
Assembler as a Higher Level Language: 
Macros and Conditional Assembly Techniques

SHARE 83, Session 4885-4886

August 10, 1994

John R. Ehrman

International Business Machines Corporation 
Software Solutions Division 

Santa Teresa Laboratory 
555 Bailey Avenue 

San Jose, California 95141

I-----Synopsis:

This presentation is taken from a forthcoming "IBM High Level Assembler/MVS & VM & VSE Tuto
rial Guide” . The examples in this document are for purposes of illustration only, and no warranty 
of correctness or applicability is implied or expressed.

Permission is granted to SHARE Incorporated to publish this material in the proceedings of the 
SHARE 83 Conference. IBM retains the right to publish this material elsewhere.

©IBM Corporation, 1994.



I-----Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Cor
poration in the United States and/or other countries:

IBM
MVS/ESA
MVS/XA
System/370
System/390
VM/XA
VSE/ESA

ESA
MVS/SP
System/360
System/370/390
VM/ESA
VSE

HLASM
High Level Assembler
High Level Assembler/MVS & VM & VSE
IBM High Level Assembler/MVS & VM & VSE

----- Publications -----------------------------------------------------------------------------------------------------------------

The currently available product publications for High Level Assembler/MVS & VM & VSE are:

• High Level Assembler/MVS & VM & VSE Diagnosis Guide, SC26-3110
• High Level Assembler/MVS & VM & VSE Fact Sheet, GC26-3189
• High Level Assembler/MVS & VM & VSE General Information, GC26-4943
• High Level Assembler/MVS & VM & VSE Installation, SC26-4942
• High Level Assembler/MVS & VM & VSE Language Reference, SC26-4940
• High Level Assembler/MVS & VM & VSE Licensed Program Specifications, GC26-4944
• High Level Assembler/MVS & VM & VSE Programmer's Guide, SC26-4941

• High Level Assembler/MVS & VM & VSE Presentation Guide, GG24-3910

Soft-copy High Level Assembler publications are available on the following IBM Online Library 
Omnibus Edition Compact Disks:

• Application Development Collection, SK2T-1237 
— The HLASM component is SK2T-2364

• VM Collection, SK2T-2067
• MVS Collection, SK2T-0710
• VSE Collection, SK2T-0060
• Transaction Processing and Data Collection, SK2T-0730 

Related useful publications include:

• Program Update Information, VMSES and VMSES/E, Support for the High Level Assembler, 
VM/ESA™ Release 1.0 (370 Feature), Release 1.1 and Release 2.0, APAR VM54803, GC24-5661.

Electronic Reader Comments may be submitted via E-mail to:

Internet: HLASMPUB@STLVM27.VNET. IBM.COM
IBMMAIL: USIB5V7X at IBMMAIL

H Asssembler Language Macro Programming, SHARE Summer '94



1
2
3
4
6
8
9

10
10
11
13
14
15
17
17
19
20
22
23
24
25
26
26
28

31
32
32
34
35
36
38
39
41
42
43
44
45
46
47
48
49
50
51
53
54
55
56
57
59
60
61
63
64
65
66
67

V

Contents
The Conditional Assembly Language ..............................................
Evaluation, Substitution, and Selection .................................................
Variable Symbols ....................................................................................

Declaration .............................................................................................
Substitution ..........................................................................................

The MNOTE Statement .......................................................................
Assigning Values to Variable Symbols: SET Statements ......................

Evaluating Conditional-Assembly Expressions ...................................
Evaluating and Assigning Arithmetic Expressions: SETA ................
Evaluating and Assigning Boolean Expressions: SETB ......................
Evaluating and Assigning Character Expressions: SETC ...................

String Concatenation .......................................................................
Substrings ..........................................................................................
String Lengths ..................................................................................

Comments on Substitution, Evaluation, and Re-Scanning ................
Statement Selection ..................................................................................

Sequence Symbols and the ANOP Statement ...................................
The AGO Statement ................................................................. ..

The Extended AGO Statement ..........................................................
The AIF Statement ...............................................................................

The Extended AIF Statement ............................................................
Examples of Conditional Assembly .........................................................

Generate a Sequence of Byte Values .................................................
Generating System-Dependent I/O Statements ................................

Macros
What is a Macro Facility? .........................................................................

Benefits of Macro Facilities .................................................................
The Basic Macro Concept .......................................................................

Text Insertion .......................................................................................
Text Parameterization and Argument Association ...........................
Text Selection .......................................................................................
Macro Nesting .......................................................................................

The Assembler Language Macro Definition ............................................
Macro-Instruction Definition Example ..............................................

Macro Comments and Readability ......................................................
Macro-Definition Encoding .......................................................................
Macro-Instruction Recognition .................................................................

Macro-Instruction Recognition Rules .................................................
Example: Defining Equated Symbols for Registers ........................

Macro Parameters and Arguments .........................................................
Macro-Definition Parameters ...............................................................
Macro-Instruction Arguments ...............................................................
Macro Parameter-Argument Association ............................................

Example: Generating a Byte Sequence............................................
Macro Parameter Usage .......................................................................

Macro Expansion and the MEXIT Statement .........................................
Macro Argument Attributes and Structures ............................................

Macro-Instruction Argument Properties: Type Attribute ...................
Macro-Instruction Argument Properties: Count A ttr ib u te ...................
Macro-Instruction Argument Properties: Number Attribute ..............

S u b lis ts ...............................................................................................
Macro-Instruction Argument Lists and the &SYSLIST Variable Symbol

Global Variable Symbols ..........................................................................
Variable Symbol Scope Rules: Summary ............................................

Macro Debugging Techniques .................................................................
MNOTE Statements ...............................................................................

Contents



The MHELP Statement .........................................................................................................  68
The ACTR Statement ............................................................................................................ 70

Macro Techniques .................................................................................................................  71
Examples .................................................................................................................................  72
Defining Equated Symbols for Registers (S a fe ly )...................................................................  74
Generating a Byte Sequence ................................................................................................. 77
Macro-Time Conversion Between Hex and Decimal .............................................................. 79
Generate Lists of Named Integer Constants ........................................................................  81
Creating a Prefixed Message Text ......................................................................................... 83

The AREAD Statement .........................................................................................................  86
Macro Recursion ................................................................................   88

Example 1: Indirect Addressing ...........................................................................................  88
Example 2: Factorial Function Values ................................................................................  90
Example 3: Fibonacci Numbers ...........................................................................................  92

Bit H and ling ............................................................................................................................... 94
Bit-Handling Macros: Simple Forms ...................................................................................  95

Simple Bit-Manipulation Macros ......................................................................................  97
Bit-Handling Macros: Advanced Forms ...........................................................................  102

Declaring Bit Names ....................................................................................................... 104
Using Declared Bit Names in a BitOn Macro ..............................................................  108
Using Declared Bit Names in a BBitOn Macro ...........................................................  112

Using and Defining Data Types ............................................................................................ 117
Base-Language Type Sensitivity ......................................................................................  118
Shortcomings of Assembler-Assigned Types ................................................................. 120
User-Defined Type Attributes ............................................................................................ 122

System (&SYS) Variable Symbols ................................................................................. 129
System Variable Symbols: Properties .................................................................................  129
Variable Symbols With Fixed Values During an Assembly ................................................  132

&SYSASM and &SYSVER .................................................................................................  132
&SYSTEMJD .......................................................................................................................  132
&SYSJOB and &SYSSTEP .................................................................................................  133
&SYSDATC .......................................................................................................................... 133
&SYSDATE .......................................................................................................................... 133
&SYSTIME .......................................................................................................................... 133
&SYSOPT_OPTABLE ...................................................................    133
&SYSOPT_DBCS and &SYSOPT_RENT ...........................................................................  134
&SYSPARM .......................................................................................................................  134

Variable Symbols With Constant Values Within a Macro ...................................................  135
&SYSSEQF .......................................................................................................................... 135
&SYSECT ............................................................................................................................  135
&SYSSTYP .......................................................................................................................... 136
&SYSLOC ............................................................................................................................  136
&SYSIN_DSN, &SYSIN_MEMBER, and &SYSIN_VOLUME .............................................. 136
&SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB VOLUME ........................................  137
&SYSNEST .......................................................................................................................... 137
&SYSNDX ............................................................................................................................  138
&SYSLIST............................................................................................................................. 138

Variable Symbols Whose Values May Vary Anywhere ......................................................  139
&SYSSTMT .......................................................................................................................... 139

System Variable Symbols Not Available in DOS/VSE ......................................................... 139
Relationships to Previous System Variable Symbols ......................................................... 140

&SYSDATE and &SYSDATC ............................................................................................... 140
&SYSECT and &SYSSTYP .................................................................................................  140
&SYSNDX and &SYSNEST .................................................................................................  140
&SYSTIME and the AREAD Statement ............................................................................  140

Index ....................................................................................................................................  143

vi High Level Assembler Tutorial Guide



Figures
1. Explicit Variable Symbol Declarations and Initial Values ...............................................5
2. General Form of the Extended AGO Statement .........................................................  23
3. General Form of the Extended AIF Statement ............................................................  25
4. Generating a Sequence of Bytes, Individually Defined ........................................... 27
5. Generating a Sequence of Bytes, as a Single Operand String ..................................  27
6. Generating a Sequence of Bytes, as a Single Operand String ..................................  29
7. Basic Macro Mechanisms: Text Insertion ....................................................................  35
8. Basic Macro Mechanisms: Text Parameterization .................................................... 36
9. Basic Macro Mechanisms: Text Selection .................................................................  38

10. Basic Macro Mechanisms: Nesting ................................................................................40
11. Assembler Language Macro Definition: Format .............................................................42
12. Assembler Language Macro Mechanisms: Text Insertion by a "Real” Macro . . . .  42
13. Example of Ordinary and Macro Comment Statements ............................................... 43
14. Simple Macro to Generate Register Equates ............................................................... 47
15. Macro to Generate Register Equates Differently ..............  48
16. Sample Macro Prototype Statement ............................................................................  49
17. Macro Parameter-Argument Association Examples .........................................  52
18. Macro to Define a Sequence of Byte Values ............................................................... 53
19. Macro Argument List Structures .................................................................................. 60
20. Macro to Define General Purpose Registers Once Only ...........................................  74
21. Macro to Define Any Sets of Registers Once Only .................................................... 76
22. Macro to Define a Sequence of Byte Values As a Single String ...............................  78
23. Macro-Time Conversion Between Hex and Decimal .................................................  80
24. Macro-Time Conversion Between Hex and Decimal: Examples ..............................  80
25. Macro-Time Conversion Between Decimal and Hex .................................................  80
26. Macro-Time Conversion Between Decimal and Hex: Examples ..............................  81
27. Macro Parameter-Argument Association Example: Create a List of Constants . . .  82
28. Macro Example: List-of-Constants Test Cases ............................................................ 82
29. Macro to Define a Length-Prefixed M essage ............................................................... 84
30. Macro to Define a Length-Prefixed Message With Paired Characters .......................  85
31. Macro to Define a Length-Prefixed Message With “True Text” ................................. 87
32. Test Cases for Macro With “True Text” Messages .................................................... 87
33. Recursive Macro to Implement Indirect Addressing .................................................  89
34. Recursive Macro to Implement Indirect Addressing: Examples ................................. 89
35. Macro to Calculate Factorials Recursively .................................................................  91
36. Macro to Calculate Factorials Recursively: Examples ..............................................  91
37. Macro to Calculate Fibonacci Numbers Recursively .................................................  93
38. Bit-Handling Macros: Simple Bit Definition .................................................................  96
39. Bit-Handling Macros: Example of Bit Definitions ......................................................  96
40. Bit-Handling Macros: Simple Bit Setting ....................................................................  97
41. Bit-Handling Macros: Examples of Bit Setting ............................................................  98
42. Bit-Handling Macros: Simple Bit Resetting .................................................................  98
43. Bit-Handling Macros: Examples of Bit Resetting ..........................................................99
44. Bit-Handling Macros: Simple Bit Inversion .................................................................  99
45. Bit-Handling Macros: Examples of Bit Inversion .........................................................  99
46. Bit-Handling Macros: Branch if Bit is On .................................................................  100
47. Bit-Handling Macros: Examples of "Branch if Bit On” ............................................ 100
48. Bit-Handling Macros: Branch if Bit is Off .................................................................  101
49. Bit-Handling Macros: Examples of “ Branch if Bit Off" ............................................ 101
50. Bit-Handling Macros: Define Bit Names ....................................................................  104
51. Bit-Handling Macros: Examples of Defining Bit N a m e s ............................................ 106
52. Bit-Handling Macros: Set Bits ON ............................................................................  109
53. Bit-Handling Macros: Examples of Setting Bits ON .................................................  110
54. Bit-Handling Macros: Macro to Branch if Bits are ON ............................................ 114
55. Bit-Handling Macros: Examples of Calls to BBitON Macro ...................................  116
56. Macro Type Sensitivity to Base Language Types ..............................    118
57. Examples: Macro Type Sensitivity to Base Language Types ................................. 119

Figures vii



58. Macro to Declare “DATE" Data Type ....................................................................... 122
59. Macro to Declare “ PERIOD” Data Type ....................................................................  123
60. Macro to Calculate “ DATE” Results .........................................................................  125
61. Examples of Macro Calls to Calculate “DATE" Results ......................................... 125
62. Macro to Calculate "PERIOD” Results ....................................................................  127
63. Examples of Macro Calls to Calculate “ PERIOD” Results ......................................  127
64. Properties and Uses of System Variable Symbols .................................................  131

viii High Level Assembler Tutorial Guide



The Conditional Assembly Language
The “ordinary" assembly language is translated by the Assembler into the machine lan
guage of the System/360/370/390 processors, for eventual execution by such a processor. 
The “conditional" assembly language is interpreted and executed by the Assembler at 
assembly time to tailor, select, and create desired sequences of statements.

; X

Conditional Assembly Language 1
• Ordinary vs. Conditional assembly languages:

-  ordinary:
— translated by the Assembler into machine language
— eventually executed on a System/360/370/390 processor

-  conditional:
— interpreted and executed by the Assembler at assembly time
— tailors, selects, and creates sequences of statements

• Conditional Assembly Language:
general purpose (if a bit primitive)
— data types and structures; variables; expressions and operators; assignments; 

conditional and unconditional branches, built-in functions; I/O, subroutines.

• Characteristic uses of conditional-assembly symbols:
variable symbols: evaluation and substitution

-  sequence symbols: selection

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

----------------------------------------------------------------------------------------------J

Though primitive in many respects, the conditional assembly language has most of the basic 
elements of a general purpose programming language: data types and structures, variables, 
expressions and operators, assignments, conditional and unconditional branches, some 
built-in functions, simple forms of I/O, and subroutines.

The distinctive feature of the conditional assembly language is the introduction of two new 
classes of symbols:

• variable symbols are used for evaluation and substitution

• sequence symbols are used for selection among alternative actions.

Just as “normal” or “ordinary" assembly deals with ordinary symbols — assigning values to 
symbols and using those values to evaluate various Kinds of expressions — the conditional 
assembly language uses variable and sequence symbols.

The Conditional Assembly Language 1



Evaluation, Substitution, and Selection 2

• Three key concepts of conditional assembly:
1. Evaluation

-  Assigns values to variable symbols, based on the results of computing complex 
expressions.

2. Substitution
-  You write the name of a variable symbol where the Assembler is to substitute the 

value of the variable symbol.

-  Permits modification of the “ordinary assembly language” text stream.

3. Selection
-  Use sequence symbols to alter the normal, sequential flow of statement 

processing.

-  Selects different sets of statements for further processing.

July 1993 High Level Assembler Tutorial Guide 
<D Copyright IBM Corporation 1993

HLASM

Evaluation, Substitution, and Selection
There are three key concepts in the conditional assembly language:

• evaluation
• substitution
• selection

Evaluation allows you to assign values to variable symbols based on the results of com
puting complex expressions.

Substitution is achieved by writing the name of a special symbol, a variable symbol, in a 
context that the Assembler will recognize as requiring substitution of the value of the vari
able symbol. This permits modification of the “ordinary assembly language” text stream to 
be processed by the assembler.

Selection is achieved by using sequence symbols to alter the normal, sequential flow of 
statement processing. This permits different sets of statements to be presented to the 
Assembler for further processing.

2 High Level Assembler Tutorial Guide



Variable Symbols 3

• Written as an ordinary symbol prefixed by an ampersand (&)

• Examples:
&A &T1me &DATE *My_Value

• Variable symbols starting with &SYS are reserved to the Assembler
• Three variable symbol types are supported:

Arithmetic: values represented as 32-bit 2's complement integers 

Boolean: values are 0,1
-  Character: strings of 0 to 255 EBCDIC characters

• Two scopes are supported:
local: known only within a fixed, bounded context: not shared across 
scopes

-  global: shared in all contexts that declare the variable as global

July 1993 High Level Assembler Tutorial Guide 
£  Copyright IBM Corporation 1993

HLASM

Variable Symbols
In addition to the familiar “ordinary" symbols managed by the assembler — internal and 
external — there is also a class of variable symbols. Variable symbols obey scope rules sup
porting two types that roughly approximate internal and external ordinary symbols, but they 
are not retained past the end of an assembly, and do not appear in the object text produced 
by the assembly.

Variable symbols are written just as are ordinary symbols, but with the ampersand character 
(&) prefixed. Examples of variable symbols are:

&A &a (these two are treated identically)
&Time 
&DATE 
&Hy_Va1ue

As indicated in these examples, variable symbols may be written in mixed-case characters; 
all appearances will be treated as being equivalent to their upper-case versions. Variable 
symbols starting with the characters &SYS are reserved to the Assembler.

There are three types of variable symbols, corresponding to the values they may take: 

arithmetic
The allowed values of an arithmetic variable symbol are those of 32-bit (fullword) two's 
complement integers (i.e., between —231 and + 23'—1. (Be aware that in certain contexts, 
their values may be substituted as unsigned integers!)

boolean
The allowed values of a boolean variable symbol are 0 and 1. 

character
The value of a character variable symbol may contain from 0 to 255 characters, each 
being any EBCDIC character. (A character variable symbol containing no characters is 
sometimes called a null string.)

The Conditional Assembly Language 3



r * ----------:---------------------------------------------------------------------------------- \
Declaring Variable Symbols 4
• There are six explicit declaration statements (3 types x 2 scopes)

Arithmetic Boolean Character
Local Scope LCLA LCLB LCLC
Global Scope GBLA GBLB GBLC
Initial Values 0 0 null

• Examples of scalar-variable declarations:
LCLA SJ,&K 
GBLB UNIT 
LCLC &Temp_Chars

• May be subscripted, in a 1-dimensional array (positive subscripts)
LCLA &F(151 £ M ,

• May be created, in the form &(e) (where e starts with an alphabetic 
character)
&(6&J&K) SETA &(XY&J.Z)~1

July 1993 High Level Assembler Tutorial Guido HLASM
£> Copyright IBM Corporation 1993

V______________ ;________________________________________j
--------------------------------------------------------- .
Declaring Variable Symbols ... 5

• Three forms of implicit declaration:

1. by the Assembler (for System Variable Symbols)

names always begin with characters &SYS

-  most have local scope

2. by appearing as symbolic parameters (dummy arguments) in a macro 
prototype statement

-  symbolic parameters always have local scope

3. as local variables, if first appearance is as target of an assignment

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

________________________________________________________J

Declaration
Variable symbols are declared in several ways:

• explicitly, through the use of declaration statements

• by the Assembler (these are known as System Variable Symbols)

• implicitly, by their appearance as dummy arguments in a macro prototype statement 
(these are known as symbolic parameters-, they are of character type, and are local in 
scope)

• implicitly, as local variables, through appearing for the first time as the target of an 
assignment.

Explicitly declared variable symbols are declared using two sets of statements that specify
their type and scope:

4 High Level Assembler Tutorial Guide



Figure 1. Explicit Variable Symbol Declarations and Initial Values
Arithmetic Boolean Character

Local scope LCLA LCLB LCLC
Global scope GBLA GBLB GBLC
Initial Values 0 0 null

These declared variables are automatically initialized by the Assembler to zero (arithmetic 
and boolean variables) or to null (zero-length) strings (character variables).

The two scopes of variable symbols — local and global — will be discussed in greater detail 
later, in “Variable Symbol Scope Rules: Summary” on page 65. For the time being, we will 
be concerned almost entirely with local variables.

For example, to declare the three local variable symbols &A as arithmetic, &B as boolean, and 
&C as character, we would write

LCLA &A 
LCLB &B 
LCLC &C

More than one variable symbol may be declared on a single statement. The ampersand 
preceding the variable symbols may be omitted in LCLx and GBLx statements, if desired.

Variable symbols may also be subscripted: that is, you may declare a one-dimensional array 
of variable symbols all having the same name, by specifying a parenthesized integer 
expression following the name of the variable. For example,

LCLA &F(15)
LCLB &G(15)
LCLC &H(15)

would declare the three subscripted local variable symbols F, 6, and H to have 15 elements. 
We will see in practice that the declared size of an array is ignored, and any valid (positive) 
subscript value is permitted. Thus, it is sufficient to declare

LCLA &F(1)
LCLB &G(1)
LCLC &H(1)

You can determine the maximum subscript used for a subscripted variable symbol with a 
Number attribute reference (to be discussed later, at “ Macro-Instruction Argument Proper
ties: Number Attribute" on page 60).

Subscripted variable symbols may appear anywhere a scalar (non-subscripted) variable 
symbol appears.

Created variable symbols may be created “dynamically” , using characters and the values of 
other variable symbols. The general form of a created variable symbol is &(e), where e must 
(after substitutions) begin with an alphabetic character. Created variable symbols may also 
be subscripted; like other variable symbols they may be declared explicitly or implicitly.

System variable symbols and their properties are discussed in “System (&SYS) Variable 
Symbols” on page 129.

In the examples that follow, we will typically enclose string values in apostrophes, as in 
'S tring ', to help make the differences clearer between strings and descriptive text.
However, the enclosing quotes are only sometimes required by the syntax rules of a partic
ular statement or context.

The Conditional Assembly Language 5



Substitution

• In appropriate contexts, a variable symbol is replaced by its value
• Example: Suppose the value of &A is 1.

Then, the result of substituting &A in
Constant&A DC F'&A'

Is

Constantl DC F T

(This illustrates why paired ampersands are required if you want a 
single & in a character constant or self-defining term.)

• To avoid ambiguities, mark the end of a variable-symbol substitution
with a period: [

Write: C0NST&A.I DC C'&A.D* &A followed by T

Not: CONST&AB DC C'&AI' &A followed by ’D' ?? No: &AB 1

July 1993 High Level Assembler Tutorial Guide HLASM
0  Copyright IBM Corporation 1993

V____________________________ .___________________________ /

6

Substitution
The value of a variable symbol is used by substituting its value, converted into a character 
string if necessary, into some element of a statement. For example, if the value of &A is 1 (at 
this point, it doesn't matter whether &A is an arithmetic, boolean, or character variable), and 
we write the following DC statement:

Constant&A DC F'&A'

then the resulting statement would be

Constantl DC F 'l '

That is, at each appearance of the variable symbol &A, its value is substituted in place of the 
symbol. (This behavior explains why you were required to write a pair of ampersands in 
character constants and self-defining terms where you wanted a single ampersand to appear 
in the character constant or self-defining term: a single ampersand would indicate to the 
Assembler that a variable symbol is expected to appear in that position.)

The positions where substitutable variable symbols appear, and at which substitutions are 
done, are sometimes called points of substitution.

Suppose we need to substitute the value of &A into a character constant, such that its value 
is followed by the character ' B1. If we wrote

CONST&AB DC C'&AB' &A followed by 'B' ??

the assembler has a problem: should &AB be treated as the variable symbol &AB or as the 
variable symbol &A followed by 'B'? If the assembler made the latter choice, it could never 
recognize the variable symbol &AB (nor any other symbols beginning with &A, like &ABCDEFG)!

To eliminate such ambiguities, you should indicate the end of the variable symbol with a 
period (.). Thus, the constant should be written as

CONST&A.B DC C'&A.B' &A followed by 'B'

6 High Level Assembler Tutorial Guide



giving

C0NST1B DC C'IB' &A followed by 'B' !!

(Note that variable symbols are not substituted in remarks fields or in comments state
ments.)

While the terminating period is not required in all contexts, it is a good practice to specify it 
wherever substitution is intended. (The two places where the period most definitely is 
required are when the point of substitution is to be followed by a period or a left paren
thesis.)

The Conditional Assembly Language 7



The MNOTE Statement

Useful for diagnostics, tracing, information, error messages 
Syntax:

MNOTE severity,'message text' 

severity may be
any arithmetic expression of value between 0 and 255
— omitted (if the following comma is present, severity *  1)
— value of severity is used to determine assembly completion code

an asterisk; the message is treated as a comment
— omitted (if the following comma is also omitted, treat as a comment)

Displayed quotes and ampersands must be paired 
Examples:
.Msg_lB MNOTE 8,'Missing Required Operand1
.X14 MNOTE ,'Conditional Assembly has reached point .X14'
.Trace4 MNOTE \  'Value of &&A « &A., value of &&C ■

MNOTE 'Hello World (How Original))'

July 1993 High Level Assembler Tutorial Guide 
<D Copyright IBM Corporation 1993

HLASM

The MNOTE Statement
The “ inputs” to conditional assembly activities are usually values of variable symbols, and 
ordinary statements that may or may not be affected by substitution and/or selection. Simi
larly, the “outputs” are normally sequences of statements on which selection and substi
tution have been performed.

There is another way for the conditional assembly language to “communicate” to the 
program and the programmer, by way of the MNOTE statement.

The MNOTE statement can be used in both “open code” and in macros to provide diagnos
tics, trace information, and other data in an easily readable form. By providing suitable con
trols, you can produce or suppress such messages easily, which facilitates debugging of 
macros and of programs with complex uses of the conditional assembly language. For 
example, a program could issue MNOTE statements like the following:

•Msg_lB MNOTE 8,'Missing Required Operand'
.X14 MNOTE , 'Conditional Assembly has reached point .X14'

•Trace4 MNOTE 
MNOTE

*, 'Value of &&A = &A., value of &&C = "& C ." ' 
'Hello World (How O rig ina l!)'

The first MNOTE sets the return code for the assembly to be at least 8 (presumably, due to 
an error condition); the second could indicate that the flow of control in a conditional 
assembly has reached a particular point (and will supply a default severity code value of 1); 
the third provides information about the current values of two variable symbols; and the 
fourth illustrates the creation of a simple message.

Any quotation marks and ampersands intended to be part of the message must be paired, 
as illustrated in the example above.

The first two MNOTEs are treated as “error” messages, which means that they will be 
flagged in the error summary in the listing and will appear in the SYSTERM output (if the 
TERM option was specified, and the setting of the FLAG option has not suppressed them). A

8 High Level Assembler Tutorial Guide



setting of an assembly severity code is also performed. The latter two MNOTEs will be 
treated as comments, and will appear only in the listing.

Assigning Values to Variable Symbols: SET Statements 8
• Three assignment statements: SETA, SETB, and SETC

One SET statement for each type of variable symbol
• General form is

Bvarsym SETx expression Assigns value of expression to &varsytn

• Syntax:
&A_varsym SETA ar1thmet1c_express1on 
&B~varsym SETB booleanexpression 
&C“varsym SETC character_expre$s1on

• Target variable symbol may be subscripted
Multiple values can be assigned to successive array elements

• Syntax:
&Subscr1pted_x_varsym SETx x_expresslonglist

&A(6) SETA 9,2,16 Sets &A(6)*9, &A(7)*2, &A(8)*10

July 1993 High Level Assembler Tutorial Guide HLASM
€) Copyright IBM Corporation 1993

V_________________________________________________________________ J

Assigning Values to Variable Symbols: SET Statements
Assignment of new values to variable symbols occurs in three ways, corresponding to the 
types of declaration.

• Explicitly and implicitly declared variable symbols of arithmetic, boolean, and character 
type are assigned values by the SETA, SETB, and SETC statements, respectively. (Since 
the type of the assigned variable is generally known in advance, having three separate 
SET statements is somewhat redundant; it does help, however, by allowing implicit dec
larations.)

• System variable symbols are assigned values by the Assembler (and only by the 
Assembler). They may not appear in the name field of a SETx statement.

• Symbolic parameters have their values assigned by appearing as actual arguments in a 
macro call statement. They may not appear in the name field of a SETx statement.

At this point, we will discuss only assignments to declared variable symbols.

Multiple array elements may have values assigned in a single SET statement by specifying a 
list of operand-field expressions of the proper type, separated by commas. For example:

&A(6) SETA 9,2,10 Sets &A(6)=9, &A(7)=2, &A(8)=10

would assign 9 to &A(6), 2 to &A(7), and 10 to &A(8). (If you wish to leave one of the array 
elements unchanged, simply omit the corresponding value from the expression list.)

Occasionally, the three declarable types of variable symbol (arithmetic, boolean, and char
acter) are referred to as SETA, SETB, and SETC variables, respectively, and declarable vari
able symbols are referred to as SET symbols.

The Conditional Assembly Language 9



Evaluating Conditional-Assembly Expressions
As in any programming language, it is useful to evaluate expressions involving variable 
symbols and other terms, and to assign the results to other variable symbols.

---------------------------------------------------------------------------------- V

Evaluating and Assigning Arithmetic Expressions 9
• Syntax:

&Ar1thmet1c_Vdr_$yiR SETA ar1thmet1c_express1on

• Follows same evaluation rules as ordinary-assembly expressions
Simpler, because no relocatable terms are allowed

• Terms include:
-  arithmetic and boolean variable symbols
-  self-defining terms (binary, character, decimal, hexadecimal) 

character variable symbols whose value is a self-defining term 
predefined absolute ordinary symbols
numeric-valued attribute references
(Count, Definition, Integer, Length, Number, Scale)

• Example:
&A SETA &D*(2+&K)/&G+AB$$YM-C'3'+L * SPL3

July 1993 High Level Assembler Tutorial Guide HLASM
C  Copyright IBM Corporation 1993

V---------------------------------------------------------------------------------------------- J

Evaluating and Assigning Arithmetic Expressions: SETA
The rules for evaluating conditional-assembly arithmetic expressions are very similar to 
those for ordinary expressions, with the added great simplification that none of the terms in 
a conditional-assembly expression may be relocatable. In addition to self-defining terms, 
predefined absolute ordinary symbols may be used as terms, as may variable symbols 
whose value can be expressed as a self-defining term (whose value in turn can be repres
ented as a signed 32-bit integer).

As usual, parentheses may be used in expressions to control the order and precedence of 
evaluation.

Numeric-valued attribute references to ordinary symbols may also be used as terms; these 
are normally attribute references to character variable symbols whose value is an ordinary 
symbol. The numeric-valued attribute references are:

• Count (K')
• Definition (D')
• Integer ( I ')
• Length (L')
• Number (N1)
• Scale (S')

We will illustrate applications of attribute references later, particularly when we discuss 
macros. Attribute references may, of course, be used in “open code” .

10 High Level Assembler Tutorial Guide



r ---------------------------------------------------------------------------------------------- s
Evaluating and Assigning Boolean Expressions 10
• Syntax:

&Boolean_Var_$ym SETB booleanexpressIon

• Boolean constants: 0 (false), 1 (true)
• Boolean operators:

-  NOT (highest priority), AND, OR (lowest)
Unary NOT also allowed in AND NOT, OR NOT

• Relational operators (for arithmetic and character comparisons):
- EQ, NE, GT, GE, LT, LE
-  Character comparisons use EBCDIC collating sequence, but:

-» Shorter string always compares LT than longer!
Note: cannot compare arithmetic and character expressions

• Example:
&B SETS ((&A GT 10) AND NOT ('BOC GE *2*))

July 1993 High Level Assembler Tutorial Guide HLASM
0  Copyright IBM Corporation 1993

______________________________________________ _________ J

Evaluating and Assigning Boolean Expressions: SETB
Boolean expressions provide much of the conditional selection capability of the conditional 
assembly language. In practice, many boolean expressions are not assigned to boolean vari
able symbols; rather, they are used in AIF statements to describe a condition to control 
whether or not a conditional-assembly “ branch” will or will not be taken.

Boolean primaries include boolean variable symbols, the boolean constants 0 and 1, and 
(most useful) comparisons. Two types of comparison are allowed: between arithmetic 
expressions, and between character expressions (which will be described in “Evaluating and 
Assigning Character Expressions: SETC” on page 13 below). Comparisons between arith
metic and character terms is not allowed.

The comparison operators are

EQ (equal)
NE (not equal)
GT (greater than)
GE (greater than or equal)
LT (less than)
LE (less than or equal)

In an arithmetic relation, the usual integer comparisons are indicated. (Remember that pre
defined absolute ordinary symbols are allowed as arithmetic terms!)

N EQU 10
&N SETA 5
&B1 SETB (&N GT 0) &B1 is TRUE
&B2 SETB (&N GT N) &B2 is FALSE

For character comparisons, a test is first made on the lengths of the two comparands: if they 
are not the same length, the shorter operand is always taken to be “ less than” the longer. 
Note that this may not be what you would get if  you did a “hardware” comparison! The fol
lowing example illustrates the difference.

('BB' GT 'AAA') is always FALSE in conditional assembly 
CLC “ C'BB'^C'AAA1 indicates that the f ir s t  operand is "high*

The Conditional Assembly Language 11



If the character comparands are the same length, then the usual EBCDIC collating sequence 
is used for the comparison, so that

('BB' GT 'AA') is always TRUE in conditional assembly

The boolean operators are the usual logical operators AND, OR, and NOT; note that no 
exclusive-or (XOR) operation is provided. (This deficiency can sometimes be remedied by 
noting that

(A XOR B) = (A OR B) - (A AND B)

if the terms can readily be cast in the arithmetic form needed for the subtraction.)

NOT may be used as a unary operator, as in the following:

&Bool_var SETB (NOT ('BB' EQ 'AA')) 

which would set &Bool_var to 1, meaning TRUE.

In a compound expression involving mixed operators, the NOT operation has highest priority; 
AND has next highest priority; and OR has lowest priority.

12 High Level Assembler Tutorial Guide



. :--->.
Evaluating and Assigning Character Expressions 11
• Syntax:

iCharacter_Var_Sym SETC character_express1on 

&CVar2 SETC 'This 1s the Beginning of the End'

• All terms must be quoted, except type-attribute references
Type-attribute references are neither quoted nor duplicated nor combined

-  Quoted terms may be preceded by parenthesized duplication factor
• Apostrophes and ampersands in strings must be paired

-  Apostrophes are paired internally
B.QT SETC Value of &QT 1s a single apostrophe

-  Ampersands are not paired internally!
&Amp SETC '&&' &Amp has value '&&'
&D SETC (2)'A&&B' &D has value 'A&&BA&&B'

• Warning! SETA variables are substituted without sign!
&A SETA -5 \7
&C SETC 'SiA' *C has value '5' (not '-5'I) *o

July 1993 High Level Assembler Tutorial Guide HLASM
0  Copyright IBM Corporation 1993

________________________________________________________J

Evaluating and Assigning Character Expressions: SETC
The major elements of character expressions are quoted strings. For example, we may 
assign values to character variable symbols using quoted strings, as follows:

&CVarl SETC 'AaBbCcDdEeFf1
&CVar2 SETC 'This is the Beginning of the End
&Digits SETC '0123456789'
&Hex SETC ' 0123456789ABCDEF'

Type attribute references may also be used as terms in character expressions, but they 
must appear as the only term in the expression:

&TCVarl SETC T'&CVarl

Character-string constants in SETC expressions are quoted, and internal apostrophes and 
ampersands must be written in pairs, so that the term may be recognized correctly by the 
assembler. Thus, character strings in character (SETC) expressions look like character con
stants and character self-defining terms in other contexts.

However, when the assembler determines the value of a character term in a SETC 
expression, there is one key difference: while apostrophes are paired to yield a single 
internal apostrophe, ampersands are not paired to yield single internal ampersands! Thus, 
if we assign a string with a pair of ampersands, the result will still contain that pair:

&QT SETC 1 1 1 1 Value of &QT is a single apostrophe
&Amp SETC &Amp has value '&&'
&C SETC 'A&&B' &C has value 'A&&B'
&D SETC (ZJ'AMB' &D has value 'A&&BA&&B'

If the value of such a variable is substituted into an ordinary statement, then the ampersands 
will be paired to produce a single ampersand, according to the familiar rules of the Assem
bler Language:

The Conditional Assembly Language 13



&C SETC *A&&B* &C has value 'A&&B'
AandB DC C'&C.' generated constant is 'A&B'

If a single ampersand is required in a character expression, then a substring (described 
below) of a pair of ampersands should be used.

One reason for this behavior is that it prevents unnecessary proliferation of ampersands. For 
example, if we had wanted to create the character string * A&&B1, a requirement for paired 
ampersands in SETC expressions would require that we write

&C SETC * A&&&&B' ???

which would clearly make the language become even more awkward. The existing rules 
represent a trade-off between inconvenience and inconsistency, in favor of greater conven
ience.

Character expressions introduce two new concepts: string concatenation, and substring 
operations.

Character Expressions: Concatenation 12

* Concatenation indicated by juxtaposition

* Concatenation operator is the period (.)

&B SETC 'A.B' & B has value 'A.B'

&C SETC 'AB' &C has value 'AB'
&C SETC 'A'.'B' &c has value •AB1

&D SETC ‘&C’.'E' &D has value 'ABE'
&E SETC •mo* &D has value 'ABEABE'

* Period is also used to indicate the end of a variable symbol

U> SETC 'BC.E' M) has value 'ARE'

&E SETC 'B0.BD' BD has value 'ABEABE'
BE SETC 'BD..BD' BO has value 'ABE.ABE'

July 1993 High Level Assembler Tutorial Guide 
€  Copyright IBM Corporation 1993

HLASM

String Concatenation
We are somewhat familiar with the notion of string concatenation from some of the earlier 
examples of substitution, where a substituted value is concatenated with the adjoining char
acters to create the completed string of characters. As before, the end of a variable symbol 
may be denoted with a period. The period is also used as the concatenation operator, as 
shown in the following examples:

&c SETC 1 AB1 &C has val ue 'AB'
&B SETC •A.B' &B has val ue 'A.B'
&C SETC 1A1. 'B1 &C has val ue 'AB'
&D SETC o m &D has val ue 'ABE'
&D SETC '&C.E' &D has val ue •ABE'
&E SETC * &D&D' &D has val ue ’ABEABE'
&E SETC '&D.&D' &D has val ue 'ABEABE'
&E SETC '&D..&D' &D has val ue 'ABE.ABE'

14 High Level Assembler Tutorial Guide



As these examples show, there may be more than one way to specify desired concatenation 
results.

Character Expressions: Substrings 13

• Substrings selected by 'string '(s ta rt position,span)
f  ,

&C SETC 'A6CDE'(1,3) &C has value ‘ABC1
&C SETC 'ABCDE'(3,3) &C has value 'CDE' °

span may be zero (substring is null)

B.C SETC 'ABCDE'(2,6) &C has value "

Incorrect substring operations may cause warnings or errors

&C SETC 
&C SETC 
&C SETC 
&C SETC

'ABCDE'(5,3) 
'ABCDE'(6,1) 
'ABCDE'(2,-1) 
'ABCDE'(6,2)

&C has value 'E' (and a warning) 
&C has value " (and a warning) 
&C has value "  (and a warning) 
&C has value "  (and an error)

July 1993 High Level Assembler Tutorial Guide 
O Copyright IBM Corporation 1993

HLASM

Substrings
Substrings are defined by a somewhat unusual (and sometimes awkward) notation, as 
follows:

substring = 'source_string'(start_position,span)

where start_position is the position in the sourcejstring where the substring is to begin, and 
span is the length of the substring to be extracted.

To illustrate, consider the following examples:

&c SETC 'ABCDE'(1,3) &C has value •ABC*
&c SETC 'ABCDE'(3,3) &C has value •CDE'
&c SETC 'ABCDE'(5,3) &C has value *Ef (and a warning)

So long as the substring is entirely contained within the sourcejstring, the results are intui
tive. For cases where one or another of the many possible boundary conditions would 
cause the substring not to be entirely contained within the sourcejstring, the following rules 
apply:

1. The length of the source_string must be between 1 and 255.

2. The span of the substring must be between 0 and 255.

3. If 1<sfarf_position<length, and ^<span<iength, and start_position + span<length + 1, 
then a normal substring will be extracted.

4. If start_position<0, then the assembler will issue an error message, and the substring 
will be set to null.

5. If start_position>iength, then the assembler will issue a warning message, and the sub
string will be set to null.

6. If span=0, then the substring will be set to null. No error message will be issued.

The Conditional Assembly Language 15



7. If span<0, then the assembler will issue a warning message, and the substring will be 
set to null.

8. If start_position + span>length +1, then the substring will be that portion of the 
source_string starting at start_position to the end. The assembler will issue a warning 
message.

Unfortunately, there is no substring notation meaning “ from here to the end of the string” , 
which some other languages support.

String expressions are constructed using the operations of substitution, concatenation, and 
substringing. One may also use type attribute references as character terms, but they are 
limited to “single-term" expressions with no duplication factors.

Be aware that substitution of arithmetic-valued variable symbols into character (SETC) 
expressions will not preserve the sign of the arithmetic value! For example:

&A SETA -5
&C SETC '&A' &C has value '5 ' (not ’ -5 '!)

If signed arithmetic is important, use arithmetic expressions and variable symbols; if signed 
valued must be substituted into ordinary statements with the proper sign, then you must con 
struct a character variable with the desired sign, as in the following example. (Uses of the 
AIF and ANOP statements, and the sequence symbol .GenCon will be discussed shortly.)

&A SETA -5
BadConl DC F'&A'
&C SETC '&A'
BadCon2 DC F'&C1

AIF (&A GE 0).GenCon
&C SETC '&C'
.GenCon ANOP
GoodConst DC F'&C'

Constant has value 5 
&C has value '5 ' (not '-5 '! )
Constant has value 5
Check sign of &A
Prefix minus sign i f  negative

Correctly signed constant with value -5

------------------------------:--------------------------- >Character Expressions: String Lengths 14

• Use a Count Attribute Reference (K') to determine string lengths

&N SETA K'&C Sets &A to number of characters 1n &C

&C SETC • 12345’ &C has value '12345'
&n SETA K’&C 8J4 has value 5

&c SETC • • null string
&n SETA K'&C &N has value 0

&C SETC (3)'AS' &C has value 'ABA0A0'
Ui SETA K'&C &N has value 6

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

_______________________________________________________ J

16 High Level Assembler Tutorial Guide



String Lengths
The number of characters in a character variable symbol can be determined using a Count 
attribute reference (K1). For example:

&c SETC '12345' &C has value '12345'
&N SETA K'&C &N has value 5

&C SETC I 1 null string
&N SETA K'&C &N has value e
&C SETC (3)'AB' &C has value 'ABABAB
&N SETA K'&C &N has value 6

The Count attribute reference is very useful in cases where strings must be scanned from 
right to left; thus,

&X SETC 1&C' (K' &C,1) Extract rightmost character of &C

assigns the rightmost character in the value of &C to &X.

Comments on Substitution, Evaluation, and Re-Scanning
The assembler uses a method of identifying points of substitution that may be different from 
the methods used in some other languages.

1. Points of substitution are identified only by the presence of variable symbols. Ordinary 
symbols (or other strings of text) are never substituted.

2. Statements are scanned only once to identify points of substitution. This means that if a 
substituted value seems to cause another variable symbol to “appear" (possibly sug
gesting further points of substitution), these “secondary” substitutions will not be per
formed.
To illustrate, you might ask what happens in this situation: will the substituted value of 
&B in the DC statement be substituted again?

&C SETC '&&B' &C has value '&&B'
&C SETC '&C'(2,2) &C has value '&B'
&B SETC 'XXX' &B has value 'XXX'
Con DC C'&C Is the result '&B' or 'XXX'?

The answer is “ no” . In fact, this DC statement results in an error message:

ASMA127S *** ERROR *** ILLEGAL USE OF AMPERSAND

Because the assembler does not re-scan the DC statement to attempt further substi
tutions for &C, there will be a single ampersand remaining in the nominal value (1 &B') of 
the C-type constant.
As a further example, note that substitution uses a left-to-right scan, and that new vari
able symbols are not created “automatically” . For example, if the two character vari
able symbols &C1 and &C2 have values 'X' and 'Y' respectively, then the substituted 
value of '&C1&C2' is 'XY', and not the value of '&C1Y'. Similarly, the string '&&C1.C2' 
represents '&&C1.C2', and not the value of ' &XC2'!
The only mechanism for “manufacturing” variable symbols is that of the created vari
able symbol, whose recognition requires the specific syntax previously described.

3. This single-scan rule applies both to ordinary-statement substitutions, and to
conditional-assembly statements. Thus, statements once scanned for points of substi
tution will not be re-scanned (or “ re-interpreted”) further.

The Conditional Assembly Language 17



Consider the arithmetic expression We would expect it to be evaluated by sub
stituting the value of &A, and then multiplying that value by 5.
If this is used in statements such as

&A SETC '10'
&B SETA 5*&A

then we would find that &B has the expected value, 50. However, in the following state
ments:

&A SETC '3+4'
&B SETA 5*&A

we are faced with several possibilities. First, is the value of &B now 35 (corresponding to 
"5* (3+4)")? That is, is the sum 3+4 evaluated before the multiplication? Second, is the 
value of &B now 19 (corresponding to "(5*3)+4”)? That is, is the string "5*3+4" evaluated 
according to the rules for arithmetic expressions?
In fact, a third situation occurs: because the expression '5*&A' is not re-scanned in any 
way, the value of &A must be a self-defining term. Because it is not, the assembler 
produces this error message:

ASMA102E *** ERROR *** Arithmetic term is not self-defining term; default ■ 0

indicating that the substituted “term” 3+4 is improperly formed.
A similar result occurs if predefined absolute symbols are used as terms. If they are 
used directly (without substitution), they are valid; however, the name of the symbol may 
not be substituted as a character string. To illustrate:

N Equ 3+4 N has value 7
&B SetA 5*N &B has value 35

&N SetC 'N' Set &N to the character 'H'
&C SetA 5*&N Error message for invalid term!

18 High Level Assembler Tutorial Guide



/ ---------------------------------------------------------------------------------------------- \
Statement Selection 15

• Allows the Assembler to select different sequences of statements for 
further processing

• Key elements are:

Sequence symbols

— Used to "mark” positions in the statement stream

-  Two statements that refer to sequence symbols:

AGO conditional-assembly “unconditional branch”

AIF conditional-assembly “conditional branch”

-  One statement that helps “define” a sequence symbol:

ANQP conditional-assembly “No-Operation”

July 1993 High Level Assembler Tutorial Guide HLASM
C  Copyright IBM Corporation 1993

V ______________________ _________ _________ ;___________________ _____J

Statement Selection
The full power of the conditional assembly language lies in its ability to direct the Assembler 
to select different sequences of statements for processing. This allows you to tailor your 
program in many different ways, as we will see.

The key facilities required for statement selection are sequence symbols, which are used to 
mark positions in the statement stream for reference by other statements, and the AIF and 
AGO statements, which allow the normal sequence of statement processing to be altered, 
based on conditions specified by the programmer. The ANOP statement is provided as a 
“ place holder” for a sequence symbol.

The Conditional Assembly Language 19



Sequence Symbols and the ANOP Statement 16

Sequence symbols
Written as an ordinary symbol preceded by a period (.)

.A .RepeatScan .Loop_Head .Error12

Used to mark a statement
— Defined by appearing in the name field of a statement

-  Not assigned any value (absolute, relocatable, or other)

Purely local scope; no sharing of sequence symbols across scopes 

Cannot be created or substituted (unlike ordinary and variable symbols)
— Cannot even be created in a macro-generated macro (!)

— Never passed as values of any symbolic parameter

Used as target of AIF, AGO statements to alter sequential statement 
processing

July 1993 High Level Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

HLASM

J
f Sequence Symbols and the ANOP Statement... 17

ANOP — conditional-assembly “No-Operation”

Serves only to hold a sequence-symbol marker before statements that 
wouldn't have room for it in the name field

.Target ANOP
&ARV SETA &ARV+1 Name field required for target variable

-  No other effect

-  Conceptually similar to (but very different from!)

Target EQU * For ordinary symbols In ordinary assembly

July 1993 High Level Assembler Tutorial Guide 
€  Copyright IBM Corporation 1993

HLASM

Sequence Symbols and the ANOP Statement
Sequence symbols are the key to statement selection: they “ mark” the position of a specific 
statement in the stream of statements to be processed by the assembler. They are written 
as an ordinary symbol preceded by a period (.), as in the following examples:

•A .Repeat_Scan .Loop_Head .Errorl2

Sequence symbols have some unusual properties compared to ordinary symbols.

• Sequence symbols are defined by appearing in name field of any statement. They may 
appear on ordinary-assembly statements and on conditional-assembly statements, with 
no difference in meaning or behavior.

20 High Level Assembler Tutorial Guide



• Sequence symbols are not assigned an absolute or relocatable value, and they do not 
appear in the assembler's Symbol Table. They cannot be used in expressions of any 
kind.

• Sequence symbols have purely local scope. That is, there is no sharing of sequence 
symbols between macros, or between macros and ordinary “open code" assembly.

• Sequence symbols cannot be created or substituted (unlike ordinary and variable 
symbols).

• Sequence symbols are never passed as values of any symbolic parameter. Thus, 
although they can appear in the name field of a macro instruction statement (or macro 
“call” ), they are never made available to the macro definition as the value of a name- 
field variable symbol.

• Sequence symbols are used as the target of AIF and AGO statements to alter sequential 
statement processing, and for no other purpose.

The ANOP statement is provided as a “ place holder” for a sequence symbol that could not 
otherwise be attached to a desired statement. This is illustrated in the following example, 
where the desired “target” is a SETA statement, which requires that an arithmetic variable 
symbol appear in the name field:

•Target ANOP
&ARV SETA &ARV+1 Name fie ld  required for target variable

Thus, the ANOP statement provides a way for other AIF and AGO statements to refer to the 
SETA statement.

The Conditional Assembly Language 21



The AGO Statement 18

• Unconditionally alters normal sequential statement processing
Assembler breaks normal sequential statement processing
Resumes processing at statement marked with the specified sequence 
symbol
Two forms: Ordinary AGO and Extended AGO

• Ordinary AGO (Go-To statement)
AGO sequence_symbo1 

Example:
AGO .Target Next statement processed marked by .Target

• Example of use:
AGO .00

* (1) This statement Is Ignored 
.00 ANOP
* (2) This statement Is processed

July 1993 High Level Assembler Tutorial Guide 
O Copyright IBM Corporation 1993

HLASM

The AGO Statement
The function of the AGO statement is to unconditionally alter the sequence of statement 
processing, which resumes at the statement “ marked” with the specified sequence symbol. 
It is written in the form

AGO sequence_symbol

Example:
AGO .Target Next statement processed marked by .Target

The Assembler breaks its normal sequential statement processing, and resumes processing 
at the statement “marked” with the specified sequence symbol. For example,

AGO .BB
* (1) This statement is ignored 
.BB ANOP
* (2) This statement is processed

the AGO statement will cause the following comment statement (1) to be skipped, and proc
essing will resume at the ANOP statement.

22 High Level Assembler Tutorial Guide



The Extended AGO Statement 19

• Extended AGO (Computed Go-To, Switch statement)

AGO (ar1th_expr)seqsym_l[,seqsyn_k]...

Example:
I Z 3 H 

AGO (&$W).SW1,.$W2,.SW3,.SW4 
HNOTE 12,'Invalid value of &&SW <ji -  ƒ OyjAs

• Value of arithmetic expression determines which “branch” is taken 
from sequence-symbol list
-  Value must lie between t and number of sequence symbols in “branch” 

list

• Warning! if value of arithmetic expression is invalid, no “branch” is 
taken!

July 1993 High Level Assembler Tutorial Guide 
<D Copyright IBM Corporation 1993

HLASM

The Extended AGO Statement
The assembler provides a convenient extension to the simple imperative (unconditional) 
AGO statement, in the form of the “Computed AGO” statement, analogous to a "switch” or 
“ case” statement in other languages. The operand field contains a parenthesized arithmetic 
expression, followed by a list of sequence symbols, as shown in the following example.

AGO (arith_expr)seqsym_l[,seqsym_k]...

Figure 2. General Form of the Extended AGO Statement

The operation of this extended AGO statement is simple: the value of the 
arithmetic jexpression is used to select one of the sequence symbols as a “ branch target” : if 
the value is 1, the first sequence symbol is selected; if the value is 2, the second sequence 
symbol is selected; and so forth. However, because it is possible that the value of the arith
metic expression does not correspond to any entry in the list (e.g., the value of the 
expression may be less than or equal to zero, or larger than the number of sequence 
symbols in the list), the assembler will not take any branch, and will not issue any diagnostic 
message about the “ failed” branch! Thus, it is important to verify that the values of arithmetic 
expressions used in extended AGO statements are always valid.

The operation of the extended AGO statement illustrated in Figure 2 is precisely equivalent 
to ihe following set of AIF statements (which will be described shortly):

AIF (arith_expr EQ l)seqsym_l 
AIF (arith_expr EQ 2)seqsym_2

AIF (arith_expr EQ k)seqsym_k

This construction helps to illustrate how and when it is possible for no “ branch” to be taken.

The Conditional Assembly Language 23



—  
The AIF Statement

• Conditionally alters normal sequential statement processing

• Two forms: Ordinary AIF and Extended AIF

• Ordinary AIF:

AIF (boolean expression)seqsym 
AIF (&A GT 1Ö).Ex1t_Loop

• If boo!ean_expression is
true, “branches” to specified sequence symbol
false, processing continues with next sequential statement

AIF (&Z GT 46).ID
* (1) This statement 1s processed If (NOT (&Z GT 40))
.ID ANOP
* (Z) This statement 1s processed

July 1993 High Level Assembler Tutorial Guide HLASM
O Copyright IBM Corporation 1993

V___________________________________:---------------------------------J

The AIF Statement
The AIF statement provides a method for conditionally selecting a sequence of statements, 
by testing a condition before deciding to “ branch” or not to the statement designated by a 
specified sequence symbol. The ordinary AIF statement is written in this form:

AIF (boolean_expression)seqsym

Example:
AIF (&A GT 10).Exit_Loop

If the “boolean_expression” is true, statement processing will continue at the statement 
marked with the specified sequence symbol. If the “boolean expression” is false, processing 
continues with the next sequential statement following the AIF. For example:

AIF (&AGT10).BD
* (1) This statement is processed i f  (NOT (&A GT 10))
.BD ANOP
* (2) This statement is processed

In this case, the statement following the AIF will be processed if the boolean expression 
(&A GT 10) is false; if the condition defined by the boolean condition is true, the next state
ment to be processed will be the ANOP statement.

24 High Level Assembler Tutorial Guide



The Extended AIF Statement 21

• Extended AIF (Multi-condition branch, Case statement)

AIF (bool_expr_l)seqsym_l[,(bool_expr_n)seqsymji]...

• Boolean expressions are evaluated in turn until first true one is found
Remaining boolean expressions are not evaluated

• Example:

AIF (&A GT ïeMSM&BOOUO.SSZ.CAC’ EQ ,*,).$$3

July 1993 High Level Assembler Tutorial Guide 
O Copyright IBM Corporation 1993

HLASM

The Extended AIF Statement
The extended, or multi-condition, form of the AIF statement allows you to write multiple con
ditions and “ branch” targets on a single statement, as shown in the following:

AIF (boo1_expr_l)seqsym_l[,(boo1_expr_n)seqsym_n]...

Figure 3. General Form of the Extended AIF Statement

The boolean expressions are evaluated in turn until the first true expression is found; the 
next statement processed will be the one “ marked” by the corresponding sequence symbol. 
The remaining boolean expressions are not evaluated after the first true expression is found.

An example of an extended AIF statement is:

AIF (&A GT 10).SS1,(&BOOL2).SS2,('&C' EQ '*').SS3

The extended AIF statement illustrated in Figure 3 is entirely equivalent to the following 
sequence of ordinary AIF statements:

AIF (bool_expr_l)seqsym_l 
AIF (boo1_expr_2)seqsym_2

AIF (bool_expr_n)seqsym_n

The primary advantage of the extended AIF statement is in providing a concise notation for 
what would otherwise require multiple AIF statements.

The Conditional Assembly Language 25



Examples of Conditional Assembly
We will now describe some simple examples of open-code conditional assembly. Further 
examples of conditional assembly techniques will be illustrated later, when we discuss 
macros.

Example: Generate a Byte String with Values 1-N 22

• Sample 0: write everything by hand

N EQU S Predefined absolute symbol
DC AL1(1,2,3,4,N) Define the constants

Defect: if the value of N changes, must rewrite the DC statement

Sample 1: generate separate statements

N EQU
LCLA 

.Test AIF 
&J SETA

DC 
AGO

.Done ANOP

. ‘L
5 A* Predefined absolute symbol
BJ Local arithmetic variable symbol
(SJ GE N).Done Test for completion (N could be LE 81) 
&J+1 Increment W
AL1(&J) Generate a byte
.Test Go to check for completion

Generation completed

July 1993 High Level Assembler Tutorial Guide 
© Copyright IBM Corporation 1993

HLASM

Example: Generate a Byte String with Values 1-N 23

* Sample 2: generate a single string

N EQU
LCLA
LCLC

&K SETA
AIF

&S SETC
.Loop ANOP
&K SETA

AIF
&S SETC

AGO
.Donel DC
.Done2 ANOP

5 Predefined absolute symbol
&K Local arithmetic variable symbol
&S Local character variable symbol
1 Initialize counter
(&K GT N).Done2 Test for completion (N could be LE 81) 
'1' Initialize string

Loop head
&K+1 Increment &K
(&K GT N).Donel Test for completion 
'&S\\&K' Continue string
.Loop Branch back to check for completed
AL1(&S.) Generate the byte string

Generation completed

Try it with "N EQU 30" ... What happens to the DC statement?

Try it with "N EQU 90" ... What happens? ^ ‘*3 crrov ^ s ^

July 1993 High Level Assembler Tutorial Guide 
O Copyright IBM Corporation 1993

HLASM

Generate a Sequence of Byte Values
Suppose we wish to generate DC statements defining a sequence of byte values from 1 to N, 
where N is a predefined value. This could naturally be done by writing statements like

N EQU 12
DC AL1(1,2,3,...,N)

26 High Level Assembler Tutorial Guide



but this requires knowing the exact value of N every time the program is modified and re
assembled.

Conditional assembly techniques can be used to solve this problem so that changing the 
EQU statement defining N will not require any rewriting. We can generate the sequence of 
DC statements as follows:

N EQU 5 Predefined absolute symbol
LCLA &J Local arithmetic variable symbol

.Test AIF (&J GE N).Done Test for completion (N could be LE 0!)
&J SETA &J+1 Increment &J

DC AL1(&J) Generate a byte
AGO • Test Go to check for completion

.Done ANOP Generation completed

Figure 4. Generating a Sequence of Bytes, Individually Defined

The operation of this loop is simple. The LCLA declaration of &J also initializes it to zero (we 
could not have omitted the declaration in this example, because the first appearance of &J is 
not in a SETA statement). The AIF statement compares &J to N (a predefined absolute 
symbol), and if it exceeds N, a “branch” is taken to the label .Done. (In fact, the Assembler 
implements the “ branch” by searching the source file for an occurrence of the sequence 
symbol in the local context of “open code” .) If the AIF test does not change the flow of state
ment processing, the next statement increments &J by one, and its new value is then substi
tuted in the DC statement. The following AGO then returns control to the test in the AIF 
statement.

Alternatively, we could generate only a single DC statement by using a technique that con
structs the nominal value string for the DC statement, like the following:

N EQU 5 Predefined absolute symbol
LCLA &K Local arithmetic variable symbol
LCLC &S Local character variable symbol

&K SETA 1 In it ia liz e  counter
AIF (&K GT N).Done2 Test for completion (N could be LE 0!)

&S SETC '1' In it ia liz e  string
.Loop ANOP Loop head
&K SETA &K+1 Increment &K

AIF (&K GT N).Donel Test for completion
&$ SETC '&S'.',&K' Continue string

AGO .Loop Branch back to check for completed
.Donel DC AL1(&S.) Generate the byte string
.Done2 ANOP Generation completed

Figure 5. Generating a Sequence of Bytes, as a Single Operand String

In this program fragment, a single character string is constructed with the desired sequence 
of values separated by commas. The first SETC statement sets the local character variable 
symbol &C to '1 ', and the following loop then concatenates successive values of the arith
metic variable symbol &K onto the string with a separating comma, on the right. When the 
loop is completed, the DC statement inserts the entire string of numbers into the nominal 
values field of the AL1 operand.

It is instructive to test this example with values of N large enough to cause the string &S to 
become longer than (say) 60 characters; try assigning a value of 30 to N, and observe what 
the assembler does with the generated DC statement. (Answer: it creates a continuation 
automatically!)

The Conditional Assembly Language 27



Both these examples share a shortcoming: if more than one such sequence of byte values is 
needed in a program, with different numbers of elements in each sequence, these “blocks” 
of conditional assembly statements must be repeated. We will see in "Generating a Byte 
Sequence” on page 77 that a simple macro definition can make this task easier to solve.

/ -----------------------------------------------------------------------------------------------V
Example: System-Dependent I/O Statements 24

• Suppose a module declares I/O blocks for MVS, CMS, and VSE:

fcOpSys SETC 'MVS* Set desired operating system

AXF C&OpSys* NE *NVS').Tl Skip 1f not NVS
Input DCI DDNAME=$Y$IN,...etc... Generate NVS DCB

AGO .T4
.T1 AIF C&OpSys' NE 'CMS').T2 Skip If not CNS
Input FSCB ,LRECL=8G,...etc... Generate CNS FSCB

AGO .T4
.T2 AIF C&OpSys' NE 'VSE').T3 Skip If not VSE
Input OTFCD LRECL=8Q,...etc... Generate VSE DTF

AGO .T4
,T3 MNOTE 8,'Unknown S&OpSys value "WpSys".'
.T4 ANOP

• Setting of &OpSys selects statements for running on one system
Assemble the module with a system-specific macro library

July 1993 High Level Assembler Tutorial Guide HLASM
O Copyright IBM Corporation 1993

__________________________________________________________________J

Generating System-Dependent I/O Statements
Suppose you are writing a module that provides operating system services to a larger appli
cation. As a simple example, suppose one portion of the module must read input records, 
and that you wish to use the appropriate system-interface macros for each of the 
System/360/370/390's MVS, CMS, and VSE operating systems.

This is very simply solved using conditional-assembly statements to select the sequences 
appropriate to the system for which the module is intended. Suppose you have defined a 
character-valued variable symbol &0pSys whose values may be MVS, CMS, or VSE. Then the 
needed code sequences might be defined as in Figure 6 on page 29:

28 High Level Assembler Tutorial Guide



&0pSys SETC •MVS* Set desired operating system

AIF C&OpSys' NE 'MVS').T1 Skip if not MVS
Input OCB DDNAME=SYSIN,...etc... Generate MVS DCB

AGO .T4
• T1 AIF C&OpSys' NE 'CMS').T2 Skip if not CMS
Input FSCB ,LRECL=80,...etc... Generate CMS FSCB

AGO ,T4
• T2 AIF C&OpSys' NE 'VSE').T3 Skip if not VSE
Input DTFCD LRECL=80,...etc... Generate VSE DTF

AGO .T4
• T3 MNOTE 8,'Unknown &&0pSys value "&0pSys".'
.T4 ANOP

Figure 6. Generating a Sequence of Bytes, as a Single Operand String

In this example, different blocks of code contain the necessary statements for particular 
operating environments. In any portion of the program that contains statements particular to 
one of the environments, conditional assembly statements allow the assembler to select the 
correct statements. By setting a single variable symbol &0pSys to an appropriate value, you 
can tailor the application to a chosen environment without having to make into multiple 
copies of its processing logic, one for each environment.

Thus, for example, the first AIF statement tests whether the variable symbol &0pSys has 
value 'MVS'; if so, then the following statements generate an MVS Data Control Block. 
(Naturally, you will need to supply an appropriate macro library to the assembler at 
assembly time!)

The technique illustrated here allows you to make your programs more portable across 
operating environments, without requiring major rewriting efforts or duplicated coding each 
time some new function is to be added.

The Conditional Assembly Language 29



30 High Level Assembler Tutorial Guide



Macros
Macros are a powerful mechanism for enhancing any language, and they are a very impor
tant part of the System/360/370/390 Assembler Language. Macros are widely used in many 
ways to simplify programming tasks.

We will begin our discussion with a conceptual overview of the basic concepts of macros, in 
a way that is not specific to the Assembler Language.1 This will be followed by an investi
gation of the System/360/370/390 Assembler Language's implementation of macros, 
including the following topics:

• macro definition: how to define a macro

• macro encoding: how the assembler converts the definition into an internal format to 
simplify interpretation and expansion

• macro-instruction recognition: how the assembler identifies a macro call and its ele
ments

• macro parameters and arguments

• macro expansion

• macro argument attributes and structures

• global variable symbols

• examples of macros.

---------------------------------------------------------
What is a Macro Facility? 25

• A mechanism for extending a language
Introduces new statements Into the language

-  Defines how the new statements translate into the “base language” 

Allows mixing old and new statements

• In Assembler Language, “new” statements are called 
macro instructions or macro calls

• Easy to create application-specific languages
Typical use is to extend base language 

— Can even hide it entirely!

-  Create higher-level language appropriate to application needs

-  Can be made highly portable, efficient

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

V________________________________________________________J

1 Some of the material in this chapter is based on an excellent overview article by William Kent, titled 
“Assembler-Language Macroprogramming: A Tutorial Oriented Toward the IBM 360” in the ACM Com
puting Surveys, Vol. 1, No. 4 (December 1969), pages 183-196.

Macros 31



What is a Macro Facility?
Most simply, a macro facility is a mechanism for extending a language. It can be used not 
only to introduce new statements into the language, but also to define how the new state
ments should be translated into the “base language” on which they are built. One major 
advantage of macros is that they allow you to mix “old" (existing) and “ new” statements, so 
that your language can grow incrementally to accommodate new functions, added require
ments, and other benefits as and when you are able to take advantage of them.

In the Assembler Language, these new statements are called “ macro instructions” or 
“ macro calls” . The use of the term “call” implies a useful analogy to subroutines; there are 
many parallels between (assembly-time) macro calls and (run-time) subroutine calls.

Macros and macro techniques make it very easy to create application-specific languages:

• you can create higher-level languages appropriate to the needs of particular application 
areas

• the language can be made highly portable and efficient

• typical uses are to extend the base language on which the extended language is built 
(in fact, it is possible to hide the base language entirely!).

--------------------------------------------------------- \
Benefits of Macro Facilities 26

• Re-use: write once, use many times and places (even within a single 
application)

• Reliability: write and debug “localized logic” once only

• Reduced coding effort: minimize focus on uninteresting details

• Increased flexibility and adaptability of programs
-  Greater application portability

• Simplification: hide complexities, isolate impact of changes

• Easier application debugging: fewer bugs and better quality

• Standardize coding conventions painlessly

• Encapsulated, insulated interfaces to other functions

July 1993 High Level Assembler Tutorial Guide HLASM
<D Copyright IBM Corporation 1993

____________________________ ____________________________ J

Benefits of Macro Facilities
Macro facilities can provide you with many direct and immediate benefits:

• Code re-use: once a macro is written, it becomes available to as many programmers 
and applications as are appropriate. A single definition can find multiple uses (even 
within a single application).

• Reliability: code and debug the logic in one place.

• Reduced coding effort: the coding in a macro needs to be written only once, and then 
can be used in many places.

32 High Level Assembler Tutorial Guide



ments of your programming language, relieving you of the need to be concerned with 
details that are typically only marginally relevant to your programming task.

• Increased flexibility and adaptability of programs: you can adapt your applications to 
different requirements by modifying only the macro definitions, without having to revise 
the fundamental logic of the program.

• Greater application portability: because almost every system supports a macro assem
bler, it is easy to port an application written in “ macro language" to another host envi
ronment simply by writing an appropriate set of macros definitions on the new system.*

• Easier debugging, with fewer bugs and better quality: once you have debugged your 
macros, you can write your applications using their higher-level concepts and facilities, 
and then debug your programs at that higher level. Concerns with low-level details are 
minimized, because you are much less likely to make simple oversights among masses 
of uninteresting details.

• Standardize coding conventions painlessly: if your organization requires that certain 
coding conventions be followed, it is very simple to embody them in a set of macros that 
all programmers can use. Then, if the conventions need to change, only one set of 
objects -  the macros -  needs to be changed, not the entire application suite.

• Provide encapsulated interfaces to other functions, insulated from interface changes: 
using macros, you can support interfaces among different elements of your applications, 
and between applications and operating environments, in a controlled and defined way. 
This means that changes to those interfaces can be made in the macros, without 
affecting the coding of the applications themselves.

• Localized logic: specific and detailed (and often complex) code sequences can be imple
mented once in a macro, and used wherever needed, without the need for every user of 
the macro to understand the “ inner workings” of the macro's logic.

* The SNOBOL4 language was implemented entirely in terms of a set of macros that defined a “ string 
processing implementation language” . The entire SNOBOL4 system could be “ ported” to a new system 
with what the authors called “about a week of concentrated work by an experienced programmer” .
You may be interested in consulting The Macro Implementation of SNOBOL4, by Ralph Griswold.

Macros 33



• Macro processors rely on two basic mechanisms:
t. Macro recognition: Identify some character string as a macro "call”

2. Macro expansion: generate a character stream to replace the "call”

• Macro processors typically do three things:
1. Text insertion: injection of one stream of source program text into another 

stream

2. Text modification: tailoring (“parameterization”) of the inserted text

3. Text selection: choosing alternative text streams for insertion

ine Macro uoncepi — runaameniai Mecnanisms

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

V__________________________ ____________________________J

The Basic Macro Concept
Macro processors typically rely on two basic processes:

• Macro recognition requires that the processor identify some string of characters as a 
macro invocation or macro call, indicating that the string is to be replaced.

• Macro expansion or macro generation causes the macro definition to be interpreted by 
the processor, with the usual result that the original string is replaced with a new (and 
presumably different) string.

In macro expansion, there are three fundamental mechanisms used by almost all macro
processors:

• text insertion: the creation of a stream of characters to replace the string recognized in 
the macro "call”

• text parameterization: the tailoring and adaptation of the generated stream to the condi
tions of the particular call

• text selection: the ability to generate alternative streams of characters, depending on 
various conditions available during macro expansion.

These correspond to the mechanisms already described for the conditional assembly lan
guage: for example, text parameterization uses the process of substitution, and text
selection uses that of statement selection.

34 High Level Assembler Tutorial Guide



/ ------------- \
Basic Macro Concepts: Text Insertion 28

• Text insertion: injection of one stream of source program text into
another stream

Macro Definition Main Program Logical Effect
Name * MACG1

AA AA
CC 6B BB
DD MACei — ► CC

EE DD
FF EE

FF

• The processor recognizes MAC01 as a macro name

• The text of the macro definition replaces the “macro call” in the Main
Program

July 1993 High Level Assembler Tutorial Guide HLASM© Copyright IBM Corporation 1993
^______ J

Text Insertion
The simplest and most basic mechanism of macro processing is that of replacing a string of 
characters, or one or more statements, by other (often longer and more complex) strings or 
sets of statements.

In Figure 7, a set of statements has been defined to be a macro with the name MAC01. When 
the processor of the Main Program recognizes the string MAC01 as matching that of the macro, 
that string is replaced by the text within the macro definition.

This is called text insertion: the injection of one stream of source text into another stream.

Macro Definition 
Name = MAC01

CC
DD

Main Program Logical Effect

AA AA
BB BB
MAC01 — ► CC
EE DD
FF EE

FF

Figure 7. Basic Macro Mechanisms: Text Insertion

Macros 35



Basic Macro Concepts: Text Parameterization 29

Text modification: tailoring of the inserted text (“parameterization")

Macro Definition 
Name - MAC02 
Parameters X,Y

Main Program Logical Effect

AA
AA x y BB
MAC02 CC.DD — ► CC
FF DD

EE
FF

• Processor recognizes MACQ2 as a macro name, with arguments CC,DD 

-  Arguments CC,DD are associated with parameters X,Y by position

• The text of the macro definition is modified during insertion

July 1993 High Level Assembler Tutorial Guide 
© Copyright IBM Corporation 1993

HLASM

Text Parameterization and Argument Association
Simple text insertion has rather limited uses, because we usually want to tailor and adapt 
the inserted text to accommodate the various conditions and situations of each macro invo
cation. The simplest form of such adaptation is “text parameterization” . In Figure 8, the 
macro with name MAC02 is defined with two parameters X and Y: that is, they are merely 
place-holders in the definition that indicate where other text strings are expected to be 
inserted when the macro is expanded.

Macro Definition 
Name = MAC02 

Parameters X,Y

BB
X
Y
EE

Main Program Logical Effect

AA
AA BB
MAC02 CC,DD — ► CC
FF DD

EE
FF

Figure 8. Basic Macro Mechanisms: Text Parameterization

This example illustrates text modification: tailoring of the inserted text ("parameterization”) 
depending on locally-specified conditions.

When a macro call is recognized, it is normal for additional information (besides the simple 
act of activating the definition) to be passed to the macro expansion. Thus, when the 
processor of the Main Program recognizes MAC02 as a macro name, it also provides the two 
arguments CC and DD to the macro expander, which substitutes them for occurrences of the 
two parameters X  and Y, respectively.

The argument CC is associated with parameter X, and DD is associated with Y. This simple 
example of parameter-argument association is typical of many macro processors: associ-

36 High Level Assembler Tutorial Guide



ation proceeds in left-to-right order, matching each positional parameter in turn with its cor
responding positional argument. Other forms of association are possible.

Macros 37



Basic Macro Concepts: Text Selection 30

* Text selection: choosing alternative text streams for insertion

Macro Definition 
Name « MAC83 
Parameter X

JJ
if (X * 8) skip 1 stmt 
KK 
LL

Main Program Logical Effect

AA
AA JJ
MAC83 6 LL
BB — ► BB
MAC83 1 JJ
CC KK

LL
CC

• Processor recognizes MAC03 as a macro name with argument 0 or 1

• Conditional actions in the macro definition allow selection of different 
insertion streams

July 1993 High Level Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

HLASM

Text Selection
Text selection is fundamental to most macro processors, because it allows choices among 
alternative sequences of generated text. In Figure 9, a simple form of text selection is 
modeled by the i f  statement: a simple test of the argument corresponding to the parameter 
X tells whether or not to generate the string KK. If the argument is 0, KK is not generated; 
otherwise it is.

Macro Definition 
Name = MAC03 
Parameter X

JJ
if (X = 0) skip 1 stmt
KK
LL

Main Program Logical Effect

AA
AA JJ
MAC03 0 LL
BB BB
MAC03 1 JJ
CC KK

LL
CC

Figure 9. Basic Macro Mechanisms: Text Selection

38 High Level Assembler Tutorial Guide



r  ! 1 ! \
Basic Macro Concepts: Nesting 31

• Generated text may include calls on other (“inner”) macros
-  New statements can be defined in terms of previously-defined extensions

• Inner macro calls recognized during expansion of the outer macro
-  Not during definition and encoding of the outer macro

— Can pass arguments of outer macros to inner macros that depend on arguments 
to, and analyses in, outer macros

— Provides better independence and encapsulation

— Allows passing parameters through multiple levels

— Can change definition of inner macros without having to re-define the outer

• Generation of statements by the outer (enclosing) macro is 
interrupted to generate statements from the inner

• Multiple levels of call nesting OK (including recursion)

July 1993 High Level Assembler Tutorial Guide HLASM
0  Copyright IBM Corporation 1993

___________________________ _____________________________J

Macro Nesting
A key strength of the macro language is its ability to build new capabilities on existing facili
ties. The most common of these abilities is called “macro nesting” : generated text may 
include (or create!) calls on other macros (“ inner macro calls”). It is by this mechanism that 
new statements can be defined in terms of previously-defined extensions; it is fundamental 

■ to much of the power and “ leverage” of macro languages.

The inner calls are recognized during expansion of the outer (enclosing) macro, not during 
macro definition and encoding. This may seem a very minor and obscure technical detail, 
but it turns out in practice to have wide-ranging implications.

• By deferring the recognition of inner macro calls until the enclosing macro is expanded, 
you can pass arguments to inner macros that depend on arguments to, and analyses in, 
outer macros.

• Recognition following expansion provides better independence and encapsulation: you 
can change the definition of the inner macro without having to re-define the outer.

• You will also save coding effort: if the definition of an inner macro needed to be 
changed, and its definition was already "embodied” in some way in other macros that 
called it, then all the “outer” macro definitions would have to be revised.

The generation process for inner macro calls requires that the macro processor maintain 
some kind of “push-down stack” for its activities.

• Generation of statements by the outer (enclosing) macro is suspended temporarily to 
generate statements from the inner.

• Multiple levels of call nesting are quite acceptable (including recursion: a macro may 
call itself directly or indirectly), and are often a source of added power and flexibility.

Macros 39



>
Macro Nesting: Example 32

• Two macro definitions: OUTER contains a call on INNER

Macro Definitions Main Program Logical Effect
Name « OUTER

AA
BB AA BB
INNER OUTER — ► CC
EE FF DD

EE
Name * INNER FF

CC
DD

• Expansion of OUTER is suspended until expansion of INNER
completes

July 1993 High Laval Assembler Tutorial Guide HIASM
©  Copyright IBM Corporation 1993

J

In the example in Figure 10, two macros named OUTER and INNER are known to the 
processor of the Main Program. When the name OUTER is recognized as a macro name, 
processing of the Main Program is suspended and expansion of the OUTER macro begins. 
When INNER is recognized as as macro name, processing of the OUTER macro is also sus
pended and expansion of the INNER macro begins. When the INNER macro expansion com
pletes, the OUTER macro resumes expansion; when the expansion of the OUTER macro 
completes, processing resumes in the Main Program following the OUTER statement.

Macro Definitions Main Program Logical Effect
Name = OUTER

AA
BB AA BB
INNER OUTER — ► CC
EE FF DD

EE i
Name - INNER FF 1

CC
DD

Figure 10. Basic Macro Mechanisms: Nesting

The power of a macro facility is enhanced by its ability to combine the basic functions of text 
insertion, text parameterization, text selection, and macro nesting.

Each of the features, concepts, and capabilities described above can be expressed in a way 
natural to the System/360/370/390 Assembler Language.

40 High Level Assembler Tutorial Guide



The Assembler Language Macro Definition
The definition of a macro declares the macro name that is to stand for (represent) a given 
stream of program text. The general form of an Assembler Language macro definition has 
four parts:

1. a macro header statement (MACRO: the start of the definition)

2. a prototype statement, which provides the macro name and a model of the macro
instruction “call” that must be recognized in order to activate this definition

3. the macro body, containing declarations of variable symbols, model statements to be 
parameterized and generated, and conditional assembly statements to assign values to 
variable symbols and to select alternative processing sequences

Macros 41



4. a macro trailer statement (MEND: the end of the definition). 

These four parts are illustrated in Figure 11:

(1) MACRO Macro Header (begins a definition).

(2) Prototype Statement Model of the macro instruction
that can call on this definition;
a model of the new statement
introduced into the language by
this definition.

(3) Model Statements Declarations, conditional assembly

6 statements, and text for selection,
modification, and insertion.

(4) MEND Macro Trailer (ends a definition).

Figure 11. Assembler Language Macro Definition: Format

While many possible forms of macro definition and recognition are possible, the general 
format used in the System/360/370/390 Assembler Language is dictated by a desire not to 
introduce arbitrary forms of statement syntax and recognition rules for new statements. This 
has the advantage that there is no need to distinguish language extensions from the base 
language.

A macro definition may be “ in-line” (also called a “ source macro definition”) or in a library. 
Where the definition is found by the assembler affects the recognition rules, as will be 
described in “ Macro-Instruction Recognition” on page 45.

Macro-Instruction Definition Example
We can rewrite the example in Figure 7 on page 35 to look like a “ real” macro, as follows:

Macro Definition Main Program Logical Effect
START START

MACRO AA AA
MAC01 BB BB
CC MAC 01 + CC
DD EE + DD
MEND FF EE

END FF
END

Figure 12. Assembler Language Macro Mechanisms: Text Insertion by a “Real” Macro

The " +  ” characters shown in the “ Logical Effect” column correspond to the characters 
inserted by the assembler in its listing to indicate that the corresponding statements were 
generated from a macro.

42 High Level Assembler Tutorial Guide



, ! 1 \  
Macro Comments and Readability Aids 35

• Assembler Language supports two types of comment statement: 
t. Ordinary comments ("*” in first column position)

-  Can be generated from macros like all other model statements 

2. Macro comments in first two column positions)
-  Not model statements; never generated

MACRO
Wt SAMP LEI &A
.* This Is macro SAMPLE1. It has a name-field parameter &N,
.* and an operand-field positional parameter &A.
* This comment Is a model statement, and may be generated

• Two "formatting” Instructions are provided for macro listings:
1. ASPACE provides blank lines in listing of macros
2. AEJECTxauses start of a new listing page for macros

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V--------------------------------------------------------------------------------------------------------------- J

Macro Comments and Readability
The macro facility provides a way to embed “ macro comments” into the body of a macro 
definition. Because both ordinary comment statements (with an asterisk in the left margin) 
and blank lines (for spacing) are model statements, they may be part of the generated text 
from a macro expansion. Macro comments are never generated, and use the characters .* 
in the left margin, as illustrated below:

MACRO
&N SAMPLE1 &A
.* This is macro SAMPLE1. It has a name-field parameter &N, 
.* and an operand-field positional parameter &A.

* This comment is a model statement, and may be generated

MEND

Figure 13. Example of Ordinary and Macro Comment Statements

It is good practice to comment macro definitions generously, because the conditional 
assembly language is sometimes difficult to read and understand.

The formatting and printing of macro definitions can be simplified by using the ASPACE and 
AEJECT statements. ASPACE provides blank lines in the assembler's listing of a macro defi
nition, and AEJECT causes the assembler to start a new listing page when it is printing a 
macro definition. Both are not model statements, and are therefore never generated.

Macros 43



—  
Macro-Definition Encoding 36

• Assembler converts a macro definition into an internal format
Macro name is identified and saved 

Ali parameters are identified

Model and conditional assembly statements converted to “internal text” 
for faster interpretation

-  All points of substitution are marked

Some errors in model statements are diagnosed 
— Others may not be detected until macro expansion is completed

-  “Dictionary” space (variable-symbol tables) are defined

• Avoids the need for repeated searches and scans on subsequent 
uses

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V*____________________________ ,___________________________J

Macro-Definition Encoding
Because the System/360/370/390 Assemblers have been designed to support extensive use 
of macros, their implementation reflects a need to provide efficient processing. Thus, the 
assembler initially converts macro definitions into an encoded internal format for later use; 
this is sometimes called "macro editing” .

• The macro's name is identified and saved (so that later references to the macro name 
can be recognized as macro calls).

• All parameters are identified, and entries are made in a “ local macro dictionary” for 
them.

• Model and conditional assembly statements are converted to “ internal text” for faster 
interpretation.

• All points of substitution are identified and marked. Because these are determined 
during macro encoding, it is perhaps more understandable why substituting strings like 
• &A1 will not cause a further effort to re-scan the statement and substitute a new value 
represented by '&A'.

• Some errors in model statements are diagnosed, but others may not be detected until 
macro expansion is attempted.

• "Dictionary” space (variable-symbol tables) are defined for local variable symbols, and 
space is added to the global variable symbol dictionary for newly-encountered global 
names.

Encoding a macro definition in advance of any expansions avoids the need for repeated 
library searches and encoding scans on subsequent uses of the macro.

44 High Level Assembler Tutorial Guide



( :----------- ---------------------
Macro-Instruction Recognition 37

• Name recognition activates interpretation of the macro definition
-  Also called “macro expansion” or “macro generation”

• A macro "calf” could use a special CALL syntax, such as

MCALL macroname(argl,arg2,etc...) 
or MCALL macroname,argl,arg2,etc...

• Advantages to having syntax match base language's:
No special characters, statements, or rules to “trigger” recognition 

No need to distinguish language extensions from the base language

-  Allows overriding of most existing opcodes

• No need for "MCALL"; just make "macroname” the operation code

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V.............— .................................................................................................................J

Macro-Instruction Recognition
When the assembler scans a statement, and identifies its operation code as a macro name, 
recognition of the name triggers an activation of an interpreter of the encoded form of the 
macro definition. This is called “ macro expansion” or “ macro generation” , and typically 
results in insertion of program text into the assembler's input stream.

Both macro name declaration (definition) and recognition have specific rules that are closely 
tied to the base language syntax of the System/360/370/390 Assembler Language. A macro 
“call” could use or require a special CALL syntax, such as

MCALL macroname(arg1,arg2,etc...) 
or MCALL macroname,arg1,arg2,etc...

However, there are advantages to having the syntax of macro calls match the base lan
guage's, and to allow overriding of existing opcodes; hence, we simply elide the MCALL and 
make the “macroname” become the operation code and the arguments become the operands 
of the macro instruction statement.

Macros 45



( ---------------------------------------------------
Macro-Instruction Recognition Rules

1. If the operation code is already known as a macro name, use its 
definition

2. If an operation code does not match any operation code already 
known to the assembler (i.e., it is "possibly undefined”):
a. Search the library for a macro definition of that name

b. If found, encode and then use that macro definition

c. If there is no library member with that name, the operation code is flagged 
as “undefined”.

3. Macros may be redefined d u r in g  the assembly!
• New macro definitions supersede previous operation code definitions

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

______________________ ________________________________ J

\
38

Macro-Instruction Recognition Rules
The assembler recognizes a macro instruction as follows:

1. If the macro name has already been defined in the program (as a "source" or “ in-line” 
definition, either explicitly or because a COPY statement brought it in-line from a library, 
or because a previous macro instruction statement brought the definition from the 
library), use it in preference to any other definition of that operation.

• You may use a macro definition to override the assembler's default definitions of all 
machine instruction statements, and of most “ native” Assembler Instruction state
ments (generally, the conditional-assembly statements cannot be overridden).

2. If an operation code does not match any operation code "known” to the assembler (i.e., 
it is “ possibly undefined”), the assembler will then:

a. Search the library for a macro definition of that name.

b. If the assembler finds a library member with that name, the macro name defined on 
the prototype statement must match the member name. The assembler will then 
encode and use this definition.

c. If there is no library member with that name, then the operation code is flagged as 
“ undefined” .

While it is not a common practice to do so, macros may be redefined during the assembly
by introducing a new macro definition for that name.

46 High Level Assembler Tutorial Guide



Define General Register Equates
>

39

• Easy to do this with a macro like

MACRO
GREGS

GR0 EQU 6
----  etc. Similarly for GR1 —  GR14

GR15 EQU 15 
MEND

* A simple variation with a conditional-assembly loop:

MACRO
GREGS
LCLA 8M Define a counter variable

.X ANOP
GR&N EQU &N
&N SETA &N+1 Increment SM by 1

AIF (SN LE 15).X Repeat for all registers 1-15
MEND

July 1993 High Laval Assamblar Tutorial Guida 
©  Copyright IBM Corporation 1993

HLASM

J

Example: Defining Equated Symbols for Registers
To illustrate a basic form of macro, suppose you wish to generate a sequence of EQU state
ments to define symbolic names GR0, GR1, GR15 for referring to the sixteen General 
Purpose Registers. A call to the GREGS macro will do this:

GRO

MACRO
GREGS
EQU 0

GR1 EQU 1
GR2 EQU 2
GR3 EQU 3
GR4 EQU 4
GR5 EQU 5
GR6 EQU 6
GR7 EQU 7
GR8 EQU 8
GR9 EQU 9
GR10 EQU 10
GR11 EQU 11
GR12 EQU 12
GR13 EQU 13
GR14 EQU 14
GR15 EQU 15

MEND

Figure 14. Simple Macro to Generate Register Equates

Then, a call to the GREGS macro will define the desired equates, by inserting the sixteen 
model statements into the statement stream.

The macro definition can be made more compact by using conditional assembly statements 
to form a simple loop inside the macro:

Macros 47



MACRO
GREGS

.X
LCLA
ANOP

&N Define a counter variable

GR&N EQU &N
&N SETA &N+1 Increment &N by 1

AIF
MEND

(&N LE 15).X Repeat for all registers 1-15

Figure 15. Macro to Generate Register Equates Differently

Macro Parameters and Arguments 40

• Distinguish p a r a m e te r s  from a r g u m e n t s :

• Parameters are
declared on macro definition prototype statements

-  always local variable symbols

assigned values by association with the arguments of macro calls

• Arguments are
-  supplied on a macro Instruction (macro call)

-  almost any character string (typically, symbols)

-  providers of values to associated parameters

July 1993 High Lev®I Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Macro Parameters and Arguments
In the following discussion, we will distinguish parameters from arguments, as follows:

• Parameters are

-  declared on the prototype statements of macro definitions

-  always local variable symbols

-  assigned values by being associated with the arguments of a macro instruction

-  sometimes known as “dummy arguments" or “ formal parameters” .

• Arguments are

-  supplied on a macro instruction statement (“macro call”)

-  almost any character string (typically, symbols)

-  the providers of values to the corresponding associated parameters

-  sometimes known as “actual arguments” or “actual parameters” .

48 High Level Assembler Tutorial Guide



Macro-Definition Parameters

• Declared on the prototype statement
as operands, and as the name-field symbol

• All macro parameters are ("read-only”) local variable symbols

• Parameters usually declared in exactly the same order as the 
corresponding actual arguments will be supplied on the macro call
-  Exception: keyword-operand arguments

Declared by writing an equal sign after the parameter name
-  Can provide default keyword-parameter value on prototype statement

• Parameters example: one name-field, two positional, one keyword

MACRO
Aflame MYMAC3 SParaml, &Param2, «.KeyParm=YES 

MEND

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

--------------------------------------------------------- ;________________________________ j

— \  
41

Macro-Definition Parameters
The parameters in a macro definition are declared by virtue of their appearing as operands 
{and the name-field symbol) on the prototype statement. These declared parameters are var
iable symbols! Usually, they are declared in exactly the same order as the corresponding 
actual arguments will be supplied on the macro call.

The exception is keyword arguments: they are declared by writing an equal sign after the 
parameter name. You can also provide a default value for a keyword parameter on the pro
totype statement, by placing that value after the equal sign. When the macro is called, the 
argument values for keyword parameters are supplied by writing the keyword parameter 
name, an equal sign, and the value, as an operand of the macro call.

For example, suppose we write a macro prototype statements as shown in Figure 16:

MACRO
&Name MYMAC3 &Paraml,&Param2,&KeyParm=YES 

MEND

Figure 16. Sample Macro Prototype Statement

The prototype statement defines a name-field parameter (SName), two positional parameters 
{&Paraml,&Param2), and one keyword parameter {&KeyParm) with a default value YES.

Unlike positional arguments and parameters, keyword arguments and parameters may 
appear in any order, and may be mixed freely among the positional items on the prototype 
statement and the macro call.

Macros 49



, 1 \  
Macro-Instruction Arguments 42

• Arbitrary strings (with some syntax limitations)
Most often, just ordinary symbols

“Internal” quotes and ampersands in quoted strings must be paired

• Separated by commas, terminated by blank (like ordinary Assembler 
Language)
-  Comma and blank must otherwise be quoted

• Omitted (null) arguments are recognized, and are valid

• Examples:

MYMACl A,,'String' 2nd argument omitted
MYMACl Z,RR,'Testing, Testing* 3rd argument with comma and blank
MYMACl A,B,'Do"s, && Don"ts' 3rd argument with everything...

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

__________ ;_____________________________________________ J

Macro-Instruction Arguments
The arguments of a macro instruction are the name-field entry and the operands. They may 
be arbitrary strings of characters, with some syntax limitations such as requiring strings con 
taining quotes and ampersands to contain pairs of each. Most often, the operands will be 
just symbols (literals are allowed in almost all circumstances).

The operands are separated by commas, and terminated by a blank (conforming to the 
normal Assembler Language syntax rules). If the argument string is intended to contain a 
comma or a blank, they must be quoted.

Omitted (null) arguments are perfectly acceptable.

To illustrate, suppose a macro named MYMAC1 expects three positional arguments. Then in 
the following example,

MYMACl A ,,'S tring ' 2nd argument omitted

MYMACl Z,RR,'Testing, Testing1 3rd argument with comma and blank

MYMACl A,B,'Do"s, && Don"ts‘ 3rd argument with everything...

the first call omits the second argument; the second call has a quoted character string con
taining an embedded comma and quote as its third argument; and the third call has a 
variety of special characters in its quoted-string third argument.

Pairs of quotes or ampersand characters are required within quoted strings used as macro 
arguments, for proper argument parsing and recognition. These characters are not con
densed into a single character when the argument is associated (“ passed”) to the corre
sponding symbolic parameter.

50 High Level Assembler Tutorial Guide



Macro Parameter-Argument Association 43

Three ways to associate (caller's) arguments with (definition's) 
parameters:
1. by position, referenced by declared name (most common way)

2. by position, by argument number (using &SYSLIST notation)

3. by keyword: always referenced by name, arbitrary order 
- Argument v a l u e s supplied by writing keyname «value

Example 1: (Assume prototype statement as on foil 4!)

AName MYMAC3 &Paraml,&Param2,&KeyParm*YES Prototype

Labi MYMAC3 X,Y,KeyParm*NO Call: 2 positional, 1 keyword argument

Parameter values: SName * Labi 
SKeyParm * NO 
&Paraml - X 
&Param2 * Y

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

V--------------------------- ___________/

----- \
Macro Parameter-Argument Association ... 44

• Example 2:

Lab2 MYMAC3 A Call: 1 positional argument

* Parameter values: Mlame * Lab2
★ MCeyParm « YES
* &Paraml = A
* &Param2 « (null)

• Example 3:

MYMAC3 N,KeyParm=MAYBE,J Call: 2 positional, 1 keyword argument

* Parameter values: Mlame * (null)
* &KeyParm * MAYBE
it &Paraml = H
it &Param2 = 3

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

V J

Macro Parameter-Argument Association
There are three ways to associate arguments with parameters:

1. by position, referenced by the declared positional parameter name (this is the most 
usual way for macros to refer to their arguments) 2

2. by position and argument number (using the &SYSLIST system variable symbol, which 
will be discussed in "Macro-Instruction Argument Lists and the &SYSLIST Variable 
Symbol” on page 63)

Macros 51



3. by keyword: keyword arguments are always referenced by name, and the order in which 
they appear is arbitrary.3 Values provided for keyword arguments override default 
values declared on the prototype statement.

To illustrate, consider the examples in Figure 17. Assuming the same macro definition pro
totype statement shown in Figure 16 on page 49, the resulting values associated with the 
parameters are as shown:

Labi MYMAC3 X,Y,KeyParm=NO

* Parameter values: &Name = Labi
* &Paraml = X

2 positional, 1 keyword argument

&KeyParm = NO 
&Param2 = Y

Lab2 MYMAC3 A 1 positional argument

* Parameter values: &Name = Lab2
* &Paraml = A

&KeyParm = YES 
&Param2 = (null)

MYMAC3 H,KeyParm=MAYBE,J 2 positional, 1 keyword argument

* Parameter values: SName = (null)
* &Paraml = H

&KeyParm = MAYBE 
&Param2 = J

Figure 17. Macro Parameter-Argument Association Examples

In the third example, observe that the keyword argument KeyParm=MAYBE appears between the 
first and second positional arguments.

3 The Ac/a1*1 programming language is the first major high-level language to support keyword parame
ters and arguments. Assembler Language programmers have been using them for decades!

52 High Level Assembler Tutorial Guide



Generating a Byte Sequence: BYTESEQl Macro 45

• BYTESE01 generates a byte for each value

MACRO
&L 6YTESEQ1 U i
.* BYTESEQ1 —  generate a sequence of byte values, one per statement. 
.* No checking or validation 1s done.

LclA &K
AIF ('4L' EQ '').Loop Don't define the label If absent

&L DS 0AL1 Define the label ( i l  p ^ s o ^ f  \
.Loop ANOP v ;
&K SetA &K+1 Increment &K

AIF (&K DT IN).Done Check for termination condition 
DC A11C&K)
AGO .Loop Continue

.Done MEND

* Two test cases

B$la BYTESEQl 5 
BYTESEQl 1

July 1993 High Level Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

HLASM

Example: Generating a Byte Sequence
We can write a macro with a single parameter to generate a sequence of bytes, using the 
same techniques as the conditional-assembly example given in Figure 4 on page 27.

MACRO
&L BYTESEQl &N
.* BYTESEQl -- generate a sequence of byte values, one per statement. 
.* No checking or validation is done.

Lcl A &K
AIF ('&L' EQ "l.Loop Don't define the label i f  absent

&L DS 0X Define the label
.Loop ANOP
&K SetA &K+1 Increment &K

AIF (&K GT &N).Done Check for termination condition
DC A11(&K)
AGO .Loop Continue

.Done MEND
* Two test cases
BSla BYTESEQl 5 

BYTESEQl 1

Figure 18. Macro to Define a Sequence of Byte Values

This macro generates a separate DC statement for each byte value. As we will see later, it 
has some limitations that are easy to fix.

Macros 53



Macro Parameter Usage 46

• Values supplied by arguments in the macro instruction (“call”) are 
substituted as character strings

• Values may be substituted in name, operation, and operand fields of 
model statements

Substitutions ignored in remarks fields and comment statements 

— Can sometimes play tricks with operand fields containing blanks 

Some limitations on which opcodes may be substituted

• Some constraints on substitutions in conditional assembly statements
Because the assembler has to understand basic macro structures at the 
time it encodes the macro

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Macro Parameter Usage
Values are assigned to macro parameters from the corresponding arguments on the macro
instruction statement, either by position in left-to-right order (for positional arguments), or by 
name (for keyword arguments). These are then substituted as character strings into model 
statements (wherever points of substitution marked by the parameter variable symbols 
appear). The points of substitution in model statements may be in the

• name field

• operation field

• operand field

but not in the remarks field, nor in comment statements. (For some operations, it is possible 
to construct an operand string containing embedded blanks followed by “ remarks” into 
which substitutions have been done. We will leave as an exercise for the reader the delights 
of discovering how to do this.)

Substitutions are not allowed in some places in conditional or ordinary assembly statements 
such as COPY, REPRO, MACRO, and MEND, because the assembler must know some infor
mation about the basic structure of the macro definition (and of the entire source program!) 
at the time it is encoded. For example, substituting the string MEND for an operation code in 
the middle of a macro definition could completely alter that definition!

54 High Level Assembler Tutorial Guide



Macro Expansion and MEXIT

• Macro expansion or generation

• Initiated by recognition of a macro instruction

• Assembler suspends current activity, begins to “execute” or 
“interpret” the encoded definition

Parameter values assigned from associated arguments
-  Conditional assembly statements interpreted, variable symbols assigned 

values
Model statements substituted, and output to base language processor

• Generated statements scanned for inner macro calls
-  Recognition of inner calls suspend current expansion, start new one

• Expansion terminates when MEND or MEXIT is interpreted
-  MEXIT is equivalent to “AGO to MEND” (but quicker)

July 1993 High Levs I Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V__________________________ ____________________________ J

47

Macro Expansion and the MEXIT Statement
When the assembler recognizes a macro instruction, macro expansion or macro generation 
is initiated. The assembler suspends its current activity, and begins to "execute” or “ inter
pret” the encoded definition of the called macro.

During expansion, the first step is to assign parameter values from the associated argu
ments on the macro call. Subsequently, conditional assembly statements are interpreted, 
variable symbols are assigned values, model statements are substituted, and text is output 
to the base language processor.

The generated statements are scanned for inner macro calls; recognition of an inner call 
suspends the current expansion, and starts a new one for the newly-recognized inner macro.

Expansion of a macro terminates when either the MEND statement is reached, or when an 
expansion-terminating macro-exit MEXIT statement is interpreted. (MEXIT is equivalent to an 
“AGO to MEND” statement, but is quicker to execute.)

Macros 55



--------------------------------------------------------------------------------- - ' — — — —  v

Macro Argument Attributes and Structures 48

• Assembler Language provides some simple mechanisms to "ask 
questions" about macro arguments

• b  Built-in functions, called attribute re fe ren ces

Most common questions: “What is It?” and “How big is It?”

• Determine properties (attributes) of the actual arguments
-  Provides data about possible base language properties of symbols: 

Type, Length, Scale, Integer, and Defined attributes

• Decompose argument structures, especially parenthesized lists
-  Use Number (N') and Count (K') attribute references

— Determine the number and nesting of argument list structures
— Determine the count of characters in an argument

-  Extract sublists or sublist elements
Use substring and concatenation operations to parse list items

July 1993 High L»v«f Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V_______________________ ;________________ _________________ '

Macro Argument Attributes and Structures
Among the elegant features of the Assembler Language are some simple mechanisms 
(built-in functions, called attribute references) that allow you to determine some properties 
(i.e., attributes) of the actual arguments. For example, attribute references provide informa
tion about possible base language (ordinary assembler language) use of the symbols: what 
kinds of objects they name, what is the length attribute of the named object, etc.

Three major classes of “ inquiry facilities” are provided:

1. The type attribute reference (T') allows you to ask “What base-language meaning is 
attached to it?” about a macro argument. The value of the type attribute reference (a 
single character; only the type attribute reference has character values) can tell you 
whether the argument is

• a symbol that names data, machine instructions, macro instructions, sections, etc.

• a self-defining term (binary, character, decimal, or hexadeimal)

• an “ unknown” type.

2. The “ mechanical” or “ physical” characteristics of macro arguments can be determined 
by using

• two attribute references: Count (K') supplies the actual count of characters in the 
argument, and Number (N‘) tells you how many elements appear in an argument 
list structure.

• list-structure referencing and decomposition operations, involving subscripted refer
ences to parameter variable symbols.
A rather sophisticated list scanning capability is provided to help you decompose 
argument structures, especially parenthesized lists. With this notation, you can

-  determine the number and nesting of all such list structures

-  extract any sublists or sublist elements

56 High Level Assembler Tutorial Guide



-  use the usual substring and concatenation operations to manipulate portions of 
lists and list elements.

3. The base-language attributes of macro arguments can be determined by using any of 
four attribute references: Length (L■), Scale (S'), Integer ( I 1), and Defined (D*). All four 
have numeric values.

Macro Argument Attributes: Type 49

Type attribute reference (T *) answers
-  “What is it?”

-  "What meaning might it have in the base language?”

Assume the following statements in a program:

a dc A(*)
B DC F'101
C DC E'2.71828*
D HVC A,B

And, assume the following prototype statement for MACTA:

MACTA &P1,&P2... ttc.

July 1993

V __________________ _

High Level Assembler Tutorial Guide 
© Copyright IBM Corporation 1993

HLASM

J
r ----- .

Macro Argument Attributes: Type ... 50

• Then a call to MACTA like

Z HACTA A,B,C,rDtC'A1,,' ?',Z Call MACTA with various arguments

• would provide these type attributes:

T'&Pl - 'A* aligned, Impl1ed-length address
T’&PZ * 'F* aligned, 1mpl1ed-length fullword binary
r«.P3 * 'E* aligned, 1mpl1ed-1ength short floating-point
T’B.P4 * 'I* machine Instruction statement
T&P5 « 'N* self-defining term
T'M>6 * '0' omitted (null)
T**P7 - *U* unknown
T'&P8 * 'M' macro Instruction statement

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

v.____________________ )

Macro-Instruction Argument Properties: Type Attribute
The type attribute reference is often the first used in a macro, to help the macro determine 
“What is it?” . More precisely, it tries to answer the question “What meaning might this argu
ment string have in the base language?” It typically appears in conditional assembly state
ments like these:

Macros 57



AIF (T'&Paraml eq '0').Omitted Argument is null
AIF (T'&Paraml eq 'U').Unknown Unknown argument type

To illustrate some of the possible values returned by a type attribute reference, assume the 
following statements appear in a program:

A DC A(*)
B DC F' 10'
C DC E'2.71828
D MVC A,B

If the same program contains a macro named MACTA with positional arguments 
&P1,&P2,...,etc., and if MACTA is called with the following arguments, then a type attribute 
reference to each of the positional parameters would return the indicated values:

Z MACTA A,B,C,D,C'A,,,,?',Z Call MACTA with various arguments

T'&Pl = ' A 1 aligned, implied-length address
T1&P2 = 'F' aligned, implied-length fullword binary
T '&P3 * 'E' aligned, implied-length short floating-point
T'&P4 = ' I ' machine instruction statement
T '&P5 = •N' self-defining term
T'&P6 = '0' omitted (null)
T'&P7 = 'U' unknown
T1&P8 = 'M1 macro instruction statement

There are 28 possible values that might be returned by a type attribute reference.

58 High Level Assembler Tutorial Guide



Macro Argument Attributes: Count 51

• Count attribute reference (K') answers “How many characters in an 
argument?”

• Suppose we have a macro with prototype statement

MACS &P1,&P2,&P3,...,&K1*,&K23,&K3-,...

• This macro instruction would give these count attributes:

MAC8 A,BCD,'EFGH',,K1*5,K3«*F * 251

K'fcPl * 1 corresponding to A
K’&P2 « 3 ABC
K'&P3 * 6 'DEFG'
K'&P4 * e (null)
K'&Kl * 1 5
K'&K2 * 0 (null)
K'&K3 * 6 *F'25'

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

J

Macro-Instruction Argument Properties: Count Attribute
A macro argument has one irreducible, unavoidable property: the count of the number of 
characters it contains. These can be determined for any argument using the count attribute 
reference, K'. For example, if MAC8 has positional parameters &P1, &P2, etc., and 
keyword parameters &K1, &K2, . . . ,  etc., then for a macro instruction statement such as the 
following:

MAC8 A, BCD, ' EFGH1, , Kl=5,K2=, K3==F1251 

we would find that

K'&Pl = 1 corresponding to A
K'&P2 = 3 ABC
K'&P3 = 6 'DEFG'
K'&P4 = 0 (null)
K'&Kl = 1 5
K'&K2 = 0 (null)
K'&K3 = 6 =F'25'

Macros 59



52

• Number attribute reference (N') answers “How many items in a list?”

• List: a parenthesized sequence of items separated by commas

Examples: (A) (B.C) (D,E,,F)

• List items may themselves be lists, to any nesting

Examples: ((A)) (A,(B,C)) (A,(B,C,(D,E, ,F) ,G),H)

• Subscripts on parameters refer to argument list (and sublist) items
Each added subscript references one nesting level deeper

• N' also determines maximum subscript used with a subscripted 
variable symbol

July 1993 High Level Assembler Tutorial Guide HLASM
G Copyright IBM Corporation 1993

V----------------------------- ----------------------------------- /

f ---------------------------------------------------
Macro Argument Attributes: Number

Macro Argument List Structure Examples 53

• Assume the same macro prototype as in foil 51:

MAC8 &P1,&P2,&P3,... ,«a*,MC2«,WC3*,... Prototype 

MACS (A),A,(B,C),(B,(C,(D,E))) Sample macro call

• Then, the number attributes and sublists are:

&P1 * (A)
*M(D * A
&P2 « A
&P3 * (B,C)
&P3(1) - B
&P4 * (B.(C
&P4(2) - C,(D
&P4(2,2) * (0.E)
1*4(2,2,1!\ « D
&P4(2,2,2> * E

N'&Pl 
N'fcPl(l) 
N'&P2 
N'&P3 
N'&P3(1) 

(D,E))) N'&P4 
E)) N’*P4(2)

N'&P4(2,2) 
N'&P4(2,2,1] 
N'&P4(2,2,2

1 11st of 1 Item, A
1 (A 1s not a 11st)
1 (A Is not a 11st)
2 11st of 2 Items, B and C
1 (B 1s not a 11st)
2 11st of 2 Items, B and (1
2 11st of 2 Items, C and (1
2 11st of 2 Items, D and E
1 (D 1s not a 11st)
1 (E 1s not a 11st)

July 1993 High Level Assembler Tutorial Guide 
G Copyright IBM Corporation 1993

HLASM

J

Macro-Instruction Argument Properties: Number Attribute
A list is a parenthesized sequence of items, separated by commas. The following are exam
ples of lists:

(A) (B,C) (D ,E„F)

Figure 19. Macro Argument List Structures

List items may themselves be lists (which may in turn contain lists, and so forth). Examples 
of lists containing sublists are:

60 High Level Assembler Tutorial Guide



((A)) (A,(B,C)) (A,(B,C,(D,E,,F),6 ),H)

Sublists

Lists may have any number of items, and any level of nesting, subject only to the constraint 
that the size of the argument may not exceed 255 characters.

The number attribute reference (N1) is used to determine the number of elements in a list or 
sublist, or the number of elements in a subscripted variable symbol. For example, if the 
three lists in Figure 19 on page 60 were arguments associated with parameters &P1, &P2, 
and &P3 respectively, then a number attribute reference to each parameter would return the 
following values:

N'&Pl » 1 (A) is a l is t  of 1 item
N'&P2 = 2 (B,C) is a l is t  of 2 items
N'&P3 = 4 (D,E,,F) is a l is t  of 4 items; the th ird is null

&Z(17) = 42 Set an element of a subscripted variable symbol
N'&Z = 17 maximum subscript on &Z is 17

It is sometimes useful to pass groups of related argument items as a single unit, by grouping 
them into a list. This can save the effort needed to name additional parameters on the 
macro prototype statement, can can simplify the documentation of the macro call.

To extract list items from argument lists and sublists within a macro, subscripts are attached 
to the parameter name. For example, if &P is a positional parameter, and N'&P is not zero 
(meaning that the argument associated with &P is indeed a list), then &P(1) is the first item in 
the list, &P(2) is the second, and &P(N'&P) is the last item.

To determine whether any list item is itself a list, we use another number attribute refer
ence. For example, if &P(1) is the first item in the list argument associated with &P, then 
N’&P(1) is the number of items in the sublist associated with &P(1). For example, if argument 
((X,Y),Z,T) is associated with &P, then

N’&P = 3 items are (X,Y), Z, and T
N'&P(1) = 2 items are X and Y

As list arguments become more deeply nested, the number of subscripts used to refer to 
their list items also increases. For example, &P(1,2,3) refers to the third item in the sublist 
appearing as the second item in the sublist appearing as the first item in the list argument
associated with &P. Suppose MACS has positional parameters &P1, &P2.........etc., then for a
macro instruction statement such as the following:

MAC8 (A),A, (B,C),(B,(C,(0,E))) Sample macro call

&P1 -  (A) N'&Pl = 1 l is t  of 1 item, A
&P1(1) = A N'&P1(1) = 1 (A is not a l is t )
&P2 -  A N'&P2 = 1 (A is not a l is t )
&P3 -  (B.C) N'&P3 = 2 l is t  of 2 items, B and C
&P3(1) = B N'&P3(1) = 1 (B is not a l is t )
&P4 -  (B,(C,(D,E))) N'&P4 =2 l is t  of 2 items, B and (C,(D,E))
&P4(2) = (C,(D,E)) N'&P4(2) = 2 l is t  of 2 items, C and (D,E)
&P4(2,2) -  (D,E) N'&P4(2,2) = 2 l is t  of 2 items, D and E
&P4(2,2,1) -  D N'&P4(2,2,1) = 1 (D is not a l is t )
&P4(2,2,2) -  E N'&P4(2,2,2) -  1 (E is not a l is t )

There is an oddity in the assembler's interpretation of the number attribute for items which 
are not themselves lists. As can be seen from the first two samples above, both 1 (A)1 and 
1A1 return a number attribute of 1. The assembler will treat parameter references &P and 
&P(1) as the same string if the argument corresponding to &P is not a properly formed list.

Macros 61



This means that if it is important to know whether or not a list item is in fact a parenthesized 
list, you will need to test the first and last characters to verify that the list is properly 
enclosed in parentheses.

62 High Level Assembler Tutorial Guide



Macro Argument Lists and &SYSLIST 54

• &SYSLIST(k): a “synonym” for the k-th positional parameter 
-  Whether or not a named positional parameter was declared

• N'&SYSLIST — number of all positional arguments

• Assume a macro prototype MACNP (with or without parameters)

• Then these arguments would have Number attributes as shown:

MACNP A,(A),(C,(0,E,F)),(YES,NO)

N'&SYSLIST 
N'&SYSLI$T(1) 
N'&SYSLIST! 
N'&SYSLIST! 
N'&SYSLIST! 
N'&SYSLIST(3,2,1) 
N'&SYSLIST(4)

2)
3) 
3,2)

4
1
1
2
3
1
2

MACNP has 4 arguments
&SYSLIST(1’
&SYSLIST(2
&SYSL1ST
&SYSLIST
&SYSLIST
&$YSLIST(4)

3)
3,2)
3,2,1)

A)
(C,(D,E,F)) 
(D,E,F)
D
(YES,NO)

(A Is not a list)
1s a 11st with 1 Item 
1s a list with 2 Items 
1s a 11st with 3 Items 
(D 1s not a list)
Is a 11st with 2 Items

July 1993 High Lewi Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

HLASM

J

Macro-Instruction Argument Lists and the &SYSLIST Variable Symbol
It is frequently useful to be able to call a macro with an indefinite number of arguments that 
we intend to process "identically” or “ equivalently” , so that no particular benefit is gained 
from naming and referring to each one individually.

The system variable symbol &SYSLIST can be used to refer to the positional elements of the 
argument list: &SYSLIST(k) refers to the k-th positional argument, whether or not a corre
sponding positional parameter was declared on the macro's prototype statement. The total 
number of positional arguments in the macro instruction's operand list can be determined 
using a Number attribute reference: N'&SYSLIST is the number of positional arguments.

No other reference to &SYSLIST can be made without subscripts. Thus, it is not possible to 
refer to all the arguments (or to all the positional parameters) as a group using a single 
unsubscripted reference to &SYSLIST.

To illustrate the use of &SYSUST references, suppose we have defined a macro named 
MACNP; whether or not any positional parameters are declared doesn't matter for this 
example. If we write the following macro call:

MACNP A,(A), (C,(D,E,F)), (YES,NO)

then the number attributes of the &SYSLIST items, and their values, are the following:

N'&SYSLIST = 4 MACNP has 4 arguments
N'&SYSLIST(1) = 1 &SYSLIST(1) = A (A is not a l is t )
N'&SYSLIST(2) = 1 &SYSLIST(2) = (A) is a l is t  with 1 item
N'&SYSLIST(3) -  2 &SYSLIST(3) -  (C,(D,E,F)) is a l is t  with 2 items
N'&SYSLIST(3,2) = 3 &SYSLIST(3,2) -  (D,E,F) is a l is t  with 3 items
N'&SYSLIST(3,2,1) *  1 &SYSLIST(3,2,1) = D (D is not a l is t )
N'&SYSLIST(4) = 2 &SYSLIST(4) -  (YES,NO) is a l is t  with 2 items

Observe that references to sublists are made in the same way as for named positional 
parameters. One additional (leftmost) subscript is needed for &SYSLIST references, because 
that parameter is being referenced by number rather than by name.

Macros 63



(------- ----------- -------  ^
Global Variable Symbols 55

• Macro calls have one serious defect:
-  Can't assign (I.e. return) values to arguments 

unlike most high level languages

communication with the Interior of a macro Is “one-way”: arguments In, 
statements out

no “functions” (i.e. macros with a value)

• Values to be shared among macros (and/or with open code) must use 
global variable symbols
-  Scope: available to all declarers

Can use the same name as a local variable in a scope that does not 
declare the name as global

• One macro can create (multiple) values for others to use

July 1993 High L«v«l Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

________________________ _______________________________ J

Global Variable Symbols
Thus far, our macro examples have been self-contained: all their communication with the 
“outside world” has been through their argument lists and the statements they generated.

in the System/360/370/390 Assembler Language, macro calls have one serious omission: 
they can't assign (i.e: return) values to arguments, unlike most high level languages. That is, 
all macro arguments are “ input only” . Thus, communication with the interior of a macro by 
way of the argument list appears to be “one-way” : arguments go in, but only statements 
come out.

Furthermore, there is no provision for defining “ functions” (that is, macros which return a 
value associated with the macro name itself).

Thus, values to be shared among macros (and/or with open code) must use a different 
mechanism, that of global variable symbols. The scope rule for global variable symbols is 
simple: they are shared by and are available to all declarers. (You may of course use the 
same name as a local variable in a scope that does not declare the name as global.)

With an appropriate choice of named global variable symbols, one macro can create single 
or multiple values for others to use.

The "dictionary” or “pool” of global symbols has similar behavior to certain kinds of external 
variables in high level languages, such as Fortran COMMON: all declarers of variables in 
COMMON may refer to them. However, the assembler imposes no conformance rules of 
ordering or size on declared global variable symbols; you simply declare the ones you need, 
and the assembler will figure out where to put them so they can be shared with other 
declarers. (Unlike most high-level languages, sharing of global variable symbols is purely 
by name!)

64 High Level Assembler Tutorial Guide



Variable Symbol Scope Rules: Summary 56

Global Variable Symbols
-  Available to all declarers of those variables on GBLx statements (macros 

and open code)

-  Arithmetic, boolean, and character types; may be subscripted

-  Values persist through an entire assembly
— Values kept in a single, shared, common dictionary

-  Values are shared by name

July 1993 High Laval Assembler Tutorial Guido 
O  Copyright IBM Corporation 1993

V __________________________________________________________________

HLASM 

_______/

Variable Symbol Scope Rules: Summary ...
\

57

Local Variable Symbols
Explicitly and Implicitly declared local variables 

Symbolic parameters
— Values are "read-only"

Local copies of system variable symbols whose value Is constant 
throughout a macro expansion
— Values kept in a local, transient dictionary

— Created on macro entry, discarded on macro exit

— Recursion still implies a separate dictionary for each entry 

-  Open code has its own local dictionary

July 1993 High Laval Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Variable Symbol Scope Rules: Summary
At this point, we will summarize the scope rules for variable symbols.

• Global Variable Symbols are available to all macros and open code that have declared 
the symbols as GBLx. The three types denoted by “x” are as for local variable symbols: 
Arithmetic, Boolean, and Character.

• The values of global variable symbols persist through an entire assembly, and their 
values are kept in a single, common dictionary.

• Local variable symbols include explicitly and implicitly declared variables, symbolic 
parameters, and local copies of system variable symbols whose value is constant 
throughout a macro expansion. They are not shared with other macros, or with open 
code (and vice versa). Open code has its own local dictionary, which is active 
throughout an assembly.

Macros 65



• Variable symbol values are kept in a local, transient dictionary that is created on macro 
entry, and discarded on macro exit. The symbols are treated as "read-only” , meaning 
that their values are constant throughout a macro, and cannot be changed. Note that 
recursion still implies a separate dictionary for each entry to the macro; every invoca
tion has its own non-shared dictionary.

r
Debugging Macros

--------------------- \
58

• Complex macros can be hard to debug

-  Written in a difficult, unstructured language

• Some useful debugging facilities are available:

MNOTE statements
— Can be inserted liberally to trace control flows and display values

-  MHELP statements n e t  ^  e f lotAAj'ly
— Built-in assembler trace and display facility

— Many levels of control; can be quite verbose!

ACTR statement
— Limits number of conditional branches within a macro

— Very useful if you suspect excess looping

cttikósf

July 1993 High Level Assembler Tutorial Guide 
€> Copyright IBM Corporation 1993

HLASM

V J

Macro Debugging Techniques
No discussion of macros would be complete without some hints about debugging them. The 
macro language is complex and not well structured, and the “action” inside a macro is gen
erally hidden because each statement is not “displayed” as it is interpreted by the condi
tional assembly logic of the assembler.

We will briefly describe three statements useful for macro debugging: MNOTE, MHELP, and 
ACTR.

66 High Level Assembler Tutorial Guide



MNOTE Statements

* MNOTE allows the most detailed controls over debugging output 

You specify exactly what to display, and where

NMote *,'At Sk1pl9: M.VG - SVG., «.TEXT - "«TEXT"

You can control which ones are active (with global variable symbols) 

GblB &DEBUG(28)

AIF (NOT M>EBUG(7)).Sk1pl9
MNote *,'At Sk 1 pl9; &&VG * SVG., M.TEXT - "STEXT"'

.Skipl9 ANop

-  You can “disable” MNOTES with conditional-assembly comments 

.* HNote V A t  5k1pl9: fc&VG « SVG., SSTEXT - ,,STE^,,,

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

__________________________________________________________________ J

MNOTE Statements
We have already touched on the use of MNOTE statements in “The MNOTE Statement” on
page 8. Their main benefits for debugging macros are:

• MNOTE statements may be placed at exactly those points where the programmer knows 
that internal information may be most useful, and exactly the needed items can be dis
played.

• The MNOTE message text can provide specific indications of the internal state of the 
macro at that point, and why it is being provided.

• Though it requires additional programming effort to insert MNOTE statements in a 
macro, they can be left “ in place” , and enabled or disabled at will. Typical controls are 
as simple as “commenting out” the statement (with a conditional-assembly 
comment) to adding global debugging switches to control which statements will be exe
cuted, as illustrated here:

GblB &DEBUG(20)

AIF (NOT &DEBUG(7)).Skipl9
MNote *,'At Skipl9: &&VG = &VG., &&TEXT *= "&TEXT"'

.Ski pl9 ANop

If the debug switch &DEBUG(7) is 1, then the MNOTE statement will produce the specified 
output.

Macros 67



The MHELP Statement

• MHELP controls flow tracing and variable "dumping”

• MHELP operand value is sum of 8 bit values:

1 Trace macro calls (name, depth, &SYSNDX value)
2 Trace macro branches (AGO, AIF)
4 AIF dump (dump scalar SET symbols before AIFs)
8 Macro exit dump (dump scalar SET symbols on exit)
16 Macro entry dump (dump parameter values on entry)
32 Global suppression (suppress GBL symbols in AIF, exit dumps) 
64 Hex dump (SETC and parameters dumped in hex and EBCDIC) 
128 MHELP suppression (turn off all active MHELP options)

-  Best to set operand with a GBLA symbol (can save/restore its value), or 
from &SYSPARM value

• Can also limit total number of macro calls (see Language Reference)

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

_______________________________________________________ J

60
\

The MHELP Statement
The MHELP statement is more general but less specific in its actions than the MNOTE state
ment. Once an MHELP option is enabled, it stays active until it is reset. The MHELP operand 
specifies which actions should be activated; the value of the operand is the sum of the “ bit 
values” for each action:

1 Trace macro calls
MHELP 1 produces a single line of information, giving the name of the called 
macro, its nesting level, and its &SYSNDX number. This information can be used 
to trace the flow of control among a complex set of macros, because the 
&SYSNDX value indicates the exact sequence of calls.

2 Trace macro branches
The AIF and AGO branch trace provides a single line of information giving the 
name of the macro being traced, and the statement numbers of the model state
ments from which and to which the branch occurs. (Unfortunately, the target 
sequence symbol name is not provided, nor is branch tracing active for library 
macros. This latter restriction can be overcome by using the LIBMAC option: if 
you specify LIBMAC, tracing is active for library macros.

4 AIF dump
When MHELP 4 is active, all the scalar (undimensioned) SET symbols in the 
macro dictionary (i.e., explicitly or implicitly declared in the macro) are displayed 
before each AIF statment is interpreted.

8 Macro exit dump
MHELP 8 has the same effect as the preceding (MHELP 4), but the values are 
displayed at the time a macro expansion is terminated by either an MEXIT or 
MEND statement.

16 Macro entry dump
MHELP 16 displays the values of the symbolic parameters passed to a macro at 
the time it is invoked. This information can be very helpful when debugging 
macros that create or pass complex arguments to inner macros.

68 High Level Assembler Tutorial Guide



32 Global suppression
Sometimes you will use the MHELP 4 or MHELP 8 options to display variable 
symbols in a macro that has also declared a large number of scalar global 
symbols, and you are only interested in the local variable symbols. Setting 
MHELP 32 suppresses the display of the global variable symbols.

64 Hex dump
When used in conjunction with any of MHELP's "display” options (MHELP 4, 8, 
and 16), causes the value of displayed SETC symbols to be produced in both 
character (EBCDIC) and hexadecimal formats. If you are using character string 
data that contains non-printing characters, this option can help with under
standing the values of those symbols.

128 MHELP suppression
Setting MHELP 128 will suppress all currently active MHELP options. (MHELP 0 
will do the same.)

These values are additive: you may specify any combination. Thus,

MHELP 1+2 Trace macro calls and AIFs

will request both macro call tracing and AIF branch tracing.

As you might infer from the values just described, these MHELP “switches” fit in a single 
byte. The actions of the MHELP facility are controlled by a fullword in the assembler, of 
which these values are the rightmost byte. The remaining three high-order bytes can be 
used to control the maximum number of macro calls allowed in an assembly; the details are 
described in the IBM High Level Assembler/MVS & VM & VSE Language Reference manual.

The output of the MHELP statement can sometimes be quite voluminous, especially if mul
tiple traces and dumps are active. It is particularly useful in situations where the macro(s) 
you are debugging were ones you didn't write, and in which you cannot conveniently insert 
MNOTE statements. Also, if macro calls are nested deeply, the MHELP displays can help 
with understanding the actions taken by each inner macro.

To provide some level of dynamic control over the MHELP options in effect, it is useful to set 
a global arithmetic variable outside the macros to be traced, and then refer to that value 
inside any macro where the options might be modified; the MHELP operand can then be 
saved in a local arithmetic value, and restored to its "global” value on exit. Another useful 
technique is to derive the MHELP operand from the &SYSPARM string supplied to the 
assembler at invocation time; this lets you debug macros without making any changes to the 
program's source statements.

Macros 69



The ACTR Statement 61

• ACTR specifies the maximum number of conditional-assembly 
branches in a macro or open code

ACTR 290 Limit of 299 successful branches

Scope is local (to open code, and to each macro)
— Can set different values for each; default is 4096

-  Count decremented by 1 for each successful branch

-  When count goes negative, macro's invocation Is terminated

• Executing erroneous conditional assembly statements halves the 
ACTR value!

.* Following statement has syntax errors 
M  SETJ «+? If executed, would cause ACTR - ACTR / 2

July 1993 High Level Assembler Tutorial Guide 
€) Copyright IBM Corporation 1993

HLASM

J

The ACTR Statement
The ACTR statement can be use the limit the number of conditional assembly branches (AIF 
and AGO) executed within a macro invocation (or in open code). It is written

ACTR arithmetic_expression

where the value of the “arithmetic_expression” will be used to set an upper limit on the 
number of branches executed by the assembler. In the absence of an ACTR statement, the 
default ACTR value is 4096, which is adequate for most macros.

ACTR is most useful in two situations:

1. If you suspect a macro may be looping or branching excessively, you can set a lower 
ACTR value to limit the number of branches.

2. If a very large or complex macro must make a large number of branches, you can set 
an ACTR value high enough that all normal expansions can be handled safely.

70 High Level Assembler Tutorial Guide



Macro Techniques

Macros as a Higher Level Language 62

• Can be written to perform very simple to very complex tasks
Housekeeping (register saving and restoring, calls, define symbols, map 
data structures)

-  Define your own application-specific languages

• Macros can provide much of the “goodness” of HLLs
-  Abstract data types, private data types
-  Information hiding, encapsulation
-  Avoiding side-effects
-  Polymorphism

• Macro sets can be built incrementally to suit application needs

• Can develop “application-specific languages”

• Avoid struggling with the latest “universal language” fad
-  Add new capabilities to existing applications without converting

July 1993 High Level Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

HLASM

J

Macro instructions (or macros for short) provide the Assembler Language programmer with 
a wonderfully flexible set of possibilities. Macros share many of the properties of ordinary 
subroutines that can be called from many different applications: once written, they may be 
used for many other tasks. Their capabilities range from the very simple:

• perform “ housekeeping” such as saving registers, making subroutine calls, and 
restoring the registers and returning (the operating system supplies the SAVE, CALL, 
and RETURN macros for these functions)

• define symbols for registers and fixed storage areas, and declare data structures to 
define or map certain system control blocks used by programs to communicate with the 
operating system (macros such as REGEQU, DCB, and DCBD)

to the very complex:

• macros have been written to define “ artificial languages” in which entire applications 
are written (examples include the SNOBOL4 language, and certain banking and tele
processing applications).

Part of our purpose here will be to show that you can write macros to simplify almost any 
part of the programming process, from the simplest and smallest to the very complex and 
powerful.

Higher-level languages are often deemed useful because they provide desirable "advanced” 
features. We will see that macros can also deliver most of these features:

• Abstract Data Types: — are user-specified types for data objects, and sets of procedures 
used to access and manipulate them. This “encapsulation” of data items and logic is 
one of the key benefits claimed for object-oriented programming. •

• Information Hiding: — is an established technique for hiding the details of an implemen
tation from the user. The concept of separating application logic from data representa
tions is and old and well established programming principle.

Macro Techniques 71



• Private Types: — are user-defined data types for which the implementing procedures are 
hidden.

• Avoiding Side-Effects: — is achieved by having functions only return a value without 
altering either input values or setting of shared variables not declared in the invocation 
of an implementing procedure.

• Polymorphism: allows functions to accept arguments of different types, and enhances 
the possibility of reusing components in many contexts.

We will see that macros provide simple ways to implement any or all of these features. They
provide some additional advantages:

• Macros may be written to perform as much or as little as is needed for a particular task.

• Macros can be built incrementally, so that simple functions can be used by more 
complex functions, as they are written.

• New “ language” implemented by macros can be adapted to the needs of the applica
tion, giving an application-specific language that may well be better suited to its needs 
than a general-purpose "higher level” language designed to (nearly) fit (nearly) every
thing.

Examples
We will now examine some sample macros that illustrate various aspects of the macro lan
guage.

We will discuss several sets of example macros that illustrate different aspects of macro
coding, and which provide various types of useful functions.

1. The example macros at “ Defining Equated Symbols for Registers (Safely)” on page 74 
generate a set of EQU statements to define symbols to be used for register references. 
They illustrate the use of a global variable symbol to set a “one-time” switch, text 
parameterization, use of the &SYSLIST system variable symbol, and created variable 
symbols.

2. Two example macros at "Generating a Byte Sequence” on page 77 generate a 
sequence of byte values. They illustrate conditional assembly statements, and some 
simple string-handling operations.

3. The “ utility” macros at “ Macro-Time Conversion Between Hex and Decimal” on page 79 
might be used by other macros to perform conversions between decimal and 
hexadecimal representations. They illustrate construction of self-defining terms, global 
variables for communicating among macros, and substring operations.

4. The example macro at “ Generate Lists of Named Integer Constants” on page 81 gener
ates a list of constants from a varying-length list of arguments, using &SYSLIST to refer 
to each argument in turn, and constructs a name for each constant using its value.

5. The three example macros at “Creating a Prefixed Message Text” on page 83 generate 
a length-prefixed “ message” string. The first and second examples illustrate some 
familiar techniques, while the third uses the AREAD statement and a full scan of a 
“ human-format” message to generate an insertion-text character string for the final DC 
statement containing the message.

6. Three example macros at "Macro Recursion” on page 88 illustrate recursive macro 
calls. The first implements “ indirect addressing", and the remaining two illustrate the 
use of global variable symbols and recursive macro calls to generate factorials and 
Fibonacci numbers.

7. Several macros at “ Bit Handling” on page 94 illustrate techniques that can be used to 
define a private “bit” data type, with bit addressing by name and type checking within 
the bit handling macros themselves.

72 High Level Assembler Tutorial Guide



8. A set of macros illustrated at "Using and Defining Data Types” on page 117 illustrate 
some techniques that can be used to implement type-sensitive operations 
(“polymorphism”), and user-defined data types and user-defined operations on them, 
with type checking and information hiding.

Define General Register Equates (Simply) 63

Easy to do this \

MACRO
6REGS

6R9 EQU e
GR1« EQU X

GR15
I

EQU 15
MEND

Problem: what if two code segments are combined, and each calls 
GREGS?

How to preserve modularity?

Answer: use a global variable symbol!

July 1993 High Level Assembler Tutorial Guide 
G  Copyright IBM Corporation 1993 

V

HLASM

___________J

Define General Register Equates (Safely)
-------------------■>,

64

Use a global variable symbol &GRegs to check for previous calls

MACRO
GREGS
GBLB &GRegs
AIF (&GRegs).Done
LCLA &N

.X ANOP
GR&N EQU 8M
W SETA Bfl+1

AIF (U4 LE 15).X
IGRegs SetB 1 Indicate

.Done
MEXIT
MNOTE 6, ’GREGS prevli
MEND

If &GRegs is true, no statements are generated

GREGS This,Call,Is,Ignored

July 1993 High Level Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

Macro Techniques 73



Defining Equated Symbols for Registers (Safely)
The technique illustrated in “Example: Defining Equated Symbols for Registers” on page 47 
is quite acceptable unless we need at some point to combine multiple code segments, each 
of which may possible contain a call to GREGS (which was needed for its own modular 
development). How can we avoid generating multiple copies of the EQU statements, with 
their accompanying diagnostics for multiply-defined symbols?

The solution is simple: use a global variable symbol whose value will indicate that the 
GREGS macro has been called already. This is illustrated in Figure 20 below.

MACRO
GREGS
GBLB &GRegs
AIF (&GRegs).Done
LCLA &N

.X ANOP
GR&N EQU &N
&N SETA &N+1

AIF (&N LE 15).X
&GRegs SetB

MEXIT
1 Indicate definitions have been done

.Done MNOTE
MEND

0,'GREGS -- Previously called, this call ignored.'

AAA GREGS What?
GREGS Again,Eh?

Figure 20. Macro to Define General Purpose Registers Once Only

74 High Level Assembler Tutorial Guide



Define All Register Equates (Safely) 65

Use “created set symbols” for global variable symbol references

MACRO
REGS

.* General macro to define General» Floating» or Access Registers.

.* Just specify the argument A» F» or G for the appropriate set.
&GRegs Done,&FRegs Done,&ARegs Done 
(N'&SysLIst eq 8).Exit
1 Initialize argument counter

'&SysL1st(SJ)• Rick up an argument
('&T' ne 'G* and 'ItT' ne 'F' and 'ST' ne 'A').Bad 
(&(&T.Regs Done)).Done 
0
2 
4 
6
('4iT' eq 'F').Set If type F, only 4 regs to define 
1
continued ----

6BLB
AIF

SJ SetA
.GetArg ANOP
S.T SetC

AIF
AIF

&T.R0 EQU
&T.R2 EQU
&T.R4 EQU
&T.R6 EQU

AIF
&T.R1
*

EQU

July 1993 High Level Assembler Tutorial Guide
©  Copyright IBM Corporation 1993

V_____________________ ______________________
HLASM

_____ ______J
Define All Register Equates (Safely)...

----------------------------------- \

66

&T.R3 EQÜ 3
.* ----etc.
&T.R15 EQU 15
.Set ANOP
&(&T'Regs Done) SetB 1 
.Next AROP
&J SetA

AIF 
MEXIT 

.Bad MNOTE
MEXIT 

.Done MNOTE
AGO

.Exit MEND

Indicate definitions have been done

&J+1 Count to next argument
(&J le N'&Sysiist).GetArg Get next argument

8,'REGS —  Unknown type "ST.".'

8,'REGS —  Previously called for type ST..' 
.Next

If &(&T.Regs_Done) is true, no statements are generated

G registers are not defined again
GREGS
GREGS

G
G,F,A

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HIASM

Encouraged by the success of this approach, we might wish to define a macro which will 
create equates for all the registers we might use in our program: General Purpose, Floating 
Point, and Access. Rather than write three separate macros (one for each type of register), 
we can write a single REGS macro whose operands specify the type of registers desired 
(e.g., “ G” for GPRs, "F" for FPRs, and “A” for ARs).

The following example uses the technique illustrated in Figure 20 on page 74 above, but 
generalizes it by using a “created set symbol” to select the name of the proper global vari
able symbol.

Macro Techniques 75



MACRO
REGS

.* General macro to define General, Floating, or Access Registers.

.* Just specify the argument A, F, or G for the appropriate set.
GBLB &GRegs_Done,&FRegs_Done,&ARegs_Done
AIF (N'&SysList eq 0).Exit
SetA 1 Initialize argument counter

.GetArg ANOP
&T SetC ■&SysList(&J)1 Pick up an argument

AIF ('&T' ne 'G' and '&T' ne 1F' and '&T1 ne 'A').Bad
AIF (&(&T.Regs Done)).Done

&T.R0 EQU 0
&T.R2 EQU 2
&T.R4 EQU 4
&T.R6 EQU 6

AIF ('&T' eq 'F').Set If type F, only 4 regs to define
&T.R1 EQU 1
&T.R3 EQU 3
* -  -  - etc.

&T.R15 EQU 15
.Set ANOP
&(&T.Regs_Done) SetB 1 Indicate definitions have been done
.Next ANOP
&J SetA &J+1 Count to next argument

AIF (&J le N'&SysList).GetArg Get next argument
MEXIT

.Bad MNOTE 8,1 REGS -  Unknown type ,,&T.,,.,
MEXIT

.Done MNOTE 0,'REGS -- Previously called for type &T..'
AGO .Next

REGS A
REGS F,G,A

.Exit MEND

Figure 21. Macro to Define Any Sets of Registers Once Only

This REGS macro may be safely used any number of times (so long as no other definitions 
of the global variable symbols &ARegs_Done, &FRegs_Done, or &GRegs_Done, appear elsewhere in 
the program!).

76 High Level Assembler Tutorial Guide



Generating a Byte Sequence: BYTESEQ1 Macro 67

• BYTESE01 generates a byte for each value

MACRO
&L BYTESEQ1 SM
.* IYTESEQ1 —  generate a sequence of byte values, one per statement. 
.* No checking or validation Is done.

LcIA &K
AIF ('&L' EQ ").Loop Don’t define the label 1f absent 

G.L DS 0AL1 Define the label
.Loop ANOP
G.K SetA &K+1 Increment &K

AIF (&K GT IK).Done Check for termination condition 
DC A11(&K)
AGO .Loop Continue

.Done MEND

* Two test cases

BSla 8YTESEQ1 5
IYTESEQ1 1

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

J

Generating a Byte Sequence: BYTESEQ2 Macro 68

&L
&K
&S

.Num

.NotBIg

.OK
&K
&S

. DoDC 
&L

MACRO
BYTESEQ2 &N Generates a single DC statement
SetA 1 Initialize generated value counter
SetC '1' Initialize output string
AIF (T'BN EQ 'N').Num Validate type of argument
MNOTE 8,'BYTE5EQ2 —  3JN*8M not self-defining.’
MEXIT
AIF (&N LE 255).NotBIg Check size of argument
MNOTE 8,'BYTESEQ2 —  S*M«8N 1s too large.'
MEXIT
AIF (&N GT 0).0K Check for small argument
MNOTE *,'BYTESEQ2 —  BAN=BN too small, no data generated.'
MEXIT
AIF (&K GE BN).DoDC If done, generate DC statement
SetA &K+1 Increment &K
SetC '&S.'.' ,8iK' Add comma and new value of &K to &S
AGO .OK Continue
ANOP
DC ALl(BtS)
MEND

July 1993 High Level Assembler Tutorial Guide 
© Copyright IBM Corporation 1993

HLASM

J

Generating a Byte Sequence
The sample BYTESEQ2 macro illustrated below in Figure 22 on page 78 uses the same tech
niques as the conditional-assembly examples given in Figure 4 on page 27 and Figure 5 on 
page 27. and the corresponding BYTESEQ1 macro illustrated in Figure 18 on page 53.

The BYTESEQ2 macro shown in Figure 22 on page 78 performs several validations of its 
argument, including a type attribute reference to verify that the argument is a self-defining 
term. As its output, the macro generates a single DC statement for the byte values, but it 
has a curious limitation: can you tell what it is, without reading the text following the next 
figure?

Macro Techniques 77



MACRO
&L BYTESEQ2 &N
.* BYTESEQ2 -- generate a sequence of byte values, one per statement.
.* The argument is checked and validated, and the entire constant is
.* generated in a single DC statement.

Lcl A &K
LcIC &S

&K SetA 1 Initialize generated value counter
&s SetC '1' Initialize output string

AIF (T'&N EQ 'N').Num Validate type of argument
MNOTE 8,'BYTESEQ2 -- &&N=&N not self-defining.'
MEXIT

.Num AIF (&N LE 255). NotBig Check size of argument
MNOTE 8,'BYTESEQ2 -- &&N=&N is too large.'
MEXIT

.NotBig AIF (&N GT 0).OK Check for small argument
MNOTE *,'BYTESEQ2 -- &&N=&N too small, no data generated.'
MEXIT

.OK AIF (&K GE &N).DoDC If done, generate DC statement
&K SetA &K+1 Increment &K
&S SetC '&S.'.',&K' Add comma and new value of &K to &S

AGO .OK Continue
.DoDC ANOP
&L DC AL1(&S)

MEND
* Test cases
BS2e BYTESEQ2 0
BS2b BYTESEQ2 1
BS2a BYTESEQ2 5
BS2d BYTESEQ2 X' 58'
BS2c BYTESEQ2 256

Figure 22. Macro to Define a Sequence of Byte Values As a Single String

This macro has a problem. Because no character variable symbol may contain more than 
255 characters, the argument to BYTESEQ2 may not exceed 88; otherwise &S exceeds 255 
characters.

It is easy to modify the AIF test (at sequence symbol .Num) to enforce an upper limit of 88 for 
&N, We leave as an exercise to the interested reader what steps could be taken to adapt 
this macro to accept arguments up to and including 255, and still generate a single DC state
ment.

78 High Level Assembler Tutorial Guide



Macro-Time Conversion from Hex to Decimal 69

Convert hex digit strings to decimal values in GBLA variable &DEC

Macro 
Dec &Hex 
SblA Wee

&X SetC 'X' 'Wex''1
Wee SetA &X

MNote 6, '«.Hex (hex) 
MEnd

AA

Convert &Hex to decimal 
Decimal value returned In Wee 
Create hex self-defining term 
Do the conversion 

Wee (decimal)' For debugging

Dec
*** MNOTE *** 8,AA (hex) ■

Dec FFF
*** MMOTE *** 8,FFF (hex)

Dec FFFFFF
*** MNOTE *** 8,FFFFFF (hex)

Dec 7FFFFFFF
*** MMOTE *** 8,7FFFFFFF (hex) * 2147483647 (decimal)

178 (decimal)

* 4895 (decimal)

16777215 (decimal)

July 1993 High Level Assembler Tutorial Guide
€) Copyright IBM Corporation 1993

V ________________ ___ ________ ________ .__________________________________  __

HLASM

_______________ J

Macro-Time Conversion from Decimal to Hex
\

7 0

Convert decimal values to hex digit strings in GBLC variable &Hex

Macro 
Hex Wee 
GblC &Hex 

&Hex SetC ''
&Q SetA &Dec
.Loop ANop ,
&R SetA &Q-&Q/16*16
&Q SetA &Q/16
Wex SetC '8123456789ABCDEF' 

Alf (&Q gt 8).Loop 
MNote 8,'&Dec (decimal) 
MEnd

Convert Wee to hexadecimal 
Hex value returned 1n Wex 
Initialize Wex 
Local working variable 
Top of reduction loop 
&R « Mod ( &Q» 16 )
Quotient for next Iteration 
(&R+1,1).'Wex' Build hex value 
Repeat If &Q not zero 
* Wex (hex)' For debugging

Hex 178
*** MNOTE *** 8,178 (decimal)

Hex 16777215 
*** MNOTE *** 8,16777215 (decimal)

AA (hex)

FFFFFF (hex)

July 1993 High Level Assembler Tutorial Guide 
O  Copyright IBM Corporation 1993

HLASM

Macro-Time Conversion Between Hex and Decimal
if you are writing macros, it is not uncommon to need from time to time to convert between 
two different representations of a data item. Some of these conversions are already avail
able in the conditional assembly language; for example, arithmetic variables are automat
ically converted to character form by substituting them in SETC expressions.

To illustrate two “utility” macros, we will show how to convert between decimal and 
hexadecimal representations. The first macro, Dec, converts from hex to decimal, and places 
the result of its conversion into the global arithmetic variable &Dec for use by the calling 
macro (or open code statement). Because the assembler accepts hexadecimal self-defining 
terms in SETA expressions, the conversion merely needs to construct such a hexadecimal 
term.

Macro Techniques 79



Macro 
Dec &Hex 
GblA &Dec

&X SetC 'X ''&Hex'11
&Dec SetA &X

MNote 0,'&Hex (hex) 
MEnd

Convert &Hex to decimal 
Decimal value returned in &Dec 
Create hex self-defin ing  term 
Do the conversion 

&Dec (decimal)' For debugging

Figure 23. Macro-Time Conversion Between Hex and Decimal

Some examples of calls to the Dec macro are shown in the following figure, where the 
MNOTE statement has been used to display the results. (In production use, the MNOTE state
ment would probably be inactivated by placing a (conditional-assembly) comment indi
cator in the first two columns.)

Dec AA
*** MNOTE *** 0,AA (hex) = 170 (decimal)

Dec FFF
*** MNOTE *** 0,FFF (hex) -  4095 (decimal)

Dec FFFFFF
*** MNOTE *** 0 ,FFFFFF (hex) = 16777215 (decimal)

Dec 7FFFFFFF
*** MNOTE *** 0.7FFFFFFF (hex) = 2147483647 (decimal)

Figure 24. Macro-Time Conversion Between Hex and Decimal: Examples

Note that this macro may appear to have a problem: any hex value exceeding X'7FFFFFFF' 
will not be displayed as a negative number. However, its decimal representation in the vari
able &Dec will be correct.

Conversion from decimal to hexadecimal requires reducing the decimal value one hex digit 
at a time, using successive divisions by sixteen.

Macro
Hex &Dec Convert &Dec to hexadecimal
GblC &Hex Hex value returned in &Hex

&Hex SetC 1 1 I n it ia liz e  &Hex
&Q SetA &Dec Local working variable
.Loop ANop > Top of reduction loop
&R SetA &Q-&Q/16*16 &R = Mod ( &Q, 16 )
&Q SetA &Q/16 Quotient for next iteration
&Hex SetC '0123456789ABCDEF' (&R+1,1 ) .1&Hex1 Build hex value

A if (&Q gt 0).Loop Repeat i f  &Q not zero
MNote
MEnd

0,'&Dec (decimal) *= &Hex (hex)' For debugging

Figure 25. Macro-Time Conversion Between Decimal and Hex

Some examples of calls to the Hex macro to perform decimal-to-hex conversion are shown in 
the following figure.

80 High Level Assembler Tutorial Guide



Hex 170
*** MNOTE *** 0,170 (decimal) = AA (hex)

Hex 16777215
*** MNOTE *** 0,16777215 (decimal) = FFFFFF (hex)

Hex 16777216
*** MNOTE *** 0,16777216 (decimal) = 1000000 (hex)

Hex 2147483647
*** MNOTE *** 0,2147483647 (decimal) * 7FFFFFFF (hex)

Figure 26. Macro-Time Conversion Between Decimal and Hex: Examples

The technique shown in the Hex macro could be used to convert from decimal to any other 
base, simply by replacing occurrences of the value ‘‘16” in the macro with the desired base. 
(As an exercise, rewrite this macro to support a keyword parameter &BASE, with default value 
16, and try it with various bases such as 2, 8, and 12.)

Generate a List of Named Integer Constants 71

* Macro to define a list of named integer constants (checking omitted)

&Lab
.TypOK
&Lab
.ArgsOK

SMame

&Name
.NotNeg
SMame

.End
*

Clb
Clc

MACRO
INTCONS &Type=F
AIF C&Lab’ eq ").Notab Skip If no label
DC e&Type.'D' Define the label
ANOP Argument-checking loop
SetA &J+1 Increment argument counter
AXF (&J GT N'&SysLIst).End Exit If all done
SetC '&Type.&5ysL1st(&J)' Assume non-negative arg
AIF ('&SysL1st(&J)'(1,1) ne NotNeg Check arg sign
SetC ,&Type.H'.,-&Sysl1st(&J),(2,K'&SysL1st(iJ)-l) Neg Arg
ANOP
DC &Type.'&SysL1st(8J)'
AGO .ArgsOK Repeat for further arguments
MEND

INTCONS 0,-X Type F: names FO, FM1
INTCONS 99,-99,Type*H Type H: names H99, HM99

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Generate Lists of Named Integer Constants
To illustrate a typical use of the &SYSLIST system variable symbol, we suppose we wish to 
write a macro named INTCONS that will generate integer-valued constants, giving them 
names by appending their value to a letter designating their type (F if the value is non
negative, or to FM if the value is negative). For good measure, we will provide a keyword 
parameter to specify their type, either F or H, with F as the default. (Negative halfword con
stants will then start with the letters HM.)

Macro Techniques 81



MACRO
&Lab INTCONS &Type=F
.* INTCONS -- assumes a varying number of positional arguments 
.* to be generated as integer constants, with created names.
.* Type w ill be F (default) or H i f  specified.

LclA &J Count of arguments
LclC &Name Name of the constant

.* Validate the Type argument
AIF C&Type' eq 'F ' OR '&Type' eq 'H').TypOK Check Type 
MNOTE 8 , ' INTCONS — Invalid Type= "  &Type " . '
MEXIT

.* Generate the name-field symbol &Lab i f  provided 

.TypOK AIF ('&Lab' eq ").NoLab Skip i f  no label 
&Lab DC 0&Type.'0' Define the label
.* Verify that arguments are present; no harm i f  none.
.NoLab AIF (N'&SysList gt 0).ArgsOK Check presence of args 

MNOTE INTCONS -- No arguments provided.'
MEXIT

.* Argument-checking loop

.ArgsOK ANOP 
&J SetA

AIF 
AIF 
MNOTE 
AGO

.DoArg ANOP 
&Name SetC 

AIF
&Name SetC 
.NotNeg ANOP 
&Name DC 

AGO
.End MEND

Figure 27. Macro Parameter-Argument Association Example: Create a List of Constants 

Some test cases for the INTCONS macro are shown in the following figure:

&J+1 Increment argument counter
(&J GT N'&SysList).End Exit i f  a ll done 
(K'&SysList(&J) gt 0 ) .DoArg 
4 , ' INTCONS -- Argument No. &J. is  empty.'
.ArgsOK Go for next argument

•&Type.&SysList(&J)' Assume non-negative arg 
('&SysList(&J)'(1,1) ne ' - ' ) . NotNeg Check arg sign 
»&Type.M'.• &SysLi st(& J)'( 2 ,K•&SysLi st(&J)-1) Neg Arg

&Type.'&SysList(&J)'
.ArgsOK Repeat for further arguments

* Test cases - - f i r s t  has no label, no args; second has no args.
INTCONS

Cla INTCONS
Clb INTCONS 0,-1
Clc INTCONS 99,-99,Type=H Type H
Cld INTCONS -000000000,2147483647
Cle INTCONS l,2,3,4,Type=D Invalid type

INTCONS 1,2,3,4,,5,6,7,8,9,10E7 Null 5th argument

Figure 28. Macro Example: List-of-Constants Test Cases

The basic structure of this macro is in two parts: the first (through the second MEXIT state
ment, following the MNOTE statement for null arguments) checks the values and validity of the 
arguments, issuing various messages for cases that do not satisfy the constraints of the defi
nition.

The second part (beginning at the sequence symbol .ArgsOK) uses the &SYSLIST system var
iable symbol to step through each of the positional arguments in turn, by applying a sub-

82 High Level Assembler Tutorial Guide



script (&J) to indicate which positional argument is desired. The argument is checked for 
being non-null, and then to see if its first character is a minus sign. If the minus sign is 
present, it is removed for constructing the constant's name; finally, the constant is generated 
with the required name.

As an interesting exercise: what would happen if you wished to add a test to verify that each 
argument is a valid self-defining term? Are negative arguments valid? Would the argument 
10E7 be valid? (It's acceptable as a nominal value in an F-type constant.)

------------------------------------------------------------------------ .

Create Length-Prefixed Messages 72

• Create message text prefixed with “effective length”

HACRO
Uab RFHSG1 STxt
.* PFMSGl —  requires that the text of the message, StTxt,
.* contain no embedded apostrophes (quotes) or ampersands.

LclA &Len Effective Length
&Len SetA K'&Txt Count of text characters
&Len SetA &Len-3 Deduct 2 for quotes, 1 for effective length
&Lab DC ALl(&Len),C&Txt

MEND

• Limited to messages with no quotes or ampersands

Mia PFMSGl 'This Is a test of message text 1.1 
Mlb PFMSG1 'Hello'

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V_______________________________ __________________________________J

Creating a Prefixed Message Text
A common need in many applications is to produce messages. Often, the length of the 
message must be reduced by 1 prior to executing a move instruction, so it is helpful to store 
the message text and its “effective length” (i.e., its true length minus one).

We will illustrate three macros to create message texts with an effective-length prefix.

In this first example, the text of the message may not contain any “special” characters, 
namely apostrophes (quotes) or ampersands. A Count attribute reference is used to deter
mine the number of characters in the message argument.

Macro Techniques 83



MACRO
&Lab PFMSG1 &Txt
. * PFMSG1 - - requires that the text of the message, &Txt,
* contain no embedded apostrophes (quotes) or ampersands.

Lcl A &Len Effective Length
&Len SetA K'&Txt Count of text characters
&Len SetA &Len-3 Deduct 2 for quotes, 1 for e ffective  length
&Lab DC ALl(&Len), C&Txt

MEND

Mia PFMSG1 ‘This is  a test of message text 1 . ‘ 
Mlb PFMSG1 'H ello '

Figure 29. Macro to Define a Length-Prefixed Message

/  :
Create General Length-Prefixed Messages 73

• Allow all characters in message text (pairing may be required) 

MACRO
&Lab PFMSG2 &Txt
.* PFMSG2 —  the text of the message, &Txt, may contain embedded 
.* apostrophes (quotes) or ampersands, so long as they are
.* properly paired. The macro expansion generates a symbol
.* using the &SYSNDX system variable symbol, and uses a Length 
.* attribute reference for the effective length.

LclC &T Local variable
&T SetC 'TXT&SYSNDX.M' Create symbol to name the text string 
&Lab DC AL1(L'&T.-1) Effective length
&T DC C&Txt

MEND

• Quote and ampersand pairs are harder to write, read and translate

M2a PFMSG2 'Test of "This" && "That".’
M2b PFMSG2 'Hello1

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

V_______________________________ _________________________________ J

The requirement that no ampersands or quotes may be used in the message text defined by 
PFMSG1 may not be acceptable in some situations. Thus, in Figure 30 on page 85 we will 
define a second macro PFMSG2 that allows such characters in the message, but requires 
that they be properly paired in the argument string. It also generates an ordinary symbol so 
that a length attribute reference may be used.

84 High Level Assembler Tutorial Guide



MACRO
&Lab PFMSG2 &Txt
.* PFMSG2 -- the text of the message, &Txt, may contain embedded 
.* apostrophes (quotes) or ampersands, so long as they are
.* properly paired. The macro expansion generates a symbol
.* using the &SYSNDX system variable symbol, and uses a Length 
.* attribute reference for the effective  length.

LclC &T Local variable
&T SetC 'TXT&SYSNDX.M' Create symbol to name the text string
&Lab DC AL1(L'&T.-1) Effective length
&T DC

MEND
C&Txt

M2a PFMSG2 'Test of 1 'Th is' ' && 1'That*1. 1
M2b PFMSG2 'H ello '

Figure 30. Macro to Define a Length-Prefixed Message With Paired Characters

One interesting feature of this macro is its use of the &SYSNDX system variable symbol. The 
value of &SYSNDX is incremented by one for every macro call, and the value assigned to a 
given macro macro remains constant throughout its expansion. Thus, &SYSNDX may be 
used to generate symbols that are (much more likely to be) different for every macro expan
sion.

While the PFMSG2 macro defined in this example allows any characters in the message text, 
it is much more difficult to read and understand the macro argument. (Consider, for 
example, how to explain the odd rules about pairing quotes and ampersands to someone 
who wants to translate the message text into a different language!)

Create Readable Length-Prefixed Messages 74

Allow all characters in message text without pairing, using AREAD

&Lab

.OK
AM

MACRO
PFMSG4

PFMSG4 —  the text of the message may contain any characters. 
The message 1s on a single line following the call to PFMSG4. 

LclA &L,&N Local arithmetic variables
&T,&C,£M Local character variables
(N'&SYSLIST EQ 0).0K No arguments allowed 
8,'PFMSG4 —  no operands should be provided.'

Terminate macro processing

LclC
AIF
MNote
MEXIT
ANOP
SetA Initialize char-scan pointer to 1 

.* Read the record following the PFMSG4 call Into AM .
AM ARead a.dv*h** o*-" ( ✓%«.* c «y r <*r /Kaci/u c
AM SetC 'AM'(lf72) Trim off any sequence field
&L SetA 72 Point to end of Initial text string
.* Trim off trailing blanks from message text 
.Trim AIF ('AM'(AiL.l) NE ' ').C Check last character
&L SetA &L-1 Deduct blanks from length

AGO .Trim Repeat trimming loop

>ul)

July 1993 High Level Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

HLASM

Macro Techniques 85



Create Readable Length-Prefixed Messages 75

.* Now, begin scanning the trimmed string for quotes/ampersands 

.C AIF ('8M’(SN,1) NE 'AA'(1,1) AND '««'(Ml,!) NE '' .D

.* Have found a quote or ampersand
AT SetC 'AT'.'8M'(&N,1) First copy of doubled character
.0
AT
AN

AL
ALab

ANOP
SetC ■ST'.'MHWM) Second doubled, or normal character
SetA &N+1 Increment scan pointer
AIF (AN LE AL) .C Repeat scan to end of message text
SetA AL-1 Set to effective length
DC ALl(AL),C'AT'

Messages are written as they are expected to appear!

k 'O jk  N4a PFNSG4
Y  ^Test of ’This* A 'That'.

H4c PFMSG4
This 1s the text of a long message A says nothin' very much.

July 1993 High Level Assembler Tutorial Guide 
O Copyright IBM Corporation 1993

HLASM

This limitation can be removed by using an elegant and powerful feature of the macro lan
guage, the AREAD statement.

The AREAD Statement
The AREAD statement can be used in a macro to read lines from the program into a char
acter variable symbol in the macro. If we write

&CVar AREAD

then the first statement in the main program following the macro containing the AREAD 
statement (or the macro call that eventually resulted in interpreting the AREAD statement) 
will be “ read” by the assembler, and the contents of that record will be assigned to the vari
able symbol &CVar.

We will exploit this capability in the PFMSG4 macro, which reads the text of a message 
written in its desired final form from the line following the macro call. The macro illustrated 
in Figure 31 on page 87 scans the text of the string, creating pairs of quotes and amper
sands wherever needed; thus, the writer of the message need not be aware of the peculiar 
rules of the Assembler Language.

86 High Level Assembler Tutorial Guide



MACRO 
&Lab PFMSG4
.* PFMSG4 -- the text of the message may contain any characters.
.* The message is  on a single line  following the ca ll to PFMSG4,
.* in the form i t  is  expected to take when printed. The macro
.* scans for quotes and ampersands, and creates a pair for each 
.* of them for the generated constant. The macro includes a test
.* for the presence of an argument, which should not be present.

LclA &L,&N Local arithmetic variables
LclC &T.&C.&M Local character variables
AIF (N'&SYSLIST EQ 0).OK No arguments allowed
MNote 8 , 'PFMSG4 -  no operands should be provided.1
MEXIT Terminate macro processing

.OK ANOP
&N SetA 1 In it ia liz e  char-scan pointer to 1

* Read the record following the PFMSG4 ca ll into &M
&M ARead
&M SetC '&M'(1,72) Trim o ff any sequence fie ld
&L SetA 72 Point to end of in it ia l  text string
* Trim o ff tra ilin g  blanks from message text

.Trim AIF ('&M'(&L,1) NE 1 ') .C  Check last character
&L SetA &L-1 Deduct blanks from length

AGO .Trim Repeat trimming loop
★ Now, begin scanning the trimmed string for quotes/ampersands

.C AIF ('&M'(&N,1) NE '&&' (1,1) AND '&M' (&N,1) NE ').D
* Have found a quote or ampersand

&T SetC '&T1. '&M'(&N,1) F irs t copy of doubled character
.D ANOP
&T SetC '& T'. '&M'(&N,1) Second doubled, or normal character
&N SetA &N+1 Increment scan pointer

AIF (&N LE &L).C Repeat scan to end of messagei text
&L SetA &L-1 Set to effective  length
&Lab DC AL1(&L),C'&T'

MEND

Figure 31. Macro to Define a Length-Prefixed Message With “True Text”

Some test cases for the PFMSG4 macro are shown in the following figure:

M4a PFMSG4
Test of 'This' & 'That'.
M4b PFMSG4
Hello
M4c PFMSG4
This is the text of a long message & says nothin' very much.

Figure 32. Test Cases for Macro With “True Text” Messages

Macro Techniques 87



Macro Recursion
Macros that call themselves either directly or indirectly are recursive. We will first illustrate 
a recursive call with a simple “ Load Indirect” macro, which introduces a simple form of indi
rect addressing.

Indirect Addressing via Recursion 76

• LI macro calls itself for each level of indirection

&Lab
Macro
LI &Reg,&X
A1f ('&X'(1,1) eq

&Lab L &Reg,&X

. Ind
MExIt
ANop

&XI SetC ,&X,(2tK,&X-l)
LI &Reg,&XI
L &Reg,8(,&Reg)
MEnd

Load &Reg with Indirection 
'*')*Ind Branch If Indirect

Strip off leading asterisk 
Call ourselves recursively

• Examples: each asterisk specifies a level of indirection

LI 3,9(4) Load from 8(4)
LI 3,*9(,4) Load from what 8(,4) points to
LI 3,**8(,7)

3,***X
Two levels of Indirection

LI Three levels of Indirection

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Example 1: Indirect Addressing
In Figure 33 on page 89, the LI macro implements a form of “ indirect” addressing: if the 
storage operand is preceded by an asterisk, the assembler interprets this as meaning that 
the operand to be loaded into the register is not at the operand, but is at the address speci
fied by the operand without the asterisk.4 Thus, if an instruction was written as

LI 8,*XXX Indirect reference via XXX

then the item to be loaded into R8 is not at XXX, but is at the position “pointed to” by XXX.

This definition is recursive, in the sense that the “operand” preceded by an asterisk may 
itself be preceded by an asterisk, which thus provides multiple levels of indirection. A macro 
to implement this form of indirect addressing is shown in Figure 33 on page 89.

4 Indirect addressing was a popular hardware feature in many second-generation computers, such as 
the IBM 709-7090-7094 series. The hardware supported only a single level of indirect addressing, and 
the instruction syntax was slightly different on those machines: a single asterisk could be appended to 
the mnemonic (as in TRA*), but the operand field was not modified.

88 High Level Assembler Tutorial Guide



Macro
&Lab LI &Reg,&X Load &Reg with indirection

Aif ( ‘&X1(1,1) eq •*•) .Ind Branch if  indirect
&Lab L

MExit
&Reg,&X

.Ind ANop
&XI SetC * &X’(2,K'&X-1) Strip off leading asterisk

LI &Reg,&XI Call ourselves recursively
L &Reg,0(,&Reg)
MEnd

Figure 33. Recursive Macro to Implement Indirect Addressing

Some examples of calls to the LI macro are shown in Figure 34, where the “ +  ” characters 
at the left margin are the assembler's indication of a macro-generated statement.

LI 3,0(4) Load from 0(4)
+ L 3,0(4)

LI 3,*0(,4) Load from what 0(,4) points to
+ L 3,0(,4)
+ L 3,0(,3)

LI 3,**0(,7) Two levels of indirection
+ L 3,0(,7)
+ L 3,0(,3)
+ L 3,0(,3)

LI 3,***X Three levels of indirection
+ L 3,X

3,0(,3)+ L
+ L 3,0(,3)
+ L 3,0(,3)

Figure 34. Recursive Macro to Implement indirect Addressing: Examples

Macro Techniques 89



Generate Factorial Values Recursively 77

Macro
&Lab FACT01 &N
.* Factorials defined by Fac(N) * N * Fac(N-l), Fac(0) * Fac(l) = 0

GBLA &Ret For returning values of Inner
A1F (T'&N NE 'N').Error N must be numeric

&L SetA 8fl Convert from external form
MNote 0,'Evaluating FACT01(8.L.)'
AIF (&L LT 6).Error Can't handle N < 6
AIF (&L GE 2).Calc Calculate via recursion 1f N :

«.Ret SetA 1 F(0) * F(l) * 1
AGO .Test Return to caller

.Calc ANOP ,
&K SetA &L-1
«.Temp SetA &Ret

FACT01 &K
«.Ret SetA &Ret*&L
.Test AIF (&SysNest GT 1).Cont

MNote 0,'Factorial (8.1.) * &Ret.'
&Lab DC F'&Ret*
.Cont MExU Return to caller
.Error MNote 11,'Invalid Factorial argument 8M..'

MEnd

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Example 2: Factorial Function Values
Probably the best-known recursive function is the Factorial function. It can be defined and 
implemented iteratively (and more simply), but its familiarity makes it useful as an example.

In the macro in Figure 35 on page 91, the macro FACT01 uses the global arithmetic variable 
symbol &Ret to return calculated values.

There are many ways to test for the end of a recursive calculation. In this example, the 
&SYSNEST variable symbol is used to check the “nesting” level at which the macro was 
called. Macros called from open code are at level 1.

90 High Level Assembler Tutorial Guide



FACT
*

Title 'Factorial Numbers by Macro Recursion'

* Factorial Numbers are defined by
* F(N) = N * F(N-l)
*
★

with F(0) = 1 and F(l) -  1

Macro
&Lab FACTO1 &N

GBLA &Ret For returning values of inner calls
LCLA &Temp,&K,&L Local variables
AIF (T'&N NE 'N 'l.Error N must be numeric

&L SetA &N Convert from external form
MNote 0 , 'Evaluating FACT01(&L.)'
AIF (&L LT 0).Error Can't handle N < 0
AIF (&L GE 2).Calc Calculate via recursion if  N > 1

&Ret SetA 1 F (0) = F(l) = 1
AGO .Test Return to caller

.Calc ANOP
&K SetA &L-1
&Temp SetA &Ret

FACT01 &K
&Ret SetA &Ret*&L
• Test AIF (&SysNest GT l).Cont

MNote 0,'Factorial(&L.) = &Ret.'
&Lab DC F'&Ret'
.Cont MExit Return to caller
.Error MNote 11,'Invalid Factorial argument &N..'

MEnd

Figure 35. Macro to Calculate Factorials Recursively

Some test cases for the FACT01 macro are shown in the following figure:

* Test cases 
FACTO1 0
FACT01 1
FACTO1 B' 11' Valid self-defining term
FACTO1 X '4 ' Also
FACT01 10
FACTO1 -2 Invalid argument
FACT01 15 Should cause overflow
End

Figure 36. Macro to Calculate Factorials Recursively: Examples

We leave to the reader the modifications needed to allow FACT01 to be called from other 
macros.

Macro Techniques 91



Generate Fibonacci Numbers Recursively 78

Macro
&Lab FIBONACX 8N
.* Fibonacci numbers defined by F(N) * F(N-l)+F(N-2), F(0) « F(l) * 8

GBLA &Ret For returning values of 1nn<
MNote 0,'Evaluating FIBONACI(BM.), Level &SysNest.
AIF (&N LT 0).Error Negative values not allowed
AIF (&N GE 2).Calc If BM > 1, use recursion

&Ret SETA 1 Return F(0) or F(l)
AGO .Test Return to caller

.Calc ANOP Do computation
&K SetA &N-1 First value "K” * N-l
&L SetA &N-2 Second value ML” * N~2

FIBONACI &K Evaluate F(K) * F(N-l)
Blemp SetA &Ret Hold computed value

FIBONACI &L Evaluate F(L) * F(N-2)
&Ret SetA &Ret+&Temp Evaluate F(N) * F(K) F(L)
.Test AIF (&SysNest GT 1).Cont

MNote 0,'Fibonacci(BM.) * &Ret..'
&Lab DC F'BiRet'
.Cont MEx1t Return to caller
.Error MNote 11,'Invalid Fibonacci argument BM..'

MEnd

July 1993 High Lovol Assembler Tutorial Guide 
O  Copyright IBM Corporation 1993

HLASM

Example 3: Fibonacci Numbers
The Fibonacci numbers are defined by the recursion relations

F(N) = F(N-l) + F (N—2) 
with F(0) = 1 and F(l) = 1

Calculating them recursively is quite inefficient (though educational!) because many values 
are calculated more than once. The global arithmetic variable symbol &Ret is used to return 
values calculated at lower levels of the recursion.

92 High Level Assembler Tutorial Guide



FIB
★

Title ' Fibonacci Numbers by Macro Recursion1

Macro
&Lab FIBONACI &N

GBLA &Ret For returning values of inner calls
LCLA &Temp,&K,&L Local variables
MNote 0,'Evaluating FIBONACI(&N.), Level JkSysNest.1
AIF (&N LT 0).Error Negative values not allowed
AIF (&N GE 2).Calc If  &N > 1, use recursion

&Ret SETA 1 Return F(0) or F(l)
AGO .Test Return to caller

.Calc ANOP Do computation
&K SetA &N-1 First value "K" = N-l
&L SetA &N-2 Second value "L" = N-2

FIBONACI &K Evaluate F(K) = F(N-l)
&Temp SetA &Ret Hold computed value

FIBONACI &L Evaluate F(L) = F(N-2)
&Ret SetA &Ret+&Temp Evaluate F(N) = F(K) + F(L)
• Test AIF (&SysNest GT l).Cont

MNote 0, •Fibonacci(&N.]1 * &Ret.. '
&Lab DC F'&Ret'
.Cont MExit Return to caller
.Error MNote 11,'Invalid Fibonacci argument &N..‘

*
MEnd

FIBONACI 4
FIBONACI 5
End

Figure 37. Macro to Calculate Fibonacci Numbers Recursively

Macro Techniques 93



/--------------------------------------------------------------------------------------X
Bit Definition and Manipulation 79

• Frequently need to manipulate “bit flags”: 
Set ON, OFF; invert values; test and branch

• Typical bit-definition statements:

Flagl DS X Define 1st byte of bit flags
BitA EQU X'er Define a bit flag
Flag2 DS X Define 2nd byte of bit flags
BUB EQU X'18' Define a bit flag

• Serious defect: no correlation between bit name and byte name!
• Simple technique uses just a single name for all references

DS X Unnamed byte
B1tA Equ ♦.x'ei1 Define B1tA: Length Attribute * bit value
BUB Equ ♦^x'ie' Define B1tB: Length Attribute * bit value

01 B11A, L' B i t A Set BHA ON
NI B1tB,255-L'B1tB Set BUB OFF

July 1993 High Level Assembler Tutorial Guide HLASM
© Copyright IBM Corporation 1993

V____________________________ _______________________________ /

Bit Handling
Applications frequently require status flags with binary values: ON or OFF, YES or NO, 
STARTED or NOT_STARTED, and the like. On a binary machine, such flags are represented 
by individual bits. However, few machines provide individually addressable bits; the bits are 
parts of larger data elements such as bytes or words. This means that special programming 
is needed to “address” and manipulate bits by name.

It is typical in the Assembler Language to define bits using statements like the following:

Flagl DS X Define 1st byte of bit flags
BitA EQU X' 011 Define a bit flag
Fiag2 DS X Define 2nd byte of bit flags
BitB EQU X'10' Define a bit flag

and then doing bit operations like

01 Flagl,BitA Set bit A "on"

There is implicitly a problem: the names of the bytes holding the flag bits, and the names 
given to the bits, are unrelated. This means that it is easy to make mistakes like the fol
lowing:

01 FlagljBitB Set Bit B "on" ??
TM Flag2,BitA Test Bit A ??

When there is no strict association between the byte and the bit it “contains”, there is no 
way for the assembler (and often, the programmer) to detect such misuses.

One solution to the “association” problem is to use length attribute references to designate 
bit values. This allows us to “name” a bit, as follows:

94 High Level Assembler Tutorial Guide



Length Attribute = bit value
.NoNamel DS X
BitA EQU *,X '01 '
.NoName2 DS X
BitB EQU * ,X'10* Length Attribute = bit value

That is, the bit name is the same as the name of the byte that contains it. Then, all bit refer
ences are made only with the bit “names”:

01 BitA,L'BitA Set Bit A "on"
TM BitB.L'BitB Test Bit B

and (if one is careful) the bits will never be associated with the wrong byte! There is, of 
course, no guarantee that one might not write something like

01 BitA.L'BitB ???

but a quick scan of the symbol cross-reference will show that there are unpaired references 
to the symbols BitA and BitB in this statement; correct references will occur in pairs.

Simple Bit-Handling Macros; Defining Bit Flags 80

Macro , 
BitDefl

Error checking omitted

&L(D SetA 128,64,32,16,8,4,2,1 Define bit position values
&NN SetA N'&SysMst Number of bit names provided

SetA 1 Name counter
.NB Aif (8M gt SUN).Done Check 1f names exhausted
&C SetA 1 Start new byte at leftmost bit

DC B'8' Allocate a bit-flag byte
.NewN ANop Get a new bit name
&B SetC *&SysL1st(SM)' Get M-th name from argument list
&B EQU *,U(*«C) Define bit via length attribute
U4 SetA Sfl+1 Step to next name

Atf (8M gt 8NN).Done Exit 1f names exhausted
&C SetA &C+1 Count bits 1n a byte

Aif (&C le 8).NewN Get new name If not done

. Done 
*

Ago
MEnd

.NB Byte 1s filled, start a new byte

SUDefl bl,b2,b3,b4,b5,b6,b7,b8 Eight bits 1n one byte 
BHDefl c,d,e,f,g,h,1,J,k,1,m,n,o,p,q,r,s,t,u,v Many Mts+bytes

July 1993 High Level Assembler Tutorial Guide HLASM
O  Copyright IBM Corporation 1993

V____________________________ ________________________________/

Bit-Handling Macros: Simple Forms
The simplest way to “encourage” correct matching of bit names and byte names is to make 
bit references with macros. Thus, we will illustrate a simple set of macros to do this.

First, suppose we want to “define” bit names. We will write a macro that accepts a list of bit 
names, and defines bit values in successive bytes, eight bits to a byte. The BitDefl macro in 
Figure 38 on page 96 takes the names in the argument list and allocates a single bit to 
each, eight bits to a byte. Each call to BitDefl starts a new byte.

Macro Techniques 95



Macro
BitDefl

&L(1) SetA 128,64,32,16,8,4,2, 1 Define bit position values
&NN SetA N'&SysList Number of bit names provided
m SetA 1 Name counter
.NB Aif (&M gt &NN).Done Check if  names exhausted
& c SetA 1 Start new byte at leftmost bit

DC B' 01 Allocate a bit-flag byte
.NewN ANop 9 Get a new bit name
&B SetC '&SysList(&M)' Get M-th name from argument lis t

Aif ('8.B' eq " ) .Nul 1 Note null argument
&B EQU *,&L(&C) Define bit via length attribute
&M SetA &M+1 Step to next name

Aif (&M gt &NN).Done Exit if  names exhausted
&C SetA &C+1 Count bits in a byte

Aif (&C le 8).NewN Get new name if  not done
Ago .NB Byte is filled, start a new byte

.Nun MNote 4,'BitDefl: Missing name at arglist position &M'
&M SetA &M+1 Step to next name

Aif (&M le &NN).NewN Go get new name if  not done
.Done MEnd

Figure 38. Bit-Handling Macros: Simple Bit Definition

Some examples of calls to the BitDefl macro are shown in the following figure:

BitDefl bl,b2,b3,b4,b5,b6,b7,b8 Eight bits in one byte 
BitDefl c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v Many bits+bytes 
BitDefl
BitDefl F1,,F3 Omitted name

Figure 39. Bit-Handling Macros: Example of Bit Definitions

This simple macro has several limitations:

• Bits cannot be “grouped” so that related bits are certain to reside in the same byte, 
except by writing a statement with a new BitDefl call.

• This means that we cannot plan to use the bit-manipulation instructions (which can 
handle up to 8 bits simultaneously) without manually arranging the assignments of bits 
and bytes.

We will explore some techniques that can be used to overcome these limitations in “Bit-
Handling Macros: Advanced Forms” on page 102.

96 High Level Assembler Tutorial Guide



/---------------------------------------- - \
Simple Bit-Handling Macros: Setting Bits ON 81

• Macro BitOnl to set one or more bits ON

Macro 9 Error Checking omitted
&Lab BitOnl
MIN SetA N'&SysUst Number of Names
m SetA 1

A1f C&Lab1 eq ").Next Skip 1f no name field
&Lab DC OH'O' Define label
.Next ANop 9 Get a bit name
&B SetC '&SysL1st(SM)• Extract name
.60 01 &B,L'&B Set bit on
W SetA IH+1 Step to next bit name

Alf (SM le MIN).Next Go get another name

*
MEnd

AA1 BitOnl bl,b3,b8,c,d Set various bits ON
BitOnl b5,b6 Set two more bits ON

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM  Corporation 1993

___________________________ _____________________________ /

Simple Bit-Manipulation Macros
Having defined some bits with this BitDefl macro, we will write some macros to manipulate 
them by setting them on and off, and by inverting ("flipping”) their state. First, we will write a 
macro BitOnl that will set a bit to an “on” state (i.e., to 1).

Macro
&Lab BitOnl
&NN SetA N'&SysList Number of Names
&M SetA 1

Aif (&NN gt 0).OK Should not have empty name lis t
MNote
MExit

4,'BitOnl: No bit names?1

.OK ANop » Names exist in the lis t
Aif C&Lab1 eq ").Next Skip if  no name field

&Lab DC 0H'01 Define label
.Next ANop > Get a bit name
&B SetC ’&Syslist(&M)1 

('&B' ne " )  .Go
Extract name

Aif Check for missing argument
MNote 4,'BitOnl: Missing argument at position &M'
Ago .Step Go look for more names

• Go 01 &B,L'&B Set bit on
.Step ANop >
m SetA &M+1 Step to next bit name

Aif
MEnd

(&M le &NN).Next Go get another name

Figure 40. Bit-Handling Macros: Simple Bit Setting

In the following figure, we illustrate some calls to this macro to perform various bit settings; 
the generated statements are flagged with a “ +  ” in the left margin:

Macro Techniques 97



AA1 BitOnl bl,b3,b8,cl,c2
+AA1 DC OH'O' Define label
+ 01 bl,L 'bl Set bit on
+ 01 b3,L'b3 Set bit on
+ 01 b8,L'b8 Set bit on
+ 01 cljL 'c l Set bit on
+ 01 c2,L'c2 Set bit on

BitOnl bl,b8
+ 01 bl.L'bl Set bit on
+ 01 b8,L'b8 Set bit on

Figure 41. Bit-Handling Macros: Examples of Bit Setting

Each bit operation is performed by a separate instruction, even when two or more bits have 
been allocated in the same byte. We will see in “Bit-Handling Macros: Advanced Forms” on 
page 102 how we might remedy this defect.

--------------------------------------------------------- .
Simple Bit-Handling Macros: Set OFF and Invert Bits 82

• Macros BitOffl and Bitlnv are defined just like BitOnl:

Macro
&Lab BitOffl
* ----  etc., as for BitOnl
!go NI &B,255-L'&B Set bit off
* ---- etc.

★
MEnd

Macro
&Lab BHInvl
* ----  etc., as for BitOnl
.Go XI &B,L'&B Invert bit
* ---- etc.

w
MEnd

bbl BitOffl bl,b3,b8,c,d Set various bits of
BitOffl b5,b6 Set other bits off

ccl BHInvl bl,b3,b8,c,d Invert various bits
BHInvl b5,b6 Invert other bits

July 1993 High Level Assembler Tutorial Guide HLASM
(D Copyright IBM Corporation 1993

____________________________ _____________________________ J

The BitOffl macro is exactly like the BitOnl macro, except that the generated statement to 
set the bit “off” (i.e., to 0) is changed:

Macro
&Lab BitOffl
* - - - etc., as for BitOnl

.Go NI &B,255-L' &B

. * - - - etc., as
MEnd

for BitOnl
Set bit off

Figure 42. Bit-Handling Macros: Simple Bit Resetting

Some macro calls that illustrate the operation of the BitOffl macro are shown in the fol
lowing figure:

98 High Level Assembler Tutorial Guide



bbl BitOffl bl,b3,b8,cl,c2
+bbl DC 0H'O' Define label
+ NI bl,255-L'bl Set bit off
+ NI b3,255-L'b3 Set bit off
+ NI b8,255-L'b8 Set bit off
+ NI cl,255-L'cl Set bit off
+ NI c2,255-L'c2 Set bit off

BitOffl bl,b8
+ NI bl,255-L'bl Set bit off
+ NI b8,255-L'b8 Set bit off

Figure 43. Bit-Handling Macros: Examples of Bit Resetting

Similarly, the Bitlnvl macro inverts the designated bits:

Macro
&lab Bitlnvl
.* - - - etc., as for BitOnl
.Go XI &B,L'&B Invert bit
.* ------etc., as for BitOnl

MEnd

Figure 44. Bit-Handling Macros: Simple Bit Inversion 

Some calls to Bitlnvl illustrate its operation:

ccl Bitlnvl bl,b3,b8,cl,c2
+ccl DC 0H' 0' Define label
+ XI bl.L 'bl Invert bit
+ XI b3,L'b3 Invert bit
+ XI b8,L'b8 Invert bit
+ XI c l.L 'c l Invert bit
+ XI c2,L'c2 Invert bit

Bitlnvl bl,b8
+ XI bl.L 'bl Invert bit
+ XI b8,L'b8 Invert bit

Figure 45. Bit-Handling Macros: Examples of Bit Inversion

Macro Techniques 99



/---------------------------------------------------- ----------------------------------N
Simple Bit-Handling Macros: Branch on Bit Values 83

• Simple bit-testing macros: branch to label L if bit B is on/off

&Lab
Macro
BitBOnl &B,&T Bitname and branch label

&Lab TM &B, L'&B Test specified bit
BO &T Branch if ON

*
MEnd

&Lab
Macro
BitBOffl &B,&T Bitname and branch label

&Lab TM &B,L'&B Test specified bit
BNO &T Branch if OFF

★
MEnd

BitBOnl b2,bbl Branch to bbl if b2 is on
BitBOffl b3,ddl Branch to ddl if b3 is off

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V____________________________ .___________________________J

To complete our set of simple bit-handling macros, suppose we need macros to test the 
setting of a bit, and to branch to a designated label if the bit is on or off. We can write two 
macros named BitBOnl and BitBOffl to do this; each has two arguments, a bit name and a 
label name.

&Lab
Macro
BitBOnl &B,&T Bitname and branch label
Aif (N'&SysList eq 2).OK Should have exactly 2 arguments
MNote 4, "BitBOnl: Incorrect argument l is t ? '

.OK
MExi t 
Aif ( '&B1 eq " or 1&T1 eq M).Bad

&Lab TM &B,L1&B Test specified bit
BO &T Branch if  ON

.Bad
MExit
MNote 8, 'BitBonl: Bit Name or Target Name missing'
MEnd

Figure 46. Bit-Handling Macros: Branch if Bit is On

Some examples of calls to the BitBOnl macro are shown in the following figure:

ddl BitBOnl bl,aal
+ddl TM bl.L 'bl Test specified bit
+ BO aal Branch if  ON

BitBOnl b2,bbl
+ TM b2,L'b2 Test specified bit
+ BO bbl Branch if  ON

Figure 47. Bit-Handling Macros: Examples of “Branch if Bit On”

A similar macro can be written to branch to a specified label if a bit is off:

TOO High Level Assembler Tutorial Guide



Macro
&Lab BitBOffl &B.&T Bitname and branch label
* ' - - - etc., as for BitBOnl macro

&Lab TM &B,L'&B Test specified bit
BNO &T Branch if  OFF

MEnd
etc., as for BitBOnl macro

Figure 48. Bit-Handling Macros: Branch if Bit is Off 

Calls to the BitBOfi macro might appear as follows:

eel BitBOffl bl,ddl Branch to ddl if  bl is off
+eel TM bl.L 'bl Test specified bit
+ BNO ddl Branch if  OFF

BitBOffl b2,ddl Branch to ddl if  b2 is off
+ TM b2,L'b2 Test specified bit
+ BNO ddl Branch if  OFF

Figure 49. Bit-Handling Macros: Examples of "Branch if Bit Off”

This completes our first set of bit-handling macros. It is evident that a fairly helpful set of 
capabilities can be written with a very small effort, and be put into immediate use.

Macro Techniques 101



-------------------------------------------- ,--------------------------------------- V
Bit-Handling Macros: Enhancements 84

• The previous macros work, and can be put to immediate use

• They can be enhanced in two ways:

1. Check to ensure that “bit names” reallv do name bits!

*
Flag Equ X'08'

BUOnl Flag

-> Let's use “strong typing!"

2. Permit bits within one byte to be “handled” with one instruction
-* Let's do code optimization!

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V.____________________________ _______________________________J

Bad Code —
Define a flag bit "somewhere"

Set "something, somewhere" ???

<s~(Xy cJ ?i /  F i *5

Bit-Handling Macros: Advanced Forms
There are two problems with the preceding “simple set” of bit-handling macros:

1. it is common to want to operate on more than one bit within a given byte at the same 
time. For example, suppose two bits are defined within the same byte:

DS X
BitJ EQU *,X140 *
BitK EQU *,X * 20'

We would prefer to set both bits “on” with a single 01 instruction. Two possibilities are 
evident:

01 BitJ.L'BitJ+L'BitK 
01 BitK.L'BitJ+L'BitK

Unfortunately, both of these schemes do not satisfy our intent to name just the bits we 
wish to manipulate, and not the bytes in which they are defined. Thus, we need some 
degree of “optimization” in our bit-handling macros.

2. There is no checking of the “bit names” presented as arguments in the bit-manipulation 
macros to verify that they were indeed declared as bits in a “bit definition” macro. For 
example, one might have written (through some oversight, probably not as drastic as 
this!)

Flag Equ X'08' Define a flag bit

BitOnl Flag Set "something, somewhere" on ???

and the result would not have been what was expected or desired. Thus, we need 
some degree of “strong typing” and “type checking” in our bit-handling macros.

We will start with a BitDef macro that declares bit flags, and keeps track of which ones have 
been declared. We will add an extra feature: if a group of bits should be kept in a single

102 High Level Assembler Tutorial Guide



byte, their names may be specified as a parenthesized operand sublist, and the macro will 
ensure that (if at most eight are specified) they will fit in a byte. Thus, in

BitDef a,b,c,(d,e,f,g,h,i),j,k

the bits named a,b,c will be allocated in one byte, and bits d,e,f,g,h,i will be allocated in a 
new byte because there is not enough room left for all of them in the byte containing a,b,c. 
However, bits j,k will share the same byte as d,e,f,g,h,i because there are two bits 
remaining for them.

One of the decisions influencing the design of these macros is that we wish to optimize exe
cution performance more than we wish to minimize storage utilization; because bits are 
small, wasting a few shouldn't be a major concern.

Bit-Handling Macros: Bit Definition 85

ttltDef 
.Net* ' 
U

Some error checks omitted

Used to count defined bytes 
Define bit position values 
Number of bit names provided 
Name counter 
Check If names exhausted 
Start new byte at leftmost bit 
Define a bit-flag byte 

ByteNo SetA &B1tDef_ByteNo+l Increment byte number

*L(1 )

Macro ,
BitDef
GblA &B1tDef ByteNo 
SetA 128,64,12,16,8,4,2,1

SUN SetA N'&SysLIst
W SetA 1
.NB Alf (8M gt SUN).Done
&C SetA 1

DC B'0'

ANop
SetC

&NS
&CS

&C

&B1tDef

‘&SvsL1st(SH)1
Tw fl.irn tT ').
N'&SysL1st(SM)
1
(&C+&NS 1e 9).SubT 
1
B' 0'

ByteNo SetA &B1tDef ByteNo+1 
----- (continual)

Tff
SetA
SetA
A1f
SetA
DC

Get a new bit name 
Get N-th name from argument list 

NoL Branch 1f not a sublist 
Number of subllst elements 
Initialize count of subllst Items 
Skip 1f room left In current byte 
Start a new byte 
Define a bit-flag byte 
Increment byte number

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Q? k U A

tS

Bit-Handling Macros: Bit Definition 86

.SubT ANop
&B SetC

GblA
&B EQU
«.(BitDef SB. I
&CS SetA

A1f
&c SetA

Ago
.NoL ANop

GblA
&6 EQU
&(BitDef &B. 1
.NewA ANop
W SetA

Alf
&c SetA

A1f
Ago

.Done MEnd

'&SysL1st(SM,&C$)'
&(BitDef &B. ByteNo) 
*,&L(&C)~
ByteNo) SetA &B1tDef I 
&CS+1
(&CS gt IMS).NewA
&C+1
.Subt

i(B1tDef SB. ByteNo)
*.&L(&cr
ByteNo) SetA &B1tDef_l 

BM+1
(Sfl gt BNN).Done 
&C+1
(&C le 8).NewN 
.NB

Generate subllst equates 
Extract subllst element 
Declare byte number for this bit 
Define bit via length attribute 

ByteNo Byte no. for this bit 
Step to next subllst Item 
Skip If end of subllst 
Count bits In a byte 
And go do more 11st elements 
Not a 11st
Declare byte number for this bit 
Define bit via length attribute 

ByteNo Byte no. for this bit 
Ready for next argument 
Step to next name 
Exit If names exhausted 
Count bits 1n a byte 
6et new name 1f not done 
Bit filled, start a new byte

July 1993 High Laval Assamblar Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Macro Techniques 103



Declaring Bit Names
In the BitDef macro illustrated in Figure 50, several techniques are used. The global arith
metic variable &BitDef_ByteNo is used to keep track of a "byte number” in which the various 
bits are allocated; each time a new byte is allocated, this variable is incremented by 1. The 
first SETA statement initializes the local arithmetic array variables &L(1) through &L(8) to 
values corresponding to the binary weights of the bits in a byte, in left-to-right order.

After each bit name has been extracted from the argument list, a global arithmetic variable 
&(BitDef_&B._ByteNo) is constructed (and declared) using the supplied bit name as the value 
of &B, and is assigned the value of the byte number to which that bit will be assigned. This 
has two effects:

1. a unique global variable symbol is generated for every bit name;

2. the value of that symbol identifies the byte it “belongs to” (remember that the bytes 
have no names themselves; references in actual instructions will be made using bit 
names and length attribute references).

An additional benefit of this technique is that later references to a bit can be checked 
against this global variable: if its value is zero (meaning it was declared but not initialized) 
we will know that the bit was not declared, and therefore not allocated to a byte in storage.

The other new feature introduced in this macro definition is the ability to handle sublists of 
bit names that are to be allocated within the same byte.

Macro
BitDef
Gbl A &BitDef ByteNo Used to count defined bytes

&L(1) SetA 128,64,32,16,8,4,2,1 Define bit position values
&NN SetA N'&SysList Number of bit names provided
m SetA 1 Name counter
.NB Aif (&M gt &NN).Done Check if  names exhausted
&C SetA 1 Start new byte at leftmost bit

DC B101 Define a bit-flag byte
&BitDef__ByteNo SetA &BitDef ByteNo+1 Increment byte number
.NewN ANop > Get a new bit name
&B SetC ■ &SysList(&M)' Get M-th name from argument lis t

Aif ('&B' eq ").Nun Note null argument
Aif ( 1&B1(1,1) ne '(').NoL Branch if  not a sublist

&NS SetA N'&SysList(&M) Number of sublist elements
Aif (&NS gt B).ErrS Error if  more than 8

Figure 50 (Part 1 of 2). Bit-Handling Macros: Define Bit Names

104 High Level Assembler Tutorial Guide



&CS SetA 1 Initialize count of sublist items
Aif (&C+&NS le 9).SubT Skip if  room left in current byte

&c SetA 1 Start a new byte
DC B' 0' Define a bit-flag byte

&BitDef_ByteNo SetA &BitDef ByteNo+1 Increment byte number
.SubT ANop > Generate sublist equates
&B SetC ,&Syslist(&M,&CS)' Extract sublist element

GblA &(BitDef &B. ByteNo) Declare byte number for this bit
Aif (&(BitDef &B. ByteNo) gt 0).DupDef Branch if  declared

&B EQU *,&L(&C) Define bit via length attribute
&(BitDef &B. SyteNo) SetA &BitDef ByteNo Byte no. for this bit
&CS SetA &CS+1 Step to next sublist item

Aif (&CS gt &NS).NewA Skip if  end of sublist
&C SetA &C+1 Count bits in a byte

Ago . Subt And go do more lis t  elements
.NoL ANop » Not a lis t

GblA &(BitDef &B. ByteNo) Declare byte number for this bit
Aif (&(BitDef_&B._ByteNo) gt 0).DupDef Branch if  declared

&B EQU *,&L(&C) Define bit via length attribute
&(BitDef_&B._lByteNo) SetA &BitDef_ByteNo Byte no. for this bit
.NewA ANop » Ready for next argument
&M SetA &M+1 Step to next name

Aif (&M gt &NN).Done Exit if  names exhausted
&C SetA SC+1 Count bits in a byte

Aif (&C le 8).NewN Get new name if  not done
Ago .NB Bit filled, start a new byte

.DupDef MNote
MExit

8,'BitDef: Bit name 1'&B" was previously declared.'

.ErrS MNote 8,'BitDef: Sublist Group has more than 8 members'
MExi t

.Null MNote 8,'BitDef: Missing name at argument &M'

.Done MEnd

Figure 50 (Part 2 of 2). Bit-Handling Macros: Define Bit Names

Some examples of calls to this BitOef macro are shown in the following figure; the gener
ated instructions are displayed (with " +  ” characters in the left margin) for two of the calls:

Macro Techniques 105



a4 BitDef dl,d2, d3,(d4,d5,d6,d7,d8,d9),dl0 d4 starts new byte
+ DC B'0* Define a bit-flag byte
+dl EQU *,128 Define bit via length attribute
+d2 EQU *,64 Define bit via length attribute
+d3 EQU *,32 Define bit via length attribute
+ DC B '01 Define a bit-flag byte
+d4 EQU *,128 Define bit via length attribute
+d5 EQU *,64 Define bit via length attribute
+d6 EQU *,32 Define bit via length attribute
+d7 EQU *,16 Define bit via length attribute
+d8 EQU *,8 Define bit via length attribute
+d9 EQU *»4 Define bit via length attribute
+dl0 EQU V Define bit via length attribute

a5 BitDef el»e2, e3,e4,e5,e6,e7,(e8,e9) e8 starts new byte

a6 BitDef g l,(9 2,g3,g4 ,g5 ,g6,g7 ,g8,g9) g2 starts new byte

a7 BitDef (h2,h3,h4,h5,h6,h7,h8,h9,hl0),hll error, 9 in a byte

a9 BitDef (kl,k2 ,k3,k4), (k5,k6,k7,k8),k9,kl0 two sublists
+ DC B '01 Define a bit-flag byte
+kl EQU *,128 Define bit via length attribute
+k2 EQU *,64 Define bit via length attribute
+k3 EQU *,32 Define bit via length attribute
+k4 EQU *,16 Define bit via length attribute
+k5 EQU *,8 Define bit via length attribute
+k6 EQU *,4 Define bit via length attribute
+k7 EQU *,2 Define bit via length attribute
+k8 EQU M Define bit via length attribute
+ DC B '0 ' Define a bit-flag byte
+k9 EQU *,128 Define bit via length attribute
+kl0 EQU *,64 Define bit via length attribute

al0 BitDef 11,(12,13,14),(15,16,17,18),19,110 two sublists

all BitDef ml,(m2,m3,m4), (m5,m6,m7,m8,m9),ml0 two sublists

Figure 51. Bit-Handling Macros: Examples of Defining Bit Names

We will now see how we can utilize the information created by this BitDef macro to gen
erate efficient instruction sequences to manipulate them.

106 High Level Assembler Tutorial Guide



( \ 
Bit-Handling Macros: Set Bits ON 87

• Macro BitOn optimizes generated instructions (most error checks 
omitted)

&Lab
S.L

Nacro
BitOn
SetC '&Lab' Save label

SMBN SetA e No. of distinct Byte Nos.
m SetA e Name counter
m i SetA N'&SysUst Number of names provided
.NmLp Aif (BN ge &NN).Pass2 Check 1f all names scanned
m SetA IN+1 Step to next name 

Dick off a name&B SetC 'iSysLlst(BN)'

&K

GblA
A1f
SetA

B.(B1tDef BtB. ByteNo) 
(&(B1tDe? BiBT ByteNo)
8 “ ”

Declare GBLA with Byte No. 
eq 8).UnDef Exit If undefined 
Loop through known Byte Nos

.BNLp A1f (&K ge BNBN).NewBN Not 1n list, a new Byte No
&K SetA &K+1 Search next known Byte No

*
Aif (MH(SK) nc t,(l1tDef_U._lyt«No)).INLp Check Mtch 

continued ~

July 1993 High Level Assembler Tutorial Guide HLASM
O  Copyright IBM Corporation 1993

_________________________________________________________ /

Bit-Handling Macros: Set Bits ON 88

u
.CkDup

8J
.DupNm

SetA 1 Check If name already specified
A1f (&J gt &ZBN(&K)).NmOK Branch 1f name Is unique 
A1f ('&B' eq l&(B1tDef_Nm_&BN(&K)._&J)').DupNm Duplicated 
SetA 8J+1 “ ” SearclTnext name 1n this byte
Ago .CkDup Check further for duplicates
MNote 8,'BitOn: Name "8.B" duplicated In operand list'
MEx1t

.NmOK ANop ,
&IBN(&K) SetA &IBN(&K)+1

LclC &(B1tDef Nm &BN(&K). 
&(B1tDef_Nm_&BN(&K)._&llN(&K)) SetC 

“Ago .NMLp“
.NewBN ANop ,
&NBN SetA &NBN+1
&BN(BMBN) SetA &(B1tDef &B. ByteNo)
&IBN(&NBN) SetA 1

LclC &(B1tDef Nm &BN(8MBN) 
&(B1tDef Nm &BN(&NBN). Ï) SetC 'B.B' 

“Ago .NMLp
.* ----  continued

No match, enter name 1n list 
Have matching BN, count up by X 

&IBN(&K)) Slot for bit name 
'&B' Save K'th Bit Name, this byte 

Go get next name 
New Byte No
Increment Byte No count 
Save new Byte No 
Set count of this Byte No to 1 
1) Slot for first bit name 

“ Save 1st Bit Name, this byte 
6o get next name

July 1993 High Levol Assembler Tutorial Guide 
G  Copyright IBM Corporation 1993

HLASM

Macro Techniques 107



Bit-Handling Macros: Set Bits ON 89

.Pass2 ANop Pass 2: scan Byte No list
W SetA 6 Byte No counter
.BLp Alf («* ge 8MBN) .Done Check 1f all Byte Nos done
SM SetA SM+1 Increment outer-loop counter
&X SetA &BN(£M) Get M-th Byte No
&K SetA 1 Set up Inner loop
&0p SetC *&(B1tDef Nm &X. &K).,L' '&(B1tDef__Nm_&X._BiK)' Operand
.Oplp A1f (&K ge &llN(&H))TGenOI Operand loopT chick for done
&K SetA &K+1 Step to next bit 1n this byte
&0p SetC '&0p.+L' '«.(BitDef Nm &X. &K)' Add next bit to operand

Ago .OpLp Loop (Inner) for next operand
.GenOI ANop f Generate Instruction for Byte No
&L 01 J Ê H—  1 1

Turn bits ON
&L SetC Nullify label string

Ago .BLp Loop (outer) for next Byte No
.UnDef MNote 8 ,'BUOn: Name "&B" not defined by BitDef*

MExit
.Done MEnd

July 1993 High Level Assembler Tutorial Guide 
Q  Copyright IBM Corporation 1993

HLASM

Using Declared Bit Names in a BitOn Macro
The BitOn macro accepts a list of bit names, and generates the minimum number of
instructions needed to set them on (i.e., to 1), as illustrated in Figure 52 on page 109. The
macro makes two “passes” over the supplied bit names:

• In the first pass, the bit names are read, and the global arithmetic variable 
&(BitDef_&B._&ByteNo) (where the value of &B is the bit name) is constructed and 
declared, and its value is checked. If the value is zero, we know that the name was not 
declared in a call to a BitDef macro (which would have assigned a non-zero byte 
number value to the variable).

• If the bit name was defined, the value of the constructed name is the byte number of the 
byte to which the bit was assigned. The array &BNQ is searched to see if other bits with 
the same byte number have been supplied as arguments to this BitOn macro; if not, a 
new entry is made in the &BN() array.

• A second array &IBNQ (paralleling the &BN() array) is used to count the number of 
Instances of the Byte Number that have occurred thus far.

• Finally, the bit name is saved in a created local character variable symbol 
&(BitDef_Nm_&bn._&in), where &bn is the byte number for this bit name, and &in is the 
“instance number” of this bit within this byte. (By checking the current bit name from 
the argument list against these names, the macro can also determine that a bit name 
has been “duplicated” in the argument list.)

Once all the names in the argument list have been handled, the macro uses the information
in the two arrays and the created local character variable symbols:

• In the second pass, one instruction will be generated for each distinct byte number that 
was entered in the &BN() array during the first pass, using two nested loops; the outer 
loop is executed once per byte number.

• The inner loop is executed as many times as there are instances of names belonging to 
the current bjrte number (as determined from the elements of the &IBNQ array), and con
structs the operand field in the local character variable &0p, using the created local char
acter variable symbols to retrieve the names of the bits.

108 High Level Assembler Tutorial Guide



At the end of the inner loop, the 01 instruction is generated using the created operand 
field string in &0p, and then the outer loop is repeated until the instructions for all the 
bytes containing named bit have been generated.

Macro
&Lab BitOn
&L SetC 'SiLab-1 Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&SysList Number of names provided
. NmLp Aif (&M ge &NN).Pass2 Check if  all names scanned
&M SetA &M+1 Step to next name
&B SetC •&SysList(&M)' Pick off a name

GblA &(BitDef &B. ByteNo) Declare GBLA with Byte No.
Aif (&(BitDef &B. ByteNo) eq 0).UnDef Exit if  undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN).NewBN Not in list, a new Byte No
&K SetA &K+1 Search next known Byte No

Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match
&j SetA 1 Check if  name already specified
.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if  name is unique

Aif ('8.B' eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated
&J SetA &J+1 Search next name in this byte

Ago .CkDup Check further for duplicates
.DupNm MNote 8,'BitOn: Name "& B " duplicated in operand l i s t 1

MExit
.NmOK ANop 9 No match, enter name in lis t
&IBN(&K) SetA &IBN(&K)+1 Have matching BN, count up by 1

LclC &(BitDef_Nm_&BN(&K)._HBN(WC)) Slot for bit name
&(BitDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte

Ago .NMLp Go get next name
.NewBN ANop 9 New Byte No
&NBN SetA &NBN+1 Increment Byte No count
&BN(&NBN) SetA &(BitDef &B. ByteNo) Save new Byte No
&IBN(&NBN) SetA 1 Set count of this Byte No to 1

LclC &(BitDef_Nm_&BN(&NBN) ._1) Slot for first bit name
&(BitDef_Nm_&BN(&NBN)._l) SetC '&B' Save 1st Bit Name, this byte

Ago .NMLp Go get next name
•Pass2 ANop 9 Pass 2: scan Byte No lis t
&M SetA 0 Byte No counter
.BLp Aif (&M ge &NBN).Done Check if  all Byte Nos done
&M SetA &M+1 Increment outer-loop counter
&X SetA &BN(&M) Get M-th Byte No
&K SetA 1 Set up inner loop
&0p SetC '&(Bi tDef Nm &X. &K). , L1 '&(Bi tDef_Nm__&X._&K)1 Operand
.OpLp Aif (&K ge &IBN(&M)).GenOI Operand loop, check for done
&K SetA &K+1 Step to next bit in this byte
&0p SetC • &0p. +L1 ^(BitDef^Nm^&X.^&K)' Add next bit to operand

Ago .OpLp Loop (inner) for next operand

Figure 52 (Part 1 of 2). Bit-Handling Macros: Set Bits ON

Macro Techniques 109



.GenOI ANop , Generate instruction for Byte No
&L 01 &0p Turn bits ON
&L SetC 1' Nullify label string

Ago .BLp Loop (outer) for next Byte No
.UnDef MNote 8,'BitOn: Name 1 

MExit
"& B " not defined by BitDef'

.Done MEnd

Figure 52 (Part 2 of 2). Bit-Handling Macros: Set Bits ON

Some examples of calls to the BitOn macro are illustrated in the figure below. In each case, 
the minimum number of instructions necessary to set the specified bits will be generated. 
The instructions generated by the macro are shown for two of the calls.

ABCD BitOn bl,b2
+ 01 bl,L* bl+L 1 b2 Turn bits ON

Fbc BitOn bl,c2:,bi Duplicate bit name 1b l1

Fbd BitOn jj Undecl ared bit name 'j j '

BitOn cl,<:2,c3, c4,c5,c6,ic7,c8,c9,cl0,cll,cl2,cl3,cl4,cl5,cl6,cl7

Fbg BitOn bl,cl ,dl,el,b2 ,c2,d2,c3 ,b3,m2,c4,c5,m5,d6,c6,d7,b4,c7
+Fbg 01 bl,L* bl+L1'b2+L 1b3+L1b4 Turn bits ON
+ 01 cl,L ' cl+L1'c2+L lc3+L'c4+Llc5+L,c6+L,c7 Turn bits ON
+ 01 dl,L' dl+L11 d2 Turn bits ON
+ 01 el,L* el Turn bits ON
+ 01 m2,L' m2 Turn bits ON
+ 01 m5,L‘m5 Turn bits ON
+ 01 d6,L' d6+L'' d7 Turn bits ON

DupBl BitOn bl,c2 ,c3,c4,c5 ,c6,c7,c8 ,c9,cl0,bl Duplicated name 1b l1

Figure 53. Bit-Handling Macros: Examples of Setting Bits ON

Extending this macro to create BitOff and Bitlnv macros is straightforward (we can use the 
schemes illustrated in Figure 42 on page 98 and Figure 44 on page 99), and is left as the 
traditional “exercise for the reader”.

ItO  High Level Assembler Tutorial Guide



Bit-Handling Macros: Branch if Bits ON 90

• Macro BBitOn optimizes generated instructions (most error checks 
omitted)

• Two “passes” over bit name list:

t. Scan and names, determine byte numbers
2. If multiple bytes, generate “skip” tests/branches and label

&Lab

&L
smbn

SMN
.Nmtp*

Macro
BBitOn 8ML,&T
A1f (N'&SysLIst no 2 or
SetC '&Lab'
SetA B 
SetA 8 
SetA N'&NL
Alf («M ge <MN).Pass2 
----  (continued)

Bit Name List, Branch Target 
*«ML' eg •' or 'B.T' eg ").BadArg 

Save label
No. of distinct Byte Nos.
Name counter
Number of names provided 
Check 1f all names scanned

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Bit-Handling Macros: Branch if Bits ON 91

8M
&B

&K
.BNLp
&K
«J
.CkOup 

SJ
.DupNm

SetA BW+1 Step to next name
SetC '«ML(8M)' Pick off a name
GblA &(B1tDef «.B. ByteNo) Declare GBLA with Byte No.
A1f (&(B1tDeT_8»B7_ByteNo) eg 8).UnDef Exit If undefined 
SetA 8 “ " Loop through known Byte Nos
A1f (&K ge (MBN).NewBN Not 1n 11st, a new Byte No
SetA SiK+1 Search next known Byte No
A1f (&BN(&K) ne &(B1tDef_SA. ByteNo)).BNLp Check match 
SetA 1 ~ ïheck 1f name already specified
A1f (SJ gt &IBN(&K)).NmOK Branch 1f name 1s unlgue
A1f ('&B' eg *&<B11Def_Nm_«iBN(8.K)._«J)').DupNm Duplicated 
SetA SJ+1 ~ " Search~next name 1n this byte
Ago .CkDup Check further for duplicates
MNote 8,'BBitOn: Name "&B" duplicated 1n operand Hst'
MEx1t

.NmOK ANop , No match, enter name 1n 11st
&IBN(«iK) SetA <>IBN(«iK)+l Have matching BN, count up by 1

LcIC &(B1tDef Nm S-BN(&K). &ZBN(&K>) Slot for bit name 
&(B 1 tDef Nm &BN(&K)._&lfN(£K)) SetC'^B’ Save K'th Bit Name, this byte 

""Ago .NMLp~ Go get next name
.* ----  (continued)

July 1993 High Level Assembler Tutorial Guide 
C  Copyright IBM Corporation 1993

HLASM

Macro Techniques



Bit-Handling Macros: Branch if Bits ON 92

•NewBN ANop , New Byte No
8NBN SetA BNBN+l Increment Byte No count
&BN(&NBN) SetA &(B1tDefJ.B._ByteNo) Save new Byte No 
&IBN(£NBN) SetA 1 ” Set count of this Byte No to

LclC &(B1tDef Nm &BN(&NBN).1) Slot for first bit name
&(B1tDef_NmJ,BN(&NBN).J0 3etC '&B'

Ago .NHLp
.Pass2 ANop 9
m SetA e
&$k1p SetC 'Off&SysNdx'
.BLp A1f (BN ge BN BN). Done
sn SetA BN+1
&x SetA ABN(BN)
&K SetA 1
&0p SetC '&(B1tDef Nm &X. S.I
•OpLp A1f (&K ge &IBN(IN))7g<
&K SetA &K+1
&0p SetC '&0p.+L'*&(B1tDef 1

Ago •OpLp'* — (continued)

Save 1st Bit Name, this byte 
Go get next name 
Pass 2: scan Byte No 11st 
Byte No counter 
False-branch target 
Check 1f all Byte Nos done 
Increment outer-loop counter 
Get M-th Byte No 
Set up Inner loop 

I' *&(B1tDefJlin_&X._8«K)' Operand 
Operand loopT chick for done 
Step to next bit 1n this byte 

X. BrK;' Add next bit to operand 
loop (Inner) for next operand

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Bit-Handling Macros: Branch if Bits ON 93

.GenBr ANop 9
Alf (BN eq &NBN).Last

&L IN &0p
BNO &Sk1p 

11&L SetC
Ago .BLp

.Last ANop 9
&L to &0p

BO &T
A1f (&NBN eq l).Done 

OH'O'&Sk1p DC
HExIt

.UnDef NNote
MEx1t

8, 'BBitOn: Name "SB'

.BadArg «Note 8,'BBitOn: Improperly

.Done MEnd

Generate Instruction for Byte No
Check for last test
Test 1f bits are ON
Skip 1f not all ON
Nullify label string
Loop (outer) for next Byte No
Generate last test and branch
Test 1f bits are ON
Branch 1f all ON
No skip target If just 1 byte
Skip target

' not defined by BltOef'

specified argument 11st'

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Using Declared Bit Names in a BBitOn Macro
The BBitOn macro is intended to branch to a specified label if all the specified bit names are 
“on”, and should use the minimum number of instructions; the calling syntax is the fol
lowing:

BBi tOn (Bi t_Name_List),Branch_Target

and we will accept a single non-parenthesized bit name for the first argument.

This macro will require a slightly different approach from the one used in the BitOn macro: if 
any of the bits have been allocated in different bytes, we must invert the “sense” of all gen
erated branch instructions except the last. To see why this is so, suppose we wish to 
branch to XX if both BitA and BitB are “true”, and the two bits have been allocated in the 
same byte:

112 High Level Assembler Tutorial Guide



DC B101
BitA Equ *,X,01I Allocate BitA
BitB
★

Equ *,V20' Allocate BitB

TM BitA.L'BitA+L'BitB Test BitA and BitB
BO XX Branch if  both are ON

and we see that only a single test instruction is needed. Now, suppose the two bits have 
been allocated to distinct bytes:

DC B' 01
BitA Equ *,X '01 ' Allocate BitA

DC B' ©'
BitB Equ \ X ’20' Allocate BitB

Then, to branch if both are true, we must use two test instructions:

TM BitA,L*BitA Check BitA
BNO Not True Skip-Branch if  not 1
TM BitB,L'BitB BitA is 1; check BitB
BO XX Branch to XX if  both are 1

Not_True DC OH101 Label holder for "skip" target

The implementation of the BBitOn macro uses a scheme similar to that in the BitOn macro: 
the list of bit names in the first argument will be extracted, and the same list of variables will 
be constructed. The second “pass” will need some modifications:

• If more than one pair of test and branch instructions will be generated, a “not true” 
label must be used for all branches except the last, and the label must be defined fol
lowing the final test and branch.

• The sense of all branches except the last must be “inverted” so that a branch will be 
taken to the target label only if all the bits tested have been determined to be “true”.

Macro Techniques 113



Macro
&Lab BBitOn &NL,&T Bit Name List, Branch Target

Aif (N'&SysList ne 2 or 1&NL' eq M or 1&T' eq ").BadArg
&L SetC '&Lab* Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&NL Number of names provided
.NmLp Aif (&M ge &NN).Pass2 Check if  all names scanned
&M SetA &M+1 Step to next name
&B SetC ' &NL(&M)1 Pick off a name

GblA &fBitDef &B. ByteNo) Declare GBLA with Byte No.
Aif (&(BitDef &B. ByteNo) eq 0).UnDef Exit if  undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN).NewBN Not in list, a new Byte No
&K SetA &K+1 Search next known Byte No

Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match
&J SetA 1 Check if  name already specified
.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if  name is unique

Aif ('&B' eq ,&(BitDef_Nm_&BN(&K)._&J)1).DupNm Duplicated
&J SetA &J+1 Search next name in this byte

Ago .CkDup Check further for duplicates
.DupNm MNote 8,'BBitOn: Name 1'&B' 1 duplicated in operand l i s t '

MExit
.NmOK ANop J No match, enter name in lis t
&IBN(&K) SetA &IBN(&K)+1 Have matching BN, count up by 1

LclC &(BitDef_Nm_&BN(&K)._&IBN(&K)) Slot for bit name
&(Bi tDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte

Ago .NMLp Go get next name
.NewBN ANop ) New Byte No
&NBN SetA &NBN+1 Increment Byte No count
&BN(&NBN) SetA &(BitDef &B. ByteNo) Save new Byte No
&IBN(&NBN) SetA 1 Set count of this Byte No to 1

LclC &(BitDef_Nm_&BN(&NBN) ._1) Slot for first bit name
&(BitDef_Nm_&BN(&NBN)._l) SetC '&B' Save 1st Bit Name, this byte

Ago .NMLp Go get next name

Figure 54 (Part 1 of 2). Bit-Handling Macros: Macro to Branch if Bits are ON

114 High Level Assembler Tutorial Guide



.Pass2 ANop > Pass 2: scan Byte No lis t
&M SetA 0 Byte No counter
&Ski p SetC 'Off&SysNdx' False-branch target
. BLp Aif (&M ge &NBN).Done Check if  all Byte Nos done
&M SetA &M+1 Increment outer-loop counter
&X SetA &BN(&M) Get M-th Byte No
&K SetA 1 Set up inner loop
&0p SetC ' &(BitDef Nm &X. &K).,L "&(BitDef_Nm_&X._&K)' Operand
.OpLp Aif (&K ge &IBN(&M)).GenBr Operand loop, check for done
&K SetA &K+1 Step to next bit in this byte
&0p SetC '&0p.+L''&(BitDef_Nm_&X._&K)1 Add next bit to operand

Ago • OpLp Loop (inner) for next operand
.GenBr ANop » Generate instruction for Byte No

Aif (&M eq &NBN).Last Check for last test
&L TM &0p Test if  bits are ON

BNO &Skip Skip if  not all ON
&L SetC 1 1 Nullify label string

Ago .BLp Loop (outer) for next Byte No
.Last ANop * Generate last test and branch
&L TM &0p Test if  bits are ON

BO &T Branch if  all ON
Aif (&NBN eq l).Done No skip target if  just 1 byte

&Skip DC
MExit

0H '0 1 Skip target

.UnDef MNote
MExit

8,'BBitOn: Name "& B " not defined by BitDef'

.BadArg

.Done
MNote
MEnd

8,'BBitOn: Improperly specified argument l i s t '

Figure 54 (Part 2 of 2). Bit-Handling Macros: Macro to Branch if Bits are ON

Some examples of calls to the BBitOn macro are shown in the following figure; the generated 
instructions are indicated by “ +  ” characters in the left margin:

Macro Techniques 115



TB4 BBitOn bl,TB5
+TB4 TM bl,L‘bl Test if  bits are ON
+ BO TB5 Branch if  all ON

BBitOn (c5,c4,c3,c2),tb7
+ TM c5,L1c5+L1c4+L1c3+L1c2 Test if  bits are ON
+ BO tb7 Branch if  all ON

TB6 BBitOn (bl,c2,b2,c3,b3,b4,c4.,b5,c5),tb4
+TB6 TM bl,L1bl+L1b2+L1b3+L1b4+L1b5 Test if  bits are ON
+ BNO 0ff0051 Skip if  not all ON
+ TM c2, L1c2+L1c3+L1c4+L' c5 Test if  bits are ON
+ BO tb4 Branch if  all ON
+0ff0051 DC OH10' Skip target

TB7 BBitOn (bl,b2,b3,b4,b5,b6,b7]|,tb7

BBitOn (bl,c2,b2,c3,d4,e2),tb7
+ TM bl,L'bl+L,b2 Test if  bits are ON
+ BNO OffO054 Skip if  not all ON
+ TM c2,L'c2+L,c3 Test if  bits are ON
+ BNO Off0054 Skip if  not all ON
+ TM d4,L'd4 Test if  bits are ON
+ BNO Off0054 Skip if  not all ON
+ TM e2,L'e2 Test if  bits are ON
+ BO tb7 Branch if  all ON
+Off0054 DC 0H10 • Skip target

Figure 55. Bit-Handling Macros: Examples of Calls to BBitON Macro

The extension of the BBitOn macro to a similar BBitOff macro is simple, and is also left as 
an exercise.

In summary, this final set of macros can be used to define, manipulate, and test bit flags 
with reliability and efficiency.

116 High Level Assembler Tutorial Guide



Using and Defining Data Types 94

• We're familiar with type sensitivity in higher-level languages:

Instructions generated from a statement depend on data types:

A -  ft + c

-  A, B, C might be integer, float, complex, boolean, string,...

• Most “named objects” in the assembler language have a “type 
attribute”

-  Can exploit type attribute references for type-sensitive instruction 
sequences

• Extensions to the “base language” types are possible:

-  Assign our own type attributes (avoiding conflicts with Assembler's) 
Utilize created variable symbols to retain “user type” Information

July 1993 High Level Assembler Tutorial Guide 
O  Copyright IBM Corporation 1993

HLASM

Using and Defining Data Types
One of the most useful features of the macro language is that it allows you to write macros 
whose behavior depends on the “types” of its arguments. A single macro definition can gen
erate different instruction sequences, depending on what it can determine about its argu
ments. This behavior is common in most higher-level languages; for example, the statement

A = B + C

may generate very different instructions depending on whether the variables A, B, and C 
have been declared to be integer, floating, complex, boolean, or character string {or mix
tures of those, as in PL/I). We will see that macros offer the same flexibility and power.

Macro Techniques 117



Base-Language Type Sensitivity 95

Macro Increment &V by amount &A (default 1)
&Lab XNCR &V,&A,&Reg*8 Oefault work register ■ 6
&T SetC T'&V Type attribute of 1st arg
&0p SetC ■&T' Save type of &V for mnemonic suffix
&I SetC •1* Default Increment

Alf ('&A' eq “ ).IncOK 
'&A'

Increment now set OK
&I SetC Supplied increment (N.B. Not SETA1) 

Ï.T' eq *P').P,
'&T' eq 'D* or '&T' eq 'E').T

.IncOK A1f C&T' eq T).F,(N 
C&T' eq 'H' or 

8,'INCR: Cannot usiMMote 
MEx It

b type "&T" of ' '&V''.'

.F AHOP 9 Type of &V is F 
Null operation suffix«.Op SetC

.T ANOP
&Reg,&V

Register-types D, E, H (and F) 
Fetch variable to be incremented«.Lab L&Op

A&Op &Reg,=&T.'&I' Add requested Increment
ST&Op
MEx1t

&Reg,&V Store Incremented value

.P ANOP , Type of &V is P
&Lab AP

MEnd
&v,*p'&r Increment packed variable

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Base-Language Type Sensitivity
The assembler's assignment of type attributes to most forms of declared data lets us write 
macros that utilize the type information to make decisions about the instructions to be gen
erated. For example, suppose we want to write a macro INCR to add a constant value to a 
variable, with default increment 1 if no value is specified in the macro call. Consider 
Figure 56:

Macro
&Lab INCR &V,&A,&Reg=0
&T SetC T'&V Type attribute of 1st arg
&0p SetC '&T' Save type of &V for mnemonic suffix
&I SetC '1 ' Default increment

Aif ('&A' eq " ) . IncOK Increment now set OK
&I SetC *&A * Supplied increment (N.B. Not SETA!)
.IncOK Aif ('&T' eq ' F') . F, ( 1&T* eq 'P ').P, X 

('&T' eq 'H ' or '&T' eq ' D' or '&T' eq 'E ').T
MNote
MExit

8,1 INCR: Cannot use type "& T " of

.F ANOP ) Type of &V is F
&0p SetC 1 1 Null operation suffix
.T ANOP > Register-types D, E, H (and F)
&Lab L&Op &Reg,&V Fetch variable to be incremented

A&Op &Reg,=&T.'& I' Add requested increment
ST&Op
MExit

&Reg,&V Store incremented value

• P ANOP 9 Type of &V is P
&Lab AP

MEnd
&V,=P'&I• Increment variable

Figure 56. Macro Type Sensitivity to Base Language Types

118 High Level Assembler Tutorial Guide



The macro first determines the type attribute of the variable &V, and sets the increment 
value &l. The type attribute is checked for one of the five allowed types: D, E, F, H, and P. 
Finally, an instruction sequence appopriate to the variable's type is generated to perform the 
requested incrementation. This macro “works” because we can use the type attribute infor
mation about the variable &V to create a literal of the same type.

An observation: this macro represents a form of polymorphism in the sense that the opera
tion it performs depends on the type(s) of its argument(s).

Examples Using Assembler-Assigned Types 96

INCR macro examples

Day DS N Day of the week
Rate DS F Rate of something
MyPay DS PL6 My salary
Dist DS D A distance
Wt DS E A weight
XXX
*

DS X Type not valid for INCR macro

IB INCR XXX, 2 Test with Invalid type
CC INCR Day Add 1 to Day
DD INCR Rate,-3,Reg*15 Decrease rate by 3

INCR MyPay,150.50 Add 156.56 to my salary
JJ INCR 01st,-3.16227766 Decrease distance by sqrt(16)
KK Incr Wt,-2E4,Reg*6 Decrement weight by 16 tons

The macro “works” because the generated literal has 1

July 1993 High Lovol Assembler Tutorial Guide 
©  Copyright IBM  Corporation 1993

HLASM

Some examples of calls to the INCR macro are shown in the following figure.

Day DS H Day of the week
Rate DS F Rate of something
MyPay DS PL6 My salary
Dist DS D A distance
Wt DS E A weight
XXX
*

DS X Type not valid for INCR macro

BB INCR XXX, 2 Test with invalid type
CC INCR Day Add 1 to Day
DD INCR Rate,-3,Reg=15 Decrease rate by 3

INCR MyPay,150.50 Add 150.50 to my salary
JJ INCR Dist,-3.16227766 Decrease distance by sqrt(10)
KK Incr Wt,-2E4,Reg=6 Decrement weight by 10 tons

Figure 57. Examples: Macro Type Sensitivity to Base Language Types

Type sensitivity of this form can be used in many applications, and can help simplify 
program logic and structure.

Macro Techniques 119



/ : "  \  
Problems Using Assembler-Assigned Types 97

• Assembler types might not conform directly!

Data type conversions may be required? How will we know?

Rate DS F Rate of something
MyPay DS PL6 Hy salary

ADD2 HyPay,Rate Add binary Rate to packed HyPay ??

• Assembler data types know nothing about “meaning” of variables

Day DS N Day of the week
Rate DS F Rate of something
Dist DS D A distance
Wt DS E A weight

ADD2 Rate,Day Add binary Day to Rate (??)
ADD2 D1st,WT Add floating Distance to Weight (??)

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V_______________________ ___________________________________J

Shortcomings of Assembler-Assigned Types
There are many benefits achievable from utilizing assembler type attributes. Suppose, 
however, that we wish to add two variables using a macro named ADD2 that works like the 
INCR macro just described. Two problems arise:

1. The types of the variables to be added may not “conform” by having the same
assembler-assigned type attribute. For example, let some variables be defined as in 
Figure 56 on page 118:

Rate DS F Rate of something
MyPay DS PL6 My salary

Then, if we can write a macro call like

ADD2 MyPay,Rate Add binary Rate to packed MyPay

then some additional conversion work is needed because the types of the two variables 
do not allow direct addition. Such conversions are sometimes easy to program, either 
with inline code or with a call to a conversion subroutine. However, as the number of 
allowed types grows, the number of needed conversions may grow almost as the 
square of the number of types.

2. The more serious problem is that the assembler-assigned types may conform, but the 
programmer's “intended types” may have no sensible relationship to one another! Con
sider the same set of definitions:

Day DS H Day of the week
Rate DS F Rate of something
Dist DS D A distance
Wt DS E A weight

Then, is is clear that we can write simple macros to implement these additions:

ADD2 Rate,Day Add binary Halfword to Full word
ADD2 Dist,WT Add floating Distance to Weight

120 High Level Assembler Tutorial Guide



because the data types conform: halfword and fullword binary additions and short and 
long floating additions are supported by hardware instructions.

Consider, however, what is being added: in the first example, we are adding a “day” to 
a “rate” and in the second we are adding a “distance” to a “weight”, and neither of 
these operations makes sense in the real world, even though a computer will blindly 
add the numbers representing these quantities.

Data Typing with User-Assigned Type Attributes 98

• Use third operand of EQU statement for type assignment:

symbol EQU expression,length,type

• Declaration of DATE types made by Del Date macro

Macro 
Del Date
GblC SDateTyp

Cd'
Type attr of "Date" variable

SDateTyp SetC Type attr Is lower case *d‘
SDateLen SetA 4 Dates stored 1n 4 bytes
&NV SetA N'&SysUst Number of arguments to declare
S.K SetA 6 Counter
.Test Alf (&K ge &NV).Done Check for finished
&K SetA f.K+1 Increment argument counter

DC PL&DateLen.'0' Define storage
&SysL1st(&K) EQU *-&DateLen.,&DateLen.,SDateTyp Define name, length, type 

Ago .Test 
.Done MEnd

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Data Typing with User-Assigned Type Attributes ... 99

• Declaration of PERIOD types made by DclPerd macro

Macro
DclPerd &In1t«9
GblC SPerdTyp
LcIA SPerdLen

SPerdTyp SetC C'p‘
SPerdLen SetA 3
&NV SetA N'&SysL1st
&K SetA 8
.Test A1f (&K ge &NV).Done
&K SetA 8.K+1

DC PL&PerdLen.*&In1t.
&SysL1st(&K) EQU *-&PerdLen.,&PerdLen 

Ago .Test 
.Done MEnd

Optional Initialization value 
Type attr of "Period" variable 
Length of a "Period" variable 
Type attr Is lower case 'p'
Periods stored 1n 3 bytes 
Number of arguments to declare 
Counter
Check for finished 
Increment argument counter 
Define storage

,&PerdTyp Define name, length, type

Initial value can be specified with Init= keyword

July 1993 High Laval Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Macro Techniques 121



User-Defined Type Attributes
One can obtain some (minor) relief from the limitations of the Assembler's assignment of 
type attributes by using the third operand of an EQU statement to assign user-defined type 
attributes to program objects. As a reminder, the full syntax of the EQU statement is

symbol EQU expression[,[length][,type_expression]]

The type_expression in the third operand must evaluate to an absolute quantity in the range 
from 0 to 255.

To overcome the limitations of using just assembler-assigned types, we will examine a set of 
macros that declare and operate on data items with just two specific types: calendar dates, 
and periods of elapsed time in days. With these two data types, we can perform certain 
kinds of arithmetic and comparisons:

• two dates may be subtracted to yield a period

• a period may be added or subtracted from a date to yield a date

• two periods may be added or subtracted

• dates may be compared with dates, and periods with periods 

Any other operation involving dates and periods is invalid.

First, we will examine two macros that “declare” variables of type “date” and “period”, 
(DclDate and DcIPerd, respectively). Each macro will accept a list of names to be declared 
with that type, assign “private” type attributes C d 1 and C 'p1, and allocate storage for the 
variables.

First, we will illustrate a macro DclDate to declare variables of type “date”.

Macro
DclDate
GblC &DateTyp Type attr of "Date" variable

&DateTyp SetC C d ' Type attr is lower case 'd 1
&DateLen SetA 4 Dates stored in 4 bytes
&NV SetA N'&SysList Number of arguments to declare
&K SetA 0 Counter
.Test Aif (&K ge &NV).Done Check for finished
&K SetA &K+1 Increment argument counter

DC PL&DateLen.'0 ' Define storage
&SysList(&K) EQU *-&DateLen.,&DateLen.,&DateTyp Define name, length, type

Ago • Test
.Done
*

MEnd

DclDate Birth,Hi re,Degree,Retire,Decease Declare 5 date fields
Del Date LoanStart,LoanEnd Declare 2 date fields

Figure 58. Macro to Declare “DATE” Data Type

The DclDate macro accepts a list of names, and allocates a packed decimal storage of 4 
bytes for each.

The DcIPerd macro also accepts a list of names, and allocates a packed decimal field of 3 
bytes for each; in addition, a keyword variable &lnit can be used to supply an initial value for 
all the variables declared on any one macro call.

122 High Level Assembler Tutorial Guide



Macro
DCLPERD Mnit-0 Declare a time period in days
GblC &PerdTyp Type attr of "Period" variable
LclA &PerdLen Storage length of elapsed periods

SPerdTyp SetC C 'p1 Type is lower case 1p'
&PerdLen SetA 3 Length is 3 bytes
&NV SetA N'&SysList Number of names to declare
&K SetA 0 Counter
.Test Aif (&K ge &NV).Done Check for finish
&K SetA &K+1 Increment argument count

DC PL&PerdLen.'& Init' Declare variable and initial value
&SysList(&K) EQU *-&Perdl_en.,&PerdLen.,&PerdTyp Declare name, length, type

Ago .Test Check for more arguments
.Done
*

MEnd

Aaa DclPerd Vacation,Holidays
DclPerd LoanTime
DclPerd Year,Init=365
DclPerd Week, Ini t=7

Figure 59. Macro to Declare "PERIOD" Data Type

Calculating Date Variables: CalcDat Macro 100

Define user-called CalcOat macro to calculate dates:

&AnsDate CalcDat &Argl,0p,&Arg2 Calculate a Date variable 

Allowed forms are:

Date CalcDat Date,*,Period 
Date CalcDat Date,-,Period 
Date CalcDat Period,+,Date

Date * Date + Period 
Date * Date - Period 
Date * Period + Date

• CalcDat will validate types, and call two auxiliary macros:

DATEADDP Datel,Lenl,Period,LPer,AnsDate,LenAns Date+Per -> Date 
DATESUBP Datel,Lenl,Period,LPer,AnsDate,LenAns Date-Per -> Date

-  Auxiliary service macros “understand” data representations

July 1993 High Level Assembler Tutorial Guide 
©  Copyright IBM Corporation 1993

HLASM

Macro Techniques 123



f ' 1 >
Calculating Date Variables: CalcDat Macro ... 101

• Calculate Date=Date±Period or Period+Date

Macro , Error checks omitted
&Ans CALCDAT &Argl,&0p,&Arg2 Calculate a date In &Ans

GblC &PerdTyp,&DateTyp Type attributes
&T1 SetC T'&Argl Save type of &Argl
&T2 SetC T'&Arg2 And of &Arg2

A1f C&T1&T2' ne ,&DateTyp&PerdTyp> and X
'&T1&T2' ne '&PerdTyp&DateTyp').Err4 Validate types 

A1f ('&0p’ eq '+').Add Check for add operation 
DATESUBP &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&argl D-P— >D 
MExit

.Add AIF ('ATI' eq 'fcPerdTyp').Add2 1st opnd 1s period of days 
DATEADDP &Argl,Ll&Arglt&Arg2,l,&Arg2,&Ans,L'&Argl D+P— >D 
MExit

.Add2 DATEADDP &Arg2,L,&Arg2,&Argl,L'&Argl,&Ans,L,&Arg2 P+D— >D 
MExit

.Err4 MNote 8 CALCDAT: Incorrect declaration of Date or Period?'
MEnd

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM  Corporation 1993

v----------------------------------------- ___------------------------------------------/

Having written macros to declare the two data types, we can now consider macros for doing 
calculations with them. First, we will examine a date-calculation macro CALCDAT, with the 
following syntax:

&AnsDate CalcDat &Argl,0p,&Arg2 Calculate a Date variable

where &AnsDate must have been declared a “date” variable, and the allowed operand com
binations are:

Date CalcDat Date,+,Period
Date CalcDat Period,*,Date
Date CalcDat Date,-,Period

We are now in a position to write a CalcDat macro that validates the types of all three oper
ands before setting up the actual computations which will be done by two “service” macros 
called DATEADDP {to add a period to a date) and DATESUBP (to subtract a period from a date). 
These service macros will “understand” the actual representation of “date” and “period” 
variables, and can perform the operations accordingly.

124 High Level Assembler Tutorial Guide



&Ans
&M

&T1
&T2

.Add

.Add2

.Erri

.Err2

.Err3

.Err3A

.Err4

.Err5

Macro
CALCDAT &Argl,&0p,&Arg2 Calculate a date in &Ans
SetC 'CALCDAT: ' Macro name for messages
GblC &PerdTyp,&DateTyp Type attributes
Aif (N'&SysList ne 3).Errl Check for required arguments
Aif ('&0p' ne '+ ' and ' &0p1 ne '- ').E rr2
Aif (T'&Ans ne '&DateTyp').Err3
SetC T'&Argl Save type of &Argl
SetC T'&Arg2 And of &Arg2
Aif ('&T1&T2' ne '&DateTyp&PerdTyp' and

'&T1&T2' ne '&PerdTyp&DateTyp').Err4 Validate types 
Aif ('&0p' eq '+ ') .Add Check for add operation
Aif ('&T1&T2' ne '&DateTyp&Perdtyp').Err5 Bad operand seq? 
DATESUBP &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&argl D-P->D 
MExit
AIF ( '&T1' eq '&PerdTyp').Add2 1st opnd a period of days 
DATEADDP &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&Argl D+P->D 
MExit
DATEADDP &Arg2,L'&Arg2,&Argl,L'&Argl,&Ans,L'&Arg2 P+D— >D 
MExit
MNote 8 , '&M.Incorrect number of arguments'
MExit
MNote 8, '&M. Operator "& 0p " not + or - '
MExit
Aif (T'&Ans eq '0 ').Err3a Check for omitted target 
MNote 8 , '&M.Target "&Ans" not declared by DCLDATE'
MExit
MNote 8 , '&M.Target Date variable omitted from name field ' 
MExit
MNote 8 , '&M.Incorrect declaration of Date/Period arguments' 
MExit
MNote 8 , '&M.Subtraction operands in reversed order'
MEnd

X

Figure 60. Macro to Calculate “DATE” Results

Some examples of calls to the CalcDat macro are shown in the following figure.

Hire CalcDat Degree,*,Year
Hire CalcDat Year,+,Degree
Hire CalcDat Degree,-,Year

Figure 61. Examples of Macro Calls to Calculate “DATE" Results

Macro Techniques 125



Calculating Period Variables: CalcPer Macro 102

Define user-called CalcPer macro to calculate periods 

Allowed forms are:

Period CalcPer Date,-.Date
Period CalcDat Period,+,Period
Period CalcDat Period,-,Period
Period CalcDat Period,*,Number
Period CalcDat Period,/,Number

Difference of two date variables 
Sum of two period variables 
Difference of two period variables 
Product of a period and a number 
Quotient of a period and a number

• CalcPer will validate types, and call five auxiliary macros:

PERDADDP Perl,Lenl,Per2,Len2,AnsP,LenAns Per +Per -> Per
PERDSUBP Perl,Lenl,Per2,Len2,AnsP,LenAns Per -Per -> Per
PERDMULP Perl,Lenl,Per2,Len2,AnsP,LenAns Per *Num -> Per
PERDDIVP Perl,Lenl,Per2,Len2,AnsP,LenAns Per /Num -> Per
DATESUBD Datel,Lenl,Period,LPer,AnsDate,LenAns Date-Date -> Per

July 1993 High Level Assembler Tutoriel Guide 
©  Copyright IBM Corporation 1993

HLASM

Calculating Period Variables: CalcPer Macro ... 103

Macro
&Ans CALCPER &Argl,&0p,&Arg2 

GblC &PerdTyp,&DateTyp 
&X(C'+') SetC 'ADD'
&X(C’-') SetC 'SUB'
&X(C'*') SetC 'MUL'
&X(C7') SetC 'DIV'
&Z SetC 'C"&0p'"
B.T1 SetC T'&Argl 
B.T2 SetC T'&Arg2

Type attributes 
Name for Add routineSetC 

SetC 
SetC 
SetC 
SetC 
SetC 
SetC 
A1f 
Alf
PERD&X(&Z).P Argl,L'&Ar gl,*PL3'&Arg2',3,&Ans,L'&Ans P op const 
MExit

Convert &0p char to SDT 
Type of Argl 
Type of Arg2

('&Tl&T2&0p' eq '&DateTyp&DateTyp.-').DD Chk date-date 
('&T2' ne 'N').PP Second operand nonnumeric

.PP PERD&X(&Z).P &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&Ans P op P 
MExit

.DD DATESUBD &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&Ans date-date 
MEnd

July 1993 High Level Assembler Tutorial Guide 
O  Copyright IBM Corporation 1993

HLASM

J

A second macro CalcPer to calculate periods of time is similar in concept, but somewhat 
more complex because of a greater allowed set of operand combinations:

&AnsPerd CalcPer &Argl,0p,&Arg2 Calculate a Period variable

where &AnsPerd must have been declared a “period” variable, and the allowed operand 
combinations are:

Period CalcPer Date,-.Date
Period CalcDat Period,+,Period
Peri od CalcDat Period,-,Period
Period CalcDat Period,*,Number
Period CalcDat Period,/,Number

Difference of two date variables 
Sum of two period variables 
Difference of two period variables 
Product of a period and a number 
Quotient of a period and a number

The CalcPer macro validates its arguments before generating calls to the “operational” 
macros that do the actual arithmetic.

126 High Level Assembler Tutorial Guide



Macro
&Ans CALCPER &Argl,&0p,&Arg2

GblC &PerdTyp,&DateTyp Type attributes
&M SetC 'CALCPER: ' Macro name for messages

Aif (N'&SysList ne 3).Errl Wrong number of arguments
Aif (T'&Ans ne 'p ').Err2 Invalid target
Aif (T'&Op ne 'U ' or K'&Op ne l).Err5 Invalid operator

&X(C'+'') SetC 'ADD' Name for Add routine
&X(C'-'') SetC 'SUB'
&X(C'*'') SetC 'MUL'
&X(C'/') SetC 'DIV'
&Z SetC 'C "& 0 p '" Convert &0p char to SDT
&T1 SetC T'&Argl Type of Argl
&T2 SetC T' &Arg2 Type of Arg2

Aif ('&Tl&T2&0p' eq '&DateTyp&DateTyp.-').DD Chk date-date
Aif ('&T1' ne '&PerdTyp').Err3 

('&T2' eq '&PerdTyp' and
Invalid first operand

Aif
C&Op' eq ' + ' or '&0p' eq ,- ,)).PP

Aif (1&0p1 eq '+ ' or ' &0p1 
(1&0p1 ne '/ 'J.ErrS

eq or 1 &0p1 eq '^.OpOK,

.OpOK Aif ('&T2' ne *N').Err4 Second operand nonnumeric
Third operand is a constant
PERD&X(&Z).P Argl,3,=PL3'&Arg2',3,&Ans,3 period op const
MExit

.PP PERD&X(&Z).P &Argl,3,&Arg2,3,&Ans,3 period op period 
MExit

.DD

• Errl

• Err2

.Err2A 

.Err3 

.Err4 

.Err5

DATESUBD &Argl,4,&Arg2,4,&Ans,3 Difference of 2 dates 
MExit
MNote 8,'&M.Incorrect number of arguments'
MExi t
Aif (T'&Ans ne '0').Err2A Check for omitted target 
MNote 8,'&M.Target variable omitted1 
MExi t
MNote 8 , '&M.Target M&Ans" not declared by DCLPERD'
MExi t
MNote 8 , '&M.First argument invalid or not declared by DCLPERD' 
MExit
MNote 8 , '&M.Third argument invalid or not declared by DCLPERD' 
MExit
MNote 8 , '&M.Invalid (or missing) operator "& 0p 'M 
MEnd

Figure 62. Macro to Calculate “PERIOD” Results

Year CALCPER Year,+,Year Period + Period
Year CALCPER Hi re,-,Degree Date - Date
Year CALCPER Hire,-,Hire Date - Date
Year CALCPER Year,-,Year Period - Period
Year CALCPER Year,+,10 Period + Number
Year CALCPER Year,-,10 Period - Number
Year CALCPER Year,*,10 Period * Number
Year CALCPER Year,/,10 Period / Number

Figure 63. Examples of Macro Calls to Calculate “PERIOD” Results

Macro Techniques 127



As you can see, these macros provide a fairly strong degree of type checking of their argu
ments to ensure that they conform to the sets of operations appropriate to their types. If we 
had written only machine instructions, the opportunities for operand type conflicts, or 
operator-operand conflicts, would not only have been larger, but might have gone unde
tected. In addition, once a set of useful macros has been coded, you can think in terms of 
“higher level” operations, and avoid the many details necessary to deal with the actual 
machine instructions.

128 High Level Assembler Tutorial Guide



System (&SYS) Variable Symbols
System variable symbols are a special class of variable symbols, starting with the charac
ters &SYS. They are “owned” by the assembler: they may not be declared in LCLx or GBLx 
statements, and may not be used as symbolic parameters. Their values are assigned by the 
assembler, and never by SETx statements.

High Level Assembler provides many new system variable symbols: nineteen will be new to 
users of the H-Level Assembler, and three additional symbols will be new to users of the 
DOS/VSE Assembler. Four symbols are available in all three assemblers: &SYSECT, 
&SYSLIST, &SYSNDX, and &SYSPARM. Figure 64 on page 131 summarizes their properties.

---------- ------------------------------------------------------- ----------------------\
System Variable Symbols: Overview 1

• Symbols whose value is defined by the assembler

Four available with the “original” (1966) assemblers

-  Assembler H (1970) added three

-  High Level Assembler provides 19 new symbols

• Characteristics include

-  Type (arithmetic, boolean, or character)

-  Type attributes (mostly 'U' or ' 0 ’ )

Scope (usable in macros only, or in open code and macros)

-  Variability (when and where values might change)

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V__________________________ ____________________________J

System Variable Symbols: Properties
The symbols have a variety of characterizations:

• Availability

Four symbols are available in all (designated “All”) assemblers for the 
System/360/370/390 family of processors. Three others are available in Assembler H 
(designated “AsmH”); High Level Assembler provides the richest set of twenty-six 
system variable symbols (designated “HLA”).

• Type

Most symbols have character values, and are therefore of type C: that is, they would 
normally be used in SETC statements or in similar contexts. A few, however, have arith
metic values (type A) or boolean values (type B). &SYSDATC and &SYSSTMT are nomi
nally type C, but may also be used as type A.

• Type attributes

Most system variable symbols have type attribute U (“undefined”) or 0 (“omitted”, 
usually indicating a null value); some numeric variables have type N. The exception is 
&SYSLIST: its type attribute is determined from the designated list item.

• Scope of usage

System (&SYS) Variable Symbols 129



Some symbols are usable only within macros (“local” scope), while others are usable 
both within macros and in open code (“global” scope).

• Variability

Some symbols have values that do not change as the assembly progresses. Normally, 
such values are established at the beginning of an assembly. These values are denoted 
“Fixed”. Note that all have Global scope.

Other symbols have values that may change during the assembly. These values might 
be established at the beginning of an assembly or at some point subsequent to the 
beginning, and may change depending on conditions either internal or external to the 
assembly process.

-  Variables whose values are established at the beginning of a macro expansion, and 
for this the values remain unchanged throughout the expansion, are designated 
"Constant”, even though they may have different values in a later expansion of the 
same macro, or within “inner macros” invoked by another macro. Note that all have 
local scope.

-  Variables whose values may change within a single macro expansion are desig
nated “Variable”. Currently, this designation applies only to &SYSSTMT.

These symbols have many uses: helping to control conditional assemblies, capturing envi
ronmental data for inclusion in the generated object code, providing program debugging 
data, and more.

130 High Level Assembler Tutorial Guide



Variable Symbol Avail
ability

Type Type
Attr.

Scope Varia
bility

Content and Use

&SYSASM HLA C U Global Fixed Assembler name
&SYSDATC HLA C,A N Global Fixed Assembly date, including 

century, in YYYYMMDD 
format

&SYSDATE AsmH C U Global Fixed Assembly date in MM/DD/YY 
format

&SYSECT All C U Local Constant Current control section name
&SYSIN_DSN HLA C U Local Constant Current primary input data 

set name
&SYSIN_MEMBER HLA C u,o Local Constant Current primary input 

member name
&SYSIN_VOLUME HLA C U,0 Local Constant Current primary input data 

set name volume identifier
&SYSJOB HLA C u Global Fixed Assembly job name
&SYSLIB_DSN HLA C u Local Constant Current library data set name
&SYSLIB_MEMBER HLA C u,o Local Constant Current library member name
&SYSLIB.VOLUME HLA C u,0 Local Constant Current library data set 

volume identifier
&SYSLIST All c any Local Constant Macro argument list and indi

vidual list and sublist ele
ments

&SYSLOC AsmH c u Local Constant Current location counter 
name

&SYSNDX All c N Local Constant Macro invocation count
&SYSNEST HLA A N Local Constant Nesting level of the macro 

call
&SYSOPT_DBCS HLA B N Global Fixed Setting of DBCS invocation 

parameter
&SYSOPT_OPTABLE HLA C U Global Fixed Setting of OPTABLE invoca

tion parameter
&SYSOPT_RENT HLA B N Global Fixed Setting of RENT invocation 

parameter
&SYSPARM All C U,0 Global Fixed Value provided by SYSPARM 

invocation parameter
&SYSSEQF HLA C u,o Local Constant Sequence field of current 

open code statement
&SYSSTEP HLA C U Global Fixed Assembly step name
&SYSSTMT HLA C,A N Global Variable Number of next statement to 

be processed

&SYSSTYP HLA C u,o Local Constant Current control section type

&SYSTEMJD HLA C U Global Fixed System on which assembly is 
done

&SYSTIME AsmH C U Global Fixed Assembly start time
&SYSVER HLA C U Global Fixed Assembler version

Figure 64. Properties and Uses of System Variable Symbols

System (&SYS) Variable Symbols 131



--------------------------------------------------------------------------------------
System Variable Symbols: Fixed Values 2

• &SYSASM, &SYSVER: describe the assembler itself

• &SYSTEM ID: describes the system where the assembly is done

• &SYSJ0B, &SYSSTEP: describe the assembly job

• &SYSDATC, &SYSDATE: assembly date

• &SYSTIME: assembly time (HH.MM)

• &SYSOPTJ)PTABLE: which opcode table is being used

• &SYSOPTJ)BCS, &SYSOPT_RENT: status of the DBCS and RENT options

• &SYSPARM: value of the SYSPARM option

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V.____________________________ _____________________________ J

Variable Symbols With Fixed Values During an Assembly

&SYSASM and &SYSVER
The &SYSASM symbol provides the name of the assembler. For High Level Assembler, the 
value of this variable is

HIGH LEVEL ASSEMBLER

The &SYSVER variable symbol describes the version, release, and modification of the 
assembler. A typical value of this variable might be

1. 1.0

This pair of variables could be used to provide identification within an assembled program of 
the assembler used to assemble it:

What_ASM DC C'Assembled by &SYSASM., Version &SYSVER.. 1

&SYSTEMJD
The &SYSTEMJD variable provides an identification of the operating system under which the 
current assembly is being performed. A typical value of this variable might be

MVS/ESA SP 4.2.0

This variable could be used to provide identification within an assembled program of the 
system on which it was assembled:

What_Sys DC C'Assembled on &SYSTEMJD.. '

132 High Level Assembler Tutorial Guide



&SYSJOB and &SYSSTEP
These two variables provides the name of the job and step under which the assembler is 
running.

When assembling under the CMS system, the value of the &SYSJOB variable is always 
(NOJOB); and when assembling under the CMS or VSE systems, the value of the &SYSSTEP 
variable is always (NOSTEP).

This pair of variables could be used to provide identification within an assembled program of 
the job and step used to assemble it:

Who_ASM DC C 'Assembled in Job &SYSJ0B., Step &SYSSTEP.. 1

&SYSDATC
This provides the current date, with century included, in the format YYYYMMDD. A typical value 
of this variable might be

19920626

Observe that the &SYSDATE variable provides only two digits of the year, in the form
MM/DD/YY.

&SYSDATE
&SYSDATE provides the current date, in the form MM/DD/YY. A typical value of this variable 
might be

06/26/92

&SYSTIME
The &SYSTIME variable provides the time at which the assembly started, in the form HH.MM.

This variable, along with &SYSDATE or &SYSDATC, could be used to provide identification 
within an assembled program of the date and time of assembly:

When_ASM DC C'Assembled on &SYSDATC., at &SYSTIME.. 1

&SY$OPT_OPTABLE
This variable provides the name of the current operation code table being used for this 
assembly, as established by the OPTABLE option. A typical value of this variable might be

ESA

This variable is useful for creating programs that must execute on machines with limitations 
on the set of available instructions. For macro-generated code, this variable can be used to 
determine what instructions should be generated for various operations, e.g. BALR vs. BASR.

This variable could be used to provide identification within an assembled program of the 
operation code table used to assemble it:

What_0ps DC C'Opcode table for assembly was &SYS0PT_0PTABLE.. '

System (&SYS) Variable Symbols 133



The &SYSOPT_DBCS and &SYSOPT_RENT binary variables provide the settings of the DBCS 
and RENT options, respectively. Their values can be used to control the generation of 
instructions or data, or to help control the scanning of macro arguments.

For example, character data to be included in constants can be generated with proper 
encodings if DBCS environments must be considered. Similarly, macros can use the setting 
of the RENT option to generate different instruction sequences for reentrant and 
nonreentrant situations.

The &SYSOPT_RENT variable could be used to provide conditional assembly support for dif
ferent code sequences:

&SYSOPT_DBCS and &SYSOPT_RENT

AIF
MYMAC
AGO

•Do_Rent MYMAC 
•Continue ANOP

(&SYSOPT_RENT).Do_Rent
Parml,Parm2,GENC0DE=N0RENT Generate non-RENT code 
•Continue
Parml,Parm2,GENC0DE=RENT Generate RENT code

&SYSPARM
The &SYSPARM variable symbol provides the character string provided by the programmer 
in the invoking parameter string, in the SYSPARM option:

SYSPARM(string)

This variable could be used to provide identification within an assembled program of the 
&SYSPARM value used to assemble it, as well as to control conditional assembly activities:

What_PRM DC C&&SYSPARM value was ' '&SYSPARM. " . '

•X14 AIF ('&SYSPARM' NE 'TRACE').Skip_Trace
MNOTE 'Assembly reached Sequence Symbol .X14'

•Skip_Trace ANOP

134 High Level Assembler Tutorial Guide



/---------------------------------------------------------------------------------------\
System Variable Symbols: Values Constant in Macros 3

• &SYSSEQF: sequence field of the statement calling the macro

• &SYSECT: section name active at time of call

• &SYSSTYP: section type active at time of call

• &SYSL0C: name of location counter active at time of call

• &SYSINJSN, &SYSI^MEMBER, &SYSIN_VOLUME: origins of current 
primary input file

• &SYSLIBJJSN, &SYSLIBJ1EMBER, &SYSLIB_VOLUME: origins of current 
library input file

• &SYSNEST: macro nesting level

• &SYSNDX: incremented by t at each macro call

• &SYSLIST: access to macro positional parameters and sublists

July 1993 High Level Assembler Tutorial Guide HLASM
©  Copyright IBM Corporation 1993

V__________ __________________________________________________ /

Variable Symbols With Constant Values Within a Macro

&SYSSEQF
The &SYSSEQF symbol provides the contents of the sequence field of the current input state
ment. This information can be used for debugging data. For example, suppose we have a 
macro which inserts information about the current sequence field into the object code of the 
program, and sets RO to its address (so that a debugger can tell you which statement was 
identified in some debugging activity). A macro like the following might be used:

Macro
&L DebugPtA
&L BAS 0,*+12 Addr of Sequence Field in R0

DC CL81&SYSSEQF1 
MEnd

Sequence Field info

B DebugPtA

&SYSECT
The &SYSECT symbol provides the name of the control section (CSECT, DSECT, COM, or 
RSECT) into which statements are being grouped or assembled at the time the referencing 
macro was invoked. If a macro must generate code or data in a different control section, 
this variable permits the macro to restore the name of the previous environment before 
exiting. (Note also its relation to &SYSSTYP.) An example illustrating &SYSECT and 
&SYSSTYP is shown below.

System (&SYS) Variable Symbols 135



&SYSSTYP
The &SYSSTYP symbol provides the type of the control section into which statements are 
being grouped or assembled (CSECT, DSECT, or RSECT) at the time the referencing macro 
was invoked. If a macro must generate code or data in a different control section, this vari
able permits the macro to restore the proper type of control section for the previous environ
ment, before exiting.

For example, suppose we need to generate multiple copies of a small DSECT. The macro 
shown in the following example generates the DSECT so that each generated name is pre
fixed with the characters supplied in the macro argument. The environment in which the 
macro was invoked is then restored on exit from the macro.

Macro
DSectGen &P 

&P.Sect DSect ,
&P.F1 DS D
&P.F2 OS 18F
&SYSECT &SYSSTYP 

MEnd

&SYSLOC
&SYSLOC contains the name of the current location counter, as defined either by a control 
section definition or a LOCTR statement.

As in the example of &SYSSTYP, the &SYSLOC variable can be used to capture and restore 
the current location counter name. We again suppose in this example that we are inter
rupting the statement flow to generate a small DSECT:

Generate tailored DSECT name 
DSECT Field No. 1 
DSECT Field No. 2, a save area 
Restore original section

Macro
DSectGen &P

SP.Sect DSect Generate the DSECT name
&P.F1 DS D DSECT Field No. 1
&P.F2 DS 18F DSECT Save Area
&SYSL0C LOCTR

MEnd
Restore previous location counter

&SYSIN.DSN, &SYSIN MEMBER, and &SYSIN_VOLUME
These three symbols identify the origins of the current primary input file. Their values 
change across input-file concatenations. This information can be used to determine reas
sembly requirements.

The &SYSIN DSN symbol provides the name of the current primary input (SYSIN) data set or 
file.

The &SYSIN_MEMBER symbol provides the name of the current primary input member, if 
any.

The &SYSIN VOLUME symbol provides the name of the current primary input volume. For 
example, the following SYSINFO macro will capture the name of the current input file, its 
member name, and the volume identifier. (If the input does not come from a library 
member, the member name will be replaced by the characters “(None)".)

136 High Level Assembler Tutorial Guide



&Mem
.Do_Mem

My_Job

Macro
SYSINFO
DC C'Input: &SYSIN DSN1
SetC ' &SYSIN_MEMBER
AIF C&Mem' ne 1').Do_Mem
SetC 1(None)1
DC CMember: &Mem*
DC C 'Volume: ISYSINJrtJLUME
MEnd
SYSINFO

&SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB_VOLUME
These three symbols identify the origins of the current library member. Their values change 
from member to member. This information can be used to determine reassembly require
ments.

The &SYSLIB_DSN symbol provides the name of the library data set from which each macro 
and COPY file is retrieved.

The &SYSLIB_MEMBER symbol provides the name of the library member from which this 
macro and COPY file is retrieved.

The &SYSLIB_VOLUME symbol provides the volume identifier (VOLID) of the library data set 
from which this macro and COPY file is retrieved.

For example, suppose the LIBINFO macro below is stored in a macro library accessible to 
the assembler at assembly time. (The macro includes a test for a blank member name, 
which should never occur.)

&L
Macro
LIBINFO

&L DC C 'Library Input: &SYSLIB DSN'
&Mem SetC ' &SYSLIB_MEMBER'

AIF ('AMem' ne ").Do_Mem
MNote 4,'The library member name should not be null

.Do_Mem DC CMember: &Mem'
DC C 'Volume: &SYSLIB_VOLUME'
MEnd

Then the following small test assembly would capture information into the object text of the 
generated program about the macro library.

My_Job LIBINFO 
End

&SYSNEST
The &SYSNEST arithmetic variable provides the nesting level at which the current macro 
was invoked (the outermost macro is at level 1).

For example, a macro might contain tests or MNOTE statements to indicate the nesting 
depth:

AIF (&SYSNEST LE 50).OK
MNOTE 12,'Macro nesting depth exceeds 50. Possible recursion?1 
MEXIT 

.OK ANOP

System (&SYS) Variable Symbols 137



&SYSNDX
The &SYSNDX variable provides a unique value for every macro invocation in the program.
It may be used as a suffix for symbols generated in the macro, so that they will not “collide” 
with similar symbols generated in other invocations. It is incremented by 1 for every macro 
call in the program.

For values of &SYSNDX less than or equal to 9999, the value will always be four characters 
long (padded on the left with leading zeros, if necessary).

The &SYSLIST variable can be used to access positional parameters on a macro call 
(whether named or not). &SYSLIST supports a very rich set of sublist and attribute capabili
ties, and is therefore quite different from the other system variable symbols.

&L
&L
Off&SYSNDX
Add&SYSNDX

Macro
BDisp &Target 
BAS 1,Add&SYSNDX 
DC Y(&Target-*) 
AH l.Off&SYSNDX 
BR 1 
MEnd

Branch to non-addressable target
Skip over constant
Target offset
Add offset
Branch to target

&SYSLIST

&NArgs SETA N'&SYSLIST Number of arguments
&Arg_l SETC ,&SYSLIST(1)1 Argument 1
&NArgs_l SETA N1&SYSLIST(1) Number of sub-arguments
&Arg_2 SETC *&SYSLIST(2)1 Argument 2

138 High Level Assembler Tutorial Guide



System Variable Symbols: Varying Values 4

• &SYSSTMT: next statement number to be processed

An example, using many System variable symbols:

What ASM
What~$ys
Who ISH
When_A$M
What~0ps
WhafPRM

DC CAssembled by &SYSASN., Version &SYSVER.'
DC C, on &SYSTEM ID.1
DC C, 1n Job &SYIJ0B., Step BSYSSTEP.'
DC C', on &SYSDATC., at &SYSTIME..'
DC C'Opcode table for assembly was &SYS0PT OPTASLE..' 
DC C&&SYSPARN value was "&SYSPARN.11.* "

July 1993 High Level Assembler Tutorial Guido 
O  Copyright IBM  Corporation 1993

HLASM

Variable Symbols Whose Values May Vary Anywhere

&SYSSTMT
The &SYSSTMT symbol provides the number of the next statement to be processed by the 
assembler. Debugger data that depends on the statement number can be generated with 
this variable. For example, suppose we have a macro which inserts information about the 
current statement number into the object code of the program, and sets RO to its address (so 
that a debugger can tell you which statement was identified in some debugging activity). A 
macro like the following might be used:

Macro
&L DebugPtN
&L BAS 0,*+8 Addr of Statement Number in RO

DC AL4(&SYSSTMT) 
MEnd

Statement number information

D DebugPtN

System Variable Symbols Not Available in DOS/VSE
There are three system variable symbols supported by High Level Assembler which were 
previously available in Assembler H, but which were not available in the DOS/VSE Assem
bler: &SYSDATE, &SYSTIME, and &SYSLOC. (&SYSLOC relies on the availability of the 
LOCTR statement, which was not available in assemblers prior to Assembler H.)

System (&SYS) Variable Symbols 139



Relationships to Previous System Variable Symbols
Some of the new system variable symbols introduced with High Level Assembler comple
ment and supplement the data provided by system variable available in previous assem
blers.

&SYSDATE and &SYSDATC
The variable symbol &SYSDATE is available in High Level Assembler and Assembler H, but 
not in any earlier assemblers. It provides a date in “American” format, without any century 
indication. As such, users in other countries sometimes had to extract and re-compose its 
fields to obtain a date conforming to local custom, convention, or standards. Further, the 
date could not be placed directly into fields as a sort key, because the year digits were in 
the lowest-order positions. Finally, no century was indicated.

High Level Assembler's introduction of the &SYSDATC variable solves all these problems 
very simply.

&SYSECT and &SYSSTYP
All previous assemblers have supported the &SYSECT variable to hold the name of the 
enclosing control section at the time a macro was invoked. This allows a macro which needs 
to change control sections (e.g., to declare a DSECT or to create code or data for a different 
CSECT) to resume the original control section on exit from the macro. There was, however, 
a sticky problem: there was no way for the macro to determine what type of control section 
to resume!

High Level Assembler provides the &SYSSTYP variable to rectify this omission: it provides 
the type of the control section named by &SYSECT. This permits a macro to restore the 
correct previous “control section environment” on exit.

&SYSNDX and &SYSNEST
All previous assemblers have supported the &SYSNDX variable symbol, which is incre
mented by one for every macro invocation in the program. This permits macros to generate 
unique ordinary symbols if they are needed as “local labels”. Occasionally, in recursively 
nested macro calls, the value of the &SYSNDX variable was used to determine either the 
depth of nesting, or to determine when control had returned to a particular level.

Alternatively, the programmer could define a global variable symbol of his own, and in each 
macro insert statements to increment that variable on entry and decrement it on exit. This 
technique is both clumsy (because it requires extra coding in every macro) and insecure 
(because not every macro called in a program is likely to be under the programmer's 
control, particularly IBM-supplied macros).

High Level Assembler provides the &SYSNEST variable to keep track of the level of macro
call nesting in the program. The value of &SYSNEST is incremented globally on each macro 
entry, and decremented on each exit.

&SYSTIME and the AREAD Statement
The &SYSTIME variable symbol is provided by High Level Assembler and Assembler H, but 
not by eariler assemblers. It provides the local time of the start of the assembly in HH/MM 
format. This “time stamp” may not have sufficient accuracy or resolution for some applica
tions.

High Level Assembler provides an extension to the AREAD statement that may be useful if a 
more accurate time stamp is required. The current time can be obtained either in decimal 
or binary format.

140 High Level Assembler Tutorial Guide



The macro in the following example captures the clock reading in both decimal and binary

•
formats:

Macro
&Lab AREADCLK

LCLC &D,&B
&D Aread CLOCKD

4 &B Aread CLOCKB
&Lab DC C&D' Decimal Clock

DC C&B' Bi nary Clock

t MEnd

A AREADCLK

System (&SYS) Variable Symbols 141



A


	\\OMV-TC\temp\Scan\SHARE83_4885_Assembler_as_High_level_Language.pdf
	\\OMV-TC\temp\Scan\SHARE83_4885_Assembler_as_High_level_Language2.pdf

