
--------- - ------- - ----- -- ----------_.-
®

""J,C", 'r'
NetView™

Customizati9lJ,:Uslng Assembler

Release 3

File Number
. ,~/4~Qf~~';7:~'-

. Program. Numbers
5665-362 (MVS/XA)
'5664-204 (V~)

SC31-6078-1

Second Edition (August 1989)

This edition applies to Release 3 of the NetView™ licensed program, which runs under the following oper­
ating systems:

MVS/XA (NetView program number 5665-362)
MVS/ESA (NetView program number 5665-362) in compatibility mode
VM (NetView program number 5664-204).

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the Agreement for IBM Licensed Programs. Changes are made periodically to the
information herein; before you use this document in connection with the operation of IBM systems, consult
the latest IBM System/370, 30XX, 4300, and 9370 Processors Bibliography, GC20-0001, for the editions that
are applicable and current.

IBM may have patents or pending patent applications covering subject matter in this document. The fur­
nishing of this document does not give you any license to use these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, International Business Machines Corpo­
ration, Purchase, New York, 10577.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to state
or imply that only IBM's program or other product may be used.

This book is not intended for production use and is furnished as is. IBM assumes no responsibility for the
use of the functions as described in this book in any production manner.

Note to U.S. Government Users-Documentation related to restricted rights-Use, duplication, or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this docu~ent. If the form has been removed, you may
address comments to IBM Corporation, Department E15, P.O. Box 12195, Research Triangle Park, North
Carolina 27709, U.S.A. IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

NetView is a trademark of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1989
All Rights Reserved.

Contents

© Copyright IBM Corp. 1989

Chapter 1. Assembler Application Program Interface (API) 3
Why Write in Assembler Language? : 3
Overview of the Chapters 4
Preparing Your Code for Use 4

Chapter 2. Designing Your Assembler Module 7
Task Structure .. 7
General Coding Guidelines 8
Control Blocks .. 10
Basic Module Services 13
Additional Module Services 23
DST (Data Service Task) Unique Services 28

Chapter 3. Writing User Exit Routines 31
Overview of User Exit Routines 31
DeSigning and Coding a User Exit Routine 33
Installing a User Exit Routine ' 48
Template for a User Exit Routine 48

Chapter 4. Writing Command Processors in Assembler Language 55
Overview of Command Processors 55
DeSigning and Coding a Command Processor 56
Automation Task Command Processors 71
Installing a Command Processor 71
Template for a Command Processor 71

Chapter 5. Writing User Subtasks 79
Types of User Subtasks 79
Optional Subtask Processing 79
Data Services Task (DST) 86
Template for an Optional Task 95

Chapter 6. Writing REXX User Functions 109
Introduction ... 109
Overview of User-Written Functions 109

Chapter 7. Control Block Reference 119
ART - Authorization and Routing Table 120
BUFHDR"':' Buffer Header 121
CBH - Control Block Header
CWB - Command Work Block

126
127

DSB - Data Service Block 128
DSRB - Data Services Request Block 129
ELB - External Logging Block 131
Focal Point Transfer RU Header 132
IFR - Internal Function Request 133
LOGOS - NetView Log DSECT 141
MVT - Main Vector Table 142
OIT - Operator 10 Table 145
PDB - Parse Descriptor Block 146
SCE - System Command Entry 147
SCT - System Command Table 148

Contents iii

SNT - Span Name Table 149
SVL - Service Routine Vector List 150
SWB - Service Work Block 151
TIB - Task Information Block 152
TVB - Task Vector Block 154
USE - User Exit Parameter List 157

Chapter 8. Macro Reference 161
Notational Conventions 161
DSICBS - Control Block Services 162
DSICES - Command Entry Services 163
DSIDATIM - Date and Time 165
DSIDEL - Delete User-Defined Module 166
DSIDKS - Disk Services 167
DSIFIND - Find Long Running Command Storage 169
DSIFRE - Free Storage 170
DSIGET - Get Storage 171
DSIKVS - Keyword/Value Services 173
DSILCS - Obtain/Release Control Blocks 174
DSILOD - Load User-Defined Module 177
DSIMBS - Message Buffer Services 178
DSIMDS - Message Definition Services 181
DSIMQS - Message Queuing Services 185
DSIOIS - Operator Identification Services 188
DSIPAS - Parameter/Alias Services 189
DSIPOP - Remove Long Running Command 190
DSIPOS - ECB Post Services 192
DSIPRS - Parsing Services 193
DSIPSS - Presentation Services 196
DSIPUSH - Establish Long Running Command .. 202
DSIRDS - Resource Definition Services 206
DSIRXCOM - Access REXX Variables 207
DSIRXEBS - Get An EVALBLOK 208
DSISSS - Search Span Name Table Services '" 209
DSISYS - Operating System Indicator 211
DSIWAT - ECB Wait Services 212
DSIWCS - Write Console Services 213
DSIWLS - Write Log Services 214
DSIZCSMS - CNM Data Services 217
DSIZVSMS - VSAM Data Services 221

Appendix A. Assembler Samples 225
Assembler Samples Table 226
Assembler Samples Description 227
Assembler Coded Samples 229

Glossary ... 247

Bibliography .. 269
NetView Publications '. 269
Other Network Program Products Publications 270
Related Publications 271

Index 273

iv NetView Customization: Assembler

Figures

1. Overview of the Control Blocks for User-Written Programming 12
2. Buffer Header (BUFHDR) 14
3. Using Macros to Communicate from an OST 17
4. Example of Title-Line Output 19
5. Table Field Relationships 27
6. Template for a User Exit Routine 49
7. Example of Control Blocks Used by Command Processors 59
8. Automation Internal Function Request 60
9. Sample Code to Access a Command Buffer 61

10. Template for a Command Processor 72
11. Subtask Organization 80
12. Structure of a Data Services Command Processor 93
13. Example of Program Design for Data Services Requests 94
14. Template for an Optional Task 96
15. Example of a Function Package Directory 114
16. Buffer Header (BUFHDR) 121
17. Span Name Table (SNT) 209
18. Example of a Language Statement 251
19. NCP Examples 251
20. VT AM Examples 252
21. Links and Path Controls 256

Tables

1. Processing Environment of User-Written Programming 8
2. User Exit Envi ronments 32
3. Message Processing Triplets. 83
4. External Function Parameter List 110
5. Format of the Argument List 110
6. Format of the Evaluation Block 111
7. Format of the Function Package Directory Header 112
8. Format of Entries in Function Package Directory 112
9. Control Block Fields 122

10. Values for HDRMTYPE fields '" .. 123

© Copyright IBM Corp. 1989 Figures V

vi NetView Customization: Assembler

About This Book

NetView Customization: Using Assembler describes the ways system programmers
can tailor or supplement the NetView™ program, to satisfy unique requirements or
operating procedures.

This book discusses the uses and advantages of user-written programs (exit rou­
tines, command processors, and subtasks). It provides instructions that guide the
programmer through the mechanics of designing, writing, and installing these pro­
grams.

This book contains product-sensitive programming interfaces provided by NetView.
Installation exits and other product-sensitive interfaces are provided to allow the
customer installation to perform tasks such as product tailoring, monitoring, mod­
ification, or diagnosis. They are dependent on the detailed design or implementa­
tion of the product. Such interfaces should be used only for these specialized
purposes. Because of their dependencies on detailed design and implementation,
it is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

Who Should Use This Book
This book is intended for experienced system programmers who are knowledge­
able in assembler language. These users are presumed to be familiar with the
functions NetView provides automatically.

Secondary users include operators, network planners, designers, and systems
analysts. Secondary users may also include IBM marketing representatives and
instructors.

What Is New for NetView Release 3
Although the assembler-language programming interface described in this book is
not new for NetView Release 3, this book documents the interface in a more
useable manner. In addition, the following list of changes and additions have been
made in assembler-language support provided by NetView Release 3:

• Templates are provided in the NetView sample library for a user exit routine, a
command processor, and an optional subtask. See "Template for a User Exit
Routine" on page 48, "Template for a Command Processor" on page 71, and
"Template for an Optional Task" on page 95.

• Several sample command processors and user exit routines are provided in
the NetView sample library. See Appendix A on page 225.

• In order to avoid possible conflicts with user-written exit routines, null exit rou­
tines for OSIEX02A and OSIEX16 are no longer provided.

TM NetView is a trademark of International Business Machines Corporation.

© Copyright IBM Corp. 1989 About This Book vii

• Information is provided in Chapter 6 on writing REXX user functions, and the
DSIRXEBS macro is provided to support this process. See Chapter 6 on
page 109 and the DSIRXEBS macro on page 213.

• The DSIRXCOM macro is provided to support access to variables in a calling REXX

command list. See "DSIRXCOM - Access REXX Variables" on page 207.

• A PRIORITY option has been added to the DSIMQS macro. See "DSIMQS -
Message Queuing Services" on page 185.

• The SUB option has been added to the DSIPRS macro to request the parse
service routine to accept quoted substrings. See "DSIPRS - Parsing
Services" on page 193.

• A COMPCDE option has been added to the DSIPOP macro. See "DSIPOP -
Remove Long Running Command" on page 190.

• The ROLL option has been changed and the PROMOTE option has been added to
the DSIPUSH macro. See "DSIPUSH - Establish Long Running Command" on
page 202.

• The DSIWLS macro can now be used to write to a sequential Jog. See"DSIWLS
- Write Log Services" on page 214.

• Focal point alert forwarding is now provided. The cross-domain alerts can be
accessed in an XITCI exit routine running under the BNJDSERV DST. See "XITCI:
CNM Interface Input" on page 44.

Terms Used in This Book
Command list A list of commands and statements designed to perform a spe­

cific function for the user. Command lists can be written in REXX

or in NetView Command list Language.

Command procedure Either a command processor written in a high-level language
(HLL) or a command list. See command list and command
processor for further explanation.

Command processor A user-written module designed to perform a specific func­
tion. Command processors, which can be written in assembler
or a high-level language (HLL), are invoked as commands.

High-level language (HLL) A programming language that does not reflect the struc­
ture of any particular computer or operating system. For
NetView Release 3, the high-level languages supported are PLII

and C.

NetVlew Command List Language An interpretive language unique to NetView that
is used to write command lists.

REXX Restructured Extended Executor. An interpretive language used
to write command lists.

User exit routine A user-written routine that receives control at predefined user
exit points. User exit routines can be written in assembler or a
high-level language (HLL).-

viii NetView Customization: Assembler

Where To Find More Information
The following list shows all of the publications in the NetView Release 3 library,
arranged according to related tasks. For more information on these and other
related publications, see "Bibliography" on page 269.

Evaluation and Education

Network Program Products General Information

Bibliography and Master Index for NetView, NCP, and VTAM

Learning about NetView: Operator Training (pc Diskettes)

Planning

Network Program Products Planning

NetView Storage Estimates (PC Diskettes)

Console Automation Using NetView: Planning

Installation and Administration

NetView Installation and Administration Guide

NetView Administration Reference

Network Program Products Samples

NetView Tuning Guide

Customization

NetView Customization Guide

NetView Customization: Writing Command Lists

NetView Customization: Using PUI and C

NetView Customization: Using Assembler

Operation

NetView Operation Primer

NetView Operation

NetView Command Summary

Diagnosis

NetView Problem Determination and Diagnosis

NetView Resource Alerts Reference

NetView Problem Determination Supplement for
Management Services Major Vectors 0001 and 0025

GC30-3350

GC31-6081

SK2T-0292

SC30-3351

SK2T-1988

SC31-6058

SC31-6018

SC31-6014

SC30-3352

SC31-6079

SC31-6016

SC31-601S

SC31-6037

SC31-6078

SC31-6020

SC31-6019

SX75-0026

LY43-0001

SC31-6024

LD21-0023

About This Book ix

X NetView Customization: Assembler

Chapter 1

Why Write in Assembler Language? .. 3
Overview of the Chapters ;. 4
Preparing Your Code for Use 4

© Copyright IBM Corp. 1989 Chapter 1 1

2 NetView Customization: Assembler

Chapter 1. Assembler Application Program Interface (API)

Before reading this chapter, you should have read the section on designing user­
written functions and the NetView™ customization facilities in the NetView
Customization Guide.

To use this manual most effectively, you should have in mind a specific command
processor or user exit that you want to write in assembler. For example you might
want to write a command processor to run under a Data Services Task (DST) to
store some data in a VSAM file or a command processor to run on an Operator
Station Task (CST) to display information on an operator's screen. The NetView
Customization Guide contains information to help you decide which command
processors and user exits you need to write in order to build your application and
what the appropriate language is for each of those pieces of code.

Why Write in Assembler Language?
Although more effort is required to code in assembler language, this language, by
its very nature, has greater flexibility than other languages supported by NetView:

• Regression support: Your assembler language command processors from
earlier releases of NetView, with or without modification, will be supported.

• Display Flexibility: Although full screen display support is provided to all lan­
guages via the VIEW command, you may wish to take advantage of special fea­
tures of your terminal hardware, such as wide screens or cursor dependent
function. By writing in assembler language you gain direct access to the 3270
data stream commands.

• Special Data Handling: Assembler language affords you the ability to do
special handling, such as reentrant updates to a global data structure, or
complex functions at operator logoff or ABEND-reinstatement.

• Privileged Functions: In assembler language, you have unrestricted access to
all system functions and macros.

• Interaction with other commands: In assembler language, you have the ability
to wait on, or examine the status of, asynchronous events other than the
standard set that the VIEW command uses. This would include completion of
commands under another task or timed events.

• Performance: While high-level language routines supported by NetView run
faster than interpreted command lists, some kinds of data manipulation can be
done even faster at the assembler-language level.

Additionally, you will want to understand the requirements and environments of
command processors at the assembler level if you write assembler language sub­
routines for your high-level language command processors.

TM NetView is a trademark of International Business Machines Corporation.

© Copyright IBM Corp. 1989 Chapter 1. Assembler Application Program Interface (API) 3

Overview of the Chapters
The following describes the chapters in this manual.

• Chapter 2. Designing Your Assembler Module - This chapter discusses the
information needed to design your assembler module.

• Chapter 3. Writing User Exit Routines - This chapter discusses how to design,
code and install user exit routines that take advantage of the NetView program
exits at strategic processing pOints.

• Chapter 4. Writing Command Processors in Assembler Language - This
chapter discusses how to design, code and install assembler-language
command processors for NetView.

• Chapter 5. Writing User Subtasks - This chapter discusses the two methods for
writing user subtasks.

• Chapter 6. Writing REXX User Functions - This chapter explains how to add
additional functions or expand or replace REXX functions that already exist in
the NetView/RExx environment.

• Chapter 7. Control Block Reference - This chapter describes control block
fields related to customization interfaces.

• Chapter 8. Macro Reference - This chapter describes the purpose and coding
of the NetView program macros.

Preparing Your Code for Use
Before putting your code into production, develop test scenarios for the major func­
tions. Use the NetView TRACE facility when testing so that you can later analyze
any errors or ABENDS your code generates. The format of the TRACE command is
found in NetView Operation. Running TRACE is particularly helpful for verifying
input to user exit routines, to DSIPSS, and to DSIMQS.

When testing new command processors, use RES=N in the CMDMDL definition so that
the object code can be replaced without recycling NetView.

If you have included automated operation support in your user-written code, you
may test the results of automation using any of the following methods:

• Log on to NetView using an automated operator task user 10 and password
(your autotask will be treated as an operator task when directly logged on) and
observe the output on the screen.

• Examine the network log, the MVS system log, and the hard copy task output for
messages associated with the autotask's user 10.

To avoid possible conflict between your code and NetView services currently in
use, consider running the code on a separate NetView or test machine, or during a
time of day when NetView is not used heavily. To test your code, you must restart
NetView, except for pre-defined non-resident command processors. (If there is
little risk of conflict, you may simply add your code to the NetView production
library currently in use.)

Once the test system is up, perform the test scenarios and verify that the results
and output of your code are correct. If they are correct, put the code into pro­
duction and begin using it normally.

4 NetView Customization: Assembler

Chapter 2

Task Structure .. 7
General Coding Guidelines 8

Processing Environment 8
Coding Requirenients 8

Control Blocks .. 10
Work Block Services 13

Basic Module Services 13
Standard NetView Buffer Structure 14
Dynamic Storage Services 15
Message Processing 16

Creati ng Messages 16
Displaying Information to NetView Operators 17
Title-Line Output 19
Displaying Messages to the System Console 20
Logging Messages 20

Invoking Commands 21
Calling a Command Directly 21
Scheduling a Command Using DSIMQS 22

Additional Module Services 23
Loading and Deleting Modules in Virtual Storage 23
Event Control Block (ECB) Services 23
Disk Services ... 24
Parsing ... 24
Scope Checking and Parameter Substitution 24
Named Storage .. 25
Scheduling Commands in a Cross-Domain Environment 25

Returning a Command to an Originating Domain 26
Resource Span Checking 26

DST (Data Service Task) Unique Services 28

© Copyright IBM Corp. 1989 Chapter 2 5

6 NetView Customization: Assembler

Chapter 2. Designing Your Assembler Module

Task Structure

© Copyright IBM Corp. 1989

This chapter presents information on NetView services available for user-coded
command processors, user exits, and user subtasks. Refer to Chapter 8 on
page 161 for detailed information on the NetView service macros that are dis­
cussed. See Appendix A on page 225 for assembler coding samples incorporating
these macros.

The NetView task environment consists of a main task and six types of subtasks.

MNT The main task initializes NetView. It provides an environment for the sub­
tasks and oversees their creation and cleanup. The main task also pro­
vides limited exit routines that modify processing under the main task.

OST An operator station task lets an operator enter commands and receive
network messages. An OST is created for an operator at logon.

The unattended operator task is a special type of OST that is started by the
AUTOTASK command. This task functions as an OST with no associated LU.
Independent of VTAM or terminals, this task performs all line-mode com­
mands (no full-screen commands) and allows multiple command proce­
dures to run concurrently in separate subtasks. The unattended operator
task is a basis for automation.

The MVS console operator task is another special type of OST that is started
by the AUTOTASK command with the CONSOLE operand. Independent of VTAM,
this task performs all line-mode commands (no full-screen commands) and
allows multiple MVS console operators to access NetView, each under their
own MVS console operator task.

NNT A NetView-NetView task allows an operator to access another NetView
(usually in another domain), send commands to that NetView, and receive
messages from that NetView. The START DOMAIN command causes an NNT to
be created in the other domain.

HeT A hard-copy task logs the activity of one or more OSTS using 328x printers.
The START HCL command creates an HCT.

PPT The primary programmed operator interface (POI) task receives unsolicited
messages from VTAM and receives message traffic exchanged between the
system console and VTAM. Additionally, the PPT provides timer services
and runs commands and command lists. There is one PPT per NetView.
The PPT is created when NetView starts.

OST Data services tasks provide command, message, and exit functions. In
addition, data services tasks can manage VSAM or CNM facilities. You can
create new subtasks to perform any or all of these functions. The DST is
created when NetView starts or when START TASK is issued.

OPT Optional tasks provide increased flexibility beyond the subtasks NetView
provides. For example, an OPT could be used to provide unique command
interfaces or more precise control of work dispatching than standard
command processors running under a DST-based task could provide. You
can define the OPT to start when NetView starts or when START TASK is
issued.

Chapter 2. Designing Your Assembler Module 7

General Coding Guidelines

Processing Environment
User written code of all types is given control in problem program state and with a
user memory protection key1. NetView and all user written code given control
under NetView is authorized. This gives the user the option of invoking privileged
system services or entering supervisor state or changing the key. However,
control should be returned to NetView in the same program state and key as when
user code was entered.

Except as noted in Chapter 7, all NetView control blocks are accessible in the user
key. Unless specifically noted in Chapter 8, all NetView services must be invoked
in problem program state and the user key.

The setting of the TVBINXIT bit in the task vector block (TVB) when NetView calls
user-written code determines the environment under which your code will be proc­
essed. When a NetView task is initially dispatched, the TVBINXIT bit is off. Thus, if
the task calls user-written code at this time, the code processes under the mainline
envi ronment.

Whenever the operating system interrupts mainline processing, NetView sets the
TVBINXIT bit on. Thus, any user-written code called at this time is processed under
the TVBINXIT=on environment.

Not all tasks can run all types of user-written code. In fact, each task has unique
restrictions that limit the code it can process. Table 1 indicates the types of code
that can run under each task in the mainline environment. The figure also indi­
cates which types of code can run when the TVBINXIT bit in the task vector block
(TVB) is set on. (Since you define which commands and functions will run under an
OPT subtask, that subtask is not included in Table 1.)

Table 1. Processing Environment of User-Written Programming

Main TVBINXIT
Task OST NNT HeT PPT CST SetOn

User exit routines .J .J .J .J .J .J .J

Regular command processors .J .J .J

Immediate command processors .J .J

Data services command processors .J

Coding Requirements
This section discusses the general restrictions that you must observe when writing
your code. The control blocks and macros mentioned in this section are described
in more detail in Chapter 7 and in Chapter 8.

1 Unless your system programmers set up special provisions, this will be key 8 in MVS and key 14 in VM.

8 NetView Customization: Assembler

Restrictions when TVBINXIT Is On: See Table 2 on page 32 to determine which
user exits must interrogate the TVBINXIT bit. No user exit should change the value of
TVBINXIT. When your code receives control with TVBINXIT set on, the following
restrictions apply:

• Messages may be sent only to the immediate message area of the operator's
screen. To send these messages, you must specify macro DSIPSS with the
TYPE=IMMED option. You may also use DSIMOS to queue messages to be proc­
essed after the asynchronous exit completes.

• Do not code your program to cause a system wait state. A system wait may
produce an interlock. For example, if an IRB exit were to wait for a resource
being used by the mainline routine, the resource would not be released since
the IRB exit is interrupting the mainline routine.

To avoid causing a system wait state, keep in mind the following:

Do not issue macro DSIWAT.

Do not issue macro DSIOKS or any other disk services macros. Disk 1/0 can
cause a wait state.

• Only immediate commands may be called directly. OSIMOS can be used to
invoke regular commands. For more information, see "Invoking Commands"
on page 21.

Variable Names: Do not use the following as a prefix for any variable or message
you name in your code:

• Any NetView component prefix, AAU, BNI, BNJ, BNK, CNM, OSI, or OWO.

• Any NetView control block suffix, such as SWB or POB.

Macro Usage: When a NetView macro and an operating system macro perform
equivalent services, use the NetView macro. This ensures that the source code for
your program will be transportable across NetView operating systems. However, if
you must use an operating system macro, be careful that its function does not con­
flict with a function NetView may be performing. For example, if the operating
system macro STIMER were issued under the PPT, NetView timer services would be
disrupted.

Register Usage: Follow these guidelines when using registers for user exit rou­
tines, command processors, and subtasks:

• Save registers at entry to the user code and restore them before returning
control to NetView. Set register 15 with your return code.

• Avoid 'using registers 0, 1, 14, and 15; they are reserved for NetView macro
expansion.

• Register 13 should contain the address of a standard 72-byte save area.

• Return control to the location in NetView specified by register 14.

• Do not rely on the contents of registers 0 and 2 through 12 for constant values
on entry to user code. Their contents vary.

Reentrancy: Make sure your code is reentrant, to allow the one copy of the
program to be used concurrently by more than one task. For example, a command
processor may be invoked from two or more tasks simultaneously and thus
execute simultaneously under multiple tasks.

Chapter 2. Designing Your Assembler Module 9

Control Blocks

Reentrancy is not required for certain user exits or for optional tasks. SeeTable 2
on page 32 for more information.

MVS/XA Considerations: NetView supports any valid combination of addressing
mode (AMODE) and residency mode (RMODE). Depending on the mode your code is
currently running in, NetView provides the appropriate services. In addition, it pro­
vides macro parameters where necessary to enable you to specify 24-bit or 31-bit
addressing for your special requirements. Also, NetView provides appropriate res­
idency for the control blocks your code accesses, such as USE, CWB, and BUFHDR.

For example, if your command processor is loaded with AMODE = 24, then the CWB

passed to it will reside below 16 Mb.

To conserve storage below 16 Mb, 31-bit addressing is recommended except when
restricted by your use of MVS/XA interfaces to the contrary.

To perform the essential functions of presenting information to end users and
invoking commands, your code must include the necessary control block mappings
and establish addressability to other control blocks. For details on the purpose
and contents of the control blocks mentioned below, refer to Chapter 7 on
page 119.

Control Blocks Overview

• MVT - Main Vector Table (DSECT DSIMVT)

One MVT for NetView, contains NetView global information.

• TVB - Task Vector Block (DSECT DSITVB)

One TVB per task, contains task definition and status information.

• TIB - Task Information Block (DSECT DSITIB)

One TIB per active task, contains additional information pertaining to a task.

• SWB - Service Work Block (OSECT OSISWB)

Work area/parameter list for NetView macro services. An SWB is provided at
entry to a command processor or user exit.

• eWB - Command Work Block (OSECT OSICWB)

One per command, contains savearea, work area, and pointers to other
NetView control blocks.

• POB - Parse Descriptor Block (OSECT OSIPOB)

In a command processor environment, the POB contains parse information for
the command. In a user exit environment, the POB contains parse information
for the user message buffer.

• BUFHOR - NetView Buffer Header (D$ECT BUFHDR included with DSECT DSITIB)

Maps the control information which precedes commands and messages in
NetView buffers.

• IFR - Internal Function Request (OSECT OSIIFR)

A multi-purpose NetView buffer:

- Command IFR (contains a command)

10 NetView Customization: Assembler

- Automation IFR (contains automation information and message(s))

• USE - User Exit Parameter List (OSECT OSIUSE)

Contains user exit information.

• OSRB - Data Services Request Block (OSECT OSIOSRB)

CWB extension used by Data Service Command Processors in the OST (Data
Service Task) environment only.

Including Control Blocks: At assembly, include OSECTS for the NetView control
blocks that have fields your code uses. You must include the following control
blocks in your code:

• For user exit routines, include the user exit parameter list (USE). Since the USE
contains the addresses of the TVB, SWB, POB, and BUFHOR (defined with the TIB),
you need to include these control blocks, as well.

Note: Each TVB will address its associated TIB and the MVT.

• For command processors, include the command work block (CWB). Since the
CWB contains the addresses of its SWB, POB, and BUFHOR (defined with the TIB),
you also need to include these control blocks. In addition, data services
command processors (OScps) require the data services request block (OSRB).

• For user subtasks, include the task vector block (TVB). Then include any other
control blocks necessary for your user-defined task.

Depending on the particular service facilities your code uses, you will need to
include various other control blocks.

Figure 1 on page 12 illustrates the interconnections between the control blocks.

Chapter 2. Designing Your Assembler Module 11

User Exit Routines

USE

USERMSG
_ ..

BUFHOR

SWB
USERSWB TVB

.

USERTVB ~ SWBTIB I---

USERPOB - TVBTIB

POB

TVBMfJ -
.TIB MVT

l~

- TIBTVB
Command Processors

CWB

eWBBUF
BUFHOR POB

eWBPOB / SWB
eWBSWB ..

TIB POBBUFA
eWBTIB - SCE SWBTIB r-+ POBCMOA

TIBTVB

~ TVB

TVBTIB
MVT

Subtasks

TVBMVT L-.

TVB

TIB
TVBTIB ..

TIBTVB I--
MVT

TVBMVT .

MVTSVL

~
SVL

TVBPUBQ
BUFHOR

HORNEXTM

~ BUFHOR

Figure 1. Overview of the Control Blocks for User-Written Programming. For each type of
user-written code, the Tva provides access to the MVT and, thus, to the SVl, as
shown in the subtasks diagram. The field displacements suggested in the figure
are not representative of the actual field displacements.

12 NetView Customization: Assembler

Use macro OSICBS to include OSECTS for the appropriate control blocks. For
example, you might code the OSICBS macro in a command processor as follows:

DSICBS DSICWBsDSISWBsDSIMVTsDSIPDBsDSITVBsPRINT=NO

This instruction includes the CWB, SWB, MVT, POB, and TVB. This instruction also
specifies, with PRINT= NO, that control block expansions are not to be printed.

Establishing Addressablllty: You must establish addressability to a control block
before referencing its fields. The following example shows how you could estab­
lish addressability to the MVT for a command processor:

USING DSICWBsl
L registersCWBTIB
USING DSITIB,register
L register,TIBTVB
USING DSITVB,register
LregistersTVBMVT
USING DSIMVT,register

Work Block Services
The service work block (SWB) is needed when your code invokes NetView service
facilities. The command work block (CWB) is used as command processor input.
Macro OSILCS obtains and releases SWBS or CWBS, as shown in the following
example:

D5ILC5 CBADDR=MY5WBPTR,5WB=GET
LTR REG15,REG15
BNZ ERRORSWB
L REG2,TVBTIB
L REG3,MYSWBPTR
5T REG2,5WBTIB-D5ISWB{REG3)

D5ILC5 CBADDR=MY5WBPTR,SWB=FREE

In this example, an SWB is to be obtained and its address is to be placed in
MYSWBPTR. The second and third statements test for a good return code in register
15. If the macro was successful, you must initialize the SWBTIB field to your TIB

address before the SWB may be used. After use, the SWB should be released using
OSILCS.

Basic Module Services

Chapter 2. Designing Your Assembler Module 13

Standard NetView Buffer Structure
All message and command buffers must include an initialized buffer header
(BUFHDR) structure preceding the message data or command text. BUFHDR is a sepa­
rate DSECT contained in the DSITIB (Task Information Block) control block (use DSICBS

to include DSITIB when your module references BUFHDR fields). The following
section presents an overview of the BUFHDR fields. See Chapter 7 on page 119 for
additional details.

0(0)

4(4)

8 (8)

12 (C)

20 (14)

24 (18)

28 (1C)

Standard Buffer Header

,. ,.
HDRMLENG HDRBLENG
Message Length Total Length of Buffer

,. ,. ,.
HDRIND HDRMTYPE HDRTDISP
Line Type Message Type Displacement to the First Character

of the Text from Start of Header

HDRTSTMP
Time Stamp Field

" HDRDOMID
Domain Identification

--

Reserved Area

Must be initialized by user before write operation

BUFHOR Extension (HDRMCEXT) (used by DSIMQS Macro)

HORNEXTM
Chain Field

HORSENDR
Operator 10 of Sending Subtask

Figure 2. Buffer Header (BUFHDR)

14 NetView Customization: Assembler

Field

HDRBLENG

HDRMLENG

HDRIND

HDRMTYPE

HDRTDISP

HDRTSTMP

HDRDOMID

Description

Contains the actual length of the entire buffer: header, plus text, plus
unused space. If the buffer is to be released with DSIFRE, this length is
used. The length may be up to 32,767 bytes.

Indicates the length in bytes of the text data in the buffer.

Should be set to zero except when using title-line output. See "Title­
Line Output" later in the chapter for details.

Contains a character that indicates the current usage of the buffer. It
may also indicate the origin of the command. If the buffer is written
out using the DSIPSS macro, this field is displayed and logged.

The offset from the start of the buffer header to the first byte of text.

Contains the time that the command was received, in the packed
decimal from X'hhmmssOC' where hh is the hours of the day from 00
to 23, mm is the minutes of the hours from 00 to 59, ss is the seconds
of the minute from 00 to 59, and OC is a packed decimal sign. See the
DSIDATIM macro instruction.

Shows the identifier of the domain where the message originated.
This field is displayed and logged.

HDRMCEXT (BUFHDR extension)

HDRNEXTM

HDRSENDR

TEXT

An extension to the BUFHDR that is used when a buffer is transferred
from one subtask to another. It is built by the DSIMQS macro when cre­
ating a buffer for the destination task. Other buffers do not need
these fields.

An internal NetView field that is used to chain buffers together.

Contains the originator's operator ID, which is the contents of the
sender's TVBOPID field.

Can start anywhere after the reserved area in a standard buffer or
after HDRSENDR in a buffer with a message command extension. Use
HDRTDISP to locate the start of text.

Note: Relationship of HDRBLENG, HDRMLENG, and HDRTDISP: Since HDRTDISP pOints to
the start of the buffer data and HDRMLENG is the length of the buffer data, then at no
time should HDRTDISP + HDRMLENG be greater than HDRBLENG. This implies that the
value of HDRMLENG can range in value from 0 to (HDRBLENG - HDRTDISP).

Dynamic Storage Services
Storage services enable you to get and free storage for your code. Use macro
DSIGET to get storage and macro DSIFRE to free storage, as shown in the following
example:

DSIGET LV=4096,A=STORPTR,TASKA=(MYTVBREG),Q=NO
LTR REG15,REG15
8NZ ERRORGET

DSIFRE LV=4096,A=STORPTR,TASKA=(MYTVBREG),Q=NO

The above example requests that 4,096 bytes of storage be obtained. The address
of the storage is to be placed in the fullword named STORPTR. The second and third

Chapter 2. Designing Your Assembler Module 15

statements test for a good return code in register 15 before you use the storage.
When the storage is obtained, it has been cleared to zeros.

After use, you must free the storage using the same value for the Q option as you
used previously to get the storage.

Note: The use of TASKA is recommended, since it can help you avoid addressing
the wrong TVB control block. It must contain the address of the TVB for the subtask
where the code is executing. Use the TASKA parameter for both non-queued (Q=NO)

and queued (Q=YES) storage.

Queued Storage: You may also use the DSIGET Q=YES option to enable NetView to
release queued storage at logoff or task termination, which facilitates error
recovery. The following example illustrates this usage:

DSIGET lV=4096,A=STORPTR,TASKA=(MYTVBREG),Q=YES,BNDRY=PAGE
lTR REG15,REG15
BHZ ERRORGET

DSIFRE A=STORPTR,TASKA=(MYTVBREG),Q=YES

In this example, Q=YES indicates that NetView is to keep track of the 4,096 bytes of
storage in an internal queue. To support this internal queue, Q=YES generally gets
eight more bytes of storage than requested. However, if BNDRY = PAGE is specified,
eight extra bytes are not gotten and thus page alignment is not affected.

Storage obtained with one call must be released with one call.

NetView ignores the storage length indicated by DSIFRE when Q=YES is specified. LV

is optional when Q=YES and is ignored.

Message Processing

Creating Messages
The DSIMDS (Message Definition Service) macro provides the ability to create a load
module of user defined message skeletons. Each defined message skeleton may
contain up to nine variable length text inserts.

The DSIMBS (Message Building Service) macro will take message insert text and
combine it with the specified message skeleton and return a completed message
buffer which can be used for displaying the message.

See Chapter 8 on page 161 for additional details on using the DSIMDS and DSIMBS

macros.

See samples CNMS4271, CNMS4278, and CNMS4281 for an example of creating user
defined messages with DSIMDS and DSIMBS.

16 NetView Customization: Assembler

Displaying Information to NetView Operators

Terminal for this
Operator Station

DSIPSS
TYPE = OUTPUT

IMMED
ASYPANEL

The primary channels for presenting information to the operator are the following:

• The terminal screen using macro DSIPSS

• The network log, MVS system log, sequential log, and hard-copy log using
DSIWLS

• The system console using DSIWCS.

Figure 3 shows how these macros communicate with the operator. The logging
and system console services are simply invocations of the DSIWLS and DSIWCS

macros. For detailed information on these services, see Chapter 8 on page 161.
Message presentation via DSIPSS and DSIMQS is more complex and is described on
the following pages.

Domain Boundary

r--~-------......., DSIPSS
TYPE=XSEND

System
Operator's 4------1
Console DSIWCS

Network Log or
Hard-Copy Log
for this Operator
Station

NetView Operator
(Operator Station Task)

DSIMQS

Another Subtask
in this Domain

NetView-NetView Task (NNT)

DSIPSS
TYPE = OUTPUT L..-________ ----I

IMMED

Figure 3. Using Macros to Communicate from an OST

Macro DSIPSS can present information in any of the following three screen modes;
DSIMQS is limited to standard mode and title-line mode.

Standard Mode From an OST or NNT, messages are sent to the screen with a
12-character prefix followed by data. The prefix includes a
1-character code for the entry type (from HDRMTYPE) and a
domain name field (from HDRDOMID) indicating the domain that
generated the message. If the message exceeds the screen

Chapter 2. Designing Your Assembler Module 17

Title-Line Mode

Full-Screen Mode

18 NetView Customization: Assembler

width, it is split between two words. The message is con­
tinued on the next screen line and indented 12 characters.

A variation on standard mode output is the immediate
message. It appears at the bottom of the screen as a single
71-character message with neither prefix nor continuation
lines.

Thus, to present a message in standard mode, you may use
any of these methods:

• Issue DSIP$S TYPE = OUTPUT

• Issue DSIPSS TYPE = IMMED

• Issue DSIMQS to queue a HDRTYPEU message buffer to the
OST.

• Issue DSIPSS TYPE = FLASH

See sample CNMS4274 for an example of standard mode
output.

Title-line presentation services send sequences of messages
to the operator, without allowing other messages to be inter­
spersed. The messages appear on the screen in a tabular
format, with one or more title lines. Title-line messages have
no prefix and may use the full width of the screen. Messages
longer than screen width are truncated. For more informa­
tion on how to specify this type of output, see "Title-Line
Output" on page 19.

Title-line mode messages and system multiline write-to­
operator (MLWTO) messages are treated as a single message
by DSIEX02A, DSIEX16. &WAIT in NetView command list language,
TRAP and WAIT in REXX and high-level language command pro­
cedures, the message automation table, and the ASSIGN

command. When creating your title-line mode messages,
make sure the first line does not conflict with any IBM-SUP­

plied message number. Some message number format
similar to the IBM message number format is recommended to
allow these facilities to be used with your messages.

See sample CNMS4273 for an example of title line output.

Application-built 3270 data streams containing commands,
orders, and data are sent to the screen. In this way, a full
screen of information can be presented. Full-screen
command processors, which run under an OST, are the only
type of user-written code (except for user exit DSIEX12) that
can utilize full-screen mode. For this reason, this topic is
addressed more fully under "Writing a Full-Screen Command
Processor" on page 61.

See sample CNMS4279 for an example of full screen output.

Title-Line Output
Title-line output is best suited to message groups that can be presented on a single
screen, since you cannot scroll backward. Figure 4 shows an example of title-line
output.

(

NETVIEW mm/dd/yy hh:mm:ss
.,NETVl
NCP LINE PU/CLUSTER LU/TERMINAL TYPE LOCATION

----------- ------------ ----------
NCPA 3705 MACH. ROOM
NCPA A01 SOLC SATELLITE
NCPA AOl AOlA 3274 ANCHORAGE
NCPA ASl AOlA AOlAel 3278 ANCHORAGE
NCPA AOl AOlA AOlA02 3278 ANCHORAGE
NCPA AS1 AOIA AOIA03 3278 ANCHORAGE
NCPA AOI AOIS 3274 NOME
NCPA AOI ASIS AOIS0I 3278 NOME
NCPA ACI AOIS AOlSC2 3278 NOME
NCPA ACI AOlS AOlS03 3278 NOME

Figure 4. Example of Title-Line Output

The first line NetView generates is a separator that consists of just the message
type and the domain 10. (In Figure 4, "=" is the message type and "NETV1" is the
domain 10.) The separator is followed by the title, which can be one to six lines.
The title is followed by the data lines. The screen wraps around until all the data is
displayed. (If the data lines continue to the next screen, the title is redisplayed at
the top of the new screen.)

To use title-line output, format and send one message buffer for each line of infor­
mation as follows:

1. Set the HDRMTYPE field in the BUFHDR to HDRTYPEL (=).

2. As you build each message buffer, do the following:

• For a line that is part of the title, set HORIND to HDRLNLBL. Your title can
contain one to six lines.

• For a data line, set HORIND to HORLNOAT.

• For the last line of data, set HORINO to HORLNENO.

3. When the message buffer is ready for presentation, do one of the following:

• From any NetView subtask, use OSIMQS to queue the message buffer to the
desired OST. This is the recommended method and is appropriate to use
from the destination CST; however, the output will not begin to be displayed
until you return control to the CST.

• From an CST or NNT, not in an exit, issue OSIPSS TYPE=CUTPUT to send the
message buffer.

Chapter 2. Designing Your Assembler Module 19

In either case, the output will not begin to be displayed until after the data-end line
has been sent.

NetView groups all title-line buffers at the OST until a buffer marked as data end
(HORLNENO) is received. Upon receipt of the end message, the title lines are sent to
the screen. These lines appear directly under the previous message. Each data
line appears one line at a time. If the message sequence fills one screen and
begins another, the title lines are repositioned at the top of the screen, followed by
the next data lines. This process continues until all the messages appear on the
screen.

Each buffer sent to the screen contains at least one character. To print a blank
line, place a blank character (X'40') in the buffer. If a line of title-line output is
longer than the width of the screen, the line will be truncated to screen width.

Displaying Messages to the System Console

Logging Messages

The OSIWCS (Write to Console Service) macro will display a message buffer at the
system console. The message buffer must have an initialized NetView buffer
header (BUFHOR) and the text will be truncated to 120 characters when displayed on
the console.

The DSIWLS (Write to Log Service) macro can be used to record information on the
network log, the MVS system log, a hard copy log, an external log, or a sequential
log.

Network Log, System Log, and Hard Copy Task: DSIWLS will log data to the network
log, system log, and the hard-copy task. The DEFAULTS and OVERRIDE commands will
determine the general logging environment (the current logging actions will be
applied to the message buffer passed to the OSIWLS macro). If the message is
passed in an AIFR buffer, the AIFR settings will be checked to determine which of the
logs the message will actually be logged in.

See sample CNMS4272 for an example of writing to the logs.

External Logging: DSIWLS also provides the ability to log data to the NetView­
defined external logging task (task 10 is OSIELTSK). The external logging task can be
defined at installation time to record to the SMF log (restricted to MVS) or to a user
defined data set. If a user defined dataset is to be used, the XITXL exit must be
coded to actually do the logging of the data. The external logging task is a
NetView-implemented Data Services Task (DST). See Chapter 8 on page 161 for
information on DST'S and refer to the NetView Installation and Administration Guide
for details on installing the external logging task. The XITXL exit is described in
Chapter 3 on page 31.

Sequential Logging: DSIWLS also provides the ability to log data to a sequential
logging task. The sequential logging task will record the data using the Basic
Sequential Access Method (BSAM). Multiple sequential logging tasks can be
defined at installation time. Refer to the NetView Installation and Administration
Guide for details on installing sequential logs.

See sample CNMS4275 for an example of writing to a sequential log.

20 NetView Customization: Assembler

Invoking Commands
Commands can either be called directly or they can be scheduled. Calling a
command directly requires the following:

1. The command environment must be initialized (required control blocks must
be acquired, etc.).

2. The OSICES (Command Entry Service) macro must be invoked to look up the
address of the command processor in the NetView command table and then a
branch is performed to the command processor.

To schedule a command, the OSIMQS (Message Queuing Service) must be used.
Scheduling a command under a task results in a command buffer being placed on
one of the task's message queues (there mayor may not be other command
buffers ahead of the scheduled command's). When the scheduled command's
buffer is processed off the message queue, the command processor will be
invoked.

Calling a Command Directly
The following steps must be followed to call a command processor directly:

All the following are required to invoke a command processor or command list:

• A CWB

• An SWB

• A command buffer

• A POB

• A save area

• Registers 1, 13, 14, and 15.

Obtaining a Command Work Block (CWB): A command processor requires a
command work block (CWB) for use as a parameter list, a save area, and a work
area. A CWB may be preallocated (and reused) or may be obtained by issuing the
DSILCS macro. Before calling the command processor, the TIB address must be
stored in the CWBTIB field.

Obtaining a Service Work Block (SWB): The routine that invokes a command
processor must provide an SWB. The SWB may be preallocated, obtained with the
OSILCS macro, ·or may be one the invoker was passed. This control block must also
have its SWBTIB field pOinting to the TIB. The SWB address must be stored in
CWBSWB.

Building a Command Buffer: Each command is invoked with a command buffer
containing a verb and optional operands. The command buffer is prefixed with the
buffer header (BUFHDR). Each BUFHDR field must be initialized except the message
command extension HDRMCEXT. The address of this command buffer is stored in
CWBBUF.

Obtaining a Parse Descriptor Block (PDB) and Parsing the Command: The routi ne
must obtain storage for a PDB to parse the command for the command processor to
be called. The size of the storage for the POB may be obtained by issuing the
OSIPRS macro with the PDBSIZE option. The usual size is 160 bytes. After the
storage is obtained (from preallocated storage or with OSIGET), the address is
stored in the CWBPDB field. The control block header (CBH) is built and CBHID is set

Chapter 2. Designing Your Assembler Module 21

to the value defined by symbol CBHPOB. CBHTYPE is zeroed, and the POB length is
stored in the CBHLENG prior to invoking the OSIPRS macro. Issuing OSIPRS fills in the
POB including the POBBUFA pointer to the command buffer, the parse elements, and
the number of parse elements.

Looking Up the Command Processor Address: After the command is parsed, the
command must be found in the NetView system command table (SCT). The
command may be looked up in one of three ways:

• With the parsed command in the POB

• Without prior parsi ng

• By command processor module name (the module name is known but the verb
name may change, as in a synonym).

The OSICES macro returns the address of the command's system command table
entry. This address is returned in an area passed on the OSICES macro as the
SCTAOOR parameter. This address points to an SCT entry (mapped by the SCE), and
the address must be stored in the POBCMOA field.

When the OSICES macro returns to the caller, the return code indicates whether the
command is immediate, regular, or both. If TVBINXIT is on, then the POBIMMEO bit
must be set on if the OSICES return code indicates that the command to be called
was defined aSTYPE=1 (immediate) orTYPE=B (both).

You may call regular commands only when TVBINXIT is off and only from task types
CST. NNT. and PPT. You may call immediate commands only when TVBINXIT is on and
only from task types CST and NNT. Unless otherwise noted in this book, do not call
NetView-written TYPE 0 commands.

Calling the Command Processor: Register 1 must pOint to the CWB (which now in
turn pOints to the POB, SWB, TIB, and the command buffer). Register 13 must point to
a save area (where it is probably already set, because a save area is required for
the service macros). Register 15 must contain the command processor's entry
point address (found in SCE) and register 14 must have the return point address.
The command processor entry point address is stored in the SCECAOOR field of the
SCE entry pOinted to by the POBCMOA field.

For example, to pass a command to VTAM while running under CST, NNT, or PPT,
prepare the input described above. Call the NetView command processor identi­
fied by OSICES for your VTAM command.

See sample CNMS4280 for an example of calling a command directly.

Scheduling a Command Using DSIMQS
Simulating Terminal Input: The simplest way for user-written code to invoke
regular commands to run under an CST or NNT is to simulate commands entered
from a terminal. Include the command in the text of a standard buffer with an ini­
tialized buffer header, as described under "BUFHDR - Buffer Header" on
page 121. In BUFHOR, set HORMTYPE to HORTYPET. You may use HORTYPEB as well;
however, HORTYPEB commands will be neither logged nor echoed.

Then use macro OSIMQS to queue the buffer to the desired CST or NNT, where the
command will be processed as though it had been entered from a terminal.

22 NetView Customization: Assembler

Usually, commands from an operator are scheduled with high priority. This allows
the command to preempt any existing queued messages or other work that has
been scheduled at lower priority. Commands scheduled with high priority will also
preempt command procedures that are already executing. If you do not desire to
preempt work that may already be queued, including command procedures that
are already executing, then you should schedule your command at low priority ..
See "DSIMQS - Message Queuing Services" on page 185 for more information on
priority.

Building an IFRCODCR: To pass commands to a subtask in the same domain, you
can build an IFRCODCR and queue it to the desired subtask. An IFRCODCR (see "IFR
-Internal Function Request" on page 133) is an internal function request (IFR) that
requests that a command be invoked. IFRCODCR is intended for requesting or con­
veying data. The command driven by this type of buffer should not present data to
the operator, neither by full screen nor line mode, and it should not create or
remove a long running command. These actions could be disruptive because the
operator could be engaged in unrelated activity.

The IFR requires an initialized buffer header (BUFHDR), a message command exten­
sion (HDRMCEXT) if DSIMQS BFRFLG=YES is specified, and an IFRCODE set to IFRCODCR.

The command and its parameters follow the IFRCODE.

In BUFHDR, HDRMLENG must reflect the length of the command and its parameters, as
well as the length of the IFRCODE field. Set HDRTDISP to the offset of the IFRCODE field.
HDRMTYPE must be set to HDRTYPEI.

Use macro DSIMQS to send the buffer to any subtask that can process a command.
When the buffer is received, NetView will have increased HDRTDISP by 2 to address
the command and its parameters. NetView will have decreased HDRMLENG by 2,
because the IFRCODE is not included in the command text.

For more details on the fields and settings of BUFHDR and IFR, see "BUFHDR­
Buffer Header" on page 121 and "IFR - Internal Function Request" on page 133.

See sample CNMS4283 for an example of scheduling a command.

Additional Module Services

Loading and Deleting Modules in Virtual Storage
Modules which are used infrequently can be dynamically loaded and deleted in
virtual storage using the DSILOD and DSIDEL macros. Use DSILOD to load the module
and DSIDEL to delete the ·module.

See sample CNMS4271 for an example of using DSILOD and DSIDEL.

Event Control Block (ECB) Services
Posting and waiting on Event Control Blocks should be done using the DSIPOS (post)
and DSIWAT (wait) macros. DSIWAT allows waiting on a single ECB or on a list of ECBS.

See the optional task template (CNMS4277) for an example of waiting on an ECB list.

Chapter 2. Designing Your Assembler Module 23

Disk Services

Parsing

The disk services macro retrieves data from partitioned data sets (for MVS) or from
files (for VM). The macro OSIOKS connects to a data set or filetype, locates a specific
member or file, and reads the records there, as illustrated in the following
example:

DSIDKS SWB=(REG2),DSBWORD=DISKADDR,TYPE=CONN,NAME=DSIPRF

DSIDKS SWB=(REG2),DSBWORD=DISKADDR,TYPE=FIND,NAME=MEMNAME

DSIDKS SWB=(REG2),DSBWORD=DISKADDR,TYPE=READ

DSIDKS SWB=(REG2),DSBWORD=OISKADDR,TYPE=REAO

DSIDKS SWB=(REG2),DSBWORD=DISKADDR,TYPE=DISC,NAME=OSIPRF

In the above example, OSIOKS TYPE=CONN initializes the disk service control blocks
and input buffer, returning the address of the OSB in OISKAOOR. The OONAME is OSIPRF

(for VM, this parameter specifies the filetype, as in NAME=NCCFLST). Next, using the
returned OSBWORO, OSIOKS TYPE=FINO finds the member name MEMNAME and reads
the first record. The next two OSIOKS TYPE=REAO instructions read the next two
sequential records. Finally, OSIOKS TYPE=OISC frees the control blocks and the input
buffer.

See sample CNMS4276 for an example of using OSIOKS to read a NetView initialization
file.

NetView command and message buffers (containing the standard NetView BUFHOR

structure) can be parsed using the OSIPRS macro. The OSIPRS macro requires a
Parse Descriptor Block (POB). The size of the POB can be determined by first
issuing the OSIPRS macro with the POBSIZE option specified. This will return the
required size of the block. After you obtain the storage (from preallocated storage
or with OSIGET), build the control block header (CBH) and set CBHIO to the value
defined by symbol CBHPOB. Set CHBTYPE to zero and store the POB length in the
CBHLENG field. Then OSIPRS can be invoked with the supplied POB to actually parse
the buffer. OSIPRS will fill in the POB with the delimiter and parse information.

See sample CNMS4280 for an example of using OSIPRS to calculate the size and ini­
tialize a parse descriptor block.

Scope Checking and Parameter Substitution
The DSIKVS (Keyword and Value Service) can be used to determine whether or not a
particular command keyword and value are defined for this task's Operator Class
(the OPCLASS statement in the Operator Logon Profile determines the defined oper­
ator classes).

The DSIPAS (Parameter Alias Service) can be used to derive the original
keyword/value for a command which is entered with parameter aliases. Param­
eter aliases are defined with the PARMSYN statement. See NetView Administration
Reference.

See sample CNMS4276 for an example of command scope checking.

24 NetView Customization: Assembler

Named Storage
A storage environment can be easily created and retrieved across multiple
command processor calls using named storage.

Macro OSIPUSH can be used to create a named storage pointer, as shown in the ~ol­
lowing example:

L R3,LOCLSTOR BUFFER AREA FOR PUSH LIST
USING SWBLRCPL,R3
XC 0(SWBLRCPU,R3),0(R3)
MVC SWBLRCLN(4),=A(SWBLRCPU) LENGTH OF PUSH LIST
MVC SWBLRCNM(16),MYNAME UNIQUE NAME OF LRC
MVC SWBLRCST(4),DYNASTOR QUEUED STORAGE OBTAINED FOR LRC
MVC SWBLRCRE(8),ZEROS NO RESUME FOR NAMED STORAGE
MVC SWBLRCAB(8),MYABEND ADO ABEND MODULE NAME
MVC SWBLRCLG(8),=L'DSILRCR8' (FOR EXAMPLE)

, * SWBLRCFG (FLAGBITS) IGNORED FOR NAMED STORAGE
L R4,CWBSWB AVAILABLE SWB

SPACE 3
DSIPUSH SWB=(R4),LIST=(R3),ROLL=NO

Then macro OSIFIND can be used to retrieve the named storage pOinter, as shown in
the following example:

L R3,LOCLSTOR
USING SWBLRCPL,R3
XC 0(SWBLRCFI,R3),0(R3)
MVC SWBLRCLN(4},=A(SWBLRCFI}
MVC SWBLRCNM(16),MYNAME
L R4,CWBSWB

SPACE 3
DSIFIND SWB=(R4),LIST={R3)
LR R3,Rl
USING MYDSECT,R3

BUFFER AREA FOR PUSH LIST

LENGTH OF FINO LIST
UNIQUE NAME OF LRC

AVAILABLE SWB

ADDRESS OF MY NAMED STORAGE

For more details on the coding of these macros, see "DSIPUSH - Establish Long
Running Command" on page 202 and "DSIFIND - Find Long Running Command
Storage" on page 169. For a discussion of long running command processors, see
"Writing a'Long Running Command Processor" on page 64.

Scheduling Commands in a Cross-Domain Environment
The DSIPSS (Presentation Services) macro also provides the ability to schedule
commands in a cross-domain (OST/NNT) environment:

You can forward a command from one domain to another by doing either of the fol­
lowing (providing the route has been previously established via the START DOMAIN

command):

• Building a buffer with the desired command and issuing macro DSIPSS with
TYPE=XSEND to transmit the command to the cross-domain task (NNT) in another
NetView. (The command runs in the other NetView under an NNT.)

Chapter 2. Designing Your ASsembler Module 25

• Calling the ROUTE command. (See "Simulating Terminal Input" on page 22.)
The ROUTE command routes a command to a specified NetView domain. For
more information, see NetView Operation.

The commands you invoke can return data to the originating domain by issuing
DSIPSS TYPE = OUTPUT for a buffer with HDRMTYPE = HDRTYPEU or HDRMTYPE = HDRTYPEL.

The maximum length of text that can be sent as a cross-domain command is 240
bytes, which corresponds to three aO-character input lines. Use multiple com­
mands to chain data for applications that require larger data transfer.

Returning a Command to an Originating Domain
For a command running under an NNT to invoke a command in the originating
domain, it must issue DSIPSS TYPE = OUTPUT for a buffer with HDRMTYPE=HDRTYPEX.

The buffer must contain the desired command verb and parameters. The verb
must be delimited from the data or parameters by a blank and must be a defined
command in the receiving domain.

For example, if data formatting is required, you can build a buffer with
HORMTYPE=HORTYPEX and a command in the buffer text. In this case, the command
verb identifies a user-defined presentation services command processor and the
parameters are the data to be presented. When the receiver of the OST'S cross­
domain message gets the command buffer, the OST calls the command processor
with the data.

Applications are limited to sending 256 bytes of data. Use multiple commands to
chain data for applications that require larger data transfer.

Resource Span Checking
You may want a command processor to use NetView span checking facilities to
limit operators to particular sets of resources. The following section describes the
macros and logic required to implement resource span checking.

The DSIROS macro instruction is used to locate an entry address for the resource in
the authorization and resource table, OSIART. OSIROS might be specified as follows:

DSIRDS SWB=(REG2),lUNAME=lUADDR,ARTPOS=ENTRYADR

For this example, the authorization and resource table (ART) entry address for the
resource pointed to by LUAOOR will be returned in ENTRYAOR. The resource will be
marked as active.

Figure 5 on page 27 shows the relationships between the operator identification
table (OIT), the span name table (SNT), and ART. The relative position of an entry in
the operator identification table is represented by the bit position of each entry in
the span name table (n bits). The relative position of an entry in the span name
table is represented by the bit position of each entry in the authorization and
resource table (m bits).

For example, if a user wishes to find whether a particular operator is authorized to
issue commands for a particular resource, follow this procedure:

• Use the OSIOIS macro instruction to find the position of the operator's identifica­
tion in the OIT table. The identification is put in the fullword area pOinted to by
the OPID operand of the macro instruction. The relative position is returned to
the fullword area pOinted to by the OITPOS operand.

26 NetView Customization: Assembler

• Use the DSISSS macro instruction to search the SNT for the bit position that cor­
responds to the location of the operator identification entry in the OIT. The bit
position is specified by the OITPOS operand of the macro instruction. It is best
to begin the search at the beginning of the span name table. The SNT address
(MVTSNT) is found in the NetView main vector table (MVT). Refer to "MVT -
Main Vector Table" on page 142 in this book. The address of the first span
entry that corresponds with a bit set to 1 is returned to the fullword area speci­
fied by the SNTADDR operand of the macro instruction. Because it is the address
of the entry and not its relative position that is returned, the starting address
should be stored in another area to be used in any calculations that may be
required to establish the entry's position.

• Create a mask byte to check the bit position of the authorization and resource
table (ART) that corresponds to the span name table entry position.

• Use the DSIRDS macro instruction to find the address of the specific entry for the
resource. The address of the entry is returned to a fullword area specified by
the ARTPOS operand of the macro instruction. The resource name is specified
on the LUNAME operand.

• Use the mask byte to check whether the corresponding bit is set to 1.

In the example shown in Figure 5, the DSIOIS macro can be used to determine the
position of the identification OPID2 in OIT. Position 2 is returned to the area specified
by OITPOS. DSISSS can then be used to check bit position 2 in SNT. The first span
name with 1 in that position is SPAN2. The address of that entry is returned to the
area specified by SNTADDR. Using the starting address and the address returned,
and dividing the difference by the length of the SNT entries {found (MVTSNTLN found
in MVT), the relative position of SPAN2 can be calculated. A mask byte can then be
prepared to test the bit position corresponding to SPAN2 in ART. The DSIRDS macro
instruction can then be used to find the address of the resource name in ART. If LU2

is specified in the area pointed to by the LUNAME operand, it is the second entry in
ART. The mask byte can then be used at that location, showing that the operator
whose identification is OPID2 can issue commands for LU2. If a match is not found,
DSISSS can be invoked again to find another span. The starting address specified
for the SNTADDR operand should be the address of the entry immediately following
SPAN2. This process can be repeated until a span is found or the end of the table is
reached.

m Bits
DSIOIT Flag Bytes

r-----r--- '------.

DSISNT n Bits DSIART -r ~

r ,

r-----1~ OPI D 1 SPAN1 1010101010101 LU1 01100011

----+ SPAN2 1101101100011 LU2 01101101

SPAN3 0010011101100 LU3 11001100

SPAN4 0011011011101 LU4 00110010

~ ~ ~~

Figure 5. Table Field Relationships

Chapter 2. Designing Your Assembler Module 27

DST (Data Service Task) Unique Services
Access to CNM (Communication Network Management) data and VSAM files is pro­
vided by the DSIZCSMS (CNM Service) and DSIZVSMS (VSAM Service) macros. These
macro services can only be used under DSTS. DSTS and their macro services are
described fully in Chapter 8 on page 161.

28 NetView Customization: Assembler

Chapter 3

Overview of User Exit Routines 31
Designing and Coding a User Exit Routine ;. 33

Input ... 33
Output .. 33

Deleting Messages 34
Replacing Messages 34
Message Flow and Interception Points 34
OST/NNT Task .. 35
PPT Task Including Messages to the Authorized Receiver 35

Control Blocks .. 36
Summary of User Exits 36

DSIEX01: Input from the Operator .. 36
DSIEX02: Output to the Operator 37
DSIEX02A: Output to the Operator 37
DSIEX03: Input Before Command Processing 38
DSIEX04: Log Output 38
DSIEX05: Before VT AM Command Invocation 39
DSIEX06: Solicited VTAM Messages 39
DSIEX07: Cross-Domain Command Send 40
DSIEX08: Cross-Domain Message Receive 40
DSIEX09: Output to the System Console 40
DSIEX10: Input from the System Console 41
DSIEX11: Unsolicited VTAM Messages 41
DSIEX12: Logon Validation 41
DSIEX13: OST/NNT Message Receiver 42
DSIEX14: Before Logoff 42
DSIEX16: Post-Message Automation Table Exit 42
BNJPALEX: Alert Generation Exit Routine 43
XITBN: BSAM Empty File 44
XITBO: BSAM Output 44
XITCI: CNM Interface Input 44
XITCO: CNM Interface Output 46
XITDI: Data Services Task (DST) Initialization 46
XITVI: VSAM Input 46
XITVN: VSAM Empty File 47
XITVO: VSAM Output 47
XITXL: External Logging 47

Unused User Exits 48
Installing a User Exit Routine 48
Template for a User Exit Routine 48

© Copyright IBM Corp. 1989 Chapter 3 29

30 NetView Customization: Assembler

Chapter 3. Writing User Exit Routines

This chapter illustrates how to design, code, and install user exit routines that take
advantage of the NetView program's exits at strategic processing points.

Overview of User Exit Routines

© Copyright IBM Corp. 1989

You can write user exit routines to view, delete, or replace data flowing to, from, or
through NetView. For example, your code can examine the messages passing
through NetView, record relevant data, and initiate work requests based on the
data. In addition, your code can delete any unnecessary message from further
processing or substitute a modified message in place of the original message.
Thus, user exit routines handle a specific event with non-standard processing and
automate processes based on message information.

NetView provides two types of user exits for which you may write routines:

• Global user exits (osIExnn), which apply to all NetView tasks. The global user
exit routines are loaded when NetView starts. See Table 2 on page 32 for a
list of user exits.

• OST user exits (xlTnn and BNJPALEX), which apply only to OST subtasks. (BNJPALEX
is MVS only.) The OST user exit routines are loaded when the associated OST
starts. Each OST can have its own set of user exit routines. The BNJPALEX exit
routine runs under the BNJOSE36 OST.

Note: OST user exits should not be used under the Network Product Support (NPS)
task named OSIGOS.

You should avoid coding user exits for frequently executed functions, such as VSAM
110, since performance can be degraded significantly.

Each user exit handles a particular event, such as the reception of data from the
system console. When that event occurs, NetView passes control to the appro­
priate user exit routine for processing. After processing, the user exit routine
returns control and passes a return code to NetView. Optionally, up to 10 OST exit
routines can be concatenated. In this case, the first OST exit routine returns control
to NetView. If the first exit did not indicate USEROROP, NetView then calls the next
one in the sequence. This process continues until the last OST exit has returned
control to NetView or USEROROP is indicated.

You do not need to write a routine for each user exit. See "Unused User Exits" on
page 48 for more information.

Chapter 3. Writing User Exit Routines 31

Table 2. User Exit Environments

Exit Description Applicable Tasks TVBINXIT REENTRANT

DSIEX01* Input from the Operator OST with VT AM On Yes
terminal

DSIEX02 Obsolete; replaced by DSIEX02A

DSIEX02A Message Output this Domain or NNT, OST, PPT On or Off Yes
Message Output Cross-Domain NNT,OST,

CNMCSSIR

DSIEX03 Input Before Command Processing NNT,OST,PPT Off Yes
HDRTYPEX Cross-Domain Return NNT
Command Receive

DSIEX04 Log Output for Buffers not Processed Main Task or Any On or Off Yes
by DSIEX02A Subtask

DSIEX05 Before VTAM Command Invocation** NNT,OST,PPT Off Yes

DSIEX06 Solicited VTAM Messages" NNT,OST,PPT Off Yes

DSIEX07 Cross-Domain Command Send NNT,OST Off Yes

DSIEX08 Obsolete

DSIEX09 Output to the System Console Main Task or Any On or Off Yes
Subtask

DSIEX10 Input from the System Console Main Task Off No

DSIEX11 Unsolicited VTAM Messages" PPT Off No

DSIEX12 Logon Validation NNT,OST Off Yes

DSIEX13 OST INNT Message Receiver NNT,OST,PPT Off Yes

DSIEX14 Before Logoff NNT,OST Off Yes

DSIEX16 Post-Message Automation Table Exit NNT,OST,PPT On Yes
CNMCSSIR

BNJPALEX Screen 4700 loop alerts DST (BNJDSE36) Off Yes

XITBN BSAM Empty File DST Off No***

XITBO BSAM Output DST Off No***

XITCI CNM Interface Input DST Off No***

XITCO CNM Interface Output DST Off No***

XITDl DST Initialization DST Off No***

XITVI VSAM Input DST Off No***

XITVN VSAM Empty File DST Off No***

XITVO VSAM Output DST Off No"*

XITXL External Logging DST Off No"*

Note:

* Does not apply to AUTOTASK and MVS console task.
** When using NetView POI only. Does not include messages from MVS/XA 551. You can process these

messages in DSIEX02A.

*** If used by more than one DST, then they must be reentrant.

32 NetView Customization: Assembler

Designing and Coding a User Exit Routine

Input

Output

User exit routines must adhere to the guidelines for user-written programming
described in "General Coding Guidelines" on page 8. In addition, user exit rou­
tines must conform to the special requirements described in this section. After
coding your user exit routine, follow the instructions under "Installing a User Exit
Routine" on page 48.

Upon entry to the user exit routine, the registers contain the following information:

Register

1

13

14

15

0,2- 12

Contents

The address of the user exit parameter list (USE). The USE contains
the following:

• The address of a service work block (SWB) to be used as a work
area or to request services from NetView (USERSWB). If you use
the SWB for your save area or for dynamic variables, you must
obtain another SWB when invoking NetView macros.

• The address of the message buffer (USERMSG)

• The address of the TVB.

The address of a standard 72-byte save area used to store the
caller's registers.

The return address.

The entry address of the user exit.

Unspecified.

User exit routines pass the following return codes to NetView in register 15 to indi­
cate that the messages are to be unchanged, deleted, or replaced:

Return Code

USERASIS (0)

USERDROP (4)

USERSWAP (8)

Meaning

Use the message as presented to the user exit; do not delete or
replace it.

Delete the message from the terminal and from the network log,
system log, and hard copylog; stop processing before the
message appears on the screen. For more information on how
to delete messages, see "Deleting Messages" on page 34.

Rep/ace the message with the message addressed in register O.
For more information on how to replace messages, see
"Replacing Messages" on page 34.

Do not change any input, particularly the USERMSG buffer in the USE control block.
Aside from register 15 (and register 0 if USERSWAP is returned), the other registers
should be restored without change. See the specific user exit descriptions under
"Summary of User Exits" on page 36 for additional return code considerations.

Chapter 3. Writing User Exit Routines 33

Deleting Messages
If you want a message logged but not displayed, you can set the appropriate
display and logging flags in the IFRCODAI (see "IFR -Internal Function Request" on
page 133) in user exit DSIEX02A.

To delete a message entirely, use return code USERDROP. NetView will free the
message buffers using DSIFRE. Therefore, the user exit should not free the buffers.

When NetView receives a USERDROP return code, no further exit routines are called.
Thus, if you have concatenated DST exit routines, a USERDROP return code prevents
the next exit routine from being called.

When processing a single line of a title-line message, (HDRTYPEJ, HDRTYPEK, or
HDRTYPEL) do not delete a CONTROL, LABEL, or END line unless the entire message is
deleted. When processing a title-line message formatted as an IFRCODAI, you may
delete any line. For example, if DSIEX06 deletes message IST3141 END (only), proc­
essing of the entire title-line message (of which this is the END line) would be dis­
rupted. However, if DSIEX02A deletes IST3141 END, then the remainder of the title-line
message would be displayed normally.

Replacing Messages
When replacing a message, the new message must either be a static message or
be in a buffer in a reentrant storage area, such as the SWBADATD or SWBPLIST areas
of the USE control block's USERSWB. Only the text portion of the buffer is swapped.
Also, make sure that HDRMLENG of the new message is less than or equal to
HDRMLENG of the original message. Do not replace a message with a new message
that is longer, unless the message is formatted as an IFRCODAI.

If you want to replace a title-line message, do not change the HDRMTYPE or HDRIND

fields in the buffer header. For more information on title-line messages, see "Title­
Line Output" on page 19.

When processing a single line of a title-line message (HDRTYPEJ, HDRTYPEK, or
HDRTYPEL), do not replace any lines or the sequence and format may be lost. When
processing a title-line message formatted as an IFRCODAI, you may replace any line.

User exit DSIEX02A provides a more flexible interface for replacing messages
including title-line and MLWTO (multiline write-to-operator) type messages. See
"DSIEX02A: Output to the Operator" on page 37.

You can concatenate DST user exit routines when replacing messages. In this case,
the buffer containing the replacement message becomes the input for the subse­
quent DST user exit routine.

Message Flow and Interception Points
The following is the sequence of decisions made in handling a message in
NetView. This information may be useful in determining what forms of message
processing would be most efficient to meet the performance objectives at your
installation.

If a message is suppressed, dropped, or deleted, the message is removed from the
flow and does not proceed further.

34 NetView Customization: Assembler

OST/NNT Task
• If the message is solicited from VTAM via the POI interface:

If this is one of the messages that status monitor uses to update network
status, it is processed by status monitor.

If there is a user exit DSIEX06 (solicited access method message input), the
exit is invoked. Deleted messages are not processed further.

• Exit DSIEX02A is called (if one exists). If the exit indicates that the message is to
be dropped, it is deleted.

• The message is checked to see if it satisfies an &WAIT condition in a NetView
command list or a TRAP condition in a REXX or high-level language command
procedure. With the SUPPRESS option, the message is marked for deletion
unless DSIEX16 specifies otherwise.

• Message automation table processing begins. Table actions are reflected in
the buffer structure given to DSIEX16.

• DSIEX16 is called.

The message automation table and DSIEX16 are called only once for each
unique message in a NetView domain. Any copies of the message made by
the ASSIGN command or the message automation table will not result in a call to
the message automation table or DSIEX16 in this NetView domain.

• Logging, display, routing, and command actions are processed as specified in
the buffer in combination with the current DEFAULTS and OVERRIDE settings.

• If the message is displayed and copies have been assigned by the ASSIGN

command with the COpy option, a copy is sent to each assigned operator. The
copied messages cannot be automated by the message automation table.

PPT Task Including Messages to the Authorized Receiver
• If the message is from VTAM via the POI interface:

If this is one of the messages that the status monitor uses to update
network status, it is processed by the status monitor.

If there is a user exit DSIEX11 (unsolicited message) or DSIEX06 (message
solicited by a VTAM command issued under the PPT task), the proper exit is
invoked. Deleted messages are not processed further.

VTAM commands and messages received due to the VTAM start option
PPOLOG=YES (such as those entered from the system console and merely
echoed to NetView) are logged only. They will not be automated.

• If the message has been assigned using the ASSIGN command with the PRI and
SEC options, each assigned operator will be sent a copy of the message. These
messages then proceed through the OST/NNT flow for those particular operators,
but the secondary (SEC) copies will not be processed by the message auto­
mation table or DSIEX16.

• If the message has not been assigned, it is sent to the authorized message
receiver and proceeds through the OST/NNT flow for that operator. See the
NetView Administration Reference for information on how the authorized
message receiver is determined.

• If the message has not been assigned and no authorized message receiver is
logged on to NetView, the flow continues as follows:

Chapter 3. Writing User Exit Routines 35

Control Blocks

Exit DSIEX02A is called (if one exists). If the exit indicates that the message
is to be dropped, it is deleted.

Message automation table processing begins. Table actions are reflected
in the buffer structure given to DSIEX16.

DSIEX16 is called.

The message automation table and DSIEX16 are called only once for each
unique message in a NetView domain. Any copies of the message made
by the ASSIGN command or the message automation table will not result in
a call to the message automation table or DSIEX16 in this NetView domain.

Logging, routing, and command actions are processed as specified in the
buffer in combination with the current DEFAULTS and OVERRIDE settings.

If the message is to be displayed, it is written to the system console.

The service facilities used in your user exit routine always dictate which control
blocks you must include in your routine. However, you will always need these
three control blocks:

• The user exit parameter list (USE)

• The main vector table (MVT)

• The service work block (SWB).

Use macro DSICBS to include these and any additional control blocks your routine
needs. For details, see "DSICBS - Control Block Services" on page 162 and the
control block descriptions in Chapter 7 on page 119.

Summary of User Exits
This section describes each user exit that NetView provides, including examples of
use and coding requirements.

DSIEX01: Input from the Operator
Description: NetView calls DSIEX01 when an operator provides standard-mode
input to an OST or when an NNT receives cross-domain input. DSIEX01 runs after
device-dependent data has been removed from the input buffer but before syntax
or command verbs are analyzed and before the message is logged. All commands
issued from the command facility, hardware monitor, or the threshold analysis and
remote access feature are passed to exit 01. (Hardware monitor and the threshold
analysis and remote access feature commands have a prefix: "CMD==> or
CMD=>"). All regular commands, including those from the command facility, hard­
ware monitor, or the threshold analysis and remote access feature are passed to
exit 03.

Example of Use: You can use DSIEXOl to count the times an immediate command
has been called.

Coding Considerations: DSIEXOl follows the coding guidelines given under
"Restrictions when TVBINXIT is On" on page 9. DSIEXOl does not apply to unat­
tended operator tasks and MVS console operator tasks.

36 Netview Customization: Assembler

DSIEX02: Output to the Operator
Description: This exit is obsolete.

DSIEX02A: Output to the Operator
Description: NetView calls DSIEX02A for standard output to an operator's terminal
(DSIPSS TYPE = OUTPUT, DSIPSS TYPE = IMMED, or FLASH). DSIEX02A runs before the device­
dependent output is inserted and before the data is logged.

The TVBINXIT bit in DSITVB indicates the environment in which the user exit routine is
running. For more information on TVBINXIT, see page 8.

Example of Use: Since the message has been formatted but not yet displayed or
logged, you can use DSIEX02A to delete or replace the message before it is auto­
mated, logged, or displayed.

If your messages will be translated (such as to Kanji), changes to the message text
may affect the translations. (See NetView Installation and Administration Guide for
more information.)

Coding Considerations: If TVBINXIT is on, DSIEX02A follows the coding guidelines
given under "Restrictions when TVBINXIT is On" on page 9.

Do not use macro DSIPSS in this user exit routine. If a message is required, use
DSIMQS to queue the message to the subtask.

Since NetView does not check the syntax of messages that are sent to a terminal,
DSIEX02A does not receive a parse descriptor block (PDB).

Message automation is invoked after this exit routine has been called; therefore,
any changes made for messages in this user exit may affect message automation.
Message automation is not invoked for a message that has been deleted by this
exit routine.

DSIEX02A provides the following additional features not available in other exits:

• The NetView buffer passed to this exit is an IFRCODAI internal function request.
You will need to reference the IFR control block rather than the BUFHDR.

• For single line messages, multiple line messages, and title-line messages, this
buffer points to the entire chain of buffers that comprise the message.

All chained buffers can be replaced by using DSIGET for non-queued subpool zero
storage for new buffers and copying or replacing all the data in the old buffers.
Any original buffers passed to the exit should be either freed or passed back to
NetView on the return. The unused bu'ffers must be freed using DSIFRE for non­
queued subpool zero storage. You must be careful to initialize all necessary fields
in all buffers and copy any reserved or unused header information from each of the
buffers. (The IFRCODAI buffer should not be freed.)

Note: NetView will free all returned buffers that are in the IFRCODAI format.

The IFRCODAI contains control information and MVS system data which should only
be accessed through the provided NetView message table and command list inter­
faces. Unauthorized modification of these fields may cause processing, logging, or
display loops.

Under MVS/XA, DSIEX02A is supported only in 31-bit addressing mode.

Chapter 3. Writing User Exit Routines 37

Return Code Considerations:

Return Code Meaning

USER DROP NetView will free all of the buffers passed to the exit. Thus DSIEX02A

should not DSIFRE the buffers when using USERDROP. Buffers to be
freed by NetView are pointed to by USERMSG.

USERSWAP NetView requires register 0 to point to the original buffer that was
passed to the user exit. If the buffer chain is modified, pointers
within the buffers that are used for chaining purposes will also
have to be changed (such as IFRAUTBA, IFRAUTBL. and HORNEXTM).

You must free any data buffers you remove from the IFRAUTBA

chain. NetView will free all returned buffers based upon the
address in register 0, including the IFRCOOAI buffer.

USERASIS NetView uses and frees the original buffers using USERMSG.

Note: USERSWAP is identical in function to USERASIS except that register 0 is used
instead of USERMSG to find the buffers.

DSIEX03: Input Before Command Processing
Description: All regular commands call OSIEX03. This type of command includes
the following:

• Commands issued by a command procedure
• Commands received from another subtask
• Commands used to start the hard-copy log at logon
• Commands used as the initial command
• Commands resulting from the messag'e automation table
• Commands entered for an MVS console operator task
• Commands entered from a terminal
• Commands received as HORTYPEX messages from an NNT

• Commands queued with EXCMO.

Before running, all commands are passed to either OSIEX01 or OSIEX03. Immediate
commands are passed to DSIEX01. Regular commands entered from a command
facility, threshold analysis and remote access feature or hardware monitor screen
are passed to OSIEX01 and OSIEX03. The remaining command types previously listed
are passed to DSIEX03.

Example of Use: You can use OSI8(03 to restrict usage of particular, regular com­
mands if your conditions are more complex than those provided by scope
checking.

Coding Considerations: None.

DSIEX04: Log Output
Description: NetView calls DSIEX04 during the logging and tracing processes.
OSIEX04 is located within log services and applies to messages logged on the
network log, the external trace log, the MVS system log, and the hard-copy log, It
runs before the message is reformatted and sent to the log.

OSIEX04 is not called if OSIEX02A is called since logging options may be specified
either in OSIEX02A or in the message automation table. DSIEX04 is called only if the
OSIWLS macro is issued from other than a OSIPSS request.

38 NetView Customization: Assembler

Example of Use: You can use OSIEX04 to edit information sent to the network log, to
the MVS system log, or to the hard-copy log. You can send certain messages to a
specific log or to no log at all.

Coding Considerations: If TVBINXIT is on, OSIEX04 follows the coding guidelines
given under "Restrictions when TVBINXIT is On" on page 9.

Do not use macro OSIWCS or OSIWLS in this user exit routine.

Since OSIEX04 can run under any subtask that issues macro OSIWLS, be sure that any
service facilities you request are supported by the subtask under which the routine
is running. For example, the OST subtask is restricted to VSAM or CNM interface ser­
vices.

Since NetView does not check the syntax of messages that are sent to a log, OSIEX04

does not receive a parse descriptor block (POB). See "PDB - Parse Descriptor
Block" on page 146, if you wish to parse the messages in OSIEX04.

Return Code Considerations: OSIEX04 may pass four other return codes in addition
to USERASIS. USERDROP. and USERSWAP.

Return Code Meaning

USERLOG Write the message to the network or MVS system log only.

USERLOGR Write the substituted message to the network or MVS system log
only. The address of the buffer containing the new message is in
register O.

USERHCL Write the message to the hard-copy log only.

USERHCLR Write the substituted message to the hard-copy log only. The
address of the buffer containing the new message is in register O.

DSIEX05: Before VT AM Command Invocation
Description: NetView calls OSIEX05 when preparing to pass a command to VTAM via
the POI interface; domain qualifiers have been removed and all span checking has
been completed.

Example of Use: You can use DSIEX05 to verify that an operator is authorized to
issue a particular command.

Coding Considerations: Code the routine to handle both the OST and PPT control
block structures.

This exit applies only to commands entered directly (not using the I MVS I prefix)
that are passed through NetView's POI.

Note: Commands passed to OSIEX05 have already been processed under DSIEX03

(and, perhaps, OSIEX01).

DSIEX06: Solicited VT AM Messages
Description: NetView calls OSIEX06 when it receives a solicited VTAM message via
the POI interface, which is generated in response to a VTAM command the user
issued or the PPT issued. The message has not yet been processed or logged.

Example of Use: You can use OSIEX06 to change the message number or text of a
VTAM message or to process VTAM messages.

Chapter 3. Writing User Exit Routines 39

Coding Considerations: Code the routine to handle both the OST and PPT control
block structures.

This exit applies only to messages received through NetView's POI in response to
commands entered directly (not using the' MVS I prefix).

Message automation is invoked after this exit routine has been called; therefore,
any changes made for messages in this user exit may affect message automation.
Message automation is not invoked for a message that has been deleted by this
exit routi ne.

Note: Messages processed (and not dropped) by DSIEX06 will subsequently be
processed by DSIEX02A.

DSIEX07: Cross-Domain Command Send
Description: NetView calls DSIEX01 before commands are sent cross-domain to an
NNT (DSIPSS TYPE=XSEND).

Example of Use: You can use DSIEX01 to monitor cross-domain traffic through the
network.

Coding Considerations: Do not use DSIPSS TYPE = XSEND in this user exit routine.
Also, avoid directly calling commands that route a command to another domain,
such as ROUTE, DISPLAY, or VARY. If necessary, you may queue such commands for
execution (see "Simulating Terminal Input" on page 22 and "Building an
IFRCODCR" on page 23).

DSIEX07 does not receive aPDB. The cross-aomain NetView parses the messages
after they are received. See "PDB - Parse Descriptor Block" on page 146, if you
wish to parse the messages in DSIEX07.

DSIEX08: Cross-Domain Message Receive
Description: This exit is obsolete.

Migration Considerations: Rewrite code into DSIEX03 and DSIEX02A using HDRDOMID
to identify commands and messages received from other domains.

DSIEX09: Output to the System Console
Description: NetView calls DSIEX09 when a message is written to the system
console operator using macro DSIWCS. The message has not been formatted for
transmission.

Example of Use: You can use DSIEX09 to edit messages sent to the system console.

Coding Considerations: If TVBINXIT is on, DSIEX09 follows the coding guidelines
given under "Restrictions when TVBINXIT is On" on page 9.

DSIEX09 is called as a result of DSIWCS macro calls. The output of the MVS console
operator task (OST) is processed in DSIEX02A instead of DSIEX09.

Do not use macros DSIWCS or DSIMQS in this user exit routine. If you need to send a
message to the system console from this exit routine, use system macros instead.

Since NetView does not check the syntax of messages that are sent to the system
console, DSIEX09 does not receive a parse descriptor block (PDB). See "PDB -
Parse Descriptor Block" on page 146, if you wish to parse the messages in DSIEX09.

40 NetView Customization: Assembler

DSIEX10: Input from the System Console
Description: NetView calls DSIEX10 when input is received from the system console
operator. The exit is called after the command has been entered but before it is
invoked or logged.

Example of Use: You can use DSIEX10 to allow the system console operator to
enter command abbreviations and synonyms. These could then be expanded in
the user exit routine.

Coding Considerations: DSIEX10 can only be called from the main task, not from a
subtask.

DSIEX10 does not receive a parse descriptor block (PDB). See "PDB - Parse
Descriptor Block" on page 146, if you wish to parse the messages in DSIEX10.

DSIEX10 is not called for commands entered by an operator using an MVS console
operator task (OST). DSIEX03 is called instead.

DSIEX11: Unsolicited VT AM Messages
Description: NetView calls DSIEX11 when an unsolicited VTAM message is received
via the POI interface. In addition, when VTAM'S PPOLOG=YES modify or start option is
used, copies are presented to DSIEX11. This user exit is called before the resource
name is analyzed and before the message is logged.

Example of Use: DSIEX11 can issue macro DSIMQS to send a copy of the message
buffer prior to processing by NetView. If you want to send unsolicited messages to
all operators, DSIEX11 can transform the messages into MSGALL commands.

Coding Considerations: If DSIEX11 calls a command or a command procedure, the
command restrictions for the PPT apply.

Message automation is invoked after this exit routine has been called; therefore,
any changes made for messages in this user exit can affect message automation.
Message automation will not be invoked for a message that has been deleted by
this exit routine.

DSIEX12: Logon Validation
Description: NetView calls DSIEX12 at the completion of the logon process, after the
logon has been accepted by NetView.

Example of Use: You can use DSIEX12 to perform additional checking of authori­
zation and environmental customization. DSIEX12 can also send messages to other
operators.

Coding Considerations: If output to the screen is required, use only the following
DSIPSS TYPES: SCRSIZE, WINDOW, ASYPANEL, CANCEL, PSSWAIT, and TESTWAIT.

Return Code Considerations: If the user exit routine issues a return code of zero,
the logon proceeds. If specified, your hard-copy log starts and the initial command
runs. If the issued return code is nonzero, the operator is logged off.

This exit is called under all OST and NNT tasks including unattended-operator and
MVS- console-operator tasks.

Chapter 3. Writing User Exit Routines 41

DSIEX13: OST INNT Message Receiver
Description: NetView calls DSIEX13 when either a message buffer or a user-defined
internal function request (IFRCODUS) is received through macro DSIMQS. DSIEX13 is
called within the message receiver for subtask-subtask communication. A
message buffer is any nOn-HDRTYPEI (IFR) buffer.

Example of Use: You can use DSIEX13 in conjunction with IFRCODUS to initiate a user
function with a buffer. Code DSIEX13 to perform the user function specified by
IFRCODUS.

Coding Considerations: None.

Return Code Considerations: When DSIEX13 returns, these buffers are written to the
operator terminal with DSIPSS TYPE = OUTPUT, unless return code 4 is issued. The
messages are logged after user exit DSIEX02A is called.

DSIEX14: Before Logoff
Description: NetView calls DSIEX14 when an OST or NNT subtask is preparing to end
for any of these reasons:

• If LOGOFF is entered at the operator's terminal
• If the subtask LOSTERM exit is driven (VTAM)
• If the subtask is posted to terminate.

The subtask cannot communicate with the operator's terminal at this point. It is
pOSSible, however, to issue macro DSIWCS to write to the system console and macro
DSIWLS to write entries to the log.

Example of Use: You can use DSIEX14 to save accounting information or update
tables.

Coding Considerations: Because there is no buffer associated with logoff proc­
essing, DSIEX14 receives neither an input buffer nor a PDB.

Return Code Considerations: NetView ignores any return code received from this
user exit routi ne.

DSIEX16: Post-Message Automation Table Exit
Description: NetView calls DSIEX16 immediately after a message has been consid­
ered for automation under the display services (DSIPSS) of NetView. DSIEX16 can be
run under the OST, NNT. PPT, or CNMCSSIR task. It receives a description of the total
processing to be performed on the message. This exit is called just before logging,
display, routing, or command actions are processed. This exit is not called for
messages that are deleted by DSIEX02A. However, this exit is called for messages
that are suppressed by &WAIT, TRAP and SUPPRESS, or the automation table. Message
automation table processing occurs before DSIEX16 is called, and the resultant
actions are scheduled immediately after this exit.

Example of Use: You can use this exit to modify the processing options for the
message and specify or substitute new logg_ing, display, command, or routing
actions independently of one another.

This exit can reformat messages by removing buffers, changing buffers, and
adding entirely new buffers to the original message. This exit can prevent OVERRIDE
command options from taking effect for messages. This exit can also help monitor
the effectiveness of message suppression and automation.

42 NetView Customization: Assembler

Coding Considerations: TVBINXIT will be on when called for DSIPSS TYPE=IMMED. For
more information see "Restrictions when TVBINXIT is On" on page 9. Do not use
DSIPSS in this exit routine. New messages may be issued by chaining them to the
original message structure. DSIEX16 does not receive a parse descriptor block.
DSIEX16 uses the IFRCODAI internal function request similar to DSIEX02A.

NetView uses the USERMSG field on return as the chain of IFRCODAI structures to be
processed. If USERMSG is set to zero by DSIEX16, the user exit must free all buffers
passed. These buffers are non-queued, subpool-zero storage. The buffers are
31-bit mode only for MVS/XA. When USERMSG is non-zero, it must point to the chain
of IFRCODAI buffers.

Return Code Considerations: DSIEX16 does not require the use of register 15 return
codes. Buffer deletion is indicated by setting USERMSG to zero after freeing any
remaining buffers. Buffer substitution is done by manipulating the buffer structures
dynamically.

BNJPALEX: Alert Generation Exit Routine
Description: When BNJPALEX is given control, register 1 pOints to a single element
parameter list that points to the following data structure:

AL4

AL4

AL4

AL4

CL8

XL8

XL2

XL2

XL1

XL1

CL1

Address of the first extended statistical counter

Address of an 8-byte user text area

Address of the first extended statistical counter

Address of an 8-byte user text area

Controller name

Extended statistical counter threshold exceeded bit map (nth bit on indicates
that the nth extended statistical counter exceeded the threshold)

Loop Basic Counter 2 threshold

Extended statistical counter threshold

Loop Basic Counter 2 counter value

Count of extended counters reported (maximum 64)

Alert type byte

X'01' Extended statistical counter(s) exceed threshold.

X'02' Loop Basic counter exceeds threshold.

X'03' Both counter types exceed thresholds.

When BNJPALEX returns control to the 4700 support facility, register 15 return codes
indicate what is to be done with the alert. The following are the only permissible
values for register 15:

o Issue the alert.

4 Issue the alert and include the eight bytes of user text located in the user text
area.

8 Do not issue the alert.

Coding Considerations: Each time the 4700 support facility receives data from the
4700 network, it analyzes that data with respect to user-defined error thresholds.
Whenever a threshold is exceeded, the 4700 support facility issues an alert
message to the NetView authorized receiver. A program exit is provided by the

Chapter 3. Writing User Exit Routines 43

4700 support facility for screening the loop error alerts (either Loop Basic Counter
2 or extended statistical counter alerts). The optional user-written exit routine may
add up to eight bytes of user text in the alert message or it may completely sup­
press the alert.

If the exit is to be included in the system, it must be linked into a load library speci­
fied in the STEPLIB of the NetView start procedure. The name of the load module as
well as it's entry pOint must be BNJPALEX. The exit must be written as a reentrant
CSECT.

If BNJPALEX has not been coded, whenever the BNJOSE36 task is started, a message
(IEA1031 for MVS/XA) will be displayed indicating the LOAD has failed. In this case, the
issuance of the IEA1031 (for MVS/XA) message is normal.

For an example of an exit routine see IBM 360014700 Threshold Analysis and
Remote Access Feature Installation and Custom;zat;on Guide.

XITBN: BSAM Empty File
Description: The OST calls XITBN if the OST encounters a BSAM open failure because
of an empty data set or file.

Example of Use: You can use XITBN to place a record in the empty data set. You
should code this user exit only if you wish to write your own BSAM subtask using OST

as a base.

Coding Considerations: XITBN can only use the service facilities available to the
OST subtask, excluding macros OSIZVSMS and OSIZCSMS.

Return Code Considerations: To initialize the BSAM data set or file, return the
USERSWAP return code and have register 0 point to a buffer that contains the record
to be used. A return code other than USERSWAP causes the OST to end.

XITBO: BSAM Output
Description: The OST calls XITBO immediately before the record is written to the
BSAM data base.

Example of Use: You can use XITBO to modify the record before it is sent to the
BSAM data set or file.

Coding Considerations: XITBO can only use the service facilities available to the
OST subtask, excluding macros OSIZVSMS and OSIZCSMS.

You should avoid coding user exits for frequently executed functions, such as BSAM

110, since performance can be degraded significantly.

XITCI: CNM Interface Input
Description: The OST cal1s XITCI after CNM data is received.

Example of Use: You can use XITCI to modify CNM interface input data (Deliver RU).

Coding Considerations: XITCI can only use the service facilities available to the OST

subtask, excluding macros OSIZVSMS and OSIZCSMS.

Unsolicited cross-domain alerts can cause this user exit to gain contro\. To deter­
mine if the alert came from the local CNMI or the distributed host CNMI, the user exit

44 NetView Customization: Assembler

should check the OSRBCPMS flag. If OSRBCPMS is on, the alert was generated from
the distributed host CNMI.

If a substitute buffer is returned in register 0, the data must be a valid SNA request
unit (RU). See Systems Network Architecture Product Formats for a discussion of
RU formats. .

XITCI invoked under the OSICRTR subtask allows access to unsolicited CNM data prior
to NetView routing (except for cross-domain alerts, which are only accessible
under the BNJOSERV subtask). XITCI invoked under any other OST will allow access to
CNMI data (both solicited and unsolicited) peculiar to that OST. For example, if an
XITCI exit is specified for the BNJOSERV OST, it would be invoked for any solicited or
unsolicited data that the hardware monitor processes.

For cross-domain alerts, the OSRBCPMS bit should not be turned off by the user exit.
Upon entry to the user exit, HORTOISP is the offset to the focal pOint transfer RU

Header (NMVT follows the header, for a mapping of this header, please refer to the
control block section). HORMLENG is set to the length of the RU header plus the
length of the NMVT. If a substitute buffer is returned, it should be a valid NMVT and
only the NMVT data area can be changed. The RU header must remain and the user
must copy the RU header into his buffer. The HORTOISP of the user buffer should be
the offset to the RU header and HORMLENG should be the length of the RU header (44
bytes) plus the length of the new NMVT. The length of the new NMVT cannot exceed
the original NMVT, else truncation results. NetView does not recommend substi­
tution of cross-domain alert buffers.

Network Services Request Units are routed as follows:

Request Header Value Responsible Subtask Name

RECMS X'010381' BNJOSERV

RECFMS X'41 0384' BNJOSERV and AAUTSKLP

ROUTE-INOP X'41 0289' AAUTSKLP

CNM X'810814' AAUTSKLP

NMVT X'41038D' As follows

NMVT Request Units are routed based upon the Major Vector Key:

Major Vector Responsible Subtask
Key Name

X'OOOO' BNJOSERV

X'OO01' BNJOSERV

X'OO10' AAUTSKLP

X'OO25' BNJOSERV

X'OO6F' OSIGOS

Chapter 3. Writing User Exit Routines 45

X'0080' AAUTSKLP

X'13FF' BNJOSERV

XITCO: CNM Interface Output
Description: The OST calls XITCO prior to a request for CNM interface output.

Example of Use: You can use XITCO to modify the request for CNM data (Forward
RU).

Coding Considerations: XITCO can only use the service facilities available to the
OST subtask, excluding macros OSIZVSMS and OSIZCSMS.

If a substitute buffer is returned in register 0, the data must be a valid SNA request
unit (RU). See Systems Network Architecture Technical Overview for a discussion
of RU formats.

XITOI: Data Services Task (OST) Initialization

XITVI: VSAM Input

Description: The OST calls XITOI for each statement read by the OST during initializa­
tion. When end-of-file is reached, this user exit is entered and two OSIUSE fields,
USERMSG and USERPOB, are set to zero indicating that there is no more data. You
can code up to 10 module names for each user-written exit routine. See NetView
Administration Reference for more information on XITOI during OST initialization.
Also see "Data Services Task (DST)" on page 86.

Example of Use: You can add XITOI to the OST initialization deck to provide user
initialization values to OST initialization.

Coding Considerations: XITOI can only use the service facilities available to the OST

subtask, excluding macros OSIZVSMS and OSIZCSMS. XITOI should not refer to OSRB

fields.

Note: If all initialization data is to be processed by XITOI, specify the OST initializa­
tion statement that identifies XITOI as the first statement in the OST initialization
member.

Return Code Considerations: XITOI can prevent the OST from processing a defi­
nition statement by passing return code USEROROP (4) in register 15.

When called for an end-of-file situation, a nonzero return code in register 15 indi­
cates that the OST should be stopped.

Description: The OST calls XITVI after a OSIZVSMS macro is issued. The record has
been read from the VSAM data base, but it is not yet passed to the requesting data
services command processor.

Example of Use: You can use XITVI to modify the record after it has been retrieved
from a VSAM data set or file.

Coding Considerations: XITVI can only use the service facilities available to the OST

subtask, excluding macros OSIZVSMS and OSIZCSMS.

You should avoid coding user exits for frequently executed functions, such as VSAM

110, since performance can be degraded significantly.

46 NetView Customization: Assembler

XITVN: VSAM Empty File
Description: The DST calls XITVN if the DST encounters a VSAM open failure because
of an empty data set or file.

Example of Use: You can use XITVN to place a record in the empty data set.
NetView provides its own XITVN for VSAM logs generated under DST. You should
code this user exit only if you wish to write your own VSAM subtask using DST as a
base.

Coding Considerations: XITVN can only use the service facilities available to the
OST subtask, excluding macros DSIZVSMS and DSIZCSMS.

Notes:

1. Only VSAM key-sequenced data sets (KSOS) are supported.

2. Do not replace NetView provided XITVN exits for the DSILOG and OS IT RACE sub­
tasks.

Return Code Considerations: To initialize the VSAM data set or file, return the
USERSWAP return code and have register 0 point to a buffer that contains the record
to be used. A return code other than USERSWAP causes the OST to end.

XITVO: VSAM Output
Description: The OST calls XITVO immediately before the record is written to the
VSAM data base.

Example of Use: You can use XITVO to modify the record before it is sent to the
VSAM data set or file.

Coding Considerations: XITVO can only use the service facilities available to the
OST subtask, excluding macros DSIZVSMS and DSIZCSMS.

You should avoid coding user exits for frequently executed functions, such as VSAM

110, since performance can be degraded significantly.

XITXL: External Logging
Description: The OST calls XITXL whenever data is to be sent to an external log
using OSIWLS with the EXTLOG parameter. For example, session monitor performs
external logging of response time and configuration data.

Example of Use: For VM, you can use XITXL to perform the actual logging, since SMF

is not available.

Coding Considerations: XITXL can only use the service facilities available to the
OST subtask. The buffer passed to the user exit contains the standard header, with
HDRTDISP pointing to control block OSIELB. The data that is to be logged follows
OSIELB.

Return Code Considerations: For MVS with SMF, the return codes are standard. For
MVS without SMF and for all other operating systems, NetView ignores the return
code and performs no further processing.

Chapter 3. Writing User Exit Routines 47

Unused user Exits
NetView attempts to load the global exits (DSIExnn) and the DST exits (xITnn) speci­
fied with DSTINIT statements. If a load attempt fails, NetView issues this message:

DSI09Gr LOAD FAILED FOR NCCF MODULE exitname

If you prefer not to receive this message, you may write a routine for the unused
user exit as shown below. However, since null exits slow performance, do not
create them (exits DSIEX02A and DSIEX16 are the exception). A null DSIEX02A or DSIEX16
does not degrade performance since no 31- to 24-bit address conversion is done.

exitname CSECT
SLR 15,15.
BR 14
END

Installing a User Exit Routine
Link-edit the user exit routine load module into the NetView load library. For
global user exits, use the appropriate DSIExnn name. For DST user exits, use a
name that you select. Use only one load module for each routine; conditional
selection at exit time is not allowed.

Global user exit routines are automatically loaded when NetView starts. DST user
exit routines are loaded when the DST starts, provided they have been specified in
the DSTINIT statement.

See "Preparing Your Code for Use" on page 4 for information on testing your exit
routine before use.

Template for a User Exit Routine
Figure 6 on page 49 shows the basic structure of a user exit routine, including
standard entry and exit linkage. This template will run as written for any of the
NetView user exits; however, it will perform no functions until you add your code at
the designated place in the template. It is available online in the NetView sample
library (SYS1.CNMSAMP) aSCNMS4282.

48 NetView Customization: Assembler

ATMPUXIT CSECT

*
* IEBCOPY SELECT MEMBER=«CNMS4282,ATMPUXIT,R))
*
* MODULE NAME:
*
* FUNCTION:
*
*
* INSTALLATION:
*
*
* INPUT:
*
*
*
*
* OUTPUT:
*

REG 1 - ADDRESS OF USER SERVICE BLOCK (DSIUSE)
REG13 - ADDRESS OF CALLER'S SAVE AREA
REG14 - RETURN ADDRESS
REG15 - ENTRY ADDRESS

* REGISTERS:
*
*
*
*
*
*
*
*
*
*
*

REG e - WILL CONTAIN ADDRESS OF USER SWAP BUFFER IF
USERSWAP RETURN CODE USED, ELSE RESTORED

REG 1 - REG14 - RESTORED UPON RETURN

REG 15 RETURN CODES:
USERASIS (e) - OK, CONTINUE PROCESSING
USERDROP (4) - DELETE DATA BUFFER AND END

PROCESSING
USERSWAP (8) - SWAP BUFFER SUPPLIED BY REG e

AND CONTINUE PROCESSING

* NETVIEW MACROS:
*
* DSICBS - CONTROL BLOCK SERVICE
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

PROLOG

USING *,15
B PROLOG
DC C'ATMPUXIT
OS eH
STM 14,12,12(13)
DROP 15
LR 12,15
USING ATMPUXIT,12
USING DSIUSE,l
L 11,USERSWB
USING DSISWB,ll
LA 2,SWBSAVEA
ST 2,8(,13)
ST 13,4(,2)
LR 13,2
LR 9,1

&SYSDATE. at &SYSTIME.'

SAVE REGISTERS

SAVE BASE REGISTER
REG 12 IS THE BASE
REG 1 POINTS TO DSIUSE
LOAD REG 11 WITH SWB ADDRESS
BASE SWB
GET ADDRESS IF SAVE AREA
SAVE REG 2
SAVE REG 13
REG 13 CONTAINS SAVE AREA ADDR
MOVE DSIUSE ADDRESS

Figure 6 (Part 1 of 4). Template for a User Exit Routine

Chapter 3. Writing User Exit Routines 49

DROP 1
USING DSIUSE,9
L le,USERPDB
USING DSIPDB,le
L 8,USERTVB
USING DSITVB,8
L 7,TVBMVT
USING DSIMVT,7

DROP ORIGINAL BASE
REG 9 POINTS TO DSIUSE
LOAD REG Ie WITH PDB ADDR
BASE THE PDB
ADDRESS THE TVB
BASE THE TVB
GET THE ADDRESS OF THE MVT
BASE THE MVT

* *
* NOW OBTAIN ANOTHER SWB IN ORDER TO ISSUE NETVIEW SERVICE MACROS *
* *

* NOTE:

*
*

DSILCS CBADDR=MYSWBPTR,SWB=GET GET A NEW SWB
SPACE 1
SEE DSISWB DSECT AT THE END OF THE LISTING
SPACE 1
LTR 15,15
BNZ ASIS

L
L
ST

5,MYSWBPTR
4, TVBTIB
4,SWBTIB-DSISWB(,5)

TEST DSILCS RETURN CODE
Simply Return
(Alternatively design and perform
some user notification)

POINT TO NEW SWB
PUT THE TIB ADDRESS IN REG 4
STORE MY TIB ADDR IN THE NEW SWB

*
*
*

THIS NEW SWB (MYSWBPTR) SHOULD BE USED FOR SERVICE MACROS.
*
*
*

*
*
*
*
*

PUT YOUR USER EXIT CODE HERE

BAL 14,FREESWB Free the MYSWBPTR SWB

*
*
*
*
*

* *
* Branch to return processing you require (ASIS. DROP. or SWAP)*

* PICK THE EXIT LINKAGE DESIRED FROM THE THREE BELOW:

*---
* ASIS: TO PROCESS THE BUFFER AS IT IS FROM HERE ON, RETURN FROM HERE
*---
ASIS LA

L
L
LM
BR

15,USERASIS
13.4(,13)
14,12(,13)
0,12,20(13)
14

SET AN ASIS RETURN CODE
RESTORE CALLER'S SAVE AREA ADDR
RESTORE CALLER'S REGISTER 14
RESTORE CALLER'S REGISTERS 0-12
RETURN TO CALLER

*---
* DROP: TO STOP FURTHER PROCESSING ON THIS BUFFER, RETURN FROM HERE
*---
DROP LA 15.USERDROP

L 13,4(,13)
L 14,12(,13)
LM 0,12.20(13)
BR 14
SPACE 1

SET A DROP RETURN CODE
RESTORE CALLER'S SAVE AREA ADDR
RESTORE CALLER'S REGISTER 14
RESTORE CALLER'S REGISTERS 0-12
RETURN TO CALLER

Figure 6 (Part 2 of 4). Template for a User Exit Routine

50 NetView Customization: Assembler

*---
* SWAP: TO SWAP A BUFFER FOR THE BUFFER PASSED. RETURN FROM HERE
*--~
SWAP LA 15.USERSWAP

L e.SWAPBFR
L 13.4(.13)
L 14.12(.13)
LM 1.12.24(13}
BR 14
SPACE 1

SET A SWAP RETURN CODE
POINT TO THE SWAP BUFFER
RESTORE CALLER'S SAVE AREA ADDR
RESTORE CALLER'S REGISTER 14
RESTORE CALLER'S REGISTERS 1-12
RETURN TO CALLER

* Subroutine: FREESWB
* Function: Free the SWB addressed by MYSWBPTR
* Note: The new SWB must be released before exiting

FREESWB EQU *

*

ST 14.SAVE14 Save caller's return address
DSILCS CBADDR=MYSWBPTR.SWB=FREE NOW FREE THE GOTTEN SWB

L
BR

14.SAVE14
14

No recovery for failure can be made

Return to call point

Figure 6 (Part 3 of 4). Template for a User Exit Routine

Chapter 3. Writing User Exit Routines 51

* Declares and OSECTs

* Include the required control blocks

DSICBS DSITIB,DSITVB,DSIMVT,DSISWB,DSIPDB,DSIUSE,DSISVL,
PRINT=NO Suppress Control Block Listing

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
OSISWB

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
OSECT ,

(}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ORG SWBAOATO
WORKAREA OS OCL256
MYSWBPTR OS A
SWAPBFR OS A
SAVE14 OS A

SPACE 1
ATMPUXIT CSECT ,

END ATMPUXIT

EXTEND THE SWB DEFINITION
POINT TO 256 BYTE WORK AREA
WORKAREA IS 256 BYTES LONG
ADDRESS OF MY NEW SWB SAVED HERE
ADDRESS OF SUBSTITUTION BUFFER
Save area for Register 14

RESUME CSECT
END OF THE USER EXIT

Figure 6 (Part 4 of 4). Template for a User Exit Routine

52 NetView Customization: Assembler

*

© Copyright IBM Corp. 1989

Overview of Command Processors
Regular Command Processors
Immediate Command Processors

Chapter 4

.............................. 55
55
55

Data Services Command Processors 55
Combination Command Processors 56
Long Running Command Processors 56
Unattended and MVS Console Operator Task Command Considerations 56

Designing and Coding a Command Processor 56
Input ... 57
Output ,. 57
Control Blocks .. 58
Writing a Full-Screen Command Processor 61

Screen Formatting for the 3270 Data Stream 62
Writing a Long Running Command Processor 64

RESUME Routines 64
Message STIFLE 67
ROLL Function .. 68
Screen Identifier 69
ABEND Reinstate Routines 70
LOGOFF Routines 71

Automation Task Command Processors 71
Installing a Command Processor 71
Template for a Command Processor 71

Chapter 4 53

54 NetView Customization: Assembler

Chapter 4. Writing Command Processors in Assembler
Language

This chapter illustrates how to design, code and install assembler language
command processors for NetView. Command processors perform a particular
service or function, such as extracting relevant data from a control block and pre­
senting the data to an operator.

Overview of Command Processors
Command processors run in any of several execution environments, as allowed by
the command processor's type, defined by the CMDMDL statement in DSICMD. The
CMDMDL statement identifies the command processor as one of the following types:

• Regular commands (TYPE=R)

• Immediate commands (TYPE = I)
• Data services commands (TYPE = D)

• Regular and immediate commands, combined (TYPE = B)

• Regular and data services commands, combined (TYPE=RD).

In addition, long running commands are composed of regular (or type RD or
type B) commands. Parts of long running commands are coupled by their internal
processing.

Regular Command Processors
A regular command runs under the OST, NNT, or PPT subtask environments and
receives control with the TVBINXIT bit set off. This means that the processing of a
regular command may be interrupted by the NetView program's system and VTAM'S

exit routines, as well as by immediate command processors.

For specific coding instructions, see "Writing a Full-Screen Command Processor"
on page 61 and "Writing a Long Running Command Processor" on page 64.

Immediate Command Processors
An immediate command runs under the OST and NNT subtask environments. Unlike
regular commands, immediate commands receive control with the TVBINXIT bit set
on. This means that they interrupt mainline processing and cannot be interrupted
by another command.

An immediate command starts processing as soon as an operator enters the
command, regardless of any regular command currently running. Thus the
requested function is performed at once, even if the task is in the middle of a large
queue of work.

Data Services Command Processors

© Copyright IBM Corp. 1989

A data services command processor (DSCP) runs under the DST subtask environ­
ment. DSCPS perform CNM data services using macro DSIZCSMS, or VSAM data ser­
vices using macro DSIZVSMS, or both services. DSCPS are also appropriate for
centralized or serialized user-defined functions that do not use CNM or VSAM ser­
vices. See "Data Services Command Processor" on page 88 for details.

Chapter 4. Writing Command Processors in Assembler Language 55

Combination Command Processors
One type of combination command processor runs as a regular or immediate
command, depending on its environment. This command processor checks the
TVBINXIT bit and processes the command as an immediate command if the bit is on
or as a regular command if the bit is off.

Another type of combination command processor runs as a regular or data ser­
vices command, depending on the task type indicated in the TVB. If the task type is
DST, the command runs as a data services command. Otherwise, the command
runs as a regular command.

Long Running Command Processors
A long running command is a command processor that allows other processing to
continue after a command has begun processing. DSIPUSH provides for continuation
by the same or another processor under varying conditions. The caller of the ori­
ginal command may run after that command returns. Other processing, for
example messages, may occur between the calls to the various parts of the long
running command processor.

Long running commands run under an OST, NNT, PPT, and (limited) DST. They may be
invoked directly by operator input, called by a command procedure, or called by
another long running command. They return control to NetView after scheduling
work but before processing is complete. NetView then processes other work that
may be pending. Only long running commands are capable of acting like a
NetView component, suspending for unrelated operator commands, including ROLL,

and resuming, in turn.

Long running command processors are often used to retrieve data from another
task or from another domain without allowing the calling function or calling
command procedure to proceed in the midst of this retrieval. During this retrieval,
the processor's task may continue to receive messages and accept commands.

For specific coding instructions, see "Writing a Long Running Command
Processor" on page 64.

Unattended and MVS Console Operator Task Command Considerations
Command processors using DSIPSS TYPE = ASYPANEL or other full-screen functions
should test TVBAUTOO. If this bit is 1, full-screen mode is not permitted. TVBAUTOO

indicates an UNATTENDED or MVS console operator task.

Designing and Coding a Command Processor
Command processors must adhere to the guidelines for user-written programming
described in "General Coding Guidelines" on page 8. In addition, command
processors must conform to the special requirements described in this section.
After coding your command processor,. follow the instructions under "Installing a
Command Processor" on page 71.

To allow for error recovery, consider testing the TVBRESET flag set by the RESET

command. You can code your command processor to examine this flag regularly
and end itself prematurely if the flag is on.

56 NetView Customization: Assembler

Input

Output

When the command processor gains control, the registers contain the following
information:

Register

o

13

14

15

2 -12

Contents

Undefined for command invocation.

Storage address for long running command resume routines.

The address of the command work block (cwe). The cwe contains
the following:

• A user save area (CWBSAVEA), which is the command
processor's 72-byte save area

• The address of the command buffer (CWBBUF) for a command
call. This field is zero for a RESUME, ABEND reinstate, or LOGOFF

call.
• The address of a service work block (SWB) for calling service

facilities (CWBSWB)

• The address of a parse descriptor block (CWBPDB) filled out if
CWBBUF does not equal zero

• A work area (CWBADATD), which is the command processor's
256-byte temporary storage for keeping variables while
remaining reentrant.

The address of a standard 72-byte save area used to store the
caller's registers.

The return address.

The entry address of the command processor.

Unspecified.

When a command results from the message automation table, TVBAIIFR will contain
the address of the message buffer structure that was automated. If TVBAIIFR is zero,
the command did not result from an automated message. (See Figure 8 on
page 60 for an example of an automation internal function request buffer struc­
ture).

When NetView regains control, register 15 should contain a return code and the
other registers should be restored to the caller's contents.

Register.
15
0-14

Contents
A return code
Restored to caller's contents.

If a regular command processor is called by a command procedure (NetView
command list language, REXX. or high-level language), the return code is made
available to the caller (&RETCODE, RC, HLBRC, respectively). NetView makes no other
use of the return code.

For an immediate command, NetView ignores the return code.

For a long running command processor, the completion code is specified on the
DSIPOP macro invocation. (See "DSIPOP - Remove Long Running Command" on
page 190.) The register 15 return codes returned upon command resumption indi­
cate processing options. (See "Message STIFLE" on page 67.)

Chapter 4. Writing Command Processors in Assembler Language 57

Control Blocks
Command processors usually access a command buffer and seven control blocks:
eWB, PoB, SWB, TVB, TIB, MVT, and SVL. In addition, type Ro command processors
running under a OST and type 0 command processors require the OSRB. Further, a
command driven by means of message automation may require the automation IFR.

Figure 7 on page 59 illustrates an example of the required control blocks and their
relevant pointers. For detailed descriptions of these control blocks, see Chapter 7
on page 119.

The command buffers eWB, POB, SWB, OSRB, and AIFR are specific to the command
being executed. The TVB and TIB are global to the task, and the MVT and SVL are
global to NetView.

58 NetView Customization: Assembler

Register 1

, CWB

HDRMLENG = 24
HDRBLENG = 104
STET = HDRTYPET
HDRDOMID= 'DOM1
HDRTSTMP= X'1314150C'

o HORT1SP~3024 30 Command Buffer

1:~~=--i-------t~I-B-U-F...!H-D-R--1I~·; I ROUTE 02, LIST STATUS=OPS

"

I
eWBBUF

eWBPDB

eWBSAVEA I
r

r--- eWBTIB

- eWBSWB

eWBADATD
DSRB

eWBDSRB f---+ I I

SWB

. I I
r- SWBTIB

TIB

... I I

TIBTVB

PDB

SCE

PDBCMDA ROUTE

PDBBUFA DSIRTP

PDBLENG PDBTYPE PDBDISP
SCECADDR

5 ./1 30
2 36
4 ./1 39
6 = 44
3 -IS 51

• L L Displacement of entry
in buffer

Type of delimiter

- Length of each element of command

TVB

I I

TVBMVT

MVT SVL

I

MVTSVL

NOTE: The NetView control block
header (CBH) appears at the beginning
of the CWB, DSRB, MVT, PDB, SVL,
TIB, and TVB.

Figure 7. Example of Control Blocks Used by Command Processors

Chapter 4. Writing Command Processors in Assembler Language 59

TVB

IFR

TVBAIIFR r---- BUFHDR

MDRMCEXT

IFRCODE

IFRAUIND
IFRAUACT

IFRAUTBA

IFRAUTBL

IFRAUTA1

IFRAUTA2

eWB

CWBBUF

CWBPDB

CWBSWB SWB
po

~~UFHDR I MESSSAGE TEXT1

r

BUFHDR I MESSSAGE TEXT2

~
~ BUFHR I MESSSAGE TEXT3

BUFHDR

Command
Text

Figure 8. Automation Internal Function Request. An example of a buffer structure when a command processor is
driven from an automation statement in the message automation table. If TVBAIIFR=O, this command was
not driven by an automation statement.

60 NetView Customization: Assembler

Figure 9 shows sample code to access a command buffer.

L R3.CWBPDB
USING DSIPDB,R3
LA R4,PDBTABLE
USING PDBENTRY.R4

GET ADDRESS OF PDB
R3 IS BASE FOR PDB

. GET ADDRESS OF PDB TABLE
R4 IS BASE FOR A PDB ENTRY

* First PDB entry is for conmand name

CLC
BNH

PDBNOENT.=H1l 1 ANY COMMAND PARAMETERS ENTERED?
NO. GO HANDLE THIS SITUATION

* Process 1st parameter after command name

LA R0,PDBENTND-PDBENTRY GET LENGTH OF PDB ENTRY
AR R4,R0 BUMP PAST COMMAND NAME ENTRY

CLI PDBLENG.0 WAS ONLY A DELIMITER SPECIFIED?
BE YES, GO HANDLE THIS SITUATION

L R2.CWBBUF GET ADDRESS OF COMMAND BUFFER
AH R2,PDBDISP POINT TO PARM IN BUFFER
SLR Rl.Rl CLEAR LENGTH REGISTER
IC Rl.PDBLENG GET LENGTH OF PARM

application code to process parm ••••••••••••••••••••••••••••

CLC
BNH

PDBNOENT.=H I 21 MORE COMMAND PARAMETERS ENTERED?
NO. GO HANDLE THIS SITUATION

* Process 2nd parameter after command name

LA R0,PDBENTND-PDBENTRY GET LENGTH OF PDB ENTRY
AR R4.R0 BUMP TO NEXT ENTRY

CLI PDBLENG,0 WAS ONLY A DELIMITER SPECIFIED?
BE ,. .. YES. GO HANDLE THIS SITUATION

L R2,CWBBUF GET ADDRESS OF COMMAND BUFFER
AH R2,PDBDISP POINT TO THIS PARM IN BUFFER
SLR Rl,Rl CLEAR LENGTH REGISTER
IC Rl,PDBLENG GET LENGTH OF PARM

application code to process parm

* Process nth parameter after command name

etc. etc.

Figure 9. Sample Code to Access a Command Buffer

Writing a Full-Screen Command Processor
This section describes how to write a full-screen command processor (FSCP) which
is a regular command processor that presents a full screen of data to an operator's
terminal and runs only under an OST. For line-by-line presentation to an operator's
terminal, see "Title-Line Output" on page 19.

An FSCP utilizes DSIPSS TYPE = ASYPANEL to present data. In conjunction with long
running command support, an FSCP can be coded to allow additional OST work
requests to be processed without ending the full-screen presentation. An FSCP can

Chapter 4. Writing Command Processors in Assembler Language 61

issue macro DSIPSS to request input and then perform other work before issuing
macro OSIPSS TYPE=PSSWAIT to receive the input. In addition, an FSCP has direct
access to operator input and can use macro DSIWAT to synchronize an operator sce­
nario.

The issuer of the DSIPSS TYPE = ASYPANEL request can use DSIPSS TYPE = PSSWAIT to wait
on important NetView Ecas such as the termination ECB, the solicited POI ECB, the
cross domain ECB, message ECBS, the reset ECB, and the user ASYPANEL ECB. When
control is returned from the PSSWAIT, it is usually better to check the NetView ECBS
first for a post (your return code will be 56). If you expect the action of your input to
be short (for example, QUIT), it is acceptable to check your own ASYPANEL ECB first.
The value of the post indicates the status of the DSIPSS TYPE = ASYPANEL request. The
post codes can be found on page 201.

Screen Formatting for the 3270 Data Stream
Since the FSCP is responsible for the 3270 data stream, the processor issues DSIPSS
with TYPE=SCRSIZE to find the presentation space dimensions. If the result is larger
than 24 by 80 characters, the processor may use the 3270 Erase/Write Alternate
command. Otherwise, it must use the Erase/Write command. For more informa­
tion on the 3270 data stream, refer to IBM 3270 Information Display System Data
Stream Programmer's Reference.

When OSIPSS with TYPE = SCRSIZE is issued for a terminal that uses 14-bit or 16-bit
addressing and Query support (indicated in the logmode definition), the returned
and actual screen size may be larger than the alternate screen size. If so, when
the Erase/Write Alternate command is used to address the parts of the screen
outside the alternate screen size, a terminal program check results. To avoid this
problem, do either of the following:

• Use a 24 by 80 character screen image data stream and use the Erase/Write
command instead of the Erase/Write Alternate command.

• Use a Write Structured Field command to create a partition structured field that
controls the buffering in the terminal. For a more detailed explanation, see
IBM 3270 Information Display System Data Stream Programmer's Reference.

You will not normally need to send READ instructions to the terminal. A READ MODI­
FIED is set up for you and executed whenever your operator uses an AID key. To
receive the data, you must specify an input buffer and an input ECB on a DSIPSS
TYPE=ASYPANEL request. When asking for input, be certain that you have unlocked
the operator's keyboard (set bit 6 of WCC to '1'B). You may do this with the same
DSIPSS invocation that requests the input or with an earlier one. You may also
choose to reset the modified data tags. After requesting input, do not request input
on a further DSIPSS TYPE = ASYPANEL request until your ECB is posted.

Do not free the storage where your input buffer and ECB reside, until the Eca is
posted. When necessary, you can force the ECB to be posted early by issuing
DSIPSS TYPE = CANCEL. Be aware that after you issue DSIPSS TYPE = CANCEL, the oper­
ator will not be able use his terminal ul'1ti1 either another input request is made or a
DSIPSS TYPE = OUTPUT restores the command facility screen.

Reshow Option: Usually you will want to be able to suspend and resume full­
screen processing by using macros DSIFIND. DSIPOP, and DSIPUSH and by specifying a
RESUME routine. This routine can present previously saved screen information.

Logging Full-Screen Input/Output: NetView does not automatically log full-screen
input and output. Use macro DSIWLS to log pertinent data.

62 NetView Customization: Assembler

Escape Option: When you write a panel to the terminal, you must allow for oper­
ator response by specifying an ECB address and Read buffer with at least one of
your output requests. After you have done this, al/ input from the terminal will
come to your program.2 It is customary to respond to PF3 by terminating your FSCP.
If you want your FSCP to make a temporary exit under other conditions, you must
have previously prepared for resumption using DSIPUSH.

FSCP Functions: When an FSCP sends a full screen of data to the display terminal,
the system reads the 3270 data stream into the buffer area. At this point, the FSCP
can write more data to the screen while the operator is viewing or entering data.
However, avoid writing over, or erasing, the operator's input area(s).

When the data is read, NetView posts an event control block (ECB). Then the
command processor processes the input and, optionally, presents more full-screen
panels. While the FSCP has a read outstanding, input to the terminal is treated as
input to the command processor (not to NetView).

When the command processor is called, it reads and writes to the terminal using
DSIPSS TYPE = ASYPANEL. The PANEL parameter of DSIPSS points to a 20-byte parameter
list. See "DSIPSS - Presentation Services" on page 196 for details.

DSIPSS with TYPE=PSSWAIT allows the FSCP to wait for both its own list of events and a
list of events, such as important messages, for which the FSCP may choose to inter­
rupt its own processing. After waiting, the command processor tests the return
code to determine if its ECB was posted or if a NetView ECB was posted. If the
return code shows that a NetView event was completed, the command may return
to NetView to allow the processing of the event to occur. If the panel ECB is posted,
the FSCP processes the input in the buffer. In this manner, the command processor
has complete control of the screen format. The command processor returns to
NetView after saving the screen status to enable future proceSSing. The FSCP can
specify a RESUME routine (using DSIPUSH) to enable the full-screen presentation to
resume.

DSIPSS with TYPE=TESTWAIT allows the command processor to test whether a
NetView event has already been posted. You can use this option before issuing
DSIPSS TYPE = ASYPANEL to avoid performing input or output when NetView is already
posted. This option allows early detection of interruptions. It also lets you return
to NetView with a minimum of screen interruptions.

You do not need to use TYPE=PSSWAIT if you do not wish to allow "interruptions",
such as messages and their resulting automation, or cross domain commands to
process .. The command processor can wait on its own list of ECBS. Even if you
choose not to wait on other NetView events, you are strongly urged to include the
OST termination ECB in the list. This ECB is located in the TVBTECB field of control
block TVB. TVBTECB enables the command processor to be aware of any major con­
dition requiring the command processor to clean up and exit. Use only the ECBLlST
parameter with TYPE = PSSWAIT in DSIPSS.

DSIPSS with TYPE = CANCEL allows you to change characteristics of the FSCP. These
characteristics include the input area length and the ECB address. TYPE = CANCEL can

2 NetView treats power off/power on and the attention signal as error conditions. For power off/power on, your ECB

will be posted for a permanent error and your OST will be placed in termination status. The Signal that results from
the attention key causes NetView to set TVBRESET. (Your PSSWAIT will also end).

Chapter 4. Writing Command Processors in Assembler language 63

be issued when a DSIPSS TYPE = ASYPANEL is active or inactive. It can also be issued
if input from TYPE=ASYPANEL has been posted as complete or is not yet complete.
This is sometimes necessary since there is no way to guarantee that the operator
will enter data on any given panel. If an active ASYPANEL input request is canceled,
the system posts the ECB with a special post code. See page 201 for ECB post
codes. The storage where the ASYPANEL ECB is located must not be freed until a
DSIPSS TYPE = CANCEL is issued or the ASYPANEL ECB has been posted by NetView for
successful or unsuccessful input.

Writing a Long Running Command Processor

RESUME Routines

Long running command processors use macros DSIPUSH, DSIFIND, and DSIPOP to syn­
chronize the order in which functions are processed so that asynchronous events
run in sequence or in parallel. Essentially, a long running command processor
synchronizes functions so that programs it initiates complete before it ends and so
that its callers do not resume until after it ends.

DSIPUSH identifies each of three routines that provide for command resumption, as
well as recovery and termination. These routines are the RESUME routine, the ABEND

reinstate routine, and the LOGOFF routine. DSIFIND locates the storage you associ­
ated with the DSIPUSH input name. DSIPOP indicates that a long running command
has completed.

When one of these routines receives control, CWBBUF is set to zero and register 0
contains the storage pOinter associated with the long running command (0 if no
storage). Additionally one of the following is set:

• For a RESUME routine, the TVBRESUM bit is set on.
• For an ABEND reinstate routine, the TVBABEND bit is set on.
• For a LOGOFF routine, the TVBLOGOF bit is set on.

Note: The flags TVBRESUM, TVBABEND, and TVBLOGOF are meaningful only when your
input CWBBUF address is zero.

The other registers contain the information described under "Input" on page 57.

When a RESUME, ABEND reinstate, or LOGOFF routine returns control to NetView, all
registers must be restored. You must set register 15 to tell NetView what action to
take, as described in the following sections.

Before invoking any subordinate command processors or command lists, and
before issuing DSIPSS TYPE = PSSWAIT (or TESTWAIT), the long running command (LRC)

processor should schedule a RESUME routine (using DSIPUSH). The RESUME routine
suspends any other active long running command processors and enables the long
running command processor to regain control.

The first request at the top of the long running command chain defines the control­
ling RESUME routine. If you use DSIPUSH while another RESUME routine is in control,
the new RESUME routine becomes the controlling routine. All other RESUME routines
are temporarily suspended. The period of suspension is dependent on the environ­
ment from which the LRC received control. If the LRC was called due to an asyn­
chronous event, such as an operator command or the automation of a message,
then the NetView ROLL command (if issued) could move (rotate) the LRC to the
bottom of the long running command chain, thereby giving control to the next LRC.

If the LRC received control by direct call from another LRC (including direct com­
mands from NetView command list language, REXX, and high-level language

64 NetView Customization: Assembler

command procedures), then the two commands are regarded as being related by
that direct call. The ROLL command (if issued) acts against both (or all) such
related commands as a group, moving them all together and preserving their
order. In either case, DSIPOP can remove the topmost RESUME routine, giving control
to the next long running command.

Note: Neither the ROLL command nor DSIPOP cause an asychronous interrupt. A
command gives up control only by returning to its caller, except for the action of
immediate commands.

DSIPOP can also be used to remove (by name) a resume routine that is not at the top
of the stack of the long running command chain (not in control) when you are
resumed. This action is regarded as a cancelation of that LRC unless your DSIPOP

invocation specifies COMPCDE. If the LRC that was removed was part of a larger
group, the calling LRC will be given control as soon as the current process allows
and will be given a cancel indication, as follows:

• NetView command list language command lists are stopped
• REXX command lists receive a HALT

• all others receive a -5 completion code.

See NetView Customization: Using put and C for more information on cancelable
and non-cancelable high-level language procedures.

All command procedures are long running commands. A command procudure's
RESUME routine blocks RESUME routines pushed earlier exactly like other long
running command processors. A PAUSE or WAIT state for a command procedure is
no exception.

DSIPUSH for a RESUME routine is either major or minor. A major DSIPUSH places the
new RESUME routine at the top of the long running command processor stack sus­
pending previously-issued long running commands from executing. A minor
DSIPUSH places the new RESUME routine on the stack after any leading command
procedures (in the same group), and thus allows the leading command procedures
to complete before the new RESUME routine gains control. Command procedures
already suspended by other long running command processors are not affected.

A major DSIPUSH would be used to suspend a command procedure's execution until
your long running command processor executes a DSIPOP. A minor DSIPUSH is used
to allow a calling command procedure to complete after which your RESUME routine
gai ns control.

Completion Codes An LRC may return a completion code to the LRC that invoked it
(in the same group) by specifing a value for the COMPCDE keyword on the DSIPOP

macro. If an LRC was invoked asynchronously, the value specified for COMPCDE is
ignored. The completion code is passed to the calling LRC in CWBRCODE, upon
resumption.

Return Codes A RESUME routine may return control to its caller many times before it
completes, to allow messages, queued commands, called LRC'S, and other
asychronous work to process. Upon the initial return (when commanded,
CWBBUF....., =0), the value in register 15 is ignored. After each resumption, the value
in register 15 conveys the LRC requirments for STIFLE (For an explanation of STIFLE

see "Message STIFLE" on page 67). Register 15 = -8 requests stifle; register 15
= + 8 requests no stifle. Meanings for other return codes are reserved. (For com­
patibility with prior releases, a zero return code is allowed after DSIPOP is issued to
remove the LRC from the stack.)

Chapter 4. Writing Command Processors in Assembler Language 65

An important part of any RESUME routine's function is screen control. Since the
state of the operator's terminal is not known (see uScreen Identifier" on page 69)
on entry, the RESUME routine must ensure the operator is not locked out by a panel
left over from a previous long running command processor. This may mean
issuing a message (DSIPSS TYPE = FLASH) that guarantees that the command facility
panel and command line are available to the operator. It might also mean dis­
playing a full-screen panel (DSIPSS TYPE = ASYPANEL).

Note: The screen control requirement means that the NetView-supplied routine
DSILRCR8 should not be used as a RESUME routine with NetView as was sometimes
appropriate with NCCF. DSILRCR8 can be used as an ABEND reinstate or LOGOFF

routine if no clean up besides the DSIPOP is needed.

Caution: Care should be taken when using messages for screen control. Issuing a
message on every resumption is excessive and can cause looping if the message
is automated or routed. Use the screen serial number (TIBSCRSN) to determine
when to issue messages upon resumption. Be especially cautious when issuing
messages upon resumptions under the PPT task, since all messages are routed and
may generate new activity (timer requests, for example) under the PPT.: To assist
RESUME routines that display panels, NetView provides status information via
TIBSCRID (see page 69). To assist RESUME routines that do not display panels,
NetView provides a flag, TIBLRCNP (long running command new promotion), that is
set after any RESUME routine is removed from the top of the stack (whether via
DSIPOP or by use of the ROLL command). By examining this bit, the RESUME routine
can determine whether any other long running command processor has executed
since it last had control. For example: IF TIBLRCNP= '1'B, THEN exercise screen
control, ELSE continue.

A completed RESUME routine (one that has issued DSIPOP against itself) need not be
concerned with screen control since the following RESUME routine will assume
responsibility. Ending messages (which were recommended with NCCF) issued
when a long running command processor finished are not appropriate in NetView.

NetView attempts to give the operator an opportunity to recover from operator
errors or certain program errors through the use of the attention signal or RESET

(NORMAL) command. When attention is signalled or the RESET command executes, a
flag, TVBRESET is set. Additionally, an ECB, TVBRESTE, is posted. It is recommended
that all commands, and especially long running command processors, test
TVBRESET regularly. Whenever it is set, the command should terminate its proc­
essing (DSIPOP if appropriate) and return to NetView.

The following scenario illustrates the use of DSIPUSH and DSIPOP:

1. A command list invokes a command, and to complete the request the
command processor must request data from a DST.

2. The command processor issues DSIPUSH specifying a RESUME routine. At this
point the command processor has become an LRC (long running command).

3. The command processor uses DSIMQS to queue a buffer with IFRCODE set to
IFRCODCR containing its request for data to the DST.

4. The command processor returns to its caller. The terminal has been left in
whatever state it was in when the command list was running. In this case, we
will assume the command facility screen is displayed.

5. This operator's task is idle (the command list is suspended by the DSIPUSH);

therefore, the RESUME routine defined earlier by DSIPUSH is immediately called.

66 NetView Customization: Assembler

Message STIFLE

6. The command processor finds CWBBUF = 0 (no command is being passed) and
TVBRESUM is set, but TIBLRCNP is not set. The command processor returns
control to its caller.

7. A message is received and displayed. The command processor is called again
as a RESUME routine as in the previous step.

8. The operator issues a full-screen command, which issues its own DSIPUSH and
waits for input.

9. The operator exits (or ROLLS away from) this latter command processor.

10. The panel of the second command processor is left in place, and the original
command processor's RESUME routine is called. This time TIBLRCNP is set. The
command processor issues a FLASH message: "STILL WAITING FOR DATA." The
command facility screen is restored by DSIPSS.

11. An IFRCODCR buffer containing the DST reply is received. After issuing DSIFIND,
the IFRCODCR command processor places data into the long running command
processor's LRC storage (as defined in the original DSIPUSH). The IFRCODCR
command processor only saves the data since another LRC may have been in
control at this point.

12. The command processor is resumed again. Finding its data request satisfied,
it completes its function and issues DSIPOP against itself, using the COMPCDE
keyword on DSIPOP to indicate the nature of the completion. The command
processor returns a return code of 8 in register 15.

Note: For compatibility with prior releases, a zero return code is allowed after
DSIPOP is issued to remove the LRC from the stack.

13. NetView calls the next RESUME routine, the command list invoking the original
command, which then continues.

14. The command list receives the return code (&RETCODE) that was specified for
COMPCDE on the DSIPOP.

In some cases a RESUME routine may wish to return control to NetView without
giving up control of the operator's display. For example, the screen might be
dynamically updated based on information sent by another task iii the form of an
IFRCODCR message. (See "IFR - Internal Function Request" on page 133.) To
assist with such a function, NetView provides two tools: message STIFLE and a
screen identifier.

A RESUME routine can request a message STIFLE when it returns control to NetView.
This means that ordinary line mode messages will not be displayed and the
operator's screen is not disturbed by the processing of the messages.

Some messages are displayed by NetView whether or not STIFLE is in effect. These
messages are said to break STIFLE mode. The following messages can break the
STIFLE mode:

1. Action messages with ISTnnnA or DsmnnA identifiers
2. Messages which request a reply (HDRTYPEV, except the ASSIGN = COPV of

HDRTYPEY, which does not break STIFLE)
3. Any message issued with DSIPSS TYPE = FLASH (the intended use of DSIPSS

TYPE = FLASH is for command echoes and screen control messages).

If STIFLE is broken, it remains off until reinvoked by a RESUME routine.

Chapter 4. Writing Command Processors in Assembler Language 67

ROLL Function

A request for STIFLE can be honored only while the NetView log or the hardcopy log
remains active. NetView counts messages that are stifled and displays message
DSI5931 to remind the operator that he needs to consult the NetView LOG or hardcopy
log to see these messages. A request for STIFLE will not be honored while the
command facility screen is in place. It is assumed that the long running command
processor will gain control of the screen through the use of DSIPSS TYPE = ASYPANEL

before requesting STIFLE.

STIFLE affects only line mode messages. A full-screen display is not affected. If, for
example, the result of a START DOMAIN command (the logon panel) is delayed long
enough for a long running command processor to gain control, the returning logon
panel will be displayed without regard to the STIFLE.

A ROLL group is NetView's way of allowing the operator to switch from one function,
such as hardware monitor, to another function, such as session monitor, and return
to the place at which the operator left the function the last time. This is similar to
window processing in other applications.

A ROLL group is a set of related DSIPUSH macro requests. DSIPUSH begins a new roll
group when it is invoked from an asynchronous command environment. Operator
commands, commands generated by automation, and commands scheduled via
DSIMQS are asynchronous. A command called directly from another LRC is synchro­
nous. The synchronous LRC is added to the roll group started by the asynchronous
LRC and blocks it until a DSIPOP is issued against the synchronous LRC. The current
ROLL group is defined as the ROLL group that is currently first on the long running
command chain.

The ROLL command treats each specified ROLL group as a unit when manipulating
the chain. The ROLL command takes the topmost ROLL group and moves it to the
bottom of the stack. All elements within the ROLL group maintain their position
within the group.

Roll Group Usage: The simplest ROLL group would be a command that invoked
DSIPUSH with a RESUME routine. The RESUME routine allows the command processor
to respond to a ROLL request. If this command accepted command input from the
operator (via DSIPSS TYPE = ASYPANEL), a ROLL command would cause the LRC to move
(rotate) to the bottom of the long running command chain. Eventually, when
another LRC has been similarly rotated to the bottom of the long running command
stack by the ROLL command (or ended with DSIPOP) the RESUME routine would regain
control.

You can use multiple DSIPUSH requests (with different resume routines or merely
different storage pointers) to implement things such as a hierarchical panel struc­
ture. In this situation, rolling away and then back brings the operator back to the
same panel last presented, and ending a panel (the operator uses PF3, and the
program invokes DSIPOP) redisplays the panel I above I the current one.

The f9110wing scenario describes how a full-screen function would make use of the
ROLL capability.

• Issue DSIPUSH for a RESUME routine.

• Provide a line on your panels for NetView command input, using 3270 data
stream orders.

68 NetView Customization: Assembler

Screen Identifier

• When the operator enters data on the command line, the input data stream will
contain orders that identify the area of the screen into which the operator
typed.

• When command entry is detected (use DSICES to verify command), build a
standard NetView buffer with HDRMTYPE = HDRTYPET and issue the DSIMQS macro
to send the buffer to the operator's (own) task, using TVBOPID as the destination
of the DSIMQS.

Note: You must translate the command input to upper case if the language the
operator is using has upper and lower case characters.

• Return to NetView to allow the command to be processed.

• NetView will reinvoke your RESUME routine when the command has completed
processing and when your RESUME routine is the first routine on the stack (and
is, therefore, the current ROLL group).

If the command entered was ROLL, the ROLL command processor will automat­
ically switch your ROLL group to last.

If the command entered establishes a new ROLL group, your ROLL group is
pushed down on the stack and the new group becomes current. When the
operator exits from the new ROLL group, your ROLL group is invoked by NetView
calling the topmost RESUME routine.

• You should also detect PF6 and PF18 as ROLL. In this case you would build the
command buffer, but you must look up the command name for the DSIROLL load
module using DSICES and then issue DSIMQS to queue the buffer as described
above.

• In order to allow the operator to switch to your function from a different ROLL

group directly without ROLL, you must define a command (which could be your
function's command name with no operands provided) as a re-show request.

When your command processor is entered (and there are no operands) with
the re-show requested, you would issue DSIPUSH with PROMOTE=YES to move
your ROLL group to the head of the stack. You would then proceed by
refreshing the screen from the last panel the operator saw.

Nole: DSIPUSH with PROMOTE=YES exchanges the storage address in the DSIPUSH

parameter list with the one already associated with the named request, and
returns the old value in register O. Therefore, you may issue DSIFIND to deter­
mine the current address and specify it on the PROMOTE=YES request to make
sure the address stays the same. If you do not specify the address, the zero
value in the parameter list will replace the current value.

Requesting STIFLE is not a guarantee that a long running command processor's
panel will not be modified; therefore, a means is provided to determine whether
such modifications have occurred. After writing the panel to the screen, a long
running command processor should save the value of TIBSCRID. Upon regaining
control, a RESUME routine can compare the present and saved values of TIBSCRID to
determine whether and to some extent, what type of screen modifications have
occurred since it last had control.

TIBSCRID, a four-byte field, consists of two subfields:

TIBSCRSN The low order three bytes, which form a serial number for the
screen's contents. This number is incremented whenever anything
is sent to the screen that changes what the operator sees.

Chapter 4. Writing Command Processors in Ass'embler Language 69

TIBSCRM The high order byte which is a state change indicator. A change in
TIBSCRM usually means a DSIPSS TYPE = CANCEL has been issued. It
may also mean that a lock keyboard or other non-data 3270
command has been sent to the terminal.

When a long running command processor regains control and TIBSCRID is
unchanged, it may resume processing as if it had never lost control.

When TIBSCRM (and not TIBSCRSN) has been changed, the long running command
processor should reestablish its read by issuing DSIPSS TYPE = ASVPANEL to send a
write/unlock (X'F182') to the terminal and respecify the ECB, if any, by which the
long running command waits for input. This will avoid the necessity to refresh the
screen.

When TIBSCRSN has changed, some visible modification to the long running
command processor's panel has been made. It will be necessary to rewrite the
enti re panel.

ABEND Reinstate Routines

LOGOFF Routines

An ABEND reinstate routine performs a required recovery action, such as freeing
control blocks, after NetView recovers from a task's abnormal ending (ABEND).

ABEND routines cannot be used while running under the DST since DST tasks are not
reinstated after abnormal endings. While running under the DST, use a LOGOFF

routine instead.

The ABEND routine assesses the damage caused by an abnormal end and either
keeps or cancels the long running command. (There must be an ABEND reinstate
routine for each command in the stack.) With its return codes in register 15, the
ABEND routine notifies the task whether the command is to be kept or removed from
the queue and freed.

Return Code Meaning

o Keep the long running command request queued.

8 Remove the currently queued long running command request from
the queue.

If the routine keeps a long running command, the RESUME routine runs the first time
the task has no other work to perform. All stacked long running command routines
are maintained in their current order. ABEND reinstate routines cannot issue DSIPOP

or DSIPUSH.

Once a task recovers from an abnormal ending, all ABEND reinstate routines are
called, starting with the top one in the stack, which is the most recent. When the
ABEND reinstate routine returns to its task, it specifies whether the associated
command is to be left on the stack or removed from the stack.

A LOGOFF routine gives the command processor control before the task ends. The
task is not reinstated, and the command processor can perform any final clean-up
processing, such as closing a data set or freeing storage. (There must be a LOGOFF

routine for each command in the stack.)

A LOGOFF routine is called sequentially for each request on the queue. LOGOFF rou­
tines cannot issue DSIPOP or DSIPUSH.

70 NetView Customization: Assembler

When the command processor returns to the task, requests are taken off the queue
and freed.

NetView ignores al,l return codes for LOGOFF routines.

When a task ends, all the LOGOFF routines are called starting with the top, or most
recent, request on the stack. Each request is removed from the queue and freed.

Automation Task Command Processors
Commands written to run under OST tasks must consider the effects of running
under automation tasks and MVS console tasks. These OSTS have the TVBAUTOO bit
set to 1. This indicates that immediate commands and full screen mode commands
a,re not supported in this task.

Installing a Command Processor
To install a command processor, define the command verbs with CMDMDL state­
ments as described in the NetView Installation and Administration Guide. If your
command processor will do line mode output (DSIPSS TYPE = OUTPUT), you should
specify ECHO=Y. If your command processor does full screen mode output (DSIPSS

TYPE = ASYPANEL), you should specify ECHO=N. Then assemble and link-edit the
command processor into a load module in the NetView load library. NetView loads
and calls the command processor according to its linkage editor attributes.

See "Preparing Your Code for Use" on page 4 for information on testing your
command processor before use.

Template for a Command Processor
The following template illustrates basic entry and exit processing required by all
command processors. It is available on-line in the NetView sample library
(SYS1.CNMSAMP) under the name CNMS4202 •

. Chapter 4. Writing Command Processors in Assembler Language 71

ATMPCMDP CSECT

* (C) COPYRIGHT IBM CORP. 1989

* IEBCOPY SELECT MEMBER=«CNMS4202,ATMPCMDP,R»

* MODULE NAME:
*
* FUNCTION:
*
*
* SYNTAX:
*
*
* INSTALLATION:
*
*
* INPUT: REG 1 ADDRESS OF COMMAND WORK BLOCK (DSICWB)"
* REG13 ADDRESS OF CALLER'S SAVE AREA
* REG14 - RETURN ADDRESS
* REG1S - ENTRY ADDRESS
*
* OUTPUT:
*

REGISTERS:
*
*
*
*
*
*

REG 0 - REG14 - RESTORED UPON RETURN

REG 15 RETURN CODES:
o - SUCCESSFUL

* NETVIEW MACROS:
*
*
*

DSICBS - CONTROL BLOCK SERVICE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

Figure 10 (Part 1 of 4). Template for a Command Processor

72 NetView Customization: Assembler

EJECT
DSICBS DSICWB.DSIMVT.DSIPDB.DSISVL.DSISWB.DSITIB.DSITVB. X

PRINT=NO
R0 EQU 0
Rl EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8 MVT
R9 EQU 9 TVB
R10 EQU 10 TIB
R11 EQU 11 CWB
R12 EQU 12 BASE REG
R13 EQU 13 SAVEAREA
R14 EQU 14
R15 EQU 15

EJECT

* *
* SAVE REGISTERS AND ESTABLISH BASE REGISTER *
* *

USING *.R1S
B PROLOG·
DC C'ATMPCMDP &SYSDATE. AT &SYSTIME.'

PROLOG OS 0H
STM R14.R12.R12(R13} SAVE REGISTERS
DROP R15
LR R12.RlS SET BASE REGISTER
USING ATMPCMDP.R12

Figure 10 (Part 2 of 4). Template for a Command Processor

Chapter 4. Writing Command Processors in Assembler Language 73

*
* ESTABLISH ADDRESSABILITY TO THE COMMAND WORK BLOCK (CWB) AND SET
* UP THE SAVE AREA USING CWBSAVEA
*

*
*
*
*

LR Rll.Rl
USING DSICWB.Rll
LA Rl,CWBSAVEA
ST Rl.8(R13)
ST R13.4(Rl)
LR R13.Rl

LOAD CWB AD DR
Rll BASE FOR COMMAND WORK BLOCK
USE CWBSAVEA FOR SAVEAREA
STORE MY SA INTO CALLERS SA
STORE CALLERS SA IN MINE
R13 HAS MY SAVEAREA ADDRESS

* *
* ESTABLISH ADDRESSABILITY TO THE TASK INFORMATION BLOCK (TIB), THE *
* TASK VECTOR BLOCK (TVB), AND THE MAIN VECTOR BLOCK (MVT). *
* *

*

L RHl,CWBTIB
USING DSITIB,Rla
L R9, TIBTVB
USING DSITVB,R9
L RS,TVBMVT
USING DSIMVT.R8

XC CWBADATD,CWBADATD
SLR R1S,RlS

GET DSITIB ADDRESS
ESTABLISH ADDRESSABILITY
GET DSITVB ADDRESS
ESTABLISH ADDRESSABILITY
GET DSIMVT ADDRESS
ESTABLISH ADDRESSABILITY

ZERO AUTODATA AREA
ZERO RETURN CODE REGISTER

* *
* *
* *
* *
* *
* *
* MAIN PROCESSING GOES HERE *
* *
* *
* *
* *
* *
* *

Figure 10 (Part 3 of 4). Template for a Command Processor

74 NetView Customization: Assembler

*
* EXIT
*

*
*
*

RETURN EQU *

L R13,4(R13) GET CALLERS SAVEAREA ADDRESS
L R14,12(R13) RESTORE REG14
LM R0.R12.20(R13) RESTORE REGS
BR R14 RETURN
SPACE
EJECT
LTORG
EJECT

*
DSICWB DSECT

ORG CWBADATD AUTODATA AREA
OS XL(256-(*-CWBAOATO» AUTO DATA LENGTH CHECK
END

Figure 10 (Part 4 of 4). Template for a Command Processor

Chapter 4. Writing Command Processors in Assembler Language 75

76 NetView Customization: Assembler

Chapter 5

Types of User Subtasks 79
Optional Subtask Processing 79

Overview .. 79
Installation ... 81
Initialization .. 81

Attaching the Subtask 81
TVBMEMNM Field 82

Processing ... 82
ECB Loop .. 82
Intertask Communication 82
Operator Communications 84

Termination .. 85
Additional Considerations 85

Data Services Task (DST) 86
Overview .. 86
Installation ... 87
Initialization .. 87
Data Services Command Processor 88
CNM Data Services 88

Unsolicited CNM Data Interface 89
Solicited CNM Data Interface 89

VSAM Service Interface 90
Example of DSCP Design 92

User Defined Services 94
Termination .. 95

Template for an Optional Task 95

© Copyright IBM Corp. 1989 Chapter 5 77

78 NetView Customization: Assembler

Chapter 5. Writing User Subtasks

Types of User Subtasks
NetView provides two methods for writing user subtasks. The first and recom­
mended method uses the data services task (OST) interface as a coding base. The
OST base provides interfaces for the following functions:

• An initialization user exit
• A subtask processing module (OSIZOST)

• CNMI service
• VSAM service
• Data Services Command Processor (oscp)

The OST provides an ideal structure for user-written tasks since the OST can be
defined with VSAM services, CNM services, or neither service (user-defined functions
can be implemented within the data services command processors). The OST pro­
vides all the low-level user subtask functions that you would otherwise have to
code if you wrote a complete optional substask. An optional subtask should only
be written if access to the subtask ECB processing loop is required.

The other method requires that you code an optional (OPT) subtask. With this
method, NetView supplies an intertask communication (message queue) ECB and a
termination ECB. It is up to you to provide an appropriate ECB processing loop and
any additional function. This requires more coding effort than the second method,
but it allows for more flexibility as to what kinds of functions can be implemented.

Optional Subtask Processing

Overview

© Copyright IBM Corp. 1989

A user subtask requires the following processes:

• Installation
• Initialization
• Processing
• Termination

Installation The TASK statement is required to define an optional subtask to
NetView. It is added to the OSIOMN memeber of OSIPARM. The OSIOMN

member is processed during NetView initialization.

Initialization The initialization process of the subtask performs any required initial­
ization functions. Examples would be acquiring NetView control blocks
via the OSILCS macro and acquiring dynamic storage via the OSIGET

macro.

Processing The processing part of a subtask should begin by invoking the OSIWAT

macro to wait on an ECB list. The ECB list MUST include the subtask termi­
nation ECB (TVBTECB) and generally includes the message queue ECB

(TVBMECB), used for intertask communication (via the OSIMQS macro).
User defined ECBS can also be included in the ECB list.

Chapter 5. Writing User Subtasks 79

Termination The termination process must free all acquired resour'ces (storage,
NetView control blocks, etc.) and return to NetView.

Message

Initialization

Issue DSIWAT
Macro on the
ECB List

Process the Data

User-Defined
Processing

Figure 11. Subtask Organization

80 NetView Customization: Assembler

YES

Release
Resources

Termination
Set
TVBTERM=1

Installation

In itia lization

A TASK statement for the subtask must be coded in the DSIDMN member of the
DSIPARM data set.

The TASK statement defines the task to NetView and provides the following
information:

• MOD keyword - the name of the module to be run as a subtask. The module
must be link-edited into the proper NetView library.

• TSKID keyword - The task name. Each task in NetView must have a unique task
name.

• MEM keyword - Specifies the user-defined initialization member found in
DSIPARM to be used by this task. The user is responsible for the format and
contents of the specified member. The member can be read and processed
during the task initialization.

• PRI keyword - Specifies the relative task priority (1-9). 1 is the highest task pri­
ority that can be assigned, and 9 is the lowest.

• INIT keyword - Specifies whether the task is to be started during NetView initial­
ization (INIT=V) or via the START command only (INIT= N).

TASK MOD=USERMOD,TSKID=USERTASK,MEM=USERMEM,PRI=7,INIT=Y

In the example above, the subtask identification is USERTASK. USERMEM is the name
of the DSIPARM member (for MVS) or the file with file type NCCFLST (for VM) that con­
tains additional initialization information. The priority of the subtask is 7, and the
subtask will be started during NetView initialization. For more information on the
TASK statement, see the NetView Administration Reference.

Attaching the Subtask
Issuing the START TASK command or specifying INIT=Y on the TASK definition state­
ment causes a normal attach. The TVBTERM bit in the TVB is set to off (0).

When an OPT subtask is attached, the registers contain the following information:

Register

13

14

15

0,2- 12

Contents

The address of the task vector block (TVB)

The address of a standard 72-byte save area used to store the
caller's registers

The return address

The entry address of the subtask

Unspecified.

The control blocks used in attaching an OPT subtask are TVB, TIB, MVT, and SVL. The
TVB contains the address of the TIB and the MVT, as well as the task control block of
the operating system. The MVT contains the address of the SVL. Refer to Chapter 7
on page 119 for detailed descriptions of these control blocks.

Chapter 5. Writing User Subtasks 81

TVBMEMNM Field

Processing

ECB Loop

After the subtask is initialized and before it starts processing, it must indicate that
it is ready to begin processing by doing the following:

• Setting the TVBOPID field of the TVB to a unique subtask identifier
• Setti ng the TVBACTV bit to on.

One method of setting the TVBOPID field is to copy the contents of TVBLUNAM into
TVBOPID. (TVBLUNAM is the value of the TSKID parameter in the TASK definition state­
ment.) Another method is to use a predefined value.

The value of the MEM keyword of the TASK definition statement is generally used as
the name (one to eight characters) of an initialization member or file. The value of
the MEM keyword is found in theTVBMEMNM field of the TVB if initialization input is
required. If the subtask is coded to process this member or file, the following
macros would be invoked to read from the member or file:

• DSIDKS TYPE= CONN,NAME= DSIPARM to connect the subtask to disk services for the
DSIPARM dataset. (For VM, you would use NAME=NCCFLST.)

• DSIDKS TYPE = FIND,NAME =TVBMEMNM to find the member or file and read the first
record.

• DSIDKS TYPE = READ to read a record. The READ would be repeated until a user­
defined END statement is read or until an end-of-file return code is returned.

• DSIDKS TYPE = DISC to disconnect from disk services.

If the initialization member or filename is not used by the subtask, you can use
TVBMEMNM for other purposes, depending on the manner in which the MEM keyword
of the TASK statement is specified. For example, you may decide to use this field as
the DO name to be opened by the subtask; or you can specify a default operator to
receive messages.

The processing section of a subtask usually begins by issuing the DSIWAT macro to
wait on an event control block (ECB) list. The ECB list must contain the subtask ter­
mination ECB (TVBTECB), and generally contains the message queue ECB (TVBMECB),
used for intertask communication via the DSIMQS (Message Queuing Service)
macro. In addition to these two NetView provided ECBS, the ECB list can also
contain user defined ECBS for additional functions.

Intertask Communication
If your task will receive messages or commands from other tasks (or exits), include
the (normal) message ECB (TVBMECB) in your task's wait list. Optionally, you may
wish to include also the high and low priority message ECBS (TVBMECBH and
TVBMECBL). If the the task services the high and low queues, you should set the bit
TVBMM to '1 'B to indicate this. (When TVBMM is 'O'B, the message queuing service
will put all messages on the normal queue, regardless of how they were sent.) You
should retest the high priority ECB after each item of work on a lower queue, to
allow higher priority work to preempt the queue of lower priority work.

Each message queue should be thought of as a triplet: a private queue, a public
queue, and an ECB. (There are two queues for reentrancy reasons.)

82 NetView Customization: Assembler

Table 3. Message Processing Triplets.

Priority Private Queue Public Queue ECB

High TVBMPROH TVBMPUBH TVBMECBH

Normal TVBMPRIO TVBMPUBO TVBMECB

Low TVBMPROL TVBMPUBL TVBMECBL

Message Queue Processing: When a message buffer is received by your subtask,
the TVBMECB event control block will be posted and the message buffer will be
inserted at the head of the public message queue pOinted to by TVBMPUBO (this is a
LIFO queue). When your subtask detects that the TVBMECB ECB has been posted, the
public message queue can be moved to the private message queue (TVBMPRIO) for
processing. Because the DSIMOS service handles situations such as main line inter­
ruption (Le., an exit running asynchronously queues a message buffer to your
subtask), simultaneous processing in multiple subtasks, and parallel processing in
multiprocessor environments, the assembler compare and swap (cs) instruction
must be used to acquire message buffers from the public message queue.

To process the public message queue, do the following:

1. Set TVBMECB to O.

2. Use the assembler cs instruction to obtain the queue of buffers from TVBMPUBO

and store zero into TVBMPUBO.

3. Reverse the order of the queue (make it FIFO) so that the message buffers can
be processed in the order that they were actually received.

The following segment of assembler code demonstrates how to move the public
message queue to the private message queue (addressability to the DSITVB control
block is assumed):

MESSAGEQ EQU * BRANCH HERE WHEN TVBMECB POSTED
XC TVBMECB,TVBMECB CLEAR MESSAGE ECB

CHEKQ EQU *
SLR Re,Re CLEAR SWAP REGISTER
L R3,TVBMPUBQ LOAD COMPARAND REGISTER
CS R3.Re,TVBMPUBQ CS ZERO ON THE PUBLIC QUEUE
BNE CHEKQ RETRY IF TVBMPUBQ MODIFIED
USING BUFHDR.R3 MAP BUFHDR ONTO QUEUE HEAD

REVQ EQU * MAKE LIFO QUEUE A FIFO QUEUE
L Rl.HDRNEXTM Rl = POINTER TO NEXT BUFFER
ST Re.HDRNEXTM SET NEXT TO PREVIOUS

.lR Re,R3 MAKE CURRENT PREVIOUS
lTR R3,Rl END OF QUEUE?
8NZ REVQ CONTINUE UNTIL END REACHED
ST Re,TVBMPRIQ ANCHOR THE PRIVATE QUEUE

PROCESS EQU * BEGIN BUFFER PROCESSING

The message buffers can be dequeued from the private message queue and proc­
essed. After each buffer is processed, it must be freed. Message buffers were
obtained with DSIGET O=NO and SUBPOOL 0 so they must be freed with DSIFRE O=NO

and SUBPOOL 0 (these are the default values).

Chapter 5. Writing User Subtasks 83

Message Buffer Contents: Message buffers are discussed in detail in Chapter 2
on page 7. They may be actual messages to be displayed (HDRMTYPE = HDRTYPEU)

or internal function requests (HDRMTYPE = HDRTYPEI). For internal function requests
queued to your optional subtask, you can define your own function type by setting
the IFRCODE field to IFRCODUS (user function) and then taking appropriate user­
defined action when the buffer is received by your optional subtask.

Using IFRCODUS to Invoke a User-Defined Command Processor: The following
technique should be used to call a user-defined command processor under your
optional subtask:

1. Issue DSIMQS (from any subtask environment) to send an internal funtion
request (HDRMTYPE=HDRTYPEI and IFRCODE=IFRCODUS) to your optional subtask.
The command name and command parameters should follow the DSIIFR portion
of the buffer passed to DSIMQS.

2. When processing the IFRCODUS message buffer under your subtask, add 2 to
HDRTDISP to adjust the displacement to the start of the command and subtract 2
from HDRMLENG to keep the length consistent.

3. Follow the steps documented under "Calling a Command Directly" on page 21
to call the command processor.

The command processor called should only be defined as TYPE=D or TYPE=RD on its
respective CMDMDL statement in DSICMD, and must be a user-written command
processor. Do not call any NetView-provided command procedures from your
optional subtask.

Note: The DSIZCSMS and DSIZVSMS macros cannot be used under your optional task.

Sending Message Buffers: Use the DSIMQS macro to send message buffers to other
subtasks. These message buffers may contain actual operator messages to be dis­
played, or they may contain internal function requests (IFRS) to be executed by the
receiving subtasks. See Chapter 8 on page 161 for details of the DSIMQS service.

Operator Communications
Sending Messages to Operators You may use DSIPSS TYPE = OUTPUT or TYPE = IMMED to
send messages. Messages sent this way will go to the operator who started the
task (owner). If the task was started during NetView initialization or the owner has
logged off, the message is sent to the PPT for routing and automation.: The DSIMQS

macro can also be used to send messages to the authorized receiver of messages
or to the operator that started the subtask. The TIBMSGNM field of the DSITIB control
block will contain zeroes if the task was started during NetView initialization
(INIT=Y was specified on the TASK definition statement).

Note: Commands from operators are buffers with HDRMTYPE equal to HDRTYPET,

HDRTYPEB, or HDRTYPQC. All other commands are HDRTYPEI.

Logging Messages: You can use macro DSIWLS to write messages from the
subtask to the network log, the MVS system log, an external log, or a NetView
sequential log. See "DSIWLS -Write Log Services" on page 214 for more infor­
mation. Hard-copy logging may not be started for user-written subtasks.

84 NetView Customization: Assembler

Termination

Calling Command Processors See "Calling a Command Directly" on page 21.

Notes:

1. Command lists, immediate commands, and regular commands cannot be
called from an optional task, only command processors defined as TYPE=D .or
TYPE=RD.

2. DST service macros DSIZVSMS and DSIZCSMS cannot be invoked under an optional
task.

User-defined Functions: When a user-defined ECB is posted for work, a user­
defined command processor can be called as explained in the previous section or
a subroutine can be called to perform the requested function. It is up to you to
decide how you want to handle your implemented function.

Terminating the OPT: When a subtask terminates normally, the TVBTERM bit is set
to on, indicating that the subtask's resources should be released. When a subtask
terminates abnormally, the TVBTERM bit is set to on and the subtask is reattached.
(This is called a cleanup attach.) When the subtask regains control, it frees the
resources it had obtained and exits normally.

Include the TVBTECB field of TVB in the subtask ECB list for each OPT subtask you
write. When a CLOSE NORMAL command is issued and all operators have logged off,
the main task posts the TVBTECB of the subtask. This posting indicates that subtask
termination is requested. When the subtask finds the TVBTECB posted, the subtask
must perform the following:

• Release all resources (See Releasing Queued Storage below.)
• Set the TVBOPID field to blanks
• Set the TVBACTV bit to off
• Set the TVBTERM bit to on
• Reload the registers originally passed and return to NetView.

After releasing all resources, no NetView macros may be issued.

Releasing Queued Storage: The DSIGET Q=YES option enables storage to be easily
freed for both normal and abnormal subtask termination. During a subtask termi­
nation, use DSIFRE AQ=YES to free any remaining storage obtained by DSIGET Q=YES.

To release all queued storage, issue DSIFRE AQ=YES. Be certain that any VTAM ACBS
owned by this task have been closed before issuing DSIFRE AQ=YES. NetView will
free all queued storage with one invocation of DSIFRE AQ=YES (both mainline and
exit storage). Some macros may require queued storage; therefore, the subtask
may not issue any NetView macros after releasing the queued storage.

Additional Considerations
Special Requirements for IRB Exits: User-written IRB exits that invoke NetView
macro services require the following special processing:

• On entry, if the TVBINXIT is not on, then set it on. If the TVBINXIT bit is already set
to on, incrementTIBMUXIT by 1.

• On exit, if TIBMUXIT is zero, then clear the TVBINXIT bit. However, if TIBMUXIT is
greater than zero, then you must decrement it by 1.

Chapter 5. Writing User Subtasks 85

Displaying Status: The LIST command displays the status of a subtask on an
operator's terminal. For OPT subtasks, in addition to status, a header line and the
contents of TVBOPID and TVBLUNAM are also displayed. Status is determined by the
following TVB bit fields in the following order:

1. TVBRCVRY - recoveri ng
2. TVBLGOFF - stoppi ng
3. TVBACTV - active
4. TVBLGON - starti ng
5. None of the above - inactive.

The subtask can also create its own status display.

VTAM Outage Processing: User-written code (exit routines, command processors,
and subtasks) requiring VTAM will get error· codes whenever VTAM is inactive. User­
written subtasks that require VTAM must provide for the case of VTAM ending without
NetView ending in these ways.

• If your task opens a VTAM ACB, you can code a TPEND exit for VTAM that is called
when VTAM ends. Your TPEND exit can post TVBTECB to signal task termination to
begin.

• If your task requires VTAM to be active and does not open an ACB, you can still
be notified. Set the TVBAUTVE bit in the TVB for your task. When NetView's main
task TPEND is called (for HALT NET, QUICK, for HALT NET, CANCEL, and for VTAM

ABEND), the NetView main task will post TVBTECB for every task that has
TVBAUTVE set to 1.

• In either case, NetView also provides another bit, TVBAUTVS, which causes
NetView main task to reattach your subtask when NetView detects that VTAM

has been reactivated to the point that the main task's Ace was opened success­
fully. Set TVBAUTVS to 1 for this function.

Data Services Task (OST)

Overview
A data services task is a set of NetView interfaces built on top of the optional task
base. NetView provides a subtask processing module (DSIZDST) along with the
following:

• An initialization exit interface

• A Data Services Command Processor (DSCP) interface that provides the fol-
lowi ng services:

A CNM data services macro interface (DSIZCSMS) to request and send data
across the Communication Network Management interface.

An interface to allow a command processor to receive unsolicted CNM data

A VSAM data services macro interface (DSIZVSMS) to PUT and GET records
from a pre-defined VSAM dataset.

• Various user exit interfaces

86 NetView Customization: Assembler

Installation

Initialization

A TASK statement for the subtask must be coded in the DSIDMN member of the
DSIPARM data set. This TASK statement follows the same format as the optional task
TASK statement with the following exceptions:

1. The MOD keyword must specify DSIZDST as the subtask processing module.
DSIZDST is provided by NetView and provides the necessary initialization, proc­
essing, and termination routines to use the DSCP interfaces.

2. The initialization dataset member (specified by the MEM keyword) must contain
DSTINIT statements to provide various initialization parameters required by
DSIZDST. The statements will be discussed below under their respective inter­
faces.

The values of the other TASK statement keywords have the same meaning as those
coded for an optional task.

• PRI keyword - Specifies the relative task priority (1-9). 1 is the highest task pri­
ority that can be assigned, and 9 is the lowest.

• INIT keyword - Specifies whether the task is to be started during NetView initial­
ization (INIT=Y) or via the START command only (INIT=N).

• TSKID keyword - The task name. Each task in NetView must have a unique task
name.

TASK MOD=DSIZDST,TSKID=USERTASK,MEM=USERMEM,PRI=7,INIT=Y

In the example above, the subtask identification is USERTASK. USERMEM is the name
of the DSIPARM member (for MVS) or the file with file type NCCFLST (for VM) that con­
tains additional initialization information. The Priority of the subtask is 7, and the
subtask will be started during NetView initialization.

For additional details on DSTINIT statements, see NetView Administration
Reference.

DSTINIT Keywords: The following keywords apply to DST initialization processing.

• FUNCT - The FUNCT keyword specifies which DST services will be required. In all
cases, the ability to call DSCPS is provided. The function choices are:

OT~ER - The DST does not require the CNMI or VSAM interfaces.
BOTH - Both the VSAM and CNMI interfaces are required.
CNMI - Only the CNMI interface is required.
VSAM - Only the VSAM interface is required.

• XITDI - The XITDI keyword specifies the name of the user provided initialization
exit. The exit is called with the standard NetView user exit interface as docu­
mented in Chapter 3 on page 31 and is called once for every statement in the
specified initialization member (MEM keyword of TASK statement). When End­
Of-File has been reached, USERPDB and USERMSG will both be O. For each state­
ment (except End-Of-File condition), the standard user exit return codes will
cause the following actions:

Chapter 5. Writing User Subtasks 87

USERASIS (0) - The statement will be processed by the NetView OST module
(OSIZOST). If it is not a valid OSTINIT statement, OSIZOST will reject it with an
error message and continue processing.

USEROROP (4) - The statement will not be processed by OSIZOST. This return
code should be used if your user exit is going to process the statement
(you can define your own initialization statements).

USERSWAP (8) - The swapped buffer will be processed by OSIZOST. If the
swapped buffer does not contain a valid OSTINIT statement, it will be
rejected by OSIZOST and processing will continue.

When returning from the last call (for End-Of-File), any non-zero return code will
terminate the OST. This should only be done if the initialization process has failed.

The initialization exit should invoke the OSIPUSH service to define a LOGOFF routine.
The LOGOFF routine will be invoked during normal or abnormal end of task proc­
essing (no termination exit is provided). The LOGOFF routine should free any
resources that the user has acquired. Storage that has been acquired with the
Q=YES option is automatically freed by the OSIZOST module.

Data Services Command Processor
A data services command processor (oscp) generally performs CNM data services,
using macro OSIZCSMS, or VSAM data services, using macro OSIZVSMS, or both ser­
vices.

When a OST calls a oscP, the input to the OSCP includes the address of a data ser­
vices request block (OSRB) in the CWBOSRB field. The OSRB function code (OSRBFNCO)
indicates the purpose for which the command was called. OSRBFNCO is described
'under "DSRB - Data Services Request Block" on page 129.

There are two restrictions to observe when writing a oscp:

• Only commands defined as TYPE=O or TYPE=RO may be called under a OST or
queued to a OST. Call only user-defined commands directly. Commands called
from your OSCP cannot use NetView macros OSIZVSMS nor OSIZCSMS.

• Use only OSIPSS TYPE = OUTPUT or TYPE=IMMEO. Messages sent this way will go to
the operator who started the task (owner). If the task was started during
NetView initialization or if the owner has logged off the message is sent to the
PPT for routing and automation.

Data services requests are generally sent with HORMTYPE = HORTYPEI. Operators can
queue commands using the EXCMO command, and these commands may be identi­
fied since they will be HORTYPET, HORTYPEB, or HORTYPQC. You may wish to check the
HORMTYPE field and reject direct operator requests.

CNM Data Services
The OST provides access to both solicited and unsolicited CNM data, OSIZCSMS can be
issued by a oscp to solicit CNM data from the network. A OSCP can be defined to
receive unsolicited data from VTAM.

An ACB with AUTH=CNM must be defined to VTAM with the ACB name matching the
task 10 of the OST.

88 NetView Customization: Assembler

Unsolicited CNM Data Interface
VTAM provides a default table (ISTMGC01) which controls the routing of unsolicited
CNM RUS. You can write a supplemental table (ISTMGCOO) to override the default
routing information provided by VTAM. The routing information consists of a partic­
ular RU type an.d the name of an application which is to receive the particular type
of data. When a DST is defined with CNMI services, an ACB is opened with an Ace

name (the applicaUon name) equivalent to the task name as defined by the TSKID

parameter of the DST TASK definition statement (the one exception is Hardware
Monitor whose CNMI DST'S task name is BNJDSERV, but the application name is
BNJHWMON). If the DST task name is entered as the application name in the VTAM

routing table, the unsolicited data RU will be passed to the unsolicited data services
command processor for that DST.

DSTINIT Keywords

• UNSOL - Specifies the command verb name of the module that is to serve as the
unsolicited DSCP for this DST. The unsolicited DSCP should not issue the
DSIZCSMS macro, but may issue the DSIZVSMS macro.

• DSRBU - Specifies the number of unsolicited DSRBS which are to be allocated to
this OST. If unsolicited CNM data isn't going to be processed by this DST, then
this value should be set to zero. If the unsolicited DSCP is going to issue the
DSIZVSMS macro, then this value should be set to the number of concurrent
DSIZVSMS requests which are to be allowed. If the unsolicited DSCP is not going
to issue the OSIZVSMS macro, then this value should be set to 1.

Note: To issue DSIZVSMS also, FUNCT=BOTH must be specified.

DSCP Interface: When the unsolicited DSCP receives control, the DSRBFNCO field will
contain the DSRBFUNS (unsolicited) function code, DSRBUBUF will be zero, and
DSRBCUSB will contain the address of a NetView buffer containing the unsolicited
data. The RU starts at the offset specified in HDRTOISP and the RU length is in
HDRMLENG. If a Deliver header is present, it will be considered part of the data (Le.
- HDRTDISP will point to the start of the Deliver header). See the VTAM Program­
ming book for more information.

The return codes on entry to the unsolicited DSCP are as follows:

DSRBRCMA
00
00

00

00

Solicited CNM Data Interface

DSRBRCMI
00
16

20

24

Meaning
Successful completion.
User exit rejected the Deliver RU. HDRMLENG is
set to zero.
Data has been truncated. The length of the
Deliver RU was greater than the length of the
buffer. HDRMLENG is set to the truncated length.
Data was truncated after the user exit returned
with a return code of USERSWAP. HDRMLENG is set
to the truncated length.

The DSIZCSMS macro can be invoked by a OSCP to acquire Communications Network
Management data from the network.

DSTINIT Keyword: OSRBO - Specifies the number of solicited OSRBS that will be
required by this task and limits the number of concurrent DSIZCSMS and/or DSIZVSMS

requests. This value must be at least 1 (a DSCP will not be called unless a solicited
DSRB is available) and no greater than 862.

Chapter 5. Writing User Subtasks 89

DSCP Interface: Acquiring CNM data is a two part process. When the oSCP is first
driven (generally by a command buffer MQsed by an OST task), the oSRBFNCo field
will contain a value of oSRBFNRM. The CWBoSRB field will point to a oSRB that must
be passed on the oSIZCSMS macro. The first step is to issue the oSIZCSMS macro
with the supplied oSRB. After the macro is issued, register 15 will contain the major
return code and register 0 will contain the minor return code (additional completion
information). If register 15 is not zero then the macro has failed. If register 15 is 0
then the request has successfully been sent to VTAM. At this time, the oSCP should
be exited because the data will be returned on a subsequent invocation of the
same oSCP (this is called a re-drive operation).

When the oSCP is re-driven (the second part of the process), the oSRBFNCo code will
be oSRBFSOl. The oSRBRCMA (oSRB Major Return Code) and the oSRBRCMI (oSRB
Minor Return Code) must be checked to see if the' request completed successfully.

DSRBRCMA
00
00

00
00

00

00

00
00
00
00

DSRBRCMI
00
04

08
16

20

24

28
32
36
44

Meaning
Successful completion.
Negative response was received. DSRBINPT con­
tains the address of the negative response.
Insufficient storage to process the request.
User exit rejected the Deliver RU. HDRMLENG is set
to zero.
Data has been truncated. The length of the Deliver
RU was greater than the length of the buffer.
HDRMLENG is set to the truncated length.
Data was truncated after the user exit returned
with a return code of USER SWAP • HDRMLENG is set to
the truncated length.
VTAM rejected the request.
CNM interface closed due to unrecoverable error.
Positive response was received.
Cancellation due to timer completion. This code is
returned only when running with VTAM V3R1.1 or
later.

If the request completes successfully, the input buffer supplied on the initial
oSIZCSMS invocation (INPUT parameter) will contain the received data. The buffer
will contain a standard NetView buffer header with HoRTolSP containing the offset to
the start of the data. If the data is preceded by a Deliver RU, HoRTolSP will contain
the offset to the start of the Del iver RU.

After the initial invocation of oSIZCSMS and until the oSCP is redriven, the oSRB is
considered 'in use' and is not available to other oSCPS (other oSCPS can run during
this time frame only if the oSRBO value is greater than 1 and there is a oSRB that is
'not in use' by another oSCP). When the oSCP is re-driven, the oSRB is the only
control block that is the same as on the initial invocation of the oSCP. The oSRBUSER
field has been provided for your use and can be used to contain or pOint to any
additional environment information that you wish to maintain.

VSAM Service Interface
The DSIZVSMS macro can be invoked by a oSCP to perform I/O to a specified VSAM
data set.

OSTINIT Keywords: The primary and secondary data sets are user-defined and
are switchable.

• PDDNM - Specifies the DO name of the primary data set to be used by VSAM ser­
vices. This data set must be allocated prior to starting the oST.

90 NetView Customization: Assembler

• PPASS - Specifies the VSAM password to be used when the primary data set
ACB is opened.

• SDDNM - Specifies the DO name of the secondary data set to be used by VSAM
services. This data set must be allocated prior to starting the OST. The
NetView SWITCH command is used to control which data set is currently the
'active' data set.

• SPASS - Specifies the VSAM password to be used when the secondary data set
ACB is opened.

• MACRF - Specifies local resource sharing.

• XITVN - Specifies a user exit to receive control when an empty VSAM data set
has been opened for processing. This exit allows you to put an initialization
record into the data set.

• XITVI - Specifies a user exit to receive control upon input from the VSAM data
set before the input record is passed to the requesting DSCP.

• XITVO - Specifies a user exit to receive control before output of a record to the
VSAM data set.

Note: If OSRBO is greater than 1, then NetView does not guarantee that the
DSIZVSMS requests for VSAM Puts will be processed in the order that they were sub­
mitted. (The requests will complete asynchronously.)

DSCP Interface: Like the CNM Interface service (DSIZCSMS), using OSIZVSMS is a two
part process. When the OSCP is first driven (generally by a command buffer MQsed
by an OST task), the OSRBFNCD field will contain a value of DSRBFNRM. The CWBOSRB
field will pOint to a OSRB that must be passed on the DSIZVSMS macro. The first step
is to issue the DSIZVSMS macro with the supplied DSRB. After the macro is issued,
register 15 will contain the major return code and register 0 will contain the minor
return code (additional completion information). If register 15 is not zero then the
macro has failed. If register 15 is 0 then the request has successfully been sent to
VSAM. At this time, the OSCP should be exited because the success or failure of the
VSAM 110 requested will be returned on a subsequent invocation of the same DSCP
(this is called a re-drive operation). When the DSCP is re-driven (the second part of
the process), the DSRBFNCD code will be DSRBFVSM. The OSRBRCMA (DSRB Major
Return Code) and the DSRBRCMI (DSRB Minor Return Code) must be checked to see if
the request completed successfully.

The return codes are as follows:

DSRBRCMA
00
00

00

00
08

12

DSRBRCMI
00
16

24

28

Relevant DSRB fields are as follows:

Meaning
Successful completion.
User exit processing of VSAM input has rejected
the input. HDRMLENG is set to zero.
Data has been truncated. User exit returned
data longer than NetView buffer on AC =
USERSWAP. HDRMLENG is set to the truncated
length.
Invalid return code from user exit.
VSAM RPL feedback VSAM logical error, indicated
in DSABRCMI. See OSIVS VSAM Programmer's
Guide.
VSAM RPL feedback VSAM physical error, indicated
in DSABRCMI. See OSIVS VSAM Programmer's
Guide.

Chapter 5. Writing User Subtasks 91

DSRBVRPL

DSRBVACB

DSRBVDAD

DSRBVKEY

DSRBVKLN

DSRBVRTP

The address of the VSAM RPL that was used for the 110.

The address of the VSAM ACB for the OST.

The address of the VSAM 1/0 buffer, with a standard
BUFHOR. For GET requests, the BUFHOR HORMLENG field
indicates the length of the data read. HORTOISP contains
the offset to the data.

The address of the key in the OSRBVOAO buffer.

The key length.

Indicates the type of request just completed:

1 - OSRVGET (VSAM GET)

2 - OSRVPUT (VSAM PUT)

3 - OSRVPNT (VSAM POINT)

4 - OSRVERS (VSAM ERASE)

5 - OSRVNRO (VSAM ENOREO).

After the initial invocation of OSIZVSMS and until the OSCP is redriven, the OSRB is
considered 'in use' and is not available to other OSCPS (other OSCPS can run during
this time frame only if the OSRBO value is greater than 1 and there is a OSRB that is
'not in use' by another OSCP). When the OSCP is re-driven, the OSRB is the only
control block that is the same as on the initial invocation of the OSCP. The OSRBUSER

field has been provided for your use and can be used to contain or point to any
additional environment information that you wish to maintain.

Example of DSCP Design
A OSCP can be used to solicit communication network management (CNM) data from
a resource in the network and record the results on a VSAM data set. To accom­
plish this, OSCP processing can follow the steps that are listed below and refer­
enced in Figure 12 on page 93.

1. A OST subtask that receives an IFRCOOCR buffer calls the OSCP with a function
code of "initial call." The DSCP issues OSIZCSMS to solicit the CNM data. The OSCP

returns to the caller. 0
2. The OSCP is redriven3 with a function code of "solicited CNM data." The OSCP

issues OSIZVSMS to write the data to the VSAM data set. The OSCP returns to the
caller. fJ

3. The OSCP is red riven with a function code of "VSAM 110 completed." If more than
one CNM buffer is needed, the OSCP issues another OSIZCSMS to retrieve the
buffer. The OSCP returns to the caller. II

4. Steps 2 and 3 repeat alternately until the OSCP has retrieved all of the data.

II
5. When the OSCP is red riven for completion of the last VSAM PUT, it sends a com­

pletion message and returns control to the OST. Since neither OSIZCSMS nor
OSIZVSMS was issued, the OSRB will not be redriven. Processing for the OSCP

ends. II

3 When a oSCP is redriven, its input control blocks and fields, except for the OSRB, may be completely different than
those used in its previous invocation.

92 NetView Customization: Assembler

D

DSIMBS

Build Error
Message

DSIMQS

Queue
Message

Yes

Figure 12. Structure of a Data Services Command Processor

No

Issue
DSIZVSMS

YES

mm
Write to Disk Log

No

DSIMQS

Queue
Message

Chapter 5. Writing User Subtasks 93

oSIPSSto
Send Full Screen
of Data

Figure 13 shows one way you can structure data services requests. This example
starts with an initial operator command. This invokes the oSCP using oSIMQS with
an IFRCOoCR buffer. When the oSCP has obtained VSAM or CNM data to be presented,
it may do either of the following:

• Send the message data to the terminal (for standard or title-line output)

• Invoke a presentation services command processor (pscP) to present the data
(for full-screen output).

OST

User-Written
Regular Command oSIMQS
Processor, for IFRCOOCR
Syntax and
Parameter Checking

Message

Command
Processor
Saves
Data

RESUME:
Presents Data

DST

Data
Services
Command
Processor

OSIMQS
IFRCOoCR

I Data I
Base

Figure 13. Example of Program Design for Data Services Requests

The command uses OSIGET to obtain storage. The address of this storage can be
saved in OSRBUSER, or OSIPUSH can save it as a named storage pointer. This estab­
lishes and maintains data from one oSCP call to the next.

If the oSCP does not use the parse buffer PoB, you can improve the performance by
specifying PARSE=N on the CMOMOL statement defining the oSCP. In this case, the
command buffer is not parsed and no POB is provided to the command processor.
(PARSE=N applies only to commands invoked by a oST.)

An operator may have one or more pending OST requests. You can use the LIST OST

command to list active oST requests.

User Defined Services
Command processors defined as TYPE=o or TYPE=RO can be invoked under the oST

to perform user functions. They will be invoked with a standard NetView command
processor interface (Register 1 will point to a OSICWB control block). If no parsing of
the command buffer is required, then PARSE = N should be specified on the respec­
tive CMoMoL statement for the oSCP (this will improve performance).

94 NetView Customization: Assembler

Termination
You should issue OSIPUSH to set up a LOGOFF routine in your initialization exit. If the
OST is terminated (normally or abnormally), the LOGOFF routine will be invoked and
you should clean up any storage or resources you have acquired. Queued storage
will be automatically released by the OSIZOST module prior to termination.

Template for an Optional Task
The following template illustrates basic initialization, ECB loop. and termination
processing required by optional tasks. This template is available on-line in the
NetView sample library (SYS1.CNMSAMP) as CNMS4277.

Chapter 5. Writing User Subtasks 95

AOPTTSK CSECT

*** IEBCOPY SELECT MEMBER=((CNMS4277,AOPTTSK,R»

*** (C) COPYRIGHT IBM CORP. 1989

*** MODULE NAME: AOPTTSK

FUNCTION: USER DEFINED OPTIONAL SUBTASK. THIS SUBTASK WAITS
ON TASK TERMINATION AND THE MESSAGE QUEUE ECBS. MESSAGES
CAN BE PLACED ON THIS TASKS MESSAGE QUEUE BY:

1. USE EXCMD COMMAND
2. USER WRITTEN COMMAND PROCESSOR WHICH SENDS BUFFER

VIA DSIMQS MACRO WITH A BUFFER TYPE OF 'T'.

:Ie**

*** ***
*** INSTALLATION: ***
*** ***
*** 1. ASSEMBLE AND LINKEDIT INTO NETVIEW LOAD LIBRARY ***
*** ***
*** 2. ADD TASK STATEMENT TO DSIDMN MEMBER IN DSIPARM ***
*** ***
*** TASK MOD=AOPTTSK,TSKID=MYTASK,PRI=8,INIT=N ***
*** ***
*** NOTE: TASK CAN BE STARTED AND STOPPED BY ISSUING ***
*** START TASK=MYTASK OR STOP TASK=MYTASK. ***
*** ***
*** ***

* INPUT:
*
*
*
*
* OUTPUT:

REG 1 - ADDRESS OF TASK VECTOR BLOCK (DSITVB)
REG13 - ADDRESS OF CALLER'S SAVE AREA
REGI4 - RETURN ADDRESS
REGIS - ENTRY ADDRESS

*
* REGISTERS:
*
*
*
*
*
*

REG e - REG14 - RESTORED UPON RETURN

REG 15 RETURN CODES:
e - SUCCESSFUL

* NETVIEW MACROS:
*
*
*
*
*
*
*

DSICBS - CONTROL BLOCK SERVICE
DSIDATIM - DATE AND TIME SERVICE
DSIFRE - FREEMAIN STORAGE SERVICE
DSIGET - GETMAIN STORAGE SERVICE
DSILCS - LOCATE CONTROL BLOCKS
DSIWAT - ECB WAIT SERVICE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Figure 14 (Part 1 of 11). Template for an Optional Task

96 NetView Customization: Assembler

EJECT

RO EQU 0
Rl EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6 WORKAREA BASE REGISTER
R7 EQU 7 DSIMVT BASE REGISTER
RB EQU B DSITVB BASE REGISTER
R9 EQU 9 DSITIB BASE REGISTER
RIO EQU 10
Rll EQU 11
R12 EQU 12 BASE REGISTER
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT
PRINT OFF
DSICBS DSIMVT,DSISVL,DSISWB,DSITIB,DSITVB
PRINT ON
USING *,R15
B PROLOG
DC C'AOPTTSK &SYSDATE. AT &SYSTIME.'

PROLOG OS eH
STM R14,R12,12{R13} SAVE REGS IN CALLERS SAVEAREA
DROP R15
LR R12,R15 GET EPA FOR BASE REG
USING AOPTTSK,R12 R12 IS BASE FOR PGM

* *
* ESTABLISH CONTROL BLOCK ADDRESSABILITY *
* *

LR RB,Rl
USING DSITVB,RB
L R9, TVBTIB
USING DSITIB,R9
L R7,TVBMVT
USING DSIMVT,R7

GET TVB ADDRESS
SET UP BASE FOR TVB
GET TI B ADDRESS
SET UP BASE FOR TIB
GET MVT ADDRESS
SET UP BASE FOR MVT

*
* ESTABLISH SAVE AREA
*

*
*
*

ST
LA
5T
LR

R13,TIBSAVES+4
R2. TIBSAVES
R2.B{e,R13}
R13,R2

SAVE CALLERS R13 IN MY SAVEAREA
POINT R2 TO MY SAVEAREA
PUT MY SAVEAREA ADDR IN CALLERS
SET UP R13 TO MY SAVEAREA

* *
* CHECK FOR TERMINATION REDRIVE. *
* *

TM
BO

TVBINDl,TVBTERM
TERMINAT

WAS I DRIVEN FOR TERMINATION?
YES. GO AND DO TERM PROCESSING

Figure 14 (Part 2 of 11). Template for an Optional Task

Chapter 5. Writing User Subtasks 97

* *
* CALL INITRTN TO PERFORM INITIALIZATION PROCESSING. TVBTERM WILL *
* BE SET IF ANY ERRORS OCCURED DURING INITIALIZATION. *
* *

BAL R14,INITRTN
TM TVBINDl,TVBTERM
BO RETURN

TELL NETVIEW THAT I'M ACTIVE
ANY ERRORS?
YES. EXIT

*
* SET UP ECB LIST. TERMINATION ECB (TVBTECB) AND THE MESSAGE QUEUE
* ECB (TVBMECB) ARE INCLUDED.
*

*
*
*
*

GET ADDRESS OF TERMINATION ECB
STORE IT IN ECB LIST

LA
ST
LA
ST
01

Rl,TVBTECB
Rl.ECBLIST
Rl,TVBMECB
Rl , ECBLI ST +4
ECBLIST+4,X '80'

GET ADDRESS OF MESSAGE QUEUE ECB
STORE IT IN ECB LIST
MARK END OF LIST

* *
* WAIT ON ECB LIST FOR TERMINATION OR MESSAGE EVENT. *
* *

WAIT EQU *

DSIWAT ECBLIST=ECBLIST WAIT ON TERMINATION ECB

*
* CHECK FOR TERMINATION.
*

*
*
*

TM
BZ
XC
B

TVBTECB,TIBECBPO
MESSQ
TVBTECB,TVBTECB
TERMINAT

TASK TERMINATION ECB POSTED
IF NOT, DO THE MESSAGE QUEUE
CLEAR TERMINATION ECB
EXIT

* *
* IF TERMINATION ECB NOT POSTED, ASSUME MESSAGE ECB WAS POSTED. *
* *

MESSQ EQU

XC
*
TVBMECB,TVBMECB CLEAR MESSAGE ECB

* *
* COMPARE AND SWAP THE PUBLIC QUEUE (TVBMPUBQ) TO THE PRIVATE QUEUE *
* (TVBMPRIQ) FOR PROCESSING. *
* *

CHEKQ EQU

SLR
L
CS
BNE

*
RO,RO
R3,TVBMPUBQ
R3,RO,TVBMPUBQ
CHEKQ

ZERO THE SWAP REGISTER
LOAD COMPARAND REGISTER
CS ZERO ON THE QUEUE
RETRY IF TVBMPUBQ CHANGED

Figure 14 (Part 3 of 11). Template for an Optional Task

98 NetView Customization: Assembler

* *
* REVERSE THE PRIVATE QUEUE ORDER SO THAT THE MESSAGES ARE PROCESSED *
* IN THE CORRECT ORDER. *
* *

REVQ
USING BUFHDR,R3
EQU *
L Rl.HDRNEXTM
ST R0.HDRNEXTM
LR R0.R3
LTR R3,Rl
BNZ REVQ
ST' R0.TVBMPRIQ
DROP R3

REVERSE
THE

QUEUE
ORDER. TEST FOR END OF Q

CONTINUE IF NOT END OF Q
POINT PRIVATE ANCHOR AT FIFO Q

* *
* CALL PROCMSG TO PROCESS THE PRIVATE QUEUE. *
* *

BAL R14.PROCMSG
B WAIT

GO PROCESS THE MQS MESSAGE
GO BACK AND WAIT

* *
* BEGIN TERMINATION PROCESSING *
* *

TERMINAT EQU *

OC TVBUFLD,TVBUFLD ANY STORAGE TO FREE?
BZ RETURN NOPE, EXIT
BAL R14.TERMRTN DO TERMINATION PROCESSING
DSIFRE LV=4096,A=TVBUFLD FREE STORAGE
LTR R15.R15 DID I FREE THE STORAGE?
BZ FREEQ YES. FREE QUEUED STORAGE
MVC MESSAGE(L'FRUFAIL).FRUFAIL
MVC MESSAGE+7(8).TVBOPID GET TASK ID
LA Rl.L'FRUFAIL GET MESSAGE ADDRESS
BAL R14.SENDMSG DISPLAY MESSAGE

*
* FREE ALL QUEUED STORAGE.
*

*
*
*

FREEQ EQU *

DSIFRE AQ=YES FREE QUEUED STORAGE
LTR R15.R15 DID IT WORK?
BZ RETURN YES. QUEUED STORAGE WAS FREED
MVC MESSAGE(L'FRQFAIL),FRQFAIL
MVC MESSAGE+7(8).TVBOPID GET TASK ID
LA Rl.L'FRQFAIL GET MESSAGE ADDRESS
BAL R14,SENDMSG DISPLAY MESSAGE

Figure 14 (Part 4 of 11). Template for an Optional Task

Chapter 5. Writing User Subtasks 99

* *
* RETURN TO CALLER. *
* *

RETURN EQU

L
SLR
L
LM
BR
EJECT

*
R13, TIBSAVES+4
R15,R15
R14,12(R13)
R0,R12,20(R13)
R14

RESTORE CALLERS SAVEAREA ADDR
CLEAR RETURN CODE REGISTER
RESTORE RETURN ADDRESS
RESTORE REGISTERS
RETURN

* *
* END OF MAINLINE CODE. SUBROUTINES FOLLOW. *
* *

*
* PROCMSG: PROCESSES MESSAGE BUFFERS ON THE PRIVATE QUEUE.
*

*
*
*

PROCMSG EQU

ST
B

*
R14,RPROCMSG
PROCMSG3

SAVE RETURN ADDRESS
CONTINUE

* *
* IF SUBTASK IS TERMINATING THEN SKIP WTO AND FREE THE MESSAGE BUFFER *
* *

PROCMSGl EQU

TM
BO

*
TVBIND1,TVBTERM
PROCMSG2

IS SUBTASK TERMINATING?
YES, ONLY FREE BUFFERS

*
* PROCESS THE MESSAGE BUFFER HERE
*

*
*
*

L R3,TVBMPRIQ GET ADDRESS OF 1ST BUFFER
MVC MESSAGE(L1MSGRCV),MSGRCV
MVC MESSAGE+7(8),TVBOPID GET TASK 10
LA Rl,L1MSGRCV GET MESSAGE ADDRESS
BAL R14,SENDMSG DISPLAY MESSAGE

*
* DEQUEUE MESSAGE
*

*
*
*

PROCMSG2 EQU *

USING BUFHDR,R3 R3 IS BASE FOR BUFFER HEADER
L R3,TVBMPRIQ POINT TO FIRST BUFFER
L Rl,HDRNEXTM-BUFHDR(,R3) ANCHOR THE NEXT MESSAGE
ST Rl,TVBMPRIQ MAKE IT THE FIRST BUFFER

Figure 14 (Part 5 of 11). Template for an Optional Task

100 NetView Customization: Assembler

* *
* FREE THE MESSAGE BUFFER *
* *

LH R4,HDRBLENG-BUFHDR(,R3) GET THE BUFFER LENGTH
DSIFRE R,A=(R3),LV=(R4),SP=0 FREE THE BUFFER
LTR R15,R15 SUCCESSFUL?
BZ PROCMSG3 YES, CONTINUE
MVC MESSAGE(L'FRMFAIL),FRMFAIL
MVC MESSAGE+7(8),TVBOPID GET TASK ID
LA Rl.L'FRMFAIL GET MESSAGE ADDRESS
BAL R14.SENDMSG DISPLAY MESSAGE

*
* CHECK FOR MORE MESSAGE BUFFER
*

*
*
*

PROCMSG3 EQU

OC
BNZ

*
TVBMPRIQ.TVBMPRIQ
PROCMSGI

ANYTHING LEFT?
YES, KEEP PROCESSING

*
* EXIT MESSAGE PROCESSING
*

*
*
*

PROCMSGX EQU

L
BR
DROP
EJECT

*
R14.RPROCMSG
R14
R3

RESTORE RETURN ADDRESS
RETURN

* *
* THIS ROUTINE PERFORMS INITIALIZATION PROCESSING. A SWB CONTROL BLOCK*
* IS ALLOCATED AND INITIALIZED, THE TASK IS MARKED AS ACTIVE. AND *
* A INITIALIZATION MESSAGE IS ISSUED. *
* *

INITRTN EQU *

*
* CLEAR STORAGE
*

*
*
*

XC
XC
XC

TVBUFLD.TVBUFLD
TIBNDATD,TIBNDATD
TIBEDATD,TIBEDATD

CLEAR STORAGE POINTER
CLEAR TIB WORKAREA
CLEAR TIB WORKAREA

Figure 14 -(Part 6 of 11). Template for an Optional Task

Chapter 5. Writing User Subtasks 101

* *
* GET A 4096 BYTE WORK AREA. *
* *

ST R14 tRINITRTN SAVE RETURN ADDRESS
DSIGET LV=4096 tA=TVBUFLD.CLEAR=YES GET 4K FOR WORKAREA
LTR R15.R15 DID I GET THE STORAGE?
BZ INITRTNO YES, CONTINUE
MVC MESSAGE(L'GETUFAIL).GETUFAIL
MVC MESSAGE+7(8).TVBOPID GET TASK 10
LA Rl.L'GETUFAIL GET MESSAGE ADDRESS
BAL R14.SENDMSG DISPLAY MESSAGE
01 TVBIND1.TVBTERM SET TERMINATION FLAG
BIN ITRTNX EX IT

*
* ISSUE DSILCS TO ACQUIRE A SERVICE WORK BLOCK (SWB).
*

*
*
*

INITRTNO EQU *

DSILCS CBADDR=SWBADDR.SWB=GET GET A SWB CONTROL BLOCK
LTR R15.R15 DID I GET A SWB?
BZ INITRTNI YES. GO INITIALIZE SWB
MVC MESSAGE(L'SWBFAIL).SWBFAIL
MVC MESSAGE+7(8).TVBOPID GET TASK 10
LA Rl.L'SWBFAIL GET MESSAGE ADDRESS
BAL R14.SENDMSG DISPLAY MESSAGE
01 TVBINDl.TVBTERM SET TERMINATION FLAG
BIN ITRTNX EX IT

*
* ENQ ON TVB CHAIN
*

*
*
*

INITRTNI EQU *

USING DSISWB.Rl
L Rl.SWBADDR
ST R9. SWBTIB
DROP Rl

Rl IS BASE FOR SWB
GET ADDRESS OF SWB
PUT TIB ADDRESS IN SWB

MVC ENQDEQ(ENQDEQL).LENQDEQ INITIALIZE ENQDEQ LIST
ENQ (MVTNCCFQ.MVTTVBRN.E.18.STEP).MF={E.ENQDEQ)
LTR R15.R15 ENQ OKAY?
BZ INITRTN2 YES. CONTINUE
MVC MESSAGE(L'ENQFAIL)tENQFAIL
MVC MESSAGE+7(8).TVBOPID GET TASK 10
LA Rl.L'ENQFAIL GET MESSAGE ADDRESS
BAL R14.SENDMSG DISPLAY MESSAGE
01 TVBINDl.TVBTERM SET TERMINATION FLAG
B INITRTNX EXIT

*
* UPDATE TASK NAME AND SET TASK IS ACTIVE FLAG WHILE ENQ ACQUIRED
*

*
*
*

INITRTN2 EQU

MVC
01

*
TVBOPID.TVBLUNAM
TVBIND3.TVBACTV

UPDATE NCCF TABLE WITH TASKID
INDICATE THAT I'M ACTIVE

Figure 14 (Part 7 of 11). Template for an Optional Task

102 NetView Customization: Assembler

*
* RELEASE ENQ ON TVB CHAIN. TASK IS NOW CONSIDERED ACTIVE.
*

*
*
*

MVC ENQDEQ(ENQDEQL),LENQDEQ INITIALIZE ENQDEQ LIST
DEQ (MVTNCCFQ,MVTTVBRN,18,STEP),MF=(E,ENQDEQ)
LTR R15,R15 DEQ OKAY?
BZ INITRTN3 YES, CONTINUE
MVC MESSAGE(L'DEQFAIL),DEQFAIL
MVC MESSAGE+7(8),TVBOPID GET TASK ID
LA Rl,L'DEQFAIL GET ADDRESS OF INITIALIZATION MSG
BAL R14,SENDMSG GO DISPLAY INITIALIZATION MESSAGE
01 TVBINDl,TVBTERM SET TERMINATION FLAG
BIN ITRTNX EX IT

* *
* DISPLAY INITIALIZATION MESSAGE *
* *

*
MESSAGE(L'INITMSG),INITMSG
MESSAGE+7(8),TVBOPID GET TASK ID

INITRTN3 EQU
MVC
MVC
LA
BAL

Rl,L'INITMSG GET ADDRESS OF INITIALIZATION MSG
R14,SENDMSG GO DISPLAY INITIALIZATION MESSAGE

*
* RETURN TO MAINLINE
*

*
*
*

INITRTNX EQU

L
BR
EJECT

*
R14, RINITRTN
R14

RESTORE RETURN ADDRESS
EXIT

*
* THIS ROUTINE PERFORMS TERMINATION PROCESSING. THE TASK IS MARKED
* AS INACTIVE, A TERMINATION MESSAGE IS ISSUED, AND THE SWB CONTROL
* BLOCK IS FREED.
*

*
*
*
*
*

TERMRTN EQU

ST
*
R14,RTERMRTN SAVE RETURN ADDRESS

Figure 14 (Part 8 of 11). Template for an Optional Task

Chapter 5. Writing User Subtasks 103

* *
* ENQUE ON TVB CHAIN PRIOR TO MARKING TASK INACTIVE *
* *

MVC
ENQ
LTR
BZ
MVC
MVC
LA
BAL

TERMRTNI EQU
MVC
NI
MVC
DEQ
LTR
BZ
MVC
MVC
LA
BAL

TERMRTN2 EQU
OC
BZ
MVC
MVC
LA
BAL

ENQDEQ(ENQDEQL),LENQDEQ INITIALIZE ENQDEQ LIST
(MVTNCCFQ,MVTTVBRN,E,18,STEP),MF=(E,ENQOEQ)
R15,R15
TERMRTNI
MESSAGE(L'ENQFAIL),ENQFAIL
MESSAGE+7(8),TVBOPID GET TASK 10
Rl,L'ENQFAIL GET MESSAGE ADDRESS
R14,SENDMSG DISPLAY MESSAGE
*
TVBOPID,=8XLl ' 40 1 MAKE THIS TASK INACTIVE
TVBIND3,TVBACTV MARK TASK AS INACTIVE
ENQDEQ(ENQDEQL),LENQDEQ INITIALIZE ENQDEQ LIST
(MVTNCCFQ,MVTTVBRN,18,STEP),MF=(E,ENQDEQ)
R15,R15 DEQ OKAY?
TERMRTN2 YES, CONTINUE
MESSAGE(L'DEQFAIL),DEQFAIL
MESSAGE+7(8),TVBOPID GET TASK 10
Rl,L'DEQFAIL GET MESSAGE ADDRESS
R14,SENDMSG DISPLAY MESSAGE
*
SWBADDR,SWBAODR IS THERE AN SWB?
TERMRTNX NO, EXIT
MESSAGE(L'TERMMSG),TERMMSG
MESSAGE+7(8),TVBLUNAM GET TASK 10
Rl,L'TERMMSG GET ADDRESS OF TERMINATION MSG
R14,SENDMSG GO DISPLAY TERMINATION MESSAGE

* *
* FREE ACQUIRED SWB *
* *

DSILCS CBADDR=SWBADDR,SWB=FREE
XC SWBAODR,SWBADDR CLEAR SWB ADDRESS
LTR' R15,R15 WAS SWB FREED?
BZ TERMRTNX YES, EXIT
MVC MESSAGE(L'SWBFFAIL),SWBFFAIL
MVC MESSAGE+7(8),TVBOPID GET TASK 10
LA Rl,L'SWBFFAIL GET MESSAGE ADDRESS
BAL R14,SENDMSG DISPLAY MESSAGE

Figure 14 (Part 9 of 11). Template for an Optional Task

104 NetView Customization: Assembler

*
* FREE ALL QUEUED STORAGE AND RETURN
*

*
*
*

TERMRTNX EQU *

L R14,RTERMRTN
BR R14
EJECT

RESTORE RETURN ADDRESS
RETURN

*
* THIS ROUTINE SENDS A MESSAGE TO THE OPERATOR THAT STARTED THIS
* TASK. IF THAT FAILS, THEN THE MESSAGE IS SENT TO THE AUTHORIZED
* RECEIVER.
*

*
*
*
*
*

SENDMSG EQU *

ST R14,RSENDMSG SAVE RETURN ADDRESS
USING BUFHDR,R2 R2 IS BASE FOR BUFFER HEADER
LA R2,BUFFER GET ADDRESS OF BUFFER
STH Rl,HDRMLENG PUT MESSAGE LENGTH IN BUFFER
LA Rl,BUFHDRND-BUFHDR GET OFFSET TO MSG TEXT
STH Rl,HDRTDISP MOVE MESSAGE OFFSET TO BUFFER
AH Rl,HDRMLENG MSG LEN+HDRTDISP
STH Rl.HDRBLENG MOVE BUFFER LENGTH TO BUFFER
MVC HDRDOMID(8),MVTCURAN MOVE DOMAIN 10 TO BUFFER
MVI HDRMTYPE,HDRTYPEU INDICATE A USER MESSAGE
DSIDATIM AREA=DATETIME,FORMAT=BINARY
L Rl,DATETIME+4 GET TIME
ST Rl,HDRTSTMP PUT TIME IN BUFFER
L Rl,SWBADDR GET SWB ADDRESS
DSIMQS SWB=(Rl),BFR=(R2),TASKID=TIBMSGNM SEND TO STARTER
L TR R15, R15 DID IT WORK?
BZ SENDMSGX
DSIMQS SWB=(Rl),BFR=(R2),AUTHRCV=YES

SENDMSGX EQU *
L R14,RSENDMSG
BR R14

RESTORE RETURN ADDRESS
RETURN

*
* END OF CODE.
*

*
*
*

EJECT
LTORG

Figure 14 (Part 10 of 11). Template for an Optional Task

Chapter 5. Writing User Subtasks 105

* *
* THESE MESSAGES COULD BE SET UP IN A MESSAGE DEFINITION MODULE *
* OR IN A MESSAGE DISK MEMBER. SEE ABlDMSG FOR AN EXAMPLE OF USING *
* DSIMBS TO CONSTRUCT MESSAGES. *
* *

INITMSG DC C'USROOI XXXXXXXX TASK IS READY AND WAITING FOR WORK'
TERMMSG DC C'USR999 XXXXXXXX : TASK IS TERMINATED'
FRUFAIL DC C'USR002 XXXXXXXX : DSIFRE FAILED FOR USER STORAGE'
FRQFAIL DC C'USR003 XXXXXXXX : DSIFRE FAILED FOR QUEUED STORAGE'
MSGRCV DC C'USR004 XXXXXXXX : MESSAGE RECEIVED'
FRMFAIL DC C'USR005 XXXXXXXX DSIFRE FAILED FOR MQS BUFFER'
GETUFAIL DC C'USR006 XXXXXXXX DSIGET FAILED FOR USER STORAGE'
SWBFAIL DC C'USR007 XXXXXXXX DSILCS FAILED TRYING TO GET A SWB'
ENQFAIL DC C'USROOS XXXXXXXX ENQ ERROR'
DEQFAIL DC C'USR009 XXXXXXXX DEQ ERROR'
SWBFFAIL DC C'USROI0 XXXXXXXX DSILCS FAILED TRYING TO FREE SWB'
LENQDEQ ENQ (",,),MF=L
ENQDEQL EQU *-LENQDEQ

EJECT
DSITIB DSECT

ORG TIBNDATD
OS OXL256

DATETIME OS 0
ECBLIST OS 2F
RPROCMSG OS F
RINITRTN OS F
RTERMRTN OS F
RSENOMSG OS F
SWBAODR OS F
ENQOEQ OS CL(ENQOEQL)

ORG TIBEOATO
OS OXl256

BUFFER OS OF
OS XL(BUFHDRND-BUFHDR)

MESSAGE OS ClSO
END AOPTTSK

Figure 14 (Part 11 of 11). Template for an Optional Task

106 NetView Customization: Assembler

Chapter 6

Introduction ... 109
Overview of User-Written Functions 109

Interface to Functions 109
Entry Specifications 110
External Function Parameter List 110
Argument List .. 110
Evaluation Block 111

Directory for Function Packages 112
Format of Entries in the Directory 112
Example of a User Function Directory 114

© Copyright IBM Corp. 1989 Chapter 6 107

108 NetView Customization: Assembler

Chapter 6. Writing REXX User Functions

Introduction
This chapter explains how to add additional functions or expand or replace those
REXX functions that already exist in the NetView/RExx environment. The process for
MVS/XA is very similar, but for more specific MVS/XA information, refer to the REXX
Reference.

Both the VM and the MVS/XA environments use the DSIRXEBS macro described in
Chapter 8 to obtain storage for an evaluation block.

Overview of User-Written Functions
External functions can be written that allow you to extend the capabilities of the
REXX language. You can write functions that supplement either the built-in func­
tions or the functions that are provided. You can also write a function that will be
used in place of a function already provided. For example, if you want a new sub­
string function that performs differently from the SUBSTR built-in function, you can
write your own substring function and name it STRING. Users at your installation
can then use the STRING function in their REXX command lists.

NetView supports three types of function package directories. Basically, there are
no differences between the three types. They are as follows:

• DSIRXUPD - User packages, which are function packages that an individual user
may write to replace or supplement certain system-provided functions. When
the function packages are searched, the user packages are searched before
the local and system packages.

• DSIRXLPD - Local packages, which are function packages that a system support
group or application group may write. Local packages may contain functions
that are available to a specific group of users or to the entire installation.
Local packages are searched after the user packages and before the system
packages.

• System packages, which are function packages that have been written by
NetView. System packages are searched after any user and local packages.

To provide new functions or change existing functions, there are several steps you
must perform. The steps are described and explained in more detail. in the fol­
lowing topics.

Subroutines can also be included in the function package directories.

Interface to Functions

© Copyright IBM Corp. 1989

When your code gets control, the function gets a control block called the evaluation
block (EVALBLOK). The function places the result into the evaluation block, which is
returned to the language processor. The result in the evaluation block is used in
the interpretation of the REXX instruction that contained the function.

To obtain an evaluation block, see the NetView DSIRXEBS macro description.

Chapter 6. Writing REXX User Functions 109

Entry Specifications
When the code for the function gets control, the contents of the registers are:

Register 0

Register 1

TIB address for VM, Environment Block for MVS/XA (TIB address is in
ENVBLOCK_ USERFIELO).

Address of the external function parameter list (EFPL)

Registers 2-12 Unpredictable

Register 13

Register 14

Register 15

Address of a register save area

Return address

Entry point address

External Function Parameter List

Argument List

When the function gets control, register 1 points to the external function parameter
list, which is described in Table 4. The mapping macro IRXEFPL for the external
function parameter list is provided by TSO/E.

Table 4. External Function Parameter list

Offset
(Decimal)

0

4

8

12

16

20

Number
of Bytes

4

4

4

4

4

4

Description

Reserved.

Reserved.

Reserved.

Reserved;

The address of the parsed argument list. Each argument is
represented by an addressllength pair. The argument list is
terminated by X I FFFFFFFFFFFFFFFF I. Table 5 shows the
format of the argument list.

The address of a fullword that contains the address of an
evaluation block (EVALBLOK). The evaluation block is used to
pass back the result of the function. Table 6 on page 111
describes the evaluation block.

Table 5 shows the format of the parsed argument list the function receives at offset
+ 16 (deCimal). The mapping macro IRXARGTB for the argument list is provided by
TSO/E.

Table 5. Format of the Argument list

Offset Number Field Name Description
(Dec) of Bytes

0 4 ARGSTRING_PTR Address of argument 1

4 4 ARGSTRING_LENGTH Length of argument 1

8 4 ARGSTRING_PTR Address of argument 2

12 4 ARGSTRING_LENGTH Length of argument 2

16 4 ARGSTRING_PTR Address of argument 3

20 4 ARGSTRING_LENGTH Length of argument 3

24 8 X'FFFFFFFFFFFFFFFF '

110 NetView Customization: Assembler

Evaluation Block

In the argument list, each argument consists of the address of the argument and its
length. The argument list is terminated by X I FFFFFFFFFFFFFFFF I.

Before the function returns control to the language processor, the address of the
evaluation block (EVALBLOK) is placed at offset + 20 of the external function param­
eter list. The function computes the result and returns the result in the evaluation
block.

The evaluation block consists of a header and data, in which you place the result
from your function. Table 6 shows the format of the evaluation block.

The mapping macro IRXEVALB for the evaluation block is provided by TSO/E.

Table 6. Format of the Evaluation Block

Offset Number Field
(DeCimal) of Bytes Name

0 4 EVPAD1

4 4 EVSIZE

8 4 EVLEN

12 4 EVPAD2

16 n EVDATA

Description

A fullword that contains X '00'. This field is
reserved and is not used.

Specifies the total size of the evaluation block in
doublewords.

On entry, this field is set to X '80000000 I, which
indicates no result is currently stored in the
evaluation block. On return, specify the length
of the result, in bytes, that your code is
returning. The result is returned in the EVDATA
field at offset + 16.

A fullword that contains X I 00'. This field is
reserved and is not used.

The field in which you place the result from the
function or subroutine. The length of the field
depends on the total size specified for the
control block in the EVSIZE field. The total size of
the EVDATA field is:

EVSIZE * 8 - 16

The function must compute the result, move the result into the EVDATA field (at
offset + 16), and update the EVLEN field (at offset + 8). If the initial evaluation block
is too small to hold the complete result, you can use the DSIRXEBS macro to obtain a
larger evaluation block. DSIRXEBS creates the new evaluation block and returns the
address of the new block. Your code can then place the result in the new evalu­
ation block. You must also change the parameter at offset + 20 in the parameter
list to point to the new evaluation block. If DSIRXEBS was used to get the initial eval­
uation block, DSIRXEBS will release the evaluation block if its address is provided
when obtaining the larger evaluation block.

Functions must return a result. Subroutines are not required to return a result.

Chapter 6. Writing REXX User Functions 111

Directory for Function Packages
After writing the code for the function, you must create an entry in one of the direc­
tories. You need a directory entry for each individual function package you want
defined.

A function package directory is contained in a load module and can be tailored to
individual users or local groups. The name of the entry pOint at the beginning of
the directory is the function package directory name. The name of the directory is
specified only on the CSECT. In addition to the name of the entry pOint, the function
package directories define each entry pOint for the individual functions that are
part of the function package. The directories consist of two parts: a header fol­
lowed by individual entries for each function included in the function package.
Table 7 shows the format of the directory header. Table 8 illustrates the rows of
entries in the function package directory.

Table 7. Format of the Function Package Directory Header

Offset
(Decimal)

o

8

12

16

20

Number
of Bytes

8

4

4

4

4

Description

An eight-byte character field that defines the directory. This
is the name of the directory. For example, you can specify
DSIRXUFP, which is one of the "dummy" function package
names that is provided. The name must be in uppercase and
left justified.

Specifies the length, in bytes, of the header. This is the offset
from the beginning of the header to the first entry in the
directory. This must be a fullword binary number equivalent
to decimal 24.

The number of functions defined in the function package (the
number of rows in the directory). The format is a fullword
binary number.

Reserved

Specifies the length, in bytes, of an entry in the directory
(length of a row). This must be a fullword binary number
equivalent to decimal 32.

At offset +0 in the header, specify the name of the function package directory. Two
"dummy" function package directory names are provided:

• DSIRXUFP for a user function package
• DSIRXLFP for a local function package

Format of Entries in the Directory
Table 8 shows two rows (two entries) in a function package directory. The first
entry starts immediately after the directory header. Each entry defines a function
or subroutine in the function package. The individual fields are described following
the table.

Table 8 (Page 1 of 2). Format of Entries in Function Package Directory

Offset
(Decimal)

o

112 NetView Customization: Assembler

Number
of Bytes

8

Field Name

FUNC-NAME

Description

The name of the first function or subroutine
(entry) in the directory.

Table 8 (Page 2 of 2). Format of Entries in Function Package Directory

Offset Number Field Name Description
(Decimal) of Bytes

8 4 ADDRESS The address of the entry point of the func-
tion or subroutine (for the first entry).

12 4 Reserved.

16 8 SYS-NAME The name of the entry pOint in a load
Reserved in module that corresponds to the function or
VM. subroutine (for the first entry). Not used by

VM.

24 8 SYS-OD The ddname from which the function or
Reserved in subroutine is loaded. Not used by VM.

VM

32 8 FUNC-NAME The name of the second function or subrou-
tine (entry) in the directory.

40 4 ADDRESS The address of the entry point of the func-
tion or subroutine (for the second entry).

44 4 Reserved.

48 8 SYS-NAME The name of the entry pOint in a load
Reserved in module that corresponds to the function or
VM subroutine (for the second entry). Not used

bYVM.

56 8 SYS-DD The ddname from which the function or
Reserved in subroutine is loaded. Not used by VM.

VM

The following describes each entry (row) in the directory.

FUNC-NAME
The eight-character name of the external function or subroutine. This is the
name that is used in the REXX command list. The name must be in uppercase
and left justified.

If this field is blank, the entry is ignored.

ADDRESS
A four-byte field that contains the address, in storage, of the entry point of the
function or subroutine. This address is used only if the code has already been
loaded.

If the address is 0, the sys-name and, optionally, the sys-dd fields are used. A
LOAD will be issued for sys-name from the DO sys-dd.

If the address is specified, the sys-name and sys-dd fields for the entry are
ignored.

For VM, functions and subroutines must be loaded with NetView.

Reserved
A four byte field that is reserved.

SYS-NAME
An eight-character name of the entry point in a load module that corresponds
to the function to be called for the tunc-name. The name must be in uppercase
and left justified.

Chapter 6. Writing REXX User Functions 113

If the address is specified, this field can be blank. If an address of 0 is speci­
fied and this field is blank, the entry is ignored.

Not used by VM. See" ADDRESS" above.

SYS·DD
An eight-character name of the DO from which the function or subroutine is
loaded. The name must be in uppercase and left justified. If the address is 0
and this field is blank, the module is loaded from the link list.

Not used by VM. See "ADDRESS" above.

Example of a User Function Directory
Figure 15 shows an example of a user function directory. The example is
explained following the figure.

DSIRXUFP CSECT
DC CL8'DSIRXUFP' String identifying directory
DC FL4'24' Length of header
DC FL4'4' Number of rows in directory
DC FL4'€)' Word of zeros
DC FL4'32' Length of directory entry

* Start of definition of first entry
DC CL8'MYFl Name used in command list
DC FL4'€)' Address of preloaded code
DC FL4'€)' Reserved field
DC CL8'ABCFUNl ' Name of entry point
DC CL8' Reserved

* Start of definition of second entry
DC CL8'MYF2 Name used in commmand list
DC FL4'€)' Address of preloaded code
DC FL4'€)' Reserved field
DC CL8'ABCFUN2 ' Name of entry point
DC CL8' Reserved

* Start of definition of third entry
DC CL8'MYS3 Name used in command list
DC AL4(ABCSUB3) Address of preloaded code
DC FL4'€)' Reserved field
DC CL8'ABCFUN3 ' Name of entry point
DC CL8' Reserved

* Start of definition of fourth entry
DC CL8'MYF4 Name used in command list
DC VL4(ABCFUNC4) Address of preloaded code
DC FL4'0' Reserved field
DC CL8' Name of entry point
DC CL8' Reserved
SPACE 2

END DSIRXUFP

Figure 15. Example of a Function Package Directory

In Figure 15, the name of the function package directory is DSIRXUFP, which is one
of the "dummy" function package directory names provided. Four entries are
defined in this function package:

• MYF1, which is an external function
• MYF2, which is an external function
• MYS3, which is a subroutine

114 NetView Customization: Assembler

• MYF4, which is an external function

For MVS/XA: If the external function MYF1 is called in a REXX command list, the load
module with entry point ABCFUN1 is loaded from DO FUNCTDD1. If MYF2 is called in a
REXX command list, the load module with entry point ABCFUN2 is loaded from the
linklist because the sys-dd field is blank.

For VM: If the address is zero 0, processing will continue as if the entry was not
found.

The load modules for MYS3 and MYF4 have been preloaded. The MYS3 subroutine and
the MYF4 function have been assembled in a different object module but have been
link edited as part of the same load module as the directory. The assembler,
linkage editor, and loader have resolved the addresses.

When NetView is initialized, the load modules containing the function package
directories for the environment are automatically loaded. The modules for the
external functions and subroutines are loaded when a REXX command list calls the
function or subroutine. All modules that are loaded remain loaded until the last
REXX command list executing under the task under which the modules were loaded
finishes executing.

Chapter 6. Writing REXX User Functions 115

116 NetView Customization: Assembler

Chapter 7

ART - Authorization and Routing Table 120
BUFHDR - Buffer Header 121

Values for HDRMTYPE Fields 123
Example of BUFHDR Usage 125

CBH - Control Block Header 126
CWB - Command Work Block 127
DSB - Data Service Block 128
DSRB - Data Services Request Block 129
ELB - External Logging Block 131
Focal Point Transfer RU Header 132
IFR - Internal Function Request 133

AIFR - Automation Internal Function Request 133
Automation Internal Function Request Routing List 139
Usage Notes ... 140

LOGOS - NetView Log DSECT 141
MVT - Main Vector Table 142

MVT DSIEX16 Interface Data 144
OIT - Operator 10 Table 145
PDB - Parse Descriptor Block 146
SCE - System Command Entry 147
SCT - System Command Table 148
SNT - Span Name Table 149
SVL - Service Routine Vector List 150
SWB - Service Work Block 151
TIB - Task Information Block 152
TVB - Task Vector Block 154
USE - User Exit Parameter List 157

© Copyright IBM Corp. 1989 Chapter 7 117

118 NetView Customization: Assembler

Chapter 7. Control Block Reference

© Copyright IBM Corp. 1989

This chapter describes control block fields related to customization interfaces. The
other fields which may appear in control block mapping macros are considered the
NetView program's internal use control information and are not to be used as a
programming interface.

NetView control blocks and buffers passed to user exits and command processors
are intended for READ ONLY use and should not be altered, with the exception of
fields specifically designed as user fields, such as TVBUFLD, CWBSAVEA, and
CWBADATD.

Chapter 7. Control Block Reference 119

ART

ART - Authorization and Routing Table
The authorization and routing table (ART) is a mapping consisting of multiple
entries. Each entry includes the name of a VTAM resource as defined to NetView
and indicators to define those spans for which the resource name is defined.

The mapping of the authorization and routing table is as follows:

Field Name

ARTCBH

ARTTABLE

ARTENTRY

ARTNAME

ARTINO

ARTSOEF

120 NetView Customization: Assembler

Length Description

a Control block header.

a

Multiple entries.

Format of each OSIART entry.

Resource name.

Indicator flags
x'ao' - This entry is active.

Variable length bit string, where each bit corresponds to a rela­
tive entry in OSISNT. If a bit is on (1), the resource is in the SPAN

at the relative position in the SNT.

BUFHDR

BUFHDR - Buffer Header
All message and command buffers must have an initialized buffer header (BUFHDR)

preceding the buffer text. BUFHDR describes the buffer's size and usage, as well as
the origin of the message or command. The items marked with an asterisk (*) in
Figure 16 are the BUFHDR fields you must initialize.

BUFHDR is a separate DSECT contained in the task information block (TIB). To obtain
the BUFHDR DSECT, use macro DSICBS to include the TIB control block.

BUFHDR is the only NetView control block that does not have the DSI prefix in its
name.

0(0)

4 (4)

8 (8)

12 (C)

20 (14)

24 (18)

28 (1C)

Standard Buffer Header

* * HDRMLENG HDRBLENG
Message Length Total Length of Buffer

* * * HDRIND HDRMTYPE HDRTDISP
Line Type Message Type Displacement to the First Character

of the Text from Start of Header

HDRTSTMP
Time Stamp Field

*
HDRDOMID
Domain Identification

--

Reserved Area

Must be initialized by user before write operation

BUFHDR Extension (HDRMCEXT) (used by DSIMQS Macro)

HDRNEXTM
Chain Field

HDRSENDR
Operator 10 of Sending Subtask

Figure 16. Buffer Header (BUFHDR)

Chapter 7. Control Block Reference 121

BUFHDR

An initialized BUFHDR has the fields set as follows:

Table 9 (Page 1 of 2). Control Block Fields

Field Name

BUFHDRND

HDRBLENG

HDRDOMID

HDRIND

HDRMCEXT

HDRMLENG

HDRMSG

HDRMSGLN

HDRMTYPE

HDRNEXTM

HDRSENDR

HDRTOISP

HORTEXT

Length Description

o Label at the end of BUFHDR for use in computing the length, in
bytes, of BUFHDR.

2 The length, in bytes, of the entire buffer: header, text, and
unused space. This length is used if the buffer is to be released
with macro DSIFRE. It is a number between 0 and 32767 bytes.

8 The identifier of the domain that originated the message. This
field is displayed and logged. The domain identifier under
which a particular program is running is shown in the MVTCURAN

field of the main vector table (MVT). It is recommended that the
value of HDRDOMID equal the value of MVTCURAN. MVTCURAN is an
eight-byte field that contains a DOMAINID (five or fewer bytes)
and is padded with blanks (the rightmost three bytes are
reserved).

1 This field is normally set to zero except when

12

2

o

o

4

8

2

o

HDRMTYPE = HDRTYPEJ. HDRTYPEK. or HDRTYPEL. If HDRMTYPE = J. K. or
L. then:

HDRLNCTL TYPE = CONTROL LINE

HDRLNLBl TYPE = LABEL LINE

HDRLNDAT TYPE = DATA LINE

HDRLNEND TYPE = DATA END LINE

An extension that is appended to the BUFHDR when a buffer is
transferred from one subtask to another. Macro DSIMQS

BFRFLG=NO builds this extension when it creates a buffer copy
for the destination task. If you want to pass the actual buffer
with DSIMQS BFRFLG=YES, you must build the extension and ini­
tialize HDRSENDR.

The length, in bytes, of the text in the buffer.

Label to indicate the place for text to begin if HDRMCEXT is
present.

Label at the end of HDRMCEXT for use in computing the length, in
bytes, of BUFHDR + HDRMCEXT.

Indicates the current usage of the buffer or the origin of the
command. If the buffer is written using macro DSIPSS, this char­
acter is displayed and logged. For a list of values for HDRMTYPE,

see Table 10 on page 123. You can use types B, I, L, T, and U
only. Types Band T are used for commands only.

MLWTO buffer chain pointer; points to the next buffer in the
chain.

The originator's operator 10 as found in the sender's TVBOPIO

field of the task vector block (TVB).

The offset from the start of the buffer header to the first byte of
text.

Label to indicate the place for text to begin if HDRMCEXT is not
present.

122 NetView Customization: Assembler

BUFHDR

Table 9 (Page 2 of 2). Control Block Fields

Field Name

HDRTSTMP

Text

Values for HDRMTYPE Fields

Length Description

4 The time that the buffer was created, in the packed decimal
form X I hhmmss OC I, where:

hh = the hour of the day, from 00 to 23
mm = the minutes of the hour, from 00 to 59
ss = the seconds of the minute, from 00 to 59
OC = a packed decimal sign.

To obtain values for this field, use DSIDATIM (see "DSIDATIM -
Date and Time" on page 165).

HDRTDISP indicates where the text starts. With a HDRMCEXT, text
normally starts at HDRMSG. Without a HDRMCEXT, text normally
starts at HDRTEXT. Text may start beyond these points, but not
before them.

For buffer header HDRMTYPE, the table below shows the values for the fields.

Table 10 (Page 1 of 3). Values for HDRMTYPE fields

Field Value

HDRTYPEB (?)

HDRTYPEC (C)

HDRTYPED (!)

HDRTYPEE (E)

HDRTYPEF (F)

HDRTYPEG (G)

HDRTYPEI (I)

HDRTYPEJ (')

HDRTYPEK (")

HDRTYPEL (=)

Meaning

Indicates a command or command list buffer that has display and
logging suppressed. Not displayed on the operator's screen. Used to
suppress display and logging of commands entered with a suppression
character as defined in initialization member DSIDMN. Also used to sup­
press display and logging of command list statements that are preceded
by this same suppression character.

Indicates a command or message from a command list. Changes to
HDRTYPEB for suppressed command list statements. Changes to HDRTYPQC
for quiet command.

Indicates a message from an immediate command processor. Usually
sent to the screen using DSIPSS TYPE=IMMED. When displayed in the
immediate message area on the screen, the HDRMTYPE and DOMAIN name
are not displayed. When received cross-domain, this type of message is
in the normal output area, along with its domain name and type prefix.
DSIPSS TYPE=IMMED does not enforce or set HDRTYPED.

Indicates a message from the ss!. This type is not used for title-line
mode (MLWTO), system action, or WTOR messages. See also HDRTYPEK and
HDRTYPEY for other forms of SSI messages.

Indicates a VSAM record. Not displayed on the operator's screen. Used
within the data services task (DST).

Indicates a CNMI record. Not displayed on the operator's screen. Used
within the data services task (DST).

Indicates an internal function request. This buffer is a formatted inter­
face within and between tasks. The IFR contains a function number
(IFRCODE) that determines the format and function of the buffer.

Indicates a title-line (MLWTO) message originating from NetView itself.
These buffers must be in a sequence and include a description of
control, label, data, and end designators. NetView treats these
sequences of buffers as a single message for presentation and auto­
mation.

Same as HDRTYPEJ, but for IBM non-NetView code.

Same as HDRTYPEJ, but for non-IBM written code.

Chapter 7. Control Block Reference 123

BUFHDA

Table 10 (Page 2 of 3). Values for HDRMTYPE fields

Field Value

HDRTYPEM (M)

HDRTYPEN (-)

HDRTYPEP (P)

HDRTYPEQ (a)

HDRTYPER (R)

HDRTYPES (5)

HDRTYPET (*)

HDRTYPEU (U)

HDRTYPEV ()

HDRTYPEW (+)

HDRTYPEX (X)

124 NetView Customization: Assembler

Meaning

Indicates a message from the NetView message command processor.

Indicates a regular single buffer message from NetView.

Indicates a message or command from the PPT. This message type
appears in the seventh character position of the domain name on the·
operator's screen, and is not the value in HDRMTYPE. This indicator
appears in addition to the HDRMTYPE of the message itself.

Indicates a message from the VTAM POI that is a single-buffer unsolicited
message. See also HDRTYPEV, HDRTYPEY, and HDRTYPEK for other VTAM POI
messages. This message type is not set for messages from VTAM
received on the sst.

Indicates that an operator entered the VTAM REPLY command in response
to NetView WTOR number DS1802A. This message type is logged, but does
not appear on NetView consoles.

On some user exits interfaces, HDRMTYPE is set to HDRTYPES to indicate a
swapped buffer.

Indicates a command issued to NetView from a NetView terminal. This
message type indicates that the buffer is a command rather than a
message. IFRCODE=IFRCODCR is similar in that the buffer represents a
command to be executed. Notice that IFRCODCR generally implies an
internally formatted command, such as between OST and DST tasks.
HDRTYPET generally implies a command buffer as if an operator had typed
the command. IFRCODCR buffers can contain non-printable data. HDRTYPET
buffers should contain no non-printable text.

Reserved for non-IBM users. Cannot be used for action messages (WTOR)
or title-line (MLWTO) messages.

Indicates a message from the VTAM POI that is a single-buffer solicited
message. See also HDRTYPEO, HDRTYPEY. and HDRTYPEK for other VTAM POI
messages. This message type is not set for messages from VT AM
received on the sst.

Indicates an IBM-written single line message. Similar to HDRTYPEN and
HDRTYPEU.

Indicates a cross-domain (NNT to OST) command. Allows reverse­
direction commands, since commands are normally routed from the OST
to the NNT, for example, with the ROUTE command.

Code running in a NNT task can issue DSIPSS TYPE = OUTPUT for a HDRTYPEX
buffer, and the corresponding command will be executed in the OST that
started the session with that NNT. This is useful for sending non­
formatted (hexadeCimal) data from the NNT to an OST for full-screen or
other formatting. Limited to 256 bytes. Not displayed on the operator's
screen.

BUFHDR

Table 10 (Page 3 of 3). Values for HDRMTYPE fields

Field Value

HORTYPEY (>)

HORTYPEZ (Z)

HORTYPE$ ($)

HORTYPLT (l)

HORTYPOC

('32IX)

HORTYPWT (W)

HORTYPE1 (V)

HORTYPE2 (Y)

Example of BUFHDR Usage

Meaning

Indicates single-buffer action or WTOR. Can be a message from the SSt as
we.1I as from the VTAM POI. These messages remain on the screen until
an action is taken or the reply is entered. The operator can delete these
messages by overstriking the> character and pressing enter. The'
message disappears the next time the screen wraps over the text.

When the HORTYPEY flag is set and the IFRAUWOE flag is not set, NetView
looks for a 3-character reply 10 immediately preceding the message
number in the message text. If the reply 10 exists, the message is a VTAM

WTOR. Otherwise, the message is treated as a held message (if IFRAUWOE

is zero). If IFRAUWOE is set to 1, the IFRAUWOO data is checked to see if the
WOE data indicates a WTOR or action message. If WTOR is indicated, a
2-character reply 10 immediately precedes the message 10. If a reply 10

exists, it is delimited from the message 10 by one space.

Similar to HORTYPEN, but specifically indicates a message from a data
services task (OST).

Indicates a non-displayable data message. Used for data transfer
between high-level language command procedures.

Indicates a TRACE record. This message type is not displayed on the
screen or in the NetView logs.

Indicates a command with all synchronous messages suppressed (per­
formance option).

Indicates a message that matched a &WAIT and was displayed. The W

appears in the message type field on the screen and in the logs but is
not in the HORMTYPE field in the buffer. The HORMTYPE field in the buffer
contains the original message type.

Indicates PPOLOG echo of console operator command.

Indicates PPOLOG copy of console message, suppressed or unsup­
pressed.

Macro DSIDKS uses the buffer header when reading a disk data set. You specify the
blocking factor to block the disk data set. The disk services module DSIDRS prefixes
the physical read buffer with a BUFHDR.

When the first record is requested, macro DSIDKS reads the first block. HDRTDISP is
adjusted to indicate the first logical record. DSIDKS also sets HDRMLENG to reflect the
logical record length. When DSIDKS is issued for the next logical record, HDRTDISP is
adjusted ~o indicate the next logical record until the block is exhausted. DSIDKS

reads another physical record; the process starts again from the first logical record
in the block.

Chapter 7. Control Block Reference 125

CBH

CBH - Control Block Header
The control block header (CBH) must precede all NetView control blocks, except the
BUFHDA and the internal function request (IFR) control block. CBH identifies the
length and type of control block that follows it, as well as the type of subtask the
control block represents.

The relevant fields in the CBH are as follows:

Field Name

CBHIO

CBHLENG

CBHTYPE

126 NetView Customization: Assembler

Length Description

1 A one-character identifier of the control block.

2

1

CBHPOB is the identifier for a parse descriptor block (POB).

A halfword that contains the length of the control block.
CBHLENG represents either the length that is preallocated or the
length that is obtained by macro OSIGET. For example. a parse
descriptor block (POB) has both a fixed-size portion and a vari­
able number of entries. For a POB. CBHLENG contains the length
of both parts.

The type of subtask that the control block represents. (The TIB

and the TVB each contain this identifier.) The types are the
primary POI task (PPT). the operator station task (OST), the
NetView-NetView task (NNT). the hard-copy task (HCT). a data
services task (OST). and the optional subtask (OPT). Macro
OSILCS uses this field for managing control work blocks (CWBS)

and service work blocks (SWBS). In all other cases, this byte is
reserved.

CBHHCT The identifier used for a TIB or a TVB belonging to an
HCT task.

CBHNNT The identifier used for a TIB or a TVB belonging to an
NNT task.

CBHOPTSK The identifier used for a TIB or a TVB belonging to an
OPT task or a DST task.

CBHOST The identifier used for a TIB or a TVB belonging to an
OST task.

CBHPPT The identifier used for a TIB or a TVB belonging to the
PPT task.

eWB

CWB - Command Work Block
The command work block (ewB) contains the command processor parameters, a
save area, and a work area. The· relevant fields in the eWB are as follows:

Field Name

CWBCBH

CWBADATD

CWBBUF

CWBOSRB

CWBPARMS

CWBPDB

CWBRCODE

CWBSAVEA

CWBSWB

CWBTIB

Length Description

4 A standard control block header.

256 A work area for the command processor. If more storage is
required, the command processor obtains it with macro DSIGET
and releases it with macro DSIFRE. The command processor
must free any storage it obtains.

4 A pointer to a buffer containing a BUFHDR and the command text.

4 Used only by data services command processors (oscPs). The
data services task (OST) initializes this field with the address of
the data services request block (OSRB). This field contains zero
for all other command processor types.

12 A command processor parameter area. Its subfields are
CWBBUF. CWBPDB, and CWBSWB.

4 A pOinter to a parse descriptor block (POB), which is described
under "PDB - Parse Descriptor Block" on page 146. The PDB
contains parse information for the command pOinted to by
CWBBUF. If a special type of parse is required, the poe may be
reused by the command processor.

4 On resumption, an LRC receives a return code from a called
command.

72 A save area that may be utilized by the command processor.

4 A pointer to a service work block (SWB) that the command
processor may use or pass as a parameter to service macros
or modules. Service macros build parameter lists in the SWB
for the service modules. The SWB also contains a task informa­
tion block (TIB) pointer, a parameter list, and a save area for
use by the service routine. SWBS may be reused without re­
initialization (service routines or macros need only the CBH and
the TIB address).

4 The address of the TIB for the subtask. The TIB and the task
vector block (TVB) to which the TIB field TIBTVB is pOinted contain
all the information that relates to the subtask under which the
command is running. This information contains the operator 10,

the task type, and the task status.

Chapter 7. Control Block Reference 127

DSB

DSB - Data Service Block
The data service block (DSB) contains information used by the disk read service
routines called when the DSIDKS macro is issued. The following fields are used by
the issuer of DSIDKS to access the records read:

Field Name

DSBBUFF

DSBREC

128 NetView Customization: Assembler

Length Description

4 The address of the 1/0 buffer containing the record read from
the data set member. The buffer contains a BUFHDR with
HDRTDlSP containing the offset of the requested logical record.

4 The address of the requested logical record read using the
DSIDKS macro.

DSRB

DSRB - Data Services Request Block
The data services request block (OSRB) contains information that a data services
command processor (oscp) needs to communicate with the OST. It also contains
work space for the I/O routines. The relevant fields in the OSCP are as follows:

Field Name

OSRBCBH

OSRBCUSB

OSRBFLG

OSRBFLGS

OSRBFNCO

OSRBINPT

OSRBOIO

OSRBPRIO

OSRBRCMA

Length Description

4 A standard control block header.

4 The address of a buffer used by the Communication Network
Management (CNM) interface for unsolicited data. This field is
used only when the OSRB function code (OSRBFNCO) indicates that
unsolicited data has been received. The buffer contains a
BUFHOR and the data length is in the HORMLENG field of BUFHOR.

4

8

2

4

The flag settings described below. The bits may be examined
but not changed.

OSRBACTV = 1

OSRBINUS = 1

OSRBTYPE = 1

OSRBTYPE = 0

There is an active transaction using this OSRB.

A transaction is defined as a request from the
time of its first arrival at the OSCP to the last
exit of the OSCP. When a transaction ends, you
can reassign the OSRB to another transaction.

Either the VSAM or the CNM interface service
routine has an active request using this OSRB.

OSRBINUS should not be on when OSRBACTV is
off.

The OSRB is used for unsolicited CNM data.

The OSRB is used either for VSAM or CNM solic­
ited data traffic.

The flag settings described below. The bits may be examined
but not changed.

OSRBCPMS = 1

OSRBCPMS = 0

The alert was generated from the distributed
host.

The alert came from the local CNMI.

Indicator showing the reason that the command processor was
called. The constants for OSRBFNCO are the following:

OSRBFNRM (1)

OSRBFUNS (2)

OSRBFSOL (3)

OSRBFVSM (4)

The first calling of the command processor,
as the result of an IFRCOOCR queued from
another subtask using OSIMQS.

The command processor was called to handle
unsolicited CNM data.

Solicited data was received from the CNM

interface.

A VSAM 110 request has completed.

The address of the CNM interface input buffer.

The 10 of the operator that initiated the transaction.

A halfword field that contains a correlation identifier for use by
the CNM interface.

The return code for a completed request. It is set after the
request is completed but before the OSCP is called again for
request completion. This return code value is further explained
by the minor return code (OSRBRCMI). See "DSCP Interface" on
page 91 for a description of the return codes.

Chapter 7. Control Block Reference 129

OSRB

Field Name

OSRBRCMI

OSRBTIB

OSRBUBUF

OSRBUSER

OSRBVACB

OSRBVOAO

OSRBVECB

OSRBVKEY

OSRBVKLN

OSRBVRPL

OSRBVATP

130 NetView Customization: Assembler

Length Description

4 The minor return code for a completed request. See OSRBRCMA.

4 The address of the OST task information block {TIB}.

4 The address of the original command that was sent to the OST.

4

4

4

4

4

2

4

This field is unchanged during the data services transaction.
This buffer contains a BUFHOR and the HORMCEXT extension. It
also has an X '0003' IFRCOOE and HOATYPEI. See "IFR -Internal
Function Request" on page 133.

A field available for user purposes. If this field is used for a
storage address, the OST does not free the storage. OSIGET

Q=YES allocates storage. Storage may be freed as with any
subtask that uses OSIFRE Q = YES. If storage is not freed, the
storage remains allocated until the subtask terminates.

The address of the VSAM ACB for the OST

The address of the VSAM I/O buffer with a standard BUFHOR. For
GET requests, the BUFHOA HORMLENG field indicates the length of
the data read. HORTOISP contains the offset to the data.

An event control block (Eca) for use by OST when requesting
VSAM I/O.

The address of the key in the OSRBVOAO buffer.

The key length.

The address of the VSAM RPL that was used for the 110.

An indicator of the type of request just completed:

- OSRVGET (VSAM GET)

2 - OSRVPUT (VSAM PUT)

3 - OSRVPNT (VSAM POINT)

4 - OSRVERS (VSAM ERASE)

5 - OSRVNRQ (VSAM ENOREQ)

ELB

ELB - External Logging Block
The external logging block maps the header information on the buffer passed to the
XITXL exit.

Offset Length Name Function

0 2 ELBLENG Unsigned length of DSIELB

2 2 ELBRLENG Unsigned length of record

4 ELBTYPE Log type

5 3 ELBLOG EBCDIC log type

8 4 Reserved by NetView

12 Start of record

Chapter 7. Control Block Reference 131

Focal Point Transfer

Focal Point Transfer RU Header
The focal pOint transfer RU header is part of the CNM router support. All cross­
domain unsolicited alert data is routed to the CNM router and the focal point
transfer RU header carries management services information between distributed
host and the focal point. The header is 44 bytes long and is followed by the NMVT.

Some of the relevant fields are as follows:

Offset Name Length Description

0 HOR LEN 2 bytes, Length of the total RU (includes RU header
binary and NMVT)

2 HORIO 2 bytes Alway X ' 1040 '

4 Reserved 11 bytes For NetView use only

15 DOMIO LEN 1 byte, binary Originator's domain 10 length

16 DOMAIN 10 8 bytes, char Originator's domain 10, padded with
blanks

24 Reserved 20 bytes For NetView use only

44 NMVT data

132 NetView Customization: Assembler

IFR

IFR - Internal Function Request
The internal function request (IFR) is a formatted buffer that is transmitted to a sub­
task's message queue using macro DSIMQS. The relevant field in the IFR is as
follows:

Field Name

IFRCODE

Length Description

2 Specified as one of the following:
bytes

IFRCODCR

IFRCODUS

IFRCODPN

IFRCODAI

The remainder of the buffer is a command to run.

The buffer is user-defined and is passed to
DSIEX13, the message receiver exit routine
(applies only to an OST or NNT).

The command is entered from a full-screen
panel.

Message automation internal function request
(AIFR). (See" AIFR - Automation Internal Func­
tion Request" for the subfields of the AIFR.)

AIFR - Automation Internal Function Request
When IFRCODE=IFRCODAI, the fields described below are defined starting at the
location with labeIIFRPARMS. For the automation IFR (AIFR) the value of HDRTDISP is
always decimal 36, which includes a standard 24-byte BUFHDR and a 12-byte
HDRMCEXT.

Note: The AIFR is 256 bytes long including the headers.

Field
Name

IFRAUIND

Length
or Mask

1 byte

1 ...

.1 .•

.. 1.

Subfield
orEQU

IFRAUWOE

IFRAUCMD

IFRAUACT

Description

Contains the primary AIFR control flags. These
identify optional fields and describe routing and
processing actions.

See also IFRAUSSI. When this flag is on, fields in
IFRAUWOD are set from the WOE data received from
the system. This data is also forwarded to all
NetView domains by NNTS.

Note: If the IFRAUTBA buffer has
HDRMTYPE=HDRTYPEY and the IFRAUWOE flag is on,
the message must have a two - digit EBCDIC reply
10 in front of the message number in the text.

Set by message table to indicate that an action is
in the buffer referenced by IFRAUCMB. There is a
separate AIFR structure for each command action
for a particular message.

Note: IFRAUCMD and IFRAUACT must not both be on
at once.

Indicates that message actions exist in the bits in
IFRAUTA1. See IFRAUTA1 for a description of these.

IFRAUCMD and IFRAUACT must not both be on at
once. If both IFRAUCMD and IFRAUACT are zero, the
buffer is subject to defaults and overrides. This
bit must be on to specify force flags in IFRAUTA4.

Chapter 7. Control Block Reference 133

IFR

Field Length Subfield Description
Name or Mask or eQU

... 1 IFRAUMTB Used to control recursion and to prevent sec-
ondary receiver and copied messages from being
processed by the message table. This bit can be
used by DSIEX02A to prevent message table proc-
essing. IFRAUMTB is turned off when received from
an NNT to allow automation of cross - domain mes-
sages.

Note: Secondary receiver and copied messages
are allowed to be automated when received as
cross - domain messages.

IFRAUPPT Indicates that a message originated in the PPT.

1 ... This bit replaces the "p" designation in byte 7 of
HDRDOMID. The up" is only displayed and logged as
part of the domain name but is never in the buffer
header.

IFRAUXDM Indicates that a message was received from an
.1 .. NNT. This bit can be used to determine if a

message was from another domain.

IFRAUDOM Indicates that this is a system delete message
.. 1. request. The system deletes messages by SMSGID

values, by ASID and TCB address, or by ASID alone.
This bit must be set only by NetView.

IFRAUDFL IFRAUDFL and IFRAUDF2 are val id when IFRAUDOM is
... 1 on. IFRAUDFL=OFF and IFRAUDF2=OFF means delete

by SMSGID. IFRAUDFL=ON and IFRAUDF2=OFF means
delete by ASID. IFRAUDFL=ON and IFRAUDF2=ON

means delete by ASID and TCB address.

IFRAUIN2 1 byte The second byte of indicator flags.

1 ... IFRAUDF2 IFRAUDFL and IFRAUDF2 are val id when IFRAUDOM is
on. IFRAUDFL=OFF and IFRAUDF2=OFF means delete
by SMSGID. IFRAUDFl=ON and IFRAUDF2=OFF means
delete by ASID. IFRAUDFl=ON and IFRAUDF2=ON

means delete by ASID and TCB address.

.1 .. IFRAUEX2 Used to prevent calling DSIEX02A a second time.
This bit is on when DSIEX02A is called to insure that
DSIMQS of buffers from DSIEX02A will not cause
re-drives. IFRAUEX2 is reset when received as a
cross - domain message. This flag also prevents
calls to DSIEX04 and DSIEX09.

.. 1. IFRAUPRI Indicates that a message was routed using ASSIGN

PRI. This is the primary copy of the message and
is subject to automation. This bit replaces the
indicator in HDRDOMID. This bit prevents ASSIGN

COPY.

... 1 IFRAUSEC Indicates that a message was routed using ASSIGN

SEC. This is a secondary copy of the message and
is· not subject to automation. This bit replaces the
indicator in HDRDOMID. IFRAUMTB is set on also.
This bit prevents ASSIGN COPY.

134 NetView Customization: Assembler

IFR

Field Length Subfield Description
Name or Mask or EaU

IFRAUCPY Indicates that a message was routed using ASSIGN

1 ... COPY. This is a secondary copy of the message
and is not subject to automation. This bit replaces
the indicator in HDADOMID. IFAAUMTB is set on also.
This bit prevents ASSIGN COPY.

IFAAUAUT Indicates that the buffer was sent using DSIMOS

.1 .. using authorized receiver routing. This bit
replaces the indicator in HDADOMID. This bit pre-
vents ASSIGN COPY.

IFRAUDLD Indicates that a message was received from a
. . 1. down -level (pre-NetView Release 2) domain .

The AI FA indicators, HDADOMID, and HDASENDA are
not reliable.

IFAAUNSL Indicates that the message will be routed using
... 1 unsolicited receiver rules. This applies to unso-

licited SSI traffic, DSIMOS AUTHACV, and unsolicited
VTAM messages.

IFAAUWID 4 bytes The SMSGID value used for OOM purposes and to
collect MLWTO buffers. This is a copy of WOE data.

IFRAUTCB 4 bytes The job step TCB address for the issuer of the WTO.

It is used as a correlation value and may not be
an address in the current memory (or machine).

IFAAUASI 2 bytes The address space 10 for the issuer of the WTO. It
is used as a correlation value and may not be an
address space in this machine.

IFAAUSAB 2 bytes Provided for the user. It will be initialized to
zeros when created by NetView and will be
copied into all copies of the original. It will not be
changed.

IFAAUTBA 4 bytes The pointer to data buffers. These are queued
using HOANEXTM to point to the next one. An entire
MLWTO or title-line message is chained to this
field. The buffers must have standard NetView
buffer headers and message buffer header exten-
sions.

IFAAUTBL 4 bytes Points to the last buffer in the chain and is prima-
rily intended for allowing buffers to be added to
the end of a message without the need to scan the
chain looking for the end.

Chapter 7. Control Block Reference 135

IFR

Field Length Subfleld Description
Name or Mask or EaU

IFRAUTA1 1 byte IFRAUTA1 and IFRAUTA2 provide the message table
processing values. They can be set by DSIEX02A

but are subject to message table and OVERRIDE

command changes. (See also IFRAUTA4 force
flags.)

aa .. • ••• HOLD - default
1a .. •••• HOLD -YES

al. . •••• HOLD - NO

11 •• •••• Reserved
· .xx •••• Not used

aa .. SYSLOG - default
1a .. SYSLOG - YES

a1 .. SYSLOG - NO

11 •• Reserved
· . aa NETLOG - default
· .1a NETLOG - YES

· .a1 NETLOG - NO

• .11 Reserved

IFRAUTA2 1 byte Option bits

aa .. • ••• HCYLOG - default
18 .. • • •• HCYLOG - YES

81. . •••• HCYLOG - NO

11 •• •••• Reserved
· .aa •••• DISPLAY - default

· .18 • ••• DISPLAY - YES

· .a1 • • •• DISPLAY - NO

· .11 •••• Reserved
a8 .. BEEP - default
18 .. BEEP - YES

81.. BEEP - NO

11.. Reserved
• .xx Not used

IFRAUTA3 1 byte More display flags

1 ... IFRAUAOI Indicates whether all or one routing is done as
stated in the message table. A bit value of 1 indi-
cates "ALL" while a bit value of 0 indicates "ONE".

This flag is internal to message table processing
and to the DSIEX16 interface.

.1 .. IFRAUPFU Indicates that a message is full-line mode. This is
similar to title-line processing, except that mes-
sages will start at the top of the screen. This bit is
internal to NetView display management.

.. 1. IFRAUPFW Indicates that a message is wide-line mode. This
bit is internal to NetView display management.

... 1 IFRAUSSI Indicates that a message was received on the 551

interface. This is to allow independent testing for
WOE data from the indication that a message has
been subject to system logging via WTO.

136 NetView Customization: Assembler

Irn

Field Length Subfield Description
Name or Mask orEQU

IFRAUWAT Indicates that a message has satisfied a wait in a
1 ... command list. This bit indication replaces

changing HDRMTYPE to HDRTYPWT, which obscured
the HDRMTYPE value. DSIEX16 is driven with the
message, and upon return NetView frees the
buffer structures if all the display and log action
indicators still say no-clisplay, nO-log, and sup-
press override options. The driving of DSIEX16 for
wait - suppressed messages is intended for
accounting purposes, although resetting the indi-
cators would allow logging of wait-suppressed
messages, for example.

IFRAUX16 Indicates that DSIEX16 has been driven and pre-
.1 .. vents DSIEX16 from being driven again for this

message. This bit is set to zero when received on
a cross - domain session to allow processing in
the new domain.

IFRAUVSE Indicates that the message is in VSE format (Parti-
.. 1. tion 10), (Reply 10), (Message 10). This bit is not

reset when received cross - domain, allowing
messages to retain their format integrity.

IFRAUTA4 1 byte The following six flags force the actions specified
in IFRAUTA1 and IFRAUTA2 to be in effect regardless
of the OVERRIDE command options specified for this
task. If the bit is 1, the override is ignored. If the
related IFRAUTA1 or IFRAUTA2 flags are B'OO', the
action imposed by the DEFAULTS command or
initial setting applies. The IFRAUFHD and IFRAUFBP
when specified with non-zero values for the
related IFRAUTA1 or IFRAUTA2 flags cause the BEEP or
HOLD action to occur regardless of the initial set-
tings or DEFAULTS command options. These flags
may be set by NetView and are not reset when
received cross domain so that DSIEX02A in the new
domain can get a true picture of the original
message. NetView sets IFRAUFSL. IFRAUFNL, and
IFRAUFHL to prevent duplicate logging in multiple
routed copies. When force flags are set before
message automation occurs, either by NetView
before DSIEX02A or by DSIEX02A, the automation
table values for that option are ignored.

1 ... IFRAUFHD Force HOLD actions

.1 .. IFRAUFSL Force SYSLOG actions

.. 1. IFRAUFNL Force NETLOG actions

... 1 IFRAUFHL Force HARDCOPY actions

IFRAUFDS Force DISPLAY actions
1 ...

IFRAUFBP Force BEEP actions
.1 ..

Chapter 7. Control Block Reference 137

IFR

Field Length Subfield Description
Name or Mask orEQU

IFRAUCMB 4 bytes Points to a buffer with HoRMTYPE=HoRTYPEI and
IFRCOoE=IFRCOoCR used for command action. This
buffer is built by the message table. Data buffers
are sent on the IFRAUTBA chain with the command.

IFRAUPRS 4 bytes Built and used only during message table proc-
essing.

IFRAUSRC 16 bytes Provided for 16 bytes of user data. It is set to
zeros when the AIFR is created and is copied from
the original buffer without change.

IFRAUSoR 8 bytes Used to retain the HoRSENoR value when sending
AIFRS from one domain to another.

IFRAUTAF 8 bytes Used to retain the TAF session name when
replacing it with the domain 10 in AIFR HoRoOMlo.

IFRAURTL 4 bytes The address of the route action list only used
during calls to oSIEX16. The routing list is mapped
by the IFRAURTB mapping. The IFRAUAOI bit deter-
mines whether the first or all active tasks in the
list specified are sent the buffer.

IFRAURSV 20 bytes Reserved for expansion. It should not be used for
any purpose.

IFRAUWQo 120 Maps the WOE data that has been processed into a
bytes format independent of levels of MVS and JES.

IFRAUWHo 4 bytes Eye catcher MSG or oOM.

IFRAUWF1 1 byte Flags

1 ... IFRAUWFR MLWTO first

.1 .. IFRAUWMo MLWTO middle

.. 1. IFRAUWLS MLWTO last

IFRAUWoO oOM
,~,~

... 1

IFRAUWSI Single message
1 ...

IFRAUWWR WTOR

.1 ..

IFRAUWSP Message suppressed
.. 1.

IFRAUWBo Broadcast to all
... 1

IFRAUWF2 1 byte Flags 2

1 ... IFRAUWJN Display job names

.1 .. IFRAUWST Display status

IFRAUWSS Display session
.1 ..

138 NetView Customization: Assembler

Field
Name

IFRAUWF3

IFRAUWF4

IFRAUMCS

IFRAUWMA

IFRAUWOS

IFRAUWAS

IFRAUWJT

IFRAUWWI

IFRAUWUC

IFRAUWSN

IFRAUWRT

IFRAUWTL

IFRAUWJU

IFRAUWJA

IFRAUWOF

Length Subfleld
or Mask orEQU

1 byte

1 ... IFRAUWTA

.1 .. IFRAUWTB

.. 1. IFRAUWTC

... 1 IFRAUWTO

1 byte

1 ... IFRAUWOT

.1 .. IFRAUWOA

2 bytes

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

4 bytes

8 bytes

16 bytes

4 bytes

8 bytes

8 bytes

1 byte

IFR

Description

Flags 3

Control line

Label line

Data line

End line

Flags 4

OOM by ASIO and TCB

OOM by ASIO

MCS flags

Area 10

Descriptor codes

ASIO of issuer

JSTCB of issuer

SMSGIO value

Target console UCMIO

System name

Route codes

Text length

Job number

Job name

Message format

Note: The AIFR is fixed length at 256 bytes including the BUFHDR and HDRMCEXT. Do
not expand it.

Automation Internal Function Request Routing List
IFRAURTB is the mapping of the route action list that is used during DSIEX16 proc­
essing. IFRAURTL is the address of a standard NetView buffer with a standard buffer
header and a standard buffer header extension. The route list within this buffer
contains a list of names who get identical copies of the IFRCODAI structure. Bit
IFRAUAOI determines whether all active or the first active name receives a copy of
the IFRCODAJ. HDRMSG is a field within BUFHDR that is part of the DSITIB control block
macro. This buffer must be addressed separately from the IFRCODAI buffer.
HDRBLENG, HDRMLENG, and HDRTDISP are the only fields that must be initialized in this
buffer header.

Chapter 7. Control Block Reference 139

IFR

Usage Notes

Field Name

IFRAURCC

IFRAURCL

Length Description

2 A halfword count of the number of route names that follow. The
bytes HORBLENG value must be sufficient to contain this number of

names plus the buffer headers.

10
bytes

A variable size array of 10-character names. These must
contain an operator 10 of no more than 8 characters padded
with blanks to a length of 10.

Multiple 10 character fields continue here.

Setting the message action flags in the buffer in DSIEX02A is equivalent to specifying
the options in the message automation table. If the message is selected by the
message automation table, any options specified by the table overlay the DSIEX02A

values. The message is then evaluated after DSIEX02A and table processing against
criteria specified by DEFAULTS and OVERRIDE commands to determine display and
logging actions. IFRAUACT must be set to 1 if any ACTIONS are selected by DSIEX02A.

In the BUFHDR that precedes the IFR:

1. HDRMTYPE is specified as "I" (HDRMTYPE=X'C9'; symbol HDRTYPEI). Because an IFR

is transferred by DSIMQS, the IFR contains a message command extension when
it is received. The extension is optional in some cases but is recommended for
consistency. If a command processor receives control with a command buffer
and HDRMTYPE=HDRTYPEI, it is assumed that there is a command extension and
an IFR.

2. HDRTDISP contains the displacement to the IFRcaDE. For IFRcaOCR and IFRCOOUS,

NetView modifies HDRTDISP and HDRMLENG so that all commands appear the
same to the command processor. The command verb is followed by the
parameters. The IFR section is logically removed.

140 NetView Customization: Assembler

LOGOS

LOGOS - NetView Log OSECT
The NetView log OSECT maps the record written to the network log.

The relevant fields in the LOGOS are as follows:

Field Name Length Description

LOGOATE 4 Date of record; format is aaVVDDDC.

LOGOISP 2 Record text displacement.

LOGOOMIO 8 Domain 10 of record originator.

LOGKEYOT 4 Same as LOGOATE.

LOGKEYTM 4 Time of record; format is HHMMSSaC, where HH is the hour, MM is
the minute, 5S is the second, and ac is the symbol for packed
decimal.

LOGLUNAM 8 Task name of record originator.

LOGMTYPE Message type of record.

LOGOPIO 8 Operator 10 of record originator.

LOGSEQ# 4 Sequence number for VSAM key.

LOGTEXT Text of Network log record.

LOGTIME 4 Same as LOGKEYTM.

Chapter 7. Control-Block Reference 141

MVT

MVT - Main Vector Table
The main vector table (MVT) is the main control block for information throughout
NetView. It contains global information, such as the domain name, the status of
NetView, and pointers to other tables and subtasks.

There is one MVT for each NetView. You can locate the MVT from a subtask through
the TVBMVT, a pointer in the task vector block {TVB}. A USING statement for the DSECT

for the MVT must precede most macro invocations.

The relevant fields in the MVT are as follows:

Field Name

MVTARTLN

MVTCBH

MVTCDSES

MVTCLOSE

MVTCURAP

MVTDPRAD

MVTDRTRY

MVTGFMG1

MVTGFMG2

MVTGMSG

MVTMETH

MVTMLGON

MVTMRC

142 NetView Customization: Assembler

Length Description

2 Length of each entry in DSIART.

4 A standard control block header.

2 The number of OSTS in other domains that may have sessions at
one time with this NetView. This is the number of TVBS created
for NNTS in the TVB chain. This number is specified in the
CDMNSESS definition statement.

9

4

2

4

4

4

2

2

A flag bit that indicates that the CLOSE NORMAL command has
been issued. When the bit is on, no more subtasks are attached
and logons are not accepted.

The value from the NCCFID definition statement DOMAINID param­
eter, as follows:

MVTCURAL 1-byte field that shows the length of the NCCFID

DOMAINID (one to five characters).

MVTCURAN 8-byte field that contains the NCCFID DOMAINID padded
with blanks.

Address of Netview subtask dispatcher (for compatibility with
NetView Release 2 VSE only).

The number of times an 1/0 operation is retried before it
becomes a permanent error.

A pOinter to a Write-to-Operator parameter list containing the
message, DSI1241 STORAGE REQUEST FAILED FOR NCCF. This message
may be used by any WTO macro with MF=E. No additional
storage is required. The routing code is (2,11); the descriptor
code is 11.

A pOinter to a Write-to-Operator parameter list containing the
message, DSI1251 CRITICAL STORAGE SHORTAGE FOR NCCF. This
message may be used by any WTO macro with MF = E. No addi­
tional storage is required. The routing code is (2,11); the
descriptor code is 11.

Pointer to a buffer containing the message, DSI073A COMMAND

PROCESSOR UNABLE TO BUILD RESPONSE MESSAGE.

Indicates that the access method is VTAM (v).

The number of times invalid logon information is processed
before that terminal session ends. This number is specified in
the MAX LOGON definition statement.

The number of times an OST or PPT may ABEND and be rein­
stated. This number is specified in the MAXABEND definition
statement.

Field Name Length

MVTNCCFQ 8

MVTSNT 4

MVTSNTLN 2

MVTSVl 4

MVTTOD 8

MVTTVB 4

MVTTVBRN 18

MVTUFLD 4

MVTVER 4

MVT

Description

The QNAME value for macros ENQ and DEQ.

Address of SPAN Name Table.

Length of each entry in DSISNT

The address of the service routine vector list (SVl) that contains
the addresses of the service routines.

The system time-of-day clock when NetView was started.

The address of the first TVB in the TVB chain.

The RNAME value for the TVB chain.

A user-defined field.

Contains a displayable identifier for the release of NetView
under which your code is running.

Chapter 7. Control Block Reference 143

MVT

MVT DSIEX16 Interface Data
For field name MVTAIDFT, the following defaults are set in DSIMVT and relate to
DSIEX16.

Length or
Mask

1 byte

1 ..•....

.x ..

.. 0.

... 1

.... 1 ...

..... 1 ..

.1.

••••••• x

Notes:

Start-up Description
Value

1

o

Contains message process defaults.

1 = Messages are allowed to be held on the screen.
o = Messages are not allowed to be held on the screen.

Reserved

o = Messages other than NetView WTO and WTOA are not written
to the system log.
1 = NetView messages are written to the system log.

1 = Messages are written to the NetView log if the NetView log
is active.
o = Messages are not written to the NetView log.

1 = Messages can be written to the hardcopy log if one is
started for the operator.
o = Messages are not written to the hardcopy log.

1 = Messages can be displayed on the NetView operator's
station.
o = Messages can not be displayed on the NetView operator's
station.

1 = Messages may beep on the NetView operator's station.
o = Messages can not beep on the operator's station.

Reserved

1. These settings are changed by using the DEFAULTS command.

2. The interpretation of the results of the settings is affected by the settings of AIFR

flags for a message and by the OVERRIDE command settings currently in effect
for each operator.

3. Some messages are not affected by any or all of the above.

144 NetView ClJstomization: Assembler

OIT

OIT - Operator 10 Table
The operator id table (OIT) is a mapping consisting of multiple entries. Each entry
includes the name of the NetView operator 10 and indicators relative to that oper­
ator 10. This table is used by the OSIOIS macro.

The mapping of the operator 10 table is as follows:

Field Name Length Description

OITCBH 4 Control block header.

OITTABLE Multiple entries.

OITENTRY Format of each OSIOIT entry.

OITIO 8 Operator 10.

OITINO 2 Indicator flags
X'80' - operator is logged on to this NetView.
X '40' - operator is in session with this NetView.

Chapter 7. Control Block Reference 145

PDS

PDB - Parse Descriptor Block
The parse descriptor block (POB) contains parse information for a command pointed
to by eWBBUF in the eWB or by USERPOB in the USE. The POB has no fixed length. The
relevant fields in the POB are as follows:

Field Name

POBCBH

POBBUFA

POBCMOA

POBFlAGS

POBNOENT

POBTABlE

POBENTRY

146 NetView Customization: Assembler

Length Description

4 Standard control block header.

4 The address of the command buffer. CWBBUF also contains this
address.

4

1

2

o
4

A pOinter to the entry in the system command table (SCT) for the
verb in the buffer that caused this command processor to be
called. Macro OSIPAS (parameter alias services) and OSIKVS
(KEYClASS and VAlClASS lookup services) use this entry as a
parameter.

Indicator byte for command processors.

PDBIMMED 1 = runs as an immediate command,

o = runs as a regular command or a data services
command.

The number of syntactical element entries in the POB, including
the verb and all parameters.

Label to indicate the beginning of POB entries.

Each syntactical element creates one entry in this portion of the
POB. The verb is always the first entry. Each entry contains the
length, the delimiter, and the offset from the beginning of the
buffer, as specified in the following three fields:

PDBDISP A 2-byte field specifying the offset from the start of
the buffer to the first character of the nth syntactical
element. For example, element addr(n) = POBBUFA
+ POBolsp(n).

PDBLENG A 1-byte field specifying the length of the particular
syntactical element. This field does not include the
length of the delimiter. When two delimiters other
than blanks occur sequentially, the length is zero.
Also, when two delimiters are separated by a blank
or blanks, the value of the length is zero. The offset
is set to point to the second delimiter.

PDBTYPE A 1-byte field containing the delimiter character that
separates this element from the next one. The
standard parsing delimiters are blank, comma,
period, and equal sign. The end of the record is
treated as if it were delimited by a blank. Multiple
blanks are treated as one blank. Blanks preceding
a syntactical element are ignored. For example,

verb parameter1,parameter2"
creates the following:

1. An entry for the verb (preceding blanks are
ignored)

2. An entry for parameter1, delimited by a comma
3. An entry for parameter2, delimited by a blank.

PDBENTND A label at the end of POBENTRY for use in computing
the length of POBENTRY.

seE

SCE - System Command Entry
The system command entry (SCE) contains information about a command. Macro
DSICES returns the SCE of a verb or command processor. The address of the SCE is
also input to macro DSIPAS.

The relevant fields in the SCE are as follows:

Field Name

SCECADDR

SCELNAME

SCERCADR

SCEVERB

Length Description

4 For MVS/XA, this is the address of the linkage assist routine for
command processors, DSICMDLD. For operating systems other
than MVS/XA, this is the address of the command processor's
entry point.

8 The load module or phase name of the command processor to
be called for the verb.

4 The address of the command processor's entry point for MVS/XA.

8

For operating systems other than MVS/XA, this field has no
meaning.

The command verb, left-justified and padded with blanks.

Chapter 7. Control Block Reference 147

seT

SCT - System Command Table
The system command table (SCT) contains a system command entry (SCE) for each
command defined to NetView in the CMDMDL definition statement. There are no
user fields here; however, you must include this control block mapping to get a
mapping of the SCE.

148 NetView Customization: Assembler

SNT

SNT - Span Name Table
The span name table (SNT) is a mapping consisting of multiple entries. Each entry
includes the name of the span of definition and indicators to define those operators
that may be controlling the span. This table is used by the DSISSS macro.

The mapping of the span name table is as follows:

Field Name

SNTCBH

SNTTABlE

SNTENTRY

SNTNAME

SNTOPOEF

Length Description

4 Control block header.

8

Multiple entries.

Format of each OSISNT entry.

Span name.

Variable length bit string, where each bit corresponds to a rela­
tive entry in the Operator 10 table. If a bit is on (1), the corre­
sponding operator may control this span.

Chapter 7. Control Block Reference 149

SVL

SVL - Service Routine Vector List
The service routine vector list (SVL) is used by NetView macros to call the
requested service routine. The SVL contains the addresses of all service routines,
except for presentation service routines. There are no user fields here; however,
you must include this control block mapping to llse NetView services.

150 NetView Customization: Assembler

SWB

SWB - Service Work Block
The service work block (SWB) contains the parameter list for most service facilities
used in user-written code.

The relevant fields in SWB are as follows:

Field Name

SWBAOATO

SWBLRCPL

SWBPLIST

SWBSAVEA

SWBTIB

MQSENTTO

Length Description

256 Automatic work area to be used for reentrant variable defi­
nition.

256

72

4

8

Mapping OSECT for area where caller builds parameter lists for
OSIPUSH, oSIPoP,and DSIFINO.

Parameter I ist area.

A standard save area.

Pointer to the caller's TIB.

Operator 10 of the operator to whom the message was sent.
Returned to the issuer if DSIMQS is issued with a LIST of type 1ST

For a description of SWBLRCPL fields, see"DSIPUSH - Establish Long Running
Command" on page 202, "DSIPOP - Remove Long Running Command" on
page 190, and "DSIFIND - Find Long Running Command Storage" on page 169.

Chapter 7. Control Block Reference 151

TIB

TIB - Task Information Block

152

The task information block (TIB) keeps information about an attached subtask. TIB is
acquired and freed by the main task.

The TIB fields described below apply to optional subtasks:

Field Name

TIBCBH

TIBACB

TIBAPID

TIBAPWD

TIBAREA1

TIBCLROF

TIBCLR#

TIBEOATO

TIBECBPO

TIBElT

TIBEXLST

TIBFLGS

TIBHUTE

TIBMSGNM

TIBMUXIT

TIBNOATO

TIBOSEXT

TIBOSLST

TIBSAVEE

TlBSAVES

NetView Customization: Assembler

Length Description

4 A standard control block header. The CBHTYPE field contains the
same information as the CBHTYPE field in the TVB.

4

9

9

62

256

4

4

8

256

4

4

72

72

A pOinter to a VTAM ACB for NetView subtasks. This field may be
defined by the subtask.

The VTAM application program name for a NetView subtask.
This field may be defined by the subtask.

The VTAM password for NetView subtasks. This field may be
defined by the subtask.

Pointers to other control blocks such as CW8, SWB, or POB for
NetView subtasks. This field may be defined by the subtask.

Default color.

Color field not found.
Green
Orange

Number of colors supported. 0 = default, 4 = base color, and
7 = extended color.

A scratch area for subtask use.

A one-byte constant to test whether an ECB has been posted.

A pOinter to the subtask ECB list.

A pOinter to the VTAM EXLST for NetView subtasks. This field may
be defined by the subtask.

A byte of flags.

TIBLRCNP = 1 means the RESUME routine has been newly pro­
moted and should put out a new screen.

Highlight support flags.

TIBBlINK = 1 means blinking is supported.
TIBREVRS = 1 means reverse video is supported.
TIBUNSCR = 1 means underscore is supported.

The operator identifier of the subtask that issued the START TASK

command. If the subtask was started automatically with INIT=Y,

this field contains zeros.

A counter used to track the level of multiple asynchronous
interrupts.

A scratch area for subtask use.

A pOinter to ari optional subtask extension to the TIB. The
optional subtask reJeases any storage pOinted to by this area.

The command processor LIST uses this field to display the
status of an optional subtask.

A save area for subtask use.

A save area for subtask use.

Field Name

TIBSCRID

TIBTVB

TIBUFLD

TIBXECB

TIB

Length Description

4 Screen identifier.

4

4

4

TIBSCRM 1-byte screen modification type.
TIBSCRSN 3-byte screen serialization number.

A pOinter to the TVB. The address of the MVT can be obtained
from the TVB. MVT locates aI/ other control blocks.

This field is not referenced or changed by NetView. It may be
defined by the subtask.

NetView uses this field as an ECB for cross-domain communi­
cation in OST and NNT. It may be defined by the subtask.

Chapter 7. Control Block Reference 153

TVB

Tve - Task Vector Block
The task vector block (TYB) contains information about the status of the subtask.
There is one TVB for each subtask in NetView. Certain service routines. such as
DSIPSS, use the TYB to store control information that is important for processing their
code.

The TVB contains pointers to the MYT and the TIB. You can obtain the addresses of
other important control blocks from these control blocks. The TIB, an extension of
the TVB, represents an active task. TVBS are chained together through the TVBNEXT

field. The beginning of the chain is pointed to by MYTTYB.

The relevant fields in the TYB are as follows:

Field Name

TVBCBH

TVBMECB

TVBMECBH

TVBMECBL

TVBMPRIO

TVBMPROH

TVBMPROL

TVBMPUBH

TVBMPUBL

TVBMPUBO

TVBMVT

TVBNEXT

154 NetView Customization: Assembler

Length Description

4 A standard control block header. The CBHTYPE byte indicates
the subtask type:

4

4

4

4

4

4

4

4

4

4

4

X'OO' PPT

X'01' NNT

X'02' OST

X'03' HCT

X'05' Optional subtask.

To distinguish between different types of optional subtasks,
refer to the field TVBMODNM.

An event control block (ECB) that notifies the subtask that a
message or a queue of messages has been sent using macro
DSIMOS.

An event control block (ECB) that notifies the subtask that a high­
priority message or queue of messages has been queued to the
high-priority public message queue (TVBMPUBH).

An event control block (ECB) that notifies the subtask that a low­
priority message or queue of messages has been queued to the
low-priority public message queue (TVBMPUBL).

The address of the normal-priority private message queue.

The address of the high-priority private message queue.

The address of the low-priority private message queue.

The address of the high-priority public message queue. See
"Intertask Communication" on page 82 for information on proc­
essing public and private message queues.

The address of the low-priority public message queue. See
"Intertask Communication" on page 82 for information on proc­
essing public and private message queues.

The address of the normal-priority public message queue. See
"Intertask Communication" on page 82 for information on proc­
essing public and private message queues.

A pointer to the MVT.

A pointer to the next TVB on the TVB chain. The TVB chain is
anchored from MVTTVB.

Field Name

TVBPRIQ

TVBRESTE

TVBTCB

TVBTECB

TVBTIB

TVB

Length Description

4

4

4

4

Priority queuing flags.

TVBMM = 1 The subtask provides services for the high­
priority and low-priority message queues as well
as the normal queue.

An event control block (ECB) that notifies the subtask that RESET

command has been entered.

The MVS task control block (TCB) address.

An event control block (ECB) that requests that the subtask shut
down as soon as possible. Include TVBECB in every subtask ECB

list. A subtask may use this ECB to cause itself to shut down.

A pointer to the TIB for the subtask.

The subtask uses the following bit fields. Some of these flag bits are defined by the
subtask; others are defined by the main task.

Field Name

TVBAIIFR

TVBHCUSE

TVBIND1

TVBIND2

TVBIND3

TVBIND4

Length Description

4 Address of message buffer structure when command is driven
from the message automation table. Otherwise, O.

4 May be defined by the subtask. For an HCT, this field tracks the
number of subtasks currently using the hard-copy subtask.

Indicator byte.

TVBTERM

Indicator byte.

TVBVCLOS

TVBABLOG

Indicator byte.

TVBACTV = 1

TVBINXIT = 1

TVBLGOFF = 1

TVBLGON = 1

TVBRCVAI

TVBRESET ::: 1

Indicator byte.

A value of 1 indicates that the subtask has ended
normally, and the subtask has released all
resources. This bit must be supported by the
subtask. If the bit is set on by the main task
before attaching the subtask, a value of 1 indi­
cates to the subtask that it has been attached for
cleanup. The subtask is to release all resources
and return control to the main task with this bit
still set to 1.

This flag bit may be defined by the subtask.
A 1 indicates a task is being re-initialized just
after an ABEND.

The subtask is active. This bit !s set by the
subtask. While this bit is on, messages may be
sent to the subtask using macro DSIMQS.

An IRB exit routine is running.
The subtask is ending upon request.
The subtask is starting.
May be defined by the subtask. For an OST or an
NNT. TVBRCVAI = 1 means a RECEIVE ANY for cross­
domain sessions has been issued.
Regular commands should stop processing
immediately. If your subtask does not run
command processors, you may redefine this
flag.

TVBRCVRY 1 means recovery is in progress for this subtask.

Chapter 7. Control Block Reference 155

Tva

Field Name

TVBLUNAM

TVBMEMNM

TVBMOONM

TVBOPIO

TVBUFlO

TVBZIN02

TVBZIN04

156 NetView Customization: Assembler

Length Description

8 The value specified in the TSKIO parameter of the TASK definition
statement. This field is initialized before the subtask is
attached.

8

8

8

4

This field is initialized with the MEM parameter of the TASK defi­
nition statement of OSIOMN. It may be the name of the member
of the data set OSIPARM (for MVS) or a file with filetype NCCFLST

(for VM) that contains the initialization parameters for an
optional subtask.

The name of the module to be attached as a subtask as speci­
fied in the MOO parameter of the TASK definition statement. This
field may be used to determine the type of optional subtask.

The unique subtask identifier. This name may be the same as
TVBLUNAM. It is set up by the subtask when initialization is com­
plete.

A user field that may be defined by the subtask.

Indicator byte.

TVBABENO

TVBLOGOF

TVBRESUM

Indicator byte.

TVBAUTOO

TVBAUTVE

TVBAUTVS

The ABEND reinstate routine is running. If this
indicator is on, macros OSIPUSH and OSIPOP cannot
be issued.

The LOGOFF routine is running. If this indicator is
on, OSIPUSH and OSIPOP cannot be issued.

The RESUME routine is running.

User code is running under an unattended oper­
ator task.

The task depends on VTAM and must be termi­
nated by the main task when VTAM ends.

The task depends on VTAM and must be reat­
tached by the main task when VTAM starts. When
VTAM ends, the task terminates.

USE

USE - User Exit Parameter List
The user exit parameter list (USE) contains addresses for the following:

• The buffer containing the message
• The LU name associated with the message
• The operator identification
• The service work block (SWB)

• The task vector block (TVB)

• The parse descriptor block (POB).

An extension of USE is present for OSIEX12 and the OST exit routines involved with
input and output (XITCO, XITCI, XITVN, XITVI, XITVO, XITXL). For OSIEX12, the password,
hard-copy printer name, and profile name are given. For the OST exit routines, the
address of OSRB is given.

The relevant fields in the USE are as follows:

Field Name

USERCBH

USERLGON

Length Description

4 A standard control block header. The second byte, USERCODE,

indicates the exit routine that is called. Values XI 01 1 - X 110 1
correspond to user exits DSIEX01 - OSIEX16. The OST user exit
codes are defined in the USE control block.

36 An extension for DSIEX12 and the OST exit routines. If present,
this extension contains the following fields:

USEOSRB 4

USENPSWO 8

USERHCPY 8

USER PROF 8

USERPSWO 8

For OST exit routines, the fields XITVI, XITVO, XITCI,

XITCO, and XITXL point to the OSRB associated with
the OST 1/0 request. For other exit routines, this
field is not initialized.

For OSIEX12 only, this field contains the new pass­
word successfully entered by the operator at
logon when OPTIONS VERIFY= MAXIMUM. If OPTIONS

VERIFY=MINIMAL or OPTIONS VERIFY=NORMAL is spec­
ified, USENPSWO contains blanks (X 140 I). For exit
routines other than OSIEX12, this field is not initial­
ized.

For DSIEX12 only, this field contains the name of
the hard-copy printer used by the operator for
this session. If no hard copy is used or if OPTIONS

VERIFY=MINIMAL is specified, USERHCPY contains
blanks (X 140 I). For exit routines other than
DSIEX12, this field is not initialized.

For OSIEX12 only, this field contains the name of
the profile used for this session. If OPTIONS

VERIFY = MINIMAL is specified, USERPROF contains
blanks (X 140 I). For exit routines other than
DSIEX12, this field is not initialized.

For DSIEX12 only, this field contains the operator
password entered at logon. If OPTIONS

VERIFY = MINIMAL is specified, USERSWB contains
blanks (X 140 1). For exit routi nes other than
DSIEX12, this field is not initialized.

Chapter 7. Control Block Reference 157

USE

Field Name

USERlU

USERMSG

USEROPID

USERPDB

USERSWB

USERTVB

158 NetView Customization: Assembler

Length Description

4 A pointer to an a-byte area that contains the logical unit name
(LUNAME) related to the subtask in control, as follows:

4

4

4

4

4

Task Name
MNT The characters I SYSOp I •

OST The node name of the operator's terminal.
NNT The APPl name of the OST that issued the START

DOMAIN command (NCCFID DOMAINID followed by a
3-digit number).

PPT The NCCFID DOMAINID parameter followed by the char­
acters I PPT I •

HCT The node name of the hard copy-printer.
DST The name from the TSKID parameter of the TASK defi­

nition statement.

A pointer to a buffer in standard buffer format, consisting of a
buffer header (BUFHDR) followed by text. For input-type exits,
device dependencies have been removed. In exit routines
DSIEX14. XITDI for end-of-file, and XITVN, this field is set to O.

In DSIEX04, the buffer is in the format set up by the caller. It has
not yet been reformatted for the network log, MVS system log, or
hard-copy log.

A pointer to an a-byte area that contains a name related to the
subtask in control, as follows:

Task Name

MNT The characters I SYSOP I.

08T The operator identifier.

NNT The operator identifier.

PPT The NCCFID DOMAINID parameter followed by the char­
acters I PPT I.

HeT The node name of the hard copy-printer.

A field that points to a PDB or contains O. The PDB contains
parse data that relates to the buffer to which USERMSG pOints.
For exit routines DSIEX02. DSIEX04. DSIEX07. DSIEX09. DSIEX10. DSIEX14.

XITXl, and XITDI for end-of-file, this field contains O. A PDB is not
available when calling these exit routines.

A pointer to the SWB, which the exit routine uses as a work area
or uses to request services from NetView. If necessary,
another SWB may be obtained using macro DSILCS.

A pointer to the TVB. The TVB contains information about the
subtask under which the exit routine was called. The TVB

obtains the addresses of the TlB, the MVT, and the SVL (through
the MVT).

© Copyright IBM Corp. 1989

Chapter 8

Notational Conventions 161
DSICBS - Control Block Services . 162
DSICES - Command Entry Services 163

Return Codes in Register 15 164
DSIDATIM - Date and Time 165
DSIDEL - Delete User-Defined Module 166

Return Codes in Register 15 166
DSIDKS - Disk Services 167

Return Codes in Register 15 168
DSIFIND - Find Long Running Command Storage 169

Return Codes in Register 15 169
DSIFRE - Free Storage 170

Return Codes in Register 15 170
DSIGET - Get Storage 171

Return Codes in Register 15 172
DSIKVS - Keyword/Value Services 173

Return Codes in Register 15 173
DSILCS - Obtain/Release Control Blocks 174

Return Codes in Register 15 176
DSILOD - Load User-Defined Module 177

Return Codes in Register 15 177
DSIMBS - Message Buffer Services 178

Return Codes in Register 15 179
DSIMDS - Message Definition Services 181

Defining Messages on Disk .. 183
User Message Definition Module Example 184

DSIMQS - Message Queuing Services 185
Return Codes in Register 15 187

DSIOIS - Operator Identification Services 188
Return Codes in Register 15 188

DSIPAS - Parameter/Alias Services 189
Return Codes in Register 15 189

DSIPOP - Remove Long Running Command 190
Return Codes in Register 15 191

DSIPOS - ECB Post Services 192
DSIPRS - Parsing Services 193

Return Codes in Register 15 :................. 194
DSIPSS - Presentation Services 196

Return Codes in Register 15 200
DSIPUSH - Establish Long Running Command 202

Return Codes in Register 15 205
DSIRDS - Resource Definition Services 206

Return Codes in Register 15
DSIRXCOM - Access REXX Variables

Return Codes in Register 15
DSIRXEBS - Get An EVALBLOK

Return Codes in Register 15
DSISSS - Search Span Name Table Services

Return Codes in Register 15
DSISYS - Operating System Indicator '"
DSIWAT - ECB Wait Services
DSIWCS - Write Console Services

Chapter 8

206
207
207
208
208
209
210
211
212
213

159

Return Code in Register 15 213
DSIWLS - Write Log Services 214

Return Codes in Register 15 215
DSIZCSMS - CNM Data Services 217

Usage Examples 219
Return Codes in Register 15 219

DSIZVSMS - VSAM Data Services 221
Return Codes in Register 15 222

160 NetView Customization: Assembler

Chapter 8. Macro Reference

This chapter describes the purpose and coding of the NetView program macros.
You may use these macros to request various service facilities when writing your
own user exit routines, command processors, and subtasks. You must be in
problem program state and user protection key for all these macros. NetView
macros overwrite registers 0,1,14, and 15.

Prior to issuing any macro except DSICBS, you must set register 13 to a standard
72-byte save area.

All return codes in this chapter are shown in decimal.

Use only the parameters documented in this book. Any undocumented parameters
that a macro may have are only for internal use by the NetView program and must
not be used in user-written programs. Macro expansions are not part of the
intended interface.

Notational Conventions

© Copyright IBM Corp. 1989

The following notational conventions apply to the macros described in this chapter.

UPPERCASE Item
Uppercase letters represent parameters that you must code as shown.

lowercase item
Lowercase letters represent parameters for which you must supply the
value, address, or name, rather than the literal information.

underscored Item

Braces {

An underscored item represents the default value of a particular param­
eter. If you specify no parameter, NetView uses the default value.

Small braces enclose the different options for a parameter. Large
braces enclose mutually exclusive parameters; you must select one,
and only one, of these parameters. Do not include the braces when
coding the information.

Brackets []

OR-sign I

Brackets enclose an optional parameter. Optional parameters can be
included or omitted independently of other parameters. Do not include
the brackets when coding the information.

The oR-sign separates the options for a required (brace-enclosed)
parameter or for an optional (bracket-enclosed) parameter. For a
required parameter, one of the options must be coded. For an optional
parameter, none of the options have to be coded. Do not type the
oR-sign when coding the information.

Chapter 8. Macro Reference 161

DSICBS

DSICBS - Control Block Services
Macro DSICBS includes DSECTS for the control blocks required for user-written pro­
grams during assembly.

DSICBS ensures that a control block is included only once, inner control blocks are
included if necessary, and each definition for an inner control block precedes the
definition of the outer control block. DSICBS also controls the format and printing, or
suppression, of DSECTS for the control blocks.

MVT addressability is not required.

[name] DSICBS [cbname, ...]
[,EJECT= {YESINO}]

cbname

[,OEFER = {ALLITHESEIINCLUDEINO}]
[,PRINT= {YESINO}]

Name of a control block, starting with 051, to be included. Names must be sep­
arated by commas.

EJECT
Specifies that EJECT statements are performed between each control block
expansion and after the last expansion.

DEFER
Defers control block expansions.

ALL
Specifies that all subsequent DSICBSS are not expanded until a DSICBS

DEFER = INCLUDE is encountered. (If you specify this parameter, be sure to
code DSICBS DEFER=INCLUDE later in the program.)

THESE
Specifies that these control block expansions are delayed until a DSICBS

DEFER = INCLUDE is encountered.

INCLUDE

PRINT

Specifies that any deferred control block expansions are to be expanded at
this point in the program.

Specifies that the control blocks are to be expanded immediately.

Specifies that control blocks will be printed (expanded) in the assembler
listing.

162 NetView Customization: Assembler

DSICES

DSICES - Command Entry Services
Macro OSICES uses a specified buffer, parse descriptor block (POB), or load module
name to locate a command processor address.

OSICES locates a system command entry (SCE) that corresponds to the command
verb and returns the SCE'S address to a user-provided fullword area.

MVT addressability is required.

[name] DSICES SWB = {(register)lsymbolic name}

SWB

{

,BFR = {(register) Isymbolic name} I}
,POB = {(register) Isymbolic name} I
,MOONAME = modulename
,SCT ADDR = {(register) I symbolic name}
[,CLlSTCK = {YESINO}]

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB). SWBTIB identifies your TIB, which identifies your task
type.

Note: BFR, POB, and MOONAME are mutually exclusive, and one of the three must be
specified.

BFR
Register, or symbolic name of a fullword area, containing the address of the
buffer that contains the verb to be analyzed. This buffer must have an initial­
ized BUFHOR.

PDB
Register, or symbolic name of a fullword area, containing the address of a
completed parse descriptor block (POB) to be used as input.

MODNAME
Specifies the module name to be located in the system command table. The
modulename may be specified as the field that contains the module name or
as the module name enclosed in single quotes.

Note: The first entry that is found in the SCT corresponding to the module
name will be returned. If the module name specified is defined in OSICMO on
more than one CMOMOL statement, then an unexpected address may be
returried. In this situation, the BFR operand should be used instead.

SCTADDR
Register containing the address of a user-provided fullword area, or the sym­
bolic name of that area, where the address of the system command entry cor­
responding to the module name or verb is to be returned. The returned pointer
addresses an SCT entry (SCE) OSECT.

CLISTCK
Specifies whether to check for a valid command list name if the command has
no CMOMOL statement in OSICMO.

Note: CLlSTCK cannot be specified with MOONAME.

Chapter 8. Macro Reference 163

DSICES

Return Codes in Register 15
o Function was successful. One of the following occurred:

1. A regular command was found in the system command table and the
address of the SCT entry was returned.

2. The verb was not found in the SCT (if ClISTCK was specified, a command
list was found with the specified name), and the dummy SCT entry for a
command list was returned.

4 The command found can be processed as a regular or immediate command;
the address was returned.

8 An immediate command was found in the system command table; the
address was returned.

12 The module was not found, or there was an invalid verb length; no address
was returned.

16 Scope class failure. Either the operator was not authorized to issue the
command, or storage could not be obtained to check the scope class. No
address was returned.

20 Either the command found was incompatible with the task type that called the
routine, and the address is returned, or ClISTCK=YES was specified and the
request was issued in an asynchronous exit, and the address is not returned.

24 ClISTCK=YES was specified, but the command or command list was not found
in DSISCT or DSICLD.

28 ClISTCK=YES was specified, but storage requested for ClISTCK processing
could not be obtained.

164 NetView Customization: Assembler

DSIDATIM

DSIDATIM - Date and Time
Macro DSIDATIM obtains and formats the time and date.

DSIDATIM places the time and date in an output area. This macro can be used to
obtain the time for the HDRTSTMP field of a message.

MVT addressability is required.

, [name] DSIDATIM AREA={(register)lsymbolic name}
[,FORMAT= {EBCDICIBINARY}]

AREA
Register containing the address of the area into which the date and time are
returned, or symbolic name of that area. This area does not have a buffer
header.

FORMAT
Specifies the format of the output.

EBCDIC
Returns the date and time in 17 bytes, formatted as follows:

mrn/dd/yy hh:mrn:ss

mm is the month, dd is the day, yy is the year, hh is the hours mm is the
minute, and ss is the second.

BINARY
Returns the date and time in 8 bytes in packed decimal format as follows:

X'00yydddFhhmrnss0C '

yy is the year and ddd is the Julian date. hh is hours, mm is minutes, and
ss is seconds. The inital X I 00 I, the middle X I F I, and the ending X I OC I are
characters which indicate the data is packed decimal.

Usage note: When using the BINARY form of DSIDATIM to initialize a HDRTSTMP, use
an 8 byte work area for the AREA, and move the low order 4 bytes to HDRTSTMP.

Chapter 8. Macro Reference 165

DSIDEL

DSIDEL - Delete User-Defined Module
Macro DSIDEL deletes user-defined load modules. You specify the name of the
module to be deleted.

MVT addressability is not required.

[name] DSIDEL {EP = modulename }
EPLOC = {(register) I sym bol ic name}
[,DPR = {(register) I MVTDPRAD(,MVTPTR)}]

EP
Specifies the name of the module to be deleted.

EPLOC
Specifies the address of an 8-byte field that contains the module name to be
deleted. The module name should be left-justified and padded with blanks.

DPR (required for NetView Release 2 VSE only)
In VM/SP and MVS, this parameter is ignored. However, if you want to write a
routine to compile and run on both a NetView Release 2 VSE system and on a
NetView Release 3 MVS or VM/SP system, you will need to include this param­
eter. In VSE, this parameter specifies a register containing the address of the
NetView dispatcher (DSIDPRNV), or MVTDPRAD(,MVTPTR), where MVTPTR is the sym­
bolic name of a fullword area that contains the address of the MVT.

Return Codes in Register 15
Zero

Nonzero

166 NetView Customization: Assembler

Module has been deleted.

Attempt to delete module was unsuccessful. For more information,
refer to OS/VS Supervisor Services and Macro Instructions or CMS
Commands and Macro Reference.

DSIDKS - Disk Services
Macro DSIDKS can be used to connect to a DDNAME, locate a member, and read the
records in that member. This macro can only be used to connect to data sets with
the following DDNAMES: DSICLD, DSIPARM, DSIPRF, DSIVTAM, DSIMSG, CNMPNL1, BNJPNL1,

BNJPNL2, or BNJMISC. (NetView opens these data sets, and keeps them open as long
as it is up.) You can then use DSIDKS to find and read any member in any of the
data sets concatenated under any of these DDNAMES in your NetView startup proce­
dure.

You must have a copy of the DSECT for the disk service block (DSB) included in your
program. MVT addressability is required.

[name] DSIDKS SWB = {(register)lsymbolic name}

SWB

,DSBWORD = {(register) I symbolic name}

{

,TYPE = {CONNIFINDIDISC} ,NAME = {(register)!}
symbolic name}

,TYPE = READ .

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

DSBWORD
Register containing the address of a user-provided fullword area on a fullword
boundary, or symbolic name of that fullword area. When the macro completes
processing for TVPE=CONN, this area contains the address of the disk service
block (DSB). For other disk service requests, this area must specify the DSB

address previously obtained by TYPE = CONN.

TYPE
Specifies the type of processing the service routine is to perform.

CONN
Specifies that the service routine is to connect to or access the caller's
definition name (DDNAME). The address of th,e disk service block (DSB) is
returned in the area specified by the DSBWORD parameter. DSIDKS must be
issued with this option before any other options may be chosen ..

FIND
Specifies that the service routine is to find the member specified by the
NAME parameter. If the member is found, the first record is read. DSBBUFF

addresses the buffer containing this record. Do not specify this option
unless the CONN option has been specified.

DISC
Specifies that the service routine is to disconnect from the DDNAME and
release the DSB.

READ
Specifies that the service routine is to read the next sequential record in
the member. Do not specify this option unless the FIND option has been
specified.

Chapter 8. Macro Reference 167

DSIDKS

NAME
For TYPE=CONN and TYPE=DISC, a register containing the address of an eight­
character user area with the caller's definition name (DDNAME), or the symbolic
name of that area. The area should be left-justified and padded with blanks.

For TYPE = FIND. NAME is a register containing the address of an eight-character
user area that contains the name of the member to be read, or the symbolic
name of that area.

Return Codes in Register 15
For TYPE = CONN:

o Function was successful. Data control blocks and 1/0 buffer were gotten and
initialized.

4 Invalid data set name (for MVS) or filetype (for VM) was specified.

12 No storage was available for I/O buffer.

For TYPE = FIND:

o Function was successful. Member or file was found and the first record was
read.

4 Member or file was not found in the source statement library or in the speci-
fied library, or an empty member or file was found.

8 Member or file was found but an I/O error occurred on the first read.

12 Specified definition name or data set has not been opened.

20 Specified control block identifier was invalid; the member or file was not
found.

For TYPE = DISC:

o Disconnect was successful; data and I/O buffer were freed successfully.

4 Invalid filetype was specified. (VM only)

8 Disconnect fai led. (VM only)

20 Specified control block identifier was invalid and no storage was freed.

For TYPE = READ:

o Function was successful; record was read.

4 End of data was reached.

8 I/O error occurred during reading.

12 Reading this record is prohibited; an I/O error may have occurred, end of data
may have been reached, or the caller did not issue TYPE = FIND first.

20 Specified control block identifier was invalid; the record could not be read.

168 NetView Customization: Assembler

DSIFIND - Find Long Running Command Storage
Macro OSIFINO retrieves a pointer to storage for a long running command processor
and returns the storage address in register 1. A prior OSIPUSH instruction named
the storage pointer.

If two storage pointers were given identical names, OSIFINO retrieves the most
recent storage address with the specified name. OSIFINO can be issued in an imme­
diate command. Refer also to macros OSIPUSH and OSIPOP.

MVT addressability is required.

[name] DSIFIND SWB= {(register) I symbolic name}
(,lIST= {(register) I symbolic name)]

SWB
Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB). The TIB address in SWBTIB must be correctly set.

LIST
Register containing the address of the parameter list used by the service
routine, or symbolic name of that list. Do not specify this as register 1; register
1 contains the SWB address within OSIFINO. Do not put this list in the SWB that is
to be passed to OSIFINO.

The parameter list is mapped by SWBLACPL and contains the following fields.

Hex Offset Length Field

o
4

4 SWBLRCLN (Length)

16 SWBLRCNM (Name)

Where:

SWBLRCLN
Specifies the parameter list length. Set SWBLRCLN equal to SWBLACFI

(decimal 20).

SWBLRCNM
Specifies the name of the storage to be located. The storage address is to
be returned to register 1. Specify this field exactly as you specified it in the
corresponding macro OSIPUSH. Instruction for specifying the name field are
under "DSIPUSH - Establish Long Running Command" on page 202.

Return Codes in Register 15
o Function was successful; storage pOinter was retrieved and storage address

was returned.

32 Invalid macro invocation. Fix assembly errors before trying to run the
program.

36 Specified NAME was not found.

Chapter 8. Macro Reference 169

DSIFRE

DSIFRE - Free Storage
Macro DSIFRE must be used to release storage that was obtained using macro
DSIGET. Storage that was not obtained with DSIGET cannot be released using DSIFRE.

Optionally, DSIFRE dequeues the. storage from the user's task vector block (TVB).

Registers 2 through 12 may be used for register notation. DSIFRE always generates
reentrant code.

MVT addressability is required.

[name] OSIFRE LV= {nl(register)}

LV

A

SP

Q

,A = {(register) Isymbolic name}
[.Sp = {(register) Inumber}]
[.0= {YESINO}]
[.TASKA= {(register)lsymbolic name}]
[,AO={YESINO}]

Number of bytes, or a register that contains the number of bytes, of storage to
be freed. This option is ignored if Q = YES is specified.

Register, or symbolic name of a fullword area on a fullword boundary, con­
taining the address of the storage to be freed.

Subpool number, or a register loaded with the subpool number, from which the
storage is to be freed. Values 0 through 255 are acceptable; 0 is the default
value.

Indicates whether the storage is to be dequeued from the user's TVB. The
option specified for this parameter must correspond to the option specified for
the Q parameter in DSIGET that was used to obtain storage.

Note: Do not modify the two words immediately preceding the queued
storage. Otherwise, an ABEND may result.

TASKA

AQ

Register containing the address of the task vector block (TVB), or symbolic
name of the TVB for this task. If this parameter is not specified, the default is
DSITVB, and addressability to the DSITVB is required.

Indicates whether all queued storage is to be released. If you specify AQ you
cannot specify LV or A.

Return Codes in Register 15
The MVS and VM/SP return codes for DSIFRE are in Register 15:

o Function was successful; storage was freed and dequeued, if requested.

4 Storage was found on the queue and was dequeued but was not freed
(FREEMAIN failure).

20 . Storage was not found on the queue.

170 NetView Customization: Assembler

DSIGET

DSIGET - Get Storage
DSIGET obtains storage. Optionally, DSIGET can be used to queue the obtained
storage to your task vector block (TVB). Storage obtained with DSIGET must be
released using DSIFRE.

Registers 2 through 12 may be used for register notation. DSIGET is intended to
allow you to queue storage on the TVB chain so that NetView can free the storage at
logoff.

MVT addressability is required.

[name] DSIGET lV= {nl(register)}

LV

A

SP

,A = {(register) I symbolic name}
[,SP = {(register) I number}]
[,LOC = {RESIBELOWIANYITEST}]
[,BNDRY= {PAGEIDBLWD}]
[,CLEAR = {NOIYES}]
[,0= {YESINO}]
[,TASKA = {(register) I symbolic name}]

Number of bytes, or register containing the number of bytes, of storage to be
obtained. The value must be positive.

Register containing the address of the fullword area on a fullword boundary
into which the address of the obtained storage is returned, or symbolic name of
that fullword area.

Subpool number, or register containing the subpool number, from which the
storage is to be obtained. Values 0 through 255 are acceptable; 0 is the default
value.

LOC
In VM and in MVS/370, this parameter is ignored. In MVS/XA, this parameter speci­
fies where to allocate storage.

RES
Allocate storage that is consistent with the residency of the caller.

BELOW
Allocate storage below 16 Mb.

ANY
Allocate storage anywhere.

TEST
The caller of DSIGET has set the high order bit of register 15 to indicate the
type of storage desired. A 0 in the high order bit means allocate storage
below 16 Mb; a 1 means allocate storage anywhere.

BNDRY
Specifies the alignment of obtained storage.

Chapter 8. Macro Reference 171

DSIGET

PAGE
Specifies that obtained storage is to be aligned on a page boundary.

DBLWD
Specifies that obtained storage is to be aligned on a doubleword boundary.

CLEAR

Q

Specifies whether the allocated storage is to be initialized to zero.

Indicates whether the obtained storage is to be queued to your TVB. The option
specified for this parameter must correspond to the option specified for the a
parameter in DSIFRE that is used to free the storage.

TASKA
Register containing the address of the TVB for this task, or symbolic name of
that TVB. If this parameter is not specified, the default is DSITVB and address­
ability to the DSITVB is required.

Return Codes in Register 15
The MVS and VM/SP return codes for DSIGET are in Register 15.

o Function was successful; storage was obtained.

4 No storage was obtained.

172 NetView Customization: Assembler

DSIKVS

DSIKVS - Keyword/Value Services
Macro DSIKVS is used in a command processor to determine whether an operator is
authorized to use a given keyword or value.

The return code shown in register 15 indicates whether the operator who issued
the command has been authorized to issue it with the particular keyword, value, or
both.

MVT addressability is required.

[name] DSIKVS SWB= {(register)lsymbolic name}

SWB

{
,CMD = {(register) I symbolic name} }
,SCTADDR = {(register) I symbolic name}
,KEYWORD = {(register)lsymbolic name}
(,VALUE = {(register)lsymbolic name}]

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

CMD
Register containing the address of an 8-byte field with the command name left­
justified and padded with blanks, or symbolic name of that field.

SCTADDR
Register, or symbolic name of a fullword area, containing the address of the
SCT entry for the command that is to be checked.

KEYWORD
Register containing the address of an 8-byte field, or the symbolic name of an
8-byte field, that contains the keyword, left-justified and padded with blanks.
The parameter is required.

VALUE
Register containing the address of an 8-byte field, or the symbolic name of an
8-byte field, that contains the value, left-justified and padded with blanks. VALUE

is specified when VAL CLASS checking is desired.

Note: If both KEYWORD and VALUE are specified, KEYWORD is scope-checked before
VALUE. If KEYWORD results in a nonzero return code, VALUE is not checked.

Return Codes in Register 15
o The specified keyword and value, if given, are in the operator's scope of com­

mands.

4 The specified keyword was not in this operator's scope of commands.

8 The specified value was not in this operator's scope of commands.

12 A required parameter was missing, or an invalid parameter was specified in
DSIKVS.

16 Working storage could not be obtained. No storage is available.

Chapter 8. Macro Reference 173

DSILCS

DSILCS - Obtain/Release Control Blocks
Macro DSILCS performs one of the following actions:

• Obtains an SWB for the caller and places the address of that SWB in a fullword
area specified by the CBADOR parameter

• Releases an SWB

• Obtains a command work block (ewB) for the caller and places the address of
that CWB in a fullword area specified by the CBAODR parameter

• Releases a CWB

• Locates a TVB by operator identification or by LU name

• Locates, from a specified starting position, the next active TVB for a
NetView-NetView task (NNT), a hard-copy task (HCT), an operator station task
(CST), or an optional task

• Locates a TVB for an operator designated as a receiver of authorization mes­
sages by the AUTH statement of a profile definition.

MVT addressability is required.

[name] DSllCS CBADDR = {(register)\symbolic name}
[.lOC = {RESIANYITESTIBElOW}]
,CWB={GETIFREE}

CBADDR

tSWB = {GETIFREE}
,TVB= {(register)lsymbolic name}

{

,LU= {(register)lsymbo/ic name} }
tOPID = {(register) Isymbolic name}
,NEXT= {OSTIHCTINNTIOPTIPPT}
,AUTHRCV={YESINO}

For the GET and TVB options, register containing the address of a user-provided
fullword area on a fullword boundary, or symbolic name of that area. The
specified SWB, CWB, or TVB address is returned to this area.

For the FREE option, CBADOR contains the control block address.

lOC
Used with CWB=GET or SWB=GET to determine the residency of the work block
you are requesting (for MVS/XA only).

RES
Obtain a work block in storage consistent with the residency of the caller.

ANY
Obtain a work block anywhere in storage.

BELOW
Obtain a work block below 16 Mb. -

TEST
The caller of OSILCS has set the high order bit of register 15 to indicate the
type of storage desired. A 0 in the high order bit means allocate storage
below 16 Mb, and a 1 means allocate storage anywhere.

174 NetView Customization: Assembler

DSILCS

cwe
Specifies the type of operation to be performed on the CWB.

GET
Specifies that the caller needs a CWB. The address of the CWB is returned
to the area specified by the CBADDR parameter. Before you request
NetView services, you must initialize the CWBTIB field with the address of
your TIB.

FREE
Specifies that the caller wishes to release the CWB whose address is found
in the area specified by the CBADDR parameter.

swe

Tve

LU

Specifies the type of operation to be performed on the SWB.

GET
Specifies that the caller needs an SWB. The address of an SWB is returned
to the area specified by the CBADDR parameter. Before you request
NetView services, you must initialize the SWBTIB field with the address of
your TIB.

FREE
Specifies that the caller wishes to release the SWB whose address is found
in the area specified by the CBADDR parameter.

Value is either:

1. Register containing the address of the TVB where the routine begins the
search for the TVB specified by LU, OPID, or NEXT

2. Symbolic name of an area containing the address of this TVB.

TVB must be used with LU, OPID, or NEXT, and TVB must not be used with SWB, CWB,

or AUTHRCV = YES.

The address of the beginning of this TVB chain is found in the MVTTVB. The TVB

address found is placed in the area specified by CBADDR after the routine has
completed processing.

Note: The routine searches the address once to the end of the TVB chain; it
does not loop to the beginning of the TVB chain.

Used with TVB, register containing the address of an 8-byte LU name field, or
symbolic name of that field. This name locates a TVB with a matching LU name.

OPID
Used 'with TV8, register containing the address of an 8-byte operator identifica­
tion field, or symbolic name of that field. This name locates a TVB with a
matching operator identification.

NEXT
Used with TVB, specifies the TVB to be located for the next task.

OST
Specifies that the TVB associated with the next active operator station task
is to be located.

HCT
Specifies that the TVB aSSOCiated with the next active hard-copy log task is
to be located.

Chapter 8. Macro Reference 175

DSILCS

NNT
Specifies that the TVB associated with the next active cross-domain task is
to be located.

OPT

PPT

Specifies that the TVB associated with the next optional task is to be
located.

Specifies that the TVB associated with the next active primary programmed
operator interface task is to be located.

AUTHRCV
Specifies that the routine is to search for the first TVB to locate an operator
authorized to receive messages related to successful and unsuccessful logons
and lost station messages. See the discussions of the AUTH statement and
unsolicited message routing in NetView Administration Reference.

Return Codes in Register 15
o Function was successful. The address was returned, or the control block was

released.

4 No active TVBS of the type specified were found.

8 If TVB was specified, end of the TVB chain was reached, or invalid OPID was
provided.

8 If SWB=GET or CWB=GET was specified, no storage was available.

8 If SWB=FREE or CWB=FREE was specified, defective control block.

12 Invalid parameters were passed to DSILCS.

176 NetView Customization: Assembler

DSILOD - Load User-Defined Module
Macro DSllOD loads a user-defined module. You specify the name of the module to
be loaded.

MVT addressability is not required.

[name] DSILOO
{

EP = modulenamel }
EPLOC = {(register)!symbolic name}
[,OCB = {(register)lsymbolic name}]
[,LlSTA = {(regisfer}lsymbolic name}]
(,DPR = {(register)! MVTDPRAD(, MVTPTR)}]

Note: EP or EPLOC must be specified, but not both.

EP
Specifies the name of the module to be loaded.

EPLOC
Register, or symbolic name of an 8-byte field, containing the modulename to
be loaded. The modulename should be left-justified and padded with blanks.

DCB
Register, or symbolic name of an area, containing the address of the DCB for a
partitioned data set to be searched for the module. For MVS/XA, the DCB must
reside below 16 Mb. The DCB is ignored in VM.

LlSTA
Register containing the address of a 64-byte BlDL directory entry list, or sym­
bolic name of that list. In VM/SP and MVS, this parameter is ignored. It is
retained only for compatibility with NetView Release 2 VSE.

DPR (required for NetVlew Release 2 VSE only)
In VM/SP and MVS, this parameter is ignored. However, if you want to write a
routine to compile and run on both a NetView Release 2 VSE system and on a
NetView Release 3 MVS or VM/SP system, you will need to include this param­
eter. In VSE, this parameter specifies a register containing the address of the
NetView dispatcher (DSIDPRNV), or MVTDPRAD(,MVTPTR), where MVTPTR is the sym­
bolic name of a fullword area that contains the address of the MVT.

Return Codes in Register 15
Zero

Nonzero

Module has been loaded.

Module has not been loaded.

If the module is successfully loaded, register 0 contains the load point address of
the module. Register 1 contains the authority code in the high-order byte and the
module length (in double words for MVS and VM) in the low-order three bytes.

If the module has not been loaded, register 15 contains the return code returned by
the system load facility. Register 1 contains the ABEND code and register 0 contains
the reason code for the ABEND.

The module is loaded in virtual storage consistent with the linkage editor attribute
RMODE. If AMODE=24, the module is called in 24-bit mode, otherwise it is called in
31-bit mode.

Chapter 8. Macro Reference 177

DSIMBS

DSIMBS - Message Buffer Services
Macro DSIMBS puts variable text combined with message text into a buffer that you
provide. DSIMBS can determine the size of the buffer required to accommodate the
message to be built.

You can supply variable fields to be inserted into NetView messages or unique
messages of your own with up to nine varying positional fields.

MVT addressability is required.

[name] DSIMBS SWB = {(register) lsymbolic name}
,MID={nnn!(register)lsymbolic namel*equatename}

[

~P1 = (lexI,/nglh[.padlng .side .fi1fJl]

,P9 = (text'/ngth[,padlng ,side,fill])
,MSGA = (pdb1 addr,pdb2'addr)

{
,BFR= {(register) I symbolic name} }

'" MSGSIZE = {(register) I symbolic name}
[,MSGTBL= {(register)\symbolic name}]
[,OPT=CONCAT]

SWB

MID

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

Identifies the message to be edited for the user. The message may be speci­
fied by the message number (nnn), in a register, in a user area specified by
symbolic name, or by the equate name preceded by an asterisk. For example,
for MSG999 Eau 999, you could specify MID=MSG999.

P1 ... P9
Used only in combination with the MID parameter, these values specify the
positional fields in a message that are to be replaced by user-supplied text.
The first two values, text and Ingth, must be specified; the others are optional.

text
Address of the variable text or the symbolic name of the area with the text
to be substituted into the edited message.

Ingth
Length of the variable text to be substituted into the edited message. The
maximum length is 255 characters, specified in character format. It can be
a binary value in a register or in a user area specified by symbolic name.
The user area must be a 4-byte fullword.

padlng
'Length of the variable field to be padded with fill characters. This length
must be equal to or less than the length specified by the Ingth parameter.
The maximum length is 255 characters, specified in character format. It
can be a binary value in a register or in a user area specified by symbolic
name. The user area must be a 4-byte fullword.

178 NetView Customization: Assembler

DSIMBS

side

fill

MSGA

May be specified as L for left-fill or R for right-fill. The default is R.

The fill character for the area to be padded. The default fill character is a
blank (hex 40).

The following registers are used for variable field substitution in message
texts:

pdb1addr
Address of the PDB or the symbolic name of a fullword area with the
address of the PDB. This address contains the addresses and lengths of the
variable fields to be substituted into the message text.

Note: Because the variable field information is contained in pdb1 addr, the
P1...P9 parameters may not be used with MSGA.

pdb2addr

BFR

Address of the PDB or the symbolic name of a fullword area with the
address of the PDB. This address contains the message skeleton to be
edited. This is not a NetView message; you supply the message.

Register, or symbolic name of a fullword area, containing the address of the
buffer in which the edited message is to be returned. BFR must have an initial­
ized BUFHDR. Macro DSIMBS initializes the HDRMLENG, HDRDOMID, and HDRTSTMP

fields.

MSGSIZE
Register containing the address of a user-provided fullword area, or symbolic
name of that area. Use MSGSIZE only to request the service routine for deter­
mining the size of the buffer needed for the message to be edited. When the
routine has completed processing, the required size is returned in this area.

MSGTBL
Register, or symbolic name of a fullword, containing the address of a user­
defined message table. Macro DSIMDS generates this table.

OPT
Tells NetView to search DSIMDM for a specified message identifier that cannot
be found in the specified private message table (MSGTBL). If OPT=CONCAT is
omitted, NetView searches only the private message table for the message
identifier.

Return Codes in Register 15
o Function was successful. (1) The edited message is in the provided buffer

and the length of the message is stored in the message length field of the
buffer header, or (2) the size of the message buffer required has been calcu­
lated and stored in the area specified by MSGSIZE.

4 The edited message is in the provided buffer, but the message skeleton con­
tained a parameter for which the caller did not supply text. The message
contains the characters &n where n may be fro'm 1 - 9.

8 Unsuccessful. The buffer overflowed, and the message has been truncated.
The size of the truncated message has been stored in the message length
field of the buffer header.

Chapter 8. Macro Reference 179

DSIMBS

12 The message number specified could not be found in the NetView or user­
specified message table. The message 0001 was edited into the caller's buffer.
If only the buffer size was requested, the size of message 0001 is returned.

16 The caller did not supply a buffer address.

20 Combined conditions 4 and 8 occurred.

24 Combined conditions 8 and 12 occurred.

28 A validity check failed on the user message definition module. The address
passed in the MSGTBL parameter does not point to a message definition
module that was created with macro DSIMDS.

32 Storage request failed.

36 1/0 error.

40 Unexpected end-of-file found.

180 NetView Customization: Assembler

DSIMDS

DSIMDS - Message Definition Services
Macro OSIMOS generates a message definition module to be used by macro OSIMBS

to display messages in user exits, command processors and subtasks.

After a message definition module has been coded, it must be assembled and link­
edited into a NetVie·w load library. OSIMOS has no return codes.

MVT addressability is not required.

Three forms of OSIMOS are required to generate a message definition module.
These forms are described in the following three formats; they must be coded in
the sequence shown.

Format 1: Start Message Definition Module Statement

name DSIMDS prefix

name

,TYPE = START
,SEARCH = {IIDIB}
[,MAXLEN = {7111421213}]

Required parameter that starts the message definition module. The name
specified becomes the CSECT name for the module. The name can be any valid
name which does not conflict with an existing NetView load module name.

prefix
Requi red positional parameter that becomes the 3 character prefix for the mes­
sages in the module. The prefix should not conflict with the NetView message
prefixes (AAU, BNJ, CNM, OSI, or OWO).

TYPE
Specifies the beginning of generation for the message definition module.

SEARCH
Indicates where the messages can be found: in the message definition
module, on disk, or both. SEARCH causes a message definition module to be
built. This indicator becomes part of the message definition table.

!

D

B

Indicates the messages can be found only in the message definition
module. (Default)

Indicates the messages can be found only on disk. Individual message
statements using Format 2 of OSIMOS should not be coded for the messages.
The individual messages are coded on disk. Refer to "Defining Messages
on Disk" on page 183.

Indicates some of the messages can be found in the message definition
module, and the others can be found on disk. Individual message state­
ments using Format 2 of OSIMOS should only be coded for those messages
that will not be defined on disk. Refer to "Defining Messages on Disk" on
page 183.

Chapter 8. Macro Reference 181

DSIMDS

MAXLEN
Defines the maximum message length. MAXLEN is determined by calculating
the length of "pppxxxt msgtext" (message number, type, a blank, and text).
MAXLEN should be a multiple of 71. Maximum message size allowed is 213
characters. If MAXLEN is not specified, message size defaults to 142 characters.

Format 2: Define Individual Messages Statement

[label] DSIMDS xxx,'message text [&&n]'
,TYPE = {All}

label

xxx

Optional label.

Message number. It may be any number from 000-999. When OSIMBS is issued
to build the message, it will create the message identifier by concatenating
your three-character prefix, the message number, and the type.

When coding your message CSECT, you must code a message 000 statement to
be issued when an invalid message number is specified. Message 000 should
have one insert (&&1) which will contain the invalid message number. You
may want to use wording similar to NetView's message OSIOOOI:

MSG000 DSIMDS 000, 'MESSAGE &&1 ISSUED BUT DOES NOT EXIST IN
MESSAGE TABLE DSIMDM - CALL IGNORED', TYPE=I

You should replace OSIMOM with the name of your message table definition
module; that is, the name specified on the DSIMDS TYPE = START statement. The
OSIMBS service routine will substitute the message number of the invalid
message in place of &&1.

Note: At coding time, be sure that the buffer passed to OSIMBS is big enough to
hold the message with all the inserts substituted. Otherwise, the message will
be truncated.

message text
Text of the message added or changed.

&&n
Optional information may be substituted in the message at the place where the
&&n occurs. The positional fields are specified by the Pn parameter in the
DSIMBS macro. &&1 - &&9 may be specified.

TYPE
Specifies the message type.

A
Specifies an action message, one for which appropriate action must be
taken.

Specifies that the message is for information only. No specific action is
required.

Format 3: End Message Definition Statement

182 NetView Customization: Assembler

DSIMDS TYPE = END

TYPE
Specifies the end of the message definition module. This is the last statement
specified.

Note: The TYPE = END statement should be followed by an assembler END state­
ment.

Defining Messages on Disk
Messages can be defined on disk instead of, or in addition to defining them in the
message definition module. The benefits of defining messages on disk are:

• The message coding is simpler and does not require assembling and link­
editing the message definition module when messages are added or changed.

• The messages are read in by NetView when the DSIMBS macro is issued. Mes­
sages can be changed while NetView is running and the changes take effect
immediately.

Note: Messages that will be issued from code running with TVBINXIT on cannot
be read from disk. These messages must be defined in your message defi­
nition module with Format 2 OSIMDS statements.

Messages are coded in members in the NetView DSIMSG data set (filetype NCCFLST,

for VM). The member names (file names, for VM) must be in the format of DSIPPPXX
where:

PPP is the message prefix which was defined on the OSIMDS start message defi­
nition module statement.

xx is the first two digits of the message number. Up to ten messages can be
defined in a member (xxO-xx9).

The message syntax for the user messages is:

xxxt message text [&n]

xxx
Message number. It may be any number from 001-999.

Message type:

A
Specifies an action message, one for which appropriate action must be
taken.

Specifies that the message is for information only. No specific action is
required.

message text
Text of the message added or changed.

Chapter 8 .. Macro Reference 183

DSIMDS

&n
Optional information may be substituted in the message at the place where the
&n occurs. The positional fields are specified by the Pn parameter in the
DSIMBS macro. &1 - &9 may be specified.

User Message Definition Module Example
Following is an example of defining five user messages (USR001- USR005). Message
USROO1 will reside in the message definition module called USRTABLE. Messages
USR002 - USR005 will reside in the NetView DSIMSG data set under the member name
DSIUSROO.

Message Table Definition Module USRTABLE

USRTABLE DSIMDS USR,TVPE=START,SEARCH=B
MSGOOe DSIMDS oOe.'USER MESSAGE &&1 ISSUED BUT DOES EXIST IN MESS·

AGE TABLE USRTABLE - CALL IGNORED.'.TVPE=I
MSG001 DSIMDS OOlt'THIS IS USER MESSAGE l'~TVPE=I

DSIMDS TVPE=END
END

NelView DSIMSG Member DSIUSROO

0021 THIS IS USER MESSAGE 2
003A THIS IS USER MESSAGE 3t RETURN CODE = &1
0041 THIS IS USER MESSAGE 4, &1 IS TODAV'S DATE
0051 THIS IS USER MESSAGE 5,· TIME IS &1

184 NetView Customization: Assembler

DSIMQS

DSIMQS - Message Queuing Services
Macro OSIMQS sends a user-supplied message or command to the message queue
of a task's TVB.

This message or command appears on the operator's screen or hard-copy log, .
depending upon which identification is specified. Buffers that are formatted as
internal function requests (IFRS) are not displayed. Instead, they cause the
receiving subtask to take the action requested by the IFR. Buffers that are for­
matted as IFRS should not be sent to the authorized receiver (see AUTHRCV operand
below).

MVT addressability is required.

[name] OSIMQS SWB= {(register) I symbolic name}

SWB

,BFR= {(register) I symbolic name}
,TASKID = {(register)lsymbolic namelPPT}
,AUTHRCV= {YESINO}
,LIST = {(register)lsymbolic name}
[,EXCEPT= {(pointer)lsymbolic name}]
[,BFRFLG= {YESINO}]
[,PRI = {NORMALIHIGHILOWl(register)lsymbolic name}]

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

BFR
Register, or symbolic name of a fullword area, containing the address of a
buffer. (If OSIGET obtained this buffer, the OSIFRE must free it after use. Use the
same option for the Q parameter for both OSIGET and OSIFRE.) BFR must have an
initialized BUFHOR.

Note: Specify one, and only one, of the following: TASKIO. AUTHRCV=YES, or LIST.

TASKIO
Register containing the address of a user-provided 8-byte area, or symbolic
name of that area, or PPT for the Primary POI task. The area should contain the
8-character operator identification (TVBOPIO) of the task for which the message
is to be queued.

AUTHRCV
Specifies that the first operator designated as the receiver of authorized mes­
sages (by the AUTH statement of profile definition) is to receive the message.
All messages sent to the authorized receiver are routed first to the PPT to test
for automation and message routing (via the ASSIGN command). If not sup­
pressed by automation or handled by routing, the messages are sent to the
authorized receiver, if one is logged on, or to the system console. The AUTHRCV

option must only be used for messages. If the buffer to be sent is formatted as
an internal function request (IFR) and it is not an automation IFR containing a
message, the DSIMQS macro will fail with a return code 4 (invalid buffer format)
in register 15. See the discussions of the AUTH statement and unsolicited
message routing in NetView Administration Reference.

Chapter 8. Macro Reference 185

DSIMQS

LIST
Pointer to. or symbolic name of, a fullword area containing the address of a list
of operator IDS or group IDS to receive the message. Operators are assigned to
groups using the ASSIGN command. See NetView Operation for more informa­
tion on the ASSIGN command.

• If 1ST is specified as the LIST type, the first logged on operator in the list will
receive the message. (The first logged on operator may be in a group.)
The receiving operator 10 is returned in the MOSENTTO field in the SWB.

• If ALL is specified as the LIST type, and a return code of 0 was received, the
message was sent to all specified operators and groups of operators in the
list who were logged on. While the message was sent to all specified
logged on operators, it was not necessa~ily received.

• If multiple operator or group IDS are specified, the last two fields (shown in
the 10 list below) must be repeated for each operator or group listed.

The 10 list has the following format:

Hex
Offset

Contents

o 1ST or ALL (three bytes)

3 Number of IDS in list (one byte)

4 Unused (eight bytes)

C Operator or group 10 (eight bytes)

EXCEPT
May be specified only if LIST is specified. This parameter specifies an eight­
character field that contains an operator or group 10, left justified and padded
with blanks, that should not receive the message.

BFRFLG

PRI

Specifies whether the subtask that sends the buffer has released control and
responsibility for it (BFRFLG=YES). (With BFRFLG=YES, the buffer must include
HORMCEXT with HORSENOR initialized.) BFRFLG = NO indicates that the receiving
subtask is to make a copy of the buffer and return it.

Specifies a priority for message processing by the destination task. The value
is either one of the three strings HIGH, NORMAL, or LOW, or a register or name of a
full word area containing one of the three values defined in OSISWB: MOSHI,

MOSNORM, or MOSLO. The default value is NO~MAL. A message or command sent
at HIGH priority would begin processing after any normal message currently in
progress, but before other queued NORMAL messages. A message or command
sent at NORMAL priority would similarly pre-empt a queue of LOW priority mes­
sages. Of the NetView supplied tasks. only destination task types OST, PPT, and
NNT respect priority. For destination tasks that have not indicated support for
multiple priorities, OSIMOS automatically converts all messages to NORMAL pri­
ority.

186 NetView Customization: Assembler

.,'001 __

Return Codes in Register 15
o Function was successful; the message is queued.

4 The format of the buffer that was passed was invalid.

8 The task is inactive, or no task was identified as a receiver for the buffer.

12 A buffer could not be obtained.

16 NetView is terminating.

20 SWB address is invalid.

22 The list specified with the LIST option contained no operator IDS. It contained
only unassigned group IDS.

23 Messages were routed to the first 255 operators and/or groups.

24 An invalid value was specified for priority.

Chapter 8. Macro Reference 187

051015

OSIOIS - Operator Identification Services
Macro 051015 searches the operator identification table (OSIOIT) in preparation for
span authority checking using OSISSS.

051015 returns the relative position of the entry to a user-provided fullword area.

MVT addressability is required.

[name] OSIOIS

SWB

SWB = {(register)lsymbolic name}
,OPIO = {(register)lsymbolic name}
,0ITPOS= {{register)lsymbolic name}

Register, or symbolic name of a fullword area, containing the address of a
service work block (sws).

OPID
Register containing the address of an a-byte, left-justified operator identifica­
tion field; or symbolic name of that field.

OITPOS
Register containing the address of a fullword area, or symbolic name of that
area. When the routine has located the specified operator identification in
DSIOIT, that entry's relative position is returned to this fullword area. For
example, the third entry results in a fullword 3 being returned.

Return Codes in Register 15
o Function was successful; the position of the entry is returned.

4 Unsuccessful. The entry was not found in DSIOIT.

188 NetView Customization: Assembler

DSIPAS - Parameter/Alias Services
Macro DSIPAS receives a command parameter as input and searches the system
command table (seT) to determine whether the entered parameter is an alias for
the actual parameter.

If the parameter is an alias, the regular value is returned to a user-provided area.
If it is not an alias, the input value is returned to the user area. If the value is
invalid, blanks are returned to the input area.

MVT addressability is required.

[name] DSIPAS SWB = {(regisfer)lsymbolic name}
,POB = {(pdbreg)lpdbname,(entreg}lentnamel'entry'}
.OUT= {(register}lsymbolic name}

SWB
Register, or symbolic name of a fullword area, containing the address of a
service work block (swe).

PDB
Specifies two values. The first value is the address of a poe and the second
value is the entry number of the field in the poe to be examined.

pdbreg
Register that contains the address of the poe.

pdbname
Symbolic name of a fullword that contains the address of the POB.

entreg
Entry number, right justified.

entname
Symbolic name of a fullword that contains the entry number, right justified.

entry
Constant that specifies the entry number.

Note: PDeCMDA must contain the address or pointer to an entry in the SCT.

OUT
Register containing the address of a user-provided 8-byte area to which the
NetView equivalent of the input parameter is returned if found, or symbolic
name of that user area.

Return Codes in Register 15
o A regular parameter value was returned.

4 No equivalent was found; the same parameter is returned.

8 Invalid parameter; blanks are returned.

Chapter 8. Macro Reference 189

DSIPOP

DSIPOP - Remove Long Running Command
Macro DSIPOP removes a long running command element that DSIPUSH placed on the
stack.

The element canceled is the one nearest the top of the stack with the name speci­
fied in the parameter list. If a calling command procedure is suspended by
DSIPUSH, use DSIPOP to let the command procedure continue at the next instruction.
The command procedure continues when the RESUME routine or currently running
command returns control to the OST or PPT.

Do not use DSIPOP while in a LOGOFF routine, an ABEND reinstate routine, or an
immediate command.

Refer also to macros DSIFIND and DSIPUSH.

MVT addressability is required.

[name] DSIPOP SWB= {(register) I symbolic name}
,lIST= {(register)\symbolic name}
[,COM PCDE = {(register)lsymbolic name}]

SWB
Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB). The TIS address in SWSTIS must be correctly set.

LIST
Register containing the address of a parameter list used by the service routine,
or symbolic name of that list. Do not specify this as register 1; register 1 con­
tains the SWB address within DSIPOP. Do not put this list in the SWB that is to be
passed to DSIPOP.

The parameter list contains the following fields:

Hex Offset Length Field

o
4

4 SWBLACLN (Length)

16 SWBLACNM (Name)

Where:

SWBLRCLN
Specifies the parameter list length. Set SWBLRCLN equal to SWBLRCPO

(decimal 20).

SWBLRCNM
Specifies the name of the storage to be dequeued and freed. Specify this
field exactly as you specified it in the corresponding macro DSIPUSH. This
16-byte field is used as is. Instructions for specifying the name field are
under "DSIPUSH - Establish Long Running Command" on page 202.

COMPCDE
Specifies the value of the completion code for the long running command (LRC)

being removed. The value may be specified as a register, symbolic name of a
full word area, or a full word literal. The value is meaningful only if the LRC

190 NetView Customization: Assembler

U~:"r"'Vr"'

being removed specified a RESUME routine and only if the process that created
the long running command element (using DSIPUSH) was directly invoked from
another long running command. If you do not specify COMPCDE, the value
defaults to:

o if the LRC being removed is in control (top of stack) at the time DSIPOP is
invoked. This is the usual (and recommended) case.

-5 if the LRC being removed is not at the top of the stack. Negative five is
treated as a CANCEL request by NetView command procedures and
certain related commands.

You can be certain that your LRC is at the top of the stack, when It Is resumed.

Note: NetView command procedures are long running commands. If a long
running command you write is called from a command procedure, you can
pass a return code to it using the COMPCDE keyword. If a long running
command you write makes a direct call to schedule a command procedure, you
can obtain its return code upon resumption from CWBRCODE.

Return Codes in Register 15
o Function was successful; the long running command processor element is

dequeued.

16 Request issued while in an immediate command, or while NetView is cur­
rently in an exit, a LOGOFF, or an ABEND reinstate routine.

32 Invalid macro call. Fix assembly errors before trying to run the program.

36 Specified NAME was not found.

Chapter 8. Macro Reference 191

DSIPOS

DSIPOS - ECB Post Services
Macro DSIPOS indicates the completion of an event by posting an event control
block (ECB).

MVT addressability is required.

[name] DSIPOS ecbaddress[.compcde]

ecbaddress
Symbolic name of ECB or register (1-12) that contains the address of the ECB.

If a register is specified, it must be enclosed fn parentheses.

compcde
Value of the completion code to be placed in the ECB (0 - 16,777,215) or in a
register (0,2 - 12) that contains the value. If a register is specified, it must be
coded in parentheses. If no value is specified, 0 is assumed.

Note: These parameters are positional; they must be specified in the indicated
order.

192 NetView Customization: Assembler

JPRS - Parsing Services
Macro DSIPRS parses commands using specified or assumed delimiters, or deter­
mines the size of the parse table required to parse the input buffer.

The parse table describes the data contained in the buffer. DSIPRS finds delimiters
in the data and formats the POB to indicate data segments separated by the delim­
iters. DSIPRS may be called again to build the parse table in a user-provided area.

MVT addressability is required.

[name] OSIPRS SWB = {(register) I symbolic name}

SWB

,BFR = {(register) I symbolic name}

{
,POBSIZE = {(register) I symbolic name}}
,POB = {(register) I symbolic name}
[,FIRST= {YESINO}]
[,OELIM = ('01', '02' , ... ·On')]
[,SUB = {YESINO}]

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

BFR
Register, or symbolic name of a fullword area, containing the address of the
buffer to be used for input. BFR must have an initialized BUFHDR.

POBSIZE
Register containing the address of a fullword area to which the size of the
parse table is to be returned, or symbolic name of that area.

POB
Register containing the address of a fullword pointing to the area where the
parse table is to be built, or symbolic name of that area. The parse table must
include a user-initialized DSICBH header that contains the control block identifi­
cation and length before the data can be parsed.

FIRST
Indicates whether the first word of the input buffer can be delimited only by a
blank (YES) or by any delimiter (NO).

OELIM
Allows you to specify delimiters instead of NetView defaults. NetView default
delimiters are blank, comma, period, and equal sign. Blank is always consid­
ered a delimiter, even if you specify your own delimiters.

SUB
Indicates whether all text within single quotes is to be parsed as one element
(YES) or not (NO). This option treats everything between single quotes as one
element provided the first quote is preceded by a delimiter and the last quote
is followed by either a blank or comma.

Chapter 8. Macro Reference 193

DSIPRS

For each example below, DSIPRS is issued to pass the given character string with
the default delimiters and SUB=YES.

Example 1

RETURN CODE IS 'NON-ZERO'.

DSIPRS will return the UNBALANCED QUOTES return code.

Example 2

RETURN CODE IS 'GOOD', CONTINUE.

The following PDB table is built:

PDBTYPE PDBLENG PDBDISP TOKEN VALUE

6 24 RETURN

4 28 CODE

b 2 30 IS

4 34 GOOD

8 38 CONTINUE

Example 3

RETURN CODE IS (X' 00'), CONTINUE.

The following poe table is built:

PDBTYPE PDBLENG PDBDISP TOKEN VALUE

b 6 24 RETURN

b 4 28 CODE

b 2 30 IS

2 33 (X

2 36 00

39

8 3C CONTINUE

Return Codes in Register 15
o Function was successful. The required size of the table was returned in

PDBSIZE, or the command was parsed and the parse table was built.

4 The input buffer was parsed, but there was no data in the input buffer (zero
length data) or the data in the input buffer was all blanks. Only the buffer
address and number of entries (0) .could be returned in the parse table.

8 The parse table size was too small for the input buffer; a partial parse table
was built, and the number of entries was set to the number that the parse
table could hold. The size of the parse table should be increased.

12 Unbalanced quotes. Returned only if SUB=YES is specified.

194 NetView Customization: Assembler

DSIPRS

16 The number of characters between two consecutive delimiters in the input
buffer was greater than 255.

20 An unpaired Kanji delimiter or uneven number of Kanji data bytes 'was found
in the input buffer. For example, one of the following may have occurred:

• The end of the input buffer was found before the Kanji data-entering
delimiter (SI).

• A second Kanji data-beginning delimiter (SO) was found before the Kanji
data-ending delimiter (SI).

• An uneven number of Kanji data bytes was found between Kanji data
delimiters.

100 No poe or an invalid poe was passed.

Chapter 8. Macro Reference 195

DSIPSS

DSIPSS - Presentation Services
Macro DSIPSS writes a message to an operator's screen or sends messages to
another NetView. The presentation service routines, which DSIPSS calls, control
screen formats, organize data into a specific form for each device, and send the
data.

For MVS console tasks, system WTO services are used to display messages in addi­
tion to processing as described for unattended operator tasks.

MVT addressability is required.

[name] DSIPSS SWB = {(register)lsymbolic name}
[,APPLID = {(register)lsymbolic name}]
,TYPE = {OUTPUTIFLASH\IMMEDIXSENDI

SCRSIZEIWINDOWIASYPANEL\
PANELICANCELIPSSWAtTI
TESTWAIT}

SWB

[,ECBLlST= {(register)lsymbolic name}]
[,BFR= {(register)lsymbolic name}]
[,SIZE = {(register) I symbolic name}]
[,PANEL = {(register)lsymbolic name)]
[,OPTIONS = {MSGISEGI

FIRSTI MIDDLEI
LASTIONLY}]

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

APPLID
Register containing the address of an a-byte area that contains the name (left
justified and padded with blanks) of the application program to which the data
is to be sent, or symbolic name of that a-byte area. This name should be the
same as the name specified on the START command when a session is started.
APPLID is specified only when TYPE=XSEND is specified.

TYPE
Type of presentation services routine to be called:

OUTPUT routine
Specifies that the routine is to send a message to the operator's terminal.
Do not use this option in immediate command processors, in user exit rou­
tines with TVBINXIT set on, or in user exit DSIEX12. The maximum message
length before truncation is 32,767 characters for OST and 256 characters for
NNT. Upon completion of the macro, the length of the text in the HDRMLENG

field of the BUFHDR is set to the length of the data after any trailing blanks
have been truncated.

DSIPSS calls DSIEX02A, message copy (ASSIGN), and logging functions.

FLASH
These messages are not suppressed by &WAIT processing, or message
automation, nor are they logged (they can be logged prior to calling DSIPSS

if you choose). They will be displayed regardless of the STIFLE state.

196 NetView Customization: Assembler

DSIPSS

Note: For OUTPUT and FLASH, if your data is formated as an automation IFR,

it must be in buffers obtained with DSIGET using Q=NO and subpool zero.
DSIPSS will free the automation IFR structure. If your data is NOT formatted
as an automation IFR, there is no restriction on the type of storage used
and the storage will not be freed. You are responsible for freeing it.

IMMED
Specifies that the routine is to send a message to the operator station's
immediate message area. The maximum message length before trun­
cation occurs is 71 characters. Use this option only in immediate
command processors or the DSIEX01 user exit routine. When this parameter
is specified, no message header information is sent to the display screen.
TYPE=IMMED terminates full-screen mode and causes subsequent terminal
input to be treated as commands.

DSIPSS calls DSIEX02A, message copy (ASSIGN), and logging functions.

XSEND
Specifies the routine is to send data to another NetView with which a
session exists. (Sessions are started with the START DOMAIN = command.)
The maximum data length before truncation is 240 characters.

SCRSIZE
Specifies the routine is to return the screen size in row-column format.

WINDOW
Requests information on the size of the output area of the standard screen.
This option is valid only from an CST. Under any other task, the request is
considered null; register 15 contains a return code of 0, but no function is
performed. Three output area sizes are returned:

• Minimum
• Current
• Maximum.

The minimum window size may be used to produce screens that are inde­
pendent of the current window size. The current window shows the screen
size currently in effect. The maximum window size is useful for calculating
the maximum storage needed to produce title-line panels.

ASYPANEL
Specifies that the issuing routine assumes control of the screen. Input and
output will be formatted as 3270 data stream commands. Notification of
input availability is done asychronously by the posting of ECBS.

After a DSIPSS TYPE = ASYPANEL, input to the terminal will be treated as input
to the process issuing the ASYPANEL request until either a DSIPSS

TYPE = CANCEL or a DSIPSS TYPE = OUTPUT is issued.

Full-screen mode is not supported for unattended operator tasks, including
those associated with a system console.

PANEL
Although this option is supported for compatibility with earlier releases of
NetView, it is not recommended.

CANCEL
Cancels pending asynchronous full-screen input. This option is used when
changing the characteristics of the asynchronous full-screen processor,
such as the ECB address or the panel address. TYPE = CANCEL is allowed only
from an OST. This option can be invoked regardless of whether a DSIPSS

Chapter 8. Macro Reference 197

DSIPSS

TYPE = ASYPANEL is active or the input from TYPE = ASYPANEL has been posted
as complete.

After TYPE = CANCEL is issued, no further input is received from the terminal
until TYPE = OUTPUT, TYPE=IMMED. TYPE = PANEL, or TYPE = ASYPANEL is issued.

PSSWAIT
Specifies that a command is to wait for a list of its own events and a list of
events that should be allowed to interrupt the command events.
TYPE=PSSWAIT is allowed only from an OST.

Note: Use macro DSIWAT if you do not want the command to wait for the
completion of events.

TESTWAIT
Allows a command processor to test whether an event has occurred that
should interrupt the asynchronous full-screen command processor.
TYPE=TESTWAIT is allowed only from an OST. This option can be used before
a DSIPSS TYPE = ASYPANEL is issued to determine if the asynchronous full­
screen panel input/output should be attempted. If DSIPSS TYPE=PSSWAIT is
used to wait for events, this option can prevent unnecessary screen
input/output by allowing testing before panel input/output is requested.

ECBLIST
For TYPE=PSSWAIT, register, or symbolic name of a fullword area, containing the
address of an ECB list. An ECB list is a list of addresses of user-defined event
control blocks that is copied and combined with an ECB list. NetView waits for
this combined list; when one of the events associated with this list is posted,
control is returned to the next sequential instruction. The input ECB list is made
up of fullword ECB addresses. The last address in the list must have the first bit
set on to specify that this is the last entry.

BFR
Register, or symbolic name of a fullword area, containing the address of a
user-provided buffer. This buffer should contain the data to be processed. BFR

is used only for TYPE = FLASH, TYPE = OUTPUT, TYPE=IMMED, and TYPE=XSEND. BFR

must have an initialized BUFHDR.

SIZE
For TYPE = SCRSIZE, register, or symbolic name of a fullword area, containing the
address of a user-provided 4-byte area to contain the size of the display
screen, in row-column format. For example, a 1920-character screen is
defined as X'00180050', since the screen is 24 rows (X'0018') by 80 characters
(X'0050').

For TYPE=WINDOW, a register containing the address of a ~2-byte area, or sym­
bolic name of that area. The window size is returned in binary to the area.
The window size is the number of lines available for output on the screen. The
size varies depending on screen size and the number of input lines specified
on the INPUT command. The format of the area is:

198 NetView Customization: Assembler

Bytes Bytes
(Decimal) (Hex)

0 (0)

2 (2) Minimum Window Size, Rows

4 (4)
Minimum Window Size, Columns

6 (6) Current Window Size, Rows

8 (8) . Current Window Size, Columns

10 (A)
Maximum Window Size, Rows

12 (C)
Maximum Window Size, Columns

PANEL
For TYPE = ASYPANEL, a register contai ni n9 the address of a 20-byte parameter
fist, or the symbolic name of that list. The parameter list is formatted as
follows:

Bytes Bytes
(Decimal) (Hex)

0 (0)
ECB Adress

4 (4)
Output Data Stream Address

8 (8)
User Input Area Address

12 (C)
Output Length I Input Area Length

16 (10)
Data length Address

20 (14)

If asynchronous full-screen output is requested, the output data stream address
field contains the address of a 3270 data stream including a 3270 command,
WCC, and orders to be written to the terminal. The command must be coded
using remote EBCDIC values. The output length field indicates the length, in
bytes, of the 3270 data stream (32,767 bytes maximum). If output is requested,
the ECB address, input area length, user input area address, and data length
address fields are not used.

To read asynchronous full-screen input from a terminal, the ECB address area
contains the address of an event control block to be posted when the asynchro­
nous input is received. The user input area address contains the address of a
user area into which the full-screen panel data is read. If the length of the data
being read is greater than the user input area, the data will be truncated in that
area. The input area field indicates the length of the input data area in bytes
(32,767 bytes maximum). The data length address field contains the address of
a halfword field set to the amount of data read when the ECB is posted.

OPTIONS
Specifies the type of message to be sent. OPTIONS is used only for TYPE = OUTPUT.

The default is MSG, which specifies that the data to be sent is a complete
message.

In general, title line output should be used instead of the other values for the
OPTIONS parameter. The other values are as follows:

• SEG, which specifies that the data to be sent has no message header.

• FIRST, which begins full-line mode. It specifies that the data is to start at
the top of the screen, with full 80-byte line width.

• MIDDLE, which continues full-line mode.

Chapter 8. Macro Reference 199

DSIPSS

• LAST, which specifies the end of a full-line mode screen. The screen is
locked until the operator signals for the screen to be refreshed.

• ONLY, which specifies that one full-line message is to be written at the top
of the screen with the rest of the screen blank.

Return Codes in Register 15
o Function was successful; the message is written. For TYPE=PSSWAIT, an ECB

has been posted. Check the ECB list to determine which event has completed.
For TYPE = ASYPANEL, the send or receive request has passed NetView syntax
and buffer checking and has been sent to VTAM; it does not indicate the
success or failure of VTAM completion of the receive. The ECB post code must
be checked to determine the success or failure of the ASYPANEL request. The
post code will be put into the ECB specified in the panel parameter list.

4 For TYPE = XSEND, no RPL was found and no data was sent.

8 Parameter error. There is an error in the formatting of the message buffer
header. For TYPE=XSEND, the session is not active and no data is sent. For
TYPE = PANEL, the input or output length is invalid, that is, greater than 32,767
bytes (X'7FFF'). For TYPE = ASYPANEL, the parameter list is inconsistent. If the
output buffer is specified, its length must also be specified. If the input ECB is
specified, the input area address, input area length, and the data length
address of the returned length must be specified.

12 There is not enough storage available in NetView to complete the request.
No output is sent, and the input command processor is not be scheduled.

16 OSIPSS TYPE = OUTPUT was issued for an immediate command or in an IRB exit
routine. Use DSIPSS TYPE=IMMED or DSIMQS instead. Too many OPTIONS=MIDDLE

were specified, and the screen is full. This OPTIONS = MIDDLE is treated as an
OPTIONS=LAST. If another MIDDLE is issued, it is treated as an OPTIONS = FIRST.

The screen wraps around, and return code 24 is issued. The requested DSIPSS

service could not be performed under this unattended operator task, MVS

console operator task, PPT, or OST.

20 No terminal session exists. For TYPE= PANEL, the panel request came from a
task other than an OST. No output is sent, and the input command processor
is not scheduled. For TYPE = ASYPANEL, the panel request came from a task
other than an OST. No input will be received. For TYPE=CANCEL, the panel
request came from a task other than an OST.

24 For OPTIONS = FIRST, MIDDLE, LAST, or ONLY, options were specified in an incorrect
order.

28 For OPTIONS = FIRST. MIDDLE, LAST, or ONLY, user exit DSIEX02 specified that title­
line output was to be deleted. The output was not written to the screen. This
return code does not indicate a severe error, but rather warns that protocol
for title-line mode may have been violated.

32 For TYPE=PANEL, no input command processor is scheduled. The operator
requested escape to NetView mode by selecting option 1 when prompted by
message DSI817A.

36 For TYPE=PANEL or TYPE = ASYPANEL, a temporary error occurred. The contents
of the screen have been modified. Reformat the screen using an Erase/Write
or Erase/Write Alternate 3270 command. Then retry the request.

200 NetView Customization: Assembler

DSIPSS

40 A permanent input/output error occurred. Do not retry the request. No output
will be sent, and no input processor will be scheduled. For TYPE = ASVPANEL,

no input will be received. For TYPE = CANCEL, NetView is unable to restart
normal terminal activity.

44 For TVPE=PANEL, no input is scheduled, because the operator requested reset
by selecting option 3 when prompted by message DSI817A.

48 For TVPE=ASVPANEL, no input/output is scheduled because the command
processor issued a second DSIPSS TYPE = ASVPANEL requesting input before the
previous request had completed.

56 For TYPE=PSSWAIT or TYPE=TESTWAIT, at least one NetView ECB was posted.

The ECB post codes for PSS TYPE = ASVPANEL are found in the event control block if
one was specified. They are as follows:

o Function was successful; the requested data is available.

12 There is not enough storage available in NetView to complete the request.
The output data was sent, but the input data is not available.

36 A temporary error occurred during a full-screen read. Retry the request. The
output data was sent, but the input data is not available.

40 A permanent error occurred during a full-screen read. Do not retry the
request. The output data was sent, but the input data is not available.

52 The requested input was canceled by DSIPSS TVPE=CANCEL. Do not retry the
request immediately. The output data was sent, but the input data is not
available.

Chapter 8. Macro Reference 201

DSIPUSH

DSIPUSH - Establish Long Running Command
Macro OSIPUSH can perform either of two related functions:

• Establish named storage

A storage pOinter passed to OSIPUSH is associated with a 16 character name
chosen by the OSIPUSH caller. After a successful OSIPUSH, the OSIFINO macro can
be used to obtain the storage pointer from the name. All task types supporting
commands also support named storage (PPT. OST. NNT. OST).

• Establish resumable command

A resumable command can return to its caller, with the assurance that the
specified RESUME routine will be called when other scheduled activity for the
task allows. Resumable commands may exit, for example, to wait for data
requests to be satisfied or to allow queued "simulated terminal" commands to
execute. All NetView components behave this way. Task types supporting
regular commands also support resumable commands (PPT. OST. NNT).

Both of these functions are "task level" operations, global for the task where they
occur, but invisible from all other tasks. All requests define recovery4 and termi­
nation procedures.

MVT addressability is required.

When a command issues OSIPUSH for a RESUME routine, the following applies:

If a command invoked by a command procedure (NetView command list lan­
guage, REXX. or high-level language) specifies MAJOR when issuing DSIPUSH, the
command procedure is suspended at that point until the RESUME routine is
removed by OSIPOP. If such a command specifies MINOR when invoking OSIPUSH,

then the RESUME routine will be invoked following the completion of the
command procedure.

A command may schedule a command procedure and obtain a return code by
taking the following steps:

1. invoke OSIPUSH for its own RESUME routine,

2. make a direct call to schedule the command procedure,

3. upon return from the direct call, exit to allow the command procedure to
complete

4. when the RESUME routine gains control, check the return code from the
command procedure in CWBRCOOE.

Notes:

1. When a command procedure is canceled for any reason, its return code is -5.

2. WAIT and PAUSE statements in a command procedure called by a long running
command do not cause premature calling of the RESUME routine. The RESUME

routine is not scheduled until the command procedure completes.

Do not use RESUME or ABEND reinstate routines under a OST.

4 Note that DST tasks always terminate after any failure (ABEND), thus recovery routines are not appropriate under
DST'S.

202 NetView Customization: Assembler

DSIPUSH

Do not use DSIPUSH while running in a LOGOFF or ABEND reinstate routine specified on
a previous DSIPUSH, or while TVBINXIT is on.

[name] DSIPUSH SWB = {(register)lsymbolic name}
,LIST = {(register) I symbolic name}
[,ROLL= {YESINO}]
[,PROMOTE= {YESINO}]

SWB
Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB). The TIB address in SWBTIB must be correctly set.

LIST
Register containing the address of a parameter list used by the service routine,
or symbolic name of that list. Do not specify this as register 1; register 1 con­
tains the SWB address within DSIPUSH. Do not put this list in the SWB that is to be
passed to DSIPUSH. DSIPUSH will read, but not write to, your parameter list; nev­
ertheless, reentrancy demands you put the parameter list in dynamic storage if
your code updates any part of it (such as the storage pointer) at run time.

The parameter list contains the following fields:

Hex Offset Length Field

0

4

14

18

20

28

30

4 SWBLRCLN = Length

16 SWBLRCNM = Name

4 SWBLRCST = Storage address

8 SWBLRCRE = RESUME routine

8 SWBLRCAB = ABEND reinstate routine

8 SWBLRCLG = LOGOFF routine

4 SWBLRCFG = Flags

Where:

SWBLRCLN
Specifies the parameter list length. Set SWBLRCLN equal to SWBLRCPU

(decimal 52).

SWBLRCNM
Associates a name with your Long Running Command or storage address.
You will use this name on subsequent calls to DSIFIND or DSIPOP. The name
should be unique within a particular task, but a duplicate name used under
another task does not interfere. A second use of DSIPUSH for named
storage with the same name under the same task will temporarily hide the
first storage pointer. The first storage pointer becomes accessible (via
DSIFIND) after DSIPOP is issued for the duplicate name.

The name can be any combination of bits as long as you specify the name
identically for all macro calls with the same name. Names beginning with
DSI are reserved for NetView names. The name field is used as is; it is not
padded or justified.

Chapter 8. Macro Reference 203

DSIPUSH

SWBLRCST
Can be used to associate a storage address with the specified name.
However, NetView makes no use whatsoever of the value specified; it is
only returned when DSIFIND is invoked, specifying the same name.

SWBLRCRE
Specifies the load module name of the RESUME routine. If this field is 0, no
RESUME routine is indicated. The load module named must have a corre­
sponding CMDMDL statement.

SWBLRCAB
Specifies the load module name of the ABEND reinstate routine. This name
must not be 0 for tasks other than DST tasks. This name must be 0 for DST

tasks. The load module named must have a corresponding CMDMDL state­
ment.

SWBLRCLG
Specifies the load module name of the LOGOFF routine. This name must not
be O. The load module named must have a corresponding CMDMDL state­
ment.

SWBLRCFG

ROLL

Indicates whether the DSIPUSH execution is minor or major. Bit 0 is the indi­
cator bit; it is defined when a RESUME routine is specified. When bit 0 = 1,
a minor DSIPUSH is perfomed. When bit 0 = 0, a major DSIPUSH is perfomed.
See "RESUME Routines" on page 64 for more information on major and
minor invocations. When no RESUME routine is specified, this field is
ignored.

Specifies whether a long running command processor element has strict,
global dependencies on other LRCS.

All those LRCS created with ROLL=NO will be serviced in strict FIFO order for
RESUME, ABEND reinstate, and LOGOFF. LRCS created with ROLL=YES are regarded
as being interrelated if they are all created during a single command invoca­
tion or if they are created during a RESUME routine call. Note that if a command
processor or RESUME routine makes a direct call (see "Calling a Command
Directly" on page 21) to another command processor, DSIPUSH still regards that
command's processing as part of the original command's processing. AIILRCS

related in this way are processed in FIFO order, with respect to each other. The
processing of other, unrelated LRCS, may be in any order.

When no RESUME routine is specified, you must specify ROLL=NO or allow the
value to default. When a RESUME routine is specified, ROLL=YES is the default
and is strongly recommended.

PROMOTE
When YES is specified, a search is made of all previous DSIPUSHS (excepting
those since canceled via DSIPOP). If a DSIPUSH with the same name is found,
then the entire, related group associated with that name will be made the
active group.

If the group does not exist, the request is treated as an ordinary DSIPUSH and a
stack element is created. -

The storage specified in the invocation becomes the current storage associ­
ated with the specified name (SWBLRCNM) and previous storage associated with
the name will be returned to the caller in register O.

204 NetView Customization: Assembler

DSIPUSH

PROMOTE may only be used with ROLL =YES (or by default) and only when a
RESUME routine is specifed.

When PROMOTE = NO is specified and when the PROMOTE parameter is omitted, no
search is performed. The DSIPUSH is considered new and an LRC (possibly
duplicate) is created.

Return Codes in Register 15
o Function was successful; the long running command request is queued.

4 Storage is not available for request.

8 ABEND reinstate or LOGOFF routine required but not specified.

12 Request issued from invalid task:

• RESUME request issued under DST

• ABEND request issued under DST

• DSIPUSH issued and task is not OST. NNT. DST, or PPT.

16 Request issued while in an immediate command or while NetView is currently
in an exit, or in the middle of a LOGOFF routine or ABEND reinstate routine.

20 RESUME routine is a command list or the CMDMDL statement did not pass
validity checking.

24 ABEND reinstate routine is a command list or the CMDMDL statement did not
pass validity checking.

28 LOGOFF routine is a command list or the CMDMDL statement did not pass
validity checking.

32 Invalid macro invocation. Fix assembly errors before trying to run the
program.

Note: If register 15 contains return code 20, 24, or 28, register 0 will contain a sec­
ondary return code. See "DSICES - Command Entry Services" on page 163 for
an explanation of the return code in register O.

Chapter 8. Macro Reference 205

DSIRDS

DSIRDS - Resource Definition Services
DSIRDS locates the specified resource in the authorization and routing table (ART)

and returns the address of the ART entry to a user-provided fullword area.

MVT addressability is required.

[name] DSIRDS SWB = {(register)lsymbolic name}
,lUNAME = {(register)lsymbolic name}

·,ARTPOS= {{reg;ster)lsymbolic name}
[,STATUS= {ACTIINACT}]

SWB
Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

LUNAME
Register containing the address of a user-provided area, or symbolic name of
that area. The area should contain the 8-byte, left justified LUNAME to be
located in the ART.

ARTPOS
Register containing the address of a fullword area, or symbolic name of that
area. When the routine has located the specified entry in ART, that entry's
address in the table is returned to this area.

STATUS
Specifies whether the LUNAME entry in ART is to be marked as active (ACT) or
inactive (INACT).

Return Codes in Register 15
o Function was successful; the entry was found and its address was returned.

16 No ART.

20 Unsuccessful. The specified entry was not found in ART, or the entry is inac­
tive.

206 NetView Customization: Assembler

DSIRXCOM

DSIRXCOM - Access REXX Variables
An assembler language program called from a REXX command list may wish to
access the variables within the REXX command list which invoked it. Macro
DSIRXCOM provides an interface to the GCS EXECCOMM macro to obtain access to
these variables. DSIRXCOM issues a GCSCALL SETCOMM macro to insure that the .
correct REXX Work Block is accessed and then issues the GCSCALL EXECCOMM macro
to access and manipulate the variables.

Before invoking DSIRXCOM, you must build a chain of shared variable request blocks
(SHVBLOCK) as described in the VMISP System Product Interpreter Reference.

[name] DSIRXCOM TIS = {(register)lsymbolic name}
,SHVS = {(register)lsymbolic name}

TIS
Register containing the address of the task information block (TIB) for this task
or symbolic name of the TIB.

SHVS
Register containg the address of the first shared variable request block
(SHVBLOCK) or symbolic name of the SHVBLOCK.

Return Codes in Register 15
o Successful.

-1 Invalid entry conditions.

-2 Insufficient storage.

-3 No EXECCOMM entry point found.

Note: For a more detailed explanation of the non-zero return codes, see the dis­
cussion of EXECCOMM in the VMISP System Product Interpreter Reference.

Chapter 8. Macro Reference 207

DSIRXEBS

DSIRXEBS - Get An EVALBLOK
Macro OSIRXEBS is an interface to check the required interface parameters for
getting a VM evaluation block (EVALBLOK).

The macro OSIRXEBS can be used instead of the TSO/E macro IRXRLT for the TSO/E

user. This macro is to be used by VM/REXX users for getting evaluation blocks.

The size of the EVALBLOK data area is passed. The header size is added to the data
size, the appropriate doubleword area is obtained, and initialization of the area is
performed. Parameters are passed in the system work block (SW8) which you
provide. If you pass an EVALBLOK address in the EVBPTR, that block is freed before
the new block is obtained.

MVT addressability is required.

For additional information on DSIRXEBS, see Chapter 6 on page 109.

[name] DSIRXEBS SWB= {(register)lsymbolic name}
,LENGTH = {(register) I symbolic name}
.EVBPTR= {(register)lsymbolic name}
,ENVBPTR = {(register)lsymbolic name}

SWB
Register, or symbolic name of a fullword area, containing the address of an
SWB.

LENGTH
Register, or symbolic name of a fullword area, containing the address where
the EVALBLOK data size is obtained.

EVBPTR
Register, or symbolic name of a fullword area, containing the address where
the EVALBLOK address is placed when it is obtained. If this area is not zero
(X100I) initially, it is assumed that it contains an EVALBLOK address to be freed.

ENVBPTR (MVS/XA only)
Register, or symbolic name of a fullword area, containing the address of the
TSO/E environment block address.

Return Codes in Register 15
o Function was successful; the address of the EVALBLOK was returned in EVBPTR.

If an EVALBLOK address was passed, the block was freed.

8 Storage was insufficient to obtain the EVALBLOK. If an address of an EVALBLOK

was passed, the storage was freed.

12 An invalid request was made. One of the required parameters was not cor­
rectly specified.

20 Processing was not successful. A new evaluation block was not allocated
(MVS/XA only).

28 Processing was not successful. A valid language processor environment
could not be located for the current task (MVS/XA only).

208 NetView Customization: Assembler

DSISSS

DSISSS - Search Span Name Table Services
Macro DSISSS determines whether an operator has authority to control a particular
resource.

DSISSS checks a specified bit position in the span name table (SNT) and returns the
address of the first entry whose corresponding bit is set to 1. (See Figure 17.) The
address is returned to a user-provided fullword area.

MVT addressability is required.

[name] DSISSS

SWB

SWB = {(register) I symbolic name}
.0ITPOS = {(register)/symbolic name}
,SNT ADDR = {(register) I symbolic name}

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

OITPOS
Register containing the address of a user-provided fullword area, or symbolic
name of that area. This area should contain the bit position to be checked for
the first bit set to 1 in the SNT.

Note: The bit positions in the SNT correspond to entry positions in the operator
identification table (OIT); for example, the first bit corresponds to the first entry
in the OIT.

SNTADDR
Register containing the address of a user-provided fullword area, or symbolic
name of that area. On input, this area should contain the address of the entry
in the SNT where the search is to begin. When the routine has completed proc­
essing, this area contains the address of the first entry that the search encount­
ered whose corresponding operator bit was set to 1. The starting address
specified in SNTADDR may also be stored elsewhere in case relative location
calculations are necessary for searching the authorization and routing table
(ART).

The span name table (SNT) is illustrated below.

Address where the
search is to begin-­
specified by SNT ADDR
parameter on input

Address of first
entry whose bit is set
to 1--found in
SNT ADDR on output

Figure 17. Span Name Table (SNT)

DSISNT

Bit position to be
checked-specified by
the OITPOS parameter

SPAN1 0101010101'0'1011

SPAN2 111001011001100

001011001010010

Chapter 8. Macro Reference 209

DSISSS

Return Codes in Register 15
o Function was successful; an entry was found and its address was returned.

12 Unsuccessful. No entry was found. The address originally submitted is still
in the area specified by SNTADDR.

210 NetView Customization: Assembler

DSISYS

DSISYS - Operating System Indicator
Macro DSISYS is used for testing the current operating system. It is meant for use in
programs that are to be run on multiple operating systems, to vary compilation
according to the current system. It allows for system dependent code to be placed
in common programs.

DSISYS

&DSISYST
Global variable that must be declared. &DSISYST is set at compilation time by
the DSISYS macro to reflect the current operating system. Use the AIF assem­
bler statement to test its value. Possible values are:

Value

VS2/MVS

MVS/XA

VM/SI

DOS

Operating System

MVS/370

MVS/XA

VM/370

VSE

Chapter 8. Macro Reference 211

DSIWAT

DSIWAT - ECB Wait Services
Macro OSIWAT causes a subtask to wait for completion of an event.

MVT addressability is not required.

[name] DSIWAT
{

Eca= {(register) I symbolic name} }

ECB

ECBlIST= {(register)lsymbolic name}
[,DPR= {(register)lMVTDPRAD(,MVTPTR)}]

Register (2 - 12) containing the address of an aligned fullword to be used as
an event control block (Eca), or symbolic name of that aligned fullword.

ECBLlST
Register containing the address of a contiguous list of fullword addresses of
Ecas, or symbolic name of that list. The last entry in the list of Eca addresses
has the high-order bit 0 set to 1 to indicate the end of the list.

DPR (required for NetView Release 2 VSE only)
In VM/SP and MVS, this parameter is ignored. However, if you want to write a
routine to compile and run on both a NetView Release 2 VSE system and on a
NetView Release 3 MVS or VM/SP system, you will need to include this param­
eter. In VSE, this parameter specifies a register containing the address of the
NetView dispatcher (OSIOPRNV), or MVTOPRAO(,MVTPTR), where MVTPTR is the sym­
bolic name of a fullword area that contains the address of the MVT.

The following example shows how OSIWAT can be coded:

ECBl
ECB2
LISTAREA

ECB3
ECB4

DSIWAT ECBlIST=lISTAREA

DC FlO'
DC F'O'
DC A(ECBl)
DC A(ECB2)
DC A(ECB3)
DC A(ECB4+X'SOOOOOOO')

DC FlO'
DC F'O'

Execution resumes when anyone Eca is posted. The OSIPOS macro is used to set
bit 1 of the Eca to 1. A completion code can also be set in the low-order three bytes
of the Eca.

212 NetView Customization: Assembler

DSIWCS

DSIWCS - Write Console Services
Macro OSIWCS writes a message to the system operator's console. However, this
macro should not be used to output a OBCS message. OBCS messages are not oper­
ating system supported.

The message will be truncated at 120 characters. The message buffer must have
an initialized buffer header.

MVT addressability is required.

[name] DSIWCS

SWB

SWB= {(register) I symbolic name}
,BFR = {(register)lsymbolic name}

Register, or symbolic name of a fullword area, containing the address of a
service work block (SW8).

BFR
Register, or symbolic name of a fullword area, containing the address of a
buffer with the message. This buffer must have an initialized BUFHOR.

Return Code in Register 15
o Function was successful; the message was sent to the system console.

Chapter 8. Macro Reference 213

DSIWLS

DSIWLS - Write Log Services
Macro DSIWLS writes a record to the network log, the hard-copy log, the MVS system
log, an external log, or a NetView sequential log depending on the use of the
DEFAULTS command, the OVERRIDE command, DSIEX02A, or DSIEX04 as follows:

• Without the EXTLOG parameter, DSIWLS can send records to the network log, the
MVS system log, the operator's hard copy device or with the SAMREC parameter,
to a NetView sequential log. For the network log, the record may be truncated,
depending on the user-defined VSAM record size. For the MVS system log,
system truncation rules apply.

• With the EXTLOG parameter, DSIWLS sends records to an external task that can
log the data.

MVT addressability is required.

[name] DSIWLS SWB = {(register)lsymbolic name}
,BFR = {(register)\symbolic name}

SWB

[{
,HCT= {(register)lsymbolic name} }]
,EXTLOG= 'xxx'l(register)lsymbolic name}

,SAMREC= {(register)lsymbolic name}
,SAMLEN = {(register)lsymbolic name}
,SAMTASK= {(register)lsymbolic name}

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB).

BFR
Register, or symbolic name of a fullword area, containing the address of a
user-provided input buffer. This buffer should contain the record that is to be
logged. This buffer must have an initialized BUFHDR.

Note: You must specify either BFR or SAMREC, but not both.

HeT
Register, or symbolic name of a fullword area, containing the hard copy task's
TVB address.

Note: You may specify either HCT or EXTLOG with BFR, but not both.

EXTLOG
Indicates that the buffer is to be logged externally under the DSIELTSK subtask.
See NetView Installation and Administration Guide.

External logging can be accomplished in one of the following ways:

• Write to an SMF data set. This option is restricted to MVS systems. The data
to be logged must be a standard System Management Facilities (SMF)

record, with an SMF record type greater than or equal to 128. The DST XITXL

user exit is called prior to writing ttle record to SMF.

• Write to a data set other than SMF. This option is not restricted to any par­
ticular operating system. The user must code and install the DST XITXL user
exit. This user exit then performs the actual logging.

Note: You may specify either EXTLOG or HeT with BFR, but not both.

214 NetView Customization: Assembler

D51WL5

xxx
Three characters that become the last three characters of the command
name used to select the command processor that will log the data. The
first characters of the verb must begin with DSIEL. For example, if
EXTLOG = I ABC I, the CMDMDL statement in DSICMD must be:

DSIELABC CMDMDL MOD=DSIELSMF,TVPE=D

Register
Register that contains the address of a 3-byte area that represents the last
three letters in the name of an external logging command processor.

Symbolic name
Symbolic name of a 3-byte area that represents the last three letters in the
name of an external logging command processor.

SAMREC
A keyword that either points to or names the record that should be written to
the NetView sequential log which is controlled by the task indicated by the
SAMTASK keyword. Unlike the BFR keyword, this parameter should only point to
the data that is to be logged. NetView services will put the record into the
correct format for scheduling the record to the sequential log task.

Note: You must specify either BFR or SAMREC, but not both.

SAMLEN
Register, or symbolic name of a fullword area, containing the length of the
record to be logged. If the value of SAMLEN is greater than 32,000, the record to
be logged will be truncated and the macro will return a non-zero return code.

The BLKSIZE for a sequential logging task must be at least as large as SAMLEN

plus 36 or the record to be logged will be truncated. SAMLEN is required with
SAMREC.

SAMTASK
Register, or symbolic name of a 2 fullword area, containing the name of the
NetView task that has been defined to do sequential logging. This task will be
verified for sequential logging capability. SAMTASK is required with SAMREC.

Return Codes in Register 15
If EXTLOG and SAMREC are not specified:

o Function was successful; the record has been sent to the network log and to
the hard-copy log.

4 No storage is available for logging.

8 Successful log to the hard-copy log; network log not active.

12 Successful log to the network log; hard-copy log not active for this task.

16 The hard-copy log for this task and this network log are both inactive.

If SAMREC is specified:

o Function was successful; the record has been queued to the sequential log
task.

4 No storage is available.

Chapter 8. Macro Reference 215

DSIWLS

1f The task is not active, no data set is available, or the specified task is not a
sequential log task.

If EXTLOG is specified:

o Function was successful. A copy of the caller's buffer has been queued to the
external logging task (DSIELTSK).

4 No storage is available for copying the user input buffer for logging.

24 No external logging command processor was found.

28 DSIMQS failed attempting to send the log record to the external logging task.

216 NetView Customization: Assembler

DSIZCSMS - CNM Data Services
Macro DSIZCSMS is a data services macro. It requests and sends CNM data over the
CNM interface.

DSIZCSMS embeds the caller's network services request/response unit (RU) in a
Forward RU that is passed to the SSCP over the access method's CNM interface. The
SSCP then sends the embedded RU to the specified destination. For more informa­
tion about SNA'S RUS, see Systems Network Architecture Formats.

MVT addressability is not required.

[name] DSIZCSMS SWB = {(register) I symbolic name}
,OSRB = {(register)lsymbolic name}
,INPUT= {(register) I symbolic name}
,LENGTH = {(register)jsymbolic name}
,RU = {(register) I symbolic name}
,RULENG = {(register)lsymbolic name}
,OEST = {(register) Isymbolic name}
[,OPTION= {NOCNMINOPRIDISALT}]
[,TYPE = {CHAINIRUINOEMBED}]
[,RTYPE = {REPLYIRESPONSE}]
,TARGET = {(register) I symbolic name}
[,SECONDS = {(register)lsymbolic name}]

Note: swa, DSRB, and at least one other parameter are requi red.

SWB
Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB) to be passed to the CNM interface service routine
DSIZCSMM.

DSRB
Register, or symbolic name of a fullword area, containing the address of a data
services request block (DSRB) to be passed to the CNM interface service routine
OSIZCSMM.

INPUT
Register, or symbolic name of a fullword storage location, containing the
address of a user input buffer. The size of the input buffer must be large
enoug~ to contain a 24-byte buffer header plus the length of the RU to be sent (if
a Forward RU is to be built add an additional 28 bytes to the size of the input
buffer). This buffer must contain a buffer header followed by text; it also holds
the Deliver RU that is returned by the access method. To enable command
processors or user exit routines that operate in 24-bit addressing mode to
access the buffer, it must reside below 16 Mb. To receive a reply over the CNM

interface, the buffer must accommodate at least a 32-byte reply (a 24-byte
NetView buffer header and an eight-byte positive or negative response).

LENGTH
Register, or symbolic name of a fullword storage location, containing the
length in binary of the input buffer.

Chapter 8. Macro Reference 217

DSIZCSMS

RU
Register, or symbolic name of a fullword storage location, containing the
address of a user area. The area is an RU that is to be embedded within the
Forward RU.

RULENG
Register, or symbolic name of a fullword user area, containing the length in
binary of the embedded RU buffer. The RULENG may not exceed 32743 decimal
bytes.

DEST
Register, or symbolic name of a fullword user area, containing the address of
the network destination to which the embedded RU is sent. This network desti­
nation must be eight characters long, left-justified, and padded with blanks if
necessary.

Note: You may specify either OPTION or TYPE, but not both.

OPTION
Allows nonstandard Forward RUS to be sent by CNM interface services.

NOCNM
Indicates that a Forward RU will be sent that does not contain a CNM

header, or procedure-related 10 (PRID). An example is a forward RU con­
taining NS IPL command types of INIT, TEXT, and FINAL.

Note: For RTYPE=REPlY, you may specify either OPTION = NOCNM or SECONDS,

but not both.

NOPRID
Indicates that a Forward RU will be sent that does not contain a procedure­
related 10 (PRID) in the CNM header. An example is a REaMS that does not
require a reply RECFMS because of user protocols.

Note: For RTYPE=REPLY, you may specify either OPTION=NOPRID or SECONDS,

but not both.

SALT

TYPE

Indicates that a Forward RU will be sent that is associated with a target.
This flag alerts VTAM that a target to the SNA address list translation is
required for an NMVT to be transported using a Forward RU.

Controls the processi ng for the RU.

CHAIN

RU

Indicates that the DSRB has received data and should remain in use to
accept further RUS associated with the specific request. If TYPE= CHAIN is
specified, the SWB and DSRB parameters are required; all other operands
are invalid. This parameter is invalid with an unsolicited DSRB.

Note: You may specify either TYPE=CHAIN or SECONDS, but not both.

Indicates that the input RU is not to be embedded in a Forward RU.

Note: You may specify either TYPE=RU or SECONDS, but not both.

NOEMBED
Indicates that a Forward RU is not to be built for this request.

RTYPE
Describes the response required for the request.

218 NetView Customization: Assembler

Usage Examples

DSIZCSMS

REPLY
Indicates that a Reply RU is required for completion of the request.

Note: You may specify only one of the following: OPTION = NOCNM,

OPTION = NOPRID, or SECONDS.

RESPONSE
Indicates tnat a positive response is sufficient to complete the request.

TARGET
Register, or symbolic name of a fullword user area, containing the address of
the network component that is the object of the embedded RU, or symbolic
name of that network component. This network component must be eight char­
acters long, left-justified, and padded with blanks if necessary.

SECONDS
Specifies the number of seconds to wait before cancelling the outstanding
request. The number must have a positive value no greater than 86,400. If the
SECONDS parameter is not specified or the value is zero, no timeout function is
performed (an indefinite wait is possible). If you specify SECONDS, you cannot
specify any of the following: TYPE=RU, TYPE=CHAIN, OPTION=NOCNM, nor
OPTION = NOPRID. If SECONDS is specified and RTYPE=REPLY, then DEST must be
specified.s

1. DSIZCSMS SWB = SWBADDR, DSRB = DSRBADDR. INPUT = RAQDDR, LENGTH = FORWDLEN,

RU=READYRU, RULENG=READLEN, DEST=DESTNAME, RTYPE=REPLY, SECONDS=TIMEOUT.

The data will be sent across the CNM interface to DESTNAME. READYRU contains
the request RU that is to be sent. The reply information is returned in the
RQADDR buffer. After TIMEOUT seconds, the request will be cancelled. If an
associated reply is received later, it will be discarded.

2. DSIZCSMS SWB=SWBADDR, DSRB=DSRBADDR, INPUT=RAQDDR, LENGTH = FORWDLEN,

RU = READYRU, RULENG = READLEN, DEST = DESTNAME, RTYPE = REPLY.

The data will be sent across the CNM interface to DESTNAME. READYRU contains
the request RU that is to be sent. The reply information is returned in the
RQADDR buffer. The request will remain outstanding until a reply is received.

Return Codes in Register 15
Major return codes in Register 15:

o Function was successful; data was sent to VTAM.

4 The requested function could not be performed.

8 The input buffer was too small to build a Forward RU.

12 An error was found in parameter specification.

16 The program was not executing under a data services task.

20 The RULENG exceeded the maximum RU length allowed.

Minor return codes in Register 0:

o The function was successful.

5 The seconds function is available only with VTAM V3R1.1 or later.

Chapter 8. Macro Reference 219

DSIZCSMS

4 The SWB was invalid.

8 The DSRB was invalid.

12 The DSRB that was passed was in use.

16 An unsolicited DSRB was passed.

20 An invalid operator 10 was specified in the DSRB.

24 Reserved.

28 There was insufficient storage to process the request.

32 The CNM interface is inactive.

36 The request was rejected by the access method.

40 A user exit rejected the request.

44 Data truncation occurred during the user exit processing.

48 The specified SECONDS value was invalid.

Note: For major return codes of 8 or 20, register 0 will contain th~ RULENG.

220 NetView Customization: Assembler

DSIZVSMS

DSIZVSMS - VSAM Data Services
Macro DSIZVSMS is a data services macro. It requests VSAM services for a data ser­
vices command processor (DSCP).

DSIZVSMS provides access to VSAM services that perform 1/0 to the specified problem
determination file or data set. The parameters allow access for data recording,
data retrieval, and data deletion.

MVT addressability is not required.

[name] OSIZVSMS SWB= {(register) I symbolic name}
,OSRS = {(register)\symbolic name}

SWB

,FUNC = {GETIPUTIPOINTIENDREOIERASE}
[,KEY= {(register) I symbolic name}]
[, KEYLEN = {(register)lsymbolic name}]
(,OPTION = ({SEOIDIRISKP},{ARDILRD},{FWDI

SWD},{NUPINSPIUPO},{KEQIKGE},
{FKSIGEN)}]

(,OATAREA= {(register) I symbolic name}]

Register, or symbolic name of a fullword area, containing the address of a
service work block (SWB). The SWB contains a save area, work area, and TIB

address data. The caller must initialize the SWBTIB field in the SWB with a valid
TIB address.

DSRB
Register, or symbolic name of a fullword, containing the address of a data ser­
vices request block (DSRB). The DSRB contains request information such as RPL,

ACB, ECB, and fields used by the DST VSAM service routine for VSAM 1/0.

FUNC
Describes the VSAM request macro to be issued. See OSIVS VSAM
Programmer's Guide (for MVS) and Using VSEIVSAM Commands and Macros
(for VM and VSE only) for more information on how to specify FUNC.

KEY
Register containing the address of the VSAM key to be used for access to the
requested data, or symbolic name of a fullword that contains the key.

KEY LEN
Register, or symbolic name of a fullword, containing the length in bytes of the
key pointed to by KEY, or a symbolic name of a fullword with the length (in
bytes) of the key. The default value is 1.

OPTION
Specifies the type of access to the file through requests defined by the NetView
RPL. Options are arranged in groups. The first time the RPL is set up, you must
specify one, and only one, option from each group. Subsequently, you may
specify one option from one or more groups. You must separate multiple
options with commas.

This parameter has no defaults. This parameter is not valid when FUNC=ERASE

or FUNC=ENDREQ is specified. See OSIVS VSAM Programmer's Guide (for MVS)

Chapter 8. Macro Reference 221

DSIZVSMS

and Using VSEIVSAM Commands and Macros (for VM and VSE only) for more
information on how to specify OPTION.

DATAREA
Register containing the address of a user work buffer, or symbolic name of that
buffer. The buffer must be large enough to contain the maximum size record in
the file or data set and is used by VSAM in the processing of records. This
buffer must contain an initialized BUFHDR, followed by text. For MVS/XA, if any
command processors or user exits which operate in 24-bit addressing mode
are to access the data area, the data area must reside below 16 Mb.

Return Codes in Register 15
Major return codes in Register 15:

o Successful completion of VSAM function.

4 Manipulative macro error occurred during processing. See the explanation of
RPL feedback codes in OSIVS VSAM Programmer's Guide (for MVS) and Using
VSEIVSAM Messages and Codes (for VM and VSE only).

8 An error occurred in the EXECUTE form of a manipulative macro. A parameter
was not in the list. See the explanation of RPL feedback codes in OSIVS
VSAM Programmer's Guide (for MVS) and Using VSEIVSAM Messages and
Codes (for VM and VSE only).

12 Unsuccessful completion.

16 DSIZVSMS was issued while not executing under a DST.

Minor return codes in Register 0:

o Successful completion.

4 The specified DSRB was invalid or in use.

8 An ACB was unavailable or was not open.

12 Resume verb processing error.

16 A user exit rejected the request.

20 The VSAM 110 request was invalid or there was an 110 scheduling error.

24 Data truncation occurred during substitution of data in a user exit. Or, control
block storage could not be obtained.

28 A user exit returned an invalid return code.

222 NetView Customization: Assembler

Appendix

Assembler Samples Table 226
Assembler Samples Description 227

ATMPCMDP (CNMS4202) 227
AXITVN (CNMS4270) 227
AMSGMOD (CNMS4271) 227
AWRTLOG (CNMS4272) 227
AMLWTO (CNMS4273) 227
ADATTIM (CNMS4274) 227
ASEQLOG (CNMS4275) 227
ALiSTMEM (CNMS4276) 227
AOPTTSK (CNMS4277) 228
ABLDMSG (CNMS4278) 228
APSSFULL (CNMS4279) 228
ACALLCMD (CNMS4280) 228
DSIUSROO (CNMS4281) 228
ATMPUXIT (CNMS4282) 228
DSIEX02A (CNMS4283) 228

Assembler Coded Samples 229
Sample User Exit 229
Sample Command Processor for Sequential Logging 238

© Copyright IBM Corp. 1989 Appendix 223

224 NetView Customization: Assembler

Appendix A. Assembler Samples

© Copyright IBM Corp. 1989

This appendix contains a table of the assembler samples that are shipped with
NetView in SYS1.CNMSAMP. When data set names are referred to in this appendix,
two names are given, such as ATMPPLT (CNMS4202). The first name is the alias name,
and the name in parenthesis is the one in the NetView samples library. You can
use either name to access the samples. DSICMD has definitions for the alias names
to allow those names to be entered as commands.

The following steps allow you to enter the member names as commands:

1. Assemble and link-edit the samples using the alias name.

2. Delete the asterisk (*) in column 1 of the appropriate CMDMDL statment in DSICMD

to be able to execute the alias name as a command. No entries are needed in
DSICMD for user exits.

3. NetView must be recycled to pick up the DSICMD changes.

Notes:

1. See the prologues of the samples for information about how certain samples
are related and special cases for user exit routines and other samples
(DSIUSROO).

2. The alias name is the same as the CSECT name.

3. Each alias name for the assembler samples begins with the letter A, except for
DSIUSROO and DSIEX02A.

This appendix also contains a description of each sample and coded samples of a
user exit routine and a command processor.

Appendix A. Assembler Samples 225

Assembler Samples Table
The following table refers to the assembler samples that are shipped with NetView.
The table contains the function, the alias name, and the name of the member in
SYS1.CNMSAMP.

Sample function

Template for assembler command processor
Defines an XITVN DST exit to initialize an empty

VSAM data set
Uses DSIMDS to build a message module
Uses DSIWlS to write a message to the NetView log
Uses DSIPSS for title line output
Uses DSIPSS to display date and time
logs text to a sequential log
lists a member of DSIPARM
User written optional subtask
Uses DSIMBS to build messages
Uses DSIPSS to display a full screen panel
Calls another command
User defined message member
Template for assembler user exit
Uses DSIEX02A to manipulate messages

226 NetView Customization: Assembler

Assembler sample
Alias CNMSAMP

ATMPCMDP

AXITVN
AMSGMOD
AWRTlOG
AMlWTO
ADATTIM
ASEQlOG
ALISTMEM
AOPTTSK
ABlDMSG
APSSFUll
ACAllCMD
DSIUSR00
ATMPUXIT
DSIEX02A

CNMS4202

CNMS4270
CNMS4271
CNMS4272
CNMS4273
CNMS4274
CNMS4275
CNMS4276
CNMS4277
CNMS4278
CNMS4279
CNMS4280
CNMS4281
CNMS4282
CNMS4283

Assembler Samples Description
For each sample, a description 6f the function and the NetView service macros uti­
lized are given.

ATMPCMDP (CNMS4202)
This sample is a template for command processors in assembler.

This sample is included in "Template for a Command Processor"on page 71.

AXITVN (CNMS4270)
This sample is an XITVN DST exit. It provides the initial record for an empty VSAM
data set.

NetView service macros utilized in this sample: DSICBS, DSIDATIM.

AMSGMOD (CNMS4271)
This sample uses the message definition services (DSIMDS) to build a user-defined
message module (AMSGMOD). It is used in conjunction with the ABLDMSG sample
command processor and DSIEX02A.

NetView service macro utilized in this sample: DSIMDS.

AWRTLOG (CNMS4272)
This sample uses DSIWLS to write a message to the NetView log.

NetView service macros utilized in this sample: DSICBS, DSIDATIM, DSIWLS.

AMLWTO (CNMS4273)
This sample uses DSIPSS for title-line output.

NetView service macros utilized in this sample: DSICBS, DSIDATIM, DSIPSS.

ADATTIM (CNMS4274)
This sample uses DSIPSS to display date and time.

NetView service macros utilized in this sample: DSICBS. DSIDATIM, DSIPSS.

ASEQLOG (CNMS4275)
This sample logs text to a sequential log.

NetView service macros utilized in this sample: DSICBS, DSIDATIM, DSIMQS, DSIPSS.

DSIWLS.

This sample is included in "Sample Command Processor for Sequential Logging"
on page 238.

ALISTMEM (CNMS4276)
This sample reads and displays a member from the NetView DSIPARM data set. It
also scope checks the supplied parm member name to prevent unauthorized
display of DSIOPF.

NetView service macros utilized in this sample: DSICBS. DSIDATIM, DSIDKS. DSIKVS,

DSIPSS.

Appendix A. Assembler Samples 227

AOPTTSK (CNMS4277)
This sample is an example of a user written optional subtask.

This sample is included in "Template for an Optional Task" on page 95.

ABLDMSG (CNMS4278)
This sample uses DSIMBS to build user defined messages.

NetView service macros utilized in this sample: DSICBS. DSIDATIM. DSIDEL. DSILOD.

DSIMBS.DSIPSS.

APSSFULL (CNMS4279)
This sample uses DSIPSS to display a full screen panel, wait for terminal input, and
echo the input.

NetView service macros utilized in this sample: DSICBS. DSIFRE. DSIGET. DSIPSS.

DSIWAT.

ACALLCMD (CNMS4280)
This sample calls another command.

NetView service macros utilized in this sample: DSICBS. DS1CES. DSIDATIM, DSIFRE,

DSIGET. DSILCS, DSIPRS.

DSIUSROO (CNMS4281)
This sample is an example of a user defined message member. It is used in con­
junction with the ABLDMSG sample command processor.

ATMPUXIT (CNMS4282)
This sample is a template for assembler user exits. See "Template for a User Exit
Routine" on page 48.

DSIEX02A (CNMS4283)
This sample is used to manipulate messages. The user exit is invoked for
standard output to the operator's terminal. If DW04031 is the incoming message, it
will MQS a start task request to start the task specified in DW04031 and swap the
message buffer to indicate that the task has been started and that the request
should be reissued.

NetView service macros utilized in this sample: DSICBS. DSIDEL, DSIFRE. DSIGET, DSILCS,

DSILOD. DSIMBS. DSIMQS. DSIPRS.

This sample is included in "Sample User Exit" on page 229.

228 NetView Customization: Assembler

Assembler Coded Samples

Sample User Exit

This section contains an example of a user exit routine and a command processor.

This sample is an example of user exit DSIEX02A.

DSIEX02A CSECT

*
* IEBCOPY SELECT MEMBER=((CNMS4283,DSIEX02A,R»
*
* (C) COPYRIGHT IBM CORP. 1989
*
* MODULE NAME: DSIEX02A
*

*
*
*
*
*
*
*

* FUNCTION: THIS USER EXIT IS INVOKED FOR STANDARD OUTPUT TO THE *
* OPERATOR'S TERMINAL (DSIPSS TYPE=OUTPUT, IMMED OR FLASH). *
* IF MESSAGE DW0403I IS THE INCOMING MESSAGE, IT WILL MQS *
* A START TASK REQUEST TO START THE SPECIFIED OPTIONAL *
* TASK AND SWAP THE MESSAGE BUFFER TO INDICATE THAT THE *
* TASK HAS BEEN STARTED AND TO RE-ISSUE THE REQUEST. *
* *
* *
* INSTALLATION: AMSGMOD MESSAGE TABLE (CNMS4271) MUST BE LINKED *
* INTO THE USER LIBRARY. *
* *
* *
*****~***
* INPUT: REG 1 - ADDRESS OF USER EXIT PARAMETER LIST (DSIUSE) *
* REG13 - ADDRESS OF CALLER'S SAVE AREA *
* REG14 - RETURN ADDRESS *
* REGIS - ENTRY ADDRESS *
* *
* OUTPUT: *
* *
* OUTPUT: REGO - ADDRESS OF SWAPPED MESSAGE IF REGIS = 8 *
* *
* REGIS - RETURN CODE *
* a = USE MESSAGE AS IS, DO NOT DELETE OR REPLACE *
* 4 = DELETE MESSAGE FROM THE TERMINAL & THE LOG *
* 8 = REPLACE MESSAGE WITH MESSAGE ADDRESSED IN REGO *
* *
* NETVIEW MACROS: *
* *
* DSICBS - CONTROL BLOCK SERVICE *
* DSIDEL - DELETE USER-DEFINED MODULE *
* DSIFRE - FREEMAIN STORAGE SERVICE *
* . DSIGET - GETMAIN STORAGE SERVICE *
* DSILCS - LOCATE CONTROL BLOCK *
* DSILOD - LOAD USER-DEFINED MODULE *
* DSIMBS - MESSAGE BUILD SERVICE *
* DSIMQS - MESSAGE QUEUEING SERVICE *
* DSIPRS - PARSE DESCRIPTOR BLOCK *

EJECT
*

*
* INCLUDE THE REQUIRED CONTROL BLOCKS
*

*

DSICBS DSITIB,DSITVB,DSIMVT,DSISVL,DSISWB,DSIUSE,DSIIFR, X

Appendix A. Assembler Samples 229

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rll
R12
R13
R14
R15

*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EJECT

DSISVL,DSIPDB,PRINT=NO
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

MVT
TVB
USE

BASE REG
SAVEAREA

*
* DSIEX02: SET UP ENTRY LINKAGE
*

*
*
*

*
DSIEX02A CSECT

USING
B
DC

PROLOG OS

*

STM
DROP
LR
USING
USING
L
USING
LA
ST
ST
LR
LR
DROP
USING
L
USING
L
USING

*,R15
PROLOG
C'DSIEX02A &SYSDATE. AT &SYSTIME.'
OH
R14,R12,12(R13)
R15
R12,R15
DSIEX02A,R12
DSIUSE,R1
Rll,USERSWB
DSISWB, Rll
R2,SWBSAVEA
R2 ,8{, R13)
R13,4(,R2)
R13,R2
R9.R1
R1
DSIUSE,R9
RB,USERTVB
DSITVB,R8
R7,TVBMVT
DSIMVT,R7

SAVE CALLER'S REGISTERS

SAVE BASE REGISTER
REG 12 IS THE BASE REG
REG 1 POINTS TO DSIUSE
LOAD REG 11 WITH SWB ADDRESS
BASE SWB
GET ADDRESS OF OUR SAVE AREA
SET CALLER'S FORWARD POINTER
SET OUR BACKWARD POINTER
REG 13 CONTAINS SAVE AREA ADDR
MOVE DSIUSE ADDRESS
DROP ORIGINAL DSIUSE BASING
REG 9 POINTS TO DSIUSE
LOAD REG 8 WITH TVB ADDRESS
BASE THE TVB
LOAD REG 8 WITH TVB ADDRESS
BASE THE MVT

* *
* MESSAGE DW0403I IS NOT EXPECTED IN AN EXIT. CHECK TVBINXIT AND *
* EXIT IF SET. *
* *

*

*

TM
BO

TVBIND3,TVBINXIT
ASIS

IS TVBINXIT ON
·YES. LEAVE

* *
* CHECK INPUT MESSAGE NUMBER AND EXIT IF IT IS NOT "DW0403I" *
* *

*

L R4,USERMSG LOAD REG 4 WITH INPUT AIFR

230 NetView Customization: Assembler

*

USING
L
AH
DROP
USING
L
USING
L
AH
CLC
BNE

BUFHDR,R4
R2,USERMSG
R2,HDRTDISP
R4
DSIIFR,R2
R3,IFRAUTBA
BUFHDR,R3
R4,IFRAUTBA
R4,HDRTDISP
0(7,R4),=CL7'DW0403I'
ASIS

BASE THE INPUT MESSAGE BUFFER
GET ADDRESS OF AIFR
LOCATE START OF TEXT

BASE THE IFR
LOAD REG 3 WITH ADDR INPUT MSG

LOCATE START OF TEXT
IS IT DW0403I
NO, EXIT

*
* IF MSG DW0403I IS NOT A NETVIEW SINGLE LINE MESSAGE OR
* IS A COpy OF ANOTHER MESSAGE OR
* IS A MESSAGE FROM ANOTHER DOMAIN, THEN EXIT.
*

*
*
*
*
*

*

CLI
BNE
TM
BO
TM
BO
TM
BO
ST
DROP

HDRMTYPE,HDRTYPEN
ASIS
IFRAUIN2,IFRAUSEC
ASIS
IFRAUIN2,IFRAUCPY
ASIS
IFRAUIND,IFRAUXDM
ASIS
R3,INPUTMSG
R3

NETVIEW SINGLE LINE MSG ??
NO, COULD BE "COMMAND" ECHO
WAS IT ROUTED USING ASSIGN=SEC
YES, LEAVE
WAS IT ROUTED USING ASSIGN=CPY
YES, LEAVE
IS IT FROM ANOTHER DOMAIN
YES, LEAVE
SAVE ADDR OF INPUT MESSAGE

*

*
* INITIALIZE ALL POINTERS TO ZERO
*

*
*
*

*

SR R4,R4
ST R4,MSGBFR INIT MSG BUFFER POINTER
ST R4,ADDRSWB INIT SWB POINTER
ST R4,ADDRPDB INIT PDB POINTER
ST R4,MSGTABLE INIT MSG TABLE POINTER
MVC TASKID,=8C' , INIT TASK_ID FIELD

*

*
* GET A BUFFER FOR ISSUING/SWAPPING MESSAGES
*

*
*
*

*

LA R4,BFRLENG GET LENGTH OF MSG BUFFER
DSIGET LV=(R4),

A=MSGBFR,
Q=NO,
TASKA=(R8),
SP=0

LTR R15,R15 CHECK IF DSIGET SUCCESSFUL
BNZ ASIS DSIGET UNSUCCESSFUL
L R3,MSGBFR
USING BUFHDR,R3
STH R4,HDRBLENG SET HDRBLENG IN BUFFER
DROP R3

*

* *
* LOAD THE USER MESSAGE TABLE *

X
X
X
X

Appendix A. Ass.embler Samples 231

* *

*

DSILOD EP=AMSGMOD
LTR R15.R15
BNZ LODFAIL
ST R8.MSGTABLE

LOAD THE MESSAGE TABLE
WAS DSILOD SUCCESSFUL
NO. EXIT

*

*
* GET ANOTHER SWB IN ORDER TO ISSUE NETVIEW SERVICE MACROS
*

*
*
*

*

DSILCS CBADDR=ADDRSWB. X
SWB=GET

LTR R15.R15
BNZ NOSWB
L R5.ADDRSWB
L R4. TVBTIB
ST R4.SWBTIB-DSISWB(.R5)

*

GET A NEW SWB
TEST DSILCS RETURN CODE
NOTIFY USER AND EXIT
PUT THE NEW SWB ADDR IN REG 5
PUT THE TIB ADDR IN REG 4
STORE TIB ADDR IN THE NEW SWB

*
* ISSUE DSIPRS TO DETERMINE THE SIZE OF THE PARSE TABLE REQUIRED TO
* PARSE THE INPUT BUFFER.
*

*
*
*
*

*

DSIPRS SWB=ADDRSWB.
BFR=INPUTMSG.
PDBSIZE=SIZEPDB

X
X

LTR
BZ
MVC
B
SPACE

R15.R15
GETPDB
REQUEST.PRS
MACFAIL

WAS DSIPRS SUCCESSFUL
YES. CONTINUE
NO. SET MACRO NAME
NOTIFY USER AND EXIT

*

*
* ISSUE DSIGET TO GET STORAGE FOR THE PARSE TABLE
*

*
*
*

*
GETPDB EQU *

L R4.SIZEPDB GET TABLE SIZE
DSIGET LV={R4).

A=ADDRPDB.
Q=YES.
TASKA={R8).
SP=8

LTR R15.R15 CHECK IF DSIGET SUCCESSFUL
BZ INITBFR DSIGET SUCCESSFUL
SR R2,R2
ST R2.INPUTMSG ZERO POINTER TO INPUT MSG
BAL R6.FREESTOR FREE THE STORAGE AND EXIT
B ASIS

*

*
* INITIALIZE THE CONTROL BLOCK HEADER IN THE PARSE TABLE
*

*
*
*

*
INITBFR EQU

L

232 NetView Customization: Assembler

*
R5.ADDRPDB ADDRESS OF THE PARSE TABLE

X
X
X
X

*

*

USING DSICBH,R5
STH R4,CBHLENG
MVI CBHID,CBHPDB
DROP RS

EJECT

ADDRESSABILITY TO PARSE TABLE
SET THE CONTROL BLOCK LENGTH
SET THE CONTROL BLOCK 10 = PDB

*
* PARSE THE INPUT MESSAGE
*

*
*
*

*

L R2,ADDRPDB GET PARSE TABLE ADDRESS
DSIPRS SWB=ADDRSWB,

BFR=INPUTMSG,
PDB=(R2)

LTR RlS,RlS CHECK IF DSIPRS SUCCESSFUL
BZ GETNTRY YES, CONTINUE
MVC REQUEST,PRS NO, SET MACRO NAME
B MACFAIL NOTIFY USER AND EXIT
EJECT

*

*
* FIND PDBENTRY THAT CONTAINS THE TASK NAME.
*

*
*
*

*
GETNTRY EQU

L
USING
LA
LA
USING
DROP

LOOP1 EQU

*

LA
BCT

*
RS,ADDRPDB
DSIPDB,R5
R3,2
R2,PDBTABLE
PDBENTRY,R2
R5
*

SET FOR ENTRY NUMBER OF TASKID
GET ADDR OF 1ST ENTRY

R2,PDBENTND-PDBENTRY(,R2) GET NEXT ENTRY
R3,LOOPl

* *
* BUILD IFRCODE_3 AND MQS TO START THE TASK *
* *

*

L
USING
LA
STH
MVC
MVC
MVI
L
AH
USING
LA
STH
L
AH
SR
ICM
ST
BCTR
EX
MVC

R4,MSGBFR
BUFHDR,R4
R6,HDRMSGLN
R6,HDRTDISP
HDRDOMID(8),MVTCURAN
HDRSENDR(8),TVBOPID
HDRMTYPE,HDRTYPEI
RS,MSGBFR
RS,HDRTDISP
DSIIFR,R5
R6,IFRCODCR
R6,IFRCODE
R3,INPUTMSG
R3,PDBDISP
Rle,Rle
RlO,B'OOOl',PDBLENG
RlO,LTASKID
RlO,O
RlO,MOVE!
IFRPARMS(L'CMD),CMD

LOAD REG 4 WITH MSG BFR ADDR
BASE THE MESSAGE BUFFER
LOAD REG 4 WITH OFFSET TO TEXT
SET HDRTDISP
SET DOMAIN ID
SET SENDER ID
MSG TYPE IS IFR
GET ADDRESS OF MSG BUFFER
GET ADDRESSABILITY TO IFR

SET BUFFER AS A COMMAND
GET INPUT MESSAGE
LOCATE THE TASK NAME

GET LENGTH OF TASK NAME
SET LENGTH OF TASK NAME
DECREMENT LENGTH FOR MOVE
GET TASK NAME FROM INPUT BFR
SET COMMAND

X
X

Appendix A. Assembler Samples 233

EX RIO,MOVE2 SET TASK NAME IN MSG BFR
LA RIO,l(,RIO) INCREMENT FOR ACTUAL LENGTH
LA R6,IFRPARMS-DSIIFR LOAD REG 4 WITH LENGTH OF IFR
LA R6,L'CMD(,R6) ADD LENGTH OF COMMAND
LA R6,O(RIO,R6) ADD LENGTH OF TASK NAME
STH R6,HDRMLENG SET HDRMLENG
DSIMQS TASKID=TVBOPID, X

BFR=(R4), X
SWB=ADDRSWB SEND TO OPER

LTR R15,R15 WAS DSIMQS SUCCESSFUL
BZ STARTED YES. CONTINUE
MVC REQUEST,MQS NO, SET MACRO NAME
B MACFAIL NOTIFY USER AND EXIT
SPACE

MOVEI MVC TASKID(O),O(R3) GET THE TASK NAME
MOVE2 MVC IFRPARMS+L'CMD(O),TASKID SET TASK NAME

DROP R2,R5
EJECT

*

*
* STARTED: SWAP THE TEXT IN MESSAGE BUFFER TO INDICATE THAT WE
* HAVE STARTED THE TASK AND TO RETRY THE REQUEST.
*

*
*
*
*

*
STARTED EQU *

L R3,INPUTMSG GET INPUT MESSAGE
MVC HDRMLENG(HDRMSGLN),O(R3) SET THE MESSAGE LENGTH
MVI HDRMTYPE,HDRTYPEU SET MSG TYPE TO USER
LA R2.BFRLENG
STH R2,HDRBLENG SET THE BUFFER LENGTH
DSIMBS SWB=ADDRSWB, X

MID=004, X
BFR={R4}, X
MSGTBL=MSGTABLE, X
Pl=(TASKID,LTASKID) BUILD MSG004I

DROP R4
B SWAP

*

*
* NOSWB: TO SWAP INPUT MESSAGE FOR "NO SWB" MESSAGE
*

*
*
*

*
NOSWB

*

EQU
L
USING
L
MVC
MVI
LA
STH
LA
STH
L
AH
MVC
DROP
B
SPACE

*
R4,MSGBFR LOAD REG 4 WITH MESSAGE BFR ADDR
BUFHDR,R4 BASE THE MESSAGE BUFFER
R3,INPUTMSG GET THE INPUT MSG ADDRESS
HDRMLENG(HDRMSGLN),O(R3) COPY INPUT BUFHDR TO MSG BFR
HDRMTYPE,HDRTYPEU MSG TYPE IS USER
R2,BFRLENG
R2,HDRBLENG
R2,L'SWBMSG
R2,HDRMLENG
R2,MSGBFR
R2,HDRTDISP
O(L'SWBMSG,R2),SWBMSG
R4
SWAP

SET THE BUFFER LENGTH

SET THE MESSAGE LENGTH
GET ADDRESS OF MESSAGE BFR
LOCATE START OF TEXT
PUT MESSASGE IN BUFFER

*
* FREESTOR: TO FREE ALL STORAGE GOTTEN

234 NetView Customization: Assembler

*
*

* *

*
FREESTOR EQU *

L R2,ADDRSWB GET SWB POINTER
LTR R2,R2 IS THERE AN SWB .
BZ CK4NPUT NO, CHECK FOR INPUT MSG BFR
DSILCS CBADDR=ADDRSWB,

SWB=FREE FREE THE SWB
CK4NPUT EQU *

L R3,INPUTMSG GET THE INPUT MSG POINTER
LTR R3,R3 DOES IT NEED FREEING
BZ CK4PDB NO, CHECK FOR A PDB
USING BUFHDR,R3
LH R2,HDRBLENG GET LENGTH OF INPUT MSG BUFFER
DROP R3
DSIFRE A=INPUTMSG,

LV=(R2),
Q=NO,
SP=B FREE THE INPUT MSG BUFFER

CK4PDB EQU *
L R2,ADDRPDB GET THE PDB POINTER
LTR R2,R2 IS THERE ONE TO FREE
BZ CK4MSGM NO, CHECK FOR A MESSAGE TABLE
L R2,SIZEPDB GET THE SIZE OF THE PDB
DSIFRE A=ADDRPDB,

TASKA=(R8),
Q=YES,
SP=B FREE THE PDB

CK4MSGM EQU *
L R2,MSGTABLE GET THE MESSAGE TABLE POINTER
LTR R2,R2 IS THERE ONE TO FREE
BZ XITFREE NO, RETURN TO CALLER
DSIDEL EP=AMSGMOD YES, DELETE THE MESSAGE TABLE

XITFREE EQU *
BR R6 RETURN TO CALLER

*

* *
* MACFAIL: TO SWAP INPUT MSG TO INDICATE DSIPRS/DSIMQS FAILED *
* *

*
MACFAIL EQU *

L R4,MSGBFR LOAD REG 4 WITH MESSAGE BFR ADDR
USING BUFHDR,R4 BASE THE MESSAGE BUFFER
L R3,INPUTMSG GET THE INPUT MESSAGE BUFFER
MVC HDRMLENG(HDRMSGLN),B(R3) COpy INPUT BUFHDR TO MSG BFR
MVI HDRMTYPE,HDRTYPEU SET MSG TYPE TO USER
LA R2,BFRLENG GET THE MSG BUFFER LENGTH
STH R2,HDRBLENG SET MSG BFR LENGTH IN MSG BFR

X

X
X
X

X
X
X

DSIMBS SWB=ADDRSWB, X
MID=BBS, X
BFR=(R4), X
Pl=(REQUEST,6), X
MSGTBL=MSGTABLE BUILD MSGBBSI

DROP R4
B SWAP
SPACE

*

*
* LODFAIL: TO SWAP INPUT MSG TO INDICATE DSILOD FAILED

*
*

* *

Appendix A. Assembler Samples 235

*
LODFAIL EQU

L
USING
L
MVC
MVI
LA
STH
LA
STH
L
AH
MVC
DROP
B
SPACE
EJECT

*

*
R4.MSGBFR LOAD REG 4 WITH MESSAGE BFR ADDR
BUFHDR,R4 BASE THE MESSAGE BUFFER
R3.INPUTMSG GET INPUT MESSAGE BUFFER ADDRESS
HDRMLENG(HDRMSGLN),0(R3) SET MSG LENGTH IN MSG BUFFER
HDRMTYPE,HDRTYPEU SET MSG TYPE TO USER
R2,BFRLENG GET THE MSG BUFFER LENGTH
R2.HDRBLENG SET THE MSG BUFFER LENGTH
R2,L'LODMSG GET MESSAGE LENGTH
R2,HDRMLENG SET MSG LENGTH IN MSG BUFFER
R2,MSGBFR GET ADDRESS OF MESSAGE BFR
R2,HDRTDISP LOCATE START OF TEXT
0(L'LODMSG,R2).LODMSG PUT MESSASGE IN BUFFER
R4
SWAP

*** .
*
* ASIS: TO PROCESS THE BUFFER AS IT IS AND RETURN

*
*

* *

*
ASIS EQU *

LA R15,USERASIS SET AN ASIS RETURN CODE
L R13 ,4(, R13) RESTORE CALLER'S SAVE AREA ADDR
L R14,12(,R13) RESTORE CALLER'S REG 14
LM RO,R12.20(R13) RESTORE CALLER'S REGS 0-12
BR R14 RETURN TO CALLER
SPACE

*

*
* SWAP: TO SWAP A BUFFER FOR THE INPUT BUFFER AND RETURN

*
*
* *

*
SWAP EQU *

L R4,USERMSG GET ADDRESS OF AIFR
USING BUFHDR,R4
L R2,USERMSG GET ADDRESS OF AIFR
AH R2,HDRTDISP LOCATE START OF TEXT
USING DSIIFR,R2
L R3,MSGBFR GET ADDRESS OF MSG BUFFER
ST R3 • I FRAUTBA PUT NEW MSG IN AIFR
ST R3,1 FRAUTBL SET LAST MSG OF AIFR CHAIN
DROP R2.R4
BAL R6,FREESTOR FREE THE STORAGE
LA R15,USERSWAP SET A SWAP RETURN CODE
L RO,USERMSG LOAD REG ° WITH ADDR OF IFRCODAI
L R13,4(,R13) RESTORE CALLER'S SAVE AREA ADDR
L R14, 12 (, R13) RESTORE CALLER'S REG 14
LM R1,R12,24(R13) RESTORE CALLER'S REGS 1-12
BR R14 RETURN TO CALLER
SPACE
EJECT
LTORG

*

* CONSTANTS *

*
CMD
PRS

DC
DC

236 NetView Customization: Assembler

C'START TASK='
C'DSIPRS'

START COMMAND
PARSE MACRO

MQS DC
LODMSG DC
SWBMSG DC

C'DSIMQS' MQS MACRO
C'REQUEST CANNOT BE HONORED. LOAD FAILURE FOR AMSGMOD '
C'REQUEST CANNOT BE HONORED. UNABLE TO OBTAIN AN SWB '

*

* DECLARES AND DSECTS *

*
DSISWB DSECT.

ORG SWBADATD
ADDRSWB OS A
MSGBFR OS A
ADDRPDB OS A
MSGTABLE OS A
INPUTMSG OS A
SIZEPDB OS F
LTASKID OS F
REQUEST OS CL6
TASKID OS CLB
BFRLENG EQU 100

OS XL{256-{*-SWBADATD))
SPACE

DSIEX02A CSECT •
END DSIEX02A

EXTEND THE SWB DEFINITION
POINT TO THE 256 BYTE WORK AREA
ADDRESS OF SWB
ADDRESS OF MESSAGE BUFFER
ADDRESS OF PDB
ADDRESS OF MESSAGE TABLE
ADDRESS OF INPUT MESSAGE BUFFER
LENGTH OF PDB TO OBTAIN
LENGTH OF TASK NAME
LENGTH OF PDB TO OBTAIN
TASK NAME
LENGTH OF MESSAGE BUFFER
ENSURE AUTODATA <= 256 BYTES

RESUME CSECT
END OF USER EXIT

Appendix A. Assembler Samples 237

Sample Command Processor for Sequential Logging
This sample is an example of a command processor to log text to a sequential log.

TITLE 'ASEQLOG - WRITE TO A SEQUENTIAL LOG'

*
* IEBCOPY SELECT MEMBER=((CNMS4275,ASEQLOG,R»

*
*
*
*

*
* (C) COPYRIGHT IBM CORP. 1989
*
*

*
*

* MODULE NAME: ASEQLOG *
* *

* FUNCTION = THIS IS A COMMAND PROCESSOR FOR LOGGING *
* TEXT TO A SEQUENTIAL LOG *
* *

*
* SYNTAX ASEQLOG TEXT-TO-LOG

*
*
* *

* *
* INSTALLATION: *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
(1) ASSEMBLE AND LINKEDIT THIS MODULE AMODE=31,RMODE=ANY *

TYPE=RENT *
(2) ALLOC PRIMARY AND SECONDARY SEQUENTIAL DATA SET *
(3) USE DO NAMES IN NETVIEW PROC OR THE ALLOCATE COMMAND *

TO ALLOCATE THE DATA SETS TO NETVIEW. *
ALLOCATE THE DATA SETS AS *

SQLOGP & SQLOGS *
(4) ADD THE FOLLOWING STATEMENT TO OSIOMN *

TASK MOD=DSIZDST,TSKID=SQLOGTSK,MEM=SQLOGMEM,PRI=3,INIT=Y *
(5) ADD THE FOLLOWING MEMBER (SQLOGMEM) TO DSIPARM *

DSTINIT FUNCT=OTHER,DSRBO=l *
DSTINIT PBSDN=SQLOGP *
DSTINIT SBSDN=SQLOGS *
LOGINIT AUTOFLIP=YES,RESUME=NO *

(6) ADD THE FOLLOWING CMDMDL TO DSICMD *
ASEQLOG CMDMDL MOD=ASEQLOG,TYPE=R,RES=N *

*
*

*
* INPUT:
* REGISTERS:
* R1 = DSICWB ADDRESS
* R13 = ADDRESS OF STANDARD SAVEAREA
* R14 = RETURN ADDRESS
* R15 = ENTRY POINT OF ROUTINE
*
*
* OUTPUT:
* REGISTERS:
* Re - R14 = RESTORED UPON RETURN
*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

R15 = RETURN CODE - elF ALL GOES WELL. 4 IF SOME *
KIND OF FAILURE (STORAGE REQUEST OR MESSAGE *
QUEUING) OCCURS. *

*
*
* NETVIEW MACROS:
*
*
*

OSICBS
DSIMQS

238 NetView Customization: Assembler

- CONTROL BLOCK SERVICE
- MESSAGE QUEUEING SERVICE

*
*
*
*
*
*
*

*
*
*
*

DSIPSS
DSIWLS

- PRESENTATION SERVICES
- WRITE TO LOG SERVICE

*
*
*
*

EJECT

ASEQLOG CSECT
DSICBS DSITIB.DSITVB.DSIMVT.DSISVL.DSISWB.DSICWB.DSIPDB.PRINT=X

NO

* MODULE ADDRESSABILITY IS ESTABLISHED
* CALLER'S REGS ARE SAVED

*
*

USING *.R15
B ENTLINK
DC CLB'ASEQLOG'
DC C'&SYSDATE'

ENTLINK OS 0H
STM R14.R12.12(R13) SAVE CALLERS REGS
LR R12.R15
DROP R15
USING ASEQLOG.R12

* SET UP ADDRESSABILITY TO REQUIRED CONTROL BLOCKS. *

USING DSICWB.R2
USING DSITVB.R3
USING DSITIB,R4
USING DSIMVT.R5
LR R2.Rl
L R4.CWBTIB
L R3. TIBTVB
L RS.TVBMVT

SET UP CWB ADDRESSABILITY
SET UP TVB ADDRESSABILITY
SET UP TIB ADDRESSABILITY
SET UP MVT ADDRESSABILITY
PUT ADDRESS OF CWB IN ITS BASE REG.
PUT ADDRESS OF TIB IN ITS BASE REG.
PUT ADDRESS OF TVB IN ITS BASE REG.
PUT ADDRESS OF MVT IN ITS BASE REG.

* CHAIN SAVE AREAS. *

LR Rll.R13 MOVE ADDRESS OF CALLER SAVEAREA
LA R13.CWBSAVEA PUT SAVEAREA AREA ADDRESS IN REG 13
XC 8(4,R13),8(R13) CLEAR MY FORWARD POINTER
ST R13.8(Rll) SET CALLERS FORWARD POINTER
ST Rll,4(R13) SET MY BACKWARD POINTER
SLR R15.R15 INITIALLY. RETURN CODE IS ZERO
XC CWBADATD(L'CWBADATD).CWBADATD CLEAR AUTODATA AREA

* INITIALIZE BUFFER THAT IS TO BE USED FOR MESSAGES.
* MESSAGE LENGTH (HDRMLENG) will be set when the message to be sent
* HAS BEEN DETERMINED.

*
*
*

LA R6.MSGBFR ADDRESS MESSAGE BUFFER
~A R7,L'MSGBFR LENGTH OF MESSAGE BUFFER
STH R7,HDRBLENG-BUFHDR(R6) PUT BUFFER LENGTH IN HEADER
LA R7,BUFHDRND-BUFHDR LENGTH OF HEADER (W/O EXTENSION)
STH R7,HDRTDISP-BUFHDR(R6) STORE DISPLACEMENT TO TEXT AREA
MVC HDRDOMID-BUFHDR(L'HDRDOMID.R6).MVTCURAN DOMAIN ID
MVI HDRMTYPE-BUFHDR(R6).HDRTYPEU USER MESSAGE TYPE

* CHECK RUNNING ENVIRONMENT. ENSURE THAT THE COMMAND ENVIRONMENT
* IS OST. PPT. OR NNT. THIS WAY, THE PDB THAT WE EXPECT WILL EXIST.

*
*

CLI CBHTYPE-DSICBH(R3).CBHOST CHECK FOR OST
BE ENVIROK ENVIRONMENT OKAY IF OST
CLI CBHTYPE-DSICBH(R3),CBHNNT CHECK FOR NNT
BE ENVIROK ENVIRONMENT OKAY IF NNT
CLI CBHTYPE-DSICBH(R3).CBHPPT CHECK FOR NNT
BE ENVIROK ENVIRONMENT OKAY IF PPT

* SET UP INVALID TASK MESSAGE

Appendix A. Assembler Samples 239

*
*
*

LR
AH
LA
LA
LR
BCTR
EX
ALR
LA
LA
LR
BCTR
EX
ALR
STH
BAL

LA
B

ENVIROK EQU

RS,R6 COPY BUFFER ADORESS
RS.HDRTDISP-BUFHDR(R6) POINT TO TEXT AREA
R9,INVTASK ADDRESS INVALID TASK MESSAGE
R10.L ' INVTASK LENGTH OF INVALID TASK MESSAGE
Rll.R10 SAVE THIS LENGTH
R10.0 DECREMENT FOR EXECUTE
R10.COPYMSG COpy MESSAGE TEXT INTO BUFFER
RS.Rll POINT TO POSITION AFTER MESSAGE
R9.TVBOPID ADDRESS TASKID (OPID)
R10,L ' TVBOPID LENGTH OF TASKID (OPID)
R14.R10 COpy TVBOPID LENGTH
R10.0 DECREMENT FOR EXECUTE
R10.COPYMSG COpy MESSAGE TEXT INTO BUFFER
Rll.R14 CALCULATE TOTAL MESSAGE LENGTH
Rll.HDRMLENG-BUFHDR(R6) STORE MESSAGE LENGTH IN HEADER
R14,SENDMSG SEND MESSAGE .

IF THE MESSAGE SEND FAILS, JUST
LEAVE WITH BAD RETURN CODE - WE
TRIED.

R15,ERRCODE ERROR RETURN CODE
EXIT LEAVE THE MODULE
*

* BUILD THE LOG HEADER *
* LOGHEADER => 'domainid hh:mm:ss opid ' *
* *

*
*
*

*

Blank out log buffer

BAL R14,CLRBFR Clear the buffer

* Get DATE and TIME
*

*
*
*

*
*
*

LA RS,LOGDOMID
DSIDATIM AREA=(RS)

ADDRESS LOG DATIM
GET DATE AND TIME

Overwrite date portion of DATIM with Domain Id

MVC 0(L ' MVTCURAN,RS),MVTCURAN

Get opid

LA R9.TVBOPID ADDRESS TASKID (OPID)
MVC OPID(L 'OPID).0(R9) Copy opid into log

**
*
*
*

Get text to be logged from command buffer.

**

*

L
LH
AH

R6.CWBBUF
Rll,HDRMLENG-BUFHDR(R6)
R6,HDRTDISP-BUFHDR(R6)

* Get length of the command
*

L R7,CWBPDB
LA RS,PDBTABLE-DSIPDB(R7)
SLR R9,R9
IC R9,PDBLENG-PDBENTRY(RS)
LA R9,l(R9)

*
* Check for no text
*

SR Rll.R9
BNP LOGIT

240 NetView Customization: Assembler

ADDRESS COMMAND BUFFER
Rll has total text length
R6 points to text

ADDRESS PDB
ADDRESS PDB ENTRIES
CLEAR WORK REG
LENGTH OF COMMAND
Add blank after command

SUBTRACT LENGTH OF COMMAND
JUST LOG HEADER IF NO TEXT

AR R6.R9 Add length to text pointer
*
* Log text 1 buffer at a time until all text is logged
*
CHKLEN EQU *

LA R10.MAXTXTLN GET MAX TEXT WE CAN LOG
CR Rll.R10 Is text left> max
BNL COPYTEXT No - Then log max
LR RHl.Rll Yes - Then log whats left

COPYTEXT EQU *

LOGIT
*

*

*

SLOGERR

SR Rll.RH) Dec the total length
LR R9.R6 Address text to be copied
AR R6.R10 Update text pointer
LA RB.LOGTEXT Address text area
BCTR RHl.0 Decrement for execute
EX RHl.COPYMSG Copy text into buffer
EQU *

L R7.CWBSWB Address the SWB
LA RB.LOGBFR Address log buffer
DSIWLS SWB=(R7).SAMREC=(RB).SAMLEN=SQLEN.SAMTASK=SQTASK

LTR
BNZ

LTR
BNP
BAL
B
EQU

R15.R15
SLOGERR

Rll.Rll
EXIT
R14.CLRBFR
CHKLEN
*

R15 will have RC from DSIWLS
Was logging successful?
No - inform the issuer
Yes - check for more text
More text?
No - then exit
Yes - clear buffer
Branch back to CHkLEN

* Get the Error message

LA R6.MSGBFR ADDRESS MESSAGE BUFFER
LR RB.R6 COpy BUFFER ADDRESS
AH RB,HDRTDISP-BUFHDR(R6) POINT TO TEXT AREA
LA R9.BADRC ADDRESS BAD RETURN CODE MESSAGE
LA R10.L'BADRC LENGTH OF MESSAGE
LR Rll.R10 SAVE THIS LENGTH
BCTR R10.0 DECREMENT FOR EXECUTE
EX R10.COPYMSG COPY MESSAGE TEXT INTO BUFFER

* Make the RC printable

DECCONV EQU *

CVD R15.DBLEWORD Convert value to dec
MVC MASK.=X '402020202120 1 Get the mask
ED MASK.DBLEWORD+5 Edit the converted value
ALR RB.Rll Point to end of bad rc msg
MVC 0(2.R8}.MASK+4 Move to converted rc to output
A Rll.=F'21 Calculate total length
STH Rll.HDRMLENG-BUFHDR(R6) Store length in header
BAL R14.SENDMSG Send the message

* If message fails. just
* exit with bad return code

LA R15.ERRCODE
B EXIT

* Send a message *

SENDMSG OS

ST
LA
L
CLI
BE

0H
R14.SAVERET
R6.MSGBFR
R7.CWBSWB
CBHTYPE-DSICBH(R3).CBHOST CHECK FOR OST
USEPSS USE DSIPSS IF OST

Appendix A. Assembler Samples 241

CLI CBHTYPE-DSICBH(R3).CBHNNT CHECK FOR NNT
BE USEPSS USE DSIPSS IF NNT
DSIMQS BFR=(R6).SWB=(R7).AUTHRCV=YES
B EXITSUB

USEPSS EQU *
DSIPSS BFR=(R6).SWB=(R7).TYPE=OUTPUT

EXITSUB EQU *
L R14.SAVERET
BR R14

* MODULE EXIT *

EXIT EQU

L
L
LM
BR

*
R13.4(R13)
R14.12(R13)
RG.Rl2.2G(Rl3)
R14

* Routine to blank out buffer *

*
CLRBFR EQU

ST
LA
LA
MVI
LA
BCTR
EX
L
BR

*
Rl4.SAVERET
R9.LOGBFR
R8.l(R9)
G(R9).X '4G'
RlG.LOGBFRLN
RlG.G
RlG.COPYMSG
R14.SAVERET
R14

Save return address
POINT TO LOG BUFFER
AND THE NEXT POSITION
PUT BLANK IN FIRST BYTE
GET LENGTH OF LOG BUFFER
DECREMENT FOR EXECUTE
PROPAGATE BLANKS FOR ENTIRE BFR
RESTORE RETURN ADDRESS
RETURN

* CONSTANTS. EQUATES. AUTODATA SET-UP, ETC. *

OS
COPYMSG MVC

GH
G(G,R8).G(R9)

**
* ENSURE THAT NO TEXT LINE EXTENDS BEYOND THE TEXT AREA ALLOCATED *
* FOR THE MESSAGE BUFFER IN AUTODATA. *
**
SQTASK DC
SQLEN DC
INVTASK DC
BADRC DC

ERRCODE
RG
Rl
R2
R3
R4
R5
R6
R7
R8
R9
RlG
R11
R12
Rl3
Rl4
Rl5
DSICWB

AUTOST

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DSECT
ORG
EQU

CL8'SQLOGTSK'
F'lGG'
CL32'COMMAND INVALID FOR THIS TASK - '
CL57'SLOGOOG ERROR ENCOUNTERED ISSUING DSIWLS. RETURN CX
ODE
4
o
1
2
3
4
5
6
7
8
9
IG
11
12
13
14
15

CWBADATD
* START OF AUTODATA

242 NetView Customization: Assembler

SAVERET OS
OBlEWORO OS
MASK OS
MSGBFR OS

ORG
MSGHOR OS
lOGBFR EQU

OS
lOGOOMID OS

OS
OPIO OS

OS
lOGHORlN EQU
lOGTEXT EQU
TXTAREA OS
MAXTXTlN EQU
lOGBFRlN EQU
AUTOENO EQU
*
*
AUTO REM EQU

END

F
D

SAVE SPACE FOR RETURN ADDRESS

Cl6
Cl(BUFHDRND-BUFHDR+100)
MSGBFR
Cl(BUFHDRND-BUFHOR)
*
Cli
Cl8
Cli
Cl8
Cli
*-LOGBFR
*
Cl8I
*-LOGTEXT
*-LOGBFR

***NOTE: This buffer header
is not needed for sequential
logging it is included for
sending messages

* END OF AUTO DATA
THE FOllOWING IS TO HELP WARN
ABOUT INSUFFICIENT AUTODATA

(l'CWBADATO-(AUTOEND-AUTOST)
ASEQlOG

Appendix A. AsselTlbler Samples 243

244 NetView Customization: Assembler

Glossary, Bibliography, and Index

Glossary 247

Bibliography ... 269
NetView Publications . 269

NetView/PC Publications 270
Other Network Program Products Publications 270

VT AM Publications 270
NCP, SSP, and EP Publications 270

Related Publications 271

Index 273

© Copyright IBM Corp. 1989 Glossary, Bibliography, and Index 245

246 NetView Customization: Assembler

Glossary

This glossary defines important NCP, NetView,
NetView/PC, SSP, and VTAM abbreviations and terms.
It includes information from the IBM Dictionary of Com­
puting, SC20-1699. Definitions from the American
National Dictionary for Information Processing are
identified by an asterisk (*). Definitions from draft pro­
posals and working papers under development by the
International Standards Organization, Technical Com­
mittee 97, Subcommittee 1 are identified by the symbol
(TC97). Definitions from the CCITT Sixth Plenary
Assembly Orange Book, Terms and Definitions and
working documents published by the Consultative Com­
mittee on International Telegraph and Telephone of the
International Telecommunication Union, Geneva, 1980
are preceded by the symbol (CCITT/ITU). Definitions
from published sections of the ISO Vocabulary of Data
Processing, developed by the International Standards
Organization, Technical Committee 97, Subcommittee 1
and from published sections of the ISO Vocabulary of
Office Machines, developed by subcommittees of ISO
Technical Committee 95, are preceded by the symbol
(ISO).

For abbreviations, the definition usually consists only of
the words represented by the letters; for complete defi­
nitions, see the entries for the words.

Reference Words Used in the Entries

The following reference words are used in this
glossary:

Deprecated term for. Indicates that the term should
not be used. It refers to a preferred term, which is
defined.

Synonymous with. Appears in the commentary of a
preferred term and identifies less desirable or less
specific terms that have the same meaning.

Synonym for. Appears in the commentary of a less
desirable or less specific term and identifies the
preferred term that has the same meaning.

Contrast with. Refers to a term that has an opposed
or substantively different meaning.

See. Refers to multiple-word terms that have the
same last word.

See also. Refers to related terms that have similar
(but not synonymous) meanings.

abend. Abnormal end of task.

abnormal end of task (abend). Termination of a task
before its completion because of an error condition that
cannot be resolved by recovery facilities while the task
is executing.

© Copyright IBM Corp. 1989

ACB. (1) In VTAM, access method control block.
(2) In NCP, adapter control block.

ACB name. (1) The name of an ACB macroinstruction.
(2) A name specified in the ACBNAME parameter of a
VT AM APPL statement. Contrast with network name.

accept. For a VTAM application program. to establish
a session with a logical unit (LU) in response to a CINIT
request from a system services control pOint (SSCP).
The session-initiation request may begin when a ter­
minal user logs on, a VTAM application program issues
a macroinstruction, or a VTAM operator issues a
command. See also acquire (1).

access method. A technique for moving data between
main storage and input/output devices.

access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

accounting exit routine. In VT AM, an optional installa­
tion exit routine that collects statistics about session
initiation and termination.

ACF/NCP. Advanced Communications Function for the
Network Control Program. Synonym for NCP.

ACF/SSP. Advanced Communications Function for the
System Support Programs. Synonym for SSP.

ACF/VTAM. Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VT AM.

acquire. (1) For a VTAM application program, to ini­
tiate and establish a session with another logical unit
(LU). The acquire process begins when the application
program issues a macroinstruction. See also accept.
(2) To take over resources that were formerly con­
trolled by an access method in another domain, or to
resume control of resources that were controlled by
this domain but released. Contrast with release. See
also resource takeover.

active. (1) The state a resource is in when it has been
activated and is operational. Contrast with inactive,
pending, and inoperative .. (2) Pertaining to a major or
minor node that has been activated by VTAM. Most
resources are activated as part of VTAM start proc­
essing or as the result of a VARY ACT command.

adapter control block (ACB). In NCP, a control block
that contains line control information and the states of
I/O operations for BSC lines, SS lines, or SDLC links.

adaptive session pacing. Synonym for adaptive
session-level pacing.

Glossary 247

adaptive session-level pacing. A form of session-level
pacing in which session components exchange pacing
windows that may vary in size during the course of a
session. This allows transmission to adapt dynamically
to variations in availability and demand of buffers on a
session by session basis. Session pacing occurs
within independent stages along the session path
according to local congestion at the intermediate
nodes. Synonymous with adaptive session pacing.
See pacing, session-level pacing, and virtual route
pacing.

alert. (1) In SNA, a record sent to a system problem
management focal point to communicate the existence
of an alert condition. (2) In the NetView program, a
high priority event that warrants immediate attention.
This data base record is generated for certain event
types that are defined by user-constructed filters.

alias name. A name defined in a host used to repre­
sent a logical unit name, logon mode table name, or
class-of-service name in another network. This name
is defined to a name translation program when the
alias name does not match the real name. The alias·
name translation program is used to associate the real
and alias names.

allocate. A logical unit (LU) 6.2 application program
interface (API) verb used to assign a session to a con­
versation for the conversation's use. Contrast with
deallocate.

API. Application program interface.

application program. (1) A program written for or by a
user that applies to the user's work. (2) A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities.

application program interface (API). (1) The formally
defined programming language interface between an
IBM system control program or licensed program and
its user. (2) The interface through which an application
program interacts with an access method. In VTAM, it
is the language structure used in control blocks so that
application programs can reference them and be identi­
fied to VTAM.

attaching device. Any device that is physically con­
nected to a network and can communicate over the
network.

authorization exit routine. In VTAM, an optional instal­
lation exit routine that approves or disapproves
requests for session initiation.

authorized receiver. In the NetView program, an
authorized operator who receives all the unsolicited
and authorized-receiver messages not assigned to a
specific operator.

248 NetView Customization: Assembler

automatic logon. (1) A process by which VTAM auto­
matically creates a session-initiation request to estab­
lish a session between two logical units (LUs). The
session will be between a deSignated primary logical
unit (PLU) and a secondary logical unit (SLU) that is
neither queued for nor in session with another PLU.
See also controlling application program and control­
ling logical unit. (2) In VM, a process by which a
virtual machine is initiated by other than the user of
that virtual machine. For example, the primary VM
operator's virtual machine is activated automatically
during VM initialization.

available. In VTAM, pertaining to a logical unit that is
active, connected; enabled, and not at its session limit.

basic conversation. A conversation that supports the
functions of the basic conversation protocol boundary
defined by LU 6.2. That format requires data to be sent
as logical records conSisting of a 2-byte length prefix
followed by the data. See also mapped conversation.

begin bracket. In SNA, the value (binary 1) of the
begin-bracket indicator in the request header (RH) of
the first request in the first chain of a bracket; the value
denotes the start of a bracket. Contrast with end
bracket. See also bracket.

bidder. In SNA, the LU-LU half-session defined at
session activation as having to request and receive
permission from the other LU-LU half-session to begin
a bracket. Contrast with first speaker. See also
bracket protocol and contention.

BIU segment. In SNA, the portion of a basic informa­
tion unit (BIU) that is contained within a path informa­
tion unit (PIU). It consists of either a request/response
header (RH) followed by all or a portion of a
request/response unit (RU), or only a portion of an RU.

blocking of PIUs. In SNA, an optional function of path
control that combines multiple path information units
(PIUs) into a single basic transmission unit (BTU).

boundary function. (1) A capability of a subarea node
to provide protocol support for attached peripheral
nodes, such as: (a) interconnecting subarea path
control and peripheral path control elements, (b) per­
forming session sequence numbering for low-function
peripheral nodes, and (c) providing session-level
pacing support. (2) The component that provides these
capabilities. See also boundary node, network
addressable unit (NAU). peripheral path control,
subarea node, and subarea path control.

boundary node. (1) A subarea node with boundary
function. See subarea node (including illustration).
See also boundary function. (2) The programming
component that performs FID2 (format identification
type 2) conversion, channel data link control, pacing,
and channel or device error recovery procedures for a
locally attached station. These functions are similar to

those performed by a network control program for an
NCP-attached station.

bracket. In SNA, one or more chains of request units
(AUs) and their responses that are exchanged between
the two LU-LU half-sessions and that represent a trans­
action between them. A bracket must be completed
before another bracket can be started. Examples of
brackets are data base inquiries/replies, update trans­
actions, and remote job entry output sequences to work
stations. See also begin bracket and end bracket.

bracket protocol. In SNA, a data flow control protocol
in which exchanges between the two LU-LU
half-sessions are achieved through the use of brackets,
with one LU designated at session activation as the first
speaker and the other as the bidder. The bracket pro­
tocol involves bracket initiation and termination rules.
See also bidder and first speaker.

browse. A way of looking at a file that does not allow
you to change it.

buffer. A portion of storage for temporarily holding
input or output data.

call. (1) * (ISO) The action of bringing a computer
program, a routine, or a subroutine into effect, usually
by specifying the entry conditions and jumping to an
entry point. (2) To transfer control to a procedure,
program, routine, or subroutine. (3) The actions nec­
essary to make a connection between two stations.
(4) To attempt to contact a user, regardless of whether
the attempt is successful.

CALLOUT. The logical channel type on which the data
terminal equipment (DTE) can send a call, but cannot
receive one.

calling. * (ISO) The process of transmitting selection
signals in order to establish a connection between data
stations.

CCP. Configuration control program facility.

CORM. Cross-domain resource manager.

CORSC. Cross-domain resource.

chain. (1) A group of logically linked records. (2) See
RU chain.

channel. * A path along which signals can be sent, for
example, data channel, output channel. See data
channel and input/output channel. See also link.

channel-attached. (1) Pertaining to the attachment of
devices directly by input/output channels to a host
processor. (2) Pertaining to devices attached to a con­
trolling unit by cables, rather than by telecommuni-

cation lines. Contrast with link-attached.. Synonymous
with local.

character-coded. Synonym for unformatted.

class of service (COS). In SNA, a designation of the
path control network characteristics, such as path·
security, transmission priority, and bandwidth, that
apply to a particular session. The end user deSignates
class of service at session initiation by using a sym­
bolic name that is mapped into a list of virtual routes,
anyone of which can be selected for the session to
provide the requested level of service.

cleanup. A network services request, sent by a system
services control unit (SSCP) to a logical unit (LU), that
causes a particular LU-LU session with that LU to be
ended immediately and without the participation of
either the other LU or its SSCP.

CLiST. Command list.

CMS. Conversational Monitor System.

CNM. Communication network management.

command. (1) A request from a terminal for the per­
formance of an operation or the execution of a partic­
ular program. (2) In SNA, any field set in the
transmission header (TH), request header (RH), and
sometimes portions of a request unit (RU), that initiates
an action or that begins a protocol; for example: (a)
Bind Session (session-control request unit), a
command that activates an LU-LU session, (b) the
change-direction indicator in the RH of the last AU of a
chain, (c) the virtual route reset window indicator in a
FID4 transmission header. See also VTAM operator
command.

command facility. The component of the NetView
program that is a base for command processors that
can monitor, control, automate, and improve the opera­
tion of a network.

command list. A I ist of commands and statements
designed to perform a specific function for the user.
Command lists can be written in REXX or in NetView
command list language.

command procedure. Either a command processor
written in a high-level language (HLL) or a command
list. See also command list and command processor.

command processor. (1) A program that performs an
operation specified by a command. (2) In the NetView
program, a user-written module designed to perform a
specific function. Command processors, which can be
written in assembler or a high-level language (HLL),
are invoked as commands.

communication line. Deprecated term for telecommu­
nication line and transmission line.

Glossary 249

communication management configuration host node.
The type 5 host processor in a communication manage­
ment configuration that does all network-control func­
tions in the network except for the control of devices
channel-attached to data hosts. Synonymous with com­
munication management host. Contrast with data host
node.

communication management host. Synonym for com­
munication management configuration host node. Con­
trast with data host.

communication network management (CNM). The
process of designing, installing, operating, and man­
aging the distribution of information and controls
among end users of communication systems.

communication network management (CNM) applica­
tion program. A VTAM application program that issues
and receives formatted management services request
units for physical units. For example, the NetView
program.

communication network management (CNM) interface.
The interface that the access method provides to an
application program for handling data and commands
associated with communication system management.
CNM data and commands are handled across this inter­
face.

communication network management (CNM)
processor. A program that manages one of the func­
tions of a communications system. A CNM processor is
executed under control of the NetView program.

component. A command that (a) controls the termi­
nal's screen (using the DSIPSS macro
(TYPE = ASYPANEL) or the VIEW command), (b) allows
the operator to enter NetView commands, and (c) can
resume when such commands are complete.

composite end node (CEN). A group of nodes made up
of a single type 5 node and its subordinate type 4 nodes
that together support type 2.1 protocols. To a type 2.1
node, a CEN appears as one end node. For example,
NCP and VTAM act as a composite end node.

configuration control program (CCP) facility. An SSP
interactive application program facility by which config­
uration definitions for the IBM 3710 Network Controller
can be created, modified, and maintained.

configuration services. In SNA, one of the types of
network services in the control point (CP) and in the
phys.ical unit (PU); configuration services activate,
deactivate, and maintain the status of physical units,
links, and link stations. Configuration services also
shut down and restart network elements and modify
path control routing tables and address-translation
tables. See also maintenance services, management
services, network services, and session services.

250 NetView Customization: Assembler

connection. Synonym for physical connection.

contention. A situation in ·which two logical units (LUs)
that are connected by an LU 6.2 session both attempt to
allocate the session for a conversation at the same
time. The control operator assigns "winner" and
"loser" status to the LUs so that processing may con­
tinue on an orderly basis. The contention loser
requests permission from the contention winner to allo­
cate a conversation on the session, and the contention
winner either grants or rejects the request. See also
bidder.

control block. (1) (ISO) A storage area used by a
computer program to hold control information. (2) In
the IBM Token-Ring Network, a specifically formatted
block of information provided from the application
program to the Adapter Support Interface to request an
operation.

control point {CPl. (1) A system services control point
(SSCP) that provides hierarchical control of a group of
nodes in a network. (2) A control point (CP) local to a
specific node that provides control of that node, either
in the absence of SSGP control (for type 2.1 nodes
engaged in peer to peer communication) or to supple­
ment SSCP control.

control program {CPl. The VM operating system that
manages the real processor's resources and is respon­
sible for simulating System/370s for individual users.

controller. A unit that controls input/output operations
for one or more devices.

contrOlling application program. In VTAM, an applica­
tion program with which a secondary logical unit (other
than an application program) is automatically put in
session whenever the secondary logical unit is avail­
able. See also automatic logon and controlling logical
unit.

controlling logical unit. In VTAM, a logical unit with
which a secondary logical unit (other than an applica­
tion program) is automatically put in session whenever
the secondary logical unit is available. A controlling
logical unit can be either an application program or a
device-type logical unit. See also automatic logon and
controlling application program.

conversation. In SNA, a logical connection between
two transaction programs using an LU 6.2 session.
Conversations are delimited by brackets to gain exclu­
sive use of a session.

Conversational Monitor System (CMS). A VM applica­
tion program for general interactive time sharing,
problem solving, and program development.

converted command. An intermediate form of a
character-coded command produced by VTAM through
use of an unformatted system services definition table.

The format of a converted command is fixed; the unfor­
matted system services definition table must be con­
structed in such a manner that the character-coded
command (as entered by a logical unit) is converted
into the predefined, converted command format. See
also unformatted.

COS. Class of service.

CPo (1) Control program. (2) Control pOint.

cross-domain. In SNA, pertaining to control of
resources involving more than one domain.

cross-domain resource (CORSC). A resource owned
by a cross-domain resource manager (CDRM) in
another domain but known by the CDRM in this domain
by network name and associated CDRM.

cross-domain resource manager (CORM). In VTAM,
the function in the system services control point (SSCP)
that controls initiation and termination of cross-domain
sessions.

data channel. Synonym for input/output channel. See
channel.

data flow control (OFC) layer. In SNA, the layer within
a half-session that (1) controls whether the half-session
can send, receive, or concurrently send and receive
request units (RUs); (2) groups related RUs into RU
chains; (3) delimits transactions via the bracket pro­
tocol; (4) controls the interlocking of requests and
responses in accordance with control modes specified
at session activation; (5) generates sequence numbers;
and (6) correlates requests and responses.

data host. Synonym for data host node. Contrast with
communication management configuration host.

data host node. In a communication management con­
figuration, a type 5 host node that is dedicated to proc­
essing applications and does not control network
resources, except for its channel-attached or communi­
cation adapter-attached devices. Synonymous with
data host. Contrast with communication management
configuration host node.

data link. In SNA, synonym for link.

data link control (OLC) layer. In SNA, the layer that
consists of the link stations that schedule data transfer
over a transmission medium connecting two nodes and
perform error control for the link connection. Examples
of data link control are SDLC for serial-by-bit link con­
nection and data link control for the System/370
channel.

data services command processor (OSCP). A compo­
nent that structures a request for recording and
retrieving data in the application program's data base
and for soliciting data from a device in the network.

data services request block (OSRB). The control block
in the NetView program that contains information that a
data services command processor (DSCP) needs to
communicate with the data services task (DST).

data services task (OST). The NetView subtask that
gathers, records, and manages data in a VSAM file
and/or a network device that contains network manage­
ment information.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several pre­
scribed arrangements and described by control infor­
mation to which the system has access.

OBCS. Double-byte character set.

ddname. Data definition name.

deallocate. A logical unit (LU) 6.2 application program
interface (API) verb that terminates a conversation,
thereby freeing the session for a future conversation.
Contrast with aI/ocate.

definite response (OR). In SNA, a value in the
form-of-response-requested field of the request header.
The value directs the receiver of the request to return a
response unconditionally, whether positive or negative,
to that request. Contrast with exception response and
no response.

definition statement. (1) In VTAM, the statement that
describes an element of the network. (2) In NCP, a
type of instruction that defines a resource to the NCP.
See Figure 18, Figure 19, and Figure 20 on page 252.
See also macroinstruction.

START
~

statement
identifier

I

I
suboperands
~

I
suboperands
~

I A, (8, C) 'I I KEYWORDl =0,
I

positional

KEYWORD2=(E,F) I
I

keyword
operands

I
statement

operands

Figure 18. Example of a Language Statement

BUILD
~

definition
statement
identifier

definition statement
I

subo~erands
, I

ICA=(caO[,cal][.ca2][,ca3]),
I

keyword
operand

Figure 19. NCP Examples

Glossary 251

definition
statement
identifier

h
PU ,

keyword , operand

subo?erands
I I

DISCNT=([YESINO][,FINF] ,
I

definition statement

VARY INET~ACTJIo=name.RNAME=fnamel, ••• ,name13l
~ ,
operator positional suboperands
cOl11lland operands
operator L' -------., --------'

operands ,
operator cOl111land

Figure 20. VTAM Examples

device. An input/output unit such as a terminal,
display, or printer. See attaching device.

direct call. (ISO) A facility that permits calling without
requiring the user to provide address selection signals;
the network interprets the call request signal as an
instruction to establish a connection to one or more
predetermined data stations.

directory. In VM, a control program (CP) disk that
defines each virtual machine's normal configuration.

disabled. In VTAM, pertaining to a logical unit (LU)
that has indicated to its system services control point
(SSCP) that it is temporarily not ready to establish
LU-LU sessions. An initiate request for a session with
a disabled logical unit (LU) can specify that the session
be queued by the SSCP until the LU becomes enabled.
The LU can separately indicate whether this applies to
its ability to act as a primary logical unit (PLU) or a sec­
ondary logical unit (SLU). See also enabled and inhib­
ited.

display. (1) To present information for viewing,
usually on a terminal screen or a hard-copy device.
(2) A device or medium on which information is pre­
sented, such as a terminal screen. (3) Deprecated
term for panel.

domain. (1) An access method, its application pro­
grams, communication controllers, connecting lines,
modems, and attached terminals. (2) In SNA, a system
services control point (SSCP) and the physical units
(PUs), logical units (LUs), links, link stations, and aI/ the
associated resources that the SSCP has the ability to
control by means of activation requests and deacti­
vation requests. See system services control point
domain and type 2.1 node control pOint domain.. See
also single-domain network and multiple-domain
network.

domain operator. In a multiple-domain network, the
person or program that controls the operation of the
resources controlled by one system services control
point. Contrast with network operator (2).

252 NetView Customization: Assembler

double-byte character set (DBCS). A character set,
such as Japanese, in which each character is repres­
ented by a two-byte code.

downstream. In the direction of data flow from the host
to the end user. Contrast with upstream.

drop. In the IBM Token-Ring Network, a cable that
leads from a faceplate to the to the distribution panel in
a wiring closet. When the IBM Cabling System is used
with the IBM Token-Ring Network, a drop may form part
of a lobe.

DSCP. Data services command processor.

DST. Data services task.

EBCDIC. * Extended binary-coded decimal inter­
change code. A coded character set consisting of 8-bit
coded characters.

ECB. Event control block.

echo. The return of characters to the originating SS
device to verify that a message was sent correctly.

ED. Enciphered data.

element. (1) A field in the network address. (2) The
particular resource within a subarea identified by the
element address. See also subarea.

Emulation Program (EP). An IBM control program that
allows a channel-attached 3705 or 3725 communication
controller to emulate the functions of an IBM 2701 Data
Adapter Unit, an IBM 2702 Transmission Control, or an
IBM 2703 Transmission Control. See also network
control program.

enabled. In VTAM, pertaining to a logical unit (LU) that
has indicated to its system services control point
(SSCP) that it is now ready to establish LU-LU sessions.
The LU can separately indicate whether this prevents it
from acting as a primary logical unit (PLU) or as a sec­
ondary logical unit (SLU). See also disabled and inhib­
ited.

enciphered data (ED). Data whose meaning is con­
cealed from unauthorized users.

end bracket. In SNA, the value (binary 1) of the end
bracket indicator in the request header (RH) of the first
request of the last chain of a bracket; the value denotes
the end'of the bracket. Contrast with begin bracket.
See also bracket.

end node. A type 2.1 node that does not provide any
intermediate routing or session services to any other
node. For example, APPC/PC is an end node. See
composite end node, node, and type 2.1 node.

entry point. An SNA node that provides distributed
network management support. It may be a type 2, type
2.1, type 4, or type 5 node. It sends SNA-formatted
network management data about itself and the
resources it controls to a focal point for centralized
processing, and it receives and executes focal point ini­
tiated commands to manage and control its' resources.

EP. Emulation Program.

ER. (1) Explicit route. (2) Exception response.

event. (1) In the NetView program, a record indicating
irregularities of operation in physical elements of a
network. (2) An occurrence of significance to a task;
typically, the completion of an asynchronous operation,
such as an input/output operation.

event control block (ECB). A control block used to rep­
resent the status of an event.

exception response (ER). In SNA, a value in the
form-of-response-requested field of a request header
(RH). An exception response is sent only if a request is
unacceptable as received or cannot be processed.
Contrast with definite response and no response. See
also negative response.

EXEC. In a VM operating system, a user-written
command file that contains CMS commands, other
user-written commands, and execution control state­
ments, such as branches.

exit list (EXLST). In VSAM and VTAM, a control block
that contains the addresses of routines that receive
control when specified events occur during execution;
for example, routines that handle
session-establishment request processing or I/O
errors.

exit routine. Any of several types of special-purpose
user-written routines. See accounting exit routine,
authorization exit routine, logon-interpret routine,
virtual route selection exit routine, EXLST exit routine,
and RPL exit routine.

EXLST exit routine. In VTAM, a routine whose address
has been placed in an exit list (EXLST) control block.
The addresses are placed there with the EXLST macro­
instruction, and the routines are named according to
their corresponding operand; hence OFASY exit
routine, TPENO exit routine. RELREQ exit routine, and
so forth. All exit list routines are coded by the VTAM
application programmer. Contrast with RPL exit
routine.

explicit route (ER). In SNA, the path control network
elements, including a specific set of one or more trans­
mission groups, that connect two subarea nodes. An
explicit route is identified by an origin subarea
address, a destination subarea address, an explicit

route number, and a reverse explicit route number.
Contrast with virtual route (VR). See also path and
route extension.

feature. A particular part of an IBM product that a cus­
tomer can order separately.

field-formatted. Pertaining to a request or response
that is encoded into fields, each having a specified
format such as binary codes, bit-significant flags, and
symbolic names. Contrast with character-coded.

first speaker. In SNA, the LU-LU half-session defined
at session activation as: (1) able to begin a bracket
without requesting permission from the other LU-LU
half-session to do so, and (2) winning contention if both
half-sessions attempt to begin a bracket simultane­
ously. Contrast with bidder. See also bracket protocol.

flow control. In SNA, the process of managing the rate
at which data traffic passes between components of the
network. The purpose of flow control is to optimize the
rate of flow of message units, with minimum congestion
in the network; that is, to neither overflow the buffers at
the receiver or at intermediate routing nodes, nor leave
the receiver waiting for more message units. See also
adaptive session-level pacing, pacing, session-level
pacing, and virtual route pacing.

focal point. An entry pOint that provides centralized
management and control for other entry points for one
or more network management categories.

formaHed system services. A portion of VTAM that
provides certain system services as a result of
receiving a field-formatted command, such as an Ini­
tiate or Terminate command. Contrast with unfor­
matted system services (USS). See also
field-formatted.

frame. (1) The unit of transmission in some local area
networks, including the IBM Token-Ring Network. It
includes delimiters, control characters, information,
and checking characters. (2) In SOLC, the vehicle for
every command, every response, and all information
that is transmitted using SOLC procedures.

full-screen mode. A form of panel presentation in the
NetView program where the contents of an entire ter­
minal screen can be displayed at once. Full-screen
mode can be used for fill-in-the-blanks prompting. Con­
trast with line mode.

generation. The process of assembling and link
editing definition statements so that resources can be
identified to all the necessary programs in a network.

generic alert. Encoded alert information that uses
code points (defined by IBM and possibly customized
by users or application programs) stored at an alert
receiver, such as the NetView program.

Glossary 253

group. In the NetView/PC program, to identify a set of
application programs that are to run concurrently.

half-session. In SNA, a component that provides func­
tion management data (FMD) services, data flow
control, and transmission control for one of the ses­
sions of a network addressable unit (NAU). See also
primary half-session and secondary half-session.

hard copy. A printed copy of machine output in a visu­
ally readable form; for example, printed reports,
listings, documents, summaries, or network logs.

hard-copy task (HCT). The NetView subtask that con­
trols the passage of data between the NetView program
and the hard-copy device.

hardware monitor. The component of the NetView
program that helps identify network problems, such as
hardware, software, and microcode, from a central
control point using interactive display techniques.

HCT. Hard-copy task.

help panel. An online display that tells you how to use
a command or another aspect of a product. See task
panel.

high-level language (Hll). A programming language
that does not reflect the structure of any particular com­
puter or operating system. For NetView Release 3, the
high-level languages are PUI and C.

host node. A node providing an application program
interface (API) and a common application interface.
See boundary node, node, peripheral node, subarea
host node, and subarea node. See also boundary func­
tion and node type.

immediate command. In the NetView program, a
command (such as GO, CANCEL, or RESET) that can be
executed while a regular command is being processed.

inactive. Describes the state of a resource that has not
been activated or for which the VARY INACT command
has been issued. Contrast with active. See also inop­
erative.

information (I) format. A format used for information
transfer.

inhibited. In VTAM, pertaining to a logical unit (LU)
that has indicated to its system services control point
(SSCP) that it is not ready to establish LU-LU sessions.
An ·initiate request for a session with an inhibited LU
will be rejected by the SSCP. The LU can separately
indicate whether this applies to its ability to act as a
primary logical unit (PLU) or as a secondary logical
unit (SLU). See also enabled and disabled.

254 NetView Customization: Assembler

initiate. A network services request sent from a logical
unit (LU) to a system services control point (SSCP)
requesting that an LU-LU session be established.

inoperative. The condition of a resource that has been
active, but is not. The resource may have failed,
received an INOP request, or is suspended while a
reactivate command is being processed. See also
inactive.

input/output channel. (1) (ISO) In a data processing
system, a functional unit that handles the transfer of
data between internal and peripheral equipment. (2) In
a computing system, a functional unit, controlled by a
processor, that handles the transfer of data between
processor storage and local peripheral devices. Syn­
onymous with data channel. See channel. See also
link.

Interactive System Productivity Facility (ISPF). An IBM
licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

interface. * A shared boundary. An interface might be
a hardware component to link two devices or it might
be a portion of storage or registers accessed by two or
more computer programs.

ISPF. Interactive System Productivity FaCility.

item. In CCP, any of the components, such as commu­
nication controllers, lines, cluster controllers, and ter­
minals, that comprise an IBM 3710 Network Controller
configuration.

JCl. Job control language.

job control language (JCl). * A problem-oriented lan­
guage designed to express statements in a job that are
used to identify the job or describe its requirements to
an operating system.

Kanji. An ideographic character set used in Japanese.
See also double-byte character set.

keyword. (1) (TC97) A lexical unit that, in certain con­
texts, characterizes some language construction. (2) *
One of the predefined words of an artificial language.
(3) One of the significant and informative words in a
title or document that describes the content of that doc­
ument (4) A name or symbol that identifies a param­
eter. (5) A part of a command operand that consists of
a specific c'haracter string (such as DSNAME =). See
also definition statement and keyword operand. Con­
trast with positional operand.

keyword operand. An operand that consists of a
keyword followed by one or more values (such as

DSNAME = HELLO). See also definition statement.
Contrast with positional operand.

keyword parameter. A parameter that consists of a
keyword followed by one or more values.

line. See communication line.

line mode. A form of screen presentation in which the
information is presented a line at a time in the message
area of the terminal screen. Contrast with full-screen
mode.

link. In SNA, the combination of the link connection
and the link stations joining network nodes; for
example: (1) a System/370 channel and its associated
protocols, (2) a serial-by-bit connection under the
control of Synchronous Data Link Control (SDLC). A
link connection is the physical medium of transmission.
A link, however, is both logical and physical. Synony­
mous with data link. See Figure 21 on page 256.

link-attached. Pertaining to devices that are physically
connected by a telecommunication line. Contrast with
channel-attached. Synonymous with remote.

link connection segment. A portion of the configuration
that is located between two resources I isted consec­
utively in the service point command service (SPCS)
query link configuration request list.

load module. (ISO) A program unit that is suitable for
loading into main storage for execution; it is usually the
output of a linkage editor.

local. Pertaining to a device that is attached to a con­
trolling unit by cables, rather than by a telecommuni­
cation line. Synonymous with channel-attached.

local address. In SNA, an address used in a peripheral
node in place of an SNA network address and trans­
formed to or from an SNA network address by the
boundary function in a subarea node.

logical record. (1) (TC97) A set of related data or
words considered to be a record from a logical view­
point. (2) A unit of information normally pertaining to a
single subject; a logical record is that user record
requested of or given to the data management function.
See also basic conversation.

logical unit (LU). In SNA, a port through which an end
user accesses the SNA network and the functions pro­
vided by system services control points (SSCPs). An
LU can support at least two sessions-one with an
SSCP and one with another LU-and may be capable of
supporting many sessions with other LUs. See also
network addressable unit (NAU) , peripheral LU, phys­
ical unit (PU), system services control point (SSCP),
primary logical unit (PLU), and secondary logical unit
(SLU).

logical unit (LU) services. In SNA, capabilities in a
logical unit to: (1) receive requests from an end user
and, in turn, issue requests to the system services
control point (SSCP) in order to perform the requested
functions, typically for session initiation; (2) receive
requests from the SSCP, for example to activate LU-LU
sessions via Bind Session requests; and (3) provide
session presentation and other services for LU-LU ses­
sions. See also physical unit (PU) services.

logical unit (LU) 6.2. A type of logical unit that sup­
ports general communication between programs in a
distributed processing environment. LU 6.2 is charac­
terized by (1) a peer relationship between session part­
ners, (2) efficient utilization of a session for multiple
transactions, (3) comprehensive end-to-end error proc­
essing, and (4) a generic application program interface
(API) consisting of structured verbs that are mapped
into a product implementation.

logmode table. Synonym for logon mode table.

logoff. In VTAM, an unformatted session termination
request.

log on. To initiate a session.

logon. In VTAM, an unformatted session initiation
request for a session between two logical units. See
automatic logon and simulated logon. See also
session-initiation request.

logon mode table. In VTAM, a set of entries for one or
more logon modes. Each logon mode is identified by a
logon mode name. Synonymous with logmode table.

logon-interpret routine. In VTAM, an installation exit
routine, associated with an interpret table entry, that
translates logon information. It may also verify the
logon.

LU. Logical unit.

LU type. In SNA, the classification of an LU-LU session
in terms of the specific subset of SNA protocols and
options supported by the logical units (LUs) for that
seSSion, namely:

The mandatory and optional values allowed in the
session activation request.

The usage of data stream controls, function man­
agement headers (FMHs), request unit (RU) param­
eters, and sense codes.

Presentation services protocols such as those
associated with FMH usage.

LU types 0, 1, 2, 3, 4, 6.1, 6.2, and 7 are defined.

LU·LU seSSion. In SNA, a session between two logical
units (LUs) in an SNA network. It provides communi­
cation between two end users, or between an end user
and an LU services component.

Glossary 255

Subarea Host Node

Type 5 PU

Channel Subarea Link
Subarea Path Control

Peripheral Host Node

Type 2.1 PU

Channel Peripheral Link
Peripheral Path Control

Figure 21. Links and Path Controls

LU-LU session type. A deprecated term for LU type.

LU 6.2. Logical unit 6.2.

macroinstruction. (1) An instruction that when exe­
cuted causes the execution of a predefined sequence of
instructions in the same source language. (2) In
assembler programming, an assembler language state­
ment that causes the assembler to process a prede­
fined set of statements called a macro definition. The

256 NetView Customization: Assembler

Another
Subarea Node

Communication Controller

Type 4 PU

Subarea Path Control

Boundary
Function

SOLe
Subarea
Li nk

Peripheral Path Control

SOLC Peripheral
Links

statements normally produced from the macro defi­
nition replace the macroinstruction in the program.
See also definition statement.

maintenance services. In SNA, one of the types of
network services in system services control points
(SSCPs) and physical units (PUs). Maintenance ser;­
vices provide facilities for testing links and nodes and
for collecting and recording error information. See

also configuration services, management services,
network services, and session services.

major node. In VTAM, a set of resources that can be
activated and deactivated as a group. See node and
minor node.

management services. In SNA, one of the types of
network services in control points (CPs) and physical
units (PUs). Management services are the services
provided to assist in the management of SNA networks,
such as problem management, performance and
accounting management, configuration management
and change management. See also configuration ser­
vices, maintenance services, network services, and
session services.

mapped conversation. A type of conversation in which
the data to be sent or received can be in a user-defined
format. A logical unit (LU) that supports mapped con­
versations converts the user data to a format suitable
for the basic conversation protocol boundary. See also
conversation and basic conversation.

Medium Access Control (MAC). The sublayer of OLC
that supports medium-dependent functions and uses
the services of the physical layer to provide services to
Logical Link Control (LLC). The MAC sublayer includes
the medium access port.

medium access control (MAC) procedure. (TC97) In a
local area network, the part of the protocol that governs
access to the transmission medium independently of
the physical characteristics of the medium, but takes
into account the topological aspects of the network, in
order to enable the exchange of data between data
stations.

message. (1) (TC97) A group of characters and
control bit sequences transferred as an entity. (2) In
VTAM, the amount of function management data (FMO)
transferred to VT AM by the application program with
one SEND request.

migration. Installing a new version or release of a
program when an earlier version or release is already
in place.

minor node. In VTAM, a uniquely-defined resource
within a major node. See node and major node.

module. * A program unit that is discrete and identifi­
able with respect to compiling, combining with other
units, and loading; for example, the input to or output
from an assembler, compiler, linkage editor, or execu­
tive routine.

monitor. In the IBM Token-Ring Network, the function
required to initiate the transmission of a token on the
ring and to provide soft-error recovery in case of lost
tokens, circulating frames, or other difficulties. The
capability is present in all ring stations.

multiple-domain network. In SNA, a network with more
than one system services control point (SSCP). Con­
trast with single-domain network.

Multiple Virtual Storage (MVS). An IBM licensed
program whose full name is the Operating
SystemlVirtual Storage (OSIVS) with Multiple Virtual
Storage/System Product for System/370. It is a soft­
ware operating system controlling the execution of pro­
grams.

Multiple Virtual Storage for Extended Architecture
(MVS/XA). An IBM licensed program whose full name
is the Operating System/Virtual Storage (OSIVS) with
Multiple Virtual Storage/System Product for Extended
Architecture. Extended architecture allows 31-bit
storage addressing. MVS/XA is a software operating
system controlling the execution of programs.

MVS. Multiple Virtual Storage operating system.

MVS/XA. Multiple Virtual Storage for Extended Archi­
tecture operating system.

NAU. Network addressable unit.

NC. Network contro/.

NCCF. Network Communications Control Facility.

NCP. (1) Network Control Program (IBM licensed
program). Its full name is Advanced Communications
Function for the Network Control Program. Synony­
mous with ACF/NCP. (2) Network control program
(general term).

negative response (NR). In SNA, a response indicating
that a request did not arrive successfully or was not
processed successfully by the receiver. Contrast with
positive response. See exception response.

NetVlew. A system 370-based IBM licensed program
used to monitor a network, manage it, and diagnose its
problems.

NetView command list language. An interpretive lan­
guage unique to the NetView program that is used to
write command lists.

NetView-NetView task (NNT). The task under which a
cross-domain NetView operator session runs. See
operator station task.

NetView/PC. A PC-based IBM licensed program
through which application programs can be used to
monitor, manage, and diagnose problems in IBM
Token-Ring networks, non-SNA communication
devices, and voice networks.

network. (1) (TC97) An interconnected group of
nodes. (2) In data processing, a user application

Glossary 257

network. See path control network, public network,
SNA network, subarea network, type 2.1 network, and
user-application network.

network address. In SNA, an address, consisting of
subarea and element fields, that identifies a link, a link
station, or a network addressable unit. Subarea nodes
use network addresses; peripheral nodes use local
addresses. The boundary function in the subarea node
to which a peripheral node is attached transforms local
addresses to network addresses and vice versa. See
local address. See also network name.

network addressable unit (NAU). In SNA, a logical unit,
a physical unit, or a system services control point. It is
the origin or the destination of information transmitted
by the path control network. Each NAU has a network
address that represents it to the path control network.
See also network name, network address, and path
control network.

Network Communications Control Facility (NCCF). An
IBM licensed program that is a base for command
processors that can monitor, control, automate, and
improve the operations of a network. Its function is
included and enhanced in NetView's command facility.

network control (NC). In SNA, an RU category used for
requests and responses exchanged for such purposes
as activating and deactivating explicit and virtual
routes and sending load modules to adjacent periph­
eral nodes. See also data flow control layer and
session control.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and inter­
connected network capability. Its full name is
Advanced Communications Function for the Network
Control Program.

network control program. A program, generated by
the user from a library of IBM-supplied modules, that
controls the operation of a communication controller.

network log. A file that contains all messages proc­
essed by the NetView program.

network management vector transport (NMVT). A
management services request/response unit (RU) that
flows over an active session between physical unit
management services and control point management
services (SSCP-PU session).

network name. (1) In SNA, the symbolic identifier by
which end users refer to a network addressable unit
(NAU), a link, or a link station. See also network
address. (2) In a multiple-domain network, the name
of the APPL statement defining a VTAM application
program is its network name and it must be unique
across domains. Contrast with ACB name. See un;n­
terpreted name.

258 NetView Customization: Assembler

network operator. (1) A person or program respon­
sible for controlling the operation of all or part of a
network. (2) The person or program that controls all
the domains in a multiple-domain network. Contrast
with domain operator.

Network Problem Determination Application (NPDA).
An IBM licensed program that helps you identify
network problems, such as hardware, software, and
microcode, from a central control point using interac­
tive display techniques. It runs as an NCCF communi­
cation network management (CNM) application
program. Its function is included and enhanced in
NetView's hardware monitor.

network product support (NPS). The function of the
NetView program that provides operations control for
the IBM 3710 Network Controller, 5860 family of
modems, and the NCP; and configuration of 371 Os and
the 5860 family of modems. NPS provides operator
commands to run diagnostics for link problem determi­
nation and to change product operating parameters.

network services (NS). In SNA, the services within
network addressable units (NAUs) that control network
operation through SSCP-SSCP, SSCP-PU, and SSCP-LU
sessions. See configuration services, maintenance
services, management services, and session services.

network services (NS) header. In SNA, a 3-byte field in
a function management data (FMO) request/response
unit (RU) flowing in an SSCP-LU, SSCP-PU, or
SSCP-SSCP session. The network services header is
used primarily to identify the network services category
of the request unit (RU) (for example, configuration ser­
vices, session services) and the particular request
code within a category.

NMVT. Network management vector transport.

NNT. NetView-NetView task.

node. (1) In SNA, an endpoint of a link or junction
common to two or more links in a network. Nodes can
be distributed to host processors, communication con­
trollers, cluster controllers, or terminals. Nodes can
vary in routing and other functional capabilities. See
boundary node, host node, peripheral node, and
subarea node (including illustration). (2) In VTAM, a
point in a network defined by a symbolic name. See
major node and minor node.

node name. In VTAM, the symbolic name assigned to
a specific major or minor node during network defi­
nition.

node type. In SNA, a designation of a node according
to the protocols it supports and the network address­
able units (NAUs) that it can contain. Five types are
defined: 1,2.0,2.1,4, and 5. Type 1, type 2.0, and type

2.1 nodes are peripheral nodes; type 4 and type 5
nodes are subarea nodes. See also type 2.1 node.

no response. In SNA, a value in the
form-of-response-requested field of the request header
(RH) indicating that no response is to be returned to the
request, whether or not the request is received and
processed successfully. Contrast with definite
response and exception response.

NPOA. Network Problem Determination Application.

NPS. Network product support.

NS. Network services.

OCCF. Operator Communication Control Facility.

online. Stored in a computer and accessible from a
terminal.

open. (1) In the IBM Token-Ring Network, to make an
adapter ready for use. (2) A break in an electrical
circuit.

operand. (1) (ISO) An entity on which an operation is
performed. (2) * That which is operated upon. An
operand is usually identified by an address part of an
instruction. (3) Information entered with a command
name to define the data on which a command
processor operates and to control the execution of the
command processor. (4) An expression to whose
value an operator is applied. See also definition state­
ment, keyword, keyword parameter, and parameter.

operator. (1) In a language statement, the lexical
entity that indicates the action to be performed on oper­
ands. (2) A person who operates a machine. See
network operator. See also definition statement.

Operator Communication Control Facility (OCCF). A
licensed program that allows communication with and
the operation of remote MVS or VSE systems.

operator profile. In the NetView program, the
resources and activities a network operator has control
over. The statements defining these resources and
activities are stored in a file that is activated when the
operator logs on.

operator station task (OST). The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task
for each network operator who logs on to the NetView
program. See NetView-NetView task.

OST. Operator station task.

pacing. In SNA, a technique by which a receiving com­
ponent controls the rate of transmission of a sending
component to prevent overrun or congestion. See

session-level pacing, send pacing, and virtual route
(VR) pacing. See also flow control.

pacing group. In SNA, (1) The path information units
(PIUs) that can be transmitted on a virtual route before
a virtual-route pacing response is received, indicating
that the virtual route receiver is ready to receive more
PIUs on the route. Synonymous with window. (2) The
requests that can be transmitted on the normal flow in
one direction on a session before a session-level
pacing response is received, indicating that the
receiver is ready to accept the next group of requests.

pacing group size. In SNA, (1) The number of path
information units (PIUs) in a virtual route pacing group.
The pacing group size varies according to traffic con­
gestion along the virtual route. Synonymous with
window size. (2) The number of requests in a
session-level pacing group.

pacing response. In SNA, an indicator that signifies a
receiving component's readiness to accept another
pacing group; the indicator is carried in a response
header (RH) for session-level pacing, and in a trans­
mission header (TH) for virtual route pacing.

page. (1) The portion of a panel that is shown on a
display surface at one time. (2) To move back and
forth among the pages of a multiple-page panel. See
also scroll. (3) (ISO) In a virtual storage system, a
fixed-length block that has a virtual address and that
can be transferred between real storage and auxiliary
storage. (4) To transfer instructions, data, or both
between real storage and external page or auxiliary
storage.

panel. (1) A formatted display of information that
appears on a terminal screen. See also help panel and
task panel. Contrast with screen. (2) In computer
graphics, a display image that defines the locations and
characteristics of display fields on a display surface.

parameter. (1) (ISO) A variable that is given a con­
stant value for a specified application and that may
denote the application. (2) An item in a menu for
which the user specifies a value or for which the
system provides a value when the menu is interpreted.
(3) Data passed to a program or procedure by a user
or another program, namely as an operand in a lan­
guage statement, as an item in a menu, or as a shared
data structure. See also keyword, keyword parameter,
and operand.

partitioned data set (POS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

path. (1) In SNA, the series of path control network
components (path control and data link control) that are
traversed by the information exchanged between two
network addressable units (NAUs). See also explicit

Glossary 259

route (ER), route extension, and virtual route (VR).
(2) In VTAM when defining a switched major node, a
potential dial-out port that can be used to reach that
node. (3) In the NetView/PC program, a complete line
in a configuration that contains all of the resources in
the service pOint command service (SPCS) query link
configuration request list.

path control (PC). The function that routes message
units between network addressable units (NAUs) in the
network and provides the paths between them. It con­
verts the BIUs from transmission control (possibly seg­
menting them) into path information units (PIUs) and
exchanges basic transmission units (BTUs) and one or
more PIUs with data link control. Path control differs
for peripheral nodes, which use local addresses for
routing, and subarea nodes, which use network
addresses for routing. See peripheral path control and
subarea path control. See also fink, peripheral node,
and subarea node.

path control (PC) layer. In SNA, the layer that
manages the sharing of link resources of the SNA
network and routes basic information units (BIUs)
through it. See also BIU segment, blocking of PIUs,
data link control layer, and transmission control layer.

path control (PC) network. In SNA, the part of the SNA
network that includes the data link control and path
control layers. See SNA network and user application
network. See also boundary function.

path information unit (PIU). In SNA, a message unit
consisting of a transmission header (TH) alone, or of a
TH followed by a basic information unit (BIU) or a BIU
segment. See also transmission header.

PC. (1) Path control. (2) Personal Computer. Its full
name is the IBM Personal Computer.

PCID. Procedure-correlation identifier.

performance error. Synonym for temporary error.

peripheral host node. A node that provides an applica­
tion program interface (API) for running application
programs but does not provide SSCP functions and is
not aware of the network configuration. The peripheral
host node does not provide subarea node services. It
has boundary function provided by its adjacent
subarea. See boundary node, host node, node, periph­
eral node, subarea host node, and subarea node. See
also boundary function and node type.

peripheral LU. In SNA, a logical unit representing a
peripheral node.

peripheral node. In SNA, a node that uses local
addresses for routing and therefore is not affected by
changes in network addresses. A peripheral node
requires boundary-function assistance from an adja­
cent subarea node. A peripheral node is a physical

260 NetView Customization: Assembler

unit (PU) type 1, 2.0, or 2.1 node connected to a
subarea node with boundary function within a subarea.
See boundary node, host node, node, peripheral host
node, subarea host node, and subarea node. See also
boundary function and node type.

peripheral path control. The function in a peripheral
node that routes message units between units with
local addresses and provides the paths between them.
See path control and subarea path control. See also
boundary function, peripheral node, and subarea node.

peripheral PU. In SNA, a physical unit representing a
peripheral node.

permanent error. A resource error that cannot be
resolved by error recovery programs. Contrast with
temporary error.

Personal Computer (PC). The IBM Personal Computer
line of products including the 5150 and subsequent
models.

physical connection. In VTAM, a point-to-point con­
nection or multipoint connection. Synonymous with
connection.

physical unit (PU). In SNA, a type of network address­
able unit (NAU). A physical unit (PU) manages and
monitors the resources (such as attached links) of a
node, as requested by a system services control point
(SSCP) through an SSCP-PU session. An SSCP acti­
vates a session with the physical unit in order to indi­
rectly manage, through the PU, resources of the Flode
such as attached links. See also peripheral PU and
subarea PU.

physical unit (PU) services. In SNA, the components
within a physical unit (PU) that provide configuration
services and maintenance services for SSCP-PU ses­
sions. See also logical unit (LU) services.

PLU. Primary logical unit.

POI. Programmed operator interface.

positional operand. An operand in a language state­
ment that has a fixed position. See also definition
statement. Contrast with keyword operand.

positive response. A response indicating that a
request was received and processed. Contrast with
negative response.

POST. Power-on self test. A series of diagnostic tests
that are run each time the computer's power is turned
on.

PPT. Primary POI task.

presentation services command processor (PSCP). In
the NetView program, a facility that processes requests

from a user terminal and formats displays to be pre­
sented at the user terminal.

primary half-session. In SNA, the half-session that
sends the session activation request. See also primary
logical unit. Contrast with secondary half-session.

primary logical unit (PLU). In SNA, the logical unit (LU)
that contains the primary half-session for a particular
LU-LU session. Each session must have a PLU and
secondary logical unit (SLU). The PLU is the unit
responsible for the bind and is the controlling LU for
the session. A particular LU may contain both primary
and secondary half-sessions for different active LU-LU
sessions. Contrast with secondary logical unit (SLU).

primary POI task (PPT). The NetView subtask that
processes all unsolicited messages received from the
VTAM program operator interface (POI) and delivers
them to the controlling operator or to the command
processor. The PPT also processes the initial
command specified to execute when the NetView
program is initialized and timer request commands
scheduled to execute under the PPT.

problem determination. The process of identifying the
source of a problem; for example, a program compo­
nent, a machine failure, telecommunication facilities,
user or contractor-installed programs or equipment, an
environment failure such as a power loss, or a user
error.

procedure-correlation Identifier (PCID). In SNA, a
value used by a control point to correlate requests and
replies.

profile. In the Conversational Monitor System (CMS)
or the group control system (GCS), the characteristics
defined by a PROFILE EXEC file that executes automat­
ically after the system is loaded into a virtual machine.
See also operator profile.

programmed operator. A VTAM application program
that is authorized to issue VTAM operator commands
and receive VTAM operator awareness messages. See
also solicited messages and unsolicited messages.

programmed operator interface (POI). A VT AM func­
tion that allows programs to perform VTAM operator
functions.

protection key. An indicator that appears in the
current program status word whenever an associated
task has control of the system. This indicator must
match the storage keys of all main storage locks that
the task is to use.

protocol. (1) (CCIITIITU) A specification for the
format and relative timing of information exchanged
between communicating parties. (2) (TC97) The set of
rules governing the operation of functional units of a

communication system that must be followed if commu­
nication is to be achieved. (3) In SNA, the meanings of,
and the sequencing rules for, requests and responses
used for managing the network, transferring data, and
synchronizing the states of network components. See
also bracket protocol. Synonymous with line control
discipline and line discipline. See also link protocol.

PSCP. Presentation services command processor.

PU. Physical unit.

public network. A network established and operated
by communication common carriers or telecommuni­
cation Administrations for the specific purpose of pro­
viding circuit-switched, packet switched, and
leased-circuit services to the public. Contrast with
user-application network.

PU-PU flow. In SNA, the exchange between physical
units (PUs) of network control requests and responses.

receive pacing. In SNA, the pacing of message units
that the component is receiving. See also send pacing.

RECFMS. Record formatted maintenance statistics.

RECMS. Record maintenance statistics.

record. (1) (ISO) In programming languages, an
aggregate that consists of data objects, possibly with
different attributes, that usually have identifiers
attached to them. In some programming languages,
records are called structures. (2) (TC97) A set of data
treated as a unit. (3) A set of one or more related data
items grouped for processing. (4) In VTAM, the unit of
data transmission for record mode. A record repres­
ents whatever amount of data the transmitting node
chooses to send.

record formatted maintenance statistics (RECFMS). A
statistical record built by an SNA controller and usually
solicited by the host.

record maintenance statistics (RECMS). An SNA error
event record built from an NCP or line error and sent
unsol icited to the host.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks. For example,
the 3710 Network Controller routines may be reentrant.

regular command. In the NetView program, any VTAM
or NetView command that is not an immediate
command and is processed by a regular command
processor. Contrast with immediate command.

release. For VTAM, to relinquish control of resources
(communication controllers or physical units). See also
resource takeover. Contrast with acquire (2).

Glossary 261

remote. Concerning the peripheral parts ot a network
not centrally linked to the host processor and generally
using telecommunication lines with public right-ot-way.

remove. In the IBM Token-Ring Network, to take an
attaching device off the ring.

REQMS. Request for maintenance statistics.

request for maintenance statistics (REQMS). A host
solicitation to an SNA controller for a statistical data
record.

request header (RH). In SNA, control information pre­
ceding a request unit (RU). See also request/response
header (RH).

request parameter list (RPL). In VTAM, a control block
that contains the parameters necessary for processing
a request for data transfer, for establishing or termi­
nating a session, or for some other operation.

request unit (RU). In SNA, a message unit that con­
tains control information, end-user data, or both.

request/response header (RH). In SNA, control infor­
mation, preceding a request/response unit (RU), that
specifies the type of RU (request unit or response unit)
and contains control information associated with that
RU.

request/response unit (RU). I.n SNA, a generic term for
a request unit or a response unit. See also request unit
(RU) and response unit.

reset. On a virtual circuit, reinitialization of data flow
control. At reset, all data in transit are eliminated.

resource. (1) Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the proc­
essing unit, data sets, and control or processing pro­
grams. (2) In the NetView program, any hardware or
software that provides function to the network.

resource takeover. In VTAM, action initiated by a
network operator to transfer control of resources from
one domain to another. See also acquire (2) and
release. See takeover.

response. A reply represented in the control field of a
response frame. It advises the primary or combined
station of the action taken by the secondary or other
combined station to one or more commands. See also
command.

response header (RH). In SNA, a header, optionally
followed by a response unit (RU), that indicates
whether the response is positive or negative and that
may contain a pacing response. See also negative
response, pacing response, and positive response.

262 NetView Customization: Assembler

response time. (1) The amount of time it takes after a
user presses the enter key at the terminal until the
reply appears at the terminal. (2) For response time
monitoring, the time from the activation of a transaction
until a response is received, according to the response
time definition coded in the performance class.

response unit (RU). In SNA, a message unit that
acknowledges a request unit; it may contain prefix
information received in a request unit. If positive, the
response unit may contain additional information (such
as session parameters in response to Bind Session), or
if negative, contains sense data defining the exception
condition.

Restructured Extended Executor (REXX). An interpre­
tive language used to write command lists.

return code. * A code [returned from a program] used
to influence the execution of succeeding instructions.

REXX. Restructured Extended Executor.

RH. Request/response header.

route. See explicit route and virtual route.

route extension (REX). In SNA, the path control
network components, including a peripheral link, that
make up the portion of a path between a subarea node
and a network addressable unit (NAU) in an adjacent
peripheral node. See also path, explicit route (ER) and
virtual route (VR).

routing. The aSSignment of the path by which a
message will reach its destination.

RPL. Request parameter list.

RPL exit routine. In VTAM, an application program exit
routine whose address has been placed in the EXIT
field of a request parameter list (RPl). VTAM invokes
the routine to indicate that an asynchronous request
has been completed. See EXLST exit routine.

RU. Request/response unit.

RU chain. In SNA, a set of related request/response
units (RUs) that are consecutively transmitted on a par­
ticular normal or expedited data flow. The request RU
chain is the unit of recovery: if one of the RUs in the
chain cannot be processed, the entire chain is dis­
carded. Each RU belongs to only one chain, which has
a beginning and an end indicated by means of control
bits in request/response headers within the RU chain.
Each RU can be deSignated as first-in-chain (FIC),
last-in-chain (lIC), middle-in-chain (MIC), or
only-in-chain (OIC). Response units and expedited-flow
request units are always sent as only-in-chain.

same-domain. Refers to communication between enti­
ties in the same SNA domain. Contrast with
cross-domain. See also single-domain network.

scope of commands. In the NetView program, the
facility that provides the ability to assign different
responsibilities to various operators.

screen. An illuminated display surface; for example,
the display surface of a CRT or plasma panel. Contrast
with panel.

scroll. To move all or part of the display image verti­
cally to display data that cannot be observed within a
single display image. See also page (2).

SOLC. Synchronous Data link Control.

secondary half-session. In SNA, the half-session that
receives the session-activation request. See also sec­
ondary logical unit (SLU). Contrast with primary
half-session.

secondary logical unit (SLU). In SNA, the logical unit
(LU) that contains the secondary half-session for a par­
ticular LU-LU session. An LU may contain secondary
and primary half-sessions for different active LU-LU
sessions. Contrast with primary logical unit (PLU).

secondary logical unit (SLU) key. A key-encrypting key
used to protect a session cryptography key during its
transmission to the secondary half-session.

segment. (1) In the IBM Token-Ring Network, a
section of cable between components or devices on the
network. A segment may consist of a single patch
cable, multiple patch cables connected together, or a
combination of building cable and patch cables con­
nected together. (2) See link connection segment.

send pacing. In SNA, pacing of message units that a
component is sending. See also receive pacing.

sequence number. A number assigned to a particular
frame or packet to control the transmission flow and
receipt of data.

Service Level Reporter (SLR). A licensed program that
generates management reports from data sets such as
System Management Facility (SMF) files.

service point (SP). An entry pOint that supports appli­
cations that provide network management for
resources not under the direct control of itself as an
entry point. Each resource is either under the direct
control of another entry point or not under the direct
control of any entry point. A service point accessing
these resources is not required to use SNA sessions
(unlike a focal point). A service point is needed when
entry point support is not yet available for some
network management function.

service reminder (SR). In the NetView/PC program, a
notification set by the operator that is displayed on a
panel and logs a specified message.

session. In SNA, a logical connection between two
network addressable units (NAUs) that can be acti­
vated, tailored to provide various protocols, and deacti­
vated, as requested. Each session is uniquely
identified in a transmission header (TH) by a pair of
network addresses, identifying the origin and destina­
tion NAUs of any transmissions exchanged during the
session. See half-session, LU-LU session, SSCP-LU
seSSion, SSCP-PU session, and SSCP-SSCP session.
See also LU-LU session type and PU-PU flow.

session awareness (SAW) data. Data collected by the
NetView program about a session that includes the
session type, the names of session partners, and infor­
mation about the session activation status. It is COl­
lected for LU-LU, SSCP-LU, SSCP-PU, and SSCP-SSCP
sessions and for non-SNA terminals not supported by
NTO. It can be displayed in various forms, such as
most recent sessions lists.

session control (SC). In SNA, (1) One of the compo­
nents of transmission control. Session control is used
to purge data flowing in a session after an unrecover­
able error occurs, to resynchronize the data flow after
such an error, and to perform cryptographic verifica­
tion. (2) A request unit (RU) category used for requests
and responses exchanged between the session control
components of a session and for session activation and
deactivation requests and responses.

session-initiation request. In SNA, an Initiate or logon
request from a logical unit (LU) to a control point (CP)
that an LU-LU session be activated.

session-level pacing. In SNA, a flow control technique
that permits a receiver to control the data transfer rate
(the rate at which it receives request units) on the
normal flow. It is used to prevent overloading a
receiver with unprocessed requests when the sender
can generate requests faster than the receiver can
process them. See also pacing and virtual route
pacing.

session monitor. The component of the NetView
program that collects and correlates session-related
data and provides online access to this information.

session services. In SNA, one of the types of network
services in the control point (CP) and in the logical unit
(LU). These services provide facilities for an LU or a
network operator to request that the SSCP initiate or
terminate sessions between logical units. See config­
uration services, maintenance services, and manage­
ment services.

simulated logon. A session-initiation request gener­
ated when a VTAM application program issues a
SIMLOGON macroinstruction. The request specifies a

Glossary 263

logical unit (LU) with which the application program
wants a session in which the requesting application
program will act as the primary logical unit (PLU).

single-domain network. In SNA, a network with one
system services control point (SSCP). Contrast with
multiple-domain network.

SLR. Service Level Reporter.

SLU. Secondary logical unit.

SMF. System management facility.

SNA. Systems Network Architecture.

SNA network. The part of a user-appl ication network
that conforms to the formats and protocols of Systems
Network Architecture. It enables reliable transfer of
data among end users and provides protocols for con­
trolling the resources of various network configura­
tions. The SNA network consists of network
addressable units (NAUs), boundary function compo­
nents, and the path control network.

solicited message. A response from VT AM to a
command entered by a program operator. Contrast
with unsolicited message.

SP. Service point.

span. In the NetView program, a user-defined group of
network resources within a single domain. Each major
or minor node is defined as belonging to one or more
spans. See also span of control.

span of control. The total network resources over
which a particular network operator has control. All
the network resources listed in spans associated
through profile definition with a particular network
operator are within that operator's span of control.

SR. Service reminder.

SS. Start-stop.

SSCP. System services control point.

SSCP-LU session. In SNA, a session between a
system services control point (SSCP) and a logical unit
(LU); the session enables the LU to request the SSCP to
help initiate LU-LU sessions.

SSCP-PU session. In SNA, a session between a
system services control point (SSCP) and a physical
unit (PU); SSCP-PU sessions allow SSCPs to send
requests to and receive status information from indi­
vidual nodes in order to control the network configura­
tion.

SSCP-SSCP session. In SNA, a session between the
system services control point (SSCP) in one domain

264 NetView Customization: Assembler

and the SSCP in another domain. An SSCP-SSCP
session is used to initiate and terminate cross-domain
LU-LU sessions.

SSP. System Support Programs (IBM licensed
program). Its full name is Advanced Communications
Function for System Support Programs. Synonymous
with ACFISSP.

ST. Session configuration screen abbreviation.

start option. In VTAM, a user-specified or
IBM-supplied option that determines certain conditions
that are to exist during the time a VTAM system is
operating. Start options can be predefined or specified
when VTAM is started.

statement. A language syntactic unit consisting of an
operator, or other statement identifier, followed by one
or more operands. See definition statement.

station. (1) One of the input or output pOints of a
network that uses communication facilities; for
example, the telephone set in the telephone system or
the pOint where the business machine interfaces with
the channel on a leased private line. (2) One or more
computers, terminals, or devices at a particular
location.

status monitor. A component of the NetView program
that collects and summarizes information on the status
of resources defined in a VTAM domain.

subarea. A portion of the SNA network consisting of a
subarea node, any attached peripheral nodes, and their
associated resources. Within a subarea node, all
network addressable units, links, and adjacent link
stations (in attached peripheral or subarea nodes) that
are addressable within the subarea share a common
subarea address and have distinct element addresses.

subarea host node. A host node that provides both
subarea function and an application program interface
(API) for running application programs. It provides
system services control point (SSCP) functions,
subarea node services, and is aware of the network
configuration. See boundary node, communication
management configuration host node, data host node,
host node, node, peripheral node, and subarea node.
See also boundary function and node type.

subarea node. In SNA, a node that uses network
addresses for routing and whose routing tables are
therefore affected by changes in the configuration of
the network. Subarea nodes can provide gateway func­
tion, and boundary function support for peripheral
nodes. Type 4 and type 5 nodes are subarea nodes.
See boundary node, host node, node, peripheral node,
and subarea host node. See also boundary function
and node type.

subarea path control. The function in a subarea node
that routes message units between network address­
able units (NAUs) and provides the paths between
them. See path control and peripheral path control.
See also boundary function, peripheral node, and
subarea node.

subarea PU. In SNA, a physical unit (PU) in a s~barea
node.

subsystem. A secondary or subordinate system,
usually capable of operating independent of, or asyn­
chronously with, a controlling system.

supervisor. The part of a control program that coordi­
nates the use of resources and maintains the flow of
processing unit operations.

suppression character. In the NetView program, a
user-defined character that is coded at the beginning of
a command list statement or a command to prevent the
statement or command from appearing on the opera­
tor's terminal screen or in the network log.

Synchronous Data Link Control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link con­
nection. Transmission exchanges may be duplex or
half-duplex over switched or nonswitched links. The
configuration of the link connection may be
point-to-point, multipoint, or loop. SDLC conforms to
subsets of the Advanced Data Communication Control
Procedures (ADCCP) of the American National Stand­
ards Institute and High-Level Data Link Control (HDLC)
of the International Standards Organization.

system management facility (SMF). A standard feature
of MVS that collects and records a variety of system
and job-related information.

system services control point (SSCP). In SNA, a
central location point within an SNA network for man­
aging the configuration, coordinating network operator
and problem determination requests, and providing
directory support and other session services for end
users of the network. Multiple SSCPs, cooperating as
peers, can divide the network into dOf!\ains of control,
with each SSCP having a hierarchical control relation­
ship to the physical units and logical units within its
domain.

system services control point (SSCP) domain. The
system services control point and the physical units
(PUs), logical units (LUs), links, link stations and all the
resources that the SSCP has the ability to control by
means of activation requests and deactivation
requests.

Systems Network Architecture (SNA). The description
of the logical structure. formats, protocols, and opera­
tional sequences for transmitting information units

through and controlling the configuration and operation
of networks.

System Support Programs (SSP). An IBM licensed
program, made up of a collection of utilities and small
programs, that supports the operation of the NCP.

TAF. Terminal access facility.

takeover. The process by which the failing active sub­
system is released from its extended recovery facility
(XRF) sessions with terminal users and replaced by an
alternate subsystem. See resource takeover.

task. A basic unit of work to be accomplished by a
computer. The task is usually specified to a control
program in a multiprogramming or multiprocessing
envi ronment.

task panel. Online display from which you communi­
cate with the program in order to accomplish the pro­
gram's function, either by selecting an option provided
on the panel or by entering an explicit command. See
help panel.

telecommunication line. Any physical medium such as
a wire or microwave beam, that is used to transmit
data. Synonymous with transmission line.

temporary error. A resource failure that can be
resolved by error recovery programs. Synonymous
with performance error. Contrast with permanent
error.

terminal. A device that is capable of sending and
receiving information over a link; it is usually equipped
with a keyboard and some kind of display, such as a
screen or a printer.

terminal access facility (TAF). In the NetView
program, a facility that allows a network operator to
control a number of subsystems. In a full-screen or
operator control session, operators can control any
combination of such subsystems simultaneously.

TERMINATE. In SNA, a request unitthat is sent by a
logical unit (LU) to its system services control point
(SSCP) to cause the SSCP to start a procedure to end
one or more deSignated LU-LU sessions.

TH. Transmission header.

threshold. In the NetView program, refers to a per­
centage value set for a resource and compared to a
calculated error-to-traffic ratio.

threshold analysiS and remote access. (1) A compo­
nent of the NetView program that can notify a central
operator about network problems and errors. It pro­
vides remote control of IBM 3600 and 4700 controllers
and can record, analyze, and display performance and
status data on IBM 3600 and 4700 Finance Communi-

Glossary 265

cations Systems. (2) The feature of the back-level
NPDA licensed program that performs some of these
functions.

time sharing option (TSO). An optional configuration of
the operating system that provides conversational time
sharing from remote stations.

token. A sequence of bits passed from one device to
another along the token ring. When the token has data
appended to it, it becomes a frame.

transmission control (TC) layer. In SNA, the layer
within a half-session that synchronizes and paces
session-level data traffic, checks session sequence
numbers of requests, and enciphers and deciphers
end-user data. Transmission control has two compo­
nents: the connection point manager and session
control. See also half-session.

transmission header (TH). In SNA, control information,
optionally followed by a basic information unit (BIU) or
a BIU segment, that is created and used by path control
to route message units and to control their flow within
the network. See also path information unit.

transmission line. Synonym for telecommunication
fine.

TSO. Time sharing option.

tutorial. Online information presented in a teaching
format.

type 2.1 node (T2.1 node). A node that can attach to an
SNA network as a peripheral node using the same pro­
tocols as type 2.0 nodes. Type 2.1 nodes can be
directly attached to one another using peer-to-peer pro­
tocols. See end node, node, and subarea node. See
also node type.

type 2.1 node (T2.1 node) control point domain. The
CP, its logical units (LUs), links, link stations, and all
resources that it activates and deactivates.

unformatted. In VTAM, pertaining to commands (such
as LOGON or LOGOFF) entered by an end user and
sent by a logical unit in character form. The
character-coded command must be in the syntax
defined in the user's unformatted system services defi­
nition table. Synonymous with character-coded. Con­
trast with field-formatted.

unformatted system services (USS). In SNA products,
a system services control point (SSCP) facility that
translates a character:..coded request, such as a logon
or logoff request into a field-formatted request for proc­
essing by formatted system services and translates
field-formatted replies and responses into
character-coded requests for processing by a logical
unit. Contrast with formatted system services. See
also converted command.

266 NetView Customization: Assembler

un interpreted name. In SNA, a character string that a
system services control point (SSCP) is able to convert
into the network name of a logical unit (LU). Typically,
an uninterpreted name is used in a logon or Initiate
request from a secondary logical unit (SLU) to identify
the primary logical unit (PLU) with which the session is
requested.

unsolicited message. A message, from VTAM to a
program operator, that is unrelated to any command
entered by the program operator. Contrast with solic­
ited message.

upstream. In the direction of data flow from the end
user to the host. Contrast with downstream.

user. Anyone who requires the services of a com­
puting system.

user-application network. A configuration of data proc­
essing products, such as processors, controllers, and
terminals, established and operated by users for the
purpose of data processing or information exchange,
which may use services offered by communication
common carriers or telecommunication Adminis­
trations. Contrast with public network.

user exit. A point in an IBM-supplied program at which
a user routine may be given control.

user exit routine. A user-written routine that receives
control at predefined user exit pOints. User exit rou­
tines can be written in assembler or a high-level lan­
guage (HLL).

USS. Unformatted system services.

value. (1) (TC97) A specific occurrence of an attri­
bute, for example, "blue" for the attribute "color." (2) A
quantity assigned to a constant, a variable, a param­
eter, or a symbol.

variable. In the NetView program, a character string
beginning with & that is coded in a command list and is
assigned a value during execution of the command list.

vector. The MAC frame information field.

verb. (1) In SNA, the general name for a transaction
program's request for communication services. (2) In
VTAM, a programming language element in the logical
unit (LU) 6.2 application program interface (API) that
causes an LU 6.2 function to be performed.

Virtual Machine (VM). A licensed program whose full
name is the Virtual Machine/System Product (VM/SP).
It is a software operating system that manages the
resources of a real processor to provide virtual
machines to end users. As a time-sharing system
control program, it consists of the virtual machine
control program (CP), the conversational monitor

system (CMS), the group control system (GCS), and the
interactive problem control system (IPCS).

virtual route (VR). In SNA, a logical connection (1)
between two subarea nodes that is physically realized
as a particular explicit route, or (2) that is contained
wholly within a subarea node for intranode sessions. A
virtual route between distinct subarea nodes imposes a
transmission priority on the underlying explicit route,
provides flow control through virtual-route pacing, and
provides data integrity through sequence numbering of
path information units (PIUs). See also explicit route
(ER), path, and route extension.

virtual route (VR) pacing. In SNA, a flow control tech­
nique used by the virtual route control component of
path control at each end of a virtual route to control the
rate at which path information units (PIUs) flow over the
virtual route. VR pacing can be adjusted according to
traffic congestion in any of the nodes along the route.
See also pacing and session-level pacing.

virtual route selection exit routine. In VTAM, an
optional installation exit routine that modifies the list of
virtual routes associated with a particular class of
service before a route is selected for a requested
LU-LU session.

virtual storage. (ISO) The notion of storage space that
may be regarded as addressable main storage by the
user of a computer system in which virtual addresses
are mapped into real addresses. The size of virtual
storage is limited by the addressing scheme of the
computer system and by the amount of auxiliary
storage available, not by the actual number of main
storage locations.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

Virtual Storage Extended (VSE). An IBM licensed
program whose full name is the Virtual Storage
Extended/Advanced Function. It is a software oper­
ating system controlling the execution of programs.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VM. Virtual Machine operating system. Its full name is
Virtual Machine/System Product. Synonymous with
VM/SP.

VM SNA console support (VSCS). A VTAM component
for the VM environment that provides Systems Network
Architecture (SNA) support. It allows SNA terminals to
be virtual machine consoles.

VM/SP. Virtual Machine/System Product operating
system. Synonym for VM.

VR. Virtual route.

VSAM. Virtual Storage Access Method.

VSCS. VM SNA console support.

VSE. Virtual Storage Extended operating system. Syn­
onymous with VSE/AF.

VSE/AF. Virtual Storage Extended/Advanced Function
operating system. Synonym for VSE.

VSE/OCCF. Virtual Storage Extended/Operator Com­
munication Control Facility.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program). Its full name is Advanced
Communications Function for the Virtual Telecommuni­
cations Access Method. Synonymous with ACF/VTAM.

VTAM application program. A program that has
opened an ACB to identify itself to VTAM and can now
issue VTAM macroinstructions.

VTAM operator command. A command used to
monitor or control a VTAM domain. See also definition
statement.

window. (1) In SNA, synonym for pacing group.
(2) On a visual display terminal, a small amount of
information in a framed-in area on a panel that over­
lays part of the panel. (3) In data communication, the
number of data packets a data terminal equipment
(DTE) or data circuit-terminating equipment (DCE) can
send across a logical channel before waiting for
authorization to send another data packet. The window
is the main mechanism of pacing, or flow control, of
packets.

window size. (1) The specified number of frames of
information that can be sent before receiving an
acknowledgment response. (2) In SNA, synonym for
pacing group size.

Glossary 267

268 NetView Customization: Assembler

Bibliography

NetView Publications

Learning About NetView: Operator Training
(SK2T-0292) is an interactive PC-based operator
training package that teaches SNA and basic network
management concepts to new and inexperienced
NetViewoperators. This training package uses
graphics, animation and interactive NetView product
simulations in a series of lessons to teach the basics of
NetView operation.

NetView Installation and Administration Guide
(SC31-6018) helps system programmers install and
prepare the NetView program for operation. It is
arranged in a simplified, step-by-step style and is
meant to be used in conjunction with the sample
network documented in Network Program Products
Samples.

NetView Administration Reference (SC31-6014) is for
system programmers and network operators who need
a complete understanding of the NetView resource defi­
nition statements. This book lists each statement in
alphabetical order giving its purpose and location.

NetView Tuning Guide (SC31-6079)6 describes methods
for controlling and improving the performance of the
NetView Release 3 program. It is designed for system
programmers who need to understand how NetView
tuning values are determined and optimized.

NetView Customization Guide (SC31-6016) is designed
for system programmers and others who want to cus­
tomize the NetView program to reflect their network's
needs or operating procedures. This book focuses on
the different application programming interfaces that
can be customized and explains how to modify NetView
help panels and problem determination displays.

NetView Customization: Using PLII and C (SC31-6037)
describes the ways system programmers can tailor the
NetView program to satisfy unique requirements or
operating procedures. It discusses the uses and
advantages of user-written programs (exit routines,
command processors, and subtasks). It also provides
instructions in designing, writing, and installing user­
written programs in PLII and C.

NetView Customization: Using Assembler (SC31-6078)
describes the ways system programmers can tailor the
NetView program to satisfy unique requirements or
operating procedures. It discusses the uses and

6 This guide will be available in July 1989.

© Copyright IBM Corp. 1989

advantages of user-written programs (exit routines,
command processors, and subtasks). It also provides
instructions in designing, writing, and installing user­
written programs in Assembler.

NetView Customization: Writing Command Lists
(SC31-6015) explains how to simplify network operator
tasks by using command lists. It provides step-by-step
instructions for writing simple and advanced command
lists and for migrating from NCCF message automation
to NetView message automation.

NetView Operation Primer (SC31-6020) provides a
basic description of the network management task for
new network operators. Topics include starting and
stopping a network, controlling resources, monitoring a
network, and gathering the necessary data to report a
problem.

NetView Operation (SC31-6019) provides system pro­
grammers and experienced network operators a com­
prehensive explanation of network management using
the NetView program. TopiCS include detailed
command explanation and panel flows, as well as infor­
mation on how the various components interact with
each other.

NetView Command Summary (SX75-0026) is a refer­
ence card that provides network operators with the
format of all the commands and the commonly used
NetView command lists. The commands are listed in
alphabetical order by component.

NetView Problem Determination and Diagnosis
(L Y43-0001) aids system programmers in identifying a
NetView problem, classifying it, and describing it to an
IBM Support Center.

NetView Problem Determination Supplement for Man­
agement Services Major Vectors 0001 and 0025
(LD21-0023), describes major vectors 0001 and 0025 for
system programmers and network operators involved
in problem determination or diagnosis. The supple­
ment may be used for the generic alert option and
other problem determination tasks.

NetView Resource Alerts Reference (SC31-6024) lists
the messages sent by NetView-supported hardware
and software resources. It helps system programmers
analyze the messages into their component parts:
action codes, event types, message text, and qualifiers.
The book is a reference for those who need more infor­
mation than online help provides.

Bibliography 269

NetView Storage Estimates (SK2T-1988) is an interac­
tive PC-based tool that helps the user estimate storage
requirements for Netview. This tool can be used for
planning, installation, and tuning purposes. It is
intended for network planners, system programmers,
and IBM service personnel.

Console Automation Using NetView: Planning
(SC31-6058) describes an approach to automate the
way a system handles messages and responses to
alerts. It includes information you should know before
beginning such automation, as well as sample plans
and proposals you might find useful in promoting your
automation concept. This book includes planning infor­
mation for MVS, VM, and VSE users of the NetView
program.

NetView/PC Publications

NetView/PC Planning, Installation, and Customization
(SC31-6002) provides planning, installation, and
customization information on NetView/PC and explains
the communication requirements upstream to the host
and downstream to supported devices. Information
relating to the required PC environment and host pro­
ducts that support NetView/PC is also provided. It also
discusses topics that are of general interest when you
are ordering your equipment.

NetView/PC Application Program
Interface/Communications Services Reference
(SC31-6004) is a reference for OS/2 programmers who
use the APIICS and for system programmers who write
command processors to run under NetView. The APIICS

provides a means for vendor and other external appli­
cations to use the communication services of
NetView/PC.

NetView/PC Operation (SC31-6003) describes how to
operate the program and diagnose problems in
NetView/PC.

NetView/PC Quick Reference (SX75-0016) describes all
of the functions of the F-keys throughout the
NetView/PC program.

Other Network Program
Products Publications

For more information about the books listed in this
section, see Bibliography and Master Index for
NefView, NCP, and VTAM.

Network Program Products General Information
(GC30-3350)

7 This book will be available by December 1989.

270 NetView Customization: Assembler

Network Program Products Planning (SC30-3351)

Network Program Products Samples (SC30-3352)

Bibliography and Master Index for NetView, NCP, and
VTAM (GC31-6081)7

VT AM Publications

The following list shows the books for VTAM V3R2. For
information about the books for VTAM V3R1, V3R1.1. or
V3R1.2, see any VTAM V3R2 book or the Network Program
Products Bibliography and Master Index.

VT AM Installation and Resource Definition (SC23-0111)

VTAM Customization (L Y30-5614)

VTAM Directory of Programming Interfaces for Cus­
tomers (GC31-6403)

VTAM Operation (SC23-0113)

VTAM Messages and Codes (SC23-0114)

VTAM Programming (SC23-0115)

VTAM Programming for LU 6.2 (SC30-3400)

VTAM Diagnosis Guide (L Y30-5601)

VT AM Data Areas for MVS (L Y30-5592)

VT AM Data Areas for VM (L Y30-5593)

VTAM Data Areas for VSE (LY30-5594)

VTAM Reference Summary (L Y30-5600)

NCP, SSP, and EP Publications

The following list shows the related books for NCP V4

and NCP V5.

NCP, SSP, and EP Generation and Loading Guide
(SC30-3348)

NCP, SSP, and Related Products Directory of Program­
ming Interfaces for Customers (GC31-6202)

NCP Migration Guide (SC30-3252 for NCP V4 and
SC30-3440 for NCP V5)

NCP, SSP,and EP Resource Definition Guide
(SC30-3349 for NCP V4 and SC30-3447 for NCP V5)

NCP, SSP, and EP Resource Definition Reference
(SC30-3254 for NCP V4 and SC30-3448 for NCP V5)

NCP and EP Reference Summary and Data Areas
(L Y30-5570 for NCP V4 and L Y30-5603 for NCP V5)

NCP Customization Guide (L Y30-5571 for NCP V4
L Y30-5606 for NCP V5)

NCP Customization Reference (L Y30-5612 for NCP V4
and L Y30-5607 for NCP V5)

SSP Customization (LY43-0021)

NCP, SSP, and EP Messages and Codes (SC30-3169)

NCP, SSP, and EP Diagnosis Guide (L Y30-5591)

NCP and EP Reference (L Y30-5569 for NCP V4 and
L Y30-5605 for NCP V5)

Related Publications

VMISP System Product Interpreter Reference or TSOIE
REXX Reference (SC28-1883) (referred to in this book
as REXX Reference.)

IBM 360014700 Threshold Analysis and Remote Access
Feature: General Information (GC34-2055)

IBM 360014700 Threshold Analysis and Remote Access
Feature: User's Guide (SC34-2056)

IBM 360014700 Threshold Analysis and Remote Access
Feature: Installation and Customization (SC34-2041)

Bibliography 271

272 NetView Customization: Assembler

Index

A
ABEND reinstate routine 64, 190,203
ABEND (abnormal end) reinstate routine 70
ABLDMSG 228
ACALLCM D 228
ACB 88
action messages 67
ADATTIM 227
addressing mode (AMODE) 10
AID key 62
AIFR control block 133

routing list 139
usage notes 140

alert generation 32, 43
ALiSTMEM 227
alternate screen size 62
AMLWTO 227
AMSGMOD 227
AOPTTSK 228
APSSFULL 228
argument list 110
ART 26
ART control block 120
ARTCBH field 120
ARTENTRY field 120
ARTIND field 120
ARTNAME field 120
ARTPOS 27
ARTSDEF field 120
ARTT ABLE field 120
ASEQLOG 227, 238
assembler

advantages of 3
ASSIGN command 35
ASYPANEL 197
ASYPANEL ECB 62
ATMPCMDP 227
ATMPUXIT 228
authorization and resource table 26
authorization and routing table 120
authorization and routing table (ART) 206, 209
authorized receiver 185
AUTH=CNM 88
automated operation

testing of 4
automation 7
automation internal function request 133

routing list 139
usage notes 140

autotask 4
AUTOTASK command 7
AWRTLOG 227

© Copyright IBM Corp. 1989

AXITVN 227

B
BFRFLG field 186
BNJMISC data set 167
BNJPALEX user exit 32,43
BNJPNL 1 data set 167
BNJPNL2 data set 167
break STIFLE mode 67
BSAM

empty file 32, 44
output 32,44

buffer header 121
buffer header (BUFHDR) 14
buffer structure

automation internal function request 60
BUFHDR control block 11,121

C
CANCEL 197
CBH control block 126
CBHID field 126
CBHLENG field 126
CBHTYPE field 126
CLOSE NORMAL command 85
CMDMDL statement 4,55,84
CNM 45
CNM data services 217
CNM interface 217

input 32,44
output 32,46

CNM router 132
CNMPNL 1 data set 167
CNMS4202 227
CNMS4270 227
CNMS4271 227
CNMS4272 227
CNMS4273 227
CNMS4274 227
CNMS4275 227, 238
CNMS4276 227
CNMS4277 228
CNMS4278 228
CNMS4279 228
CNMS4280 228
CNMS4281 228
CNMS4282 228
CNMS4283 228, 229
combination command processor 56
command buffer

sample code 61

Index 273

command entry services 163
command interaction 3
command processors

calling 22
cancel 57
combination 56
DSCP 55
failures 57
FSCP 61
immediate 55
input/output 57
installation 71
purpose of 55
regular 55
RESET 56,57
return codes 57
template for 71-75
TVBINXIT 56
unattended and console operator task 56

command work block 127
command work block (CWB) 57

how to obtain and release 13
COMPCDE keyword 65,67,190
connect to a data set 167
control block header 126
control block services 162
control blocks

accessed by command processors 58, 59
AIFR (automation internal function request) 133
alphabetical listing 157
ART (authorization and routing table) 120
BUFHDR (buffer header) 121
CBH (control block header) 126
CWB (command work block) 127
DSB (data service block) 128
DSIMVT (exit 16 interface data) 144
DSRB (data services request block) 129
ELB (external logging block) 131
focal point transfer RU header 132
for a user subtask 81
for command processors 11
for user exit routines 11
for user subtasks 11
for user-written programming 12
how to establish addressability 13
how to include 11
IFR (internal function request) 133
LOGDS (NetView log DSECT) 141
MVT (main vector table) 142
OIT (operator id table) 145
overview of 10, 12, 119
PDB (parse descriptor block) 146
SCE (system command entry) 147
SCT (system command table) 148
SNT (span name table) 149
SVL (service routine vector list) 150
SWB (service work block) 151
TIB (task information block) 152

274 NetView Customization: Assembler

control blocks (continued)
TVB (task vector block) 154
USE (user exit parameter list) 157
work block services 13

control work block (CWB) 11
cross-domain 32
cross-domain command send 32, 40
cross-domain ECB 62
cross-domain input 36
cross-domain task 25
customization facilities

See NetView Customization Guide
CWB control block 12, 21, 127

as input to command processor 57
CWBADA TD field 127
CWBBUF 21, 64
CWBBUF field 127
CWBDSRB field 90, 91, 127
CWBPDB 21
CWBRCODE field 127,202
CWBSAVEA field 127
CWBSWB 21
CWBSWB field 127
CWBTIB field 21, 127

D
data service block 128
data services command processor (DSCP) 11,55

coding instructions 88
return codes 88
unsolicited 89

data services request block 129
data services request block (DSRB) 11,89, 90
data services, CNM 217
date and time 165
DDNAME 167
defining messages on disk 183
delete user-defined module 166
delimiters 193
disk services 24, 167
display flexibility 3
DSB control block 128
DSBBUFF field 128
DSBREC field 128
DSIART 26
DSICBS macro 162

example of use 13
DSICES macro 22,69, 163
DSICLD data set 167
DSICMD 55, 225
DSIDATIM macro 165
DSIDEL macro 166
DSIDKS macro 9,82, 125, 128, 167

example of use 24
DSIDMN 81
DSIELB control block 47

OSIELTSK 20
OSIEX01 user exit 32, 36
OSIEX02 user exit 18
OSIEX02 user exit (obsolete) 32
OSIEX02A user exit 32,35,36,37,196,229
OSIEX02A user exit (obsolete) 37
OSIEX02Auser exit 228
OSIEX03 user exit 32, 38
OSIEX04 user exit 32, 38
OSIEX05 user exit 32, 39
OSIEX06 user exit 32, 35, 39
OSIEX07 user exit 32, 40
OSIEX08 user exit (obsolete) 32,40
OSIEX09 user exit 32, 40
OSIEX10 user exit 32,41
OSIEX11 user exit 32,35,41
OSIEX12 user exit 32,41
OSIEX13 user exit 32,42
OSIEX14 user exit 32,42
OSIEX16 user exit 18,32,35,36,42
OSIFINO macro 62, 64, 169

example of use 25
DSIFRE AO = YES 85
DSIFRE macro 170

example of use 15,16
DSIGET macro 171

example of use 15, 16
OSIKVS macro 173
DSILCS macro 174

example of use 13
DSILOO macro 177
OSILRCR8 routine 66
OSIMBS macro 16, 178, 183
OSIMOS macro 16, 181
DSIMOS 17
OSIMOS macro 4, 19,69, 84, 94, 185

example of use 18
for scheduling a command 22

OSIMSG data set 167, 183
OSIMVT control block 144
OSIOIS 26
OSIOIS macro 188
OSIPARM data set 81, 167
OSIPAS macro 189
OSIPOP macro 62,64, 190
OSIPOS macro 192
DSIPRF data set 167
OSIPRS macro 193
OSIPSS macro 4, 17,25,37, 196

example of use 18
OSIPSS TYPE=

ASYPANEL 61
CANCEL 62
FLASH 67
PSSWAIT 62

OSIPSS with TYPE =
SCRSIZE 62
TESTWAIT 63

OSIPUSH macro 62, 64, 202
example of use 25
PROMOTE option 69

OSIRDS 26, 27
OSIROS macro 206
OSI RXCOM 207
OSIRXEBS macro 109,208
OSIRXLPD local packages 109
OSIRXUPD user packages 109
OSISSS 27
OSISSS macro 209
OSISYS macro 211
OSITVB field 170
OSIUSROO 228
OSIVTAM data set 167
OSIWAT macro 9,79,82,212
OSIWCS macro 40,213

example of use 17
OSIWLS macro 20,214

example of use 17
with EXTLOG parameter 47

OSIZCSMS macro 88,89,94, 217
OSIZOST 86
DSIZVSMS macro 89, 90, 94, 221
OSI0901 48
DSRB control block 129
OSRB field 217, 221
OSRB major return code 91
OSRB minor return code 91
DSRBCPMS 45
OSRBFNCD field 89,90,91,129
OSRBFNRM 90,91,129
OSRBFSOL 90, 129
OSRBFUNS 89, 129
OSRBFVSM 91,129
OSRBO keyword 89, 91
OSRBRCMA field 89, 90, 91, 129
DSRBRCMI field 89, 90, 91, 130
OSRBTIB field 130
OSRBU keyword 89
OSRBUBUF field 89, 130
DSRBUSER field 90,92,94, 130
DSRBVACB field 92,130
DSRBVDAD field 92, 130
OSRBVECB field 130
OSRBVKEY field 92,130
DSRBVKLN field 92,130
DSRBVRPL field 92, 130
DSRBVRTP field 92, 130
DST initialization 32,46
OST user exit routines 31

concatenated 31,34
DST user exits 31,43-47
OST (data services task) 7

writing
initialization 87
installation 87
overview of 86
processing 88

Index 275

DST (data services task) (continued)
writing (continued)

termination 95
DSTINIT statement 87

E
ECB loop 82, 95
ECB post services 192
ECB wait services 212
ECBLlST field 198
ECHO 71
ELB control block 131
entry specifications 110
ENTRYADR 26
erase/write alternate command 62
erase/write command 62
error recovery 56
establish long running command 202
establish named storage 202
establish resumable command 202
evaluation block (EVALBLOK) 109,111
event control block (ECB) 23
EXECCOMM 207
exit 16 interface data 144
external function parameter list 110
external log 214
external logging 20, 32, 47
external logging block 131
EXTLOG parameter 214

F
find long running command storage 169
find the member 167
FLASH 196
focal point transfer RU header 132
Forward RU 217
free storage 170
FREEMAIN failure 170
full-screen command processor (FSCP)

coding instructions 61
screen formatting 61

FUNCT keyword 87
function package directory 112

G
get an EVALBLOK 208
get storage 171
getting and freeing storage

named storage 25
non-queued storage 15
queued storage 16

global user exit routines 31
global user exits 31, 36-43
group IDs 186

276 NetView Customization: Assembler

H
hard-copy log 214
HCT (hard-copy task) 7
HDRBLENG field 15,122
HDRDOMID field 122
HDRIND field 19, 122
HDRMCEXT field 23,122,186
HDRMLENG field 15,23, 84, 122
HDRMSGLN 122
HDRMTYPE field 121,122
HDRNEXTM field 122
HDRTDISP field 15,23,84, 122
HDRTSTMP field 165
HDRTYPEB 88, 123
HDRTYPEI 23,88,123
HDRTYPEJ 34
HDRTYPEK 34
HDRTYPEL 19,26,34,123
HDRTYPET 22,69,88,124
HDRTYPEU 26,84,124
HDRTYPEX 26, 124
HDRTYPEY 67
HDRTYPQC 88
HIGH priority 186
HLBRC 57

IFR control block 133
IFRAUTBA field 38
IFRAUTBL field 38
IFRCODAI 133
IFRCODAI internal function request 34,37,43
IFRCODCR 133
IFRCODCR buffer 94
IFRCODCR internal function request 23,67
IFRCODE field 84,133
IFRCODUS 84, 133
IMMED 197
immediate command 36
immediate command processor 55
immediate message 197
INIT keyword 81,87
initialization member 81
input/output 57
installation

of command processors 71
internal function request 133
intertask communication 82
IRB exit 9
IRB exits

special requirements for 85
IRXEVALB mapping macro 111
ISTMGC01 default table 89
I/O error occurred 168

K
Kanji language 195
keyword/value services 173

L
LIST command 86
load failure 48
load user-defined module 177
LOGOS control block 141
logging 38
logmode 62
logoff 32, 42
LOGOFF routine 64,70,88,95,190,204
logon validation 32,41
long running command

like a NetView component 56
ROLL 64

long running command processor
coding instructions 64
routines 64

LOSTERM exit 42
LOW priority 186

M
MACF keyword 91
macro usage 9
macros

oSICBS (control block services) 162
oSICES (command entry services) 163
oSloATIM (date and time) 165
oSloEL (delete user-defined module) 166
OSloKS (disk services) 167
oSIFINo (find long running command storage) 169
oSIFRE (free storage) 170
oSIGET (get storage) 171
oSIKVS (keyword/value services) 173
oSILCS (obtain/release control blocks) 174
oSILOo (load user-defined module) 177
oSIMBS (message buffer services) 178
OSIMoS (message definition services) 181
OSIMQS (message queuing services) 185
OSIOIS (operator identification services) 188
oSIPAS (parameter/alias services) 189
OSIPOP (remove long running command) 190
DSIPOS (ECB post services) 192 .
OSIPRS (parsing services) 193
OSIPSS (presentation services) 196
OSIPUSH (establish long running command) 202
OSIRoS (resource definition services) 206
DSIRXCOM (access REXX variables) 207
OSIRXEBS (get an EVALBLOK) 208
DSISSS (search span name table services) 209
OSISYS (operating system indicator) 211
OSIWAT (ECB wait services) 212
OSIWCS (write console services) 213
OSIWLS (write log services) 214

macros (continued)
oSIZCSMS (CNM data services) 217
oSIZVSMS (VSAM data services) 221
notational conventions 161
overview of 161

main vector table 142
major vector key 45
MAXABEND definition statement 142
MEM keyword 81
message

automation 35, 36
deleting 34
inserts 178, 182
logging 20
processing 16,34, 186
replacing 34
requesting reply 67

message buffer 42
message buffer services 178
message definition module

example of 184
message definition services 181
message ECB 62
message queuing services 185
message STIFLE 67
messages

creating 16
messages to authorized receiver 35
MLWTO 138
MLWTO message 18
MNT (main task) 7
MOD keyword 81
MVS console operator task 7, 56
MVS system log 214
MVT 27
MVT control block 12, 142
MVT AlOFT field 144
MVTARTLN field 142
MVTCLOSE field 142
MVTCURAN 142
MVToPRAD 166, 177,212
MVToPRAD field 142
MVTMRC field 142
MVTNCCFQ field 143
MVTSNT field 143
MVTSNTLN field 143
MVTSVL field 143
MVTTOO field 143
MVTTVB field 143
MVTUFLD field 143
MVTVER field 143

N
named storage 25
NetView

buffer structure 14
tasks

OST 7

Index 277

NetView (continued)
tasks (continued)

'HCT 7
MNT 7
NNT 7
OPT 7
OST 7
PPT 7

NetView log DSECT 141
NetView sequential log 214
NetView TRACE facility 4
network log 214
network services request 217
NMVT 45
NNT (NetView - NetView task) 7
non-queued storage 15
NORMAL priority 186

o
obtain/release control blocks 174
OIT 26
OIT control block 145
OITCBH field 145
OITENTRY field 145
OITID field 145
OITIND field 145
OITPOS 27
OITTABLE field 145
operating system indicator 211
operator

input from 32,36
output to 32, 37

operator id table 145
operator identification 188
operator identification services 188
operator identification table 26
OPT

template for 95-106
writing

additional considerations 85
initialization 81
installation 81
overview of 79
processing 82
termination 85

OPT subtask
attaching 81
terminating 85

OPT (optional task) 7
OST (operator station task) 7
OST/NNT message receiver 32,42
OUTPUT 196

p
parameter/alias services 189

278 NetView Customization: Assembler

parse descriptor block 127, 146
PARSE=N

on CMDMDL 94
parsing 24
parsing services 193
PDB control block 11, 12, 21, 24, 146
PDBBUFA 22
PDBBUFA field 146
PDBCMDA field 22,146,189
PDBDISP field 146,194
PDBENTRY field 146
PDBIMMED 146
PDBLENG field 146, 194
PDBNOENT field 146
PDBTYPE field 146, 194
PDDNM keyword 90
performance 3, 31
POI 35
post-message automation table 32, 42
PPASS keyword 91
PPOLOG start option 35, 41
PPT (primary programmed operator interface task) 7
presentation services 196
presenting information

in full-screen mode 18
in standard mode 17
in title-line mode 18

PRI keyword 81,87
PRI option 35
private message queue 83
privileged functions 3
privileged system services 8
problem program state 8
procedure-related ID (PRID) 218
PROMOTE option 204
PSSWAIT 198
public message queue 83

Q
query support 62
queued storage 16, 170, 171

R
RC 57
READ MODIFIED 62
read the next sequential record 167
RECFMS 45
RECMS 45
reentrancy 9
register usage 9
regression support 3
reguLar command 38
regular command processors 55
releasing-queued storage 85
remove long running command 190

Reply RU 219
request unit header

focal pOint transfer 132
request unit (RU) 46
RESET command 66
reset ECB 62
residency mode (RMODE) 10
resource definition services 206
resource span checking 26
response unit (RU) 217
RESUME routine 62, 64, 190, 202
return codes 57

major 90
minor 90
register 15 200

REXX command list 207
REXX user functions

writing 109-115
REXX variables 207
ROLL

function 68
group 64,68
option 204

ROLL command 56
ROUTE command 26
ROUTE-INOP 45
RPL 221

S
samples

descriptions
ABLDMSG (CNMS4278) 228
ACALLCMD (CNMS4280) 228
ADATTIM (CNMS4274) 227
ALiSTMEM (CNMS4276) 227
AMLWTO (CNMS4273) 227
AMSGMOD (CNMS4271) 227
AOPTTSK (CNMS4277) 228
APSSFULL (CNMS4279) 228
ASEQLOG (CNMS4275) 227, 238
ATMPCMDP (CNMS4202) 227
ATMPUXIT (CNMS4282) 228
AWRTLOG (CNMS4272) 227
AXITVN (CNMS4270) 227
DSIEX02A (CNMS4283) 228, 229
DSIUSROO (CNMS4281) 228

examples of
DSIEX02A 229
sequential logging 238

overview of 225
table of 226

SCE control block 12, 147
SCECADDR field 22, 147
SCELNAME field 147
SCERCADR field 147
SCEVERB field 147

scope checking 24, 173
IDs 186
scope of command 173

scope of command
for operator 173

screen identifier 69
screen modes

full-screen 18
standard 17
title-line 18

SCRSIZE 197
SCT control block 148
SDDNM keyword 91
search span name table services 209
SEC option 35
sequential logging 20
service routine vector list 150
service work block 151
service work block (SWB) •

how to obtain and release 13
single quotes 193
SNT 26,27
SNT control block 149
SNTADDR 27
SNTCBH field 149
SNTENTRY field 149
SNTNAME field 149
SNTOPDEF field 149
SNTT ABLE field 149
solicited CNM data interface 89
solicited POI ECB 62
span authority checking 188
span checking 26
span name table 26,149
span name table (SNT) 209
SPASS keyword 91
special data handling 3
storage services 15
SUB field 193
subtask organization 80
supervisor state 8
SUPPRESS 42
SVL control block 12, 150
SWB control block 11, 12, 21, 151
SWBADATD field 151
SWBFRCPO 190
SWBLRCAB field 204
SWBLRCFG field 204
SWBLRCLG field 204
SWBLRCLN field 169,190,203
SWBLRCNM field 169, 190, 203
SWBLRCPL field 151
SWBLRCPU 203
SWBLRCRE field 204
SWBLRCST field 204
SWBPLIST field 151
SWBSAVEA field 151

Index 279

SWBTIB field 13,21,151
system command entry 147
system command table 148
system console

input from 32,41
output to 32, 40

system packages 109

T
task information block 152
task name 87
task priority 81, 87
TASK statement 81
task vector block 154
task vector block (TVB) 81
TASKA field 170, 172
TASKA parameter 16
template

for an opttonal task 95-106
for command processors 71-75

terminal input
simulating 22

termination ECB 62
TESTW AIT 198
TIB control block 12, 152
TIBACB field 152
TIBAPIO field 152
TIBAPWO field 152
TIBAREA1 field 152
TIBBlINK 152
TIBClROF field 152
TIBClR# field 152
TIBECBPO field 152
TIBEOATO field 152
TIBEl T field 152
TIBEXlST field 152
TIBHlITE field 152
TIBlRCNP 66,152
TIBMSGNM field 152
TIBMUXIT field 85, 152
TIBNOATO field 152
TIBOSlST field 152
TIBREVRS 152
TIBSAVEE field 152
TIBSAVES field 152
TIBSCRIO field 66,69, 153
TIBSCRM 70
TIBSCRM subfield 153
TIBSCRSN 69
TIBSCRSN subfield 153
TlBTVB field 153
TIBUFlO field 153
TIBUNSCR 152
TIBXECB field 153
title-li~e output 19
TPENO exit

for VTAM 86

280 NetView Customization: Assembler

tracing 38
TRAP 35,42
TSKIO keyword 81,87
TVB control block 11, 12, 154
TVBABENO 64, 156
TVBABlOG 155
TVBACTV 82,85,155
TVBAJlFR field 57, 155
TVBAUTOO 56, 71, 156
TVBAUTVE 86, 156
TVBAUTVS 86,156
TVBHCUSE field 155
TVBINXIT 8,9,36,37,40,43,55,85,155,196
TVBlGOFF 86,155
TVBlGON 86, 155
TVBlOGOF 64, 156
TVBlUNAM 82
TVBlUNAM field 156
TVBMECB field 79,82, 154
TVBMECBH field 82,154
TVBMECBl field 82,154
TVBMEMNM field 82, 156
TVBMM 82
TVBMOONM field 156
TVBMPRIO field 83,154
TVBMPROH field 83,154
TVBMPROl field 83, 154
TVBMPUBH field 83, 154
TVBMPUBl field 83, 154
TVBMPUBO field 83, 154
TVBMVT field 154
TVBNEXT field 154
TVBOPIO field 69, 82, 85, 156
TVBPRIO field 155
TVBRCVAI 155
TVBRCVRY 86, 155
TVBRESET 56, 66, 155
TVBRESTE 66
TVBRESUM 64, 156
TVBTCB field 155
TVBTECB field 63, 79, 82, 85, 155
TVBTERM 81,85,155
TVBTIB field 155
TVBUFlO field 156
TVBVClOS 155

U
unattended and console operator task 56

MVS console operator task 56
unattended operator task 7
unbalanced quotes 194
UNSOl keyword 89
unsolicited CNM data interface 89
USE control block 11, 12, 157

as input to ,user exit routine 33
USEOSRB field 157

USENPSWD field 157
user exit parameter list 157
user exit routines

designing and coding
control blocks 36
input/output 33

DST 31
global 31
installing 48
overview of 31
template for 48-52

user exits
DST 31
global 31
list of 32
sample 229
summary of 36-47
task envi ronment 32
unused 48

user memory protection key 8
user subtasks

writing
DST as base 79
OPT as base 79

user-written functions
designing

See NetView Customization Guide
overview of 109

user-written programming
coding guidelines 8
how to test your program 4

USERASIS return code 33, 38, 49, 88
USERCODE 157
USERDROP return code 31,33,34,38,49,88
USERHCL return code 39
USERHCLR return code 39
USERHCPY field 157
USERLGON field 157
USERLOG return code 39
USERLOGR return code 39
USERLU field 158
USERMSG buffer 38, 43

as input to user exit routine 33
USERMSG field 158
USEROPID field 158
USERPDB field 158
USERPROF field 157
USERPSWD field 157
USERSWAP return code 33,38,49,88
USERSWB field 158
USERTVB field 158

V
VALCLASS checking 173
variables

in user-written code 9

VIEW command 3
VSAM

data services 221
empty file 32,47
input 32,46
1/0 services 221
key 221
output 32, 47
service interface 90

VSAM ENDREQ request 92
VSAM ERASE request 92
VSAM GET request 92
VSAM POINT request 92
VSAM PUT request 92
VTAM

command invocation 32,39
solicited messages 32, 39
unsolicited messages 32,41

W
wait for completion of an event 212
WINDOW 197
work block services 13
write console services 213
write log services 214

X
XITBN user exit 32, 44
XITBO user exit 32, 44
XITCI user exit 32, 44
XITCO user exit 32, 46
XITDI keyword 87
XITDI user exit 32,46
XITVI keyword 91
XITVI user exit 32,46
XITVN keyword 91
XITVN user exit 32, 47
XITVO keyword 91
XITVO user exit 32, 47
XITXL user exit 32, 47
XSEND 25, 197

Numerics
3270 data stream 62
3270 data stream commands 197

Special Characters
&RETCODE 57
&WAIT 35,42

Index 281

/

Reader's Comment Form

NetVlew™
Customizatlon:· Using Assembler
Release 3

Publication No. SC31-6078-1

This manual is part of a library that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. You may use this form to
communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to
you.

Note: . Copies of IBM Publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are: clarity, accuracy, completeness, organization,
coding, retrieval, and legibility.

Comments:

What is your occupation?

If you wish a reply, give your name, company, mailing address, and date:

Thank you for your cooperation. No postage stamp necessary if mailed in the
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your
comments or you may mail directly to the address in the Edition Notice on the back
of the title page.)

SC31-6078-1

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

Fold and tape

--------- -----.--- - ---- - ------------,-(p)

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E15
P.O. Box 12195
Research Triangle Park, N.C. 27709-9990

Pleas. Do Not Stapl.

Fold and tape

'11· ~~~~::::;
IF MAILED

IN THE
UNITED STATES

Fold and tape

