
TOMPRI EDX002 YES NO
TOMSEC1 EDX002 NO NO
TOMSEC2 EDX002 NO NO

NUMBER OF DIRECTORY ENTRIES USED =
NUMBER OF AVAILABLE ENTRY SLOTS =
DIRECTORY LIST COMPLETED

INVALID

33 % %
YES

%3 % %
YES
YES

62

AUTO
UPDATE

33 % X%
YES

3 % % %
YES
NO

9-16 SC34~0771

)
O

®)

DR - UE

UE-—UPDATE DIRECTORY ENTRY

The UE subcommand updates an entry in the secondary index directory.
You can use this command as follows:

*

Specify null values for parameters to remain unchanged (press the
Enter key when you are prompted for them).

Enter new values for parameters to be modified.

Note: You cannot change a primary entry to a secondary entry or a sec-
ondary entry to a primary entry. To do this, you must delete the old
entry and insert a new one.

The following example updates a primary directory entry named
'MASTER,V0L123', changes the volume name from VOL123 to EDX002 and
leaves the DSNAME MASTER as it is.

ENTER DIRECTORY COMMAND (?): UE
ENTRY (DSNAME,VOLUME) MASTER,VOL123
THIS IS A PRIMARY ENTRY

IN THE FOLLOWING, ENTER NEW VALUE OR,
ENTER NULL LINE TO RETAIN (PRESENT VALUE)

DSNAME (MASTER):
VOLUME (vDL123): EDX002
INDEPENDENT (N):

DIRECTORY UPDATE SUCCESSFUL

Chaptar 9. The $IAMUTL Utility 9-17

DR - UE

The following example updates a secondary directory entry named
YMASTER,VOL123', changes the VOLUME name to EDX002 and leaves the DSNAME
MASTER as it is. It sets automatic update, leaves the independent proc-
essing flag as it is, and sets the invalid indicator off.

ENTER DIRECTORY COMMAND (?): UE
ENTRY (DSNAME,VOLUME) MASTER,VOL123

THIS IS A SECONDARY ENTRY
IN THE FOLLOWING, ENTER NEW VALUE OR,
ENTER NULL LINE TO RETAIN (PRESENT VALUE)

DSNAME (MASTER):

VOLUME (EDX123): EDX002
INDEPENDENT (N):

INVALID INDICATOR (Y): N
AUTO-UPDATE (Y): ¥

DIRECTORY UPDATE ENDED

Note: To use this subcommand, you must first use the DR command.

9-18 5C34-0771

C

EC

EC—CONTROL ECHO MODE

EC enables you to enter or leave echo mode. When in echo mode, all
SIAMUT1 input and output is logged on the $SYSPRTR device. This enables
vou to save information about the files yvou maintain using $IAMUTL.

When in echo mode, all input and output is logged until either the cur-
rent utility session is ended or echo mode is reset by use of the EC
command. Echo mode is off when $IAMUT1 is loaded.

Note: Input and output from $DISKUT3 is not logged.

The following examples show the commands to set and reset echo mode:

ENTER COMMAND (?): EC
DO YOU WANT ECHO MODE? (Y/N)?: Y (Set echo mode)
FUNCTION COMPLETED

ENTER COMMAND (?): EC
DO YOU WANT ECHO MODE? (Y/N)?: N (Reset echo mode)
FUNCTION COMPLETED

Chapter 9. The $IAMUT1 Utility 9-19

EF

EF—DISPLAY EXISTING INDEXED FILE CHARACTERISTICS

The EF command displays the file definition parameters that were used to
set up the file. The information is obtained from the FCB Extension
block. This command does not give the size of the file in Event Driven
Executive blocks.

EF Command Example for Primary Files

This example shows how to display the file parameters used to set up the
file.

ENTER COMMAND (?): EF
EXHIBIT FUNCTION ACTIVE
ENTER DATASET (NAME,VOLUME): EDXIAM1,EDX003

FILE TYPE = PRIMAR;

BASEREC

BLKSIZE 256
RECSIZE 80
KEYSIZE 4
KEYPOS 1
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN

10
EXHIBIT FUNCTION COMPLETED

9-20 SC34-0771

EF

EF Command Example for Secondary Files

1b;s example shows how to display the file parameters used to set up the
ile.

ENTER COMMAND (?): EF
EXHIBIT FUNCTION ACTIVE
ENTER DATASET (NAME,VOLUME): EDXIAM11,EDX003

FILE TYPE = SECONDARY

BASEREC 20
BLKSIZE 256
KEYSIZE 6
KEYPOS 9
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN 10

Note: If you create this secondary file with the SE option 1 com-
mand, your secondary and primary file will look the same except
for KEYSIZE and KEYPOS.

Chapter 9. The $IAMUT1 Utility 9-21

LO

LO—LOAD INDEXED FILE

LO loads a primary indexed file from a sequential (blocked or unblocked)
input file. (A secondary indexed file must be loaded by using the DF or
SE command). A primary indexed file can be loaded in one of two envi-
ronments. Loading an empty file is referred to as the initial load.

For an indexed file that already contains some records, the LO command
can be used to add records with higher keys (keys of higher value than
those already in the indexed file). This is called load in extend envi-
ronment.

Blocks are read from the sequential file with the EDL READ instruction
and de-blocking is performed, if necessary. In the initial load envi-
ronment, data records are formatted into Indexed Access Method blocks
and written to the indexed file with the EDL WRITE instruction. Corre-
sponding index blocks are written as required. The remainder of the
indexed file is formatted if formatting was not completed during the DF
function. In the extend environment, records are loaded into the
indexed file using Indexed Access Method PUT requests.

The sequential input file can contain blocked or unblocked records. For

a description of blocked and unblocked sequential data sets, see
"Blocked and Unblocked Sequential Data Sets"™ on page 9-23. The records
in the sequential file must be in ascending order by the data contained
in the key field. If a record with a duplicate or out of sequence key
is found, vou are given the option to either omit the record and contin-
ue loading, or to end loading. The indexed file must have been defined
by using the SE and DF commands before using the LO command.

Your response to the prompt message YENTER INPUT BLOCKSIZE™, defines to
the L0 command whether the input is a blocked or unblocked sequential
file. A null response to the prompt "ENTER INPUT BLOCKSIZE" indicates
an unblocked input file and the block size is then calculated using the
input record size value, rounded up to the next 256-byte multiple value.
If the actual block size value is entered as vour response to this
prompt, a blocked sequential input file is indicated.

The record lengths of the input and output files do not have to be the
same. MWhen the indexed file is opened, the record length is displaved
on the terminal. At this point, vou can specify the record length of
the sequential file if it is different than that of the indexed file.

If the indexed file records are longer than the sequential file records,
the loaded records are left justified and filled with binary zeroes. If
the indexed file records are shorter than the sequential file records,
the following message appears on the terminal:

INPUT REC GT OUTPUT REC. TRUNCATION WILL OCCUR.
0K TO PROCEED?

Reply 'Y' to proceed (records will be truncated).
Reply 'N' to terminate the load function.

If the end of the input sequential file is reached, you can continue
loading from another sequential file. You are asked if there is more
data to load. If vou reply yes (Y), you are prompted for the file and
volume name of the new input sequential file to use. The load operation
continues, putting the first record of the new input sequential file in
the next available record slot of the indexed file.

Note: The record lengths and block sizes of subsequent input files are
assumed to be the same as the initial input file.

If the end of input file is reached and you do not name another input
file, the load operation is complete.

9-22 S5C34-0771

O

C

LO

Note: If you are loading the indexed file from a tape file, $IAMUT1
does not close the tape file upon completion of the load. Use the
S$VARYOFF command to close the tape file (refer to the Operator Commands
and Utilities Reference in the EDX library for a description of the
SVARYOFF command).

The following example shows use of the LO command:

ENTER COMMAND (?): LO

LOAD ACTIVE

ENTER OUTPUT DATASET (NAME,VOLUME): YAMFILE,EDX003
$FSEDIT FILE RECSIZE = 128

INPUT RECORD ASSUMED TO BE 80 BYTES. OK?: Y
ENTER INPUT BLOCKSIZE (NULL = UNBLOCKED):

ENTER INPUT DATASET (NAME,VOLUME): SEQO1,EDX003
LOAD IN PROCESS

END OF INPUT DATASET

ANY MORE DATA TO BE LOADED?: N
6 RECORDS LOADED

LOAD SUCCESSFUL

Blocked and Unblocked Sequential Data Sets

The LO (load) function of $IAMUT] will accept either blocked or
unblocked sequential data sets as input when loading an indexed file.
The UN (unload) function will either block or unblock data as requested
when unloading an indexed file to a sequential data set.

UNBLOCKED SEQUENTIAL DATA SET: An unblocked sequential data set contains
one record in each block. The blocksize must be a multiple of 256
bytes. The record size must be equal or less than the block size. A
block can span one or more EDX records. i

The following diagram illustrates the relationship of a data record of
300 bytes to a block size of 512 bytes in an unblocked data set.

< 512 byte block >

300 byte 212 bytes
data record unused

< 2 EDX records >

BLOCKED SEQUENTIAL DATA SET: In a blocked sequential data set a block
can contain multiple logical records. The block size must be a multiple
of 256 bytes. The record size must be equal to or less than the block
size. A block can span one or more EDX records.

The following diagram illustrates 6 data records of 80 bytes each within
a block of 512 bytes in a blocked data set.

Chapter 9. The $IAMUT1 Utility 9-23

LO

< 512 byte block
80 byte 80 byte 80 byte 80 byte 80 byte 80 byte |32
data data data data data data bytaes
record record record record record record unused
< 2 EDX records >

Both the blocked and unblocked forms of sequential data sets, used by
the utility, are compatible with the language processors, Sort/Merge and
data sets produced by $FSEDIT. If vou use the EDX edit utilities to
prepare your data records for input, remember that these utilities put
one 80-byte line from $FSEDIT into a 128-byte $FSEDIT record. Two of
these 128-byte records are then used to form one 256-byte EDX record.
When vou use such a data set as sequential input for the LO (load) func-—
tion, specify the record length as 128 and the block size as 256. If
your indexed file is defined as having a record length of 80, you will
receive the message "TRUNCATION WILL OCCUR."™ This is acceptable because
Indexed Access Method strips off the extra bytes added by $FSEDIT.

The last block of a blocked sequential data set may not have enough
records for a full block. In this case, all of the unused space in the
block is set to binary zeroes.

.
Invoking the LOAD and REORGANIZE Functions Qi:?

You can invoke the LOAD or REORGANIZE functions directly from the DF
command. If you invoke these functions, DF does not format the file
because LOAD and REORGANIZE will do it. If you do not invoke the LOAD
or REORGANIZE function, DF formats the file so you can load the file
using an application program or $IAMUT1 at a later time.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
vou do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. T?e prompt for the load/reorganize function occurs before the define
step.

9-2¢ SC364-0771

NP

0 NP—DEACTIVATE PAGING
Tha NP command directs that data paging be deselected tha next time the
Indexed Accass Method is loaded.

Paga area sizes are not affacted by this command.

NP Command Example

This example shows how to indicate data paging is to be deselected on
the next invocation of the Indexed Access Method.

ENTER COMMAND (?): NP
DATA PAGING MARKED AS NOT ACTIVE
BECOMES EFFECTIVE ON NEXT LOAD OF $IAM

Chapter 9. The $IAMUT1 Utility 9-25

PG

PG—SELECT PAGING

The PG command directs that data paging be selected the next time the
Indexed Access Method is loaded.

Page area sizes are not affected by this command.

PG Command Example

This example shows how to indicate data paging is to be selected on the
next invocation of the Indexed Access Method.

ENTER COMMAND (?): PG

DATA PAGING MARKED AS SELECTED

BECOMES EFFECTIVE ON NEXT LOAD OF SIAM

SEE INDEXED ACCESS METHOD GUIDE CONCERNING
REMOVAL OF PAGING MODULES FROM STORAGE.

ENTER COMMAND (?):

9-26 SC34-0771

C

PP

PP—DEFINE PAGING PARTITIONS

The PP command defines the amount of storage in each partition that the
Indexed Access Method should reserve for paging. Storage is actually
used for paging only when paging is active.

PP prompts you for the size of the paging area for each partition by
displaying the partition number and current paging area size for that
partition. Respond with a null entry (just press the Enter key) to
retain that size. Enter a new size to change the space allocation.
Sizes are displaved and entered in K bytes (1K = 1024), and should be
entered as even numbers (multiple of 2K). If not, they are adjusted up
to the next even number. The new sizes do not take effect until the
next time the Indexed Access Method is loaded with paging active.

PP Command Example

This example sets the paging area size in partition 3 to 40K and
increases the paging area in partition 5 from 6K to 10K.

ENTER COMMAND (?): PP
PARTITION CURRENT NEW

0K

0K

0K : 40

0K

6K : 10

0K

0K :

0K :

PAGE AREA SIZE(S) RESET

BECOMES EFFECTIVE ON ‘NEXT LOAD OF SIAM
TOTAL PAGE AREA SIZE IS 50K

SEE INDEXED ACCESS METHOD GUIDE CONCERNING
REMOVAL OF PAGING MODULES FROM STORAGE.

NN DUN =

Notes:
1. The letter K is optional on input, and is assumed if missing.

2. The new total page area size is 50K and becomes effective on the
next LOAD of $IAM.

Chapter 9. The $IAMUT1 Utility 9-27

PS

PS—GET PAGING STATISTICS @’

The PS command displays data paging information about the currently exe-
cuting Indexed Access Method. It shows "hit" information for reads,
writes and overall.

The Indexed Access Method increments a "hit" counter each time a refer-
enced block is found in the paging area. It increments a "miss™ counter
each time a referenced block is not found in the paging area. The PS
command displays these numbers, along with "hit percentages." Use the
hitdpercentages to determine how efficiently the paging area is being
used.

After the statistics are displayed, you have the option of resetting the
counters to zero so that a new set of paging statistics can be gathered.

PS Command Example

Display the current paging statistics and reset them.

ENTER COMMAND (?): PS
FUNCTION HITS MISSES HIT %

READ 45678 81205 36

WRITE 26450 0 100

OVERALL 48128 81205 37
RESET STATISTICS (Y/N)? Y N
STATISTICS RESET /

9-28 SC34-0771

0 RE—RESET PARAMETERS

RE resets the parameters set up by the SE command to their default val-
ues.

The following example shows a use of the RE command:

ENTER COMMAND (?): RE
PARAMETERS RESET

Chapter 9. The $IAMUT1 Utility 9-29

RO

RO—REORGANIZE INDEXED FILE

9-30

RO reorganizes a primary or secondary indexed file. It unloads an
indexed file filled by insert activity into an empty indexed file and
reorganizes the records to provide space for additional inserts.

This command requires two existing indexed files of the same type. Both
the input file and the output file must be primary indexed files, or
both must be secondary index files. Records are read sequentially from
the input file using the Indexed Access Method GETSEQ request. The
records are loaded into the output file in a manner similar to the ini-
tial load of the LO command.

All reserved and free space is retained as free space.

Reorganizing a secondary index does not reset the secondary key sequence
numbers during the reorganization, because it does not use the primary
file. The records are placed in another Indexed Access Method file
without any modification within the individual records.

The output indexed file must have been defined by using the SE or DF
commands before using the RO command. The SE Option 3 will format an
output file like the original file, or $VERIFY will show the number of
records in the file so that vou can set up an output file.

The record lengths of the two files need not be the same. Unloaded
records are truncated or filled with binary zeroes if record lengths
differ (see LO command). The key fields and key positions of the two
files must be the same; however, the other file specifications (SE
parameters) may differ.

INVOKING THE LOAD AND REORGANIZE FUNCTIONS FROM DF: You can invoke the
LOAD or REORGANIZE functions directly from the DF command. If you ™
invoke these functions, DF does not format the file because LOAD and Q; J
REORGANIZE will do that, thus saving time. If you do not invoke the e
LOAD or REORGANIZE function, DF formats the file so vou can load the

file using an application program or the L0 command.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
vou do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the define
step.

5C34-0771

The following example shows use of the RO command:

ENTER COMMAND (?): RO

REORG ACTIVE

ENTER INPUT DATASET (NAME,VOLUME): IAMFILE,EDX003
ENTER OUTPUT DATASET (NAME,VOLUME): IAMFILZ,EDX003
REORG IN PROCESS

END OF INPUT DATASET

100 RECORDS LOADED
REORG SUCCESSFUL

ENTER COMMAND (?): EN

Chapter 9. The $IAMUT1 Utility 9-31

SE—SET PARAMETERS @

SE prompts you for parameters that determine the structure and size of
the indexed file. An explanation of the SE command parameters follow
and an example of each is included with the description.

The parameter values entered are saved by $IAMUT1.{ This enables you to
reuse the SE command to change one or more parameters without having to
reenter all of them. The current values can be displayed by the DI com-
mand.

The SE command provides three methods of setting up an indexed file.

option 1 Significant Parameters—Enter a minimal set of SE parameters.
The utility internally converts the smaller set to the com-
plete set.

Ooption 2 All Parameters—Enter the complete set of SE parameters.

option 3 Parameters from Existing Data Set—Use the set of SE parame-
;9;5 that were used previously to define an existing indexed

ile.

Note: Information which is common to all three options appears near the
end of the SE description under "All Options" on page 9-39.

When you specify the SE command, you are prompted to select one of the
options as shown in the following display.

SET FILE DEFINITION PARAMETERS

¢ = EXIT ™
1 = SIGNIFICANT PARAMETERS Y
2 = ALL PARAMETERS

3 = PARAMETERS FROM EXISTING INDEXED DATASET

ENTER OPTION:

Option 1

Option 1 prompts for a minimal set of parameters. It issues a prompt to
determine if a secondary index is being defined. If so, the secondary
file name, key size, and key position are requested. If a primary file
is being defined, different prompts are issued. $IAMUT1 internally con-
verts the option 1 parameters to option 2 parameters.

When the SE option 1 is invoked for the first time, the prompts and
default values are as follows (sample values are shouwn for parameters
that must be entered):

SECONDARY. INDEX (Y/N)?: N

DEFAULT NEW VALUE

RECORD SIZE 0: 80

KEY SIZE 0: 4

KEY POSITION 1:

BLOCKING FACTOR (RECORDS PER BLOCK) 1:

NUMBER OF BASE RECORDS 0: 20

ESTIMATED TOTAL RECORDS 24:

TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM) C: d:;}

9-32 S5C34-0771

SE

On subsequent invocations of the SE option 1, the defaults are taken
from the parameter values since the last SE option 1 invocation. Option
1 and 3 values do not carry over to option 2.

The estimated total records value defaults to the last value, provided
this value equals or exceeds the current base records. Otherwise it
defaults to 1.2 times the current base records.

To set up a secondary index, enter the following:

SECONDARY INDEX (Y/N)?: Y

ENTER SECONDARY DATASET NAME (DS,VOL): FILEO1,EDX002
SECONDARY KEY SIZE:10

SECONDARY KEY POSITION:36

Before you can define a secondary index, you must place an entry into
the directory for the associated primary index file and the primary file
must exist. The directory is searched to obtain the data set name and
volume of the associated primary file which will then be used to compute
the remainder of the secondary SE parameters.

Parameter Descriptions for Option 1

The attributes of the file are determined by the following SE command
parameters:

RECORD SIZE: The length, in bytes, of each record in the file.

KEY SIZE: The length of the key to be used for this file. The minimum
key length is 1. For primary files, the maximum key length is 254.

KEY POSITION: The position, in bytes, of the key within the record. The
first byte of the record is position 1.

BLOCKING FACTOR (RECORDS PER BLOCK): The total number of records to be
placed in an Indexed Access Method block. This value and the record
size will be used to compute the actual Indexed Access Method block
size, rounded up to the next 256-byte value. The rounding up action may
increase the actual blocking factor.

NUMBER OF BASE RECORDS: The number of indexed record slots to be set up
in the indexed file for LOAD mode. The number of base records must be
agreater than zero to allow the file to load any data records. These
record slots can be loaded with data records by $IAMUT1 or by a PUT
request after either a LOAD or PROCESS request.

ESTIMATED TOTAL RECORDS: The total number of records you expect the
indexed file to contain after insert processing activity.

TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM): Inserts are considered
clustered if most of the inserts occur at only certain places in the
file. The following diagram represents clustered inserts by vertically
stacked bullets.

Chapter 9. The $IAMUT1 Utility 9-33

Blocks

Inserts . e . e .

oo .o
LR “ oo

LECER) e

The next diagram represents randomly inserted records. Inserts are con-
sidered random if few or no points in the file have a concentration of
activity; inserts are expected throughout the file.

Blocks

Inserts - . cee e .

SECONDARY KEY SIZE: The length, in bytes, of the secondary key within
the primary record. For secondary keys the maximum key length is 250.

SECONDARY KEY POSITION: The position, in bytes, of the secondary key
within the primary record.

Option 2

The following list shows the default values for parameters when the SE
command is invoked the first time (all values are decimal):

BASEREC NULL
BLKSIZE 0
RECSIZE 0
KEYSIZE 0
KEYPOS 1
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN NULL

On subsequent invocations of the SE command, the option 2 defaults are
taken from the parameter values set according to the last SE command,
regardless of the option used. If the default value is acceptable,
press the enter key when prompted for the parameter. If you wish to
change the value for any parameter, enter the new value in response to
the prompting message.

The new value becomes the new default value for the current $IAMUT1 ses-

sion. The parameters for which a null can be specified are BASEREC, .
FREEREC, FREEBLK, RSVBLK, RSVIX, FPOOL, DELTHR, and DYN. To specify a ﬂl:@
null parameter after the original default has been modified, enter an

ampersand (&) in response to the prompting message.

9-364 SC36-0771

SE

‘::D The following example shows a use of the SE command in establishing the
size and structure of an indexed file.
PARAMETER DEFAULT NEW VALUE

BASEREC NULL :100
BLKSIZE 0 :256
RECSIZE 0 :80
KEYSIZE 0 :28

KEYPOS 1 :1
FREEREC o :1
FREEBLK 0 :10
RSVBLK NULL :
RSVIX 0
FPOOL NULL
DELTHR NULL

DYN NULL

Following the response to the DYN parameter, the following list is dis-
played. The list showus the details of how the indexed file will be con-
structed using the parameters just entered.

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL
§ OF INDEX BLOCKS AT LEVEL
OF INDEX BLOCKS AT LEVEL

DATA SET SIZE IN EDX RECORDS:

W,

WN =
N =N OONNONCSHHNNONW

~

Chapter 9. The $IAMUT1 Utility 9-35

SE

If a secondary file is being defined, the list of prompts is the same @;:D
except for the following:

the
the

the
the

reply to the prompt "SECONDARY INDEX (Y/N)?:%™ is Y
saecondary data set name is requested

RECSIZE prompt is omitted; the Indexed Access Method computes
correct record size

SECONDARY INDEX (Y/N): Y
ENTER SECONDARY DATASET (NAME,VOLUME):

Parameter Descriptions for Option 2

The attributes of the file are determined by these SE command
parameters:

BASEREC

BLKSIZE

RECSIZE

KEYSIZE

KEYPOS

FREEREC

FREEBLK

9-36 SC34-0771

The estimated number of records to be initially loaded into
the file in ascending key sequence. These records can be
loaded by $IAMUT1 or by a PUT request after either a LOAD or
PROCESS request.

The number of records must be greater than zero to allow the
file to load any data records.

If DYN is nhot specified, BASEREC defaults to null, resulting
in an error condition. In this case, specify BASEREC as a
positive number.

If DYN is specified, BASEREC defaults to one.

The length, in bytes, of blocks in the file. It must be a
multiple of 256. The Indexed Access Method uses 16 bytes in
each block for a header.

The length, in bytes, of each record in the file. Record
length must not exceed block length minus 16.

The length of the key to be used for this file. The minimum
key length is 1. For primary files, the maximum key length is
254. For a secondary index, the maximum key length is 250.

The position, in byte=x, of the key within the record. The
first byte of the record is position 1.

The number of free records to be reserved in each block. It

must be less than the number of records per block (block size
minus 16, divided by record size). If not, an error message

is issued. The calculation is adjusted to ensure that there

is at least one allocated record in the block; that is, there
cannot be 100% free records.

FREEREC defaults to zero.

The percentage (0-99) of each cluster to reserve for free

blocks. The percentage calculation result is rounded up so

that at least one free block results. The calculation is

adjusted to ensure that there is at least one allocated block

in the cluster; that is, there cannot be 100% free blocks. MZ:D

FREEBLK defaults to zero.

RSVBLK

RSVIX

FPOOL

DELTHR

SE

The percentage of the entries in each primary index block to
reserve for cluster expansion. These reserved entries are
used to point to new data blocks as they are taken from the
free pool to expand the cluster. The result of the calcu-
lation is rounded up so that any non-zero specification indi-
cates at least one reserved index entry. The calculation is
adjusted to ensure that there is at least one allocated block
in the cluster.

Enter a null character (&) for this prompt if vou do not want
initial reserved blocks and do not want the indexed access
method to create reserved blocks as records are deleted and
blocks become empty. Specify a value of zero for this prompt
if you do not want initial reserved blocks but you do want the
indexed access method to create reserved blocks as records are
deleted and blocks become empty (See the DELTHR prompt).

Note that the sum of the FREEBLK and RSVBLK prompts must be
less than 100 or an error message is issued. This value

defaults to null if the DYN parameter is not specified. If
the DYN parameter is specified, this value defaults to zero.

The percentage (0-99) of the entries in each second level
index block to reserve for use in case of cluster splits. A
cluster split is required when there is no room to insert a
new record in a cluster. Each cluster split uses one reserved
entry of the second-level index block to create a new cluster
with blocks from the free pool. The result of this calcu-
lation is rounded up so that any non-zero specification
indicates at least one reserved index entry. The calculation
is adjusted so that there is at least one unreserved entry in
‘each second level index block. This value defaults to zero.

The percentage (0-100) of the maximum possible free pool to
allocate as determined by the RSVIX and RSVBLK parameters.

The RSVBLK and RSVIX prompts result in a file structure set up
to draw on the free pool for expansion.

If insertion activity is evenly distributed throughout the
file, every reserve entry of every index block can be used.
The number of blocks drawn from the free pool to support this
unlikely condition is the maximum free pool size needed for
the file. In more realistic cases, insertion activity is not
evenly distributed throughout the file, so fewer free blocks
are needed. The percentage specified here represents the
evenness of the distribution of inserted records. Specify a
large number (90, for example) if you expect insertions to be
evenly distributed. Specify a small number (20, for example)
if insertions are anticipated to be concentrated in specific
key ranges.

If a null character (&) is specified for this prompt, a free
pool is not created for this indexed file (you can use the DYN
parameter to override this and create a free pool). If zero
is specified, an empty free pool is created. Blocks can then
be added to the free pool as records are deleted and blocks
become empty (see the DELTHR prompt explanation). If you do
not specify a null for this prompt, the RSVBLK must not be
null and/or the RSVIX must be non-zero or an error is
returned. Conversely, if the RSVBLK and/or RSVIX is non-zero,
FPOOL must not be null or an error is returned.

The default for FPOOL is a null; no free pool is created.

The percentage (0-99) of blocks to retain in the cluster as
records are deleted and blocks made available. This is knoun
as the delete threshold. When a block becomes empty, it is
first determined if the block should be given up to the free
pool by checking the response to this prompt. If the block is
not given up to the free pool, it is retained in the cluster,
either as a free block or as an active empty block. The

Chapter 9. The $IAMUT1 Utility 9-37

SE

DYN

result of this calculation is rounded up so that any non-zero
specification indicates at least one block. The calculation
is adjusted to ensure that the cluster always contains at
least one block.

If the DELTHR parameter is specified as null (&) and DYN is
not specified, DELTHR defaults to the number of allocated
blocks in the cluster plus one half of the value calculated by
the FREEBLK prompt. If the DELTHR parameter is specified as
null and a value is specified for the DYN parameter, DELTHR
defaults to =zero.

The number of blocks to be assigned to, or added to, the free
pool. When DYN is used with other free pool parameters, the
free pool size is calculated as specified by the FPOOL parame-
ter plus the value specified for DYN.

If DYN is specified without the FPOOL parameter, the free pool
is the number of blocks specified for DYN.

If DYN is specified, other parameters assume the following
default values when specified as null:

BASEREC
BLKSIZE
RECSIZE
KEYSIZE
KEYPOS
FREEREC
FREEBLK
RSVBLK
RSVIX
FPOOL
DELTHR

OO OODM

oZ
L=
~
-~

NULL
NULL

[L O T T O O I T A T

When vou specify the number of blocks for the DYN parameter,
remember that the Indexed Access Method can store several data
records in a block, depending on the record size and block
size you specify. Each block contains a 16 byte header. The
number of records that can be contained in each block can be
calculated by the following formula:

Records per block = (BLKSIZE-16)/RECSIZE

In the above calculation, use the integer quotient only; dis-
card any remainder.

Blocks can be taken from the free pool for use as index blocks
as well as for data blocks, so provide some extra blocks for
these. A reasonable estimate of the number of index blocks
required is 10%. Thus, if vou knhow the number of data records
you would like to add to the file, you can calculate the num-
ber of blocks to specify for the DYN parameter as follows:

DYN = (Number of records to insert) x 1.1
(Records per block)

9-38 S5C34-0771

O

SE

Option 3

Option 3 issues a prompt to determine what existing file to obtain the
parameters from. The parameters can be set exactly according to the
parameters of the original file by replying Y to the appropriate prompt.
Otheruwise, the parameters will be set based on the current condition of
the existing data set to reflect insert activity.

SECONDARY INDEX (Y/N)?: N

NAME OF EXISTING INDEXED DATA SET (NAME,VOLUME): IAMFILE,EDX003
NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N) ? Y

DATA SETSIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

All Options

For all three options, the prompts are followed by the option of enter-
ing the DF (define file) function directly from the SE command. This
simplifies the file definition process. The prompt is as follows:

CREATE/DEFINE FILE (Y/N) ? ¥

DYNAMIC DATA SET EXTENTS ON FILE (Y/N): N
ENTER DATASET (NAME,VOLUME): FILEO01,EDX003
NEW DATASET IS ALLOCATED

The immediate write-back option is then queried:

DO YOU WANT IMMEDIATE WRITE-BACK? Y

Chapter 9. The SIAMUT1 Utility 9-39

SE

The next prompt allows you the option of invoking the load or reorganize @::b
functions as follows:

INVOKE LOAD(L), REORGANIZE(R) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

Size calculations are performed using the parameter values vou specify.

After the values are entered, the following is displayed showing the
size and structure of the defined indexed file.

DATA SET SIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)7?:

9-40 8C34-0771

O

®

UN

UN—UNLOAD INDEXED FILE

UN unloads an indexed file to a sequential file. Records are read from
the indexed file with the Indexed Access Method GETSEQ request and writ-
ten into the sequential file with the EDL WRITE instruction. If a sec-
ondary indexed file is specified, the primary file will be unloaded in
secondary key sequence.

You can unload a secondary index independent of its primary if you first
use the UE subcommand of the DR command of SIAMUT1 to set the independ-
ent indicator. You must turn the independent indicator off when the
unload operation is completed.

The record lengths of the two files need not be the same. Unloaded
records are truncated or padded with zeroes if the records lengths of
the two data sets differ. For further detail, see the LO command.

Records are placed into the sequential file in ascending key sequence as
indicated by the indexed file. Unloaded records can be blocked or
unblocked. For a description of blocked and unblocked data sets, sea
"Blocked and Unblocked Sequential Data Sets"™ on page 9-23.

The UN command prompts you for the block size of the file to be
unloaded. A null response or a value less than or equal to the record
size causes the indexed file to be unloaded to an unblocked sequential
file. The sequential file block size is calculated as the record size
rounded up to the next 256-byte multiple value. If you want the file to
be unloaded to a blocked sequential file, specify the actual block size
value to the prompt "QUTPUT BLOCK SIZE". The record and block sizes of
subsequent output sequential files are assumed to be the same as the
initial output sequential file.

If the indexed file contains more records than are allocated in the
sequential file, vou are given the option to continue unloading to
another sequential file. If you choose to continue unloading, you are
prompted for the name of the file and volume to use to continue the
unload operation. The unload operation continues, putting the records
read from the indexed file into the new sequential file. If the end of
the output file is reached and you choose not to continue, the unload
operation ends.

Note: Do not specify the same file for input and output.

Chapter 9. The $IAMUT1 Utility 9-41

UN

The following example shows the use of the UN command to put 80-byte
records into a blocked sequential file.

ENTER COMMAND (?): UN

UNLOAD ACTIVE

ENTER INPUT DATASEY (NAME,VOLUME): EDXFO02,AMGVOL
ENTER OUTPUT DATASET (NAME,VOLUME): SEQO1,EDX003
OUTPUT RECORD ASSUMED TO BE 80 BYTES. 0OK?: Y
ENTER OUTPUT BLOCK SIZE (NULL = UNBLOCKED): 256
UNLOAD IN PROCESS

END OF INPUT DATASET
100 RECORDS UNLOADED

UNLOAD SUCCESSFUL

ENTER COMMAND (?): EN

9-42 SC36-0771

O

O

$1AMUT1 COMPLETION CODES

O

Completion

Code Condition

-1 Successful completion
7 Link module in use
8 Load error for $IAM

12 Data set shut doun

13 Module not included in load module $IAM

23 Get storage error - IACB

30 Inconsistent free space parameters were specified.
31 FCB WRITE error during IDEF processing,

check system return code

32 Blocksize not multiple of 256

34 Data set is too small

36 Invalid block size during file definition processing
37 Invalid record size

38 Invalid index size

39 Record size greater than block size

40 Invalid number of free records

%1 Invalid number of clusters

42 Invalid key size

43 Invalid reserve index value

44 Invalid reserve block value

45 Invalid free pool value

46 Invalid delete threshold value

47 Invalid free block value

%8 Invalid number of base records

%9 Invalid key position

50 Data set is already opened for exclusive use

51 Data set opened in load mode

‘::D 52 Data set is opened, cannot be opened exclusively

5% Invalid block size during PROCESS or LOAD

55 Get storage for FCB error

56 FCB READ error, check system return code

60 LOAD mode key is equal to or less than previous

high key in data set
61 End of file in LOAD mode
62 Duplicate key found in PROCESS mode

Note: For completion codes number 30 and 37 through 49, check
your parameters for consistency.

Chapter 9. The $IAMUT1 Utility 9-643

Completion

Code Condition
100 READ error, check system return code
101 WRITE error, check system return code
110 WRITE error - data set closed
201 Request failed because the primary file for this
secondary could not be opened. Check system
return code
210 Request failed because $DISKUT3 could not be
loaded
230 Directory read error for $IAMDIR, verify that
directory exists
231 $IAMQCB not found, check sysgen for include
of $IAMQCB
232 Directory open error for $IAMDIR, verify that
directory exists
233 Directory related primary request is a primary entry
234 Directory error - DSNAME,VOL not found in $IAMDIR
235 Directory resource has not been requested
239 Directory write error. Refer to previously displayed

message

9-64¢ SC364-0771

AN

«

CHAPTER 10. THE $VERIFY UTILITY

$VERIFY checks the validity of an indexed file and prints control block
and free space information about the file on a user-specified printer
(such as $SYSPRTR).

This $VERIFY description contains the following topics:

L]

SVERIFY Functions

Invoking $VERIFY

SVERIFY Example

SVERIFY Messages

SVERIFY Storage Redquirements.

$VERIFY FUNCTIONS

With $VERIFY you can:

Verify that all pointers in an indexed file are valid and that the
records are in ascending sequence by key.

Verify the contents of a secondary index against the primary file
and report any discrepancies.

Print a formatted File Control Block (FCB) listing, including the
FCB Extension block. The FCB Extension block contains the original
file definition parameters.

Note: The FCB Extension block does not exist and file definition
parameters are not saved in the FCB for indexed files defined prior
to version 1.2 of the Indexed Access Method. The reorganize (RO)
$IAMUT1 command can be used to reformat those files by adding an FCB
Extension block to make use of all the $VERIFY facilities.

Print a report showing the distribution of free space in vour file.

Determine if any space is available for inserts.

Chapter 10. The $VERIFY Utility 10-1

INVOKING $VERIFY

$VERIFY can be invoked from either a terminal or a program coded in @Z:D

Event Driven Language.

You supply the same input in either case. If

vou invoke SVERIFY from a terminal, supply the input required in

response to prompts.

If vou invoke $VERIFY from a program, supply the

input required as parameters passed to the program.

$VERIFY INPUT

This section describes the input required to execute SVERIFY.

output printer

name, volume

Option

cross verify option

secname,volume

10~-2 SC364-0771

The name of a printer to which the report should
be directed. The default printer is $SYSPRTR.

Data set and volume names for the primary index
file or secondary index to be processed. (Ensures
that all chains within this data set are correct).

The type of processing you want $VERIFY to do.
The three options are:

Y The FCB and the FCB Extension blocks are for-
matted and printed. The file is verified. A
free space report is printed.

N The FCB and the FCB Extension blocks are for-
matted and printed. The file is verified. No
free space report is printed.

F The FCB and the FCB Extension blocks are for- Ar\\
matted and printed. No free space report is \
printed, but the "# OF AVAILABLE BLOCKS IN Wk/ﬂ
FREEPOOL' entry can be examined to determine if
space is available for inserts; if the value is
greater than zero (>0), space is available.

The type of check vou want SVERIFY to do between
the primary index files and secondary indexes.
The options are:

Y a. If a primary index file was specified above
as the data set name, this will check that all
entries in the primary index file are in the
secondary index.

b. If a secondary index was specified above as
the data set name, this will check that all
entries in the secondary index are in the asso-
ciated primary indexed file.

N Do not perform any cross verification.
Data set and volume names of the secondary index

to be verified. Specify 'ALL' to verify all sec-
ondary indexes associated with the primary file.

INVOKING $VERIFY FROM A TERMINAL

Load the $VERIFY program as follows:

> $L $VERIFY

When $VERIFY begins execution, you are prompted for the parameters
described previously. A complete example of a $VERIFY invocation from a
terminal is shown under "$VERIFY Example™ on page 10-5.

INVOKING $VERIFY FROM A PROGRAM

SVERIFY can be invoked by EDL programs with the LOAD instruction. The
only required parameter is the address of a 38-byte area that contains:

Hex Length
Displacement (Bytes)
Data set name 0 8
Volume name 8 6
Detail listing request E 1
(Y, N’ or F)
Secondary file cross verify F 1
(Y or N)
O Secondary index file name 10 8
g Secondary index file volume 18 6
Output Printer 1E 8

The next example shows the use of $VERIFY to verify a file named IAMFILE
in the volume EDX002. A file verification and free space report are
requested. The secondary file named SECIAM in the volume EDX002 is also
verified.

Chapter 10. The $VERIFY Utility 10-3

EXAMPLE PROGRAM START
- START EQU *
LOAD $VERIFY,PARMLIST,EVENT=VERIFY
WAIT VERIFY WAIT FOR POST COMPLETE
PROGSTOP
PARMLIST EQU *
DSNAME DC CL8'IAMFILE' INDEXED DATA SET NAME
VOLUME DC CL6 'EDX002" VOLUME NAME
DETAIL DC CLi'y? PROCESSING OPTION
SECONDRY DC CL1'Y? SECONDARY FILE VERIFICATION
SECDSHN DC CL3'SECIAM' SECONDARY FILE NAME
SECVOL DC CL6'EDX002' SECONDARY FILE VOLUME
PRINTER DC CL8'$SYSPRTR' OUTPUT PRINTER
¥NOTE: BLANKS CAUSE DEFAULT TO $SYSPRTR
VERIFY ECB -1 EVENT CONTROL BLOCK
ENDPROG
END

10-4 SC34-0771

O

$VERIFY EXAMPLE

This section presents the input and output for an example run of
S$VERIFY, along with descriptions of the material presented.

S$VERIFY is invoked from the terminal as follows:

[11]|> $L $VERIFY
{21] INDEXED ACCESS METHOD FILE VERIFICATION PROGRAM ACTIVE

[31{ENTER NAME OF OUTPUT PRINTER. (BLANK = $SYSPRTR):

[4]] (NAME,VOLUME): DPRIM1,EDXIAM ’

{51|D0O YOU WANT DETAIL LISTING? (Y/N/F/2)?: Y

[61|D0 YOU WISH TO VERIFY SECONDARY VS PRIMARY INDEXES (Y/N):N
[7)|VERIFICATION COMPLETE, 0 ERROR(S) ENCOUNTERED
[81|$VERIFY ENDED

[1] In this example, the first line loads and executes $SVERIFY.

[2) The second line is printed by the program to indicate that execution
has begun.

[3] This line allows vou to direct the output to a particular printer.
You can also press the Enter key without supplying a device name and the
output will be printed on $SYSPRTR.

[4] In the fourth line, the program prompts for the data set name and
volume of the indexed file to be referenced by the program. In this
example the reply indicates that the data set is DPRIM1, located on vol-
ume EDXIAM.

[8] In the fifth line, the program prompts for the amount of detail to
be provided as output. The response of Y indicates that maximum detail
is to be provided.

[6] In the sixth line, the program prompts for verification of secondary
indexes. The response of N indicates that secondary indexes are not to
be verified. As the program executes, it provides output to the
printer, as shown in the example outputs that follow.

57] Zinally. messages are displayed to indicate the number of errors
ound.

[85 ghis information message is provided stating that the program has
ended.

Chapter 10. The $VERIFY Utility 10-5

FCB REPORT

The first page of the example output from S$VERIFY follows. This page is @i:b
always printed. g

VERIFY REPORT. FILE = DPRIMI , VOLUME = EDXIAM

FLAGL : FILE FILE
LOADED TYPE

Y 1 (0=PRPQ, 1=PP)
3636 3 96 36 36 3 K 36 36 36 3 36 36 3 36 36 3 2 3 3 3 K 36 K 56 3 K I 6 3 X K 6 36 3 36 36 6 % X ¥

KEY SIZE = 6
KEY POSITION = 1
BLOCK SIZE = 256
RECORD SIZE = 60
INDEX ENTRY SIZE = 10
RBN OF HIGH LEVEL INDEX BLOCK IN USE = 2
RBN OF LAST DATA BLOCK IN USE = 786
RBN OF FIRST DATA BLOCK IN USE = 6
TOTAL RECORDS PER DATA BLOCK = 4
TOTAL ENTRIES PER INDEX BLOCK = 24
LOAD POINT VALUE FOR A DATA BLOCK = 4
LOAD POINT VALUE FOR AN INDEX BLOCK = 24

36 36 3 36 36 36 36 3 36 3 36 36 3 36 36 3 3 36 3 36 I I 36 3 J 36 3 3 56 3 3 3 2 X 36 X 3¢ 36 26 36 3 X %
FLAGZ * IMMEDIATE SECONDARY FILE
WRITE-BACK INDEX FILE FORMATTED
N

‘ N Y

36 36 36 36 36 I 36 36 26 3 3 3 I 26 36 3 I 36 3 3 2 3 36 X 3 X 3 X 36 3 2 I 3¢ 3 3 3 I X6 X X X X ¥
VERSION NUMBER = 2.0
DELETE THRESHOLD (RECORDS) = 0
OF AVAILABLE BLOCKS IN FREEPOOL 30
RgN OF 1ST FREE POOL BLOCK = 787
RBN OF HIGHEST LOGICAL INDEX BLOCK = 2
LEVEL OF HIGHEST INDEX BLOCK IN USE= 3
CURRENT NO. OF RECORDS IN FILE = 3000

The preceding sample report is interpreted as follouws:
The first line shows the data set name and volume.

FLAGL: These three lines show the significant bits of the first flag
byte in the FCB. The first two of the three lines are a heading.
The third line shows the bit value (1 = on and 0 = off or Y = on and
N = off). The headings are defined as follows:

FILE LOADED: Data set has been loaded flag. This flag is set when
any record has been successfully loaded into the file
in load mode.

FILE TYPE: This flag indicates whether the indexed file was cre-
ated with the Realtime Programming System Indexed
Access Method PRPQ (bit=0) or either the Event Driven
Executive or Realtime Programming System Indexed Access
Method Program Product (bit=1).
KEY SIZE: Shows the size of the key in bytes.

KEY POSITION: Shows the byte displacement of the key from the start of
the record.

BLOCK SIZE: Shows the byte length of blocks in the file.
RECORD SIZE: Shows the byte length of records in the file.

10-6 SC34-0771

INDEX ENTRY SIZE: Shows the number of bytes in each index entry. This
length should be the key length plus 4, rounded up to a multiple of
two bytes.

RBN OF HIGH LEVEL INDEX BLOCK IN USE: Shows which index block is to be
used as the starting point when the index is to be searched.

REN OF LAST DATA BLOCK IN USE: Points to the last logical data block
in the file which has been used.

RBN OF FIRST DATA BLOCK IN USE: Points to the first logical data block
in the file which has been used. It is used as the starting point
when a sequential read operation is begun with no key specified.

TOTAL RECORDS PER DATA BLOCK: Shows how many data records can be con-
tained in a data block.

TOTAL ENTRIES PER INDEX BLOCK:® Shows how many index entries can be
contained in an index block.

LOAD POINT VALUE FOR A DATA BLOCK: The number of records that can be
placed in each data block while in load mode. This value is calcu-
lated at file definition time to provide the requested number of free
records.

LOAD POINT VALUE FOR AN INDEX BLOCK: The number of data blocks in each
cluster to be used while in load mode. This value is calculated at
file definition time to provide the space requested by the RSVBLK,
RSVIX and FREEBLK parameters.

FLAG2: Another byte of flags described by a pair of lines: a heading
line followed by a data line. The heading has the following meaning:

IMMEDIATE WRITE-BACK: Immediate write back flag. If set (Y), this
flag indicates that the immediate write back
option was specified when the indexed file was
defined.

SECONDARY INDEX FILE: A Y indicates that this is a secondary file.
N indicates that this is a primary file.

indicates that the file has been formatted.
N indicates that only the parameters have
been specified and the file allocated. The
file has not been formatted.

FILE FORMATTED:

Zl~<

VERSION NUMBER: Shows the version number and modification level of the
Indexed Access Method that was used to define the indexed file.

DELETE THRESHHOLD (RECORDS): Indicates the number of data blocks to
retain in each cluster as records are deleted and blocks become
empty. This value is calculated when the file is defined and is based
on the DELTHR parameter.

OF AVAILABLE BLOCKS IN FREEPOOL: The number of available blocks in

the free pool. This count is updated as blocks are taken from or
returned to the free pool.

Chapter 10. The $VERIFY Utility 10-7

RBN OF 1ST FREE POOL BLOCK: Points to the last block which was put in
the free pool (which is the next block to be taken from the free
pool).

RBN OF HIGHEST LOGICAL INDEX BLOCK: Points to the logical top of the
index. In some cases (if the file has not been completely loaded),
this RBN might not agree with the RBN OF HIGHEST LEVEL INDEX BLOCK IN
USE. If it does not agree, then the file is structured with index
blocks that are not yet needed because the file does not contain
enough records.

LEVEL OF HIGHEST INDEX BLOCK IN USE: Indicates how many levels of the
index are currently in use.

CURRENT NO. OF RECORDS IN FILE: The current number of records that are
noiw contained in the file.

FCB EXTENSION REPORT

The second page of the example output from $VERIFY follows. This page
is always printed.

This information is obtained from the FCB Extension block and shows the
parameters that were specified when the file was defined. Some informa-
tion (BLKSIZE, RECSIZE, KEYSIZE, KEYP0S) is duplicated on the FCB and
FCB Extension report because it is contained in both control blocks.

The values should correspond with each other. The word NULL for the
value of a parameter indicates that no value was specified when the file
was defined.

VERIFY REPORT. FILE = DPRIM1I , VOLUME = EDXIAM
INDEX FILE DEFINED WITH THESE PARAMETERS:
BASEREC= 3000

BLKSIZE= 256 o

RECSIZE= 60 .

KEYSIZE= 6

KEYPOS= 1

FREEREC= 0

FREEBLK= 0

RSVBLK= NULL

RSVIX= 0

FPOOL = NULL

DELTHR= NULL

DYN= 30

Note: The parameters are the file definition parameters that were spec-
ified using the SE command of the $IAMUT1 utility when the file was
defined.

10-8 5C34-0771

e

C

J

FREE SPACE REPORT

@) The following is a free space report of the example output from $VERIFY.
The free space report is printed only if the $VERIFY option is specified
as Y.
VERIFY REPORT. FILE = XMPL1 , VOLUME = EDX002
TOTAL USED UNUSED RESERVE FREE AVAILABLE HIGH KEY
RBN LVL ENTRIES ENTRIES ENTRIES ENTRIES BLOCKS RECORD SLOTS (FIRST
20 CHAR.)
2 3 24 2 0 22 0 - 143949
3 2 24 24 0 16 0 -- 130536
G 2 26 8 0 16 0 - 143949
5 1 24 24 0 0 0 0 044932
30 1 26 24 0 0] 0 046750
55 1 24 24 0 0 0 0 048655
80 1 26 24 0 0 0 0 050527
105 1 24 24 0 0] 0 052392
130 1 24 24 0 0 0 0 054225
155 1 26 26 0 0 0 0 056075
180 1 24 24 0 0 0 0 057930
205 1 24 24 0 0 0 0 059829
230 1 26 24 0 0 0 0 061640
255 1 24 24 0 0 0 0 063548
280 1 24 2% 0 0 0 0 065389
305 1 24 24) 0 0 0 067297
330 1 24 24 0 0 0 0 069166
355 1 24 24 0 0 0 0 071029
380 1 24 24 0 0 0 0 072887
405 1 24 24 0 0 0 0 074731
430 1 24 26 0 0 0 0 076586
/ 455 1 24 24 0 0 0 0 078441
480 1 2% 24 0 0 0 0 080329
505 1 26 24 0 0 0 0 082175
530 1 26 24 0] 0] 084006
555 1 24 24 0 0 0 (] 085861
580 1 24 26 0 0 0 0 130536
605 1 24 24 0 0 0 0 132395
630 1 24 24 [t} 0 0 0 134205
655 1 24 26 0 0 0 0 136097
680 1 24 24 0 0 0 0 137929
705 1 2% 24 0 0 0 (] 139815
730 1 2% 24 0 0 0 0 141655
755 1 24 26 0 0 1] 0 143523
780 1 24 6 0 18] 0 1439649
YERIFICATION COMPLETE, 0 ERROR(S) ENCOUNTERED

Chapter 10. The $VERIFY Utility 10-9

In this report, each printed line represents an index block. The col-
umns have the following meanings:

RBN: The relative block number within the indexed file, based on the
block size specified when the file was defined. The first block
in the file is relative block number zero.

-

LVL: The level of the index block analyzed. Lowest level (PIXB) is 1,
second level (SIXB) is 2, etc.

TOTAL ENTRIES: The maximum number of index entries that can fit in an
index block.

USED ENTRIES: The number of entries used in this index block.

UNUSED ENTRIES: The number of entries in the index block which are
neither used nor reserved.

RESERVE ENTRIES: The number of reserve entries in this index block.
This number represents the number of new index blocks that can be
obtained from the free pool for creation of new blocks, provided
there are enough blocks remaining in the free pool.

FREE BLOCKS: The number of free blocks associated with this index
block.

AVAILABLE RECORD SLOTS: The maximum number of records that can be
inserted into this cluster without obtaining blocks from the free
pool.

HIGHEST KEY IN BLOCK: The first 20 bytes of the highest key in the
block.

10-10 SC34-0771

$VERIFY MESSAGES

As SVERIFY executes, any errors encountered result in an error message
being written describing the type of error and where the error occurred.

FILE ERROR MESSAGES

The following messages indicate that the indexed file contains errors:

BLOCKS IN FREEPOOL CHAIN DOES NOT MATCH FREE POOL COUNT IN FCB.
BLOCK OUT OF SEQUENCE. RBN

HIGH KEY IN RBN DOES NOT MATCH INDEX ENTRY IN RBN

POINTERS IN HEADER OF HIGH INDEX BLOCK ARE NOT ZERO.

RBN ______ CONTAINS INVALID UPWARD POINTER.

RBN ____ CONTAINS INVALID BACKWARD POINTER.

RBEN ______ CONTAINS INVALID FORWARD POINTER.

RBN IS IN FREEPOOL CHAIN, BUT IS NOT A VALID FREEPOOL BLOCK.

RECORD OUT OF SEQUENCE NEAR RBN

RECORD MATCH NOT FOUND FOR SEC INDEX.
PRIMARY=
SECONDARY=

If any of these messages are printed, the indexed file has at least one

error.

Possible sources of the error include:

. The data set is not an indexed file.

0 Data in the file has been inadvertently destroyed.
. Secondary index is not auto-update.

. The Indexed Access Method has a program error.

Note: If you encounter another message while using $VERIFY, refer to

the Messages and Codes manualin the EDX library for an explanation.

Chapter 10. The $VERIFY Utility

10-11

ERROR RECOVERY PROCEDURE

If any of the $VERIFY file error messages are printed, use the following

procedure:
L Dump the file or portion of the file which $VERIFY indicated has
errors.

o Attempt to reorganize the file with the $IAMUT1 utility RO command.
) If reorganization fails, submit an APAR, including the file dump.

. Secondary indexes may need to be regenerated. Invoke $VERIFY for
each of the secondaries to determine if they are error free. If
errors are indicated rebuild the index from the primary data sets
after the problem has been corrected.

$VERIFY STORAGE REQUIREMENTS

Working storage space is required for $VERIFY and the amount required
varies, depending on the maximum number of blocks at the SIXB level and
the block size of the file.

USING DEFAULT WORKING STORAGE REQUIREMENTS

The default working storage specification is 4K bytes. For a file with
a block size of 256,this default is sufficient to handle up to 896
blocks at the SIXB level. The larger the block size of the file, the
fewer the maximum number of SIXBs that can be processed.

The following formula can be used to calculate the maximum number of
blocks at the SIXB level that $VERIFY can process, given the block size
of the indexed file:

NS = (4096 - (2 % BLKSIZE)) / 4

NS is the number of blocks at the SIXB level
BLKSIZE is the block size of the indexed file

10-12 SC34-0771

®

C

MODIFYING WORKING STORAGE REQUIREMENTS

SUMMARY

The default working storage allocation is intended to satisfy the
requirements of most indexed files. It may be necessary or desirable to
modify the amount of working storage space available to $VERIFY.

The following formula can be used to calculate the amount of working
storage required to process a file with a given block size and number of
blocks at the SIXB level.

DS = (6 % NS) + (2 % BLKSIZE)

Where:
DS is the amount of dynamic storage required
NS is the number of blocks at the SIXB level
BLKSIZE is block size of the indexed file

The number of SIXBs in a file can be determined by examining the free
space report.

You can override the default working storage size at load time (if
loaded by a program), or with the 55 command of the $DISKUT2 utility.

SVERIFY requires a variable amount of working storage which defaults to
4K bytes. Increase the working storage size if $VERIFY runs out of
space during execution.

Decrease the working storage size if the number of SIXBs is significant-

ly less than that supported by the default working storage allocation
(896 with a block size of 256) and your available storage is limited.

Chapter 10. The $VERIFY Utility 10-13

10-14 SC34-0771

N

N

CHAPTER 11. STORAGE AND PERFORMANCE CONSIDERATVIONS

This chapter describes the storage required for the Indexed Access Meth-
od and offers suggestions for improving performance. The main topics
are:

° Determining Storage Requirements

. Data Paging

. Other Performance Considerations.

DETERMINING STORAGE REQUIREMENTS

The minimum amount of storage required by the Indexed Access Method is
dependent upon the package you choose to install, plus the link module
and any error exit routine you may have written. The approximate sizes
of the available packages are included here for planning purposes.

THE INDEXED ACCESS METHOD PACKAGES

The Indexed Access Method program product is shipped with four packages:

. $IAM
. SIAMRS
. $IAMNP

. S$IAMRSNP

You select the particular package to install on vour system which meets
your requirements for function, storage, and performance. The individ-
ual packages are described below:

1. SIAM— (23K). A full-function Indexed Access Method package using
an overlay structure. It is expected to satisfy the needs of most
users.

2. SIAMRS— (32K). A full-function Indexed Access Method package that
is fully resident. It requires more storage than $IAM, but offers
maximum performance.

3. SIAMNP— (20K). This package is similar to $IAM (using an overlay
structure) but does not include data paging. It is designed for
users who have severe storage limitations.

4. S$IAMRSNP— (29K). This package is similar to $IAMRS (fully
resident) but does not include data paging. This package provides
the performance of a resident system but is intended for users who
20 zot have sufficient storage to take advantage of the data paging

eature.

Notes:

1. The storage values above do not include Indexed Access Method con-
trol blocks, the central buffer (minimum of 2 X block size), and
secondary index update buffers (minimum of 2 X record size).

2. To find the exact size of your Indexed Access Method package, load
$IAM with the operator command $L. A message will be displayed
about the loaded program. The number, followed by the letter P,
indicates the size of the program in 256-byte pages. Multiplying

Chapter 11. Storage and Performance Considerations 11-1

this number by 256 vields the size in bytes of $IAM, including con-
trol blocks, work areas and buffers.

INDEXED ACCESS METHOD STORAGE ENVIRONMENT

A single copy of the Indexed Access Method load module $IAM serves the
entire system.

Figure 11-1 shows the components of the Indexed Access Method, and their
relationship to the operating system.

The Indexed Access Method control blocks, buffers and programs are con-
tained in a single module, which can be loaded in any partition (but
only one copy on the system).

Application programs in any partitions (including the partition contain-
ing the Indexed Access Method) can invoke Indexed Access Method services
using the IBM supplied link module, which must be included in the appli-
cation program.

If the data paging feature of the Indexed Access Method is active, it
uses storage in the partition(s) you select for performance improvement.
This storage is in the form of a load module, $IAMSTGM.

Link Module
EDX
Supervisor
Space
Application
Programs
Calling
the
Indexed
Access Data Paging
Method Area
Control Blocks
Central
Buffer
Indexed
Access Method
Programs
Partition 1 Partition 2 Partition 3

Figure 11-1. Indexed Access Method Storage Environment

Because $IAM is loaded automatically when the first Indexed Actess Meth-
od request is issued, it does not need to be explicitly loaded before
being used by any program. When loaded automatically on the first
Indexed Access Method request, $IAM is loaded into partition 1 if enough
storage is available there. If not, attempts are made to load $IAM into
successively higher numbered partitions until space is found or no more
partitions are available. Once loaded, the Indexed Access Method
remains in storage until cancelled with the $C operator command.

The Indexed Access Method can also be loaded manually by using the $L
operator command or automatically at IPL time through a $INITIAL
program. Refer to the Customization Guide manual in the EDX library for
more information on using a $INITIAL program.

11-2 $5C34-0771

$IAM can be loaded into any partition. It can be loaded (through the
link module) from application programs in any partition.

O

PERFORMANCE

Performance can be improved by various factors and the performance will
be different for each application. One performance consideration has
been described previously, the resident Indexed Access Method packages
?IAMRS and SIAMRSNP. Another supplied performance feature is data pag-
ing.

DATA PAGING

Data paging is a performance feature that uses main storage space for a
paging area (a cache) to improve the performance of the Indexed Access
Method. This paging area retains recently used index and data blocks
which have been retrieved for processing. As blocks are read from an
indexed file, they are retained in the paging area on the assumption
that they will probably be requested again. When a block is requested
again, if it is in the paging area, no I/70 operation is required; the
block is moved directly into the central buffer.

The paging area is divided into 2K-byte (2048-byte) pages. Each indexed
file can also be thought of as being divided into 2K-byte pages. When
data is read from the file, a 2K-byte page is read and saved in the pag-
ing area. UWhen data is written to the file, only the modified block
(nhot the 2K-byte page) is written.

least-recently-used algorithm. The Indexed Access Method data paging
algorithm handles direct access records differently from the way it han-
dles sequential access records.

‘::5 When the paging area becomes full, pages are overlaid according to a

SEQUENTIAL ACCESS AND DATA PAGING: All of the pages in the page area can
be used for direct access. However, because sequential access can cause
the page area to be flushed out (negating the advantages of data
paging), only 25% of the pages are set aside for use in sequential mode.
Therefore, pages referenced in sequential mode will only use a small
portion of the page area. This causes the pages to tend to preempt
themselves instead of flushing out the page area.

REMOVAL OF STORAGE MODULES: The data paging area is obtained by loading
a copy of $IAMSTGM into one or more partitions. Each copy of $IAMSTGM
remains in storage, even if you cancel $IAM. Cancelling $IAM is not
recommended unless ,you have ascertained that no files are currently open
and no requests are about to be issued. If you have cancelled $IAM you
can use the $C $IAMSTGM operator command to remove the data paging stor-
age module from each partition. $IAMSTGM should never be cancelled
until you have first cancelled S$IAM.

Adjusting the Size of the Paging Area

Because every application is different yvou should not regard any infor-
mation relative to the following described example as being directly
applicable to your application. However, the general principles should
apply to most applications.

Figure 11-2 on page 11-5 shows the effect of various data paging area
sizes on the percentage of times a requested block was in the paging
area ("Hit Ratio") and the resultant performance (response time indica-
tor) for one application. The data was acquired by measuring the per-
formance, and printing data paging statistics, while the application was

Chapter 11. Storage and Performance Considerations 11-3

running. The total size of all indexed files being accessed during the
run was 36592 sectors (9.3M-bytes). It must be stressed that this is
only one application, and your application may not behave in the same
manner.

The use of data paging does not affect the timing of the write. The
timing of the write is always controlled by the immediate write-back
function (described in paragraph [16] of "Setting Up An Indexed File
Using SIAMUT1"™ on page 2-2).

The three variables considered in data paging described in this example
are:

. storage size dedicated to data paging

. the percentage of times that the block requested is in the paging
area ("Hit Ratio™)

. read/wurite ratio.

STORAGE SIZE: The figure shows general trends for various storage sizes.
Note that there is a minimum amount of storage which can provide a bene-
fit. In this example the minimum storage to acquire a performance
improvement is approximately 20k-bytes. This is because the data paging
algorithms in the Indexed Access Method require a certain amount of
processing, which is additional overhead. Your application may have a
different minimum. If you cannot supply enough storage to provide a ben-
efit, you are better off not to use data paging. Within certain limits,
the more storage you supply, the better the performance. However, there
are optimal minimum and maximum limitations. Figure 11-2 on page 11-5
g?ﬁws that, for this example application, the minimum amount is about
~bytes.

The optimal maximum amount of storage, beyond which the benefit of using

more storage becomes less pronounced, is about 70k-bytes for the example

shown in Figure 11-2 on page 11-5. You must determine, based on your

oun storage/performance trade-off requirements, how. much storage to ded-
icate to data paging for the performance improvement you receive. Larg-

ﬁrtfiles require a proportionately larger paging area to attain the same
it ratio.

THE "HIT RATIO": The values shown at the left side of Figure 11-2 on
page 11-5 is called a "Hit Ratio". This ratio is a percentage of how
often an index block or data block requested is already in the paging
area. Most applications tend to concentrate activity in a few areas of
the file for a time, then move on to other areas of the file. These
applications can use data paging to good advantage because there is a
probability that the data being requested has been recently requested.

If your application references data in a completely random manner, data
paging will be less efficient. Random applications result in a smaller
hit ratio for a given paging area size than applications that concen-
trate on certain areas of the file. Therefore, larger paging area is
required to obtain the same hit percentage.

THE READ/HRITE RATIO: The data paging function is optimized for read
operations. In order to insure file integrity, write operations cause a
write-through to the file. This means that there is no benefit in using
data paging for write operations. In fact, due to paging overhead,
write operations are less efficient with data paging than without data
paging.

The higher your ratio of reads to writes, the more efficiently the data
paging algorithm works, thus the better your performance improvement.
In the example shown in Figure 11-2 on page 11-5, 80% of the requests
were reads, 20% were writes. .

11-4 SC364-0771

O

100 28
90 } 1 36
H R
i 80 } 1 64 e
t s
70 U 1 52 p
. o
R 60 | . 1 60 n
a . s
t 50 . 1 68 e
1
o 40 } U 1 76 .
30 |_ _*_ _ _ No Paging 1 84 i
m
20 | o 1 92 e
10 [» 1 100
o 1 1 [] L L } 1 J] |] L
0 50K 100K 150K 200K 250K 300K

Data Paging Area Size

Figure 11-2. Plot of Data Paging Area Sizes

This graph shows how the size of the data paging area (shown across the
bottom) affects the hit ratio (shown on the left margin), and the
results in the response time (shown on the right margin). The unit of
time for the response time scale is not given because it is application
dependent. For this application, a hit ratio of at least 28% (which can
be achieved with a paging area size of about 20K) is required to attain
performance equal to that without data paging active. This is due to
data paging processing overhead. Also note that a paging area size of
greater than about 70K provides relatively little response improvement
for the amount of storage dedicated.

Using Data Paging

The Indexed Access Method is distributed with the paging area size set
to zero; therefore, the data paging function is not enabled. To use
paging, use the $IAMUT1 PP command to set the paging area size for each
partition and the $IAMUT1 PG command to activate paging.

When $IAM is loaded, the loader attempts to obtain storage in the
requested partition. When storage is requested in a particular parti-

~tion to activate paging, you are informed of the results with appropri-

ate messages. The messages returned to inform you of the paging status
are written to the $5YSLOG device. If $SYSLOG is not available, the
messages are written to $SYSPRTR device. Following are the conditions
which can result:

1. Data paging is successfully initialized. The storage you requested
or the default amount of storage required for data paging is avail-
able. The following message is displayed:

"DATA PAGING ACTIVE."

2. Data paging is not successfully initialized.

a. If you have attempted to activate paging and you requested zero
for the storage amount, or the minimum amount of storage neces-
sary for paging is not available in the partition you specified,
the following message is displayed:

"NOT ENOUGH STORAGE AVAILABLE FOR DATA PAGING."™
"DATA PAGING NOT ACTIVE."

Chapter 11. Storage and Performance Considerations 11-5

b. If you have requested more storage for paging than is available
i? thg partition vou specified, the following message is dis—
playved:

LOAD FAILED FOR $IAMSTGM RC=xxx, PTN= Y, SIZE= zz

where: XXX represents the return code from the LOAD instruction
\ represents the partition number requested
2z represents the size in 1024-bytes of storage

you requested

OTHER PERFORMANCE CONSIDERATIONS

Following is a list of subjects followed by some ideas you might use to
affect the performance of yvour application:

U Looking at the File Structure

L Controlling the File size

. Reducing the Number of Index Levels
. Increasing the Buffer Size

. Sequential Processing

. Avoiding Resource Contention

. Using Block Mode.

LOOKING AT THE FILE STRUCTURE: Performance of the Indexed Access Method
is primarily determined by the structure of the indexed file being used.
This structure is determined by parameters you specify when you create
the file. The best performance from an indexed file is attained when
the file structure is well planned and the free pool is rarely used, if
it exists at all. For descriptions of the file parameters, see Chapter
9, "The $IAMUT1 Utilityv.? For examples of the effects of parameter val-
ues, see Chapter 3, "Defining Primary Index Files."

Use the $IAMUT1 utility to see the effects of the various parameters on
the file structure.

FILE SIZE: A large file spans more cylinders of the direct access
device, so the average seek to get the record you want is longer.
Splitting files into smaller files according to application type, or
moving seldom used records to a "history file"™ might be viable solutions
for file size reductions. '

If your records contain unused or unnecessary fields, delete those
fields and reduce your record length before defining and loading your
file. The Sort/Merge Program Product contains facilities to accomplish
this while sorting your records by key.

REDUCING THE NUMBER OF INDEX LEVELS: A file with many index levels
requires more accesses to get to the desired data record, thus degrading
performance. Factors which influence the number of index levels are:

. Number of records in file—see "File Size" previously described.

. Amount and type of free space—see "File Structure” previously
described. '

. Block size—when defining your indexed file, remember larger block
sizes usually require fewer 170 operations.

. Key size—shorter keys are more efficient than long keys. If only a
portion of your key field provides uniqueness, set your key position
and key length to that portion of the field when vou define the
file.

11-6 SC34-0771

INCREASING THE BUFFER SIZE: Thae buffers required for 170 operations for
all Indexed Access Method requests throughout the system are taken from
a single buffer pool. The size can be changed at any time (to become
effective during the next load of $IAM) as described in "BF—Tailor the
Indexed Access Method Buffers"™ on page 9-4. If you provide a large
buffer when you install the Indexed Access Method, it is more likely
that blocks (especially high-level index blocks) needed are already in
storage and need not be recalled from the file.

A possible exception to this consideration is found in the following
section on sequential processing.

SEQUENTIAL PROCESSING: In certain cases, sequential processing parform-

ance can be improved by reducing the size of the IAM Central Buffer (us-
ing the BF command of SIAMUT1). 1In such a case, reduce the IAM Central

Buffer size only for the duration of the sequential processing and then,
only if sequential processing is the only activity.

Whether or not your application will experience a parformance improve-
ment will daepend on the blocking factor (records per block), the block
sizae of the file being processed, and the type of processor in use.

IAM buffer management serves to provide optimal performance in most
environments by bypassing disk I/70's if a requested block is in storage.
This process entails some overhead which may not be neccessary if a file
is being processed sequentially since an I/70 must always be issued to
read or write the next block. The overhead is greatest if the file's
block size is small, with a low blocking factor.

You may find the best performance improvement by allocating enough IAM
central buffer space for two blocks and two buffer table entries. A
buffer table entry requires 14 bytes. The block size that you use in
this calculation should be the largest block for the file(s) being proc-
essed in sequential mode.

This consideration applies when sequential processing is the only IAM
activity taking place in the system, and only one task is accessing a
given IAM file. This consideration does not apply in the case of GETB
or GETNB operations. In these cases, system operation bypasses the IAM
central buffer.

AVOIDING RESOURCE CONTENTION: Application programs that use the Indexed
Access Method are executed the same as other application programs.
Because the Indexed Access Method and the indexed files are resources
available to all tasks, delays can occur. When more than one task uses
the Indexed Access Method, contention can occur between tasks for any of
the following resources:

An entire indexed file

An index block in the file

A data block in the file

A data record in the file

Buffer space from the system buffer pool.

e 0o 00

For example, during the execution of a request from task A, some buffer
space is required and an index block, data block, or record is locked
(made unavailable to other requests). A request from task B requires
more buffer space than is available or attempts to retrieve a block or
record that was locked by task A. Task B must wait until the required
resource becomes available.

Resources required by the Indexed Access Method are allocated only for
the duration of a request except under the focllowing circumstances:

. During an update, when control returns to the task after a GET or
GETSEQ for update, the subject record is locked. The lock is
released when the update is completed with a PUTUP, PUTDE, RELEASE,
or DISCONN.

Chapter 11. Storage and Performance Considerations 11-7

. During sequential processing, when control returns to the task after
a GETSEQ, the block containing the subject record is locked and held

in the buffer.
Subsequent GETSEQ requests pick up records directly from the buffer.)
When a GET requires a record from the next block, the current block

and buffer are released. Pendinog requests for a buffer area are

satisfied and the next block is locked and held in the buffer.

Except for momentary release of the buffer area between blocks, a

block is locked while it is being processed. Processing is termi-

nated by an end-of-data condition, an ENDSEQ request, a DISCONN

request, or an error condition.

Use the following guidelines to avoid resource contention:

. Disconnect all indexed files before task termination. The DISCONN
request releases locked records or blocks and writes records that
have not already been written.

. Use conditional requests whenever possible so that your application
can be productive while a resource is unavailable.

. Try to schedule applications so that they do not execute at the same
time.

. If a file is used for "read only™ by more than one application, con-
sider multiple copies of the file using unique file names.

L] With multfple Indexed Access Method applications, use direct access
to retrieve @ group of records. A suggested method is the
follouwing:

1. Retrieve the first record by key.

2. Extract the key from the record and save it for the next
retrieval.

~
3. Retrieve the next record using the saved key and a greater than ﬂ(
key relational operator (GT or UPGT).

~ 3
S

4. Repeat the second and third steps until processing is complete.

USING BLOCK MODE

Applications that process primary files sequentially should improve per-

formance by using the block 170 feature of $IAM. This feature enables

$IAM to read data blocks directly into a buffer area you set up in your

application program. Subsequent recquests for data from that block are

then handled within your program by the IAM link module and $IAM is not

g?llﬁd again until the program requests a record not contained in that
ock.

Record level block I/0 is most effective in applications that do a lot
of sequential processing.

The main drawbacks of block I/0 are:

. The feature is supported only for applications written in EDL.

L The block in the user buffer area is locked, so no other application
may access it. The block remains locked until the program replaces
g;sgéah another, issues an ENDSEQ in sequential mode, or issues a

N.

. Each application areas needs a buffer area the size of the file
block size + 36 bytes. This storage is required for each file

opened in block mode. ((:;

11-8 S5C34-0771

° Each application needs to have the block I/0 stub module IAMFR and
:he mgduleslAM linked in. This increases the size of the applica-
ion by 4.3K.

. Block mode support is not available for applications using
high-level languages.

There are two ways to use the block I/70 feature.
- Record-level block I/0

- High speed block reads.

Record Level Block 1/0

Record Level Block I/0 allows vyou to use all of the regular IAM requests
such as GET and PUT, but $IAM puts the data block into the buffer area
in your application program. If a request can be satisfied by the data
in the buffer, then the IAM link module does all the processing and $IAM
is not called. This cuts down on competition for $IAM.
If the block mode file has auto-update secondaries, then PUTUP and PUTDE
requests are invalid. The GET-for-update/ PUTUP and PUTDE call sequence
in this use should be replaced by a GET/ DELETE/ DELETE/ PUT sequence
of calls.
Requests that require a call to $IAM are:
[DELETE - If the record is not in the block, if the record is the
only record in the block, or if the file has
auto-update secondaries.
. DISCONN - always
[ENDSEQ - always - to release the lock on the block.
. EXTRACT - always
. GET - If the record is not in the current block.
4 GETSEQ - If the record is not in the current block.
J LOAD - not applicable
L PROCESS - always

. PUT - If the block is full, if the record does not go into this
block, or if the file has auto-update secondaries.

. PUTDE - If the record is the only record in the block.

. PUTUP - never

. RELEASE - never

Considerations for the use of record level block I/0 are:

. The block in your programs buffer is locked, so no other application
may access it. The block remains locked until the program replaces

it with another, issues an ENDSEQ in sequential mode, or issues a
DISCONN.

Chapter 11. Storage and Performance Considerations 11-9

11-10

. Each application needs a buffer area the size of the file's
blocksize plus 36 bytes. This storage is required for each file
opened in block mode.

. Each application needs to have the block I/70 link module IAMFR
linked in. This increases the size of the application by approxi-
mately 3.5K. Refer to Appendix B, "Preparing Indexed Access Method
Programs" on page B-1 for additional information.

. Files that are opened in block mode which have immediate write-back
on have their block locks released and the block written back with
each write operation (PUT, DELETE, PUTUP, and PUTDE), even if the
request can be satisfied entirely within the current block.

. Files that have auto-update secondaries cause the stub to write the
block back on every PUT and DELETE. This is to allow the secondary
file to be updated. PUTUP and PUTDE are not allowed in block mode
against files with auto-update secondaries.

High Speed Block Reads

In block mode, $IAM reads the data block into a buffer in the user pro-
gram. It is therefore possible for the application program to process
the records in the block itself, going to the link module only to
retrieve records not contained in the block on hand in the buffer. Two
requests, GETB and GETNB have been implemented to facilitate processing
records in blocks. Both requests require the file to be opened by the
PROCESS request in block mode.

Like GET, GETB places the block containing the record that satisfies the
key condition in the user block I/0 buffer area specified in the PROCESS
request. The difference is that the third parameter, instead of being a
record area, is a pointer to the address of the word in the block.

The GETNB request uses the forward pointer in the header of the current
block in the program's buffer area to read the next block of data.

By using GETB and GETNB, your program can read quickly through a file in
a sequential manner. Note that there is5 no "sequential mode"™ concept
with these requests and @ GETB may be issued at any point in a series of
GETNB requests to move backward or forward in the file.

The GETB and GETNB requests are designed to be used by applications that
need to read data, and not to write it. You must code an application
using these requests to process blocks of data in its own buffer. To
help you, IAMEQU contains equates that point into the buffer to the
start of the data. You may may want to use the information in the buff-
er heading to determine, for example, how many data records are in the
block.

Note that if a file is opened in block mode, the PUT and DELETE commands
can still be issued against it. These commands cause the block in the
buffer to be written to disk and therefore update the data file. Ensure
that the data in the buffer is not altered incorrectly if it will be
written back out.

5C34-0771

C

Each block that is read into the user buffer is locked. This locking
requires a call to $IAM. To avoid this call, the application can open
the file for exclusive use (EXCLUSB) in block mode. This prevents other
programs from accessing the file until it is DISCONNECTED, while allow-
ing the fastest possible processing of the data file.

secondary Index Functions

Using secondary indexes affects the performance of the Indexed Access
Method. Some of those reasons are described here.

DIRECT RETRIEVAL: Direct retrievals are somewhat slower when using a
secondary index because of the extra accesses required to retrieve the
data record from the primary file.

SEQUENTIAL RETRIEVAL: Sequential Retrievals are slower when using a sec-
ondary index because the records are returned in order by secondary key.
The primary file containing the data records is in order by the primary
key. Therefore, the records are not stored in the same sequence that
they are retrieved. This requires random accesses to obtain the
records.

RECORD IMNSERTS: Record inserts are slower if any associated secondary
indexes have the auto-update indicator on. A new record must be
inserted into each auto-update secondary index, as well as the primary,
whether the original insert was a primary or a secondary.

RECORD DELETE: Record deletes are slower for the same reason as for
inserts; records must be deleted from secondary indexes that have the
auto-update indicator on. However, the impact for deletion is more
severe than for insertion. This is because a search is required when
multiple records have the same value for their secondary key as the
record being deleted. The group of records having the same key must be
sequentially searched until the record with the required primary key is
found. This time could be quite significant if you have large groups of
duplicate keys.

RECORD UPDATE: Record updates that modify the secondary key must also
update any associated secondary index which has the auto-update indica-
tor on. The secondary index is updated by deleting the old key and
inserting the new key.

DATA RECORD MOVEMEHNT: Each record in a secondary index contains a point-
er to the RBN where the record is located in the primary index file. If
a data record has been moved, due to insert/delete activity in nearby
areas of the primary file, the RBN in the secondary index record will be
wrong. When the affected data record is retrieved through the secondary
index, the error is detected. A full retrieval is then performed, using
the primary key to obtain the data record. The RBN in the secondary
index record is then updated for the benefit of future retrievals. This
activity will affect the performance.

$VERIFY PERFORMANCE: The $VERIFY performance will be slower when the
primary file being verified has a secondary index with large numbers of
duplicate secondary keys. This is because the entire group of duplicate
keys must be searched for the proper record. Because $VERIFY retrieves
all records in the file, these impacts accumulate and the total exe-
cution time can be longer than expected.

Chapter 11. Storage and Performance Considerations 11-11

11-12 $C34~0771

O

CHAPTER 12. ERROR HANDLING AND RECOVERY

This chapter describes how to handle Indexed Access Method errors and
how to diagnose application program errors. The major headings are:

"Return Codes™

"Error Exits™ on page 12-2

"Aids for Analyzing Problems™ on page 12-3
"Application Program Considerations™ on page 12-9.

RETURN CODES

All Indexed Access Method requests return a code in the task code word
of the Task Control Block (TCB). The task code word is the same name as
the task name. The return code reflects the condition of the requested
function. Return codes are grouped in the following categories:

-1 Successful completion
Positive Error

Negative Warning (other than -1)

SYSTEM FUNCTION RETURN CODES

If a system function called by an Indexed Access Method request ends
with a positive return code, the return code is placed into a location
named by the SYSRTCD parameter in the PROCESS or LOAD request. This
location is used until a DISCONN is issued.

For example, the GET request uses the supervisor read function. If the
read ends with a positive return code, that return code is saved in the
location named by the SYSRTCD parameter in the PROCESS request associ-
ated with the GET request. The GET request also ends with a positive
return code in the task control word. The positive return code indi-
cates that a read error has occurred. The cause of the read error can
be determined by examining the location named by the SYSRTCD parameter.

Note: When analyzing errors, the Indexed Access Method return

code in the task code word should be checked prior to the system
return code.

Chapter 12. Error Handling and Recovery 12-1

The following example is a method of obtaining the return code value
from the location SYSRTCD. This routine gets the task SYSRTCD, and com-
pares it to the EDX successful return code, negative one (-1).

YOURPRGM PROGRAM START

SUBROUT ERRTEST
MOVE TASKRC,SYSRTCD get system return code
IF (TASKRC,EQ,-1) if -1, return now

if not -1 then perform

. your diagnosis
ENDIF
RETURN

.

TASKRC DAiA F'o" saved system return code

ERROR EXITS

There are three types of error exits for your application:
e Task error exit, provided by the supervisor
. Error exit, provided by the Indexed Access Method

. The task error exit used by the Indexed Access Method itself in case
of an error.

TASK ERROR EXIT

You can specify a task error exit routine that will receive control if
vour application program causes a soft exception or if a machine check
occurs during the execution of your application.

Because your application may have requests pending (for example, a
record is being held for update or a file is being processed sequential-
ly), you should issue a DISCONN request before terminating your applica-
tion. The task error exit allows you to release records, disconnect
from any file you are connected to, and make your resources available to
other appliczations. Use of the task error exit facility helps to ensure
data integrity and allows proper termination or continuation of your
application.

Implementing the task error exit facility is described in the
Customization Guide of the EDX library.

Note: An error exit is taken if an error is encounterecd on a
DISCONN call to the Indexed Access Method; this could result in a
continuous loop.

12-2 5€34-0771

C

ERROR EXIT

In PROCESS and LOAD requests, the address of an error exit routine can
be specified by the ERREXIT parameter. If specified, this routine is
executed whenever an Indexed Access Method request ends with a positive
return code, except for return codes 1, 7, 8, and 22.

If the exit routine is not specified, the next sequential instruction
after the request is executed regardless of the value of the return
code.

$IAM TASK ERROR EXIT

The Indexed Access Method itself has a task error exit. If this error

exit is given control by the supervisor, it writes these messages to the
$SYSLOG device:

$IAM HAS INCURRED A SEVERE ERROR

$IAM CENTRAL BUFFER ADDRESS IS xxxx — PARTITION n

PSW LSB

VYVVY 2222 2222 2222 2222 2222 2222 2222 2222 2222 222Z 2222

Where xxxx is the address of the $IAM central buffer, and n is the par-
tition containing $IAM,

The PSW (yyyy), and LSB contents (zzzz), are also listed. For an expla-
nation of the P5W (program status word) and the LSB (level status
block), refer to the Problem Determination oguide of the EDX library.

$IAM then goes into an unrecoverable wait and will not process any
access requests. You can dump the central buffer with the $D system
command and take appropriate action to complete vour application (refer
to the Operator Commands and Utilities Reference in the EDX library for
a description of the $D command).

You can use the recovery and backup procedures, described under "File
Backup and Recovery" on page 7-9, to restore the file, or you can resume
execution of your application. To restart your application, you can
either IPL or cancel $IAM and reload it.

If you wish to extend the logic of the error exit, code your oun exit to
replace the $IAM task error exit. Then rename CDIERR (the $IAM task
error exit), name your error exit CDIERR, and rebuild $IAM.

AIDS FOR ANALYZING PROBLEMS

You can get data to find out what is causing your problem by:

U Determining the error return code. If system error logging is
active, use the $IL0G utility to find out what errors have occurred.

] Using a system dump. A system dump tells you how to locate the
?ccess method control blocks, wait states, and how to check for &
oop.

. Verifying and diagnosing vour file. For information on using S$VERI-
FY, see Chapter 10, "The $VERIFY Utility"™ on page 10-1.

Chapter 12. Error Handling and Racovery 12-3

Note: 1If a wait condition occurs or the system terminates, print the
contents of processor storage using the $TRAP/$DUMP utility. See the
Operator Commands and Utilities Reference for information on how to use @E:D

these utilities.

USING $ILOG - ERROR LOGGING FACILITY

This section describes how to use the Indexed Access Method error log
data set with your system. To use the error logging facility, be sure
your system has an error log data set. The data set must be a minimum
of three 256-byte EDX records. The first two records are used for con-
trol, and this would allow one error log entry. The error log entries
are entered in the log data set one after the other as they occur. When
the data set becomes full, the new entries overlay the old entries
starting at the front of the data set again. Therefore the size of the
data set should be based on the frequency of errors, and the frequency
with which the data set is listed or examined. Each error log entry
requires a 256-byte EDX record.

You can load $LOG into any partition. The system command $LOGINIT ini-
tializes and activates error logging for any Indexed Access Method
errors.

To list the Indexed Access Method error log entries currently in the
system error log, you can load $IL0OG using the system command $L. :
Respond to the prompt "(DSNAME,VOLUME):"™ with system error log data set
and volume name.

The list will be directed to the terminal which was used to load $ILOG.

Following is a sample of the printed error report showing two error
records: AN

INDEXED ACCESS METHOD LOG REPORT PROGRAM ACTIVE

TCB ORIG CURR $1AM SYSTEM
PTN ADDR DSNAME VOLUME FNCTN FNCTN RTCODE RTCODE DATE TIME
2 1F64 IAMFILE EDX002 PUTNW PUTNW 62 -1 00700700 00:00:00
2 1F64 TIAMFILE EDX002 PUTNW PUTKNW 62 -1 0070000 00:00:00

2 INDEXED ACCESS METHOD LOG ENTRIES LOCATED
$ILOG ENDED

o

12-6 5C34-0771

USING THE SYSTEM DUMP AND THE $EDXLINK MAP

To use the system dump and the $EDXLINK map, first locate the access
method control blocks by finding the load point of $IAM. To find the
load point (starting address) of $IAM, check the program names in front
of the dump. Next, find the $IAM link map. The link map tells you
where the entry points are in storage. These entry points include con-
trol blocks, module names, work and overlay areas.

If you have customized the access method, vou have access to the link
map. If you have not modified the access method, see the Link Controls
section of the Program Directory. It contains an explanation of how to
generate a link map corresponding to each of the access method packages
($IAM, $IAMRS, SIAMNP, S$IAMRSNP).

After you have obtained the correct link map, find the pointer to
CDIMCB. CDIMCB is the master control block. Once you find the entry
point (address) for CDIMCB, add the loadpoint address of $IAM to the
displacement of CDIMCB. This gives you the location of CDIMCB (MCB) in
the system dump.

The control blocks section of the program directory explains how to gen-
erate a listing of the master control block (CDIMCBM, which contains all
the fields and their addresses.

Locating Information in the System Dump

The following information on file control blocks (FCBs) and Indexed
Access Method Control Blocks (IACBs) is useful when locating
information.

FILE CONTROL BLOCK (FCB) CHARACTERISTICS: FCBs are located within $IAM
in a pool of FCBs. The link map tells you where CDIIAM is. The address
of the oldest FCB in use can be found in MCBFCBQH of CDIMCB. All cur-
rently used FCBs are chained together by FCBQPTR (FCB queue pointer).

To locate the FCBs within $IAM, find the entry point within CDIIAM
called CDISTFCB and add this address to the load point address of $IAM.
The word at the resulting location contains the starting address of the
FCB pool.

The Control Blocks section of the Program Directory explains how to gen-
erate a listing of the file control block (CDIFCBM and CDIFCBXT) which
contains all of the fields and their addresses.

IACB CHARACTERISTICS: The link map also points to the IACBs (Indexed
Access Method Control Blocks). These IACBs:

. Connect your application to an access method file

L Contain control information for the request

. Are located within $IAM in a pool of IACBs.

To locate the IACBs within $IAM, find the entry point within CDIIAM
called CDISTICB and add this address to the load point address of $IAM.
The word at the resulting location contains the starting address of the
IACB pool.

The Control Blocks section of the Program Directory explains how to gen-

erate a listing of the file control block (CDIICBM) which contains all
the fields and their addresses.

Chapter 12. Error Handling and Recovery 12-5

12-6

Analyzing Hait States

There are several types of wait states. If the access method is

waiting,
why. Fi
CDIMCB.

. Why

locate the access method master control block (MCB) to find out
nd out the address of the MCB in the $IAM link map at label

You may ask:

is $IAM waiting?
There may be no request on the dispatch queue, or

No requests on the dispatch queue are active. These requests
may be:

— Waiting on locks

— Waiting on buffers

. Do you have requests on the dispatch queue? Find:

MCBHEAD in CDIMCB. MCBHEAD points to the first IACB referenced
on the dispatch queue.

MCBLASTL in CDIMCB. It points to the last IACB referenced on
the dispatch queue.

ICBNEXT in each IACB. It points to the next IACB on the dis-
patch queue.

If MCBHEAD is zero, there are no requests on the dispatch queue.
Check your application program to see if it regained control
after the $IAM request.

. Is each IACB in a wait state?

. Why

SC34-0771

Check each IACB. Note that ICBFLAG3 is in the IACB. If the
IACB is waiting, bit 6 (ready flag) and bit 7 (post flag) will
be off.

is the IACB waiting? The IACB may be waiting for a:

lock

buffer

If the IACB is waiting for a buffer, check the buffer queue.
Find MCBBUFQH in CDIMCB, and find MCBBUFQE in CDIMCB. If both
fields are zero, they are not waiting on a buffer. Try locking.
Where are the buffers? First check each IACB for:

— ICBFLAGl — Is the ICBPRIBF (primary buffer flag) on?

— ICBFLAG4 — Is the ICBSECBF (secondary buffer flag) on?

Is there any buffer space, and how much?

— If MCBBUFNX equals MCBBUFEN, then there is no buffer space
left.

— If MCBBUFNX is not equal to MCBBUFEN, subtract MCBBUFNX from
MCBBUFEN. This tells vou how much buffer space is left.

— If there are any IACBs that have buffers, the size of these
buffers should make up the remaining buffer area.

C

Analyzing Abnormal System Termination

If the system terminates, do the following:

L Check the FCB chain which contains an FCB for every file opened to
the access method. A single file can have multiple users, but has
only one FCB. The MCB contains the address of the first FCB in the
chain.

. Check the block lock queue and the record lock queue in each FCB.
These queues contain pointers to the IACBs for requests that are
waiting for specific records to unlock. Several requests can be
outstanding and are held up due to either an earlier request for the
same records, or a record within the same block has not yet been
released.

. Check the buffer queue in the MCB to ensure that the buffer pool is

large enough. If all the space in the buffer pool is being used,
the IACBs on the buffer pool queue can not obtain buffer space.

Analyzing Run Loops

If your system is running in a continuous loop:

1. Try to determine the area of the loop

2. Take a system dump with your dump utility

3. Use $VERIFY, to ensure that the data set is correct.
. If the data set is incorrect:

- Rebuild the data set. Your data set could be incorrect if
the system went down in the middle of an operation.

- Run the application again.

. You can also use one of the following to find the cause of vour
looping problem:

- STRAP — To check for a class interrupt, vou can use the
STRAP utility to save the contents of the hardware registers
and processor storage. You can then use $DUMP to format
this information.

- Programmer's Console — If a programmer's console is avail-
able, vou can determine the address range of the loop with
the S5top and Instruction Step buttons.

- SDEBUG — Once you determine the storage addresses of the
loop, you can use the $DEBUG utility to trace the storage
area and determine the name of the program that is looping.

- $L06 — To check for an 1/0 error, you can use the $LOG util-
ity to record the I/0 error log information. You can then
use the $DISKUT2 utility LL command to list the contents of
the log data set for analysis.

Refer to the QOperator Commands _and Utilities Reference for specific
information on using these utilities.

Chapter 12. Error Handling and Recovery 12-7

Analyzing Data Paging Problems

To find if paging is active, check the flag MCBDPAG in CDIMCB. If the GZID
flag is on, data paging is active.

The page control block (PCB) contains several entries that are useful in
problem determination. The location of the PCB in a dump of the system
is determined as follows:

. Determine the placement of the PCIPCB from your link map.

. Then, add the loading point address of $IAM to the displacement of
CDIPCB for its location in the dump.

The Control Blocks section of the Program Directory explains how to
generate a listing of the page control block (CDIPCBM and CDIPTEM)
which contains all the fields and addresses.

The following fields in the PCB are helpful in problem determination.

Field Description
PCBLRU Pointer to the least recently used page table entry.
PCBMRU Pointer to the most recently used page table entry.

PCBMRUSQ Pointer to the most recently used page table entry referenced
in sequential mode.

PCBHASHT Pointer to the hash table.
PCBPTCUR Pointer to the first page table on the page table chain.

PCBPAGID Page ID of the last page accessed in the page area. The page
ID consists of:

M‘\)
PCBFCBa FCB address of the file containing the page. WL)V
PCBPAGE® Page number of the accessed page.

PCBBTE The buffer table entry of the last page accessed (where to
copy to/from).

Determining Page Identification

The page identification consists of three words:
FCB address—1 word
Page number—2 words
The page number is determined using the following calculation:
(Sectors per block ¥ RBN)/Sectors per page
The number of sectors per block is determined as follows:
Block size/ sector size
The number of sectors per page is determined as follows:

2048/Sector size of the device

12-8 5C34-0771

O .

1.

Locating a Page

locate a page in the page area, do the following:

Take the page identification (FCB address and page number) and gen-
erate a hash table entry number using the hashing algorithm.

Go to the selected hash table entry and test the free bit. If the
entry is free (all zeros), the page is not in the paging area.

If the hash table entry is not free, use the pointer to the page
table entry to see if the page identification (in the page table
entry) matches the requested page identification.

If the page identification does not match, and the conflict list
pointer is not null, use the conflict list pointer to locate the
next entry to process in the page table. Check the page identifica-
tion to see if this is the entry you want. Continue until you reach
the end of the conflict list (the first word of the conflict list
forward pointer contains X'FFFF') or you find the desired entry.

If the end of the conflict list is found without a hit, you should
assume the page is not in the paging area.

APPLICATION PROGRAM CONSIDERATIONS

This section describes a number of considerations to keep in mind when
running application programs.

‘:ZE VERIFYING REQUESTS AND FILES

Following are two steps you can take to help you isolate and correct
malfunctions in your Indexed Access Method application program.

Request verification—to determine that requests are correct check
all parameters specified or defaulted on the Indexed Access Method
CALL statements:

- PROCESS/LOAD requests—When issuing a PROCESS or LOAD, check
that the specified file name is the correct file control block
(DSCB) for the file you are verifying.

- GET-PUT-DELETE-RELEASE requests—For these requests, carefully
check the key, its position, length, and the relational operator
(if used). Ensure that the correct address for the indexed
access control block (IACB) is passed from the PROCESS or LOAD
request, and that the record area address is correct.

File verification—read vour $VERIFY report or indexed file dump to
determine whether data or index records are missing or incorrect.

Note: Be sure that the combination of parameters specified by the SE
command of the $IAMUT1 utility to define your file is correct. See
C?apter 9, "The $IAMUT1 Utility"™ for a description of the $IAMUT1 param-
eters.

Chapter 12. Error Handling and Recovery 12-9

THE DATA-SET~SHUT-DOWN CONDITION

Sometimes an I/0 error occurs that is not associated with a specific
request. For example, task A issues a GET on file X. To secure buffer
space to satisfy the request, the Indexed Access Method attempts to
write a block to file Y and, in writing the record, an error occurs.
Data set Y is damaged but there is no requesting program to accept an
error return code.

The error is indicated by setting the data-set-shut-down condition for
file Y. After this condition occurs, no requests except a DISCONN are
accepted for file Y.

Later, if task B issues a GET on file Y, the request ends with a
data-set-shut-down return code. Task B should issue a DISCONN and use
recovery and backup procedures as described under "File Backup and
Recovery"™ on page 7-9, to reconstruct the file. To cancel the
data-set-shut~-down condition, initial program load (IPL) or cancel $IAM.

DEADLOCKS AND THE LONG-LOCK-TIME CONDITION

Because the Indexed Access Method uses record and block locks to pre-
serve file integrity, deadlock and long-lock-time conditions may occur.

The deadlock condition occurs when two or more tasks interact in such a
way that one or more resources becomes permanently locked, making fur-
ther progress impossible. A deadlock can also occur when two requests
from the same task require a lock on the same record or a lock on the
same block in sequential mode.

A long-lock-time condition occurs when your program acquires a record
for update and does not return the record to $IAM for a long time.

Application tasks should avoid using the Indexed Access Method in such a
way that a record or block remains locked for a long period of time,
because other tasks may attempt to use the same record or block. In a
terminal-oriented system, make every effort to ensure that a record or
block is not locked during operator "think™ time. Specifically, you
should attempt to follow these rules:

. Do not retrieve a record for update, display the record at the ter-
minal, and wait for the operator to modify it.

. Do not retrieve a record in sequential mode, display the record at
the terminal, and wait for an operator response.

In both of these cases, a record or block is locked during operator
"think" time and could be locked indefinitely.

A deadlock cannot be broken except by freeing the locks (records) that
are being waited on.

If your application uses more than one IACB, deadlocks are possible.
For example, one task has read record A and attempts to read record B,
while another task has read record B and attempts to read record A. If
vou are using more than one IACB per task, such as in Multiple Terminal
Manager applications, use ENQ/DEQ and interprogram communications to
avoid the deadlocks.

12-10 SC34-0771

You can avoid the long-lock-time condition by using one of the following
two methods:

1.

Retrieve the desired record without specifying update. Then:

Perform processing in a work area.
Retrieve the record, specifying update,

Compare the first record read in step 1 with the second record
read in. If the records are identical, issue a PUTUP request,
specifying the address of the copy in the work area. If they
are not identical, issue a RELEASE request for the record read
in step 3, and repeat steps 1 through 5.

Use conditional requests which do not wait for locks. (See Chapter

8,

"Coding the Indexed Access Method Requests™ for descriptions of

coding conditional requests.)

To retrieve records in sequential mode, use the technique described
in "Avoiding Resource Contention™ on page 11-7.

Chapter 12. Error Handling and Recovery 12-11

12-12 SC34-0771

CHAPTER 13. INSTALLING THE INDEXED ACCESS METHGD

O This chapter presents an overview of how to install the Indexed Access
Method.

The Indexed Access Method is distributed on two double surface
diskettes. The diskettes are formatted at 256 bytes per sector.

INSTALLATION PROCEDURES

The installation information which follows is for planning purposes
only. The specific details for installing the product are included in
the "Program Directory", which is shipped with the product.

INSTALLING THE INDEXED ACCESS METHOD

Installing the Indexed Access Method consists of two steps:
1. Step 1

a. Ensure that adequate space is available for the installation
| according to the approximated requirements shown in Figure 13-1.

EDX002 7 650 Load Modules
ASMLIB 3 400 Source Modules
ASMLIB 2 75 Link Module

‘:jﬁ |) Volume Data Sets EDX Records Contents

Figure 13-1. Volume Space Requirements

2. Step 2

a. Copy the Indexed Access Method load module ($IAM), the utility
program ($IAMUTL1), the load module ($IAMUT3), the file verifica-
tion program ($VERIFY), the log report program ($IL0OG), and the
source module which indicates level of Indexed Access Method
installed ($5719IAM), to the EDX002 volume.

Copy SIAMSTGM to the EDX002 volume if you will use the Indexed
Access Method Data Paging support.

b. Copy the following source modules and link module to the ASMLIB
volume: TAMEQU, FCBEQU, IAM, IAMFR, and IDEFEQU.

Chapter 13. Installing the Indexed Access Method 13-1

ASSEMBLING AND EXECUTING THE INSTALLATION VERIFICATION PROGRAM

To assemble and execute the installation verification program: @l:p

1. Submit to the $JOBUTIL utility, the 'proc' $SAMPROC provided on vol-
ume AM4001 to assemble and link edit the verification program.

The source statements for the installation verification program are
contained in a data set named SAMPLE on volume AM4001.

2. Use S$IAMUT1 to define and allocate an indexed file to be used by the
installation verification program. Respond to the SE option 2
prompts with the indicated values:

BASEREC 10 FREEBLK 10
BLKSIZE 256 RSVBLK]
RECSIZE 80 RSVIX 0
KEYSIZE 28 FPOOL 0
KEYPOS 1 DELTHR 0
FREEREC 1 DYN 10

3. Load $SAMPLE and when prompted for the data set and volume, respond
with the name for the file allocated in the previous step
(SAMPFILE).

Note: The procedure $SAMPROC assumes that ASMWORK and LINKWORK

data sets exist on EDX002. Allocate these data sets if they do

not already exist with the $DISKUT1 Event Driven Executive

Utility. Refer to the Operator Commands and Utilities Reference

manuval in the EDX library for details on allocation of these data AN
sets. WL)/

13-2 5C34-0771

APPENDIX A. SUMMARY OF CALCULATIONS

The following calculations can be used to define an indexed data set.
For a more detailed description of these calculations, see Chapter

3, "Defining Primary Index Files"™ on page 3-1. In the calculations
requiring division, results with non-zero remainders are either trun-
cated or rounded up. To truncate is to drop the remainder; to round up
is to add one (only if the remainder is non-zero), and truncate.

Data block
Records per data block = block size minus 16, divided by @ = (BLKSIZE —16)/RECSIZE @
record size; result truncated
@ Free records per block ' @ = FREEREC
@ Allocated records per data block = Records per block @ = @ - @

minus free records per block

Index block (general}

Index entry size = key length plus 4; must be even—add @ = KEYSIZE +4 (+1 if odd)
if odd
@ Total entries per index block = block size minus 16, @ = (BLKSIZE -16)/ @@
wvided by index entry size; result truncated
Index block (PIXB)
Free entries per primary index block (PIXB) = specified (® =FreeBLk %of &) (D
percentage of total entries per index block; result rounded up
Reserve entries per PIXB = specified percentage of total () =rsvBLkxof (9 (@D
entries per index block; result rounded up. If free entries per (-1if @ " @ = @)

PIXB and reserve entries per PIXB require all PIXB entries,
subtract one from reserve entries per PIXB

Allocated entries per PIXB = total entries per index block = @ - @ - @
minus free entries per PIXB, minus reserve entries per PIXB

Index block (SIXB)
Reserve entries per secondary index block (SIXB) = @ = RSVIX % of @ @
specified percentage of total entries per index block; result (-1if @ = @)

rounded up. If reserve entries per SIXB require all SIXB
entries, subtract 1.

(10) Allocated entries per SIXB = total entries per index = @ -

block minus reserve entries per SIXB

Appendix A. Summary of Calculations A-1

Delete threshold

@ The number of blocks to retain in cluster (delete threshold)
is calculated in one of three ways:

a. If the RSVBLK parameter was not specified: Number of
blocks to retain in cluster = total entries per index block

b. If the RSVBLK parameter was specified, but the DELTHR
parameter was not specified: Number of blocks to retain
in cluster = allocated entries per PIXB, plus one-half of
free entries per PIXB; result rounded up

c. If the RSVBLK parameter was specified and the DELTHR
parameter was specified: Number of blocks to retain in
cluster = specified percentage of total entries per index
block; result rounded up. If the result is zero, set it to 1.

Data in data set

Initial allocated data blocks = base records divided by
ocated records per data block; result rounded up

Number of clusters in data set = initial allocated data
blocks, divided by allocated entries per PIXB; result rounded
up

Total number of free blocks in data set = number of

usters in data set, times free entries per PIXB

Indexes in data set

Number of primary index blocks (PIXBs) = number of
usters in data set

Number of secondary index blocks (SIXBs) = number
of PIXBs, divided by allocated entries per SIXB; result
rounded up

@ Calculate the number of index blocks for levels 3 to n.
Note that levels 1 (PIXB) and 2 (SIXB) have already been
calculated. When the number of index blocks at a level is 1,
n has been reached and the calculation is finished.

Number of index blocks at level i (i = 3 to n) = number of
index blocks at next lower level, divided by total entires per
index block; result rounded up

(18) Total number of index blocks = sum of index blocks at
each level until a level containing a single index block is
attained

A-2 SC36-0771

@ -0

@-0+0r0

@ =peLtHR%of) @D

{ro, set @ to 1)

@ -saserecs) @D
@-@/'00

®-0°0

® -0
®-0/'0 0

»

C

Free pool

Number of new data blocks which can be assigned to existing
usters = reserve entries per PIXB, times number of PIXBs

Number of new clusters (PIXBs) which can be created = reserve
entries per SIXB, times number of SIXBs

@ Number of new data blocks which can be assigned to new
clusters = total entries per index blocks, times number of new clusters
which can be created.

Maximum possible free pool = number of new data blocks which
can be assigned to existing clusters, plus number of new clusters
(PIXBs) which can be created, plus number of new data blocks
which can be assigned to new clusters.

Actual number of free pool blocks = specified percentage of
maximum possible free pool; result rounded up.

Size of data set

Total number of blocks in data set = 1 (for file control
block), plus total number of index blocks, plus initial allocated
data blocks, plus total number of free blocks in data set, plus
actual nubmer of free pool blocks.

Appendix A. Summary of Calculations

@ -rrooLxot i) D

O O N ORICORIC

A-3

A-4 SC36-0771

O

PPENDIX B. PREPA INDEXED ACCESS 0D PROGRAM

To prepare an application program that issues Indexed Access Method
requests, perform the following steps:

1. Enter your source program statements, using one of the Event Driven
Executive text editors ($FSEDIT, $EDIT1, or $EDITIN).

2. Create the $EDXLINK control statements required to combine your pro-
gram with IAM (and IAMFR if you are using Block I/70) and any other
object modules you may need in your application (IAM and IAMFR are
the link modules on ASMLIB). Use one of the text editors to perform
this operation.

3. Assemble or compile your source program.
4., Usae the linkage editor, $EDXLINK, to combine the object modulas into
; singla load module, using the control stataments prepared in Step

Nh:ndthe preceding steps are completed, the program is ready to be exe-
cuted.

Appendix B. Preparing Indexed Access Method Programs B-1

A_SAMPLE $JOBUT PROCEDURE AND LINK-EDIT CONTROL DATA SET

The following are examples of a $JOBUTIL procedure and a link-edit con- @ZZD
trol file used to prepare a program.

Sample $JOBUTIL Procedure

The following $JOBUTIL procedure is an example of preparing an EDL pro-

gram.

1 3.3.3.3.3.3.3.3.3.3.3.3.33.3.3.3.3.3.3.33.33.33333333331338333.833.823.8.333.8.333.83.

*

¥ THESE STATEMENTS WILL COMPILE, LINK, AND UPDATE THE

% APPLICATION.

*

t333.3.3.3.3.33.3.2.3.3.3.3.3.3.3.3.3.2.3.3333.333.33.2332132833333.3.3883.33.0.3.3.3.33.

JOB COMPILE

¥X% COMPILE USERPROG SOURCE XXX

LOG $SYSPRTR

PROGRAM $EDXASM,ASMLIB

DS USERPROG, EDX002 SOURCE MODULE

DS ASMWORK , EDX002 ASSEMBLER WORK DATA SET

DS USEROBJ, EDX002 ASSEMBLER OUTPUT

PARM LIST $SYSPRTR

EXEC

JUMP END,GT, 4

JOB LINK

LOG $SYSPRTR

PROGRAM SEDXLINK,EDX002

DS LINKWORK , EDX002 WORK DSNAME A
* LINK-CONTROL DATA SET W/
PARM LINKCNTL,EDX002 $SYSPRTR -
EXEC

LABEL END

E0J

B-2 SC364-0771

Link Edit Control Data Set Example

The following link-edit control records can be used to link-edit an
Indexed Access Method application with the Indexed Access Method.

1332333223323 32 333333333323 2333338 308333333 3333333333.3.83.33

*
¥ LINK EDIT CONTROL DATA SET (LINKCTL)
%*

3333333333323 33333833332383 3333333233333 3833338333333 ¢3 %
INCLUDE USEROBJ,EDX002 INCLUDE APPLICATION PGM OBJECT
INCLUDE IAM,ASMLIB INCLUDE INDEXED ACCESS METHOD
INCLUDE IAMFR,ASMLIB INCLUDE BLOCK I/0 SUPPORT
LINK USERPROG, EDX002 REPLACE END
END

Appendix B. Preparing Indexed Access Method Programs

B-3

B-4 5C34-0771

APPENDIX C. CODING EXAMPLES

This chapter demonstrates how to code the Indexed Access Method request
functions by means of sample programs. This example uses Event Driven
Language CALL functions. The second example uses the COBOL language.
The third example in this chapter is coded using PL/I language.

EDL INDEXED ACCESS METHOD CODING EXAMPLE

This program gives an example for each of the major Indexed Access Meth-
od function calls. The indexed file is opened first in load mode and
ten base records are loaded followed by a DISCONNECT. Next, the same
file is opened for processing. A GET request is performed for the first
record whose key is greater than 'JONES PW'. Two more records are
retrieved sequentially and then the ENDSEQ call releases the file from
sequential mode. A record is then retrieved directly by key and
updated. Another record is retrieved sequentially and deleted. A new
record is inserted and another one is deleted by their unique keys.
Then, an example of extracting information from the file control block
is shown. Finally, an example of sequentially retreiving all of the
file's records is shown using the fast block read support. Upon suc-
cessful completion the message "Verification Complete" is displayed on
the console.

Although using secondary keys is not demonstrated in this example the
requests are coded the same for secondary keys as they are for primary
keys. When accessing secondary keys use the secondary index file name
instead of the primary index file name. The Indexed Access Method will
open the primary index file and retrieve the data record according to
the secondary key requested if the secondary file has not been opened
independently.

This program requires that an Indexed Access Method file has been
defined with the $IAMUT1 utility with the following specifications:

BASEREC 10
BLKSIZE 256
RECSIZE 30
KEYSIZE 28
KEYPOS 1
FREEREC 1
FREEBLK 10
RSVBLK 0
RSVIX 0
FPOOL 0
DELTHR 0
DYN)]

Appendix C. Coding Examples C-1

T4L0-%£0S ¢2-0

¢ 3IVdS

19+ CEAIN) 1 (44NG) ‘EIVI‘LAO+WVI 1IVD
2696 26 96 36 36 6 3626 26 26 26 36 36 26 26 36 26 6 36 36 36 36 36 36 26 36 26 36 26 36 36 36 36 36 36 36 36 36 36 JE 26 26 36 96 6 36 36 36 3 36 36 26 36 26 36 36 6 36 76 36 26 3 26 34 36 36 2 2 2 3¢
] "AINITALIE QH003A FHL 40 AN FHL 10371438 %
* 04 Q3TJ4IAOW 39 T7IM G13I4 AN IHL “.Md SINOC. NVHL d31VIIO x
* SI A3 ISOHM QA023d 1SAI4 IHL 40 IVAIINLIIA 1I3UIA V WI04¥3d x
36 36 36 56 76 36 36 26 36 36 36 36 26 36 36 36 3636 36 26 36 26 26 36 36 2 36 36 36 36 26 26 36 36 36 3636 26 26 26 26 26 96 36 6 36 36 26 I 36 26 26 26 36 6 26 2 36 26 36 36 36 6 36 I 26 26 26 6 2 6 X%

¢ 3AJV¥dS

JIVHS+ (VINIL0O) ‘(TSA) ‘dIVISSII0Ud+ ‘WYI 11V
3636636 6 3 26 96 3 6 36 36 3 26 96 36 2 3 36 26 2 262636 26 636 36 36 2606 26 26 6 6 36 36 7 26 36 36 36 36 36 3 26 2636 26 26 36 36 6 26 36 26 36 6 36 3 236 36 36 36 36 26 % %
* ONISS3J20dd d04 31I4 J3IX3IANI 3IHL NILO *
36 36 36 36 36 36 76 26 36 36 56 6 36 36 26 26 36 36 6 36 36 26 26 26 36 26 26 36 36 6 36 26 26 26 26 6 36 36 26 96 26 36 26 36 6 36 36 36 J6 6 26 96 96 26 26 36 36 J6 26 6 36 36 36 26 26 36 26 X 6 36 % %

¢ 3IVvdS

GOVI‘NNOOSIG+‘WYI 11VD
2636 36 36 36 36 26 36 26 36 36 36 36 36 26 J6 26 36 26 6 36 36 36 36 26 2 26 26 26 6 36 26 36 26 26 3 3 26 2 2 2626 2 6 3 6 3 2 26 36 36 26 26 36 26 5 3 26 36 36 6 2 26 26 26 26 26 26 X % % %

* 13S viva 3IHL ONISOTD Ad IAOW AVO1 40 in0 139 x
36 36 3 X 36 36 6 3 36 96 6 36 36 36 26 26 36 6 26 26 36 6 26 2636 26 6 36 36 36 3 36 26 36 36 2636 26 36 26 36 36 36 36 36 3 3 36 JE 6 36 3 2 26 36 36 36 26 6 36 26 36 36 36 36 26 36 26 36 36 % %
¢ 30VvdS
00an3
qd023d 1X3IN 01 INIOd 08‘¥431NIOd aav
YILINIOd=Hd“ () ‘GIVI‘LNd+‘WYI T1VD
SIWIL‘WNNIIY 0a
(1a40234)V ==> HILINIOd TAA0I3Y“4ILNIOL VIAOW
3636 26 3636 36 3 36 26 2 36 36 36 3 36 26 36 26 36 36 3 3 26 26 36 36 36 36 36 26 36 36 36 36 2 36 36 36 26 36 36 36 36 36 36 6 3 2 26 36 6 2 36 26 6 36 2 26 36 36 36 36 26 36 36 36 36 26 36 36 26 X
* ONIAVOT Jod 13S vivd SS3JIOV d3IX3IANI 3IHL AVO1 x
96 36 36 26 36 96 6 2 36 36 6 36 36 3 36 36 36 3 26 36 36 36 36 36 36 6 36 36 36 36 36 3 26 36 36 36 36 6 36 36 36 36 36 36 36 36 36 36 26 36 96 36 36 36 36 36 36 36 36 3 36 2 36 26 36 36 6 26 36 6 % %
¢ 3IVdS

FAVHS+ (AVINIdO) “(TSA) ‘9IVI‘AVOT+‘WVI 11VD
36 36 36 36 36 26 36 € 26 6 36 36 26 36 2 36 36 36 36 36 26 26 2 26 36 36 26 36 X I 26 26 36 26 36 26 36 36 26 J6 36 26 36 26 36 36 26 26 36 36 36 6 26 36 3 26 36 26 36 2 36 36 X6 36 36 26 2 26 6 36 X%

* ONIAVOT ¥0d4 135 VIVA SS3DIV A3AXAANI IHL N3ILO x
3636 3 36 36 36 36 36 36 6 36 36 36 3 26 3636 36 26 36 36 2 36 36 36 36 6 36 96 26 6 36 26 26 € 36 36 36 36 26 36 36 3 2 36 6 3 3 I 36 36 I 2 36 26 36 3 36 36 36 X6 36 36 3 36 36 6 36 26 36 3 %
2 3A0vdS
1%3d
JOVSS3W N0907 LNI¥d 0=3aNIT‘N090T pthzwmm
L1ON3

% nd3 13dv1s

4033L=LIXYETEé=SA‘ LUVLIS WVAO0Ad ITdWVS

362636 6 36 96 26 26 36 36 36 36 26 36 2636 26 36 36 2636 36 36 36 6 36 26 36 36 26 3 36 96 36 2636 36 36 36 26 36 6 36 36 26 36 36 36)€ X %6
x* %
* WYAO0dd NOILVIIAdIAIA/3TdWVS QOHLIW SS3IIV AIXIANI *
* *
3636 36 36 36 36 3 26 36 36 36 6 26 36 26 36 3 36 6 26 36 36 36 36 36 36 36 3 36 36 3 36 36 36 36 36 26 36 236 3 36 36 36 26 36 3 36 36 36 2676 36 J6 36 36 36 36 26 36 36 I 36 26 3 36 36 3 36 6 3 ¢

31dHYX3 ONIGOJ GOHL3IW SS3JIV J3AX3IANI 143

o)

b33 3332333333223 3233 3333333333333 3 33333333233 333333 3323333333333 3333333

¥ PERFORM SEQUENTIAL RETRIEVALS OF THE FIRST TWO RECORDS WHOSE *
¥ KEYS ARE GREATER THAN OR EQUAL TO '"JONES PW', AND THEN GET OUT *
¥ OF SEQUENTIAL MODE. *

36 36 36 96 36 6 36 36 36 36 I 96 6 36 26 96 6 3 36 36 I I 36 36 26 6 36 36 96 36 36 I 3 36 36 3696 6 36 36 36 6 36 36 3 I 3¢ 6 36 36 36 36 36 I 6 36 96 26 36 I 96 36 6 36 I 36 36 36 3¢ 36 3 %€
CALL IAM,+GETSEQ,IACB, (BUFF), (KEY1),+GE
CALL IAM,+GETSEQ,IACB, (BUFF)

CALL IAM,+ENDSEQ,IACB, (BUFF) END SEQUENTIAL MODE

SPACE 2
36 56 36 96 5 3 36 36 36 3 36 36 3 3 36 36 36 36 36 36 96 3626 26 96 3 I 36 36 2 3 36 36 3 I 26 36 3 3 I 36 36 36 I I 2 36 I 36 36 6 3 36 36 3 36 36 6 36 36 36 3 36 36 36 36 36 36 36 3¢ 36 ¢
¥ RETRIEVE THE RECORD WHOSE KEY IS 'JONES PW' FOR UPDATE. WHEN IT *
% IS5 IN THE BUFFER, MAKE A CHANGE AND WRITE IT BACK. *

1 3.3.3.3.3.33.3.3.2.3.3.3.3.3.333.3.3.3333.3.3.1.3.3.3.3.3.3.3.3.33.3333.3.3333333.3.3.33.3333.3.3333.333.3.83.3.3.3

CALL IAM,+GET,IACB,(BUFF),(KEY1),+UPEQU

MOVE BUFF+30,0

CALL IAM,+PUTUP,IACB, (BUFF)

SPACE 2
t3.3.3.3.3.3.3.3.33.3.333.333.333.2.3.33.3.3.3.33333.3.3333.3.3333333.33.3.33333.3333333333333.3.333%
x DELETE THE RECORD WHOSE KEY IS "JONES PW' BY A SEQUENTIAL UPDATE, x
x AND THEN GET OUT %OF SEQUENTIAL MODE. x
1 3.3.3.23.8.2.33333.33.3.3.3.333.3.23323.3.3333.3.33.33.3.3.3.33.3.3.333333333.2.3.1333.3.233333.3.3.33.3.3.3

CALL IAM,+GETSEQ,IACB, (BUFF), (KEY1),+UPEQU

CALL IAM,+PUTDE,IACB, (BUFF)

CALL IAM,+ENDSEQ,IACB, END SEQUENTIAL MODE

SPACE 2
3396 96 96 36 96 36 36 36 96 36 36 3 2636 6 36 I 3K 3 5 I 3 3 36 2 3 I 26 ¢ 3636 26 36 3 26 26 36 3 36 26 J6 36 96 36 36 36 36 36 36 3 X 96 36 36 36 36 I 36 36 36 36 36 36 26 6 3 ¢
¥ INSERT A NEW RECORD WITH A KEY OF "MATHIS GR' *

3696 36 3 3 363 36 36 36 36 2 I 3626 36 5 36 6 3 3636 3 26 3 36 3 3636 36 3 36 36 36 3 26 26 3 26 I 3 36 I3 26 96 36 36 36 36 36 36 36 36 I 36 36 36 2 36 36 3 36 36 36 36 36 96 36 36 3¢ %
CALL IAM,+PUT,IACB, (NEWREC)

SPACE 2
363696 2 3 36 3 3 X 36 3 36 3 36 26 3 36 36 3 36 9 36 I 6 3 6 3 3¢ 36 26 36 36 I 36 36 6 36 36 36 26 36 € 3 I€ 36 36 36 3 36 JE I6 3 J6 36 6 I6 36 36 I€ 36 36 36 36 36 6 36 36 2 3¢ %
¥ DELETE THE RECORD WHOSE KEY EQUALS 'LANG LK' *

3636 36 36 36 3 36 36 363 26 36 36 36 36 26 36 36 26 6 36 2 6 I 36 36 3 36 I 36 36 36 6 226 36 26 36 363 36 36 26 36 3 36 I 3 2 3 26 I 36 36 36 26 36 36 36 26 36 6 36 J6 26 36 6 36 3 2 3¢ %
CALL IAM,+DELETE,IACB, (KEY2)

SPACE 2
3636 36 36 26 36 36 36 36 36 36 3 36 36 I 36 36 I 36 36 I I 36 26 36 36 36 6 36 36 36 36 36 I 36 36 3 36 36 36 36 36 3K 3 3 96 36 36 36 36 36 36 36 36 36 36 36 36 36 I 36 36 36 36 36 36 I 3 % 3¢ %
¥EXTRACT THE FILE CONTROL BLOCK INTO THE EXTRACT BUFFER *

363 36 36 36 36 36 2 36 36 36 26 36 I 36 26 3 I 5 3 3 36 56 3 36 I 36 26 36 3K 36 36 36 36 36 26 36 36 36 X 36 36 36 36 3 3 36 3 3¢ 36 3 3 36 X 36 I 36 36 36 36 36 36 96 36 36 6 36 36 3¢ 36 ¢
CALL IAM,+EXTRACT,IACB,(EXTBUF),128

MOVEA #1,EXTBUF #1 <-- A(EXTRACT BUFFER)

MOVE FLAGBYTE, (0, #1),BYTE OBTAIN FCB FLAG BYTE

SPACE 2
36 36 36 36 6 36 3 36 3 36 HE 36 3 36 36 36 36 36 36 36 36 3 36 36 6 36 36 26 36 I 36 6 26 36 36 3 36 2 I 6 I 3 I 36 36 36 36 2 36 36 I6 36 36 I 36 X 3 I 6 96 36 36 36 36 36 36 36 36 36 36 26
% CLOSE THE FILE *

3636 26 36 36 3 3 36 3 3 36 3 36 6 36 36 36 I 26 36 36 26 3 36 36 3 36 36 36 36 36 26 I 96 3 26 36 36 26 36 3 26 36 3 3 96 3 36 36 26 6 36 6 36 36 6 36 36 36 96 36 36 36 36 I I 36 3¢ 36 3 %
CALL IAM,+DISCONN,IACB

SPACE 2
36 36 56 36 36 36 36 I 363 K 3 33 3 I 3 360 6 56 3 26 56 236 36 3 36 36 36 36 36 36 3 I 363 2 26 36 363 36 96 3 36 36 36 6 36 36 6 26 96 26 36 I 26 36 3 3 36 36 36 36 36 3¢ % %€
¥ OPEN THE INDEXED FILE FOR PROCESSING IN BLOCK MODE *

36 36 26 36 36 36 36 36 3 3 236 36 36 36 36 36 36 36 36 36 26 36 3 26 36 26 36 3 26 6 36 36 3 36 36 36 26 3 I6 3 36 36 36 36 36 36 6 36 36 36 36 36 26 6 36 36 36 26 6 3 36 36 26 96 36 26 3)6 3¢ 3 ¢
CALL TIAM,+PROCESS,IACB,(DS1),(OPENTAB),+SHAREB
SPACE 5

Appendix C. Coding Examples

c-3

3636 36 36 36 36 36 36 36 36 36 6 336 36 36 36 3 3 36 36 I6 6 96 3 36 36 96 36 36 36 36 IE I I 96 6 3 3 3 36 9696 96 36 36 36 3 3 36 36 36 36 6 36 36 36 3 36 36 26 36 36 36 3 36 I)36 3¢ ¢
*¥ LOOP THROUGH THE FILE USING GETB/GETNB COMMANDS *
2696 36 36 36 3 363 36 36 26 6 36 36 36 36 36 36 36 36 3 I HIE K I 36 36 36 6 3 3633 I I3 I 6 36 3 I I I 36 36 36 6 36 36 36 2 36 I 96 36 3 36 36 36 36 36 96 36 36 36 3 36 3 ¢
CALL IAM,+PROCESS,IACB,(DS1), (OPENTAB),+SHAREB
CALL TIAM,+GETB,IACB,(RECP),(KEYLOWV),(GE) GET 1ST BLOCK

DO WHILE, (RTCODE,NE, +EOD) WHILE MORE RECORDS IN FILE
MOVE #2,RECP DISPLACEMENT TO 1ST RECORD
MOVE #1,BLOCKBUF,FRXUSECT NUMBER OF RECORDS IN BLOCK
MULTIPLY #1,+RECLEN NUMBER OF BYTES
ADD #1,#2 ADDRESS OF LAST RECORD
DO WHILE,(#2,LT,#1) MORE RECORDS IN BLOCK

MOVE BUFF, (0, #2)(+RECLEN,BYTES) RECORD INTO BUFFER
9696 96 36 36 96 36 36 36 36 96 26 36 36 36 36 36 36 36 36 36 3 3 3 36 36 3 36 36 26 96 96 36 36 3 36 2 2 3K 36 36 36 I 26 96 36 9 3K 36 36 3 36 3 36 2 3 36 36 36 6 3 3 26 36 96 36 36 6 % %

¥ AT THIS POINT YOU HAVE GOT A RECORD IN A BUFFER (BUFF) WHICH COULD ¥*

¥ BE PRINTED OR MANIPULATED IN SOME OTHER WAY. THIS EXAMPLE WILL *
¥ MERELY BUMP THE RECORD POINTER AND CONTINUE THROUGH THE FILE *
¥ SIMPLY READING ALL OF THE RECORDS UNTIL NONE ARE LEFT %

2696 36 36 96 96 26 96 96 36 36 96 96 26 6 36 36 36 36 36 36 3626 96 X6 36 96 ICH 26 266 J6 36 36 36 06 36 3 36 36 36 96 36 36 36 36 36 36 36 36 3 36 36 36 36 3 3 36 36 36 36 3 36 3¢ 36 3 36 ¢ X
ENDSDD #2,+RECLEN POINT TO THE "NEXT™ RECORD
CALL IAM,+GETNB,IACB READ IN THE "NEXT" BLOCK
MOVE RTCODE,SAMPLE GET IAM RETURN CODE

ENDO

SPACE 5
3636 3636 36 3 33 36 96 36 36 36 36 96 36 36 6 3 3 36 36 36 26 96 36 36 36 36 36 36 3 I 36 36 36 3 3 3 2 96 36 36 96 36 3 36 36 3 3 36 36 36 96 3 36 36 IE 36 36 36 36 36 36 36 36 3¢ 36 96 36 3¢ ¢
¥ WRITE VERIFICATION COMPLETE MESSAGE TO THE OPERATOR *
J6 062969636 26336 36 26 302 36 96 26 6K I I KKK H XK K 33 336 3 2 36 3 36 2636 3 36 36 3 3 3 3 6 36 36 6 36 6 6 6 6 6 36 2 3 3¢ 3 36 6 2 %

ENQT '

PRINTEXT SKIP=1

DEQT PRINTEXT VERIF,SPACES=0

GOTO FINISH GO OVER ERROR EXIT ROUTINE
SYSERR EQU x GETS CONTROL ON SYS/PGM CHK

2636 36 36 96 36 36 2 36 3 3 36 36 3 36 36 36 36 36 36 3 36 2 I 96 26 6 3 36 6 36 36 3 36 6 36 26 96 3 36 3¢ 36 3 36 36 36 3 3 I 3 3 36 36 3 36 6 36 36 3 3 3 36 3 36 36 3 2 3 X K H %
¥ WHEN A TASK ERROR EXIT IS SPECIFIED IN AN INDEXED ACCESS *
¥ METHOD PROGRAM, THE USER MAY RELEASE ALL ACTIVE RECORDS AND *
¥ BLOCK LEVEL LOCKS AS WELL AS DISCONNECT THE FILE IVSELF BY *
¥ ISSUING THE 'DISCONN' CALL FOR EACH FILE THAT IS OPEN %*
¥ WRITE VERIFICATION COMPLETE MESSAGE TO THE OPERATOR *
3636 36 36 36 36 3 3 36 3% 36 36 36 36 36 26 36 36 36 36 36 36 36 96 36 36 36 I6 I 36 36 3 36 36 I 26 36 6 36 36 96 36 36 26 I€ 36 3 3 36 6 6 36 36 I6 6 36 I I 36 3 26 36 96 3 36 96 36 2 36 I 6 ¢
GOTO FINISH

EJECT
TAMERR EQU * GETS CONTROL ON IAM ERRORS
EOX$ RTCODE, SAMPLE
N

C-4 S5C34-0771

O

PRINTEXT SKIP=2
PRINTEXT RTCODMSG

PRINTNUM RTCODE, TYPE=S,FORMAT=(3,0,1)

PRINTEXT SKIP=1

PRINTEXT ERRMSG,SPACES=0

DEQT
EQU

CALL _IAM,+DISCONN,IACB
PROGSTOP

EJECT

FINISH

€ 36 3€ 2 36 € I 3 € I I 3 IE IE IE I IE I I I I IE I I I I I IE I I IE I I JE I IE JE IE I I I I 3E I I6 IE I JE IE IE JE I I IE 3€ I I 36 I IE IE IE I I I I 3¢ 36 I 3¢ 3¢ ¢

¥ DATA DEFINITION AND STORAGE AREAS

1333333333333 233323333383 8333833883330 83 88303 83830338333333.38333333.33.33

EOD EQU -80
RCLEN EQU 80
RECNUM DATA F'10'
RTCODE DATA F'0°'
OPENTAB DATA F'0’

DATA ACIAMERR)

DATA 0’

DATA A(BLOCKBUF)
RECP DATA F'0'
BLOCKBUF BUFFER 292,BYTES
*
RECORD1 DATA CLB80'BAKER RG'
RECORDZ DATA CL80'DAVIS EN'
RECORD3 DATA CL80'HARRIS SL'
RECORD4 DATA CL80'JONES PUW'
RECORD5 DATA CL80'JONES TR'
RECORDS DATA CL8O0'LANG LK'
RECORD7? DATA CL80'PORTER JS'
RECORD8 DATA CL80'SMITH AR®
RECORD9 DATA CL8O'SMITH GA!
RECORD10 DATA CL80'THOMAS SN'
FLAGBYTE DATA H'0'

DATA H'0'

*

END OF DATA INDICATOR
SAMPLE RECORD LENGTH

OF RECORDS TO LOAD

IAM RETURN CODE

SYSTEM RETURN CODE ADDRESS
USER EXIT ROUTINE ADDRESS
END OF DATA ROUTINE ADDRESS
ADDRESS OF BLOCK I/0 BUFFER
POINTER TO 1ST RECORD
BLOCKSIZE+36 BYTES

FCB FLAGBYTE

Appendix C. Coding Examples C-5

NEWREC DATA CL80'MATHIS GR'

BUFF TEXT LENGTH=8¢
DATA X'0404" PREFIX FOR LOW KEY VALUE
KEYLOWV DATA 2F'0’ LOW KEY VALUE
KEY1 TEXT 'JONES PW',LENGTH=238
KEY2 TEXT 'LANG LK',LENGTH=238
DATA X'1C! TOTAL LENGTH OF KEY
DATA X'00° USE ALL OF KEY
KEY3 DATA 'JONES PW'
IACB DATA F'0’ ADDRESS OF IACB PUT HERE
EXTBUF DATA 64F'0’ FCB PUT HERE BY EXTRACT

LOGON TEXT '"INSTALLATION VERIFICATION PROGRAM ACTIVE'

VERIF TEXT 'VERIFICATION COMPLETE'

ERRMSG TEXT 'VERIFICATION INCOMPLETE DUE TO BAD RETURN CODES®
RTCODMSG TEXT "INDEXED ACCESS METHOD RETURN CODE: °*

EJECT
I 2 2 26 36 3 26 2 IE I K I I IE IE I I I 36 36 3 3 I I I 3 3 I IE IE 2 FE I I IE I IE IE IE IE I I I I 3 I IE I I 26 I IE K IE I I I I I I 3 JE I I I I I I X
¥ THE FOLLOWING STORAGE IS USED BY TASK ERROR EXIT HANDLING X
3333 3333333333288 3232238222333 3333 3233333 33333333223383333333 333333383333
TEECB EQU * TASK ERROR EXIT CONTROL BLOCK

DATA F'2’ # OF DATA WORDS THAT FOLLOW

DATA A(SYSERR) ADDRESS OF EXIT ROUTINE

DATA A(HSA) ADDRESS OF HARDWARE STATUS AREA
* HARDWARE STATUS AREA. THIS STORAGE WILL BE FILLED IN
* EEUHARDNARE UPON SYSTEM OR OR PROGRAM CHECK INTERRUPT
HSA *

DATA F'0’ PROCESSOR STATUS WORD
HSALSB EQU * LEVEL STATUS BLOCK:

DATA F'0" ADDRESS KEY REGISTER

DATA F'0? INSTRUCTION ADDRESS REGISTER

DATA F'0' LEVEL STATUS REGISTER

DATA 8F'0° GENERAL REGISTERS 0-7

EJECT

COPY IAMEQU

EJECT

COPY FBCEQU

ENDPROG

END

C-6 SC34-0771

C

COBOL INDEXED ACCESS METHOD CODING EXAMPLE

This coding example inserts, deletes, and updates records in an indexed
file, using primary and secondary keys to retrieve the records. The
indexed file is described below under "Input File".

Program Description

This program reads a record and based on a transaction code, either
updates, deletes, or inserts records to a current Indexed Access Method
file. The transaction type also determines whether indexing is done
using a secondary or primary key.

Input File

I. TRANSACTION FILE.
TRANSACTION RECORD FORMAT:

EMPLOYEE NUMBER 1-6 (6)
LAST NAME 7-21 (15)
FIRST NAME 22-31 (10)
ADDRESS 32-56 (25)
CITY 57-68 (12)
STATE 69-70 (2)
AGE 71-72 (2)
START DATE 73-78 (6)
TYPE 79 (1)
ACTION 80 (1)

II. UPDATE FILE

A. MASTER FILE.
PRIMARY. KEY IS EMPLOYEE NUMBER
B. NAME FILE
SECONDARY. KEY IS LAST NAME.
EMPLOYEE RECORD FORMAT

EMPLOYEE NUMBER 1-6 6)
LAST NAME 7-21 (15)
FIRST NAME 22-31 (10)
ADDRESS 32-56 (25)
CITY 57-68 (12)
STATE 69-70 2)
AGE 71-72 2)
START DATE 73-78 (6)
FILLER 79-80 2)

Appendix C. Coding Examples C-7

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL1.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-S1.
OBJECT-COMPUTER. IBM-S1.
SPECIAL~-NAMES.
SYSOUT IS PRINTER.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-MASTER ASSIGN TO DS2 "EMPMAST™ MEDXTST"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDONM
RECORD KEY IS EMPLOYEE-NUMBER
FILE STATUS IS SK.
SELECT EMP-NAME-FILE ASSIGN TO DS3 T"EMPNAME™ "EDXTST"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS E-LAST-NAME
FILE STATUS IS SK.
SELECT TRANSACTION-FILE ASSIGN TO DS4 ™TRANSF™ "EDXTST"™
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS SK.
DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-MASTER
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 3 RECORDS.
01 MASTER-RECORD.
05 EMPLOYEE-NUMBER PICTURE X(06).
05 FILLER PICTURE X(74).

FD EMP-NAME-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 3 RECORDS.
01 EMP-NAME-RECORD.

05 FILLER PICTURE X(06).
05 E-LAST-NAME PICTURE X(15).
05 FILLER PICTURE X(59).

FD TRANSACTION-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 3 RECORDS
RECORD CONTAINS 80 CHARACTERS.
01 TRANS-ACTION-RECORD PICTURE X(80).

C-8 5C34-0771

WORKING-STORAGE SECTION.

77 EOF PICTURE 9(01) VALUE ZERO.
77 ERR-SWITCH PICTURE X(01) VALUE ZERO.
77 SK PICTURE X(02) VALUE ZERO.
01 EMPLOYEE-RECORD.
05 MAN-NUMBER PICTURE X(06).
05 NAME.
10 LAST-NAME PICTURE X(15).
10 FIRST-NAME PICTURE X(10).
05 STREET-ADDRESS PICTURE X(25).
05 CITY PICTURE X(12).
05 STATE PICTURE X(02).
05 AGE PICTURE X(02).
05 START-DATE PICTURE X(06).
05 FILLER PICTURE X(02).
01 TRANSACTION-RECORD.
05 T-NUMBER PICTURE X(06).
05 T-NAME.

10 T-LAST-NAME PICTURE X(15).
10 T-FIRST-NAME PICTURE X(10).
05 T-STREET-ADDRESS PICTURE X(25).

05 T-CITY PICTURE X(12).
65 T-STATE PICTURE X(02).
05 T-AGE PICTURE X(02).
05 T-START-DATE PICTURE X(06).
05 TRANSACTION-CODE.

10 TRANS-TYPE PICTURE X(01).

10 TRANS-ACTION PICTURE X(O0L1).

PROCEDURE DIVISION.
BEGIN-PROCESSING.
PERFORM FILE-OPENI1.
IF SK = "oo"
PERFORM PROCESS-SECTION UNTIL EOF = 1.
PERFORM CLOSE-UP.
DISPLAY ™ CLOSE UP PROC COMPLETE™ UPON PRINTER.
STOP RUN.

PROCESS-SECTION.
READ TRANSACTION-FILE INTO TRANSACTION-RECORD
AT END MOVE 1 TO EOF
DISPLAY "TRANSACTION FILE PROCESSING COMPLETE™ UPON PRINTER.
IF EOF NOT = 1
DISPLAY ™ ™ TRANSACTION-RECORD UPON PRINTER
PERFORM CONTROL-SECTION.

Appendix C. Coding Examples

c-9

CONTROL-SECTION.
IF TRANS-ACTION NOT = w2©
PERFORM READ-SECTION.
IF TRANS-ACTION = 1
PERFORM DELETE-PROC
ELSE
IF TRANS-ACTION = 2
PERFORM ADD-PROC
ELSE
PERFORM UPDATE-PROC.
READ-SECTION.
IF TRANS-ACTION = "pP"©
PERFORM READ-PRIMARY
ELSE
PERFORM READ-SECONDARY.

READ-PRIMARY.
DISPLAY " DURING PRIMARY READ"™ UPON PRINTER.
DISPLAY "™ KEY= "™ T-NUMBER UPON PRINTER.
MOVE T-NUMBER TO EMPLOYEE-NUMBER.
READ EMPLOYEE-MASTER INTO EMPLOYEE-RECORD
INVALID KEY DISPLAY "INVALID PRIMARY KEY" T-NUMBER
UPON PRINTER.
IF SK NOT = "oO"
DISPLAY "PRIMARY READ FAILED ™ T-NUMBER ™ ™ SK UPON
PRINTER.

READ-SECONDARY.
DISPLAY " DURING SECONDARY READ"™ UPON PRINTER.
DISPLAY ™ KEY= "™ T-LAST-NAME UPON PRINTER.
MOVE T-LAST-NAME TO E-LAST-NAME.
READ EMP-NAME-FILE INTO EMPLOYEE-RECORD
INVALID KEY DISPLAY "INVALID SECONDARY KEY™
T-LAST-NAME UPON PRINTER.
IF SK NOT = "gO"
DISPLAY "SECONDARY READ FAILED™ T-LAST-NAME " " SK
UPON PRINTER.

UPDATE-PROC.
IF T-LAST-NAME NOT = SPACES
MOVE T-LAST-NAME TO LAST-NAME.
IF T-FIRST-NAME NOT = SPACES
IF T-STREET-ADDRESS NOT = SPACES
MOVE T-STREET-ADDRESS TO STREET-ADDRESS.

c-10

5C34-0771

IF T-CITY NOT = SPACES
MOVE T-CITY TO CITY.
IF T-STATE NOT = SPACES
MOVE T-STATE TO STATE.
IF T-AGE NOT = SPACES
MOVE T-AGE TO AGE.
IF T-START-DATE NOT = SPACES
MOVE T-START-DATE TO START-DATE.
IF TRANS-TYPE = "p"
ELgERFORM PRIMARY-REWRITE
PERFORM SECONDARY-REWRITE.

PRIMARY-REWRITE.

DISPLAY ™ BEGIN PRIMARY REWRITE KEY = " T-NUMBER
UPON PRINTER.
MOVE T-NUMBER TO EMPLOYEE-NUMBER.
REWRITE MASTER-RECORD FROM EMPLOYEE-~RECORD
INVALID KEY DISPLAY ™INVALID PRIMARY KEY"
T-NUMBER UPON PRINTER.
IF SK NOT = "oo"
DISPLAY "PRIMARY WRITE FAILED™ T-NUMBER ™ " SK
UPON PRINTER.
DISPLAY ™ PRIMARY REWRITE COMPLETE™ UPON PRINTER.

SECONDARY-REWRITE.
DISPLAY " BEGIN SECONDARY REWRITE KEY = ™ T-LAST-NAME

UPON PRINTER.

MOVE T-LAST-NAME TO E-LAST-NAME.

REWRITE EMP-NAME-RECORD FROM EMPLOYEE-RECORD
INVALID KEY DISPLAY "INVALID SECONDARY KEY"
" W T-LAST-NAME UPON PRINTER.

IF SK NOT = "ooO"

DISPLAY "SECONDARY WRITE FAILED™ T-LAST-NAME ™ "

SK UPON PRINTER.
DISPLAY "™ SECONDARY REWRITE COMPLETE™ UPON PRINTER.

DELETE-PROC.

IF TRANS-TYPE = W"pw
PERFORM PRIMARY-DELETE
ELSE
PERFORM SECONDARY-DELETE.

Appendix C. Coding Examples

c-11

PRIMARY-DELETE.
MOVE TRANS-ACTION-RECORD TO MASTER-RECORD.
DISPLAY ™ PRIMARY DELETE STARTED™ UPON PRINTER.
DELETE EMPLOYEE-MASTER RECORD
INVALID KEY DISPLAY "INVALID PRIMARY KEY™
T-NUMBER UPON PRINTER.
IF SK NOT = "og"
DISPLAY "PRIME KEY FOR DELETE NOT FOUND"™
UPON PRINTER.
DISPLAY ™ PRIMARY DELETE FINISHED™ UPON PRINTER.

SECONDARY-DELETE.
MOVE TRANS-ACTION-RECORD TO EMP-NAME-RECORD.
DISPLAY "™ SECONDARY DELETE STARTED™ UPON PRINTER.
DELETE EMP-NAME-FILE RECORD ‘
INVALID KEY DISPLAY ™INVALID SECONDARY KEY"™
T-LAST-NAME UPON PRINTER.
IF SK NOT = "00™ DISPLAY

"SECONDARY KEY FOR DELETE NOT FOUND™ UPON PRINTER

DISPLAY TRANSACTION-RECORD UPON PRINTER.
DISPLAY " SECONDARY DELETE FINISHED™ UPON PRINTER.

ADD-PROC.
MOVE TRANSACTION~RECORD TO EMPLOYEE-RECORD
IF TRANS-TYPE = "p"
PERFORM PRIMARY-ADD
ELSE
PERFORM SECONDARY-ADD.

PRIMARY-ADD.
WRITE MASTER-RECORD FROM EMPLOYEE-RECORD
INVALID KEY DISPLAY "INVALID PRIMARY KEY"™
T-NUMBER UPON PRINTER.
IF SK NOT = ™00"™ DISPLAY
"INSERT FAILED FOR PRIME FILE™ UPON PRINTER
DISPLAY TRANSACTION-RECORD UPOM PRINTER.

SECONDARY-ADD.
_ WRITE EMP-NAME-RECORD FROM EMPLOYEE-RECORD
INVALID KEY DISPLAY "INVALID SECONDARY KEY"
T-LAST-NAME UPON PRINTER.
IF SK NOT = ™"ooO"
DISPLAY "INSERT FAILED FOR SECONDARY FILE™
UPON PRINTER.

C-12 8C34~0771

®

FILE-OPEN1.
OPEN I-0 EMPLOYEE-MASTER.
IF SK NOT = "o0O"
ELSEDISPLAY "OPEN FAILED FOR EMPMAST™ SK UPON PRINTER
OPEN I-0 EMP-NAME-FILE
IF SK NOT = "o0"
ELSEDISPLAY "OPEN FAILED FOR EMPNAME™ SK UPON PRINTER
OPEN INPUT TRANSACTION-FILE
IF SK NOT = ™oO0"
DISPLAY "OPEN FAILED FOR TRANSACTION-FILE"™ SK
UPON PRINTER.
DISPLAY ™ FILE OPEN COMPLETE™ UPON PRINTER.

CLOSE-UP.
DISPLAY ™ BEGIN CLOSE UP PROC ™ UPON PRINTER.
CLOSE TRANSACTION-FILE.
CLOSE EMP-NAME-FILE.
IF SK NOT = "oO"
DISPLAY "CLOSE FAILED FOR EMPNAME, RC= " SK
UPON PRINTER.
ELSE
DISPLAY ™ EMP-NAME-FILE CLOSED ™ UPON PRINTER.
CLOSE EMPLOYEE-MASTER.
IF SK NOT = "“oov
DISPLAY "CLOSE FAILED FOR EMPMAST, RC= " SK
UPON PRINTER.

SE
DISPLAY ™ EMP-MAST-FILE CLOSED ™ UPON PRINTER.

Appendix C. Coding Examples

C-13

PL/I INDEXED ACCESS METHOD CODING EXAMPLE

This PL/I coding example inserts, deletes, and updates records in an @;:D
indexed file, using primary and secondary keys to retrieve the records.
The indexed file is described below under "Input File™.

Program Description

This program reads a record and based on a transaction code, either
updates, deletes, or inserts records to a current Indexed Access Method
file. The transaction code also determines whether index access is done
using a secondary key or primary key.

Input File.

I. INPUT FILE
A. TRANSACTION FILE,
TRANSACTION RECORD FORMAT:

EMPLOYEE NUMBER 1-6 (6)

LAST NAME 7-21 (15)

FIRST NAME 22-31 (10)

ADDRESS 32-56 (25)

CITY 57-68 (12) TN
STATE 69-70 2> Qh))
AGE 71-72 2) -
START DATE 73-78 (6)

TYPE 79 (1)

ACTION 80 (1)

II. UPDATE FILE
A. MASTER FILE.
PRIMARY. KEY IS EMPLOYEE NUMBER
B. NAME FILE
SECONDARY. KEY IS LAST NAME.
EMPLOYEE RECORD FORMAT

EMPLOYEE NUMBER 1-6 (6)
LAST NAME 7-21 (15)
FIRST NAME 22-31 (10)
ADDRESS 32-56 (25)
CITY 57-68 (12)
STATE 69-70 (2)
AGE 71-72 (2)
START DATE 73-78 (6)
FILLER 79-80 (2)

C-14 .5C34-0771

PLITEST: PROCEDURE OPTIONS(MAIN);

DCL EMPMAST /% EMPLOYEE MASTER FILE
FILE RECORD /% PRIMARY
DIRECT /% KEY IS EMPLOYEE NUMBER
UPDATE
KEYED

ENV(FB BLKSIZE(256) RECSIZE(80) INDEXED
KEYLENGTH(6) KEYLOC(1));

DCL EMPNAME /% EMPLOYEE NAME FILE
FILE RECORD /% SECONDARY
DIRECT 7% KEY IS EMPLOYEE NAME
UPDATE
KEYED

ERV(FB BLKSIZE(256) RECSIZE(80) INDEXED
KEYLENGTH(15) KEYLOC(7));

DCL TRANSFL /% TRANSACTION FILE
FILE RECORD /% INPUT FILE
SEQUENTIAL
INPUT
ENV(FB BLKSIZE(240) RECSIZE(80) CONSECUTIVE);

DCL SYSPRINT 7% STANDARD OUTPUT FILE
FILE PRINT
ENV(F BLKSIZE(121));

DCL 1 $FCBLST /% FILE CONTROL BLOCK LIST
STATIC
EXTERNAL,
SFCBCNT 7% FILE COUNT
FIXED BIN(15)
INIT(4),
2 $FCBF1 /% FILE #1 NAME
CHAR(8)
INITC'EMPMASY'),
$FCBD1 /% FILE %1 DATA SET
CHAR(8)
INIT('EMPMAST'),
2 SFCBV1 /7% FILE #1 VOLUME
CHAR(6)
INITCTEDXTST'),
2 $FCBF2 /% FILE #2 NAME
CHAR(8)
INIT('EMPNAME'),
$FCBD2 /% FILE #2 DATA SET
CHAR(8)
INIT("EMPNAME'),

N

~N

N

%/

¥/

*/

¥/

*x/
*x/

*/

x/

x/

*/

*x/

%/

X/

Appendix C. Coding Examples

C-15

N NN N NN

2 $FCBvV2

CHAR(6)
INIT("EDXTST®),

2 $FCBF3

CHAR(38)
INIT('TRANSFLY),

2 $FCBD3

CHAR(8)
INITC*TRANSFL"),

2 $FCBV3

CHAR(6)
INITCTEDXTST"),

2 $FCBF4

CHAR(8)

INITC('SYSPRINT'),
2 $FCBD4

CHAR(8)

INIT('SYSPRINT'"),
2 SFCBTL%

FIXED BINC(15)
INIT(1),

2 $FCBBL4

FIXED BIN(15)
INIT(66),

2 S$FCBHL4

FIXED BIN(15)
INIT(00);

DCL 1 EMP_RECORD
STATIC,
2 EMP__
CHAR(6),
2 NAME,
3 LAST_NAME

NUMBER

CHAR(15),

3 FIRST_NAME

CHAR(10),

STREET_ADDRESS
CHAR(25),
CITY
CHAR(12),
STATE
CHAR(2),
AGE
CHAR(2),
START_DATE
CHAR(6),
FILLER
CHAR(2);

/%

/%

/%

7/ %

7/ ¥

7/ *

/¥

/%

/ ¥

/%

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

NOT USED

#2

$3

#3

23

84

#4

#4

84

VOLUME

NAME

DATA SET

VOLUME

NAME

DEVICE NAME

TOP LINE

BOTTOM LINE

IAM BUFFER FORMAT

x/

*x/

*/

*/

*/

¥/

¥/

x/

*/

¥/

C-16 5C34-0771

DCL

DCL

DCL

DCL

DCL

1 TRANSACTIONR
STATIC,
2 TEMP_NUMBER
CHAR(6),
2 TNAME,
3 TLAST_NAME
CHAR(15),
3 TFIRST_NAME
CHARC(10),
TSTREET_ADDRESS
CHAR(25),
TCITY
CHAR(12),
TSTATE
CHAR(2),
TAGE
CHAR(2),
TSTART_DATE
CHAR(6),
TRANSACTION_CODE,
3 TRANS_TYPE
CHAR(1),
3 TRANS_ACTION
CHAR(1);
BLANK

STATIC
CHAR (6)
INITCY s

(IOERR,
FOERR)
STATIC
CHAR(1)
INITC'F');

TRUE
STATIC
CHAR(1)
INITC'T"),

FALSE
STATIC
CHAR(1)
INITC'F");

R_CODE
STATIC
FIXED BIN(15)
INITC0);

N N N NNDN

/%
/¥

/%
7%

/¥
/¥

/¥

/% TRANSACTION RECORD FORMAT x/

'P' = PRIMARY 'S' = SECONDARY %/

1 = DELETE 2 = INSERT
3 = UPDATE
FIELD OF BLANKS

INPUT/0UTPUT ERROR FLAG
OPEN ERROR FLAG

TRUE VALUE FOR FLAGS

/% FALSE VALUE FOR FLAGS

/¥ RETURN CODE

¥/
*/
*/

*/
x/

*x/

x/

*/

Appendix C. Coding Examples

c-17

DCL ONCODE /7% ON CONDITION CODE */
BUILTIN;
DCL EOF 7% END OF FILE FLAG %/
STATIC :
CHAR(1)
INITC'F');
ZHWKIMHIIHNNKHNNKINRNINMNNMNHNNKRNNNK MAIN PROGRAM 3663 X 3 I 3 X X I 3 X 3¢ ¢ 36 26 6 36 3 % % X/
/% *x/
ZRERKHHHHKHNNNINNNNXXNX%X ON CONDITION FOR EOF 3535 5 I 33 3 36 % %%/
ON ENDFILE(TRANSFL)
BEGIN;
PUT LIST('%%% TRANSACTION FILE PROCESSING COMPLETE xxx');
EOF = TRUE;
CLOSE s% CLOSE ALL FILES %/
FILE(EMPMAST),
FILEC(EMPNAME),
FILE(TRANSFL);
STOP TASK;
END;
/7% %/
/3NN NNNXXX%XX ON CONDITIONS FOR FILE OPEN ERRORS XXMM MEXMX XXX/

ON UNDFC(EMPMAST) FOERR = TRUE;
ON UNDF(EMPNAME) FOERR = TRUE;
ON UNDF(TRANSFL) FOERR = TRUE;

/% X/
SHEREHHRNRKHNNKXXXKXXXX ON CONDITIONS FOR I/70 ERRORS 236335 %3 %% 3 X X % %/
ON KEY(EMPMAST) IOERR = TRUE;

ON KEYCEMPNAME) IOERR TRUE;
/% *x/
ZRRKHNHHKINKHHHNNNNNNNNNNHNN OPEN ALL FILES KK KK KKK XK ¥/
/% %/

CALL OPEN;
/7%%%x%%%% INITIATE PROCESSING UNTIL EOF CONDITION IS REACHED x¥xxx%/
DO WHILE (EOF -= TRUE);
IOERR = FALSE;
FOERR = FALSE;
CALL PROCESS; /¥ INVOKE PROCESS SUBROUTINE x/
END; /% END DO WHILE %/
SREKKENRFNMNNRHRHNRNNRXXHE END MAIN PROGRAM 3533 X% X 3 3 3K X 3 3 X 5 3 X % 3 H H X ¥ ¥ X%/
/% */
OPEN: PROC;
OPEN FILECEMPMAST) UPDATE;
IFDSOERR = TRUE THEN
R_CODE = ONCODE; /% SET RETURN CODE %/
PUT LIST('OPEN FAILED FOR EMPMAST') SKIP;
ENPUT LIST('ON CODE = ',R_CODE) SKIP;
D; ’

C-18 S5C364-0771

C

EN
/%
/%
/%
/%
/%
/%
7%
7 %
/%
/%
/%
/%
PR

IF FOERR = FALSE THEN
DO;

OPEN FILECEMPNAME) UPDATE;
IF_FOERR = TRUE THEN
DO;
R_CODE = ONCODE; /% SET RETURN CODE X/
PUT LISTC'OPEN FAILED FOR EMPNAME') SKIP;
PUT LISTC'ON CODE = ',R_CODE) SKIP;

END;
END;
/% ¥/
IF FOERR = FALSE THEN
DO;

OPEN FILE(TRANSFL);
IFDFOERR = TRUE THEN
0;
R_CODE = ONCODE; /% SET RETURN CODE %/
PUT LIST('OPEN FAILED FOR TRANSFL') SKIP;
PUT LIST('ON CODE = ',R_CODE);

END;
END;
/¥ x/
IF FOERR = TRUE
THEN
STOP TASK;
/% ¥/

D; 7% END OPEN PROCEDURE %/
HHMHNHNHRHEUXKKNNXXNXX PROCESS PROCEDURE 333 35 I 5 I 3 3 3 3 I 3 I 3 X 3 3 3 XX %/
*/
1) READS IN A TRANSACTION RECORD */
2) IF ACTION = 1 DELETES RECORD WITH CORRESPONDING KEY. ¥/
= 2 INSERTS RECORD ONTO IAM FILE. X/
= 3 READS RECORD WITH CORRESPONDING KEY, x/
ALLOWS UPDATE, REWRITES RECORD. x/

3) IF TYPE = "P' ALL INDEXING IS DONE WITH A PRIMARY KEY %/
= 'SY ALL INDEXING IS DONE WITH A SECONDARY KEYx/

%) ALL IDENTIFIERS, FILES AND RECORDS USED ARE GLOBAL x/
*/

336 3 36 36 36 X I 3 36 3 36 3 26 3 26 36 I6 X 3 3 I 36 I 36 I 36 I 3 36 3 36 I 56 I 36 3 36 56 36 6 36 36 I 6 36 3 36 36 3¢ I 36 I 6 36 36 X 3 I X H H X /
0CESS: PROCEDURE;
READ FILECTRANSFL) INTO (TRANSACTIONR);
IF I0OERR = TRUE THEN
DO;
R_CODE = ONCODE;
PUT LISTC('READ HAS FAILED FOR TRANSFL') SKIP;
ENPUT LIST('ON CODE = ',R_CODE) SKIP;
D;

Appendix C. Coding Examples

c-19

IF TRANS_ACTION = '1' & IOERR FALSE THEN
CALL DELETE; /% BEGIN DELETE

IF TRANS_ACTION = '3' & JOERR = FALSE THEN
CALL UPDATE;
IF TRANS_ACTION = '2' & IOERR = FALSE THEN
CALL INSERT;
END; /% END PROCEDURE PROCESS %/
DELETE: PROC;
IF TRANS_TYPE = 'P'
THEN
ELDELETE FILECEMPMAST) KEY(TEMP_NUMBER);
S

DELETE FILECEMPNAME) KEY(TLAST_NAME);
END; /% END DELETE x/
/¥
UPDATE: PROC;
IF TRANS_TYPE = 'P!
THEN
CALL PRIM_READ;
ELSE
CALL SEC_READ;
IFDIOERR = FALSE THEN
0;
IF TLAST_NAME -= BLANK
THEN
LAST_MNAME = TLAST_NAME;
IF TFIRST_NAME == BLANK
THEN
FIRST_NAME = TFIRST_NAME;
IF TSTREET_ADDRESS -= BLANK
THEN
STREET_ADDRESS = TSTREET_ADDRESS;
IF TCITY -= BLANK
THEN
CITY = TCITY;
IF TSTATE -= BLANK
THEN
STATE = TSTATE;

%/

*/

C-20 SC364-0771

%

IF TAGE -= BLANK

THEN
AGE = TAGE;
IF TSTART_DATE -= BLANK
THEN

START_DATE = TSTART_DATE;
CALL REWRITE;

END; 7% END UPDATE */
END;
/% ¥/
PRIM_READ: PROC;
READ FILE(EMPMAST) INTOCEMP_RECORD)
KEY(TEMP_NUMBER);
IF IOERR = TRUE THEN
DO;
R_CODE = ONCODE;
PUT LIST(YEMPMAST PRIMARY READ HAS FAILED') SKIP;
PUT LIST('KEY = ',TEMP_NUMBER);
PUT LIST('ONCODE = ',R_CODE);

END;
END; /% END PRIMARY READ %/
/7 % ¥/
SEC_READ: PROC;
READ FILECEMPNAME) INTOCEMP_RECORD)
KEYCTLAST_NAME) ; ‘
IF I0ERR = TRUE THEN
DO;
R_CODE = ONCODE;
PUT LIST('EMPMAST SECONDARY READ HAS FAILED') SKIP;
PUT LISTC'KEY = ',TLAST_NAME);
PUT LISTC'ONCODE = ',R_CODE);
END;
END; /% END SECONDARY READ */
REWRITE: PROC;
IF TRANS_TYPE = 'p! /% BEGIN REWRITE %/
THEN

REWRITE FILEC(EMPMAST) FROMCEMP_RECORD)
KEY(TEMP_NUMBER);
ELSE

REWRITE FILE(EMPNAME) FROMCEMP_RECORD)
KEYC(TLAST_NAME);
END;

Appendix C. Coding Examples

c-21

INSERT: PROC;
IF TRANS_TYPE = 'P!
THEN
DO;
WRITE FILECEMPMAST) FROM(TRANSACTIONR)
KEYFROM(TEMP_NUMBER) ;
IFDgOERR = TRUE THEN
R_CODE = ONCODE;
PU;KLIST('EMPMAST SECONDARY INSERTION HAS FAILED')
IP;
PUT LIST('KEY = ',TEMP_NUMBER);
PUT LIST('ONCODE = ',R_CODE);
END;
END;
ELSE
DO;
WRITE FILECEMPNAME) FROMCTRANSACTIONR)
KEYFROM(TLAST _NAME);
IF IOERR = TRUE THEN
DO;
R_CODE = ONCODE;
PUT LIST('EMPMAST SECONDARY INSERTION HAS FAILED')
SKIP;
PUT LIST('KEY = ',TNAME);
PUT LIST('ONCODE = ',R_CODE);
END;
END;
END;

END PL1TEST;

C-22 5C34-0771

»

Special Characters

SEDXLINK map 12-5
$IAM package 11-1
$IAM, cancelling 11-3
SIAMDIR (directory) 5-2
SIAMNP package 11-1
S$IAMNRS package 11-1
SIAMRSNP package 11-1
$TIAMUT1
See utility, Indexed Access Method
$IAMUT1, defining file 3-4
SIAMUT1, setting up ifile 2-2
SIAMUT3, call 6-1
$ILOG
See error logging facility
$JOBUTIL procedure B-2
$JOBUTIL sample procedure B-2
$SAMPROC 13-2
$VERIFY utility
default working storage
requirements 10-12
description 10-1
error recovery procedure 10-12
example 10-3
FCB Extension report 10-8
FCB listing 10-1
file error messages 10-11
free space report 10-9
functions 10-1
input required to execute 10-2
invoking 10-2
invoking from a program 10-3
messages 10-11
modifying working storage 10-13
storage requirements 10-12
summary 10-13

accessing by different keys 3-2
accessing file
PROCESS request 7-4%
aids for problem solving 12-3
AL subcommand 9-1
AL subcommand ($IAMUT1) 9-11
algorithm, least-recently-used 11-3
allocate indexed file from a
program 6-1
allocate/insert entries,
directory 5-3
allocated entry, PIXB 3-14
application program
$JOBUTIL procedure B-2
link-edit control data set B-2
loading base records from 6-5
loading secondary file with 5-16
preparing B-1
assembling install verify
program 13-2
auto-update, secondary index 7-3
automatic update indicator
secondary indexes 5-3

backing up secondary index 7-9
backup, file 7-9
BASEREC (calculation for
defining) A-1
BF command (SIAMUT1) 9-4
BLKSIZE (calculation for
defining) A-1
block I/0, record level 11-9
block locks 7-2
block mode use 11-8
block reads, high speed 11-10
block, read 7-8
blocked sequential 9-23
blocks
calculations for defining A-1
clusters 3-13
clusters, calculating 3-15
data 3-9
data block format example 3-10
data block, calculating 3-12
data paging 11-3
data, calculating initial
number 3-16
free 3-10
higher-level index,
calculating 3-19
index 3-13
index block, calculating 3-13
last cluster 3-16
locked during sequential
reading 7-6
primary index (PIXB) 3-13
primary-level index 3-14
primary-level index,
calculating 3-16
releasing locked 7-2
reserve 3-15
second-level index 3-17
second-level index,
calculating 3-18
buffers
central buffer, paging 11-3
increasing size 11-7
tailoring 9-4

cache 11-3
calculating
BASEREC A-1
BLKSIZE A-1
clusters 3-15
data blocks 3-12
defining data set A-1l
delete threshold A-1
DELTHR A-1
FPOOL A-1
FREEBLK A-1
FREEREC A-1
higher-level index blocks 3-19
index blocks 3-13
initial number, data blocks 3-16
intial size, free pool 3-20

Index X-1

KEYSIZE A-1
primary-level index blocks 3-16
RSVBLK A-1
RSVIX A-1
second-level index blocks 3-18
CALL instructions 8-3
cancelling $IAM 11-3
chaining, sequential 3-11
clustered record inserts 3-3
clusters
calculating 3-15
last 3-16
record inserts, clustered 3-3
COBOL coding example C-7
COBOL programs, loading 6-1, 4-5
codes
-1 (successful) 8-4%
error (positive) 8-4
negative 8-¢
positive 8-4
requests 8-%
return code summary, Indexed Access
Method 8-42
return, obtaining 12-2
successful 8-4
successful (-1) 8-4
system function return 12-1
task code word 8-4
warning (negative) 8-4
coding Indexed Access Method
Requests 8-3
components, Indexed Access
Method 1-3, 11-2
concurrent execution 7-2
conditional requests 7-2
connecting file 7-1
contention for resource,
avoiding 11-7
control
returning 7-2
control blocks 12-5

data
block, calculating 3-12
integrity 7-2
protection 7-9
records 2-1
data blocks
calculating 3-12
format example 3-10
data page identification 12-8
data page location 12-9
data paging
adjusting size, paging area 11-3
and sequential access 11-3
bytes per page 11-3
deactivate with NP 9-25
define partitions (PP) 9-27
description 11-3
get statistics (PS) 9-28
hit ratio 11-4
identification 12-8
least-recently-used algorithm 11-3
location 12-9
other performance
considerations 11-6
overlaying 11-3
plot of paging area sizes 11-5
problem solution 12-8

X-2 5C34-0771

read/write ratio 11-4
select with PG 9-26
set page area size 11-5
set paging area size 9-27
storage size 11-¢
using 11-5
data record primary key 3-2
data sets
calculations for defining A-1
indexed 1-1
link-edit control B-2
shut-down condition 7-9, 12-10
sort, input 5-16
sort, loading secondary index 5-16
sort, output 5-16
sort, work 5-16
system error log 12-¢
data-set-shut-doun condition 7-9,
12-10
DE subcommand 9-1
DE subcommand ($IAMUT1) 9-12
deadlocks 12-10
defining
secondary index, and loading 5-8
defining indexed file 9-6
DELETE record Request 8-5
delete threshold 3-20
delete threshold (calculating) A-1
deleting directory entry 9-12
deleting file 7-11
deleting records 7-7
DELTHR (calculation for
defining) A-1
DELTHR parameter 3-20
DF command ($IAMUT1) 9-
DI command (S$IAMUT1) 9~
direct reading 7-4
direct updating 7-5
directory
$IAMDIR (directory name) 5-2
AL subcommand 9-1
allocate/insert entries 5-3
allocate, with AL 9-11
automatic update indicator 5-3
DE subcommand 9-1
delete, with AL 9-12
description 5-2
EN subcommand 9-1
end function with EN 9-13
file name 5-2
IE subcommand 9-1
independent processing
indicator 5-2
insert secondary index entry 9-14
invalid indicator 5-3
invoke secondary index
functions 9-10
LE subcommand 9-1
list entries with LE 9-15
subcommands 9-1
UE subcommand 9-1
update entry with UE 9-17
volume name 5-2
DISCOMN Request 8-7
disconnecting, file 7-1
diskettes for install 13-1
displaying indexed file
parameters 9-9
DR command ($IAMUT1) 9-10
dump
hexadecimal 7-10
sequential 7-9
DYN parm, adjust free pool 3-22
option 2

6
9

<

C

allocating free records 3-24
allocating free records & free
blocks 3-26
allocating reserved data
blocks 3-28
allocating reserved index
entries 3-30
defining a totally dynamic
file 3-33
dynamic file 3-22
dynamic secondary index 5-3

EC command (S$IAMUT1) 9-19
echo mode 9-19
EDL CALL Function syntax
EDL coding example C-1
EDL program, preparing B-2
EF command ($IAMUT1) 9-20
EN subcommand 9-1
EN subcommand ($IAMUT1) 9-13
ENDSEQ Request 8-9
entries in directory,
allocate/insert 5-3
environment, Indexed Access Method
storage 11-2
ERREXIT (process mode)
ERREXIT parameter 12-3
error
SEDXLINK map, use
$IAM task, exit
$VERIFY messages

8-41

8-29

12-5
12-3
10-11

abnormal system termination 12-7
data paging problems 12-8
data-set-shut-down condition 12-10
deadlocks 12-10
exit 12-3
file control block, FCB 12-5
handling 12-1
JIACB characteristics 12-5
information location 12-5
log data set 12-4
logging facility 12-¢
long-lock-time condition 12-10
malfunctions, isolate 12-9
messages to $SYSLOG 12-3
recovery procedure 10-12
run loops 12-7
system dump, use 12-5
task, exit 12-2
verifying requests and files 12-9
wait states 12-5

error logging and reporting,

SIAMUT3I 6-6

error logging facility
deadlocks 12-10
log data set 12-4
long-lock-time condition 12-10
malfunctions, isolate 12-9
verifying requests and files 12-9

error report, S$ILOG 6-6
error return code, request 8-4
examples
$JOBUTIL sample procedure B-2
calculations for defining data
set A-1
COBOL coding C-7

EDL coding C-1

how to use Indexed Access

Method 2-1

link-edit control data set B-3

option 2 3-23

option 3 3-36

PL/I coding C-14

sample programs C-1

verifying a file 10-3
execution

concurrent 7-2

installation verify program 13-
exit

$IAM task error 12-3

error 12-3

routine 12-3

task error 12-2
EXTRACT request 7-7, 8-11

FCB

See file control block
FCB characteristics 12-5
FCB Extension

See file control block extension
FCBEQU 7-7
FCBEQU module 8-11
file control block

description 7-7

extension 3-21

extracting file information 8-1

FCB listing, SVERIFY 10-1
FCBEQU 7-7
location 3-21
report, $VERIFY 10-6
file control block
characteristics 12-5

file control block extension

2

1

See also file control block exten-

sion
description 7-7
extracting file information 8-1
FCBEQU 7-7
report, $VERIFY 10-8
format, secondary record 5-17
forward pointers 3-11
FPOOL (calculation for defining)
free block entry, PIXB 3-15
free block entry, SIXB 3-17
free blocks 3-10
free pool
adjusting with DYN 3-22
calculating 3-20
delete threshold 3-20
DELTHR parameter 3-20
description 3-20
free records 3-10
free space
blocks 3-10
records 3-10
reserve blocks 3-10
reserve index entries
FREEBLK (calculation for
defining) A-1
FREEREC (calculation for
defining) A-1

3-10

Index

1

GET record Request 8-14
GETB 7-8

description 8-2

get block request 8-17
GETBC

description 8-17

get block request 8-17
GETNB 7-8

description 8-2

get next block request 8-20
GETNBC

description 8-20

get next block request 8-20
GETSEQ Request 8-22

header 3-9
hexadecimal dump of file 7-10
high speed block reads 11-10
higher-level index block
calculating 3-19
calculations for defining A-1
description 3-19
index levels, performance 11-6
structure 3-19
hit ratio 11-¢
HIXB
See higher-level index block
how to use Indexed Access Method 2-1

IACBs
disconnect from file 7-2
holding lock 7-2
multiple 7-2
IAM link module 1-3
IAMFR link module 1-3
IE subcommand 9-1
IE subcommand ($IAMUT1) 9-14
immediate write-back option 2-4
independent processing indicator 5-2
index block
calculating 3-13
primary level 3-14
index blocks 3-13
Indexed Access Control Block,
IACB 12-5
Indexed Access Method
components 1-3, 11-2
features 1-1
installing 13-1
languages compatible with 1-3
packages 11-1
performance 11-3
requests 2-7
. storage requirements 11-1
what it does 1-1
indexed data sets 1-1
indexed file
accessing 7-4
backup and recovery 7-9
blocks 3-7

X-4¢ $C34-0771

calculations for defining A-1
connecting, disconnecting 7-1
control block (FCB) 3-21
data paging 11-3 ;
define with DF 9-6
defining and loading 2-1
defining using existing data
set 3-4
defining with $IAMUT1 3-4
defining with all parameters 3-4
defining with minimum
parameters 3-%
defining, all parms 3-7
defining, minimum parms 3-5
defining, with existing file
parms 3-35
deleting 7-11
deleting records from 7-7
direct block reading 7-8
disconnect IACB from 7-2
display characteristics 9-20
dynamic 3-22
error messages 10-11
extracting information 7-7
failure to disconnect 7-2
FCB 7-7
FCB Extension 3-21, 7-7
file name, directory 5-2
free space 3-10
independent 5-2
inserting new records in 7-7
inserting record, no space
for 7-10
journal 7-9
levels affect performance 11-6
load with L0 9-22 A
loading secondary with application
program 5-16
loading, from a sequential
file 6-4
loading, primary 6-1
logical structure 3-8
maintaining 7-9
open (PROCESS) 8-29
open for loading (LOAD) 8-25
pointers, verify 10-1
preparing input for 4-3
primary 3-1
prior to using 7-1
processing 2-6
put record in 8-34%
record, no space for
inserting 7-10
recovery without backup 7-10
reorganize (R0O) 9-30
reorganizing 7-10
resetting parameters 9-29
secondary, format 5-16
sequential blocked 9-23
sequential unblocked 9-23
set parms, structure/size 9-32
sizes/performance 11-6
structure affects performance 11-6
structure types 3-21
structure, defining 3-4
structured 3-21
unload (with UN) 9-41
verifying 7-11, 12-9
verifying, example 10-3

o
%/

indicator

automatic update 5-3
independent 5-2 B
invalid 5-3

information, extracting 7-7

input/output
buffer size, increasing 11-7
data-set-shut-down error
condition 12-10
echo mode 9-19
preparing input for indexed
file 4-3
insert/allocate entries,
directory 5-3
inserting records 7-7
inserts
clustered 3-3
random 3-3
reserving space for 3-11
installation
diskettes for 13-1
Indexed Access Method 13-1
planning for 13-1
running verify program 13-2
integrity, data 7-2
invalid indicator 5-3

journal file 7-9

key
defining 3-2
defining primary 3-2
duplicate, retrieval 7-3
ensuring uniqueness 3-2
more than one 3-2
primary 2-1
random order, loading 4-5
secondary 2-1, 5-1

key relational parameter
See krel

KEYSIZE (calculation for

defining) A-1

krel

record retrieving using 7-4

languages to code Indexed Access Meth-
od programs 1-3
last cluster 3-16
LE subcommand 9-1
LE subcommand ($IAMUT1) 9-15
least-recently-used algorithm 11-3
link map 12-5
link module 13-1
link-edit application program B-2
link-edit considerations 8-4%
L0 command ($IAMUT1) 9-22
load mode 64-1
load module 13-1
LOAD Request 8-25
loading
SIAMUT1, using 6-3
and defining secondary index 5-8
base records from application
program &§-5

base records from sequential
file 4-5
COBOL programs 6-1
indexed file from sequential
file 4-4
load mode 4-1
module 13-1
open file for 8-25
primary file 6-1
process mode &-1, 7-2
secondary, sort data sets 5-16
sequentially 7-2
unloading (with UN) 9-641
locate information 12-5
lock-time condition 12-10
locked record during update 7-5
locks
deadlocks 12-10
long-lock-time condition
record or block 7-2
release 7-5
log, system error 12-4
logging facility, error 12-6
long-lock-time condition 12-10
looping 12-7

12-10

M

maintaining indexed file 7-9
malfunctions, isolate 12-9
master control block, CDIMCB 12-5

messages
SVERIFY 10-11
file error 10-11
modules
link 13-1
load 13-1

removal of storage 11-3
source 13-1
multitasking environment, overlay

N

negative return code 8-4
NP command ($IAMUT1) 9-25

0

open file, using PROCESS 8-29
options
examples, option 2 3-23
examples, option 3 3-35
selection guide 3-4
selection guide, secondary
indexes 5-9
1, define secondary index 5-10
1, define with minimum parms 3
2, define secondary index 5-12
2, define with specific parms
3, define secondary index 5-14
3, defining with existing
parms 3-35
output
FCB Extension report 10-8
FCB report 10-6

Index

7-64

-5
3-7

X-5

free space report 10-9
overlay
in multitasking environment 7-4%

p

packages
SIAM 11-1
SIAMNP 11-1
S$IAMNRS 11-1
S$IAMRSNP 11-1
page identification 12-8
page location 12-9
paging
See data paging
parameter list, SIAMUT3 6-6
parameters
defining file with all 3-4%
defining file with minimum 3-4
defining using existing data
set 3-4
display with DI command 9%-9
parm3, parm4%, parm5 8-4
reset 9-29
set (with SE) 9-32
values, display 9-9
parm3, parmé, parm5 8-4¢
performance
data paging feature 11-3
file size affects 11-6
file structure affects 1l1-6
reducing index levels 11-6
secondary index affects 11-11
PG command (S$IAMUT1) 9-26
PIXB
See primary-level index block
PL/I coding example C-14
planning for install 13-1
pointers, forward 3-11
pointers, verify 10-1
positive return code 8-4
PP command ($IAMUT1) 9-27
primary index blocks 3-13
primary index files 3-1
primary-level index block
allocated entry 3-14
calculating 3-16
calculations for defining A-1
free block entry 3-15
index levels, performance 11-6
reserve block entry 3-15
priorities, task 7-1
problem solving aids 12-3
process mode 64-1
process mode, loading 7-2
PROCESS Request 8-29
PROCESS request, access file 7-6
processing indexed file 2-6
program
application, link-edit B-2
application, preparing B-1
loading base records from 6-5
variables 8-4¢
protecting data 7-9
PS command ($IAMUT1) 9-28
PUT Request 8-34
PUTDE Request 8-36
PUTUP Request 8-38, 8-40

X-6 5C34-0771

random loading, base records 4-5 QZ:D
random record inserts 3-3
RBN (relative block number) 3-21
RE command ($IAMUT1) 9-29
read/wurite ratio 11-4
reading, direct 7-4¢
reading, sequential 7-5
record
base, loading 4-1
calculations for defining A-1
clustered inserts 3-3
concurrent modification 7-2
delete previously read 8-36
deleting 7-7
direct reading 7-4
direct updating 7-5
free 3-10
GETSEQ request 7-5
insert, no space for 7-10
inserting 3-3, 7-7
loading from application
program 6-5
loading from sequential file, ran-
dom order 4-5
locked during update 7-5
locks 7-2
put in file 8-34
random inserts 3-3
releasing 7-2
releasing lock 7-5
reserving space for inserts 3-11
retrieving 7-3 ~
sample layout 2-1 A \
secondary, format 5-17 ijd
sequential reading 7-5
sequential updating 7-6
setting up with $IAMUT1 2-2
update 8-38, 8-40
verify sequence 10-1
record level block I/0 11-9
recovery
file backup 7-9
procedure, $VERIFY 10-12
without backup 7-10
recreating file 7-10
relative block number (RBN) 3-21
release lock on record 7-5
releasing locked blocks 7-2
reorganize indexed file 7-10, 9-30
reorganizing secondary index 7-10
reports
FCB 10-6
FCB Extension 10-8
free space 10-9
request functions, coding C-1
requests, Indexed Access Method 2-7
CALL instructions 8-3 '
coding 8-3
DELETE (delete record) 8-5
DISCONN (close file) 8-7
ENDSEQ (sequential processing) 8-9
error return code 8-4¢
EXTRACT (get file
information) 8-11
GET (get record) 8-14
GETB (get block) 8-17
GETBC (get block) 8-17 N
GETNB (get next block) 8-20
GETNBC (get next block) 8-20 =

®)

GETSEQ (get record,
sequential) 8-22
link-edit considerations 8-4
list and description 8-2
LOAD (open file for loading) 8-25
PROCESS (open file) 8-29
program variables 8-4
PUT (put record in file) 8-34
PUTDE (delete record) 8-36
PUTUP (update record) 8-38
RELEASE (record) 8-40
return codes 8-4
successftul return code 8-%4%
warning return code 8-%
requests, verifying 12-9
reserve block entry, PIXB 3-15
reserve index entry, SIXB 3-18
resetting indexed file
parameters 9-29
resource contention, avoiding 11-7
resources, locked 12-10
retrieving
direct, secondary index 7-3
duplicate keys 7-3
sequential, secondary key 7-3
return codes
See codes
RO command ($IAMUT1) 9-30
routine, exit 12-3
RSVBLK (calculation for defining)
RSVIX (calculation for defining)
run loops 12-7
data paging problems 12-8

TJ"
-

S

SE command ($IAMUT1) 9-32
search argument 7-4¢
second-level index blocks
calculating 3-18
calculations for defining A-1
description 3-17
free block entry 3-17
index levels, performance 11-6
reserve index entry 3-18
secondary index
allocate/insert entries,
directory 5-3
application programs 5-7
auto-update 7-3
automatic update indicator 5-3
backing up 7-9
define options, guide for
selecting 5-9
defining with existing parms 5-16
defining with minimum parms 5-10
defining with specific parms 5-12
defining/loading 5-8
description 5-1
direct retrieval 7-3
directory 5-2
dynamic 5-3
example, defining using
SIAMUT1 5-10
file format 5-16
file name 5-2
guide for selecting options 5-9
independent processing
indicator 5-2
insert entry with IE 9-14
invalid indicator 5-3

invoke directory 9-10
list entries with LE 9-15
loading with application
program 5-16
option selection guide 5-9
performance considerations 11-11
reorganizing 7-10
secondary key 5-1
secondary keys 7-3
secondary record format 5-17
setting up 5-8
sort data sets for loading 5-16
static 5-3
structure 5-8
update entries with UE 9-17
verify contents ($VERIFY) 10-1
volume name 5-2
secondary keys
accessing file by 7-3
sequential retrieval 7-3
using 7-3
saequential
access and data paging 11-3
chaining 3-11
dump 7-9
ENDSEQ Request 8-9
file, loading base records
from 4-5
file, loading from 64-4
GETSEQ Request 8-22
load mode 4-1, 7-2
reading 7-5
retrieval 7-3
updating 7-6
sequential processing 11-7
SIXB
See second-level index blocks
soft exception 12-2
sort input data set 5-16
sort output data set 5-16
sort work data set 5-16
Sort/Merge, sort data sets 5-16
source module 13-1
space
calculations for defining A-1
free 3-10
reserving 3-11
reserving for inserts 3-11
space requirements 13-1

load
FCBEQU 13-1
IAM 13-1
IAMEQU 13-1
IAMFR 13-1

static secondary index 5-3
statistics, extracting 8-11
storage
$VERIFY requirements 10-12
default, working 10-12
environment, Indexed Access
Method 11-2
increasing buffer size 11-7
modify, working 10-13
paging, additional
considerations 11-6
removal of modules 11-3
requirements, determining 11-1
resource contention, avoiding 11-7
size, data paging 11-4
use by data paging 11-3

structure
defining file 3-4
file 3-21

high-level index 3-19

Index X-7

of file affects performance
structured file 3-21
successful return code 8-¢

syntax

EDL
system
system
system
system

CALL 8-41
dump 12-5
error log data set

11-6

12-4

function return codes
termination, abnormal

tailoring buffers

9-4

tailoring the Indexed Access

Method
task code word 8-4,
task error exit
task error exit,
task priorities
task termination
TCB 8-

9-4%

12-1

12-2

$IAM

7-1
7-2

4

terminal
invoking $VERIFY from

u

UE subcommand

9-1

UE subcommand (SIAMUT1)

UN command ($IAMUT1)
unblocked sequential

unique

unloading indexed file
updating,
updating,
utility,

$VERIFY

keys 3-2

direct 7-5

sequential 7-6

10-1

AL subcommand (of DR)
BF command 9-4¢

X-8 5C34-0771

12-3

10-3

9-17
9-41
9-23

9-

41

Indexed Access Method

9-11

12-1
12-7

commands

9-3

DE subcommand (of DR)

description 9-1, 9-2
DF command 9-6

DI command 9-9

DR command 9-10

EC command 9-19

echo mode (EC) 9-19

EF command 9-20
EN subcommand (of DR)
IE subcommand (of DR)
LE subcommand (of DR)
LO command 9-22
NP command 9-25
PG command 9-26
PP command 9-27
PS command 9-28
RE command 9-29
RO command 9-30
SE command 9-32
UE subcommand (of DR)
UN command 9-41
v

variablesg
verification program for
verify utility

program 8-4¢

See S$VERIFY utility

verifying file
volume name,

7-11

N

wait states
warning return code,
write operations and paging
write~back option

12-5

2-4

9-12

9-17

install

directory 5-2

request 8-4¢
11-4

13-2

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

IBM Series/1 Event Driven Executive READER’S
Indexed Access Method User’s Guide COMMENT

Order No. SC34-0771-0 FORM

This manual is part of a library that scrves as a reference source for systems analysts, programmers, and
operators of IBM systemns. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using vour IBM system, to
vour IBM representative or to the IBM branch office serving vour locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0771-0
Printed in U.S.A.

Reader’s Comment Form

Fold and tape

Please Do Not Staple Fold and tape

sersscevsnnvannneceseranennunas P P P T T P T T PP T esssssstesmsansassnsRasssaaRs RN NN RRu. sersussssessansssestORURRTAT RSV RTINS

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

sesassucsennane R T T R PP P T P P P PP P P TP wnanne ssmrasannsen

Fold and tape

.||Ii

[fun]
|
]
<M

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
3405 (Internal Zip)

P.O. Box 1328

Boca Raton, Florida 33432-9960

e e e e e e e e e e e e e e e e e et e o B e e e = = = = — — —3U|T] BUO|V PlO4 O }ND— — — —

Please Do Not Staple Fold and tape

@

@

O

International Business Machines Corporation

SC34-0771-0
Printed in U.S.A.

SC34-0771-0

AN

