
• • • • • • • •• • • • • • • •

• • • • • • • •• • • • • • • •
• • • • • • • •• • • • • • • •

H • • • • • • • • • • • •
W F • • • • • • • • • • • •• • • • • • • • • • • •

• • • • • •• • • • • • • • • •• • • •
• • • •• • • • • • • •• • • •

• • • • • • • • • • •• • • • • • • • • •

• • • • • • • •• • • • • • • •

• • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •
• • • •• • • •• • • •

• • • • • • • • • • • • • • •••••
• • • •• • • •

• • • •• • • •• • • • •• • • • • • •• • • • • • • •• • • • • • •

IBM System/3
Models 8 ,1 0 , and 12
System Control Programming Macros
Reference Manual

Program Numbers:
5702-SC1 (Models 8 and 10)
Feature Numbers: 6020/6021

5705-SC1 (Model 12)

• • • •• • • • •• • • • • •• • • • • • •

• • • • • • •• • • • • • • •• • • • • • •• • • • •• • • •• • • •
• • • • •• • • • • • •• • • • • • • • •• • • • • • • • • • •

• • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • •
• • • • • • • • • • • • • • •• • • •

• • • • • •• • • • • •• • • • • •• • • • • •• • • •• • • • • • • •• • • •

• • i t• • • • • • • •• • • •• • • • • •• • • • • •• • • • • •• • • • • •
• • • •• • • • • • • •• • • •

• • • •• • • •• • • •• • • • • •• • • • • •• • • • • •• • • • • •

• • • •• • • •• • • •• • • •

• • • •• • • •• • • •• • • • • •• • • • • •• • • • • •• • • • • •
• • • •• • • • • • • •• • • •

• • • •• • • •

• • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • • • • • •• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • •• • • • • • • • • • • •

GC21-7562-5
File No. S3-31

(

Sixth Edition (June 1978)

This is a major revision of, and obsoletes, GC21-7562-4. Miscellaneous technical changes
and corrections have been made throughout the manual; changes to text and illustrations
are indicated by a vertical line at the left of the change.

This edition applies to the following system control programs and to all subsequent versions
and modifications until otherwise indicated in new editions or technical newsletters.

Version Modification Program Number System/3 Model

15 00 5702-SC1 Models 8 and 10
04 00 5705-SC1 Model 12

Changes are periodically made to the information herein; before using this publication
in connection with the operation of IBM systems, consult the latest IBM System/3
Bibliography, GC20-8080, for the editions that are applicable and current.

Use this publication only for the purpose stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to your IBM
representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Address
your comments about this publication to IBM Corporation, Publications, Department 245,
Rochester, Minnesota 55901. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1972, 1975, 1977, 1978

Preface

This manual describes the macro instructions provided by
the IBM System/3 Model 10 Disk System Macros Feature.
The publication is intended for persons who are program­
ming in the Basic Assembler Language or its equivalent and
who are familiar with the concept of macro instructions
and system programming for the IBM System/3 Model 10
Disk System.

This publication describes how to use the macro instruc­
tions provided through the Macros Feature. The following
topics are discussed:

• Coding macro instructions

• Descriptions of the various macro instructions

• OCL necessary to call the macro processor

• Error conditions detected by the macro processor

A sample program shows how macro instructions are used.

The IBM System/3 Model 8 is supported by IBM System/3
Model 10 disk system control programming and program
products. Although the Model 8 is not referenced in this
manual, the facilities described in this manual for the Model
10 are also applicable to the Model 8. It should be noted
that not all devices and features which are available on the
Model 10 are available on the Model 8. Therefore, Model 8
users should be familiar w ith the contents of IBM System/3
Model 8 Introduction, GC21 -5114.

Minimum System Requirements

The minimum system configuration and optional device sup­
port for the Macros Feature is shown in the IBM System/3
Models 4, 6, 8, 10, and 12 System Generation Reference Man­
ual, GC21-5126.

System/3 Model 12

The facilities described in this publication for the Model 10
also apply to the Model 12 except where specifically noted
throughout the manual. The following information concerns
Model 12 macros only:

$GETD/$PUTD
The Model 12 does not support multivolume or indexed
disk files in the simulation area; thus AC (access) codes
in these macros reflect these differences.

$DTFD/$IOBD/$RDD/$WRTD
The Model 12 uses 3340 disk drives. The valid param­
eters for the DISK keyword are 5444, 5445, and 3340.

$DTFU
The Model 12 must specify a PIOB-address keyword with
an address o f a 23-byte printer IOB area.

5444/5445/3340 references
All references to 5444 relate to the simulation area, and
all references to 5445 relate to the main data area.

lii

Related Publications

The following publications contain information which
further describes topics discussed in this manual:

• IBM System/3 Basic Assembler Reference Manual
SC21-7509

• IBM System/3 Models 4, 6, 8, and 10 System Control
Program Logic Manual, SY21-0502

• IBM System/3 Models 8 and 10 System Control
Programming Reference Manual.. GC21 -7512

• IBM System/3 Mode! 8 Introduction, GC21 -5114

• IBM System/3 Models 4, 6 ,8 , and 10 Data Management
and Input/O utput Supervisor Logic Manual, SY21 -0512

• IBM System/3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21 -9236

• IBM System/3 Model 12 Introduction, GC21 -5116

• IBM System/3 Model 12 System Control Programming
Reference Manual, GC21 -5130

• IBM System/3 Model 12 System Control Program Logic
Manual, SY21-0046

• IBM System/3 Model 12 User's Guide, GC21-5142

• IBM System/3 M ultiline/M ultipo int Binary Synchronous
Communications Reference Manual, GC21-7573

• IBM System/3 Multiple Line Terminal Adapter RPQ
Program Reference and Component Description Manual,
GC21-7560

IV

Contents

CHAPTER 1. IN T R O D U C T IO N ..1
Writing Macro Instructions.. 1
Macro Instructions Provided...4

CHAPTER 2. MACRO INSTRUCTION S T A T E M E N T S5
Common Equates ($COM N)...5
Programming Considerations... .5

System Services...6
Supervisor Call ($SVC)..6

System Input (S Y S IN)..6
H alt/S yslog...7
VTOC R ead ...7
Rollout.. 8

Find a Directory Entry ($ F IN D) ... 11
Load a Module ($ L O A D) ..11

Load with Find (Form I) .. 11
Load Only (Form I I) ...13

Load a Module and Pass Control ($FTCH)..................................... 13
Load a Module and Exchange Control ($ X C T L)14
Generate a Translate Parameter List ($ T R L)14

Translate Routine O pera tio n ... 14
Generate a Translate Table ($T R T B)...15
Generate an Interface to the Translate Routine ($ T RAN) . . . 16
Snap Dump Main Storage ($SNAP). 16
End-of-Job ($E O J).. 16

I nput/Output Support 17
General I/O S upport...17

Allocate Space ($ALOC)...18
Prepare an I/O Device ($OPEN)... 19
Generate a Check List ($ C K L) ..20
Check for I/O Completion ($CHK)21
Prepare a Device for Termination ($C L O S)........................... 22

Unit Record Support...22
Define the File for Unit Record ($D T F U)...............................22
Unit Record DTF Offsets ($ D T O U).. 25
Get or Put for Unit Record ($ G P U) .. 25
Construct an Interface to the Printer-Keyboard ($PKBU) . 27
Print a Message ($PRNT).. 29

Disk Device S upport...29
Define the File for Disk ($ D T F D) ... 30
Disk DTF Offsets ($D T O D)..32
Input/Output Block for Disk ($ IO B D).....................................33
Input/Output Block Offsets ($ IO E D)34
Construct a Disk Get Interface ($ G E T D) 34
Read from Disk ($R D D).. 36
Construct a Disk Put Interface ($P U TD)..................................37
Write to Disk ($ W R T D)..38
Wait for Disk IOS Completion ($ W A IT)..................................38

Tape Device Support...39
Define the File for Tape ($ D T F T) ... 39
Tape DTF Offsets ($D T O T)..41
Construct a Tape Get Interface ($ G E T T) 41
Read from Tape ($R D T)..43
Construct a Tape Put Interface ($PUTT)................................. 43
Write to Tape ($WRTT) .. 44
Control Command for Tape ($ C T L T)45
Wait for Tape I/O Completion ($W TT).....................................45

3741 Support.................................. 46
Define the File for 3741 ($ D T F K)...46
Construct a 3741 GET Interface ($ G E T K) 47
Construct a 3741 PUT Interface ($PU TK).............................. 47

CPU Commands.. 48
Command CPU—Generate the CCP Assembler Instruction

($CCP) .. 48
Load CPU—Generate the LCP Assembler Instruction

($ L C P).. 48
Store CPU—Generate the SCP Assembler Instruction

($ S C P).. 48

CHAPTER 3. OCL AND SAMPLE PROGRAM . 49
OCL for Macro Processor... 49
Sample Program...49

Purpose of the Sample Program..49
Termination of the Sample Program .. 49
Macro Instructions Used in the Sample Program 52

APPENDIX A. ERROR IN FO R M A TIO N ... 53

APPENDIX B. DEFINE THE FILE CONTROL BLOCKS 55

APPENDIX C. DISK INPUT/OUTPUT B L O C K79

APPENDIX D. MACRO INSTRUCTION SUMMARY CHART. . 85

IN D E X .. 91

v

Chapter 1. Introduction

A macro instruction is a source statement that causes
generation of a predetermined set of assembler statements
each time the macro instruction is used. The Macros
Feature is a macro processor that provides macro instruc­
tions which perform both system services and input/output
device support. By using these macro instructions, you can
perform both system and input/output operations with
less coding.

Figure 1 is an overview of the operation of the macro
processor. The OCL statements used to call the macro
processor are explained in Chapter 3: OCL and Sample
Program.

WRITING MACRO INSTRUCTIONS

You code macro instructions as follows:

Starting
Column 1 8 14 72

Name Operation Operands Continuation

Symbol
or blank

Macro
name

No operands
or one or more
separated by
commas

Any nonblank
character if
continuation is
being used

The operands specify available services and options. The
operands must start in column 14 and are written as follows:

1. Each operand consists of a keyword followed by a
dash and a parameter.

[NAME] $F IN D NAME-module name.FI ND-label
[,PACK£/S]

2. No blanks should be left between operands.

[NAMEJ $FIN O NAME-module name.FIND-label
[,PACK£/S]

3. Commas precede all but the first operand.

[Name] $F IN D NAME-module name.FIND-label
[.PACK-P/S]

4. The parameter part of the operand must immediately
follow the dash.

[Name] $FINO NAME-module name.FIND-label
[.PACK-P/S]

The name field may contain any valid assembly language
symbolic name beginning in column 1. The name is
assigned to the first byte of generated code. Since the
name is optional, it is shown enclosed in brackets.

[Name] $FIN O NAME-module name.FIND-label
[,PACK-£/SJ

The desired mnemonic operation code (macro instruction
name) must appear as specified in the macro instruction
description. The operation code must start in column 8.

[NAME] $FIN D NAME-module name.FIND-label
[.PACK-P/S]

5. The keyword part of each operand must correspond
to one o f the keywords in the macro instruction
description.

[Name] $F IN D NAME-module name.FIND-label
[,PACK-£/SJ

6. Some operands are not required. These optional
operands are indicated by enclosing the operand
w ithin brackets [KEYWORD-parameter].

[Name] $P IN D NAME-module name,FI ND-label
[,PACK-P/S]

Introduction 1

Source Statements
This is your program.
It includes macro
statements.

OCL Statements
Load the macro processor.
OCL can be entered through
system input device or called
from the procedure library.

$SOURCE File
Statements placed in
$SOURCE are used as
source input to an
assembler.

This indicates the beginning
of the next job.

This indicates the end of your job.

The macro processor reads source state­
ments from either the system input
device or a^source library.

• All valid assembler statements and
comments are placed in $SOURCE.

• Macro statements are listed in
$SOURCE, preceded by an
asterisk, and followed by the
macro expansion.

' • Macro expansion statements are
marked (by the macro processor) in
position 96 in $SOURCE and indi­
cated on the assembly listing by a

«.plus sign (+) preceding the expan­
sion statement.

• Invalid statements are flagged and
placed in $SOURCE.

Figure 1. Macro Processor Overview

2

7. An option list for a keyword parameter is specified
as follows:

KEYWORD-A/B/C

This list indicates that the keyword has the options
A,B, or C. These are the only valid options for the
keyword parameter.

[Name] $FIN O NAME-module name,FiNO-label
[.PACK-P/SJ

When the options Y/N are given in a macro instruc­
tion, Y indicates a yes response, N indicates a no
response.

8. The operands may be written in any order. If a key­
word is not specified, the default value is used. A
default value is selected for optional keywords that
are omitted. The default value is indicated in the
macro instruction description by a line under the
default option. For example, [KEY-A/B/C] indi­
cates the option A is the default value.

[Name] $FIN O NAME-module name.FINO-tabef
[.PACK-P/S)

9. No operands may be specified beyond column 71.
If continuation is required, column 72 must contain
a nonblank character and the last operand must be
followed by a comma. An operand cannot be
divided and continued on the next line. The operands
of the continued field must begin in column 14. For
an example of continuation coding, see Figure 2.

10. Comments must be separated from the operand or
comma by at least one blank space. Comments can­
not be inserted between operands on a one-line macro
instruction. Figure 3 shows examples of comments
used w ith macro instructions. On the assembly
listing, all comments on the generated code are
justified by the macro processor to begin in column
40. Any comments too long to be contained in
columns 40 through 71 are truncated from the right.

STATEMENT

Name1 2 3 4 5 6 7sOgPeration ^ 13 Operand Remarks 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
MAIAÉ 1 t Mc R 0 0 p E RAND 1 0 p ER AND2) 0 P E ft AN D 3) 0 P6 RAN D 0 PEiRAM0 5) 0 PERAN0 G 4_ X

0 pER AM0 7 j 0 p E R AN0 8 ii
1
1l

AM6 2 $ MAC R 0 p E RAM 0 i >0 pE R ANV 2) it X
0 p ERAN V 3 j i X
0 pER AH 0 /

1i X
0 p EAAND B 1

—1
1

Figure 2. Continuation Coding Examples

STATEMENTName1 2 3 4 5 6 7 Operation 8 9 10 11 1213 Operand Remarks 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
c 0 MNT l $ Mc R 0 0 p E RA MD 1) 0 p E RA ND 2 r HI S r MS T WAiS r V 0 o P E ft A N D£>k1
c 0 MNT 2 t MAC R 0 p E R A N 0 1 % T MI s r MS T R Uc t 'iT 0 N A MD r WI S C o M- X0 p E R A K/D 2 "T ME N T A R £ c 0 H T jl Ma £ D* r WI s C 0 MME Nr JI S a <4I r E L EN a r HY* A N D I S E N T E R E|D 3 E F 0 R e r « E I N -* 8 T Ru c 7lI 0 N 0 T|HE R WI S E * i T h/0 u L D* F 0 L l 0 W r U£ MAiC R 0 E X P /A N5 I O N l N
c 0 H N r 3 $ A c R 0 0 p e R A/D i T H E L I 5 T I N$ i1i1L_U
Figure 3. Comments on Macro Instructions

Introduction 3

MACRO INSTRUCTIONS PROVIDED

The macro instructions provided through the macro
processor and the functions they perform are shown in
Figure 4.

A ll code for the macro instructions must be on the program
pack or the system pack: The program pack is the disk pack
from which the macro processor is loaded. The system pack
is the disk pack from which initial program load (IPL) is
performed.

You may want to delete some macro instructions from
your library to reduce the amount of disk space required
for the macro instructions. For instance, if vour system
does not include the 3410/3411 Magnetic Tape Subsystem,
the tape macro instructions would be of no use to you, and
you might wish to delete them to save space. You can
delete macro instructions from your library by using the
library maintenance u tility program, $MAINT.

Group
Macro

Instruction
Name

Descriptive Name

System $COMN Common Equates
Services $EOJ End of job

$FIND Find a directory entry
$FTCH Load a module and pass control
$LOAD Load a module
$SNAP Snap dump main storage
$SVC Supervisor call
$TRAN Generate an interface to the translate

routine
$TRL Generate a translate parameter list
$TRTB Generate a translate table
$XCTL Load a module and exchange control

General $ALOC Allocate space
I/O $CHK Check for I/O completion
Support $CKL Generate a check list

$CLOS Prepare a device for termination
$OPEN Prepare an I/O device

Unit $DTFU Define the file for unit record j; ' ^
Record $DTOU Unit record DTF offsets
Device $GPU GET or PUT for unit record
Support $PKBU Construct an interface to the printer-

keyboard
$PRNT Print a message

Disk $DTFD Define the file for disk
Device $DTOD Disk DTF offsets
Support $GETD Construct a disk GET interface

$IOBD Input/output block for disk
$IOED Input/output block offsets
$PUTD Construct a disk PUT interface
$RDD Read from disk
$WAIT Wait for disk IOS completion
$WRTD Write to disk

Tape $CTLT Control command for tape
Device $DTFT Define the file for tape
Support $DTOT Tape DTF offsets

$GETT Construct a tape GET interface
$PUTT Construct a tape PUT interface
$RDT Read from tape
$WRTT Write to tape
$WTT Wait for tape I/O completion

3741 $DTFK Define the file for 3741
Device $DTOD 3741 DTF offsets
Support $GETK Construct a 3741 GET interface

$PUTK Construct a 3741 PUT interface

CPU $CCP Command CPU
Com­ $LCP Load CPU
mands $SCP Store CPU

Figure 4. Macro Instructions

4

Chapter 2. Macro Instruction Statements

You code macro instructions to generate a block of assem­
bler statements to perform a certain function. Some func­
tions may be the same each time they are used, others may
be modified by specifying different operands. This chapter
explains the System/3 macro instructions in detail.

The macro instructions are grouped in this chapter accord­
ing to the functions they perform:

• Common equates

• System services

• Input/output support

Input/output support macro instructions are further
divided according to the device supported.

Common Equates ($COMN)

This macro instruction provides equates for various labels
and values used by other macro instructions.

The format of the $COMN macro instruction is:

$COMN

You must generate equates using $COMN whenever any of
the following macro instructions are used in your program:

Programming Considerations

When you use the macro processor you should remember
the following restrictions. First, the generated code for
some macro instructions uses register 1, and the generated
code for other macro instructions uses register 2. You
should save the contents of the register used by the
generated code before issuing the macro instruction. Other­
wise, the contents are destroyed. These macro instructions
use register 1:

$RDD
$TRAN
$WRTD
SWAIT

These macro instructions use register 2:

$ALOC $OPEN
$CHK $PKBU
$CLOS $PRNT
$CTLT $PUTK
$FIND $PUTT
$FTCH $PUTD
$GETD $RDT
$GETK $WRTT
$GETT $WTT
$GPU $XCTL
$LOAD

The second consideration concerns the labels you use in
your program. System routines and some generated code
have labels beginning w ith the dollar sign ($). To avoid
duplicate label errors, you should not use the dollar sign
as the first character of labels in programs using the macro
processor.

$ALOC $PRNT
$CLOS $PUTD
$CTLT $PUTK
$FIND $PUTT
$FTCH $RDD
$GETD $RDT
$GETK $WRTD
$GETT $WRTT
$GPU $WAIT
$LOAD $WTT
$OPEN $XCTL
$PKBU

Macro Instruction Statements 5

SYSTEM SERVICES | System Input (SYSIN)

By using system services macro instructions, you can com­
municate with the System/3 system control program.
These macro instructions can do the following:

• Read records from the system input device.

• Log and write error messages.

• Pass control to an inquiry program and receive control
after the inquiry program has finished.

• Determine the location of an object module on disk.

• Obtain object modules from disk and load them into
main storage.

• Pass control to modules in main storage.

• Build and use a translate list.

• Dump a part of main storage during execution of your
program.

• Terminate the current job.

You read a record from the system input device by calling
the system input routine through the $SVC macro instruc-»
tion. The system input device may be any one o f the
following:

• 5471 printer keyboard. Only 96-byte, single-buffered
input is allowed for this device. Double buffering is
ignored.

• 1442 card reader. Single and double buffering are sup­
ported. Only 80 bytes of the 96-byte buffer are used as
input; the remaining 16 bytes are cleared to blanks. If
single buffering is not indicated, double buffering is
assumed.

• 5424 multi-function card unit (MFCU). Both single and
double buffering are supported. Support for both the
primary (MFCU1) and secondary (MFCU2) hoppers is
provided. All 96 bytes are used as input. If single buf­
fering is not specified, double buffering is assumed.

• 3741 Data Station/Programmable Work Station, directly
attached. Both single and double buffering are supported.
If single buffering is not specified, double buffering is
assumed. Only 96-byte records are supported.

Supervisor Call ($SVC) To call the system input routine, you must do the following:

The supervisor call macro instruction branches to one of
the following system routines:

I • System input (SYSIN)

• Halt/syslog

• VTOCread

• Rollout/rollin

A detailed description of each of these routines is contained
| in the IBM System/3 Models 4, 6, 8, and 10 System Control

Program Logic Manual, SY21-0502.

The format of the $SVC macro instruction is:

I [Name] I $SVC I R IB-SYSIN/HALT/VTO C/RO LL I

1. Construct a parameter list as input to the system
input routine. For the required parameter list, see

| Part 6 of IBM System/3 Models 4, 6, 8, and 10
System Control Program Logic Manual, SY21 -0502.

2. Put the address of the parameter list in register 2.

3. Issue the macro instruction:

[Name] $SVC RIB-SYSIN

4. Analyze the return code provided by system input.

The macro processor generates the coding required to
branch to the system input routine. The system input
routine reads the input record and returns control to your
program with a return code in the first byte of the param­
eter list. Because o f this, you must reset the operation
code before each call to system input. You must analyze
the return code to determine the outcome of the operation.

RIB-SYSIN, H ALT , VTOCt or ROLL indicates the system
routine you want to call. The following discussion explains
how you can use these routines through the macro instruc­
tion.

6

Halt/Syslog

Specifying RIB-HALT in your $SVC macro instruction
calls halt/syslog: a group of system output routines pro­
viding communication w ith the operator. You may want
to use halt/syslog to notify the operator of error conditions,
error recovery procedures, and the validity of previous
operator responses to halts. If the operator selects an in­
valid option in response to a halt, the response is not accep­
ted by halt/syslog. Instead, another halt is issued to the
operator until a correct option is taken. When an immedi­
ate cancel (option 3) is selected, control is passed directly
to the end-of-job (EOJ) routine by halt/syslog.

Two types of printed output are available through halt/
syslog. Both are printed on the system log device.

• A log is a 4 or 6-character statement which identifies
the type and source of an error.

• A message is a printed statement which may be used to
indicate errors that have occurred or to issue instructions
to the operator, such as requesting that a disk file be
placed on a certain drive.

Both logs and messages may be issued w ith or w ithout an
accompanying halt.

Note: You cannot issue system halts through the $SVC
macro instruction, but you may design your halts to indi­
cate the same errors and accept the same responses as the
system halts.

Three devices may be used as the system log device:

• 5203 line printer (left carriage only)

• 1403 line printer

• 5471 printer-keyboard

The device used is determined when you perform initial
program load (IPL). You may change devices by entering
a / / LOG statement in your job stream.

To use halt/syslog you must do the following:

1. Build the appropriate parameter list as determined by
the function you want to perform. The parameter
list formats are described in Appendix B of IBM

| System/3 Models 4, 6 ,8 , and 10 System Control
Program Logic Manual, SY21-0502.

2. Put the address of the parameter list in register 2.

3. Issue the macro instruction:

[Name] $SVC RIB-HALT

4. Process the operator's reply in your program.

The generated code passes control to the halt/syslog
routine. The halt/syslog routine performs the operation
indicated by the parameter list. If a reply is to be returned
by the operator, halt/syslog ensures that the reply is valid
and returns it to your program in the parameter list. You
must then process the reply. If the operator's reply is not
valid, a halt is issued until a valid reply is given.

Note: When option 3 (immediate cancel) is selected by
the operator, control is passed from halt/syslog directly
to the end-of-job (EOJ) routine.

VTOC Read

You can perform input operations on various data areas
on cylinder zero of disk files on the IBM 5444 Disk Storage
Drive by using the volume table of contents (VTOC) read
routine. This routine cannot be used for files on the IBM
5445 Disk Storage Drive.

The data areas you have access to are:

• Volume label

• Volume table of contents (VTOC) index

• Format-1 labels

• Configuration records

You call the VTOC read routine by specifying RIB-VTOC
in the $SVC macro instruction.

Macro Instruction Statements 7

Volume Label is one sector (256 bytes) containing the
volume identification, VTOC location, and a system
directory that shows the status and location of the source
and object libraries. Volume label requests allow you to
read information from the volume label. The format of
the volume label is given in Figure 5.

VTOC Index consists of two sectors (512 bytes) contain­
ing one 10-byte entry for each file in the volume. Each
10-byte entry contains the name of the referenced file and
the location of the format-1 label associated w ith the file.
Figure 6 shows the format of the VTOC index.

Format-1 Labe! describes each file maintained on the disk
pack. The format-1 request allows you to read a format-1
label. Figure 7 describes the format-1 label. Each label is
64 bytes long.

Configuration Record is one sector (256 bytes) providing
device information to the system. The configuration record
format is provided in Appendix A of IBM System/3 Models
4, 6, 8, and 10 System Control Program Logic Manual,
SY21-0502.

Calling VTOC Read requires the following steps:

1. Build the parameter list describing the operation to
be performed. The parameter list is described in Part
6 of IBM System/3 Models 4, 6 ,8 , and 10 System
Control Program Logic Manual, SY21 -0502.

2. Put the address of the parameter list in register 2.

3. Issue the macro instruction:

[Name] $SVC RIB-VTOC

4. Check the return code to determine the outcome of
the operation.

When you issue the $SVC macro instruction specifying
RIB-VTOC, the generated code calls the VTOC read
routine. VTOC read performs the operation and returns
control to you with the address of the parameter list still
in register 2.

Rollout

You use rollout to interrupt the current program so that
another program can be executed. When the second pro­
gram is finished, the first program is reinstated and con­
tinues executing. A program that calls rollout is rolled out
and when the interrupting program is completed, the first
program is rolled in.

The 5471 printer keyboard is required for a rollout request.
Once rollout is initiated, the printer keyboard becomes the
system input device.

When using rollout, you should follow these procedures:

1. Be certain the following restrictions are met:

• A program calling rollout cannot run in program
level 2.

• A rollout-calling program must be so defined to the
linkage editor.

• Programs cannot run in program level 2 when
rollout-calling program is in program level 1.

• The same I/O devices are available to the interrupting
program as were available to the original program.

• Whenever an interrupting program shares the same
disk files as a rolled-out program, only reading and
updating are allowed by the two programs. Loading
and additions are not allowed.

2. Determine whether rollout has been requested by
testing the inquiry-request-pending bit in the system
communication region. If the request is pending, call
rollout. If it is not on, proceed with the current
program.

3. Set on the rollout request bit in the system com­
munication region.

4. Issue the macro instruction:

[Name] $SVC RIB-ROLL

5. Set o ff the rollout request bit in the system com­
munication region.

The coding generated by the $SVC macro instruction calls
the rollout routine. Rollout performs the following steps:

1. Places the current program (program being executed)
and the current contents o f the scheduler work area
on disk.

2. Allows a new program to be loaded in place of the
current program and passes control to the new
program.

3. Reloads the original program and previous contents
of the scheduler work area and passes control to the
point where the original program was interrupted.

8

Hexadecimal
Displacement

Number
of Bytes Contents of Volume Label

0-2 3 VOL (Label identifier)
3-8 6 Volume identifier, 1-6 characters
9-A 2 VTOC index pointer (C/S)

System Directory
Source Library

B-C 2 Source directory pointer
D-E 2 Next available library sector
F-10 2 End of library
11-12 2 Number of directory sectors
13-14 2 Number of permanent library sectors
15-16 2 Number of active library sectors
17-18 2 Number of available library sectors
19-24 12 Reserved

Object Library
25-26 2 Object directory pointer
27-28 2 End of directory
29-2A 2 Start of library
2B-2C 2 Allocated end of library
2D-2E 2 Extended end of library
2F-30 2 Number of available permanent directory entries
31-32 2 Number of available temporary directory entries
33-35 3 First temporary directory entry (C/S/D)
36-38 3 Next available temporarv directory entry (C/S/D)
39-3A 2 Next available library sector for permanent library entries
3B-3C 2 Next available library sector for temporary library entries
3D-3E 2 Number of available library sectors for permanent library entries (after last PERM)
3F-40 2 Number of available library sectors for temporary library entries
41-42 2 Total number of active library sectors
43-44 2 Number of active 0 type permanent sectors
45-46 2 Number of active R type permanent sectors

System Information
47 1 System indicator
48-49 2 Rollin/Rollout pointer
4A 1 Rollin/Rollout size (tracks)
4B-4C 2 SWA pointer
4D 1 SWA size (tracks)
4E-51 4 Start and end of library (C/S)
52-5B 10 Owner ID
5C-69 14 Device constants
6A-75 12 Alternate track assignments
76-A8 51 Available tracks (Format-5)
A9-B3 11 Save area for copypack, $COPY utility
B4 1 Run OXRF indicator
B5 1 Reserved
B6-B8 3 Reserved
B9-BA 2 Checkpoint/Restart
BB-C9 15 Unused
CA-CD 4 Reserved
CE-D7 10 Scientific system file indicator
D8-EF 24 Suspected defective track indicators
FO-FF 16 Reserved

Notes:
1. References in this table to C/S indicate the cylinder and sector location of the field. Cylinder and sector

are given in hex numbers. References to C /S/D indicate the cylinder, sector, and displacement into the
sector of the field. Again, all are given in hex numbers.

2. Fields in the volume label that tell the number or quantity of various entries on the disk are hex numbers.

Figure 5. Volume Label Format

Macro Instruction Statements 9

A B C D E F

Symbol
Number
of Bytes Contents

A 6 Not used

B 500 Index with up to 50 entries of the
following format:

8 bytes—Filename left-justified (20
indicates duplicate name in the index

2 bytes—Sector number and displace­
ment within that sector or file entry

Note: The remaining 6 bytes are as follows:

C 2 S/D address of the first member on
the S list

D 1 Number of Format-1's on the S list

E 2 S/D address of the last member on
the S list

F 1 Number of free entries in the VTOC
index (Only P and T formats are
considered not free.)

Figure 6. Volume Table of Contents (VTOC) Index Format

Hex
Disp

Number
of Bytes Description Contents

0 1 Entry ID Entry identification pointer to VTOC index
1-2 2 Chain address Sector number or displacement into sector of next Format-1
3-A 8 Filename Filename
B-10 6 Date Date of file
11 1 Retain Retain indicator for file (P, S, or T)
12-13 2 File type Byte Value Meaning

14-15 2 Record length

1 X'00' Should be zero
2 X '80' Indexed file

X'40' Consecutive file
X'20' Direct file
X'10' Multivolume file
X'08' Last pack of a consecutive MVF only

The number of bytes within each record
16 1 Key length The number of bytes within the record key
17-18 2 Key location Sector number/displacement into the sector
19-1B 3 Last record Last record displacement (C/S/D)
1C-1E 3 Last key Last key displacement (C/S/D)
1F-20 2 Data start Start of data address (C/S)
21-22 2 Data end End of data address (C/S)
23-24 2 Index start Start of index address (C/S)
25-26 2 Index end End of index address (C/S)
27 1 Records or tracks X '80 '—number of tracks

28-29 2 Number of records or tracks
X '00 '—number of records
Number of record/tracks created (see previous byte)

2A 1 Volume sequence number Volume sequence number for MVF
2B-2C 2 Back pointer Back pointer for scratch files
2D-3F 19 Not returned by VTOC read

Note: Contents in this table given as C/S indicate a two-byte address given as cylinder number/sector number.
C/S/D indicates a three-byte address giving cylinder number/sector number/displacement. The numbers are hex.

Figure 7. Format-1 Label Format
10

A load module must be in the object library. Specific
information must be obtained from the module's object
library directory entry before a load or fetch can be per­
formed. There are two ways you can locate a load module
and obtain the information:

• Issue a $FIND before issuing a $LOAD, Form II. The
information obtained during the find is used during
the load operation.

• Issue a load with find ($LOAD, Form I), a fetch
($FTCH) or a fetch to address ($XCTL). These func­
tions perform the find operation as part of their normal
functions.

The $FIND macro instruction searches the object library
directory for the requested module name and returns the
directory entry in the parameter li?t. If you w ill need to
use the data in register 2 at a later time, you should save
the contents of that register before issuing the $FIND
macro instruction.

The format of the $FIND macro instruction is:

Find a Directory Entry ($FIND)

[Name] $FIN D NAME-module[,FIND-address]
[,PACK-P/S]

NAME-module provides the name of the module to be
found. Only names o f object modules (O modules) can be
entered here.

F/ND-address specifies the label that becomes the address
of a 12-byte parameter list built by the generated code.
Initially the parameter list contains input to the supervisor.
After execution, it contains the directory entry of the
module. The format and contents of the parameter list
after execution are shown in Figure 8. If this operand is
not specified, a macro label is generated.

PACK-P or S specifies the program disk pack (P) or the
system disk pack (S) to be searched. If this operand is not
specified, P is assumed.

This macro instruction loads a module into storage at the
address you specify. Control is returned after the module
has been loaded. You may then pass control to the
module at the specified address. If you w ill need to use
the data in register 2 at a later time, you should save the
contents of that register before issuing the $LOAD macro
instruction. Two forms of this macro can be used.

Load a Module ($LOAD)

Load with Find (Form I)

The load w ith find macro instruction locates the module
and loads it into main storage.

The format of this macro instruction is:

[Name] $LOAD NAME-module name[,FIND-address]
[,LOAD-2/address] LUSE-R/NR]
[,PLIST-address] [,PACK-P/S]

NAME-module name provides the name of the module to
be loaded and is required. Only O modules can be specified.

F/ND-address becomes the address o f the parameter list
passed to the find routine. The parameter list is generated
by the macro processor. After execution of the load, this
parameter list contains the modified entry for the module
as shown in Figure 9.

LOAD-2 or address specifies the address where the module
is to be loaded into main storage. The 2 indicates that the
address is in register 2; the address is the symbolic address
where the module is to be loaded. If this operand is not
specified, 2 is assumed.

USE-R or NR indicates whether the code generated by the
macro instruction is to be reusable (R) or nonreusable (NR).
If the operand is not specified, NR is assumed.

You can reuse the generated code to load the same module
more than one time, or to load different modules. If you
wish to load different modules using the same generated
code, you should also specify the PLIST operand.

Macro Instruction Statements 11

Entry
Number
of Bytes

Displace­
ment Description

Disk Address 2 1 Cylinder/sector address of the module.

No. of Text
Sectors 1 2 Text sector length of the module in hexadecimal

Link Edit
Address 2 4 Hexadecimal storage address at which the module was linkage edited.

Disp. of RLDs 1 5 Number of bytes, in hexadecimal, into the first sector containing RLDs,
of the first relocation directory (RLD) entry of the module.

Entry Point
Address 2 7

Hexadecimal storage address at which program execution begins (with­
out RLDs).

Storage Size 1 8 Amount of storage (in sectors) required to execute the program.

Attributes 2 10 Byte 1:

Bit 0 1 = Permanent entry
0 = Temporary entry

1 1 = Inquiry program
2 1 = Rollout-calling program
3 1 = Must run in dedicated environment
4 1 = Requires source information
5 1 = Deferred mounting allowed
6 1 = PTF applied
7 1 = Overlay object program

Byte 2:

Bit 0 1 = The system input device must be dedicated to this program
1 1 = Checkpoint/Restart program
2 1 = This program will access the source file directly
3 1 = Macro processor is allowed
4 Reserved
5 1 = This program requires that a new load address

be calculated at load time to place it in main
storage beyond its own program common region

6 Reserved
7 Reserved

Level 1 11 Release version of this entry.

N ote: Determination of displacement into the parameter list begins with 0.

Figure 8. Find Parameter List Description

Entry Number
of Bytes

Displace­
ment Description

Disk Address 2 1 Cylinder/sector address of the module in hexadecimal. See note.

No. of Text
Sectors 1 2 Text sector length of the module, in hexadecimal.

Link Edited
Address 2 4 Storage address at which the modulè was linkage edited.

Disp. of RLDs 1 5 Hexadecimal displacement, in bytes, into the first sector containing RLDs,
of the first relocation directory (RLD) entry of the module.

Relocated Entry
Point Address 2 7 Storage address at which program execution begins, after resolving RLDs.

Load Address 2 9 Address at which the requested module is loaded.

Note: If a directory entry was not found on a load with find, the first byte contains a character 0 .
Determination of displacement into the parameter list begins with 0.

Figure 9. Find Parameter List after Load Execution

12

PLIST-address is used only when the generated code is
reusable. The address specified identifies the leftmost
byte of a parameter list passed to the load routine. To
load a different module using the same generated code,
you must update the parameter list to indicate the desired
module. Figure 10 shows the format and contents of the
parameter list.

PACK-P or S specifies the program disk pack (P) or the
system disk pack (S) containing the requested module.

Load Only (Form II)

The load-only macro instruction loads a module previously
found by the $FIND macro instruction. The format of
this macro instruction is:

[Name] $LOAD F IN D-address [, LOA D-2/address]
LPACK-P/S]

FIND-address is the address used in the previous $FIND
macro instruction. It identifies the directory entry of the
module in main storage. After execution of the load, this
address points to the directory entry of the module as
shown in Figure 9.

LOAD-2 or address specifies the address where the module
is to be loaded in main storage. The 2 indicates that the
address is in register 2; the address is the symbolic address
where the module is to be loaded. If this operand is not
specified, 2 is assumed.

PACK-P or S specifies the program disk pack (P) or system
disk pack (S) containing the requested module.

The fetch macro instruction ($FTCH) finds a module in
the directory, loads the module into main storage, and
passes control to it. Your program does not regain control.
When a module is fetched into main storage, the relocation
factor is added, as necessary, to the module's link edit
address. This determines the location in main storage
where the module is loaded. The module receives control
at its entry point.

The format of the $FTCH macro instruction is:

I [Name] I $FTCH NAME-module name[,PACK-P/S]

Load a Module and Pass Control ($FTCH)

NAME-module name specifies the object module to be
fetched into main storage. The name must be the same as
the name in the directory entry.

PACK-P or S specifies the program disk pack (P) or the
system disk pack (S) containing the requested module.

Entry
Number
of Bytes

Displace­
ment Description

Module Type 1 0 Must contain O to indicate an object module.

Module Name 6 6 The name of the module to be loaded.

FE 1 7 X'FE'

Load Address 2 9 The address at which the module is to be loaded.

Figure 10. Load Parameter List Description

Macro Instruction Statements 13

This macro instruction finds a module in the directory,
loads the module into main storage at the address you
specify, and passes control to it. Control is not returned
to your program. As with the $FTCH macro instruction,
relocation factors are resolved, and control is passed to
the entry point of the program.

The format of the $XCTL macro instruction is:

Load a Module and Exchange Control ($XCTL)

[Name] $XCTL NAME-module name[,LOAD-2/address]
[,PACK-P/S]

NAME-module name specifies the name of the module to
be loaded and given control. The module must be an 0
module.

LOAD-2 or address specifies the address where the module
is to be loaded in main storage. The 2 indicates that the
address is in register 2; the address is the symbolic address
where the module is to be loaded. If this operand is not
specified, 2 is assumed.

PACK-P or S specifies the program disk pack (P) or the
system disk pack (S) containing the requested module.

This macro instruction generates a parameter list needed
by the Model 10 Translate routine. This list is called via
the $TRAN macro instruction. $TRL does not generate
executable code. Figure 11 shows the format of the
translate parameter list.

Generate a Translate Parameter List ($TRL)

Translate Routine Operation

To use the Model 10 translate routine, you must provide a
translate area. The format of the area is:

Byte Field Description

0 Byte contents used to determine whether a
character is to be translated.

1 Byte contents are substituted for characters
that are not to be translated.

2-257 256-byte translate table.

The translate routine processes a field, specified by the
$TRAN macro instruction, one byte at a time.

The translate table must be constructed so that the displace­
ment (from the beginning of the table) of the translated
representation of a character is equal to the hexadecimal
representation of the untranslated character.

Note: If you are using the IBM System/3 Model 10 Disk
System Multiple Line Terminal Adapter Input/Output
Control System, Program Number 5799-WAU, the translate
area is provided.

The contents of the byte at a given displacement are com­
pared w ith the contents of the first byte in the translate
area (byte 0). If an equal compare results, the character is
considered to be invalid and the following actions are
performed:

• The completion code in the parameter list is set to indi­
cate that an invalid character was detected.

• The hexadecimal value in the second byte of the trans­
late area (byte 1) is substituted for the original
character.

If an unequal compare results, the hexadecimal value in the
translate table is substituted for the original character.

14

The format of the $TRL macro instruction is:

[Name] $TRL TO-address,FROM-address,
LEN-number,TRT-address

TO-address specifies the symbolic address of the first byte
of the data to which the translated data w ill be moved.

FROM-address specifies the symbolic address of the first
byte of the data field to be translated. This address may
be the same as the address specified in the TO operand.

LEN-number specifies the decimal length of the FROM
field.

TRT-address specifies the symbolic address of the first byte
of the translate area.

All four operands are required.

This macro instruction generates an EBCDIC to ASCII or
an ASCII to EBCDIC translate table. The table is generated
in the format required by the $TRL macro instruction, and
can be addressed by $TRL when you translate data.

Generate a Translate Table ($TRTB)

The format of the $TRTB macro instruction is:

[Name] $TRTB [CODE-E/A] [,HEX-hex]

name specifies the symbolic address of the first byte of
the generated translate table.

CODE-E/A specifies whether the character code of the
data to be translated is EBCDIC (E) or ASCII (A). If this
operand is omitted, EBCDIC (E) is assumed. If CODE-E
is specified, $TRTB generates a 258-byte table; i f CODE-A
is specified, $TRTB generates a 130-byte table.

Note: If you specify CODE-A, you may want to specify
DC 128XLVFF' after the $TRTB macro instruction to
allow for invalid ASCII characters.

HEX-hex specifies the hexadecimal pattern with which to
replace any invalid characters found during translation. If
the HEX operand is not specified, the replacement char­
acter is a blank.

Macro Instruction Statements 15

Generate an Interface to the Translate Routine ($TRAINI)

This macro instruction generates an interface to the Model
10 translate routine. After the translate routine has finished,
control is returned to your program with a completion code
in the translate routine parameter list. The address of the
pare.. list is in register 1. You should check the com­
pletion code to sec ;f any characters that are not to be
translated were encountered.

Snap Dump Main Storage ($SNAP)

This macro instruction provides an interface w ith the non­
terminating system storage dump routine. You must specify
a dump identifier and the limits of the area to be dumped.
The contents of the specified main storage area are put on
the system logging device; therefore, it is recommended
that the logging device be a printer. Output from the dump
routine consists of:

The format of the $TRAN macro instruction is:

[Name] $TRAN [TRL-address]

TRL-ac/dress specifies the symbolic address of the translate
parameter list. If this operand is not entered, the address
is assumed to be in register 1. See Figure 11 for a descrip­
tion of the parameter list.

Field
Length Field Description

2 Address of the translate area (your program must
define the translate area)

2 FROM field address, for translation

2 TO field address for translation

2 Number of bytes to translate

1 Completion code:
X '00 '—translation complete, no errors
X JF F '—invalid character detected

Figure 11. Translate Parameter List

• The specified dump identifier

• The contents of registers 1 and 2

• The contents of the specified main storage area

Control is returned to the next sequential instruction in
your program.

The format of the $SNAP macro instruction is:

[Name] $SNAP ID-hex,START-address,END-address

ID-hex specifies a 2-byte hexadecimal number to be used
as the dump identifier

START-address specifies the symbolic address of the low-
storage lim it of the area to be dumped.

END-address specifies the symbolic address of the high-
storage lim it of the area to be dumped.

All three operands are required.

End-of-Job ($EOJ)

The $EOJ macro instruction passes control to the end-of-
job routine. This routine returns control to the supervisor
for normal end-of-job.

The format of the macro instruction is:

[Name] $EOJ

16

INPUT/OUTPUT SUPPORT General I/O Support

The input/output support macro instructions provide
access to devices w ithout requiring you to write extensive
routines to perform each function. The input/output sup­
port macro instructions are divided into four groups:

• General—macro instructions used with all device types.
The following macros are in this group:

$ALOC
$OPEN
$CKL f 5471 Console and
$CHK ƒ Teleprocessing only
$CLOS

• Unit Record—macro instructions that support unit-
record devices. The following macros are in this group:

The general I/O support macro instructions are used w ith
both unit record and disk devices. The normal sequence
for using these macro instructions is:

1. $ALOC to allocate the disk file or the unit record
device to your program level.

2. $OPEN to prepare the disk file or unit record device
for use.

3. I/O operations and any processing required.

4. $CLOS to prepare the disk file and/or unit record
device for job termination.

$DTFU
$DTOU
$GPU
$PKBU
$PRNT

• Disk—macro instructions that support disk devices. The
following macros are in this group:

$DTFD $RDD
$DTOD $PUTD
$IOBD $WRTD
$IOED $WAIT
$GETD

• Tape—macro instructions that support tape devices. The
following macros are in this group:

$DTFT $PUTT
$DTOT $WRTT
$GETT SCTLT
$RDT $WTT

• 3741 —macro instructions that support the 3741. The
following macros are in this group:

$DTFK
$GETK
$PUTK

Macro Instruction Statements 17

Allocate Space ($ALOC)

The routines called by the $ALOC macro instruction
allocate input/output devices and space on disk devices.
These routines check to ensure that:

• The system supports the requested device.

• The device requested is available to the requesting
program.

• The DTF tables do not extend into the last 1K (1024)
bytes of the calling program.

• The LOCATION parameter of the OCL FILE statement is*
valid.

• The correct disk pack is mounted and space is available
to the calling program.

• No more than 40 DTFs (disk and tape) are present in
the calling program.

• The correct tape input file is mounted, or the tape label
is written on the output file, and that the tape is posi­
tioned at the beginning of the file.

An allocate request requires that pre-open DTFs be sup­
plied as input to the routine. For a description of DTFs,
see Define the File for Unit Record ($DTFU), Define the
File fo r Disk ($DTFD), Define the File fo r 3741 ($DTFK),
and Define the File fo r Tape ($DTFT). When the allocate
request is for a disk or tape device, OCL file statements are
also required. More than one DTF can be allocated at one
time by chaining the DTFs. To chain DTFs, you must enter
the address o f the next DTF in the DTF you are building.
The last DTF in a chain has X 'FFFF ' entered in place of the
address. If your program operates as an interrupt handler,
such as a Binary Synchronous Communications program or
a Multiple Line Terminal Adapter program, all DTFs in the
program should be chained together and allocated on one
operation. When an error condition occurs, the allocate
routine calls halt/syslog to display the proper halt code.

Note that if you w ill need to use the data in register 2 at a
later time, you should save the contents of that register
before issuing the $ALOC macro instruction.

The following output is produced when control is returned
to your program.

• The contents of register 1 are restored.

• The format-1 labels and configuration record are updated.

• For a non-disk or non-tape DTF, bit 1 in the rightmost
byte of the attribute bytes of the post-open DTF is set
on to indicate device allocation.

• The address of the first DTF allocated is returned in
register 2.

Note: If you are using telecommunications, $ALOC must
not be issued while a telecommunications operation is in
process.

The format of the $ALOC macro instruction is:

[Name] $ALOC [DTF-address]

DTF-address specifies the address of the high-order byte of
the DTF being allocated. If this operand is not entered,
the address of the DTF is assumed to be in register 2.

18

Prepare An I/O Device ($OPEN)

This macro instruction prepares an input/output file for
data transfer. The file to be prepared (opened) must
previously have been allocated by using the allocate macro
instruction. Depending on the device, one or more of the
following functions are performed for each file opened.

• The post-open DTF is formatted (see Figure 12).

• Pre-open DTF information is preserved in the format-1
label as required.

• Input/output buffers, index buffers, and lOBs are
formatted.

• Buffers are initialized as required.

• Cards are positioned at the wait station for card output
files.

• The index area on disk for indexed files and the data
area on disk for direct files are formatted as required.

• Diagnostics are performed to ensure that:

1. The access method and the file organization are
compatible.

Pre-Open Conditions Post-Open Conditions

1. Unformatted disk files 1. Formatted disk files are
are present for output created.
files.

2. I/O buffers, lOBs, and
2. The I/O buffer is in the various work areas are

unformatted mode. formatted.

3. A bit is set on in the
DTF attribute bytes to
indicate an opened file.

Figure 12. Comparison of Pre-Open and Post-Open DTFs and
Data Areas

Output The open routine returns control to your program
when the requested file has been opened. The following
output is produced:

• The contents of register 1 are restored.

• The format-1 labels are updated.

• Bit 7 in the rightmost attribute byte in the post-open
DTF is set on to indicate the file has been opened.

• The device code (displacement 0 in the DTF) is altered
to indicate the unit on which the file resides.

2. The volume and file are mounted on the correct
disk or tape drive.

Note: More than one DTF can be opened at one time by
chaining the DTFs. To chain DTFs, you must enter the
address of the next DTF in the DTF you are building. The
last DTF in a chain has X 'FFFF' entered in place of the

| address. See $DTFU, $DTFD, $DTFT and $DTFK.

Input The pre-open DTF and format-1 label are input to
the open routine. Before the open macro instruction is
issued, you must be sure to have the device allocated by
previously issuing the allocate macro instruction. Also, if
you w ill need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $OPEN macro instruction. You must also consider the
following in preparing the DTF:

• The buffers are initialized.

• The address of the last DTF opened is returned in
register 2.

The format of the $OPEN macro instruction is:

[Name] $OPEN [DTF-address]

DTF-address specifies the address of the leftmost byte of
the DTF for the file to be opened. If this operand is not
entered, it is assumed that the address is in register 2.

• The disk access method must be compatible w ith the
disk file organization of the file being opened.

• The access method must be compatible w ith the access
method of the same file opened in the other program
level or for an inquiry program (see Rollout).

The record length and key length must be specified
correctly.

Macro Instruction Statements 19

| Generate a Check List ($CKL)

This macro instruction creates an entry for a check list. It
does not generate executable code. The check list identi­
fies DTFs to be checked for I/O completion by the $CHK
macro instruction. The following types of DTFs can be
identified in the check list:

• 5471 Printer-Keyboard (console)

• Binary Synchronous Communications (BSC)

• Multiple Line Terminal Adapter (MLTA)

DTF-address specifies the symbolic address of the leftmost
byte of the DTF for which this check list entry is being
created.

SK/P-Y or N specifies whether this entry should be skipped
when the check list is scanned. If this operand is omitted,
N (no) is assumed. If Y is specified, you must update the
checklist entry before you can check the DTF specified in
this macro instruction. You can access the skip indicator
in the entry by using the name specified on the macro in­
struction.

For a description of the check list entries, see Figure 13.

For a description of BSC, see IBM System/3 M ultiline /
M ultipo int Binary Synchronous Communications
Reference Manual, GC21-7573; for a description of MLTA,

| see IBM System/3 Multiple Line Terminal Adapter RPQ
Program Reference and Component Description Manual,
GC21-7560.

All the check list entries that are to be tested by the same
$CHK macro instruction must be issued consecutively.
The same DTF may be in the list more than once. The
check list entries that are generated are contiguous in main
storage. You can then issue the $CHK macro instruction
to test the entire list, by specifying the first entry in the
list; or begin testing anywhere in the list, by specifying the
label of one of the later entries.

If a console DTF is to be used for both the request key and
data input functions at one time, you must specify two
check list entries for that DTF (for one entry, specify
REQK-Y; for the other entry, either omit the REQK
operand or specify REQK-N).

Note: The address you specify in the $CHK macro instruc­
tion identifies the beginning of the check operation. Any
entries occurring earlier in the list are ignored in that
operation.

The format of the $CKL macro instruction is:

[Name] $CKL DTF-address [,SKIP-Y/N]
[,REQK-Y/N] [,RTN-Y/N]

[.LAST-Y/N]

REQK-Y or N specifies whether the check routine should
determine whether the Request Key has been pressed on
the 5471 Printer-Keyboard. If this operand is not specified,
N (no) is assumed. You can change this entry during pro­
gram execution.

Note: The keyword CONS-Y or N has been replaced by
REQK (above); if you have coded CONS, however, the
same function w ill be performed.

RTN-Y or N specifies whether you want control returned
to your program even if no I/O operation is complete.
This operand is valid only for the first entry in the check
list. If this operand is not entered, N (no) is assumed.

LAST-Y or N specifies whether this is the last entry in the
check list. LAST-Y (yes) must be specified for the last
entry. If this operand is omitted, N (no) is assumed.

Disp Field Description

0 Flag byte:

X '80'—Skip this entry
X '40'—Request key should be checked
X '20'—This is the last entry in the check list
X'1 O'—Return control to the user if no I/O com­

pletion is found (significant only in the
first entry of a check list)

1-2 Address of the DTF for this entry

Figure 13. Check List Format

20

| Check fo r I/O Completion ($CHK)

This macro instruction generates the linkage required to
use the check routine. You must issue the $CHK macro
instruction for each BSC or MLTA get, put, read, write, or
online test request. For a description of BSC macro in­
structions, see IBM System/3 M ultiline/M ultipoint
Binary Synchronous Communications Reference Manual,
GC21-7573. For a description of MLTA macro instruc-

I tions, see IBM System/3 Multiple Line Terminal Adapter
RPQ Program Reference and Component Description
Manual, GC21-7560.

You can also use the check routine to test for completion
of console operations and to determine whether the request
key on the console has been pressed. However, if your
program does not use BSC or MLTA, you w ill use less main
storage by using the wait function provided w ith the
$PKBU macro instruction.

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $CHK macro instruction.

If no I/O completion is found by the end of the check
list, one of the following actions is taken.

1. Control is returned to your program with the address
of the last DTF in the list register 2 if:

• Each entry in the list is inactive, closed, or has the
skip indicator on (X'57').

• RTN-Y was specified in the $CKL macro instruction
that created the first entry in the check list (X'56').

2. Control is not returned to your program. Instead,
the check routine issues a halt ([] displayed on the
console stick lights) and waits for an I/O operation
to be completed. When the operation is complete,
the completion code is set in the DTF and the ad­
dress of the DTF is returned in register 2.

Note: If the only operations pending are on the console,
you must issue the $CHK macro instruction again to reset
the [] halt.

The format of the $CHK macro instruction is:

Check Routine Operation: The check routine tests for
completion of an I/O operation by examining the DTFs
identified in the check list - see Generate a Check List
($CKL). If an I/O operation is complete, the completion
code is set in the DTF, and the address of the DTF is
returned in register 2 to the calling program. No
subsequent DTFs in the list are tested.

[Name] $CHK [CKL-address]

When a REQK-Y entry is encountered in the list, the check
routine tests the inquiry request b it in the system com­
munication region to determine whether the request key
was pressed on the console. If it was, the completion code
in the console DTF is set to X'50', the DTF address is put
in register 2, and control is returned to your program.

CKL-address specifies the symbolic address of the first
entry in the check list. You may also begin at a subsequent
point in the check list by specifying the symbolic address
of a later entry. If this operand is omitted, the address is
assumed to be in register 2.

Note: The address you specify identifies the beginning of
the check operation. Any entries occurring earlier in the
list are ignored in that operation.

Macro Instruction Statements 21

Prepare a Device for Termination ($CLOS) Unit Record Support

The close macro instruction prepares a device for job ter­
mination. The routine returns post-open DTFs to their pre­
open state and updates file labels to reflect the current file
status. For devices other than disk or tape, only the entries
related to the requested functions are restored. If you will
need to use the data in register 2 at a later time, you should
save the contents o f that register before issuing the $CLOS
macro instruction.

Input to the close routine consists of the post-open DTF
and the format-1 labels. The allocate and open macro in­
structions must have previously been issued.

Five macro instructions are provided for performing I/O
operations on unit record devices. They are:

• $DTFU—define the file (DTF) for unit record

• $DTOU— define the file (DTF) offsets

• $GPU—get or put for unit record

• $PKBU—construct an I/O interface to the printer-
keyboard

• $PRNT—print a message on the halt/syslog device

Output created by $CLOS is returned to your program
when control is returned. The output consists of:

• The contents of register 1 is restored.

• The post-open DTFs are reininialized to the pre-open
state.

The DTF and DTF-offsets macro instructions are used
together. The DTF macro instruction generates a DTF
control block and initializes it to values you specify. The
DTF-offsets macro instruction generates equates to give
unique labels to the offsets in the DTF.

The remaining macro instructions are used to perform the
actual input or output operations.

• Any pending operations for unit record devices are
performed. Define the File for Unit Record ($DTFU)

• The format-1 label for disk is updated to indicate cur­
rent file status.

• The buffer contents scheduled for disk or tape output
and disk update operations are written.

• The data and index are written to disk, and an indicator
is set if key sorting is required at end-of-job for output
files and file additions.

• Tape trailer labels are read or written.

Note: More than one DTF can be closed at one time by
chaining the DTFs. To chain DTFs, each DTF to be closed
must contain the address of the next DTF in the chain. The
last DTF in a chain has X 'FFFF' entered in place of the
address. See $DTFU, $DTFD, $DTFT, and $DTFK.

Through the DTF, you provide information about a file
to the allocate and open routines. The pre-open and post­
open DTFs for the various unit record devices are explained
in Appendix B: Define the File Control Blocks.

The format of the $DTFU macro instruction is:

[Name] $DTFU D E V -co de, FT Y P -co de , PIOB-address
[,UP-m ask] [,D IO -Y /N] [,H U C -Y /N]
[,RECL-number] [,CHN-address]
[,RCAD-address] [,RDA 1-address]
[,RDA2-address] [,PUA1-address]
[,PTA1-address] [,OVFL-number]
[,PG-number] [,MSKP-number]
[,REPLY-number] [,SPACE-number]
[,REQK-Y/N] [,F ILL -Y /N]
[,CHK-Y/N] [,RTN-Y/N]

Note: PIOB required on Model 12 only.

The format of the $CLOS macro instruction is:

[Name] $CLOS [DTF-address]

DTF-address specifies the address of the leftmost byte of
the DTF to be closed. If this operand is not entered, the
address is assumed to be in register 2.

DEV-code specifies the device. This is a required operand.
One of the following codes must be entered; however, the
same code cannot be specified in more than one $DTFU
macro instruction in the same program.

22

Code Meaning

MFCU or MFCU1 MFCU primary hopper
MFCU2 MFCU secondary hopper
PRNTR or PRNTR1 5203 printer (left carriage) or

1403 printer
PRNTR2 5203 printer (right carriage)
D1442 1442 card read/punch
CONSOL 5471 printer-keyboard

FTYP-code specifies the type of file. This is a required
operand. One of the following codes must be entered.

Code Meaning

I Input: MFCU, 1442, or console
read

Por P1 Output: MFCU or 1442 punch,
printer, or console write

C or C1 Combined: MFCU or 1442 read
and punch or console write to
operator with reply

P2 Output: MFCU print
P3 Output: MFCU punch and print
C2 Combined: MFCU read and print
C3 Combined: MFCU read, punch,

and print

P/OB-adc/ress specifies the address of the leftmost byte of
the printer IOB. The size of the printer IOB is 23 bytes.
This parameter is required on the Model 12 only and is
not valid on the Model 10.

UP-mask specifies the mask for testing the external indi­
cators set in the / / SWITCH statement. For example, to
set on bits 0, 3, 5, and 7, you would enter UP-10010101.
If this operand is not entered, a mask of zero is assumed.

DIO-Y or N specifies whether two physical input/output
buffers are supplied. If this operand is not entered, N (no)
is assumed. Y (yes) can be specified only for card input
files.

HUC-Y or N specifies whether a halt should be issued
when an unprintable character is detected in the print
record. If this operand is not entered, N (no) is assumed.
This operand applies to line printer files only.

RECL-number is a decimal value specifying the logical
record length for a 1442 punch file, a line printer file, or a
console input/output file. If this operand is not entered,
zero is assumed and the value must be updated in the DTF
before the output operation may be performed.

CHN-address specifies the address of the next DTF in the
forward chain. If this operand is not entered, the end-of-
chain ID (X'FFFF') is assumed.

Note that DTFs may be chained to permit opening of more
than one DTF with one open request. See Prepare An I/O
Device ($OPEN) for more information on chaining.

RCAD-address specifies the address of the leftmost byte of:

• The logical record when using the output function for
MFCU, 1442, or line printer files.

• The buffer area for all console operations. This is the
only input/output area specified for console files.

This address must be different from the address specified
for either PUA1 or PTA1. If this operand is not entered,
X 'FFFF' is assumed and you must update this value in the
DTF before performing the output operation.

Output records for unit record devices are built or altered
in the work area pointed to by RCAD. These records are
called logical records. For devices other than the console,
data management routines move the record to the physical
buffer (PUA1 or PTA1) before performing the output
operation.

RDA 1-address specifies the address of the leftmost byte
of the first physical input buffer. If this operand is not
entered, X T FFF' is assumed and you must update it in
the DTF before issuing the input command. The address
must be on a 128-byte boundary.

RDA2-address specifies the address of the leftmost byte of
the second physical input buffer when dual buffers are used.
If this operand is not entered, X 'FFFF' is assumed and you
must update this value before using dual buffering in an in­
put operation. The address must be on a 128-byte boundary

PUA1-address specifies the address of the leftmost byte of
the physical punch buffer. If this operand is not entered,
X 'FFFF' is assumed and you must update it before per­
forming a punch operation. The address must be on a 128-
byte boundary.

PTA 1-address specifies the address of the leftmost byte of
the physical print buffer for print files. If this operand is
not entered, X 'FFFF' is assumed and you must update the
value before an output operation to the printer is issued.
This address must be of a 256-byte area aligned on a 256-
byte boundary for MFCU print operations. For line-
printer operations, the area must be aligned on a X'7C'
boundary (the first 124-byte boundary after a 256-byte
boundary).

Macro Instruction Statements 23

OVFL-number is a decimal number specifying the overflow
line for line-printer output files. If this operand is not
entered, zero is assumed and 60 is inserted by the open
routines.

PG-number is a decimal value specifying the total number
of lines on the form used by the printer file. The number
must not be greater than 112; if the operand is not entered,
66 is assumed.

MSKP-number specifies the maximum line number used in
the skip-before or skip-after byte of the line-printer DTF.
If this operand is not entered, zero is assumed.

Note: The generated code from the $GPU macro instruc­
tion does not perform carriage control for printer files. To
prevent overprinting, you must set the space before, space
after, skip before, skip after bytes in the printer DTF to
perform the spacing you desire.

REPL Y-number specifies the decimal length of the
operator's reply for a write-to-operator-with-reply opera­
tion on the console. If this operand is not entered, zero is
assumed and you must update the entry before the opera­
tor's reply can be received.

SPACE-number is specified only for console files. It is a
two-digit decimal number that indicates the number of
lines to be spaced before and after the console operation.
The first digit specifies the space before; the second, the
space after. If only one digit is specified, it is assumed to
be the space-after value. If this operand is not entered,
zero is assumed.

Note that at least one space-before is performed for all
console operations.

F/LL-Y or N specifies whether the operator must fill the
input or reply record for console files. If this operand is
not entered, N (no) is assumed.

CHK-Y or N specifies whether the console operation must
be completed before control is returned to your program.
N indicates a check for completed operation w ill be per­
formed at the time of the operation; the console operation
must be completed before control returns. Y indicates no
check w ill be performed at the time of the operation;
control returns directly after the console operation is
started. See Construct an Interface to the Printer-
Keyboard ($PKBU) and Check for I/O Completion ($CHK)
for more information on console operations. If this
operand is not specified, N is assumed.

RTN-Y or N is specified only if CHK-Y was specified for a
console operation. This operand specifies the type of check
operation to be performed. If Y is specified, the console
operation is checked for completion and control is returned
to your program with a completion code to indicate
whether the operation was completed. If N is specified,
the console operation is checked for completion and a
wait is performed if the operation is not completed.
Control is not returned to your program until completion
occurs. If this operand is not specified, N is assumed.

If the entry specified in the CHEK parameter in the $DTFU
or $PKBU macro instruction is not the same as the entry
specified in the RTN parameter of the $CHK macro in­
struction, control does not return from a console operation
until the operation has been completed. For more infor­
mation on specifying the check operation for the console,
see Construct an Interface to the Printer-Keyboard
($PKBU).

REQK-Y or N specifies whether the request key must be
pressed before an input record is accepted from the con­
sole. If this operand is not entered, N (no) is assumed.

24

Unit Record D TF Offsets ($DTOU) Get or Put for Unit Record ($GPU)

This macro instruction generates a list of equates to estab­
lish labels in the unit record DTFs. These labels are offsets
from the beginning of the DTF and are used as displace­
ments from the beginning of the DTF when you must
access the DTF. The labels assigned by this macro instruc­
tion are shown with the respective DTFs in Appendix B:
Define the File Control Blocks. You must not issue this
macro instruction more than once for each unit record
device.

The format of the $DTOU macro instruction is:

$DTOU [DEV-code]

Note: You do not assign a name to the $DTOU macro
instruction.

DEV-code specifies the device described in the related
DTF. If the operand is not entered, MFCU is assumed.
The valid codes are:

Code Meaning

MFCU MFCU
PRNTR Line printer
D1442 1442 Card Read/Punch
CONSOL 5471 Printer-Keyboard

You can use this macro instruction in one of three ways:

• Get data from an input file

• Put data to an output file

• Get data from and put data to a combined file

You may write your own routines to handle special condi­
tions, such as:

• An end-of-file routine for input files

• An error handling routine

• An overflow routine for printer files

This macro instruction requires that you use the $DTOU
macro instruction to establish the labels for the unit
record DTF. If you w ill need to use the data in register 2
at a later time, you should save the contents of that register
before issuing the $GPU macro instruction.

Note: The generated code from the $GPU macro instruc­
tion does not perform carriage control for printer files. To
prevent overprinting, you must set the space before, space
after, skip before, skip after bytes in the printer DTF to
perform the spacing you desire.

The format of the $GPU macro instruction is:

[Name] $GPU ERR-address,MODUL-label
[,OPC-codeJ [,DEV-code]
[, DTF-address] [,EOF-address]
LOVRTN-address]
LDEFER-Y/N]

Macro Instruction Statements 25

ERR-address specifies the address of a routine you supply
to handle permanent error conditions encountered during
the input or output operation. This operand is required.

In your error handling routine, you must determine
whether to cancel the program or continue processing with
the next record. You may wish to determine the type of
error encountered before canceling or continuing the pro­
gram. The type of error is indicated in the DTF. (See
Appendix B: Define The File Control Blocks.)

MODUL-iabei provides the name of the system data
management routine to be used for the input/output
operation. Figure 14 shows the names of the system
routines and the functions they provide. You must iden­
tify the label used in this operand by specifying it as the
operand of an EXTRN instruction in your program. This
operand is required.

Note: In order to conserve main storage, you should
determine whether you can use the same module for
more than one function rather than a new module for
each function. For example, if you want to read, punch,
and print, specifying $$MFFF would use less main storage
than using $$MFRD, $$MFPU, and $$MFPR.

OPC-code indicates the input/output operation to be per­
formed. If this operand is not entered, READ is assumed.
The following codes may be specified:

Code Meaning

READ Read from the MFCU or 1442
Card Read/Punch

RDPRT Read and print on the MFCU
RDPCH Read and punch on the MFCU
RDPP Read, punch, and print on the MFCU
PUNNF Punch, with no feed, on the 1442
PUNCH Punch on the MFCU or 1442
PUPR Punch and print on the MFCU
PRINT Print on a line printer or MFCU

This operand is used with the MODUL operand to perform
the operation.

System
Device Module Functions

MFCU $$MFRD Reads cards from either hopper.

$$MFPU Punches cards from either hopper.

$$MFPR Prints on cards from either hopper.

$$MFRU Reads and/or punches cards from either hopper.

$$MFRP Reads from and/or prints on cards from either hopper.

$$MFPP Punches and/or prints cards from either hopper. The defer operation may
also be used.

$$MFFF Supports the following functions:

• Read
• Punch
• Print
• Punch deferred
• Print deferred

1442 $$ARFF Feeds, reads, and punches cards.

5203/1403 $$LPRT Performs printing, skipping, and spacing as requested through the DTF.

Console $$COAM Performs input and output operations on the printer-keyboard.

Note: These modules are described in more detail in IBM System/3 Models 4, 6, 8, and 10 Data Management and
Inpu t/O u tpu t Supervisor Logic Manual, SY21 -0512.

Figure 14. System Unit Record Module Names and Functions

26

Note 1: When you issue a combined command involving a
read, the output operations are performed on the card
presently at the wait station and before the next card is
read. Therefore, before issuing the first combined com­
mand, you must issue a READ command to get the first
input record and advance it to the wait station.

Note 2: For any read operation, the logical record address
(specified by RCAD in the DTF) is replaced by the current
input buffer address. Before a combined file is used for
output, you should ensure that the logical record address
(offset $RDLRA for the MFCU or $FDLRA for the 1442)
points to the logical record for the output operation. This
can be done by using the input buffer as the logical record
or by storing the logical record address at the offset before
performing the output operation.

DEV-code specifies the device for the file. If this operand
is not entered, MFCU is assumed. The following codes
may be specified:

Code Meaning

MFCU or MFCU1
MFCU2
PRNTR or PRNTR1

PRNTR2
D1442

MFCU, primary hopper
MFCU, secondary hopper
5203 printer (left carriage) or
1403 printer
5203 printer (right carriage)
1442 card read/punch

DTF-address specifies the address of the DTF for the file.
If this operand is not entered, the address is assumed to be
in register 2.

EOF-address is used only with the input function. This
operand provides the address of a routine you have written
that is to receive control when end-of-f ile is reached.

OVRTN-address is required for line printer output files. It
specifies the address of your routine that handles the over­
flow condition.

DEFER-Y or N is used only with output operations to the
MFCU. This operand enables you to print one record on a
card and punch a different record in the same card. To do
this, you first issue the $GPU macro instruction for either
a print or a punch with DEFER-Y. You then modify the
logical record as needed to a different format and issue
another $GPU macro instruction for the remaining opera­
tion with DEFER-N. Both operations are then performed.
If this operand is not specified, N (no) is assumed.

Construct an Interface to the Printer-Keyboard ($PKBU)

This macro provides access to the 5471 Printer-Keyboard
(console). The following functions are provided:

• Get a record

• Put a record

• Write to operator with reply

To use this macro instruction, you must issue the $DTOU
macro instruction to establish the labels for the unit
record DTF. If you w ill need to use the data in register 2
at a later time, you should save the contents of that register
before issuing the $PKBU macro instruction.

The format of the $PKBU macro instruction is:

[Name] $PKBU [OPC-code] [,DTF-address]
[,ERR-address] [,RECL-number]
[,REPLY-rlumber] [,SPACE-number]
[,RCAD-address] [,REQK-Y/NJ
[,F ILL -Y /N] [,EOF-address]
[,CHK-Y/N] [,RTN-Y/N]

OPC-code specifies the operation xo oe performed. If this
operand is not entered, SET is assumed. The operation
codes are:

Code Meaning

GET
PUT
WTOR

SET

Get a record from the console
Put a record to the console
Put a record to the console and
get a reply
Use the operation previously
defined for this DTF. If there is no
previous operation established, PUT
is assumed

DTF-address is the address of the high-order byte of the
DTF to be used in this operation. If this operand is not
specified, the address is assumed to be in register 2.

Macro Instruction Statements 27

ERR-address specifies the address of your error routine
which receives control whenever a permanent error is
detected on the console. If this operand is not entered,
no checks are performed for permanent error conditions.

This operand should not be used when CHK-Y is specified.

RECL-number specifies the decimal length of the logical
record. If this operand is not entered, the record length
previously established in the DTF is used.

REPLY-number specifies the decimal length of the reply
to be received during a WTOR operation. If this operand
is not entered, the reply length previously established in the
DTF is used.

SPACE-number is a two-digit decimal number that indi­
cates the number of lines to be spaced before and after the
console operation. The first digit specifies the number of
lines to space before; the second digit specifies the number
of lines to space after the operation. If only one digit is
specified, it is used as the space-after value. If this operand
is not entered, the spacing values previously established in
the DTF are used. In any case, the console always per­
forms at least one space before for each operation.

RCAD-address specifies the address of the leftmost byte
of the buffer area used. If this operand is not entered, the
address previously established in the DTF is used.

REQK-Y or N specifies whether the request key must be
pressed before an input record can be accepted from the
console. If the operand is not entered, the entry previously
established in the DTF is used.

Note 1: When REQK-Y is specified, the program must be
identified as an inquiry program (a program that calls ro ll­
out) when the program is linkage-edited.

Note 2: When FTYP-G is specified,in the$DTFU macro
instruction, or when OPC-WTOR is specified in the $PKBU
macro instruction, REQK-Y is ignored.

FILL-Y or N specifies whether the input or reply record
from the operator must be the exact length requested. If
this operand is not entered, the entry previously established
in the DTF is used.

EOF-address is the address of the routine in your program
that is to receive control when an end-of-file record is read
from the printer keyboard. This operand should not be
used when CHK-Y is specified.

CHK-Y or N specifies whether the console operation must
be completed before control is returned to your program.
N indicates a check for completed operation w ill be per­
formed; the console operation must be completed before
control returns. Y indicates no check. Control returns
directly after the console operation is started, w ith a com­
pletion code of X '00' to indicate the operation has not
been completed. The completion code is located in the
printer-keyboard post-open DTF at label $CDCMP. If
FTYP-C was specified in the $DTFU macro instruction or
if OPC-WTOR was specified in the $PKBU macro instruc­
tion, control is not returned to your program until the out­
put operation is completed. If this operand is not specified,
the option established in the DTF is used. See Note in the
discussion of RTN-Y or N.

RTN-Y or N is specified only if CHK-Y was specified for a
console operation. This operand specifies the type of
check operation to be performed. If Y is specified, the
console operation is checked for completion, and control
returns to your program. The completion code in the DTF
remains X'OO' until the operation is completed. You must
check the completion code in your program to determine
whether it has changed. If N is specified, the console
operation is checked for completion, and a wait is per­
formed if the operation is not completed. Control is not
returned to your program until completion occurs. The
completion code reflects the outcome of the operation.
If this operand is not specified, the option established in
the DTF is used.

If the entry specified in the CHEK parameter in the $DTFU
or $PKBU macro instruction is not the same as the entry
specified in the RTN parameter of the $CHK macro instruc­
tion, control does not return from a console operation until
the operation has been completed.

Note: When CHK-Y is specified for a console operation,
you must determine that the operation has been completed
before you can initiate another console operation. You can
do this in two ways:

1. Recall the operation, using the check function in the
console macro instruction.

2. Issue the $CHK macro instruction, using the associ­
ated check list macro instruction ($CKL).

28

The operation must be tested at least once to determine that
the operation was completed.

You can recall an operation by issuing the same macro in­
struction again or by issuing another $PKBU instruction
with no operands specified. If no operands are specified,
the address of the DTF must be in register 2. When the
operation is recalled, the CHK option is ignored and the
RTN option is used to determine the type of check
requested by the recall.

For more information on using the check routine to test
completion, see Constructs Check List f$CKL) and Check
fo r I/O Completion ($CHK)

Print a Message ($PRNT)

This macro instruction prints a message on the halt/syslog
device using the halt/syslog routines. This instruction
provides a printed message with wait and no halt. If you
w ill need to use the data in register 2 at a later time, you
should save the contents of that register before issuing the
$PRNT macro instruction.

Disk Device Support

This section describes the macro instructions that support
disk devices. The following functions are provided:

• Build a pre-open DTF for disk and assign its offsets.

• Build an input/output block (IOB) for disk and assign
its offsets.

• Build the interfaces required to get input records from
a disk device via a get or a read.

• Build the interfaces required to put output records to a
disk device via a put or a write.

• Build the routine to wait for disk completion.

The disk DTFs provide information to the disk data
management, and the disk lOBs provide information to
the input/output supervisor routines that perform the
input or output operations. These operations are pro­
vided through the disk support macro instructions.

Note: If the halt/syslog device has been allocated to your
program through another DTF, or if the length of the
message is greater than 132, no message is printed. Control
is returned directly to your program.

The format of the $PRNT macro instruction is:

[Name] $PRNT NAM E-address, LEN-number

NAME-address specifies the address of the leftmost byte of
the message you want printed. This operand is required. If
the SYSLOG device is a line printer, the message must be
aligned on a X'7C' boundary.

LEN-number is a decimal number specifying the length of
the message to be printed. This operand is required.

Macro Instruction Statements 29

Define the File for Disk ($DTFD)

The DTF provides information needed to allocate and
open a file on the disk device. This macro instruction
generates the code that builds the disk DTF. See
Appendix B: Define the File Control Blocks for a descrip­
tion of the pre-open and post-open disk DTFs.

The format of the $DTFD macro instruction is:

follows:
Code Access Method

CA Consecutive add
CG Consecutive get
CO Consecutive output
CU Consecutive update
DG Direct get
DO Direct output
DU Direct update
IA Indexed add
10 Indexed output
IR Index random get
IRA Index random add
IRU Indexed random update
IRUA Indexed random update and add
IS Indexed sequential get
ISA Indexed sequential add
ISU Indexed sequential update
ISUA Indexed sequential update and add

10-address provides the address of the leftmost byte of an
area in main storage reserved fo r all buffers and lOBs for
the access method. OPEN allocates buffers and builds the
lOBs. This operand must be specified. The amount of
main storage required is:

[(BLKL+X) times BUFNO]
plus (256 + X) if the access method is indexed;
plus (256 + X + one key length) if the access method is

indexed multivolume;
plus (Y) if the file type is multivolume and the access

method is indexed random,
where:

X = 22 bytes when using the 5444;
26 bytes when using the 5445

Y = 32 bytes for 5444 multivolume random input or
update;

16 bytes for 5445 multivolume random input or
update;

88 bytes for 5444 multivolume random add or
update and add;

52 bytes for 5445 multivolume random add or
update and add

BLKL-number specifies the number of bytes in the buffer.
The minimum number can be determined as follows:

• If the record length is less than or equal to 256 and
evenly divisible into 256, the buffer length is 256.

• If the record length is greater than 256 and a multiple
of 256, the buffer length is equal to the record length.

• If the record length is not evenly divisible into 256 and
not a multiple of 256, the buffer length is the multiple
of 256, next higher than the record length plus 255.

Note: These buffer lengths are minimum lengths. Larger
lengths may be specified, but they must be in multiples of
256.

The following access methods can always operate in a
minimum of a 256-byte buffer:

[Name] $DTFD AC-code, RECL-number,
NAME-filename,I O-address,
BLKL-number LDISK-5444/5445]
[,UP-mask] [,BUFNO-1/2]
[,M VF-N /Y] [,L IM -N /Y]
LORD-N/Y] LBIN-N/Y]
[,CHN-address] [,RCAD-address]
LENT-number] [,MSTX-address]
[,MVFN-number] [,KEYL-number]
[,KEYD-number] [,KEYA-address]
LMVFT-address]

AC-code specifies the access method used for the file. This
operand is required. The codes and their meanings are as

RECL-number specifies the decimal length of the logical
record. This operand must be specified.

NAME-file name specifies the name of the file. The name
may be eight characters or less in length. This operand
must be specified.

Consecutive output
Consecutive add
Consecutive output multivolume
Consecutive add multivolume
Consecutive input
Consecutive input multivolume
Indexed output
Indexed output and add
Indexed output multivolume
Indexed sequential input
Indexed sequential input with limits
Indexed sequential input multivolume

30

DISK-5444 or 5445 specifies whether the disk device is
the IBM 5444 Disk Storage Drive or the IBM 5445 Disk
Storage. If this operand is not specified, 5444 is assumed.

UP-mask specifies the settings of the external (// SWITCH
statement) indicators used for conditionally opening files.
The code must be specified as eight binary bits. For
example, to set on bits 0, 3, 5, and 7, you would enter
UP-10010101. If this operand is not entered, zeros are
assumed.

BUFNO-1 or 2 allows you to specify either one or two
buffers for the file. You can use two buffers only with
consecutive access methods. All consecutive access
methods allow dual buffering except the consecutive
update and consecutive update multivolume. If this
operand is omitted, one buffer is assumed.

MVF-N or Y specifies whether the access method is m ulti­
volume. If this operand is omitted, N (no) is assumed.

RCAD-address specifies the address of the leftmost byte of
the logical record. If this operand is not entered, X'0000'
is assumed. Depending on the disk access method being
used for an input operation, either move mode or locate
mode is used. If move mode is used, the record is provided
at the address specified in the RCAD parameter. If locate
mode is used, the address of the input record is contained
at label $DFWKB in the DTF. For information on the

| mode used by the different access methods, see Figure 16.

ENT-number specifies the number of entries in the master
track index. This operand is specified only for indexed
random or indexed add access methods. The number of
entries in the master track index is one less than the
number you specify in this operand for 5445 single volume
files (two less for 5445 multivolume files), when the
following access methods are used:

• Indexed add

• Indexed random input and add

• Indexed random input, update, and add

L/M-N or Y is specified only for indexed sequential get
and indexed sequential update. It specifies whether the
sequential access is w ithin limits. If this operand is not
entered, N (no) is assumed.

ORD-N or Y specifies whether an ordered load is to be used
with the indexed output access method. This operand can
be specified only with the indexed output access method.
ORD-Y must be specified for indexed multivolume output
access methods. If this operand is not entered, N (no) is
assumed.

BIN-N or Y is specified only with the direct output, direct
get, and direct update access methods. Y (yes) indicates
direct binary relative record numbers; N (no) indicates
direct decimal relative record numbers. If this operand is
omitted, N is assumed.

CHN-address indicates the address of the next DTF in the
chain of DTFs. If there is no DTF chain, the operand is
omitted and X'FFFF' is assumed.

Macro Instruction Statements 31

MSTX-address specifies the address of the leftmost byte
of the master track index in main storage. This operand
must be specified for indexed random and indexed add
access methods. You must allocate space in main storage
for the master track index. The length of the master
track index is determined by the following formulas:

• For single volume random input or update access methods:
Length = ENT (key length + 2)

• For single volume random add or update and add access
methods, 5444/5445:

Length = ENT (key length + 2)
3340:

Length = ENT (key length + 2) + 2 (key length)

• For multivolume random input or update access methods,
5444:

Length = ENT (key length + 2)
ENT must be equal to or greater than 4.

5445/3340:
Length = ENT (key length + 2)
ENT must be equal to or greater than 2.

• For multivolume random add or update and add access
methods, 5444:

Length = ENT (key length + 2)
ENT must be greater than or equal to 4.

5445:
Length = ENT (key length + 2)
ENT must be greater than or equal to 2.

3340:
Length = ENT (key length + 2) + 2 (key length)

MVFN-number indicates the number (in hexadecimal) of
volumes for a multivolume direct access method. This
operand must be specified for these access methods.

KEYL-number specifies the length of the key field and
must be used for all indexed access methods but no others.
The key field length can be no more than 29 bytes.

KEYD-number is entered for all indexed access methods.
It indicates the displacement into the record of the right­
most byte of the key field. The displacement of the first
byte in the record is zero, the second byte is one, and so
on.

KEYA-address specifies one of the following:

• Main storage address of the leftmost byte of the key
field for indexed random access methods.

• Main storage address of the leftmost byte of the
relative record number field for direct access methods.

• Main storage address of the leftmost byte of the save
area for current and last keys for indexed sequential
add access methods.

• Main storage address of the leftmost byte of the save
area for high and low keys for indexed sequential with
limits access methods (LIM-Y).

This operand is required for these access methods.

You must allocate the main storage space for the fields.
The amount of space required is:

• The number of bytes in the key field for indexed
random access methods.

• 23 bytes for direct access methods with decimal keys.
The decimal key is located in the rightmost 15 bytes
of the field.

• 8 bytes for direct access methods with binary keys.
The binary key is located in the rightmost 3 bytes of
the field.

• Two times the key length for indexed sequential add
or indexed sequential with limits access methods. The
low key is located in the left half of the field, the high
key in the right half.

MVFT-address must be specified for all multivolume
direct files, and only for the access methods used with
these files. This operand specifies the address of the left­
most byte of the table of extents used for the access
methods used with these files. You must allocate main
storage space for the table. The number of bytes allocated
must be equal to six times the number of volumes in the
file for the 5444; seven times the number of volumes for
the 5445.

Disk D TF Offsets ($D TOD)

This macro instruction generates a list of equates used to
label the fields in the post-open disk DTF. The labels
generated are provided with the disk post-open DTF in
Appendix B: Define the File Control Blocks. The labels
generated by the macro instruction are offsets from the
beginning of the DTF and must be used as displacements
from the DTF address when you access the DTF.

The format of the $DTOD macro instruction is:

$DTOD

32

This macro instruction generates a disk input/output
block (IOB) for use by the disk input/output supervisor.
A 22-byte IOB is generated for 5444 disk devices, a 26-
byte IOB is generated for 5445 disk devices. For a detailed
description of the disk IOB, see Appendix C: Disk in p u t/
Output Block.

Input/Output Block for Disk ($/OBD) NUM-number specifies the number of sectors used. You
may specify the number in either decimal or hexadecimal
form. If this operand is not entered, X '00' is assumed.
You must then update this number in the IOB before
performing the input/output operation. This can be done
through the macro instruction used to issue the input/
output operation.

The format of the $IOBD macro instruction is:

[Name] $IOBD [DISK-5444/5445] [,CYL-number]
[,SCTR-number] [,HEAD-number]
[,NUM-number] [,BUFF-address]
[,Q-number] f.ERREC-IQS/USER]
LLOG-Y/N] [,VER -Y/N]
[,CHN-address]

Disk-5444 or 5445 specifies whether the disk device being
used is the IBM 5444 Disk Storage Drive Model 1 or the
IBM 5445 Disk Storage.

CYL-number indicates the beginning cylinder to be accessed.
You can specify the cylinder by a decimal number (1-199) or
or a hex number (X'01'-X'C7') for the 5445, a decimal num­
ber (4-202) or a hex number (X'04'-X'CA') fo r the 5444, or
a decimal number (1-166) or a hex number (X '01'-X 'A6')
for the 3340. If this operand is not entered, X 'FF ' is assumed,
You must then insert the correct number into the IOB before
performing the input/output operation. This can be done
through the macro used to initiate the I/O operation.

SCTR-number specifies the first sector to be accessed. The
number specified must be a decimal from 1 through 48 for
the 5444 and 3340 disk drives or from 1 through 20 for the
5445 disk drive. If this operand is not entered, X 'FF ' is
assumed. You must then insert the correct number before
performing the input/output operation. You can specify the
sector through the $RDD and $WRTD macro instructions.

HEAD-number is specified o n ly fo rth e 5445 disk storage
drive. It specifies the head to be used w ith the cylinder
and sector when an I/O operation is performed. The
number specified may be decimal (0-19) or hexadecimal
(X '00'-X'13'). If this operand is omitted, X 'FF ' is
assumed and the value must be updated when the I/O
operation is performed.

BUFF-address is the address of the leftmost byte of your
data area. If this operand is omitted, X 'FFFF' is assumed,
and you must update the IOB before performing the
input/output operation.

Q-number specifies the drive on which the record is lo­
cated. You may specify the disk drive alone (F1,R1,F2,
R2,D1,D2), or you may specify the hexadecimal Q-code
in the form Q-X'nn', where nn is a valid hexadecimal Q-
code. The valid Q-codes are shown in Figure 15. If you
specify only the disk drive, you must set the read/write
bits (the last four bits of the Q-code) before you can per
form the I/O operation. This can be done through the
$RDD or $WRTD macro instructions.

I/O
Operation

Q-Byte Setting (Hex)

DRIVE 1 DRIVE 2

5444 Removable Disk

Control AO B0

Read A1 B1

Write A2 B2

Scan A3 B3

5444 Fixed Disk

Control A 8 B8

Read A9 B9

Write AA BA

Scan AB BB

5445 Disk

Control CO C8

Read C1 C9

Write C2 CA

Scan C3 CB

Figure 15. Q-Byte Hexadecimal Settings

Macro Instruction Statements 33

ERREC-IOS or USER indicates whether the input/output
supervisor is to handle error recovery. If you specify IOS,
the supervisor handles error recovery and retries the opera­
tion when errors occur. If you specify USER, the super­
visor does not retry the operation and returns control to
you. If this ooerand is not specified, IOS is assumed.

LOG-Y or N indicates whether the I/O supervisor is to log
errors that occur during the operation. If you specify
Y (yes), error conditions are logged on the system pack.
This information is used by IBM customer engineers. N
(no) indicates no logging is to be done for this IOB. If
this operand is not entered, Y is assumed.

VER-Y or N is used for output operations. Y (yes) indi­
cates the written data should be verified; N (no) indicates
it should not. If this operand is omitted, Y is assumed.

CHN-address specifies the address of the leftmost byte of
the next IOB for the operation if more than one IOB is
required.

Input/O utput Block Offsets ($10ED)

This macro instruction generates equates to establish labels
for the disk lOBs. These labels are offsets from the begin­
ning of the IOB and are used as displacements from the
beginning of the IOB when you wish to refer to one of
the fields. The labels generated by this macro instruction
are given w ith the fields o f the IOB in Appendix C: Disk
Input/O utput Block.

The format of the $IOED macro instruction is:

I $lOED I I

Construct a Disk Get Interface ($GETD)

The $GETD macro instruction generates the interface
needed to communicate with disk data management when
a record is being read from a disk file. To use this macro
instruction, construct a disk DTF for the file and use the
$DTOD macro instruction to establish the offsets for the
DTF. You must also provide the labels for the necessary
data management routines through EXTRN statements in
your programs. The names of the data management mod­
ules and the functions of the modules are shown in Figure
16. If you w ill need to use the data in register 2 at a later
time, you should save the contents of that register before
issuing the $GETD macro instruction.

The code generated by this macro instruction gives con
trol to the data management routine; the routine com­
pletes execution and returns control to the generated
code. The generated code tests the completion codes
returned by data management.

The format of the $GETD macro instruction is:

[Name] $GETD AC-code [,DTF-address]
[,ERR-address] [,EOF-address]
[,NRF-address] [,LSTV-address]
[,NOKY-address]

34

AC-Code M ove/ System Module
$GETD $PUTD 5444 5445 Locate

Mode 5444 5445 Access Method

y CA CA5 M $$CSOP $$CFOP Consecutive Add
y CAM CAM5 M $$CSOM $$CFOM Consecutive Add Multivolume

v/ CG CG5 M $$CSIP $$CFIP Consecutive Get
v/ CGM CGM5 M $$CSIM $$C F IM Consecutive Get MVF

y CO C05 M $$CSOP $$CFOP Consecutive Output
y COM COM5 M $$CSOM $$CFOM Consecutive Output MVF

v/ y CU CU5 L $$CSUP $$CFUP Consecutive Update
v/ y CUM CUM5 L $$CSUM $$CFUM Consecutive Update MVF

1/ DG DG5 L $$DAID $$DFID Direct Get
y DGA DGA5 L $$DAIB $$DFIB Direct Get (Binary Keys)
y DGAM DGAM5 L $$DAIT $$D FIT Direct Get (Binary Keys) MVF
y DGM DGM5 L $$DAIM $$DFIM Direct Get MVF

y y DO D 05 L $$DAUD $$DFUD Direct Output
y y DOA DOA5 L $$DAUB $$DFUB Direct Output (Binary Keys)
y y DOAM DOAM5 L $$DAUT $$DFUT Direct Output (Binary Keys) MVF
y y DOM DOM5 L $$DAUM $$DFUM Direct Output MVF

y y DU DU5 L $$DAUD $$DFUD Direct Update
y y DUA DUA5 L $$DAUB $$DFUB Direct Update (Binary Keys)
y y DU AM DUAM5 L $$DAUT $$DFUT Direct Update (Binary Keys) MVF

* / DUM DUM5 L $$DAUM $$DFUM Direct Update MVF

y IA IA5 M $$IOAD $$l FAD Indexed Add
y IAM IAM5 M $$IOAM $$l FAM Indexed Add MVF
y IO I0 5 M $$IOUT $$l FUT Indexed Output
y IOM IOM5 M $$IOUM $$l FUM Indexed Output MVF

y IR IR5 L $$l R IP $$l GIP Indexed Random Input
y V IRA IRA5 L $$IRAD $$IGAD Indexed Random Add
y y IRAM IRAM5 L $$IRAM $$IGAM Indexed Random Add MVF
t / y IRBM IRBM5 L $$l RBM $$IGBM Indexed Random Update & Add MVF

i / IRM IRM5 L $$IR IM $$IG IM Indexed Random Input MVF
✓ y IRU IRU5 L $$IRUP $$IGUP Indexed Random Update
i / S I RUA IRUA5 L $$l RUA $$IGUA Indexed Random Update & Add
y y IRUM IRUM5 $$IRUM $$IGUM Indexed Random Update MVF

y
/

IS IS5 M $$ISIP $$IHIP Indexed Sequential Input
y ISA ISA5 M $$ISAD $$l HAD Indexed Sequential Add
y y ISAM ISAM5 M $$ISAM $$l HAM Indexed Sequential Add MVF
y / ISBM ISBM5 M $$ISBM $$l HBM Indexed Sequential Update & Add MVF

y ISL ISL5 M $$ ISIL $$IH IL Indexed Sequential Input Within Limits
y ISM ISM5 M $$ISIM $$IH IM Indexed Sequential Input MVF
y y ISU ISU5 L $$ISUP $$l HUP Indexed Sequential Update
S y ISUL ISUL5 L $$ISUL $$l HUL Indexed Sequential Update Within Limits

y y ISUM ISUM5 L $$ISUM $$l HUM Indexed Sequential Update MVF
y y ISUA ISUA5 M $$ISUA $$IHUA Indexed Sequential Update & Add

The Model 12 does not support multivolume or indexed disk files in the simulation area; thus AC (access) codes in these
macros reflect these differences.

Figure 16. Disk Data Management Modules

Macro Instruction Statements 35

AC-code specifies the appropriate access method. One of
I the codes from Figure 16 must be used.

DTF-address indicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

ERR-address supplies the address in your program where
control should be passed in the event of a permanent I/O
error. If this operand is not specified, no permanent I/O
error checking code is generated.

EOF-address specifies the address in your program that
receives control when the end of file is detected. You
must not use this operand with random or direct access
methods.

NRF-address must be used only for random and direct
access methods. It specifies the address in your program
that is to receive control when a no-record-found condition
occurs.

LSTV-address is used when processing a random, offline,
multivolume file. This operand supplies the address in
your program which receives control when the requested
key is too high for the final volume in a multivolume file.

NOKY-address supplies the address in your program that
is to receive control under either of the following condi­
tions:

• The requested key is too low for the current volume
when processing an indexed random offline m ulti­
volume file.

• The requested key is too high for any volume when
processing an indexed random online multivolume file.

This operand is not used with other access methods.

This macro instruction generates an interface to the disk
input/output supervisor that is to read from the disk
device. When using this macro instruction, you must:

• Provide an IOB and use the $IOED macro instruction
to establish the offsets in the IOB.

• Wait for the completion of the input operation.

• Check for end of data when the record is received.

If both reading and writing are to be performed (using the
same lOB) for a program, the bits of the Q-byte will be
altered to cause an invalid operation. In this case, you must
set o ff the bits of the Q-byte for all but the first read (or
write) operation in the program.

If you w ill need to use the data in register 1 at a later time,
you should save the contents of that register before issuing
the $RDD macro instruction.

The format of the $RDD macro instruction is:

Read From Disk ($RDD)

[Name] $RDD 1 OB-address,CS-address,NS ECT-nu mber
t.DISK-5444/54451

/OB-address provides the address of the leftmost byte of
the IOB which you created through your $IOBD macro
instruction. The label provided must be the same as the
name specified on your $IOBD macro instruction.

CS-address is the address of the rightmost byte o f the
main storage area containing the disk cylinder/sector
address of the area you want to read. The cylinder/sector
address for use w ith the 5444 is a two-byte, hexadecimal
number. The first byte specifies the cylinder; the second
specifies the sector. For use with the 5445, a three-byte
hexadecimal disk address is provided through this entry.
The first byte specifies the cylinder; the second, the head
number; the third, the sector.

NSECT-number indicates the hexadecimal number of
sectors, minus one, to be read in this operation.

36

DISK-5444 or 5445 specifies whether the operation is on
a 5444 disk drive or a 5445 disk drive. If this operand is
omitted, 5444 is assumed.

The $PUTD macro instruction generates the interface
needed to communicate with disk data management when
putting a record to disk or updating a previously retrieved
record. You must provide a DTF for the file and use the
$DTOD macro instruction to establish the offsets in the
DTF. You must also provide, through EXTRN statements
in your program, the labels of the disk data management
modules necessary to perform the output operation. (See
Figure 16). If you w ill need to use the data in register 2
at a later time, you should save the contents of that regis­
ter before issuing the $PUTD macro instruction.

The code generated by this macro instruction gives control
to the data management routine; the routine completes
execution and returns control to the generated code. Com­
pletion codes are tested and control is returned to your
program.

The data management used for direct output is really for
direct update; therefore, you must use the update method
of processing.

The format of the $PUTD macro instruction is:

Construct a Disk Put Interface ($PUTD) DUP-address provides the address in your program that is
to receive control when an attempt to add a duplicate
record has occurred. This operand is used only w ith an
add access method.

SERR-address is the address in your program where control
is passed in the event of a sequence error while loading an
indexed file.

KERR-address specifies the address of your routine to be
called when an attempt has been made to update a record
in an indexed file and the attempt would destroy the
record key.

UPD-Y or N indicates whether an update is to be per­
formed. If this operand is not entered, N (no) is assumed.

LSTV-address specifies the address in your program that
receives control when a requested key is too high for
the last specified volume. This operand is used only
when processing an indexed, random, offline, m ulti­
volume file.

NOKY-address supplies the address in your program that
is to receive control under either of the following condi­
tions:

• The requested key is too low for the current volume
when processing an indexed, random, offline, multi-

AC-code specifies the access method being used. One of volume file,
the codes from Figure 16 must be used.

• The requested key is too high for any volume when
processing an indexed random online multivolume file.

DTF-address specifies the address of the DTF associated
with this file. If this operand is not specified, the address This operand js not used w ith other access methods.
is assumed to be in register 2.

[Name] $PUTD AC-code[,DTF-address]
[,ERR-address] [,EOX-address]
[,DUP-address] [,SERR-address]
[,KERR-address] [,UPD-Y/N]
[,LSTV-address] [,NOKY-address]
LHKER-address]

ERR-address is the address of the area in your program
where control should be passed when a permanent I/O
error occurs. If this operand is not specified, no permanent
I/O error checking code is generated.

EOX-address supplies the address in your program that is
to receive control when an end of extent is reached during
the operation. This operand is entered only when creating
a consecutive or indexed file or when records are to be
added to the file.

HKER-address specifies the address in your program that
is to receive control when an indexed sequential add multi
volume is attempted and the requested key is higher than
any key presently in the file, but lower than the highest
permissible key.

Macro Instruction Statements 37

This macro instruction generates an interfac° to the disk
input/output supervisor needed to write recdids to disk.
When you use this macro instruction, you must:

• Provide an IOB, and use the $IOED macro instruction
to establish the offsets in the IOB.

• Wait for the completion of the output operation.

If both reading and writing are to be performed (using the
same IOB) for a program, the bits of the Q-byte will be
altered to cause an invalid operation. In this case, you
must set o ff the bits of the Q-byte for all but the first
read (or write) operation in the program.

If you w ill need to use the data in register 1 at a later time,
you should save the contents of that register before issuing
the macro instruction.

The format of the $WRTD macro instruction is:

Write to Disk ($WRTD)

[Name] $WRTD I OB-address,CS-address,NSECT-number
F.DISK-5444/54451

/OB-address provides the address of the disk IOB for this
operation. The address is the name specified on the
related $IOBD macro instruction.

This macro instruction is used w ith the $RDD and
$WRTD macro instructions. It generates the code which
allows you to wait for completion of the disk IOS opera­
tion. You provide the label of the associated IOB (whose
offsets are established through the $IOED macro instruc­
tion) and an address to receive control in the event of an
error. If you w ill need to use the data in register 1 at a
later time', you should save the contents of that register
before issuing the $WAIT macro instruction.

The format of the $WAIT macro instruction is:

I [Name] I $W AIT I [IOB-label] [,ERR-address]

Wait for Disk /OS Completion ($WAIT)

lOB-label is the name assigned to the IOB in the $IOBD
macro instruction. This same IOB must have previously
been specified in either a $RDD or $WRTD macro instruc­
tion. If this operand is not entered, the address is assumed
to be in register 1.

ERR-address specifies the address of the routine in your
program that handles errors detected in the operation. If
this operand is not entered, no error checking is performed.

CS-address is the address o f the rightmost byte o f the
main storage area containing the disk cylinder/sector
address of the area to which you want to write. The
cylinder/sector address for use with the 5444 is a two-
byte hexadecimal number. The first byte specifies the
cylinder; the second specifies the sector. For use with
the 5445, a three-byte hexadecimal disk address is pro­
vided through this entry. The first byte specifies the
cylinder; the second, the head number; the third, the
sector.

NSECT-number specifies the number of disk sectors,
minus one, to be written.

DiSK-5444 or 5445 specifies whether the operation is on
a 5444 disk drive or a 5445 disk drive. If this operand is
omitted, 5444 is assumed.

38

Tape Device Support Define the File fo r Tape ($DTFT)

This section describes the macro instructions that support
the IBM 3410/3411 Magnetic Tape Subsystem. The fo llow ­
ing functions are provided:

• Build a pre-open DTF for tape and assign its offsets.

The DTF provides information needed to allocate and open
a tape device. This macro instruction generates the code
that builds the tape DTF. See Appendix B: Define the
File Control Blocks for a description of the pre-open and
post-open DTFs.

• Build the interfaces required to read input records from
a tape device via a get or a read.

• Build the interfaces required to write output records to
a tape device via a put or a write.

• Build the interface required to issue tape control
commands.

• Wait for completion of read, write, or tape control
operations.

The format of the $DTFT macro instruction is:

[Name] $DTFT NAME-filename,IO-address,
AC-IN/OUT,BLKL-number,
RECL-number [,UP-mask]
[,CHN-address] [,BASIC-Y/fc[]
f.MODE-LOCATE/M OVE]
[,MBUFF-Y/N] [,RCAD-address]
[,RECFM-code] [,LIOA-number]
[,SPAN-Y/N] [,CODE-A/E]
[,OSET-B/number] [,END-code]

The tape DTFs provide information to the tape data manage­
ment routines that perform the input/output operations.
These operations are provided through the tape support
macro instructions.

NAME-filename is a required operand specifying the name
of the tape file. The filename can be up to eight characters
in length and must be the same as the name on the / / FI LE
statement.

iO-address specifies the address of the leftmost byte of the
main storage area used to contain all buffers and lOBs. This
operand is required. The length of the area specified by
this address is specified in the LIOA operand.

Note: If basic data management routines are used to
process the file, this operand should point to a 22-byte
area to contain the tape IOB.

AC-/N or OUT specifies the type of file. IN specifies an
input file; OUT, an output file. This operand is required.

BLKL-number is a required operand that specifies the
decimal block length for the file. The minimum block
length allowed is 18 bytes. If a shorter length is specified,
18 is assumed. For files w ith fixed-length records, the
block length must be a multiple of the record length; for
files with variable-length records, the block length must
equal, the length of the longest record plus eight.

Note: If basic tape data management is used, the block
length in the DTF ($TDBKL) must be updated after the
file is opened and before any read or write operation is
performed. The field must also be updated before any sub­
sequent read or write if the length used is different than
the previous read or write.

Macro Instruction Statements 39

RECL-number is a decimal value specifying the length of a
logical record in'the file. If variable-length records are used
for the file, the record length specified must be equal to the
longest record plus four. The minimum record length when
variable-length records are used is four, which results in
zero-length records. The minimum record length for files
using fixed-length records is 18. This operand is required.

UP-mask specifies the settings of the external (// SWITCH
statement) indicators used for conditionally opening files.
The code must be specified as eight binary bits. For
example, to set on bits 0, 3, 5 and 7, you would enter
UP-10010101. If this operand is not entered, zeros are
assumed.

CHN-address indicates the address of the next DTF in the
chain of DTFs. If there is no DTF chain, the operand is
omitted and X 'FFFF' is assumed.

BASIC-Y or N specifies whether this DTF uses the basic
access method. If this operand is not entered, N (no) is
assumed.

Note 1: BASIC-Y must be specified if any of the following
macro instructions are used to process the file: $RDT,
$WRTT, $CTLT or $WTT.

Note 2: If you process ASCI I files using the basic access
method, you must translate the characters in your program.

Note 3: Multivolume files are supported with the basic
access method; the EXTRN that is used for this method
must be for $$BTMM. $$BTTM and $$BTAM cannot be
used in the same program. $$BTMM supports both single
and multivolume files.

Note 4: Deferred open is not allowed with the basic
access method.

MODE-LOCATE or MOVE indicates whether the locate
mode or move mode is used. If this operand is not speci­
fied, MOVE is assumed. When locate mode is specified,
the record address (RCAD-address) is set to the address
of the record in the buffer. When move mode is used,
records are moved from the buffer to the location speci­
fied by the record address.

Locate mode is valid only for input files.

MBUFF-Y or N indicates whether more than one buffer is
used. If this operand is not specified, N (no) is assumed.
The number of buffers is determined by the length of the
I/O area, specified by the LIOA operand.

RCAD-address specifies the symbolic record area address
when move mode is used. If this operand is not specified,
X'0000' is assumed and the address must be supplied when
the operation is requested.

Note: When basic tape data management routines are used
to process the file, this operand must point to an area of at
least 80 bytes for use by the open routine. After the file
is opened, another area can be used as the buffer. To do
this, you must update the buffer address at location
$TDWKB in the tape DTF.

RECFM-code specifies the record format used for the file.
The codes and their meanings are:

Code Record Format

F Fixed, EBCDIC or ASCI I
FB Fixed blocked, EBCDIC or ASCII
V Variable, EBCDIC
VB Variable blocked, EBCDIC
D Variable, ASCII
DB Variable blocked, ASCII

If this operand is not specified, F is assumed.

LIOA-number is the total decimal length of the I/O area.
If multiple buffers are used, the area must be large enough
to contain the lOBs and buffers for the number of buffers
used. The following formula can be used to determine the
length of the buffer area:

LIOA = (22 + block length) (number of buffers).

The minimum length of 102 bytes is assumed if this
operand is not specified.

SPAN-Y or N specifies whether spanned records are used.
If spanned records are used, BASIC-Y must also be
specified. If this operand is omitted, N (no) is assumed.
Specifying SPAN-Y causes the spanned record bit in the
tape label to be set on. When you use SPAN-Y, you must
span the records from block to block.

40

CODE-A or E specifies whether the file is an EBCDIC file
or ASCII file. If the file is an EBCDIC file, specify CODE-
E. If the file is an ASCII file or can be either ASCII or
EBCDIC, specify CODE-A. If this operand is not entered,
E is assumed.

Note: If CODE-A is specified in $DTFT, the CODE oper­
and in the $GETT or $PUTT macro instruction must also
be A. If CODE-E is specified in $DTFT, the CODE oper­
and in the $GETT or $PUTT macro instruction can be
either A or E.

OSET-B or number specifies the buffer offset of an ASCII
block. B indicates that the first four bytes of the block
contain the decimal block length and no buffer offset is
present. B is valid only when RECFM-D or RECFM-DB is
also specified. Only OSET-B or OSET-OO are valid for out­
put files. OSET-number specifies, in decimal, the length of
the buffer offset for the ASCII block. This buffer offset is
skipped over when the record is supplied to your program.
The maximum valid specification is OSET-99. If this oper­
and is not specified, zero is assumed.

END-code specifies the tape control actions to be taken
when the file is closed. The valid codes and their meanings
are:

Code Action

REWIND Rewind the tape
UNLOAD Rewind and unload the tape
LEAVE No action taken

If this operand is not entered, REWIND is assumed.

Tape DTE Offsets ($DTOT)

This macro instruction generates a list of equates used to
label the fields in the post-open tape DTF. The labels
created are provided with the tape post-open DTF in
Appendix B: Define The File Control Blocks. The labels
generated by the macro instruction are offsets from the
beginning of the DTF and must be used as displacements
from the DTF address when you access the DTF.

The format of the macro instruction is:

$DTOT

Construct a Tape Get interface ($GETT)

The $GETT macro instruction generates the interface
required to communicate w ith tape data management when
a record is being read from a tape file. To use this instruc­
tion, you must construct a tape DTF for the file and use
the $DTOT macro instruction to establish the offsets in the
DTF. If you w ill need to use the data in register 2 at a
later time, you should save the contents of that register
before issuing the $GETT macro instruction. You must
also provide the labels for the necessary data management
routines through EXTRN statements in your program. The
names and functions of the data management routines are
shown in Figure 17.

Module
Name

Type of File Being Processed

$$CSIT EBCDIC fixed input

$$CSOT EBCDIC fixed output

$$CSIA EBCDIC or ASCII fixed input

$$CSOA EBCDIC or ASCII fixed output

$$CSTI EBCDIC fixed or variable input

$$CSTO EBCDIC fixed or variable output

$$CSAI EBCDIC or ASCII fixed or variable input

$$CSAO EBCDIC or ASCII fixed or variable output

Figure 17. Tape Data Management Modules

Macro Instruction Statements 41

The code generated by this macro instruction gives control
to the data management routine; the routine completes
execution and returns control to the generated code. If the
ERR or EOF operand is specified, the generated code tests
the completion code returned by data management and
branches to your routine. If reading variable length records,
tape data management returns the length of the record at
label $TDCRL in the DTF.

The format of the $GETT macro instruction is:

EOF-address specif ies the address in your program that
receives control when the end-of-file is detected. If this
operand is not supplied, no code is generated to check for
the end-of-file condition.

Note: If ERR or EOF addresses are not specified, you
should check the return code in your program to deter­
mine the outcome of the operation.

[Name] $GETT [DTF-address] [,CODE-A/£]
[,R E C FM -f/V] [,ERF!-address]
[, EOF-address]

DTF-address indicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

CODE-A or E specifies whether any ASCII files are used in
this program. This determines whether the data manage­
ment modules used to process the files must be capable of
processing both EBCDIC and ASCII files. A indicates
ASCII files are used in your program; E indicates only
EBCDIC files are used. If this operand is omitted, E is
assumed.

Note: This operand determines the data management
module that w ill process the file. One set of data manage­
ment modules processes only EBCDIC files, another set
processes both EBCDIC and ASCII files. If you have only
EBCDIC files in your program, less main storage is required
if you specify CODE-E or omit this operand. If you have
both types of files in your program, less main storage is
required if you specify CODE-A, even though you are read­
ing an EBCDIC file.

The entry for this operand must correspond w ith the data
management module name provided in the EXTRN in
your program.

RECFM-F or V specifies whether the record to be read is
fixed-length or variable-length. If this operand is not speci­
fied, F is assumed.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent I/O error. If this operand is om it­
ted, no code is generated to check for the controlled can­
cel completion code.

42

This macro instruction generates an interface to basic tape
data management to read from a tape device. When using
this macro instruction, you must:

• Provide a tape DTF and use $DTOT to establish the
offsets in the DTF.

• Wait for completion of the input operation and check
for end-of-file by using the $WTT macro instruction.

• Provide EXTRN statements in your program for the
basic tape data management module ($$BTAM or
$$BTMM) and for the entry point to the read routine in
that module (DMBTRW).

If you w ill need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $RDT macro instruction. The generated code for this
macro instruction uses register 2.

The code generated by this macro instruction branches to
basic tape data management to begin the read operation.

Read from Tape ($R D T)

The format of the $RDT macro instruction is:

[Name] $RDT [DTF-address]
r.DIRECT-FORW/BACKl

DTF-address specifies the address of the leftmost byte of
the DTF for the file. If this operand is not entered, the
address is assumed to be in register 2.

DIRECT-FORWor BACK specifies the direction of the
read. If this operand is not entered, forward (FORW) is
assumed.

This macro instruction generates the interface needed to
communicate w ith tape data management when writing a
record to tape. You must provide a DTF for the file and
use the $DTOT macro instruction to establish the offsets
in the DTF. You must also provide, through EXTRN
statements in your program, the labels of the tape data
management modules necessary to perform the output
operation (see Figure 17).

If you w ill need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $PUTT macro instruction.

The code generated by this macro instruction gives control
to the data management routine. The routine completes
execution and returns control to the generated code. If
the ERR operand is specified, the generated code checks
the completion code for errors and branches to your error
routine if errors occurred.

Construct a Tape Put Interface ($PUTT)

The format of the q>PUTT macro instruction is:

[Name] $PUTT [DTF-address] [,CODE-A/E]
[,RECFM-J;/V] [,ERR-address]

DTF-address specifies the address of the leftmost byte of
the DTF for the file. If this operand is not specified, the
address is assumed to be in register 2.

Macro Instruction Statements 43

CODE-A or E specifies whether any ASCII files are used by
your program. This determines whether the data manage­
ment modules used to process the file must be capable of
processing both EBCDIC and ASCII files. A indicates
ASCII files are used in your program, E indicates only
EBCDIC files are used. If this operand is omitted, E is
assumed.

Note: This operand determines the data management
module that w ill be used to process the file being defined.
One set of data management modules processes only
EBCDIC files, another set processes both EBCDIC and
ASCII files. If you have only EBCDIC files in your pro­
gram, less main storage is required if you specify CODE-E
or omit this operand. If you have both types of files in
your program, less main storage is required if you specify
CODE-A, even though you are defining an EBCDIC file.
The entry for this operand must correspond w ith the data
management module name in the EXTRN in your program.

RECFM-F or V specifies whether the record is fixed-length
or variable-length. If this operand is not specified, F is
assumed.

Write to Tape ($WRTT)

This macro instruction generates the interface to basic tape
data management needed to write records to tape. When
you use this macro instruction, you must:

• Provide a DTF for the file and use the $DTOT macro
instruction to establish the offsets in the DTF.

• Wait for the completion of the I/O operation by using
the $WTT macro instruction.

• Provide EXTRN statements in your program for the
basic tape data management module ($$BTAM or
$$BTMM) and for the entry point to the write routine
in that module (DMBTRW).

If you w ill need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $WRT macro instruction, because the generated code
for that macro instruction uses register 2.

The code generated by this macro instruction branches to
basic tape data management to start the operation.

ERR-address specifies the address in your program where
control should be passed if a permanent I/O error occurs.
If this operand is not entered, no permanent I/O error
checking code is generated and you should check the return
code in your program to determine the outcome of the
operation.

The format of the $WRT macro instruction is:

[Name] $WRTT [DTF-address]

DTF-address is the address of the leftmost byte of the DTF
for the file. If this operand is not specified, the address of
the DTF is assumed to be in register 2.

44

Control Command for Tape ($CTLT) Wait For Tape I/O Completion ($WTT)

This macro instruction generates the interface to basic tape
data management to issue control commands to the tape
device. It is not used to get records from or put records
out on a tape file. To use this macro instruction, you
must:

• Provide a DTF for the file on the tape device and use
the $DTOT macro instruction to establish the offsets in
the DTF.

• Wait for completion of the operation by issuing the
$WTT macro instruction.

• Provide EXTRN statements in your program for the
basic tape data management module ($$BTAM or
$$BTMM) and for the entry point to the control routine
in that module (DMBTPS).

This macro instruction is used w ith the $RDT, $WRTT,
and $CTLT macro instructions. It generates the linkage
to basic tape data management in order for the tape data
management to wait for the completion of operations that
have been initiated. You must provide the address of the
tape DTF for the file and use the $DTOT macro instruction
to establish the offsets for that DTF. You must also pro­
vide EXTRN statements in your program for the basic
tape data management module ($$BTAM or $$BTMM) and
for the entry point in the wait routine in the module
(DMBTWT). You may also provide addresses where control
is to be returned in the event of a permanent I/O error,
end-of-file condition, or end-of-tape condition.

If you w ill need to use the data in register 2 at a later
time, you should save the contents of that register before
issuing the $WTT macro instruction.

If you w ill need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $CTLT macro instruction.

The code generated by this macro instruction branches to
the basic tape data management to initiate the operation.

The generated code from this macro instruction checks the
completion code in the DTF to determine the outcome of
the operation. When an abnormal completion is detected,
control is passed to the appropriate address in your pro­
gram, if you have specified ERR, EOJ, or EOT, or to the
next instruction in your program.

The format of the macro instruction is: The format of the $WTT macro instruction is:

[Name] $CTLT I [DTF-address] [,OPC-code] 1 [Name] $WTT [DTF-address] [,ERR-address]

1------------------- -----------------1---1 [,EOF-address] [,EOT-address]

DTF-address specifies the address of the leftmost byte of
the DTF for the file on the tape device. If this operand is
not specified, the address of the DTF is assumed to be in
register 2.

OPC-code specifies the control operation to be performed.
The valid codes and their meanings are:

Code Operation

FSF Forward space file
FSB Forward space block
BSF Backspace file
BSB Backspace block
REW Rewind tape
RUN Rewind and unload tape
WTM Write tape mark

If this operand is not specified, rewind tape, REW, is
assumed.

DTF-address specifies the address of the leftmost byte in
the DTF for the file. If this operand is omitted, the
address of the DTF is assumed to be in register 2.

ERR-address is the address of the routine in your program
that receives control when a controlled cancel is indicated
in the completion code. If this operand is not entered, the
controlled cancel is ignored and control returns to the
next instruction in your program.

EOF-address specifies the address of your routine that
receives control when end-of-file occurs. If this operand is
omitted, the end-of-file condition is ignored and control
returns to the next instruction in your program.

EOT-address is the address of the routine in your program
that receives control when end-of-tape is detected. If this
operand is not specified, the condition is ignored and con­
trol returns to the next instruction in your program.

Note: If ERR, EOF, or EOT addresses are not specified,
you should check the return code in your program to
determine the outcome of the operation.

Macro Instruction Statements 45

| 3741 Support Define the File fo r 3741 ($DTFK)

This section describes the macro instructions that support
the IBM 3741 Data Station/Programmable Work Station.
The following functions are provided through the use of
these macro instructions:

• Build a preopen DTF and assign its offsets.

• Build the interface required to read input records from
the 3741 via a get.

• Build the interface required to write output records to a
3741 via a put.

The 3741 DTFs provide information to the data manage­
ment routines that perform the input/output operations.
These operations are provided through the 3741 macro
instructions.

This DTF provides information needed to allocate, open,
and access a file on the 3741. This macro instruction gener­
ates the code that builds the 3741 DTF.

The format of the $DTFK macro instruction is:

[Name] $DTFK N AM E-f ilename,R EC L-number,
IO-address [,ACJ_/0]
[,RCAD-address] [.BUFNO-1/2]
[,CHN-address] [,UP-mask]

NAME-fiiename is a required operand specifying the name
of the 3741 file. The name may not exceed eight characters
in length.

RECL-number is a decimal value specifying the length of a
logical record. The decimal value may be from 1 to 128.

/ O-address specifies the address of the leftmost byte of the
main storage area that is used to contain all buffers and
lOBs. The length of the area specified by this address must
be the record length plus 26 times the BUFNO.

AC-i/O specifies the type of DTF, input or output. If the
operand is not entered, an input DTF is assumed.

RCAD-address specifies the address of the leftmost byte of
the logical record. If this operand is not entered, X 'FFFF'
is assumed.

BUFNO-1 or 2 allows you to use one or two buffers. If this
operand is omitted, one buffer is assumed.

CHN-address indicates the address of the next DTF in the
chain of DTFs. If there is no DTF chain, the operand is
omitted and X 'FFFF ' is assumed.

UP-mask specifies the settings of the external (// SWITCH
statement) indicators used for conditionally opening files.
The switch statement code must be specified as eight binary
bits. For example, to set on bits 0, 3, 5, and 7, you would
enter UP-10010101. If the switch statement operand is
not entered, zeroes are assumed.

46

Construct a 3741 GET Interface ($GETK)

When a record is being read from a 3741 file, the $GETK
macro instruction allows the 3741 data management to
communicate with the 3741 file. To use this instruction,
you must construct a 3741 DTF for the file and use the
$DTOD macro instruction to establish the offsets in the
DTF. You must also provide an EXTRN statement with
the label $$CPIP to use this macro. If you need to use the
data in register 2 at a later time, you should save the con­
tents of that register before issuing the $GETK macro
instruction.

The code generated by the $GETK macro instruction gives
control to the data management routine; the routine com­
pletes execution and returns control to the generated code.

The format of the $GETK macro instruction is:

[Name] $GETK [DTF-address] [,ERR-address]
,EOF-address

DTF-address indicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

ERR-address If the controlled cancel option is taken in
response to a permanent I/O error, the ERR-address sup­
plies the address in your program to which control is passed.
If this operand is omitted, no code is generated to check for
the controlled cancel completion code.

EOF-address specifies the address in your program to
which control is passed when the end-of-file is detected.
This operand must be specified.

Construct a 3741 PUT Interface ($PUTK)

When writing a record to the 3741, the $PUTK macro
instruction allows the 3741 data management to communi­
cate with the 3741 file. You must provide a DTF for the
file and use the $DTOD macro instruction to establish the
offsets in the DTF. You must also provide an EXTRN with
the label $$CPOP to use this macro instruction. If you w ill
need to use the data in register 2 at a later time, you should
save the contents of that register before issuing the $PUTK
macro instruction. The routine completes execution and
returns control to the generated code.

The format of the $PUTK macro instruction is:

[Name] I $PUTK I [DTF-address] [,ERR-address]

DTF-address specifies the address of the leftmost byte of
the DTF for the file. If this operand is not specified, the
address is assumed to be in register 2.

ERR-address If the controlled cancel option is taken in
response to a permanent I/O error the ERR-address supplies
the address in your program to which control is passed. If
this operand is omitted, no code is generated to check for
the controlled cancel completion code.

(y t cx. c a

i> D / D K

7 7

t vA t
M ' 7 .

7 o O r> - , 1 v J y ï*v .

j /Af L$'iY[2>r-t\,vA~7 !-)
' /

Macro Instruction Statements 47

| CPU Commands I Store CPU-Generate the SCP Assembler Instruction ($SCP)

Command CPU—Generate the CCP Assembler Instruction
($CCP)

The format of the $CCP macro instruction is:

[Name] $CCP QBYTE-hex,R BYTE-hex

QBYTE-hex is a required operand specifying the Q-code
for the CCP instruction.

RBYTE-hex is a required operand specifying the R-code for
the CCP instruction.

Note: For a complete description of the codes fo r the
Q-byte and the R-byte that can be entered in the operands,
see IBM System/3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21 -9236.

Load CPU—Generate the LCP Assembler Instruction ($LCP)

The format of the $LCP macro instruction is:

[Name] $LCP QBYTE-hex [,ADDR-address]
[.REG-1/2] [,DISP-hex]

The format of the $SCP macro instruction is:

[Name] $SCP QBYTE-hex [,ADDR-address]
[.REG-1/2] [,DISP-hex]

QBYTE-hex is a required operand specifying the Q-code
for the SCP instruction.

ADDR-address specifies the address of the data. This
operand is required unless REG and DISP operands are
specified.

REG-1/2 specifies the base register for the displacement
of the data. This operand is required unless ADDR operand
is specified.

DISP-hex specifies the displacement of the data from the
address pointed to by the base register. This operand is
required unless ADDR operand is specified.

Note: For a complete description of the codes for the
Q-byte that can be entered in the operand, see IBM
System/3 Models 8, 10, 12, and 15 Components Reference
Manual, GA21-9236.

QBYTE-hex is a required operand specifying the Q-code
for the LCP instruction.

ADDR-address specifies the address of the data. This
operand is required unless REG and DISP operands are
specified.

REG-1/2 specifies the base register for the displacement of
the data. This operand is required unless ADDR operand
is specified.

DISP-hex specifies the displacement of the data from the
address pointed to by the base register. This operand is
required unless ADDR operand is specified.

Note: For a complete description of the codes for the Q-byte
that can be entered in the operand, see IBM System/3 Models
8, 10, 12, and 15 Components Reference Manual,
GA21-9236.

48

Chapter 3. O CL and Sample Program

OCL FOR MACRO PROCESSOR

OCL statements used to load and run the macro processor
can be entered through the system input device or can be
called from the procedure library. The OCL statements
necessary to load and run the macro processor are shown
in Figure 18. The COMPILE statement shown in Figure 18
is necessary only when input is in a source library.

SAMPLE PROGRAM

This sample program uses the macro processor and the
IBM System/3 Basic Assembler Program, program number
5702-AS1. The coding shown in Figure 19 produces an
object program. To use the program, you must link edit
the object program and execute it. The macro processor
can be used with any valid assembler on the IBM System/3
Model 10 Disk System and is not limited to use with the
program product 5702-AS1.

Termination of the Sample Program

The sample program terminates in one of two ways:

1. After successful completion of the program, EJ is
displayed on the console display unit.

2. When an error occurs during processing, one of the
following halts is displayed on the console display
unit:

A1—if an error is returned from the sysin routine.

A2—if an error is returned from the printer routine.

You respond to these halts by pressing the start key
(or the halt/reset key on systems with the dual pro­
gramming feature). EJ is then displayed on the
console display unit.

Purpose of the Sample Program

The sample program in Figure 19 is used to print input
records entered from the system input device. It reads
data records from the system input device and prints them
on a line printer. Each printed line reproduces one input
record.

/ i
1 I I 1 1 I I 1 1 1 I 1 I I 1

Anv disk drive mav be used.
1—

/ / L 0 An * MP X D Y >F ƒ
/ / r,0 Mp r L £ s 0 II Rr. £ - T N F r /. > u Nr r _ F J
/ / F• r L t M(\ M£ $ 5 Du Rc E) p Ar K V o | Pi(71 | >u N r r RJ i R£ T AT. N _ i
/ / T• RA r, k s 2 £ l n r A r T c N ? f. > ■S

/ / Fu i N
A n\f Val id // F IL-E StaiteiT!(m t rnay b<3 l IS€id

<Souire:e Stc3t<srrleir»t:S Vviith ITia<:rid ins;truc:ti orIS if // c 01MlPI LEE is 110 t j5Pec ifi ec1
I

/ 4

/

Figure 18. OCL Statements for Using the Macro Processor

O C L and Sample Program 49

STATEMENTName1 2 3 4 5 6 7 Operation8 9 10 ii 1213 Operand Remarks 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76i \1/ L L 0 A 0 $ M PX V V ; F i L 0 A V MAC R O P r \o c £ S S o A V R 0 M S Y s 7 £ Af P A C
~\
K\/ / F I L £ N AMe i s O UR c £ P A C K V O L 0 0 i U hi l r R I l —ri/ / A £ T AI N T . t R Ac XS - 0 F Z L £ S 7-1A T £ M£ wjr F o A é S o ULAC £ "7i/ / R u M |s A MP L £ 7 r 7 L £ \ S A MP L E PR 0 O R AM / T H I S S r A T £ M£ WT A p P £ A R s 0 M £ A C H p A £ 71s A M P L E S r A A 7 & r~1 i1# * H X ¥ Ê ¥ ¥ if X ¥ x ¥ ¥ ¥ ¥ ¥ ¥ ¥ # ¥ ¥ ¥ X ¥ ¥ * ¥ X X X X X X X X X X X ¥ X X X X X X X X X ¥ ¥ *1* X X ¥ X X X ¥ X ¥ X X X X X X ¥ X X —ri

X ¥ A L L 0 C A r £ A N 0 o P £ N PR l Air £ R F r L £ r1 X X ïi
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ X ¥ ¥ X X X X ¥ ¥ ¥ X X X X X X X ¥ xjx X ¥ X X X X ¥ X X X X X X X X X X XJ li

t A L O c V T F 0 T F l A L L 0 c A 7 £ P A r A/17£ R 7o r u Z 5 P A d 0 AA I
£ 0 P£ A/ V r F D T F i 0 P£ N T H £ P Ar A / j r e R F z £

—h 1
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X ¥ X ¥ X X X X X X XIX X ¥ X X X X X X X X X X X X ¥ X X X* “ T1X ¥ 5 u P P L V £ X r £ R hi F O R PR l N 7 £ R D A T A Pi AMA <k£ £ N T A1O d| a L £ X X 1|
¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ X X * ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ X ¥ X ¥ ¥ ¥ ¥ ¥ X ¥ X X ¥ X X X ¥ ¥ X ¥ X X X »!* ¥ X X X X X X X X X X ¥ X X X X X X 11

B X 7 R hi £ £ L p R T P R I hi 7 £ R 0 A 7 A !m A N A <7£ M£ A/7 MQ 0 u Z-£ 1X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X X ¥ ¥ ¥ X X ¥ ¥ X ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X X X ¥ ¥ X ¥ ¥ X ¥ X ¥ X X X X #i* ¥ X X X X X X X X X X X X X X XX X —h 1
¥ ¥ P A0 C £ S S I N R O U 7 I hi £ i X X ri
X ¥ X X ¥ X X ¥ X X X ¥ X ¥ ¥ X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ X ¥ X ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ X ¥ X X X X XX *!# X ¥ ¥ XX- X X ¥ X X X X X X X X X X i

L ¥ z>r F 1 2 L O A V A V V A £ s 5 |o F PAI N 7 £ A z>7 F —(■ i
MV I É p D s P 6 L JL 2 1 Ï i £ 2 / S £ T p T F F 0 A Z>|0 a 6 L £ s P A C 1 A/fir i
L A N X 7 B U F ; i L 0 A D A X>D R ES 5 |o F N £ X 7 6 F F £ A

—yi
S 7 PAR H s - V t S r 0 R £ A D 2) A £ 5 s! I M 5 Y 5 z A/ P A A L z s T

ii
L 4 C U R B u F Ï L o A D A D 0 R £ 6 5 \0 F C a AA £ Al 7 B U F F £ A ii

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

Figure 19 (Part 1 of 4). Sample Program

Figure 19 (Part 2 of 4). Sample Program

50

STATEMENT
Name

1 2 3 4 5 6 7
Operation

8 9 10 11 12 13
Operand Remarks

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74* X * X X it it * X it it it X X it it * it X it X it X X X X X X X X X X X X X X X X X X it it X X it X X X X X X * 1 * X it X X X X X X X X X X X X X X X X* 0 V e R F L 0 W R O u r I A £ l
1 X X* # * * it it it X it it it it it it it X * it X it X #!# X it X X X X X X X X X X X X X X X X0 1/F L L A D T F X Z L o A 0 A 0 0 A £ 5 s F P A I /VT £ R Z>r F

M VI 4 P D S k 8 < 2) X \ 0 / / r u RA/ ON S A X p \a £ F O A a a y r £8 L 0 0 P * 8 R AN c H T o R B A[i> N £ X T R £ c o A 0# * X X # * * it it it it it X it it Heit it it X X X X Ht X X X X X X X X X X X X X X X XX X X X X X X X X X X x!x X X * X it X X X X X X X X X X X X X* X £ hi D 0 F J 0 8 R0 u r I N £ 1 X X* * X * it it it it it it it it it it it it it it it it x-* X x!x X X X X X X X X X X X X X X X X X X£ o J 4 C L o s P 7̂ F - Z>r F 1 c L 0 5 £ p R I A/7̂ £ *\ F r L £
t a OJ R e TU RA/ C o V r A OIL r o s u p £ R V t s o R# * X X #|it it it it it it it it it it it it Hrit it it X it X X X X X X X X X *!# X X X X X X X X X X X X X X X X X X* X c 0 u s 7 A N T S A N D IVo p ft A R£ A 1 X X* X # X it it Mit it it it it it it it it X\it it it it X it Xz>r F i L D T F t l D£ V - P R N r A t F T Y P - p p R l V r £ R F I L £ ! D £ F /■N r r l 0 N a a r p u T X* R £ c L - 9 <6 ,?R

/c A D - 8 u F
r
1 1 F l £ £) ? (o c H \A A R £ c o R.D 5 L 0 6 1 c A L X

P r A £ - 6 U FZ 0 V F L - 6 0
J

R E C OA 0 A T e ia F i P A r N 7 6 6/ F F £ A
* A r a U F 2 0 y j£ A F L O It ’ 0 N L I A/£ 6 0

4 T> r 0 U V £ V - P R N T R 0 £ F i N £ 0 F F S £ T\$ r A/ P p I N r £ A P r F
B F 1 £ Q u it L 0 <* L C A L A £ c O je'z) F O R p R Z A/ 7 £ A

V c C L 9 <c / —1—
1

0 R <k it j . 2 S 6 j X \ 7 c t A L 1 6 hi 0 A/ I 2 V - ! « Y 7 £ fi o U KJ0 A A y
B F 2 £ Gu it p R l N 7 P P y 5 L c A \L 8 U F F £ R

P C C £ 3 (c \ / i
1 2 3 4 5 6 i 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 :

Figure 19 (Part 3 of 4). Sample Program

STATEMENT
Name

1 2 3 4 5 6 7
Operation

8 9 10 11 12 13
Operand Remarks

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 A 4i X 2 s £ J X >
0 0

/ A L / hi 0 N 2 £ b - i s V r £ 8 0 (l hf 0 A A V
N X r 8 F F (3 u X P a X r 6 u F F £ A f |o A 5 y S l KJ

V C c L i 2 8
\ /

i

c a A 8 a F £ Q u X C u A A £ A/ T 8 F 1F e Jr F 0 A s Y s 7 A/

V C c L i 2 8
\ / 1

1

w p X 8 u F £ 6? u X IV 0 A k 8 U F F £ A P O A 6 Y s 1 AJ

V c c L 1 2 8 \ / 1
1

p A A M 5 V c X L 7 \
0 0

/ £ Y & i P A R. A Af £ T1£ P £ Z £ T

4 c 0 Af A/ P A O V I 8 £ £ G u A 7i£ S F O A AtA c A O i V s T .>s
£ A/ 0 s A AtP L £ £ U 0 O F S A Afp L e] PA O £ A A M

/ X 1
~ r~

i
X i t X X X X X X X X X X i t X
X X X O c u T 0 A 5 5 £ A76 L £ T p £ PA 0 6 A A A* ~T~l X X X
X * * X X X X X X X X X X X X X X X X X X * X X X X X X XX X X X X X X X X|X X X lit X X Xi i t X X X X X «<* X X X X X X X X X X X X X| X X X X X X—

1
/ / L 0 A D 4 A s s £ M FIL L 0 A p A S s £ Af8 £ £\R F A 0 M Dp I V£ F i
/ / S wI 7 c H 1 X XX X X XX I A/ DI c /) T £ 7 A/P U\ 7 7 S 0 M 4 s 0 U p c £
/ / F I L £ MA M£ - 4 S0 u A C £ 1P A c y ÖZ. (Zi4 i u hf z r A t § i
/ / 8 £ T A l N S »T A A c KS - 30

)
F I L £ 6 T A T £ M£ A/]T F 0 A 4 S0 c/ RC £

/ / F z £ £ N A Af£ $ Wo A k P ACK - V0 £ 4 i 0 a N1 T - p 2 1 1
/ / n £ r A I A/ S r A A c k s i 0

T
F r L £ 5 T A r £ PI£ az!t F o A 4 w 0 A K/ / 8 6f A s S £ M8 L £ 7 H £ ij o 8/* ii

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 1

Figure 19 (Part 4 of 4). Sample Program

OCL and Sample Program 51

Macro Instructions Used in the Sample Program

Eight macro instructions are used in this sample program.
The macro instructions and their functions are:

Macro Instruction Function

$ALOC Allocates the printer file to this

$OPEN
$SVC

program
Opens the file after allocation
Reads input records from the
system input device

$GPU Prints output records on the
printer

$CLOS
$EOJ
$DTFU

Closes the output file
Calls the end-of-job routine
Constructs the DTF for the

$DTOU
printer
Establishes the offsets for the DTF

52

Appendix A. Error Information

Any errors made in coding macro instructions are flagged
in the $SOURCE file. When an error is found in a macro
instruction, an error code and an error message are placed
immediately following the macro instruction in the
$SOURCE file. The error code and message are then
printed on your assembly listing when the source program
is assembled.

Figure 20 shows the error codes that may be caused by
errors in macro instructions. Other error codes may be
generated by the macro processor and are caused by errors
in the macro definitions. These error codes are explained

| in Appendix B in IBM System/3 Models 4, 6, 8, and 10
System Control Program Logic Manual, SY21 -0502.

Error
Code Error Description

BX A keyword response has resulted in an invalid
decimal digit or a boundary exceeded condi­
tion. (See note)

CE An error in continuation exists in this macro in­
struction. Nonblank characters were found in
columns 1 -13 of the continued line. All remain­
ing lines of this macro instruction will be flagged
with the error code 'OC'.

CL A keyword response resulted in a character string
that exceeds the maximum length. (See note)

IC An error in continuation exists in the previous
macro instruction. Column 72 is blank. All
remaining lines of this macro instruction will be
flagged with the error code 'OC'.

ID A delimiter is missing or invalid in the operand
of the previous macro instruction.

IK A keyword in the macro instruction being
processed is not valid.

IR An invalid parameter has been found in one of
the operands of the previous macro instruction.

NF The macro instruction being processed contains
a mnemonic operation code not contained in the
source library of the program pack.

OC The mnemonic operation code of the previous
macro instruction is invalid. (See codes 'CE' and
'IC ' for a possible cause for this error code.)

ST A keyword response has resulted in an invalid
substring term. (See note)

SY A keyword response has resulted in a substring
syntax error. (See note)

TF The variable symbol table is full. Recode your
program using fewer macro instructions.

Note: These errors may be the result of any macro instruction
or combination of macro instructions that precede the error
code.

Figure 20. Macro Instruction Error Codes

Error Information 53

54

GS‘1 Halt SYSTEM HALTS AND THE MODULES THAT CAN
ISSUE THEM

The maintenance personnel can locate the 2-byte save area
at the label AERSAV within $SGENB. See Figure B-14.

Program Description Code Error Description

$SGENB System
Generation,
Phase One

BC An invalid completion
code was received
from the SWA Read/
Write routine.

PEM The //E N D state­
ment is missing
from the procedure
on the distribution
disk cartridge.

Figure B-16 is provided to help determine which modules
issue which halts. The figure contains a list of halts, the
modules that initiate the halts listed, and a brief description
of the reason for the halt being issued. The halts listed are
only those halts which can be issued by the modules dis­
cussed in this manual.

Note: The halts shown are converted by the Model 6 Halt/
Syslog Transient ($$STOK) to display the Model 6 halt.
See Part 6. Transients and Scheduler Support for a descrip­
tion of $$STOK.

Figure B-14. Halt Codes for System Generation-Phase One C$SGENB) G S’1 Halt
Macro Processing Error Messages

If an error occurs during macro processing, a 2-byte
error code and message is written into SSOURCE:

ERROR * * * cc * * * PROCESSING ABOVE MACRO
code

A description of Macro Processor error codes is con­
tained in Figure B-15.

Diagnostic Aids B-37

Page o f SY21-0502-6Revised September 15, 1973By TNL: SN21-7666
Error Code Error Description Routine

Al

AT

BE

Bl

An AGO or AGOB record has an invalid sequence symbol. $MPMN3

A variable symbol table entry has an invalid attribute. $MPATH

A value compared in the operand of an AIF or Al FB record is more $MPSB1
than 50 bytes long or has an invalid format (only symbolic parameters,
set symbols, character strings, count functions, and type attributes are
valid for comparison).

A model record is more than 71 bytes long. $MPSUB

A position in a binary self-defining term is other than 0 or 1. $MPATH

BX

CE

Cl

Arithmetic term exceeds bounds of — 8,388,608 to + 8,388,607.

Value of symbolic parameter or decimal self-defining
term exceeds maximum value of 65,535.

A macro instruction continuation statement has a non-blank entry
in positions 1-13.

The count function is being used with other than symbolic parameters.

$MPATH

$MPCDX

$MPXDV

$MPATH, $MPSB1

CL A character expression length is greater than 50 bytes. $MPCEX

El An invalid operand or operator is used in an arithmetic expression. $MPATH
Valid operands are binary, character decimal, and hexadecimal self­
defining terms; variable symbols; and count functions. Valid operators
are addition (+), subtraction (-), multiplication (*),and division (/).

EM A MEND record was found immediately following a TABLE record. $MPMN2

ER Consecutive operators have been detected within an arithmetic expression. $MPATH

ET An arithmetic expression has been ended with an operator. $MPATH

HI A hexadecimal self-defining term contains an invalid hexadecimal digit. $MPATH

IA An error has been detected in the format of an A IF or AIFB record.

IC The format of a macro instruction is for a continuation record to follow
but continuation is not indicated.

ID An invalid delimiter occurred following a keyword parameter on a
macro instruction.

IG A format error occurred in an operand of a GBLA, GBLB, GBLC,
LCLA, LCLB, or LCLC record.

IK An invalid keyword was found on a macro instruction. $MPOPR

IM A sequence symbol is missing or misspelled. $MPRED

IP A prototype record has one of the following:

• Format error in an operand field $MPOPR
• Invalid entry in a name field $MPROT
• Operation field name incorrect $MPSTM

$MPAI F

$MPOPR

J
$MPOPR “7—

$MPGBL
•

Figure B-15 (Part 1 of 3). Error Codes for Macro Processor
B-38

fU
F

-

Page of SY21-0502-6Revised September 15, 1973By TN L: SN21-7666
Error Code Error Description Routine

IR An invalid response to a keyword parameter was found on a
macro instruction.

$MPOPR

IS The length of the sequence symbol on an AGO or AGOB record
was not less than 6 .

$MPAGO

An invalid variable symbol was found. $MPGSY

IT An error has been encountered in the placement of control records
prior to the TEXT record within a macro definition.

$MPTBL

IU A set symbol identified on a global or local record is also identified
on a prototype or TABLE record within the same macro definition.

$MPVST

IV An invalid value exists on the record being processed:

• Null value when not permitted
• Value exceeds 50 bytes when decoded
• Value exceeds the limits of the record on which it appears

$MPCSB, $MPNCB

LP Improper placement of left parenthesis or more than 3 levels of
nested parenthesis within an arithmetic expression.

$MPATH

MM The macro definition records are not in the expected sequence. $MPMN3

MN Invalid format on an MNOTE record. $MPNTT

MS One of the fixed format fields of a model record has exceeded its
defined limits. An entry in field 1 must begin in position 1.

$MPMST

ND A TABDF record does not follow a TABLE record. $MPMN2

NE No operator exists for the remaining operand in final step of
arithmetic expression evaluation.

$MPATH

NF The macro definition was not found in source library of program
or system pack.

$MPMN1

NM An error has been encountered in the placement of control records
following the text record within a macro definition

$MPSTM

NO Consecutive operands have been detected within an arithmetic expression. $MPATH

NP An invalid combination of operators was specified in an arithmetic
expression.

$MPATH

OC The mnemonic operation code of the record being processed is not a
valid System/3 assembler operation code.

$MPXDV

OP An invalid operator has been encountered within an arithmetic expression. $MPATH

RP Invalid placement of a right parenthesis within an arithmetic expression
has occurred.

$MPATH

SA An error exists in the format of a variable symbol required in the name
field of a SETA record, or the operand is blank.

$MPSTA

SB An error exists in the format of a variable symbol required in the name
field of a SETB record, or the operand is not 0 or 1.

$MPSET

Figure B-15 (Part 2 o f 3). Error Codes for Macro Processor

Diagnostic Aids B-39

Page o f SY21-0502-6Revised September 15, 1973By TN L: SN21-7666
Error Code Error Description Routine

SC

SD

SM

SS

ST

SY

TF

TV

An error exists in the format of a variable symbol required in the
name field of a SETC record, or the operand is not enclosed with
quotes and delimited by a blank.

A null value for a character self defining term exists within an
arithmetic expression.

Reference to an undefined variable symbol.

A set symbol identified on a global record has been identified as
another type of set symbol within a previous macro definition.

The attribute of a set symbol referenced in the name field of a SETA,
SETB, or SETC record does not match its assigned attribute.

When evaluating a character expression, the value of either term of
substring is negative or the substring start term is 0.

Syntax error in use of substring or character expression exceeds the
limits of the input record.

The variable symbol table is full. (The user should split his job into
smaller requests.)

A table-definition record is invalid:

• The value does not start in position 14
• The argument is not left-justified starting in position 1
• The argument exceeds the limits defined for the record
• The mnemonic operation code (TABDF) is missing

$MPSTC

$MPATH

$MPVST

$MPGBL

$MPSET, $MPSTA,
$MPSTC

$MPCEX

$MPCEX

$MPGVA, $MPSTC,
$MPSTM, $MPVST

$MPDEF

Figure B-15 (Part 3 o f 3). Error Codes for Macro Processor

t o pr>u r o
Out 0 P

PE e(w.o<L.

B-40

Appendix B. Define the File Control Blocks

The DTF provides information to the data management
routines about files you use. You must provide one DTF
for each file you use in a program. Certain fields serve the
same purpose in all pre-open DTFs. (Pre-open DTFs are
reformatted to post-open when they are opened by using
the allocate and open macro instructions.) Figure 21
describes the fields common to all pre-open DTFs.

The figures in this appendix describe both the pre-open
and post-open DTFs for unit record and disk devices.

Figure DTF Described

22 MFCU pre-open
23 MFCU post-open
24 1442 pre-open
25 1442 post-open
26 Line printer pre-open (Model 10)
27 Line printer pre-open (Model 12)
28 Line printer post-open (Model 10)
29 Line printer post-open (Model 12)
30 Printer-keyboard pre-open
31 Printer-keyboard post-open
32 Disk pre-open
33 5444 disk post-open
34 5445 disk post-open
35 Tape pre-open
36 Tape post-open
37 3741 pre-open
38 3741 post-open

The labels given to the fields in these figures are the labels
generated by the offsets macro instructions, $DTOU,
$DTOD, and $DTOT. Displacements refer to the right­
most byte of the field. Addresses in the DTFs point to the
leftmost byte of the referenced area.

Define the File Control Blocks 55

Displace­
ment

Length
in Bytes

Field
Description Field Contents

0 1 Device
Address Address Device

X'AO' R1 (5444 removable disk pack one)
X'A8' F1 (5444 fixed disk pack one)
X'BO' R2 (5444 removable disk pack two)
X'B8' F2 (5444 fixed disk pack two)
X'CO' D1 (5445 drive one)
X'C8' D2 (5445 drive two)
X'FO' MFCU1 (primary hopper)
X'F8' MFCU2 (secondary hopper)
X'EO' 5203 printer (left carriage) or 1403 printer
X'E8' 5203 printer (right carriage)
X'10' 5471 printer-keyboard (console)
X'50' 1442 card read/punch
X '40' 3741 Data Station/Programmable Work

Station

1 1 External Opening of a file may be conditioned by a SWITCH
Indicators statement. Any external indicator bit set on is compared

to the corresponding UPSI bit in the communication
region, and if that bit is on, the file is opened.

3 2 File Essential information about the file organization and the
Attributes method by which it is to be processed is represented by

these bits. (See Figures 22-38)

5 2 Record The hexadecimal length of one logical record for the file.
Length

7 2 Address of The address of the next DTF in the forward chain. This
Next DTF is used by the open and close routines to find the next DTF.

Figure 21. General Pre-Open DTF

56

Displace­
ment

Length
in Bytes Contents

0 1 Device address: X'FO' MFCU1
X'F8' MFCU2

1 1 External indicator

2 1 Attribute byte 1:

£/fs On Use

0 Input
1 Output

0 & 1 Combined
4 Print

3 1 Attribute byte 2:

B it On Use

4 Dual I/O areas (used only for input)

5 2 Record length in hexadecimal

7 2 Address of next pre-open DTF

13 6 Reserved (used by MFCU data management)

15 2 Address of second read I OB (supplied by macro processor)

17 2 Address of second read I/O area

22 5 Reserved (used by MFCU data management)

24 2 Pointer to input/output supervisor error recovery procedure

26 2 Address of first read I OB (supplied by macro processor)

28 2 Address of first read I/O area

30 2 Address of first punch IOB (supplied by macro processor)

32 2 Address of first punch I/O area

34 2 Address of first print I/O area

61 27 Reserved (used by MFCU data management)

Figure 22. MFCU Pre-Open DTF

Define the File Control Blocks 57

Displace- Length
Label ment in Bytes Contents

$RDDEV 0 1 Device address: X'FO' MFCU1
X'F8' MFCU2

$RDUPS 1 1 External indicator
$RDAT1 2 1 Attribute byte 1:

Bits On Use
0 Input
1 Output

0 & 1 Combined
4 Print

$RDAT2 3 1 Attribute byte 2:

Bits On Use
0 End of file on last read
1 File allocated
4 Dual I/O areas
5 Device used as system input
6 /& read on last input operation
7 File opened

$RDCHA 5 2 Address of next DTF in backward chain
$RDCHB 7 2 Address of next DTF in forward chain
$RDARR 9 2 Address recall register save area (return address)
$RDXR1 11 2 Register 1 save area (contents of calling program

register 1)
$RDLRA 13 2 Logical record address
$RDCMP 14 1 Completion code:

Code Meaning

X'40' Normal completion
X'41' Abnormal condition
X'42' End of file indicator

$RDOPR 15 1 Operation byte:

Bits On Meaning

0 Read
1 Print
2 Punch
3 Move (deferred operation)

4 - 7 Must be zero

$R DSTS 16 1 Stacker select/print:

Bits Setting Meaning
2 1 Print four lines
5 1 Stacker select command given

6 - 7 01 Select stacker 1
10 Select stacker 2
11 Select stacker 3
00 Select stacker 4

$RDQ 17 1 Q-byte (device address)
$RDR 18 1 R-byte
$RDSTA 19 1 IOS/ERP status information
$RDSNS 21 2 Sense area
$RDWKA 22 1 Work area
$RDSVA 24 2 IOS/ERP permanent save area address
$RDERP 26 2 Disk address of ERP
$RDRIO 28 2 Read I OB address
$RDUIO 30 2 Punch IOB address
$RDPUB 32 2 Punch I/O area address
$RDPTB 34 2 Print I/O area address
$RDPTL 35 1 Print record length in hexadecimal
$RDPUL 36 1 Punch record length in hexadecimal

Figure 23. MFCU Post-Open DTF

58

Displace­
ment

Length
in Bytes Contents

0 1 Device Address, X '50'

1 1 External indicator

2 1 Attribute byte 1:

Bits On Meaning

0 Input
1 Output

0& 1 Combined

3 1 Attribute byte 2:

B it On Meaning

4 Dual I/O area

5 2 Record length

7 2 Address of next DTF in forward chain.

13
\

6 Reserved (used by 1442 data management)

15 2 Address of second read I OB (supplied by macro processor)

17 2 Address of second read I/O area

22 5 Unused

24 2 Pointer to error recovery work area (10 bytes)

26 2 Address of first read I OB (supplied by macro processor)

28 2 Address of first read I/O area

30 2 Address of first punch IOB (supplied by macro processor)

32 2 Address of first punch I/O area

61 29 Reserved (used by 1442 data management)

Figure 24. 1442 Pre-Open DTF

Define the File Control Blocks 59

Label
Displace­
ment

Length
in Bytes Contents

$FDDEV 0 1 Device address, X'50'
$FDUPS 1 1 External indicator
$FDAT1 2 1 Attribute byte 1:

Bits On Meaning
0 Input
1 Output

0 & 1 Combined

$FDA T2 3 1 Attribute byte 2:

Bits On Meaning
1 Device allocated
3 Dual I/O area
5 Device used as system input
6 /& read on last input operation
7 File is opened

$FDCHA 5 2 Address of next DTF in backward chain
$FDCHB 7 2 Address of next DTF in forward chain
$FDARR 9 2 ARR save area (return address of calling program)
$FDXR1 11 2 Register 1 save area (contents of calling program

register 1)
$FDLRA 13 2 Logical record address
$FDCMP 14 1 Completion code:

Code Meaning
X'40' Normal completion
X '41 ' Abnormal completion
X'42' End-of-file indicator

$FDOPR 15 1 Operation byte:

Bits On Meaning
0 Read
2 Punch

2 & 3 Punch, no feed

$FDSTS 16 1 Stacker select:

Bit 5 on, stacker select
Bit 6 off, 7 on; select stacker 1
Bit 6 on, 7 off; select stacker 2

$FDO 17 1 Q-byte (device address)
$FDR 18 1 R-byte
$FDSTA 19 1 IOS/ERP status information
$FDSNS 21 2 Sense area
$FDWKA 22 1 Work area
$FDSVA 24 2 IOS/ERP permanent save area address
$FDERP 26 2 Disk address of ERP
$FDRIO 28 2 Read IOB address
$FDU IO 30 2 Punch IOB address
$FDPUB 32 2 Current processing data area address
$FDPRV 34 2 Previous operation bytes
$FDPUL 36 2 Punch record length

Figure 25. 1442 Post-Open DTF

60

Displacement Length in Bytes Contents

0 1 Device address: X'EO' left carriage, X 'E8' right carriage

1 1 External indicator

2 1 Attribute byte 1; bit 1 on indicates output

3 1 Attribute byte 2; bit 6 on indicates halt on unprintable characters

5 2 Record length

7 2 Address of next pre-open DTF

27 20 Reserved (used by printer data management)

29 2 Address of IOB (supplied by the macro processor)

31 2 Address of output buffer

32 1 Reserved (used by printer data management)

33 1 Overflow line

34 1 Form length

52 18 Reserved (used by printer data management)

Figure 26. Line Printer Pre-Open DTF (Model 10)

Displacement Length in Bytes Contents

0 1 Device address: X'EO' left carriage, X 'E8' right carriage

1 1 External indicator

2 1 Attribute byte 1; bit 1 on indicates output

3 1 Attribute byte 2; bit 6 on indicates halt on unprintable characters

5 2 Record length

7 2 Address of next pre-open DTF

11 4 Register save area

13 2 Logical record address

15 2 Reserved (used by printer data management)

21 6 Reserved (used by printer data management)

23 2 Address of print IOB

24 1 Total number of lines per page

25 1 Reserved (used by printer data management)

26 1 Overflow line

27 1 Maximum skip value

28 1 Reserved (used by printer data management)

30 2 Address of print buffer

32 2 Reserved (used by printer data management)

Figure 27. Line Printer Pre-Open DTF (Model 12)

Define the File Control Blocks 61

Label
Displace­
ment

Leng
in By

$PDDEV 0 1

$PDUPS 1 1
$PDAT1 2 1
$PDAT2 3 1

$PDCHA 5 2
$PDCHB 7 2
$PDARR 9 2
$PDXR1 11 2

$PDLRA 13 2
$PDCMP 14 1

$PD0PR 15 1
$PDSKB 16 1
$PDSPB 17 1
$PDSKA 18 1
$PDSPA 19 1
$PDQ 20 1
$PDR 21 1
$PDSTA 22 1

$PDSVA 24 2
$PDXLC 25 1
$PDSNS 27 2
$PDERP 29 2
$PDIOB 31 2
$PDPRA 33 2
$PDLRL 34 1
$PDOFL 35 1
$PDDCT 36 1

Contents

Device address: X'EO' left carriage
X'E8' right carriage

External indicator
Attribute byte 1; bit 1 on indicates output
Attribute byte 2:

Bits On Meaning
1 Device allocated
4 Dual I/O areas
6 Halt on unprintable characters
7 File opened

Address of next opened DTF in backward chain
Address of next DTF in forward chain
Address recall register save area (return address)
Register 1 save area (contents of calling program
register 1)
Logical record address
Completion code:

Code Meaning
X'40' Normal completion
X'41' Abnormal completion
X J48' Overflow

Operation code; X '40' indicates print
Skip-before value (line number)
Space-before value (number of lines)
Skip-after value (line number)
Space-after value (number of lines)
Q-byte (device address)
R-byte
IOS/ERP status information:

Bits On Meaning
2 Wait
4 Overflow
5 Halt for unprintable characters
6 Unprintable character detected
7 Abnormal condition

IOS/ERP permanent save area
Work area
Sense area
Disk address of ERP
Address of buffer-associated I OB
Address of current I/O area
Logical record length
Overflow line
Position counter

Figure 28. Line Printer Post-Open DTF (Model 10)

62

Label
Displace­
ment

Length
in Bytes Contents

$PDDE V 0 1 Device address: X'EO' left carriage
X'E8' right carriage

$PDUPS 1 1 External indicator
$PDAT1 2 1 Attribute byte 1; bit 1 on indicates output
$PDAT2 3 1 Attribute byte 2:

Bits On Meaning
1 Device allocated
4 Dual I/O areas
6 Halt on unprintable characters
7 File opened

$PDCHA 5 2 Address of next opened DTF in backward chain
$PDCHB 7 2 Address of next DTF in forward chain
$PDARR 9 2 Address recall register save area (return address)
$PDXR1 11 2 Register 1 save area (contents of calling program register 1)
$PDLRA 13 2 Logical record address
$PDCMP 14 1 Completion code:

Code Meaning
X'40' Normal completion
X'41' Abnormal completion
X'48' Overflow

$PDOPR 15 1 Operation code; X '40' indicates print
$P DSKB 16 1 Skip-before value (line number)
$PDSPB 17 1 Space-before value (number of lines)
$PDSKA 18 1 Skip-after value (line number)
$PDSPA 19 1 Space-after value (number of lines)
$PDQ 20 1 Q-byte (device address)
$PDR 21 1 R-byte
$PDIOB 23 2 Address of current I OB
$PDLP 24 1 Lines per page
$PDPCT 25 1 Position counter
$PDOFL 26 1 Overflow line counter
$PDMSK 27 1 Maximum skip value
$PDPGS 28 1 Page size save area
$PDPRA 30 2 Address of current I/O area
$PDRCL 31 1 Record length
$PDRES 32 1 Reserved

Figure 29. Line Printer Post-Open DTF (Model 12)

Define the File Control Blocks 63

Displace­
ment

Length
in Bytes Contents

0 1 Device address; X '10'

1 1 External indicator

2 1 Attribute byte 1:

Bits On Meaning
0 Input
1 Output

0 & 1 Both input and output

3 1 Attribute byte 2:

B it On Meaning
6 Halt on unprintable characters

5 2 Record length

7 2 Address of next pre-open DTF

9 2 Return address register save area

11 2 Register 1 save area

13 2 Reserved

14 1 Completion code

15 1 Operation code

16 1 Logical record length

17 1 Length of operator reply

18 1 Space before/space after byte

20 2 Logical record address

Figure 30. Printer-Keyboard Pre-Open DTF

64

Displace* Length
Label ment in Bytes Contents

$CDDEV 0 1 Device address; X '10'
$CDUPS 1 1 External indicator
$CDAT1 2 1 Attribute byte 1:

Bits On Meaning
0 Input
1 Output

0 & 1 Both input and output

$CDAT2 3 1 Attribute byte 2:

Bits On Meaning
1 Device allocated
6 Halt on unprintable characters
7 File opened

$CDCHA 5 2 Address of next DTF in backward chain
$CDCHB 7 2 Address of next DTF in forward chain
$CDARR 9 2 Address recall register save area (return address)
$CDXR1 11 2 Register 1 save area

register 1)
(contents of calling program

$CDLRA 13 2 Logical record address
$CDCMP 14 1 Completion code:

Code Meaning
X W Operation has been initiated

but no wait for completion
has been executed, or CHEK-Y
is specified and the operation
is not completed

X'40' Normal completion
X '41 ' Abnormal completion
X'42' End-of-file indicator

$CDOPR 15 1 Operation byte:

Bits On Meaning
0 Input
1 Output

0 & 1 Write/read (WTOR)
3 Issue input request only when

the request key is depressed
6 Operator must key the exact

number of characters

$CDCT1 16 1 Count of.bytes in the first area
$CDCT2 17 1 Count of bytes in the second area
$CDSPC 18 1 Space command:

Bits Contents
0 - 3 Number of lines to space

before print
4 - 7 Number of lines to space

after print

$0D IO 2 20 2 Address of input buffer

Figure 31. Printer-Keyboard Post-Open DTF

Define the File Control Blocks 65

Displace­
ment Bytes Notes Contents

0 1 1 Device address (any valid disk device)
1 1 1 External indicators (UPSI)
3 2 1 File attributes
5 2 1 Record length
7 2 1 Address of next DTF

11 4 Reserved for post-open DTF
13 2 2 Logical record address (move mode)
15 2 Reserved for post-open DTF
17 2 3 Input/output area address (address of the area

for lOBs and I/O buffers)
19 2 Reserved for post-open DTF
21 2 3 Block length (length of a physical block of

records; used to determine the size of the
data I/O buffers)

25 4 Reserved for post-open DTF
27 2 Address of MVF extent tabel (direct multivolume)
29 2 Number of MVF table extents (direct multivolume)
30 1 Reserved for post-open DTF
38 8 3 Filename (used to identify a disk file)
43 5 Reserved for post-open DTF
48 5 Reserved for post-open DTF (as required)
50 2 4 Address of requested key (indexed random) or

address of record address area (direct)
50 (2) 4 Address of current key (indexed sequential add)
50 (2) 4 Address of high key (processing within limits)
54 4 Reserved for post-open DTF (as required)
56 2 Key length (indexed)
58 2 Reserved for post-open DTF (as required)
60 2 Key displacement in record (indexed)
62 2 4 Address of master track index (indexed random)
62 (2) 4 Address of last key (indexed sequential add)
62 (2) 4 Address of low key (processing within limits)
64 2 Number of bytes in master track index (indexed

random)
160 96 Reserved for post-open DTF (as required)

Notes:
1. DTF fields common to all pre-open DTFs (see Figure 21).
2. Work buffer address not required for the Allocate Initiator or Open, but will be kept for post-open DTF.
3. DTF fields common to all pre-open disk DTFs.
4. Use of these fields varies with the type of access method used.

Figure 32. Disk Pre-Open DTF

66

Field
Name Disp. Length Contents

$DFDEV 0 1 Device address
X'AO' = R1
X'A8' = F1
X'BO' = R2
X'B8' = F2

$DFUPS 1 1 External indicator
$DFATR 3 2 File attributes

Byte 1:

B it On Meaning
0 Indexed
1 Consecutive
2 Direct
3 Multivolume
4 Input
5 Output
6 Update
7 Add

Byte 2:

B it On Meaning
0 Binary
1 Ordered load
2 Random
3 Limits
4 Double buffers/shared

I/O-move mode
5 Closed by end of volume
6 End of volume/limits
7 Opened

$DFCHA 5 2 DTF chain pointer A (backward)
$DFCHB 7 2 DTF chain pointer B (forward)
$DFARR 9 2 ARR save area (return address)
$DFXRS 11 2 XR1 save area (contents of object program XR1)
$DFWKB 13 2 Address of logical record (chared I/O-address of

logical input record)
$DFCMP 14 1 Completion code

Code Meaning
X'40' Normal completion
X '41 ' Controlled cancel taken on

permanent I/O error
X'42' End of file (input)
X'44' No record found (out of extent

for direct files)
X'48' Overflow (printer)
X'50' Key field does not match

key in update record
X'60' Duplicate load or add attempted
X'62' Out of sequence (load or add

attempted)
X'70' End of extent (output)

Completion codes other than X'40' are returned
before the data management function is actually
completed.

Figure 33 (Part 1 of 3). 5444 Disk Post-Open DTF

Define the File Control Blocks 67

End of Basic DTF

Field
Name Disp. Length Contents

$DFOPC 15 1 Operation byte:

B it on Meaning
0 Get
1 Put/add or put/load
2 Put /update

3-7 Must be zero
$DFIOB 17 2 Address of current I/O IOB
$DFPRB 19 2 Address of current process IOB (dual I/O only;

shared I/O-address of logical output record)
$DFBKL 21 2 Block length (length of data buffer)
$DFRCL 23 2 Logical record length
$DFPTR 25 2 Data block index (address of next record)
$D FX TA 27 2 Data start extent
$DFM VF 27 (2) Address of direct MVF extent table
$DFXTB 29 2 Data end extent (disk address)
$DFNUM 29 (2) Number of extents (direct MVF)
$DFSWA 30 1 Scheduler work area format-1 label sequence

number
$DFWAA 31 1 Work area A
$DFWAB 32 1 Work area B
$DFWAC 33 1 Work area C
$DFWAD 34 1 Work area D
$DFRMA 36 2 Work area, length of first part of overlap record
$DFRMB 38 2 Work area, length of second part of overlap

record *
$DFIND 39 1 Indicator bits

End of DTF for: $$CSOP $DFNXR 43 4 Disk address of current record (CSDD)
$$CSIP

End of DTF for: $$CSUP $DFEOF 46 3 Disk address of logical end of file (CSD)
or for direct files, maximum number (in
binary) of records in the file

$$DAIB
$$DAI D
$$DAIM
$$DAIT
$$DAUB
$$DAUD $DFNXK 46 (3) Disk address of logical end of index (CSD)
$$DAUM $DFKPR 48 2 Pointer within index (pointer to next buffer entry)

End of DTF for: $$DAUT $DFKAD 50 2 Address of key in core (last Get or Put)
$DFCUR 50 (2) Address of current key (ISAD, ISUA)
$DFHI 50 (2) Address of high key (limit)
$DFK XA 52 2 Start extent of index (disk address of first track)
$DFKBF 54 2 Address of index IOB

$$IOUT $DFKL 56 2 Key length
$$ISIP $DFKXB 58 2 End extent of index

End of DTF for: $$ISUP $DFKD 60 2 Displacement of key in record

rigure 33 (Part 2 of 3). 5444 Disk Post-Open DTF

Field
Name Disp. Length Contents

$DFLST 62 2 Address of last key (ISAD, ISUA)
$$ISIL $D FM IX 62 (2) Address of master track index

End of DTF for: $$ISUL $DFLOW 62 (2) Address of low key (limit)
$$IOAD
$$IRIP
$$IRUP
$$IRAD $DFBYT 64 2 Number of bytes in master index

End of DTF for: $$IRUA $DFKXP 65 (2)+1 Logical start of index overflow (CSD)

End of DTF for: $$ISAD $DFSNP 67 2 Save next index pointer (ISAD, ISUA)
$DFSLA 69 2 Save last address (CS) (ISUA)

End of DTF for: $$ISUA $DFSLP 71 2 Save last index pointer (ISUA)
$DFSEQ 72 1 Logical sequence number of current SWA F1
$D FN XT 73 1 Actual sequence number of current volumes
$DFF1S 74 1 First byte of saved SWA F1

$$ISIM $DFF1 137 63 Last byte of saved SWA F1
$$ISUM $DFAR1 139 2 ARR save area (return address for Disk Data
$$CSIM Management when going to End of Volume)
$$CSOM $D F X R 1 141 2 XR1 save area (contents of Disk Data

End of DTF for: $$CSUM Management XR1 when going to End of Volume)
$$IOUM
$$ISAM

End of DTF for: $$ISBM $DFKEY 143 2 Address of volume information table
$$IR IM
$$IRUM $DFTAB 145 2 Address of indexed MVF extent table
$$IRAM $DFENT 146 1 Number of track index entries in the volume
$$IOAM information table

End of DTF for: $$IRBM $DFVOL 147 1 Number of on-line indexed MVF volumes

Figure 33 (Part 3 of 3). 5444 Disk Post-Open DTF

Define the File Control Blocks 69

Length of DTF for
Various Modules

Figure 34 (Part 1 of 3).

Field
Name Disp. Length Contents

$DFDEV 0 1 Device address
X'CO' D1
X'C8' D2

$DFUPS 1 1 External indicator
$DFATR 3 2 File attributes

Byte 1:

B it On Meaning
0 Indexed
1 Consecutive
2 Direct
3 Multivolume
4 Input
5 Output
6 Update
7 Add

Byte 2:

B it On Meaning
0 Binary
1 Ordered load
2 Random
3 Limits
4 Double buffers/shared l/O-

move mode
5 Closed by end of volume
6 End of volume/limits
7 Opened

$DFCHA 5 2 DTF backward chain pointer
$DFCHB 7 2 DTF forward chain pointer
$DFARR 9 2 ARR save area (return address)
$DFXRS 11 2 XR1 save area
$DFWKB 13 2 Address of logical record
$DFCMP 14 1 Completion code

Code Meaning
X'40' Normal completion
X'41 ' Controlled cancel taken on

permanent I/O error
X'42' End of file (input)
X '44' No record found (out of extent

for direct files)
X'48' Overflow (printer)
X'50' Key field does not match key

in update record
X'60' Duplicate load or add attempted
X'62' Out of sequence (load or add

attempted)
X'70' End of extent (output)

Completion codes other than X'40' are returned
before the data management function is actually
completed.

5445 Disk Post-Open DTF

70

Length of DTF for Field
Various Modules Name Disp. Length Contents

$DFOPC 15 1 Operation byte:

B it On Meaning
0 Get
1 Put/add or put/load
2 Put/update

End of Basic DTF (16 bytes) 3-7 Must be zero
$DFIOB 17 2 Address of current IOB
$DFPRB 19 2 Address of current process IOB

(dual I/O only)
$DFBKL 21 2 Block length (length of data buffer)
$DFRCL 23 2 Logical record length
$DFPTR 25 2 Data block index (address of next record)
$D FX TA 27 2 Data start extent
$DFM VF 27 (2) Address of direct MVF extent table
$DFXTB 29 2 Data end extent (disk address)
$DFNUM 29 (2) Number of extents (direct MVF)
$DFSWA 30 1 Scheduler work area format-1 label

sequence number
$DFWAA 31 1 Work area A
$DFWAB 32 1 Work area B
$DFWAC 33 1 Work area C
$DFWAD 34 1 Work area D
$DXRM A 37 3 Work area (length of first part of

overlap record)
$DXRMB 40 3 Work area (length of second part of

overlap record)
$D XIN D 41 1 Indicator bits

End of DTF for: $$CFOP $DXNXR 46 5 Disk address of current record
(48 bytes) $DXSPC 47 1 Number of tracks in split cylinder file

$$C F IP $DXIO A 50 3 Save area for disk address from IOB
End of DTF for: $$CFUP $DXDA T 52 2 Save area for buffer pointer from IOB

(57 bytes) $DXEOF 56 4 Disk address of logical end of file or for
direct files, maximum number (in binary)
of records in the file

$$DFI B
$$DFI D
$$DFIM
$$D FIT
$$DFUB
$$DFUD $DXNXK 56 (4) Disk address of logical end of index
$$DFUM $DXKPR 58 2 Pointer within index (to next buffer

End of DTF for: $$DFUT entry)
(61 bytes) $DKKAD 60 2 Address of key in core (last get or put)

$DXCUR 60 (2) Address of current key
$DXHI 60 (2) Address of high key (limit)
$D XK X A 62 2 Start extent of index (disk address of

first track)
$$l FUT $DXKBF 64 2 Address of index IOB
$$l HIP $DXKL 66 2 Key length

End of DTF for: $$IHUP $DXKXB 69 3 End extent of index
(72 bytes) $DXKD 71 2 Displacement of key in record

Figure 34 (Part 2 of 3). 5445 Disk Post-Open DTF

Define the File Control Blocks 71

Length of DTF for Field
Various Modules Name Disp. Length Contents

$DXLST 73 2 Address of last key
$$l HUL $D X M IX 73 (2) Address of master track index

End of DTF for: $$ IH IL
(74 bytes)

$DXLOW 73 (2) Address of low key (limit)

$$ 1G 1P
End of DTF for: $$IGUP

(76 bytes)
$DXBYT 75 2 Reserved

$$l FAD
$$IGAD $DXKXP 77 (4) Logical start of index overflow

End of DTF for: $$IGUA
(78 bytes)

End of DTF for: $$l HAD
(80 bytes)

$DXSNP 79 2 Save next index pointer

$DXSLA 82 3 Save last address
End of DTF for: $$IHUA

(85 bytes)
$DXSLP 84 2 Save last index pointer

$DXSEQ 85 1 Logical sequence number of current
SWA F 1

$D X N X T 86 1 Actual sequence number of current
volumes

$DXF1S 87 1 First byte of saved SWA F1
$DXF1 150 63 Last byte of saved SWA F1
$DXAR1 152 2 ARR save area (return address for

$$ 1H 1M disk data management when going to
$$IHUM end of volume)
$$CFIM $DXXR1 154 2 XR1 save area (contents of disk data
$$CFOM management SR1 when going to end

End of DTF for: $$CFUM
(155 bytes)

of volume)

$$l FUM
$$IHAM

End of DTF for: $$IHBM
(157 bytes)

$DXKEY 156 2 Address of volume information table

$$IG IM
$$IGUM

$DXTAB 158 2 Address of index MVF extent table

$$IGAM $DXENT 159 1 Number of track index entries in
$$l FAM volume information table

End of DTF for: $$IGBM $DXVO L 160 1 Number of online indexed MVF
(161 bytes) volumes

Figure 34 (Part 3 of 3). 5445 Disk Post-Open DTF

Displacement Length Contents

0 1 Device address
1 1 External indicator (see note)
2 1 Attributes
3 1 Attributes
5 2 Record length
7 2 Address of next DTF

11 4 Not used
13 2 Logical record area
15 2 Not used
17 2 Address of I/O area
19 2 Length of I/O area (see note)
21 2 Block length
27 6 Not used
28 1 Attributes
30 2 Not used
38 8 File name
39 1 Buffer offset (ASCII only)

Note: These positions are not used in the Pre-Open Basic DTF

Figure 35. Tape Pre-Open DTF

72

Label Displacement Length Contents

$TDDEV
$TDERP
$TDATR

$TDCHA
$TDCHB
$TDARR
$TDXRS
$TDWKR
$TDCMP

$TDOPC

$TDIOB
$TDPRB
$TDBKL
$TDR LC
$TDPTR
$TDCRL
$TDAT2

4
6
8
A
C
E

10
12
14
16
18
1A
1C

Device address (X'60')
External indicator (See Note)
Attribute byte 0

B it Meaning
1 Consecutive (Always on)
3 Multivolume file
4 Input
5 Output
6 Basic access method

Attribute byte 1

B it Meaning
0 Unload
1 Leave
2 Standard labeled file
3 Locate mode
4 Multiple buffering
5 Deferred open
6 Force EOV call to close
7 Opened

DTF backward chain pointer
DTF forward chain pointer
ARR save area (return address)
XR1 save area (object program's XR1)
Address of the logical record
Completion code:

Rewind

Code
X'40'
X'41 '

X'42'
X'70'
X'90'

Operation byte:

Code
X'40'
X'80'

Meaning
Normal completion
Controlled cancel taken on
permanent I/O error
End-of-file (input)
End-of-volume (output)
Incorrect length on input
operation

Meaning
Put
Get

Address of current I/O IOB
Address of current process IOB (See Note)
Block length (Length of data buffer)
Maximum record length (See Note)
Block index (See Note)
Current record length
Attribute byte 2

B it Meaning
0 Fixed
1 Variable
2 Unblocked
3 Blocked
4 Not used
5 ASCII Format D
6 ASCII file being processed
7 Closed (Multivolume files only)

Figure 36 (Part 1 of 2). Tape Post-Open DTF

Define the File Control Blocks 73

Label Displacement

$TDHTC 1 D 1
$TDNUM 1E 1
$TDWAA 1F 2

$TDWAB 21 2

$T DWAC 23 2
$TDWAD 25 2

$TD IN D 27 1

Length Contents

Not used
SWA Format 1 number
Work area A (Block length counter
for variable length records) (See Note)
Work area B (Buffer offset for
ASCII) (See Note)
Work area C (Block count); used by
Tape Close to write or compare
block count. Basic users must up­
date this count. (See Note)
Work area D (Block count save area)
(See Note)
Indicator bits

B it Meaning
0 CPR I OB has not been

waited on
1 Truncated block
2 Empty variable length

block
3 EOV call to close
4 $$CDVE encountered

error reading trailer label

Note: These positions are not used in the Post-Open Basic DTF

Figure 36 (Part 2 of 2). Tape Post-Open DTF

74

Displace­
ment Bytes Notes Contents

0 1 1 Device address (X'40')
1 1 1 External indicators (UPSI)
3 2 1 File attributes
5 2 1 Record length
7 2 1 Address of next DTF

11 4 Reserved for post-open DTF
13 2 2 Logical record address (move mode)
15 2 Reserved for post-open DTF
17 2 Input/output area address (address of the area

for lOBsand I/O buffers)
19 2 Reserved for post-open DTF
21 2 Block length (length of a physical block of

records; used to determine the size of the
data I/O buffers)

25 4 Reserved for post-open DTF
27 2 Address of MVF extent tabel (direct multivolume)
29 2 Number of MVF table extents (direct multivolume)
30 1 Reserved for post-open DTF
38 8 Filename (used to identify a file)

Notes:
1. DTF fields common to all pre-open DTFs (see Figure 21).
2. Work buffer address not required for the Allocate Initiator or Open, but will be kept for post-open DTF.

Figure 37. 3741 Pre-Open DTF

Define the File Control Blocks 75

Field
Name Disp. Length Contents

$DFDEV 0 1 Device address (X '40')

$DFUPS 1 1 External indicator
$DFATR 3 2 File attributes

Byte 1:

B it On Meaning
0 Unused
1 Consecutive
2 Unused
3 Unused
4 Input
5 Output
6 Unused
7 Unused

Byte 2 :

B it On Meaning

° i
Unused

3)
4 Double buffers

5 [Unused
6 J
7 Opened

$DFCHA 5 2 DTF chain pointer A (backward)
$DFCHB 7 2 DTF chain pointer B (forward)
$DFARR 9 2 ARR save area (return address)
$DFXRS 11 2 XR1 save area (contents of object program XR1)
$DFWKB 13 2 Address of logical record (shared I/O-address of

logical input record)
$DFCMP 14 1 Completion code

Code Meaning
X'40' Normal completion
X '41 ' Controlled cancel taken on

permanent I/O error
X'42' End of file (input)

Completion codes other than X '40' are returned
before the data management function is actually
completed.

Figure 38 (Part 1 of 2). 3741 Post-Open DTF

76

End of Basic DTF

Field
Name Disp. Length Contents

$DFOPC 15 1 Operation byte:

B it on Meaning
0 Get
1 Put/add or put/load
2 Put

3-7 Must be zero
$DFIOB 17 2 Address of current I/O IOB
$DFPRB 19 2 Address of current process IOB (dual I/O only;

shared I/O-address of logical output record)
$DFBKL 21 2 Block length (length of data buffer)
$DFRCL 23 2 Logical record length
$DFPTR 25 2 Data block index (address of next record)
$DFXTA 27 2
$DFM VF 27 (2) > Unused
$DFXTB 29 2
$DFNUM 29 (2))
$DFSWA 30 1 Scheduler work area format-1 label sequence

number
$DFWAA 31 1 \
$DFWAB 32 1 ƒ
$DFWAC 33 1 f
$DFWAD 34 1 > Unused
$DFRMA 36 2 l
$DFRMB 38 2 7

Figure 38 (Part 2 of 2). 3741 Post-Open DTF

Define the File Control Blocks 77

78

Appendix C. Disk Input/Output Block

You build the disk IOB by issuing the $IOBD macro
instruction. If you use $RDD, $WRTD, or $WAIT in your
program, you must use the $IOED macro instruction to
assign the offset in the IOB. The format of the IOB and
the labels assigned to the fields are shown in Figure 39.
lOBs for the IBM 5444 Disk Storage Drive are 22 bytes
long; for the IBM 5445 Disk Storage Drive, the lOBs are
26 bytes long.

Disk Input/Output Block 79

Label
Displace­
ment

Length
in Bytes Contents

$DICHN

$DICMP

$DIQB

$DIRB

$DICB
(5444
only)

$DI FL2
(5445
only)

$DISB
(5444
only)

$DINB
(5444
only)

$D IDAD
(5445
only)

$D ID A T

1

(1)

(2)

Address of the next IOB in the chain. lOBs are chained only when the file requires
more than one IOB. This area is always present, even when chaining is not used.
When the operation specified by this IOB is complete, this area contains the disk
address last used (cylinder/sector for the 5444; head/record for the 5445).

A 1-byte completion code indicating the status of the operation just performed.
You should check this byte before assuming that the data transfer has occurred.*
Before the wait routine is called, each bit in this byte has the following meaning:

B it On Meaning
0 Seek has been started on the operation requested by the IOB.
1 The operation requested is complete.
2 Data transfer is pending on this operation.
3 Data transfer has been started on this operation.
4 A wait will occur for this IOB.
5 If bit 7 is also on, there is an error on an associated IOB; if

bit 7 is off, a scan equal has been found.
6 The scan is not satisfied.
7 A permanent error has occurred on this IOB or an associated IOB.

After the wait routine has finished, the code in this byte has the following
meaning:

Code Meaning
X'40' Successful completion.
X'41' Permanent I/O error.
X'42' Scan not satisfied.
X '44' Scan equal found.
X'45' Permanent error on an associated IOB

The Q-byte of the start I/O (SIO) command. You set this byte through the $IOBD
macro instruction.

The R-byte of the start I/O command. It further defines the operation requested.
Figure 40 shows the possible R-byte settings for the SIO command.

The hexadecimal value of the cylinder address where the operation is to begin.
You set this byte through your $IOBD macro instruction.

Flag byte for use with the 5445. The meanings of the bits are:

B it On Meaning
0 End of cylinder has been reached. (Used by IOS only.)
1 End of cylinder has been reached. You may test this bit when

control is returned to your program.
2-5 Not used.
6 Seek not used on this operation.
7 Reserved; must be 0.

The hexadecimal value of the beginning sector address of the operation. You
set this byte through the $IOBD macro instruction.

The number of sectors minus one, in hexadecimal, involved in the data transfer.
You set this byte through the $IOBD macro instruction.

Address of the leftmost byte of the 5445 disk address.

Address of the leftmost byte of your data area. You provide this address
through the $IOBD macro instruction.

Figure 39 (Part 1 of 2). Disk IOB Format

80

Label
Displace­
ment

Length
in Bytes Contents

$DISNS 11 2 The area used by the input/output supervisor to contain device status sense
information. The contents of this area is described in Figure 41.

$DIERR 12 1 The area used by disk I OS to count the number of retries requ ired to
complete the I/O request.

$DIFLG 13 1 Indicates special handling required for I/O operations through the various
- bit settings. You set bits 0 and 4 through the $IOBD macro instruction. If no

special handling is required, the byte must be set to X'00'. The bit settings are:

B it On Meaning
0 No recovery is to be attempted if a data check, missing address

mark, no record found, or track condition check error condition
occurs.

1 No verification is to be done on write operations.
2 No error logging is to be done if any disk I/O error should

occur. Control is to be returned to the calling routine.
3 Disk IOS should not use the C and S bytes in the IOB, but

should pick up the F, C, and S bytes at the end of the IOB
for use in this operation. This bit should be used only by
the system control program.

4 The calling routine is not using disk data management; there­
fore, this IOB is not associated with a DTF.

5 There is no load I/O of the disk file data register (DFDR).
6 Error logging is in progress.
7 A data transfer operation involving an alternate track is in

progress.

$DIARR 15 2 The save area for the address recall register.

$D IX R 2 17 2 The save area for register 2.

$DI DCH 19 2 The disk data management chain pointer. It contains the address of the
second of the two lOBs used for double buffering.

$D IDTF 21 2 The address of the DTF associated with this IOB.

$DICC
(5445
only)

22 1 The hexadecimal value of the cylinder address where the operation is to
begin. You set this byte through the $IOBD macro instruction.

$DIHH
(5445
only)

23 1 The hexadecimal value of the head address where the operation is to begin.
You set this byte through the $IOBD macro instruction.

$DIR
(5445
only)

24 1 The hexadecimal value of the record address where the operation is to begin.
You set this byte through your $IOBD macro instruction.

$DIN
(5445
only)

25 1 The number of records minus one, in hexadecimal, involved in the data
transfer. You set this byte through the $IOBD macro instruction.

Figure 39 (Part 2 of 2). Disk IOB Format

Disk Input/Output Block 81

I/O
Operation

SIO R-Byte
Settings (Hex) Interpretation

5444 Settings

Control 00 Seek

00 Data
01 Identifier

Read 02 Diagnostic
03 Verify

Write 00 Data
01 Identifier

00 Equal
Scan 01 Low or equal

02 High or equal

5445 Settings

Control 00 Seek
01 Recalibrate

Read 00 Key-data
03 Verify key-data

Write 00 Key-data

00 Key-data equal
Scan 01 Key-data low or equal

02 Key-data high or equal

Figure 40. R-Byte Settings

82

Device Byte Bit On indication

0 I/O no-op (single only)
1 Intervention required
2 Missing address mark
3 Equipment check

0 4 Data check
5 No record found
6 Track condition check

5444
7 Seek check

0 Scan equal
1 Access arm at cylinder 0
2 End of cylinder
3 Seek busy

1 4 Hundred cylinders
5 Device overrun
6 Status address A*
7 Status address B*

0 Format error
1 Intervention required
2 Missing address mark
3 Equipment check
4 Data check
5 No record found
6 No-op

5445
7 Overrun

0 Disk drive error
1 Unsafe
2 Seek 1 complete
3 Seek 2 complete
4 Data operation complete
5 End of cylinder has been reached
6 Scan equal
7 Disk drive ID **

Indicates which drive on the 5444 had last data transfer:
Bits 6-7 00—Drive 1

01—Drive 2

Bit 7 0-D rive 1
1—Drive 2

Figure 41. Device Status Sense Information

Disk Input/Output Block 83

84

Appendix D. Macro Instruction Summary Chart

Figure 42 is a summary chart containing all valid macro
processor instructions. The macro instructions are listed
in alphabetic order. Four items are given for each macro
instruction:

• Name

• Format of the instruction with all valid operands

• Function of the macro instruction

• Maximum number of statements generated

For more detailed information on any of the macro
instructions, see Chapter 2. Macro Instruction Statements.

Macro Instruction Summary Chart 85

Figure 42 (Part 1 of 4).
M

acro Instruction Sum
m

ary C
hart

Name Macro Instruction Function

Maximum Number
of Statements
Generated

$ALOC [Name] $ALOC [DTF-address] Assigns the file indicated by the DTF to 5
your program.

$CCP [Name] $CCP QBYTE-hex,R BYTE-hex Generates the CCP assembler 4
instruction.

$CHK | [Name] $CHK [CKL-address] Tests for I/O operation completion in the
check list.

4

$CKL [Name] $CKL DTF-address[,SKIP-Y/N] [,REQK-Y/N| [,RTN-Y/N]
[.LAST-Y/N]

Generates an entry for the check list to be
used by the check routine.

6

$CLOS [Name] $CLOS [DTF-address] Prepares the device for job termination. 5

$COMN $COMN Provides equates used by various other 14
macro instructions.

$CTLT [Name] $CTLT [DTF-address] [,OPC-code] Issues control commands to the tape device. 5

$DTFD [Name] $DTFD AC-code,RECL-number,NAME-filename,IO-address,
BLKL-numberl.DISK-5444/54451 [,UP-mask]
[,BUFN0-1/2] [,M VF-N/Y] [,L IM -N /Y]
[,ORD-N/Y] [,B IN-N/Y] [,CHN-address]
[,RCAD-address] [,ENT-number] [,MVFN-number]
[,KEYL-number] [,KEYD-number] [,KEYA-address]
[,MVFT-address] [,MSTX-address]

Builds a DTF for a disk file. 43

$DTFK [Name] $DTFK NAME-filename,RECL-number, 10-address
[,A C -i/0] [,RCAD-address] [,B U FN 0-I/2]
[,CHN-address] [,UP-mask]

Builds a DTF for 3741 file. 15

$DTFT [Name] $DTFT NAM E-filename, 10-address, A C-IN/OUT,BLKL-number,
RECL-number[#UP-mask] [,CHN-address]
[.BASIC-Y/N] r.MODE-LOCATE/MOVEl

Builds a DTF for a tape file. 23

[,MBUFF-Y/N] [,RCAD-address] [,RECFM-code]
[,LIOA-number] [.SPAN-Y/N] [,CODE-A/E]
[,OSET-B/number] [,END-code]

Figure 42 (Part 2 of 4). Macro Instruction Summary Chart

Macro Instruction Summary Chart 87

Figure 42 (Part 3 of 4). Macro Instruction Summary Chart

88

M
acro Instruction Sum

m
ary C

hart
89

c• t
CD
4*

4 *
O

3
3
Oi
“t<
O
3-

Name Macro Instruction

$TRL [Name] $TRL TO-address,FROM-address,LEN-number,
TRT-address

$TRTB [Name] $TRTB | [CODE-E/A] [,HEX-hex] |

$WRTD [Name] $WRTD IOB-address,CS-address,NSECT-number
[.DISK-5444/5445]

$WAIT 1 [Name] I $WAIT | [IOB-label] [,ERR-address]

$WRTT [Name] $WRTT [DTF-address]

$WTT [Name] $WTT [DTF-address] [,ERR-address] [,EOF-address]
[,EOT-address]

$XCTL [Name] $XCTL NAME-module name[,L0AD-2/address]
[,PACK-P/S]

Function

Maximum Number
of Statements
Generated

Builds a parameter list to pass infor­
mation to the system translate routine.

13

Generates an EBCDIC to ASCII or an
ASCII to EBCDIC translate table.

20

Writes a record on a disk file via the
input/output supervisor.

7

Waits for completion of a disk input/output
operation.

6

Writes a record to a tape file via the basic
tape data management.

5

Waits for completion of a basic tape data
management I/O operation.

10

Finds and loads a module at a specified
address and passes control to it.

10

90

Index

$$ARFF 1442 data management module 26 access methods, disk data management system
$$CFxx disk data management modules 35 modules 35
$$COAM console data management module 26 allocate I /O devices ($ALOC) 8
$$CSxx disk data management modules 35 allocate space ($ALOC) 18
$$CSxx tape data management modules 41 assembler instruction generation 48
$$DAxx disk data management modules 35
$$DFxx disk data management modules 35
$$IFxx disk data management modules 35
$$IGxx disk data management modules 35
$$IHxx disk data management modules 35
$$IOxx disk data management modules 35
$$IRxx disk data management modules 35 BSC DTF checked for completion 20
$$LPRT printer data management module 26 buffer length, disk 30
$$MFxx MFCU data management modules 26 buffers
$ALOC macro 18 disk 30
$CCP macro 48 dual
$CHK macro 21 disk 31
$CKL macro 20 unit record 23
$CLOS macro 22 3741 46
$COMN macro 5 unit record 23
$CTLT macro 45 3741 46
$DTFD macro 30
$DTFK macro 46
$DTFT macro 39
$DTFU macro 22
$DTOD macro 32
$DTOT macro 41
$DTOU macro 25 card read punch (see 1442)
$EOJ macro 16 CCP assembler instruction generation
$FIND macro 11 ($CCP) 48
$FTCH macro 13 chaining DTFs
$GETD macro 34 close routine 22
SGETK macro 47 open routine 19
SGETT macro 41 check for I /O completion ($CHK) 21
$GPU macro 25 check list format 20
$IOBD macro 33 check list generation ($CKL) 20
$IOED macro 34 close I/O device file ($CLOS) 22
$LCP macro 48 close routine 22
$LOAD macro 11 coding conventions, macro instruction 1
$OPEN macro 19 command CPU instruction generation
$PKBU macro 27 ($CCP) 48
$PRNT macro 29 command, tape control ($CTLT) 45
$PUTD macro 37 comments, macro instruction 3
$PUTK macro 47 common equates ($COMN) 5
$PUTT macro 43 completion check I/O ($CHK) 21
$RDD macro 36 completion checklist, I /O ($CKL) 20
$RDT macro 43 configuration record description 8
$SCP macro 48 considerations, programming 5
$SNAP macro 16 console (see also printer-keyboard, 5471)
$SOURCE file with macro processor 2 console data managment module 26
$SVC macro 6 console g e t/p u t/w rite to operation
$TRAN macro 16 (SPKBU) 27
$TRL macro 14
$TRTB macro 15
$W A IT macro 38
$W RTD macro 38
$W RTT macro 44
$W TT macro 45
$XCTL macro 14

Index 91

continuation coding, macro instruction 3
control blocks (see DTF control block
descriptions)

control command for tape ($CTLT) 45
control exchange with loaded module
(SXCTL) 14

control pass to loaded module ($FTCH) 13
CPU com m and/load/store instruction
generation 48

data area pre-open/post-open
conditions 19

data management modules
console 26
disk 35
MFCU 26
printer 26
tape 41
1442 26

data station (see 3741)
default value definition 3
define the file (see DTF)
deleting macro instructions 4
device allocation ($ALOC) 18
device preparation (SOPEN) 19
device status sense information 83
device support

disk 29
tape 39
unit record 22
3741 46

device termination ($CLOS) 22
directory entry find ($FIND) 11
disk buffers 30
disk data management module access
methods 35

disk DTF control block descriptions
post-open (5444 and 3340 simulation
area) 67

post-open (5445 and 3340 main data
area) 70

pre-open 66
disk DTF definition ($DTFD) 30
disk get record interface ($GETD) 34
disk IOB

build ($IOBD) 33
description/format 79

disk put record interface ($PUTD) 37
disk routines

build DTF ($DTFD) 30
build IOB ($IOBD) 33
generate DTF offsets ($DTOD) 32
generate IOB offsets ($IOED) 34
get record ($GETD) 34
put record ($PUTD) 37
read ($RDD) 36
wait ($W AIT) 38
write ($W RTD) 38

disk update ($PUTD) 37

disk wait ($W AIT) 38
disk write ($W RTD) 38
DTF build

disk ($DTFD) 30
tape ($DTFT) 39
unit record ($DTFU) 22
3741 ($DTFK) 46

DTF chaining
close routine 22
open routine 19

DTF checked for completion,
B S C /M LTA /5471 20

DTF control block descriptions
post-open

line printer (Model 10) 62
line printer (Model 12) 63
MFCU 58
printer-keyboard (console) 65
tape 73
1442 60
3741 76
5444 disk (and 3340 simulation
area) 67

5445 disk (and 3340 main data
area) 70

pre-open
disk 66
general 56
line printer (Models 10 and 12) 61
MFCU 57
printer-keyboard (console) 64
tape 72
1442 59
3741 75

DTF offsets
disk ($DTOD) 32
tape ($DTOT) 41
unit record ($DTOU) 25
3741 ($DTOD) 32

DTF pre-open/post-open conditions 19
dual buffers

disk 31
unit record 23
3741 46

dump main storage ($SNAP) 16

end of job ($EOJ) 16
equates

common ($COMN) 5
disk DTF ($DTOD) 32
IOB ($IOED) 79
tape DTF ($DTOT) 41
unit record DTF ($DTOU) 25
3741 DTF ($DTOD) 32

error code descriptions, macro
instruction 53

exchange control with loaded module
($XCTL) 14

92

fetch module and pass control ($FTCH)
file

allocation ($ALOC) 18
close ($CLOS) 22
definition

disk ($DTFD) 30
tape ($DTFT) 39
unit record ($DTFU) 22
3741 (SDTFK) 46

open (SOPEN) 19
find-and-load module ($LOAD) 11
find directory entry ($FIND) 11
find parameter list description 12
format

check list 20
format-1 label 10
I /O completion checklist 20
volume label 9
VTOC index 10

format-1 label
description 8
format 10

13 input/output block (see IOB)
input/output support macros 17
instruction generation, assembler 48
interrupt program (rollout) 8
IOB

address specification, printer 23
description, disk 79
for disk 33
for printer 23
offsets ($IOED) 34

I OS routines 17

job end ($EOJ) 16

generation
checklist ($CKL) 20
translate parameter list ($TRL) 14
translate routine interface ($TRAN)
translate table ($TRTB) 15

get record
console (printer-keyboard) ($PKBU)
disk ($GETD) 34
tape (SGETT) 41
unit record ($GPU) 25
3741 ($GETK) 47

16

27

halt descriptions (error) 53
halt/syslog message printing ($PRNT) 29
halt/syslog routine 7
hexadecimal settings

Q-byte 33
R-byte 82

labels
common ($COMN) 5
disk DTF ($DTOD) 32
DTF 55
form at-1 8
IOB ($IOED) 79
tape DTF ($DTOT) 41
unit record DTF ($DTOU) 25
volume 8
3741 DTF ($DTOD) 32

LCP assembler instruction generation
($LCP) 48

length, disk buffer 30
length, macro instruction 86
line printer DTF control block descriptions

post-open (Model 10) 62
post-open (Model 12) 63
pre-open 61

load CPU instruction generation ($LCP) 48
load module ($LOAD) 11
load module after find ($FIND) 11
load module and exchange control
(SXCTL) 14

load module and pass control ($FTCH) 13
load parameter list description 13
log device definition 7

I/O completion check ($CHK) 21
I /O completion checklist ($CKL) 20
I /O completion checklist format 20
I /O completion, tape ($W TT) 45
I /O device file (see file)
index, VTOC 8
input buffer (see buffers)
input devices, system 6

Index 93

macro instruction
coding conventions 1
comments 3
continuation 3
definition/description 1
deletion 4
length 86
list 4
name field description 1
operand description 1
operation code description 1
summary 85

macro processor
overview 1
register usage 5
residence 4
restrictions 5
sample program 49
source statements 2

main storage snap dump ($SNAP) 16
message/halt

definition 7
descriptions (error) 53
printing ($PRNT) 29

MFCU DTF ($DTFU) 22
MFCU DTF control block descriptions

post-open 58
pre-open 57

MLTA DTF checked for completion 20
module load ($LOAD) 11
module load after find ($F!ND) 11
module load and control exchange
($XCTL) 14

module load control pass ($FTCH) 13
modules, system (see data management
modules)

name field description, macro
instruction 1

OCL statement examples 49
offsets

common ($COMN) 5
disk DTF ($DTOD) 32
IOB ($IOED) 34
tape DTF ($DTOT) 41
unit record DTF ($DTOU) 25
3741 DTF ($DTOD) 32

open I/O device file ($OPEN) 19
open routine 19
operand description, macro instruction 1
operation code description, macro
instruction 1

operator interface ($PKBU) 27
operator reply, console 24
output buffer (see buffers)

parameter list descriptions
find 12
load 13
translate 16

parameter list generation, translate
($TRL) 14

pass control to loaded module ($FTCH) 13
physical buffers (see buffers)
post-open DTF control block descriptions

line printer (Model 10) 62
line printer (Model 12) 63
MFCU 58
printer-keyboard (console) 65
tape 73
1442 60
3741 76
5444 disk (and 3340 simulation area) 67
5445 disk (and 3340 main data area) 70

post-open DTF/data area conditions 19
pre-open DTF control block descriptions

disk 67
general 56
line printer 61
MFCU 57
printer-keyboard (console) 64
tape 72
1442 59
3741 75

pre-open DTF/data area conditions 19
prepare I /O device file ($OPEN) 19
prepare I /O device file for termination
($CLOS) 22

print buffer (see buffers)
print message ($PRNT) 29
printer (see also line printer)
printer data management module 26
printer DTF ($DTFU) 22
printer IOB address specification 22
printer-keyboard (console) interface
($PKBU) 27

printer-keyboard (see also console, 5471)
printer-keyboard data management
module 26

printer-keyboard DTF control block
descriptions
post-open 65
pre-open 64

programmable work station (see 3741)
programming considerations 5
punch buffer (see buffers)
put record

console/printer-keyboard ($PKBU) 27
disk ($PUTD) 37
tape ($PUTT) 43
unit record ($GPU) 25
3741 ($PUTK) 47

Q-byte hexadecimal settings 33

94

R-byte hexadecimal settings 82
read buffer (see buffers)
read routines

(see also get record)
disk ($RDD) 36
tape ($RDT) 43
VTOC 7

record
(see also read routines, write routines)
get

console ($PKBU) 27
disk ($GETD) 34
tape ($GETT) 41
unit record ($GPU) 25
3741 ($GETK) 47

put
console ($PKBU) 27
disk ($PUTD) 37
tape ($PUTT) 43
unit record ($GPU) 25
3741 ($PUTK) 47

record read (see get record, read routines)
record update (see put record)
record, configuration 8
register usage, macro processor 5
residence, macro processor 4
restrictions

macro processor 5
program size 18
rollout routine 8

rollout routine (interrupt) 8

sample program, macro processor 49
SCP assembler instruction generation
($SCP) 48

sense information, device status 83
snap-dump main storage (SSNAP) 16
source statements, macro processor 2
space allocation ($ALOC) 18
status sense information, device 83
storage dump, main ($SNAP) 16
store CPU instruction generation
($SCP) 48

supervisor call ($SVC) 6
SYSIN (see system input)
syslog (see halt/syslog, system log device)
system input device 6
system input routine 6
system log device 7
system routines (see data management
modules)

system services macro instructions 6

tape data management modules 41
tape DTF control block descriptions

post-open 73
pre-open 72

tape DTF definition ($DTFT) 39
tape DTF offsets ($DTOT) 41
tape get record interface ($GETT) 41
tape put record interface ($PUTT) 43
tape routines

control command ($CTLT) 45
DTF build ($DTFT) 39
DTF offsets ($DTOT) 41
get record ($GETT) 41
put record ($PUTT) 43
read ($RDT) 43
wait ($W TT) 45
write ($W RTT) 44

terminate I /O device file ($CLOS) 22
translate area format 14
translate parameter list description 16
translate parameter list generation
($TRL) 14

translate routine (Model 10) 14
translate routine interface generation
($TRAN) 16

translate table generation ($TRTB) 15

unit record
(see also MFCU, line printer, printer,
1442, 5471)

routines
DTF build ($DTFU) 22
DTF offsets ($DTOU) 25
get/put ($GPU) 25
print message ($PRNT) 29
printer-keyboard interface ($PKBU) 27

updating records (see put record)

volume label 8
volume label format 9
VTOC (volume table of contents)

format 8
index description 8
read routine 7
read routine description 7

t-

Index 95

wait routines
disk ($W AIT) 38
tape ($W TT) 45

work station (see 3741)
write routines

(see also put record)
disk ($W RTD) 38
printer-keyboard (console) ($PKBU) 27
tape ($W RTT) 44
3741 ($PUTK) 47

1403
(see also line printer, printer, unit
record)

DTF definition ($DTFU) 22
1442

(see also unit record)
data management module 26
DTF control block descriptions

post-open 60
pre-open 59

DTF definition ($DTFU) 22
3340 (see disk)
3741 DTF control block descriptions

post-open 76
pre-open 75

3741 get record interface ($GETK) 47
3741 put record interface ($PUTK) 47
3741 routines

DTF definition ($DTFK) 46
get record (SGETK) 47
put record ($PUTK) 47

5203
(see also line printer, printer, unit
record)

DTF definition ($DTFU) 22
5424 (see MFCU)
5444 (see disk)
5445 (see disk)
5471

(see also console, printer-keyboard, unit
record)

data management module 26
DTF ($DTFU) 22
DTF checked for completion 20

96

L

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.0. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/lnternational
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

GC21-7562-5

d

IB
M

 System
/3 M

odels 8, 10, and 12 SCP M
acros R

eference (File N
o. S3-31)

Printed in U
.S.A

.
G

C
21-7562-5

