
Systems 

GC27 -6995-0 
File No. 5370-30 

VTAM 
Application Programmer's 
Reference Manual 

Virtual Telecommunications 
Access Methods (VTAM) 

For Planning Purposes Only 



First Edition (April 1973) 

The material in this manual is preliminary and should be used for planning purposes only. 
Changes will be made to the information herein and will be reported in subsequent revisions 
or technical newsletters. 

Requests for copies of IBM publications should be made to your IBM representative or to 
the IBM branch office serving your locality. 

A form has been provided at the back of this pUblication for reader's comments. If the 
form has been removed, address comments to the IBM Corporation, Department 643, 
Neighborhood Road, Kingston, N.Y. 12401 

© Copyright International Business Machines Corporation, 1973 



Preface 

This book is a catalog of the macro instructions that allow new programs to use the 
Virtual Telecommunications Access Method (VT AM). It provides those who will be 
coding such programs an opportunity to study. the form and scope of these macro 
instructions before VTAM becomes available. 

With few exceptions, VTAM macro instructions can be coded without regard for 
the particular operating system (DOS/VS, OS/VSl, or OS/VS2) under which the 
program will be running. Those exceptions are clearly identified in the macro 
instruction descriptions. . 

The first section of this book explains in a general way the services provided by 
VT AM for the new program, and indicates the macro instructions that are used to 
request them. 

The second section contains detailed descriptions of each macro instruction, 
arranged in alphabetic order. Each description is presented in a fixed format, and 
standard conventions are used throughout to indicate how the macro instructions 
are to be coded. The section begins with an explanation of these conventions and 
an illustration showing how the macro instruction descriptions are arranged. 

The appendixes indicate line control characters operated on by VT AM, and 
describe macro completion information provided by VT AM. The appendixes are 
followed by a glossary and an index. The index includes page numbers for all of the 
macro instruction operands and all of the fixed values that can be supplied with the 
operands. 

The reader must be familiar with Introduction to VT AM and with those parts of 
the OS/VS and DOS/VS Assembler Language that explain the rules for coding 
assembler expressions. The reader should also be familiar with the characteristics of 
the devices with which the program will be communicating, with the line-control 
discipline (start- stop or binary synchronous) that will be used with each one, and 
with teleprocessing concepts in general. 

Note: This edition of the VTAM Language Reference Manual is' to be used for 
planning purposes only. This means that any portion of this book's content is 
subject to change. 

iii 



Contents 

iv 

Part 1: The VT AM Language . . . . . . . . 
Services Provided Through the VT AM Language 
,How the VT AM Language is Used 

Preparing Control Blocks 
Opening the ACB ..... 
Connecting Terminals . . . . 
Communicating with Terminals 
DO and LDO 

Part II: Macro Instructions 
How Macro Instructions are Described 

The Assembler Format Table 
Operand Descriptions . . . 
Examples ....... . 
Return of Status Information 

The Macro Instruction Descriptions 
ACB - Create an Access Method Control Block 
CHANGE -- Change NIB's PROC Options or USERFLD Data 
CHECK - Check Request Status ........... . 
CLOSE - Close One or More ACBs . . . . . . . . . . . 
CLSDST - Disconnect a Terminal from the Application Program 
DO - Initiate LDO - specified I/O Operations 
EXLST - Create an Exit List .............. . 
GENCB - Generate a Control Block 
INQUIRE - Obtain Terminal Information on Application Program Status 
INTRPRET - Interpret a Logon Message ..... . 
LDO - Create a Logical Device Order . . . . . . . . 
MODCB - Modify the Contents of Control Block Fields 
NIB - Create a Node Initialization Block 
OPEN - Open one or more ACBs . . . . . . . 
OPNDST - Establish Connection with Terminals 
READ - Read Data into Program Storage 
RESET - Cancel an I/O Operation 
RPL - Create a Request Parameter List 
SETLOGON - Reset an ACB's Logon Status 
SHOWCB - Extract the Contents of Control Block Fields 
SIMLOGON - Generate a Simulated Logon Request . 
SOLICIT - Obtain Data From a Terminal ..... . 
TESTCB - Test the Contents of a Control Block Field . 
WRITE - Write a Block of Data from Program Storage to a Terminal 

Appendix A: Interpreting the Feedback Field . . . . . . . . . . . 

Appendix B: Line Control Characters Recognized or Sent by VTAM Macro 
Instructions. . . . . . . . . . . . 

Appendix C: Summary of Control Block Field Usage 

Glossary 

Index . 

1 
2 
3 
4 
4 
6 
7 

11 
11 
11 
14 
IS 
IS 
15 
16 
19 
21 
23 
25 
28 
30 
40 
44 
48 
51 
57 
60 
69 
72 
77 
81 
84 

.102 

.104 

.109 
· 111 
.114 
.119 

· 123 

· 127 

· 131 

· 137 

· 141 



Figures 

Figure 1. Using SOLICIT, READ, and WRITE to Communicate with a 
Terminal ... . . . . . . . . . . . . . . . . . . . 8 

Figure 2. Macro Instructions Follow a Fixed Arrangement ..... 12 
Figure 3. The Effect of BLOCK, MSG, TRANS, and CONT on Solicitation 64 
Figure 4. Devices Applicable For Each NIB Processing Option . . 68 
Figure 5. RPL Fields Applicable to the Macro Instructions that can 

Modify RPLs .............. . 101 
Figure 6. Control Block Fields Applicable for SHOWCB . 108 

v 





Part I: The VTAM Language 

The Virtual Telecommunications Access Method (VT AM) provides a program 
running under a virtual storage operating system with the ability to communicate 
with the terminals of a telecommunications network. The VTAM language 
described in this book is the set of macro instructions that are available to request 
this communication. 

VTAM provides a mechanism by which a program can read, write, or perform other 
I/O operations with a terminal. As the next section shows, however, the 
communication provided by VT AM involves more than the straightforward transfer 
of data between a program and a terminal. 

What exactly then does the VT AM language provide? 

Services Provided Through the VT AM Language 
The program using VTAM can request that VTAM perform or initiate the following 
actions; the macro instruction used to request each one is shown in parentheses. 

Obtain data from one or a group of terminals, and move the data into VT AM 
buffers. Repeat this action until a specified amount of data has been received 
(SOLICIT). 

Move data from VTAM buffers to an area in program storage - either using 
data previously obtained from a specified terminal or using data previously 
obtained from any terminal (READ). 

Obtain data from a specific terminal and move it directly into an area in 
program storage (READ). 

Move data from an area in program storage to a specified terminal (WRITE). 

Automatically follow an output operation with an input operation (WRITE). 

Erase all or the unprotected portion of a 3270 display unit (WRITE). 

Read the entire contents of a 3270 display unit buffer (DO, LDO). 

Copy the contents of a remotely attached 3270 display unit buffer into the 
buffer of another remotely attached display unit or printer (DO, LDO). 

Send a negative or positive acknowledgement accompanied by leading graphic 
characters to a 3735 terminal or to a System/3 or System/370 CPU (DO, 
LDO). 

Cancel an I/O operation prematurely; reset an error lock set for a device 
(RESET). 

Check the completion status of any of the above activities (CHECK). 

The I/O and I/O-related facilities listed above can be used by a program only after 
certain preparation has taken place. 

Control blocks must be built that describe the specific nature of the I/O operation 
to be performed. Since VT AM allows terminals to be us~d first by one program, 
then by another, connection between the program and the terminal must be 
established before any I/O activity can take place. The connection operation itself 
needs control blocks that describe the specific nature of that operation. 



The following VT AM services prepare for and support subsequent I/O activity. 

Create a control block that describes tpe parameters of a connection or I/O 
operation (RPL). 

Create a control block that identifies the program to VTAM and the 
telecommunications network (ACB). 

Create a control block containing entry points for routines to be entered 
when certain events occur - such as attention interruptions, hardware errors, 
or a terminal's request for connection to the program (EXLST). 

For each terminal, create a control block that contains information that will 
affect subsequent communication with that terminal (NIB). 

Change the information in the above control block, once the control block is 
in use (CHANGE). 

Generate any of the above control blocks during program execution rather 
than during program assembly; optionally generate them in dynamically 
allocated storage (GENCB). 

Test, extract, or modify the parameters contained in these control blocks 
(TESTCB, SHOWCB, MODCB). 

Open the control block that identifies the program to VT AM and the 
telecommunications network, and optionally allow terminals to request 
connection to the program (OPEN). 

Establish connection with a terminal or with a group of terminals (OPNDST). 

Simulate a terminal's request for connection, so that a user-written routine 
that handles such requests will be invoked (SIMLOGON). 

Notify VT AM that the application program is no longer accepting logon 
requests, or indicate that the application program is once again accepting 
logon requests (SETLOGON). 

Obtain the device characteristics or the logon message of a terminal 
requesting connection, find out how many terminals are currently connected 
to the program and how many are waiting to become connected, or 
determine the availability of other application programs (INQUIRE). 

Translate a terminal's logon message into the name of an application program, 
as defined by the installation (INTRPRET). 

Disconnect a terminal from the program; optionally request that the 
disconnected terminal be connected to another program (CLSDST). 

Disconnect all terminals from the program, and close the control block that is 
used to identify the program to VTAM and the telecommunications network 
(CLOSE). 

How the VT AM Language Is Used 

2 

There is no single, predetermined way to code a program that uses VTAM. 
Although there are many different ways that the program can be written, four 
things are true of all such programs: 

1. Every program must lay the groundwork for communication. with its 
terminals. This preparation deals exclusively with the building of control 
blocks and the setting of various fields within them. All control blocks need 
not be built at one time. Preparation includes the subsequent manipulation of 
these control block fields. 



Preparing Control Blocks 

2. Every program must activate a control block that identifies the program to 
VT AM and the teleprocessing network before the following steps can be 
performed. This activity involves opening an access method control block. 

3. Every program must request connection between itself and a terminal before 
it can communicate with that terminal. 

4. When the above actions have been completed, the program can engage in 
communication with its connected terminals. 

There are four VTAM control blocks that are used by the program during opening, 
connection, and communication. 

Access Method Control Block (ACB). Serves as a link between VTAM and the 
connection and communication requests that refer to it, thus providing the program 
access to the VT AM programs that will process these requests. The ACB can also 
prOvide terminals throughout the teleprocessing network with access to the 
program. To a terminal user, the ACB in effect represents the application program 
with which it interacts. A program can use several ACBs, but from the point of view 
of the terminal user, each ACB is a different application program. 

Exit List (EXLST). Contains the addresses of user-written routines that are to 
receive control when certain types of events occur, such as I/O errors, logon 
requests, and attention interruptions. 

Request l!arameter List (RPL). Describes the characteristics of a desired connection 
or communication operation. Since the RPL contains information related to only 
one specific request, the program will likely modify a given RPL many times or 
establish many different RPLs. 

Node Initialization Block (NIB). Identifies a terminal and provides various 
parameters that govern all communication requests directed at that terminal. 

ACB, EXLST, RPL, and NIB macro instructions are used to build their respective 
confrol blocks during program assembly. A GENCB macro instruction is available 
to generate any of these four control blocks during program execution - optionally 
in dynamically allocated storage. 

Most of the fields in these control blocks are set by the program to tell VT AM how 
to perform an action; others are set by VTAM to inform the application program 
what happened when the action was performed. Some work both ways. 

The displacements of each field within each control block need not concern the 
programmer, since a set of macro instructions are provided to manipulate any of 
the fields. The way these macro instructions (SHOWCB, TESTCB, and MOOCB) are 
used to manipulate a field is quite similar to the way the ACB, EXLST, RPL, NIB, 
and GENCB macro instructions are used to set the fields of the control block when 
it is built. An example illustrates not only what this similarity is, but also illustrates 
an important concept of field naming: 

If AREALEN=IOO is specified in an RPL macro instruction (or a GENCB 
macro instruction), an RPL is built and a particular field within it is set to the 
value 100. That field is called the AREALEN field throughout all VT AM 
documentation. 

If FIELDS=AREALEN is coded in a SHOWCB macro instruction, the content 
of this same field is moved to a designated area in program storage. Coding 
AREALEN=lOO in a TESTeB macro instruction causes the contents of this 

3 



Opening the ACB 

OPEN 

.. -
ACB 

I 

--+--il"'~AP P l 
entry 

Connecting Terminals 

4 

field to be compared with the value 100 and the PSW condition code to be 
set accordingly. And if AREALEN=100 is coded in a MODCB macro 
instruction, the value 100 is set in that field. 

So: The name of any control block field is synonymous with the keyword 
(the characters to the left of the equal sign) of the operand used to build that 
field. It will be useful to remember this principle when using the macro 
instruction descriptions in this book. 

This step requires an ACB (and usually an exit list); it is implemented with the 
OPEN macro instruction. 

Before an application program can use VTAM, an entry representing that program 
must be included in the resource definition table during VTAM definition (this 
entry is generated by the installation). Later, when the program is running, it must 
indicate to VTAM that it is the program represented by that entry. The program 
does so by creating and opening an ACB that indicates the APPL entry. 

If the installation includes a password when it defines the APPL entry, the program 
must include that password in the ACB being opened. 

Terminal users who want to become connected to the application program must 
cite the APPL entry name (or what amounts to an alias of it, as defined by the 
installation in a logon characteristics table) in their logon request. If the ACB 
associated with that name has been successfully opened, the application program 
represented in the logon request is active. 

If the program is to handle logon requests in a routine that will automatically be 
invoked when. the request occurs, the ACB must point to an exit list (EXLST). The 
exit list must in turn indicate the address of this routine. (The exit list can indicate 
a variety of other routines as well - routines that will be invoked when errors or 
other special conditions arise during program execution.) The task of this routine 
(called the LOGON exit list routine) is to evaluate the logon request to determine 
whether connection should be established between the program and the terminal, 
and to request VTAM to perform that connection. OPEN not only allows terminals 
to commence issuing logon requests, but can also cause VTAM to issue logon 
requests on behalf of certain terminals. (During VTAM definition, the insblllation 
can indicate that it wants VT AM to automatically generate logon requests for 
specified terminals when the application opens its ACB.) 

When a program is finished processing, it closes the ACB with a CLOSE macro 
instruction. CLOSE causes any connected terminals to be disconnected. Once the 
ACB has been closed, the ACB and the portion of the program represented by it 
ceases to exist as far as the rest of the telecommunications network is concerned. 

All of the activity associated with opening an ACB is performed solely for the 
purpose of preparing for connection. 

Connection requires an RPL and a NIB, in addition to the ACB required for 
opening. Connection is requested with the OPNDST (open destination) macro 
instruction. 



'OPNDST 

~ACB 

RPL 
-

NIB .. 

When OPNDST is issued, an RPL is indicated that in turn points to a NIB. 
Depending on the type of OPNDST used, the NIB may in turn indicate the 
symbolic name of the terminal that is to be connected. 

There are two different ways to establish connection: 

1. The application program takes the initiative and establishes connection with a 
specified terminal. Here the termina1's symbolic name is known to the 
application program. This process is called acquiring a terminal. 

The application program establishes a NIB (node initialization block) in 
which it identifies the terminal's symbolic name and indicates along with it a 
variety of options that will affect I/O operations performed with that 
terminal. An OPNDST macro instruction is issued, and the terminal is 
connected. 

An option of the NIB macro instruction allows the programmer to group 
NIBs together so that a request to connect the first in the group is interpreted 
by VT AM as a request to connect all. These groups are called NIB lists. 

2. The application program can let terminals take the initiative and establish 
connection only when terminals issue logon requests or when VT AM issues 
logon requests on behalf of a terminal. This process is called accepting a 
terminal. This activity can take place in a LOGON exit list routine, invoked 
after the ACB has been opened. (A terminal cannot directly ask VT AM to 
connect it to the program. The terminal can only ask that the program in turn 
request VTAM to connect the terminal and the program.) 

When the LOGON exit list routine is invoked, it is supplied with the symbolic 
name of the terminal. Using this name, the routine can determine whether or 
not connection should be established (that is whether or not OPNDST should 
be issued). 

The application program can employ several macro instructions that do not directly 
request connection, but instead request operations that are related to connection: 

The . INQUIRE macro instruction can be used to obtain information about 
terminals that are either already connected, or have issued logon requests and 
are candidates for connection. This information includes logon messages and 
device characteristics. 

The SIMLOGON macro instruction can be employed to use the LOGON exit 
list routine to connect terminals that have not issued logon requests. 
SIMLOGON generates a logon request as though the terminal had issued one, 
which causes the LOGON exit list routine to be invoked. This makes 
SIMLOGON essentially a macro instruction that allows the application 
program to use its terminal-accepting mechanism (LOGON exit list routine) 
for the purpose of acquiring terminals. 

As long as terminals continue to generate logon requests, VT AM queues these 
requests until they are satisfied by the program. The SETLOGON macro 
instruction causes VT AM to stop queuing new logon requests. OS/VS 1 and 
OS/VS2 users can use a variation of SETLOGON to resume the queuing of 
logon requests. 

The CHECK macro instruction either causes program execution to stop until 
a connection is completed, or it causes user-written routines to be invoked 
when a connection operation is completed unsuccessfully. 

5 



Communicating with Terminals 

Any I/O 
Macro 

6 

.. 

~ACB 

RPL 

Disconnection is provided by the CLSDST (close destination) macro instruction. 
An option of CLSDST allows the program to disconnect a terminal, generate a 
logon request for the terminal, and send that request on to another program. The 
effect of this option is to pass a terminal from one program to another. 

Connection, and all the activity associated with it, is simply the prerequisite for 
communication. 

Communication requires an RPL, in addition to the ACB that is required for 
connection. Communication· - the performance of I/O and I/O-related operations 
between the program and a terminal - is requested via a set of macro instructions. 
Each macro instruction points to an RPL, which contains fields describing the exact 
nature of the operation to be performed and the identity of the terminal with 
which it is to be performed. 

VT AM allows the program to both transfer data back and forth between itself and a 
terminal and perform related I/O operations like erasing terminal buffers. 

Tne programmer must take into account the physical characteristics of the terminal 
with which his program is communicating. Specifically, anyone coding programs for 
VT AM must be aware of: 

All the device control characters that will come from, or that must be sent to, 
each terminal. 

The length of the data that will be received from, or can be sent to, each 
terminal. 

The functions available in each terminal, so that actions that cannot be 
accomplished by the terminal will not be requested or expected. 

This kind of information can be found in the component description manuals for 
each terminal. A list of the devices supported by VTAM is contained in Figure 4 
located in the description of the NIB macro instruction. 

The bulk of a typical application program's communication requests will likely 
consist of these three macro instructions: 

SOLICIT, READ, and WRITE. 

The SOLICIT macro instruction initiates the polling and data transfer activity 
required to obtain data from a terminal, as well as the returning of responses 
required to repeat the process until a designated amount of data has been received. 
The data is stored in VT AM buffers where it is available for transfer to program 
storage by the READ macro instruction. 

Data can be solicited from a specific terminal, or it can be solicited from all 
connected terminals. Mter a solicited terminal responds, and while the application 
program procee~ to read from and write to it, SOLICIT continues to solicit data 
from other terminals. 

RPL fields govern the identity of the terminals; fields set in each terminal's NIB 
during connection govern the extent of the solicitation to be performed - that is, 
whether SOLICIT obtains a block of data, a message, or a transmission. 

The READ macro instruction causes data in VT AM buffers (brought there as a 
result of a previous solicit operation) to be transferred to a deSignated storage area 



in the program. READ can be used to obtain data from any terminal from which 
data has already been solicited, or it can be used to obtain data from a specified 
terminal. When the latter is done and no data has yet been solicited from that 
terminal, VTAM causes a solicit operation to be performed first. Fields set in the 
RPL establish the identity of the terminal from which the data is to be read and 
indicate the location in the program where the data is to be placed. 

The WRITE macro instruction writes a block of data from program storage to a 
specific terminal. Fields set in the RPL identify the terminal, the location and 
amount of data to be sent, and indicate whether end-of-block, end-of-message, or 
end-of-transmission line control characters are to be inserted. Other RPL fields 
implement optional variations of WRITE, such as erasing the screen of an 
alphameric display device or automatically following the write operation with a 
read operation. 

Figure I provides a simple example of how a program might use SOLICIT, READ, 
and WRITE macro instructions. 

The application program can employ several macro instructions that do not directly 
reque~t communication, but instead request operations that are related to 
communication: 

The INQUIRE macro instruction obtains device characteristics of connected 
terminals. The program can use this information to set certain options in that 
terminal's NIB; this establishes the proper options for all communication with 
that terminal when OPNDST is issued. 

Should the application program alter the information represented in a 
terminal's NIB after OPNDST has been issued, the CHANGE macro 
instruction is used to make these alterations effective. 

The RESET macro instruction cancels pending I/O operations, cancels I/O 
operations that are in progress, or resets error locks set for a specific terminal. 

The CHECK macro instruction can he used to either stop program execution 
until a given I/O operation is completed, or to invoke user- written routines if 
the I/O operation is completed with an error. (CHECK also supports 
connection requests.) 

DOandLDO 
By using DO and LDO macro instructions, the application program can perform 
certain specific I/O operations like copying the contents of a 3270 display unit 
buffer to a 3270 printer buffer, or reading the contents of a 3270 display unit 
before the terminal operator presses the ENTER function key. 

To request these operations, the VTAM user creates a control block called an LOO 
(logical device order) with the LDO macro instruction, and then issues a DOmacro 
instruction to initiate the operation indicated in the LDO. (The DO macro 
instruction points to an RPL, which in turn must be set to point to the LDO.) 

LDOs can be grouped together to indicate a sequence of operations to be 
performed. In both form and manner of use, LDOs resemble the channel commands 
words of a channel program. 

7 



The program issues a SOLICIT 
macro instruction to sol icit data 
from T1, T2, and T3. It also 
issues a READ macro to retrieve 
the first data that SOLICIT 
obtains. 

T2 responds, and SOLICIT brings 
T2's data into the VTAM buffer. 
The pending READ then moves 
the data into the program's 
storage area. 

The program INiites data to T2. 

Note that SOLICIT continues to 
solicit data from T1 and T3 (but 
not T2). 

The program issues a READ macro I 
instruction specifically directed at 
T2. Meanwhile T3 responds to 
SOLICIT. 

The program concludes its commu­

nication with T2 and issues a new 

READ. This brings into program 

storage the data SOLICIT obtained 
from T3. The program can then 
engage in communication with T3, 
just as it did with T2. Eventually a 
new SOLICIT will be required to 

restart the solicitation of the term­
inals that have already responded. 
(The application program need not 

wait until it has serviced all the 
terminals before resoliciting data 
from them. A better procedure is 
to resolicit each terminal - OPTCD= 
SPEC for the SOLICIT request - as 
soon as each terminal is serviced.) 

Program VTAM 
I/O Area Buffers 

READ 

(OPTCD 
= ANY) 

READ ... 
., 

(OPTCD 
=ANY) 

L.-t 

I""" 

WRITE 

READ 

(OPTeD = SPEC) 

SOLICIT 

Figure 1. Using SOLICIT, READ, and WRITE to Communicate with a Terminal 

8 

TERMINALS 

T1 ----
I T2 ~ 

I T3 



The part of the LDO that indicates the operation to be performed is called the LDO 
command. The LDO commands are shown below, with descriptions of the actions 
they represent. The other parts of an LDO are a pointer to data to be sent (or data 
area where data is to be received), an indication of the length of the data or data 
area, and an indicator that can chain the LDO to another LOO. 

COPYLBM 
Copies the contents of a 3270 display unit buffer into the buffer of any 
printer or display unit attached to the same control unit. VTAM sends the 
data as a message (that is, VTAM ends the data with an ETX line control 
character ). 

COPYLBT 
Operates like COPYLBM, except that VT AM sends the data as a transmission 
(that is, VTAM ends the data with an ETX character, waits for an 
acknowledgement, and then sends an EOT character). 

READ 
Obtains a block of data from a 3735 terminal or from a System/3 or 
System/370 CPU. The REAO LOO obtains data in the same manner as the 
READ macro instruction. When combined with a WRTPRLG or WRTNRLG 
LOO, however, the application program can send acknowledgments to the 
device that include leading graphic characters. 

READBUF 
Obtains the entire contents of a 3270 display unit buffer and places it in 
program storage. (An ordinary READ macro instruction obtains data only 
after the terminal operator has pressed the ENTER key.) 

WRITE 
Sends a block of data to a 3735 terminal or to a System/3 or System/370 
CPU. When WRITE is preceded by a WRTHDR LOO, VTAM prefixes the 
block of data with a user-supplied heading block. 

WRITELBM 
Operates like the WRITE LOO, except that the data is ended with an ETX 
character instead of an ETB character. A WRITELBM LOO can also be 
preceded by a WRTHOR LOO to include a heading block with the data. 

WRITELBT 
Operates like the WRITELBM LOO, except that VTAM waits for the device 
to acknowledge receipt of the data and then sends an EOT character. A 
WRITELBT LDO can also be preceded with a WRTHOR LDO to include a 
heading block with the data. 

WRTHDR 
Sends a block of user-provided heading characters to a 3735 terminal or to a 
System/3 or System/370 CPU. VTAM inserts an SOH character at the 
beginning, and an ETB character at the end. If a WRTHDR LOO is combined 
with a WRITE, WRITELBM, or WRITELBT LDO, however, the ETB 
character is not inserted, and the heading block is combined with the text 
block. 

9 



10 

WRTNRLG 
Sends a negative response (NAK) to a 3735 terminal or to a System/3 or 
System/370 CPU. The response can be accompanied by up to seven user­
specified leading graphic characters. This LDO must be followed by a READ 
LDO (to obtain the data re-sent by the device). 

WRTPRLG 
Sends a positive response (ACKO or ACKl) to a 3735 terminal or to a 
System/3 or System/370 CPU. As with the WRTNRLG LDO, the user can 
specify up to seven leading graphic characters to be sent with the response. 
The WRTPRLG LDO must also be followed by a READ LDO (to obtain the 
next block of data -- or EOT character - sent by the device). 



Part II: Macro Instructions 

This part describes the macro instructions that enable a program to request the 
services described in Part 1. It begins by telling how these macro instructions are 
described. 

How Macro Insl1Uctions are Described 

The Assembler Format Table 

First, for an understanding of how macro instructions descriptions are arranged in 
this book, look at Figure 2. The balance of this section explains the conventions 
used in this figure. 

Each macro instruction description contains a three-column table that shows how 
the macro instruction is to be coded. Since macro instructions are coded in the 
same format as assembler instructions, the three columns correspond to an 
assembler instruction's name, operation, and operand fields. This table is referred to 
as the macro instruction's assembler format table. 

NAME: The macro instruction name provides a label for the macro instruction. It is 
usually associated with the first executable instruction of the macro expansion 
generated during program assembly. The name, if used, can be specified as any 
symbolic name valid in the assembler 'language. 

OPERATION: This field contains the mnemonic operation code of the macro 
instruction. It is always coded exactly as shown. 

OPERANDS: A given macro instruction's routines generally are capable of 
performing many variations of the macro's basic function. It is through a macro 
instruction's operands that the user can tailor the macro's basic function to meet 
his specific needs. All of the macro instruction's operands are indicated in the 
operands column of the assembler format table. 

Types of Operands: All operands are either keyword or positional operands. Most 
of the VT AM macro instruction operands are keyword operands. 

Keyword operands consist of a fixed character string (the keyword), an equals sign, 
and a value. The presence or absence of the equals sign proVides a quick way to 
distinguish between keyword and positional operands. Keyword operands do not 
have to be coded in the order shown in the operands column. For example, a macro 
having an "AREALEN=length" operand and an "AREA=data area address" oper­
and (as indicated in the operands column) could be coded as either 

AREALEN=132,AREA=WORK 
or 

AREA=WORK,AREALEN= 132 

Keyword operands must be separated by commas. If a keyword operand is omitted, 
the commas which would have been included with it are also omitted. 

11 



The above instruction is named 
and its basic purpose shown. 

An explanation tells what the 
macro instruction does. 

A table arranged in assembler 
format depicts the manner in 
which the macro instruction is 
coded. 

The table is followed by 
descriptions of each operand of 
the macro instruction. Each 
operand's function is explained. 
Following the explanation, special 
coding restrictions, examples of 
use, and special programming 
notes may appear. 

The operand descriptions are 
followed by an example of the 
macro instruction. 

The location of returned 
information is specified here, and 
the meaning of the returned 
information is explained. 

Example 

Return of Status Information 

Figure 2. Macro Instruction Descriptions Follow a Fixed Arrangement 

12 



Positional operands must be coded in exactly the order shown in the operands 
column. Positional operands are separated by commas, as are all operands, but if a 
positional operand is omitted, the surrounding commas must still be entered. For 
example, consider a macro that has three positional operands A, B, and C. If all 
three are used, they are coded as ... 

A,B,C 

but if only A and C are wanted, they are coded as ... 

A"C 

If the last positional operand or operands are omitted, the trailing comm~ or 
commas need not be coded. 

An operand field might contain both positional and keyword operands. In this case, 
all positional operands must precede any keyword operands: 

B,C,AREALEN= 132,AREA=WORKAREA 

Operand Notation: A notational scheme is followed in the operands column to 
show how, when, and where operands can be coded. 

A vertical bar (D means 'exclusive or." For example, A' B means that either 
A or B (but not both) should be coded. Such alternatives can also be shown 
aligned vertically, as shown in the next paragraph. 

Braces ({}) are used to group alternative operand values. One of the 
alternative values enclosed with the braces must be chosen. The alternatives 
can be stacked vertically 

TYPE={:T } 
INOUT 

or appear on one line: 

TYPE= { IN lOUT I INOUT} 

Both expressions are equivalent. Note how the vertical bar is used to separate 
alter~ative values that appear on one line. 

An underscored value means that if no value for that operand is selected, the 
macro will be expanded as though the underscored value had been coded. 
This alternative is called the assumed value, or default value. For example: 

TYPE= {INIQ!!!,IINOUT} 

Here, OUT is the assumed value. If the TYPE operand is omitted, 
TYPE=OUT will be assumed by the macro expansion program. 

Brackets ( [ ] ) denote optional operands. In the following example, the 
FORM operand is optional. 

TYPE= {IN rOUT IINOUT} 
[ ,FORM=LG.] 

An ellipsis ( ... ) indicates that the operand value that precedes it can be 
repeated any number of times. An operand appearing as 

STATION=terminal name, ... 

in the operands column could, for example, be coded as 

STATION=BOS,NYC,PHLY,CLRN,PIT,CGO 

13 



Operand Descriptions 

14 

Parentheses, equals signs, and uppercase character strings must be coded 
exactly as shown in the operands column. Lowercase words represent values 
that the user must supply. 

Comments and Continuation Lines: Comments may contain any characters valid in 
the assembler language. Comments can be continued on more than one card by 
placing an asterisk in column 1 as shown in the example below. In this publication, 
the comments field is not shown in the macro's assembler format table. 

Operands can also be continued on additional cards as shown below. Note that if 
the operands are not extended to column 71, they must be separated after a 
comma. The continuation character in column 72 can be any non-blank character, 
but it cannot be a character of an operand. Comments must by separated for 
operands by at least one blank. Comments can be intermingled with the operands. 

Name Operation Operands 

LABELl OPI OPERAND I ,OPERAND2,OPERAND3,OPERX 
AND4,OPERANDS THIS IS ONE WAY 

LABEL2 OP2 OPERAND I,OPERAND2, AND THIS X 
OPERAND3,OPERAND4, IS ANOTHER 

* WAY 

~column 1 '-- column 16 column 72-

Following the assembler format table, each operand is named and described. Every 
operand description begins with an explanation of the operand's function. If the 
operand has more than one fixed value that can be supplied with it, the operand 
description also explains the effect that each value has on the action performed by 
the macro instruction. Operand descriptions may also include: 

A description of the format in which the operand should be coded. This 
description is not provided when the operand's format is apparant from its 
function or the way it is shown in the assembler format table. For example, 
the format of such op.erands as 

RPL=rpl address 
or 

COPIES=quantity 

is not described) since the programmer can assume that any assembler 
expression that will be resolved to an address, including register notation, can 
be coded with the RPL operand; or that any numerical value (or expression 
that will be equated to a numerical value) can be coded with the COPIES 
operand. 

A format description is provided when restrictions exists that might not be 
obvious - restrictic~-is such as "register notation cannot be used" or "code the 
name as a character constant." If any of the terms used in the format 
descriptions are unclear, refer to OS/VS and DOS/VS Assembler Language. 

An example showing how the operand is coded or used. Since there is an 
example elsewhere showing how the macro instruction as a whole might be 



Examples 

Return of Status Information 

coded, an operand example is provided only if the operand is unusually 
complex, or if its function can be better explained with an example. 

Notes concerning restrictions on how the operand is used, or information that 
relates indirectly to the operand. 

, Following the description of the macro instruction are one or more examples. 
These examples show possible ways that the macro and its operands might be 
coded. 

The way a macro can be specified can often be understood more readily from an 
example than it can from the assembler format table, since the latter must show all 
possible ways to specify the macro. A macro that appears to be complex in the 
assembler format table may be far simpler when it is actually coded. 

Most of the macro instructions post return codes in registers and indicate status 
information in various control block fields when they are executed. Descriptions of 
this status information, when applicable, can be found at the end of the macro 
instruction description. 

The Macro Instruction Descriptions 
'This section contains detailed descriptions of all the macro instructions that are 

, part of the VTAM language. The descriptions are arranged alphabetically. 

There are two programming considerations that are not included in the macro 
instruction descriptions, because they apply to all of the macro instructions that are 
executable: First, register 13 must always contain the address of an 18-wordsave 
area when the macro instruction is executed. Secondly, registers 0, 1, 14, and 15 
are used by the macro instruction. 

15 



ACB 

ACB -- Create an Access Method Control Block 

symbol 

AM=VTAM 

16 

The ACB macro instruction builds an ACB control block. The ACB indentifies the 
application program to VT AM and the teleprocessing network. 

Every application program must be defined by the installation before the program 
can use VTAM to interact with the terminals throughout the network. The 
installation does this by creating an APPL entry for the application program in the 
resource definition table during VTAM definition. The application program's 
responsibility, then, is to create an ACB that indicates a particular APPL entry. The 
application program is identified by VT AM when that ACB is opened with the 
OPEN macro instruction. 

When the ACB is opened, requests for connection and I/O operations can be made 
(all connection and I/O requests indicate an ACB). When the ACB is closed (with 
the CLOSE macro instruction), requests can no longer be made, and any 
connections that were established are broken. 

The ACB can also provide two indicators that govern the processing that VT AM 
subsequently performs when requests are made of it: 

The application program can provide an address of a list of exit routine 
addresses. The various routines represented in this list are invoked by VTAM 
when special events occur, such as error conditions, logon requests, and 
attention interruptions. The exit list pointed to in the ACB is created with 
the EXLST macro instruction. 

The application program can ask VTAM to queue logon requests. VTAM will 
then queue any logon requests that are made after the ACB is opened. 

Every application program using VTAM must have an ACB. An application program 
could contain more than one ACB (thus breaking itself down into 'subapplica­
tions"), but each ACB must indicate a unique APPL entry. 

Issuing an ACB macro instruction causes an ACB to be built during program 
assembly. The ACB can also be built during program execution with the GENCB 
macro instruction. See the GENCB macro for a description of this facility. 

Name Operation Operands 

[ symbol] ACB AM=VTAM 
, APPLID=address of application's symbolic name 
[ , P ASSWD=password address] 
[ , EXLST=exit list address] 
[ , MACRF= { LOGON I NLOGON } ] 

Function: Provides a name for the macro instruction. This name can be used in the 
ACB operand of an RPL macro instruction. 

Function: Identifies the ACB built by this macro instruction as VT AM ACB. This 
operand is required. 



ACB 

APPLID=address of application program's symbolic name 
Function: Links the ACB with a particular APPL entry in the resource definition 
table. This both identifies the application program to VTAM and associates the 
application program with any options that might be indicated in the APPL entry .. 

Format: Expressions involving registers cannot be used with the ACB macro 
instruction. 

Note: The area pointed to by this operand must begin with a one- byte length 
indicator, followed by an eight-byte field containing the EBCDIC application 
program name. The name must be left-justified and padded to the right with blanks. 
The length indicator must be set to eight. 

PASSWD=password address 
Function: Allows an application program to associate its ACB with an APPL entry 
that is password protected. 

If a password is included in an APPL entry, any application program wanting to 
link its ACB to that entry must specify the entry's password in the ACB. The two 
passwords are compared when the application program opens the ACB. If the 
passwords do not match, the ACB is not opened. (The purpose of this password 
protection is to prevent a program from running as one of the installation's 
predefmed application programs without the authorization of the installation.) 

Format: Expressions involving registers cannot be used with the ACB macro 
instruction. 

Note: The area pointed to by this operand must begin with a one-byte length 
indicator, followed by an eight-byte field containing the EBCDIC password. The 
password must be left-justified and padded to the right with blanks. The length 
indicator must be set to eight. 

EXLST=exit list address 
Function: Links the ACB to an exit list containing addresses of routines to be 
entered when certain events occl;lr. This list is created by an EXLST macro 
instruction. See that macro for descriptions of these events. 

Format: Expressions involving registers cannot be used with the ACB macro 
instruction. 

Note: More than one ACB can indicate the same exit list. 

MACRF={LOGONINLOGON} 

Function: Indicates whether or not the application program wants logon requests 
to be queued for it. MACRF=LOGON causes VTAM to queue logon requests for 
the application program as they occur after the ACB is opened. MACRF=NLOGON 
indicates that no queuing of logon requests is to occur. 

Note: A logon request is a request issued by (or on behalf of) a terminal and 
directed at an application program; it in effect asks that application program to 
request connection between the application program and the terminal. A queued 
logon request cannot be satisfied un til the application program issues an OPNDST 
macro instruction having an ACCEPT option code in effect for its RPL. This causes 
the application program to become connected to the terminal. . 

17 



ACB 

Example 

18 

If the ACB's EXLST operand indicates an exit list containing the address of an 
active LOGON exit list routine (see EXLST macro), that routine is entered 
whenever a logon request is queued. This routine can issue the OPNDST macro to 
request connection with the terminal and satisfy the logon request. 

, ACBl 

NAME 

PASFLD 

ACB 

DC 
DC 
DC 
DC 

AM=VTAM, 
APPLID=NAMEP ASSWD=PASFLD, 
EXLST=EXLSTl,MACRF=LOGON 

X'08' 
CLB'PA YROLL' 
X'08' 
CL8'SECRET' 

ACB! generates an ACB that will be associated with the PAYROLL APPL entry 
when the ACB is opened. SECRET is the password protecting that APPL entry. 
MACRF=LOGON means that terminals can issue logon requests to PAYROLL. 
When such requests are made, VTAM will note that ACB! is the ACB providing 
access to the application program representing PAYROLL and will invoke the 

, LOGON exit list routine indicated in EXLSTI. 

x 
X 



CHANGE 

CHANGE - Change a NIB's PROC Option or USERFLD Data 

symbol 

RPL=rpl address 

This macro instruction causes modifications to the PROC and USERFLD fields of a 
NIB to become effective. 

When an OPNDST macro instruction is executed, the contents of these NIB fields 
are moved into internal VTAM control areas. If the application program later wants 
to change the fields in effect for a NIB, altering the NIB to reflect these changes 
will not suffice. Internal equivalents of the PROC and USERFLD fields must be 
changed as well. This latter function is provided by the CHANGE macro 
instruction. 

The RPL pointed to in the CHANGE macro instruction must indicate (in its NIB 
field) the NIB whose PROC and/or USERFLD fields have been changed, and whose 
MODE field has been set to BASIC. RPL fields (but not the NIB fields) can be set 
with the CHANGE macro instruction itself. 

To change the NIB fields this procedure should be followed: 

1. Modify the fields in the NIB with MODCD. For example: 

MOOCB NIB=NIB4,USERFLD=NYC,MODE=BASIC 
PROC=(TRANS,CONFTXT ,MONITOR) 

x 

2. Issue the CHANGE macro instruction to make these changes effective. 
CHANGE can simultaneously be used to make the RPL's NIB field point to 
the modified NIB, jf it does not already do so: 

CHANGE RPL=RPLI,NIB=NIB4 

Name Operation Operands 

[symbol] CHANGE RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the RPL whose NIB field contains the address of the NIB that 
has been modified. 

rpl keyword=new value 
Function: Indicates an RPL field to be modified, and the new value that is to be 
contained within it. 

Formtlt: For rpl keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. The new value can be any value 
that is valid for that operand in the RPL macro instruction, or it can indicate a 
register. 

Note: See the RPL macro instruction for a list and explanation of all the RPL fields 
that affect CHANGE, and thus might be modified here. 

19 



CHANGE 

20 

Return of Status Information 
After the CHANGE operation is completed, the contents of register 15 indicate one 
of the following hexadecimal values: 

o If the ASY OPTION code IS III effect, VTAM has accepted the 
CHANGE request. If the SYN option code is in effect, CHANGE 
processing has been completed successfully. 

4 The CHANGE request cannot be accepted because the RPL is 
currently in use by another request, or the terminal is not connected to 
your application program. The RPL's FDBK field has not been set to 
indicate this error. If an active LERAD exit list routine exists, it has 
been invoked. See The LERAD description in the EXLST macro 
instruction. 

8 A logical error occurred; the FDBK field can be examined to determine 
the nature of this error. If an active LERAD exit list routine is 
available, it has been invoked. (This return code is possible only when 
the SYN option code is in effect; if the request is asynchronous, this 
return code results when CHECK is issued.) 

C A physical error occurred; the FDBK field can be examined to 
determine which one it was. (Physical errors are possible with CHANGE 
because VT AM engages in I/O activity with the 3704 or 3705 
communications controller during CHANGE processing.) 

1 C VT AM cancelled the operation; the second byte of the FDBK field is 
set indicating the reason. 



CHECK 

CHECK -- Check Request Status 

symbol 

When connection, simulated logon, or I/O is requested and asynchronous handling 
has been indicated in the associated RPL, VT AM schedules the request and returns 
control to the application program. When the requested operation is completed, 
VTAM must somehow notify the application program of that fact. 

If the request's RPL contains an RPL exit routine address (see the RPL macro 
description), VTAM automatically invokes this routine when the request is 
completed. Alternatively, the application program can indicate an ECB work area 
(see the ECB operand in the RPL macro instruction description) that VTAM posts 
when the request is completed. The only way the application program can then 
determine when completion occurs is to check this ECB to verify that it has been 
posted. The CHECK macro instruction provides this facility. 

CHECK causes program execution to wait until the operation is completed. If the 
operation just completed involved a logical or hardware error, and active LERAD or 
SYNAD exit routines exist, VT AM invokes one of these routines before returning 
control to the application program. CHECK also sets the RPL to an inactive (I/O­
complete) status so that the RPL can be revised. 

CHECK should be used in an RPL exit routine, but not to synchronize the 
application program with the completion of the request. (The fact that the routine 
has been invoked is itself evidence that the request has been completed.) What 
CHECK can still accomplish in this situation however, is the automatic invocation 
of LERAD or SYNAD exit routines when the request is completed with a logical or 
hardware error, and the setting of the RPL to an inactive status. 

Another important use of CHECK (for either the ECB or the RPL exit routine 
methods of asynchronous request handling) is to supply a return code that indicates 
how the requested operation completed. This return code is identical to that 
returned in the first byte of the RPL's feedback field. The possible return codes are 
listed at the end of this macro instruction description. 

The use and function of the CHECK macro instruction can thus be considered 
according to its location - either within an EXIT routine or outside of it: 

A CHECK issued outside of an RPL exit routine checks the ECB indicated in 
the RPL. The RPL must not indicate an RPL exit routine address. CHECK 
examines the ECB, posts a return code in register 15, and if appropriate 
automatically invokes LERAD or SYNAD exit routines. 

A CHECK issued within an RPL exit posts a return code, and, if appropriate, 
invokes the LERAD or SNAD exit list routine. 

Name Operation Operands 

[symbol] CHECK RPL=rpl address 

Function: Provides a name for the macro instruction. 

21 



CHECK 

22 

RPL=rpl address 

Example 

Function: Indicates the address of the RPL associated with the connection or I/O 
request whose completion status is being checked. 

If CHECK is being issued within an RPL exit routine, the RPL's EXIT field must 
contain the address of the RPL exit routine. If CHECK is not being issued within an 
RPL exit routine, the RPL's ECB field must point to a fullword in storage to be 
used as an ECB (or, if neither the ECB nor the EXIT operand has ever been used for 
the RPL, the ECB field itself is used as an ECB). 

Note: See the ECB and EXIT operands in the RPL macro instruction description 
for more information about the RPL exit routine and the ECB. 

CHKl CHECK RPL=RPLI 

If CHKl is in the routine indicated by RPLI 's EXIT field, and the operation 
requested via RPLI ends with a logical or I/O error, the LERAD or SYNAD exit list 
routine is scheduled. 

If there is no RPL exit routine for RPLl, CHKl causes program execution to stop 
until the operation requested via RPLI has ended. If the operation ends with a 
logical or I/O error, CHKl causes the LERAD or SYNAD exit routine to be 
invoked. 

Return of Status Information 
When CHECK processing has been completed, register 15 contains one of the 
following hexadecimal values: 

o The request for which this CHECK was issued has been completed 
successfully. 

4 The CHECK macro was issued outside of an RPL exit routine, yet the 
RPL used by the CHECK macro indicated an RPL exit routine address. 
The RPL for CHECK issued outside of an RPL exit routine must 
indicate the location of an ECB and not the location of an RPL exit 
routine. Since this is a logical error, the LERAD exit list routine (if an 
active one exists) has been invoked. 

8 A logical ,error occurred; check the FDBK field of the RPL to 
determine the nature of this error. This error applies to the operation 
being checked, not' to the CHECK request itself (had there been an 
error with the latter, a return code of 4 would have been returned 
instead). 

C A physical error occurred; the FDBK field of the RPL will reveal the 
specific nature of the problem. This error applies to the operation being 
checked, and not to the CHECK request itself. The SYNAD exit list 
routine (if an active one exists) has been invoked. 

10 A conditional request has been completed with no action taken, since 
the condition was not met. 

14 A special condition exists -- for example, an RVI line control character 
has been received, or an error lock has been set for the device. The 
second byte of the FDBK field can be examined to determine the 
specific condition. 

18 The requested operation was canceled by a RESET request. 

1 C VT AM canceled the operation; the second byte of the FDBK field is set 
indicating the reason. 



CLOSE 

CLOSE -- Close One or More A CBs 

symbol 

acb addre~ 

Example 

There are three significant consequences of executing the CLOSE macro instruc­
tion: 

VT AM no longer accepts any requests of any kind that refer to the ACB 
specified in the CLOSE macro. This ACB is effectively disconnected from 
VTAM. 

VT AM no longer maintains the association between the APPL entry in the 
resource defmition table and the ACB specified in this macro instruction. 
Thus logon requests can no longer be directed towards and queued for the 
ACB. Insofar as terminals requesting logon are concerned, the portion of the 
application program represented by the ACB ceases to exist when CLOSE is 
issued. 

VT AM breaks every connection that exists between the ACB and other 
terminals. Before CLOSE breaks a connection, all I/O activity is stopped and 
all pending I/O requests are canceled. 

The CLOSE macro instruction can be applied to more than one ACB. 

Name Operation Operands 

[symbol] CLOSE acb address[, acb address] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the ACB that is to be disconnected from VT AM. 

Note: One CLOSE macro instruction can be issued to close VSAM ACBs in 
addition to VT AM ACBs. DOS/VS users can also include DTFs with this macro 
instruction, and OS/VSl and OSNS2 users can also include DCBs. 

CLOSE I 23 CLOSE ACBI,ACB2,(7) 

CLOSE 123 closes ACB 1, ACB2, and the ACB whose address is in register 7. All 
terminals connected via these ACBs are disconnected. 

Return of Status Information 
When control is returned to the instruction following the CLOSE macro, register 15 
contains a code indicating whether or not the CLOSE processing has completed 
successfully. Successful completion (meaning that all ACBs specified in the macro 
instruction have been disconnected from VT AM) is indicated by a return code of O. 
Unsuccessful completion is indicated by any return code other than O. 

If unsuccessful completion is indicated, the application program must examine a 
field in the ACB to determine the nature of the error encountered by CLOSE. If 
the CLOSE macro specified more than one ACB, all ACBs must be checked. 

23 



CLOSE 

24 

The ACB field to be checked is a four-byte area called the ERROR field. It is not a 
field that the application program should modify - there is no ERROR operand for 
the ACB macro, and thus none for the MODCB macro -. but the application 
program can obtain the contents of this field with the SHOWCB macro instruction. 
F or example: 

SHOWCB ACB=ACB 1 ,FIELDS=ERROR,AREA=SHOWIT ,LENGTH=4 
The hexadecimal value in the ERROR field indicates the nature of the error 
encountered during CLOSE processing: 

00 CLOSE successfully closed this ACB. 

04 The ACB does not belong to the job step that issued the CLOSE macro 
instruction. 

08 A CLOSE maCrO instruction has already been successfully issued for 
this ACB. 



CLSDST 

CLSDST -- Disconnect a Terminal from the Application Program 
The CLSDST (close destination) macro instruction constitutes a request for VTAM 
to break a connection that exists between the application program and a specified 
terminal. 

The terminal to be disconnected is specified either with the ARG field or the NIB 
field of CLSDST's RPL: 

If the ARG field contains the CID of a terminal, that terminal is 
disconnected. 

If the NIB field contains the address of a NIB, the terminal represented by 
that NIB is disconnected. 

(The RPL cannot contain both a CID and a pointer to a NIB, because the 
ARG and NIB fields occupy the same area in the RPL control block.) 

If the terminal has been defmed by the installation as a dial-out terminal (by 
specifying CALL=OUT in the LINE or GROUP macros during VTAM definition), 
CLSDST causes a dial-line disconnection to occur. There is one exception, however; 
if an automatic logon request was indicated for the terminal by the installation, the 
terminal is not disconnected. 

If at the time CLSDST is executed, VT AM buffers hold data solicited from the 
terminal, the data is not saved for the next application program that becomes 
connected to the terminal, but is lost. 

The CLSDST macro instruction can optionally be used to request that VT AM 
reconnect a terminal to another application program in addition to disconnecting it. 
This option is implemented by setting the PASS option code in CLSDST's RPL. If 
this option is used, VTAM first disconnects the terminal and then generates a logon 
request for it. Your application program must indicate which application program is 
to receive the logon request. A logon message from a data area in your program can 
also be sent with the logon request. (The data area containing the logon message 
can be reused as soon as CLSDST has been completed.) 

If a logon request is going to be generated after the disconnection, the RPL's PASS 
option code must be set, and the RPL's AAREA field must point to the symbolic 
name of the receiving application program. This name must be placed in an 
eight-byte field, left justified, and padded to the right with blanks. If a logon 
message is also to be sent with the logon request, the AREA and RECLEN fields 
must indicate the location and length of the message. If a message is not to be sent, 
the AREA and the RECLEN fields must be set to O. 

(For programs running under OSNSI or OSNS2, the use of CLSDST with PASS 
must be authorized by the installation. When CLSDST with PASS is issued, VTAM 
either checks whether the installation has indicated authorization or invokes an 
installation-written routine that determines if the request is authorized.) 

If the RELEASE option code is used instead of the PASS option code, the terminal 
is simply disconnected as far as as the application program is concerned. If another 
application program has requested connection to the terminal, or if the installation 
indicated during VTAM defmition that automatic logon requests are to be 
generated, VTAM connects the terminal to the appropriate application program. 

25 



CLSDST 

26 

symbol 

RPL=rpl address 

If an application program has completed its processing and is ready to disconnect 
all of the terminals connected to it, CLSDST is not the appropriate macro 
instruction to use. The CLOSE macro instruction should be used, since it 
disconnects all of the terminals connected via a given ACB. CLOSE, however, 
cannot be used to generate logon request on behalf 9f a terminal when the terminal 
is disconnected. 

Name Operation Operands 

[symbol] CLSDST RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL to be used during CLSDST processing. 
Either th,e ARG field of this RPL must be filled with a terminal's CID, or the NIB 
field must be set to point to the NIB whose associated terminal is to be 
4isconnected. 

rpl keyword=new value 

Examples 

Function: Indicates an RPL field to be modified, and the new value that is to be 
contained within it. 

Fonnat: For ipl keywoid code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. ARG can also be coded. The new 
value can be any value that is valid for that operand in the RPL macro instruction, 
or it can indicate a register. The value supplied with the ARG keyword must 
indicate a register. 

Note: All of the RPL fields that have a unique effect on CLSDST (and thus might 
likely be modified here) are discussed above. Check Figure 6 in the RPL macro 
instruction description for a list of all of the RPL fields that apply for the CLSDST 
macro instruction. 

CLl CLSDST RPL=RPLl, RPLl MODIFIERS FOLLOW: X 
ACB=ACBl, X 
NIB=NIB3, (TERMINAL TO BE DISCONNECTED) X 
AAREA=APPLNAME, (APPLICATION TO RECEIVE LOGON REQUESTS) X 
AREA=LGNMSG,RECLEN=60, (LOGON MESSAGE) X 
ECB=POSTITl ,OPTCD=(ASY ,PASS) 

CLI disconnects the terminal represented in NIB3, and generates a simulated logen 
request for it; the logon request is directed at the application program whose 
symbolic name (APPL entry name as defined by the installation) has been placed in 
APPLNAME. This macro instruction also sends a 60-byte logon message from 
LGNMSG with the logon request. 



CL2 CLSDST RPL=RPL2, RPL2 MODIFIERS FOLLOW: 
ARG=(3), (TERMINAL TO BE DISCONNECTED) 
ECB=POSTIT2,OPTCD=(ASY,RELEASE) 

x 
X 

CL2 disconnects the terminal whose CID has been placed in register 3. Unlike the 
first example above, CL2 does not generate a logon request for a specified 
application program, nor does it send any logon message. 

CL3 CLSDST RPL=RPL3, RPL3 MODIFIERS FOLLOW: X 
NIB=NIB6 (TERMINAL TO BE DISCONNECTED) X 
AAREA=APPLNAME, (APPLICATION TO RECEIVE LOGON MESSAGE) X 
AREA=O,RECLEN=O, (NO LOGON MESSAGE) X 
ECB=POSTIT3,OPTCD=(ASY,PASS) 

CL3 disconnects the terminal represented by NIB6 and generates a simulated logon 
request for it that is directed at the application program represented by 
APPLNAME. Since the AREA and RECLEN fields are being set to 0, no logon 
message is sent. 

Return of Status Information 

CLSDST 

After the CLSDST operation is completed, register IS contains one of these 
hexadecimal values: 

o If the ASY option code is in effect, VTAM has accepted the CLSDST 
request. If the SYN option code is in effect, CLSDST processing was 
completed, and all indicated terminals were successfully disconnected. 

4 The request cannot be accepted because the RPL is currently in use by 
another request; or the terminal being disconnected is not connected to 
your application program. The RPL's RDBK field has not been set. If 
an active LERAD exit list routine exists, it has been invoked. 

8 A logical error (see Appendix A) occurred; the FDBK field can be 
examined to determine which kind it was. If an active LERAD exit list 
routine exists, it has been, invoked. This return code is possible only 
when the SYN option code is in effect; otherwise, this code is returned 
when a CHECK maCrO instruction is issued. 

Ie VTAM canceled the operation; the second byte of the FDBK field is set 
indicating the reason. 

27 



DO 

DO --Initiate LDO-specified I/O Operations 

28 

symbol 

RPL=rpl address 

If an application program uses logical device orders (LDOs) to request I/O 
operations, it must use the DO macro instruction to initiate the operations. 

The user of the DO macro instruction specifies an RPL whose AREA field contains 
the address of an LDO or list of LDOs, and whose ARG field contains the CID of 
the terminal that is to be the object of the I/O operations. Changes to the RPL can 
be specified in the DO macro instruction itself. The operations available via DO are 
these: 

Copy the contents of a 3270 display unit buffer into the buffer of any 
printer or display unit attached through the same control unit (implemented 
with the COPYLBM and COPYLBT LDOs). 

Read the entire contents of a 3270 display unit buffer (implemented with the 
READBUF LDO). 

Send a positive response with leading graphic characters to a 3735 terminal or 
to a System/3 or System/370 CPU and then read the device's next block of 
data; or send a negative response with leading graphic characters to one of 
these devices and then re-read the block of data (implemented with the 
WRTPRLG, WRTNRLG, and READ LOOs). 

Write data beginning with a block of heading characters to a 3735 terminal or 
to a System/3 or System/370 CPU (implemented with the WRTHDR LOO). 

These I/O operations are more fully explained in the LDO macro instruction 
description. 

If DO is processing a list of LOOs, VTAM continually updates the AAREA field of 
the RPL to indicate the address of the LOO currently being used. Should an error 
occur during DO processing, this updating ceases, and AAREA indicates the LOO 
involved with the error. Register 15 is set to indicate that 00 did not complete its 
function successfully. 

Name Operation Operands 

[symbol] DO RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL whose AREA field contains the 
address of an LOO or group of LOOs to be used, and whose ARG field contains the 
CID of the terminal that is to be the object of these LDOs. 

rpl keyword=new value 
Function: Indicates a field of the RPL to be modified and the new value that is to 
be contained within it. 

Format: For rp/ keyword code the keyword of the RPL macro instruction operand 
that corresponds with the RPL field to be modified. ARG can also be coded. The 



Example 

DO 

new value can be any value that could have been supplied with the keyword had the 
operand been issued in an RPL macro instruction, or it can indicate a register. The 
value supplied for the ARG keyword must indicate a register. 

Note: See Figure 5 in the RPL macro instruction description for a list of the RPL 
fields that are applicable for the DO macro instruction. 

00 R2 LDO DO RPL=RPLl, RPLI MODIFIERS FOLLOW: 
AREA=(2),ARG=(3), 
EXIT=DONE,OPTCD=(SPEC,ASy) 

x 
X 

OOR2LDO initiates whatever operations are indicated by the LDO (or list of 
LDOs) currently pointed to by register 2. In this example, register 3 must contain 
the CID of the terminal to be involved in the LDO-specified I/O operation or opera­
tions. Since the ASY option code is specified, control is returned to the instruction 
following DOR2LDO before the operation is actually performed. 

Return of Status Information 
Once 00 processing is finished, these sources of status information can be checked. 

The AAREA field of the RPL: The address of the last LOO used by 00 is 
placed in this field. 

The USER field of the RPL: When a NIB is established, the user has the 
option of specifying an arbitrary value in the USERFLD field of that NIB. 
When the DO macro instruction is subsequently issued for the terminal 
associated. with that NIB, whatever had been placed in USERFLD by the user 
is placed in the USER field of the RPL by VT AM. 

The RECLEN field of the RPL: If 00 is processing a READ or READBUF 
LOO, this field is set to indicate the number of bytes of data obtained from 
the terminal. 

The FDBK field of the RPL: Unless a hexadecimal value of 4 was returned in 
register 15, the FDBK (feedback) field describes the completion status of the 
DO processing. See Appendix A for a description of the FDBK field. 

Register 15: One of the following hexadecimal values are returned: 

o The DO request has either been accepted (ASY option code in effect) 
or all of the operations performed by 00 have been completed 
successfully (SYN option code in effect). 

4 The DO request cannot be accepted because the RPL is currently in use 
by another request, or the CID in the ARG field is not valid (for 
example, does not represent a terminal currently connected to your 
application program). The RPL's FDBK field has not been set. If an 
active LERAD exit routine exists, it has been invoked. 

8 A logical error (see Appendix A) occurred; the FDBK field can be 
examined to determine which one it was. If an active LERAD exit list 
routine exists, it has been invoked. (This code can be returned only 
when the SYN option code is in effect.) 

C A physical error (see Appendix A) o.ccurred; the FDBK field can be 
examined to determine which one it was. If an active SYNAD exit list 
routine is available, it has been invoked. (This code will be returned 
only when the SYN option code is in effect.) 

1 C VT AM canceled the operation (or one of the operations) indicated by 
the LOO (or LOOs) used by the 00 macro instruction. The second 
byte of the FDBK field is set indicating the reason. 

29 



EXLST 

EXLST -- Create an Exit List 

30 

The EXLST macro instruction builds a list of routine addresses. Each operand in 
this macro instruction represents a circumstance in which an exit routine is invoked 
by VT AM. The address supplied for each operand indicates the user-written routine 
to be given control when the circumstance that it handles occurs. The SYNAD 
operand supplies the address of a routine that handles physical errors, the ATTN 

, operand supplies the address of an attention-interruption handler, and so forth. 

Routines can be marked active or inactive - active meaning that the routine should 
be invoked, inactive meaning that it should not. Since the exit list cannot be 
extended during program execution, space must be reserved in the list for entries 
that may eventually be needed. Marking an exit routine inactive in effect reserves 
space for that exit in the list. During program execution, the MODCB macro 
instruction can be used to insert a valid address and mark it active. 

All but two of the routines that can be indicated in an exit list are invoked as a 
result of an event initiated outside of the application program. All of these exit 
routines are invoked asynchronously - that is, at the time the event occurs. The 
programmer should be aware that if any synchronous requests are made in these 
exit routines, neither the exit routine nor the main part of the application program 
can receive control while the request is being completed. 

Two of the exit routines are invoked by events initiated within the application 
program. The LERAD exit list routine is invoked when a request results in a logical 
,error; the SYNAD exit list routine is invoked when a request results in a physical 
error. If the error involves a synchronous request (one for which the SYN' option 
code is in effect), the exit routine is scheduled when the error condition is detected. 
If the error involves an asynchronous request (ASY option code), the exit routine is 
not invoked until a CHECK macro instruction is issued for the request. 

For all exit list routines except LE.R~4.D and SYNAD, the last instruction must be a 
branch to the VT AM address that is in register 14 when the routine receives 
control. 

The address of the exit list created by the EXLST macro instruction is placed in the 
EXLST field of an ACB (see the ACB macro instruction for details). More than one 
ACB can point to the same exit list, as long as the ACBs are all in the same object 
module. In this situation, however, the routines indicated in the exit list should be 
reenterable. (Exit list routines should also be reenterable if the LE or GE attribute 
has been added to the routine's address.) All of the exit list routines must likewise 
occur in the same object module. 

Name Operation Operands 

[symbol] EXLST AM=VTAM 
[,LERAD= (address [ , { AIN } ]) ] 
[,SYNAD= (address [, { AIN } ]) ] 
[, UNSIP= (address [, {AIN}][, {EILEIGE}]) ] 
[, ASYIP= (address [, {AIN}] [, {gILEIGE}]) ] 
[, TPEND= (address [, { AIN } ][, {~ILEIGE} ]) ] 
[, RELREQ= (address [, {AIN}] [, {gILEIGE}]) ] 
[, LOGON= (address [,{&IN}][,{liILEIGE}])] 
[, LOSTERM=(address [,{ AIN}] [,{ gILEIGE}]) ] 
[,ATTN= (address [, {~IN}][, {~.ILEIGE} ]) ] 



symbol 

AM=VTAM 

EXLST 

Function: Provides a name for the macro instruction. This name can be specified as 
the value of the EXLST operand of the ACB macro instruction. 

Function: Identifies the exit list generated by this macro instruction as a VT AM 
exit list (as distinguished from a VSAM exit list). This operand must be coded for 
application programs running under DOS/VS; for application programs running 
under OS/VSI or OS/VS2, this operand is ignored. 

The operands of the EXLST macro may be qualified by the following operand 
values. The assembler format table above indicates which values can be specified for 
each operand. (The parentheses can be omitted from any EXLST operand that does 
not have any of these values coded with it.) 

AIN 
These values indicate whether or not the routine is to be entered. 

A 
The exit list routine is active. VTAM will schedule the routine. 

'N 
The exit list routine is inactive. VTAM will not schedule the routine, even if 
the entry contains a valid address. 

Active addresses can be made inactive and inactive addresses made active with the 
MOOCB macro instruction. If a SYNAD exit is to be made active, for example, the 
MODCB macro to activate it could be coded as follows: 

MODI 

MOD2 

MODCB 

MODCB 

AM=VT AM,EXLST=LISTl ,SYNAD=(pGM4,A) 
or 

AM=VTAM,EXLST=LISTI,SYNAD=(,A) 

(MODI changes the exit routine address and marks it active; MOD2 merely marks 
an existing address active.) 

EILEIGE 
These values indicate whether or not the exit list routine is to be executed in 
supervisor state with a high dispatching priority. 

Note: Exit list routines can be executed in supervisor state only if the program is 
running under OS/VS2 and only if the application program has been authorized to 
do so by the installation. 

E 
The exit list routine is not to be executed in supervisor state. This is the 
assumed attribute for an exit list address, and is the only one of these three 
attributes that can be used by programs running under DOS/VS or OS/VSI. 

LE OS/VS2 Only 
The exit list routine is scheduled for execution under a local SRB (system 
request block). All READ, WRITE, and SOLICIT requests must have their 
RPL's BRANCH field set to YES. This type of scheduling should be used 
only by those who are thoroughly familiar with the restrictions that apply to 
routines scheduled under an SRB. 

31 



EXLST 

32 

The use of LE must be authorized for the application program by the 
installation. If an unauthorized program attempts to open an ACB that points 
to an exit list containing an address with an LE attribute, that ACB will not 
be opened. An additional authorization check is made when the exit list 
routine is scheduled. 

GE OS/VS2 Only 
The exit list routine is scheduled for execution under a global SRB. The 
effect of GE is otherwise exactly the same as for LE, including the 
requirement for installation authorization. This type of scheduling should 
also be used only by those who are thoroughly familiar with the restrictions 
that apply to routines scheduled under an SRB. 

LERAD= (address [, { AIN } ] ) 
Function: Indicates the address of a routine that will be entered when the applica­
tion program makes a connection or I/O request that results in a logical error. 

Generally, logical errors result when a request is made that is inherently 
contradictory - like attempting to read data from an output- only device. (Errors 
that occur because of hardware malfunctions are not logical errors; they are 
handled by the SYNAD exit list routine.) 

If the SYN option code is in effect when the error occurs, the LERAD routine is 
entered immediately; but if the ASY option code is in effect, the routine will not 
be scheduled until a CHECK macro instruction is issued for the operation in which 
the error occured. One exception: If the ASY option code is in effect and a request 
fails because its RPL is currently in use, the LERAD exit routine is scheduled 
immediately. 

If the application program has no active LERAD exit list routine and a logical error 
occurs, VT AM simply returns control to the next sequential instruction. VT AM 
places a return code in register 15 (indicating a logical error) regardless of whether a 
LERAD routine is invoked before control is finally returned. 

When the LERAD exit list routine returns control to VT AM, VTAM leaves register 
o intact so that the routine can pass information back in this register to the main 
part of the application program. 

Note: When the LERAD routine receives control, the general purpose registers 
contain the following: 

Register 1 - the address of the RPL associated with the request. If the 
high-order bit of this address is off, the RPL's FDBK field indicates the type 
of logical error that occured. If the high-order bit is on, VT AM was unable to 
place an indicator in the FDBK field specifying the reason for the error. This 
happens in two cases: Either a macro has been issued where RPL is already in 
use, or CHECK has been issued for a request whose RPL exit routine has not 
yet been scheduled. 

Register 14 - the address in VTAM to which the LERAD exit list routine can 
branch when it is through processing. When the exit list routine branches to 
this address, VTAM handles the returning of control to the next sequential 
instruction in the application program following the request. (The LERAD 
routine can itself return control directly to the next instruction by first 
restoring the registers from the save area pointed to by register 13 and then 
branching on register 14.) 



EXLST 

Register 15 - the address of the LERAD routine. 

The contents of register 0 may be modified by VTAM before the LERAD 
exit routine is invoked. Registers 2-13 are not modified by VTAM. 

SYNAD= (address [, { AIN } ]) 

UNSIP= 

Function: Indicates the address of a routine that is entered if an unrecoverable 
input or output error occurs during an I/O operation. This is called a physical error. 
(Errors that result from invalid requests are handled by the LERAD exit routine.) 

If the SYN option code is in effect when the error occurs, the SYNAD exit routine 
is entered immediately; if the ASY option code is in effect, the routine is not 
invoked until a CHECK macro is issued for the operation in which the error 
occurred. 

Before the SYNAD exit routine is given control, VTAM fills in the FDBK 
(feedback) field of the RPL. This field indicates the nature of the I/O error that 
caused the routine to be invoked. See Appendix A for a description of the FDBK 
field. 

The SYNAD exit routine can analyze the· FDBK field and attempt to fix the error. 
For example, if FDBK indicates that the terminal's error lock is set, the SYNAD 
exit routine can issue a RESET macro instruction to reset the lock. Or, if FDBK 
indicates that the terminal is no longer connected, the SYNAD exit routine can 
strike that terminal from a list of those with which it is communicating. 

If the application program has no active SYNAD exit list routine and a physical 
error occurs, VTAM simply returns control to the next sequential instruction. 
VTAM returns a code in register 15 (indicating a physical error) regardless of 
whether a SYNAD routine is invoked before control is finally returned. 

When the SYNAD exit list routine returns control to VTAM, VTAM leaves register 
o intact; this enables the routine to pass information back in this register to the 
main part of the application program. 

jVote: When the SYNAD routine receives control, the general purpose registers 
contain the following: 

Register 1 -- the address of the RPL associated with the I/O request. 

Register 14 - the address in VTAM to which the SYNAD exit list routine can 
branch when it is through processing. When the exit routine branches to this 
address, VTAM handles the return of control to the next sequential 
instruction follOWing the I/O request (or follOWing the CHECK macro issued 
for the I/O request). The SYNAD exit list routine can return control directly 
to the next instruction by first restoring the registers from the save area 
pOinted to by register 13 and then branching on register 14. LERAD and 
SYNAD are the only exit list routines that do not have to branch on the 
address contained in register 14. 

Register 15 - the address of the SYNAD routine. 

The contents of register 0 may be modified by VTAM before the SYNAD 
exit routine is invoked. Registers 2-13 are not modified by VT AM. 

(address [, {A/N}] [, {EILE/GE}]) 
FUirlction: Indicates the address of a routine that is entered when unsolicited input 
is received from a terminal. 

33 



EXLST 

ASYIP= 

34 

Unsolicited input is input received from a terminal connected to an application that 
did not issue a READ or SOLICIT macro for that terminal. 

Unsolicited input occurs when a device connected to the application program 
responds to a solicit operation that the application program did not direct to it. 
This may result when a read or solicit request directed to one component of a 
terminal system (like the 3270 Information Display System) causes the control unit 
to solicit data from all of its attached input components. If the component that was 
inadvertently solicited responds, the UNSIP exit routine of the application program 
to which it is connected is invoked. If there is no UNSIP exit list routine, the data is 
lost. 

Note: The application program must issue a read request if it wants to obtain the 
unsolicited input sent to it; until it does so, the input remains in VTAM buffers. 
Before the UNSIP routine can issue the read request, it must first build an RPL for 
it. When the UNSIP routine receives control, register 1 contains the address of a 
parameter list that contains the following information needed for the RPL: 

The first word of the parameter list contains the address of an ACB. This 
ACB is the ACB of the application program to which the unsolicited input 
was directed. This ACB should be pointed to by the ACB field of the RPL 
being built. 

The second word contains the CID of the terminal that sent the unsolicited 
input. This CID should be placed in the ARG field of the RPL being built. 

The third word of the parameter list contains whatever has been placed in the 
USERFLD field of the NIB used when the terminal was connected. 

The fourth word contains the number of bytes of unsolicited data. 

When the UNSiP exii rouiine receives controi, the other generai purpose registers 
contain the following: 

Register 14 - the address in VTAM to which the UNSIP routine must branch 
when it is through processing. VTAM han.dles the return of control to the 
instruction that was about to be executed when the interruption for 
unsolicited input occurred. 

Register 15 - the address of the UNSIP routine. 

The contents of the remaining registers (0 and 2-13) may be modified by 
VTAM before the UNSIP exit routine is invoked. 

(address [, { AIN }] [, {EILEIGE} ]) 
Function: Indicates the address of a routine to be entered when a block of data 
arrives in VT AM buffers as a result of a SOLICIT macro instruction for which the 
CA option code is in effect. The ASYIPX prol.;essing option must be in effect for 
this exit routine to be invoked. 

The ASYIP exit routine provides a way for VT AM to notify the application 
program that solicited data has arrived. (Siince solicit requests are considered 
complete as soon as they are scheduled, and not when data arrives, the application 
program cannot use the usual ECB posting or RPL exit routine invocation as a way 
of finding out when the data arrives.) 

The processing to be performed in the ASYIP exit list routine is at the discretion of 
the user. The exit routine may issue a READ macro instruction having a SPEC 



EXLST 

option code in effect to retrieve the data. In any event, the data remains in VTAM 
buffers until it is retrieved. 

Note: When the ASYIP routine receives control, register 1 contains the address of a 
four-word parameter list: 

The first word of the parameter list contains the address of an ACB. This 
ACB is the ACB of the application program to which the input data was sent. 
The ACB field of any RPL that will be used for subsequent I/O requests for 
this terminal should contain this address. 

The second word contains the CID of the terminal that sent the input data. 
The ARG field of any RPL built for subsequent I/O with the terminal must 
contain this CID. 

The third word contains whatever has been placed in the USERFLD of the 
NIB associated with that terminal. 

The fourth word contains the number of bytes of data received by VT AM. 

The other general purpose registers contain the following: 

Register 14 - the address in VT AM to which the ASYIP routine must branch 
_ when it is through processing. VTAM will handle the return of control to the 

instruction following the instruction that was about to be executed when the 
ASTIP interruption occurred. Register 15 - the address of the ASYIP routine. 

Register 15 - the address of the ASYIP routine. 

The contents of the remaining registers (0 and 2-13) may be modified by 
VT AM before the ASYIP exit routine is invoked. 

TPEND= (address [,{ AIN }][,{~ILEIGE})) 
Function: Indicates the address of a routine to be entered when the network 
operator issues a HAL T command, or when VT AM itself shuts down. If the 
operator issues a HALT command to cause a flush closedown, any pending I/O for 
the application program is allowed to be completed. The TPEND exit routine can, 
for example, interrupt any pending solicit operations and write messages to all 
connected terminals, informing them that they are about to be disconnected. 

If the operator issued a HALT command to cause a quick c1osedown, or VT AM 
itself shuts down, any pending I/O operations are canceled, and the appropriate 
RPL FDBK fields are posted to indicate the reason for their premature completion. 
In this situation, the TPEND exit routine cannot send or receive any data from the 
connected terminals, and can only disconnect them all with the CLOSE macro 
instruction. 

Note: When the TPEND exit routine receives control, register 1 contains the 
address of a two-word parameter list: 

The first word of the parameter list contains the address of an ACB. This 
ACB is the ACB of the application program being shut down. 

The hexadecimal value contained in the second word indicates the reason for 
the shutdown: 

o The operator issued a HALT command, causing an ordinary c1osedown. 

4 The operator issued a HALT command, causing a quick closedown. 

8 VT AM is shutting down. 

35 



EXLST 

36 

The other general purpose registers contain the following: 

Register 14 - the address in VT AM to which the 1PEND routine should 
branch when it is through processing. 

Register 15 - the address of the 1PEND routine. 

The contents of the remaining registers (0 and 2-13) may be modified by 
VT AM before the TPEND exit routine is invoked. 

RELREQ= (address [, {A.lN}] [, {IlILEIGE} ]). 
Function: Indicates the address of a routine that is entered when another 
application program requests connection to a terminal that is currently connected 
to your application program. This occurs when the other application program issues 
an OPNDST macro instruction with ACQUIRE and RELRQ processing options in 
effect, or when the other application program issues a SIMLOGON macro 
instruction on behalf of your terminal. 

The RELREQ exit routine may want to determine whether there are any I/O 
requests pending for the terminal and release it only after these I/O operations have 
been completed. If the application program wants to release the terminal, it should 
disconnect the terminal with a CLSDST macro instruction. This CLSDST macro 
instruction must have the RELEASE option code in effect for its RPL. The 
terminal is not disconnected until CLSDST is issued. 

The application program that causes your RELREQ exit list routine to be invoked 
may have had the CONANY option code in effect for its OPNDST or SIMLOGON 
request. Although the use of CONANY causes VTAM to ultimately connect only 
one terminal, VT AM may in the process invoke many RELREQ routines. Thus you 
may release your terminal, only to have it ignored by the other application program 
when its request is satisfied by some other terminal. To prevent this problem, 
follow the CLSDST with an OPNDST or SIMLOGON request of your own, with 
the NRELRQ processing option in effect. Then if the other application program is 
ignoring your just-released terminal, you get it back. 

Note: When the RELREQ exit routine receives control, register 1 contains the 
address of a three-word parameter list: 

The first word of the parameter list contains the address of an ACB. This 
ACB is the ACB through which the terminal is currently connected to an 
application program. 

The second word of the parameter list contains the CID of the terminal. 

The third word contains a pointer to the symbolic name of the requesting 
application program. 

The other registers contain the following: 

Register 14 - the address in VT AM to which the RELREQ routine should 
branch when it is through processing. VTAM will handle the return of control 
the instruction in the application program that was about to be executed 
when the RELREQ interruption occurred. 

Register 15 - the address of the RELREQ routine. 

The contents of the remaining registers (0 and 2-13) may be modified by 
VT AM before the RELREQ exit routine is invoked. 



EXLST 

LOGON = (address [, {AIN }] [, {gILEIGE} ]) I 
Function: Indicates the address of a routine to be entered when VT AM has queued 
a logon request for the application program. 

VT AM will queue a logon request (1) when a terminal issues a logon request and 
the application program to which the terminal is currently connected issues a 
CLSDST macro instruction with OPTCD=P ASS,' (2) when an appication program 
issues a SIMLOGON macro instruction on behalf of the terminal, or (3) when an 
application program opens its ACB, if the installation indicated during VT AM 
definition that logon requests should automatically be generated on behalf of 
specified terminals. 

If a terminal has been defined by the installation as a dial-in terminal (CALL=IN 
specified in the LINE or GROUP definition macro), the LOGON exit list routine is 
scheduled when the terminal operator dials in. If a terminal has been defined by the 
installation as a dial-out terminal (CALL=OUT), the LOGON exit list routine is 
scheduled when the application program opens its ACB. (The terminal will not be 
dialed, however, until the terminal is connected and the first I/O request is directed 
to it.) 

Regardless of the mechanism by which the LOGON exit list routine is scheduled, 
the routine is in effect being asked to connect the terminal to the application 
program. The routine's principal task therefore is to determine if it should honor 
the request, and when it determines that it should, issue an OPNDST macro 
instruction to establish connection with the terminal. 

The LOGON exit routine can issue an INQUIRE macro instruction to obtain the 
logon message supplied by the terminal making the logon request. If the routine 
determines from this logon message that connection should be requested, it may 
wish to establish that connection. This would be accomplished by using 
information passed to the LOGON exit list routine, along with information 
obtained with the INQUIRE macro instruction, to build a NIB and an RPL, and by 
then issuing the OPNDST macro instruction with ACCEPT and SPEC option codes 
to request the connection. 

Note: The LOGON exit list routine is entered only if MACRF=LOGON has been 
specified for the ACB, and the application program has not closed its logon queue 
with a SETLOGON (OPTCD=QUIESCE or OPTCD=STOP) macro instruction. 

When the LOGON exit list routine receives control, register I contains the address 
of a four-word parameter list: 

The first word of the parameter list contains the address of an ACB. This 
ACB is the ACB to which the logon request was directed. The ACB address 
should be specified for the ACB operand of an INQUIRE macro instruction 
used to obtain the logon message. 

The second word contains the address of the eight-byte symbolic name of the 
terminal making the logon request. This name should be placed in the NAME 
field of the NIB used to establish connection with the terminal. (The 
symbolic name being pointed to here is the same as the name of the 
terminal's entry in the resource definition table. The terminal's entry is either 
a TERMINAL or COMP entry, or, if the terminal is a dial-in terminal without 
an automatic ID verification feature, a UTERM entry. TERMINAL, COMP, 
and UTERM are VT AM definition macros used by ,the installation to build 
entries in the resource definition table.) 

37 



EXLST 

38 

The third word of the parameter list contains the address of the logon 
message. This address is useful only for programs running under DOS/VS, or 
programs running under an SRB in OS/VS2; for all other application 
programs the logon message is fetch-protected, and the INQUIRE macro 
instruction must be used to obtain the logon message. 

The fourth word contains the length of the logon message sent by the 
terminal. This length should be used with the LENGTH operand of any 
INQUIRE macro instruction used to obtain the logon message. 

The other registers contain the fol1owing: 

Register 14 ~ the address in VT AM to which the LOGON exit routine should 
branch when it is through processing. VI AM handles the return of control to 
the application program instruction that was about to be executed when the 
LOGON interruption occurred. 

Register 15 - the address of the LOGON exit routine. 

The contents of the remaining registers (0 and 2-13) may be modified by 
VT AM before the LOGON exit routine is invoked. 

LOSTERM=(address [, {AIN}] [, {~iLEIGE}]) 
Function: )ndicates the address of a routine to be entered when a switched-line 
disconnection occurs or when the network operator takes the terminal from the 
application program with a VARY command. 

When the LOSTERM exit list routine is entered, the application program can no 
longer communicate with the terminal. The LOSTERM exit list routine may want 
to inform the main part of the application program that the terminal has been lost. 
Itsh~)Uld eventually disconnect the terminal with a CLSDSTmacro instruction. The 
information needed to do this is available to the exit routine via parameters passed 
to it when it is given con trol. 

The LOSTERM routine is scheduled only if there are no pending I/O requests for 
the terminal. If I/O requests are pending, VTAM cancels the I/O operation and 
posts a return code in the RPL's FDBK field indicating that it has done so. If the 
application program has no LOSTERM exit list routine, the application program 
will not discover the disconnection until it issues an I/O request for the terminal. 

Note: When the LOSTERM exit list routine receives control, register 1 contains the 
address of a four-word parameter list. 

The first word of the parameter list contains the address of an ACB. This 
ACB is the ACB of the application program to which the terminal was 
connected. 

The second word contains the CID of the terminal. The ARG field of an RPL 
used for CLSDST must contain this CID. 

The third word contains whatever had been placed in the USERFLD field of 
the NIB associated with the terminal. 

The value contained in the fourth word indicates why the LOSTERM exit 
routine was entered: 

o A switched-line disconnection occurred. 

4 The network operator issued a VARY command. 



ATTN= 

Example 

EXLST 

The other general purpose registers contain the following: 

Register 14 - the address in VTAM to which the LOSTERM routine should 
branch when it is through processing. VT AM handles the return of control to 
the point in the application program where the LOSTERM interruption 
occurred. 

The contents of the remaining registers (0 and 2-13) may be modified by 
VTAM before the LOSTERM exit list routine is invoked. 

(address [, {AIN }] [, {,gILEIGE}]) 
Function: Indicates the address of a routine to be entered when a terminal 
connected to the application program issues an attention interruption and no read 
or write operation is pending or in progress. 

Such an attention interruption causes an error lock to be set for the terminal by the 
CPU or the 3704 or 3705 communications controller; no I/O can be performed 
with the terminal until this error lock is reset with a RESET macro instruction. If 
there is no active ATTN routine to be invoked, the attention interruption is ignored 
and the error lock is automatically reset. 

Note; The ATTN exit is taken only if (1) the application program specified 
PROC=MONITOR in the NIB representing the terminal that issued the attention 
interruption, and (2). the installation indicated during VT AM definition that the 
3704 or 3705 communications controller is to react to attention interruptions. 

When the ATTN routine receives control, register 1 will contain the address of a 
three-word parameter list: 

The first word of the parameter list contains the address of an ACB. This 
ACB is the ACB through which the terminal issuing the attention interruption 
is currently connected. 

The second word contains the CID of the terminal. The ARG field of any 
RPL used to communicate with this terminal must contain this CID. 

The third word contains whatever had been placed in the USERFLD of the 
NIB associated with the terminal. 

The other general purpose registers contain the following: 

Register 14 - the address in VTAM to which the ATTN routine should 
branch when it is through processing. VT AM handles the return of control to 
the application at the point that the interruption for the ATTN exit occurred. 

Register 15 -- the address of the ATTN exit routine. 

The contents of the remaining registers (2-13) may be modified by VT AM 
before the ATTN routine is invoked. 

EXLSTI EXLST LERAD=LERADPGM,SYNAD=SYNADPGM, SEE NOTE 1 X 
TPEND=(,N),RELREQ=(,N), SEE NOTE 2 X 
AM=VTAM 

Note 1: Both the LERAD and SYNAD exits are specified as active. This is the 
same attribute that the exit addresses would have if A had been specified for them. 

Note 2: No TPEND or RELREQ exits are being indicated in the exit list, but space 
for them is being reserved. Later the MODCB macro can be used to insert an 
address and change the entry from inactive (N) to active (A). 

39 



GENCB 

GENCB - Generate a Control Block 

40 

symbol 

The GENCB macro instruction builds an ACB, EXLST, RPL, or NIB control block. 
The advantage of using the GENCB macro instruction lies in the fact that the 
control blocks are generated during program execution. (With the ACB, EXLST, 
RPL, and NIB macro instructions, the control blocks are built during assembly.) 
Program reassembly will not be required should control block formats be changed 
during future releases of VTAM. GENCB not only builds the control block during 
program execution, it can also build the control block in dynamically allocated 
storage. 

The GENCB user specifies the type of control block to be built and the content of 
fields within it. The operands used to specify the field contents are exactly the 
same as those used in the macro instruction that builds the control block. For 
example, this GENCB macro instruction -

GENCB BLK=EXLST,SYNAD=SYNADPGM 

builds the same exit list as this EXLST macro: 

EXLST SYNAD=SYNADPGM 

The control block is buiit either in storage that VTAM obtains via the OS/VS 
GETMAIN or DOS/VS GETVIS facility, or in the application program's storage. To 
accomplish the latter, the application program should either reserve enough storage 
during program assembly to accomodate the control block, or perform its own 
GETMAIN or GETVIS operation to obtain the necessary storage. If the application 
program.is providing the storage, the location and length of this storage must be 
coded in the GENCB macro instruction. Dynamic storage allocation for the control 
block occurs automatically if the location and length operands (WAREA and 
LENGTH) are omitted. 

Note: Dynamic storage allocation can be successful only if (1) the program is 
operating in virtual mode, and (2) enough unallocated virtual storage remains in the 
program's partition or region to build the control block. Required control block 
lengths are indicated below in the LENGTH operand description. 

list and execute forms of the GENCB macro instruction are available; they are 
designated by the MF operand. 

Name Operation Operands 

[symbol] GENCB BLK= {ACB I EXLST I RPL I NIB} 
[ , keyword=value] ... 
[ , COPIES= { ! I quantity} ] 
[, WAREA =work area address J 
, LENGTH=work area length 

[, MF= { L I (E, parameter list address)} ] 

Function: Provides a name for the macro instruction. This name can be use,d by 
other macro instructions that refer to the control block being built. 

BLK= {ACB I EXLST I RPL I NIB} 
Function: Indicates the type of control block to be generated. 



keyword=value 

GENCO 

Note: This operand is required for standard and list forms, but for the execute form 
it can not be specified. 

Function: Indicates a control block field and the value that is to be contained or 
represented within it. 

Format: For keyword code any keyword that can be used in either the ACB, 
EXLST, RPL, or NIB macro instruction corresponding to that shown in the BLK 
operand. If BLK=ACB is used for example, code the keyword of any operand that 
can be used in the ACB macro instruction. One exception: "ARG=(register)" can 
also be coded if BLK = RPL. 

For value indicate a register or code any value that could be used if the operand 
were being specified in the ACB, EXLST, RPL, or NIB macro instruction. 

Note: Register notation cannot be used for the list form of GENCB 

COPIES= { ! I quantity} 
Function: Indicates the number of control block copies to be generated, including 
the original. 

The copies are identical in form and content. They are placed contiguously in 
storage, whether that storage is the area indicated by the WAREA operand or is 
dynamically allocated storage. 

The length returned in register 0 will be the total length of the generated control 
blocks. The length of each block (the total length divided by the number of copies) 
can be used to determine the location of the beginning of each block. 

Format: Register notation cannot be used for the list form of GENCB. 

WAREA=work area address 
Function: Indicates the location of the storage area in the application program 
where the control block is to be built. If this operand is specified, the LENGTH 
operand must also be specified. 

If the WAREA and LENGTH operands are omitted, VTAM obtains dynamically 
allocated storage via the GETMAIN or GETVIS facility and builds the control 
block there. The address of the generated control block is then be placed in register 
1. 

Format: Code the location of the work area. For the list form of GENCB, register 
notation cannot be used. 

LENGTH=work area length 
Function: Indicates the length (in bytes) of the storage area designated by the 
WAREA operand. 

If this length is insufficient, register ·15 will contain the value 4, and register 0 will 
contain the required length. If the length is sufficient, VTAM generates the control 
block or blocks and posts the total length in register o. 

41 



GENCO 

42 

The following amounts of storage are required for each block: 

DOS/VS 
52 
44 
76 

ACB 
NIB 
RPL 
EXLST 70 

OS/VSl 
84 
44 

104 
70 

OS/VS2 
84 
44 

104 
70 

Format: Code a numerical value or an expression that will be equated to a 
numerical value. Expressions involving registers cannot be used for the list form of 
GENCB. 

MF= {L I (E, parameter list address)} 

MF=L 

Function: Indicates that either a list form or an execute form of GENCB is to be 
used. 

The list form (L-form) of this macro instruction creates a parameter list for later 
use by the execute form. Because the L-form macro instruction generates only this 
parameter list, and no executable code, operand forms like register notation or 
base-displacement expressions are prohibited. Only A-type address constants or 
absolute values can be used. The user is responsible for branching around the 
generated parameter list, which is variable in length. 

MF=(E,parameter list address) 

Examples 

The execute form (E-form) of this macro instruction can modify the parameter list 
generated by its list form, and causes control to be passed to VT AM routines when 
the °E-form is executed. The expansion of the execute form provides the executable 
instructions required to perform parameter list modification and passing of control. 
The parameter list address should specify the location of the list form of the macro 
instruction. Register notation can be used. 

Note: Although the execute form of GENCB can modify the list form's parameter 
list, it cannot add to it. Therefore if an operand value will not be known until 
program execution and is to be supplied with the execute form, the list form must 
also specify that operand and supply a dummy value for it. 

For example: Assume than an RPL is to be generated, and the value for the 
RECLEN operand will become available in register 3 during program execution. To 
place the contents of register 3 into this RPL field, code a list form like this: 

LGEN GENCB BLK= RPL,RECLEN=O,MF=L 

and code an execute form like this: 

EGEN GENCB 

GENl GENeB 

RECLEN=(3),MF=(E,LGEN) 

AM=VTAM,BLK=ACB, 
APPLID=(3 ),EXLST=( 6), 
WAREA=ACBlAREA,LENGTH=76 

x 
X 

GENl builds an ACB in ACBl AREA. When GENl is executed, register 3 must 
contain the address of an application program's symbolic name (the name of that 
application program's entry in the resource defimtion table), and register 6 must 
contain the address of the exit list to be pointed to by the ACB. 



GENeB 

.GEN2 GENCB BLK=RPL,COPIES=IO,AM=VTAM 

GEN2 creates ten RPLs in dynamically allocated storage. The address of the begin­
ning of these RPLs is returned in register 1. Each RPL is built as though an RPL 
macro instruction with no operands had been issued. 

Return of Status Infonnation 
After GENCB processing is finished and control is returned to the next sequential 
instruction, VTAM indicates the following in these general purpose registers: 

Register 0: If the control block was built in dynamically allocated storage, 
this register contains the length (in bytes) of the control block. If several 
copies have been built, the length represents the total length. If the control 
blocks were to have been built in WARBA but the length (LENGTH) was too 
small, this register contains the correct length needed to build the control 
block or blocks. 

Register 1: This register contains the address of the first byte of the generated 
control blocks if they were built in dynamically allocated storage. 

Register 15: The hexadecimal value in this register indicates completion 
status: 

o The control blocks were successfully built. 

4 Either the statically reserved work area was too small (see register 0 for 
the required length) or not enough dynamically allocated storage could 
be obtained. 

8 The execute form was used incorrectly. For example, a control block 
field was being set, but the list form did not indicate that field and 
supply a dummy value for it. 

43 



INQUIRE 

INQUIRE -- Obtain Terminal Information or Application Program Status 

44 

As with many other VTAM macro instructions, various fields in an RPL determine 
what will happen when INQUIRE is executed. The user coding the INQUIRE 
macro instruction must indicate a particular RPL and can optionally reset any of its 
fields. 

There are five variations to INQUIRE; an RPL option code (in its OPTCD field) 
determines which one is used: 

OPTCD=LOGONMSG 
INQUIRE obtains a logon message from a terminal that has requested logon to the 
program. This type of INQUIRE is useful in LOGON exit list routines that must 
evaluate the logon request to determine whether or not connection is to be 
established with the terminal. (Note: A logon message cannot be obtained after 
OPNDST is issued, and it can only be obtained once. 

The RPL's ACB field must indicate the ACB to which the logon request is directed. 
The NIB field must point to a NIB whose NAME field contains the symbolic name 
of the terminal issuing the logon request. The AREA and AREALEN fields must 
indicate the location and length of the storage area where the logon message is to be 
placed. 

Note: The information required for the ACB, NIB, and AREALEN fields is passed 
to the LOGON exit list routine in a parameter list. 

VT AM indicates the length of the logon message in the RPL's RECLEN field. If the 
message is too long to fit, RECLEN is posted with the required length. 

OPTCD=DEVCHAR 
INQUIRE obtains the device characteristics of a terminal, as they are defined in the 
resource definition table at the time INQUIRE is executed. These device 
characteristics can be used to define which processing options the program wants to 
be in effect for the NIB associated with that terminal. This type of INQUIRE is also 
appropriate for use in LOGON exit list routines where the program is establishing 
connection with terminals whose identities are not known during program 
assembly. 

The RPL must indicate the terminal in one of two ways: either the RPL's NIB field 
must indicate a NIB that contains the symbolic name of the terminal, or the RPL's 
ARG field must contain the CID of the terminal. These device characteristics are 
placed in an eight-byte program storage area whose location is indicated in the 
AREA field. The AREALEN field must be set to eight. 

The bits that are set in this field indicate whether the device is an input, output, or 
input/output device. The . specific device type (for example, 3270 display unit) is 
also indicated. 

OPTCD=TERMS 
For a given TERMINAL LINE, or GROUP entry in the resource definition table, 
INQUIRE builds a NIB or list of NIBs in the application program. 

The reason for this type of INQUIRE is this: During VTAM definition, the 
installation can define a line or GROUP entrv and associate a set of terminals with 
that entry. If the application programs builds one NIB that indicates this LINE or 
GROUP entry in its NAME field, it can then issue INQUIRE to generate NIBs for 



INQUIRE 

all of the LINE or GROUP entry's associated terminals. Thus the application 
program need not be aware of the identities or the number of these terminals 
before establishing connection with them. This allows the installation, via the 
network operator, to vary the set of terminals after the application program has 
been assembled. 

The RPL's NIB field must point to a NIB whose NAME field contains the name of 
an entry that exists in the resource definition table at the time INQUIRE is 
executed. This entry must be either a terminal entry (as defined by a TERMINAL 
macro instruction during VTAM definition) or a group entry (as defined by a 
GROUP macro) that represents several terminals. A NIB is built for each terminal 
represented in the entry. 

The AREA and AREALEN fields designate the location and length of the work 
area where the NIBs are built. 

VTAM indicates the total length of the NIBs in the RPL's RECLEN field. If the 
application program wants the NIBs to be built in dynamically allocated storage 
(obtained by the application program), INQUIRE should be issued twice. For the 
fust INQUIRE, set AREALEN to 0; the required length will be returned in the 
RECLEN field. Obtain the storage, then reissue INQUIRE, this time with 
AREALEN set to the value returned in RECLEN. 

Each NIB contains the symbolic name of the terminal, processing options set 
according to the underscored ('default') values shown for the PROC operand in the 
NIB macro iIistruction, and flags for the LISTEND field set in such a way as to 
group the NIBs together into a NIB list. In addition, device characteristics are 
placed in each NIB. These characteristics can be used to reset the PROC options of 
the NIB to values that are appropriate for the terminal. 

After the user has set each NIB's MODE field to BASIC, the NIBs are ready to be 
used for connection. 

OPTCD=COUNTS 
INQUIRE provides the number of terminals that are currently connected via a given 
ACB and the number of terminals that have requested logon via that ACB but have 
not yet been connected. 

The RPL's ACB field must contain the address of the ACB. The AREA field must 
indicate an eight-byte area where the information is to be placed. VT AM places the 
number of connected terminals in the first four bytes and the number of terminals 
requesting logon in the second four bytes. 

OPTCD=APPSTAT 
INQUIRE checks a given application program and set a value indicating: 

o the application program is active and available - that is, represented by 
an ACB that (1) has been opened, and (2) indicates that logon requests 
are to be queued, or 

4 the application program is inactive (future availability unknown) - that 
is, not represented by any opened ACB. 

8 the application program is active but unavailable - that is, represented 
by an ACB that has been opened but indicates that logon requests are 
not to be queued. 

45 



INQUIRE 

symbol 

RPL=rpl address 

46 

(An application program indicates that logon requests are not to be queued 
by either spedfying MACRF=NLOGON in its ACB or issuing a SETLOGON 
macro instruction.) 

The value is returned in a full word storage area provided by the application 
program; the address and length of this area must be placed in the AREA and 
AREALEN fields of the RPL. 

The RPL's NIB field must point to a NIB whose NAME field contains the symbolic 
name of the application program to be checked. (Although the NIB is generally 
used as a terminal control block, note that here it is being used as an application 
program control block.) The symbolic name must be left-justified and padded to 
the right with blanks. (This name corresponds to the application program's APPL 
entry in the resource definition table.) 

OPTCD=CIDXLATE 
Given a terminal's CID, INQUIRE provides the symbolic name of that terminal. 

When a terminal is connected to an application program, the symbolic name of that 
terminal is converted into a four-byte eqUivalent called the CID. This CID is 
inserted into the ARG field of the RPL used for connection, and must be used for 
all subsequent READ, WRITE, SOLICIT and RESET requests for that terminal. 

The CIDXLATE option provides a means of reconverting that CID back into its 
equivalent symbolic name. The RPL's ARG field must contain the CID when 
INQUIRE is executed. The symbolic name is returned in the data area indicated by 
the RPL's AREA field. 

OPTCD=TOPLOGON 
When a terminai directs a iogon request at an application program (ACB), or when a 
logon request is made on its behalf, the application program mayor may not 
immediately satisfy the request. While the request remains unsatisfied, it is said to 
be queued on the ACB. If unsatisfied requests accumulate, more than one terminal 
will be queued on that ACB. 

The TOPLOGON option provides the symbolic name of the terminal that is 
currently at the head of this queue. The ACB field of INQUIRE's RPL must 
indicate the ACB whose logon request queue is to be used. The symbolic name is 
returned in the data area indicated in the RPL's AREA field. 

Name Operation Operands 

[symbol] INQUIRE RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL that indicates which kind of processing 
INQUIRE is to perform. 



INQUIRE 

rpl keyword=new value 

Examples 

Function: Indicates an RPL field to be modified, and the new value that is to be 
contained or represented within it. 

Format: For rpl keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. The new value can be any value 
that is valid for that operand in the RPL macro instruction, or it can indicate a 
register. 

Note: The seven RPL option codes that have a unique effect on INQUIRE (and 
thus might likely be modified here) are discussed above; check Figure 5 in the RPL 
macro instruction description for a list of all RPL option codes and fields that 
apply to the INQUIRE macro instruction. 

INQI INQUIRE RPL=RPLI, RPL MODIFIERS FOLLOW X 
OPTCD=APPSTAT, X 
NIB=NIBI X 
AREA=FULLWORD,AREALEN=4 

INQI determines whether the application program (whose symbolic name has been 
placed'in NIBI's NAME field) is active and accepting logon requests. The answer is 
returned in FULLWORD. 

INQ2 INQUIRE RPL=RPL2, RPL MODIFIERS FOLLOW X 
OPTCD=LOGONMSG, X 
ACB=ACBI, NIB=NIBI, X 
AREA= LGNMSG,AREALEN=( 4) 

INQ2 obtains the logon message that was sent from the terminal whose symbolic 
name is contained in NIB2 and that was directed to the application program repre­
sented by ACB 1. This message is placed in the area designated as LGNMSG. 

Return of Status Information 
When the INQUIRE operation is completed, these sources of status information can 
be checked: . 

The RECLEN field of the RPL: If INQUIRE completes its function normally, 
RECLEN contains the number of bytes of data that have been placed in the 
work area designated by the AREA field. If the FDBK field indicates that this 
data area was too small, RECLEN indicates the required length. 

Register 15: One of the following hexadecimal values is indicated. 

o If the ASY option code is in effect, no error has been detected in the 
way the INQUIRE request was issued, and INQUIRE processing has 
been scheduled. If the SYN option code is in effect, INQUIRE 
processing has been completed successfully. 

4 The request cannot be scheduled because the RPL is currently in use by 
another request. The RPL's FDBK field has not been set. If an active 
LERAD exit list routine is available, it has been invoked 

8 A logical error occurred; the FDBK field can be examined to determine 
which one it was. If an active LERAD exit list routine is available, it has 
been invoked. (This return code is possible only when the SYN option 
code is in effect.) 

47 



INTRPRET 

INTRPRET -- Interpret a Logon Message 

48 

The INTRPRET user supplies VTAM with a terminal's logon message and receives 
in return the identification of the application program implied in the logon 
message. ('Implied' here means that the terminal is not necessarily entering the 
application program's symbolic name in a form that is recognized throughout the 
teleprocessing network.) 

When the installation is defining its teleprocessing network to VTAM, it identifies 
each terminal and associates with each a logon characteristics table. Each entry in 
the table contains several parts, but there are three that are of importance to the 
INTRPRET user: 

A logon sequence. 

An application program identification (or the address of a routine that will 
generate an application identification when executed). 

An additional data sequence. 

The logon sequence is a sequence of characters that the terminal might enter, pre­
sumably as the first part of a logon request (where the terminal is indicating the 
identity of the application program to which it wants to be connected). The logon 
sequence could be anything the terminal is capable of entering - graphic characters, 
a carriage return, or a function key. It amounts to an alias for the actual name of an 
application program. 

The application program identification is the symbolic name of an application 
program. This is the name the installation assigns to an APPL entry when it is 
defining the application programs in its teleprocessing network. 

The additional data sequence is simply any character string that the installation 
wants to associate with the logon sequence. 

When a terminal sends an application program a logon message and that application 
program uses INTRPRET, VTAM looks for a matching logon sequence in that 
terminal's logon characteristics table. If a match is found, VTAM passes back the 
application program identification associated with the logon sequence. If the logon 
sequence also has an additional data sequence associated with it, the additional data 
is also passed back to the application program issuing INTRPRET. 

The installation may choose not to use a terminal's logon characteristics table in the 
manner described above; routine addresses could be used in place of the application 
program's identification, for example. In any event, INTRPRET's function is the 
same: translate a given logon sequence into an application identification, and add 
an additional data sequence, if any was indicated by the installation. 

The INTRPRET user supplies VT AM needed information via an RPL. The RPL 
fields described below can be set with the INTRPRET macro instruction itself. 
(This list does not include RPL fields whose effects are common to all VTAM 
macros; see the RPL macro instruction description, particularly Figure 5, for a list 
of all RPL fields applicable to INTRPRET) The RPL modifiers shown below have 
the following effects: 

NIB=address 
The NIB field must contain the address of a NIB; the NAME field of this NIB must 
contain the symbolic name of the terminal issuing the logon request. The symbolic 
name is provided in the parameter list supplied to the LOGON exit list routine. 



symbol 

RPL=rpl address 

INTRPRET 

AREA=address 
VTAM obtains the logon message from this data area. The application program can 
obtain the logon message with the INQUIRE macro instruction or from the 
parameter list passed to the LOGON exit list routine; the application program then 
supplies this message to VTAM when it issues the INTRPRET macro instruction. 

RECLEN=length 
VTAM uses this value to determine how many bytes of data (pointed to in AREA) 
are to be used. This value is also provided in the LOGON exit list routine's 
parameter list, or it can be determined by using the INQUIRE macro instruction. 

AAREA=address 
INTRPRET places the information it produces into the work area indicated by the 
AAREA field. The information is arranged in this format: 

The application program identification, as it exists in the logon characteristics 
table. (This is eight bytes long.) 

The length of the additional data sequence that follows; if none follows, the 
indicated length is O. (This length indicator is one byte long.) 

The additional data sequence, if the installation included one in the logon 
characteristics table entry. 

AAREALN=length 
This field is set by the INTRPRET user to indicate the maximum length (in bytes) 
allocated for the work area indicated by the AAREA field. 
Mter VT AM has placed the data into the work area indicated by AAREA, the 
RPL's ARECLEN field is set to indicate how many bytes were placed there. If the 
data to be placed in the AAREA work area is too long to fit (that is, exceeds the 
value contained in the AAREALN field), VTAM posts an error return code and 
indicates the required length in the ARECLEN field. 

If the INTRPRET user does not know the required length for AAREA and wants to 
fmd this out dynamically (rather than allocate an area large enough to handle all 
cases), INTRPRET can be issued once with AAREALN set to 0, and then issued a 
second time with AAREALN set to whatever value the first INTRPRET returned in 
the ARECLEN field of its RPL. 

Name Operation Operands 

[symbol] INTRPRET RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL from which INTRPRET obtains 
needed information from the application program, and into which it returns 
completion status information. 

rpl keyword=new value 
Function: Indicates an RPL field to be modified and the new value that is to be 
contained or represented within it. 

49 



INTRPRET 

50 

Example 

Format:. For rpl keyword code the keyword of the RPL ma~ro instruction operand 
that corresponds to the RPL field being modified. The new value can be any value 
that is valid for that operand in the RPL macro instruction or it can indicate a 
register. 

Note: All the RPL fields that have a unique effect on INTRPRET are discussed 
. above. Check Figure 5 in the RPL macro instruction description for a list of all the 
RPL fields that are applicable for INTRPRET. 

Assume that an application program has obtained a terminal's logon message and 
wants to determine which application program the terminal is really indicating in its 
message. In this example, the application program has already obtained the length 
of the logon message (in register 3). 

INTI INTRPRET RPL=RPLI, RPLI MODIFIERS FOLLOW: 
NIB=NIB6,AREA=LGNMSG,RECLEN=(3) 
AAREA=INTIDATA 'AAREALN=40 

x 
X 

When INTI is issued, VTAM finds the logon characteristics table that the 
installation has defmed for the terminal indicated by NIB6. VT AM next looks for 
the logon sequence in that table that matches the message provided in LGNMSG. 
When the entry is found, VT AM places the application identification associated 
with that logon sequence into INTIDATA. If an additional data sequence has also 
been included with the logon sequence, that data (and its length) also is placed into 
INTIDATA follOWing the application identification. VTAM sets the RPL's 
ARECLEN field to indicate the total number of bytes actually brought into 
INTI DATA. Should the total amount exceed 40 bytes, INTI will complete in error 
with the RPL's ARECLEN field set to the correct length. 

Return of Status Information 
When the INTRPRET operation is completed, these sources of status information 
may be checked: 

The ARECLEN field of the RPL: If the FDBK field indicates that 
INTRPRET failed because the data to be placed in the AAREA work area 
would not fit, ARECLEN contains the number of bytes required to hold the 
data. If FDBK (or register IS) indicates that INTRPRET was completed 
successfully, ARECLEN indicates how many bytes of data have actually been 
placed in the AAREA work area. 

The FDBK field of the RPL: If register IS indicates that a logical error 
occured, this field indicates the type of logical error. 

Register IS: One of the following hexadecimal values is indicated: 

o If the ASY option code is in effect, VT AM found no errors or 
contradictions in the INTRPRET request and has accepted the 
INTRPRET request. If SYN is in effect, the INTRPRET operation has 
been successfully completed. 

4 The INTRPRET request cannot be accepted because the RPL is 
currently in use by another request. The RPL's FDBK field has not 
been set. The LERAD exit list routine, if an active one exists, has been 
invoked. 

8 A logical error (see Appendix A) has occurred; the FDBK field of the 
RPL can be examined to determine which one it was. If an active 
LERAD exit list routine exists, it has been invoked. (This code can only 
be returned when the SYN option code is in effect.) 



LDO 

LDO - Create a Logical Device Order 

symbol 

CMD=command 

With the READ, WRITE, SOLICIT, and RESET macro instructions, the application 
program can perform all but a few of the I/O operations provided by VTAM. To 
request any of the following I/O operations, however, the application program must 
use the DO and LDO macro instructions: 

Copy the contents of a 3270 display unit's buffer to the buffer of any printer 
or display unit attached via the same control unit. 

Read the entire contents of a 3270 display unit's buffer. (To simply read the 
data that the terminal operator sends, use the READ macro instruction.) 

Read a block of data from a 3735 terminal or from a System/3 or 
System/370 CPU, and then send a positive or negative acknowledgment 
accompanied by leading graphic characters, to the device. 

Write data beginning with a block of heading characters to a 3735 terminal or 
to a System/3 or System/370 CPU. 

The LDO macro instruction generates a control block during program assembly that 
indicates one of the above I/O operations. The actual operation is performed when 
a 00 macro instruction is executed that points to the LDO. 

Some LDOs can be combined to form a series of operations, much like channel 
command words can be combined to form a channel program. 

An LDO has these parts: 

A command indicator. This indicates the specific I/O operation to be 
performed. 

A data address or a data area address. Depending on the command, this 
address indicates an area containing data, or a storage area where data is to be 
placed. 

A length indicator. This indicates the length of the data or data area. (Note: 
The RPL also has corresponding data address and length fields, but these are 
ignored when the 00 macro instruction is executed.) 

A chaining indicator. A flag can be set in some of the LDOs that causes 00 
processing to also use the next contiguous LDO in storage. 

Name Operation Operands 

[symbol] LDO CMD=command 
[, ADDR=data address or data area address] 
[, LEN =data length or data area length] 
[,FLAGS=C] 

Function: Provides a name for the macro instruction. This name can be used as the 
value of the AREA operand when the AREA field of the DO macro instruction's 
RPL is set to point to this LDO. 

Format: After the CMD keyword, code any of the following values: 

COPYLBM 
COPYLBT 
READ 
READBUF 

WRITE WRTNRLG 
WRITELBM WRTPRLG 
WRITELBT 
WRTHDR 

51 



LDO 

52 

Function: Indicates the specific I/O operation to be performed when the LDO is 
used when the DO macro instruction is executed. 

COPYLBM 
This LOO causes VTAM to send the entire contents of a 3270 display unit's buffer 

to a printer or another display unit in the same remotely attached information 
display system. VTAM sends the data as a message by adding an ETX line control 
character at the end. 

The ADDR and LEN operands of this LOO must indicate the location and length of 
a data area containing (1) a 3270 copy control character and (2) the right-most two 
bytes of the sending device's CIO. (See the copy command in the 3270 component 
description manual for an explanation of the copy control character.) 

The ARG field of the DO macro instruction's RPL must contain the receiving 
device. 

COPYLBT 
The COPYLBT LOO performs like the COPYLBM LOO, except that after the data' 
has been copied, VT AM waits for the receiving device's acknowledgment, and sends 
an EOT character after the acknowledgment is received. (The LBM and LBT in the 
COPYLBM and COPYLBT LDOs stand respectively for "last block in message" and 
"last block in transmission.") 

READ 
The READ LDO obtains a block of data from a 3735 programmable buffered 
terminal and places it in a storage area in the application program. 

The READ LDO causes VTAM to perform the same action that a READ macro 
instruction does. However, a READ LDO can be command-chained to a WRTPRLG 
or WRTNRLG LDO. This allows the application program to either (1) send a 
negative acknowledgment to the device and then re-read the data sent by it, or (2) 
send a positive acknowledgment to the device and then read the next block of data 
(or EOT character) sent by it. By generating its own responses in this manner, the 
application program can also send leading graphic characters along with the 
response. 

The ARG field of the DO macro instruction's RPL must contain the CID of the 
device. The ADDR and LEN fields of the READ LDO must indicate the location 
and length of the storage area where the data is to be placed. 

If the data to be placed there is too long to fit, error information is placed in the 
RPL's FDBK field, the required length is placed in the RPL's RECLEN field, and 
the Loo's address is placed in the RPL's AAREA field. The DO macro instruction 
in this situation, terminates with an error code posted in register 15. 

READBUF 
The READBUF (read buffer) LDO causes the entire contents of a 3270 display 
unit's buffer to be placed in an area in the application program. VTAM sends the 
device-control characters required to distinguish this kind of input operation from a 
normal read operation (which obtains data only when the terminal operator enters 
data and presses the ENTER key). 

The ARG field of the DO macro instruction's RPL must contain the CID of the 
sending device. 



LDO 

The AOOR and LEN operands of this LOO indicate the address and length of the 
storage area where the data is to be placed. If the data is too long to fit, error 
information is placed in the FOBK area of the RPL (see Appendix A), the required 
length is placed in the RECLEN field of the RPL, and the LOO's address is placed 
in the AAREA field. The 00 macro instruction, in this situation, terminates with 
an error code posted in register 15. 

WRITE 
The WRITE LOO writes a block of data to a 3735 terminal or to a System/3 or 
System/370 CPU. For these devices, the WRITE LOO works exactly like a WRITE 
macro instruction with a BLK option code; an STX character is added to the 
beginning of the data, and an ETB line control character is added to the end. 
However, if a WRITE Loo is command- chained to a WRTHOR LOO, (by 
specifying FLAGS=C on the WRTHOR LOO), this sequence is written: 

S 
o heading 
H 

S 
T text 
X 

E 
T 
B 

The AOOR and LEN operands of the WRITE LOO must indicate the location and 
length of the text data to be written. The ARG field of the 00 macro instruction's 
RPL must contain the CIO of the receiving device. 

WRITELBM 
The WRITELBM LOO will write a block of data to a 3735 terminal or to a 
System/3 or. System/370 CPU. For these devices, WRITELBM works exactly like a 
WRITE macro instruction with an LBM option code; an STX character is added to 
the beginning of the data, and an ETX character is added to the end. However, if a 
WRITELBM Loo is command-chained to a WRTHOR LOO, this sequence is 
written: 

S 
o heading 
H 

S 
T text 
X 

E 
T 
X 

The AOOR and LEN operands of the WRITELBM LOO must indicate the location 
and length of the text to be written. The ARG field of the 00 macro instruction's 
RPL must contain the CIO of the receiving device. 

WRITELBT 
The WRITELBT LOO writes a block of data to a 3735 terminal or to a System/3 or 
System/370 CPU. For these devices, WRITELBT works exactly like a WRITE 
macro instruction with an LBT option code; the data is preceded and followed with 
an STX and an ETX character respectively, and when an acknowledgment is 
received from the device, an EOT character is sent. However, if a WRITELBT Loo 
is command-chained to a WRTHOR LOO, this sequence is written: 

S 
o heading 
H 

S E 

Ttext ~T 
X X 
acknowledgment 
received 

E 
o 
T 

The AOOR and LEN operands of the WRITELBT Loo must indicate the location 
and length of the text to be written. The ARG field of the DO macro instruction's 
RPL must contain the CIO of the receiving device. 

53 



LDO 

54 

WRTHDR 
The WRTHDR LDO writes a block of heading characters to a 3735 terminal or to a 
System/3 or System/370 CPU. The heading characters are provided by the user; 
VT AM inserts an SOH character at the beginning of the block and an ETB character 
at the end. 

If a WRITE, WRITELBM, or WRITELBT LDO is command-chained to a WRTHDR 
LDO (by specifying FLAGS=C on the WRTHDR LDO), the ETB character is not 
inserted after the heading. 

The ADDR and LEN operands of this LDO must indicate the location and length of 
the heading characters to be written. The ARG field of the RPL being used by the 
DO macro instruction must contain the CID of the receiving device. 

WRTNRLG 
The WRTNRLG LDO (write negative response with leading graphics) sends a NAK 
character, accompanied by up to seven leading graphic characters, to a 3735 
terminal or to a System/3 or System/370 CPU. WRTNR~ can be used only if it is 
command-chained before a READ LDO (by specifying FLAGS=C on the 
WRTNRLG LDO) and BLOCK has been specified for the device's NIB. 

The ADDR and LEN operands of the WRTNRLG LDO must indicate the location 
and number of graphic characters to be used. The ARG field of the DO macro 
instruction's RPL must contain the CID of the receiving device. 

WRTPRLG 
The WRTPRLG LDO (write positive response with leading graphics) sends an ACKO 
or ACKI sequence, accompanied by up to seven leading graphic characters, to a 
3735 terminal or to a System/3 or System/370 CPU. WRTPRLG can be used only 
if it is command-chained before a READ LDO (by specifying FLAGS=C on the 
WRTPRLG LDO) and BLOCK has been specified for the device's NIB. 

The ADDR and LEN operands of the WRTPRLG LDO must indicate the location 
and number of graphic characters to be used. The ARG field of the DO macro 
instruction's RPL must contain the CID of the receiving device. 

ADDR=data address or data area address 
Function: Indicates the location of the data or data area to be used when the LOO 
is processed. 

For COPYLBM and COPYLBT LOOs, ADDR points to a 3270 copy control 
character and the rightmost two bytes of the sending device's CID. For the READ 
and READBUF LOOs, ADDR indicates where the data obtained by these LDOs is 
to be placed. For the output LDOs, ADDR indicates the location of the data that is 
to be written to a device. 

LEN=data length or data area length 
Function: Indicates the length (in bytes) of the data or data area specified in 
ADDR. 

For COPYLBM and COPYLBT LDOs, this value should always be set to 3. For 
READ and READBUF LDOs, VTAM uses this value to determine whether the data 
to be placed there is too big to fit. If there is too much data, an error condition is 
raised and no data is placed there. For all output LDOs, LEN indicates how many 
bytes of data are to be written. 



FLAGS=C 

Examples 

LDO 

Function: Indicates the action that the DO macro instruction is to take after it has 
used this LDO. The presence of this operand indicates that DO is to continue with 
the next contiguous Loo in storage. FLAGS=C should only be used with the 
WRTHDR LDO (to command-chain it to a WRITE, WRITELBM, or WRITELBT 
LDO) , or with the WRTPRLG or WRTNRLG LDOs (to command-chain them to a 
READ LDO). The absence of this operand indicates to DO that no further LDOs 
are to be used. 

The following example illustrates the use of the COPYLBM LDO. 

PRIME SHOWCB NIB=NIBl,AREA=TEMP,LENGTH=4,FIELDS=CID 
MVC CPYSCRNl + l(2),TEMP+2 

CPYSCRN DO RPL=RPLI,ARG=(6),AREA=LDOI 

LDOI 
TEMP 
CPYSCRNI 

LDO 
DS 
DC 

CMD=COPYLBM,ADDR=CPYSCRN 1 ,LEN=3 
F (TEMP=WORK AREA FOR CID) 
X'630000' (63=A COpy CONTROL CHARACTER, 

OOOO=FINAL AREA FOR RIGHT 
HALFOFCID) 

The purpose of the two instructions at PRIME is to obtain the CID of a device 
(from NIBl into TEMP) and place the right-most two bytes of the CID into a data 
area pointed to by LDOl. When CPYSCRN is executed, the device whose CID has 
been placed in register 6 will be the recipient of the copy operation. 

The next example shows how a READBUF LDO might be used. 

READ2 DO 

READLDO LDO 
WORKAREA DS 

RPL=RPL2,ARG=(7),AREA=READLDO 

CMD=READBUF ,ADDR=WORKAREA,LEN=480 
CL480 

When READ2 is executed, register 7 must contain the CID of a 3270 display unit. 
VT AM will obtain the entire contents of that device's buffer and place it in 
WORKAREA. 

The following example illustrates the use of the WRTHDR LDO. 

WRITEIT DO RPL=RPL3,ARG=(8),AREA=LDOH 

LDOH 
LDOT 

LDO 
LDO 

CMD=WRTHDR,ADDR=AHDRBLOK,LEN=5,FLAGS=C 
CMD=WRITE,ADDR=ATXTBLOK,LEN= I 6 

When WRITEIT is executed, VTAM sends a heading block from AHDRBLOK 
combined with a text block from ATXTBLOK. The line control characters added 
by VT AM make the sequence look like this: 

S data S data E 
o from T from T 
H AHDRBLOK X ATXTBLOK B 

55 



LDO 

56 

The last example shows how a WRTPRLG LDO can be command-chained to a 
READLOO. 

POSRSP DO 

RSPLDO LDO 
THENREAD LDO 

RLP=RPlA,ARG=(9),AREA=RSPLDO 

CMD=WRTPRLG,ADDR=GRAPHICS,LEN=7,FLAGS=C 
CMD=READ,ADDR=INAREA,LEN=480 

When POSRSP is executed, register 9 must contain the CID of a device. VT AM 
sends a positive response (ACKO or ACKl) to the device, accompanied by seven 
leading graphic characters from GRAPHICS. The next LDO causes VTAM to read 
the next block of data from the device. 



MODCB 

MODCB -- Modify the Contents of Control Block Fields 

symbol 

AM=VTAM 

MOOCB modifies the contents of one or more fields in an ACB, EXLST, RPL, or 
NIB control block. 

The user of the MODCB macro instruction indicates the location of an ACB, 
EXLST, RPL, or NIB, the fields within that control block to be modified, and the 
new values that are to be placed or represented in these fields. 

Any field whose contents can be set with the ACB, EXLST, RPL, or NIB macro 
instruction can be modified by the MODCB macro instruction. The operands used 
to do this are the same as those used when the control block is created. 

The following restrictions apply to the use of MODCB: 

An ACB cannot be modified after an OPEN macro has been issued for it. 

An exit list (EXLST) cannot have exits added to it with the MODeB macro 
instruction. MODCB can, however, be used to add valid addresses to dummy 
exit addresses and to change the A and N (active and inactive) attributes fc;>r 
those addresses. 

An RPL cannot be modified while a connection or I/O request using that 
RPL is pending - that is, while the RPL is active 

A NIB should not be modified while its address is in the NIB field of an active 
RPL. 

The AM field of the ACB, EXLST, and RPL control blocks cannot be 
modified. Once a control block has been generated in a VT AM-compatible 
form, it cannot later be a modified for use with another access method. 

List and execute forms of the MOOCB macro instruction are available; they are 
designated by the MF operand. 

Name Operation Operands 

[symbol] MOOCB AM=VTAM 

\' ACB=acb address l 
, EXLST=exit list address 
, RPL=rpl address ~ 
, NIB=nib address , 

{, field name=new value} ... 
[, MF= { L I (E, parameter list address)}] 

Function: Provides a name for the macro instruction. 

Function: Identifies this macro instruction as a VT AM macro instruction. This 
operand is required for the DOS/VS assembler, but is ignored by the OS/VSl and 
OS/VS2 assemblers. . 

57 



MOOCD 

58 

ACB=acb address 
EXLST=exit list address 
RPL=rp1 address 
NIB=nib address 

Function: Indicates the type and location of the control block whose fields are to 
be modified. 

Format: Use only one of the four operands and supply the address of the control 
block. Register notation cannot be used in the list form. 

Note: One of these operands must be selected for the standard or list form, but for 
the execute form none need be specified. 

field name=new value 
Function: Indicates a field in the control block to be modified and the new value 
that is to be contained or represented within it. 

Format: For field name code the keyword of any operand that can be coded in the 
macro instruction corresponding to the ACB, EXLST, RPL, or NIB operand used. 
If RPL=RPLI is coded, for example, the keyword of any operand in the RPL 
macro instruction can be coded. 

For new value indicate a register or code any value that could be used were the 
operand specified in an ACB, EXLST, RPL, or NIB macro instruction. Expressions 
involving registers cannot be used in the list form. 

When "field name" is an EXLST keyword (LERAD, TPEND, etc.), the A or N 
attributes and the E, LE, or GE attributes can be specified without specifying the 
address also. 

Examples: 

LERAD=(,N) 

TPEND=(,A,LE) 

Note the use of the commas and parentheses. 

Note: The standard and list forms of MOOCB must indicate at least one field to be 
modified. The execute form does not require this operand. 

[, MF= { L I (E, parameter list address)} ] 
Function: Indicates that either a list form or an execute form of MODCB is to be 
used. 

MF=L 
The list form (L-form) of this macro instruction creates a parameter list for later 
use by the execute form. Because the L-form macro instruction generates only this 
parameter list, and no executable code, operand forms like register notation are 
prohibited. Only relocatable expressions valid for adcons can be used. The user is 
responsible for branching around the generated parameter list, which is variable in 
length. 

MF=(E ,parameter list address) 
The execute form (E-form) of this macro instruction can modify the parameter list 
generated by its list form, and causes control to be passed to VT AM routines when 
the E-form is executed. The expansion of the execute form provides the executable 
instructions required to perform parameter list modification and passing of control. 



Example 

MOOCB 

The parameter list address should specify the location of the list form of the macro 
instruction. Expressions involving registers can be used. 

Note: Although the execute form of MOOCB can modify the list form's parameter 
list, it cannot add to it. Therefore if an operand value will not be known until 
program execu tion and is to be supplied with the execute form. the list form must 
also specify that operand and supply a dummy value for it. 

For example: Assume that during program execution the address of a LERAD exit 
routine will become available in register 3. To replace the LERAD entry in the exit 
list (in this case EXLSTl), code a list form like this: 

LOOD MODCB EXLST=O ,LERAD=O ,MF= L 

and code an execute form like this: 

EMOD MODCB EXLST=EXLSTI,LERAD=«3),A),MF=(E,LMOD) 

MODI MODCB RPL=( S),OPTCD=(ASY ,SPEC ,LBM) 

MODI activates the ASY, SPEC, and LBM option codes in an RPL. The address of 
this RP,L must be in register 5 when MODt is executed. 

Return of Status Information 
After MODCB processing is completed, VT AM indicates one of the following 
hexadecimal values in register IS before passing control back to the application 
program: 

o All of the control block fields were successfully modified. 
4 The location indicated by the ACB, EXLST, RPL, or NIB operand does 

not contain a valid control block. 
8 The execute form was used incorrectly. For example, a control block 

field was being modified, but the list form did not supply a dummy 
value for it. 

C A field to be modified is not a control block field for which 
modifications are allowed. Only those fields whose contents can be set 
by ACB, EXLST, RPL, and NIB macro instructions can be modified. 

59 



NIB 

NIB--Create a Node Initialization Block 

60 

The NIB generated by the NIB macro instruction is used by the program to identify 
which terminal is to be connected when an OPNDST macro instruction is executed. 
It also indicates how VT AM is to handle subsequent communication between the 
program and that terminal. In this sense a NIB works like an RPL, in that both 
contain information that governs I/O requests. But the information in a NIB relates 
to the terminal the NIB represents and governs all communication directed at that 
terminal. (The RPL, in contrast, supplies additional information relating to the 
transaction itself, such as the location of data to be written to a terminal or 
whether or not the request is to be handled asynchronously.) 

When OPNDST is issued, the NIB field of its RPL points to a NIB. Once connection 
is established, VT AM associates the terminal represented by the NIB with other 
information contained there -- information that is placed in the NIB by the 
USERFLD and PROC operands of the NIB macro instruction. This association con­
tinues as long as the terminal remains connected. If the USERFLD or PROC infor­
mation is to be altered during that time, the MODCB macro instruction must be 
used to make the appropriate changes in the USERFLD and PROC fields of the 
NIB, and the CHANGE macro instruction must be used to make these modifications 
effective. 

NIBs can be grouped together into lists. When certain requests are directed towards 
a NIB that is the first in a NIB list, VT AM considers all of the terminals represented 
in the NIB list to be the objects of the request, not just the terminal represented by 
the first NIB. 

A NIB can be built during program assembly with the NIB macro instruction, or it 
can be built during program execution with the GENCB macro instruction. 

A field called the CID field is generated as part of every NIB. It is not represented 
in the NIB macro instruction because its contents cannot be set by the application 
program. When the terminal represented by the NIB is connected to the program, 
VT AM generates a shortened version of the terminal's symbolic name and places it 
both in the NIB's CID field and in the ARG field of the RPL being used by the 
OPNDST macro instruction. Subsequent I/O requests directed toward that specific 
terminal must have this CID in the I/O request's RPL. If the one placed in the RPL 
during connection is lost, the SHOWCB macro instruction can be used to obtain the 
one placed in the NIB. 



symbol 

NIB 

Name Operation Operands 

[symbol] NIB [NAME=nanie in resource definition table] 
[, USERFLD=fullword of terminal data] 
[, LISTEND= { YES INO } ] 
[ , MODE=BASIC] 
r- [, {BLOCKIMSGITRANSICONT }] -

[, {LGOUTINLGOUT} ] 
[ , { CONFTXTINCONFTXT } ] 
(, {TMFLLINTMFLL } ] 
[, {EIBINEIB}] 
[ , {TIMEOUTINTIMEOUT } ] 

,PROC= [ , {ERPIN INERPIN } ] 
[ , { ERPOUT INERPOUT } ] 
[, {MONITORINMONITOR } ] 
[ , { ASYIPXINASYIPX } ] 
[ , { ELCINELC } ] 
[, {TRUNCIKEEP } ] 

- [, {BINARYINBINARY } ] -

Function: Provides a name for the macro instruction and thus for the NIB 
generated by it. This i name can be used for the ARG operand of an RPL macro 
instruction. 

NAME=name in resource defmition table 
Function: Associates the NIB with a terminal represented in the resource definition 
table. When used by the INQUIRE macro instruction with OPTCD=APPSTAT, the 
NAME field associates the NIB with an application program represented in the 
resource definition table. (The resource definition table is built by the installation 
during VT AM definition.) 

Format: Use the name of the TERMINAL, COMP, LOCAL, or APPL entry that 
represents the terminal or application program in the resource defmition table. 
Code this name as it appears in the resource definition table. For example: 

NAME=TERM 13 

Note: Although this operand is optional, the NAME field should be set by the time 
the OPNDST macro instruction is issued for this NIB. One exception: When 
OPNDST with an ACCEPT processing option and an ANY option code is issued, 
the NAME field need not be set, since VT AM will place the name of the connected 
terminal in this field. 

USERFLD=fullword of terminal data 

• 
Function: Indicates any fullword of data· that the application wants to associate 
with the terminal represented by this NIB. 

When the terminal is connected (and also whenever a READ macro instruction with 
an ANY option code is issued), VT AM places the contents of the USERFlD field 
in the USER field of the RPL being used for the connection or r~ad request. 

61 



NIB 

62 

The fullword of data can be anything the application chooses to associate with the 
terminal. It can be the program's own version of the terminal's symbolic name. This 
would be useful in the case of a READ macro with OPTCD=ANY, since the setting 
of the USER field in the READ macro's RPL provides the only efficient way the 
program can establish the identity of the terminals from which the data was just 
obtained. Or the fullword could be the address of a routine that the application 
program invokes whenever it connects the terminal. 

Format: Code the fullword of data in either character or hexadecimal format, or, if 
an address is desired, code it as an A-type or V-type address constant. Register 
notation cannot be used. Examples: USERFLD=C'TERM 1', USERFLD= 
X'00043EO', USERFLD=A(RTNl), and USERFLD=V(RTN2). 

Note: Use the MODCB and CHANGE macro instructions to change the contents of 
the USERFLD field after an OPNDST macro instruction has been issued for the 
NIB. 

LISTEND= { YES INO } 

MODE=BASIC 

Function: Allows the application program to group NIBs into lists. LISTEND=YES 
indicates that this NIB is the last in a list. LISTEND=NO indicates that this NIB and 
the NIB immediately following it in storage are part of a NIB list. 

NIB lists are used by the OPNDST macro with an ACQUIRE option code, and by 
the SIMLOGON macro instruction. VT AM considers the terminals represented by 
the entire list as objects of the OPNDST or SIMLOGON macro instructions. 

Example: The following use of the LISTEND operand effectively groups the 
Boston NIBs into one group, the Chicago NIBs into another, and defines the 
Portland NIB as simply a list of one. 

BOSTON 

CHICAGO 

PORTLAND 

NIB NAME=BOSTON 1 ,MODE=BASIC ,LISTEND=NO 
NIB N AME=BOSTON2,MODE=BASIC ,LISTEND=YES 
NIB NAME=CHICAGO 1 ,MODE=BASIC ,LISTEND=NO 
NIB NAME=CHICAG02,MODE=BASIC,LISTEND=NO 
NIB NAME=CHICAG03,MODE=BASIC,LISTEND=YES 
NIB NAME=PORTLAND,MODE=BASIC ,LISTEND=YES 

Function: Before an application program can issue an OPNDST or CHANGE macro 
instruction for a NIB, that NIB's MODE field must be set to BASIC. (BASIC allows 
VT AM to distinguish between NIBs used by the application program and NIBs used 
by VT AM itself.) 

This operand is optional, but if MODE=BASIC is not specified in the NIB macro 
instruction you will have to specify it in a MOOCB macro instruction before 
OPNDST or CHANGE are executed. 

PROC= { processing option (processing option, ... )} 
Function: Indicates options VT A.\1 is to follow for all I/O requests involving the 
terminal associated with this NIB. 

Format: Code as indicated in the assembler format table above. Omit the 
parentheses if only one option code is selected. 

NIB 

NIB 

NAME=TERM 13 ,MODE=BASIC, 
PROC=(BLOCK ,NERPIN ,NERPOUT) 

NAME=TERM 14,MODE=BASIC, 
PROC=BLOCK 

x 

x 



NIB 

Note: Not all processing options are valid for all types of devices. See Figure 4 at 
the end of this macro instruction description to see which processing options are 
valid for any given device supported by VT AM. 

To change any of the processing options after OPNDST has been issued, follow this 
two-step procedure: 

1. Issue a MODCB macro instruction. In this macro indicate the appropriate NIB 
and use the PROC operand to specify the new processing options. 

2. Issue a CHANGE macro instruction. In this macro indicate the RPL that in 
turn points to the NIB whose processing options were modified by the 
MODCB macro. 

{ BLOCKIMSG ITRANSICONT } 
These control how many blocks of data are to be obtained from a terminal for a 
solicit operation and how acknowledgments (responses) are to be handled as each 
block arrives. 

Solicit operations are all operations conducted by VT AM to obtain data from a 
terminal and transfer it to VT AM buffers. Solicitation does not involve the transfer 
of da,ta from VT AM buffers to the application program. 

VT AM solicits data from a terminal when (1) the application program issues a 
SOLICIT macro instruction or (2) the application program issues a READ macro 
instruction with the SPEC option code in effect for the RPL. Solicitation is not 
performed in the latter case, however, if VT AM already holds data obtained from 
the tenninal. 

Before reading the descriptions of BLOCK, MSG, TRANS, and CaNT that follow, 
examine Figure 3. This figure illustrates a typical data transmission from a terminal 
and shows how much of it is obtained each time a SOLICIT (or READ, as qualified 
above) is executed. 

BLOCK 
One block of data ending in an EOB line control character (for start-stop 
deVices) or an ETB line control character (for binary synchronous devices) is 
obtained. A line control response is sent to acknowledge receipt of the data 
obtained from the previous solicit operation, but no such response is sent 
when data is obtained as a result of the current solicit request. The data 
obtained by the current solicit request is acknowledged only when the next 
solicit request is issued. 

If the terminal represented by this NIB is a binary synchronous device, an 
installation authorization test is made when an OPNDST macro instruction is 
issued for this NIB. If the installation did not authorize the use of BLOCK by 
the application program (by so indicating in the application program's APPL 
entry during VTAM definition), the OPNDST macro instruction will not be 
executed successfully. 

(The use of BLOCK is restricted this way because it can result in line thruput that is 
very low compared to MSG, TRANS, and CaNT.) 

MSG 
Blocks of data are continuously obtained until a block containing an EaT 
character (for start-stop devices) or an ETX character (for binary syn­
chronous devices) is recognized. In effect, this means that data is solicited 

63 



NIB 

BLOCK 

When BLOCK is in effect. each 
SOLICIT obtains only a block: 

USER 

SOLICIT 

1 
BLOCK 

I 
SOLICIT 

VTAM 

• Acknowledge 
previous block. 
or start polling 

• Obtain data: 

1 
• Acknowledge 

• Repeat process 
(obtain another 
block) 

MSG 

When MSG is in effect. each 
SOLICIT obtains a message: 

USER VTAM 

SOLICIT 

• Acknowledge 
previous block. 
or start polling 

• Obtain data: 

1 
• Acknowledge 

I • Obtain data: 
MESSAGE 

SOLICIT 

1 
• Acknowledge 

• Obtain data: 

1 
• Acknowledge 

• Repeat process 
(obtain another 
message or EOT) 

TRANS 

When TRANS is in effect, each 
SOLICIT obtains a transmission: 

USER VTAM 

SOLICIT 

TRANS­
MISSION 

SOLICIT 

• Acknowledge 
previous block. 
or start polling 

• Obtain data: 

1 
• Acknowledge 

• Obtain data: 

1 
• Acknowledge 

• Obtain data: 

1 
• Acknowledge 

• Obtain data: 

8 
(or first block of 
new message) 

• Start polling 

• Repeat process 
(obtain another 
transmission) 

Figure 3. The Effect of BLOCK, MSG, TRANS, and CONT on Solicitation 

64 

CaNT 

When CONT is in effect, one 
SOLICIT obtains blocks of data 
continuously: 

USER VTAM 

SOLICIT 

NO 
LIMIT 

• Acknowledge 
previous block, 
or start polling 

• Obtain data: 

1 
• Acknowledge 

• Obtain data: 

1 
• Acknowledge 

• Obtain data: 

1 
• Acknowledge 

• Obtain data: 

~ 
(or first block of 
new message) 

• Start polling 

• Repeat process 
(continue to 
obtain blocks 
until stopped 
by RESET) 



NIB 

from the terminal until an entire message has been received. Line control 
responses are sent as each block is received, except for the last block. Its 
receipt is not acknowledged until the next solicit request is issued. 

lRANS 
Blocks of data are continuously obtained until a block containing an EOT 
character is recognized. In effect, this means that data is solicited from the 
terminal until an entire transmission has been received. Line control responses 
are sent as each block is received, including the last block. Polling will not 
resume until the next solicit request is issued. 

CONT 
Blocks of data are continuously solicited from the terminal. Line-control 
responses are sent for each block received. This solicitation continues 
indefinitely, unless the solicit operation is canceled with the RESET macro 
instruction or the terminal is disconnected from the program. 

{LGOUTINLGOUT} 
Indicates whether or not an output operation with this terminal should be_ 
considered to be in error if the terminal acknowledges receipt of the data with a 
response that includes leading graphic characters. When LGOUT is specified, a 
special code is posted in the FDBK field of the WRITE request's RPL, and the 
leading graphic characters are held by VT AM. A READ request directed at the 
terminal will cause the characters to be moved into the application program's 
storage (in the data area indicated by the AREA field of READ's RPL). If leading 
graphic characters are received during a conversational write operation, the 
characters ~i1l be passed to the application program as the input data. 

When NLGOUT is specified, the output operation completes in error if leading 
graphic characters are received in return. 

{ CONFTXTINCONFTXT } 
Indicates whether or not the data sent to or received from this terminal is to be 
considered as 'confidential.' If CONFTXT is specified, VTAM clears any of its 
buffers used to hold the data before returning them to operating system buffer 
pools. For NCONFTXT, no such clearing will be done. 

{TMFLLINTMFLL} 
Indicates whether or not the system is to insert idle device control characters or 
equivalent time-fill device-control characters into the data sent to this terminal. 
TMFLL allows the 3704 or 3705 communications controller to insert these 
characters. * NTMFLL suppresses the system's insertion of these characters -­
implying that the application program will be supplying its own time-fill characters. 

{EIBINEIB} 
Indicates whether or not the system is to insert an EIB (error information byte) 
after every ITB character received from this terminal. EIB indicates that an EIB is 
to be inserted with each intermediate transfer block; NEIB suppresses the insertion 
ofEIBs. 

*For information regarding the characters normally inserted see the IBM 3705 Communications 
Controller Network Control Program, Generation and Utilities Gllid~ and Reference Manual, 
GC3O-3000. 

65 



NIB 

66 

{TIMEOUTlNTIMEOUT} 
Indicates whether or not the 3704 or 3705 communications controller should 
suppress any text timeout limitation that might otherwise be used with this 
terminal, TIMEOUT permits normal time!Juts to occur; NTIMEOUT suppresses 
them. 

When TIMEOUT is in effect, the 3704 or 3705 imposes a text timeout limitation if 
the installation so indicated in the terminal's TERMINAL entry. (A timeout 
limitation means that if the inteIVal between two successive characters sent by a 
terminal exceeds a set limit, the I/O operation is terminated with an error 
condition.) NTIMEOUT provides the application program with a means of 
overriding this limitation and allowing the terminal an indefinite time period 
between characters; 

{ERPI~JNERPIN } 
Indicates whether or not system error recovery procedures are to be used if an I/O 
error occurs during an input operation with this terminal. ERPIN means that the 
error recovery procedures are to be used, NERPIN means that they are not. 

{ERPOUTINERPOUT } 
Indicates whether or not system error recovery procedures are to be used if an I/O 
error occurs during an output operation with this terminal. ERPOUT means that 
the error recovery procedures are to be used, NERPOUT means that they are not. 

{MONITORINMONITOR} 
Indicates whether or not VT AM is to invoke the ATTN exit routine (see EXLST 
macro) when this terminal causes an attention interruption. MONITOR means that 
VT AM will monitor the terminal for attention interruptions while the terminal is 
not engaged in pending or actual I/O operations, and invoke the routine when an 
interruption is detected. 

MONITOR is valid only if the installation indicated during VTAM definition that 
the 3704 or 3705 communications controller is to react to attention interruptions. 
If an attention interruption is received during, an I/O operation, the I/O request 
fails with the RPL FDBK field posted to indicate why. MONITOR does not apply 
to attention interruptions issued during an I/O operation. 
If NMONITOR is specified, no monitoring occurs. 

{ ASYIPXINASYIPX } 
Indicates the action VT AM is to take when data arrives in VT AM buffers from this 
terminal as a result of a solicit request. If ASYIPX is specified, the ASYIP exit list 
routine (see EXLST macro) is invoked provided that the CA option code is also in 
effect for the solicit request. IfNASYIPX is specified (or if the CS option code is in 
effect), the ASYIP exit list routine is not invoked. The data is obtained with a 
READ macro, regardless of whether the ASYIP exit list routine is invoked or not. 

{ELqNELC} 

Indicates whether line-control characters are to be generated for the data sent to 
this terminal. ELC signifies that the application is embedding its own line control 
characters in the data; its use prevents the system from doing so. NELC means that 
the application program is relying on the system to insert appropriate line control 
characters. See Appendix B for a list of the line control characters that are normally 
inserted by VT AM. ELC can only be used if the NBINARY option code is in effect 
for the RPL. 



Example 

NIB 

{BINARYINBINARY} 

Indicates how data is to be handled when a WRITE macro instruction is used to 
write to a binary synchronous device. 

BINARY 
The data is sent in transparent text mode. This means that all of the data in 
the program storage area is transmitted to the terminal only as bit patterns. 
Any bit patterns can therefore be sent, such as EBCDIC, control characters, 
or object code. 

NBINARY 
The data is not sent in transparent text mode. 

{TRUNCjKEEP} 
Indicates the action VT AM is to take when data received from the terminal as a 
result of a READ macro instruction is too long to fit in its input area. 

NIB 

TRUNC 
The excess data is truncated and lost, and the read operation is completed 
with a physical error. This invokes the SYNAD exit list routine, if an active 
one exists. 

KEEP 
VT AM saves the excess data; no error condition results, but in the FDBK 
field of the READ macro's RPL, VT AM indicates what happened. The next 
READ macro instruction directed at the terminal will retrieve the excess data. 

NIB NAME=KBD3270,USERFLD=A(KBDRTN), 
MODE=BASIC,LISTEND=YES 

x 

NIBI could represent the keyboard component of a 3270 device whose entry in the 
resource definition table is labeled KBD3270. When OPNDST is issued to connect 
this terminal to the program, the NIB field of the OPNDST's RPL must point to 
NIB 1. Since LISTEND=YES is coded, only this terminal can be connected with the 
OPNDST macro. Before OPNDST processing is completed, VT AM obtains the 
contents of NIBI 's USERFLD field (which in this example is the address of a 
routine) and places it in the USER field of the OPNDST's RPL. Note that PROC 
has not been specified in the NIB 1 macro instruction; all the underscored values for 
PROC (as shown in the assembler format table above) will be associated with the 
terminal until MODCB and GENCB macro instructions are issued for NIB 1. 

Devices Applicable for Each NIB Processing Option 
The following figure shows the processing options applicable to each device sup­
ported by VT AM. 

An X indicates that the PROC operand value can be used with the device. As the 
assembler format table for NIB shows, all of the PROC operand values occur in 
pairs, with the exception of the BLOCK-MSG-TRANS-CONT option. This table 
shows only one of each of these pairs) since the other half is valid for all devices 
supported by VI AM. 

67 



NIB 

Start-Stop Devices: 

IBM 1050 Data Communication System X X X X X X X X X X X X 

IBM 2740 Communication Terminal, Model 1 X X X X X X X X 

IBM 2740 Communication Terminal, Model 1 
X X X X X X X X X X X with checking 

IBM 2740 Communication Terminal, Model', X X X X X X X X with station control 

IBM 2740 Communication Terminal, Model 1, 
X X X X X X X X X X X with checking and station control 

IBM 2740 Communication Terminal, Model 2 X X X X X X X 

IBM 2741 Communication Terminal X X X X X X X X X 

I BM Communicating Magnetic Card 
X X X X X X X X X X X Selectric Typewriter 

I BM World Trade Telegraph Station X X X X X X 

IBM SYSTEM/7 X X X X X X X 

AT&T 83B3 Selective Calling Station X X X X X X 

AT&T Teletypewriter Terminal, Models X X X X X X X X 33 and 35 

Western Union Plan 115A Station X X X X X X 

Binary Synchronous Devices: 

IBM 2770 Data Communication System X X X X X X X X X X X 

IBM 2780 Data Transmission Terminal X X X X X X X X X X X 

IBM 2972 General Banking Terminal, Models X X X X X X X X X 8 and 11 

IBM 3270 Information Display System, X X X X locally attached to controller 

IBM 3270 I nformation Display System, X X X X 
remotely attached to controller 

IBM 3735 Programmable Buffered Terminal X X X X X X X ,X X X X X 

IBM 3740 Data Entry System X X X X X X X X X X X 

IBM 3780 Data Transmission Terminal X X X X X X X X 'X X X 

IBM SYSTEM/3 X X X X X X X X X X X X 

IBM SYSTEM/370 X X X X X X X X X X X X 

Figure 4. Devices Applicable to each NIB Processing Option 

68 



OPEN 

OPEN - Open one or more A CBs 

symbol 

acb address 

The purpose of the OPEN macro is to open (or "activate") the ACB so that the 
ACB and all subsequent requests directed to it can be identified by VT AM as 
representing a specific application program. Accordingly, the programmer coding 
the OPEN macro instruction indicates the ACB (or ACBs) that are to be opened. 

An ACB represents an application program, as defined by the installation. By means 
of an ACB's APPLID field the application program associates an ACB with a 
symbolic name. This symbolic name is generated during VTAM definition by the 
installation when it defines the application program; the entry is generated with the 
APPL definition macro instruction, and is called an APPL entry. It is during OPEN 
processing that the association between the ACB and the APPL is actually made. 
One effect of this association is this: tenninals directing logon requests to this 
APPL entry will in effect be directing their logon requests to the entry's associated 
ACB. 

Should the APPL entry contain a password, the ACB being opened must specify 
that same password, or OPEN will not be completed successfully. 

When MACRF= LOGON is specified for the ACB being opened, OPEN also serves to 
notify VT AM to queue any logon requests directed to the APPL entry associated 
with the ACB. 

OPEN generates logon requests on behalf of terminals if the installation has so 
indicated during VTAM definition. (These logon requests are called auto111Jltic 
logon requests.) 

If the ACB's EXLST operand was used, VTAMcan associate the ACB with the exit 
list indicated by the EXLST operand. The exit list (generated by the EXLST macro 
instruction) contains the addresses of routines to be invoked when specific types of 
events occur. Once OPEN processing has been completed, VT AM knows which exit 
list should be used when one of these events occur. 

Name Operation Operands 

[symbol] OPEN acb address[ , acb address] ... 

This form of OPEN is valid in DOS/VS only. 

[symbol] OPEN acb address[ " acb address] ... 

This form of OPEN is valid in OS/VSl and OS/VS2 only. 

Function: Provides a name for the macro instruction. 

Function: Indicates the ACB that is to be associated with an APPL entry. 

F01111llt: If more than one ACB is specified, separate each with a comma if the 
program is going to be run under OOS/VS. Separate each ACB address with two 
commas if the program is going to be run under OS/VSl or OS/VS2. (The same 
macro expansion program services both VT AM and non-VT AM macro instructions. 
An extra operand can be supplied with each address for the latter, and so an extra 
comma is required for the VT AM OPEN.) 

69 



OPEN 

70 

Example 

Note: VSAM ACB addresses can also be used in the OPEN macro instruction. 
DOS/VS users can also code DTF addresses, and OS!VSl and OS/VS2 users can 
also code DCB addresses. The addresses of different types of control blocks can be 
combined in one OPEN macro instruction, although DOS/VS users are limited to a 
total of fifteen addresses. 

OPEN 123 OPEN ACB 1 ,ACB2,(7) 

OPEN123 opens ACBl, ACB2, and the ACB whose address is contained in register 
7. Each of these ACBs is linked with an APPL entry in the resource definition table. 

Return of Status Infonnation 
When control is returned to the instruction following the OPEN macro instruction, 
register 15 contains a code indicating whether or not the OPEN processing was 
completed successfully. Successful completion means that all ACBs specified in the 
OPEN macro instruction have been opened; unsuccessful completion means that at 
least one ACB was not opened. Successful completion is indicated by a return code 
of 0 in register 15; unsuccessful completion is indicated by a return code other than 
O. 

If unsuccessful completion is indicated, the application must examine the OFLAGS 
field in each ACB to determine which one (or ones) could not be opened. Test each 
OFLAGS field by coding an ACB address and OFLAGS=OPEN in a TESTCB macro 
instruction; if the resulting PSW condition code indicates an equal comparison, that 
ACB has been opened: 

TESTCB ACB=ACB4,OFLAGS=OPEN 

If an unequal comparison is indicated, meaning that the ACB has not been opened, 
another field in that ACB can be checked to determine the reason. This field is the 
ERROR field. Like OFLAGS, ERROR is not a field that the application program 
should modify·· that is, there is no ERROR operand for the ACB macro, and thus 
none for the MODCB macro -. but the application program can obtain the contents 
of this field with the SHOWeB macro instruction. For example: 

SHOWCB ACB=ACB 1 ,FIELDS=ERROR,AREA=SHOWIT ,LENGTH=4 

The hexadecimal contents of the ERROR field indicates the error encountered for 
that ACB during OPEN processing: 

00 OPEN has successfully opened this ACB. 

04 An OPEN macro instruction has already been successfully issued for 
this ACB. 

24 The password specified in the ACB does not match the password 
specified in the corresponding APPL en try, or the ACB does not specify 
a password when one should have been specified. 

50 VTAM has not been included as part of the operating system. 

52 VT AM has been included as part of the operating system, but the 
network operator has issued a HALT command, and VTAM is shutting 
down. 

54 The OPEN macro instruction was issued with a syntax error -- such as 
an omitted comma. 

56 A match for the APPLID was found in the resource definition table, 
but it was for an entry other than al~ APPL entry. 



OPEN 

58 Another ACB, already opened by VTAM, indicates the same APPLID 
that this ACB does. 

SA No entry could be found in the resource defmition table that matches 
the name supplied in the ACB's APPLID field. 

5C VT AM has been included as part of the operating system, but VT AM is 
not yet active. 

5E The APPLID field points to a storage area that is not in your program 
area. 

62 The length indicator in the field pointed to by the APPLID field 
exceeds the allowable limit (8). 

64 The P ASSWD field points to a storage area that is not in your program 
area. 

66 The length indicator in the field pointed to by the P ASSWD field 
exceeds the allowable limit (8). 

71 



OPNDST 

OPNDST - Establish Connection with Terminals 

72 

The OPNDST (open destination) macro instruction requests for VT AM to establish 
connection between the application program and one or more terminals. 

Connection must be established with a terminal before the application program can 
communicate with that terminal. OPNDST is the sole means by which this 
connection can be requested. There are, however, two fundamentally different 
ways that OPNDST can be used to request connection . 

• An application program can simply request that a terminal be connected to it. 
Such a request is satisfied as soon as the terminal is available -- that is, has 
been activated but has not issued a logon request. If the terminal is connected 
to another application program, however, the terminal cannot be reconnected 
until that application program releases it. (The other application program is 
notified of your request via the invocation of its RELREQ exit list routine, 
and it releases the terminal by issuing a CLSDST macro instruction.) 
OPNDST can succeed in reconnecting the terminal only when -- or if -- the 
other application program chooses to release the terminal. 

If a terminal has been defmed as a dial-in terminal by the installation 
(CALL=IN specified for the LINE or GROUP definition macro), a connection 
request is completed when the terminal operator dials in. If a terminal has 
been defmed as a dial-out terminal by the installation (CALL=OUT), the 
connection request is completed immediately, but the terminal is dialed only 
when an I/O request is issue.d for the terminal. 

This type of request is implemented by setting the ACQUIRE option code in 
the RPL used by OPNDST. For application programs running under OS/VS 1 
or OS/VS2, the use of ACQUIRE must be authorized by the installation. 

• In the second way of using OPNDST, the application can request that a 
terminal be connected to it only if the terminal requests connection with that 
application program. 

This type of connection request can be embedded in a LOGON exit list 
routine (see the EXLST macro) that is automatically entered when a terminal 
requests logon. This arrangement means that terminal logon requests can, in 
effect, invoke the type of OPNDST which will "grant" the logon request. 

This type of request is implemented as indicated above, except that the 
ACCEPT option is set in the RPL. 

Note: When a terminal requests logon, VTAM first checks for an active LOGON 
exit list routine - and invokes the routine if any active one is found. If no active 
routine exists, VT AM checks for outstanding OPNDST requests (that is, OPNDSTs 
with ACCEPT that have not yet been completed because no logon request has been 
made by the terminal). Thus a logon request will not cause a pending OPNDST with 
ACCEPT to complete if an active logon exit list routine is available. 

There are two versions of OPNDST with OPTCD=ACQUIRE. These versions are 
specified with two more RPL options, CONALL and CON ANY , which govern 
whether an entire group of terminals is to be connected, or whether any single ter­
minal in this group is to be connected. OPNDST with ACCEPT likewise has two 



OPNDST 

versions, specified with two RPL option codes -- SPEC and ANY. These govern 
whether a specific terminal is to be connected or whether any eligible terminal is to 
be connected. 

There are therefore a total of four types of OPNDST. The following four sections 
indicate how you must prepare for each and what happens when the connection 
occurs. 

OPNDST with ACQUIRE and CONALL options 

You must do this: 

Set the RPL's NIB field to point to a list of NIBs (described in the LISTEND 
operand of the NIB macro instruction). The ACQUIRE and CONALL 
option codes must be set in the RPL. 

And when OPNDST is issued, the result will be this: 

VT AM connects the program to all of the terminals represented in the NIB 
list that have not issued logon requests, and: 

Generates a CID for each connected terminal. Each CID (which is a shortened 
form of the terminal's symbolic name) is placed in its respective NIB in a field 
called the CID field, where it can later be obtained with the SHOWCB macro 
instruction when it is needed. Unlike other forms of OPNDST, the CID is not 
placed in the RPL's ARG field. 

Places the CID of the last terffiinal in the ARG field of the RPL. I/O requests 
to specific terminals must have the CID of that terminal in the ARG field of 
the request's RPL. Thus the RPL used for OPNDST can conveniently be used 
for subsequent I/O requests with a terminal. If the CID placed in the RPL is 
lost, its copy that was placed in the NIB can be retrieved and used. Note: The 
RPL's NIB and ARG fields actually occupy the same physical field. There is 
more information on this in the description of the RPL macro's NIB operand. 

Places the address of the first NIB of the NIB list in the AREA field of the 
RPL (This is the same address you specified for the RPL's NIB field; it is 
returned because the contents of the NIB field may have been destroyed 
during connection.) 

Extracts the contents of the USERFLD field from a NIB (the NIB associated 
with the last terminal connected) and places it in the USER field of the RPL. 

OPNDST with ACQUIRE and CONANYoptions 

You must do this: 

Set the RPL's NIB field to point to a list of NIBs, and set the ACQUIRE and 
CONANY option codes in the RPL. 

And when OPNDST is issued, the result will be this: 

VT AM connects the program to the first (and only to the first) available 
terminal represented in the NIB list. A terminal is available if it is not 
connected to any application program, and· has not issued a logon request. 
VTAM also: 

Generates a CID for the connected terminal and places it in the ARG field of 
the RPL and in the CID field of the NIB associated with it. 

Sets a flag in the NIB that represents the connected terminal. The application 
program can locate this NIB by issuing a TESTCB macro (with a CON=YES 
operand) for each NIB. 

73 



OPNDST 

74 

Places the address of the first NIB of the NIB list in the AREA field of the 
RPL. (This is the same address you supplied in the NIB field; it is returned 
because the contents of the NIB field are destroyed when the CID is placed in 
the ARG field.) 

Places the contents of that NIB's USERFLD field into the USER field of the 
RPL. 

OPNDST with ACCEPT and ANY Options 

You must do this: 

Set the RPL's OPTCD field to ACCEPT and ANY and set the NIB field to 
point to a NIB. This NIB need not have any symbolic name in it, but it must 
at least have the MODE field set to basic. 

And when OPNDST is issued, the result will be this: 

VT AM connects the program to any terminal that has directed a logon 
request to the program. VT AM also: 

Places the symbolic name of the connected terminal into the NAME field of 
the NIB. 

Generates a CID for the connected terminal and places it in the CID field of 
that NIB and in the ARG field of the RPL. 

Places the address of the NIB in the RPL's AREA Field .. 

Places the contents of the USERFLD field of the NIB in the USER field of 
the RPL. 

OPJ:/DSTwith ACCEPT and SPEC options 

You must do this: 

Set the RPL's OPTCD field to ACCEPT and SPEC, and set the NIB field to 
point to a NIB. 

And when OPNDST is issued, the result will be this: 

VT AM connects the program to the specific terminal represented in the NIB, 
if (or when) that terminal has directed a logon request to the program. VT AM 
also: 

Generates a CID for the connected terminal and places it in the CID field of 
the NIB and in the ARG field of the RPL. 

Places the address of the NIB in the RPL's AREA field. 

Places the contents of the NIB's USERFLD field into the USER field of the 
RPL. 

Besides the SPEC·ANY option code, other RPL and NIB options and fields affect 
how the OPNDST request is handled. Generally, their effect is the same as it is for 
other macro instructions that point to an RPL; see Figure 5 in the RPL macro 
instruction description for a list of these codes and fields. 

The one exception is the Q-NQ option code, An OPNDST reque"lt with ACQUIRE 
establishes connection with a terminal that is connected to another application 



symbol 

RPL=rp1 address 

OPNDST 

program only when that application program chooses to release it. An OPNDST 
issued with the Q option code completes only if the terminal becomes available. If 
NQ is used instead, VTAM cancels the request and returns control immediately to 
the application program if the terminal is not available. 

OPNDST with ACQUIRE in combination with the Q option code should therefore 
be used judiciously, and then only if the connection request is specified as 
asynchronous (ASY option code). Synchronous OPNDST requests with the 
ACQUIRE and Q processing options are not permitted. (The reason: If application 
program A issues this kind of connection request and the terminal is connected to 
application B, application A cannot receive control back until application B releases 
the terminal. If application B, before releasing the terminal, makes the same kind of 
request for a terminal connected to application program A, neither application 
program can regain control.) 

Name Operation Operands 

[symbol] OPNDST RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the. macro instruction. 

Function: Indicates the location of the·RPL to be used during OPNDST processing. 

rpl keyword=new value 

Example 

Function: Indicates an RPL field to be modified and the new value that is to be 
contained within it. 

Format: For rpl keyword code the keyword of the RPL macro instruction operand 
that couesponds to RPL field to be modified. The new value can be any value that 
is valid for that operand in the RPL macro instruction, or it can indicate a register. 

Note: All of the RPL fields that have a unique effect on OPNDST (and thus might 
be modified here) are discussed above. Check Figure 5 in the RPL macro 
instruction deSCription for a list of all the RPL fields that are applicable for the 
OPNDST macro instruction. 

ACQALL OPNDST RPL=RPLl, THIS IS AN "ACQUIRE & CONALL" X 

ACQANY OPNDST 

ARG=NIBLISTl, OPNDST: CONNECT ALL TERMS. X 
ACB=ACBl OF NIBLISTI TO ACBl. 

RPL=RPL2, 
NIB=NIBLIST2, 
ACB=ACBl 

THIS IS AN "ACQUIRE & CONANY" X 
OPNDST: CONNECT A TERMINAL X 
OF NIBLIST2 TO ACBl. 

75 



OPNDST 

76 

ACPT ANY OPNDST RPL=RPL3, 
NIB=NIB6, 
ACB=ACBl, 
OPTCD=ANY 

ACPTSPC OPNDST RPL=RPIA, 
NIB=NIB7, 
ACB=ACBl, 
OPTCD=SPEC 

Return of Status Infonnation 

THIS IS AN "ACCEPT & ANY" 
OPNDST: CONNECT ANY 
ELIGIBLE TERMINAL. .. 
... TO ACBl. 

x 
X 
X 

THIS IS AN "ACCEPT & SPEC" X 
OPNDST: IF ELIGIBLE, CONNECTX 
NIB7 TERMINAL. .. TO ACBl. X 

After the OPNDST operation is completed, the CID field of the NIB, and the ARG, 
USER, and AREA fields of the RPL are posted as indicated above. Register 15 
indicates one of the following hexadecimal values: 

o If the ASY option code is in effect, VT AM accepted the connection 
request. If the SYN option code is in effect, the connection (or 
connections) have been successfully established. 

4 The request cannot be accepted because the RPL is currently in use by 
another request. The RPL's FDBK field has not been set. If an active 
LERAD exit list routine is available, it has been invoked. 

8 A logical error occurred; the FDBK field of the RPL can be examined 
to determine which one it was. If an active LERAD exit list routine is 
available, it has been invoked. (This return code is possible only when 
the SYN option code is in effect.) 

C A physical error occurred; the FDBK field can be examined to 
determine which one it was. If an· active SYNAD exit list routine is 
available, it has been invoked. (This return code is possible only when 
the SYN option code is in effect.) 

10 The NQ option is in effect for the connection request, and the terminal 
to be connected is not available. 

IC VTAM canceled the connection request; the second byte of the FDBK 
field is set indicating the reason. 



READ 

READ -- Read Data into Program Storage 
The READ macro instruction obtains data from VT AM buffers and moves it into a 
designated area in program storage. It may or may not cause physical I/O to be 
performed. If OPTCD=ANY is in effect, the READ operation involves no I/O 
operation, but simply moves data already solicited from the terminal into program 
storage. 

If READ is being used to obtain data from a specific terminal -- which means that 
the SPEC option code is in effect in the RPL -- and no data has been solicited or is 
being solicited from that terminal, READ first causes this data to be solicited. This 
implied solicit operation works in the same manner as the solicit operation 
explained in the SOLICIT macro instruction description. 

As soon as VT AM has moved the data into program storage, it sets the RPL's 
RECLEN field to indicate how many bytes of data were moved. 

If the return code posted in register IS indicates that the read operation was 
completed successfully, the application program should check the RPL's FDBK 
field to determine whether the data received represents the end of a message or 
transmission. (The read operation may obtain a block of data ending with an 
end-of-transmission indicator, or the indicator may come separately with the next 
read operation. In the latter case, the RECLEN field is set to 0 when the operation 
is completed.) 

The user of the READ macro instruction codes the address of the RPL that will 
govern the read operation. Various fields in the RPL determine from which 
solicited terminal the data is to be obtained, the location of the data area in the 
program where the data is to be placed, and other information regarding how the 
read request is to be handled. The . RPL fields can be modified with the READ 
macro instruction itself. The following list shows the effect of the more significant 
of these fields. See the RPL macro instruction description for a list and explanation 
of all RPL fields applicable for READ. The RPL modifiers shown below have the 
following effects: 

ARG=(register) 
If data is to be read from a specific terminal, the ARG field of the RPL must 
contain the CID for that terminal (see the OPNDST macro for an explanation of 
the CID). ARG=(register) is indicated here because that is the only way the CID can 
be placed in the ARG field with this READ macro instruction. (The CID can be 
extracted from the NIB with SHOWCB and then loaded into a register.) 

If data is to be read from a specific terminal, the ARG field of the RPL must 
contain the CID for that terminal (see the OPNDST macro for an explanation of 
the CID). ARG=(register) is indicated here because that is the only way the CID can 
be placed in the ARG field with this READ macro instruction. (The CID can be 
extracted from the NIB with SHOWCB and then loaded into a register.) 

If data is to be read from any solicited terminal, however, the ARG field's content 
is irrelevant when READ is issued. After the data has been read, VT AM sets the 
ARG field with the CID of the terminal from which the data originated. 

AREA=address 
The AREA field must contain the address of the data area in the program where the 
data is to be placed. Once the data has been moved, the RPL's RECLEN field is 
posted with the number of bytes that were placed there. 

77 



READ 

78 

symbol 

RPL=rpl address 

AREALEN=length 
The AREALEN field must contain the length of AREA, in bytes. This value is used 
by VT AM to determine whether the incoming data is too long to fit. It it is too 
long, the action indicated by the TRUNC·KEEP processing option is taken. 

OPTCIP { CS I CA} 
When the CA option code is in effect, there is no restriction on subsequent retrieval 
of data from the terminal that is the object of this READ macro instruction. 

When CS is in effect, however, any subsequent solicit or read operation will exclude 
that terminal from the group of terminals eligible for solicit or read operations. This 
exclusion applies only if the ANY option code is in effect for the subsequent 
operation. 

OPTCD= {SPEC I ANY } 
When the SPEC option code is in effect, data is obtained from a specific terminal 
and placed in program storage. If no previously· solicited data from that terminal is 
being held in VT AM buffers, a solicit operation is performed and the data is moved 
into program storage. If data is available in VTAM buffers, the READ macro merely 
moves the data from the buffers to program storage. 

When the ANY option code is in effect, only data already solicited from a terminal 
is moved to program storage. The user does not identify a terminal; the data can 
originate from any terminal connected to the program. VT AM obtains the CID of 
the terminal from which the data originated and places it in the ARG field of the 
RPL. . 

The following option determines how excess data 'is to be handled (note that this is 
a NIB processing option, not an RPL option code): 

PROC= {TRUNC I KEEP} 
When the TRUNC processing option is in effect and the incoming data is too large 
to fit in the storage area indicated by the AREA field, the data is truncated, the 
excess is lost, and the read operation terminates with an I/O error indicated. 

Should the KEEP processing option be in effect instead, and the data is too long to 
fit, the excess is held for the time being and moved into the storage area when the 
next read request is issued. 

Name Operation Operands 

[symbol] READ RPL=rpl address 
[, rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the locatIon of the RPL that governs the read operation. 

rpl keyword=new value 
Function: Indicates an RPL field to be modified and the new value that is to be 
contained or represented withinit. 



Examples 

READ 

Format: For rpl keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. ARG can also be coded. The 
new value can be any value that is valid for that operand in the RPL macro instruc­
tion, or it can indicate a register. The value supplied for the ARG keyword must 
indicate a register. 

Note: All of the RPL fields that have a unique effect on READ (and thus might be 
modified here) are discussed above. Check Figure 5 in the RPL macro instruction 
description for a list of all the RPL fields that are applicable for READ. 

READ I READ RPLl,AREA=INFO,AREALEN=132 
OPTCD=(ANY,SYN) 

x 

READ 1 scans VT AM buffers for data previously obtained from any connected 
terminal, and, if none has yet been obtained, waits until data arrives. READI then 
places the data into INFO. The CID of the terminal from which the data originated 
is placed into the ARG field of RPLI. Control is not returned to the program until 
the read operation has been completed. 

SHOW I 
LOAD 
READ2 

SHOWCB 
L 
READ 

NIB I ,FIELDS=CID ,W AREA =TERMID ,LENGTH=4 
3,TERMID 
RPL=RPLl,ARG=(3),AREA=INFO, X 
AREALEN=132,OPTCD=(SPEC,SYN) 

READ2 operates much like READI except that data is being read from a specific 
terminal. When the terminal was originally connected, the CID for that termianl 
was placed both in NIB 1 and in the RPL used for the connection macro (OPNDST). 
This example assumes that NIBI has been left intact since then, but that the RPL 
has been reused and the CID originally placed there has been lost. It therefore is 
necessary to extract the CID from NIB 1 and place it into a work area with SHOW I , 
load it into register 3 (with LOAD), and specify that register with READ's ARG 
operand. 

Return of Status Information 
Once the operation is completed, these sources of status information may be 
checked. 

The RECLEN field of the RPL: RECLEN contains the number of bytes of 
data that were placed in program storage. 

The ARG field of the RPL: If the ANY option code is in effect, ARG 
contains the CID of the terminal from which the data originated. 

The USER field of the RPL: When a NIB is established, the user has the 
option of specifying any arbitrary value in the USERFLD field of that NIB. 
When the READ macro instruction is subsequently issued for the terminal 
associated with that NIB, whatever had been placed in USERFLD by the user 
is placed in the USER field of the RPL by VT AM. 

The FDBK field of the RPL: Unless a value of 4 was returned in register 15, 
the FDBK (feedback) field may indicate error or completion status 
information, including whether the data just read was the last block of a 
message or an EOT. (See Appendix A for a description of the feedback field 
and the conditions under which it is set.) 

Register 15: One of the following hexadecimal values is indicated: 

o If the ASY option code is in effect, VT AM found no errors or 
contradictions in the read request itself, and has accepted the read 

79 



READ 

80 

operation. If SYN is in effect, the read operation has been successfully 
completed. 

4 The request cannot be accepted because the RPL is currently being 
used by another request, or the terminal is not connected to your 
application program. The RPL's FDBK field has not been set. The 
LERAD exit list routine, if an active one exists, has been invoked. 

8 A logical error (see Appendix A) occurred; the FDBK field can be 
examined to determine which one it was. If an active LERAD eXIt tist 
routine is available, it has been invoked. (This code can only be 
returned when the SYN option code is in effect.) 

C A physical error occurred; the FDBK field can be checked to determine 
which one it was. If an active SYNAD exit list routine is available, it has 
been invoked. (This code is also possible only when the SYN option 
code is in effect.) 

14 A special condition exists -- for example, an attention interruption has 
been detected. The second byte of the FDBK field can be examined to 
determine the specific condition. 

18 The READ operation was canceled by a RESET request. 

1 C VT AM canceled the READ operation; the second byte of the FDBK 
field is set indicating the reason. 



RESET 

RESET -- Cancel an I/O Operation 
The RESET macro instruction can be used to: 

Cancel an I/O operation that is pending, but is not in the process of being 
completed (that is, no data transfer activity has yet begun). 

Cancel an I/O operation, whether it is pending or in the process of being 
completed, and in addition reset any error lock that may have been set for 
the terminal. 

Merely reset any error lock that may have been set for the terminal. 

Note: The I/O operation most likely to be pending at any given time is a solicit 
operation. Once a terminal has been polled or otherwise readied, the solicit 
operation is pending until that data is forthcoming - which could be indefinitely. 

The user of the RESET macro instruction uses an RPL option code to select one of 
the three variations of RESET: 

OPTCD=COND 
RESET cancels any I/O operation that has been initiated, but for which no data has 
been transferred. If data transfer is in progress when RESET is executed, the 
RPL's FDBK field is set to indicate that cancellation did not occur. If a read or 
write operation is pending, that operation is posted as complete, and both register 
15 and the FDBK field of that request's RPL indicate that RESET caused the 
premature completion of the operation. 

OPTCD=COND also causes RESET to perform the same resetting operation 
indicated below under OPTCD=LOCK. OPTCD=COND is appropriate for situations 
in which the application program wants to write to a terminal only if no data is 
currently being sent to it (and can tolerate a resulting delay). 

OPTCD=UNCOND 
RESET cancels any I/O operation, pending or otherwise, that is being performed 
with the terminal. Any data that a canceled solicit operation has already brought 
into VT AM storage buffers is available for retrieval by the application program. 
Data that is being sent or is about to be sent, however, may be lost. When a solicit, 
read, or write operation is canceled, that operation is posted as complete, and the 
FDBK field of its RPL indicates that RESET caused the premature completion of 
the operation. OPTCD=UNCOND also causes RESET to perform the same resetting 
operation indicated below with OPTCD=LOCK. OPTCD=UNCOND is appropriate 
for situations in which a terminal is being solicited for input, but the application 
program wants to immediately write to the terminal without delay (and can 
tolerate a possible loss of data). 

OPTCD=LOCK 
RESET resets an error lock that has been set for the terminal. Error locks are set by 
a 3705 communications controller when it determines that it should not or can not 
continue to communicate with a terminal. Common reasons for the setting of error 
locks include: 

Unrecoverable hardware malfunction. 

Negative polling limit exceeded. 

Attention interruption issued by ,the terminal. 

Note: This type of RESET must not be used to cancel operations initiated by a DO 
macro instruction involving more than one IDO. Use RESET with OPTCD= 
UNCOND instead. 

81 



RESET. 

82 

symbol 

RPL=rpl address 

The address of an RPL must be supplied when the RESET macro is coded, and the 
ARG field of this RPL must contain the CID for the terminal whose I/O operation 
is to be canceled (or whose error lock is to be reset). See the OPNDST macro 
instruction for an explanation of the CID. 

The ECB and EXIT fields of the RPL, and some of the option codes of the OPTCD 
, field, govern actions to be taken then the RESET macro instruction is executed. 
The effect of these fields on RESET is the same as their effect on any I/O request 
macro instruction. See the RPL macro instruction for a description of these fields. 

Name Operation Operands 

[symbol] RESET RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL that governs the execution of the 
RESET macro instruction. 

rpl keyword=new value 

Example 

Function: Indicates an RPL field to be modified and the new value that is to be 
contained or represented within it. 

Format: For rp/ keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. ARG can also be coded. The new 
value can be any value that is valid for that operand in the RPL macro instruction, 
or it can indicate a register. The value supplied for the ARG keyword must indicate 
a register. 

Note: All the RPL fields that have a unique effect on RESET (and thus might be 
modified here) are discussed above. Check Figure 5 at the end of the RPL macro 
instruction description for a list of all the RPL fields that are applicable for RESET. 

RESET 1 RESET RPL=RPLI,ARG=(3),ECB=ECBWORD, 
OPTCB=(ASY,UNCOND) 

X 

RESET 1 cancels any I/O operation pending or in progress for the terminal whose 
CID has been loaded into register 3. As soon as the cancellation has been scheduled, 
control is returned to the next instruction after RESET I. To verify that the 
cancellation has been completed, a CHECK macro instruction must be issued to 
determine if ECBWORD has been posted. 

Return of Status Information 
After the operation is completed, these sources of status information may be 
checked. 

The USER field of the RPL:. When a NIB is established, the user has the option of 
specifying any arbitrary value in the USERFLD field of that NIB. When the RESET 



RESET 

macro instruction is subsequently issued to cancel I/O operations with the terminal 
associated with that NIB, whatever was placed in USERFLD by the user is placed in 
the USER field of the RPL by VT AM. 

The FDBK field of the RPL: Unless a value of 4 is returned in register 15, the 
FDBK (feedback) field may indicate error or completion status information 
regarding the execution of the RESET macro instruction. (See Appendix A for a 
description of the feedback field and the conditions under which it is set.) 

Register 15: One of the following hexadecimal values is indicated: 

o If the ASY option code is in effect, VTAM found no errors in the way 
RESET was issued that would guarantee the eventual failure of the 
reset operation, and so has accepted the request. If the SYN option 
code is in effect, the reset operation has been completed successfully 
(that is, an I/O operation has been canceled). 

4 The request cannot be accepted because the RPL is currently in use by 
another request, or the terminal for which RESET was issued is not 
connected to your application program. The RPL's FDBK field has not 
been set. If an active LERAD exit routine exists, it has been invoked. 

-8 A logical error (see Appendix A) occurred; the FDBK field can be 
examined to determine which one it was. If an active LERAD exit list 
routine is available, it has been invoked. (This code can be returned 
only when the SYN option code is in effect.) 

10 A conditional reset operation was requested (OPTCD=COND), but an 
I/O operation had already reached the data-transfer stage. The I/O 
operation was therefore not canceled. (This code can only be returned 
when the SYN option code is in effect.) 

lC VTAM canceled the RESET operation; the FDBK field is set indicating 
the reason. 

83 



RPL 

RPL -- Create a Request Parameter List 

84 

Every request that an application program makes for connection or for I/O 
operations must refer to an RPL. 

A request parameter list, or RPL, is a control block used by the application 
program to describe the requests it makes to VT AM. The application program may, 
for example, simply issue a READ macro and indicate an RPL; it is the RPL that 
shows VT AM which terminal the input is to be obtained from, where the input data 
is to be placed, how the application program is to be notified when the operation is 
complete, and indicates a variety of other options to be followed while the request 
is being processed. 

An application program can create many RPLs; a separate RPL can, in fact, be 
created for every connection and I/O request in the application program. Or, at the 
other extreme, one RPL could serve for all connection and I/O requests in the 
program. This multiple use of an RPL is possible because each connection and I/O 
request can itself modify fields of the RPL to which it points. The RPL can thus be 
thought of as the list form of all of the connection and I/O macros. 

Requests for, RPL modification can be made not only as part of a connection or I/O 
macro, but also by the MODCB macro instruction. Either way involves naming an 
RPL field and specifying its new content. It is useful to keep in mind that each 
operand of the RPL macro represents a field in the RPL it generates. Subsequent 
requests to modify any RPL field use the keyword of the operand corresponding to 
the field being modified. 

The RPL macro instruction builds an RPL during assembly. An RPL can also be 
generated during program execution with the GENCB macro instruction. See 
GENCB for a description of this facility. 



symbol 

AM=VTAM 

ACB=acb address 

RPL 

Name Operation Operands 

[symbol] RPL AM=VTAM 
[, ACB=acb address] 
[ , NIB=nib address] 
[ • AREA =data area address] 
[ , AREALEN=data area length] 
[, RECLEN=data length] 
[, AAREA=alternate data area address] 
[ , AAREALN=alternate da ta area length] [ l' ECB=event control block address II ' EXIT=rpl exit routine address 

, LEVENT=rpl exit routine address l 

, GEVENT=rpl exit routine address! 
[, BRANCH= { YES l I~ }] 
r- [, { CON ALL I CONANY } ] -

[, { ACCEPTIACQUIRE } ] 
[, { SPECIANY } ] 
[, {QUIESCEISTOP2 ISTART2 

}] 

[, { P ASSIRELEASE } ] 
[, { LOGONMSGIDEVCHARI 

COUNTS\TERMSI APPSTATI 
CIDXLATEITOPLOGON } ] 

,OPTCD= [,{SYNIASY} ] 
(,{ CSICA}] 
(,{ EDICD}] 
[, { BLKILBMI!JIT } ] 
[, { CONVINCONV } ] 
[, { CONDIUNCONDILOCK} ] 
[, { ERASE lEA UINERASE } ] 
[, {RELRQINRELRQ}] 

.... [,{ gINQ}] -
l'Jhe LEVENT, GEVENT, and BRANCH= YES operands are only valid in OS/VS2. 

2'Jhe OPTCD=STOP I START operand is only valid in OS/VSI and OS/VS2. 

Function: Provides a name for the macro instruction, and thus for the RPL 
generated by it. This name can be used by any RPL-based macro instl1,lction. 

Function: Indicates that a VT AM RPL is to be built. This operand is required only 
for programs running under DOS/VS; the DOS/VS assembler builds a VSAM RPL if 
this operand is not coded. The AM operand is ignored by the OSNSI and OSNS2 
assemblers. 

Function: Associates the request that will use this RPL with an ACB. All requests 
that use the RPL must indicate an ACB. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

85 



RPL 

86 

NIB=nib address 
Function: Identifies the NIB whose NAME field indicates the terminal that is to be 
the object of an OPNDST, CLSDST, INQUIRE, INTRPRET, CHANGE, or 
SIMLOGON macro instruction. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

Note: The NIB field can be set with any of the above macro instructions. For 
example: 

CHANGE RPL=RPLI,NIB=NIB6 

Although these macro instructions use a NIB address to indicate a terminal, the 
READ, WRITE, SOLICIT, RESET, and DO macro instructions use a CID to 
indicate a terminal (and CLSDST works either way). The CID and the NIB address 
occupy the same physical field in the control block. VT AM can distinguish between 
a NIB address and a CID only through a bit set in the first byte. For this reason, the 
field is called the NIB field when a NIB address is being inserted into it, and an 
ARG field when a CID is being inserted into it. When NIB=ADDRESS appears on a 
CHANGE macro instruction, for example, the bit is set to indicate that the field 
contains a NIB address. When ARG=(register) is coded on a READ macro 
instruction, for example, the bit is set to indicate that the field contains aCID. 
(Note that register notation must be used with ARG, since CIDs are not generated 
until program execution.) 

The point to remember when dealing with the NIB-ARG field is this: Since only 
one physical field is involved, always use the NIB keyword to insert a NIB address, 
and always use the ARG keyword to insert a CID. This rule also applies to the 
GENCB and MODCB macro instructions. 

AREA =data area address 
Function: AREA is a multipurpose operand; the use to which it is put depends on 
the request that is using the RPL. 

When used by a SIMLOGON, INTRPRET, or a CLSDST macro with a PASS option 
code, AREA indicates the address of an area containing a logon message. 

When used by a READ or WRITE macro instruction, AREA indicates the address 
of an area in program storage into which data is to be read or from which data is to 

'. be written. 

When used by an INQUIRE macro instruction, AREA indicates where the data 
obtained by INQUIRE is to be placed. 

When used by a DO macro instruction, AREA contains the address of an LDO. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

AREALEN=data area length 
Function: Indicates the length (in bytes) of the data area identified by the AREA 
operand. The AREA LEN operand is meaningful only for input operations or for 
the INQUIRE macro instruction; VTAM uses this length to determine whether the 
data it is placing in the area is too long to fit. 



RPL 

FOrmLlt: Expressions involving registers cannot be used with the RPL macro 
instruction. 

RECLEN=data length 
Function: RECLEN is a dual-purpose operand; the use to which it is put depends 
on the request that is using the RPL. 

When used by a SIMLOGON, INTRPRET, or CLSDST macro with a PASS option 
code, RECLEN indicates the length (in bytes) of a logon message or sequence 
contained in the area indicated by the AREA operand. 

When used by a READ or WRITE macro, RECLEN indicates the length (in bytes) 
of the data that begins at the address indicated by AREA. For WRITE operations, 
RECLEN provides the application program a means of telling VTAM how much 
data is to be transferred. For READ operations, the RECLEN operand has no 
meaning; however the four-byte field in the RPL corresponding to RECLEN is set 
by VT AM when the input operation is finished to indicate the length of data that 
VT AM has just placed into AREA. For a conversational WRITE, which includes 
both an input and an output operation, RECLEN indicates the amount of data to 
be written. VT AM will post the length of the incoming data in an RPL field called 
the ARECLEN field. 

The application program can obtain the value set in the RECLEN field by issuing a 
SHOWCB macro, or it can test the contents of RECLEN against a fixed value with 
the TESTCB macro instruction. For example: 

SHOWCB RPL=(l), 
FIELDS=RECLEN, 
AREA=WORKAREA, 
LENGTH=4 

OBTAIN THIS RPL'S ... 
... RECLEN FIELD ... 
... AND PLACE IT IN WORKAREA ... 
... WHICH IS FOUR BYTES LONG. 

x 
X 
X 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

AAREA =altemate data area address 
Function: AAREA is a multipurpose operand; the use to which it is put depends on 
the request that is using the RPL. 

When used by a CLSDST macro instruction with a PASS option code, AAREA 
indicates the location of an eight-byte data area containing the symbolic name of 
the application program to which a logon request is to be directed. The EBCDIC 
name should be left-justified and padded to the right with blanks. This name is the 
same as the name of the application program's APPL entry in the resource 
definition table. 

When used by an INTRPRET macro instruction, AAREA indicates an input work 
area where VT AM places an application program identification (eight bytes long), 
and possibly a translated logon sequence length indicator (one byte long) and a 
translated logon sequence. See the INTRPRET macro instruction for details. 

When used by a WRITE macro inst~uction with a CONY option code, AAREA 
indicates an input area in the application program into which data is to be placed. 
This type of operation is called a conversational write operation and is described in 
the WRITE macro instruction description. 

87 



RPL 

88 

AAREALN=alternate data area length 
Function: Indicates the length (in bytes) of the data area identified by the AAREA 
operand. When AAREA is used as an input area for a conversational write 
operation, VT AM will use this length to determine whether the data to be placed 
there is too long to fit. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

ECB=event control block address 
Function: Indicates the location of an event control block (ECB) to be posted by 
VT AM when the connection or I/O request associated with this RPL is completed. 
The ECB can be any fullword of storage aligned on a fullword boundary. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

Note: ECB posting is performed only if asynchronous handling of the connection 
or I/O request has been specified (ASY option code in the RPL). 

The application program m1.1<;t issue a CHECK macro to determine whether posting 
has occurred, and to determine the status of the I/O event. 

If the ECB operand is specified, the EXIT, LEVENT, or GEVENT operands must 
not be specified. These represent two alternative ways for the application program 
to be notified when the asynchronous operation is complete. (EXIT-LEVENT­
GEVENT indicate a routine to be entered when the operation is completed.) 

If neither an ECB nor an EXIT routine is indicated, the ECB field in the RPL is 
used as an ECB, rather than as the address of an ECB. Once ECB or EXIT has been 
specified, however, this 'internal' ECB is never used. 

{EXIT I LEVENT I GEVENT} =rpl exit routine address 
Function: Indicates the address of a routine to be scheduled when the request 
represented by this RPL is completed. The use of the LEVENT or GEVENT 
keywords indicates to VTAM that the routine is to be executed in supervisor state, 
as indicated below. LEVENT and GEVENT can only be used by application 
programs authorized to do so by the installation. 

EXIT=rpI exit routine address 

The RPL exit routine is executed in problem state. 

LEVENT=rpl exit routine address (OS/VS2 Only) 

The RPL exit routine is scheduled for execution under a local SRB (system request 
block); as a consequence, the exit routine is executed in supervisor state with a high 
dispatching priority. All READ, WRITE, and SOLICIT requests issued in this 
routine must have their RPL's BRANCH field set to YES. This type of scheduling 
should be used only by those who are thoroughly familiar with the restrictions that 
apply to routines scheduled under an SRB. 

GEVENT=rpl exit routine address (OS/VS2 Only) 

The effect of GEVENT is the same as the effect of LEVENT, except that the RPL 
exit routine is scheduled for execution under a global SRB. This type of scheduling 
should be used only by those who are thoroughly familiar with the restrictions that 
apply to routines scheduled under an SRB. 



RPL 

Note: If the SYN option code has been specified, this operand is ignored. 

The RPL exit routine is scheduled only if asynchronous handling of the request has 
been specified. When the routine receives control, the three-byte FDBK (feedback) 
field in the RPL will be filled in. This field will indicate the status of the request 
whose completion caused the routine to be invoked. (See Appendix A for 
information regarding the use of the feedback field.) 

The FDBK examination could reveal that the request was completed with an error 
that would have invoked the SYNAD or LERAD exit list routines had the RPL exit 
routine not been invoked in their place. Issuing a CHECK macro instruction in the 
RPL exit routine will schedule the SYNAD or LERAD exit list routines, as 
appropriate, as well as setting the RPL to an inactive status. (LERAD and SYNAD 
exits are discussed in the EXLST macro instruction description.) 

When the EXIT routine receives control, these general purpose registers indicate the 
following: 

Register I - the address of the RPL associated with the request whose 
completion has caused the RPL exit routine to be entered. 

Register 14 - the address in VT AM to which the RPL exit routine must 
branch when it is through processing. 

Register 15 -- the address of the RPL exit routine. 

If the EXIT, LEVENT, or GEVENT operand is specified, the ECB operand must 
not be specified. (The EXIT-LEVENT-GEVENT field and the ECB field occupy the 
same storage area in the RPL.) 

BRANCH= { YES INQ } 
Function: For LEVENT or GEVENT RPL exit routines, or for asynchronous exit 
list routines authorized to use the LE or GE attribute (see EXLST macro), 
BRANCH indicates the action to be taken when a READ, WRITE, or SOLICIT 
macro instruction is issued. 

YES (OS/VS2 Only) 
When the macro instruction is executed, a direct branch is taken to the VT AM 
routines that process the macro instruction. Routines being executed under an SRB 
must use this operand in order to use the READ, WRITE, or SOLICIT macro in­
struction. Routines not being executed under an SRB must not use BRANCH=YES. 

NO 
When the macro instruction is executed, an SVC interruption will be used to 
transfer control to the VT AM routines. BRANCH=NO must always be in effect for 
READ, WRITE, and SOLICIT requests that are issued outside of the special 
routines mentioned above. For DOS/VS and OS/VSI, all requests are handled as 
though BRANCH=NO had been specified; if the BRANCH operand is specified in 
these programs, it is ignored. 

OPTCD= { option code I (option code, ... ) } 
Function: Indicates options that are to affect the connection and I/O requests 
made using this RPL. 

Format: Code as indicated in the assembler format table. If only one option code is 
specified, omit the parentheses; 

RPL ACB=ACBI,OPTCD=(SPEC,SYN,CS) 

RPL ACB=ACBI,OPTCD=SPEC 

89 



RPL 

90 

Note: The MODCB macro instruction can be used to change the option codes in 
effect for the RPL after it has been built. 

{CONANY ICONALL } 
When an OPNDST macro instruction (with an ACQUIRE option) is issued and the 
NIB field if its RPL indicates a list of NIBs, this option code indicates the 
following: 

CONANY 
Connection is to be made to the first available terminal of the NIB list 
indicated by the NIB field. Control is returned to the application program 
after this one connection has been made. 

CONALL 
Connection is to be made to all the terminals in the list. The connections are 
not made until all the terminals are available. Unless the ASY option code is 
in effect, control is not returned to the application program until all of the 
terminals have been connected. When this has been accomplished, all the 
NIBs in the NIB list can be used for I/O requests. 

When aSIMLOGON macro instruction is issued and the NIB field of its RPL 
indicates a list of NI Bs, this option code indicates the following: 

CON ANY 
A simulated logon request is to be generated for the first available terminal of 
the NIB list. Control is passed to the application program's LOGON exit 
routine, if an active one exists, when this one logon request has been 
generated. The parameter list passed to the LOGON exit routine can be used 
to determine the identity of the terminal for which the logon request was 
generated. 

CONALL 
l.ogon requests are to be generated for all the terminals represented in the 
NIB list. The logon requests are not generated until all the terminals are 
available. Unless the NQ option code is in effect, control will not be passed to 
the application p~ogram's LOGON exit routine until all the logon requests 
have been generated. 

{ ACCEPT\ACQUIRE }. 
Indicates whether OPNDST is being issued to accept a terminal's logon request or 
whether it is being issued to acquire that terminal. 

ACCEPT 
VT AM connects the application program to a terminal that has issued a logon 
request. If more than one terminal has issued a logon request and is waiting to 
be accepted, the first terminal that issued a logon request is connected. The 
symbolic name of that terminal is placed in the NIB pointed to by OPNDST's 
RPL. If the SPEC option is in effect the NIB must already contain the 
symbolic name of a terminal; connection is established only if that particular 
terminal issues a logon request. 

ACQUIRE 
VT AM connects the application program to the terminal represented by this 
NIB if the terminal has not issued a logon request. If this NIB is the first in a 



RPL 

list of NIBs, the CONALL-CONANY processing option determines which of 
the terminals represented in the list (that have not issued logon requests) are 
connected. If CONALL is in effect, all of the terminals represented in the list 
are connected. If CONANY is in effect instead, only the first available 
terminal represented in that list is connected. 

For programs running under OS/VSI or OS/VS2, the use of ACQUIRE must 
be authorized for the application program by the installation. 

{SPECIANY} 
When the RPL is used by an OPNDST macro with an ACCEPT option code, these 
option codes indicate the following: 

SPEC 
Connection is to be made to a specific terminal when that terminal issues a 
logon request to the application program. The terminal is identified by 
referring to its associated NIB. 

ANY 
Connection is to be made to any terminal that has issued a logon request for 
the application program. 

When the RPL is used by a READ or SOLICIT macro instruction, these option 
codes indicate the following: 

SPEC 
Data is to be obtained from the specific terminal whose CID is in the RPL's 
ARG field. 

ANY 
For READ, data is to be obtained from anyone terminal currently connected 
to the application program and not already engaged in a dialog with it. 

For SOLICIT, data is to be obtained from all of the terminals currently 
connected to the application program, subject to the setting of the CS-CA 
option code. 

{ QUIESCEISTOPISTART 
Indicates how a SETLOGON request is to affect the queuing of logon requests. 

QUIESCE 
VT AM stops queuing logon requests for the ACB indicated in the ACB field. 
Logon requests already queued are not affected. OS/SVI and OS/VS2 
programs should use this option only to permanently stop logon request 
queuing. 

START 
VT AM resumes logon request queuing. This type of SETLOGON request is 
not used to start logon request queuing when the ACB is opened (this occurs 
automatically during OPEN processing if the ACB's MACRF field is set to 
LOGON); it is instead used to start logon request queuing that has been 
suspended by a SETLOGON request issued with the STOP option. 

STOP 
VT AM stops queuing logon requests for the ACB. Use this type of 
SETLOGON request to temporarily stop logon request queuing (and use the 
ST ART option of SET LOGON to resume logon request queuing). 

91 



RPL 

92 

{ PASSIRELEASE } 
Indicates whether or not a simulated logon request is to be generated when a 
CLSDST macro instruction is issued. 

PASS 
VTAM generates a simulated logon request on behalf of the terminal being 
disconnected and directs these requests to the application program whose 
symbolic name is pointed to by the RPL's AAREA field. If the RPL's 
AREALEN field contains a value other than 0, VTAM will also send a logon 
message with the logon request. VT AM obtains the message from the storage 
area identified in the AREA field, and sends the number of bytes indicated in 
the AREALEN field. For application programs running under OS/VSl or 
OS/VS2, the use of CLSDST with PASS must be authorized by the 
installation. 

RELEASE 
No simulated logon request is generated; the terminal is simply disconnected 
from the application program. 

{LOGONMSGIDEVCHARI COUNTSITERMSIAPPSTATICIDXLATEITOPLOGON} 

Indicates the action VTAM is to take when an INQUIRE macro instruction is 
issued. 

LOGONMSG 
INQUIRE retrieves the logon message of a terminal that has issued a logon 
request for the application program. A terminals's logon message can be 
retrieved only once. 

The RPL;s NIB fieid must point to a NiB whose NAME field contains the 
symbolic name of the terminal whose logon message is to be retrieved. 

This information is provided in the parameter list passed to the LOGON exit 
list routine. 

The RPL's ACB field must indicate the ACB to which the logon request was 
directed. 

The AREA and AREALEN fields must indicate the location and length of the 
storage area where the logon message is to be placed. Logon message 
specifications are determin,ed by the installation during VTAM definition. 

DEVCHAR 
INQUIRE obtains the device characteristics of a terminal, as they are defined 
in the resource definition table at the time INQUIRE is executed. These 
device characteristics can be used to define which processing options the 
program wants to be in effect for the NIB associated with the terminal. 

Either the RPL's NIB field must point to a NIB containing the symbolic name 
of the terminal or the RPL's ARG field must contain the CID of the terminal. 
The device characteristics are placed in the program storage area whose 
location and length are indicated by the AREA and AREALEN fields of the 
RPL. See the INQUIRE macro instruction for details. 



RPL 

COUNTS 
INQUIRE provides the number of terminals that are currently connected via 
a given ACB, and the number of terminals that have requested logon via that 
ACB but have not yet been connected. These two numbers are placed in an 
eight-byte area in the program storage whose location and length are 

indicated by the AREA and AREALEN fields of the RPL. VT AM places the 
number of connected terminals in the first four bytes and the number of 
terminals requesting logon in the second four bytes. 

The connection and logon requests counted by INQUIRE are those directed 
to the ACB indicated by the ACB field. 

TERMS 
When this operand is specified, node initialization blocks (NIBs) are built. 

The RPL's NIB field must point to a NIB whose NAME field contains the 
name of an entry that exists in the resource definition table at the time 
INQUIRE is issued. This entry must be either a terminal entry or a group 
entry that represents several terminals. A NIB is built for each terminal 
represented in the entry. 

Each generated NIB contains the symbolic name of the terminal. The 
processing options are set according to the underscored (assumed) values 
shown for the PROC operand in the NIB macro instruction, and the flags for 
the LISTEND field are set to group the NIBs together into a NIB list. In 
addition, device characteristics are supplied in the DEVCHAR field of each 
NIB. These characteristics can be used to reset the processing options of the 
NIB to values that are appropriate for the terminal. 

The user must set each NIB's MODE field to BASIC, and the NIBs are then 
ready to be used for connection. 

APPSTAT 
This type of INQUIRE determines whether a given application is available or 
unavailable. An available application is one whose ACB is active (open) and 
indicates that logon requests are to be accepted. 

The RPL's NIB field must point to a NIB whose NAME field contains the 
symbolic name of the application program whose status is being checked. A 
value returned in the fullword area pointed to by the AREA field indicates 
whether the application program is available or not. 

CIDXLATE 
INQUIRE provides the symbolic name of the terminal whose CID you 
supply. 

The RPL's ARG field must contain the CID of the terminal. The eight- byte 
symbolic name of that terminal is returned in the data area indicated in the 
AREA field. 

TOP LOGON 
For a given ACB, INQUIRE provides the symbolic name of the terminal that 
is currently at the top of the logon request queue for that ACB (that is, the 
terminal that has spent the greatest length of time waiting for its logon 
request to be satisfied). 

93 



RPL 

94 

I 

The RPL's ACB field must indicate the ACB whose logon queue is to be used. 
The eight-byte symbolic name is returned in the data area indicated in the 
AREA field. 

{SYNIASY} 
Indicates whether VTAM should synchronously or asychronously handle any 
connection, logon, or I/O request made via this RPL. 

SYN 
Synchronous handling means that when a request is made, control is not 
returned to the application program until the requested operation has been 
completed (successfully or otherwise). The application program should not 
use the CHECK macro instruction for synchronous requests; VT AM 
automatically performs this checking. When control is returned to the 
application program, register 15 will contain a completion code. 

ASY 
Asynchronous handling means that after VT AM schedules the requested 
operation, control is immediately passed back to the application program. 
When the event has been completed, VTAM does one of the following: 

If the ECB operand is in effect for the RPL, VT AM posts a completion 
indicator in the event control block indicated by this operand. (If neither an 
ECB nor an EXIT address is specified in the RPL, the ECB field itself is used 
as an event control block.) The application program must issue a CHECK 
macro to determine whether the ECB has been posted and to determine the 
status of the operation. 

If the EXIT operand is in effect for the RPL, VTAM schedules the exit 
routine indicated by this operand. This exit routine could issue the CHECK 
macro to cause automatic entry into a LERAD or SYNAD exit list routine if 
the requested operation ends with a logical or physical error. CHECK should 
be issued here if the application program has no active LERAD or SYNAD 
exit list routine, since CHECK will return a code indicating whether or not a 
logical a physical error occurred. CHECK should also be issued if the 
application program is to check for additional types of unusual completion 
(see the CHECK macro for details). 

Note: After an asynchronous request has been accepted, and before that 
request has been completed, do not modify the RPL, ACB, EXLST, or NIB 
control blocks associated with the request. A modification during this interval 
could cause VT AM to be unable to complete the request in a normal manner, 
which in turn would cause VT AM to terminate the application program. 

{CSI~} 
The CS (continue specific) and CA (continue any) option codes apply to I/O 
requests and indicate whether or not data solicited from a terminal can be obtained 
with a READ macro instruction having the ANY option code in effect. 

CS 
Data solicited from the terminal can be obtained only with a READ macro 
instruction having the SPEC option code in effect. The arrival of data from 
the terminal does not trigger the completion of a READ macro that was 
issued with the ANY option code specified. 

CA 
Data solicited from the terminal can be obtained by either kind of request -
READ with the SPEC option code or READ with the ANY option code. 



RPL 

The reason for the CS-CA option code can perhaps be more readiJy 
understood by considering the following example. The first four frames 
illustrate a situation in which failure to use the CS option code could cause 
unpredictable results. The fifth frame shows this situation remedied with the 
CS option code. 

~ SOLICIT 
• SOLICIT 

Program 
Storage 

VTAM 
Storage 

I 

for I for 
T1 I T2 

I 
I 
I 
I 
I 

SOLICIT 

T1 

i.-t. SOLICIT 
T2 

~ 

An application program issues SOLICIT macro instructions to obtain data 
from two terminals connected to it (Tl and T2). 

SOLICIT 
SOLICIT 

~ Rl READ (with ANY) 

Program 
Storage 

READ 

I 
J 

VTAM 
Storage 

I 
I 
I .... 
r'" 
I 
I 
I 
I 
I 
I 

T1 

1.1 
T2 

r--

The application program also issues a READ with an ANY option code; this 
brings into program storage a block of data from the first terminal that 
responds to the solicitation. In this example, Tl responds first and the 
pending READ macro instruction is completed. The application program can 
proceed to process this block of data. 

95 



RPL 

96 

SOLICIT 
SOLICIT 

R1 READ (with ANY) 

• process 

• 
• T1's block 

I 

Program 
Storage 

VTAM 
Storage , 

I 

II 
!. 
r 
I 
I , 
'I I 
J 

SOLICIT 
T1 

:... SOLICIT 

..... T2 

While the application program is still processing Tl's first block of data, the 
on-going solicit operations bring in two more blocks of data from Tl and a 
block of data from T2. (Whether SOLICIT obtains only one block, or a 
message or transmission, depends on the setting of the BLOCK-MSG-TRANS­
CONT processing option. Here transmissions consisting of several blocks are 
being solicited.) 

If the processing of Tl's first block involves any time-consuming operations 
(like performing I/O with a direct-access storage device), the application 
program may want to asynchronously handle the arrival of T2's data with 
another READ with OPTCD=ANY. That is, the application program may 
want to go on and retrieve T2's data while still working on Tl's data. 

SOLICIT 
SOLICIT 

R1 READ (with ANY) 

• process 

• 
• T1's block 

.. R2 READ (with ANY) 

• process 

• 
• T2's (?) block 

I 

Program 
Storage 

READ 
~ -

VTAM 
Storage 

I 

I , 
I 

II~ 
I 
I 

-~ 
I 

SOLICIT 
T1 

1..01 SOLICIT 

T2 
r-' 



RPL 

R2 may not retrieve T2's data however; if Tl's second block had arrived 
before T2's data, the second READ will move Tl's second block into 
program storage. If the application program cannot handle Tl's subsequent 
blocks until it is finished handling Tl's first block, the application program 
will have to wait until the processing of the direct access I/O operation is 
completed. . 

SOLICIT 
SOLICIT 

R1 READ (with ANY 

• 
• 
• 

and CS) 

~ R2 READ (with ANY) 

• 
• 
• 

I 

Program 
Storage 

READ 

--

VTAM 
Storage 

I 
I 
I....., 

II , .... 
I 
I 
I 
I. 
I-
I 

SOLICIT 

T1 

io"'I. SOLICIT 

T2 
I"'" 

This problem can be resolved by the use of the CS-CA option code. When an 
application program issues an I/O request with the CS option code specified, 
it is in effect saying "place the terminal that responds to this request in a 
status wherein only specific read requests can obtain data solicited from it." 
Had this option been used for the first READ macro instruction, only the 
arrival of data from a terminal other than Tl could trigger the completion of 
the second READ macro instruction: 

Note: After the first block of data has been received and processed, READ 
with OPTCD=SPEC macro instructions are used to obtain the remaining 
blocks. These macro instructions should also have CS set in their RPL. On the 
last I/O request directed specifically at the terminal - when the terminal is 
re-solicited with a new SOLICIT macro instruction, for example -- the CA 
option code should be used. This will return the terminal to its original status; 
data obtained by the new SOLICIT can again trigger any waiting READ 
macro instructions having the ANY option code. 

{EDICD} 
ED 
VT AM will end the dialog. 

CD 
VTAM will continue the dialog. 

When this option code is used with a SOLICIT, READ, WRITE, or DO macro 
instruction, the application program is requesting that a dialog should 
continue or should end. 

97 



RPL 

98 

A dialog is approximately equivalent to Network Control Program (NCP) 
session. * A dialog is started when an input or output transmission begins. A 
dialog will end with the end of the transmission unless CD is specified. 

The effect of continuing a dialog is primarily to give scheduling priority to 
the terminal that is in dialog, at the expense of terminals on the same line 
that are not in dialog. A disadvantage to a dialog, however, is that additional 
3704 or 3705 communications controller storage is required. (Scheduling 
priority is the priority assigned to a terminal on a multipoint line that 
determines whether or not an I/O request directed at that terminal will take 
precedence over a request that is already queued for another terminal on the 
same line.) 

The degree of scheduling priority obtained with CD depends on the number 
of terminals on the line, and on the NCP session and transmission limits 
established by the installation (these limits are explained in the publication 
cited below). CD has no effect on scheduling priority if there is only one 
terminal on the line. CD likewise has no effect if the NCP session limit is as 
great as the number of terminals on the line, or if the transmission limit is 
one. CD gives absolute scheduling priority (that is, holds the line for exclusive 
use of the terminal) if the session limit is one and there is no transmission 
limIt. As the session limit decreases, or the transmission limit increases, CD is 
more likely to result in a high scheduling priority in the 3704 or 3705 for the 
terminal. The negative poll limit for the Network Control Program may also 
effect the scheduling priority obtained by specifying CD. 

In general, the use of CD should be restricted to situations in which the time 
between two I/O operations is expected to be very short relative to the time 
required for the I/O operations themselves. This might be the case, for 
example, when a transmission sent from the terminal at keying speed is to be 
read and automatically (immediately) followed by a write operation. 

To take full advantage of CD, you should be aware of such factors as the 
duration of the I/O operations, the probable response times, the number of 
terminals per line, and the NCP session and transmission limits for that line. If 
you are not aware of these factors, avoid the use of CD. 

{BLKILBMI!JIT } 
Indicates that the block of data to be transferred on an output operation represents 
a block and nothing more (BLK), the last block of a message (LBM), or the last 
block of a transmission (LBT). Appendix B shows the line control characters sent 
when each of these three option codes are in effect. 

{CONVI~} 
Indicates whether or not a WRITE macro instruction is to be handled as a 
conversational write request. 

CONY 
Following the output operation, data is obtained from the terminal and 
placed in the area in program storage indicated by the RPL's AAREA field. 

* NCP sessions are explained in IBM 3705 Communications Controller Network Control Pro­
gram, Generation and Utilities Guide and Reference Manual, GC30-3000. 



RPL 

NCONV 
Only the output operation is performed. 

{ CONDIUNCONDILOCK} 
Indicates the action to be taken when a RESET macro instruction is issued. 

COND 
RESET cancels any I/O operation that is pending for a specific terminal, but 
does not affect an I/O operation if data transfer has begun. RESET also resets 
any error lock that has been set for the terminal. 

UNCOND 
RESET cancels any I/O operation with a specific terminal, whether or not 
data transfer has begun. Any data that has already been brought into VT AM 
buffers is kept by VTAM for subsequent retrieval by the application program 
(with a READ macro). Any data being sent or about to be sent by the 
terminal may be lost. RESET also resets any error lock that has been set for 
the terminal 

LOCK 
RESET resets any error lock that has been set for the terminal. 

{ ERASEIEAUINERASE } 
Indicates the action to be taken when a WRITE macro instruction is issued. 

ERASE 
WRITE erases the screen of a display device attached to a 3270 Information 
Display System or a 2770 Data Communication System, and then send a 
block of data to the device. 

EAU 
WRITE erases only the unprotected portion of the screen of a display device 
attached to a 3270 Information Display System. No data is written. 

NERASE 
WRITE performs an ordinary write operation, with no display screen erasure. 

{ RELRQINRELRQ } 
Indicates the action to be taken when (1) an OPNDST macro with ACQUIRE, or a 
SIMLOGON macro is issued, and (2) the terminal that is the object of this 
connection or simulated logon request is already connected to another application 
- that is, already connected to an ACB other than the one being used for the 
OPNDST or SIMLOGON macro. 

RELRQ 
If the application to which the terminal is currently connected has an active 
RELREQ exit in its exit list, the RELREQ exit routine is invoked. 

NRELRQ 
No RELREQ exit routine is invoked. 

{ Q\NQ} 

lndicate~ the action VI AM is to take when the application program requests 
connection (with the OPNDST macro) and the terminal that is to be the object of 

99 



RPL 

Examples 

100 

this request is unavailable. (The terminal is unavailable if it is currently connected 
to another application program.) 

RPLI 

Q 
VT AM is to satisfy the request when the terminal is finally available, and 
notify the application program when it· has done so. As is true with most of 
the RPL-based requests described in this book, the nature of this notification 
depends on the SYN-ASY option code, and the RPL's ECB and EXIT field 
contents: 

If synchronous request handling has been requested (SYN option code in 
effect for the RPL), the application program receives control back only after 
connection has been established or attempted. 

If asynchronous request handling and ECB posting has been requested (ASY 
option code and ECB in effect for the RPL), the ECB is posted when the 
request has been satisfied. The application program must issue a CHECK 
macro to determine whether the ECB has been posted. 

If asynchronous request handling (ASY option code in effect for the RPL) 
and an EXIT routine address have been specified, the EXIT routine is· 
scheduled when the request has been satisfied. 

NQ 
If the terminal is not currently available, VT AM is not to wait until the 
terminal is available, but is instead to immediately return control to the 
application program. (Without the NQ option, a connection or simulated 
logon request might remain pending indefinitely, waiting for another 
application program to release the terminal.) 

Note: When NQ is specified and control is finally returned to the application 
program, the request mayor may not have been satisfied. Register 15 (and 
also the first byte of the RPL's FDBK field) is set to hexadecimal 10 to 
indicate that, this has happened. 

RPL ACB=ACBl,NIB=NIBl 
OPTCD=(SPEC,ASY), 
EXIT=EXITPGM,AM=VT AM 

x 
X 

RPLI can be used by an OPNDST macro instruction to connect the terminal 
represented in NIBI to the application program -- that is, to ACBl. When the 
operation completes, the application program will be interrupted, and the routine 
at EXITPGM is invoked. 

RPL2 RPL ACB=ACBl,ARG=(6), 
AREA=SOURCE,RECLEN= 132, 
ECB=ECBWORD,OPTCD=ASY,AM=VT AM 

x 
X 

RPL2 can be used by a WRITE macro instruction to write a block of data (132 
bytes from SOURCE) to the terminal whose CID is in register 6. When the request 
has been scheduled, control is returned immediately. When the request has been 
completed, ECBWORD is posted. (The CHECK macro instruction used to check 
the write operation would point to RPL2.) 



RPL 

RPL Fields and RPL -- Oriented Macro Instmctions 
The following figure shows all of the VT AM macro instructions that allow RPL 
modifications to be indicated when the macro instruction is coded. It also shows all 
of the RPL fields, including the option codes of the OPTeD field, that might be 
modified by these macro instructions - either by the application program or by 
VTAM. The symbols in the table indicate, for a given macro instruction, the RPL 
fields that are set by VT AM or by the application program. 

The programmer coding the macro should be aware of that field's effect either by 
checking the the descFiption of that macro instruction, or by checking the field's 
description in the RPL macro instruction. The absence of an A or V means that the 
contents of that field can be safely ignored when that macro instruction is issued. 

RPL modifying macro instructions~ -
S-IS- ~v(~ t ~ "V ..... Q " ~/! t ~ Iq~ ~ 

Applicable RPL fields: OPNDST CLSDST C; C; q;.: ~ 

ACB A A A A A A A A A 

ARG/ V V A A A AV 

NIB A A A A A A 

AREA V A A A 

AREALEN A 

RECLEN A A V 

AAREA A 

AAREALN 

ARECLEN 

BRANCH A A 

ECB/EXIT A A A A A A A A A 

FDBK V V V V V V V V V 

USER V V V V 

OPTCD: 

SPEC-ANY A A A 

QUIESCE-START -STOP A 

PASS-RELEASE A A 

LOGONMSG-DEVCHAR-COUNTS-
TERMS-APPSTAT -CIDXLATE-TOP LOGON 

SYN-ASY A A A A A A A A A 

CS-CA A A A A A 

ED-C~ A A 

BLK-LBM-LBT 

CONV-NCONV 

CONO-INCONO-LOCK 

ERASE-EAU-NERASE 

The presence of a symbol means that the RPL field or option code is applicable 
for the macro instruction in one of these two ways: 

~ The field or option code is set by the application program to supply 
VT AM information about the request. 

[.szJ The field is set by VTAM when the request has been processed. 

A 

A 

A 

A 

A 
; 

A 

V 

A 

A 

V 

V 

A 

A 

A 

A 

A 

A 

~ § ~ 
~ ~/~/QO/ 

A A A A 

A A 

A A 

A A A 

A 

V A V 

A V 

A 

V 

A A A A 

V V V V 

V V V 

A 

A A A A 

A A 

A 

A 

Figure 5. RPL Fields Applicable to the Macro Instructions that can Modify RPLs 

101 



SETLOGON 

SETLOGON - Reset an ACB's Logon Status 

102 

When an application program opens an ACB that has MACRF= LOGON specified 
for it, VTAM begins queuing logon requests that are directed at the ACB. 
SETLOGON provides a means of preventing VTAM from queuing logon requests. 

There are three types of SET LOGON request: QUIESCE START and STOP. An 
RPL option code determines which is used when a SETLOGON macro instruction 
is executed. 

The QUIESCE version of SETLOGON (and the only version available to programs 
running under DOS!VS) causes VTAM to permanently prevent logon request 
queuing. An application program might want to use this type of SETLOGON prior 
to issuing a CLOSE macro instruction. 

Applications running under OS!VSl and OS!VS2 have two extra options of 
SETLOGON available to them. These allow the application program to temporarily 
stop logon request queuing (STOP option code) and later resume logon request 
queuing (by issuing SETLOGON with the START option code). 

Since logon requests might accumulate much faster than the application program 
can handl~ them, the application program can use the STOP option of SETLOGON 
to temporarily place itself in an 'unavailable" status. (The INQUIRE macro 
instruction with the COUNTS option code can be used to determine how many 
logon requests are queued.) 

To summarize: 

OPEN ACB's MACRF 
field set to 
LOGON. 

Logon request queue opened. 

SETLOGON RPL=RPLl, (Available under OS!VSl and OS!VS2 only.) 
Logon request queue temporarily closed. OPTCD=STOP 

SETLOGON RPL=RPLl, (Available under OS!VSl and OS!VS2 only.) 
Logon request queue reopened. OPTCD=ST ART 

SET LOGON RPL~RPLl, 

OPTCD=QUIESCE 
Logon request queue closed. 

Note: SETLOGON can be used only if the ACB is opened with MACRF=LOGON. 
If the ACB is opened with MACRF=NLOGON, the only wayan application pro­
gram can reset the ACB's logon status is to close the ACB, reset its MACRF field to 
LOGON, and then reopen. 

Name Operation Operands 

[symbol] SETLOGON RPL=rpl address 
[ , rpl keyword=new value] ... 

symbol 
Function: Provides a name for the macro instruction. 



RPL=rpl address 

SETLOGON 

Function: Indicates the location of the RPL whose ACB field points to the ACB for 
which logon requests are to be stopped or allowed. 

rpl keyword=new value 

Example 

Function: Indicates an RPL field to be modified, and the new value that is to be 
contained or represented within it. 

Format: For rpl keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. The new value can be any value 
that is valid for that operand in the RPL macro instruction, or it can indicate a 
register. 

Note: See Figure 5 at the end of the RPL macro instruction description for a list of 
all the RPLfields that might be modified here. 

NOMORE SETLOGON RPL=RPLI ,ACB=ACBl ,OPTCD=STOP 

RESUME SETLOGON RPL=RPLI ,ACB=ACBl ,OPTCD=START 

NOMORE causes VTAM to stop queuing logon requests directed to ACBl. Any 
logon requests directed to ACBl after NOM ORE has been executed will be 
rejected. When RESUME is executed, VT AM will again queue logon requests for 
ACBl as they occur. This example assumes that the MACRF field of ACBl has 
been set to LOGON. Note that this example applies only to programs running 
under OS/VS 1 or OS/VS2. 

Return of Status Information 
Mter SET LOGON processing is finished, register 15 indicates one of the following 
hexadecimal values: 

o If the ASY option code is in effect, VT AM accepted the SETLOGON 
request. If the SYN option code is in effect, queuing of logon requests 
has been successfully stopped or started for the ACB. 

4 The request cannot be accepted because the RPL is being used by 
another request. The RPL's FDBK field has not been set. If an active 
LERAD exit list routine is available, it has been invoked. 

8 A logical error (see Appendix A) occurred; the FDBK field can be 
examined to determine which one it was. If an active LERAD exit list 
routine is available, it has been invoked. (This return code is possible 
only if the SYN option code is in effect.) 

103 



SHoweB 

SHOWCB -- Extract the Contents of Control Block Fields 

104 

symbol 

AM=VTAM 

SHOWCB extracts the contents of one or more ACB, EXLST, RPL, or NIB fields 
and places them into an area designated by the application program. The SHOWCB 
user specifies the address of a control block and the names of the fields whose 
contents are to be extracted. The field names are the same as the keywords of the 
ACB, EXLST, RPL, and NIB macro instructions. Any keyword of these macro 
instructions can be used as a field name in the SHOWCB macro instruction. 

Control block fields that can be operated on by SHOWCB are not limited, however, 
to fields that can be set by the application programmer in the ACB, EXLST, RPL, 
and NIB macros. Several additional fields whose contents are always set by VT AM 
can also be displayed with SHOWCB. All of the fields applicable for SHOWCB are 
shown in Figure 6 at the end of the SHOWCB macro instruction description. 

The user of SHOWCB must use the AREA and LENGTH operands to indicate the 
location and length of the area where the fields will be placed. The content of each 
field is placed there contiguously, in the order indicated by the FIELDS operand. If 
the area is too short to hold all of the fields, SHOWCB returns an error code and 
places the required length indicated in register O. Figure 6 shows the required 
lengths for all the control block fields that can be displayed with SHOWCB. 

Ust and execute forms of the SHOWCB macro instruction are available; they are 
designated by the MF operand. 

Name Operation Operands 

[symbol] SHOWCB AM=VTAM j' ACB=acb address 1 
' EXLST=exit list address 
, RPL=rpl address 
, NIB=nib address 

, FIELDS= { field name I (field name, ... )} 
, AREA =data area address 
, LENGTH=data area length 
[, MF={ L I (E, parameter list address)}] 

Function: Provides a name for the macro instruction. 

Function: Identifies this macro instruction as a VT AM macro instruction. This 
operand is required for the DOS/VS assembler, but is ignored by the OS/VSI and 
OS/VS2 assemblers. 

ACB=acb address 
EXLST=exit list address 
RPL=rpl address 
NIB=nib address 

Function: Indicates the type and location of the control block whose fields are to 
be extracted. 

Format: Code only one of the operands. For the list form of SHOWCB, register 
notation cannot be used. 



SHoweB 

Note: One of these operands must be selected for the standard or list forms; but for 
the execute form, it is optional. 

FIELDS={ field name I (field name, ... )} 
Function: Indicates the control block field or fields whose contents are to be 
extracted. 

Format: For field name code one of the field names that appear in the first column 
of Figure 6 below. Most of these field names correspond to keywords of the ACB, 

EXLST, RPL, and NIB macro instructions. Only those fields associated with one 
control block can be specified (those for the control block whose address is sup­
plied in the first operand). 

Note: This operand is required for the standard and lists forms of SHOWCB, but for 
the execute form, it must not be specified. 

AREA =work area address 
Function: Indicates the location of the storage area in the application program 
where the contents of the control block field or fields are to be placed. 

Format: Code the address of a work area that begins on a fullword boundary. For 
the list form of SHOWCB, register notation cannot be used. 

Note: This operand is required for the standard and list forms of SHOWCB, but for 
the execute form it is optional. 

LENGm=work area length 
Function: Indicates the length (in bytes) of the storage area designated by the 
AREA operand. 

If this length is insufficient, SHOWCB returns a hexadecimal 10 in register 15 and 
the required length in register O. The required length for each field are shown in the 
second column of Figure 6. 

Format: Code the number of bytes in AREA either as a numerical value or as an 
expression that will be equated to a numerical value. Register notation is not 
permitted in the list form of SHOWCB. 

Note: This operand is required for the standard and list forms of SHOWCB, but for 
the execute form it must not be specified. 

MF= { L I (E, parameter list address) } 
Function: Indicates that either a list form or an execute form of SHOWCB is to be 
used. 

MF=L 
The list form (L-form)· of this macro instruction creates a parameter list for later 
use by the by the execute form. Because the L-form macro instruction generates 
only this parameter list, and no executable code,' operand forms like register 
notation are prohibited. Only relocatable expressions valid for ad cons can be used. 
The user is responsible for branching around the generated parameter list, which is 
variable in length. 

105 



SHoweD 

106 

MF=(E,parameter list address) 
The execute form (E-form) of this macro instruction can modify the parameter list 
generated by its list form. The expansion of the execute form provides the 
executable instructions required to perform parameter list modification and passing 
of control. The parameter list address should specify the location of the list form of 
the macro instruction. Register notation can be used. 

Note: Although the execute form of SHOWCB can modify the list form's parameter 
list, it cannot add to it. Therefore if an operand value will not be known until 
program execution and is to be supplied with the execute form, the list form must 
also specify that operand and supply a dummy value for it. 

For example: Assume that the contents of an ACB's APPLID and EXLST fields are 
to be placed in an area whose address will become available in register 3 during 
program execution. First code a list form of SHOWCB as follows, taking care to 
specify the AREA operand and supply some value for it --

LFORMS SHOWCB ACB=ADCONI,AREA=O,LENGTH=8 X 
FIELDS=(APPLID.,EXLST),MF= L,AM=VT AM 

and code an execute form like this: 

EFORMS 

Examples 

SHOW I 

SHOWCB 

SHOWCB 

AREA =(3),MF=(E,LFORMS) 

NIB=NIBI,FIELDS=NAME, 
AREA=NAMEI ,LENGTH=4,AM=VTAM 

SHOW I extracts the con tents of NIB I 's NAME field and places it in NAME I. 

SHOW2 SHoweB RPL=RPLl, 
FIELDS=(FDBK,ARG,AREA,RECLEN) 
AREA=(3),LENGTH=16,AM=VT AM 

X 

x 
X 

SHOW2 extracts the contents of RPLI 's FDBK, ARG, AREA, and RECLEN fields 
and place them (in that order) in a storage area. The address of this storage area 
must be in register 3 when SHOW2 is executed. Note that LENGTH indicates a 
storage area length great enough to accomodate all four fields. 

Return of Status Information 
After SHOWeB processing is completed, VT AM sets these general purpose registers 
to indicate the following: 

Register 0: If the length of AREA is too small, this register contains the 
correct length needed to hold the fields. 

Register 15: The hexadecimal content of this register indicates completion 
status: 

o The contents of all of the fields were successfully moved. 

4 The indicated control block is not of the type it should be. If, for 
example, ACB=MYACB were specified, this return code means that the 
control block found at MY ACB is not a valid ACB. 

8 The execute form was used incorrectly. For example, a control block 
field is specified in the execute form instead of in the list form. 



SHOWCB 

C Required information was not supplied. For example, a control block 
location was indicated, but no field in that control block was specified. 

10 The length of the storage area where the field contents were to have 
been placed is too small. Check register 0 for the correct length. 

The field names shown in the first column are the values that can be supplied for 
the FIELDS operand of the SHOWCB macro instruction. The lengths shown in the 
second column are the number of bytes of storage that must be reserved for each 
field; the sum of all the fields to be displayed by SHOWCB should be the value for 
the LENGTH operand. 

107 



ACB Fields 
Field Name Length (bytes) Description 
APPLID 4 Address of application program's symbolic name 
PASSWD 4 Address of password 
EXLST 4 Address of exit list 
ACBLEN 4 Length of ACB, in bytes 
ERROR 4 OPEN and CLOSE completion codes; see OPEN 

macro instruction 

EXLST Fields 

Field Name Length (bytes) Description 
LERAD 4 Address of LERAD exit list routine 
SYNAD 4 Address of SYNAD exit list routine 
UNSIP 4 Address of UNSIP exit list routine 
ASYIP 4 Address of ASYIP exit list routine 
TPEND 4 Address of TPEND exit list routine 
RELREQ 4 Address of RELREQ exit list routine 
LOGON 4 Address of LOGON exit list routine 
LOSTERM 4 Address of LOSTERM exit list routine 
ATTN 4 Address of ATTN exit list routine 
EXLLEN 4 Length of exit list, in bytes 

RPL Fields 

Field Name Length (bytes) Description 
ACB 4 Address of ACB 
NIB 4 Address of NIB 
ARG 4 CID of terminal 
AREA 4 Address of I/O area or logon message 
AREALEN 4 Length of AREA, in bytes 
RECLEN 4 Length of data in AREA, in bytes 
AAREA 4 Address of alternate I/O area 
AAREALN 4 Length of AAREA, in bytes 
ARECLEN 4 Length of data placed in alternate I/O area 
ECB 4 Fullword for posting connection or I/O 

completion information, or address of same 
EXIT 4 Address of RPL exit routine 
LEVENT 4 Address of RPL exit rou tine 
GEVENT 4 Address of RPL exit routine 
FDBK 4 Three-byte feedback field, right-justified 
USER 4 Arbitrary data originally set in a NIB's U~ERFLD 

field 
RPLLEN 4 Length of RPL, in bytes 

NIB Fields 

Field Name Length (bytes) Description 
NAME 8 Symbolic name of terminal 
USERFLD 4 Arbitrary data associated with NAME 
CID 4 Communication ID - shortened form of NAME 
NIBLEN 4 Length of NIB, in bytes 
DEVCHAR 8 Device characteristics 

Figure 6. Control Block Fields Applicable for SHOWCB 

108 



SIMLOGON 

SIMLOGON -- Generate a Simulated Logon Request 
A logon request is a request for connnection made by a terminal and directed 
towards an application. If the application program has an active LOGON exit 
routine, it is invoked. There, presumably, VTAM is asked to connect the terminal 
to the application program; that is, an OPNDST macro is issued. 

A logon request can be initiated by the terminal itself, or an application program 
can initate the logon request on behalf of the terminal. The latter is called a 
simulated logon request, and the program uses the SIMLOGON macro instruction 
to generate it. 

By issuing SIMLOGON, the application program can use its LOGON exit list 
routine to service selfinitiated logon requests. When used this way, SIMLOGON is 
equivalent to an OPNDST connection request with an ACQUIRE processing option, 
except that the LOGON exit list routine handles the connection request. 

Note: Do not issue SIMLOGON if no active LOGON exit list routine will be 
available when SIMLOGON is executed. 

The SIMLOGON macro indirectly indicates the terminal on behalf of which the 
logon request is to be made. The RPL operand of the SIMLOGON macro 
instruction must indicate the address of an RPL whose NIB field contains the 
address of a NIB. A logon request is generated, at a minimum, for the terminal 
represented by this NIB. If the NIB field points to a single NIB (one whose 
LISTEND field is set to YES), one logon request is generated for that terminal. 
However if the NIB field points to a NIB list (LISTEND field set to NO), the effect 
of SIMLOGON depends on the setting of the. CONANY -CON ALL processing 
option in the NIB. These effects are described in detail in the processing option 
descriptions of the NIB macro, but for convenience they are sununarized here as 
well: 

CON ANY 
A logon request is generated for the first terminal to be released by the application 
program to which it is currently connected. 

CONALL 
A series of logon requests are generated, one for each terminal represented in the 
NIB list. The logon requests are generated until all the terminals are available (that 
is, are released by any other application programs to which they might be 
connected). 

The RPL must also indicate in its ACB field the ACB to which the simulated logon 
request is to be generated, and it must indicate in its NIB field the NIB of the 
terminal for which the request is to be generated. 

The SIMLOGON macro instruction can optionally be used to send a logon message 
along with the logon request. If this is to be done, SIMLOOON's RPL must contain 
the address of this message in its AREA field, and it must contain the length of this 
message in its RECLEN field. If,a logon message is not to be sent, these fields must 
be set to O. 

For programs running under OS/VSI or OS/VS2, the use of SIMLOGON must be 
authorized for the application program by the installation. 

109 



SIMLOGON 

110 

symbol 

RPL=rpl address 

Name Operation Operands 

[symbol] SIMLOGON RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL to be used during SIMLOGON 
processing. The NIB field of this RPL should contain the address of a NIB or list of 
NIBs whose associated terminals are to be considered as the sources of the logon 
requests. The ACB field of the RPL must contain the address of the ACB to which 
the simulated logon request is to be directed. 

rpl keyword=new value 
Function: Indicates an RPL field to be modified and the new value that is to be 

Example 

contained within it. 

Format: For rpl keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field to be modified. The new value can be any value 
that is valid for that operand in the RPL macro instruction, or it can indicate a 
register. 

Note: All of the RPL fields that have a unique effect onSIMLOGON (and thus 
might be modified here) are discussed above; check Figure 5 in the RPL macro 
instruction description for a list of all the RPL fields that are applicable for the 
SIMLOGON macro instruction. 

SIMLOGON RPL=RPLl, RPL MODIFIERS FOLLOW: 
ACB=ACBl ,NIB=NIBLISTl, 
AREA=LGNMSG 

x 
X 

This macro instruction generates simulated logon requests for ACBl from all of the 
terminals represented in NIBLISTI. Each request will be accompanied by a 60-byte 
logon message taken from LGNMSG. 

Return of Status Information 
When the SIMLOGON operation is completed, register 15 indicates one of the 
following hexadecimal values: 

o If the ASY option code is in effect, the SIMLOGON request was 
accepted. If the SYN option code is in effect, the simulated logon 
requests were successfully generated. 

4 The request cannot be accepted because the RPL is being used by 
another request. The RPL's FDBK field has not been set. If an active 
LERAD exit routine exists, it has been invoked. 

8 A logical error (see Appendix A) occurred; the FDBK field of the RPL 
can be checked to determine which one it was. If an active LERAD exit 
list routine is available, it has been invoked. (This code can be returned 
only when the SYN option code is in effect.) 



SOLICIT 

SOLICIT _. Obtain Data from a Terminal 
The SOLICIT macro instruction obtains data from one or more connected ter­
minals and places it into VT AM buffer areas. A subsequent READ macro instruc­
tion is required to move the data into a program storage area. 

SOLICIT performs the preparation or polling required to obtain the data and sup­
plies appropriate line-control responses as blocks of data are obtained. (To solicit 
data from a 3270 display unit, a command to unlock the keyboard must first be 
written to the device by the application program.) 

As soon as VTAM has accepted the solicit request, control is returned to the 
program. The operation is then finished as far as the program is concerned; only 
through the ASYIP exit list routine can the program be notified when data arrives. 
However, the solicitation of data will continue as long as the terminal's NIB 
indicates - which could be indefinitely. 

Any I/O errors that occur during solicit operations for a given terminal will become 
known to the program only when it next issues a READ macro for that terminal. 

The user of SOLICIT codes the address of an RPL, and (optionally) indicates 
changeo values for RPL fields. Fields in the RPL, and also in the NIB that was used 
when the terminal was connected, govern the solicit operation. The RPL fields can 
be modified by the SOLICIT macro instruction itself. The following list shows the 
effect of the more important of these fields. See the RPL macro instruction 
description for a list and explanation of all RPL fields applicable for SOLICIT. 

The PROC field of the NIB: (Note-This field cannot be modified with the 
SOLICIT macro instruction; use the MODCB and CHANGE macro instructions to 
do this.) 

PROC=BLOCK 
One block of data ending in an EOB line control character (for start-stop devices) 
or an ETB line control character (for binary synchronous devices) is obtained. A 
line-control response is sent to acknowledge receipt of the data obtained from the 
previous solicit, but no such response is sent when data is obtained as a result of 
this SOLICIT macro. The data obtained by this solicit request is acknowledged 
only when the next solicit request is issued. For programs running under OS/VSl 
or OS/VS2, the use of BLOCK must be authorized by the installation. 

The effect of BLOCK (and MSG, TRANS and CaNT as well) is illustrated in Figure 
3 in the NIB macro instruction description. 

PROC=MSG 
Blocks of data are continuously obtained until a block containing an EOT character 
(for start-stop deVices) or an ETX character (for binary synchronous devices) is 
recognized. In effect, this means that data is solicited from the terminal until an 
entire message has been received. Line-control responses will be sent as each block 
is received, except for the last block. Its receipt is not acknowledged until the next 
solicit request is issued. 

PROC=TRANS 
Blocks of data are continuously obtained until a block containing an EOT character 
is recognized. In effect, this means that data is solicited from the terminal until an 

111 



SOLICIT 

symbol 

RPL=rpl address 

112 

entire transmission has been received. Line-control responses are sent as each block 
is received, including the last block. Polling does resume until the next solicit 
request is issued. 

PROC=CONT 
Blocks of data are continuously solicited from the terminal. Line-control responses 
are sent for each block received. This solicitation continues indefinitely, unless the 
solicit request is canceled with the RESET macro instruction, or the terminal 
becomes disconnected from the program. 

The ARG and OPTCD fields of the RPL: 

ARG=(register) 
If a specific terminal is to be solicited, the ARG field of the RPL must contain the 
CID for that terminal. ARG=(register) is indicated here because that is the only way 
to place the CID in the RPL with the SOLICIT macro instruction. The CID must 
first be loaded into a register, and that register indicated with the ARG operand of 
this macro instruction or in the MODCB macro instruction. 

ARG does not apply to SOLICIT when the ANY option code is in effect. 

OPTCD= {SYN /ASY} 
When the SYN option code is in effect, ECB posting does not occur before control 
is returned to the program, nor is any RPL exit routine invoked. When the ASY 
option code is in effect, either the ECB is posted or the RPL exit routine (if there is 
one) is invoked. 

OPTCD= { CA I CS} 
When the CA option code is in effect, the data obtained from the solicit operation 
is available for a subsequent READ with an ANY option code in effect. When CS is 
used instead, and the SPEC option code is also in effect, only a subsequent READ 
with a SPEC option code can be used to retreive the data obtained by the solicit 
operation. (If the ANY option code is in effect, the CA- CS option code is treated 
as though CA had been specified - regardless of whether CA or CS is specified.) 

OPTCD= {SPEC I ANY} 
When the SPEC option code is in effect, data is solicited from only one terminal -
namely the terminal whose CID has been placed in the ARG field of the SOLICIT 
macro's RPL. When the ANY option code is in effect, data is solicited from all 
terminals that are connected to the program but are not engaged in any actual or 
pending I/O operation with the program. 

Name Operation Operands 

[symbol] SOLICIT RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL that governs the solicit operation. 



SOLICIT 

rpl keyword=new value 

Example 

Function: Indicates an RPL field to be modified and the new value that is to be 
contained or represented within it. 

Format: For rpl keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. ARG can also be coded. The new 
value can be any value that is valid for that operand in the RPL macro instruction, 
or it can indicate a register. The value supplied for the ARG keyword must indicate 
a register. 

Note: All of the RPL fields that have a unique effect on SOLICIT (and thus might 
be modified here) are discussed above; check Figure 5 in the RPL macro instruction 
description for a list of all RPL fields that apply to the SOLICIT macro instruction. 

SLCTI 
SLCT2 

SOLICIT 
SOLICIT 

RPL=RPLI,OPTCD=ANY 
RPL=RPL2,OPTCD=SPEC 

SLCTI causes data to be solicited from any terminal that has been connected 
through the ACB indicated in RPLI and is not currently engaged in communication 
with the program. SLeT2, which represents a more likely use of SOLICIT, causes 
data to be solicited from the terminal whose CID is in RPL2's ARG field. 

Return of Status Information 
Control is returned to the program when VTAM has accepted the solicit request -
not when the actual I/O activity is eventually conpleted. After control has been 
either returned directly to the next sequential instruction or first passed to an exit 
routine, these sources of status information may be checked. 

The FDBK field of the RPL: Unless the value 4 was returned in register 15, the 
FDBK (feedback) field indicates the nature of the error. The FDBK field is 
described in Appendix A. 

The USER field of the RPL: When a NIB is established, the user has t~e option of 
specifying any arbitrary value in the USERFLD field of that NIB. When a SOLICIT 
macro instruction with an option code of SPEC in effect is subsequently issued for 
the terminal represented by that NIB, VTAM obtains the content of the USERFLD 
field and places it in the RPL's USER field. 

Register 15: One of the following hexadecimal values is indicated: 

o VT AM accepted the solicit request. This means that VT AM has checked 
the control blocks associated with the request and found no informa­
tion that is contradictory or would otherwise guarantee the eventual 
failure of the solicit operation. If errors do occur, an error return code 
will be passed to the program in register 15 when it eventually attempts 
to read from the terminal involved with the error. 

4 The SOLICIT request cannot be accepted .because the RPL is being 
used by another request, or the terminal is not connected to your 
application program. The RPL's FDBK field has not been set. The 
LERAD exit routine, if an active one is available, has been invoked. 

8 A logical error (see Appendix A) occurred; the FDBK field of the RPL 
can be examined to determine which one it was. (This return code is 
possible only when the SYN option code is in effect.) 

113 



TESTCD 

TESTCB -- Test the Contents of a Control Block Field 

symbol 

AM=VTAM 

114 

TESTCB compares the contents of a specified ACB, RPL, EXLST, or NIB field to a 
value supplied with the macro instruction, and sets the PSW condition code 
accordingly. 

The user of the TESTCB macro instruction indicates a particular control block, 
identifies a single field within that control block, and supplies the value against 
which the contents of that field are to be tested. 

The operands for testing control block fields are used in much the same way as 
operands for modifying or setting control block fields in macros like MODCB or 
GENCB. For example, RECLEN=200 in a MODCB macro places the value 200 in 
the RECLEN field of an RPL; if RECLEN=200 is specified in a TESTCB macro 
instruction, the contents of the RECLEN field are compared with the value 200. 

The test performed by TESTCB is a logical comparison between the field's actual 
content and the specified value. The condition code indicates a high, equal, or low 
result (with the actual content considered as the "A" comparand of the "A:B" 
comparison ). 

TESTCR' can be used to test any control block field whose content can be set by 
the application program, as well as some of the control block fields whose contents 
are controlled by VTAM. The explanation below of the field name operand 
indicates the fields that can be tested. 

With the ERET operand of the TESTCB macro instruction, the application program 
can supply the address of an error-handling routine. This routine is invoked if some 
error condition prevents the test from being performed. 

List and execute forms of TESTCB are available; they are designated by the MF 
operand. 

Name Operation Operands 

[symbol] TESTCD AM =VTAM I' ACB=acb address I ' EXLST=exit list address 
, RPL=rpl address 
, NIB=nib address 

, field name=test value 

[ , ERET=error exit routine address] 
[ , MF= { L I (E, parameter list address) } ] 

Function: Provides a name for the macro instruction. 

Function: Identifies this macro instruction as a VTAM macro instruction. This 
operand is required for the DOS/VS assembler, but is ignored by the OS/VS 1 and 
OS/VS2 assemblers. 



TESTCB 

ACB=acb address 
EXLST=exit list address 
RPL=rpl address 
NI B=nib address 

Function: Indicates the type and location of the control block whose field is to be 
tested. 

Format: Use only one of the operands and code the address of the control block. 
Register notation cannot be used in the list form. 

Note: One of these operands must be selected in the standard and list forms, but 
for the execute form none need be specified. 

field name=test value 
Function: Indicates a control block field and a value that its contents are to be 
tested against. 

Note: This operand is required for the standard and list forms, but not for the 
execute form. 

Forma/: For field name code anyone of the field names listed below. 

Group 1: Each field name in this group corresponds to an operand of the macro 
instruction that generates the field. See the operand descriptions in the ACB, 
EXLST, RPL, and NIB macro instructions for explanations of each field. 

ACB Field Names 
AM EXLST 
APPLID MACRF 
PASSWD 

EXLST Field Names 
LERAD ASYIP 
SYNAD TPEND 
UNSIP RELREQ 

RPL Field Names 
ACB RECLEN 
NIB ARECLEN 
AREA AAREA 
AREALEN AAREALN 

NIB Field Names 
NAME LISTEND 
USERFLD PROC 

LOGON 
LOSTERM 
ATTN 

ECB 
EXIT 
LEVENT 
GEVENT 

USER 
BRANCH 
OPTCD 

Group 2: Any of the following field names in this group can also be coded. These 
names represent fields whose contents are not established by the application 
program but are instead set by VT AM. 

Field Name 
ACBLEN 

EXLLEN 

RPLLEN 

Field Length 
1 fullword 

1 fullword 

1 fullword 

Description 
An ACB field containing the length of the ACB, in 
bytes. 

An EXLST field containing the length of the exit 
list, in bytes. 

An RPL field containing the length of the RPL, in 
bytes. 

115 



TESTeD 

116 

NIBLEN 

OFLAGS 

10 

CON 

1 fullword 

N/A 

N/A 

N/A 

A NIB field containing the length of the NIB, in 
bytes. 

An ACB field that indicates whether or not the 
ACB is open. This operand is coded as OFLAGS= 
OPEN. An "equal" condition code indicates that 
the ACB is activated~ an "unequal" condition code 
indicates that it is not. 

An RPL field that indicates whether the RPL is 
active or not. This operand is coded as 10= 
COMPLETE. An "equal" PSW condition code 
indicates that the RPL is inactive~ an "unequal" 
condition code indicates that the RPL is active. 

A NIB field that indicates whether the terminal 
represented by the NIB is currently connected to 
the application program. This operand is coded as 
CON=YES. An "equal" PSW condition code indi­
cates that the terminal is connected~ an "unequal" 
condition code indicates that it is not. 

The rules for coding test value depend on what is coded for field name. 

If field name is one of the names listed above in Group 1, code any value that can 
be supplied with that operand when it is used in an ACB, EXLST, RPL, or NIB 
macro instruction. The individual operand descriptions for each of these macros 
indicates how each operand can be specified. 

Examples: 
TESTCB 
TESTCB 
TESTCB 
TESTCB 

ACB=ACB 1 ,PASSWD=PSWDAREA,AM=VTAM 
EXLST=EXLST 1 ,SYNAD=SYNADPGM,AM=VTAM 
RPL=RPLl,AREALEN=64,AM=VTAM 
NIB=NIB 1 ,LISTEND=YES,AM=VTAM 

To test a field listed above under Group 2, code a test value that is consistent with 
the deSCription of that field. 

Examples: 
TESTCB 
TESTCB 

ACB=ACBl,OFLAGS=OPEN,AM=VTAM 
RPV=RPLl,RPLLEN=38,AM=VTAM 

The A or N (active or inactive) attributes of an exit list (EXLST) entry can be 
tested as can the address in the exit list entry. The first example below shows how 
to test for the presence of a LOGOFF entry in the exit list, the second example 
shows how to test for the active attribute of the LOGOFF entry, and the third 
example tests the address as well as the active attribute of the entry (an "equal" 
condition code for the last test would indicate that both the specified address and 
attribute are correct). 

Examples: 
TESTCB 
TESTCB 
TESTCB 

AM=VTAM,EXLST=EXLST 1 ,LOSTERM=( ) 
AM=VTAM,EXLST=EXLSTl,LOSTERM=(,A) 
AM=VTAM,EXLST=EXLST 1 ,LOSTERM=(LSTPGM,A) 

RPL option codes or NIB processing options (including combinations of them) can 
also be tested. The test results in an "equal" completion code if all of the specified 
options are present. The first example below shows how to test for the presence of 



TESTCB 

the SPEC, CS, and BLK option codes of an RPL. The second example illustrates 
how to code a similar test for the MSG, CONFTXT, and MONITOR processing 
options of a NIB. 

Examples: 
TESTCB 
TESTCB 

ERET=error exit routine address 

AM=VTAM,RPL=RPLl,OPTCD=(SPEC,CS,BLK) 
AM=VTAM,NIB=NIBl,PROC=(MSG,CONFTXT,MONITOR) 

Function: Indicates the location of a routine to be entered if TESTCB processing 
encounters a situation that prevents it from performing the test. 

When the ERET routine receives control, register 15 will indicate the nature of the 
error. These return codes are described at the end of this macro instruction 
description. 

Note: If this operand is omitted, the program instructions that follow the TESTCB 
macro instruction should check register 15 to determine whether an error occurred 
(indicating that the PSW condition code is meaningless) or not. To make this check 
without disturbing the condition code, a branching table based on register 15 can 
be used. 

Format: For the list form of TESTCB, register notation cannot be used. 

MF={ LI (E,parameter list address)} 
Function: Indicates that either a list form or an execute form of TESTCB is to be 
used. 

MF=L 
The list form (L-form) of this macro instruction creates a parameter list for later 
use by the execute form. Because the lrform macro instruction generates only this 
parameter list, and no executable code, operand forms like register notation are 
prohibited. Only relocatable expressions valid for adcons can be used. The user is 
responsible for branching around the generated parameter list, which is variable in 
length. 

MF=(E,parameter list address) 
The execute form (E-form) of this macro instruction can modify the parameter list 
generated by its list form. The expansion of the execute form provides the 
executable instructions required to perform parameter list modification and passing 
of control. The parameter list address should specify the location of the list form of 
the macro instruction. Register notation can be used. 

Note: Although the execute form of TESTCB can modify the list form's parameter 
list, it cannot add to it. Therefore if an operand value will not be known until 
program execution and is to be supplied with the execute form, the list form must 
also specify that operand and supply a dummy value for it. 

For example: Assume that the contents of a RPLLEN field of a particular RPL is to 
be tested, and the value against which it is to be tested will become available in 
register 3 during program execution. First code a list form, taking care to code the 
RPLLEN operand and supply some value for it: 

LFORMT TESTCB AM=VTAM,RPL=ADCONl,RPLLEN=O,MF=L 

117 



TESTeD 

118 

Examples 

and code an execute form like this: 

EFORMT 

TEST! 
TEST2 

TESTeB 

TESTeB 
TESTeB 

RPLLEN::=(3),MF::=(E,LFORMT) 

AM=VT AM,ACB=ACB 1 ,MACRF=LOGON 
AM=VTAM,NIB=NIBl,MODE=BASIC 

TESTI compares the contents of ACBl's MACRF field against the code VT AM 
uses in that field to indicate LOGON. TEST2 compares the contents of the MODE 
field of NIBI against the code VTAM uses in that field to represent BASIC. In both 
cases, the PSW condition code will indicate an equal comparison if the fields do in 
fact contain the specified value (that is, LOGON and BASIC). 

Return of Status Information 
After TESTCB processing is finished and control is either passed to the ERET error 
routine or returned to the next sequential instruction, register 15 indicates one of 
the following hexadecimal values. 

o TESTCB processing was completed successfully; the PSW condition 
code indicates the result of the test. 

4 The control block found at the indicated location is not valid. If, for 
example, RPL=RPLI was specified, the control block found at RPLI is 
not a valid RPL. The test has not been performed, and the PSW 
condition code is meaningless. 

8 The execute form was used incorrectly. For example, the execute form 
specified the control block field and a v~lue to test it with, but the list 
form did not indicate that field also and supply a dummy test value for 
it. 

C Required information was not supplied. For example, a control block 
location was indicated, but the field to be tested within that block Was 
omitted. 



WRITE 

WRITE -- Write a Block of Data from Program Storage to a Terminal 
The WRITE macro instruction obtains a block of data from a designated area in 
program storage and sends it to a specific terminal. 

There are several variations for WRITE: 

The write operation can be followed automatically by a read operation, as 
though a READ macro instruction had been coded after the WRITE macro. 
This composite operation is called a conversational write operation. 

The write operation can be preceded by the erasure of the screen of a 2770 
Data Communication Terminal or a 3270 display device. 

The unprotected portion of a display screen in a 3270 display device can be 
erased (with no associated write operation performed). 

Should a write operation be pending (or in progress) when another WRITE macro 
instruction is issued, the first operation is allowed to complete before the secohd 
operation is performed. If data is being solicited from a terminal when the WRITE 
macro instruction is issued, but no data has yet been sent by that terminal, the 
solicit operation is temporarily interrupted so that the write operation can go 
ahead. If data transfer is in progress, however, the solicit operation is allowed to 
complete before the write operation is performed. See the SOLICIT macro 
instruction for a description of what constitutes and controls the completion of a 
solicit operation. 

If continuous solicitation (PROC=CONT) is specified for OPNDST and a READ or 
SOLICIT macro instruction is later issued, a WRITE macro instruction cannot be 
issued until the reading or solicitation is cancelled with a RESET macro instruction. 

The user of the WRITE macro instruction codes the address of an RPL. The RPL 
fields indicate the terminal to be written to, the location of the data that is to be 
sent to it, and what specific type of write operation is to take place. The RPL fields 
can be modified with the WRITE macro instruction itself. The following list shows 
the effect of the more significant of these fields. See the RPL macro instruction 
description for a list and explanation of all RPL fields applicable for WRITE. The 
RPL modifiers shown below have the following effects: 

ARG=(register) 
The ARG field of the RPL must contain the CID of the terminal to which the data 
is to be written (see the OPNDST macro for an explanation of the CID). 
ARG=(register) is indicated here because register notation must be used if the CID 
is to be placed in the ARG field with this WRITE macro instruction. The CID can 
be extracted from the NIB with the SHOWCB macro and then loaded into a 
register. 

AREA=address 
The data contained at the location indicated by AREA is sent to the terminal. 

RECLEN=length 
The number of bytes of data indicated in the RECLEN field is sent to the terminal. 

AAREA=address 
When the CONY option code is in effect, the data obtained from the terminal 
following the write operation is placed in the storage area indicated by the AAREA 
field. 

119 



WRITE 

120 

AAREALN=length 
AAREALN indicates the capacity of the data area pointed to by AAREA. If the 
amount of incoming data exceeds the capacity of this data area, the action 
indicated by the TRUNC-KEEP processing option is taken. 

OPTCDF{BLKILBMILBT} 
These option codes determine whether the line-control characters selected by the 
system for transmission with the data are for marking the data as the end of a 
block, the end of a message, or the end of a transmission. 

When the BLK option code is in effect, an EOB character (for start- stop devices) or 
an ETB character (for binary synchronous devices) is sent with the block of data. 

When the LBM option code is in effect, an ETX character is sent with the block of 
data. 

When the LBT option code is in effect, an EOB character (for start-stop devices) or 
an ETX character (for binary synchronous devices) is sent with the block of data 
(same as LBM). After the block of data is acknowledged by the terminal, an EOT 
character is sent. The write operation is considered complete as soon as the EaT 
character has been sent. 

OPTCDF{CONVINCONV} 
When NCONV is in effect, no conversational writing is performed. When the CONY 
option code is in effect, an input operation is performed after the block of data has 
been written to the terminal. The data received in response to the write operation is 
placed in the area indicated by the RPL's AAREA field, and the length of that data 
is set in the ARECLEN field. 

Should the terminal merely respond with an acknowledgment and not data, the 
action then taken depends of whether the LBM or LBT option code is in effect. For 
LBM, register 15 and the FDBK field of the RPL are set indicating that no data was 
received; the write operation is then considered complete. For LBT however, the 
write operation is not completed until data is eventually received. 

When a WRITE with OPTCD=CONV is issued, a second WRITE may not be issued 
to the same terminal until the first write operation is completed, or unless the first 
operation is canceled with the RESET macro instruction. 

OPTCDF {ERASE I EAU I NERASE} 
The ERASE and EAU option codes indicate that one of two special variations of 
WRITE are to take place; NERASE simply indicates that they are not. 

When the ERASE option code is used, the entire display screen of a 2770 Data 
Communication Terminal or 3270 display device is erased before the block of data 
is written to the terminal. 

EAU means that the unprotected portion of a 3270 display screen is to be erased, 
and its keyboard unlocked. No data is sent to the terminal. 

The follOWing option determines how excess input data is to be handled for a 
conversational operation (note that this is a NIB processing option, not an RPL 
option code): 



symbol 

RPL=rpl address 

WRITE 

PROC= {TRUNCI KEEP} 
When the TRUNC and the CONY option code is in effect, and the incoming data is 
too big to fit in the area indicated by AAREA, the data is truncated, the remainder 
is lost, and the write operation terminates with an I/O error. 

With KEEP, however, the remainder is saved and passed to the program when the 
next read request (or conversational write request) is issued for the same terminal. 

Name Operation Operands 

[symbol] WRITE RPL=rpl address 
[ , rpl keyword=new value] ... 

Function: Provides a name for the macro instruction. 

Function: Indicates the location of the RPL that governs the write operation. 

rpl keyword=new value 

Examples 

Function: Indicates an RPL field to be modified and the new value that is to be 
contained or represented within it. 

Format: For rpl keyword code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field being modified. ARG can also be coded. The new 
value can be any value that is valid for that operand in the RPL macro instruction, 
or it can indicate a register. The v~lue supplied for the ARG keyword must indicate 
a register. 

Note: All of the RPL fields that have a unique effect on WRITE (and thus might be 
modified here) are discussed above; check Figure 5. in the RPL macro instruction 
description for a list of all RPL fields that apply to the WRITE macro instruction. 

WRITE 1 WRITE RPL=RPL1,AREA=SOURCE,RECLEN=60, x 
EXIT=WRTDONE,OPTCD=ASY 

WRITEI sends a 60-byte block of data from SOURCE to a terminal. This example 
assumes that the CID for the terminal is already in RPLI's ARG field. Control is 
returned to the instruction following WRITEI as soon as the write operation has 
been scheduled. When the operation is completed, the program is interrupted and 
control passed to WRTDONE. 

WRITE2 erases the unprotected part of a 3270 display screen. The SHOWCB and 
load instructions are used here to extract that device's CID from NIBI (assuming 
that NIBI was the NIB used when the device was connected) and load it into 
register 3, where WRITE2 can get it and place it in RPL2. 

WRITE3 WRITE RPL= RPL3,AREA=OUTGOING,RECLEN= 120 
AAREA=INCOMING,AAREALN=132, 
ARG=(3),OPTCD=(CONV,LBT) 

x 

121 



WRITE 

122 

WRITE3 . requests a conversational write operation. 120 bytes of data from 
OUTGOING are sent to the terminal whose CID is in register 3. Data is then read 
from the terminal and placed in INCOMING. If more than 132 bytes are received, 
the excess will be lost. Because of the LBT option code, the operation is not 
completed unless the terminal responds with data. 

Return of Status Information 
After the WRITE operation is completed, these sources of status information may 
be checked: 

The ARECLEN field of the RPL: If the CONV option code is in effect, ARECLEN 
indicates the number of bytes of data obtained during the input part of the 
conversational write operation. 

The USER field of the RPL: When a NIB is established, the user can specify any 
arbitrary value in the USERFLD field of that NIB. When the WRITE macro 
instruction is subsequently issued for the terminal associated with that NIB, 
whatever had been placed in USERFLD is placed in the USER field of the RPL by 
VTAM. 

The FDBK field of the RPL: Unless a hexadecimal value of 4 is returned in register 
15, the PDBK (feedback) field may indicate error or completion status about the 
write request. (See Appendix A for a description of the feedback field.) 

Register 15: One of the following hexadecimal values is indicated: 

o If the ASY option code is in effect, VT AM found no errors or 
contradictions in the way that the write request was made and has 
therefore accepted the request. If the SYN option code is in effect, the 
write operation has been completed successfully. 

4 The request cannot be accepted because the RPL is being used by 
anO ther request, or the terminal is not connected to your application 
program. The RPL's FDBK field has not been set. If an active LERAD 
exit routine exists, it has been invoked. 

8 A logical error has occurred; the FDBK field can be examined to 
determine which one it was. If an active LERAD exit list routine exists, 
it has been invoked. (This return code can be posted only if the SYN 
option code is in effect.) 

C A physical error has occurred; the FDBK field can be examined to 
determine which one it was. If an active SYNAD exit routine is 
available, it has been invoked. (This return code can be posted only if 
the SYN option code is in effect.) 

10 A conversational write operation was requested, but the terminal did 
not respond with data. Since the LBM option code is in effect, the 
conversational write operation is considered completed. 

14 A special condition involving the terminal occurred. These include error 
lock set, RVI line control character received, and attention interruption 
detected. The FDBK field indicates the specific condition. 

18 The operation was canceled by a RESET request. 

1 C VT AM canceled the operation; the second byte of the FDBK field is set 
indicating the reason. 



Appendix A: Interpreting the Feedback Field 

FDBK, a three-byte field in the RPL control block, is used by VTAM to describe 
how a requested operation was completed. FDBK posting applies to those opera­
tions requested by any of the VT AM macro instructions that directly refer to an 
RPL (that is, that have RPL=rpl address as an operand). 

Two steps are involved in testing a FDBK field's contents. The first step is to 
extract the fields contents from the RPL. This can be done with the SHOWCB 
macro instruction. For example: 

SHOWCB RPL=RPLI, 
FIELDS=FDBK, 
WAREA=FDBKAREA, 
LENGTH=4 

x 
X 
X 

FDBK will be placed in the right-most three bytes of FDBKAREA. After FDBK has 
been removed from the RPL, the next step is to analyze the FDBK information. 
This can be accomplished with assembler instructions using whatever technique the 
programmer prefers -- testing under mask, register shifting, and so forth. 

The following box summarizes the kind of information that is indicated in each 
,byte. 

General Specific Specific 
Return Reason For Status 
Code Return Return 

Code Code 

First Byte Second Byte Thzrd Byte 

The general return code indicates whether the operation was completed successfully 
or, if it was not, what category of error occurred. 

o The requested operation was completed successfully. The contents of 
the third byte (the specific status return code) is therefore valid and 
should be checked. 

4 Reserved. 

8 A logical error occurred. A logical error results from an inherent contra­
diction in a request --like writing to a terminal not currently connected 
to your application program, or refering in an I/O request to an ACB 
that has never been opened. 

Logical errors, unlike physical errors, result from flaws in the way a program is 
written. There is, therefore, no point in using the LERAD exit list routine (which is 
scheduled when a logical error occurs) to attempt to correct the problem during 
program execution. The LERAD exit list routine should instead be used to obtain a 
program dump, so that the logical error can be identified and the program 
corrected. 

C A physical error occurred. A physical (or "I/O") error is an error that 
results from a hardware malfunction or a line disconnection that 
prevents successful completion of the requested operation. The 
programmer can prepare routines to handle the occurrence of physical 
errors. These routines would be part of the SYNAD exit list routine, 
which is scheduled when a physical error occurs. 

123 



124 

10 A conditional request has been completed with no action taken, since 
the condition was not met. A conditional RESET request, for example, 
cancels an I/O operation only if the operation is pending; if data 
transfer has begun, no cancellation can be performed and this return 
code is set. This return code is also set if the NQ option code is in effect 
for an OPNDST request, and the indicated terminal is not available. 

14 A special condition involving the terminal occurred. These include error 
lock set, RVI line control character received, and attention interruption 
detected. The second byte indicates the specific condition. 

18 A RESET request canceled the operation. 

1 C The operation was canceled because of an action external to your 
program. These actions include an error in the Network Control 
Program (NCP), a permanent channel failure, and a quick closedown 
initiated by the network operator. The second byte indicates the 
specific action that occurred. 

Second Byte 
The information conveyed by the second byte depends on the general return code 
contained in the first byte. 

When the general return code is 8 (logical error), the specific return code indicates 
problems such as these: 

Invalid request format. 

Data length incompatible with receiving device. 

The ACB has not been opened. 

The terminal currently being solicited is not connected to your application 
program. 

The terminal being written to is an output-only terminal. 

INTRPRET could not find the requested information. 

When the general return code is C (physical error), one or more of the following 
problems are indicated: 

A physical error occurred and an error lock has been set for the device. 

A physical error occurred and an RVI line control character has been 
received. 

A physical error occurred and an attention interruption has been detected 
(2741 and 1050 termin~s only). 

A physical error occurred; the operation was retried without success, and the 
error has been classified as permanent (device not useable). 

A physical error occurred during an output operation. 

A physical error occurred that involves a channel or control unit. 

When the general return code is 14 (special condition), one or more of the 
following problems are indicated: 

An error lock has been set for the device. 

An RVI line control character has been received. 

An attention interruption has been detected. 



When the general return code is 1 C (VT AM-canceled operation), one of the 
following CCiU~t;~ are indicated: 

A temporary failure occurred in the Network Control Program (NCP). 

A failure occurred in the Network Control Program from which recovery was 
unsuccessful. No further communication with the device is possible. 

A permanent channel failure occurred. 

The network operator initiated a quick closedown. 

Third Byte 
The specific status return code should be checked upon completion of I/O requests 
when the general return code indicates successful completion (0 in the first byte). 
The following list shows some typical status conditions. Note that the status 
conditions indicated here are not exclusive of each other; several may be indicated: 

The block of data just received was not the last block of a message or 
transmission. 

The block of data just received was the last block of a message. 

Either the block of data just received was the last block of a transmission, or 
an EOT unaccompanied by text was received. 

A conversational reply is now ,possible (that is, the block of text just received 
will not be acknowledged until a new request is directed at the sending 
device). 

Leading graphic characters have been received. 

A block of heading characters has been received. 

125 





Appendix B: Line Control Characters Recognized or Sent by 
VT AM Macro Instructions 

The first three columns in the box show the line- control character that delimits the 
data obtained by a solicit operation. The first column shows the delimiting 
character when the NIB's BLOCK-MSG-TRANS-CONT processing option is set to 
BLOCK; the second column shows the delimiting character when the processing 
option is set to MSG, and the third shows the delimiting character when TRANS is 
in effect. (There are no delimiting characters for CONT, because solicitation 
continues indefmitely.) 

The last three columns show the line control characters added to the beginning and 
end of the user-supplied data when a WRITE or DO macro instruction is issued. The 
frrst of these three columns shows the beginning and ending characters that are 
inserted when the RPL's option code is set to BLK, or if a WRITE LDO is being 
used by DO. The next shows the characters inserted when the LBM option code is 
in effect or a WRITELBM LDO is used. The last column applies to the LBT option 
code or WRITELBT LDO. 

127 



Soliciting Writing 

~ (I) (b) = inserted at the 
(.) 2 beginning 
0 e" <C (e) = inserted at end 
-I (I) a: 

Start-Stop Devices: 
III :iE I-

BlK IBM lBT 

IBM 1050 Data Communication System EOB EOT1 EOT1 EOA(b) EOA(b) EOA(b) 
EOB(e) EOB(e) 2 EOB(e) 2 

IBM 2740 Communication Terminal, Model 1 EOT 1 EOT1 EOrl EOA(b) EOA(b) EOA(b) 
NULL(e) NULl(e) NULL(e) 

IBM 2740 Communication Terminal, Model 1, EOB EOT 1 EOT 1 EOA(b) EOA(b) EOA(b) 
with checking EOB(e) EOB(e) 2 EOB(e) 2 

IBM 2740 Communication Terminal, Model 1, EOB EOT1 EOT1 EOA(b) EOA(b) EOA(b) 
with checking and station control EOB(e) EOT(e) EOT(e) 

IBM 2740 Communication Terminal, Model.2 EOT 1 EOT1 EOT1 EOA(b) EOA(b) EOA(b) 
EOT(e) EOT(e) EOT(e) 

IBM 2741 Communication Terminal EOT 1 EOT 1 EOT1 EOA(b) EOA(b) EOA(b) 
NULL(e) NULL(e) NULL(e) 

I BM Communication Magnetic Card EOT 1 EOT1 EOT 1 EOA(b) EOA(b) EOA(b) 
Selectric Typewriter NULL(e) NUlL(e) NULL(e) 

IBM World Trade Telegraph Station EOT 1 EOT1 EOT1 CCITT CCITT CCITT 
header header header 

IBM SYSTEMI7 EOT 1 EOT 1 EOT1 EOA(b) EOA(b) EOA(b) 
NULL(e) NULL(e) NULL(e) 

AT&T 83B3 Selective Calling Station EOT 1 EOT1 EOT1 none(b) none(b) none(b) 
EOM(e) EOM(e) EOM(e) 

AT&T Teletypewriter Terminal, Mode-Is EOT 1 EOT1 EOT 1 none(b) none(b) none(b) 
33 and 35 EOM(e) EOM(e) EOM(e) 

Western Union Plan 115A Station EOT 1 EOT1 EOT 1 none(b) none(b) none(b) 
EOM(e) EOM(e) EOM(e) 

1 This EOT will be either a circle C or 
an equivalent teletype sequence. 

2 And an EOT will be sent when the block 
is acknowledged by the system with a 
positive response. 

128 



Soliciting Writing 

~ (I) 
(b) = inserted at the 

0 :2 beginning 

a C) « (e) = inserted at end 
...I (I) a: 

Binary Synchronous Devices: m :E ~ 
BlK IBM lBT 

IBM 2770 Data Communication Terminal ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 3 

IBM 2780 Data Transmission Terminal ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 3 

IBM 2972 General Banking Terminal, ETB ETX EDT STX(b) STX(b) STX(b) 
Models 8 and 11 ETX(e) ETX(e) ETX(e) 3 

IBM 3270 I nformation Display System, EDT 4 4 4 

locally attached. 

IBM 3270 I nformation Display System, EDT 4 4 STX(b) 
remotely attached ETX(e) 3 

IBM 3735 Programmable Buffered Terminal ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 3 

IBM 3740 Data Entry System ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 3 

IBM 3780 Data Transmission Terminal ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 3 

IBM SYSTEM/3 ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 3 

IBM SYSTEM/370 ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 3 

3 And an EOT will be sent when the block 
is acknowledged by the system with a 
positive response. 

4 No line control characters will be sent. 
Write control characters must be in the 
data. 

129 





Appendix C: Summary of Control Block Field Usage 

CHANGE 

CHECK 

CLOSE 

Once you are familiar with the workings of the VT AM macro instructions described 
in this book, this appendix can be used as a quick-reference source. The appendix 
shows the following information about all of the executable macro instructions in 
this book: 

The control block fields that are set by the application program when (or 
before) the macro instruction is issued. 

The control block fields and registers that are set by VTAM during macro 
instruction processing. 

Note: All of the control block fields that apply to the macro instruction are shown, 
but for a given use of a macro instruction, not all fields necessarily will apply. Refer 
back to the macro instruction descriptions if you are in doubt. 

The following paragraph explains what the information supplied with the first 
macro instruction means. Compare this explanation with the first macro instruction 
shown below (CHANGE); by way of example, this will show you how to interpret 
the information supplied with all of the macro instructions. 

When the application program issues a CHANGE macro instruction, the ACB 
field of CHANGE's RPL must contain the address of an ACB ("ACB field-+ 
ACB") and the NIB field must contain the address of the modified NIB 
("NIB field -+ modified NIB"). The appropriate option codes must be set in 
the OPTCD field ("OPTCD field = option codes"). The ECB or EXIT fields, 
if used, must contain the address of a fullword area or an exit routine, 
respectively ("ECB field -+ fullword work area" and "EXIT field -+ exit 
routine"). Note that information supplied above the dashed line shows fields 
set by the application program, and information shown below the dashed line 
shows fields and registers set by VTAM. Also note the use of the pointer (-+) 
and the equals sign. "ABC field -+ ACB" means that the ACB field must 
point to (that is, contain the address of) an ACB. "FDBK field = status 
information" on the other hand, means that the FDBK field contains the 
status information. 

-+ RPL: ACB field -+ ACB 
NIB field -+ modified NIB 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTCD field = option code 

Register 15 = return code 
RPL: FDBK field = status information 

-+ RPL being checked 

Register 15 = return code 

-+ ACB being closed 

Register 15 = return code 
ACB: ERROR field = specific error status information 

131 



132 

CLSDST 

DO 

~ RPL: ACB field ~ ACB 

{

NIB field ~ NIB: NAME field = symbolic name of terminal to be} 
disconnected 

ARG field = CID of terminal to be disconnected 
AAREA field ~ symbolic name of receiving application program 
AREA field ~ logon message 
RECLEN field = length of logon message 

{
ECB field ~ fullword work area} 
EXIT field ~ RPL exit routine 
OPTCD field = option codes 

Register 15 = return code 
RPL: FDBK field = status information 

~ RPL: ACB field ~ ACB 
ARG field = CID of terminal 

{
ECB field ~ fullword work area} 
EXIT field ~ RPL exit routine 
OPTCD field = option codes 
AREA field ~ LDO: If CMD field = COPYLBM or COPYLBT, 

Register 15 = return code 

ADDR ~ copy control char. and sending device's 
CID (ARG field contains receiving 
device's CID) 

LEN = 3 
If CMD field = READ or READBUF, 

ADDR ~ input data area 
LEN = length of data area 

IfCMD field = WRITE, WRITELBM, WRITELBT, 
WRTHDR, WRTNRLG, or WRTPRLG, 

ADDR ~ output data 
LEN = length of output data 

RPL: AAREA field ~ last LDO used 
USER field ~ data from USERFLD field of NIB 
RECLEN field = length of data received 
FDBK field = status information 

GENCB BLK operand = control block type 

INQUIRE 

control block field name operand = value to be set in field 
COPIES operand = number of copies desired 
WAREA operand ~ work area where blocks will be built 
LENGTH operand = length of work area 
MF operand = standard, list, or execute form designation 

Register 0 = length of control blocks 
Register 1 ~ generated control blocks, if built in dynamically allocated storage 
Register 15 = return code 

~ RPL: ACB field ~ ACB 

{
ECB field ~ fullword work area} 
EXIT field ~ RPL exit routine 
OPTCD = option codes 



If OPTCD = LOGONMSG, 
NIB field ~ NIB: NAME field = symbolic name of terminal 
AREA field ~ input area for logon message 
AREALEN field = length of input area 

If OPTCD = DEVCHAR, 

{
NIB field ~ NIB: NAME field = symbolic name of terminal} 
ARG field = CID of terminal 
AREA field ~ input area for characteristics 
AREALEN field = 8 

If OPTCD = TERMS, 
NIB field ~ NIB: NAME field = symbolic name of terminal (or group, 

as defined by the GROUP definition macro) 
AREA field ~work area where NIBs will be built 
AREALEN field = length of work area 

If OPTCD = COUNTS, 
AREA field ~ input area for data 
AREALEN field = 8 

If OPTCD = APPST AT, 
NIB field ~ NIB: NAME field = symbolic name of application program 
AREA field ~ input area for data 
AREALEN field = 4 

If OPTCD = CIDXLATE, 
ARG field = CID to be translated 
AREA field ~ input area for symbolic name 
AREALEN field = 8 

IfOPTCD = TOPLOGON, 
AREA field ~ input area for symbolic name 
AREALEN field = 8 

Register 15 = return code 
RPL: RECLEN field = length of data received 

FDBK field = status information 

INTRPRET ~ RPL: ACB field ~ ACB 

MOOCB 

{
NIB field ~ NIB: NAME field = symbolic name of terminal} 
ARG field = CID of terminal 
AREA field ~ logon message 
RECLEN field = length of logon message 
AAREA field ~ input data area 
AAREALN field:::: length of input data area 

{
ECB field ~ fullword work area} 
EXIT field ~ RPL exit routine 
OPTCD field:::: option codes 

Register 15 :::: return code 
RPL: ARECLEN field:::: length of data received 

FDBK field:::: status information 

control block type operand ~ control block 
control block field name operand:::: new value to be set 
MF operand:::: standard, list, or execute form designation 
AM=VTAM 

Register 15 = return code 

133 



134 

OPEN 

OPNDST 

READ 

RESET 

-+ ACB being opened 

Register 15 = return code 
ACB: OFLAGS field = opened or not-opened indicator 

ERROR field = specific error status information 

-+ RPL: ACB field -+ ACB 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTCD field = option codes 
NIB field -+ NIB: PROC field = processing options 

If OPTCD = ACQUIRE, 

Register 15 = return code 

NAME field = symbolic name of terminal 
If OPTCD = ACCEPT and ANY, 

NAME field not examined 
If OPTCD = ACCEPT and SPEC, 

NAME field = symbolic name of terminal 

RPL: ARG field = CID of connected terminal 
AREA field -+ NIB: CID field = CID of terminal 
USER field = data from NIB's USERFLD field 
FDBK field = status information 

-+ RPL: ACB field -+ ACB 
ARG field = CID of source terminal 
AREA field -+ input data area 
AREALEN field = length of input data area 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTCD field = option codes 

Register 15 = return code 
RPL: ARG field = CID of source terminal (if OPTCD = ANY) 

RECLEN field = length of input data 
USER field = data from USERFLD field in NIB 
FDBK field = status information 

-+ RPL: ACB field -+ ACB 
ARG field = CID of terminal 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTCD field = option codes 

Register 15 = return code 
RPL: USER field = data from USERFLD field in NIB 

FDBK field = status information 

SETLOGON -+ RPL: ACB field -+ ACB 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTeD field = option codes 

Register. 15 = return code 



SHOWCB control block type operand -+ control block 
FIELDS operand = fields to be moved 
AREA operand -+ work area where fields will be moved 
LENGTH operand = length of work area 
MF operand = standard, list, or execute form designation 
AM=VTAM 

Register 0 = required length for work area (if work area too small) 
Register 15 = return code 

SIMLOGON -+ RPL: ACB field -+ ACB 

SOLICIT 

TESTCB 

WRITE 

NIB field -+ NIB: NAME field = symbolic name of terminal 
PROC field = processing options 

AREA field -+ logon message 
RECLEN field = length of logon message 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTCD field = option codes 

Register 15 = return code 
RPL: FDBK field = status information 

-+ RPL: ACB field -+ ACB 
ARG field -+ CID of source terminal (if OPTCD = SPEC) 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTCD field = option codes 

-Register 15 = return code 
RPL: USER field = data from USERFLD field of NIB 

FDBK field = status information 

control block type operand -+ control block 
field name operand = test value (or 10 = COMPLETE) 
ERET operand -+ error exit routine 
MF operand = standard, list, or execute form designation 
AM = VTAM 

Register 15 = return code 
PSW condition code = test result 

-+ RPL: ACB field -+ ACB 
ARG field = CID of receiving terminal 
AREA field -+ data to be written 
RECLEN field = length of data to be written 
AAREA field -+ input data area 
AAREALN field = length of input data area 

{
ECB field -+ fullword work area} 
EXIT field -+ RPL exit routine 
OPTCD field = option codes 

Register 15 = return code 
RPL: ARECLEN field = length of input data 

USER field = data from USERFLD field of NIB 
FDBK field = status information 

135 





Glossary 

ACB: Access method control block. 

acceptance: The process by which a teleprocessing program 
connects a node in response to a logon request from that node. 
It is implemented by an OPNDST macro instruction having the 
ACCEPT option code set in its RPL. 

access method control block: In VT AM, a control block that 
links a teleprocessing program to VTAM. Abbreviated ACB. 

acquisition: The process by which a teleprocessing program 
initiates and secures connection to another node. It is imple­
mented by an OPNDST macro instruction having the ACQUIRE 
option code set in its RPL. 

active exit list routine: In VT AM, a routine whose address has 
been placed in an exit list (EXLST) control block and marked 
active. 

active RPL: An RPL that is in use. For synchronous requests, 
and RPL is active until the request is completed. For asynchro­
nous requests, an RPL is active until it is checked with a CHECK 
macro instruction. 

advanced telecommunication access method: A set of IBM 
programs that control communication between terminals and 
teleprocessing programs running under operating systems with 
virtual storage. 

application program: (1) To VTAM, the requests and control 
blocks that refer toa given ACB, or are pointed to by that ACB. 
To VTAM and the rest of the telecommunications network, the 
ACB represents the application program. (2) To the programmer, 
the program code that performs a given function. This code in­
cludes everything in definition (1) above, plus: all of the macro 
instructions that build and manipulate the control blocks in 
definition (1), and all of the non-VTAM instructions that 
evaluate the input data received by the program and prepare the 
output data to be sent from it. (3) To the operating system, the 
program code that has been organized into a job step. This code 
includes everything in defmition (2) above, but could also 
include several multiples of everything in defmition (2). 

For example: A given ACB may be linked to an entry in the 
resource definition table called PAYROLLl. To VTAM, all 
requests and control blocks associated with the PA YROLLI 
ACB constitute an application program. The programmer will 
consider these requests and control blocks, and the program 
code needed to support these requests and to build and 
manipulate these control blocks, as the application program 
PAYROLLl. The programmer could use common supporting 
code for several ACBs - PAYROLLI, PAYROLL2, and PAY­
ROLL3, for example. The programmer might think of these 
three as one application program or perhaps as three. VT AM 
would consider them as three separate application programs. If 
these three were combined into one job step, they would clearly 
be one application program to the operating system. 

application program identification: In VTAM, the symbolic 
name by which a teleprocessing program is identified to VT AM 
and the rest of the teleprocessing network. This name appears in 
the application program's ACB and in the resource definition 
table. 

asynchronous exit list routine: An exit list routine that is 
scheduled as a result of events that are not initiated by the 
application program, but are instead imposed from outside of 
the application program's control. For example, the RELREQ 
exit list routine is scheduled when an application program 
requests connection to a terminal already connected to another 
application program. All exit list routines are asynchronous exit 
list routines except the LERAD and the SYNAD exit list 
routines. 

asynchronous request: A request that causes control to be 
returned to the application program before the requested 
operation is completed. When the operation is completed, 
VT AM either invokes the RPL exit routine, or posts an ECB (in 
which case the program must issue a CHECK macro instruction 
to determine whether posting has occurred). A request is made 
asynchronous be setting the ASY option code in its RPL. 
Contrast with synchronous request. 

automatic logon request: A logon request, to a specified 
application program, generated by VTAM (rather than by the 
terminal itself) when the terminal becomes available for connec­
tion. Automatic logon requests may be specified by the 
installation during VT AM definition. 

block: (1) A group of bits, or n-ary digits, transmitted as a unit. 
(2) The smallest complete unit of data that may be transmitted 
between a teleprocessing program and a connected terminal. The 
maximum size of a block is determined by the characteristics of 
the device that is sending or receiving the data. 

CID: VTAM's shortened form of a terminal's symbolic name. 
The installation assigns a symbolic name to each terminal (or 
dial-up line) in its network confJgUration. When the application 
program requests connection to the terminal - by placing the 
terminal's symbolic name into a NIB and issuing an OPNDST 
macro instruction - VT AM converts this eight-byte symbolic 
name into a four-byte CID (communications 10). The CIO is 
placed in the NIB and in OPNDST's RPL. The application 
program must use this CID for all subsequent communication 
requests for the terminal. 

closedown: In a telecommunication system, the orderly deactiva­
tion of a telecommunication access method and network. In 
VTAM, a normal closedown does not take effect until all 
application programs have disconnected their terminals and 
closed their ACBs. Until then, all data-transfer operations 
continue, but VT AM rejects any further logon requests. 

communications controller: A type of communication control 
unit whose operations are controlled by a program stored and 
executed in the unit. 

connect: In VTAM, to establish and prepare a network path for 
communication between two nodes. 

conversational write operation: A composite operation wherein 
data is first sent to a terminal, and then data is read from that 
terminal. It is implemented with a WRITE macro instruction 
having the CONV option code set in its RPL. 

data transfer: Same as data transmission. 

137 



data transmission: In telecommunications, the SCI,u1hb of data 
from one node to another. 

device-control character: A control character that is embedded 
in a data stream to control mechanical and format operations at 
a terminal (for example, a line-feed character or carriage-return 
character). Contrast with line-control character. 

dialog: In VT AM, a series of data exchanges between an 
application program and a terminal, during which the terminal 
has scheduling priority over other tenninals on the same 
multipoint line. (Scheduling priority is explained under the 
ED-CD option code in the RPL macro instruction description.) 
A dialog is approximately equivalent to a session in the 3704 or 
3705 Network Control Program. 

disconnect: In VT AM, to suspend use of a network path 
between two connected nodes. 

error lock: A, condition established by the operating system or 
by a 3704 or 3705 communications controller wherein commun­
ication with the terminal is suspended. Error locks can be set for 
a terminal when the communications controller detects condi-

, tions such as these: 

Unrecoverable hardware malfunctions 

Negative polling limits exceeded 

Attention interruptions received 

The error lock is set when the system or the controller detects an 
unrecoverable hardware malfunction, or if the device's operator 
causes an attention interruption. 

exit list: In VTAM, a control block that contains the names of 
teleprocessing-program routines that receive control when speci­
fied events occur during VT AM execution. For example, 
programs named in the exit list handle such conditions as logon 
processing and I/O errors. Abbreviated EXLST. 

exit list routine: A routine whose address has been placed in an 
exit list (EXLST) control block. The addresses are placed there 
with the EXLST macro instruction, and the routines are named 
according to their corresponding operand; hence SYNAD exit 
list routine, LERAD exit list routine, UNSIP exit list routine, 
and so forth. All exit list routines are coded by the application 
programmer. Contrast,with RPL exit routine. 

EXLST: Exit list 

inactive node: In VT AM, a node that is not attached to VT AM 
and is not available for connection to another node. 

input operation: In VT AM, a read or solicit operation. Input 
requests are implemented by READ and SOLICIT macro 
instructions, and by the conversational variation of WRITE 
macro instructions. 

leading graphics: From one-to-seven graphic characters that may 
accompany an acknowledgment sent to a binary synchronous 
terminal in response to receipt of a block of data. 

line: The communication medium linking a communication 
control unit to another communication control unit, Of hnking a 
communication control unit to one or more tenninals. 

138 

line-control character: A character in a data stream that controls 
the transmission of data over a network path; for example, 
line-control characters delimit messages and indicate whether a 
node has data to send or is ready to receive data. 

line-control discipline: A general term for the set of rules, 
requirements, and procedures for transmitting information to 
and from a particular type of termipal in a telecommunication 
system. 

line group: A set of one or more lines of the same type by which 
terminals are attached to a communication contro] unit. 

local: Pertaining to terminals and communication control units 
that are attached directly by channels to a central computer. 

logical device order: In VT AM, a set of parameters that specify a 
data-transfer or data-control operation. 

logical error: An error that results from a VTAM request that is 
self-contradictory . 

logoff request: A request by a terminal user to be disconnected 
from a teleprocessing program. 

logon request: A request initiated by a device, for connection 
between itself and an application program. (Contrast with 
automatic logon requests and simulated logon requests, which 
are initiated by a program on behalf of a device.) 

message: In telecommunications, a combination of characters 
representing one or more blocks that form a logical entity. 

negative polling limit: In the 3704 or 3705 Network Control 
Program, the maximum number of consecutive negative respon­
ses to polling that the Network Control Program will accept 
before breaking off communication. 

NIB list: In VTAM, a list of contiguous NIBs (node initialization 
blocks) that describe nodes that are to be connected as a group. 

node: In VTAM, an addressable point in a telecommunication 
system. Nodes include terminal components, terminal control 
units, teleprocessing programs, and remote computers. 

node initialization block: A control block that is associated with 
a particular node, and contains information used by the 
application program to identify a node and indicate how 
communication requests directed at the node are to be imple­
mented. Abbreviated NIB. 

node name: In VT AM, the symbolic name associated with a 
specific node and assigned during network definition. 

option code: One of the indicators set by the OPTeD operand of 
the RPL macro instruction. These indicate how a given commun­
ication request is to be implemented by VTAM. 

physical error: An error that results from unforeseen hardware 
errors occurring in the teleprocessing network, such as terminal 
malfunctions or line transmission failures. 

processing option: One of the indicators set by the PROC 
operand of the NIB macro instruction. These indicate how 
communication requests are to be implemented for a given 
terminal. 



quick closedown: In VTAM, a closedown in which current data­
transfer operations are completed, while pending data-transfer 
requests are canceled. 

RDT: Resource definition table 

read operation: The transference of data from VTAM buffers to 
program storage. 

read request: Any request for a read operation. There are two 
such requests: 

A READ macro instruction. 

A WRITE macro instruction, if the CON V option code is in 
effect for the request's RPL. 

remote: Pertaining to terminals and communication control 
units that are attached to a central computer through a 
communication control unit. 

request parameter list: A control block that contains the 
parameters necessary for processing a request for data transfer or 
a request for connecting or disconnecting a node. Abbreviated 
RPL. 

resource definition table: In VTAM, a table that describes the 
characteristics of each node available to VT AM, and associates 
each node with an address. The resource defmition table is built 
during VTAM definition with APPL, LINE, GROUP, and 
TERMINAL macro instructions, but it can be modified by the 
network operator while VT AM is running. 

RPL: Request parameter list 

RPL exit routine: A routine whose address has been placed in 
the EXIT field of an RPL. For asynchronous requests, this 
routine is automatically invoked by VTAM when the request 
associated with the RPL is completed. Contrast with exit list 
routine. 

session: (1) In VT AM, the period of time during which a 
terminal is connected to an application program. (2) In a 3704 
or 3705 Network Control Program, a series of command and 
data interchanges between the host processor and a teleprocess­
ing device. 

session limit: In a 3704 or 3705 Network Control Program, the 
maximum number of concurrent sessions that can be initiated on 
a multipoint line (or point-to-point line where the terminal has 
multiple components.) 

shared: (1) Pertaining to communication control units, network 
paths, and communication lines that may be used concurrently 
by several teleprocessing programs to communicate with differ­
ent nodes. (2) Pertaining to terminals that may be used by more 
than one teleprocessing program; only one teleprocessing pro­
gram may be connected to a shared terminal at anyone time. 

simulated logon request: A request initiated by a program (via 
the SIMLOGON macro instruction) on behalf of a device, for 
connection between the device and a program. Contrast with 
logon request and automatic logon request. 

solicit operation: The process of obtaining (or attempting to 
obtain) data from a device and moving that data into VT AM 
buffers. 

solic.it request: Any request for a solicit operation. There are two 
such requests: 

A SOLICIT macro instruction. 

A read request, if the SPEC option code is in effect, and if 
VT AM buffers currently hold no data from the device being 
read from. 

synchronous exit list routine: An exit list routine that is 
scheduled as a result of an operation requested by the 
application program. There are only two such routines - the 
LERAD and the SYNAD exit list routines - all of the other exit 
list routines are scheduled as the result of events not connected 
with requests initiated by the application program. The latter are 
asynchrouous exit list routines. 

synchronous request: A request that will cause control to be 
returned to the application program only after the requested 
operation has completed. A request is made synchronous by 
setting the SYN option code in its RPL. Contrast with 
asynchronous request. 

telecommunication network: The complex of all terminals and 
communication devices, and the lines and channels that connect 
them to one another and to a central processing system. 

teleprocessing program: In VT AM, a program, treated as a node, 
that uses the services of VT AM to communicate with local and 
remote terminals. 

teleprocessing system: A general term for a complex of 
interconnected central computers, communication devices, and 
programs. 

terminal: A node in a telecommunication network at which data 
can enter or leave. A terminal can be an input/output device or a 
terminal control unit to which one or more input/output devices 
(terminal components) are attached. Terminals also include 
remote computers, when they are performing as I/O devices. 

terminal component: A separately addressable part of a terminal 
that performs input or output functions. 

transmission: A logical group of one or more messages. 

transmission limit: In the 3704 or 3705 Network Control 
Program, the maximum number of transmissions that can be sent 
to or received from a teleprocessing device during one session on 
a multipoint line (or point-to-point line where the terminal has 
multiple components) before the Network Control Program 
suspends the session to service other devices on the line. 

transparent mode: A mode of binary synchronous transmission 
in which all data, including normally restricted line-control 
characters, is ,transmitted only as bit patterns. Control characters 
that are intended to be effective are preceded by a D LE 
character. 

139 



VTAM definition: The process of (1) including VT AM in the 
operating system generation (SYSGEN), (2) defining the telepro­
cessing network to VTAM and 3704 or 3705 Network Control 
Program, and (3) modifying IBM- defined VTAM characteristics 
to suit the needs of the installation. VT AM definition is 
implemented by the installation with definition macro instruc­
tions and operator commands. 

write operation: The transference of data from program storage 
to a device. 

write request: Any request for a write operation. Write requests 
are implemented with the WRITE macro instruction. 

140 



Index 

A, operand value 31 
AAREA operand 87 
AAREALN operand 88 
ACB (access method control block) 

brief description of 3 
explanation of 16 

ACB address operand 
of the CLOSE macro instruction 23 
of the OPEN macro instruction 69 

ACB macro instruction 16 
ACB operand 

of the MODCB macro instruction 58 
of the RPL macro instruction 85 
of the SHOWCB macro instruction 104 
of the TESTCB macro instruction 

ACBLEN operand value 108,115 
ACCEPT, explanation of 104 
ACCEPT operand value 90 
accepting connection requests 72 
access method control block (ACB) 

brief description of 3 
explanation of 16 

ACQUIRE, explanation of 72 
ACQUIRE operand value 90 
acquiring terminals 72 

115 

activating an application program 69 
active application program, testing for 45 
ADDR operand 54 
allowing logon request queuing to begin 17 
allowing logon request queuing to resume 102 
AM operand 

of the ACB macro instruction 16 
of the EXLST macro instruction 31 
of the MODCB macro instruction 57 
of the RPL macro instruction 85 
of the SHOWCB macro instruction 104 
of the TESTCB macro instruction 114 

ANY operand value 91 
application program 

activation of 69 
alias of 48 
availability of 45 
deactivation of 23 
definition of 137 
determining logon queuing status of 45 
lockou t of 75 
organization of 2 
termination of 23 

APPL entry 16 
APPUD operand 17 
APPST AT operand value 92 
AREA operand 

of the RPL macro instruction 86 
of the SHOWCB macro instruction 105 

AREALEN operand 86 
ARECLEN field 87 
ARECLEN operand value 108,115 
ARG field 86 
ARG operand value 108 
assembler format tables, explanation of 11 
ASY operand value 95 
ASYIP operand of the EXLST macro instruction 34 

ASYIPX operand value of the NIB macro instruction 66 
asynchronous exit list routines 

definition of 137 
description of 33-39 

asynchronous request handling 95 
ATTN operand 39 
attention interruption 

handling 39 
monitoring 66 

authorization 
to acquire a terminal 72 
to pass a connection 25 
to schedule an exit list routine under an SRB 31 
to schedule an RPL exit routine under an SRB 88 
to use the BLOCK processing option 111 
to use the LE or GE exit list routine attribute 31 
to use the LEVENT or GEVENT RPL exit routine 

attribute 88 
automatic logon requests 69 
available application program 45 
avoiding SVC-generating macro instructions 89 

BASIC operand value 62 
BINARY operand value 67 
BLK operand of the GENCB macro instruction 40 
BLK operand value of the RPL macro instruction 98 
BLOCK operand value 

explanation of 63 
illustration of use of 64 

block of data 
sent 167 
solicited 63 

braces, use of 13 
brackets, use of 13 
BRANCH operand 89 
branching table, use of with TESTCB 117 

CA operand value 94 
CALL (VT AM definition parameter) 

effect of during connection 72 
effect of during disconnection 25 

canceling an I/O operation 81 
CD operand value 97 
chaining LDOs 55 
CHANGE macro instruction 19 
changing NIB fields 19 
CHECK macro instruction 21 
checking event completion status 

by using the CHECK macro instruction 21 
by using the FDBK field 123 

aD field 
definition of 137 
explanation of 86,73 

CID operand value 108 
CIDXLATE operand value 46 
CLOSE macro instruction 23 
closedown 35 
closing an ACB 23 
closing a logon queue 104 
CLSDST macro instruction 25 
CMD operand 51 
commands, LDO 51 

141 



comments, how to code 14 
communicating with terminals 

in general 6 
by reading 77 
by soliciting 111 
by writing 119 

COMP entry 37,61 
COMPLETE operand value 116 
CON operand value 116 
CONALL operand value 90 
CONANY operand value 90 
COND operand value 99 
condition code, 114 
conditional cancellation of I/O operations 81 
conditional connection request 75 
confidential data handling 65 
CONFTXT operand value 65 
connected terminals, determining number of 45 
connecting terminals 

general 4 
how to implement 72 

CONT operand'value 
explanation of 65 
illustration of 64 

.continuation lines, how to code 14 
continue any 94 
con tinue specific 94 
continuous solicitation 112 
control block field lengths 108 
control block field testing 114 
control block generation 

during INQUIRE processing 44 
in dynamically allocated storage 40 
with the ACB macro instruction 16 
with the EXLST macro instruction 30 
with the GENCB macro instruction 40 
with the LDO macro instruction 51 
with the NIB macro instruction 60 
with the RPL macro instruction 84 

control block lengths 42 
control block manipulation 

in general 3 
with the GENCB macro instruction 40 
with the MODCH macro instruction 57 
with the SHOWCB macro instruction 104 
with the TESTCB macro instruction 114 

control block preparation 3 
control block usage, table of 131 
CONY operand value 98 
conversational reply possible 125 
conversational write operation 121 
converting a CID to a symbolic name 46 
COPIES operand 41 
copy control character 52,55 
COPYLBM operand value 52 
COPYLBT operand value 52 
COUNTS operand value 93 
CS operand value 94 

DCBs (data control blocks) 
closing 23 
opening 70 

DEVCHAR operand value 92 
device characteristics 44 
devices supported by VT AM 68 

142 

dial~line disconnection 
during CLSDST processing 25 
during exit list routine invocation 38 

dialog 97 
dial~up terminals, connecting 72 
direct access I/O, use of VT AM with 96 
direct branch to VTAM I/O routines 89 
disconnecting terminals 25 
DO macro instruction 28 
DO, use of with LDO 7 
DTFs (defYJe-the-file control blocks) 

closing 23 
opening 70 

dummy exit list addresses 57 

E operand value 31 
EA U operand value 99 
ECB operand 88 
ECB posting 21 
ED operand value 97 
EIB operand value 65 
ELC operand value 66 
ellipsis, use of 13 
end of intermediate transmission block 65 
ending a dialog 97 
ERASE operand value 99 
erasing a 3270 display screen 120 
erasing unprotected data 120 
ERET operand 117 
ERPIN operand value 66 
ERPOUT operand value 66 
ERROR field 

use of after CLOSE processing 24 
use of after OPEN processing 70 

error handling 
by exit list routines 32-33 
using the feedback field 123 

error information byte (EIB) 65 
error lock 

definition 138 
resetting 81 

ERROR operand value 108 
error recovery procedures, suppression of 
event control block (ECB) 21,88 
excess data, saving 78 
execute form 

66 

of the GENCB macro instruction 
of the MODCB macro instruction 
of the'SHOWCB macro instruction 
of the TESTCB macro instruction 

42 
58 

105 
117 

exit list 
creation 30 
definition 138 
explanation 30 

exit list routine 
active 31 
ASYIP 34 
asynchronous 30 
ATTN 39 
definition of 138 
inactive 31 
LERAD 32 
LOGON 37 
LOSTERM 38 
RELREQ 36 



SYNAD 33 
synchronous 30 
TPEND 35 
UNSIP 33 

EXIT operand 88 
EXLLEN operand value 108,115 
EXLST control block 30 
EXLST macro instruction 30 
EXLST operand 

of the ACB macro instruction 17 
of the MODCB macro instruction 58 
of the SHOWCB macro instruction 104 
of the TESTCB macro instruction 115 

extracting control block fields 104 

FDBK field 123 
FDBK operand value 114 
feedback field 123 
field name operand (for TESTCB) 115 
FIELDS operand 105 
FLAGS operand 55 

GE operand value 32 
GENCB macro instruction 40 
general return code (FDBK field) 123 
generating control blocks 

during program assembly 3 
during program execution 40,44 

GErMAIN facility 40 
GETVIS facility 40 
GEVENT operand 88 
global SRB 32,88 
graphic characters, leading 

definition of 138 
receiving 63 
sending 54 

HALT command 35 
heading block 54 

implicit solicitation 77 
inactive application program 45 
INQUIRE macro instruction 44 
input operations 

reading 77 
soliciting 111. 

installation au thorization 
to pass a connection request 25 
to schedule an exit list routine under an SRB 31 
to schedule an RPL exit routine under an SRB 88 
to use the BLOCK processing option 111 
to use the LE or GE exit list attribute 31 
to use the LEVENT or GEVENT RPL exit routine 

attribute 88 
intermediate transmission block (ITB) 65 
interpreting a logon message 48 
interpreting the feedback field 123 
INTRPRET macro instruction 48 
10 operand 116 
I/O operations 

cancellation of 81 
conversational 
input 77,111 
output 119 

120 

isolating terminals from READ requests 
ITB 65 

95 

KEEP operand value 67 
keyword operands 11 

LBM operand value 98 
LBT operand value 98 
LDO commands 

COPYLBM 52 
COPYLBT 52 
READ 52 
READBUF 52 
WRITE 53 
WRITELBM 53 
WRITELBT 53 
WRTHDR 54 
WRTNRLG 54 
WRTPRLG 54 

LDO macro instruction 51 
LDO use of with DO 7 
LE operand value 32 
leading graphic characters 

receiving 63 
sending 54 

LEN operand 54 
length of control block fields 108 
length of control blocks 42 
LENGTH operand 

of the GENCB macro instruction 41 
of the SHOWCB macro instruction 105 

LERAD operand 32 
LEVENT operand 88 
LGOUT operand value 65 
line control characters 

generated or recognized by VT AM 127 
suppression of 66 

list form 
of the GENCB macro instruction 42 
of the MODCB macro instruction 58 
of the SHOWCB macro instruction 106 
of the TESTCB macro instruction 117 

LlSTEND operand 62 
lists of NIBs 

creation of 62 
explanation of 60 

local SRB 31,88 
LOCAL entry 61 
LOCK operand value 99 
lockout, application program 75 
logical device order (LDO) 

brief description of 7 
definition of 138 
explanation of 51 

logical errors 
definition of 138 
determining existance of 123 
routine to handle (LERAD) 32 

LOGON operand of the EXLST macro instruction 
WGON operand value (ACB macro instruction) 
LOGONMSG operand value 92 
logon characteristics table 48 
logon messages 

interpreting 48 
receiving 44 
sending 25 

logon requests 
determining the number of 45 

37 
17 

143 



handling of 37 
queuing of 102 

logon sequence 48 
LOSTERM operand 38 

MACRF operand 17 
macro instruction descriptions, explanation of 11 
manipulating control blocks 3 
messages 

sending 167 
soliciting 63 

MF operand 
of the GENCB macro instruction 42 
of the MODCB macro instruction 58 
of the SHOWCB macro instruction 106 
of the TESTCB macro instruction 117 

MODCB macro instruction 57 
MODE operand 62 
modifying control blocks 57 
MONITOR operand value 66 
monitoring attention interruptions 66 
MSG operand value 63 
MSG option, illustration of 64 
mUltiple control block generation 41 
multiple request parameter lists (RPLs) 84 

N operand value 31 
NAME operand 61 
NASYIPX operand value 66 
NBINARY operand value 67 
NCONFTXT operand value 65 
NCONV operand value 98 
NCP failure 125 
negative polling limit 138 
negative response with leading graphics 54 
NEIB operand value 65 
NELC operand value 66 
NERASE operand value 99 
NERPIN operand value 66 
NERPOUT operand value 66 
Network Control Program (NCP) 

negative polling limit 98 
session 98 
suppression of timefill characters 65 

NIB operand 
of the MODCB macro instruction 58 
of the RPL macro instruction 86 
of the SHOWCB macro instruction 
of the TESTCB macro instruction 

NIB control block 60 

104 
115 

NIB field, contrasted with ARG field 
NIB generation for terminal groups 
NIB lists 

86 
44 

creation of 62 
explanation of 60 

NIB macro instruction 60 
NIB modifications after OPNDST .19 
NIBLEN operand value 108,116 
NLGOUT operand value 65 
NLOGON operand value 17 
NMONITOR operand value 66 
node initialization block (NIB) 

definition of 138 
explanation of 60 

NQ operand value 99 

144 

NRELRQ operand value 99 
NRELREQ, use of in the RELREQ exit list routine 36 
NTIMEO UT operand value 66 
NTMFLL operand value 65 

OF LAGS field testing 70 
OFLAGS operand 116 
open destination 72 
OPEN macro instruction 69 
OPEN operand value of the TESTCB macro instruction 116 
opening ACBs 69 
opening a logon queue 102 
OPNDST macro instruction 72 
OPTCD operand 89 
options codes 89-100 
options, processing 62-67 
organizing an application program 2 
ou tpu t operation 121 

PASS operand value 92 
passing terminal connections 25 
PASSWD operand 17 
password protection 17 
pending logon requests, determining the number of 45 
physical errors 

definition of 138 
determining existance of 123 
routine to handle 33 

positional operands 13 
positive response when leading graphics 54 
preparing control blocks 3 
preventing logon request queuing 

after OPEN processing 102 
during OPEN processing 17 

PROC operand 62 
processing options 

applicability of (per device) 68 
definition of l38 
modification of 60 
specification of 62-67 

PSW condition code 114 

Q operand value 99 
quick closedown 35 
QUIESCE operand value 91 
queuing of connection requests 100 
queuing of logon requests 

permitting 17 
preventing 17 
resuming 102 
suspending 102 
terminating 23 

READ operand value (LDO'command) 52 
read operation 77 
read request, definition of 139 
READBUF operand value 52 
reason code 123 
RECLEN field or operand 87 
register usage 15 
RELEASE operand value 92 
releasing terminals in the RELREQ exit list routine 36 
releasing terminals, method of 25 
RELRQ operand value of the RPL macro instruction 99 
RELREQ operand of the EXLST macro instruction 36 



request parameter list (RPL) 
contrasted with NIB 60 
definition of 139 
explanation of 84 

RESET macro instruction 81 
resetting 

an ACB's logon queuing status 102 
an error lock 81 
an I/O request 81 

resource definition table 
definition of 13 9 
use of 16,61 

resumption of logon request queuing 102 
RPL control block 84 
RPL exit rou tine 

invocation of 21 
specification of 88 

RPL fields, applicability of (per macro instruction) 102 
RPL macro instruction 84 
RPL operand 

of the MODCB macro instruction 58 
of the SHOWCB macro instruction 104 
of the TESTCB macro instruction 115 

RPLLEN operand value 108,115 

save area, requirement for 15 
scheduling priority of I/O requests 97 
self-initiated logon requests 109 
SETLOGON macro instruction 102 
SHOWCB macro instruction 104 
SIMLOGON macro instruction 109 
simulated logon requests 109 
SOLICIT macro instruction 111 
solicitation 

definition of 139 
explanation of 111 
interruption of 119 
specifying extent of 63 

SPEC operand value 91 
special conditions (indicated in FDBK field) 
specific reason code 123 
specific status code 123 
specific terminal, request directed at 91 
SRB, scheduling routines under 32,88 
START operand value 91 
starting a dialog 97 
STOP operand value 91 
stopping logon request queuing 102 
storage requirements for control blocks 42 
subapplication programs 16 
supervisor state 

for exit list routines 32 
for RPL exit routines 88 

suppression of line control characters 66 
SVC interruptions, avoiding 89 
switched-line (dial-line) disconnection 

caused by CLSDST 25 
exit list routine invoked 38 

switched-line terminals 
connecting 72 
disconnecting 25 

123 

sym bolic name of an application program 
symbolic name of a terminal 61 
SYN operand value 95 
SYNAD operand 33 
synchronous exit list routine 139 
synchronous request handling 95 
system request block (SRB) 32,88 

TERMINAL entry 61 
TERMS operand value 93 
TESTCB macro instruction 114 
testing 

control block fields 114 
exit list attributes 116 
processing options or option codes 117 

timefill characters, suppression of 65 
timeout limit, suppression of 66 
TIMEOUT operand value 66 
TMFLL operand value 65 
TOPLOGON operand value 46 
TPEND operand 35 
TRANS operand value 

illustration of use of 64 
specification of 65 

translating aCID 46 
translating a logon message 48 
transmission limit 97 
transmissions 

sending 120 
soliciting 63 

TR UNC operand value 67 
truncating input data 120 

unavailable application program 
UNCOND operand value 99 
underscores, use of 13 
UNSIP operand 33 
unsolicited input 

definition of 139 
rou tine to handle 33 

USER field 79 
USER operand value 108 
USERFLD operand 61 
UTERM entry 37 

vertical bar, use of 13 
vr AM language, definition of 

WA REA operand 41 
WRITE 

LDO 53 
macro instruction 119 
operand value 53 

writing 
conversational 119 
output only 119 

WRITELBM operand value 53 
WRITELBT operand value 53 
WRTHDR operand value 54 
WRTNRLG operand value 54 
WRTPRLG operand value 54 

45 

17 

145 



GC27 -6995-0 

International a ......... Machin" Corporation 
Data ProceaIng Dlvlalon 
1133 Westchester Avenue, White Plain., New York 10604 
(U.S.A. only) 

laM World TrllCle Corporation 
121 United Nation. Piau, New York, New York 10017 
(lnternaUonel) 


