Pective

APPC Goes Full Duplex

Until recently, Advanced Program-to-Program Communication (APPC)
conversation flows have been limited to two-way alternating (half-duplex) protocols.
With half-duplex protocols, only one program has permission to send at any point in
the conversation. Permission to send alternates between a program and its partner
under program control. Recently, APPC has been enhanced to also allow two-way
simultaneous (full-duplex) flows on a single conversation. With full-duplex
protocols, both programs 'always have permission to send.

Half and full are not value terms, however, with full implying more or better.
Though some applications will. be much better served by full-duplex conversations,
many applications will continue to work better w1th half-duplex conversations.
This artlcle will: ' :
» Help you understand this new’full-'duplex feature
« Show you how to decxde when to use this feature in your apphcatlon

« Describe how an application would use this feature through enhanced calls pro-

posed for Common Programmmg Interface for Commumcatlons (CPI-C) Level 2. N

(continued on page 2)

APPN+ Takes Shape: A Preview
of High Performance Routing

Advanced Peer-to-Peer Networking (APPN), which first appeared in products in
1987, has been evolving steadily. In 1991, IBM began publicly referring to a
significant change in APPN which it informally called APPN+. More recently,

- IBM has begun to discuss some details of the protocols that are at the heart of this
change. Although these protocols will not be seen in products for at least a year,
understanding APPN’s direction is important to network planning today.

This article introduces these new protocols, which are together called High
Performance Routing (HPR). We discuss how HPR differs from and relates to
APPN’s current Intermediate Session Routing (ISR). We describe the four leading
types of routing protocols—virtual/explicit routing, label swapping, destination
routing, and source routing—and discuss how they relate to ISR and HPR. We also
note nine concemns about APPN and examine which ones HPR addresses.

(continued on page 12)

© 1993 by CSI. Reproduction in whole or in part without express written permission is prohibited.

Volume 14, Number 3
March, 1993
ISSN 0270-7284

The single source,

“objective monthly

newsletter covering
IBM's Systems
Network Architecture

In This Issue:

APPC Goes

Full Duplex............... 1
Finally, APPC conversa--
tions can use full duplex or
half duplex. We list
applications that would
most benefit from full
duplex as well as the
advantages of half duplex.
No special configuration is
needed to add full duplex
and the same session can
‘be used for both types of

. conversation. -

APPN+ Takes Shape:
A Preview of ‘
-High Performance
Routing
HPR promises higher
performance and better
congestion control than
APPN’s current ISR as
well as rerouting around
failures. Drop-in
~ migration is supported:
HPR nodes and ISR nodes
can coexist. HPR is not a
panacea—we discuss
several remaining con-
cerns about APPN. But its
benefits are welcome.

Architect’s Corner
Our architect is on
vacation.

©CSI SNA Perspective

(continued from page 1) - « Resource Recovery. Instead of requiring the

programmer to code logic that keeps audit trails

From the beginning, APPC was designed to .. and negotiates recovery procedures when the
reduce and simplify the programming effort : network fails in the middle of a database update,
required to perform effective program-to-program - APPC works together with the Resource
communication. Recovery system to automatically commit or

» backout the update when the network is restored.
+ Allocate. Instead of requiring the programmer

to code logic that identifies and separates differ-
ent requests from a single stream or logic that
correlates replies back to their requests, APPC
provides an Allocate call. Client programs use
Allocate to obtain a conversation with a server
program and APPC automatically activates the
necessary network resources, starts an instance
of the server program, and connects the server
program to the conversation as necessary. To
identify and separate different requests, each is
given a different conversation. To correlate
replies back to their requests, replies are
returned on the same conversation that carried
the request. - '

Send_Error. Instead of requiring the program-
mer to code logic to purge inbound records after
discovering an error that makes it impossible to
process them, APPC provides a Send_Error call.

- Send_Error informs the partner program of the
error. and automatically purges any records that
may have been sent before it found out about
the error.

Confirm. Instead of requiring the programmer
to code logic that verifies that the partmer
program has received and successfully
processed all the data sent so far, APPC
provides a Confirm call. Confirm suspends the
conversation, informs the partner program that
confirmation has been requested, and notifies
the caller of the partner’s response to the
request. The partner either responds with a
Confirmed call when all data is processed
successfully or responds with a Send_Error
when an error is detected while processing the
data. Just as it does for many other race
conditions, APPC automatically handles the
cases where an error is detected before the
confirmation notification arrives or before
confirmation is requested.

Deallocate. Instead of requiring the program-
mer to code logic that informs the partner
program that the conversation is over, APPC
provides a Deallocate call that supports both
conditional and unconditional termination.
Conditional termination includes a confirmation
request and the conversation is terminated only
- if the partner processes the data successfully
and responds with a Confirmed call. If the
partner detects an error and responds with
Send_ Error, the conversation continues so the
programs can attempt to recover. :

* Buffering. Instead of requiring the programmer
to code logic that builds application records to
utilize the network’s transmission frame effec-
tively, APPC automatically provides a buffering
service. APPC minimizes the network overhead
by packing as much data as possible into a net-
work frame and sending the frame only when it
overflows, when the program uses the Flush call |
(because a delay between Send_Data calls is
expected), or when the program is done sending’
(makes a Receive call to receive data, requests a
confirmation, or deallecates the conversation).

These powerful features are possible only because a
half-duplex conversation enables APPC to make the
following assumptions about the relationship of the

records being sent and received.

+ The next record sent depends on the successful
processing of the last record sent.

~+ The next record received depends on the suc-
cessful processing of the last record received.

» The records to be sent by the server depend on
the records last sent by the client.

« The records to be sent by the client depend on
 the records last sent by the server.

« From the beginning of the transaction to the
end, the program uses the conversation for only
one unit of work at a time.

March, 1993

SNA Perspective

©CSI

For many applications, half-duplex conversations
simplify the application logic and enable the applica-
tion to use the many powerful features provided by
APPC. For example, in a query transaction, the client
sends a request to the server and then waits for the

- server to send a reply. Likewise, in a file transfer
transaction, the client repeatedly sends records to
the server and then waits for the server to confirm
that the file was received and stored successfully.

Some more complex application designs require the
programs to send and receive data simultaneously.
APPC was enhanced to allow full-duplex conversa-
tions in order to support these applications that cannot
tolerate the half-duplex flow restrictions. Even though
these applications would not use many features pro-
vided by APPC, the full-duplex enhancement pro-
vides a common open application interface that is -
easily integrated into existing and future networks.

To understand which application designs benefit
from full-duplex conversations, consider the
following application models that need to send and.
receive data sunultaneously :

Full-Duplex Application quels- |

The three full-duplex application models are:

« Protocol transport applications
« Transaction pipeline applications

« Real-time control applications

These models and their characteristics are described
below. '

Protocol Transport Applications

* A protocol transport application enables customers

with incompatible networking protocols between
two sites to share network media by using a pre-

. ferred protocol to transport an incompatible protocol. .

For example, because the networking protocols in
Figure 1 are incompatible, they cannot share a com-
mon physical medium. The customer must pay for
two physical connections between the same two sites.

In most cases, additional investment in data commu-

_ nication hardware and software can be justified if

the configuration can be simplified to a single phys-

.ical connection. One such investment would be a
- protocol transport application, as shown in Figure 2. =

Protocol transport is a full-duplex application. As
far as the transport applications are concemed, the

. records sent are completely independent of the

records received. Above the application, a complete
protocol machine and, optionally, other protocol
stacks above it coordinate the end-to-end protocols.

The example in Figure 3 (see page 4) illustrates how

-an APPC full-duplex conversation can transport a

protocol such as X.25 or NetBIOS. The protocol -
transport application adds an envelope to a frame
and sends it within a conversation record. On the
receiving side, the application removes the envelope

Protocol Transport

March, 1993

Stel ... Site2 ...

Two Incompatible Networks ! NodeA : ! NodeY :

Site 1 Site 2 : Distributed : : Distributed :
s R ' Applications ' ' Applications H
¢ Node A H ¢« NodeY H : b I : : > — :
: | Distributed | ! ¢ | Distributed | i : rotoco : : rotoco :
f Applications | | f Applications | | E Driver 1 3 E Driver 1 ;
: Protocol :_Protocol 1_¢ Protocol : : Protocol 1 : Protocol 1!
: Driver 1 : ‘ Driver 1 : i Node B : 1 Node Z :
: ‘ v ‘ : : Protocol |1 Protocol |1
: No;e B}) = : . No;e;b r ! |Distributed]| Driver 1 : i |Distributed| Driver 1 :
' istribut : . istribu ' +{ Applica- | protocol 1 | Applica- | protocol |
| Applications | ! _ « | Applications | : H i ' : . '
i | Aee il i ppl ’ : (| ons | Transport : tions | Transport | |
: Protocol i Protocol 2_« Protocol H : Application| « Protocol 2 Application| :
: i 3 : i : ! : Prot r . :
i Drver2 i [Drverz | i Protocol Driver 2 === =L protocol Driver 2|
LA lececmccccccnccaaad H ‘ H ‘

Figure 1 Figure 2

SNA Perspective

©CSI
Protocol Transport Application

Transaction LU 6.2 full-duplex Transaction
ProgramA | Conversation =~ ProgramB -

' ! [LUe2Envelope | _.

Send 7 | [Protocol X Frame| [Receive

] ! [tUe2Envelope | :
Receive i | [Protocol X Frame | [Send

Protocol X might be NetBIOS, Async, X.25, or IP

Figure 3

before delivering the frame to the target drivers.
Although this example shows how data link control

frames can be transported through an SNA network, -

~ the same design could be used for higher level pro-
tocols. For example, a protocol transport applica-
tion could transport TCP streams.

Transaction Pipeline Applications
Transaction pipeline applications interleave requests
and replies from many different application sub-
functions onto a single full-duplex conversation.
The requests are generally unrelated messages.

Consider an in-store controller with a transaction
rate of 25 credit check transactions per second and

an average transaction response time of one second. |

On average, then, 25 different transactions are
active at the same instant. If each transaction runs
with a half-duplex protocol, the controller needs 25
simultaneous conversations and 25 copies of the
network resources (sessions, buffer pools, and so
on) to support those conversations. This membry
and execution overhead is a heavy load for a small
controller. '

Transaction pipeline applications reduce the net-
work load in this type of environment. Rather than
using a half-duplex conversation to correlate the
records exchanged to perform a transaction, the
application implements its own explicit correlation
function. When a new transaction is started; the
application assigns a correlation value (often a con-
trol block pointer) and places the value into all
records exchanged to perform that transaction.
When a record arrives, its target transaction can be
determined by the correlation value it carries.

4

By using the correlation values, the applications can
place all the traffic onto a single conversation with

'no ambiguity. No matter how many transactions run

simultaneously, all the records to be sent can be fun-
neled into a single conversation because the partner
can use the correlation values to fan them out again.

For the conversation, the records sent and received
are completely independent. The relationship
between the records is managed by the correlation
protocol machines implemented in the application.
These correlation protocol machines determine all
the end-to-end protocols. :

The scenario illustrated in Figure 4 interleaves
requests and responses from several different sub-
functions (named X, Y, and Z) onto a single full-
duplex conversation. Both transaction programs
maintain correlation tables. The individual |
requests are unrelated and considered to be
different work units.

It is possible for a transaction pipeline application to‘

be designed using half-duplex conversations.
Instead of using a single conversation for all

" requests and replies, the programs would use many

short conversations, one for each message. Each
message sent includes Allocate, Send_Data, and

" Deallocate type(FLUSH).

Transaction Pipeline

_ Transaction Full-duplex Transaction
Program A~ _Conversation Program B
Subfunction : Subfunction

x Send . 80—0 Receivg X

Z’ ﬂecetvel 0-0—0 Send z

...............

1
H
1
L
L]
L]
H ‘
‘.
.

Y H . Y
N .
' .
. 1]

!
1
.
.
.

Correlation Table Correlation Table

Transaction Transaction
Program A Requests Program B Requests
® © ORONE)
Transaction k Transaction .
Program A Responses Program B Responses
0 0 0 006006
Figure 4
March, 1993

SNA Perspective

©CSI

If granular security and accounting are required, the -

half-duplex design has the advantage of a user ID
automatically associated with each message. If par-
allel processing and horizontal growth is required,
the half-duplex design has an advantage because
each message has its own instance. of the server, the
servers run in parallel and, optionally, the servers
run on more than one computer. However, if the
network fails and a message is lost, the program will
not know unless it uses time-outs or some other
technique for sensing lost messages. Furthermore,
the order in which the messages arrive may be dif-
ferent from the order in which they were sent.

The full-duplex design described above, on the
other hand, uses just one conversation for all trans-

actions and therefore does not have the overhead of - .

allocating conversations and starting servers for
each transaction. If the network fails, both pro-
grams using the conversation are notified and the
recovery of lost messages can begin immediately.
Since the same conversation is used for all mes- -

-+ sages, messages are always sent and received in the
same order. :

However, there are disadvantages. APPC’s auto-
matic security and accounting will be performed
only when the conversation is started, not for each
of the transactions carried by the conversation.
Furthermore, all transactions go through a single -
pair of programs. For parallel processing and
horizontal growth, the logic must be added to the
application instead of using the services provided
by APPC.

Real-Time Control Appllcatlons
A real-time control application simultaneously
sends command messages and receives feedback

Imagine a manufacturing plant where a computer is

directing the actions of automated systems on the

-plant floor. The messages flowing out of the com-
-puter control the equipment: turn up the heat on
-oven number 4, start conveyer A. The messages

flowing back to the computer provide feedback: the

- oven temperature is now 1000 degrees, conveyer . A

is jammed, sensor Z has tripped. -

In some cases, the feedback has real-time require-
ments. If the computer does not respond within the
required time, a disaster may occur: an oven may

~ explode or people may be injured. The feedback

cannot be delayed while waiting for the partner

-application to grant permission to send or while

waiting for a new conversation to be allocated.

In other cases, the feedback is loosely related to-the

- commands being sent. The computer performs real-
" time trend analysis to determine what action to take

next. There is no fixed relationship between the
number of feedback messages and the number of

-.command messages.. In other words, if the applica-
tion-attempts to use half-duplex protocols, there is
'no way to determine which program should have

pemnssron to send.

An example of a real-time control applicati‘orr o

~appears in Figure 5. The fumace sends temperature o

readings to the controlling device. In response to
certain temperature thresholds, the trend analysis
function in the controller sends temperature adjust-
ment commands to the fumace

A real-time control application is another application
that lends itself to full duplex. The conversation is

. unaware of any relationship between the records

messages. The application uses informa-
tion from the feedback messages when Real-Time Control
generating new command messages, but Trend Analvei Fulldunt
. . . rend Analysis ull-duplex
there is no relationship between the Function] Conversation Furnace
number of messages sent and received. :
Applications can combine this model with : Send_: fre=d fRedueal
. ' i t
the transaction pipeline application model | || _ 2% : - -
and interleave many commands and feed- | || :
back messages on a single full-duplex Receive: mq1) iB
conversatlon :
Figure 5

March, 1993

©CSI

SNA Perspective

How can CPI-C Level 2 support full-duplex
conversations on APPC platforms that do
not implement the full-duplex conversation
option set?

When APPC supported only half-duplex conver-
sations, programmers invented clever ways to
implement full-duplex applications using two
half-duplex conversations. With this technique,
the client program allocates a conversation to
the server program and then the server allo-
cates a conversation back to the client. The
client’s conversation is only used to send data
from the client to the server and the server's
conversation is only used to send data from the
server to the client. CPI-C Level 2 will use this
techmque to emulate full-duplex conversations
on APPC platforms that do not implement the
‘option set-for full-duplex conversatlons

exchanged. Instead, the applieaﬁon contains a feed- |

back protocol machine that understands the relation-
ship between the records. o

A similar real-time control application is designed
with half-duplex conversations using one of the two
APPC features that can interrupt a program that is
sending: Send_Error and Request_To_Send. But if
a program uses Send_Error to interrupt its partner,
obtain permission to send, and send a feedback mes-
sage, the side effects may be unacceptable. First,
Send Error will suspend the caller until the partner
program makes a call that reports the condition.
Second, any data sent by the partner but not
received will be purged and must be resent by the
partner after the feedback message is received.

Instead, if a program uses Request_To_Send to ask
the partner for permission to send, no data will be
purged. However, the program is unable to send the
feedback message until three conditions are met—
the program has received the data that has already
been sent by the partner, the partner makes a call
that returns the Request_To_Send indicator, and the
partner grants permission to send.

Using full-duplex design alloWs the program to send
a feedback message without delay and without

6

purging valid data, assuming that the partner pro-
gram maintains an active Receive. This is a definite

~advantage when it is critical that the feedback

message be processed as quickly as possible.

Contrasts: Full-Duplex and
Half-Duplex Applications

Related Records

Full Duplex. With full-duplex applications, only -
the application knows how exchanged records are
related.

+ Records from different application subfunctions
are interleaved on the same conversation.

« Some subfunctxons receive records while other
subfunctions send records

.« If the conversation calls are used to synchromze
operations or purge records made obsolete by an
error detected by the application, it will
inadvertently suspend subfunctions that don’t

- need to be suspended or purge records that are
still valid. . :

« Every full-duplex application has some type of
protocol machine to manage the relationship
between records. Examples include a
communication protocol stack for protocol
transport applications, a request correlator for

" transaction pipeline applications, and a feedback
analyzer for real-time control applications.

Half Duplex. With half-duplex applications, the
application and the conversation understand how
exchanged records are related.

- The application exchanges a set of related
records and uses a conversation for only one
unit of work at a time. '

« The application never sends and receives data at
the same time.

« Since the records are all related, a conversation
call can safely suspend the caller when
synchronizing programs and can easily identify
and purge records made obsolete by an error
detected by the application.

March, 1993

SNA Perspective

©CSI

« Every half-duplex application uses the
conversation to manage the records for a given
unit of work. It does not need the extra logic of
a protocol machine to perform its task.

Given that fu]l-duplex applications require extra
logic where half-duplex applications simply utilize

- services provided by the conversation, why would a -

programmer choose to implement a full-duplex
application and take on this extra programming
burden? From the above models, you can see the
primary trade-off: network resource utilization
versus application complexity.

Fundamental Primitives
Whether you use half-duplex or full-duplex

protocols, program-to-program communication has _

several fundamental primitives:

« Identifying a transaction serviée

~ « Starting a conversation between a client and a
server, automatically starting the server if
necessary .

« .Stopping a conversation

+ Sending data related to the transaction 1
-« Receiving data related to the transaction

« Forcing data to be transmitted | |

« Reporting errors and purging data that is
invalidated by the error

* Requesting confirmation that the data sent has
been successfully processed (in other words,
synchronizing the programs) '

« Granting or rejecting confirmation requests.

Half Duplex. With half-duplex protocols, the
APPC communication subsystem can easily provide
the formats and protocols needed to implement
these primitives on behalf of the application. The
communication subsystem encodes the necessary
information, manages the protocol state, and
resolves the race conditions. The application
manages the application protocols by invoking the
appropriate verb. '

March, 1993

Given that a full-duplex conversation can be
emulated with two half-duplex conversa-
tions, why should APPC platforms be
enhanced to support the option set for
full-duplex conversations? .

The full-duplex conversation option set should
be used instead of the half-duplex accommoda-
tion provided by CPI-C because network
resources are used more. effectively. To support
two conversations, the network must activate
two sessions. Each session requires memory
“for control blocks, memory for buffer pools,
administration overhead (activation, list search-
ing, process switching, network management
session awareness), and a session address.
By using the full-duplex-conversation option set,
this overhead is cut in half. -

Furthermore, some APPC platforms, such as
1BM's Customer Information Control System. -
(CICS), cannot attach the server's conversation
back to the originating client program. These

. platforms always activate a new program. -
process when any new conversation attach
request arrives. By using the full-duplex conver-
sation option set, the client creates both the send |
and receive paths by allocating a single conver-
sation to the server. . In this case, even these
platforms can support full-duplex applications.

Half duplex has two primary disadvantages. First,

- each simultaneous transaction requires a duplicate

set of network resources. Second, while the
application is actively processing the transaction,
the network resources for that transaction are idle.

Full Duplex. With full-duplex protocols, the appli-
cation takes on an additional burden to implement
the primitives. If the primitive is used by the appli-
cation, the application must format special records
to implement the necessary protocols. Subfunction
identification, race resolution, synchronization,
coordination, and correlation must be handled by
the application. The communication subsystem is

~unable.to help because it does not understand the

relationship between the records. It cannot tell

©CSI

SNA Perspective

Will full-duplex conversations be used to
implement Multiprotocol Transport
Networking? .

IBM’s networking blueprint proposes a world
where you no longer need to buy a network
based on the application interface used by your
favorite programs. For example, if your favorite
program uses TCP sockets, it can use an SNA
network as easily as a TCP/IP network; if your
favorite program uses APPC, it can use a
TCP/IP network as easily as an SNA network.

For the networking blueprint, this capability is
based on Multiprotocol Transport Networking

become a standard. The core of this MPTN
technology is a set of carefully crafted compen-
sators—network programs that compensate for

for transport through the target network.

‘A compensator is a protocol transport applica-
tion. A compensator that transports a protocol
through an SNA network uses full-duplex APPC
conversations.

This is good news for software vendors who
want to make a profit from developing compen- -
sators. These vendors will be able to utilize an
open application interface for full-duplex APPC
conversations. They will not need to use an
undocumented interface hidden in the middle of
the SNA protocol stack.

(MPTN), which IBM has proposed to X/Opento "}

network differences and then envelop protocols -

which application subfunction detected an error,

which incoming record to purge, which application .

subfunction is waiting for confirmation, or which
application subfunction should be allowed to
continue sending while waiting for a confirmation.

The primary advantage of a full-duplex conversa-
tion is that the application can bundle independent
pieces of work onto a single set of network
resources. Even if one subfunction is idle, other
subfunctions can continue to use the resources.

Choosing: Half Duplex
or Full Duplex

‘How would you, as an applxcatxon des:gner decide -

between a half-duplex and full-duplex APPC
conversations? There are three simple guidelines:

1. If your application is similar to one of the full- -
duplex application models discussed above, use
full-duplex conversations.

~2. If you have an existing application that uses a

full-duplex service, like TCP sockets or
NetBIOS sessions, and you want to enhance that
application to use APPC, use full-duplex

_ conversations. If the application is really a half-
duplex application, you have already coded the
logic required to perform the functions built into
APPC. It will be easier to-use that same logic
with full-duplex conversations than to remove
the logic and use the features built into APPC
half-duplex conversations instead.

3. Otherwise, use half-duplex conversations and
- use the powerful APPC features your
application requires.

- Programming Considerations

CPI-C provides a consistent application program-
ming interface for applications that require pro-
gram-to-program communication. CPI-C Level 2,
currently in the proposal stage, contains enhance-
ments for full-duplex conversations. This discus-
sion of programming considerations uses calls and -
terms taken from that proposal.

Availability of Full-Duplex Support
Full-duplex conversations are not possible unless
the APPC platforms on both the client’s computer
and the server’s computer support full-duplex con-
versations. Before you start developing an applica-
tion that uses full-duplex APPC conversations,
make sure that full-duplex support is available on all
the platforms where your application will run.

March, 1993

SNA Perspective

©CSI

Full-duplex support will become available in stages.
In the first stage, CPI-C Level 2 uses two half-
duplex conversations to provide the appearance of a
full-duplex conversation interface to applications.
(See the sidebar on page 6 for more information.)
In the second stage, APPC protocols will be
enhanced (APPC option set 112) so a single
conversation supports the full-duplex conversation
interface.

SNA Perspective expects the first stage to appear in

workstation products in the second half of 1993 and

the second stage to appear in workstations,
midrange, and mainframe systems by the end of
1994. If you intend to implement full-duplex appli-
cations, now is the time to inform your APPC plat-

form vendors of your requirements and to encourage -

them to implement the APPC full-duplex option set
. of CPI-C Level 2. , .

Configuration Considerations

An APPC platform that supports full-duplex conver- -

sations requires no special configuration.to use

- them.- There are no new configuration parameters. -
on mode definitions, loglcal unit (LU) deﬁnmons
or paxtner LU definitions.

Furthermore, on such a platform, any given APPC
session can serially support full-duplex and half-
duplex conversations. A free sessioncanbe : -
‘assigned to either type of conversation.’

Full-duplex applications can thus be smoothly inte-
grated into existing networks. The only configura-
tion consideration is whether or not the session lim-
its must be increased to support the new application.
The following example describes this capability.

1. A client allocates a half-duplex conversation to
a particular target with a particular mode and
APPC assigns the conversation to a pamcular
session.

2. When that half-duplex conversation temlinates,
that session is returned to the free pool.

3. A client (the same or a different client) allocates
a full-duplex conversation to the same target
with the same mode. The conversation is
assigned to the same session.

March, 1993

| versations, or the APPC program needs a com- -

Will full-duplex conversations allow APPC
programs to communicate directly with TCP
socket programs?

You may be tempted to believe that full-duplex
APPC programs can communicate directly with
TCP socket programs. Not only is this not true,
it is also a questionable goal.

Programs in a distributed application must coop-
erate at every level. A client and server must
agree on the content of the data, the organiza-
tion of the data, the order of the data flows, and
"the state information exchanged. If the client.
- and server attempted to communicate using dif-
ferent interfaces (interfaces with different
semantics), cooperation would be impossible.

_If an APPC program attempts to communicate -
with a TCP socket program, either the TCP -

. socket program needs to include a compensator
to give it the semantic equivalent of APPC con-

pensator to give it the semantic equivalent of
TCP sockets. . In either case, the end result is
like-to-like oommumcatuon :

A better strategy is to !et the programs ’

- communicate using a standard application mter-
face for conversations, remote procedure calls,
message queues, or some other program-to-
program communication facility. Then, when
necessary, place the compensators inside the
network so that the programs are network
independent.

4. When the full-duplex conversation terminates,
the session is-again returned to the free pool.
The session can be used over and over, with
either type of conversation using it.

Multiple Threads Versus Nonblocking Calls
A full-duplex conversation would do little good if a
program is unable to send and receive at the same

time. Butif a program is suspended while waiting

for a receive operation to complete, it is unable to -

send. Likewise, if the program is suspended while

©CSI

SNA Perspective

waiting for a send operation to complete, it cannot
receive. To allow multiple operations to be out-
standing at the same time, full-duplex conversations
must support programs with multiple threads and

- provide nonblocking calls.

Some systems permit a program to have multiple
threads. Each thread executes instructions indepen-
dently and communicates with other threads using
shared memory, semaphores, queues, or other
shared objects. A thread may be suspended while
waiting for a call to return, but other threads
continue to work. ' .

Some systems permit a program to associaté a wait

object with a call. When the call cannot be complet-

ed immediately, the call is not blocked. Instead,
control is returned to the program with an indicator
that the operation is incomplete. The program con-
tinues with other work and occasionally checks the
wait object to see whether the operation has '
finished. When the operation is complete, the
program continues with the required processing.

One common design for full-duplex applications
creates two threads: one thread performs send
operations and the other thread performs receive
operations. When the receive thread is blocked
because the partner program has not yet sent data,
the send thread can continue to send data. When the

send thread is blocked because the partner program

has not received enough data to free the required
network buffers, the receive thread can continue to
receive data.

Another common design for full-duplex applications
uses nonblocking calls—each call is issued with a
wait object. When a call returns with an incomplete
indicator, the program places its wait object in a list
containing wait objects for all incomplete calls.
When there is no work to do, the program waits on
the list. When a wait object is posted, the program
performs the required processing, issues another
nonblocking call if necessary, and continues the loop.

Allocating and Accepting a Conversation

When allocating a full-duplex conversation, the
client program must specify that a full-duplex

10

conversation is required during the Allocate call.
Full-duplex conversations do not support confirma-
tion requests, so a full-duplex conversation is
always allocated with a synchronization level of
NONE.

Likewise, the server program must be defined

with matching capabilities and use an
Accept_Conversation call to accept a fu]l-duplex
conversation with a synchronization level of NONE.

Deallocating a Conversation
For normmal termination, the conversation is not
deallocated until both programs make a Deallocate

- call. When a program finishes sending data, it must

make a Deallocate call to flush the final record and
inform the partner. Then, if the program hasn’t
already received a return code indicating that the
partner has deallocated, it must continue to receive

- until it does.

Either program cé_n make the Deallocate call first

“and the programs can make the Deallocate calls one

after the other or at the same time. Also, there isno -

limit to the amount of data a program can send after

being informed that the partner has deallocated. In
these situations, you are free to make your own
rules when you design your application. -

For abnormal termination, a single Deallocate call
with a deallocate type of ABEND is enough to
deallocate the conversation. After this call, neither
program is permitted to send, a return code informs
the partner program that it cannot send, and both’
programs must continue to receive until a return
code informs them that the conversation has been
abnormally terminated. v

Sending and Receiving Data

‘After allocating a full-duplex conversation, the

client program can make Send_Data calls and
Receive calls at any time. Likewise after accepting
a full-duplex conversation, the server program can

- make Send_Data calls and Receive calls at any time.

As for half-duplex conversations, a Send_Data call
does not cause the data to be transmitted to the part-
ner immediately. To reduce overhead, the data will

March, 1993

SNA Perspective

©CSI

be buffered until the buffer overflows or the
program forces the data to be transmitted. Unlike

- half-duplex conversations, a Receive call does not
force the data to be transmitted. Furthermore, full-
duplex conversations do not support synchroniza-
tion calls that force the data to be transmitted.

In a full-duplex conversation, the program can force
the data to be transmitted by using a Flush call when
there is more data to send or by deallocating the
conversation when the program has finished sending.
Of course, to reduce overhead, the flush function
can be combined with the send function by using a
Send_Data call with a send data type of Flush.

Sending and Receiving Expedited Data
Some full-duplex applications need to send
-expedited data—urgent data that must pass all the
normal data previously sent. For example, a record
that cancels a previous request, sometimes called a
forward abort, would use this feature. Fulloduplé;x

conversations support special calls for this purpose:

Send_Expedited_Data and
Receive_Expedited_Data.

As long as the conversation has not been

deallocated, a program may send from 1 to 86 bytes ‘.

of expedited data at any time. After sending

- expedited data, the program may send more
expedited data, but the Send_Expedited_Data call
may be suspended if the partner program has not
received the previous expedited data.

When the partner program sends expedited data to
the program, status indicators on every Receive,
Send_Data, and Send_Expedited_Data call will
inform the program to receive expedited data until
the expedited data has been received. If your
program is not making one of these calls, it

cannot be informed. So if the program is designed
to use expedited data and expedited data may
arrive while the program is not making calls, a
Receive_Expedited_Data call should be kept active

March, 1993

at all times. To keep the Receive_Expedited_Data
call from interfering with normal data processing,
either it should be placed in its own thread or a non-
blocking verb should be used and the wait object

'should be checked frequently.

Conclusions

Although half-duplex APPC conversations are suit-
able for most distributed applications, full-duplex
conversations are a welcome enhancement. Full-
duplex applications can easily be implemented with
full-duplex conversations and your programs can
still benefit from the reliability and built-in services
provided by APPC conversations. CPI-C Level 2
will provide a consistent interface for full-duplex

_conversations on APPC platforms. |

- References

' Bader, L. D. and Walker II, J. Q., “Classic Client-

Server Transactions Using APPC.” IBM Personal

~ Systems Developer, Spring 1991.

Systems Application Architecture Common , _
Programming Interface Communications Reference.

- IBM Document Number SC26-4399, June 1992.

Gray, J. P., Hansen, P, Homan, P. Lemer, M. and
Pozefsky, M., “Advanced Program-to-Program
Communication in SNA.” IBM Systems Journal,
Vol. 22, No. 4, 1983. '

Systems Network Architecture LU 6.2 Reference:

~ Peer Protocols. IBM Document Number SC31-6808,

September 1990.

Systems Network Architecture Transaction
Programmer’s Reference Manual for LU Type 6.2.
IBM Document Number GC30-3084, September
1991. m o ' '

11

©CSI

SNA Perspective

(continued from page 1)

HPR Components :
HPR consists essentially of two parts—a transport

protocol called Rapid Transport Protocol (RTP) and -

a routing protocol called Automatic Network
Routing (ANR).

APPN now has two routing modes—HPR and ISR.
An illustration of the difference between HPR and
ISR is shown in Figure 6. (Technically, IBM archi-
tects might represent RTP and ANR as operating at an
enhanced layer 2 rather than at layers 3 and 4.) Both
HPR and ISR use the same APPN control point (CP),
the same topology protocols, and the same directory
services. HPR can coexist with APPN’s current ISR
-in APPN nodes and in APPN networks. The mode
being used is transparent to the upper layers.

ISR and HPR APPN Routing

End point Intermediate node -End point
7) -7 A 7
6 6 6
5 5 5
4 4 4
3 3 3
27 2 2
HHEEHEE HEE
| Datlink i { Datafink |
ISR transport ISR transport
Ll:l"!?U Session ¢
End point Intermediate node End point
7 7 ' 7
6 6 6
5 5 5
4 4 4
3 3 3
24 O IR R I
14 NERE A
i_Datalink i_Datalink i
l;f-iR .ro:xtit;%z ANR routmgm
RTP transport

LU-LUSession

ANR and RTP are components of HPR

Figure 6

12

‘Before discussing HPR in more detail, we briefly

examine four basic routing techmques and then .
review ISR. :

Four Routing Techniques

Four basic routing techniques are widely used—
virtual/explicit routes, label swapping, destination
routing, and source routing. They are of interest
here because they are used, respectively, by subarea
SNA, ISR, TCP/IP, and HPR.

Virtual Routes and Explicit Routes

Subarea SNA is often referred to as a “nonroutable”
protocol. - This is because the paths are preconfig-
ured and the primary routing decisions for each ses-
sion are made at a centralized host rather than at any
node in the network. Furthermore, the traffic
between a peripheral node and a subarea node does
not include a full network address but includes
instead a name or local address that can only be
understood by subarea nodes.

Explicit routes and virtual routes, which are prepro-
grammed into VTAM, define the possible combina-
tions of links between any two subarea nodes in the
network. For each session, VTAM assigns an
explicit route and virtual route based on the session
characteristics and requirements. The explicit route
number is used by each subarea node (VTAM or
NCP) to select the next hop from its preprogrammed
table. Virtual/explicit routing uses some qualities
of source routing at the host node and some qualites
of destination routing at the intermediate nodes.

Label Swapping

Several protocols, such as Asynchronous Transfer
Mode (ATM) and APPN’s ISR, use label swapping.
In this discussion, we will use ISR as an example.
The routing is done hop by hop across a path set up
at the beginning of the session. Each session has a
unique fully qualified procedure correlation identifier
(FQPCID). The initial connecting message (BIND)
informs each intermediate node of where next to
send each packet coming in on that session.

March, 1993

SNA Perspective

©CSI

‘Between each set of two nodes, the traffic for a par-
ticular session uses a local form session identifier
(LFSID) to distinguish it from other traffic using the
same link. Each pair of intermediate nodes assigns
an LFSID to each session using that hop along its -
path. These LFSIDs are stored in each node with
the associated FQPCID in a table. For the duration
of the session, each packet that comes in from either
direction has its LFSID stripped off and the appro-
priate LFSID for that session is added on for the
next hop.

Destination Routing

Destination routing is used by several protocols,

~ including the Internet Protocol (IP). In this discus-
sion, we will use IP as an example. In destination -
routing, the destination address is carried in the
front of the packet and is used for making routing
decisions. Each routing node that sees the packet

“has one of several ways, such as a cache, prepro- -

_grammed table, or filter, to tell it whether to leave
the packet on its current network or forward it over
one of the outbound links. :

If the packet is to be forwarded and more than one .
link could lead to the destination, the routing node
uses one of several procedures, such as Open
Shortest Path First (OSPF), to select the next hop.
OSPF and other routing topology. protocols
‘exchange routing table updates frequently across the
network. Destination routing is connectionless so
each packet could arrive at the destination by a
different path and in a different order, depending on
link availability and congestion.

Source Routing

Source routing is used by token ring bridging at
layer 2, by APPN’s HPR/ANR at layer 3, and in
some high-speed trials such as the Aurora test bed.
In source routing, the source node makes the routing
decisions. In this discussion, we will use HPR as an
example.

The source node, such as an APPN network node
server, uses one of several means, such as a cache or
a locate request, to determine the location of the tar-
get application. From its topology database, it then
calculates the optimal route to the target node for
the desired class of service. Each packet header

March, 1993

_ includes information for every hop along the route

in the header. Each intermediate node examines the
header, removes its own label, notices the next link
indicated in the header, and forwards the packet on
that link. The 1-2 byte label for each hop has local
significance only—a table at the intermediate node
indicates how to interpret the label.

If a link or node on the selected route.goes down, -
the source node obtains another route without dis-
rupting the session and sends packets with the new
route hops listed in the header.

ISR Review

ISR is a component of APPN, as shown in Figure 7,
and is itself a set of components. ISR’s functions
include error recovery, adaptive pacing, and seg-

' mentation and reassembly. ISR includes the session

connector in an intermediate node and the LU half-
session in an endpoint node, which are functionally

-analogous. ISR'’s label swapping, FQPCIDs, and

LFSIDs are discussed above under “Label

Swapping.” Although architectirally APPN is

located above the SNA path control layer, as
illustrated in Figure 7, readers should note that some

APPN Node Components

End Node Network
user operator operator
. k ;

Node operator facility

' r]

Control point

L Intermediate
Lu session =+
routing NNCP or ENCP

b [. Path control
.» I t
[Data link control

y

Token R
Ring X X.25

SoLC

Figure 7
13

©CSI ’ SNA Perspective

discussions of APPN today, particularly in internet- High_ Performance Routin g
working circles, include path control functions ,
under the term APPN. o HPR is a set of new transport/routing protocols that
. . L - can be used instead of or in conjunction with ISR.
In intemetworking terminology, ISR serves approxi- g\ indicates that products implementing HPR

mately the same functions as TCP and [P. Many should be available in twelve to eighteen months:
users think of APPN as a whole being comparable

to TCP/IP. However, in addition to ISR, the APPN Because of the ISR/HPR boundary flll'lCﬁOl’l pro-

architecture includes a topology protocol, which -~ yj4eq with HPR, a session can have some ISR seg-
serves a similar function as OSPF or Cisco’s IGRP. ments and some HPR segments. SNA Perspective
It also includes a distributed directory services COm- oynects that, for many years, all APPN implementa-
ponent, which serves a fu_nction similar to the - ’ tions with HPR will still include ISR. ’

domain name server in TCP/IP.

' o . As shown in the left of Figure 8 where two adjacent
Both subarea SNA and APPN with ISR are links of an APPN session are HPR-capable, HPR -
connection-oriented at layer 2 (data link) and every can be used for that segment while ISR is used for -
layer above it. They also perform error recovery al he other links. If only one link is HPR-capable, as

layer 2, layer 4 (transport), and layer 5 (flow con- shown in the right of the figure, APPN could still
trol). ISR also performs transport-level processing use HPR but it would offer no additional benefit. A
at each intermediate node, including segmenting/ 'node indicates its capability for HPR in its topology -

reassembly, pacing, and priority queuing. This level database update (TDU).
of robustness is appropriate for environments with

slow or unreliable physical networks. Architecturally, HPR could be added in software to

. o an existing APPN/ISR node with no hardware
However, ISR ensures a level of reliability beyond changes, although performance will increase signifi-
the needs of many environments today, given the cantly more if the hardware is also adapted.

increasing reliability of underlying physical net- _

oped to address some of these concerns. As dis- The network layer of HPR is ANR. Where HPR is
cussed below, HPR will allow intermediate APPN ;564 ANR functions are performed at every node.
nodes to operate at level 3 using a connectionless ANR provides connectionless, stateless source rout-
network layer protocol, which will decrease pro- ing. It services the outbound link based on priority
cessing overhead and storage requxrements and . and may discard incoming packets in the event of
increase performance. congestion.

Connection Networks
As a complement to ISR, IBM offers a

capability called connection networks or ' HPR Drop-In Migration with ISR

the virtual routing node. This allows .

nodes to connect to each other over a EN1 NN1 NN2 NN3 ~ NN4 NN5 NN6 EN2

LAN or an intemetwork. ‘The connection | | sg l—{ SR _{ISR| 1SR | cp L ISR 1ISR1 15
. A - HPR| |HPR| IHPR| HPR| |HPR

network feature is another way, besides

HPR, to get around ISR hop-by-hop "SR WPR SR ISR ISR ISR

routing. See the sidebar on page 16, ~ . or HPR

“Meanwhile...Connection Networks.”

Figure 8

14 March, 1993

SNA Perspective

©CSI

Readers may see ANR described elsewhere as a -
connection-oriented network protocol with several
connectionless services. Although ANR has quali-
ties of both connectionless and connection-oriented
- routing, we believe it is most appropriately charac-
terized as connectionless. -

Architecturally, ANR could run on top of a variety

of connectionless data links, such as IEEE 802.2

type 1, HDLC Point-to-Point protocol (PPP), and

frame relay, as well as over connection-oriented data
-links, such as SDLC or IEEE 802.2 type 2. SNA

Perspective expects IBM to first implement HPR on
_token ring and frame relay.

Rapid Transport Protocol

The connection-oriented transport layer of HPR is
RTP. It performs the following functions: connec-
tion awareness, reliable delivery, reordering, packet

sizing, flow control/congestion control, nondisrup-

tive route switching, and session multiplexing. RTP:

iis only used at the endpoints of an HPR session.

Adaptive Rate—-Based Flow Control
IBM has also added a new technique for flow con-

- trol and congestion control for HPR. This technique
is called adaptive rate-based (ARB) congestion con-
‘trol.. ARB is part of RTP and is only used at the.
endpoints of an RTP gonneétion. APPN’s existing
adaptive session-level pacing is still used with any
ISR links in the route.

HPR Benefits

Drop-In Migration. HPR can coexist with ISR
through drop-in migration. HPR-capable nodes can
exist in a route alongside ISR-only nodes. This may
be possible with a software-only upgrade, though
performance improvements would be limited. SNA
Perspective expects that all network nodes will
continue to include ISR and they will, in addition,
include HPR over time.

Connectionless Routing. HPR/ANR is not
connection-oriented for each hop as ISR is and the

March, 1993

" intermediate nodes only process packets up to layer

3, so less processing and storage is required at each
intermediate node. This also allows nondisruptive
adaptive rerouting in case of failed nodes or links. -

~ Improved Performance. IBM claims that HPR

can offer significant improvements over ISR with a
software-only upgrade and major improvements in
combination with hardware optimization. .

Reduced Storage. Since HPR does not need to
process each packet up to the transport level at each
intermediate node using its session connector tables
or maintain control blocks to store pacing and error-
recovery data, less storage is required at each node.
In addition, if the end node has HPR, its network
node server does not need to store as much informa-

tion to support that end node.

Congestion Control. HPR offers: co'ngestion‘”
avoidance and flow control through adaptwe
rate-based congestion control.

Still Missing

‘Multimedia. Some IBM sources and analysts are -

portraying HPR, to some degree, as a transport for

~multimedia applications. However, HPR does not -

allocate bandwidth. Therefore, while it is suited for
several client-server multimedia applications, it
does not have support for the isochronous traffic
typical of desktop videoconferencing and the real-
time video portion of some multimedia applications.
SNA Perspective expects that gigabit APPN, ”
expected in 1995, will offer this support.

Multiprotocol. IBM has also not indicated if other
protocols will be able to run directly over either
HPR as a whole or over ANR separately. IBM’s
Multiprotocol Transport Networking (MPTN),
which will be addressed in a future SNA Perspective

-article, presents a standard way to have applications

expecting one transport type to be run over another
transport type. These mixed transport types include

“TCP/IP, SNA/APPN, NetBIOS, and OSI. - IBM has

not discussed how HPR fits into the MPTN picture.
SNA Perspective believes that HPR could replace
ISR in any MPTN configuration.

15

©CSI

SNA Perspective

~Connection networks were developed for APPN in
the late 1980s for two reasons. First, it became
clear that, over high-speed reliable LAN links,
ISR's hop-by-hop robustness was unnecessary.
Second, ISR did not deal as efficiently with LAN
and internetwork topologies where a node couid
be logically adjacent to a large number of other
nodes. ISR required a large number of topology
definitions in such an environment. '

The connection networks feature allows an APPN
user to define a LAN or internetwork of any size or
complexity as a single connection network. This
connection network allows an APPN network node
to treat this connection network as a single virtual
routing node, appearing as a single APPN/ISR
hop with zero intermediate nodes. Two APPN end
nodes which are both on the same connection net-
work are treated by APPN as if they were adjacent
nodes. The actual LAN or internetwork connection
between them is transparent to APPN.

An example of a connection network is shown in
Figure 9. Because IBM has only implemented
connection networks on token ring LANs and over
data link switching, the example uses token ring
LANs. However, connection networks could be
implemented over Ethernet, X.25, frame relay,
SMDS, ATM, and other environments.

In the Meanwhile...Connection Networks

S

‘and LAN C as Connection Network 1. Any

serving the end nodes for Connnection

LAN A, LAN B, and LAN C to be adjacent to

The user in this exarﬁp!e has defined the
internetwork which consists of LAN A, LAN B,

end node can be defined for one or more
connection networks. -

The two network node servers in this example
are not connected over the internetwork but
through a separate SNA network. However,
they could be connected over the internetwork
using APPN over Data Link Switching or
APPN over sockets—both these features are
available on the IBM 6611 router and will be
available for use with the licensed network
node code. Either way, the network nodes

Network 1 must be able to communicate wifh
each other using APPN without connection
networks. ’

The user configures each APPN end node on

Connection Network 1. The user does not
configure each APPN end node to be adjacent
to every other APPN end node available on
this internetwork. (Without connection
networks, this second method is the usual
APPN procedure.)

Connection Networks

Connection Network 1

IP Router

T2.1 link .
End Node Af———="*_| Network Node A iQ——._ Network Node C End Node C
Note: Bridges and routers - One or more . T2.1 links
do not need APPN support across any network type
(could include several intermediate APPN nodes)
Figure 9
16 March, 1993

SNA Perspective

©CSI

In the Meanwhile...Connection Networks (continued)

4. When it is powered on, each APPN network
node finds every adjacent network node,
registers its topology to it, and receives infor-
mation from it. The APPN network node then
establishes a control point-control point
(CP-CP) session with one or more adjacent
network nodes. These are normal procedures
for all APPN network nodes regardless of
whether they will use ponnection networks.

5. Whenitis poWered on, each APPN end node
finds its network node server and may also
register its resources. '

6. End node A on Connection Network 1 requests
a session with a certain application, not know-
ing where that application is located. Assume
the target application is in end node C.

7. Atend node A’'s request, its network node
server, network node A, searches for the appli-
cation with the other network node servers

using the standard APPN locate procedures. a

8. Network node C responds with end node C's
“tail vectors—a list of its links including
Connection Network 1, and includes its
medium access control (MAC) and service
access point (SAP) address.

9. Network node A sees that both end nodes are
on Connection Network 1 and, weighing all
other possible links, selects the route with only
one hop—Connection Network 1.

10. Network node A tells end node A to set up its
- own session through its apparently adjacent link
to Connection Network 1. Without connection
networks, the usual APPN procedure would be
for the data to go from end node A to network
node A, then across an optimal APPN path to
network node C, and then to end node C. -

11. End node A uses the usual token ring source
route bridging discovery procedure to find the
node with the given MAC address. In this
example, the search would be broadcast
across the LAN internet and perhaps some of
the SNA network. This step would not be nec-
essary in an APPN process without connec-
tion networks.

12, End node A then sets up an APPN link with

end node C through the usual XID process
and BIND. Without connection ,
networks, network node A would only need to
send a BIND to start the session. The APPN
-end nodes believe the link is adjacent. Any
actual bridges or routers in Connection
Network 1 are transparent to APPN. The
APPN traffic is equally transparent to the
bridges and routers; it can be sent as any
other token ring traffic. '

This process seems cumbersome at first—

and it is—but as caches are developed it becomes
increasingly simplified. Also, the session setup - .
effort is more than offset by the reduced predefini- |
tions (especially if nodes are frequently added or
moved) and the subsequent efficiency. One bene-
fit of connection networks is that an intervening IP
router or router internetwork can be used

~ efficiently that could not be used by APPN. The -

internetwork can, alternatively, be used by APPN if
all the intermediate routers have APPN installed or |-

. if the routers at each end have support for APPN
- over DLS or APPN over sockets.

A caveat: it is recommended that an internetwork
defined as a connection network should have
relatively high and consistent performance charac-
teristics. Otherwise, for example, if two LANs with
a satellite link were included in a single connection
network, an APPN network node would treat the
connection network as one APPN hop and would

_choose that route, blind to the significant satellite -

delay, even if a faster multihop terrestrial APPN
route were available. m

March, 1993

17

©CSI

SNA Perspective

Current Concerns about APPN

Nine concems about APPN are listed in Table 1.

The first three are directly addressed by HPR. IBM
has stated that several others will be addressed in-

future releases of APPN that have features unrelated
to HPR and/or future releases of VTAM or
NetView.

High Network Node Storage Requirement
With ISR, each intermediate network node must
maintain a session connector control block for each
active session as well as the network topology.
HPR will include the full routing information in
each packet so these session routing tables do not
need to be stored on each intermediate node.

High Network Node Processing Overhead
- With ISR, each packet that enters a network node is

stripped of its local form session identifier (LFSID)

and given another LESID for the next hop on the
path. This involves protocol processing and a head-
er change on every packet. HPR will include the
full routing information in each packet, eliminating
some processing overhead at the intermediate nodes.
Also, intermediate nodes using HPR are not per-
forming error recovery, pacing, or segmentation/
-reassembly, which also decreases overhead.

No Dynamic Rerouting Upon Failure
ISR fixes a path for each session, using the topology
database and required class of service to calculate

the optimal route at session initiation. All traffic for -

that session runs over that path. If any link in the
path fails, the session is lost and must be restarted.
The network software may be written to hide this

reinitiation from the end user, but it can cause
significant delays.

HPR is able to discover a path failure and switch to

-a new path without losing the session. Also, some

data links like X.25 and frame relay can nondisrup-
tively reroute around failures without APPN’s
awareness.

No Adaptive Rerouting Upon Congestion
With both ISR and HPR, the path is fixed for the
duration of the session unless that path is lost
because of a link failure at some point. If a link
becomes congested, neither ISR nor HPR selects
another route. (However, if a link becomes A
extremely congested, an HPR node may interpret a -
significant delay as a failed link or node and

reroute.)

Some protocols like TCP/IP theoretically allow each
packet to proceed by the best available path, routing
around congestion, although in practice this capabil-
ity is not implemented by any TCP/IP vendor.

On the other hand, ISR and HPR both focus on con-

~gestion and flow control, although in different ways.

Rather than routing around congestion, the APPN.
approach for both modes is to prevent congestion by
controlling the traffic pace or rate.

SNA Perspective considers the debate about rerout-
ing around congestion versus preventive congestion
control to be a philosophical issue. Each side has its
advantages, but the difference has minimal impact

on users in real-world situations.

Limited multiple APPN networks (border node)
No multilink APPN transmission groups
Limited dependent LU support

Little network management by NetView
Proprietary to IBM

Future—VTAM, network node
Expected, but no formal IBM statement
Current—via VTAM, future—any NN
Current—SNMP, future—more NetView
Much more open in ‘92,

even more expected in '93

Multiple APPN
Current Concerns about APPN Networks

, ‘ APPN networks can
Concern: IBM Pfans to Address be separated into
High network node storage requirement HPR - subnetworks through
High network node processing overhead HPR the use of different
No dynamic rerouting upon failure HPR NETIDs. An APPN
No adaptive rerouting upon congestion No)

node that allows
traffic to pass
between two or more’
subnetworks is called
a border node. An
interchange node, on

Table 1
18

March, 1993

SNA Perspective

©CSI1

the other hand, is a node that allows traffic to pass
between an SNA subarea and an APPN network.
Both border node and interchange node capabilities
can be added to a network node. HPR is-completely
independent of either border node or interchange
node features.

Currently, border node is only implemented on the -
AS/400. The AS/400 border node only allows traf-
fic to pass between two adjacent subnetworks.
Today, traffic cannot pass.from one APPN subnet- -
work through an intermediate APPN subnetwork to
a third APPN subnetwork.

IBM made a statement of direction in March 1992
that a future release of VTAM will include border
node. The VTAM border node will be enhanced to
allow any number of APPN subnetworks to be tra-

-versed. SNA Perspective expects that border node -
will appear in VTAM 4.2, which we believe will be
announced sometime later in 1993 after VTAM 4.1
begins shipping in June, and could start shlppmg
early in 1994.

IBM has also indicated that border node may be
offered as an option with a future release of the
licensed APPN network node code SNA
Perspective does not expect this to be available until

after it is provided on VTAM, though it could be
available sometime in 1994.

Multilink Transmission Groups

Transmission groups in subarea SNA allow users to
combine several parallel links between two nodes in
a way that allows them to appear as one link and
adjust traffic between them in cases of congestion or
link failure.

Currently, an APPN transmission *“group™ can only

consist of one link. Until VTAM 4.1, subarea SNA
links over token ring and frame relay were similarly
limited.to one link per group; only SDLC links
could be combined. IBM has indicated, though not
formally, that it intends to support multilink trans-
mission groups for APPN in a future release of
VTAM. SNA Perspective expects that multilink
APPN transmission groups will also be included in
a future release of the licensed network node code

* but probably not until 1995. :

March, 1993

Because of certain efficiencies of subarea SNA
transmission groups combined with user frustration
with the current limitations of APPN transmission
groups, IBM made a statement of direction in
September 1992 that a future release of VTAM will
support APPN sessions running over subarea SNA

_links using subarea virtual routes and explicit

routes.

HPR does not directly address the transmission
group issue. However, HPR allows adaptive rerout-
ing on link failure, which is an altemate way of pro-
viding one of the benefits of multilink transmission
groups—switching to an alternate link. On the other

hand, as discussed above, initial HPR products are
-not expected to provide adaptive rerouting for con- -

gestion control. Multilink APPN transmission
groups will benefit users who would like this feature
because it will allow them to balance the load across
multiple links and permit addition of incremental

bandwidth.

- Dependent LU Support
; Support for existing dependent LU devices and

applications is essential for subarea SNA users
migrating to APPN. The November 1992 issue of

- SNA Perspective discussed in depth several current
. and forthcoming capabilities from IBM and other

vendors that address this issue including the
Dependent LU Server/Requester and various encap- -
sulation techniques. Dependent LU support is not

directly affected by HPR. APPN nodes with either

HPR or ISR will be equally able to support depen--
dent LU traffic. This support can be either as access
nodes (at the periphery of the APPN network) with
one of these capabilities or as intermediate nodes
without any additional capability.

Little Network Management by NetView

The APPN management services architecture, based
on the OSI Common Management Information -
Protocol (CMIP), is quite impressive. But few of
these architected APPN support features have been
implemented in NetView. APPN network manage-
ment issues were discussed in the February and
April 1992 issues. of SNA Perspective. Because of
both this limitation and the popularity of the Simple
Network Management Protocol (SNMP) in the
intemetworking community, IBM is:including an.

19

©CSI

SNA Perspective

SNMP agent in the first release of the licensed
APPN network node. The SNMP support is
provided along with the SNA Management Services.
(SNA/MS) capabilities present in all current IBM

APPN offerings, which allow some management by

NetView. APPN network management is not
“directly affected by the presence or absence of HPR.
However, NetView will need some additional code

to manage HPR.

Proprietary to IBM

IBM made several meaningful moves to open APPN
during 1992, including licensing the network node
source code and agreeing to publish the network
node specifications, both of which should be avail-
able in' March 1993. IBM is also moving tc involve
other vendors in APPN implementer workshops
which will also serve as forums for feedback on
future APPN developments.

However, even with this significant openness,
APPN is still in several ways a proprietary proto-
col—IBM owns it, defends its patents, controls its
development, and licenses its use. This is not to say
that proprietary is by definition “bad” or that a pro-
prietary product cannot succeed in the market.
Novell’s very successful NetWare is proprietary, as
is Cisco’s very successful IGRP. A significant
difference between these two and APPN is that
NetWare and IGRP were early entrants in their
respective markets when there was no formal and
formidable competition.

APPN, on the other hand, is breaking onto the inter-
networking scene (six years after its first implemen-
tation) in the face of TCP/IP, which has a major
market share and is significantly standardized, very
inexpensive, and widely implemented. A large per-
centage of the networking workforce, and students
too, are experienced in using TCP/IP, while subarea
SNA experience is less common and APPN
expertise is almost nonexistent.

These are significant obstacles for APPN to over-
come even with its many technical advantages. All
these topics will be addressed in a future issue of
SNA Perspective which will compare APPN and

“TCP/IP as altemative migration paths for current -

subarea SNA users.

Conclusions

APPN continues to evolve and HPR is one piece of
that evolution. HPR appears to provide several L
advantages over ISR, particularly in intermediate
node performance and storage. It also seems more
interoperable with other architectures such as
TCP/IP. ’

The advantages of HPR are probably a least a year
to eighteen months away for product implementa-

tions, although beta tests might start before the end

of 1993. All current APPN implementations,
including LEN nodes, are based on the ISR technol-
ogy. ISR is part of the network node licensed code - -
and is documented in the network node specifica-

. tion, both of which are scheduled to be available in

March. SNA Perspective expects that the next
release of the APPN licensed network node code
will include HPR and will probably ship by the first
quarter of 1994.

Until HPR is available, APPN/ISR users with LANs
and internetworks can take advantage of the capabil-
ities of connection networks to improve perfor-
mance and allow a degree of alternate routing.

HPR is not the final word in APPN routing. IBM
has also been discussing gigabit APPN, a form of
APPN that is being optimized for the emerging very
high-speed cell networks. It is expected to be com-

- patible with ATM. Gigabit APPN is expected to be

formally announced in 1994 and available in 1995. &

Copyright © 1993 CSI - Communication Solutions, Incorporated, all rights reserved. Reproduction is prohibited. « Subscription rates:

U.S. - one year $350, two years $520. Intemational - one year $385, two years $590 « SNA Perspective is published monthly by

CSI1, 2071 Hamilton Avenue, San Jose, CA 95125 « Telephone (408) 371-5790 - Fax (408) 371-5779 « Managing Editor: Louise Hemdon Wells
« Associate Editors: Vincent Busam, Basil Treppa « Marketing/Development: Alisson Walsh « Circulation Coordinator: Cheryl Roberts

« Contributors: Lance D. Bader, Lauren L. Bader, Marcia Peters, IBM Corporation « Typesetting and illustration: Aaron Lyon at dSIGN

« The information and opinions within are based on the best information available, but completeness and accuracy cannot be guaranteed.

20

March, 1993

